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Matemáticas

Director de Tesis: Dr. Hector Jasso Fuentes
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Resumen

En ésta tesis se estudian juegos markovianos no cooperativos a tiempo continuo.
Nuestro análisis incluye el caso descontado con horizonte finito e infinito, y el caso de
costo promedio (o ergódico). La principal herramienta es el método de programación
dinámica, el cual nos permite ver los valores óptimos de un juego markoviano no
cooperativo como la solución de un sistema de ecuaciones funcionales (no lineales).
Nuestro principal resultado es relacionado a los llamados teoremas de verificación,
los cuales vinculan la optimalidad de un juego con las ecuaciones funcionales antes
mencionadas. Como un caso especial, estudiamos una clase de juegos cuya dinamica
evoluciona como un proceso de difusión markoviano y mostramos que la teoŕıa general
de los caṕıtulos anteriores aplica a este tipo especial de juegos.

Es importante notar que este trabajo extiende, al caso de juegos, la monograf́ıa
[10], y también va un poco mas lejos que [11] (ver también [12]); precisamente, en
referencia a [10] el autor presenta un estudio acerca de procesos de control marko-
viano en el contexto de una dinámica general; en otras palabras, el estudio en [10]
se convierte en un caso particular al nuestro en el caso de un solo jugador. Por otro
lado, en [11] o [12], el estudio de juegos markovianos no cooperativos fue analizado
para el criterio de costo descontado. Por lo tanto, este trabajo rellena las referen-
cias mencionadas anteriormente y trata de cubrir los criterios mas utilizados en la
literatura; precisamente, costos descontados y promedio.
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Abstract

In this thesis we study non-cooperative continuous-time Makov games. Our analysis
includes the discounted case for finite-horizon and infinite-horizon, and the average
(or ergodic) case. The main tool is the dynamic programming method, which allows
to regard optimal values of a noncooperative Markov game as the solution of a
system of functional (non-linear) equations. Our main results have to do with the
so-named verification theorems that link the optimality of the original game with
the solution of the aforementioned functional equations. As a special case, we study
a class of games whose dynamic evolves as a Markov diffusion process and show that
the general theory in previous chapters apply to this type of games.

It is worth noting that this work extends to the case of games the monograph
[10], and also goes a bit further than [11], (see also [12]); namely, in reference [10]
the author presents a nice study on continuous-time Markov control processes in a
general dynamic framework; in other words, the study in [10] becomes a special case
than ours for the case of one player. On the other hand, in [11] or [12], the study of
noncooperative Markov games was also analysed for the discounted payoff criterion.
Thus, this work fills-out the aforementioned references and tries to cover the most
used payoff criteria in the literature in the dynamic framework; namely, discounted
and average payoffs.
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Preface

A game is a mathematical model of strategic interactions between independent
agents, also known as players. Each player has the possibility of selecting an ac-
tion over a fixed set, with the purpose of optimizing a certain performance index
(payoff function). In contrast with a simple optimization problem, in a game model
players’ payoffs are linked with the strategies of the others. As a consequence, an
individual optimization action is not enough to get the best revenue or cost, since
a simple movement of strategy of other players may change the payoff values. This
problematic was understood in the last past decades yielding some alternative defi-
nitions of optimality such as the concepts of equilibria.

Some of the common criteria are the so-named non-cooperative equilibria, also
known as Nash equilibria. In this scenario, players act independently taking care
only on their own benefit and they do not allow alliances nor coalitions.

This is the type of games we are concerned with in this thesis. Indeed, the
aim of this work is to study non-cooperative continuous-time Makov games. Our
analysis includes the discounted case for finite and infinite horizon, and the average
(or ergodic) case. The main tool is the dynamic programming method, which allows
us to regard optimal values of a noncooperative Markov game as the solution of a
system of functional (non-linear) equations. Our main results have to do with the
so-named verification theorems that link the optimality of the original game with
the solution of the aforementioned functional equations.

This proposal extends to the case of games the monograph [10], and also goes
further than [11] (see also [12]); namely, in reference [10] the author presents a study
on continuous-time Markov control processes; in other words, the analysis in [10]
becomes a special case of ours, for the case of one player. On the other hand, in
[11] or [12] the study of non-cooperative Markov games was also analyzed for the
discounted payoff criterion. Thus, this work fills-out the aforementioned references
and tries to cover the most used payoff criteria in the literature in the dynamic
framework; namely, discounted and average payoffs.

Related literature

Non-cooperative continuous-time Markov games has been studied separately for spe-
cific dynamical systems. For instance, [3] studies the case of (deterministic) differ-
ential games, whereas recent works such as [9, 14, 15] study stochastic differential
games . On the other hand, [17] comprises the study of games for Markov chains,

ix



and [8] generalize games for the case of continuous-time Markov jump processes in
Polish spaces. As we mentioned earlier, our work is based on references [10, 11, 12]
that in fact were our departure point to the development of our results.

Outline

The rest of this thesis is organized as follows: In chapter 2 we introduce the game
model, the general concept of strategies and some important special cases of strate-
gies. Next we define the concepts of non-cooperative equilibria and saddle points.
This last concept becomes a special case of the former when we are in the zero-sum
game case. We conclude this section by showing some preliminary results about
the existence the value of a Markov game as well as the existence of saddle points.
Chapter 3 can divided in three parts. The first part studies the discounted case. A
verification theorem is provided for both the zero and nonzero-sum scenarios. In the
second part, we define the average payoff criterion and propose a set of sufficient con-
ditions to get optimality results, in particular, as in the discounted case, we present
its corresponding verification theorem. Finally, the third part is about the passing
from the discounted to the average case. This is possible thanks to the well-known
vanishing discount factor technique. We prove that under suitable conditions, it
is possible to regard the average dynamic programming equation as a limit of dis-
counted dynamic programming equations when the discount factor approaches zero.
Finally, in Chapter 4 we apply our previous results to the case when the Markov
process evolves as a Markov diffusion process. The aim is to illustrate that the gen-
eral theory introduced in previous sections apply to this case; in particular, we will
show the existence of non-cooperative equilibrium for the nonzero-sum case. This
case of games is under the assumption that the drift of the dynamic as well as the
cost rate have an additive structure.
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Chapter 1

Markov Processes

1.1 Introduction

In this section we introduce the concepts of Markov processes, semigroups, infinitesi-
mal generators, and the relation among them. Furthermore, we present useful results
about ergodicity properties of Markov processes; in particular, we will show condi-
tions to ensure the existence of solutions to the Poisson equation by means of the
exponential (or geometric) ergodicity property of a Markov process, and state the
so-named Abelian theorems that relate the concepts of resolvents with a certain type
of average operators.

1.2 Elements of Markov processes

Let S be a metric space and {y(⋅), t ⩾ 0} an S-valued stochastic process defined on
a probability space (Ω,F , P ). Denote by Fy

t = σ(y(s) ∶ s ⩽ t) the natural filtration
of the process y(⋅). We say that y(⋅) is a Markov process if

P (y(t) ∈ C ∣Fy
s ) = P (y(t) ∈ C ∣y(s)) ∀t ⩾ s ⩾ 0,C ∈ B(S) (1.2.1)

In general, if {Gt} is a filtration such that Fy
t ⊂ Gt, t ⩾ 0, then y(⋅) is a Markov

process with respect to {Gt} if (1.2.1) holds with Gt instead of Fy
t .

Let P(S) be the space of probability measures on S. A function P (s, y, t,C)

defined for all t ⩾ s ⩾ 0, y ∈ S and C ∈ B(S) is said to be a transition function if

i)P (s, y, t, ⋅) ∈ P(S) ∀(s, y, t) ∈ [0,∞) × S × [s,∞), (1.2.2)

ii)P (s, y, s, ⋅) = δy(⋅) (the Dirac measure) ∀s ∈ [0,∞), y ∈ S, (1.2.3)

iii)P (s, ⋅, ⋅,C) is a measurable function on S × [s,∞) ∀(s,C) ∈ [0,∞) × B(S),
(1.2.4)

iv)P (s, y, r,C) = ∫
S
P (s, y, t, dz)P (t, z, r,C), r ⩾ t ⩾ s, y ∈ S, C ∈ B(S), (1.2.5)

1



Caṕıtulo 1

Equation (1.2.5) is known as the Chapman-Kolmogorov equation.

A transition function is said to be time-homogeneous if

P (s, y, t,C) = P (0, y, t − s,C) =∶ P (t − s, y,C),

for all t ⩾ s ⩾ 0, y ∈ S, C ∈ B(S).
From (1.2.1), the function

P (s, y, t,C) ∶= P (y(t) ∈ C ∣y(s) = y), (1.2.6)

becomes a transition function for all t ⩾ s ⩾ 0, y ∈ S and C ∈ B(S) (see [5], p. 77).

Defining the probability measure µ ∈ P(S) by µ(C) ∶= P (y(0) ∈ C), for all
C ∈ B(S) (the initial distribution of y(⋅)), the transition function (1.2.6) and the
initial distribution µ, both determine the finite dimensional distributions of y(⋅) by

P (y(0) ∈ C0,y(t1) ∈ C1, . . . ,y(tn) ∈ Cn)

= ∫
C0
∫
C1

⋯∫
Cn−1

P (tn−1, yn−1, tn,Cn)⋯P (t1, y1, t2, dy2)P (0, y0, t1, dy1)µ(dy0),

(1.2.7)

for every finite set 0 < t1 < ⋯ < tn and Ci ∈ B(S) for i = 0, . . . , n, and n ⩾ 1.
For the converse, we have the following result (see [6], Theorem 1.1, p. 157).

Proposition 1.1. Let S be a Polish space, P (s, y, t,C) a transition function and µ
a probability measure on S. Then, there exists a Markov Process y(⋅) with values on
S, with initial distribution µ, and whose finite dimensional distributions are uniquely
determined by (1.2.7).

1.3 Semigroups and infinitesimal generators

Definition 1.2. A one-parameter family {T (t), t ⩾ 0} of bounded lineal operators
on a Banach space B is called a semigroup if

(i) T (0) = I, the identity operator, (1.3.1)

(ii) T (s + t) = T (s)T (t) ∀s, t,⩾ 0. (1.3.2)

If the semigroup satisfies that

(iii) lim
t→0+

T (t)f = f ∀f ∈ B, (1.3.3)

it is said to be strongly continuous, whereas if the semigroup has the property

(iv) ∥T (t)∥ ⩽ 1 ∀t ⩾ 0, (1.3.4)

then it is referred to as a contraction semigroup.
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Markov Processes

Definition 1.3. Let {T (t)}t⩾0 be a semigroup satisfying the conditions (1.3.1)-
(1.3.3). The infinitesimal generator of {T (t)}t⩾0 is the linear operator L (usually
unbounded) on the Banach space B defined by

Lf ∶= lim
h↓0

h−1[T (h)f − f],

with domain
DL = {f ∈ B ∶ lim

h↓0
h−1[T (h)f − f] exists}.

The next result is the well-known Hille-Yosida theorem. It gives a characteriza-
tion of a semigroup that verifies conditions (1.3.1) to (1.3.4).

Theorem 1.4 ([18], p. 129). A linear operator L on a Banach Space B is the
generator of a semigroup {T (t)}t⩾0 satisfying (1.3.1)-(1.3.4) if and only if

(i) D(L) is dense in B,

(ii) L is a closed operator,

(iii) (L − λI) is invertible ∀λ > 0, and

(iv) ∥(L − λI)−1∥ ⩽ λ−1 ∀λ > 0.

1.3.1 Markov process semigroup

Let us now apply the previous concepts to the specific case in which P (s, y, t,B) is
the transition function of a Markov process with values in a Polish space S.

First, define Ŝ ∶= [0,∞) × S and let M(Ŝ) be the linear space of all real-valued
measurable functions v on Ŝ such that

∫
S
P (s, y, t, dz)∣v(t, z)∣ < ∞ for all t ⩾ s ⩾ 0, y ∈ S.

Now, for each t ⩾ 0, we define a function Tt ∶M(Ŝ) →M(Ŝ) such that

Ttv(s, y) ∶= ∫
S
P (s, y, s + t, dz)v(s + t, z). (1.3.5)

Proposition 1.5. The family of operators {Tt}t⩾0 defined by (1.3.5) form a semi-
group of operators on M(Ŝ).

Proof. Take v ∈M(Ŝ), then:

(i) Using (1.2.3) we get

T0v(s, y) = ∫
S
P (s, y, s, dz)v(s, z) = ∫

S
δy(dz)v(s, z) = v(s, y).

