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Resumen

La matriz Laplaciana de una gráfica G se define como L(G) = D(G) − A(G) donde
A(G) es la matriz de adyacencia de G y D(G) su matriz de grados. El grupo cŕıtico
de G, denotado por K(G), es la parte de torsión del cokernel de L(G). En ésta tesis
tratamos con dos generalizaciones de dicha definición. Definimos la Laplaciana gener-
alizada de una gráfica G con n vertices como la matriz L(G,XG) = D(XG) − A(G)
donde XG es un conjunto de n variables indeterminadas indexadas por los vertices de
G. Como L(G,XG) es una matriz con entradas en Z [XG], los ideales determinantes
de L(G,XG) son ideales sobre Z [XG] los que llamamos ideales cŕıticos de G, nuestra
primera generalización de grupos cŕıticos. En ésta tesis estudiamos los ideales cŕıticos
de las gráficas umbral.

Ahora definamos la segunda generalización, una gráfica aritmética es una tripleta
(G,d , r), dada por una gráfica G y un par de vectores d , r ∈ NV tales que

gcd(dv ∈ V (G)) = 1 y L(G,d )rt = 0t

Dada una gráfica aritmética (G,d , r), decimos que el par (d , r) es una estructura
aritmética de G, nuestra segunda generalización de un grupo cŕıtico de una gráfica,
y en ésta tesis de maestŕıa estudiamos este concepto y como calcular las estructuras
aritméticas para una gráfica dada.

Para resumir, en esta tesis, se realiza un primer acercamiento al estudio de ideales
cŕıticos de gráficas umbrales usando, más precisamente, una familia base de gráficas
umbrales {Tn }n≥ 1

. Por otro lado, trabajaremos con el cáclculo de las estructuras
aritméticas de una gráfica conexa en general.
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Abstract

The Laplacian matrix of a graph G is defined as L(G) = D(G) − A(G) where A(G)
is the adjacency matrix of G and D(G) his degree matrix. The critical group of G,
denoted K(G), is the torsion part of the cokernel of L(G). In this thesis we deal with
two generalizations of this definition. We define the generalized Laplacian matrix of a
graph G with n vertices as the matrix L(G,XG) = D(XG)−A(G) where XG is the set
of n undetermined variables indexed by the vertices of G. Since L(G,XG) is a matrix
with entries over Z [XG], the determinantal ideals of L(G,XG) are ideals on Z [XG]
which we call critical ideals of G, our first generalization of critical groups. In this
master thesis we study the critical ideals of Threshold graphs.

Now let us define the second generalization, an arithmetical graph is a triplet (G,d , r),
given by a graph G and a pair of vectors d , r ∈ NV such that

gcd(dv ∈ V (G)) = 1 and L(G,d )rt = 0t

Given an arithmetical graph (G,d , r), we say that the pair (d , r) is an arithmetical
structure of G, our second generalizing of a critical group of a graph, and in this mas-
ter thesis we study this concept and how to compute the arithmetical structures for a
given graph.

For summarize, in this work, we do a first approach to the study of critical ideals of
Threshold Graphs using, more precisely, a base family of Threshold Graphs {Tn }n≥ 1

.
On the other hand we work with the calculation of arithmetic structures of a general
connected graph.
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Chapter 1

Introduction

There are two main purposes on this master thesis. One is the study of arithmetic
structures of graphs, their properties and how to compute them for a given graph. The
other purpose is to give a first approach to the critical ideals of threshold graphs.

Given a multigraph G = (V,E), its generalized Laplacian matrix is given by

L(G,XG)u,v =

{
xu if u = v,

−mu,v if u 6= v.

where mu,v is the number of arcs between the vertices u and v and

XG = {xu |u ∈ V (G)}

is a set of undetermined variables indexed by the vertices of G. For any d ∈ ZV , let
L(G, d) be the integer matrix that result by setting xu = d u on L(G,XG).

Definition 1.0.1. An arithmetical graph is a triplet (G, d, r), given by a graph G and
a pair of vectors d , r ∈ NV such that gcd(d v ∈ V (G)) = 1 and

L(G,d ) r t = 0 t

Given an arithmetical graph (G, d, r) we say that the pair (d, r) is an arithmetical
structure of G.

This concept was introduced by Lorenzini [11].

1



2 Introduction

Theorem 1.0.2 (Lemma 1.6 [11]). There exist only finitely many arithmetical struc-
tures on any connected simple graph.

Given the theorem above, it makes sense to ask about the description of the arith-
metical structures of graphs. Consider

A (G) =
{

(d , r ) ∈ NV (G)
+ × NV (G)

+

∣∣∣ (d , r ) be an arithmetical structure of G
}
.

Given (d , r ) ∈ A (G), let

K(G,d , r ) = ker(rt)
/

ImL(G,d )t

be the critical group of (G,d , r ), which generalize the concept of critical group of G
introduced on [3]. On the other side, we can define our second object of interest.

Definition 1.0.3. Given a graph G with n vertices and 1 ≤ i ≤ n, let

Ii(G,XG) = 〈minorsi(L(G,XG))〉 ⊆ P [XG]

be the i-th critical ideal of G.

Note that in general the critical ideals depend on the base ring P , in this work we
are mainly interested on the case when P = Z. By convention,

Ii(G,XG) = 〈1〉 if i ≤ 0 and Ii(G,XG) = 〈0〉 if i > n.

Clearly In(G,XG) is a principal ideal generated by the determinant of the general-
ized Laplacian matrix. The following is an important invariant that comes from the
definition of critical ideals.

