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UNIDAD ZACATENCO

DEPARTAMENTO DE MATEMATICAS

Procesos de difusion en una dimension
y polinomios ortogonales

T E S I S

Que presenta
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Abstract

We describe the general theory of diffusion processes, which contains as a particular case the
solutions of stochastic differential equations. The idea of the theory is to construct explicitly the
generator of the Markov process using the so-called scale function and the speed measure. We also
explain how the theory of orthogonal polynomials help to study some diffusions. In addition, using
the theory of diffusions, we present the Brox model, which is a process in a random environment.

Resumen

Describimos la teoŕıa general de procesos de difusion, que contiene como caso particular las solu-
ciones de ecuaciones diferenciales estocásticas. La idea de la teoŕıa es construir expĺıcitamente
el generador de los procesos de Markov usando la suncion de escala y la medida de velocidad.
Tambien explicamos cómo la teoŕıa de polinomios ortogonales ayuda a estudiar algunas difusiones.
Además, usando la teoria de difusiones, presentamos el modelo de Brox, que es un proceso con
ambiente aleatorio.
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Introduction

In the world where we live there are many natural phenomena that have a random character, and
the theory of probability is a tool that permits us to explain some of these events.

In this work, we will study the so-called diffusion processes in one dimension. The diffusion
processes allow us to model some natural phenomena, such as random motion of particles. A
diffusion is a random process that has two important features: continuous paths and the Markov
property. This last property is characterized by the loss of memory, which means that one can
make estimates of the future of the process based solely on its present state just as one could know
the full history of the process. In other words, by conditioning on the present state of the system,
its future and past are independent.

It turns out that a process Xt with the Markov property, is characterized by its infinitesimal
generator, which is specified by the following operator

Af(x) := lim
t→0+

E(f(Xt)|X0 = x)− f(x)

t
for some functions f.

In this work we construct the infinitesimal generator using the scale function and the speed
measure; these two objects characterize the infinitesimal generator. If (l, r), an interval in R,
is the state space of the process Xt, then the scale function is the probability that the process
first reaches r before l. On the other hand, the speed measure can be written in terms of the
expectation of the first time the process reaches either l or r.

Under appropriate assumptions on the scale function and the speed measure one can obtain that
the infinitesimal generator can be written as a differential operator of order 2, also called a Sturm-
Liouville operator, given by

Af(x) = µ(x)f ′(x) +
σ2(x)

2
f ′′(x), where µ and σ are certain functions.

This type of operators, with suitable conditions, are associated with diffusion processes that are
solutions of a stochastic differential equations. This differential operator has particular interest
because it is related to some orthogonal polynomials. More precisely, if we consider the functions
µ(x) and σ2(x) to be polynomials of degree at most 1 and 2 respectively, then there exist orthogonal
polynomials that are eigenfunctions of the operator, and the process associated with this operator
has a density probability function that can be written in terms of these orthogonal polynomials.

In this work, we also study an example of a diffusion whose infinitesimal generator is not a Sturm-
Liouville operator. What one has to do is to construct explicitly the scale function and the speed
measure. The process we consider is called the Brox diffusion [11], and it is an example of a
process in a random environment. The importance of this type of processes is that it considers
the random medium.
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This thesis is mainly based on Chapter VII of D. Revuz, and M. Yor. [3]. In chapter 1, we show
in detail the results that allow us to write the infinitesimal generator of a diffusion process X in
terms of the scale function s and the speed measure m. We prove the following result

d

dm

d

ds
f+ =

d

dm

d

ds
f− = lim

t→0+

E(f(Xt)|X0 = x)− f(x)

t
,

where on the left hand side we have derivatives with respect to the function s and the measure m.

In chapter 2 we present the main result on orthogonal polynomials that we use in chapter 3. In
chapter 3 we characterize the probability density of the Ornstein-Uhlenbeck, the Cox-Ingersoll-Ross
and Jacobi diffusions through Hermite, Laguerre and Jacobi orthogonal polynomials respectively.
At the end of chapter 3 we give an example of a diffusion that does not fit in the classical context:
the Brox diffusion, which is a diffusion in a random environment.
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Chapter 1

Diffusion processes in one
dimension

1.1 Notation

1. The symbol θt represents a transformation such that the effect on a path ω := {ω(s)}s≥0 is
the following θt(ω) = {ω(s)}s≥t. This transformation is called the shift operator and has
the properties

(a) Xt(θs(ω)) = Xt+s(ω) for all stochastic process X := {Xt : t ≥ 0} and

(b) θt ◦ θs = θt+s.

2. The expression an ↗ a means that the sequence an converges to a, and an ≤ an+1 for all n.
Similarly an ↘ a means that the sequence an converges to a, and an ≥ an+1 for all n.

3. Let X := {Xt : t ≥ 0} be a Markov process with state space E, and A ⊆ E measurable,
then Px(Xt ∈ A) := P (Xt ∈ A | X0 = x) and Ex(Xt) := E(Xt | X0 = x). Also, p(t, x, dy)

represents the transition probability distribution, i.e. P (Xt ∈ A|X0 = x) =

∫
A

p(t, x, dy).

1.2 Diffusion process

In this section we will look at some basic concepts about diffusions.

Definition 1.2.1. Let E = (l, r) be an interval of R which may be closed, open, semi open, bounded
or unbounded.

1. The hitting time of a one-point set {x} is denote by Tx, and defined by

Tx := inf{t > 0 : Xt = x}.

2. A stochastic process X = {X(t), t ≥ 0} with state space E is called a diffusion process if
it satisfies the following:

(a) The paths of X are continuous.

13



14 CHAPTER 1. DIFFUSION PROCESSES IN ONE DIMENSION

(b) X enjoys the strong Markov property, i.e. for F : Ω → R measurable and τ a stopping
time, then

Ex(F (X ◦ θτ )|Fτ ) = EXτ (F (X)).

(c) X is regular, i.e. for any x ∈ int(E) and y ∈ E, Px(Ty <∞) > 0.

3. For any interval I = (a, b) such that [a, b] ⊆ E, we denote by σI the exit time of I, i.e.
σI := Ta ∧ Tb. We also write mI(x) := Ex(σI).

Theorem 1.2.2. If I is bounded, the function mI is bounded on I.

Proof. Note that for any fixed y in I, we may pick α < 1 and t > 0 such that

max{Py(Ta > t), Py(Tb > t)} = α. (1.1)

From the regularity of X, Py(Ta <∞) > 0, then

0 < Py(Ta <∞) = Py

( ∞⋃
n=0

{Ta < n}

)
≤
∞∑
n=0

Py (Ta < n) .

Consequently there exists an n0 such that Py(Ta < n0) > 0. Thus Py(Ta > n0) < 1, and by the
same procedure we obtain an m0 such that Py(Tb > m0) < 1. Now, define t := max{n0,m0} and
α := max{Py(Ta > n0), Py(Tb > m0)}.

We will prove that
sup
x∈I

Px(σI > t) ≤ α. (1.2)

Let y be a fixed point in I. If y < x < b then

Px(σI > t) ≤ Px(Tb > t) ≤ Py(Tb > t) ≤ α < 1.

The second inequality is because any path that starts in y has to pass through x.

Similarly if a < x < y, then

Px(σI > t) ≤ Px(Ta > t) ≤ Py(Ta > t) ≤ α < 1,

which yields (1.2).

Now, since σI = u+ σI ◦ θu on {σI > u}, we have

Px(σI > nt) = Px(σI > (n− 1)t, σI > nt)

= Px(σI > (n− 1)t, (n− 1)t+ σI ◦ θ(n−1)t > nt)

= Ex

(
1{σI>(n−1)t} · 1{(n−1)t+σI◦θ(n−1)t>nt}

)
= Ex

(
1{σI>(n−1)t} · 1{σI◦θ(n−1)t>t}

)
= Ex

(
1{σI>(n−1)t} · 1{σI>t} ◦ θ(n−1)t

)
(
Markov
property

)
= Ex

(
1{σI>(n−1)t} · EX(n−1)t

(1{σI>t})
)
.
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Since σI > (n− 1)t, then X(n−1)t ∈ I and, by (1.2), we obtain

EX(n−1)t

(1{σI>t}) ≤ α.

Therefore Px(σI > nt) ≤ αPx (σI > (n− 1)t).

Recursively it follows that

Px(σI > nt) ≤ αn. (1.3)

On the other hand, we know that Ex(σI) ≤
∞∑
n=0

t Px(σI > nt). Hence

Ex(σI) ≤
∞∑
n=0

tαn = t(1− α)−1 <∞.

Remark: For a and b in E and l ≤ a < x < b ≤ r, the probability Px(Tb < Ta) is the probability
that the process started at x exits (a, b) by its right end. We also have that

Px(Tb < Ta) + Px(Ta < Tb) = 1.

1.3 The scale function

Theorem 1.3.1. There exists a continuous, strictly increasing function s on E such that

Px(Tb < Ta) =
s(x)− s(a)

s(b)− s(a)
. (1.4)

for any a, b, x in E with l ≤ a < x < b ≤ r. Also if s̃ is another function with the same properties,
then s̃ = αs+ β with α > 0 and β ∈ R.

Proof. The event {Tr < Tl} is equal to the disjoint union

{Tr < Tl, Ta < Tb}
⋃
{Tr < Tl, Tb < Ta}.

Note that Tl = Ta + Tl ◦ θTa always, and Tr = Ta + Tr ◦ θTa on the set {Ta < Tb}. Then by the
Markov property we have

Px (Tr < Tl, Ta < Tb) = Ex
(
1{Tr<Tl} · 1{Ta<Tb}

)
= Ex

(
1{Ta+Tr◦θTa<Ta+Tl◦θTa} · 1{Ta<Tb}

)
= Ex

(
1{Tr<Tl} ◦ θTa · 1{Ta<Tb}

)
(
Markov
property

)
= Ex

(
EXTa (1{Tr<Tl}) · 1{Ta<Tb}

)
.
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Since XTa = a, then EXTa (1{Tr<Tl}) = Ea(1{Tr<Tl}), thus

Px (Tr < Tl, Ta < Tb) = Ex
(
Ea(1{Tr<Tl}) · 1{Ta<Tb}

)
= Ea(1{Tr<Tl}) · Ex(1{Ta<Tb})

= Pa(Tr < Tl) · Px(Ta < Tb).