3



Caṕıtulo 1

(ii) Using (1.3.5), the Chapman-Kolmogorov equation and then interchanging in-
tegration orders we obtain that for every v ∈M(Ŝ),

Tt+rv(s, y) = ∫
S
P (s, y, s + t + r, dz)v(s + t + r, z)

= ∫
S
P (s, y, s + t, dw) [∫

S
P (s + t,w, s + t + r, dz)v(s + t + r, z)]

= ∫
S
P (s, y, s + t, dw)Trv(s + t,w)

= TtTrv(s, y) ∀t, r ⩾ 0. ∎

Definition 1.6. Let M0(Ŝ) ⊂M(Ŝ) be the set of functions v ∈M(Ŝ) under which:

(a) The semigroup {Tt}t⩾0 in (1.3.5) is strongly continuous, i.e.,

lim
t↓0

Ttv(s, y) = T0v(s, y) = v(s, y) ∀(s, y) ∈ Ŝ,

(b) there exist t0 > 0 and u ∈M(Ŝ) such that

Tt∣v∣(s, y) ⩽ u(s, y) ∀(s, y) ∈ Ŝ, t0 ⩾ t ⩾ 0.

Moreover, let DL(Ŝ) ⊂M0(Ŝ) be the set of functions v ∈M0(Ŝ) for which

(c) v ∈DL(Ŝ) (see Definition 1.3), where

Lv(s, y) ∶= lim
t↓0

t−1[Ttv(s, y) − v(s, y)] ∀ (s, y) ∈ Ŝ, (1.3.6)

(d) Lv is in M0(Ŝ),

(e) there exists t0 > 0 and u ∈M(Ŝ) such that

t−1∣Ttv(s, y) − v(s, y)∣ ⩽ u(s, y),

for all (s, y) ∈ Ŝ and t0 ⩾ t ⩾ 0.

Some properties of the operator L are listed below.

Lemma 1.7. For each v ∈ DL(Ŝ), the operator L is such that:

(i)
d+

dt
Ttv ∶= lim

h↓0
h−1[Tt+hv − Ttv] = TtLv,

(ii) Ttv(s, y) − v(s, y) = ∫
t

0 Tr(Lv)(s, y)dr,

(iii) if ρ > 0 and vρ(s, y) ∶= e−ρsv(s, y), then vρ ∈ DL(Ŝ) and

Lvρ(s, y) = e
−ρs[Lv(s, y) − ρv(s, y)].

4
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Proof.

(i) Let v ∈ DL(Ŝ). By Proposition 1.5,

lim
h↓0

Tt+hv − Ttv
h

= Tt lim
h↓0

[
Thv − v

h
] = TtLv,

where the interchange of the limit h ↓ 0 is due to the boundedness of the
operator Tt.

(ii) Using part (i) we have that

∫

t

0
Tr(Lv)(s, y)dr = ∫

t

0

d+

dr
Ttv(s, y)dr = Ttv(s, y) − T0v(s, y). (1.3.7)

(iii) From Taylor series we have

e−ρt = 1 − ρt + o(t) as t ↓ 0.

With this,

Ttvρ(s, y) − vρ(s, y) =∫
S
[P (s, y, s + t, dz)e−ρ(s+t)v(s + t, z) − e−ρsv(s, y)]

=e−ρs [∫
S
P (s, y, s + t, dz)v(s + t, z) − v(s, y)

+(−ρt + o(t))∫
S
P (s, y, s + t, dz)v(s + t, z)]

=e−ρs [Ttv(s, y) − v(s, y)] − e−ρs [ρt + o(t)]Ttv(s, y).

Finally, we multiply both sides by 1/t and let t ↓ 0 to prove the result. ∎

1.3.2 Dynkin’s formula

Consider a Markov process {y(t)}t⩾0 with values in a Polish space S and with tran-
sition function P (s, y, t,C) for all t ⩾ s ⩾ 0, y ∈ S and C ∈ B(S). The semigroup
defined in (1.3.5) can be rewritten as

Ttv(s, y) = Es,y[v(s + t,y(s + t))],

where Es,y[ ⋅ ] = E[ ⋅ ∣y(s) = y] denotes the conditional expectation given y(s) = y.

Thus, Lemma 1.7(ii) can also be interpreted as

Es,y[v(s + t,y(s + t))] − v(s, y) = Es,y [∫
t

0
Lv(s +w,y(s +w))dw] , (1.3.8)

for each v ∈ DL(Ŝ).

Equation (1.3.8) turns out to be a version of Dynkin’s formula for the special
case t ≡ t(ω), for all ω ∈ Ω. Besides, the infinitesimal generator of the semigroup
{Tt}t⩾0 will be referred to as the infinitesimal generator of the Markov process y(⋅).

5
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1.4 Some ergodicity results

The following result is a special version of the so-named Abelian theorems (see [10,
pp. 180-183] or [19, pp. 7-8]).

Theorem 1.8. Let α ∶ [0,∞) → R be a nondecreasing function with α(0) = 0 and
such that

lim sup
t→∞

α(t)/t < ∞. (1.4.1)

Then, for every ρ > 0,

(i) ∫

∞

0
e−ρtdα(t) = ρ∫

∞

0
e−ρtα(t)dt. (1.4.2)

(ii) lim inf
t→∞ α(t)/t ⩽ lim inf

ρ→0+
ρ∫

∞

0
e−ρtdα(t)

⩽ lim sup
ρ→0+

ρ∫
∞

0
e−ρtdα(t) ⩽ lim sup

t→∞
α(t)/t.

(iii) If the limit j ∶= lim
t→∞α(t)/t < ∞ exists, then

lim
ρ→0+

ρ∫
∞

0
e−ρtdα(t) = j. (1.4.3)

The proof of this result essentially follows from [10], p. 8. However, for the readers’
convenience, we provide a proof based on our present context.

Proof.

(i) From (1.4.1) we get
lim sup
t→∞

e−ρtα(t) = 0, (1.4.4)

using this fact and the integration-by-parts formula, we easily deduce (1.4.2)

(ii) Let K ∶= lim inft→∞α(t)/t . To prove the first inequality, let ε > 0 and τ = τ(ε)
be such that

inf
r⩾t α(r)/r ⩾K − ε ∀t ⩾ τ, (1.4.5)

Then,

ρ2
∫

t

τ
e−ρrα(r)dr = ρ2

∫

t

τ
re−ρr[α(r)/r]dr

⩾ [K − ε]ρ2
∫

t

τ
re−ρrdr.

Then, for t ⩾ τ , a simple use of integration by parts yields

ρ∫
t

0
e−ρrdα(r) = ρe−ρtα(t) + ρ2

∫

t

0
e−ρrα(r)dr

⩾ ρe−ρtα(t) + ρ2
∫

τ

0
e−ρrα(r)dr + (K − ε)ρ2

∫

t

τ
re−ρrdr.

6



Markov Processes

Letting t→∞ and using (1.4.4), we get

ρ∫
∞

0
e−ρrdα(r) ⩾ ρ2

∫

τ

0
e−ρrα(r)dr + (K − ε)[e−ρτ + ρτe−ρτ ].

Finally, letting ρ ↓ 0, we obtain

lim inf
ρ→0+

ρ∫
∞

0
e−ρrdα(r) ⩾K − ε.

Since ε was arbitrary, the first inequality is proved. The second inequality is
obvious and the third inequality is similar to the first one.

(iii) Since, in this case,
lim sup
t→∞

α(t)/t = lim inf
t→∞ α(t)/t,

this part follows immediately from the statement (ii). ∎

A function v ∈ M(Ŝ) (or in M0(Ŝ) or DL(Ŝ)) is said to be time-invariant if
v(s, y) = v(t, y) for every s, t ⩾ 0. To simplify notation, a time-invariant function will
be written as v(y). We shall denote by M(S) the set of all time-invariant functions.
Similarly, we shall write M0(S) and DL(S) the spaces of invariant functions in
M0(Ŝ) and DL(Ŝ), respectively.

Define B(S) as the space of all measurable functions v ∶ S → R with finite supre-
mum norm, i.e.,

∥v∥ = sup
y∈S

∣v(y)∣ < ∞.

Furthermore, M(S) will denote the space of signed measures µ on S such that
its total variation norm, denoted by ∥µ∥TV , is finite.

For the case when we are dealing with time-homogeneous transition function
and time-invariant functions, the following proposition gives sufficient conditions
for the existence of a solution to the so-called Poisson equation introduced in (1.4.8)
below.

Proposition 1.9. Let P (t, y,B) be a time-homogeneous transition function which
is uniformly ergodic; that is, there exist positive constants κ, γ, and a probability
measure µ ∈M(S) such that

∥P (t, y, ⋅) − µ(⋅)∥TV ⩽ κe−γt ∀t ⩾ 0, y ∈ S.

Let r ∈M0(S)⋂L1(µ) and define

j∗ ∶= ∫
S
r(y)µ(dy), (1.4.6)

and

h(y) ∶= ∫
∞

0
(Ttr(y) − j

∗)dt, y ∈ S. (1.4.7)

7



Caṕıtulo 1

Then h belongs to B(S)⋂DL(S) and the pair (j∗, h) satisfies the so-named Poisson
equation

j∗ = r(y) + Lh(y) ∀y ∈ S. (1.4.8)

Proof. From (1.4.6) and the definition of j∗,

∣Ttr(y) − j
∗∣ = ∣∫

S
P (t, y, dz)r(z) − ∫

S
r(z)µ(dz)∣

⩽ ∥r∥∥P (t, y, ⋅) − µ(⋅)∥TV

⩽ ∥r∥κe−γt ∀t ⩾ 0, y ∈ S.

(1.4.9)

The previous analysis implies that h ∈ B(S).
Now, since (1.4.9) allows us to interchange integrals, we have

Tsh(y) = ∫
∞

0
Ts[(Ttr(y) − j

∗)]dt

= ∫

∞

s
[Ttr(y) − j

∗]dt

= h(y) − ∫
s

0
[Ttr(y) − j

∗]dt,

(1.4.10)

rearranging and multiplying by 1/s we get

j∗ =
1

s
[Tsh(y) − h(y)] + ∫

s

0
Ttr(y)dr. (1.4.11)

Finally, letting s ↓ 0 in the later expression we get (1.4.8) and that h ∈ DL(S). ∎
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Chapter 2

Markov Games

2.1 Introduction

Markov games belong to the family of dynamic games which, under suitable condi-
tions, evolve as Markov processes. As was pointed out in Chapter 1, here we only
study the class of non-cooperative games.

For notational ease, we shall restrict ourselves to the case of two players, but the
extension to any finite number of players ≥ 2 is completely analogous.

The rest of this chapter is organized as follows: First, we introduce the game
model, the general concept of strategies, and some important special cases of strate-
gies that will be used in this work. Next we define the concept of a non-cooperative
equilibrium. We conclude this chapter by showing some preliminary results about
the existence of the value of a Markov game and the existence of saddle points.

2.2 The game model and strategies

Strictly speaking, a (two player) continuous-time Markov Game can be expressed in
a compact form as

Γ(S,A1,A2,L
(a1,a2), r1, r2), (2.2.1)

whose elements are described as follows:

� S is the state space, which will be assumed to be a Polish space. An element
y of S will be called a state of the game.

� For each player i = 1,2, we have the pair

(Ai, ri),

where Ai is the action space (or control set) for player i, which is also assumed
to be a Polish space.

The function ri is real-valued and measurable on

[0,∞) × S ×A1 ×A2,

referred to as the reward rate function por the player i.

9



Caṕıtulo 2

� For each pair (a1, a2) ∈ A1 × A2, La1,a2 is the infinitesimal generator of a S-
valued Markov Process with transition function P a1,a2(s, y, t,B), with domain
DLa1,a2(Ŝ).

We say that a game Γ (in the sense of (2.2.1)) is time-homogeneous if the tran-
sition functions are time-homogeneous and the reward rates are time-invariant; that
is,

P a1,a2(s, y, t,B) = P a1,a2(t − s, y,B) and ra1,a2i (s, y) = ra1,a2i (y) for i = 1,2,

where we have denoted ra1,a2i (s, y) ∶= ri(s, y, a1, a2).

In this case DLa1,a2(Ŝ) reduces to DLa1,a2(S), where Ŝ ∶= [0,∞) × S.

Strategies.
For i = 1,2, we denote the Borel σ-algebra of Ai as B(Ai). Besides, let P(Ai) be

the family of all probability measures on Ai.

Definition 2.1. A Markov (randomized) strategy for player i (i = 1,2) is defined as
a family πi ∶= {πi(⋅∣t, ⋅) ∶ t ⩾ 0} of stochastic kernels each of them defined on B(Ai)×S,
satisfying:

(a) for each (t, y) ∈ Ŝ, πi(⋅∣t, y) is a probability measure on Ai, so that
πi(Ai∣t, y) = 1;

(b) for each D ∈ B(Ai) and t ⩾ 0, πi(D∣t, ⋅) is a Borel function on S;

(c) for each D ∈ B(Ai) and y ∈ S, πi(D∣⋅, y) is Borel on [0,∞).

We now introduce important subclasses of the above family of strategies:

Definition 2.2. (a) A Markov (randomized) strategy πi ∶= {πi(⋅∣t, ⋅) ∶ t ⩾ 0} is
said to be stationary if there is a stochastic kernel πi on B(Ai) ×S such that
πi(⋅∣t, ⋅) = πi(⋅∣⋅) ∀t ⩾ 0.