Definition 1.0.4. Let G = (V,E) be a graph. The algebraic co-rank, denoted by γ (G)
of G is the maximum integer i such that Ii(G,XG) is trivial.

Note that for every H induced subgraph of G we have that Ii(H,XH) ⊆ Ii(G,XG)
for all 1 ≤ i ≤ |V (H)|, and in consequence γ (G) ≤ γ (H). In particular we are
interested on the critical ideals of the class of threshold graphs.

Definition 1.0.5. A graph T = (V,E) is called a threshold graph if it can be constructed
from K1 (the trivial graph) by any finite sequence of the following two graph operations:
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i) adding an isolated vertex v ′ to the graph.

ii) add a dominant vertex v ′, i.e., a vertex adjacent to every other vertex of the
graph.

To be more specific we work with a special class of threshold graphs.

Definition 1.0.6. Let Tn be the threshold graph define as follows

Tn =

{
K2, if n = 1,

c(Tn−1 + v), if n>1 .

where c(G) is the cone graph (see definition 2.2.4) of G.

The family of graphs {Tn}n≥1 described above is a type of ”basis” for all threshold
graphs, in the sense that every such graph can be built from some graph T n by explod-
ing vertices, this is, by adding weak and strong twin vertices to it.
Threshold graphs have an important role in graph theory and in several applied ar-
eas such as psychology, computer science, scheduling theory, etc [12], They where
studied and ”discovered” simultaneously by Chavatal and Hammer (whom coined the
name ”threshold graphs”); Henderson and Zalcstein, discovered the same graphs and
called them PV-chunk definable graphs, motivated by applications in synchroniz-
ing parallel processes [9]. Ecker and Zaks discovered these graphs independently and
investigated them for their use in graph labeling as applied to open shop scheduling.





Chapter 2

Preliminars

2.1 Commutative Algebra

First of all, we need to introduce the ideas and concepts of commutative algebra that
its use on this work.

2.1.1 Gröbner Basis

The Theory of Gröbner basis deals, generally, with ideals in a polynomial ring over a
field. However, in this work we manage with a polynomial ring over the integers.
We recall some basic concepts on Gröbner basis, for more details see [12]. First, let P
be a principal ideal domain. A monomial order or order term in the polynomial ring
R = P [x1, ..., xn] is a total order ≺ in the set of monomials of R such that:

i) 1 ≺ xα for all 0 6= α ∈ Nn, and

ii) if xα ≺ xβ, then xα+γ ≺ xβ+γ, for all γ ∈ Nn,

where xα = xα1
1 , · · · xαn

n .
Now, given an order term ≺ and p ∈ P [X], let lt(p), lp(p), lc(p) be the leading term,
the leading power, and the leading coefficient of p, respectively. Given a subset S of
P [X] its leading term ideal of S is the ideal

Lt(S) = 〈 lt(s)|s ∈ S〉.

A finite set of nonzero polynomials B = { b1, ..., bs} of an ideal I is called a Gröbner
basis of I with respect to an order term ≺ if Lt(B) = Lt(I). Moreover, it is called

5



6 Preliminars

reduced if lc(bi) = 1 for all 1 ≤ i ≤ s and no nonzero term in bi is divisible by any
lp(bj) for all 1 ≤ i 6= j ≤ s.
A good characterization of Gröbner basis is given in terms of the so called S-polynomials.

Definition 2.1.1. Let f, f
′

be polynomials in P [X] and B be a set of polynomials in
P [X]. We say that f reduces strongly to f ′ modulo B if

• lt(f ′) ≺ lt(f), and

• there exists b ∈ B and h ∈ P [X] such that f ′ = f − hb.

Moreover, if f ∗ ∈ P [X] can be obtained from f in a finite number of reductions, we
write f →B f

∗.

That is, if f =
∑t

j=1 pijbij + f ∗ with pij ∈ P [X] and lt(pijbij) 6= lt(pikbik) for all
j 6= k, then f →B f

∗.
Now, given f and g polynomials in P [X], their S-polynomial, denoted by S(f, g), is
given by

S(f, g) =
c

cf

X

Xf

f − c

cg

X

Xg

g,

where Xf = lt(f), cf = lc(f), Xg = lt(g), cg = lc(g), X = lcm(Xf , Xg), and
c = lcm(cf , cg).
The next Lemma, known as Buchberger’s criterion, gives us a useful criterion for check-
ing whether a set of generators of an ideal is a Gröbner basis.

Lemma 2.1.2. Let I be an ideal of polynomials over a PID and B be a generating set
of I. Then B is a Gröbner basis for I if and only if S(f, g)→B 0 for all f 6= g ∈ B.

The degree lexicographic order is defined as follows.

Definition 2.1.3. Let P [x1, ..., xn], α , β ∈ Nn; then xα ≺ xβ if

i) α1 + · · · + αn < β1 + · · · + βn,

ii) or α1 + · · · + αn = β1 + · · · + βn and exists i = 1, ..., n such that

α1 = β1 , α2 = β2 , . . . , αi−1 = βi−1 and αi < βi.

Which is clearly a monomial order.
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2.1.2 Smith Normal Form

Given a matrix L ∈Mm(Z), the cokernel of L, denoted by coker(L), is defined as

coker(L) = Zm /LZm .

Since Z is a Bézout domain, L is equivalent to a unique diagonal matrix

D = diag(d1, . . . , dk, 0, . . . , 0) with di ∈ Z>0, i = 1, . . . , k and d1| · · · | dk.