We finally obtain

Px(Tr < Tl) = Pa(Tr < Tl) · Px(Ta < Tb) + Pb(Tr < Tl) · Px(Tb < Ta). (1.5)

Define s(x) := Px(Tr < Tl), and solving for Px(Tb < Ta) we obtain the formula in the statement.

Let us now verify first s is increasing. Indeed, because the paths of X are continuous

Px(Tr < Tl) ≤ Py(Tr < Tl) if x < y.

We now see that s is strictly increasing. Suppose there exists x < y such that s(x) = s(y). Then
for any b > y, by (1.4) we obtain

Py(Tb < Tx) =
s(y)− s(x)

s(b)− s(x)
= 0.

This contradicts the regularity of the process. Therefore s is strictly increasing.

We now will prove that s is continuous. To this end, we first prove that

lim
n→∞

Px(Tan < Tb) = Px(Ta < Tb), if an ↘ a. (1.6)

Note that if a < x and an ↘ a then Tan ↗ Ta if X(0) = x.

We know that XTa = a if X(0) = x. Then

Px(Ta < Tb) = Px

( ∞⋂
n=1

{Tan < Tb}

)
= lim
n→∞

Px(Tan < Tb),

because {Tan+1 < Tb} ⊆ {Tan < Tb}.

On the other hand, if l ≤ a < x < b ≤ r we know that it holds the equality (1.5).

Suppose that y ∈ E, and consider yn ↘ y (the case yn ↗ y is similar).

We will see that s(yn)→ s(y). Take b ∈ E such that l ≤ y < yn < b ≤ r. By (1.5) we know that

Py(Tb < Tyn) =
s(y)− s(yn)

s(b)− s(yn)
.

Then

0 = lim
n→∞

Py(Tb < Tyn) = lim
n→∞

s(y)− s(yn)

s(b)− s(yn)
. (1.7)

Since yn ↘ y and s is strictly increasing, s(yn) > s(yn+1) > ... > s(y), so the sequence s(yn)
is decreasing and bounded by s(y). Therefore there exists α such that s(yn) → α and s(b) > α.
Hence by (1.7) we obtain that s(yn)→ s(y).



1.4. THE SPEED MEASURE 17

Suppose now that s̃ is another function such that s̃ is continuous, strictly increasing, and

Px(Tb < Ta) =
s̃(x)− s̃(a)

s̃(b)− s̃(a)
,

then we will prove s̃ = αs+ β, for some α > 0, β ∈ R.

Let l ≤ a < x < b ≤ r, from (1.5)

Px(Tr < Tl) = Px(Ta < Tb)Pa(Tr < Tl) + Px(Tb < Ta)Pb(Tr < Tl), (1.8)

where, by definition, s(x) = Px(Tr < Tl) and Px(Tb < Ta) =
s̃(x)− s̃(a)

s̃(b)− s̃(a)
. Then by (1.8) we obtain

s(x) =
s̃(b)− s̃(x)

s̃(b)− s̃(a)
· Pa(Tr < Tl) +

s̃(x)− s̃(a)

s̃(b)− s̃(a)
· Pb(Tr < Tl).

Therefore s̃ = αs+ β, with

α :=
s̃(b)− s̃(a)

Pb(Tr < Tl)− Pa(Tr < Tl)
, β :=

s̃(a)Pb(Tr < Tl)− s̃(b)Pa(Tr < Tl)

Pb(Tr < Tl)− Pa(Tr < Tl)
.

Definition 1.3.2. The function s of the Theorem 1.3.1 is called the scale function of the process
X. In particular we say that X is on its natural or standard scale if s(x) = x.

Note that if a process X has scale function s, then the process Y := s(X) is on its natural scale.

1.4 The speed measure

Definition 1.4.1. Let s be a continuous function and strictly increasing on [l, r]. A function f is
called s-convex if for l ≤ a < x < b ≤ r

(s(b)− s(a))f(x) ≤ (s(b)− s(x))f(a) + (s(x)− s(a))f(b). (1.9)

Define also the right and left s-derivatives
df+

ds
and

df−
ds

as

df+

ds
(x) := lim

y→x+

f(y)− f(x)

s(y)− s(x)
, and

df−
ds

(x) := lim
y→x−

f(x)− f(y)

s(x)− s(y)
. (1.10)

At the points where they coincide we say that f has an s-derivative.

If m is a measure, then we define the m-derivative of f at x as

df

dm
(x) := lim

y→x+

f(y)− f(x)

m((x, y])
.

Lemma 1.4.2. Let s be a continuous function and strictly increasing on [l, r]. If f is s-convex,
then f is continuous on [l, r].
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Proof. Since f is s-convex, if l ≤ u < w < v ≤ r, then

(s(v)− s(u))f(w) ≤ (s(w)− s(u))f(v) + (s(v)− s(w))f(u).

This implies
f(w)− f(u)

s(w)− s(u)
≤ f(v)− f(u)

s(v)− s(u)
≤ f(v)− f(w)

s(v)− s(w)
. (1.11)

Now, let x ∈ (l, r) and pick v ∈ (l, r) such that l ≤ x < v ≤ r, and apply (1.11) to obtain

f(x)− f(l)

s(x)− s(l)
≤ f(v)− f(x)

s(v)− s(x)
≤ f(r)− f(x)

s(r)− s(x)
. (1.12)

By (1.12) we obtain

f(x)− f(l)

s(x)− s(l)
· (s(v)− s(x)) + f(x) ≤ f(v) ≤ f(r)− f(x)

s(r)− s(x)
· (s(v)− s(x)) + f(x). (1.13)

Take v ↘ x in (1.13) to see that lim
v→x+

f(v) = f(x). Therefore f is right continuous. Left continuity

is shown in exactly the same way.

Lemma 1.4.3. Let s be a continuous function and strictly increasing on [l, r]. If f is a function

s-convex on [l, r], then
df+

ds
and

df−
ds

are increasing, thus of bounded variation.

Proof. Let l ≤ x < y ≤ r, and pick xn, yn such that l ≤ x < xn < y < yn ≤ r.

Since f is s-convex then

f(xn)− f(x)

s(xn)− s(x)
≤ f(y)− f(xn)

s(y)− s(xn)
≤ f(yn)− f(y)

s(yn)− s(y)
. (1.14)

From (1.14) we obtain

f(xn)− f(x)

s(xn)− s(x)
≤ f(yn)− f(y)

s(yn)− s(y)
.

Finally take xn → x and yn → y.

Lemma 1.4.4. Let f be a function s-convex on I = [a, b] and f(a) = f(b) = 0. Then there exists

a measure µ such that µ((c, d]) =
df+

ds
(d)− df+

ds
(c), and

f(x) = −
∫ b

a

GI(x, y) µ(dy),

where

GI(x, y) :=


(s(x)− s(a))(s(b)− s(y))

s(b)− s(a)
, a ≤ x ≤ y ≤ b,

(s(y)− s(a))(s(b)− s(x))

s(b)− s(a)
, a ≤ y ≤ x ≤ b,

0, otherwise.

GI is called the Green function.
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Proof. Using the integration by parts formula for Stieltjes integrals we obtain∫ b

a

GI(x, y) µ(dy) =

∫ b

a

GI(x, y) d

(
df+

ds
(y)

)
=

s(b)− s(x)

s(b)− s(a)

∫ x

a

(s(y)− s(a)) d

(
df+

ds
(y)

)
+

s(x)− s(a)

s(b)− s(a)

∫ b

x

(s(b)− s(y)) d

(
df+

ds
(y)

)
=

s(b)− s(x)

s(b)− s(a)

(
(s(x)− s(a))

df+

ds
(x)−

∫ x

a

df+

ds
(y) ds(y)

)
+

s(x)− s(a)

s(b)− s(a)

(
(s(x)− s(b))df+

ds
(x)−

∫ b

x

df+

ds
(y) ds(y)

)

=
s(b)− s(x)

s(b)− s(a)
(f(a)− f(x)) +

s(x)− s(a)

s(b)− s(a)
(f(x)− f(b))

= −f(x).

Theorem 1.4.5. There exists a unique measure m such that for all I = (a, b)

mI(x) =

∫ b

a

GI(x, y) m(dy) =

∫ b

a

GI(x, y) d

(
−d(mI(y))+

ds

)
,

with [a, b] ⊆ E, and where GI is the Green function.

Proof. We apply the Lemma 1.4.4. We will first show that −mI is s-convex. Let a < c < x < d < b,
and J := (c, d), I := (a, b). Then by the Markov property we obtain

mI(x) = Ex (σI)

(σI=σJ+σI◦θσJ )
= Ex (σJ + σI ◦ θσJ )

= mJ(x) + Ex (σI ◦ θσJ )

= mJ(x) + Ex (σI ◦ θσJ )(
Markov
property

)
= mJ(x) + Ex

(
EXσJ (σI)

)
= mJ(x) + Ex

(
EXσJ (σI) · 1{Tc<Td}

)
+ Ex

(
EXσJ (σI) · 1{Td<Tc}

)
= mJ(x) + Ex

(
EXTc (σI) · 1{Tc<Td}

)
+ Ex

(
EXTd (σI) · 1{Td<Tc}

)
= mJ(x) + Ex

(
Ec (σI) · 1{Tc<Td}

)
+ Ex

(
Ed (σI) · 1{Td<Tc}

)
= mJ(x) + Ec (σI) · Ex

(
1{Tc<Td}

)
+ Ed (σI) · Ex

(
1{Td<Tc}

)
= mJ(x) + Ec (σI) · Px (Tc < Td) + Ed (σI) · Px (Td < Tc)

= mJ(x) +mI(c) ·
(
s(d)− s(x)

s(d)− s(c)

)
+mI(d) ·

(
s(x)− s(c)
s(d)− s(c)

)
. (1.15)
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Hence if follows that −mI is s-convex. Also, mI(a) = mI(b) = 0. Then by Lemma 1.4.4 there

exists a measure m with m(dy) := d
(
−d(mI(y))+

ds

)
, such that

mI(x) =

∫ b

a

GI(x, y) m(dy) =

∫ b

a

GI(x, y) d

(
−d(mI(y))+

ds

)
.