(b) Let Fi (i = 1,2) be the family of measurable functions fi ∶ Ŝ → Ai. A strategy
πi ∶= {πi(⋅∣t, ⋅) ∶ t ⩾ 0} is said to be deterministic if πi(⋅∣t, y) = δfi(t,y)(⋅), where
δa(⋅) denotes the Dirac measure at a.

We denote by Πi (i = 1,2) the family of Markov strategies for player i.

We will restrict ourselves to the above family of Markov strategies that satisfy
the next assumptions.

Assumption 2.3. For each (π1, π2) ∈ Π1×Π2, there exists a strong Markov process
yπ1,π2(⋅) = {y(t), t ⩾ 0} such that:

(a) Almost all the sample paths of y(⋅) are right-continuous with left-hand limits,
and have finitely many discontinuities in any bounded time interval.

10
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(b) The infinitesimal generator Lπ1,π2 of {y(t)}t⩾0 is such that

Lπ1,π2h(s, y) = ∫
A1
∫
A2

La1,a2h(s, y)π2(da2∣s, y)π1(da1∣s, y). (2.2.2)

The set Π1 ×Π2 satisfying Assumption 2.3 is called the family of pairs of admissible
Markov strategies.

The transition probabilities of the Markov process yπ1,π2(⋅) will be denoted as
P π1,π2(s, y, t,B), for each pair (π1, π2) ∈ Π1 ×Π2.

In section 1.3 we have introduced the spaces of functions M(Ŝ), M0(Ŝ) and
DL(Ŝ), with DL(Ŝ) ⊂ M0(Ŝ) ⊂ M(Ŝ). However, when dealing with Markov pro-
cesses coming from Assumption 2.3, these spaces depend on the choice of each pair
of strategies (π1, π2), so rigorously speaking we may write such spaces by Mπ1,π2(Ŝ),
Mπ1,π2

0 (Ŝ) and DLπ1,π2(Ŝ), and they will be supossed to fulfill the following condi-
tions.

Assumption 2.4. (a) There exist nonempty spaces M(Ŝ) ⊃ M0(Ŝ) ⊃ D(Ŝ)
such that, for all (π1, π2) ∈ Π1 ×Π2,

M(Ŝ) ⊂Mπ1,π2(Ŝ), M0(Ŝ) ⊂M
π1,π2
0 (Ŝ), D(Ŝ) ⊂ DLπ1,π2(Ŝ).

In this case, the operator Lπ1,π2 is the closure of its restriction to D(Ŝ).

(b) For (π1, π2) ∈ Π1 ×Π2 and i ∈ {1,2}, the reward rate rπ1,π2i defined by

rπ1,π2i (s, y) ∶= ∫
A1
∫
A2

ra1,a2i (s, y)π2(da2∣s, y)π1(da1∣s, y), (2.2.3)

belongs to M0(Ŝ).

If the game Γ is time-homogeneous, then we may write (2.2.3) as

rπ1,π2i (s, y) = ∫
A1
∫
A2

ra1,a2i (y)π2(da2∣s, y)π1(da1∣s, y). (2.2.4)

If, moreover, (π1, π2) is a pair of stationary strategies, then (2.2.3) turns out to
be

rπ1,π2i (y) = ∫
A1
∫
A2

ra1,a2i (y)π2(da2∣y)π1(da1∣y). (2.2.5)

Remark 2.5. Observe that for the time-homogeneous case the statement of As-
sumption 2.4 is essentially the same, the only change is the replacement of the space
Ŝ to S, as well as the special cases of the reward rate rπ1,π2 such as those given in
(2.2.4)-(2.2.5).

Hereafter, we consider games satisfying Assumptions 2.3 and 2.4.
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2.3 Noncooperative equilibria

In the noncooperative framework, players will try to perform the best they can in
order to get the highest payoff along the game’s life. To formalize that idea we
present the following definition.

Definition 2.6. For each i=1,2, let Fi(s, y, π1, π2) be the payoff function of the
respective player. Then a pair (π∗1 , π

∗
2) ∈ Π1 × Π2 is a noncooperative (a.k.a Nash)

equilibrium if for all (s, y) ∈ Ŝ,

F1(s, y, π
∗
1 , π

∗
2) ⩾ F1(s, y, π1, π

∗
2) ∀π1 ∈ Π1, (2.3.1)

and
F2(s, y, π

∗
1 , π

∗
2) ⩾ F2(s, y, π

∗
1 , π2) ∀π2 ∈ Π2. (2.3.2)

The above payoff function will depend on the reward rate, which at the same
time depends on (s, y, π1, π2), as we will see later with more detail. Also, sometimes
we will use either Sτ ∶= [0, τ]×S or S instead of Ŝ in some of the subsequent results.

2.4 Zero-sum games

In this section we present a special type of games in which the revenue of one of the
players is the lose for the other. This is formalized as follows.

Definition 2.7. Let Fi(s, y, π1, π2) be the payoff function for the player i (i = 1,2).
The game is said to be a zero-sum game if

F1(s, y, π1, π2) + F2(s, y, π1, π2) = 0,

for every (s, y) ∈ Ŝ, (π1, π2) ∈ Π1 ×Π2

The above definition suggests that we only need to consider one payoff function
in our problem, F ∶= F1 = −F2. Namely, from the definition of equilibrium, we can
see that the goal of player 1 is to maximize the function F over Π1, while the second
player will try to minimize it over Π2. Using this fact, conditions (2.3.1) and (2.3.2)
are reduced to

F (s, y, π1, π
∗
2) ⩽ F (s, y, π∗1 , π

∗
2) ⩽ F (s, y, π∗1 , π2), (2.4.1)

for all π1 ∈ Π1,π2 ∈ Π2 and (s, y) ∈ Ŝ. In this case, the pair (π∗1 , π
∗
2) receives the

name of saddle point.

For (s, y) ∈ Ŝ, let
L(s, y) ∶= sup

π1∈Π1

inf
π2∈Π2

F (s, y, π1, π2), (2.4.2)

and
U(s, y) ∶= inf

π2∈Π2

sup
π1∈Π1

F (s, y, π1, π2). (2.4.3)

12



Markov Games

L(s, y) is called the lower value of the game, while U(s, y) is the upper value of the
game.

The definitions of L and U can be interpreted as follows: Player 1 observes
the best response of player 2 for each π1 ∈ Π1 and then picks a strategy in Π1

that produces the best revenue in the worst case, ensuring the payoff L(s, y). The
interpretation for the upper value U(s, y) is analogous.

It is obvious that
L(s, y) ⩽ U(s, y) ∀(s, y) ∈ Ŝ, (2.4.4)

and if the reverse inequality holds, then the game is said to have a value, which is
denoted by V (s, y); that is,

V (s, y) = L(s, y) = U(s, y) ∀(s, y) ∈ Ŝ.

This last fact together with (2.4.1) leads to the next result.

Proposition 2.8. Let Γ be a zero-sum game with payoff function F . If (π∗1 , π
∗
2) is

a saddle point of the game, then

V (s, y) = F (s, y, π∗1 , π
∗
2) ∀(s, y) ∈ Ŝ. (2.4.5)

Proof. Using the last inequality in (2.4.1)

F (s, y, π∗1 , π
∗
2) ⩽ sup

π1∈Π1

inf
π2∈Π2

F (s, y, π1, π2) ∀(s, y) ∈ Ŝ. (2.4.6)

Now, using the first inequality in (2.4.1) we obtain

inf
π2∈Π2

sup
π1∈Π1

F (s, y, π1, π2) ⩽ F (s, y, π∗1 , π
∗
2) ∀(s, y) ∈ Ŝ. (2.4.7)

The two last inequalities imply that

U(s, y) ⩽ L(s, y) ∀(s, y) ∈ Ŝ. (2.4.8)

Combining (2.4.7) and (2.4.4) we obtain (2.4.5). ∎

The following proposition gives sufficient conditions for a pair of strategies to be
a saddle point.

Proposition 2.9. If a pair (π∗1 , π
∗
2) in Π1 ×Π2 is such that, for every (s, y) ∈ Ŝ,

F (s, y, π∗1 , π
∗
2) = sup

π1∈Π1

F (s, y, π1, π
∗
2) (2.4.9)

= inf
π2∈Π2

F (s, y, π∗1 , π2), (2.4.10)

then (π∗1 , π
∗
2) is a saddle point.

Proof. Using (2.4.9) we obtain that

F (s, y, π∗1 , π
∗
2) ⩾ F (s, y, π1, π

∗
2) ∀π1 ∈ Π1.

On the other hand (2.4.10) yields

F (s, y, π∗1 , π
∗
2) ⩽ F (s, y, π∗1 , π2) ∀π2 ∈ Π2,

which implies that (π∗1 , π
∗
2) is a saddle point. ∎
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Chapter 3

Optimality Results

3.1 Introduction

This chapter is the most relevant of this thesis. Here, we establish a link between
optimal values of players with the solution of a system of functional equations. Fur-
thermore, with the use of these equations, it is possible to deduce the existence
of noncooperative (Nash) equilibria. The previously mentioned is actually the well-
known dynamic programming method that is generalized here to the case of a general
Markov model. We shall work with two different type of payoff functions; namely,
the discounted and the average payoff criteria.

This chapter is divided in three parts. Firstly, we study the discounted case. A
verification theorem is provided for both the zero and nonzero-sum scenario. As for
the second part, we define the average criterion and propose a set of sufficient con-
ditions to get optimality results; in particular, as in the discounted case, we present
its correspondent verification theorem. Finally, the third part is concerned with
the passing from the discounted to the average case. This is possible thanks to the
well-known vanishing discount factor technique. We prove that under suitable con-
ditions, it is possible to regard the average dynamic programming equation as a limit
of discounted dynamic programming equations when the discount factor approaches
to zero.

3.2 Games with discounted payoff function

Let Γ be a Markov Game as in (2.2.1) that satisfies Assumptions 2.3 and 2.4. In
this section we analyze two types of payoff functions for games with a discount
factor, one of which the game ends in a fixed time (finite horizon) and another in
which the game runs along an infinite period of time.
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3.2.1 Finite-horizon payoff function

For this type of games the payoff function, for each player i (i = 1,2), is given by

V i
τ (s, y, π1, π2) ∶= E

π1,π2
s,y [∫

τ

s
e−ρ(t−s)rπ1,π2i (t,y(t))dt + eρ(τ−s)Ki(τ,y(τ))] , (3.2.1)

for which (s, y) ∈ Sτ , Ki ∈ M(Ŝ) and ρ ∈ R. The time τ > 0 is usually called the
game’s horizon, whereas Ki(τ,y(τ)) is the terminal reward of player i. When ρ ⩾ 0,
it can be interpreted as a discount factor.

The following proposition links a solution of a functional equation with the payoff
function (3.2.1).

Proposition 3.1. For a fixed ρ ∈ R, i = 1,2 and a pair (π1, π2) ∈ Π1 × Π2, let
rπ1,π2i (s, y) ∈ M0(Ŝ) and K(s, y) be measurable functions on Sτ ∶= [0, τ] × S, where

τ > 0 is a fixed time. If vi ∈ DLπ1,π2(Ŝ) satisfies the equation

ρvi(s, y) = r
π1,π2
i (s, y) + Lπ1,π2vi(s, y) ∀(s, y) ∈ Sτ , (3.2.2)

and the terminal condition
vi(τ, y) =Ki(τ, y), (3.2.3)

for all y ∈ S. Then, for every (s, y) ∈ Sτ

vi(s, y) = E
π1,π2
s,y [∫

τ

s
e−ρ(t−s)rπ1,π2i (t,y(t))dt + eρ(τ−s)Ki(τ,y(τ))] . (3.2.4)

Moreover, if the equality in (3.2.2) is replaced by an inequality (⩾ or ⩽) then the
equality in (3.2.4) is replaced by the same inequality.

Proof. Fix i = 1,2, and let viρ(s, y) ∶= e
−ρsvi(s, y), as in Lemma 1.7(iii). By (3.2.2),

we get

Lπ1,π2viρ(s, y) = e
−ρs [Lπ1,π2vi(s, y) − ρvi(s, y)] = −e−ρsr

π1,π2
i (s, y). (3.2.5)

Now, applying Dynkin’s formula to vρ and using (3.2.5), we obtain

Eπ1,π2
s,y [e−ρ(s+t)vi(s + t ,y(s + t))] − e−ρsvi(s, y)

= −Eπ1,π2
s,y [∫

t

0
e−ρ(s+w)rπ1,π2i (s +w,y(s +w))dw]

= −Eπ1,π2
s,y [∫

s+t

s
e−ρwrπ1,π2i (w,y(w))dw]

(3.2.6)

Taking τ = t + s in (3.2.6) and using (3.2.3) we deduce that

Eπ1,π2
s,y [e−ρ(τ−s)Ki(τ,y(τ))] − vi(s, y) = −E

π1,π2
s,y [∫

τ

s
e−ρ(w−s)rπ1,π2i (w,y(w))dw] .

(3.2.7)
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Multiplying (3.2.7) by eρs, (3.2.4) follows.

