

xyúsumi

CINVESTAV
Centro de Investigación y de Estudios Avanzados del I.P.N.

Unidad Guadalajara

Representación y Explotación del Conocimiento

para la Fase de Descripción en Modelado

Declarativo de Ambientes Virtuales

CINVESTAV
IPN

ADQUISICIÓN
DE LIBROS

Tesis que presenta:
Jaime Alberto Zaragoza Rios

para obtener el grado de:

Maestro en ciencias

en la especialidad de:

Ingeniería Eléctrica

Director de Tesis:

Dr. Félix Francisco Ramos Corchado

CINVESTAV .;S

Guadalajara, Jalisco, Septiembre de 2006.

CLASlF.rTrWbS .£<?-> ,7,-51 _2_<{)C¿.
ADQUIS.: ^^1 - HIH~
FECHA: \C - V - ZOOT

PPOCEP..rw..
-

¿gfl3
$ __ .

U«. Vbons-ioo\

CINVESTAV
Centro de Investigación y de Estudios Avanzados del I.P.N.

Unidad Guadalajara

Representation and Exploitation ofKnowledge
for the Phase ofDescription in Declarative

Modeling ofVirtual Environments

A thesis presented by:
Jaime Alberto Zaragoza Rios

to obtain the degree of:

Master in Science

in the subject of:

Electrical Engineering

Thesis Advisors:

Dr. Félix Francisco Ramos Corchado

Guadalajara, Jalisco, September 2006.

Representación y Explotación del Conocimiento

para la Fase de Descripción en Modelado

Declarativo de Ambientes Virtuales

Tesis deMaestría en Ciencias

Ingeniería Eléctrica

Por:

Jaime Alberto Zaragoza Rios

Ingeniero en Sistemas Computacionales
Instituto Tecnológico de Jiquilpan 1998-2003

Becario de CONACTY, expediente no. 190965

Director de Tesis:

Dr. Félix Francisco Ramos Corchado

CINVESTAV del IPN Unidad Guadalajara, Septiembre de 2006.

Representation and Exploitation ofKnowledge

for the Phase ofDescription in Declarative

Modeling ofVirtual Environments

Master of Science Thesis

In Electrical Engineering

By:
Jaime Alberto Zaragoza Rios

Engineer in Computer Science

Instituto Tecnológico de Jiquilpan 1998-2003

Scholarship granted by CONACYT, No. 190965

Thesis Advisors:

Dr. Félix Francisco Ramos Corchado

CINVESTAV del IPN Unidad Guadalajara, September, 2006.

Representación y Explotación del Conocimiento para la Fase de Descripción en el

Modelado Declarativo de Ambientes Virtuales.

En esta tesis se presenta un estudio del uso del conocimiento en el proceso de generar ambientes

virtuales de manera declarativa. Se encontró que hasta el momento el uso del conocimiento no ha sido

utilizado en el proceso declarativo a pesar de que este juega un papel primario en este proceso. Una

explicación posible es que el trabajo hasta hoy realizado se el usuario juega un papel importante en este

proceso. Esto a pesar de ser natural puede ser fuente de errores, si el usuario no es experto o aun en este

caso no hace las consideraciones pertinentes.

Este trabajo se presenta de la siguiente manera:

1. Se hace una revisión de cómo se realiza el modelado declarativo y el rol que tiene el

conocimiento en este proceso.

2. De la revisión se hace la definición de un lenguaje de tipo pseudo natural que permite al usuario

escribir oraciones vacías de ambigüedad.
3. Se estudia y decide la implantación de una base de conocimientos. En dicha implantación se

hace hincapié en la estructura del conocimiento ya que esta es importante para el proceso total

de generación declarativa de ambientes.

4. Finalmente se hacen las implantaciones pertinentes y se obtienen resultados útiles para concluir

sobre la pertinencia de la presente investigación.

Use ofKnowledge for Helping the Phase ofDescription for Declarative Modelling
ofVirtual Environments.

This thesis focuses on the process of generating environments in declarative manner. The proposal is

original and makes use of knowledge to aid the performance ofthe description phase.

Some ofthe problems we deal in this work are:

1 . How to write a declaration in such a way to reduce the analysis complexity. To solve this

problem is proposed a like natural declarative language. Rules ofthis language allow reduce

ambigú ity ofthe descriptions;
2. Define how the knowledge is useful for describing a scenario;
3. Define a convenient structure for knowledge in order to have an efficient access to the

necessitated information during the process of analysis of sentences and also during the creation

phase.

Defined problems were solved and an implantatíon ofthe proposed solutions is presented. Finally
conclusions regarding this work are described together with some directions for continuing this work.

Index

Index

Index 7

Chapter 1. Introduction 9

1.1. Objectives 10

1.2. Problem's Description 10

1.3. Goals 12

1.4. Solution Proposed 13

1.5. Thesis Organization 13

Chapter 2. State ofthe Art 15

2.1. Objective 16

2.2. Introduction 16

2.3. Virtual Environments 17

2.4. Avatar 17

2.6. Natural language parsing 18

2.6.1. Part-of-speech Tagging 19

2.6.2. Statistical Parsing 20

2.6.3. Lexicalized Parsing 20

2.7. Constraint Satisfaction Problems 21

2.8. Other works on declarative modeling 22

2.8.1. WordsEye: An Automatic Text-to-Scene Conversión System 22

2.9.2. DEM2ONS: A High Level Declarative Modeler for 3D Graphics Applications 23

2.8.3. Multiformes: A Declarative Modeller as A 3d Scene Sketching Tool 23

2.9. What is and why to use an Ontology 25

2.9.1. Ontology Creation Tools 26

2.10. Conclusions 28

Chapter 3. Proposed Solution 29

3.1. Introduction 30

3.2. Language requirements 31

3.3. Scope 32

3.4. Restrictions 32

3.5. Introduction to VEDEL 33

3.5.2 Basic Structure 34

3.5.3. The ENV section 35

3.5.4. The ACTOR section 36

3.5.5. The OBJECT section 36

3.6. VEDEL formal definition 36

3.6.1. Identifiers 38

3.7. Semantic Association 39

3.7.1. Semantic Validation 40

3.8. VEDEL Framework 41

3.9. Ontology Organization 43

3.9.1 Why choosing an ontology? 43

3.9.2. Classes, properties and datatypes defined for VEDEL 44

Chapter 4. Obtained Results 47

4.1. Introduction 48

4.2. The VEDEL parser 48

4.3. The GEDA-3D prototypes 49

Chapter 5 Conclusions and FutureWork 58

5. 1. Introduction 59

5.2. Conclusions 59

5.3. Future Work 61

References 63

Introduction

Chapter 1. Introduction

Abstract

In our first chapter, we exposed the reasons that lead us to develop a method for using ontology in the

description phase of declarative modeling, the description ofthe problems we found and the solutions

proposed for solving them.

Introduction

1.1. Objectives.

Describe the problems this research will intent to solve, explain the solutions we proposed, highlighting

the activities developed for reaching our goal, and the results we expect at the end of the research.

Finally, we present the organization ofthe thesis.

1.2. Problem's Description.

Our focus on this research is the use of knowledge to aid in the generation of virtual environments. To

genérate such environments, we dispose of an array of tools and techniques. Some of those techniques

require expert knowledge in 3D modeling, computer programming, or specialized hardware. Such tools

present a challenge to casual users. The process for master such tools and techniques is long and

complicated. The user must deal with mathematic and logic operations and the quality of the outcome

vary from user to user, since some artistic abilities are necessary.

Such environments or virtual scenes are focused on simulating almost anything possible, from real

settings to fantastic situations. Some of those scenes have a complex nature, so is necessary to créate

and model everything so it can work like we want. That requires specialized knowledge on modeling,

both for the 3D representations, as for how each entity would evolve.

The use of such representations is wide, especially on the entertainment industry, where it has gained

popularity on videogames and the film industry [MONZANI01]. Other applications for such tools are

simulations (such as crime zones [LODHA99]), the construction industry [LARIVE], or even as a

virtual story telling [GÓBEL03].

Our goal with the present research is to develop a friendly, easy to use tool for the final, non expert user

(Figure 1). Thus, we focused the research on declarative modeling.

Definition 1. Declarative Modeling. is very powerful technique allowing to describe the scene to be

designed in an intuitive manner, by only giving some expected properties of the scene and letting the

modeler find solutions, if any, satisfying these properties [PLEMENOS02].

10

Introduction

The declarative modeling process usually composes of three modules [LE ROUX03]:

• Description phase. Defines the interaction language.

• Scene generation phase. The modeler generates one or more scenes that match what the user

describe.

• Insightphase. The user is presented with the models. The user then can choose a solution.

Virtual Environment Render Module

Figure 1. Project Overview.

The focus ofthis research is the description phase. We pretend to give to the user a tool that allows the

creation of virtual scenes, that can evolve in accordance with the user expressed. Those tools could be a

full Integrated Development Environment (IDE), a language specifically designed to allow the

description of virtual scenes, or a parser that allows the analysis of a description written on natural

language.

Each of those options presents different complexities. The IDE would need not only a parser for the

description, but also a rendering machine and some type of knowledge base. For the language, we need

to define both the grammatical and syntactic rules, and only the parser and the knowledge base are

needed, but we relay on some rendering machine already constructed. Finally, the parser for a natural-

11

Introduction

language written description would require only the parser and knowledge base, but the parser would

be a lot more complex.