Let us check the uniqueness of m. Let J := (c, d) ⊆ I := (a, b). If we consider the functions mI(x)
and mJ(x), and we apply the Theorem 1.4.5, then there exist measures m and m̃ such that

m(dy) = d

(
−d(mI(y))+

ds

)
, and m̃(dy) = d

(
−d(mJ(y))+

ds

)
.

However, if we calculate the s-derivative in both side of (1.15), we obtain

d(mI(y))+

ds
=
d(mJ(y))+

ds
+ C,

where C is a constant, in particular this holds for J = I. Therefore m = m̃.

Corollary 1.4.6. The measure m satisfies that

m((w, z]) =

(
−d(mI(z))+

ds

)
−
(
−d(mI(w))+

ds

)
.

Definition 1.4.7. The measure m of the Theorem 1.4.5 is called the speed measure of the process
X.

Lemma 1.4.8. If v(x) := Ex

(∫ Ta∧Tb

0

1(c,b) ◦Xudu

)
, then

v(x) =

{
Ex(Tc ∧ Tb) + Px(Tc < Tb) · v(c), x ∈ (c, b),
Px(Tc < Ta) · v(c), x ∈ (a, c].

In particular if x ∈ (c, b) we have
dv+

ds
=
dEx(Tc ∧ Tb)+

ds
+ C, where C is a constant.

Proof. Let x ∈ (c, b), and define now σJ := Tc ∧ Tb. By the Markov property we obtain

Px(Tc < Tb) · v(c) = Ex
(
1{Tc<Tb}

)
· Ec

(∫ σI

0

1(c,b) ◦Xu du

)
= Ex

(
1{Tc<Tb} · Ec

(∫ σI

0

1(c,b) ◦Xu du

))
(c=XTc=XσJ )

= Ex

(
1{Tc<Tb} · EXσJ

(∫ σI

0

1(c,b) ◦Xu du

))
(
Markov
property

)
= Ex

(
1{Tc<Tb} ·

{(∫ σI

0

1(c,b) ◦Xu du

)
◦ θσJ

})
= Ex

(
1{Tc<Tb} ·

(∫ σI◦θσJ

0

1(c,b) ◦Xu ◦ θσJ du

))

= Ex

(
1{Tc<Tb} ·

∫ σI

σJ

1(c,b) ◦Xu du

)
.
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On the other hand, since x ∈ (c, b) we have

Ex(Tc ∧ Tb) = Ex
(
1{Tc<Tb} · (Tc ∧ Tb)

)
+ Ex

(
1{Tb<Tc} · (Tc ∧ Tb)

)
= Ex

(
1{Tc<Tb} ·

∫ σJ

0

du

)
+ Ex

(
1{Tb<Tc} ·

∫ σJ

0

du

)
( σJ=σI
on {Tb<Tc}

)
= Ex

(
1{Tc<Tb} ·

∫ σJ

0

1(c,b) ◦Xu du

)
+ Ex

(
1{Tb<Tc} ·

∫ σI

0

1(c,b) ◦Xu du

)
.

Therefore if x ∈ (c, b), then Ex(Tc ∧ Tb) + Px(Tc < Tb) · v(c) equals

Ex

(
1{Tc<Tb} ·

∫ σI

0

1(c,b) ◦Xu du

)
+ Ex

(
1{Tb<Tc} ·

∫ σI

0

1(c,b) ◦Xu du

)
= v(x). (1.16)

In the same way we obtain that, if x ∈ (a, c] then

v(x) = Px(Tc < Ta) · v(c). (1.17)

Combining (1.16) and (1.17), we arrive at the equality

v(x) = [Ex(Tc ∧ Tb) + Px(Tc < Tb) · v(c)] · 1(c,b) + Px(Tc < Ta) · v(c) · 1(a,c]

=

[
Ex(Tc ∧ Tb) +

s(b)− s(x)

s(b)− s(c)
· v(c)

]
· 1(c,b) +

s(x)− s(a)

s(c)− s(a)
· v(c) · 1(a,c]

= Ex(Tc ∧ Tb) · 1(c,b) +
s(b)− s(x)

s(b)− s(c)
· v(c) · 1(c,b) +

s(x)− s(a)

s(c)− s(a)
· v(c) · 1(a,c].

In the following, C0(R) will denote the space of the continuous functions that vanish at infinity.

Corollary 1.4.9. If I = (a, b), x ∈ I, f ∈ C0(R), then

Ex

(∫ Ta∧Tb

0

f (Xs) ds

)
=

∫ b

a

GI(x, y)f(y)m(dy). (1.18)

Proof. Let c ∈ (a, b). We will now prove that the function v(x) := Ex

(∫ Ta∧Tb

0

1(c,b) ◦Xudu

)
is

s-concave on (a, b). So −v(x) is s-convex.

We will show that

Px(Tm < Tn) · v(m) + Px(Tn < Tm) · v(n) ≤ v(x),

where a < m < x < n < b, which means that v is s-concave. Let σJ := Tm ∧Tm and σI := Ta ∧Tb,
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then σI = σJ + σI ◦ θσJ . Note that by the Markov property

Px(Tm < Tn) · v(m) = Ex
(
1{Tm<Tn}

)
· Em

(∫ Ta∧Tb

0

1(c,b) ◦Xu du

)

= Ex

(
1{Tm<Tn} · Em

(∫ σI

0

1(c,b) ◦Xu du

))
(m=XTm=XσJ )

= Ex

(
1{Tm<Tn} · EXσJ

(∫ σI

0

1(c,b) ◦Xu du

))
(
Markov
property

)
= Ex

(
1{Tm<Tn} ·

{(∫ σI

0

1(c,b) ◦Xu du

)
◦ θσJ

})
= Ex

(
1{Tm<Tn} ·

∫ σI◦θσJ

0

1(c,b) ◦Xu ◦ θσJ du

)

= Ex

(
1{Tm<Tn} ·

∫ σJ+σI◦θσJ

σJ

1(c,b) ◦Xu du

)
(σJ+σI◦θσJ=σI)

= Ex

(
1{Tm<Tn} ·

∫ σI

σJ

1(c,b) ◦Xu du

)
.

In the same way we obtain that

Px(Tn < Tm) · v(n) = Ex

(
1{Tn<Tm} ·

∫ σI

σJ

1(c,b) ◦Xu du

)
.

Then

Px(Tm < Tn) · v(m) + Px(Tn < Tm) · v(n) = Ex

(∫ σI

σJ

1(c,b) ◦Xu du

)
≤ Ex

(∫ σI

0

1(c,b) ◦Xu du

)
= v(x).

So −v is s-convex and v(a) = v(b) = 0. Therefore, applying the Lemma 1.4.4, there exists a

measure µ such that µ(dy) = −d
(
dv+

ds
(y)

)
and

v(x) =

∫ b

a

GI(x, y) µ(dy) = −
∫ b

a

GI(x, y) d

(
dv+

ds
(y)

)
. (1.19)

Then by Lemma 1.4.8 we arrive to

v(x) = −
∫
GI(x, y) 1(c,b) d

(
dEy(Tc ∧ Tb)+

ds

)
=

∫
GI(x, y) 1(c,b) m(dy),

where m is the speed measure.

1.5 Infinitesimal operator

The purpose of this section is to prove that the scale function and the speed measure characterize
the infinitesimal operator of the diffusion process X. We will appeal to some standard results of
the theory of semigroups (see e.g. [3]).
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In the following, Pt will denote the semigroup Pt(f)(x) := E(f(Xt)|X0 = x).

Definition 1.5.1. Let X be a diffusion process. A function f ∈ C0(R) is said to belong to the
domain DA of the infinitesimal operator of X if the limit

Af = lim
t→0+

Ptf − f
t

(1.20)

exists in C0(R). This operator A : DA → C0(R) is called the infinitesimal operator of the
process X or of the semigroup Pt.

By the properties of the Markov process, if f ∈ C0(R) then

E(f(Xt+h) | Ft) = Ph(f(Xt)), (1.21)

where Ft := σ(Xs : s ≤ t).

The following result which is useful for our purposes can be found in [3, p.282].

Lemma 1.5.2. If f ∈ DA, then:

1. The function t→ Ptf is differentiable in C0(R) and

d

dt
Ptf = APtf = PtAf.

2. Ptf − f =

∫ t

0

PsAf ds.

Lemma 1.5.3. For all y ∈ E we have that

α := Ey

(
f(Xt−s)− f(X0)−

∫ t−s

0

Af(Xu)du

)
= 0, (1.22)

Proof.

α = Ey(f(Xt−s))− f(y)− Ey
(∫ t−s

0

Af(Xu)du

)
= Ey (E(f(Xt−s)| F0))− f(y)− Ey

(
E

(∫ t−s

0

Af(Xu)du

∣∣∣∣ F0

))
(

(1.21) and
Fubini

)
= Ey(Pt−sf(X0))− f(y)− Ey

(∫ t−s

0

E(Af(Xu) |F0) du

)
(1.21)

= Pt−sf(y)− f(y)− Ey
(∫ t−s

0

PuAf(X0) du

)
= Pt−sf(y)− f(y)−

∫ t−s

0

PuAf(y) du

(Lemma 1.5.2)
= 0.
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Theorem 1.5.4. Let X0 := x. If f ∈ DA, then the process

Mf
t := f(Xt)− f(X0)−

∫ t

0

Af(Xs) ds,

is a martingale with respect to {Ft}t≥0 for every x.