The proof of the inequalities is similar, so we shall omit it. ∎

Note that in Proposition 3.1 the number ρ is arbitrary but, for our present
purposes, we will only require ρ = 0 or ρ > 0. When ρ is positive we will call it a
discount factor.

If the function r is thought as a reward rate, then (3.2.4) can be interpreted
as the expected reward during the time interval [s, τ] with the initial condition
y(s) = y and terminal reward K.

The following result is a verification theorem of games with finite-horizon dis-
counted payoff criterion.

Theorem 3.2. Let ρ ∈ R and τ > 0 fixed. For each i = 1,2 and each pair (π1, π2) ∈

Π1×Π2, assume that rπ1,π21 ∈ M0(Ŝ) and Ki measurable on Sτ . Additionally, suppose

that for each player there are functions vi(s, y) ∈ D(Ŝ) and a pair (π∗1 , π
∗
2) ∈ Π1 ×Π2

such that, for every (s, y) ∈ Sτ ,

ρv1(s, y) = max
π1∈Π1

{r
π1,π

∗

2
1 (s, y) + Lπ1,π

∗

2v1(s, y)} (3.2.8)

= r
π∗1 ,π

∗

2
1 (s, y) + Lπ

∗

1 ,π
∗

2v1(s, y), (3.2.9)

ρv2(s, y) = max
π2∈Π2

{r
π∗1 ,π2
2 (s, y) + Lπ

∗

1 ,π2v2(s, y)} (3.2.10)

= r
π∗1 ,π

∗

2
2 (s, y) + Lπ

∗

1 ,π
∗

2v2(s, y), (3.2.11)

and the terminal conditions

v1(τ, y) =K1(τ, y) and v2(τ, y) =K2(τ, y) ∀y ∈ S. (3.2.12)

Then (π∗1 , π
∗
2) is a Nash equilibrium and for each player i = 1,2, the expected payoff

is
vi(s, y) = V

i
τ (s, y, π

∗
1 , π

∗
2) ∀(s, y) ∈ Sτ . (3.2.13)

Proof. First, using (3.2.9) and the terminal condition from (3.2.12) for player 1
altogether with Proposition 3.1 we get

v1(s, y) = V
1
τ (s, y, π

∗
1 , π

∗
2)

for every (s, y) ∈ Sτ . Analogously, using (3.2.11) and the other terminal condition
we get (3.2.13) for i = 2.

Now, from (3.2.8) we get that

ρv1(s, y) ⩾ r
π1,π

∗

2
1 (s, y) + Lπ1,π

∗

2v1(s, y) ∀π1 ∈ Π1.

This fact together with the last statement of Proposition 3.1 yields

V 1
τ (s, y, π

∗
1 , π

∗
2) = v1(s, y) ⩾ V

1
τ (s, y, π1, π

∗
2) ∀π1 ∈ Π1. (3.2.14)

This is exactly (2.3.1). In a similar way we get (2.3.2) for player 2, which means
that (π∗1 , π

∗
2) is a Nash equilibrium. ∎
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3.2.2 Zero-sum case: finite horizon

Here we present the analogue of Theorem 3.2 for the zero-sum context. First, re-
member that the payoff functions are such that

Vτ(s, y, π1, π2) ∶= V
1
τ (s, y, π1, π2) = −V

2
τ (s, y, π1, π2) ∀(s, y, π1, π2), (3.2.15)

where V i
τ are as in (3.2.1), for i = 1,2. We have the following result.

Theorem 3.3. Let ρ ∈ R and τ > 0 fixed. Suppose that for each pair (π1, π2) ∈

Π1 × Π2, rπ1,π2 ∈ M0(Ŝ) and K is measurable on Sτ . Additionally suppose that
there is a function v(s, y) ∈ D(Ŝ) and a pair (π∗1 , π

∗
2) ∈ Π1 ×Π2 such that, for every

(s, y) ∈ Sτ ,

ρv(s, y) = inf
π2∈Π2

{rπ
∗

1 ,π2(s, y) + Lπ
∗

1 ,π2v(s, y)} (3.2.16)

= sup
π1∈Π1

{rπ1,π
∗

2(s, y) + Lπ1,π
∗

2v(s, y)} (3.2.17)

= rπ
∗

1 ,π
∗

2(s, y) + Lπ
∗

1 ,π
∗

2v(s, y), (3.2.18)

and the terminal condition

v(τ, y) =K(τ, y) ∀y ∈ S. (3.2.19)

Then (π∗1 , π
∗
2) is a saddle point and the value of the game is

v(s, y) = Vτ(s, y, π
∗
1 , π

∗
2) ∀(s, y) ∈ Sτ . (3.2.20)

Proof. By using expressions (3.2.18) and (3.2.19) together with Proposition 3.1 we
easily deduce (3.2.20).

Now let define

F (s, y, π1, π2) ∶= r
π1,π2(s, y) + Lπ1,π2v(s, y). (3.2.21)

Interpreting this function as the payoff function of a game, from (3.2.16)-(3.2.18)
along with Proposition 2.9 we get that the pair (π∗1 , π

∗
2) is a saddle point, that is

rπ1,π
∗

2(s, y) + Lπ1,π
∗

2v(s, y) ⩽ F (s, y, π∗1 , π
∗
2) ⩽ r

π∗1 ,π2(s, y) + Lπ
∗

1 ,π2v(s, y), (3.2.22)

for every (π1, π2) ∈ Π1 × Π2. From (3.2.18) we have that F (s, y, π∗1 , π
∗
2) = ρv(s, y),

using this fact and (3.2.22) along with the last statement of Proposition 3.1, we
deduce that

Vτ(s, y, π1, π
∗
2) ⩽ v(s, y) ⩽ Vτ(s, y, π

∗
1 , π2) ∀π1 ∈ Π1, π2 ∈ Π2.

This means that v(s, y) is a saddle point. Finally from Proposition 2.8 we get that
v(s, y) is the value of the game. ∎
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3.2.3 Infinite-horizon payoff function

In this case, the payoff functions for each player i (i = 1,2), are given by

Vi(s, y, π1, π2) ∶= E
π1,π2
s,y [∫

∞

s
e−ρ(t−s)rπ1,π2i (t,y(t))dt] , (3.2.23)

where (s, y) ∈ Ŝ and ρ > 0 a fixed discount factor.

The games with this type of payoff functions are slightly different from the ones
mentioned in the previous section.

To make notation easier, let us remember that for each (π1, π2) ∈ Π1 ×Π2,

T π1,π2t v(s, y) ∶=∫
S
P π1,π2(s, t, s + t, dz)v(s + t, z)

=Eπ1,π2
s,y [v(s + t,y(s + t))],

(3.2.24)

for v ∈ M(Ŝ).

The following result relates the functional equation (3.2.25) with the payoff func-
tion (3.2.23).

Proposition 3.4. Given a fixed pair (π1, π2) ∈ Π1 × Π2 and i = 1,2, assume that
rπ1,π2i belongs to M0(S) and take ρ > 0. If vi ∈ DLπ1,π2(Ŝ) is such that

ρvi(s, y) = r
π1,π2
i (s, y) + Lπ1,π2vi(s, y) ∀(s, y) ∈ Ŝ, (3.2.25)

and

e−ρtEπ1,π2
s,y [vi(s + t,y(s + t))] = e

−ρtT π1,π2t vi(s, y) Ð→ 0 as t→∞ (3.2.26)

for every (s, y) ∈ Ŝ, then

vi(s, y) = E
π1,π2
s,y [∫

∞

s
e−ρ(t−s)rπ1,π2i (t,y(t))dt]

= ∫

∞

0
e−ρtT π1,π2t rπ1,π2i (s, y)dt.

(3.2.27)

Furthermore, if instead of the equality in (3.2.25) we have “ ⩽” or “ ⩾”, then the
equality in (3.2.27) is replaced by the respective inequality.

Proof. Using the same arguments from the proof of Proposition 3.1 we have that
vi satisfies (3.2.6). Multiplying this equation by eρs we get

vi(s, y) = e
−ρtEπ1,π2

s,y [vi(s + t,y(s + t)] +E
π1,π2
s,y [∫

s+t

s
e−ρ(w−s)rπ1,π2i (w,y(w))dw] .

(3.2.28)
Letting t→∞ in (3.2.28) and using (3.2.26) we obtain,

vi(s, y) = E
π1,π2
s,y [∫

∞

s
e−ρ(w−s)rπ1,π2i (w,y(w))dw] , (3.2.29)
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which is (3.2.27). The treatment is the same if we replace the equality in (3.2.25)
for an inequality. ∎

In this case, the analogue of Theorem 3.2 is as follows.

Theorem 3.5. Let ρ > 0 be a fixed number. For each i = 1,2 and each pair (π1, π2) ∈

Π1 ×Π2, assume that rπ1,π2i ∈ M0(Ŝ). Suppose also that there are functions vi(s, y) ∈

D(Ŝ) and a pair (π∗1 , π
∗
2) ∈ Π1 × Π2 that satisfy, for every (s, y) ∈ Ŝ, the equations

(3.2.8)-(3.2.11) along with the condition

e−ρtT π1,π2t vi(s, y) → 0 as t→∞, (3.2.30)

for every i = 1,2, (π1, π2) ∈ Π1 ×Π2, (s, y) ∈ Ŝ. Then (π∗1 , π
∗
2) is a Nash equilibrium

of the game and for each player i = 1,2, the expected payoff is

vi(s, y) = Vi(s, y, π
∗
1 , π

∗
2) ∀(s, y) ∈ Ŝ. (3.2.31)

Proof. Using (3.2.9), (3.2.30) for v1, and Proposition 3.4 we get (3.2.31) for the
first player. A similar analysis with (3.2.11) and v2 yields that (3.2.31) is satisfied
for player 2.

Now, from (3.2.8) and using again the last statement of Proposition 3.4, we have

v1(s, y) ⩾ V1(s, y, π1, π
∗
2) ∀π1 ∈ Π1.

Similarly, by (3.2.10), we can deduce

v2(s, y) ⩾ V2(s, y, π
∗
1 , π2) ∀π2 ∈ Π2, (3.2.32)

which means that (π∗1 , π
∗
2) is a Nash equilibrium. ∎

3.2.4 Zero-sum case: infinite horizon

The analogous of Theorem 3.5 to the infinite-horizon zero sum case is presented in
this subsection. As before, we have that

V (s, y, π1, π2) ∶= V1(s, y, π1, π2) = −V2(s, y, π1, π2), (3.2.33)

whit V as in (3.2.23).

Theorem 3.6. Let ρ > 0 a fixed number. Suppose that for every fixed pair (π1, π2) ∈

Π1 ×Π2, r ∈ M0(Ŝ). Suppose also that there is a function v(s, y) ∈ D(Ŝ) and a pair
(π∗1 , π

∗
2) ∈ Π1 ×Π2 under which the following relation is satisfied for every (s, y) ∈ Ŝ

ρv(s, y) = inf
π2∈Π2

{rπ
∗

1 ,π2(s, y) + Lπ
∗

1 ,π2v(s, y)} (3.2.34)

= sup
π1∈Π1

{rπ1,π
∗

2(s, y) + Lπ1,π
∗

2v(s, y)} (3.2.35)

= rπ
∗

1 ,π
∗

2(s, y) + Lπ
∗

1 ,π
∗

2v(s, y) (3.2.36)
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along with the condition

e−ρtT π1,π2t v(s, y) → 0 as t→∞, (3.2.37)

for every (π1, π2) ∈ Π1 × Π2 and all (s, y) ∈ Ŝ. Then (π∗1 , π
∗
2) is a Nash equilibrium

(or saddle pint) and the value of the game is

v(s, y) = V (s, y, π∗1 , π
∗
2) ∀(s, y) ∈ Ŝ. (3.2.38)

Proof. Using (3.2.36), (3.2.37) and Proposition 3.4 we obtain (3.2.38).

To verify that (π∗1 , π
∗
2) is a saddle point, just follow the same steps as in Theorem

3.3, replacing the space Sτ with Ŝ and using Proposition 3.4 instead of Proposition
3.1. ∎

3.3 Games with long-run average payoff function

In this class of games, the Markov game Γ will be considered to be time-homogeneous
(see Chapter 2 for further details on this class of games). The function

J iτ(y, π1, π2) ∶= E
π1,π2
y [∫

τ

0
rπ1,π2i (y(t))dt] , (3.3.1)

represents the total expected payoff for player i on the time interval [0, τ] when
player 1 uses π1 ∈ Π1 and player 2 uses π2 ∈ Π2, given the initial state y(0) = y.

Then, the long-run expected average reward per unit time is defined as

Ji(y, π1, π2) ∶= lim inf
τ→∞

1

τ
J iτ(y, π1, π2), (3.3.2)

for each player i = 1,2.
Notice that the inferior limit in (3.3.2) is always well defined, even when it can

be infinite.
The following result will be helpful to prove the verification theorem in the average

context.

Lemma 3.7. Fix a pair of strategies (π1, π2) ∈ Π1 ×Π2.