Since the tool should be easy to use, with a small learning step curve, we decided to take the language

approach. If the language is cióse to the natural language, with few key words, with phrase construction

resembling every-day-language, any user can learn it fast. The rendering machine would be provided

by the GeDA-3D [RAMOS02] architecture, which also hosts the tools for evolving the scene. In

addition to the definition ofthe language, a parser will be constructed so the descriptions based on it

can be processed, and a knowledge base will be generated so the parser can be process the terms in the

description and generated the appropriated output.

1.3. Goals.

Our fist goal is to define the lexical and semantic rules for the language. Such rules must take into

consideration that the parser will use a knowledge base that defines the semantic meaning of the word

being processed, and the whole meaning of the sentence being analyzed. The second goal is the

creation of a parser that analyses the descriptions written in language previously defined, and then

validated such description, indicating to the user for possible errors, and generating a previously

defined output. Our final goal is to created a link between the parser and the GeDA-3D architecture, so

the scene can be displayed and evolve.

Scene

Description
+Gramatical Rules

+Semanctic Rules

Parser

Ontology

Environment

Model
Output

Figure 2. Basic Architecture

12

Introduction

1.4. Solution Proposed.

To achieve the goal exposed before, we proposed the following considerations:

• The definition of the language would no consider a semantic approach, since every term must

be revised within the knowledge base. This will allow expanding or restricting the language, by

adding or subtracting elements from the knowledge base. Also, it allows the separation and

identification of homonymous words.

• Also, the language needs to be both easy to learn and fast to write. It should not limit what the

user can express. This can be accomplished by creating an ordered structure, rather than relay

on the way a person normal would describe and scene.

• The parser should revolve around using the knowledge base for semantic purposes. The lexical

and syntactic rules defined on the language can be hard-coded.

• An ontology is the election ofthe knowledge base. Such decisión is analyzed and explained on

the next chapters.

• The output will be generated for the rendering, agent control and core modules ofthe GeDA-3D

architecture. Those outputs are bound to be defined by the needs of those modules, and the

Communications between those and the parser will be controlled by the architecture's core.

1.5. Thesis Organization.

This thesis organization is presented in the following lines:

• Chapter 2, State of the Art, describes previous and actual works on declarative modeling, as

weil as some literature on the subject.

• Chapter 3, Declarative Modeling, provides and scope on the concept and methods for

declarative modeling.

• Chapter 4, Proposed Solution, states in detail our approach, the research conducted to valídate

such approach, and the selection ofmethods and data structures.

13

Introduction

Chapter 5, Virtual Environment Definition Language, presents a declarative—oriented language,

which enables non-expert modeler and casual user to genérate virtual scenarios. Language

specification and formal definition are presented in this chapter.

Chapter 6, Conclusions and Future work, offers the compilations of results acquired during the

research, as weil as proposed task for future approaching on the research subject.

Chapter 7 enumerates the references consulted for developing this research.

14

State ofthe Art

Chapter 2. State ofthe Art

Abstract

In this chapter we expose some concepts about virtual environments and natural language parsing. We

also review some projects that match some ofthe concepts ofthe GeDA-3D project in the text-to-scene

module.

15

State ofthe Art

2.1. Objective.

To provide some related concepts, and to present some previous projects and investigations that deal

with the generation of virtual scenes (such as classrooms, offices, plañe simulators, ecosystems, roads,

among others) from descriptions and sentences in a natural language.

2.2. Introduction.

World and artificial environment modeling using 3D computer graphics is a difficult and time

consuming process. Learning the complex software packages includes understanding menus, tools,

parameters, files and others, which can be very complex to average users, with little or no knowledge

of 3D modeling [COYNE01].

Creating a virtual environment by means of scene description would allow inexpert users to créate such

environments quickly, without the necessity to go through manuals and complex menus, or the

underlying geometric representation [RUCHAUD02].

The creation ofa 3D-animated scene as a result ofa high-level description demands the development of

a platform capable to: transíate the description, compute a suitable solution for every intention with the

help of intelligent algorithms, manage the interaction ofthe characters, valídate the actions according to

a set of natural laws, and render continuously a 3D-scenario [RAMOS02].

In order to make agüe the generation of the 3D environment, the platform will be linked to a

knowledge base, an anthology, which will include not only the details and descriptions of objects, but

also the way they can related with each other, the positions they can adopt, the actions they can

execute, movement or positioning restrictions, among others.

16

State oftheArt

2.3. Virtual Environments.

One ofthe best descriptions for virtual reality we can give is: "Virtual Reality is a way for humans to

visualize, manipúlate and interact with computers and extremely complex data"

[AUKSTAKALNISM92].

The visualization part refers to the computer generating visual, auditory or other sensual outputs to the

user of a world within the computer. This world may be a CAD model, a scientific simulation, or a

view into a datábase. The user can interact with the world and directly manipúlate objects within the

world. Some worlds are animated by other processes, perhaps physical simulations, or simple

animation scripts [ISDALE98].

Some ofthe virtual reality applications are:

• Education

• Business

• Architecture

• Science

• Medicine

• Robotics

• Army

• Handicap tools

• Fly simulators

• Art

• Entertainment

• Sports and fitness

2.4. Avatar.

Typically, an avatar is defined as a representation of an actual person within a virtual environment, by

means of software agents or controlled by a live participant. In this work, an avatar stands for any

17

State oftheArt

virtual entity that can perform certain activity, or that can be modified by other avatar, objects, or the

environment. Obviously avatars as expressed in our previous works have in its core intelligent

algorithms or are controlled by a live participant. Thus for us, an avatar is any virtual entity that can

perform certain activity, or that can be modified by other avatar, objects, or the environment.

2.5. Object.

An object will be considered, by the means ofthis work, as an avatar with no capabilities, which means

they can not perform any activity, but can be modified by others avatar, or other objects. Thus for

example a door, a wall, a table are objects. They can be modified by all type of avatars or by other

objects. Imagine a ball that hits a lamp the state ofthis last was modified by another object.

2.6. Natural language parsing.

Most of the recent work in empirical natural language processing has involved statistical training

techniques for probabilistic models such as HMMs (Hidden Markov Models) and PCFGs (Probabilistic

Context-Free Grammars). These methods attach probabilities to the transitions ofa finite-state machine

or the productions of a formal grammar and estimate these probabilistic parameters based on training

data. If the training set is pre-annotated with the structure being learned, learning consists simply of

counting various observed events in the training data. If the corpus is not annotated, an estimation-

maximization strategy could be used (for example, the forward-backward algorithm for Markov models

and the inside-outside algorithm for PCFGs) [BRILL97].

Understanding natural language is a complex task and involves many levéis of processing and a variety

of subtasks. We can divide the field of natural language processing as follows:

Speech recognition. Concerns mapping a continuous speech signal into a sequence of recognized

words. The problem is difficult because of the wide variation in the exact pronunciation of words

spoken by different speakers in different contexts. Other problems include homonyms (for example,

pair, pear, pare), other forms of acoustic ambiguity (for example, youth in Asia and euthanasia), and

the slurring ofwords (for example, didja) that happens in continuous speech [BRILL97].

18

State ofthe Art

Semantic analysis. Involves mapping a sentence to some sort ofmeaning representation, for example,

a logical expression. We have two important subtasks of semantic analysis: (1) word-sense

disambiguation and (2) semantic parsing. Word-sense disambiguation roughly means deciding which

ofthe possible meanings for a word is correct in a particular context. Part of semantic parsing involves

producing a case-role analysis, in which the semantic roles ofthe entities referred to in a sentence, such

as agent and instrument, are identified [BRILL97].

Discourse Analysis and Information Extraction. Discourse analysis involves determining how larger

intersentential context influences the interpretation of a sentence. Information extraction is the task of

locating specific pieces of data from a natural language document.

Syntactic analysis involves determining the grammatical structure ofa sentence, that is, how the words

are grouped into constituents such as noun phrases and verb phrases; is the process of assigning a

"phrase marker" to a sentence. This is useful in determining the meaning of a sentence. But there are

cases where a sentence can get different meanings. For most grammars (certainly for the ones statistical

parsers typically deal with), we can not assign at least a semi-plausible meaning to all ofthe possible

parses [CHARNIAK97].

Therefore, we required that the analyzer chooses the right one between all the possible solutions of a

sentence. For this matter, we have some statistic methods.

2.6.1. Part-of-speech Tagging.

The disambiguation as inseparable from parsing is weil illustrated by the first natural-language

processing task to receive a thoroughgoing statistical treatment: part-of-speech tagging. A tagger

assigns to each word in a sentence the part of speech that it assumes corresponds in the sentence. Each

word is assigned with any of its probable parts of speech in order or frequency. A tagging algorithm

then looks for the maximize sum of probabilities for a set of assigned tags to a sentence

[CHARNIAK97].

19

State ofthe Art

This method has been proven to be useful in the EyesWorld project. The algorithm search for an

appropriated tag for each word, so we propose use an ontology to make the algorithm faster, since

every word in the ontology can include not only which tag should be used, but also the in what context

that particular tag is right.

2.6.2. Statistical Parsing.

We started our discussion of statistical taggers by assuming we had a corpus of hand-tagged text. For

our statistical parsing work we assume that we have a corpus of hand-parsed text. In this article we

concéntrate on two such measures labeled precisión and recall, Precisión is the number of correct

constituents found by the parser summed over all the sentences in the test set divided by the total

number of non terminal constituents the parser postulated. Recall is the number correct divided by the

number found in the tree-bank versión. We consider the parts of speech to be the terminal symbols in

this counting and thus ignore them. Otherwise we would be conflating parsing accuracy with part-of-

speech tagging accuracy. A constituent is considered correct if it starts in the right place, ends in the

right place, and is labeled with the correct non-terminal [CHARNIAK97].