Proof. Since f and Af are bounded, one can check that Mf
t is integrable for each t. Now, let

s < t, by the Markov property we have

Ex(Mf
t | Fs) = Ex

(
f(Xt)− f(X0)−

∫ t

0

Af(Xu) du

∣∣∣∣ Fs)
(adding ±f(Xs))

= Mf
s + Ex

(
f(Xt)− f(Xs)−

∫ t

s

Af(Xu)du

∣∣∣∣ Fs)
= Mf

s + Ex

({
f(Xt−s)− f(X0)−

∫ t−s

0

Af(Xu)du

}
◦ θs

∣∣∣∣Fs)(
Markov
property

)
= Mf

s + EXs

(
f(Xt−s)− f(X0)−

∫ t−s

0

Af(Xu)du

)
(Lemma 1.5.3)

= Mf
s .

Therefore Mf
t is a martingale with respect to {Ft}t≥0.

Theorem 1.5.5. Let f ∈ DA and x in the interior of E. Then the s-derivative of f exists except
possibly on the set {x : m({x}) > 0}.

Proof. Let f ∈ DA, σI := Ta ∧ Tb and x ∈ (a, b) such that [a, b] ⊆ E.

By Theorem 1.5.4, we know that Mf
t is a martingale with respect to {Ft}t≥0. Also |Mf

t | ≤ α+t ·β.

This implies that |Mf
t∧σI | ≤ α+ σI · β.

Define S := α+ σI · β. By Theorem 1.2.2 we have that Ex(σI) <∞, which implies Ex(S) <∞.

Let us prove that Mf
t∧σI is uniformly integrable. Indeed

lim
c→∞

sup
t

∫
{|Mf

t∧σI
|>c}

∣∣Mf
t∧σI

∣∣dP ≤ lim
c→∞

sup
t

∫
{|S|>c}

∣∣S|dP
= lim

c→∞

∫
{|S|>c}

∣∣S|dP
= 0.

By Doob optional stopping theorem (see e.g. [2, p.87]) , we have that Ex(Mf
σI ) = Ex(Mf

0 ) = 0, so

Ex(f(XσI ))− f(x) = Ex

(∫ σI

0

Af(Xs) ds

)
.

Now, by Corollary 1.4.9 we obtain

Ex(f(XσI ))− f(x) = Ex

(∫ σI

0

Af(Xs) ds

)
=

∫ b

a

GI(x, y)Af(y) m(dy). (1.23)
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On the other hand, we have that

Ex (f(XσI )) = Ex
(
f(XσI ) · 1{Ta<Tb}

)
+ Ex(f(XσI ) · 1{Tb<Ta})

= Ex(f(XTa) · 1{Ta<Tb}) + Ex(f(XTb) · 1{Tb<Ta})
= Ex(f(a) · 1{Ta<Tb}) + Ex(f(b) · 1{Tb<Ta})
= f(a) · Ex(1{Ta<Tb}) + f(b) · Ex(1{Tb<Ta})

= f(a) · Px(Ta < Tb) + f(b) · Px(Tb < Ta)

= f(a) · s(b)− s(x)

s(b)− s(a)
+ f(b) · s(x)− s(a)

s(b)− s(a)
. (1.24)

Then substituting in (1.24) in the equation (1.23) we arrive at

f(a) · s(b)− s(x)

s(b)− s(a)
+ f(b) · s(x)− s(a)

s(b)− s(a)
− f(x) =

∫ b

a

GI(x, y)Af(y)m(dy). (1.25)

By the definition of Green function we have for every x ∈ (a, b) that∫ b

a

GI(x, y)Af(y) m(dy) =
s(b)− s(x)

s(b)− s(a)
·
∫ x

a

(s(y)− s(a))Af(y)m(dy)

+
s(x)− s(a)

s(b)− s(a)
·
∫ b

x

(s(b)− s(y))Af(y)m(dy). (1.26)

Replacing (1.26) in the equation (1.25) and simplifying we obtain

f(b)− f(x)

s(b)− s(x)
− f(x)− f(a)

s(x)− s(a)
= J1 + J2, (1.27)

where

J1 :=

∫ x

a

s(y)− s(a)

s(x)− s(a)
Af(y)m(dy).

J2 :=

∫ b

x

s(b)− s(y)

s(b)− s(x)
Af(y)m(dy).

If we take b↘ x in the equality (1.27) and we apply the theorem of differentiation of Lebesgue to

J2 ·
m((x, b])

m((x, b])
, then

df+

ds
(x)− f(x)− f(a)

s(x)− s(a)
=

∫ x

a

s(y)− s(a)

s(x)− s(a)
Af(y)m(dy) +m({x})Af(x).

In the same manner, in this last equality we take a↗ x, which yields

df+

ds
(x)− df−

ds
(x) = 2m({x})Af(x).

Therefore the s-derivative of f exists except possibly on the set {x : m({x}) > 0}.
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Corollary 1.5.6. The s-derivative of f ∈ DA exists for almost every x ∈ R.

Proof. Note that by construction of the speed measure m we known that

m((w, z]) = −dEz(σI)+

ds
+
dEw(σI)+

ds
,

Since −mI(x) := −Ex(σI) is s-convex, then
−Ex(σI)+

ds
is increasing, and so

−Ex(σI)+

ds
is contin-

uous except possibly in a countable set. Therefore m({x}) = 0 for almost every x ∈ R. By the
Theorem 1.5.5we obtain that the s-derivative of f ∈ DA exists for almost every x ∈ R.

The following result resembles the fundamental theorem of calculus.

Theorem 1.5.7. Let f ∈ DA, then∫ x+h

x

Af(y)m(dy) =
df+

ds
(x+ h)− df+

ds
(x). (1.28)

Proof. Since the formula (1.25) is valid for all x ∈ (a, b), pick h > 0 such that x + h ∈ (a, b), and
apply the formula to obtain

∫ b

a

GI(x+ h, y)Af(y)m(dy) = f(a) · s(b)− s(x+ h)

s(b)− s(a)
+ f(b) · s(x+ h)− s(a)

s(b)− s(a)
− f(x+ h). (1.29)

By substraction (1.29) and (1.25) and simplifying, we obtain

f(b)− f(a)

s(b)− s(a)
− f(x+ h)− f(x)

s(x+ h)− s(x)
=

∫ b

a

GI(x+ h, y)−GI(x, y)

s(x+ h)− s(x)
Af(y)m(dy). (1.30)

By definition of the Green function is easy check that∣∣∣∣GI(x+ h, y)−GI(x, y)

s(x+ h)− s(x)

∣∣∣∣ ≤ 2.

Note that by definition of the Green function, we have that for every y, the s-derivative of GI
exists on x.

Then take h↘ 0 in (1.30), and apply the convergence dominated theorem

f(b)− f(a)

s(b)− s(a)
− df+

ds
(x) =

∫ b

a

dGI(x, y)

ds
Af(y)m(dy).

Apply the definition of GI we arrive at

f(b)− f(a)

s(b)− s(a)
− df+

ds
(x) =

∫ b

x

s(b)− s(y)

s(b)− s(a)
Af(y)m(dy)−

∫ x

a

s(y)− s(a)

s(b)− s(a)
Af(y)m(dy) (1.31)

This formula is true for any point x ∈ (a, b). Hence we can pick h > 0 such that x + h ∈ (a, b),
and then apply the formula. Indeed, by substituting x+ h in lieu of x in (1.31) we obtain
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f(b)− f(a)

s(b)− s(a)
− df+

ds
(x+h) =

∫ b

x+h

s(b)− s(y)

s(b)− s(a)
Af(y)m(dy)−

∫ x+h

a

s(y)− s(a)

s(b)− s(a)
Af(y)m(dy). (1.32)

Finally, subtracting (1.32) and (1.31) and simplifying, we obtain (1.28)∫ x+h

x

Af(y)m(dy) =
df+

ds
(x+ h)− df+

ds
(x).

Corollary 1.5.8. Let f ∈ DA, then∫ x+h

x

Af(y)m(dy) =
df−
ds

(x+ h)− df−
ds

(x).

However, if the s-derivative of f exists in x and x+ h, then∫ x+h

x

Af(y)m(dy) =
df

ds
(x+ h)− df

ds
(x).

Theorem 1.5.9. Let f ∈ DA, and x ∈ (a, b), then

Af(x) =
d

dm

d

ds
f+(x) =

d

dm

d

ds
f−(x). (1.33)

Proof. Let xn be a sequence such that xn ↘ x. By the Theorem 1.5.7 we have∫ xn

x

Af(y)m(dy) =
df+

ds
(xn)− df+

ds
(x).

Dividing both sides by m((x, xn]), we have

1

m((x, xn])

∫ xn

x

Af(y)m(dy) =
df+
ds (xn)− df+

ds (x)

m((x, xn])
.

If we take xn ↘ x and apply Lebesgues theorem of differentiation, then

Af(x) =
d

dm

d

ds
f+(x).

Similarly Af(x) =
d

dm

d

ds
f−(x).

Corollary 1.5.10. Let f ∈ DA, then for almost every x ∈ (a, b)

Af(x) =
d

dm

d

ds
f(x). (1.34)
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1.6 A particular classic case

In this section we will see a particular class of diffusions, namely those for which the infinitesimal

operator is of the form Lf(x) := µ(x)f ′(x) +
1

2
σ2(x)f ′′(x). This operator L is associated with a

stochastic process that is solution of the stochastic differential equation dXt = µ(Xt)dt+σ(Xt)dBt,
where Bt is the Brownian motion. (see e.g. [1]).