(i) Suppose that the function rπ1,π21 (y) belongs to M0(S). Furthermore, assume
the existence of a constant k1 and a time-invariant function hπ1,π21 ∈ D(S) such
that the pair (k1, h

π1,π2
1 ) satisfies the Poisson equation

k1 = r
π1,π2
1 (y) + Lπ1,π2hπ1,π21 (y), (3.3.3)

for every y ∈ S, and also

lim
t→∞T

π1,π2
t hπ1,π21 (y)/t = 0. (3.3.4)

Then
k1 = J1(y, π1, π2), (3.3.5)

for every y ∈ S.
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Caṕıtulo 3

(ii) If the equality in (3.3.3) is replaced by an inequality then the equality in (3.3.5)
is replaced by the same inequality.

(iii) Equivalently, suppose that the function rπ1,π22 (y) belongs toM0(S) and assume
the existence of a pair (k2, h

π1,π2
2 ) consisting in a constant k2 and a function

hπ1,π22 ∈ D(S), satisfying

k2 = r
π1,π2
2 (y) + Lπ1,π2hπ1,π22 (y), (3.3.6)

for every y ∈ S, and also

lim
t→∞T

π1,π2
t hπ1,π22 (y)/t = 0. (3.3.7)

Then
k2 = J2(y, π1, π2), (3.3.8)

for every y ∈ S.

(iv) Analogously, if the equality in (3.3.6) is replaced by an inequality then the
equality in (3.3.8) is replaced by the same inequality.

Proof. (i) Since hπ1,π21 ∈ D(S), using Lemma 1.7 and (3.3.3) we obtain

T π1,π2t hπ1,π21 (y) − hπ1,π21 (y) = ∫
t

0
T π1,π2r Lπ1,π2hπ1,π21 (y)dr

= ∫

t

0
Eπ1,π2
y [Lπ1,π2hπ1,π21 (y(r))]dr

= Eπ1,π2
y {∫

t

0
[k1 − r

π1,π2
1 (y(r))]dr}

= tk1 − ∫

t

0
T π1,π2r rπ1,π21 (y)dr,

which implies that

k1 =
1

t ∫
t

0
T π1,π2r rπ1,π21 (y)dr +

1

t
[T π1,π2t hπ1,π21 (y) − hπ1,π21 (y)]. (3.3.9)

Taking inferior limit as t→∞ in (3.3.9), altogether with (3.3.4), yields

k1 = lim inf
t→∞

1

t ∫
t

0
T π1,π2r rπ1,π21 (y)dy

= lim inf
t→∞

1

t
Eπ1,π2
y [∫

t

0
rπ1,π21 (y(r))dr] = J1(y, π1, π2),

for every y ∈ S.

Statements (ii)-(iv) use a similar argument, so we omit their proofs. ∎

Remark 3.8. The choice of the constants k1 and k2 in Lemma 3.7 may depend on
the pair of strategies (π1, π2) ∈ Π1 ×Π2. However, for notational purposes, we omit
such dependence.
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In the following definition, we shall use the notation

ra1,π2(y) ∶= ∫
A2

ra1,a2(y)π2(da2∣y) rπ1,a2(y) ∶= ∫
A1

ra1,a2(y)π1(da1∣y).

Definition 3.9. A quadruple (j∗1 , h1, j∗2 , h2), in which j∗i ∶ Πk → R (i ≠ k) and the
functions h1, h2 ∈ D(S), will be called a solution of the average payoff optimality
equation (shortened to APOE) if

j∗1 (π2) = sup
a1∈A1

{ra1,π21 (y) + La1,π2h1(y)} (3.3.10)

for every y ∈ S and π2 ∈ Π2, and

j∗2 (π1) = sup
a2∈A2

{rπ1,a22 (y) + Lπ1,a2h2(y)} (3.3.11)

for every y ∈ S and π1 ∈ Π1.

It is really important to notice that if (j∗1 , h1, j∗2 , h2) is solution of the APOE,
then

j∗1 (π2) ⩾ r
π1,π2
1 (y) + Lπ1,π2h1(y) ∀π1 ∈ Π1.

Moreover, if π1 ∈ Π1 and π2 ∈ Π2 fulfill a transversality property, say

lim
t→∞T

π1,π2
t h1(y)/t = 0, (3.3.12)

then, Lemma 3.7 gives
j∗1 (π2) ⩾ J1(y, π1, π2) ∀y ∈ S (3.3.13)

for every pair (π1, π2) for which (3.3.12) holds. These arguments apply, of course, if
we replace j∗1 , h1, r1 and J1 by j∗2 , h2, r2 and J2.

Given a solution of the APOE, define Π∗
1×Π∗

2 as the subset of strategies in Π1×Π2

for which (3.3.12) holds for h1 and h2.
Given a fixed π̂2 ∈ Π2, define

Π∗
1 ∶= {π1 ∈ Π1 ∣ (π1, π̂2) ∈ Π∗

1 ×Π∗
2} .

Note that the set Π∗
1 depends on the fixed π̂2 ∈ Π2 but for notational ease said

dependence will be implicit. Equivalently we can define, for a fixed π̂1 ∈ Π1, the set

Π∗
2 ∶= {π2 ∈ Π2 ∣ (π̂1, π2) ∈ Π∗

1 ×Π∗
2} .

With the previous ideas we can claim the result below.

Theorem 3.10. Let (j∗1 , h1, j∗2 , h2) be a solution of the APOE and Π∗
1×Π∗

2 as before.
Then, for every y ∈ S,

j∗1 (π2) ⩾ sup
π1∈Π∗

1

J1(y, π1, π2) (3.3.14)
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and
j∗2 (π1) ⩾ sup

π2∈Π∗

2

J2(y, π1, π2). (3.3.15)

Additionally, if (π∗1 , π
∗
2) is a pair of strategies in Π∗

1 ×Π∗
2 such that, for all y ∈ S,

j∗1 (π
∗
2) = r

π∗1 ,π
∗

2
1 (y) + Lπ

∗

1 ,π
∗

2h1(y) (3.3.16)

and
j∗2 (π

∗
1) = r

π∗1 ,π
∗

2
2 (y) + Lπ

∗

1 ,π
∗

2h2(y). (3.3.17)

Then
j∗1 (π

∗
2) = J1(y, π

∗
1 , π

∗
2) ⩾ J1(y, π1, π

∗
2) ∀π1 ∈ Π∗

1, (3.3.18)

j∗2 (π
∗
1) = J2(y, π

∗
1 , π

∗
2) ⩾ J2(y, π

∗
1 , π2) ∀π2 ∈ Π∗

2; (3.3.19)

in other words, the pair (π∗1 , π
∗
2) is a Nash equilibrium in the set Π∗

1 ×Π∗
2.

Proof. First observe that the use of (3.3.10) yields to

j∗1 (π2) ⩾ r
π1,π2
1 (y) + Lπ1,π2h1(y) ∀π1 ∈ Π∗

1, (3.3.20)

thus, by using part (ii) of Lemma 3.7 ,we get

j∗1 (π2) ⩾ J1(y, π1, π2) ∀π1 ∈ Π∗
1, (3.3.21)

which yields (3.3.14). By a similar argument we obtain (3.3.15).
Now, to prove (3.3.18) just note that (3.3.16) and part (i) of Lemma 3.7 imply

that
j∗1 (π

∗
2) = J1(y, π

∗
1 , π

∗
2). (3.3.22)

Hence by (3.3.14) we obtain (3.3.18). The analysis for (3.3.19) is similar. ∎

3.3.1 Zero-Sum Case: Average Reward

The payoff functions in this scenario are such that

J(y, π1, π2) = J1(y, π1, π2) = −J2(y, π1, π2), (3.3.23)

where each Ji is as in (3.3.2). The verification theorem for this case is as follows.

Theorem 3.11. Denote by Π′
1 ×Π′

2 the subset of pairs of strategies under which

lim
t→∞T

π1,π2
t h(y)/t = 0 (3.3.24)

holds. Let (π∗1 , π
∗
2) ∈ Π′

1 × Π′
2 be a pair of strategies. Suppose that there exist a

constant j∗ and a time-invariant function h ∈ D such that, for every y ∈ S,

j∗ = sup
a1∈A1

{ra1,π
∗

2(y) + La1,π
∗

2h(y)}

= inf
a2∈A2

{rπ
∗

1 ,a2(y) + Lπ
∗

1 ,a2h(y)},
(3.3.25)
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If the pair (π∗1 , π
∗
2) ∈ Π′

1 ×Π′
2 is such that,

j∗ = rπ
∗

1 ,π
∗

2(y) + Lπ
∗

1 ,π
∗

2h(y), (3.3.26)

for every y ∈ S, then
j∗ = J(y, π∗1 , π

∗
2) (3.3.27)

and (π∗1 , π
∗
2) is a saddle point in the set Π′

1 ×Π′
2, i.e.,

J(y, π1, π
∗
2) ⩽ j

∗ ⩽ J(y, π∗1 , π2) ∀(π1, π2) ∈ Π′
1 ×Π′

2. (3.3.28)

The proof of this result uses essentially the same arguments of Theorem 3.10 to
deduce the first part, and of Theorem 3.3 to verify the saddle point condition.

3.4 Relation between discounted games and aver-

age reward games

Theorems 3.10 and 3.11 allow us to verify if a pair of strategies is a Nash equi-
librium by means of the APOE; that is, by knowing the existence of solutions
of such APOE as well as the existence of a pair of strategies that optimize
the APOE, one gets Nash equilibria for the average payoff game. However,
can we actually ensure a solution for the APOE equations? One way to find
a solution is the use of the vanishing discount-factor approach, which consists
in using the ρ-discounted criteria studied in Section 3.2 and regard the APOE
as limiting equations, as ρ ↓ 0, of those equations associated to the ρ-discounted case.

In the following lines we present a corollary of Theorem 1.8 that will be useful
along this section.

In what follows we will assume that the reward rates rπ1,π2i satisfy the following
assumption for each pair (π1, π2) ∈ Π1 ×Π2.

Assumption 3.12. For i = 1,2, the reward rate rπ1,π21 belongs to M0(S), it is
time-invariant, and non-negative.

We define

α(t) = ∫
t

0
T π1,π2w rπ1,π2i (y)dw.

From the previous assumption, it is easy to verify that Vi in (3.2.23) is time-invariant
and non-negative for each (π1, π2) ∈ Π1 ×Π2. Furthermore, it satisfies that

Vi(y, π1, π2) = ∫

∞

0
e−ρtT π1,π2t rπ1,π2i (y)dt = ∫

∞

0
e−ρtdα(t) ∀y ∈ S (3.4.1)

(note that α(t) depends on y). The function Ji(y, π1, π2) in (3.3.2) becomes

Ji(y, π1, π2) = lim inf
t→∞ α(t)/t. (3.4.2)

With these observations we can rewrite Theorem 1.8 in the following way.
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Corollary 3.13. Let (π1, π2) ∈ Π∗
1 × Π∗

2 be a given pair. If the function rπ1,π2i ∈

M0(S) is time-invariant and nonnegative, and

lim sup
τ→∞

1

τ ∫
τ

0
T π1,π2t rπ1,π2(y)dt < ∞

for every y ∈ S, then

(i) for each ρ > 0,

V ρ
i (y, π1, π2) = ρ∫

∞

0
e−ρt [∫

t

0
T π1,π2w rπ1,π2(y)dw]dt (3.4.3)

where V ρ
i is the function in (3.4.1),

(ii) Ji(y, π1, π2) = lim inf
t→∞

1

t ∫
t

0
T π1,π2w rπ1,π2(y)dw ⩽ lim inf

ρ→0+
ρV ρ

i (y, π1, π2)

⩽ lim sup
ρ→0+

ρV ρ
i (y, π1, π2)

⩽ lim sup
t→∞

1

t ∫
t

0
T π1,π2w rπ1,π2(y)dw,

(iii) if the limit in (3.4.2) exists, then

Ji(y, π1, π2) = lim
ρ→0+

ρV ρ
i (y, π1, π2).

In the following results we only analyze the case for the first player because
analogous results apply to the second player.

The following assumption will be necessary.

Assumption 3.14. Let π2 ∈ Π2 be a fixed strategy. Then, for every pair such that
(π1, π2) is in Π∗

1 ×Π∗
2 we have that

sup
π1∈Π∗

1

[lim sup
t→∞

1

t ∫
t

0
T π1,π2w rπ1,π21 (y)dw] < ∞. (3.4.4)

Now, given a fixed π2 ∈ Π2, let

V ∗
ρ,1(y, π2) ∶= sup

π1∈Π1

Vρ,1(y, π1, π2), (3.4.5)

where Vρ,1 is as in (3.2.23) (the subindex is just to emphasize the dependence on
ρ > 0). Then the ρ-discount dynamic programming equation turns out to be

ρV ∗
ρ,1(y, π2) = sup

a1∈A1

{ra1,π21 (y) + La1,π2V ∗
ρ,1(y, π2)}. (3.4.6)

Now, let y′ ∈ S be a fixed state and define

hρ,1(y, π2) ∶= V
∗
ρ,1(y, π2) − V

∗
ρ,1(y

′, π2) ∀y ∈ S. (3.4.7)
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Then (3.4.6) becomes

ρhρ,1(y, π2) + ρV
∗
ρ,1(y

′, π2) = sup
a1∈A1

{ra1,π21 (y) + La1,π2hρ,1(y, π2)}. (3.4.8)

The last equation suggests to let ρ tend to zero to obtain (3.3.10) in the limit. Let
us consider the following lemma that allow us to do so.