Statistical parsers work by assigning probabilities to possible parses of a sentence, locating the most

probable parse, and then presenting that parse as the answer. Thus to construct a statistical parser one

must figure out how to (a) find possible parses, (b) assign probabilities to them and (c) pulí out the

most probable one.

2.6.3. Lexicalized Parsing.

Gathering statistics on individual words immediately brings some sparse data problems. Some words

we will have never seen before, and even if we restrict ourselves to those we have already seen, if we

try to collect statistics on very detailed combinations of words, the odds of seeing the combination in

our training data become increasingly remote.

To minimize the combinations to be considered, a key idea is that each constituent has a "head", its

most important lexical item. For example, the head of a noun phrase is the main noun, which is

20

State ofthe Art

typically the rightmost. Lexicalized statistical parsers collect, to a first approximation, two kinds of

statistics: One relates the head of a phrase to the rule used to expand the phrase, and the other relates

the head ofa phrase to the head ofa sub-phrase [CHARNIAK97].

2.7. Constraint Satisfaction Problems.

Once we have validated the elements in the description, their properties and capabilities for that

particular environment, we need to establish the position of each element within the scene. We need to

take into account the position and direction of every element, and the spatial properties that each object

has.

Constraints are the language of design and as such, can be an extremely valuable tool when placed in

the hands of a designer in the proper form. Constraints can provide a concise, declarative language for

specifying geometry and the relationships between objects in graphic applications.

A constrain describes a declarative relationship that must be maintained among objects. These

constraints are solved by automatically assigning the task ofmaintaining them to the constraints solver.

This allows the user to concéntrate on the relationships that need to be maintained, rather than on the

techniques used to maintain them [KWAITER97].

However, the increase in the user's requirements adds special challenges to the research in constraints

based systems: User may want to quickly explore and improve the subject of his design by adding or

removing constraints. Thus, the constraints solver must re-satisfy the system dynamically as the user

interactions occur. Moreover, the user quickly discards a system that slows him down or delays his

work. So, the constraints solver must always give a fast answer even in critical situations such as over-

constrained or under-constrained problems.

By using an ontology, we can resolve some ofthe constrains, by find which positíons, orientations, and

actions can an object adopt, as weil as the possible áreas they can occupy, or that can be occupied

within the object.

21

State oftheArt

2.8. Other works on declarative modeling.

There have being some works on declarative modeling. Some use direct text to scene conversión,

others use specialized interfaces to allow the creation of the scene, and some relay on the complete

construction ofthe scene by using simplified elements to created complex structures.

In the next paragraphs, we review some of this tools, with the purpose of highlight the differences

between such works and our project.

2.8.1. WordsEye: An Automatic Text-to-Scene Conversión System.

Bob Coyne and Richard Asproad presents a system developed in the AT&T laboratories, WordsEye,

which allows the user to genérate a 3D scene, from a description in a natural language, like "The bird is

in the bird cage. The bird cage is on the chair". The text is initially tagged and parsed using a part-of

speech-tagger and a statistical parser. The output of this process is a parse tree that represents the

structure ofthe sentence.

Next, a depictor (a low-level graphical specification) is assigned to each semantic element. Those

depictors are modified to match the poses and actions depicted in the text, by the means of inverse

kinematics. Next, the implicit and conflicting constrains of depictors are solved. Each assigned depictor

is then applied, while maintaining constraints, to incrementally build up the scene, the background

environment, ground plañe, and lights are added, and .the camera is positioned. Then, the scene is

rendered [COYNE01].

If the case that the text includes any abstraction or description that does not contain physics proprieties

and relations, then some techniques are used, such as: textualization, emblematization, characterization,

literal izacion or personification.

This system already makes the text-to-scenes conversión, using statistical methods and constrains

solvers, and also makes use of different techniques to allow certain expressions to be depicted.

However, it only presents static scenes. For the means or our project, we need to establish a dynamical

22

State ofthe Art

environment, populated by both avatars and objects, which can perform both autonomous and user

based actions. Also, the depictors are taken from a datábase, whereas we need to access ontology.

2.9.2. DEM2ONS: A High Level DeclarativeModeler for 3D Graphics Applications.

DEM2ONS has been designed by Ghassan Kwaiter, Véronique Gaildrat, and Rene Caubet to offer the

user possibilities to easily build 3D scenes in a natural way and high level of abstraction. It is

composed of two main parts: Multimodal interface and 3D scene modeler. [KWAITER02]

The DEM2ONS multimodal interface allows the user to communicate with the system, using

simultaneously múltiple combined ways provided by several Input Device modules (dataglove, speech

recognition system, spaceball, mouse...). Syntactic analysis and Dedicated Interfaces modules analyze

and control the low-level events in order to convert them into normalized events.

For the 3d scene modeler, DEM2ONS uses ÓRANOS, a constrain solver designed with several features

that let them expand the range of declarative modeling applications, such as generality, avoid breaking,

and dynamic constrain solving.

Then, the objects are modeled and rendered by the Inventor Toolkit, which provides the Graphical User

Interface, as weil as the menus and widgets.

This system already allows the user to interact with the objects in the scenes, as weil as resolving any

constrain problem, but only accepts static objects, and there is no support for dynamic objects, our

avatars, an there is no indication of any interaction whit any knowledge base, two ofthe main aspects

for our project.

2.8.3. Multiformes: A DeclarativeModeler as a 3d Scene Sketching Tool.

William Ruchaud and Dimitri Píemenos present us Multiformes, a general-purpose declarative

modeler, especially developed for 3D scene sketching. As with every declarative modeler, the work on

a scene with MultiFormes is handled essentially through its description (the way the designer

23

State oftheArt

introduces all the characteristics of the geometric elements of a scene and the relationships between

them) [RUCHAUD02].

The most important characteristic ofMultiFormes is its ability to automatically explore all the possible

variations of a scene. Unlike most existing sketching systems, MultiFormes does not enforce only one

interpretation of each imprecise property. Starting from the same description, the designer may obtain

several variations ofthe same scene. This may lead him to finally choose a variation ofa scene he may

have not thought by himself. This exploration process relies on a constraint solver.

MultiFormes is a declarative modeler. The description of a scene includes of two sets: the set of the

geometric objects present in that scene and the set of the relationships existing between the geometric

objects. In order to allow progressive scene refinement, MultiFormes uses a hierarchical approach of

scene modeling. Following this approach, a scene can be incrementally described at different levéis of

detail. Thanks to its geometric constraint solver, MultiFormes is able to explore several variations of a

sketch satisfying the same description.

The geometric constraint solver of MultiFormes is the heart of the system. Inspiration has been

essentially taken in Constraint Satisfaction Problem (CSP) resolving techniques,

This system takes an incremental approaching for the declarative modeling. It uses the CPS for

constrain solving, and a hierarchical ly decomposed scene creation. This is not useful for our project,

since we are constructing the whole scene with pre-defined objects, so the user doesn't have to

explicitly describe the each ofthe objects.

After reviewing some works, we found that none of them where designed to created fully interactive,

self-evolutionary environments. While the main focus ofthis works is the creation of designing tools,

we aim to créate a tools that not only let the user design a scene, but that can interact with a bigger

architecture in the generation of virtual environments, where the entities that dwell on such

environment can act and evolve accordingly. Additionally, the integration of an ontology to the

designing ofthe tools expands the possibilities.

24

State ofthe Art

2.9. What is and why to use an Ontology.

One of our main problems is the semantic representation for the entities inside the scene. How can you

describe a human? Or how you explain what "run" is? How can be linked "human" with "run"? Since

all this concepts need to be stored, we need some kind of datábase. But such datábase must have the

capabilities to establish relationships between terms, and the concept of these bonds. So we decided to

turn to the ontology concept.

An ontology is an explicit specification of a conceptualization. A conceptualization is an abstract,

simplified view of the world that we wish to represent for some purpose. For knowledge-based

systems, what "exists" is exactly that which can be represented. When the knowledge of a domain is

represented in a declarative formalism, the set of objects that can be represented is called the universe

of discourse. This set of objects, and the describable relationships among them, are reflected in the

representational vocabulary with which a knowledge-based program represents knowledge

[GRUBER93].

Basic ontology of the real world is an account of the basic types of things that exist in the world,

classified according to their mode of existence. By a mode of existence, we mean the way in which

something has come into reality and the manner in which it currently exists [BREY03].

Knowledge-based systems and services are expensive to build, test, and maintain. A software

engineering methodology based on formal specifications of shared resources, reusable components, and

standard services is needed. We believe that specifications of shared vocabulary can play an important

role in such a methodology.

Several technical problems stand in the way of shared, reusable knowledge-based software. Like

conventional applications, knowledge-based systems are based on heterogeneous hardware platforms,

programming languages, and network protocols. However, knowledge-based systems pose special

requirements for interoperability. Such systems opérate on and communicate using statements in a

formal knowledge representation. They ask queries and give answers. They take "background

knowledge" as an input. And as agents in a distributed AI environment, they negotiate and exchange

knowledge. For such knowledge-level communication, we need conventions at three levéis:

25

State oftheArt

representation language format, agent communication protocol, and specification of the content of

shared knowledge [GRUBER93].

Since our project is dealing with the recreation ofa scenario using only a natural language description,

is necessary to have the means to make a rightful analysis of the sentences, as weil as maintain

coherency in the scene. An example of this will be a sentence like "The whale is in the living room"

By logic, a whale ca not be in a living room, is too big and is a sea mammal. This can be derived from

the ontology and the sentence will be marked as invalid. But, a sentence like "The toy whale is in the

living room" will be accepted, since a toy shape like a whale effectively can be in a living room. Again,

this all can be derived from the ontology.