Let us see how L is a special case of the infinitesimal operator Af(x) :=
d

dm

d

ds
f(x). Suppose that

the following limits exist

µ(x) := lim
h→0

E(Xh −X0|X0 = x)

h
, and σ2(x) := lim

h→0

E
(
(Xh −X0)2|X0 = x

)
h

. (1.35)

We first show that the scale function s(x) := Px(Tr < Tl), where l < x < r, is solution of the
equation

µ(x)f ′(x) +
1

2
σ2(x)f ′′(x) = 0, f(l) = 0, f(r) = 1. (1.36)

Note that the boundary conditions s(l) = 0 and s(r) = 1 are obvious, since s(x) is the probability
of reaching r before l, starting the process from x.

Since l < X0 = x < r, then by the continuity of the trajectory there exists h > 0 such that
l < Xh < r. At time h, conditioning on the position of Xh, the probability of reaching r before l is
s(Xh). Denote E(·|X0 = x) = Ex(·). According to ([10, p.193]), by the law of total probabilities

s(x) = Ex(s(Xh)) + o(h). (1.37)

On the other hand, let 4X := Xh −X0. If s has continuous second derivative, then using Taylors
formula

s(Xh) = s(X0 +4X)

= s(X0) +4X · s′(X0) +
(4X)2

2
· s′′(ξ), (1.38)

where ξ is between x and Xh. Taking expectation of (1.38) and dividing by h we arrive to

1

h
Ex(s(Xh)) =

1

h
s(x) +

1

h
Ex(4X) · s′(x) +

1

h
Ex((4X)2) · s

′′(ξ)

2
. (1.39)

By substituting (1.37) in (1.39) one has

1

h
s(x) +

o(h)

h
=

1

h
s(x) +

1

h
Ex(4X) · s′(x) +

1

h
Ex((4X)2) · s

′′(ξ)

2
. (1.40)

Adding ± 1

h
Ex((4X)2) · s

′′(x)

2
we have that (1.40) becomes

o(h)

h
=

1

h
Ex(4X) · s′(x) +

1

h
Ex((4X)2) · s

′′(x)

2
+

1

h
Ex((4X)2) ·

(
s′′(ξ)

2
− s′′(x)

2

)
. (1.41)
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Finally, if s′′ is continuous, by taking h↘ 0 we obtain

0 = µ(x) · s′(x) + σ2(x) · s
′′(x)

2
. (1.42)

Therefore we see that the function s satisfies the equation (1.36), thus by solving (1.36) for s

s′(x) := s̃(x), where s̃(x) := e
−
∫ x
l

2µ(z)

σ2(z)
dz
. (1.43)

Also, it is easy to check that

s̃′(x)

s̃(x)
=
−2µ(x)

σ2(x)
. (1.44)

Now we will prove that the speed measure m can be obtained from the solution of the equation

f ′(x) · µ(x) +
σ2(x)

2
· f ′′(x) = −1, f(l) = 0, f(r) = 0. (1.45)

This is so because, by construction, the speed measure m is in term of
d(mI)+

ds
, and we show that

mI(x) is solution of the equation (1.45).

Remember that mI(x) := Ex(σI) and σI := Tl ∧ Tr. Note that

w(x) := E

(∫ σI

0

1du

∣∣∣∣X0 = x

)
= Ex(σI) = mI(x).

Thus we study the following. Let g be a continuous and bounded function, and define

Z :=

∫ σI

0

g(Xu)du, and w(x) := E

(∫ σI

0

g(Xu)du

∣∣∣∣X0 = x

)
.

Now, choose h > 0 small enough such that σI = h+ σI ◦ θh, and note that

Z ◦ θh =

(∫ σI

0

g(Xu)du

)
◦ θh =

∫ σI◦θh

0

g(Xu ◦ θh)du =

∫ h+σI◦θh

h

g(Xu)du =

∫ σI

h

g(Xu)du.

(1.46)

On the other hand, if we denote E(·|X0 = x) = Ex(·), by the Markov property

E(w(Xh)|X0 = x) = Ex

[
E

(∫ σI

0

g(Xu)du

∣∣∣∣X0 = Xh

)]
= Ex[EXh(Z)](

Markov
property

)
= Ex(Z ◦ θh)

= E

(∫ σI

h

g(Xu)du

∣∣∣∣X0 = x

)
. (1.47)
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Again, with h small enough

E

(∫ h

0

g(Xu)du

∣∣∣∣X0 = x

)
= h · E

(
1

h

∫ h

0

g(Xu)du

∣∣∣∣X0 = x

)
= h · E(g(X0)|X0 = x) + o(h)

= h · g(x) + o(h). (1.48)

If 4X := Xh −X0, then

w(x) := Ex

(∫ σI

0

g(Xu)du

)
= Ex

(∫ h

0

g(Xu)du

)
+ Ex

(∫ σI

h

g(Xu)du

)
(
by 1.48
and 1.47

)
= h · g(x) + o(h) + Ex(w(x+4X))(

byTaylors
formula

)
= h · g(x) + o(h) + Ex

(
w(x) + w′(x)4X + w′′(ξ)

(4X)2

2

)
= h · g(x) + o(h) + w(x) + w′(x) · Ex (4X) +

w′′(ξ)

2
Ex
(
(4X)2

)
,

where ξ is between x and Xh. From the previous equality adding ±w
′′(x)
2 Ex((4X)2) we obtain

w′(x) · 1

h
Ex (4X) +

w′′(x)

2
· 1

h
Ex
(
(4X)2

)
+

(
w′′(ξ)

2
− w′′(x)

2

)
· 1

h
Ex
(
(4X)2

)
+
o(h)

h
= −g(x).

(1.49)

Now, suppose that w′′ is continuous, and by (1.35), then by taking h ↘ 0 in the equation (1.49),
we arrive to

µ(x)w′(x) +
σ2(x)

2
w′′(x) = −g(x). (1.50)

The equality in (1.50) is true for any continuous and bounded function g, then if g = 1, we have
by definition of w that

w(x) := E

(∫ σI

0

1du

∣∣∣∣X0 = x

)
= Ex(σI) = mI(x).

Then mI is solution of the equation

µ(x)w′(x) +
σ2(x)

2
w′′(x) = −1. (1.51)

Solving (1.51) for mI we obtain

mI(x) = −
∫ x

l

e
∫ y
l
−2µ(z)

σ2(z)
dz ·H(y)dy + C, (1.52)

where H(x) :=

∫ x

l

2

σ2(y)
e
∫ y
l

2µ(z)

σ2(z)
dz
dy, and C is a constant.
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Using (1.44) we have that (1.52) becomes

mI(x) = −
∫ x

l

[
s̃(y)

(∫ y

l

2

σ2(z)s̃(z)
dz

)
dy

]
+ C. (1.53)

Now, define M(x) :=
∫ x
l

2dz
σ2(z)s̃(z) . Since s′(x) = s̃(x), then the previous equation becomes

mI(x) =

∫ x

l

−M(y)s′(y)dy + C =

∫ x

l

−M(y)s(dy) + C. (1.54)

Calculating the s-derivative in both sides of (1.54), we arrive to

−dmI(x)+

ds
= M(x). (1.55)

By Corollary 1.4.6 we have that the measure defined by m((a, b]) := M(b) −M(a) is the speed
measure. Also, we have an explicit formula for the speed measure:

m((a, b]) := M(b)−M(a) =

∫ b

a

M ′(x)dx =

∫ b

a

2

s′(x)σ2(x)
dx. (1.56)

If we consider this measure m given in (1.56) and the scale function (1.43), it turns out that the

infinitesimal operator
d

dm

d

ds
f(x) is equal to Lf(x) := µ(x)f ′(x) +

1

2
σ2(x)f ′′(x). Let us see this

fact.

First note that

1

m̃(x)
· d
dx

(
1

s̃(x)

df(x)

dx

)
=

s̃(x)σ2(x)

2
·
(
−s̃′(x)

s̃(x)
· f
′(x)

s̃(x)
+

1

s̃(x)
· f ′′(x)

)
(1.57)

(1.44)
=

s̃(x)σ2(x)

2
·
(

2µ(x)

σ2(x)
· f
′(x)

s̃(x)
+

1

s̃(x)
· f ′′(x)

)
= µ(x)f ′(x) +

1

2
σ2(x)f ′′(x)

= Lf(x).



32 CHAPTER 1. DIFFUSION PROCESSES IN ONE DIMENSION

Also, we have

d

dm

d

ds
f(x) =

d

dm

(
lim
y→x

f(y)− f(x)

s(y)− s(x)

)
(1.58)

=
d

dm

(
lim
y→x

f(y)− f(x)

y − x
· lim
y→x

y − x
s(y)− s(x)

)
=

d

dm

(
f ′(x) · 1

s′(x)

)
(s′(x)=s̃(x))

=
d

dm

(
f ′(x)

s̃(x)

)

= lim
y→x

(
f ′(y)
s̃(y) −

f ′(x)
s̃(x)

)
m((x, y])

= lim
y→x

(
f ′(y)
s̃(y) −

f ′(x)
s̃(x)

)
y − x

· lim
y→x

y − x
M(y)−M(x)

=
d

dx

(
1

s̃(x)
f ′(x)

)
· 1

M ′(x)

(M ′(x)=m̃(x))
=

d

dx

(
1

s̃(x)
f ′(x)

)
· 1

m̃(x)

(1.57)
= Lf(x).

Therefore the differential operator L is a special case of the operaror A :=
d

dm

d

ds
.



Chapter 2

Orthogonal polynomials in one
dimension

2.1 Orthogonal polynomials

In this section we will look at some basic concepts on orthogonal polynomials, and some important
theorems in relation with this topic.

Definition 2.1.1. Let (a, b) ⊆ R and w : (a, b) → R a positive function. We say that a set of
polynomials p0, p1, ... (with pn of degree n) is orthogonal respect to w, if

〈pn, pm〉 := 〈pn, pm〉w :=

∫ b

a

pn(x)pm(x) w(x)dx = dnδnm,

where dn 6= 0, and δnm denotes the Kronecker delta, that is, δnm = 0 if n 6= m, and δnm = 1 if
n = m. If, in addition, dn = 1 we say that the polynomials are orthonormal.