Let U, V ∈ GLn(Z) such that ULV = D, since V is invertible U(LZn) = DZn, and
since U is invertible

coker(L) = Zm/LZm
∼=−→ coker(D) = Zm/DZm

∼=−→ T ⊕ Zn−k,

where T = Zk/diag(d1, . . . , dk)Zk is a finite group. T and Zn−r are called the torsion
and the free parts of coker(L) respectively. The unique diagonal matrix D is called
the Smith Normal Form of L.
We understand for r-minor the determinant of an r-square submatrix. Then the Smith
Normal Form diag(d1, . . . , dk, 0, . . . , 0) of L is characterized by

k = max{i|minorsi(L) 6= 0}, and di = gcd(minorsi(L)) for each 1 ≤ i ≤ k,

where minorsi(L) denotes the set of i-minors of the matrix L.

2.2 Graph Theory

2.2.1 The Laplacian Matrix of a Graph

In this section we define and present some properties of the Laplacian matrix of a
graph as well as the critical group of a graph. With that purpose we start defining the
concept of a graph that we are going to need for this section.

Definition 2.2.1. A graph is a pair G = (V,E) where V is a finite set and E is a finite
collection of non-ordered pairs of elements of V . We call the elements of V vertices,
and the elements of E are called edges. The order of G, denoted by |G|, is the number
of vertices of G.
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Let G = (V,E) be a graph and (x, y) ∈ E, the vertices x, y ∈ V are called ends of
the edge (x, y); if x = y, (x, y) is called a loop. We say that two vertices x, y ∈ V are
adjacent if (x, y) ∈ E. To the number of edges that has a vertex x as an end is called
the degree of x and denoted by d(x) or dG(x).

Example 2.2.2. We can use a drawing of the graph for its description, for example if
G = (V,E) is the graph where

V = { v1, v2, v3, v4, v5, v6, v7}

and

E = { (v1, v2), (v1, v2), (v1, v3), (v1, v5), (v1, v7), (v2, v3), (v2, v4), (v2, v7), (v3, v4), (v3, v5), (v4, v5),
(v4, v6), (v4, v7), (v6, v7)}, Then the following is a drawing of the graph G

c1
c2

c3

c4

c5
c6

c7

Note that a pair of vertices can have multiple edges, so for x, y ∈ V is useful to
denote the number of edges between them by mx,y. We call G a simple graph if it has
no loops neither multiple edges, and for now on with graph we refer to simple graphs
unless contrary is stated.

Definition 2.2.3. Let G = (V,E) be a graph, G is called t-regular (t ∈ N) if every
vertex of G has degree equal to t.

Definition 2.2.4. Let G = (V,E) be a graph, we define the cone graph of G, denoted
by c(G), as the graph with

V (c(G)) = V ∪ {u} and E(c(G)) = E ∪ {(u, v) | v ∈ V }

For more information on general graph theory see [8]. Let us now define the Lapla-
cian matrix of a graph.
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Definition 2.2.5. Let G = (V,E) be a graph with |G| = n, we define the Laplacian
matrix of G, by

L(G)u,v =

{
dG(x) if u = v,

−mu,v if u 6= v.

note that L(G) ∈ Zn2

The critical group of a graph

Now we define the critical group of a graph

Definition 2.2.6. Let G = (V,E) be a graph with n vertices, then the critical group,
denoted by K(G), of G is torsion part of the cokernel of the Laplacian matrix L(G),
that is

Zn
/

ImL(G)t = Z ⊕K(G)

Since L(G) has rank n−1 the Smith normal form of L(G) has the form diag(f1, f2, . . . , fn−1, 0),
and

K(G) ∼= Zf1 ⊕ · · · ⊕ Zfn−1 .

The integers f1, . . . , fn−1 are called invariant factors of K(G). Since Z1 is the trivial
group, if fk = 1 for some K = 1, . . . , n − 1 then, we say that K(G) hast at leats
k invariant factors and if fk+1 6= 1 then, we say that K(G) has exactly k invariant
factors. The following is an important known result.

Theorem 2.2.7. If G is a connected graph, then K(G) has order number τ (G) of
spanning trees of G.

2.2.2 Critical Ideals of Graphs

In this section we generalize the concept of Laplacian Matrix and define some new
objects called critical ideals.

Definition 2.2.8. Let G = (V,E) be a graph with |G| = n, we define the generalized
Laplacian matrix of G, by

L(G,XG)u,v =

{
xu if u = v,

−mu,v if u 6= v.
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So now we can define the critical ideals of a graph

Definition 2.2.9. Given a graph G with n vertices, for 1 ≤ i ≤ n, let

Ii(G,XG) = 〈minorsi(L(G,XG))〉 ⊆ P [XG]

be the i-th critical ideal of G.

Definition 2.2.10. Let G = (V,E) be a graph. We define the algebraic co-rank of G as
follows

γ (G) = max{i | Ii(G,XG) = 〈1〉}

the maximum integer i such that Ii(G,XG) is trivial.

Now that γ (G) ≤ n − 1, since In(G,XG) = 〈det(L(G,XG))〉 6= 〈1〉. the algebraic
co-rank of a graph is closely related to the combinatorial properties of the graph.
For instance, if H is an induced subgraph of G, then Ii(H,XH) ⊆ Ii(G,XG) for all
1 ≤ i ≤ |V (H)|, therefore γ (G) ≤ γ (H).
Now, we present an example that illustrates the concept of critical ideal.