The ontology will be given the semantic sense to the natural language parser, since it can reason from

the ontology. In the "whale" example, the ontology will reason that a whale is a sea animal, a mammal,

and that it is several meters long and really heavy to be in a living room. But a toy can be in a living

room, only that it can be a toy shaped like a whale. In this case, the sentence is correct.

Thus, we will be using the ontology the exploit knowledge and assure the coherency ofthe sentences in

the descriptions used for recreating a scene in the GeDA-3D virtual environment.

2.9.1. Ontology Creation Tools.

There are several options for creating an ontology, as weil as different standards and languages. Here

we explore some of them.

Ontolingua [FARQUHAR96]. Developed at KSL of Stanford University. The system consists of a

server and a representation language. The server provides a repository of ontologies, allowing ontology

creation and modification. The ontologies in the repository can be merged or ineluded in a new

ontology. The interaction with the server is achieved by using a standard web browser to connect to the

server. This server was designed to allow ontology developing cooperation, easy creation of a new

ontology by the possibility to include (parts of) existing ontologies from a repository and the possibility

to include primitives from a frame-ontology. Ontologies stored at the server can also be converted to a

different format for use in other applications. This allows the users to use the Ontolingua server to

26

State oftheArt

créate an ontology, export this ontology and then for instance use it for a CLIPS-based application. It is

also possible to import ontology-definitions from a number of languages into the Ontolingua language.

The Ontolingua server can also be accessed by other programs that know how to use the ontologies

stored in the Ontolingua language [GRUBER93].

WebOnto [DOMINGUE98]. Is, as the ñame suggests, fully accessible via the Internet. Was developed

by the Knowledge Media Institute of the Open University and designed to support the collaborative

browsing, creation and editing of ontologies. In particular, WebOnto was designed to provide a direct

manipulation interface displaying ontological expressions using a rich médium. WebOnto was aimed to

be easy-to-use, yet have facilities for scaling up to large ontologies. Finally, WebOnto was designed to

complement the ontology discussion tool Tadzebao. WebOnto is a mainly graphically orientated tool

for constructing ontologies. The language used to model the ontologies in WebOnto is OCML. OCML,

which stands for Operational Conceptual Modeling Language, was originally developed in the context

of the VITAL project to provide operational modeling capabilities for the VITAL workbench

[MOTTA97]. The tool has a number of useful features, like saving diagrams of structures, viewing the

relations, classes, rules etc. separately. Other features include for example, working cooperatively on

ontologies, by the use of drawing, and using the broadcast and receive functions.

Protege [FERGERSON98]. A multi-platform program. It is meant for building ontologies of domain

models, and has been designed by Stanford 's Medical Informatics Section. Protege has been developed

to assist software developers in creating and maintaining explicit domain models, and in incorporating

those models directly into program code. The Protege methodology allows system builders to construct

software systems from modular components, including reusable frameworks for assembling domain

models and reusable domain-independent problem-solving methods that implement procedural

strategies for solving tasks [ERIKSSON95]. The program consists of three major parts, first there is the

'Ontology-editor' which let you make your own ontology about a domain by just expanding a

hierarchical structure, and including abstract or concrete classes and slots. Based on the ontology built,

Protege is able to genérate a knowledge acquisition tool for entering the instances ofthe ontology. The

KA-tool can be fine-tuned to the needs of a user by using the Layout-editor. The last part of the

program is the 'Layout-Interpreter' which reads the output ofthe 'Layout-Editor' and shows the user

an input-screen with a few buttons. These buttons can be used to make the instances for the classes and

sub-classes. The whole tool is graphical which is very usable for a naive user.

27

State ofthe Art

2.10. Conclusions.

The declarative modeling is an investigation field that can lead to useful, simply to learn, user-oriented

tools. Several of the works in the field lead to static models [COYNE01], semi-interactive

environments [KWAITER97], or used incremental modeling [RUCHAUD02].

None of this works deal with totally interactive, agent based environments, or the exploitation of

knowledge bases, being the first an integral part ofthe GeDA-3D project, and the later, an approach

that is posed as a solution for the natural language parsing and constrain problem solving. Since we're

trying to establish a natural-like language for the modeling stage, none ofthe previous works helps us.

This leads us to genérate a language that is both natural and restricted. The restriction is necessary,

because we're trying to avoid any conflicting structure. We then can assure the module will effectible

make the conversión, with no considerable computational cost.

28

ProposedSolution

Chapter 3. Proposed Solution

Abstract

In this chapter we present the approach we take to solve the challenges we found as we advance in the

research, the solutions we proposed, the justification for using such solutions, and the process to

genérate applications compliant with them.

29

Proposed Solution

3.1. Introduction.

In this chapter we present our own defined language: VEDEL, or Virtual Environment Definition

Language, which is a high-level language created to define virtual scene and environments. We also

specify VEDEL using EBNF, and we explain the framework created to establish to flow from the high-

level description to the output through the GeDA-3D platform. We also specify the ontology use and

organization, as weil as the specification ofthe parser and the interaction it will be presenting with the

ontology.

VEDEL Description

Token Parser

Environment

Model

Inference Function Ontology

V7

Output Formatting Output

Figure 3. Our proposed architecture.

VEDEL was developed taking into account the need to establish an ordered method to describe a scene.

When a person takes the task of describing an scene, he or she may tend to concéntrate on something

that attract their attention, like some animal, a construction or a person on the scene. Such

30

Proposed Solution

predisposition to concéntrate on one element can genérate several different descriptions from the same

setting.

Analyzing the human natural speech is a complex task, both in computational resources and time. Since

our aim is to créate virtual scenarios from natural-like descriptions, the cost must be reduced, so we can

provide real-time parsing and output generation. To carry out this objective, we define the three main

elements in a scenario, environment, actors and objects, and dispose of redundant elements, such as

articles, organize the way the description must be conducted, and simplify the definition of actions,

positíons and properties.

3.2. Language requirements.

In the State of the Art section, we exposed some types of applications our project can embrace. Since

any of the applications require specific syntactic and semantic elements, there is the need to specify

which elements will be supported by the language, considering the ambiguities inherent to the natural

language (such as double meanings, grammatical constructions or semantic ambiguities).

The language needs to be expressive enough to let the user genérate any kind of virtual environment,

but also it has to be a context free grammar, in order to avoid ambiguities. Among such ambiguities,

the harder to solve are those related with the composition of the sentence. A sentence like "a dog is

under the table" has the same meaning than "under the table, there is a dog", but each has a different

method to solve. We need to define a language that doesn't have this kind of context-based problems,

so the user can only uses one form of construction, in this case, the easier for us.

The addition ofthe ontology to the syntactic and semantic parser will ease some ofthe work, since the

individual elements that need to be treated for meaning will be found and categorized by the ontology

itself, allowing expanding the capacity of the parser by simply expanding the contents in the ontology.

However, some of the language elements need to be in the definition of the language, such as

prepositions, articles or adverbs, due to the connecting nature those have. Since many nouns and verbs

have context-based meaning, we will let those to be solved by using the ontology.

31

Proposed Solution

3.3. Scope.

Since natural language parsing is a complicated task if we don't make restrictions on what can be

expressed and how it can be constructed, is evident the need for delimiting the expressiveness and

constructing elements.

The natural language has an ambiguous, non standard constructing form. The same idea can be

expressed in several different ways. Some of the parsers that have taken the full natural language

parsing use statistical methods, in which case the computational cost can be high, both resource and

time wise.

The scope ofthe language will be, then, to allow the user to express the idea that it has for the scene,

delimiting the forms it be can done, but not what can be expressed.

3.4. Restrictions.

Since we're delimiting the scope and reach the language can have, then we have to set the restrictions

necessary for defining an easy to understand and read, low computational cost parsing language. Thus,

the language must allow one way to construct sentences, as weil as one form to structure the whole

description.

The natural language has an ambiguous, non standard constructing form. The same idea can be

expressed in several different ways. Some of the parsers that have taken the full natural language

parsing use statistical methods, in which case the computational cost can be high, both resource and

time wise.

We're confident that any user can express anything even with a restricted language effortless, even if

the user needs to learn some new syntactic and semantic rules. This also allows us to design a fast and

reliable parser, since is a lot easier that a person learn to express something in slightly different way,

than teach the computer to understand the natural language humans use everyday. Many of the parser

32

Proposed Solution

used statistical approaches or stochastical approaches, what can make the parsing slow, or not totally

reliable. Others make use of databanks or knowledge bases, but still the parsing can take long time

since some ofthe constructions possible with a human natural language can be difficult to understand,

due to the language is naturally context-based.

3.5. Introduction to VEDEL.

VEDEL is a high-level language oriented towards the easy creation of virtual scenarios, which then can

evolve by their own, based on the particular characteristics of each entity within the environment. A

description written in VEDEL is divided in three main sections, with each section been composed of

sentences. A sentence is a comma separated list of the properties we want to set to an avatar, and

begins with the entity ñame and optionally an identifier for that specific avatar. The later part of the

sentence is composed of the properties that particular avatar we want it to show, such as color, size,

position. The list must present in the first place the property ñame, and then the valué we want to assign

to it. Additionally, there are certain properties that have no valúes to assign, so the single reference to

those is valid. For actions or emotions the actor can perform or be subjected to, no valúes are required.

Positioning of avatars can be executed in two different ways: by expressing a relative point or by

expressing distance. In both cases, the first element must be the spatial reference (such as north, south,

left, above, far) or the distance expressed in numeric and later the reference point (a valid element

within the environment). The preset distant unit is meters, and any distance can be expressed using real

digits. Also, the user can simply express a spatial point (such as center, north, south, northeast), and the

element will be positioned in such point.