Lemma 3.15. Let π2 ∈ Π2 be a fixed strategy. Suppose that there exist ρ0 > 0 and
b ∶ S ×Π2 → R such that

∣hρ,1(y, π2)∣ ⩽ b1(y, π2) ∀y ∈ S,∀0 < ρ < ρ0. (3.4.9)

Then there exist j1 ∶ Π2 → R and a subsequence ρ(n) ↓ 0 such that, for every y ∈ S,

(i) lim
n→∞ρ(n)hρ(n),1(y, π2) = 0,

(ii) lim
n→∞ρ(n)V

∗
ρ(n),1(y, π2) = j1(π2),

(iii) J1(y, π1, π2) ⩽ j1(π2) ∀π1 ∈ Π∗
1

Proof. First notice that, by the third inequality in Corollary 3.13 and Assumption
3.14,

0 ⩽ lim sup
ρ↓0

ρV ∗
ρ,1(y

′, π2) < ∞, (3.4.10)

with y′ ∈ S the fixed state in (3.4.7).

Let j1(π2) be a limit point of ρV ∗
ρ,1(y

′, π2) as ρ ↓ 0 and let ρ(n) ↓ 0 be a subse-
quence such that

ρ(n)V ∗
ρ(n),1(y

′, π2) Ð→ j1(π2). (3.4.11)

Then, we are now in conditions to prove (i) to (ii); namely:

(i) From (3.4.9) we get that

∣ρ(n)hρ(n),1(y, π2)∣ ⩽ ρ(n)∣b1(y, π2)∣ Ð→ 0 as n→∞, (3.4.12)

which proves (i).

(ii) By (3.4.11) and (3.4.7) we obtain

lim
ρ(n)↓0

ρ(n)V ∗
ρ(n),1(y, π2) = lim

ρ(n)↓0
[ρ(n)V ∗

ρ(n),1(y
′, π2) + ρ(n)hρ(n),1(y, π2)]

= j1(π2),

yielding (ii).
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(iii) Using Corollary 3.13(ii) we can deduce

J1(y, π1, π2) ⩽ lim
ρ(n)↓0

ρ(n)Vρ(n),1(y, π1, π2)

⩽ lim
ρ(n)↓0

ρ(n)V ∗
ρ(n),1(y, π2)

= j1(π2) ∀π1 ∈ Π∗
1,

which is what we wanted. ∎

Note that the previous lemma is true for every π2 ∈ Π2. The following theorem
approximates the solution of the APOE equation for the first player. The second
player case is analogous.

Before establishing the theorem, we remark that if we know in advance the exis-
tence of a Nash equilibrium for the ρ-discounted game, then

vρ1(y) = Vρ,1(y, π
∗
1 , π

∗
2) ∀y ∈ S,

where vρ1(y) is as in Theorem 3.5 (time-invariant version). Thus,

lim
ρ(n)↓0

ρ(n)V ∗
ρ(n),1(y, π

∗
2) = j1(π

∗
2)

becomes
lim
ρ(n)↓0

ρ(n)v1(y) = j1(π
∗
2).

Now, we just need a function h1 ∈ D(S) that satisfies the APOE. In specific cases we
can give hypotheses that ensure the existence of such a function h1 (as in Chapter 4),
but since we are working in a more general case we will just suppose such existence.

The following verification theorem uses the previous ideas.

Theorem 3.16. Fix π2 ∈ Π2. Suppose that there exists a function b ∶ S × Π2 → R
as in Lemma 3.15. Additionally, suppose that there exist h1 ∈ D(S) and π1 ∈ Π1 a
stationary strategy satisfying,

j1(π2) ⩽ r
π1,π2
1 (y) + Lπ1,π2h1(y) ∀y ∈ S, (3.4.13)

and

lim
t→∞

1

t
T π1,π2t h1(y) = 0. (3.4.14)

Then, we have that

J1(y, π1, π2) ⩾ j1(π2) ⩾ J1(y, π1, π2) ∀π1 ∈ Π∗
1. (3.4.15)

Proof. Using Lemma 3.15 we know that

j1(π2) ⩾ J1(y, π1, π2) ∀π1 ∈ Π∗
1. (3.4.16)
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On the other hand, from (3.4.13) and Lemma 3.7(ii), we obtain

j1(π2) ⩽ J1(y, π1, π2), (3.4.17)

implying (3.4.15). ∎

The same analysis can be done for the second player, with a function b2 ∶ S×Π1 →

R as in Lemma 3.15 (second player version). As a consequence we can deduce the
following corollary from Theorem 3.16.

Corollary 3.17. Suppose that there exist functions b1 ∶ S×Π2 → R and b2 ∶ S×Π1 →

R as in Lemma 3.15, two functions h1, h2 ∈ D(S), and a pair of stationary strategies
(π1, π2) ∈ Π∗

1 ×Π∗
2 that satisfy, for every y ∈ S,

j1(π2) ⩽ r
π1,π2
1 (y) + Lπ1,π2h1(y) (3.4.18)

and
j2(π1) ⩽ r

π1,π2
2 (y) + Lπ1,π2h2(y). (3.4.19)

Also, the pair (π1, π2) satisfies

lim
t→∞

1

t
T π1,π2t hi(y) = 0 for i = 1,2. (3.4.20)

Then,
J1(y, π1, π2) ⩾ J1(y, π1, π2) ∀π1 ∈ Π∗

1 (3.4.21)

and
J2(y, π1, π2) ⩾ J1(y, π1, π2) ∀π2 ∈ Π∗

2. (3.4.22)

In other words, (π1, π2) is a Nash equilibrium.
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Chapter 4

A Special Case

4.1 Introduction

In this chapter we apply our previous results to the case when the Markov process
evolves as a diffusion process. The aim here is to illustrate that the general theory
introduced in the previous sections apply to this case; in particular, we shall show
the existence of a non-cooperative equilibrium for the nonzero-sum case. This type
of games are based under the assumption that the drift of the diffusion as well as
the cost rate have an additive structure.

4.2 Stochastic differential game

Let y(⋅) be an m-dimensional diffusion process that is controlled by two players.
More explicitly, the process evolves according to the stochastic differential equation

dy(t) = b(y(t), a1(t), a2(t))dt + σ(y(t))dW (t), y(0) = 0, t ⩾ 0, (4.2.1)

where b ∶ Rm × A1 × A2 → Rm, σ ∶ Rm → Rm×d are given functions, so-named the
drift and the dispersion matrix, respectively, and W (⋅) is a d-dimensional standard
Brownian motion. The action sets are A1 ⊂ Rm1 , A2 ⊂ Rm2 . Finally, ai(⋅) is an
Ai-valued stochastic process that gives the action of player i at each time t ⩾ 0, for
each i = 1,2.

Throughout this work we shall assume the following.

Assumption 4.1. (i) The drift coefficient b(y, a1, a2) is continuous on Rm×A1×

A2 and there exists a positive constant K1 such that for each x, y ∈ Rm,

sup
(a1,a2)∈A1×A2

∣b(y, a1, a2) − b(x, a1, a2)∣ ⩽K1∣y − x∣. (4.2.2)

(ii) There exist measurable functions b1 ∶ Rm ×A1 → Rm, b2 ∶ Rm ×A2 → Rm such
that the drift coefficient in (4.2.1) satisfies that

b(y, a1, a2) = b1(y, a1) + b2(y, a2), (4.2.3)
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Caṕıtulo 4

in which b1 and b2 satisfy (i).

(iii) There exists a constant K2 > 0 such that, for every x, y ∈ Rm,

∣σ(y) − σ(x)∣ ⩽K2∣y − x∣. (4.2.4)

(iv) The matrix a(y) ∶= σ(y)σ′(y) satisfies that, for some constant K3 > 0 ,

x′a(y)x ⩾K3∣x∣
2 ∀x, y ∈ Rm. (4.2.5)

(v) The actions sets A1 and A2 are compact.

Statement (iv) in Assumption 4.1 is usually known as uniform ellipticity. Some
normed spaces that we will need are defined below.

In the following definitions ∇g is the gradient of the function g, Hv is the Hessian
matrix of v, bi is the ith component of b, aij is the (i, j)-component of matrix a(⋅)
(defined in Assumption 4.1(iv)), and

Dλh ∶=
∂ ∣λ∣h

∂xλ11 , . . . , ∂x
λm
m

, with λ = (λ1, . . . , λm), ∣λ∣ ∶=
m

∑
i=1

λi. (4.2.6)

Definition 4.2. For a fixed open set O ⊂ Rm we define:

i) W l,p(O) as the Sobolev space of all real-valued measurable functions h ∶ O → R
such that Dλh:

a) exists for every ∣λ∣ ⩽ l in the weak sense,

b) belongs to Lp(O).

ii) Ck(O) as the space of all real-valued functions on O with continuous l-th partial
derivatives in xi ∈ R, for i = 1, . . . ,m, l = 0,1, . . . , k. When k = 0, C0(O) is
the space of real-valued continuous functions on O, which we simply denote by
C(O).

iii) Ck,β(O) as de subspace of Ck(O) consisting of all functions h such that Dλh
satisfies a Hölder condition with exponent β ∈ (0,1], for all ∣λ∣ ⩽ k. In others
words, that there exists a constant K such that

∣Dλh(x) −Dλh(y)∣ ⩽K ∣x − y∣β (4.2.7)

iv) Cb(O × Ai), for i = 1,2, as the space of all continuous bounded functions on
O ×Ai.

The spaces in Definition 4.2 that will be frequently used throughout this work
are: C0,β(O), C1,β(O) and W2,p(O), endowed with the following norms.
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Definition 4.3. (i) for f ∈ C0,β(O),

∥f∥C0,β(O) ∶= sup
x∈O

∣f(x)∣ + sup
x,y∈O,x≠y

∣f(x) − f(y)∣

∣x − y∣β
, (4.2.8)

(ii) for g ∈ C1,β(O),

∥g∥C1,β(O) ∶=max{sup
x∈O

∣g(x)∣, sup
x∈O

∣∇g(x)∣}

+max{ sup
x,y∈O,x≠y

∣g(x) − g(y)∣

∣x − y∣β
, sup
x,y∈O,x≠y

∣∇g(x) − ∇g(y)∣

∣x − y∣β
} ,

(4.2.9)

(iii) for h ∈ W2,p(O),

∥h∥W2,p(O) ∶= (∫O
[∣h(x)∣p +

m

∑
i=1

∣∂xih(x)∣
p +

m

∑
i,j=1

∣∂2
xixj

h(x)∣p]dx)

1/p
. (4.2.10)

Let O ≡ Rm. For a fixed pair (a1, a2) ∈ A1 ×A2 and v ∈ W2,p(Rm), p ⩾ 1, define

La1,a2v(y) ∶=⟨∇v, b(y, a1, a2)⟩ + Tr[(Hv)a](y)

=
m

∑
i=1

bi(y, a1, a2)∂iv(y) +
1

2

m

∑
i,j=1

aij(y)∂
2
ijv(y),

(4.2.11)

When players use the randomized strategies (π1, π2) ∈ Π1×Π2, the drift coefficient
b in (4.2.1) is such that

bi(y, πi) ∶= ∫
Ai
b(y, ai)πi(dai∣y), i = 1,2. (4.2.12)

Furthermore, from (4.2.11), we have that for each h ∈ W2,p(Rm), p ⩾ 1,

Lπ1,π2h(y) ∶= ∫
A1
∫
A2

La1,a2h(y)π2(da2∣y)π1(da1∣y). (4.2.13)

Remark 4.4. Assumption 4.1 ensures that, for each pair of strategies (π1, π2) ∈

Π1 × Π2, there exists an almost surely unique strong solution of (4.2.1) which is a
Markov-Feller process (see [2], Theorem 2.2.12).

Let us denote by P π1,π2(t, y, ⋅) the corresponding transition probability of the process
yπ1,π2(⋅), and recall that Eπ1,π2

y [⋅] is its corresponding expectation.

Remark 4.5. By Theorem 4.3 in [1], for each pair (π1, π2) ∈ Π1×Π2 the probability
measure P π1,π2(t, y, ⋅) is absolutely continuous with respect to the Lebesgue measure
λ(⋅), for every y ∈ Rm, and t ⩾ 0. Then, there exist a transition density function
pπ1,π2(t, y, z) ⩾ 0 such that

P π1,π2(t, y,C) = ∫
C
pπ1,π2(t, y, z)dz, (4.2.14)

for every C ∈ B(Rm).
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Using Assumption 4.1 and Theorem 7.3.8 in [4], we get that the transition
density function pπ1,π2(t, y, z) is strictly positive and according to the construction of
fundamental solutions in Section 6.4 of [7], for each t > 0, pa1,a2(t, y, z) is continuous
in y, z ∈ Rm and continuous in (a1, a2) ∈ A1 ×A2.