Example 2.2.11. Let H be the complete graph with six vertices minus the perfect match-
ing formed by the edges M3 = {v1v4, v2v5, v3v6} and P = Z. Then the following is a
drawing of H,

v5

v4v1

v2

v3 v6

and its generalized Laplacian matrix is

L(H) =


x1 −1 −1 0 −1 −1
−1 x2 −1 −1 0 −1
−1 −1 x3 −1 −1 0
0 −1 −1 x4 −1 −1
−1 0 −1 −1 x5 −1
−1 −1 0 −1 −1 x6


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Using any algebraic system, it is not difficult to see that Ii(H,X) = 〈1〉 for i = 1, 2
and

Ii(H,X) =



〈
2, x1, x2, x3, x4, x5, x6

〉
if i = 3,〈

{xrxs | vrvs ∈ E(H)} ∪ {2xr + 2xs + xrxs | vrvs 6∈ E(H)}
〉

if i = 4,〈
{xkxl(xr + xs + xrxs) | (r, s, k, l) ∈ S(H)} ∪ {p(r,s,k,l) | vrvs, vkvl 6∈ E(H)}

〉
if i = 5,〈

x1x2x3x4x5x6 −
∑

(r,s,k,l)∈S(H) xrxsxkxl − 2
∑

(r,s,k)∈T (H) xrxsxk
〉

if i = 6,

where

S(H) = {(r, s, k, l) | vrvs 6∈ E(H), vkvl ∈ E(H), and {i, j} ∩ {k, l} = ∅},

T (H) are the triangles of H, and

p(r,s,k,l) = (xr + xs)(xk + xl + xkxl) + (xk + xl)(xr + xs + xrxs).

Note that the expressions of the critical ideals of H depend heavily on their combina-
torics and note that the algebraic co-rank of H then is 2.

Critical Ideals of Graphs with Twin Vertices

In this section we briefly describe the critical ideals of graphs with twin vertices, for
this, we define what we mean with twin vertices.

Definition 2.2.12. Given a graph G = (V,E) and a vertex v ∈ V , the duplication
d(G, v) of v is the graph obtained from G by adding to V a new vertex x and the arcs
xu : u ∈ N(v) ; and the replication of v r(G, v) is the graph given by d(G, v) with the
extra edge e = xv.

So, the vertex x, in the above definition of duplication and replication is called a
weak or strong twin vertex of v, respectively.
Now, let d ∈ Z|V |, then Gd is the graph obtained from ”duplicating” the vertex v, dv
times, if dv > 0 and ”replicating” it −dv times if dv < 0.
Given a graph G and δ ∈ {0, 1,−1 }|V |, let

τδ (G) = {Gd : d ∈ Z|V | such that supp( d ) = δ }

where

supp( d )v =


−1, if dv < 0

1, if dv > 0

0, otherwise
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With what we know about critical ideals of graphs with twin vertices [1], we
have then the following corollary:

Corollary 2.2.13. If G is a multigraph with n vertices, then γ (Gd) ≤ n for all d ∈ Zn.
Furthermore γ (Gd) = γ (Gsupp(d)).

Proof. Let γ = γ (Gδ) and d ∈ Zn such that supp(d) = δ. Then

Iγ+1 (Gδ, X) ⊆ 〈 {xv0 , xv1 : dv = 1 } , {xv0+1, xv1+1 : dv = −1 } , Iγ+1 (G,X) |X=φ (δ) 〉, and

Iγ+1 (G,X) |X=φ (δ) 6= 〈 1 〉.

On the other side, given that (xv p) |xv=0 = 0 and ((xv + 1)p) |xv=−1 = 0 for every
p ∈ P [X], then,

Iγ+1 (Gδ, X) |X=φ (d− δ) ⊆ Iγ+1 (G,X) |X=φ (d) 6= 〈 1 〉

Now, applying the theorem to Gδ and d − δ, we have that

Iγ+1 ((Gδ)d− δ, X) = Iγ+1 (Gd, X) 6= 〈 1 〉 ∀d with supp(d) = δ,

this is, γ (Gd) = γ (Gδ) with supp(d) = δ.
Finally, note that In+1 (G,X) = 〈 0 〉, therefore

In+1 (Gd, X) ⊆ 〈 {xv0 , . . . , xvdv : dv ≥ 1} , {xv0+1, . . . , xvdv+1 : dv ≤ −1} 6= 〈 1 〉.

2.2.3 Arithmetical Structures of Graphs

Now we present the concept of arithmetical structure of a graph, in which we use the
generalize Laplacian matrix of a graph as well.

Definition 2.2.14. An arithmetical graph is a triplet (G,d, r), given by a graph G and
a pair of vectors d , r ∈ NV+ such that gcd{r v | v ∈ V (G)} = 1 and

L(G,d ) r t = 0 t

Given an arithmetical graph (G, d, r) we say that the pair (d, r) is an arithmetical
structure of G.
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Remark 2.2.15. Note that any graph G has a canonical arithmetical structure, given
by ( d , r ) = (degG,1 ), where degG ∈ N|V (G)| is the vector of degrees of G, i.e.,
degGv = dG(v).

The concept of arithmetical graphs was introduced by Lorenzini as some intersection
matrices that arise in the study of degenerating curves in algebraic geometry [11].
One of the most important result given in [11] is that the number of arithmetical
structures of a simple connected graph is finite.

Theorem 2.2.16 (Lemma 1.6 [11]). There exist only finitely many arithmetical struc-
tures on any simple connected graph.

Next proposition gives us some basics properties of Laplacian matrices. These
properties are essentially equivalent to those given in [11, Proposition 1.1 and Corollary
1.3], for connected simple graphs. Let M(u, v) be a |V | − 1 minor of M obtained by
deleting the u-th row and the v-th column.