There are three sections in VEDEL: Environment Section, Actor Section and Object Section. These

sections are explained later in deep.

We must have in mind that VEDEL is a declarative language. Thus, in a declarative language the

instructions indicate how things are going to be made, instead of what is going to be made

[CHRONAKI90]. The language also has a scripting part, that comes from the concept that a script

language doesn't care about the components they are calling, they assume they already exist

[OUSTERHOUT98], in our case, a rendering component and the agent core, both from the GeDA-3D

33

ProposedSolution

system. Since we will be indicating how the scenes must be created, it is important that the parser have

something that indicates which syntactic and semantic features a token has.

Next, we present a description written in VEDEL:

[ENV]

Desert, day, temperature 39, no wind.

[/ENV]

[ACTOR]

Camel Albert, big, center

Spider Spiderl, front Albert, small, grey.

Snake, left Spiderl, green, angry.

[/ACTOR]

[OBJECT]

Rock Rl, behind Snakel.

Cactus COI, left Rl .

[/OBJECT]

Figure 4. An example ofthe VEDEL language

3.5.2 Basic Structure

Since VEDEL is a high-level language, is difficult to establish a conventional type to classify it. The

notional conventions that will be use for presenting the syntax are:

<Pattern > optional, this section can be excluded on the description.

(Pattern ...) iteration, the contents ofthis section can be repeated, with no finite restriction.

Wooden Table terminal syntax or example. A terminal valué corresponds to an entry to the

ontology, a valué for a property, or an object identifier.

34

ProposedSolution

The basic structure is presented next:

[ENV]

Environment keyword <environment settings>

[/ENV]

[ACTOR]

Actorl Class <Actorl Identifier> <Actorl properties>

(<Actor2 Class <Actor2 Identifier> <actor2properties»...')

[/ACTOR]

[OBJECT]

Object1 Class <Objectl Identifier> <Objectl properties>

i<Object2 Class <Object2 Identifier> <Object2properties»...)

[/OBJECT]

In the next sections we present the detailed description of these description sections and subsections.

3.5.3. The ENV section.

In this section, the user can describe the environment the scene will be placed. It is composed by two

subsections, an environment keyword, and the environment settings section.

For the environment keyword, the user would express with one word the general setting for the scene,

such as "room", "desert", "sea", "forest", "school" or any other noun that corresponds to a place.

The environment setting section is a comma separated list, which can include any number of elements,

describing specific elements of the environment, such as day/night setting, temperature, weather or

specific setting such as window for a room, wall materials or density for a forest. The specific

description for those specialized setting can be ftirthered expanded on the objects sections.

35

ProposedSolution

3.5.4. The ACTOR section.

This section is composed by the descriptions of every avatar (actor) the scene will include. The basic

layout for the section is a list separated by a carriage return.

On each element ofthe list, the fist entry should correspond to the general description for the avatar, in

other words, a single sentence depicting only the generáis for the avatar, such as "man", "giri", or

"dog". Next, the user can express specific characteristics for that actor, such as size, clothing, hair

color, etc. Finally, the user can díctate what actions will be performing that actor at the beginning ofthe

scene, such as walking, running, swimming, indicating specifies for that action. No more than one

action is allowed for each actor.

3.5.5. The OBJECT section.

The final section corresponds to the description of every object in the environment. These objects can

be environment related (such as the windows ofa room, or the trees ofa forest) or independent (such as

boxes, chair, cars or buildings)..

This section is, like the ACTOR section, a carriage return separeted list of sentences, in which each

element of the list is sub-divided in two: the general description for the object, with a single, simple

sentence (such as "box", "table" or "river") and the specifies for each object, including which actions

can be performed over them or are subject to.

3.6. VEDEL formal definition.

In this section, we present a formal definition of the VEDEL language using the EBNF (Extended

Backus Normal Form), being our language context-free [ALANEN04].

Description Structure.

Description := <environment> <actor> <object>

36

Proposed Solution

Section Structure

<environment> := "[ENV]" <esentence>"[/ENV]"

<actor> := "[ACTOR]" <asentence> *"[/ACTOR]"

<object> := "[OBJECT]" <osentence>
*
"[/OBJECT]"

Sentence Structure

<esentence> := <cenvironment> (<separtor> <eproperty>)
*
<eos>

<asentence> := <cavatar> (<separator> <aproperty>)
*
<eos>

<osentece> := <cobject> (<separador> <oproperty>)
*
<eos>

Class Structure

<cenvironment> := <environmentid>

<cavatar> := <avatarid> (<identifier>)

<cobject> := <objectid> (<identifier>)

Property Structure

<eproperty> := <characteristic>

<aproperty> := <characteristic> | <action> |<position> | <emotion>

<oproperty> := <characteristic> | <position>

<characteristic> := <propid> <value>

<action> := <actionid> (<modifier>)

<position> := <posid> <identifier> | <number> <identifier>

<emotion> := <emoid> (<modifier>)

Vocabulary

<environmentid> := <word>

<avatarid> := <word>

37

ProposedSolution

<objectid> := <word>

<propid> := <word>

<actionid> := <word>

<posid> := <word>

<emoid> := <word>

<value> := <word> | <number>

<modifier> := <word>

<identifier> := [letter | digit] +

<word> := letter +

<number> := digit + ("." digit +)

Alphabet

letter := ["A" - "Z"] | ["a" - "z"]

digit := ["O" -"9"]

<separator> := ","

<eol> := "."

3.6.1. Identifiers.

While doing the parsing ofthe description, we can find several different identifiers. The parser has then

to deal with them using the ontology, which will indicate the next step on the analysis process. The

identifiers the parser can find are:

a) <environmentid> : The environment is defined by a single word, a noun that represent a real, or

fantastic location for the scene.

b) <avatarid> : Avatars are virtual entities. Those entities can perform actions, react to the environment

or other avatars and have emotions.

c) <objectid> : An object is a virtual entity that can't perform any action. However, the environment

and other entities can change their states.

d) <propid> : A propriety is a characteristic that an avatar holds. This can be a visual characteristic, or

an internal characteristic.

38

Proposed Solution

e) <actionid> : Actions are performed only by the avatars, and the avatar can only perform them if that

actions is allowed on the environment or the context previously defined.

f) <posid> : The position an avatar or an object can be expressed in a relative way, or as a explicit

statement.

g) <emoid> : Emotions, which only avatars can represent. Such states can affect the way an avatar

performs its actions.

Other identifiers are context-related, and bear only the valúes the previous identifier will present. Such

identifiers are:

a) <identifier> : An alphanumeric ñame given to a particular avatar. Helps in the process of creating the

description by allowing the user to refer to another avatar by a proper ñame. Those identifiers must be

unique for each avatar.

b) <value> : Alphabetic or numeric valúes that a property can accept. Those valúes are also confronted

with the ontology for validation.

c) <modifier> : A word that express an non-specific amount. Those words hold a percent or numeric

valué in the ontology, which indicates the level of intensity an action is performed or an emotion is

exhibit.

3.7. Semantic Association.

Due to the enormous amount of data that a word can provide for the construction of an environment, is

necessary to al lócate as much as possible on an organized, easy-to-use source. For such source, we

have selected the ontology.

Since the ontology can have in an entry more than just a semantic key, we can also assign other

attributes, such as associations with other entries or specialized data (genders, physical or emotional

characteristics, capabilities, among others), which can allow us to expand the capacity ofthe parser and

ease the processing task by giving valuable information such as legal valúes, data types, valid structure

organization or simply to aid in the generation ofthe output. Also, the kernel ofthe GeDA-3D system

requires some specific details for the agents, such as innate characteristics for an avatar (behaviors or

actions the avatar or object can be subjected to), details that can be provided by the ontology.

39

Proposed Solution

Each ontology entry will be assigned to a specific class, which helps during the parsing process by

adding a control mechanism and validation data (such as verifying that an object is really an object, or

that an action is such and not a law). Since not only individual words would be stored in the ontology,

but also laws, collisions and other application-specific data, the organization ofthe ontology is critical.

Even when a word could have several meanings, the class under that word is localized helps the parsing

process to determine which others elements should appear next, or what element must have derived

from. The entry should have a mirror entry on the render datábase, since that module will be presenting

the visual output. If there is no entry on the parser, the specified element can't be represented.

The ontology is basically organized in four classes: Environment, Actors, Objects and Keywords. The

Environment class holds all of the possible scenarios the render can present. Actors and Objects

correspond each to the possible entities that can be presented. And Keywords keeps all the possible

modifiers and valúes that need a special entry.

3.7.1. Semantic Validation.

Once the parser has located any identifier within the description, the validation of such identifier must

be located within the ontology. Such procedure can resumed as the following steps:

a) Find the entry for such identifier. In the case such identifier is an avatar' s proper ñame; we look

for it in the avatar table to avoid duplicity. If the identifier is a valué, we search for the property

within the avatar and valídate such valué. If the identifier is recognized as an avatar class or

property, we search through the ontology for the corresponding ontology class or property.

b) Once the identifier class is found in the ontology, we verify the class, so if it corresponds to the

section we are analyzing, or the property is valid for the avatar we are validating, we can

continué, otherwise, an error condition is launched.

c) For the avatar class, if the validation is successful, the properties for that avatar are extracted,

and then a new entry is added to the avatar list, with the property valúes set to the default stored

in the ontology.

40

Proposed Solution

3.8. VEDEL Framework.

The objective ofthis section is to present the formal description ofthe analysis process that the VEDEL

parser performs over the description. The output is adapted for the current GeDA-3D prototype, and

consists of three sections: An AVE-formatted description ofthe scene, the context description, and the

relation of agents that must be created to allow the evolution ofthe scene.