To talk about the topology of the strategies sets we need to define the following
convergence notion.

Recall the definition of (randomized) Markov strategies Π1, Π2 defined in Section
2.2.

Definition 4.6. A sequence {πn1 } ⊂ Π1 converges to π1 ∈ Π1, denoted πn1
W
Ð→ π1, if

and only if

∫
Rm
g(y)∫

A1

h(y, a1)π
n
1 (da1∣y)dy Ð→ ∫

Rm
g(y)∫

A1

h(y, a1)π1(da1∣y)dy, (4.2.15)

for every g ∈ L1(Rm) and h ∈ Cb(Rm ×A1). Convergence in Π2 is defined similarly.

An important remark is that under this notion of convergence, both Π1 and Π2

are compact sets (see [2], Section 2.4).

Now we present some assumptions about the ergodicity of our system.

Assumption 4.7. There exist a function w ∈ C2(Rm) w ⩾ 1, and constants d ⩾ c > 0
that satisfy the following:

(i) lim∣y∣→∞w(y) = +∞.

(ii) Lπ1,π2w(y) ⩽ −cw(y) + d, (π1, π2) ∈ Π1 ×Π2, y ∈ Rm.

Given Assumption 4.7, for each pair (π1, π2) ∈ Π1 × Π2, the Markov process
yπ1,π2(⋅) has a unique invariant probability measure µπ1,π2 for which

µπ1,π2(w) ∶= ∫
Rm
w(y)µπ1,π2(dy) < ∞, (4.2.16)

(see [2] for more details). Furthermore, applying Dynkin’s formula to the function
v(t, y) ∶= ectw(y) and using Assumption 4.7(ii) we obtain

µπ1,π2(w) ⩽
d

c
(4.2.17)

and

Eπ1,π2
y [w(y(t))] ⩽ e−ctw(y) +

d

c
(1 − e−ct), (4.2.18)

for every (π1, π2) ∈ Π1 ×Π2, y ∈ Rm and t ⩾ 0.

In order to ensure a type of exponential ergodicity, we shall assume the following.
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Assumption 4.8. There exist ρ > 0, T > 0, and a bounded open set O for which
the transition density function in (4.2.14) satisfies

pπ1,π2(T, y, z) ⩾ ρ ∀y, z ∈ O, (π1, π2) ∈ Π1 ×Π2, (4.2.19)

(O denotes the closure of O) and T satisfies that

d

c
(1 − e−cT ) ⩽ ρλ(O). (4.2.20)

Definition 4.9. Consider an open set O ⊂ Rm. Bw(O) denotes the Banach space
of al real-valued measurable functions v on O with finite w-norm defined as

∥v∥w = sup
y∈O

∣v(y)∣

w(y)
. (4.2.21)

Remark 4.10. Under (4.2.18), it is easy to see that the transversality property
condition (3.2.26) (see also (3.2.30), (3.3.4), (3.3.7), (3.3.12) and (3.3.24)) holds
for every pair of strategies (π1, π2) ∈ Π1×Π2 and every function h ∈ Bw(Rm). Indeed,

∣e−ρtEπ1,π2
y [h(y(t))]∣ ⩽ e−ρtEπ1,π2

y [∥h∥ww(y(t))]

⩽ e−ρt∥h∥wEπ1,π2
y [w(y(t))]

⩽ e−ρt∥h∥w (e−ctw(y) +
d

c
(1 − e−ct)) .

Hence, taking limit as t→∞ we obtain (3.2.26). Note that the same argument works
to show (3.3.4) if we replace e−ρt by 1/t.

From Assumptions 4.1, 4.7 and 4.8 we can deduce that for every (π1, π2) ∈ Π1×Π2,
the process yπ1,π2(⋅) is w-exponentially ergodic; that is, there exist c > 0 and δ > 0
such that

sup
(π1,π2)∈Π1×Π2

∣Eπ1,π2
y [v(y(t)] − µπ1,π2(v)∣ ⩽ ce−δt∥v∥ww(y), (4.2.22)

for every y ∈ Rm, t ⩾ 0 and v ∈ Bw(Rm), where µπ1,π2 is as in (4.2.16). For details see
[13] ,Theorem 2.7.

Now we impose some assumptions on the reward rate of the game.

For each i = 1,2, the reward rate function is a real-valued function on Rm×A1×A2

that satisfies the following.

Assumption 4.11. For each i = 1,2:

(a) There exist functions ri1 ∶ Rm ×A1 → R and ri2 ∶ Rm ×A2 → R such that

ra1,a2i (y) = ra1i1 (y) + r
a2
i2 (y). (4.2.23)
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(b) For each j (j = 1,2), the function r
aj
ij (y) is continuous in aj ∈ Aj, and for

each y ∈ Rm there exist a neighbourhood of y, denoted by Oy, and a constant
Kij(y) > 0 such that, for every z ∈ Oy,

sup
aj∈Aj

∣r
aj
ij (y) − r

aj
ij (z)∣ ⩽Kij(y)∣y − z∣. (4.2.24)

(c) There exist a constant M > 0 such that, for every y ∈ Rm,

sup
a1∈A1

∣ra1i1 (y)∣ ⩽Mw(y) (4.2.25)

and
sup
a2∈A2

∣ra2i2 (y)∣ ⩽Mw(y). (4.2.26)

That is, ra1i1 (⋅) and ra2i2 (⋅) are in Bw(Rm) uniformly in a1 and a2 respectively.

As in previous comments, when the players use randomized strategies (π1, π2) ∈

Π1 ×Π2, the payoff rate is defined as

rπ1,π2i (y) ∶=∫
A1
∫
A2

ra1,a2i (y)π2(da2∣y)π1(da1∣y) (4.2.27)

=∫
A1

ra1i1 (y)π1(da1∣y) + ∫
A2

ra2i2 (y)π2(da2∣y) (4.2.28)

= ∶ rπ1i1 (y) + rπ2i2 (y). (4.2.29)

4.3 Discounted case, infinite horizon

The payoff function, for each player i (i = 1,2), is given as in (3.2.23) in the time-
homogeneous case, so according to (4.2.27)-(4.2.29) it can be rewritten as

V ρ
i (y, π1, π2) = E

π1,π2
y [∫

∞

0
e−ρtrπ1i1 (y(t))dt] +Eπ1,π2

y [∫

∞

0
e−ρtrπ2i2 (y(t))dt] . (4.3.1)

Now, for a given strategy π2 ∈ Π2, consider the functions

vρ1,π2(y) ∶= sup
π1∈Π1

V ρ
1 (y, π1, π2). (4.3.2)

Similarly, for a fixed π1 ∈ Π1, consider

vρ2,π1(y) ∶= sup
π2∈Π2

V ρ
2 (y, π1, π2). (4.3.3)

Under Assumptions 4.7 and 4.11(c) we obtain that, for each i = 1,2,

sup
(π1,π2)∈Π1×Π2

∣V ρ
i (y, π1, π2)∣ ⩽ 2M

ρ + d

ρc
w(y), (4.3.4)

which implies that V ρ
i (⋅, π1, π2) ∈ Bw(Rm) for each (π1, π2) ∈ Π1 ×Π2, i = 1,2.

Note that (4.3.2)-(4.3.3) imply that the functions vρ1,π2 and vρ2,π1 also belong to
Bw(Rm).
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Definition 4.12. Let π2 ∈ Π2 be a given strategy. A strategy π∗1 ∈ Π1 is a ρ-
discounted optimal response, to π2, from player 1 if

V ρ
1 (y, π∗1 , π2) = v

ρ
1,π2

(y). (4.3.5)

Analogously, given π1 ∈ Π1, a strategy π∗2 ∈ Π2 is a ρ-discounted optimal response
from player 2 if

V ρ
2 (y, π1, π

∗
2) = v

ρ
2,π1

(y). (4.3.6)

Proposition 4.13. Under Assumptions 4.1, 4.7 and 4.11 the following is satisfied:

(i) For each fixed π2 ∈ Π2 there exists a function v1 ∈ W
2,p(Rm) ∩Bw(Rm) (p >m)

and a strategy δ∗f1 ∈ Π1 (f1 ∈ F1 may depend on π2) such that equations (3.2.8)-
(3.2.9) hold.

(ii) v1(y) = v
ρ
1,π2

(y) for every y ∈ Rm.

(iii) A strategy π∗1 ∈ Π1 is an optimal response from player 1, to the strategy π2 ∈ Π2,
if and only if (3.2.8)-(3.2.9) are satisfied.

(iv) Analogously, for each fixed strategy π1 ∈ Π1, there exist a function v2 ∈

W2,p(Rm)∩Bw(Rm) (p >m) and a strategy δ∗f2 ∈ Π2 (f2 ∈ F2) such that (3.2.10)-
(3.2.11) hold.

(v) v2(y) = v
ρ
2,π1

(y) for every y ∈ Rm.

(vi) A strategy π∗2 ∈ Π2 is an optimal response of player 2 if and only if (3.2.10)-
(3.2.11) are satisfied.

Proof. Parts (i) and (iv) follow from [14, Proposition 3.6], whereas the rest of the
statements are special cases of the proof of Theorem 3.2 ∎

The following proposition helps to ensure the existence of a Nash equilibrium for
the ρ-discounted game. Its proof uses the weak convergence given in Definition 4.6
and a technical result on interchanging limits with respect to the generators of type
(4.2.11). The elements needed for the proof are outside of the scope of this work, so
for more details we refer the reader to reference [14].

Proposition 4.14. Suppose that Assumptions 4.1, 4.7 and 4.11 are satisfied.
Let {vn1 } and {vn2 } be sequences of functions in W2,p(Rm) ∩ Bw(Rm) (p > m) and
{(πn1 , π

n
2 )} a sequence in Π1 ×Π2.

(a) If vn1 satisfies, for every n ⩾ 1 and y ∈ Rn,

ρvn1 (y) = r
πn1 ,π

n
2

1 (y) + Lπ
n
1 ,π

n
2 vn1 (y)

= sup
π1∈Π1

{r
π1,π

n
2

1 (y) + Lπ1,π
n
2 vn1 (y)} ,
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and (πn1 , π
n
2 )

W
Ð→ (π1, π2), then there exists a function v1 ∈ W

2,p(Rm) ∩Bw(Rm)

such that vn1 → v1 uniformly and

ρv1(y) = r
π1,π2
1 (y) + Lπ1,π2v1(y)

= sup
π1∈Π1

{rπ1,π21 (y) + Lπ1,π2v1(y)}.

(b) If vn2 is such that, for every n ⩾ 1 and y ∈ Rm,

ρvn2 (y) = r
πn1 ,π

n
2

2 (y) + Lπ
n
1 ,π

n
2 vn2 (y)

= sup
π2∈Π2

{r
πn1 ,π2
2 (y) + Lπ

n
1 ,π2vn2 (y)},

and (πn1 , π
n
2 )

W
Ð→ (π1, π2), then there exists a function v2 ∈ W

2,p(Rm) ∩Bw(Rm)

(p >m) such that {vn2 } converges uniformly to v2 and

ρv2(y) = r
π1,π2
2 (y) + Lπ1,π2v2(y)

= sup
π2∈Π2

{rπ1,π22 (y) + Lπ1,π2v2(y)}.

Now, we define a pair of sets that are useful to prove the existence of a Nash
equilibrium in this type of games.

For a fixed π2 ∈ Π2 and the function vρ1,π2 as in (4.3.5), define

S1(π2) ∶= {π1 ∈ Π1 ∣ ρvρ1,π2(y) = r
π1,π2
1 (y) + Lπ1,π2vρ1,π2(y)}. (4.3.7)

In a similar way, for a fixed π1 ∈ Π1 and vρ2,π1 as in (4.3.6), let

S2(π1) ∶= {π2 ∈ Π2 ∣ ρvρ2,π1(y) = r
π1,π2
2 (y) + Lπ1,π2vρ2,π1(y)}. (4.3.8)

These sets will be called sets of optimal responses. The following proposition shows
important properties of the sets of optimal responses, S1(π2) and S2(π1).

Proposition 4.15. Under Assumptions 4.1, 4.7 and 4.11, the sets of optimal re-
sponses are convex compact sets for each π1 ∈ Π1 and π2 ∈ Π2.

Proof. First, let us show that S1(π2) and S2(π1) are closed sets. Let {πn∗1 }∞n=1 be a

sequence in S1(π2) such that πn∗1

W
Ð→ π∗1 . From 4.3.7 we have that, for each n ⩾ 1,

vρ1,π2(y) = r
πn∗1 ,π2
1 (y) + Lπ

n∗
1 ,π2vρ1,π2(y).