Proposition 2.2.17. Let ( d , r ) be an arithmetical structure of a connected multigraph
G = (V,E ), then:

i) M has rank equal to |V | − 1 and kerQ (M ) = 〈 r 〉.

ii) Exist a positive integer m such that adj (M ) = m r rt.
Furthermore, m = det (M(u, v) ) ( ru rv )−1.

iii) The cokernel of M is a finite generated abelian group of the form Z⊕ Φ (G) where
Φ (G) is a finite group order m.

Remark 2.2.18. Note that the condition kerQ (M) = 〈 r 〉 is equivalent to gcd {rv | v ∈
V } = 1. Thus, by proposition 2.2.17 (i), in any arithmetical structure ( d , r ) we may
assume that kerQ (M) = 〈 r 〉.

In the appendix A.1 of this thesis we show a simple algorithm to compute the
arithmetical structures of a given graph and in section 3.3.3 we list the arithmetical
structures of graphs with n ≤ 5 vertices.
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M-Matrices

In this part we recall the classical concept of M-matrix and we introduce a new class of
M-matrices whose proper principal minors are positive, which are called almost non-
singular M-matrices, see [2, Theorem 6.4.16, pag 156]. After that we introduce the
following set,

Aα(M) = {d ∈ Nn+ | A = diag(d)−M is an M -matrix and det(A) = α }

for any α > 0 and a non-negative integral n × n matrix M with all the diagonal entries
equal to zero. We prove that Aα(M) is finite for all α > 0, see theorem 2.2.23. In
the following, matrix always means square matrix. Recall that a real matrix is called
non-negative if all their entries are non-negative real numbers.
We begin by recalling the classical definition of a M-matrix.

Definition 2.2.19. A real matrix A is said to be an M-matrix if

A = α I −M,

for some non-negative matrix M with α ≥ ρ(M).

Where ρ(M) is the spectral radius of the square matrix M and is defined by

ρ(M) = max { |λ | | λ ∈ σ (M) },

where σ(M) is the spectrum of M , that is, the set of complex eigenvalues of M . It
turns out that a M -matrix A = α −M is singular if and only if α = ρ(M). The class
of M-matrices admit many equivalent definitions, for instance Berman [2] enlists more
than 80 ways to characterize M -matrices.

The study of M -matrices is divided in two big parts: non-singular M -matrices (see
[2, Section 6.2]) and singular M -matrices (see [2, section 6.4]). Singular M -matrices
have been more difficult to study that non-singular M -matrices. M -matrices are very
important in a broad range of mathematical disciplines. The book by Berman and
Plemmons, [2], studies non-singular and singular M-matrix. Recently M -matrices have
been studied in the context of chip-firing games, see [10] and the references contained
there.
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Since a M -matrix A = (ai,j) is equal to α I −M with M non-negative, it turns
out that ai,j ≤ 0 for all i 6= j and ai,i ≥ 0. A real matrix which satisfies these last
conditions is called a L-matrix. In this paper we restricted our attention to the next
subclass of singular M -matrices.

Definition 2.2.20. A real matrix A = (ai,j ) is called an almost non-singular M-matrix
if A is a Z-matrix (ai,j ≤ 0 for all i 6= j) and all the proper principal minors are
positive.

A very important fact of an arithmetical graph is that its associated Laplacian
matrix is singular of maximal rank. It is well known that Z-matrix is a non-singular
M -matrix if and only if all its proper principal minors are positive and is a singular M-
matrix if and only if all its proper principal minors are non-negative. In this sense, the
class of almost non-singular M -matrices is between the class of singular M -matrices
and non-singular M -matrices. For example, a singular irreducible M-matrix is an
almost non-singular M -matrix, see [2, Theorem 6.4.16, pag. 156]. The class of almost
non-singular M -matrices admit the next characterization.

Theorem 2.2.21. If M = (mi,j) ∈Mn×n is a real Z-matrix, then the following condi-
tions are equivalent:

(a) M is an almost non-singular M-matrix.

(b) M +D is a non-singular M-matrix for any diagonal matrix D 
 0.

(c) det(M +D) 
 det(M +D
′
) ≥ 0 for all the diagonal matrices D 
 D

′ ≥ 0.

The proof can be found in [6, Theorem 2.3]. Using any algebraic computational
system like Sage, Macaulay, Maple or Mathematica is not difficult to check whether a
matrix is indeed an M -matrix or it is not. In particular it is interesting how to check
if a specific Z-matrix is or not an M -matrix.

Remark 2.2.22. Let M be a real Z-matrix and

fM(x) = det(M + diag(x1, . . . , xn)) ∈ R[x1, . . . , xn].

Then M is an M-matrix (non-singular M-matrix) if and only if the coefficients of the
polynomial fM are non-negative (positive). In a similar way, M is an almost non-
singular M-matrix if and only if all the coefficients except maybe the constant term of
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the polynomial fM are positive. For instance, if

M =

 1 −1 0
0 1 −1
−1 −1 2

 ,

then fM(x) = x1x2x3 + 2x1x2 + x1x3 + x2x3 + x1 + 2x2 + x3. Thus, M is an almost
non-singular matrix M-matrix, but not a non-singular M-matrix.

Given α ≥ 0 and a non-negative integral n × n matrix M with all the diagonal
entries equal to zero, let

A≥α(M) = {d ∈ Nn+ | A = diag(d)−M is an M -matrix and det(A) ≥ α}.