Let ___

=

{S, A, O, 1} be the non-empty set that creates the virtual environment, where S corresponds to

the environment, A is the actors set, O holds the object set and / the set of laws that rule over the

environment. Both A and O can be empty, but not l.

We define 5 = {SE, w}, where SE is the non-empty set composed of every element that composes the

environment, thus SE= {e \ e c {{ontology classes} u {ontology properties}}, w is the set of laws that

rule only over the environment, as defined on the ontology.

Let e = {m, EP, v} be the set that defines the environment, then e must satisfy the following:

1) m e EC | EC
=

{Environment Classes} => EC e{ Ontology Classes}.

2) EP =

{po ... pn\Pi e {Ontology Properties} and/7; e {properties defined for ot}}.

3) v
=

{ EP x val | val
=

{any valid data valué} }

For w, we define the set of rules that governs over the environment as:

w
=

{lw0 ... lw„\lw e {Law Classes} => {Law Classes}c {Ontology Classes}}

Let A be the set of actors for the defined scene. Then A =

{AT, | i
= 0 . . . n }, where AT

=

(a. AP, AC,

AE, P, va, vc, ve} must satisfy:

1) a e AC | AC
=

{Actor Classes} => AC c{ Ontology Classes}.

2) AP =

{p0 ... pn \pi g {Ontology Properties} andp, e {properties defined for a}}.

3) AC =

{wo ... w„\v/¡ e {Action Classes} a w¡ e {actions assigned to a}}.

4) AE =

{so ... s„ | s, e {Emotions Classes} a s¡ e {emotions assigned to a}}.

5) P = {xa, ya, za\na= {Z} }

6) va= {AP x val \ val
=

{any valid data valué} }

41

ProposedSolution

7) vc
=

{ AC x val \ val = {any valid data valué} }

8) ve
=

{ AE x val \ val
=

{any valid data valué} }

For P, defined above, each na valué can be assigned in three different ways:

a) P =

PA(,4/) +?S(r), where

?A(Ai) = {xa, ya, za} for a setAi, whereAi±A.

PS(r)
=

{x, y, z | x, y, z
=

{Z}}, where each element ofthe set receives its valué from r,

which satisfies:

■
re {Keyword classes} =>{Keyword classes} e {Ontology classes}

{x,y,z} er.

b) P =

PA04/) +PS(z;, where

?A(Ai) = {xa, ya, za} for a setAi, whereAi ¿A.

PS(z)
=

{x, y, z | x, y, z
=

{Z}}, where each element ofthe set receives its valué from z,

which satisfies:

■
z e {Keyword classes} => {Keyword classes} e {Ontology classes}

{x, y, z} e r => {x, y, z}
*
{u¡, U2, u¡}, where w, is a valid numeric valué

expressed by the user.

c) P =

PS(z;, where

PS(z)
=

{x, y, z | x, y, z
=

{Z}}, where each element ofthe set receives its valué from z,

which satisfies:

■
z g {Keyword classes} => {Keyword classes} e {Ontology classes}

{x,y,z} e r

For the set O, set of objects defined scene in the scene, we have O
=

{OT¡ \ i
= 0 . . . n }, where OT =

{o.

OP, P, vo} must satisfy:

1) o e OC | OC
=

{Object Classes} => OC c{ Ontology Classes}.

2) OP = {po — Pn\pi e {Ontology Properties} andp, e {properties defined for o}}.

3) P={xa,ya,za\na={Z}}

4) vo
= { OP x va/ 1 va/

=

{any valid data valué} }

For P, defined above, each na valué can be assigned in three different ways:

42

Proposed Solution

a) P =

PA(A¡) +PS(r), where

PA(Ai)
=

{xa, ya, za} for a setAi, whereAi ¿ A.

PS(r)
=

{jc, y,z\x,y,z={Z}}, where each element ofthe set receives its valué from r,

which satisfies:

r e {Keyword classes} => {Keyword classes} e {Ontology classes}

{x,y,z} er.

b) P =

PA(,4/) +PS(z), where

PA(_4z)
=

{xa, ya, za} for a set _4; , where _4/ ^ .4.

PS(z)
=

{jc, y,z\x,y,z= {Z}}, where each element ofthe set receives its valué from z,

which satisfies:

■
z e {Keyword classes} =* {Keyword classes} e {Ontology classes}

■ {jc, y, z} e r A {*, v, z}
*
{«/, M2, mj}, where m, is a valid numeric valué

expressed by the user.

c) P = PS(z), where

PS(z)
=

{jc, y,z\x,y,z={Z}}, where each element ofthe set receives its valué from z,

which satisfies:

z e {Keyword classes} => {Keyword classes} e {Ontology classes}

{x,y,z} Sr

Finally, the set /= {l0 ■■■ l„}, where /„ e {Law Classes} => {Law Classes} e {Ontology Classes}.

3.9. Ontology Organization.

3.9.1 Why choosing an ontology?

There are some options to define, index and store data. Our first need was the quick access to that data,

but we also needed a way to organize that data, recreating any relationship two entities could bear.

Also, we need to express a number of properties, from physical to physic. Also, we need the ability to

relate two entities expressing what kind, and the ñame, of relation link those entities.

43

Proposed Solution

Another need was the capability of link different data banks, where some of the data could be on the

same machine, or in different machines, either on a LAN, WAN o even over the WWW. This also

comes with the need to adopt a standard for designing and storing the data, as weil as the distribution of

the data.

All this requirements could be covered by using a datábase, but the execution of some would be too

complicated and make the data organization and mining complex and difficult to maintain. For that

reason, we decided to use a knowledge base.

A knowledge base is committed to some conceptualization, explicitly or implicitly. A body of formally

represented knowledge is based on a conceptualization: the objects, concepts, and other entities that are

assumed to exist in some área of interest and the relationships that hold among them

[GENESERETH87]. A conceptualization is an abstract, simplified view ofthe world that we wish to

represent for some purpose.

One of such knowledge base is the ontology, which not only allows the organization of the data in a

hierarchical structure, it also allows the expression of relationships between terms, as weil as the

assignment of specific data valúes for each term stored in the ontology. Adding to these characteristics

the ability to access the data with no platform-dependent needs, and the capacity to intégrate new data

from another ontology, our choice was evident.

The ontology creation tools choose was Protege [FERGERSEN02]. It was selected because of its

graphical, easy to use interface, which allows a quicker creation of ontology projects, even for the

inexperience user, the total compatibility with the OWL standard [DEBORAH04], used to genérate

W3C compliant ontology which can be accessed through the WWW, the multi-platform execution,

since the platform is coded on Java, and the easy-to-import and completely documented API.

3.9.2. Classes, properties and datatypes defined for VEDEL.

To allow an easy organization of the terms and speed up the search for terms and the corresponding

validation through the parsing progress, we establish a model for the ontology. Such model comes from

the separation we define in the language, plus additional classes that contain laws and control words.

44

Proposed Solution

Properties don't require any control structure since many of them are valid for any ofthe classes, and

specific information for each class can be stored individually under the same property. The

organization is presented next:

a) Environment class: Contains all the environments that will be accepted in the description. Each

subclass must be a single word that describes a specific scenario, with cases like "desert", "sea"

or even "tropicalForest" permitted, and must contain the allowed actions in the form of

restrictions, through the "AllowedAction" property.

b) Actors class: All the actors must be placed in this class. The actor must be described as a single

word, with the cases identical to the environment naming. The allowed actions and emotions

must be specify in the form of restrictions, using the "CanPerform" and "CanExpress"

properties.

c) Object: Any object that can be represented is parsed through this class. The naming convention

for these subclasses is the same as the Environment and Actors classes.

d) Actions: The valid actions the under laying architecture can execute. Naming is restricted to

single, non-composed words. They also must contain, in the form of restrictions, in which

environments such action is allowed, through the "AllowedOn" property.

e) Emotions: The emotions the support architecture can handle. Naming can only be accepted as

single words.

f) Keywords: Pronouns and specific directions.

g) Laws: Any law that must be considered inside the environment.

Also, each sub-class must contain an "<subclass_name>_default" individual, where all the property

valúes can be stored.

1 . For the environment, properties, properties valúes and laws must be specify on such individual.

2. Actors' individuáis must contain the allowed properties, properties valúes, and the default

action.

3. In the objects' case, the only attributes must be properties, and properties valúes.

4. Actions, Emotions and Laws only contain the properties they can accept.

5. Keywords only hold the necessary data to modify valúes from properties, actions, emotions and

laws.

45

Proposed Solution

The only properties that can be added are datatype properties, and each property added to an entity

must also be place on the "attributes" property list. Each property must contain at least two valúes, the

first indicating the data type for that property (1 for strings, 2 for numeric valúes) and then either the

expression "VAL = <value>" or the expressions "DEF
=

<value>", "MIN = <value>" and "MAX =

<value>".

ObtainedResults

Chapter 4. Obtained Results

Abstract

The present chapter presents the relation of results product of our investigation. We present two

different prototypes for the GeDA-3D project, as weil as a parser created to allow the user to créate a

virtual environment, which is presented on the GeDA-3D render, and evolved thought its core.

47

ObtainedResults

4.1. Introduction.

In this final chapter we offer a recount of the actions we take to prove useful the use of ontologies in

the description phase of declarative modeling. Such actions cover from obtaining information about

natural-language parsing methods to understanding the Protege API for ontology access and data

access.

Some work was conducted towards the GeDA-3D project, specifically the resulting output and the data

collection for the ontology. This resulted on two prototypes, one aimed to present the property analysis

and emotional agents' evolution, and the other to present a 3D environment constructed through a

description.