Letting n→∞ and using Proposition 4.14 yields

vρ1,π2(y) = r
π∗1 ,π2
1 (y) + Lπ

∗

1 ,π2vρ1,π2(y), (4.3.9)

which implies that π∗1 belongs to S1(π2), that is, S1(π2) is closed. A similar
argument gives that S2(π1) is closed. Now, since Π1 and Π2 are compact sets, then
S1(π2) and S2(π1) are compact sets. Finally, from [16, Lemma 4.6] we get that both
sets S1(π2) and S2(π1) are convex. ∎

Finally, using all previous assumptions and results, we can present the following
result.
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Theorem 4.16. Suppose that Assumptions 4.1, 4.7 and 4.11 hold. Then there exist
a Nash equilibrium (π∗1 , π

∗
2) ∈ Π1 ×Π2 for the ρ-discounted payoff game.

Proof. From Proposition 4.13 we obtain that the sets S1(π2) and S2(π1) are non-
empty for each π2 ∈ Π2 and π1 ∈ Π1, respectively. Define the multifunction
F ∶ Π1 ×Π2 ←→ 2Π1×Π2 as

F (π1, π2) ∶= S1(π2) × S2(π1). (4.3.10)

We show that there exist a fixed point of F .

Let (π′1, π
′
2) ∈ Π1 ×Π2 be an arbitrary fixed pair of strategies. Using Proposition

4.13 we obtain that there exist a pair of strategies (δ∗
f11
, δ∗
f12
) ∈ Π1×Π2 that belongs to

F (π′1, π
′
2). Inductively , we can get two sequences of strategies {δ∗fn1 }n⩾1 and {δ∗fn2 }n⩾1

such that (δ∗fn1 , δ
∗
fn2

) ∈ F (δ∗
fn−11

, δ∗
fn−12

); that is, for every y ∈ Rm,

ρvn−1
1 (y) = r

δ∗
fn
1
,δ∗
fn−1
2

1 (y) + L
δ∗
fn
1
,δ∗
fn−1
2 vn−1

1 (y) (4.3.11)

= sup
π1∈Π1

{r
π1,δ

∗

fn−1
2

1 (y) + L
π1,δ

∗

fn−1
2 vn−1

1 (y)} (4.3.12)

and

ρvn−1
2 (y) = r

δ∗
fn−1
1

,δ∗
fn
2

2 (y) + L
δ∗
fn−1
1

,δ∗
fn
2 vn−1

2 (y) (4.3.13)

= sup
π2∈Π2

{r
δ∗
fn−1
1

,π2

2 (y) + L
δ∗
fn−1
1

,π2
vn−1

2 (y)} (4.3.14)

Since Π1×Π2 is compact, there exist a subsequence (δ∗
f
nk
1

, δ∗
f
nk
2

) ≡ (δ∗fn1 , δ
∗
fn2

) such that

(δ∗fn1 , δ
∗
fn2

)
W
Ð→ (π∗1 , π

∗
2) for some (π∗1 , π

∗
2) ∈ Π1×Π2. Taking limit as n→∞ in equations

(4.3.11)-(4.3.14), Proposition 4.14 allows us to show the existence of two functions
v1 and v2, both belonging to W2,p(Rm) ∩Bw(Rm), that satisfy

ρv1(y) = r
π∗1 ,π

∗

2
1 (y) + Lπ

∗

1 ,π
∗

2v1(y) ∀y ∈ Rm

= sup
π1∈Π1

{r
π1,π

∗

2
1 (y) + Lπ1,π

∗

2v1(y)}

and

ρv2(y) = r
π∗1 ,π

∗

2
2 (y) + Lπ

∗

1 ,π
∗

2v2(y) ∀y ∈ Rm

= sup
π2∈Π2

{r
π∗1 ,π2
2 (y) + Lπ

∗

1 ,π2v2(y)} .

Finally, from Theorem 3.5 we obtain that (π∗1 , π
∗
2) is a Nash equilibrium in Π1 ×Π2,

with v1 and v2 the value function of player 1 and player 2 respectively. ∎
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Caṕıtulo 4

4.4 Average case

In this case, we have that the payoff function for each player i (i = 1,2) is defined as
in (3.3.2), which is sometimes called ergodic payoff.

Given a pair (π1, π2) ∈ Π1 ×Π2 we define the constant

Ji(π1, π2) ∶= µ
π1,π2(ri(⋅, π1, π2)) = ∫

Rm
ri(y, π1, π2)µπ1,π2(dy), (4.4.1)

in which µπ1,π2 is the function in (4.2.16). Under Assumption 4.11(c) and (4.2.17)
we obtain that, for every (π1, π2) ∈ Π1 ×Π2,

∣Ji(π1, π2)∣ ⩽ ∫
Rm

∣ri(y, π1, π2)∣µπ1,π2(dy) ⩽ 2Mµπ1,π2(w) ⩽ 2M
d

c
, (4.4.2)

which means that Ji(π1, π2) is uniformly bounded in Π1 ×Π2.

Remark 4.17. Notice that under Assumptions 4.1, 4.7, 4.8 and 4.11 the average
payoff function (3.3.2) coincides with the constant Ji(π1, π2) in (4.4.1). Rewriting
(3.3.1) as

J iτ(y, π1, π2) = τJi(π1, π2) + ∫

τ

0
[Eπ1,π2

y rπ1,π2i (y(t)) − Ji(π1, π2)]dt, (4.4.3)

then multiplying both sides of the equation by 1/τ and letting τ →∞, using (4.2.22)
we obtain

Ji(y, π1, π2) = lim inf
t→∞

1

τ
J iτ(y, π1, π2) = Ji(π1, π2) ∀y ∈ Rm. (4.4.4)

From this fact, we can simply refer to (3.3.2) as Ji(π1, π2).

4.4.1 Vanishing discount technique

In this section we present results that prove the existence of a Nash equilibrium for
the long-run average payoff (3.3.2) using the vanishing discount technique as we
saw in Section 3.4

Define, for every y ∈ Rm,

hρ1,π2(y) ∶= v
ρ
1,π2

(y) − vρ1,π2(0) (4.4.5)

and
hρ2,π1(y) ∶= v

ρ
2,π1

(y) − vρ2,π1(0). (4.4.6)

In this case, the fixed state is 0 ∈ Rm.
The following result is a special version of Lemma 3.15. For a proof see Proposi-

tion 4.4 in [14].
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Proposition 4.18. Let R > 0 and ρ > 0 be given numbers. Suppose that Assump-
tions 4.1, 4.7, 4.8 and 4.11 hold. Let {ρn} ⊂ R be a sequence of positive numbers
such that ρn ↓ 0 and a sequence {(πρn1 , πρn2 )} ⊂ Π1 ×Π2 such that (πρn1 , πρn2 ) is a Nash
equilibrium for the ρn-discounted payoff game. Also, suppose that a pair of strategies

(π1, π2) ∈ Π1 ×Π2 is such that (πρn1 , πρn2 )
W
Ð→ (π1, π2) as n→∞. Then:

(a) There exist a constant g1 (depending on π2) and a subsequence {ρ1
n} ⊂ {ρn}

such that

ρ1
nv

ρ1n

1,π
ρ1n
2

(0) Ð→ g1 as ρ1
n → 0.

(b) For some constant K3 > 0, the function hρ
1,πρ2

is such that

∥hρ
1,πρ2

∥W2,p(BR) ⩽K3

holds, where BR ∶= {y ∈ Rm ∶ ∣y∣ < R}.

(c) From (a) and (b) we obtain

∥ρn1h
ρn1

1,π
ρn
1

2

∥W2,p(BR) Ð→ 0 as ρ1
n → 0.

For the second player we have the following.

(d) There exist g2 ∈ R (depending on π1) and a subsequence {ρ2
n} ⊂ {ρn} such that

ρ2
nv

ρ2n
2,π1

(0) Ð→ g2 as ρ2
n → 0.

(e) For some constant K4 > 0, the function hρ2,π1 satisfies

∥hρ
2,πρ1

∥W2,p(BR) ⩽K4.

(f) Using (d) and (e) we obtain

∥ρ2
nh

ρ2n

2,π
ρ2n
1

∥W2,p(BR) Ð→ 0 as ρ2
n → 0.

Finally, the last important result of this section says as follows.

Theorem 4.19. Suppose that Assumptions 4.1, 4.7, 4.8 and 4.11 are fulfilled. Let
{ρn}∞n=1 ⊂ R be a sequence of positive numbers such that ρn ↓ 0, let (πρn1 , πρn2 ) ∈ Π1×Π2

be a Nash equilibrium for the ρn-discounted game with the payoff function (4.3.1). If

πρn1

W
Ð→ π∗1 and πρn2

W
Ð→ π∗1 as ρn ↓ 0 then (π∗1 , π

∗
2) is a Nash equilibrium for the game

with ergodic payoff function given by (3.3.2).
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Proof. Let (πρn1 , πρn2 ) be a Nash equilibrium for the ρn-discounted case. Since
πρn1 is an ρn-discounted optimal response to πρn2 , which means that πρn1 ∈ S1(π

ρn
2 )

(analogously πρn2 belongs to S2(π
ρn
1 )), using Proposition 4.13 we obtain that the pair

(πρn1 , πρn2 ) satisfies,

ρnv
ρn
1,πρn2

(y) = r
πρn1 ,πρn2
1 (y) + Lπ

ρn
1 ,πρn2 vρn

1,πρn2
(y)

= sup
π1∈Π1

{r
π1,π

ρn
2

1 (y) + Lπ1,π
ρn
2 vρn

1,πρn2
(y)}

and

ρnv
ρn
2,πρn1

(y) = r
πρn1 ,πρn2
2 (y) + Lπ

ρn
1 ,πρn2 vρn

2,πρn1
(y)

= sup
π2∈Π2

{r
πρn1 ,π2
2 (y) + Lπ

ρn
1 ,π2vρn

2,πρn1
(y)} .

Replacing hρn
1,πρn2

and hρn
2,πρn1

from (4.4.5) and (4.4.6) in the previous equations we

obtain,

ρnv
ρn
1,πρn2

(0) = r
πρn1 ,πρn2
1 (y) + Lπ

ρn
1 ,πρn2 hρn

1,πρn2
(y) − ρnh

ρn
1,πρn2

(y)

= sup
π1∈Π1

{r
π1,π

ρn
2

1 (y) + Lπ1,π
ρn
2 hρn

1,πρn2
(y)} − ρnh

ρn
1,πρn2

(y) ∀y ∈ BR (4.4.7)

and

ρnv
ρn
1,πρn2

(0) = r
πρn1 ,πρn2
2 (y) + Lπ

ρn
1 ,πρn2 hρn

2,πρn1
(y) − ρnh

ρn
2,πρn1

(y)

= sup
π2∈Π2

{r
πρn1 ,π2
2 (y) + Lπ

ρn
1 ,π2hρn

2,πρn1
(y)} − ρnh

ρn
2,πρn1

(y) ∀y ∈ BR. (4.4.8)

Let {ρ1
n} and {ρ2

n} be the subsequences of {ρn} whose existence was proved in
Proposition 4.18(a),(c). From parts (a), (c), (d) and (f) of said result we obtain
that, for R > 0 fixed:

ρ1
nv

ρ1n

1,π
ρ1n
2

(0) Ð→ g1, ρ2
nv

ρ2n

1,π
ρ2n
2

(0) Ð→ g2, (4.4.9)

and

ρ1
nh

ρ1n

1,π
ρ1n
2

(y) → 0, ρ2
nh

ρ2n

2,π
ρ2n
1

(y) → 0, in W2,p(BR), (4.4.10)

as ρn → 0.

Proposition 4.18 and equations (4.4.5) and (4.4.6) yield that the hypothesis of
Theorems 5.3-5.5 from [14] hold, which allows interchanging limits with the supre-
mum and the infinitesimal operator. These theorems together with (4.4.9) and
(4.4.10) enable us to assert the existence of two functions h1,π∗2

, h2,π∗1
∈ W2,p(BR)
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such that, if ρn → 0 and (πρn1 , πρn2 )
W
Ð→ (π∗1 , π

∗
2), then hρn

1,πρn2
→ h1,π∗2

and hρn
2,πρn1

→ h2,π∗1

uniformly on BR. Moreover,

g1 = r
π∗1 ,π

∗

2
1 (y) + Lπ

∗

1 ,π
∗

2h1,π∗2
(y) (4.4.11)

= sup
π1∈Π1

{r
π1,π

∗

2
1 (y) + Lπ1,π

∗

2h1,π∗2
(y)} ∀y ∈ BR (4.4.12)

and

g2 = r
π∗1 ,π

∗

2
2 (y) + Lπ

∗

1 ,π
∗

2h2,π∗1
(y) (4.4.13)

= sup
π2∈Π2

{r
π∗1 ,π2
2 (y) + Lπ

∗

1 ,π2h2,π∗1
(y)} ∀y ∈ BR. (4.4.14)

The same argumentation can be done to extend to all of y ∈ Rm due to the fact that
R > 0 was arbitrary. Now, since the previous convergence was uniform, we can claim
that h1,π∗2

and h2,π∗1
are in W2,p(Rm) (see [14, Proposition 5.1]).

Finally, using (4.4.11) and (4.4.14) together with Theorem 3.10 we obtain that
(π∗1 , π

∗
2) is a Nash equilibrium for the average payoff case. ∎
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