Theorem 2.1.2. Let w : (a, b) → R be a positive function. Then there exists a sequence of
orthogonal polynomials {pn} with respect to w such that 〈pn, pm〉w = dnδnm.

Proof. Use the Gram-Schmidt process in the sequence of polynomials pn(x) := xn with the inner

product 〈f, g〉 :=
∫ b
a
f(x)g(x)w(x)dx.

Theorem 2.1.3. Let pn be a sequence of orthogonal polynomials (of degree n) with respect to w.
Then 〈pn, q〉w = 0 for any polynomial q of degree m < n; that is, the polinomial pn is orthogonal
to any polynomial of degree less that n.

Proof. Note that any polynomial of degree m, where m < n can be written as a linear combi-
nation of the polynomials {p0, p1, ..., pm}. Let q be a polynomial of degree m. Then there exist

α1, α2, ..., αm such that q =

m∑
k=0

αkpk. Then 〈pn, q〉w =
m∑
k=0

αk〈pn, pk〉w = 0.

33
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Theorem 2.1.4. If pn and qn are two orthogonal polynomials (of degree n) with respect to w, then
there exists λ 6= 0 such that pn = λqn.

Proof. Pick λ such that the degree of pn − λqn is n − 1. By the previous theorem we know that
〈pn, pn − λqn〉w = 0 and 〈qn, pn − λqn〉w = 0. This implies that 〈pn, pn〉w = λ〈pn, qn〉w and
〈qn, pn〉w = λ〈qn, qn〉w.

Then ‖pn − λqn‖2 = 〈pn − λqn, pn − λqn〉w = 0, therefore pn − λqn = 0.

Note 1: In this chapter, A always represents a polynomial of degree at most 2 and B a polynomial
of degree at most 1. This is so is because if A or B do not satisfy this condition, then there does not
exist a polynomial P that is solution of the differential equation A(x)P ′′(x)+B(x)P ′(x)+λP (x) = 0
(see e.g. [12]). Also, w : (a, b)→ R is a positive function.

Theorem 2.1.5. Let A, B and w be defined as in Note 1. Assume that

d

dx
(A(x)w(x)) = B(x)w(x).

Then
lim
x→a+

xnA(x)w(x) = 0, n = 0, 1, 2... (2.1)

Proof. We have that (xnA(x)w(x))′ = xn(A(x)w(x))′ + nxn−1A(x)w(x), n = 0, 1, 2..., and by
assumption we know that (A(x)w(x))′ = B(x)w(x), then

(xnA(x)w(x))′ = xnB(x)w(x) + nxn−1A(x)w(x).

By integrating both sides we obtain

xnA(x)w(x) =

∫ x

a

[snB(s)w(s) + nsn−1A(s)w(s)]ds.

Since snB(s)w(s) + nsn−1A(s)w(s) is continuous, the integral is continuous. Therefore we arrive
to lim

x→a+
xnA(x)w(x) = 0.

Similarly we obtain that
lim
x→b−

xnA(x)w(x) = 0, n = 0, 1, 2... (2.2)

2.2 The derivative of orthogonal polynomials

Theorem 2.2.1. Let A and B be polynomials as in Note 1, and let w : (a, b) → R be a pos-
itive function. Let {qn} be a sequence of orthogonal polynomials with respect to w, such that
(A(x)w(x))′ = B(x)w(x). Then {q′n} is a sequence of orthogonal polynomials with respect to
w1 := Aw.

Proof. Let n > m, and define φ(x) := xm−1B(x). We know that

〈φ, qn〉w =

∫ b

a

xm−1B(x)qn(x)w(x)dx = 0, (2.3)
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because the degree of xm−1B(x) is less than n.

On the other hand, by using (A(x)w(x))′ = B(x)w(x)

〈φ, qn〉w =

∫ b

a

xm−1qn(x)[B(x)w(x)]dx =

∫ b

a

xm−1qn(x)(A(x)w(x))′dx.

Using (2.3), integration by parts and Theorem 2.1.5 we arrive to

0 = 〈φ, qn〉w = −(m− 1)

∫ b

a

xm−2A(x)qn(x)w(x)dx−
∫ b

a

xm−1A(x)q′n(x)w(x)dx.

Also, we know that ∫ b

a

xm−2A(x)qn(x)w(x)dx = 0,

because the degree of xm−2A(x) is less than n.

Hence ∫ b

a

xm−1q′n(x)[A(x)w(x)]dx = 0.

Therefore, the sequence {q′n} is orthogonal with respect to w1 = Aw.

Corollary 2.2.2. Let A and B as in the note 1. Let {qn} be a sequence of orthogonal polynomials
with respect to w, such that they satisfy the equation (A(x)w(x))′ = B(x)w(x). Then the sequence

{q(m)
n } of polynomials is orthogonal with respect to wm := Amw.

Also (A(x)wm(x))′ = Bm(x)wm(x), with Bm(x) = A′(x)m+B(x).

Proof. One can repeat the process in the proof of Theorem 2.2.1.

2.3 A differential equation for the orthogonal polynomials

Theorem 2.3.1. Let A, B and w as in note 1, and such that (A(x)w(x))′ = B(x)w(x). Then the
set of orthogonal polynomials with respect to w are solution of the differential equation

A(x)f ′′(x) +B(x)f ′(x) + λnf(x) = 0,

where λn = −n[ (n−1)
2 A′′ +B′].

Proof. By Theorem 2.2.1 we know that q′n is a sequence of orthogonal polynomials with respect to
Aw. Also, abusing of the notation we have

〈q′n(x), xm−1〉Aw = 0 if m < n. (2.4)

Using integration by parts, (2.1) and (2.2) we obtain

0 = 〈q′n(x), xm−1〉Aw =
−1

m

∫ b

a

xm[A(x)q′n(x)w(x)]′dx. (2.5)
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Note that

[A(x)q′n(x)w(x)]′ = A′(x)q′n(x)w(x) +A(x)q′′n(x)w(x) +A(x)q′n(x)w′(x),

but

A′(x)q′n(x)w(x) +A(x)q′n(x)w′(x) = q′n(x)[A′(x)w(x) +A(x)(x)w′(x)] = q′n(x)B(x)w(x).

Then
[A(x)q′n(x)w(x)]′ = A(x)q′′n(x)w(x) + q′n(x)B(x)w(x),

And by (2.5)

0 =

∫ b

a

xm[A(x)q′′n(x) + q′n(x)B(x)]w(x)dx.

This says that the polynomial A(x)q′′n(x) + q′n(x)B(x) of degree n is orthogonal to the polynomials
of degree m with respect to w, with m < n. Therefore by Theorem 2.1.4 there exists −λn 6= 0
such that

A(x)q′′n(x) +B(x)q′n(x) = −λnqn(x).

Then, comparing coefficients in

A(x)q′′n(x) +B(x)q′n(x) + λnqn(x) = 0, (2.6)

we obtain λn = −n[ (n−1)
2 A′′ +B′].

2.4 Classical orthogonal polynomials

Some classical orthogonal polynomials are specified in the following table:

Polynomial Interval A(x) w(x) B(x)
Jacobi (−1, 1) 1− x2 (1− x)α(1 + x)β β − α− (α+ β + 2)x

Laguerre (0,∞) x xαe−x α+ 1− x
Hermite (−∞,∞) 1 e−x

2 −2x

By Theorem 2.3.1 we know that the Jacobi polynomials are solution of the differential equation

(1− x2)J ′′n(x) + [β − α− (α+ β + 2)x]J ′n(x) + n(n+ α+ β + 1)Jn(x) = 0. (2.7)

The Laguerre polynomials are solution of

xL′′n(x) + [α+ 1− x]L′n(x) + nLn(x) = 0. (2.8)

The Hermite polynomials are solution of

H ′′n(x)− 2xH ′n(x) + 2nHn(x) = 0. (2.9)



2.5. THE FORMULA OF RODRIGUES TYPE 37

Note that the general equation is of the form

A(x)p′′n(x) +B(x)p′n(x) = −λnpn(x),

and we see that the orthogonal polynomials are eigenfunctions of the operator Lf := Af ′′ + Bf ′

associated with the eigenvalues given by the Theorem 2.3.1.

2.5 The formula of Rodrigues type

The solutions of the equations (2.7), (2.8) and (2.9) can be expressed compactly using the formula
of Rodrigues type which is derived using the following lemma.

Lemma 2.5.1. For m = 0, 1, 2..., the sequence of orthogonal polynomials {q(m)
n } satisfies

d

dx

(
A(x)wm(x)

d

dx
(q(m)
n (x))

)
= λn,mwm(x)q(m)

n (x), n = 0, 1, 2..., (2.10)

where λn,m = (n−m)
(

1
2 (n+m− 1)A′′(0) +B′(0)

)
and wm(x) is as in Corollary 2.2.2.

Proof. Note that

d

dx

(
A(x)wm(x)

d

dx
(q(m)
n (x))

)
= wm(x)[Bm(x)q(m+1)

n (x) +A(x)q(m+2)
n (x)]

= wm(x)[Bm(x)(q(m)
n (x))′ +A(x)(q(m)

n (x))′].

because (A(x)wm(x))′ = Bm(x)wm(x) by Corollary 2.2.2. Also, again by Corollary 2.2.2 and

Theorem 2.3.1, there exist λn,m such that the sequence of orthogonal polynomials q
(m)
n are solution

of
A(x)(q(m)

n (x))′′ +Bm(x)(q(m)
n (x))′ = λn,mq

(m)
n (x). (2.11)

Then
d

dx

(
A(x)wm(x)

d

dx
(q(m)
n (x))

)
= wm(x)λn,mq

(m)
n (x).