4.2. The VEDEL parser.

In order to prove the efficiency on using an ontology as a médium for analyzing and validating a

description written on the VEDEL specification, we construct a parser. Such parser was written on

Java, for multiplatform capability, using the Protege API for access to the ontology. The parser was

written and built using the last JDK available, 1.5.0_07-b03.

Basically, our parser is a state machine: each section of our description corresponds to a specific state.

By extracting words from the description, which we cali Tokens, we can establish the current state and

determínate which state comes next.

Basically, the validation for each word comes from a Inference Function: such function was designated

to extract information from the ontology. When a new type of avatar is found, all the information that

avatar can hold is extracted from the ontology and store on a data structure. By doing this, we can then

access and modify specific properties for each individual, accessing the ontology only to acquire new

information, like the specific operation or valúes to place an entity on the center of the scene, or to

48

ObtainedResults

valídate a specific valué, such as a color, considering that perhaps not all color are available for an

avatar.

Once all ofthe description has been parsed and validated, we can then construct any output we desire.

This can include specific data encoded in the ontology, which can still be accessed, such as xml code or

properties that only affect one type of avatar and cannot be modified (paths to 3D object or sound

files).

4.3. The GEDA-3D prototypes.

In order to valué the progress obtained during two different stages ofthe development ofthe parser and

the language definition, we designed outputs for two different versions of the GeDA-3D core

prototypes.

The first was called "The battle of the frogs", and was basically a prototype that demonstrates the

performance of the emotional agents used to evolve a scene. The prototype presented a 2D graphic

field where two opposing "frogs" battle one against the other by throwing "balls" The emotional state

of the frogs influences the shooting rate and the aggressiveness in the behavior of the frogs. A scare

frog would try to avoid the incoming attacks ratter than attack, and an angry frog would prefer stand

against the incoming attack so it can return fire the more often possible.

The ontology took class entries for the "frog" class, as weil for the "bullet", being the only two entities

on the environment, each containing the necessary data to deliver to the core the necessary context

data, such as bullets the frogs could have, the energy they bore at the beginning, and the corresponding

laws, actions and environment settings and data. The output then was formatted according to the XML

sheet provided for the core.

The result was the generation of different matches, and the possibility to increase the number of

possibilities for the frogs and scenarios by adding new data to the ontology. From new environments to

new actors, the new additions can be done by simply creating their corresponding class to the ontology,

49

ObtainedResults

giving the user the opportunity to modify valúes such as the default bullet number, the starting

emotional state and even change the actions allowed inside any giving scenario.

frogs Balde ver 1.05.20 Bfñ®

CDF Inf Emo

Context Definition File

:?xml ve.slon="1 0" encodlng="UTF-8" ?>

context ñame = "combar»

«avatars»

«avatar ñame = "Frog"»
■ attnbu.es *

«attribute ñame = "Energy" min = "0" max

«/attribute»

«attribute ñame = "Bullets" min = "0" max

«/attribute»

«/attributes»

<actions>

«action ñame = "Default" comando =
!

«pre»

«attributes»

«attribute»

«/attribute»

zm:

UpDate

System is Ready

Figure 5. Battle ofthe frogs. Starting Settings.

_ Frogs Battle ver 1.05.20 i-imuxi

Start ¡ Pause | Reset Exit f CDF |' Inf |f Emo |

♦■

•-

|Froo_21

G]

M

r

IUNKI

FrogJl

.ANG]

[FEA|

I

IMK]

I

System is Ready

Figure 6. Battle ofthefrogs. Scene Development (with emotions properties displayed).

50

ObtainedResults

By using VEDEL, we can express the initial state of the match. The frogs have the "bullets" and

"energy" properties, and there are two types. Each type has a different initial emotional state. The

ontology not only holds the classes for "frog", "bullets" and "energy", but also contains the valid

actions for the "frog" actor" as weil as the laws there are subdue to. Finally, the data necessary for

describing the context also was store in the ontology. All the process was transparent for the user, as

only the basic description creates all the elements for conducting the simulation.

The second prototype uses the render module of the GeDA-3D project, called AVE, to present a 3D

scene, on which the core could perform a determined act, such as the predator-pray setting. What we do

basically for this second prototype was to improve the parsing process to optimize the code, by

removing replícate instructions and making it more readable.

Also, there where added functions to position the elements on the 3D virtual space. This also required

adding new properties to the ontology, so the coordinates' data could be stored, as weil as new classes

for "keywords". Such keywords where selected for positioning functions and are adjectives (such as

right, left), adverbs (behind) or cardinal points (north, east). Each of those new additions bear specific

indications for placing the entities in the desired place.

The outcome of this new prototype is presented in the images we exhibit next, each accompany with

the source description.

Example 1.

Description:

[ENV]

Cuarto.

[/ENV]

[ACTOR]

HombreVerde Antonio, center.

HombreExpresiones Bruno, left Antonio.

[/ACTOR]

51

ObtainedResults

Figure 7. Description 1. Front view.

Figure 8. Description 1. Up-down view.

ObtainedResults

Figure 9. Description 1 . Wide view.

Example 2.

Description.

[ENV]

cuarto.

[/ENV]

[ACTOR]

HombreVerde Antonio, north.

HombreNegro Braulio, south.

MujerNegro Carolina, front Braulio.

[/ACTOR]

[OBJECT]

Perro Donas, left Antonio.

Mariposa Esperaza, behind Donas.

[/OBJECT]

53

Obtained Results

GeDAJeDA,

Figure 10. Description 2. Cióse View.

Figure 1 1. Description 3. Up-Down View.

54

ObtainedResults

. ■ I <s¿.

Figure 12. Description 3. Wide View.

Example 3.

Description.

[ENV]

cuarto.

[/ENV]

[ACTOR]

HombreNegro Alberto, center.

MujerNegro Beatriz, right Alberto.

HombreVerde Cecilio, left Alberto.

[/ACTOR]

[OBJECT]

Chapulin Insectol, south.

[/OBJECT]

ObtainedResults

Figure 13. Description 3. Cióse View.

Figure 14. Description 3. Up-down View.

56

Obtained Results

Figure 15. Description 3. Detail view.

All tests were conducted over the GeDA-3D architecture developed so far. The images correspond to

the 3D render module ofthis architecture.

As an additional feature, we propose the addition of emotions to the ontology data. This feature is

critical to help the development of emotional agents, since the emotion concept covers a really wide

array of different terms, each
with its own causes and effects over the actors and the actions they could

be performing [RAMOS06].

57

Conclusions and Future Work

Chapter 5 Conclusions and FutureWork

Abstract

In our last chapter we present our final thoughts and goals derived from the research and the

development of tools oriented to prove our premise. Also, future approaches to the subject ofthis thesis

are exposed, as weil as goals to be reached on future investigations.

58

Conclusions and Future Work

5. 1. Introduction.

After going thought different stages of our research, we finally reach a point where we can prove our

main premise: that the possibilities for the use of ontologies in the description phase of declarative

modeling offers a method to resolve expression meanings, establish entities relations and resolve

properties validations.

Also, we discover new applications for the mentioned knowledge bases, in the field of virtual

environment description and evolution, as weil as new goals to reach for VEDEL, the proposed

language and its parser.

5.2. Conclusions.

The work conducted over the subject ofthis thesis, exposed in the previous chapter, leads to a number

of conclusions about the viability of using knowledge bases such as the ontology. Such conclusions are

presented next:

1. Given the challenge of analyzing the human natural speech, we found out that not only a

procedure to make such analysis, and then construct a data structure that a computer could

understand and use, but also the data repository needed for such task could be really complex and

resource consuming.

This led us to design a way to express descriptive sentence on a structured way. To cover such

design, we defined the VEDEL language, which is oriented no only toward reduce complexity

and resource consuming, but also to allow inexperience users to develop virtual scenarios, giving

them a near-natural, but structured, method to express descriptions.

2. Once we defined our language, a new challenge awaited: How to store the meaning for a specific

entity, such a person, an animal, an object, or even for the whole scenario or world where the

scene could take place?

59

Conclusions and Future Work

We have already invested some time researching on the ontology use, so we decided to use such

knowledge structure to store all the necessary and pertinent data for the entities that would dwell

on the environment, as weil as the data to genérate such scene.

3. When we started defining our knowledge datábase, we found out that the amount of data a single

entity can hold is enough for our goals. From basic data like the ñame, to specific data to help to

créate the context for the core of the architecture, so the scene can evolve, there was not

restriction on what or what not can be stored and/or expressed.

Also, we where able to lócate and access such data with relative ease, only formatting the search

to accommodate the conventions defined to ingress data into the ontology.

4. Upon starting designing our parser, one ofthe critical points was the election ofthe programming

language. Due to cross-platform needs, and the compatibility with the rest of the GeDA-3D

architecture, we select to conduct all ofthe coding in Java. Also, the Protege platform includes the

necessary APIs to access, modify, and query ontologies.

Once the parser was finalized, the result where satisfactory. All of the data was completely

accessible, and the parsing of any non-include element could be handled. New elements ineluded

in the ontology didn't affect the performance ofthe parser, and allow expanding the possibilities

by making entity adding easy.

5. After many tests, we can assure that employing knowledge databases can benefit not only the

description phase for declarative modeling, but all of the process. This benefit comes in the form

of data structuring, quick access, disambiguation and semantic problems solving.

Other great advantage comes in the form of transparent access to data necessary to créate the

scene. This information could come in the form of explicit data for other modules, entity

relationships, laws specifications or any other necessary information, such as file paths,

mathematical or logical operations or scripts.

60

Conclusions and Future Work

6. Finally, the integration of the parser module with the rest of the GeDA-3D architecture was

successful. The results presented in this thesis were the product of the interaction between the

parser, part ofthe Virtual Editor, with the Core and Render modules.