Therefore, let Aα(M) = {d ∈ A≥α(M) | det(diag(d) −M) = α}. This set is closely
related to the set of arithmetical structures of a graph. More precisely is related to
the case when M is equal to the adjacency matrix of G and α = 0. If M is an almost
non-singular M -matrix, then by [6, Theorem 2.3] we have that

A≥α(M) = Aα(M) + (N+ ∪ 0)n.

That is, A≥α(M) is a monoid and infinite. But now, what about the finiteness of
Aα(M)?

Theorem 2.2.23. If M is a non-negative integral matrix, then Aα(M) is finite for
any α > 0.

Proof. We claim that

Aα(M) ⊆ minA≥α(M) = {d ∈ A≥α(M) | if d
′ ≤ d for some d

′ ∈ Nn
+, then d

′
= d}.

Lets prove this by contradiction, let d ∈ Aα(M) and assume that d /∈ minA≥α(M).
This means that exist e ∈ A≥α(M) such that e 
 d. Since

det(diag(e)−M) ≥ α > 0, then diag(e)−M is a non-singular M -matrix.

By theorem [6, Theorem 2.3], det(diag(d) −M) > det(diag(e) −M) ≥ α, which is a
contradiction since det(diag(d)−M) = α.
Now, since A≥α(M) ⊆ Nn+, we have (by Dickson’s lemma) that minA≥α(M) is finite
and then Aα(M) is also finite.
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Example 2.2.24. If

M =

 0 1 1
1 0 1
0 1 0

 ,

then A6(M) = {(3, 2, 2)t, (2, 2, 3)t} and minA≥6 = {(3, 2, 2)t, (2, 3, 2)t, (2, 2, 3)t}.

The special case of Aα(M) when α is equal to zero is more difficult to treat. For
example, if M is reducible, then A0(M) can be infinite, as next example shows.

Example 2.2.25. Let

M =


0 0 1 0
1 0 1 1
1 0 0 0
1 1 1 0


Is not difficult to check that {(1, x, 1, y)t|x, y ∈ N+} ( A0(M). That is A0(M) is
infinite. On the other hand, since

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0




0 0 1 0
1 0 1 1
1 0 0 0
1 1 1 0




0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0


t

=


0 1 1 1
1 0 1 1
0 0 0 1
0 0 1 0

 ,

we have that M is reducible.

2.3 Threshold Graphs

We start this section with the following

Definition 2.3.1. We define the set of Threshold Graphs as the family of all graphs
that fulfill the following properties:

i) K1 (the trivial graph) is a threshold graph.

ii) If G is a threshold graph, then G+ v, with v /∈ V (G), is a threshold graph.

iii) If G is a threshold graph, then c(G), the cone graph of G, is a threshold graph.

Remark 2.3.2. An important result is that G is a threshold graph if and only if G is
C4, P4, and 2K2-free. This also explains why threshold graphs are closed under taking
complements; because the complement of C4 is 2K2 and P4 is self-complementary.
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2.3.1 A characterization of Threshold Graphs

From the next theorem is an easy exercise to prove that one can check if a graph is a
threshold graph or if it is not in linear time.

Theorem 2.3.3 (Golumbic, [9]). Let G = (V,E) be a graph with degree partition
V = D0 +D1 + . . . +Dm. Then the following statements are equivalents:

(a) G is a threshold graph.

(b) There exist a labeling c : V −→ N of V and t ∈ R such that for every pair of
vertices x, y ∈ V, x 6= y.

xy ∈ E ⇐⇒ c(x) + c(y) > t;

(c) for every pair of vertices x 6= y, with x ∈ Di, y ∈ Dj,

xy ∈ E ⇐⇒ i+ j > m;

(d) The following recursions are satisfied:

δi+1 = δi + |Dm−i |, (i = 0, 1, . . . , b m
2
c − 1)

δi = δi+1 − |Dm−i | , (i = m,m− 1, . . . , b m
2
c ,+1)

We already defined a general threshold graph (2.3.1), but we just give a fine char-
acterization of threshold graphs, so that we can define a particular family {Tn}n≥1

of
threshold graphs that we can see as a base (in a certain way) for any threshold graph.

Definition 2.3.4. Let Tn be the threshold graph generated by adding an isolated vertex
and then another vertex adjacent to all the previous vertices (cone graph), this is,

Tn =

{
K2, if n = 1,

c(Tn−1 + v), if n > 1.

Remark 2.3.5. Note that |V (Tn)| = 2n and |E(Tn)| = n2.
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v1 v2 v1 v2

v3

v4

v1 v2

v4

v6

v3

v5

T1 T2 T3

Figure 2.1: The first three graphs in {Tn}n≥1.

If we write the Laplacian matrix of Tn giving the same order to columns and rows
that we give to the vertices of Tn in its construction, L(Tn) does not have a nice form,
but if we put the vertices (on rows and columns) in increasing order with respect to
their degrees we have the following visualization of the Laplacian matrix of Tn,

L(Tn) ≡

v2n−1 v2n−3 · · · v3 v1 v2 v4 · · · v2n−2 v2n

v2n−1
v2n−3

...
v1
v3
v2
v4
...

v2n−2
v2n



x2n−1 0 · · · 0 0 0 0 · · · 0 −1
0 x2n−3 · · · 0 0 0 0 · · · −1 −1
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · x3 0 0 −1 · · · −1 −1
0 0 · · · 0 x1 −1 −1 · · · −1 −1
0 0 · · · 0 −1 x2 −1 · · · −1 −1
0 0 · · · −1 −1 −1 x4 · · · −1 −1
...

...
. . .