Comparing coefficients in the equation (2.11) we obtain

λn,m = (n−m)

(
1

2
(n+m− 1)A′′(0) +B′(0)

)
.

Theorem 2.5.2 (Formula of Rodrigues type ). The orthogonal polynomials qn with respect to w
can be written in the form

qn(x) =
cn
w(x)

dn

dxn
(An(x)w(x)) , (2.12)

where cn is a constant.
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Proof. We apply Lemma 2.5.1 several times. If m = 0 in (2.10), we have

(A(x)w(x)q′n(x))′ = λn,0w(x)qn(x). (2.13)

Note that w1(x)q′n(x) = A(x)w(x)q′n(x). Then by substituting in (2.13) we obtain

λn,0w(x)qn(x) = (w1(x)q′n(x))′ =
(λn,1w1(x)q′n(x))′

λn,1
. (2.14)

Applying again (2.10) in (2.14) with m = 1 we obtain

(λn,1w1(x)q′n(x))′

λn,1
=

(A(x)w1(x)q′′n(x))′′

λn,1
.

Now, since w2(x) = A2(x)w(x) = A(x)w1(x), by applying again (2.10) to the above equation we
arrive at

λn,0w(x)qn(x) =
(w2(x)q′′n(x))′′

λn,1
=

(λn,2w2(x)q′′n(x))′′

λn,2λn,1
=

(A(x)w2(x)q′′′n (x))′′′

λn,2λn,1
.

Continuing with this process we obtain

λn,0w(x)qn(x) =
(A(x)wn−1(x)q

(n)
n (x))(n)

λn,n−1 · · · λn,1
. (2.15)

Note that q
(n)
n is constant. Then from (2.15) we arrive to

qn(x) =
cn
w(x)

(A(x)wn−1(x))(n), (2.16)

where cn =
q

(n)
n (x)

λn,n−1 · · · λn,1λn,0
. Since wn−1(x) = An−1(x)w(x), substituting in (2.16) we obtain

the result.

2.6 Completeness of the orthogonal polynomials

Other important result that we will prove is that the orthogonal polynomials with respect to the

function w form a base of L2((a, b), w(x)dx) :=

{
f :

∫ b

a

f2(x)w(x)dx <∞

}
. For this purpose, we

use the Fourier transform.
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2.6.1 Hermite polynomials

Note that the space generated by the Hermite polynomials coincides with the space generated by
the polynomials {1, x, x2, x3, ...}. Let E be the closure of the space generated by these monomials.

Suppose that E 6= L2(R, e−x2

dx). Then there exists f ∈ L2(R, e−x2

dx)−E such that f−PE(f) 6= 0,
where PE is the orthogonal projection on E.

Then, by definition of PE , we have that for all e ∈ E

〈e, f − PE(f)〉w = 0, (2.17)

In particular for e := xn, for all n = 0, 1, 2...

On the other hand, let g ∈ L2(R, e−x2

dx). If 〈xn, g〉w = 0 for all n, then the function G defined by

G(z) :=

∫ ∞
−∞

ezxg(x)e−x
2

dx,

is 0 for every z, because

G(z) =

∫ ∞
−∞

ezxg(x)e−x
2

dx =

∞∑
n=0

zn

n!

∫ ∞
−∞

xng(x)e−x
2

dx = 0.

If we pick z = it, we have

∫ ∞
−∞

eitxg(x)e−x
2

dx = 0. This implies that the Fourier transform

of g(x)e−x
2

is 0. Then g(x)e−x
2

= 0 is the function 0 in L2(R, e−x2

dx), and thus so is g. In
particular, this holds for g := f − PE(f), which implies that PE(f) = f . This contradicts the fact
that f − PE(f) 6= 0.

Therefore the Hermite polynomials form a orthogonal basis for the space L2(R, e−x2

dx).

2.6.2 Jacobi polynomials

We use the same idea of the previous proof. Note that the space generated by the Jacobi polyno-
mials equals the space generated by the polynomials {1, x, x2, x3, ...}. Let E be the closure of the
space generated by these monomials.

Suppose that E 6= L2((−1, 1), (1− x)α(1 + x)βdx). Then there exists f ∈ L2(R, e−x2

dx)−E such
that f − PE(f) 6= 0, where PE is the orthogonal projection on E.

Then, by definition of PE , we have that for all e ∈ E

〈e, f − PE(f)〉w = 0, (2.18)

In particular for e := xn, for all n = 0, 1, 2...

On the other hand, let g ∈ L2((−1, 1), (1 − x)α(1 + x)βdx). If 〈xn, g〉w = 0 for all n, then the
function G defined by

G(z) :=

∫ 1

−1

ezxg(x)(1− x)α(1 + x)βdx,
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is 0 for every z, because

G(z) =

∫ 1

−1

ezxg(x)(1− x)α(1 + x)βdx =

∞∑
n=0

zn

n!

∫ 1

−1

xng(x)(1− x)α(1 + x)βdx = 0.

If we pick z = it, we have

∫ ∞
−∞

eitxg(x)1
(x)
(−1,1)(1−x)α(1+x)βdx = 0. This implies that the Fourier

transform of g(x)1
(x)
(−1,1)(1 − x)α(1 + x)β is 0. Then g(x)1

(x)
(−1,1)(1 − x)α(1 + x)β is the function 0

in L2((−1, 1), (1 − x)α(1 + x)βdx), and thus so is g. In particular, this holds for g := f − PE(f),
which implies that PE(f) = f . This contradicts the fact that f − PE(f) 6= 0.

Therefore the Jacobi polynomials form an orthogonal basis for the space L2((−1, 1), (1− x)α(1 +
x)βdx).

Note: The proof that the Laguerre polynomials form an orthogonal basis for the Hilbert space
L2((0,∞), xαe−xdx) is similar.

2.7 Example: Hermite polynomials

2.7.1 The three terms recurrence relation

The Hermite polynomials can be defined applying the Rodrigues formula, with A(x) := 1, B(x) :=

−2x, and w(x) := e−x
2

. Then one arrives at

Hn(x) := (−1)nex
2 dn

dxn
e−x

2

. (2.19)

By induction it is easy to check that

dn+1

dxn+1
e−x

2

= −2x
dn

dxn
e−x

2

− 2n
dn−1

dxn−1
e−x

2

. (2.20)

Multiplying both sides of (2.20) by (−1)nex
2

we arrive at the following recurrence relation for the
Hermite polynomials:

Hn+1(x) = 2xHn(x)− 2nHn−1(x). (2.21)

On the other hand, it is also easy to verify

H ′n(x) = 2xHn(x)−Hn+1(x), (2.22)

and also that

H ′n(x) = 2nHn−1(x). (2.23)
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2.7.2 Orthogonality of the Hermite polynomials

The Hermite polynomials are orthogonal with respect to the function w(x) = e−x
2

. We will show
that ∫ ∞

−∞
Hn(x)Hm(x)e−x

2

dx = 0 if n 6= m.

Suppose that n > m. Then using integration by parts m times we have∫ ∞
−∞

Hn(x)Hm(x)e−x
2

dx = (−1)n
∫ ∞
−∞

Hm(x)
dn

dxn
e−x

2

dx

= (−1)n+1

∫ ∞
−∞

H ′m(x)
dn−1

dxn−1
e−x

2

dx

= (−1)n+2

∫ ∞
−∞

H ′′m(x)
dn−2

dxn−2
e−x

2

dx

...

= (−1)n+m

∫ ∞
−∞

H(m)
m (x)

dn−m

dxn−m
e−x

2

dx

= (−1)n+mH(m)
m (x)

∫ ∞
−∞

dn−m

dxn−m
e−x

2

dx

= (−1)n+mH(m)
m (x)

dn−m−1

dxn−m−1
e−x

2

∣∣∣∣∞
−∞

= 0. (2.24)

Now, we will show that ∫ ∞
−∞

(Hn(x))2e−x
2

dx = n!2n
√
π.

By (2.24), if n = m we arrive at∫ ∞
−∞

(Hn(x))2e−x
2

dx =

∫ ∞
−∞

H(n)
n (x)e−x

2

dx. (2.25)

By (2.23) we have that H ′n(x) = 2nHn−1(x), and differentiating both side of this equality we
obtain H ′′n(x) = 2n · 2(n− 1)Hn−2(x). Applying this process n times we arrive at

H(n)
n (x) = 2n · 2(n− 1) · · · 2(1)H0(x).

Since H0(x) = 1, then H
(n)
n (x) = n!2n. Substituting in (2.25) we obtain∫ ∞
−∞

(Hn(x))2e−x
2

dx = n!2n
∫ ∞
−∞

e−x
2

dx = n!2n
√
π.

Therefore the Hermite polynomials are orthogonal on L2(R, e−x2

dx).
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Chapter 3

Diffusions and orthogonal
polynomials

In this chapter we characterize the density probability function of the diffusion processes: Jacobi,
Ornstein-Uhlenbeck and Cox-Ingersoll-Ross. We do so by using orthogonal polynomials. At the
end we give an example of a diffusion that does not fit as a classical example: the Brox diffusion.

3.1 The Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process is solution of the stochastic differential equation

dXt = −Xtdt+ dBt. (3.1)

It is known that the infinitesimal operator associated with this process is

Lf(x) :=
1

2
f ′′(x)− xf ′(x). (3.2)

Note that the Hermite polynomials are solution of LHn(x) = −nHn(x). Remember that the do-
main of L are the functions f such that f and Lf vanish at infinity. Then the Hermite polynomials
do not belong to the domain of L.

But if we consider the space L2(R, e−x2

dx) :=

{
f :

∫ ∞
−∞

f2(x)e−x
2

dx <∞
}

, then the Hermite

polynomials are functions vanishing at infinity on L2(R, e−x2

dx). Therefore on L2(R, e−x2

dx) it
makes sense to consider LHn(x) = −nHn(x).