Finally, we can resume that the outcome ofour investigation cover the next points:

1 . The inclusión of an ontology in the description process of declarative modeling is valuable: we

can store all kind of related information. so the process can be controlled and monitored.

2. Since all kind of data can be store, the user can express a wide array of configuration for any

conceivable scenario.

3. The 3D representation can then be reduced to whatever the render module can present, or be

expanded if the render can genérate any kind of representation.

4. The simulation gets benefits in the form of transparent generation of the context for the

environment and the agents that control the creature that dwell in it.

5. Finally, the language can be as natura 1-1 i ke as the ontology pennits. Either we can stored

molecular data (such as man, hair, run, north, above), or use especial annotations (such as

HappyMan. RunFast, BehindOf).

53. FutureWork.

Now we expose the goals we pretend reach in future works on this thesis. Even when we covered most

of the aspects defined at the beginning of the investigation, new goals appeared and new requirements

where evident, so we list them in the next paragraphs.

First, there is the need for a constraint solution module. Such module is necessary to prevent the

generation of scenes where two entities be placed in the same área, interjecting each other. This, of

course, can't be allowed, and every situation ofthis type must be solved.

61

Conclusions and Future Work

The resolution of such problems isn't easy. Requires specialized methods to optimize such task, and it

is necessary the existence of data that allow the arrangement ofthe various structures that can exist in a

scene. For that matter, the definition and design of such module have to be taken in a very sensible

way.

Other aspect we need to cover is the possibility of genérate any kind of output, covering any need the

user or module receiving the result for the analysis and constraint resolution may have. This also adds

the possibility for the user to define specialized data for the output, and the corresponding treatment for

this in the output generation process.

Such need can be covered by generating and output formatting module, which can be feed with an

output sheet, which can include indications for extracting specialized output data from the ontology.

This data isn't used in the process, and therefore isn't present on the model constructed by the parser,

but still can be accessed and processed using such model.

The final aspect we need to cover is the ontology's content. So far, only a few elements are available

both in the ontology and in the render object datábase. This also limits the possible scenarios to only

one possibility. Then, is necessary to enlarge both, by adding new elements that can be presented by the

parser, as weil as the actions the entities can perform.

Such actions are now simplistic: walking, turning, running. But the recreation of more complex

routines is a task the render designer must complete. This leads us to help by generating new elements

and providing to the designer. This, of course, is an extra task, and cannot occupy all of the research

time.

62

Referemces

References

[ALANEN04]

[AUKSTAKALNISM92]

[BREY03]

[BRILL97]

[CHARNIAK97]

[CHRONAKI90]

[COYNE01]

[CUDDIHYOO]

[DEBORAH04]

[DOMINGUE98]

M. Alanen, I. Porres. A Relation Between Context-Free Grammars and

Meta Object Facility Metamodels. TUCS Turku Center for Computer

Science. ISBN: 952-12-1337-X. March, 2004.

Steve Aukstakalnism, David Blatner, Silicon Mirage, The Art and Science

ofVirtual Reality, Peachpit Press, 1992

Phillip Breay, The social ontology ofvirtual environments
- Criticisms and

Reconstructions, The American Journal of Economics and Sociology,

January, 2003.

Eric Brill, Raymond J. Mooney, An overview of empirical natural

language processing Natural Language Processing, AI Magazine,

Winter 1997.

Eugene Charniak, Statistical Techniques for Natural LanguageParsing,

Department ofComputer Science Brown University, 1997

Catherine E. Chronaki, Parallelism in Declarative Languages. Master

Thesis. Rochester Institute ofTechnology. 1990

Bob Coyne, Richard Sproat, WordsEye: An Automatic Text-to-Scene

Conversión System, AT&T Labs Research, 2001

E. Cuddihy, D. Walters. Embodied interaction in social virtual

environments. Proceedings of the third international conference on

Collaborative virtual environments. San Francisco, CA, USA, 2000, pp

181-188

Deborah L. McGuinness, Frank van Harmelen, OWL Web Ontology

Language Overview W3CRecommendation, 10 February 2004,

http://www.w3.org/TR/2004/REC-owl-features-200402 1 0/,

J. Domingue, Tadzebao and WebOnto: Discussing, Browsing, and Editing

Ontologies on the Web. In Proceedings of the Eleventh Workshop on

Knowledge Acquisition, Modeling and Management, KAW'98, Banff,

63

Referemces

[ERIKSSON95]

[FARQUHAR96]

[FERGERSON98]

[FERGERSON02]

[GENESERTEH87]

[GÓBEL03]

[GRUBER93]

[ISDALE98]

[KWAITER97]

[LARIVE]

[LE ROUX03]

Canadá.

Eriksson, H., Shahar, Y., Tu, S.W., Puerta, A.R., and Musen, M.A, Task

modeling with reusable problem-solving methods, Artificial Intelligence

79, pp. 293-326, 1995

A. Farquhar, R. Fikes, and J. Rice, The Ontolingua server: A tool for

collaborative ontology construction, Technical report, Stanford KSL 96-

26, 1996.

W. E. Grosso, H. Eriksson, R. W. Fergerson, J. H. Gennari, S. W. Tu, &

M. A. Musen, Knowledge Modeling at the Millennium (The Design and

Evolution ofProtege-2000). 1998.

John H. Gennari, Mark A. Musen, Ray W. Fergerson, William E. Grosso,

Mónica Crubézy, Henrik Eriksson, Natalya F. Noy, and Samson W. Tu,

The Evolution ofProtege: An Environmentfor Knowledge-Based Systems

Development, University of Washington, Stanford University, Linkoping

University. 2002

Genesereth & Nilsson, Logical Foundations of Artificial Intelligence,

Morgan Kaufmann Publishers, Los Altos, CA, 1987.

Stefan Gobel, Oliver Schneider, Ido Iurgel, Axel Feix, Christian Knopfle,

Alexander Rettig, Virtual Human: Storytelling & Computer Graphicsfor a

Virtual Human Platform, CeBIT 2004.

Thomas R. Gruber, A Translation Approach to Portable Ontology

Specifications, Knowledge System Laboratory, Stanford University, 1992

Jerry Isadle, What is Virtual Reality?, A Web-Based Introduction,

http://vr.isdale.com/WhatIsVR/frames/WhatIsVR4. 1 .html

G. Kwaiter, V. Gaildrat, R. Caubet. DEM2ONS: A High Level Declarative

Modelerfor 3D Graphics Applications. In Proceedings of the International

Conference on Imaging Science Systems and Technology, CISST'97,

pages 149-154, Las Vegas, June 30-July 3, 1997.

Mathieu Larive, Yann Dupuy, V'eronique Gaildrat, Automatic Generation

ofUrban Zones.

Le Roux, O, Constraint Satisfaction Techniques for the Generation Phase

in Declarative Modeling, PhD thesis, Universite Paul Sabatier, 2003.

64

Referemces

[LODHA99]

[MONZANI01]

[OUSTERHOUT98]

[PLEMENOS02]

[RAMOS02]

[RAMOS06]

[RUCHAUD02]

Lodha, Suresh K. and Arvind Verma,. Animations of Crime Maps Using

Virtual Reality Modeling Language. Western Criminology Review 1 (2).

Available: http://wcr.sonoma.edu/vln2/lodha.html. 1999.

J.S. Monzani, A. Caicedo and D. Thalmann. Integrating behavioral

animation techniques. In Proceedings of EUROGRAPHICS'2001,

Computer Graphics Forum, 20(3) 309-318, 2001.

John K. Ousterhout. Scripting: Higher Level Programming for the 21st

Century. IEEE Computer Magazine, March 1998.

Demitri Píemenos, Georges Miaoulis, Nikos Vassilas, Machine Learning

for a General Purpose Declarative Scene Modeller, International

Conference GraphiCon'2002, Nizhny Novgorod (Russia), September 15-

21,2002.

Félix Ramos, Fabiel Zúñiga, Hugo I. Piza. A 3D-Space Platform for

Distributed Applications Management. International Symposium and

School on Advanced Distributed Systems 2002. Guadalajara, Jal., México.

November 2002. ISBN 970-27-0358-1

Félix Ramos, Alonso Aguirre, Jaime Zaragoza, Luis Razo, Use of

Ontologies and semi natural language to the context definition for

cybernetics worlds with emotional agents, Congreso de Electrónica,

Robótica y Mecánica Automotriz, 2006, Cuernavaca, Morelos. September

2006.

William RUCHAUD, Dimitri PLEMENO, MULTIFORMES: A

Declarative Modeller As A 3d Scene Sketching Tool, MSI Laboratory,

University of Limoges, France, 2002.

65

Nw*__r*vr
__^V.___.^^__i

CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS DEL IPN.

UNIDAD GUADALAJARA

El Jurado designado por la Unidad Guadalajara del Centro de Investigación y de

Estudios Avanzados del Instituto Politécnico Nacional aprobó la tesis

Representation and Exploitation of Knowledge for the Phase of

Description in Declarative Modeling of Virtual Environments

del (la) C.

Jaime Alberto ZARAGOZA RIOS

el día 29 de Septiembre de 2006.

VK4CVVV. o~_,c~~~< ^i- 4r C?

II Dr. Juan Manuel Ramírez Arredoncjp

Investigador CINVESTAV 3B

CINVESTAV Unidad Guadalajara

Dr. Luis Ernesto López Mellado

Investigador CINVESTAV 3A

CINVESTAV Unidad Guadalajara

Dr. Félix Francis£a^amos Corchado

Investigado^EllWESTAV 2B

CINVESTAV anidad Guadalajara