...
...

...
...

. . .
...

...
0 −1 · · · −1 −1 −1 −1 · · · x2n−2 −1
−1 −1 · · · −1 −1 −1 −1 · · · −1 x2n



Corollary 2.3.6. Every connected threshold graph can be represented by a graph of the
form Td

i for some i ∈ N, and with d ∈ Z|V | such that:

(a) dv2k+1
≥ 0, with k ≥ 0 and,

(b) dv2k ≤ 0, with k ≥ 1.
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Furthermore, every such graph is indeed a connected threshold graph

Therefore any threshold graph can be obtained from Tn for some n ∈ N by du-
plicate and replicating vertices, i.e., by strong and weak twins (of the odd and even
vertices respectively).

The following picture shows the general visualization of a Threshold graph with an
odd number of partitions.

D1

D2

D3

Db n
2
c−1

Db n
2
c Dd n

2
e

Dd n
2
e+1

Dn−3

Dn−2

Dn−1

And the following figure shows the general visualization of a threshold graph with an
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even number on his partition of degrees.

D1

D2

D3

Dn
2
−1

Dn
2

Dn
2
+1

Dn−3

Dn−2

Dn−1

Let us think of the vertex-sets on the figure above as single vertices except for the
Dn

2
set, which we replace for two vertices, then we have the Tn graph. From where we

can interpret the last corollary.





Chapter 3

Computing Arithmetical Structures of
Graphs

3.1 Properties of Arithmetical Structures of Graphs

We know that given any connected graph G, there exist only finitely many arithmetical
structures of such graph [Theorem 2.2.14], therefore a natural way to proceed is to try
to describe all the possible arithmetical structures that a graph may have. In this
section we address this problem and present various different interesting properties of
this objects.
Let us write the set of all arithmetical structures of a connected simple graph G as
A (G), and let us remind that the critical group of G, K(G), is defined as the torsion
subgroup of the cokernel of L(G), see sections 2.1.2 and 2.2.1. Arithmetical Structures
of a graph G and its critical group are closely related because the matrix L(G,d )
where (d , r ) is an arithmetical structure of G share many properties with the Laplacian
matrix of G.
Now, the definition of critical group can be generalized to any arithmetical graph, more
precisely, given (d , r ) an arithmetical structure of a graph G, let

K(G,d , r ) = ker(rt)
/

ImL(G,d)t (3.1)

be the critical group of the arithmetical graph (G,d , r ). In a similar way that for
the cokernel of L(G), this new definition is closely related to the critical ideals of the
graph (the determinantal ideals associated to the generalized Laplacian matrix, see

23
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2.2.2). Furthermore, by [5, Propositions 3.6 and 3.7] we can recover the critical group
of (G,d , r ) as an evaluation of the critical ideals of the graph. Also, given an integer
matrix M its critical group K(M) is defined as the torsion part of its cokernel.
Now, we present the theory that we need to generalize the proposition 2.2.17 to any
integer irreducible n× n matrix M such that there exists r ∈ Nn+ with Mrt = 0t.
Given a connected graph G = (V,E), we define the set of arithmetical structures of a
graph, let

A(G) = {(d, r) ∈ NV (G)
+ × NV (G)

+ | (d, r) is an arithmetical structure of G}.

By prop. 2.2.17(i) we have that for any d ∈ Nn+ such that L(G,d) is singular there
exist a unique r ∈ Nn+ such that kerQ(L(G,d)) = 〈r〉. In general this is true if and
only if M is irreducible. Therefore sometimes will be useful to define the set of the d′s
and the r′s separately. Given a connected multigraph G = (V,E), let

D(G) = {d ∈ Nn+ | (G,d, r) is an arithmetical graph for some r ∈ Nn+} and

R(G) = {r ∈ Nn+ | (G,d, r) is an arithmetical graph for some d ∈ Nn+}.

This definition can be generalized even further to any non-negative matrix M .

Definition 3.1.1. Given a non-negative integer n × n matrix M with all the diagonal
entries equal to zero, let

A(M) = {(d, r) ∈ Nn+ × Nn+ | [diag(d)−M ]rt = 0t and gcd{rv | v ∈ V } = 1}.

Remark 3.1.2. Let us make a few remarks. (i) It is clear that A(G) = A(A(G)); (ii)
{d|(d, r) ∈ A(M)} and; (iii) in general A(M) = A(M − diag(M)) + (diag(M), 0)
therefore we can assume without loss of generalization that M is a non-negative matrix
with zero diagonal.

The next result is the beginning towards the generalization of theorem 2.2.14 to
the general case of a multigraph.

Theorem 3.1.3 (Theorem 3.4, [6]). Let M is a Z-matrix. If there exists r > 0 such
that Mrt = 0t, then M is a M-matrix. Morover, M is almost non-singular M-matrix
with det(M) = 0 if and only if M is an irreducible and there exists r > 0 such that
Mrt = 0t.

An important immediate consequence of this theorem is the following result.
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Corollary 3.1.4. If M is an irreducible Z-matrix, then there exists r > 0 such that
Mrt = 0 if and only if there exists s > 0 such that M tst = 0.

Proof. The result follows from the fact that M is irreducible almost non-singular M -
matrix with det(M) = 0 if and only if M t is irreducible almost non-singular M -matrix
with det(M t) = 0.

Now let us present a way to compute the adjoint matrix of M in function of r and
s.

Proposition 3.1.5. Let M be a Z-matrix. Then M is an almost non-singular M-matrix
with det(M) = 0 if and only if r > 0 and

Adj(M) = |K(M) | rst > 0,

where kerQ(M) = 〈r〉 and kerQ(M t) = 〈s〉.