We known that the Hermite polynomials form an orthogonal basis of the Hilbert space L2(R, e−x2

dx)

with the inner product given by 〈f, g〉 :=

∫ ∞
−∞

f(x)g(x)e−x
2

dx. Also these polynomials satisfy∫ ∞
−∞

H2
n(x)e−x

2

dx = n!2n
√
π. See chapter 2.

Then the polynomials Hn√
n!2n

√
π

form an orthonormal basis for the Hilbert space L2(R, e−x2

dx) and

they satisfy L

(
Hn(x)√
n!2n

√
π

)
= −n

(
Hn(x)√
n!2n

√
π

)
.

43
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We want to express the transition function of the Ornstein-Uhlenbeck process in terms of the
Hermite polynomials. To this end, note that C0(R) ⊆ L2(R, e−x2

dx), and so any f ∈ C0(R) can

be written as a linear combination of the orthonormal basis of L2(R, e−x2

dx). Therefore we arrive
to

f =

∞∑
n=0

〈f, φn〉φn, (3.3)

where φn :=
Hn√
n!2n
√
π

, and 〈f, φn〉 :=

∫ ∞
−∞

f(x)φn(x)e−x
2

dx.

Since φn is an eigenfunction of L corresponding to the eigenvalue λn := −n, i.e. Lφn = −nφn,
then one can check that uf (t, x) := e−nt〈f, φn〉φn(x) solves the equation

∂uf (t, x)

∂t
= Luf (t, x), u(0, x) = 〈f, φn〉φn(x). (3.4)

If uf (t, x) is a superposition of such functions, i.e. uf (t, x) :=

∞∑
n=0

e−nt〈f, φn〉φn(x), then uf (t, x)

solves the equation

∂uf (t, x)

∂t
= Luf (t, x), uf (0, x) = f(x). (3.5)

On the other hand, applying the properties of semigroups we obtain that Ptf(x) also satisfies the
equation (3.5). Hence Ptf(x) = uf (t, x), because the solution is unique. (See e.g [9, p.500]).

Since Ptf(x) := E(f(Xt)|X0 = x) =

∫ ∞
−∞

f(y)p(t, x, dy), using the dominated convergence theorem

we arrive at ∫ ∞
−∞

f(y)p(t, x, dy) =

∞∑
n=0

e−nt〈f, φn〉φn(x)

=

∞∑
n=0

e−nt
(∫ ∞
−∞

f(y)φn(y)e−y
2

dy

)
φn(x)

=

∫ ∞
−∞

f(y)

( ∞∑
n=0

e−ntφn(y)φn(x)e−y
2

)
dy.

Then p(t, x, dy) has a density p(t, x, y), and it is given by

p(t, x, y) = e−y
2
∞∑
n=0

e−nt

n!2n
√
π
Hn(y)Hn(x). (3.6)

These same arguments can be applied to diffusions where other orthonormal polynomials are
eigenfunctions of the infinitesimal operator. This can be done by taking into consideration a
suitable Hilbert space where the polynomials form an orthonormal basis.



3.2. THE COX-INGERSOLL-ROSS PROCESS 45

3.2 The Cox-Ingersoll-Ross process

The Cox-Ingersoll-Ross process is solution of the stochastic differential equation

dXt = (1−Xt)dt+
√

2XtdBt.

The infinitesimal operator associated with this process is

Lf(x) := xf ′′(x) + (1− x)f ′(x).

Also, the Laguerre polynomials Ln, n = 0, 1, 2... in (2.8), are eigenfunctions of L associated with
the eigenvalues λn := −n.

If we consider the space L2((0,∞), e−xdx), with the inner product 〈f, g〉 :=

∫ ∞
0

f(x)g(x)e−xdx,

then the Laguerre polynomials form an orthogonal basis, and multiplying by a suitable constant
Cn we obtain that ϕn := CnLn, n = 0, 1, 2..., form an orthonormal basis of the Hilbert space
L2((0,∞), e−xdx).

Applying the same arguments used in section 3.1, we obtain that the Cox-Ingersoll-Ross process
has a density function, which is given by

p(t, x, y) = e−y
∞∑
n=0

e−ntC2
nLn(y)Ln(x).

3.3 The Jacobi process

The Jacobi process is solution of the stochastic differential equation

dXt = [(β − α)− (α+ β + 2)Xt]dt+
√

2(1−X2
t ) dBt.

In this case, the associated infinitesimal operator is

Lf(x) := (1− x2)f ′′(x) + [(β − α)− (α+ β + 2)x]f ′(x).

And the eigenfunctions of L are the Jacobi polynomials Jn, n = 0, 1, 2... in (2.7), associated with
the eigenvalues λn := −n(n+ α+ β + 1).

Consider L2
(
(−1, 1), (1− x)α(1 + x)βdx

)
, with 〈f, g〉 :=

∫ 1

−1

f(x)g(x)(1 − x)α(1 + x)βdx. Then

for suitable constants Kn, the functions ψn := KnJn, n = 0, 1, 2... form an orthonormal basis of
the Hilbert space L2

(
(−1, 1), (1− x)α(1 + x)βdx

)
.

Now, apply the same arguments as in the section 3.1, we obtain that the Jacobi process has a
density function given by

p(t, x, y) = (1− y)α(1 + y)β
∞∑
n=0

e−n(n+α+β+1)tK2
nJn(y)Jn(x).
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3.4 The Brox process

As part of the motivation of this thesis, we will show an example of one diffusion whose associated

infinitesimal operator is not of the classical form Lf(x) := µ(x)f ′(x)+
1

2
σ2(x)f ′′(x). This diffusion

is called the Brox process (see e.g. [11]).

Consider informally the equation

dXt = −1

2
W ′(Xt)dt+ dBt, (3.7)

where B := {Bt : t ≥ 0} is the standard Brownian motion, and W := {W (x) : x ∈ R} is a two sided
Brownian motion, and they are both independent of each other. Here W ′ denotes the derivative
of W , sometimes called the white noise.

When leaving fixed a trajectory of W , the equation (3.7) can be interpreted as a stochastic differ-
ential equation. This way of thinking corresponds to considering the process X := {Xt : t ≥ 0}
associated with the infinitesimal operator

Lf(x) :=
1

2
eW (x) d

dx

(
e−W (x) df(x)

dx

)
. (3.8)

This corresponds to considering the scale function

s(x) :=

∫ x

0

eW (y)dy, (3.9)

and the speed measure

m(A) :=

∫
A

2e−W (y)dy, for Borel sets A ⊆ R. (3.10)

Let us check so:

d

dm

d

ds
f(x) =

d

dm

(
lim
h→0

f(x+ h)− f(x)

s(x+ h)− s(x)

)
=

d

dm

(
lim
h→0

f(x+ h)− f(x)

h
· lim
h→0

1
1
h

∫ x+h

x
eW (y)dy

)

=
d

dm

(
e−W (x)f ′(x)

)
= lim

h→0

f ′(x+ h)e−W (x+h) − f ′(x)e−W (x)

m((x, x+ h])

= lim
h→0

f ′(x+ h)e−W (x+h) − f ′(x)e−W (x)∫ x+h

x
2e−W (y)dy

= lim
h→0

f ′(x+ h)e−W (x+h) − f ′(x)e−W (x)

h
· lim
h→0

1
1
h

∫ x+h

x
2e−W (y)dy

=
d

dx

(
e−W (x) d

dx
f(x)

)
· e

W (x)

2

= Lf(x). (3.11)
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Then one considers rigourously the operator
d

dm

d

ds
f , where s is the scale function defined in (3.9),

and m is the speed measure defined in (3.10). We want to see that the process X associated with
this operator is a diffusion, when leaving fixed W .

To this end, we use a result of K. Itô and H.P.McKean (see e.g. [5, p.165]), where we can reconstruct
a process Y in natural scale through the speed measure mY and the local time. The procedure is
done in the following way. Observe that

Xt = BT−1
t
, (3.12)

where

Tt :=

∫ ∞
−∞

Lt(x)mY (dx), (3.13)

and Lt(y) is the so-called local time (see e.g. [7, p.32]), which can be calculated as

Lt(y) := lim
ε→0

1

2ε

∫ t

0

1{x−ε<Bs<x+ε}ds. (3.14)

In our case, the process X is not in natural scale, but the new process Yt := s(Xt) is in natural
scale [3]. Now, by applying the Itô formula (see e.g. [4, p.149]), we find that s(Xt) satisfies the
equation

ds(Xt) = eW (Xt)dBt = eW (s−1(s(Xt)))dBt.

Thus
dYt = 0dt+ eW (s−1(Yt))dBt. (3.15)

Leaving fixed a trajectory of W , the equation (3.15) can be interpreted as a stochastic differential
equation. Then the process Y is associated with the infinitesimal operator

LY f(x) = eW (s−1(x))f ′′(x). (3.16)

By the formula (1.56) and (3.16), we obtain that the speed measure associated with the process
Yt is

mY (A) =

∫
A

2e−W (s−1(x))dx,

for any Borel set A.

Then applying the reconstruction of K. Itô and and H.P.McKean one has

s(Xt) = BT−1
t
,

with Tt as in ( 3.13) .

But BT−1
t

is a diffusion (see e.g. [6, p.277]), and so s(Xt) is a diffusion. Hence since s is continuous

and strictly increasing, Xt = s−1(BT−1
t

) is a diffusion process for each trajectory W. One could

write XW to emphasize that the diffusion process X is conditioned to W .

Let us define rigourously the process X when it is not conditioned to W . We leave fixed a trajectory
W , then we denote by PW the corresponding probability measure of XW over C([0,∞)), and if µ
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is the probability measure over C(R) associated to the Brownian motion W : Ω→ C(R), then by
the law of total probability we obtain the formula for the corresponding probability measure of X
without fixing W :

P (C) =

∫
Ω

PW (ω)(C)µ(dω),

for any measurable set C in C([0,∞)).
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