Another possible characterization of an almost non-singular M -matrix is that its
principal submatrices of maximal size (Mi,i = M [ic, ic]) are non-singular M -matrices.
The converse of this is in the next result.

Proposition 3.1.6. If M is anon-singular M-matrix, then there exists an irreducible
almost non-singular M-matrix M

′
with det(M

′
) = 0 such that M

′
1,1 = M .

Remark 3.1.7. The last proposition means that, in some sense, any non-singular M-
matrix can be extended to a graded M-matrix. Moreover, some of its associated ideals,
as its matrix ideal, are graded.

Corollary 3.1.8. If (G,d, r) is a strongly connected arithmetical graph, then L(G,d) is
an almost non-singular M-matrix with det(L(G,d)) = 0.

Proof. Let M = L(G,d) = diag(d)− A(G). Since G is strongly connected if and only
if M is irreducible, then the result follows by applying Theorem 3.1.3

If G is a multidigraph, its adjacency matrix A(G) is always a non-negative matrix
with zeros on the diagonal. On the other hand, if M is a non negative matrix with zeros
on the diagonal, then there exists a unique multidigraph GM such that M = A(GM).
The graph GM is called the underlying multidigraph of M . The next theorem use this
correspondence to establish the necessary and sufficient conditions over a non-negative
matrix M in order that A(M) be finite.
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Theorem 3.1.9 ([6], Theorem 3.9). If M is a non-negative matrix with all the diagonal
entries equal to zero, then A(M) 6= ∅. Even more, A(M) is finite if and only if M is
irreducible.

Proof. Let GM be the multigraph such that A(GM) = M . Note that GM is strongly
connected if and only if the underlying graph of M is strongly connected. Because of
Corollary 3.1.8 we only need to prove that GM has at least one arithmetical structure.
Let d ∈ NV (GM )

+ be the vector defined by

dv =


1, if

∑
ω∈V (GM )

Mv,w = 0,

∑
ω∈V (GM )

Mv,w, otherwise.

for each v ∈ V (GM).
It is obvious that the triplet (GM ,d,1) is an arithmetical graph, and then A(M) 6= ∅.
Now we proceed with the second statement of the theorem.
(⇒) We prove this by contradiction. Assuming that M is reducible we can suppose
that

M =

(
A C
0 B

)
where A,B are square matrices of size r× r and s× s respectively and A is irreducible.
If C = 0, then

A(M) = {(ur, vs)|Art = 0t, (r1, . . . , rr) = 1.Bst = 0t, (s1, . . . , ss) = 1, (u, v) = 1}

is infinite. On the other hand, if C 6= 0 and let d ∈ A≥1(A) and L = diag(d) − A. If
(diag(e)−B)s = 0 for some (e, s) ∈ Ns+ with (s1, . . . , ss) = 1, then

(diag(, e)−M)(−vL−1Cs, vs)t = 0 for all d ∈ A≥1(A) and v ∈ N+.

Since d ∈ A≥1(A), L is an irreducible non-singular M -matrix. We have that L−1 > 0
(see [2, Theorem 6.2.7, pag 141]) and since C ≤ 0, then −L−1Cr > 0. Now, since L is
integer, then there exists v ∈ N+ such that

−vL−1Cr = −v 1

det(det(L))
Adj(L)Cr
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is an integer vector. Furthermore, for every d ∈ A≥1(A) (set which is infinite) there
exists v ∈ N+ such that the entries of 1

u
(−vL−1Cs, vs) has greatest common divisor

equal to one, and then A(M) is infinite as well.

(⇐) We claim that

{d | (d, r) ∈ A(M)} ⊆ min(A≥0(M)).

Let (d, r) ∈ A(M) and suppose that there exists e ∈ A≥0(M) such that < d. If we
have that det(diag(e)−M) > 0 we proceed as in the proof of Theorem 2.2.23.
Now, given that M is irreducible, diag(e)−M is a singular and irreducible M -matrix,
and then we also have that diag() −M is an almost non-singular M -matrix, see [2,
Theorem 6.4.16, pag 156]. Thus by Theorem 2.2.21, det(diag(d)−M) > det(diag(e)−
M) = 0; which contradicts the fact that d ∈ A(M).
Therefore, A(M) ⊆ min(A≥0(M)) and together with Dickson’s Lemma we have proved
the result.

Now we present the result we were aiming for, the generalization of Theorem 2.2.14
to multigraphs.

Corollary 3.1.10. If G is a multigraph, then A(G) is finite if and only if G is strongly
connected.

Proof. Since L(G,d) is an almost non-singular M -matrix for each d ∈ D(G), it follows
that D(G) ⊆ A(G). The result follows from the theorem above and the fact that
L(G,0) is irreducible if and only if G is strongly connected.

Remark 3.1.11. It is clear that D(G) ⊆ A0(G), however we do not always have the
equality. For example, if P5 with vertices v1, . . . , v5, then

1 −1 0 0 0
−1 1 −1 0 0
0 −1 ∗ −1 0
0 0 −1 1 −1
0 0 0 −1 1




1
1
0
−1
−1

 = 0.

Therefore det(diag(1, 1, ∗, 1, 1)− A(P5)) = 0 for all d ∈ N+ and D(G) ( A0(G).
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In the next two propositions we present some arithmetical structures of the cone
graph. This represent the first example of how to construct arithmetical structures of
graph. Let us recall that given a graph G, the cone graph of G, denoted by c(G), is
the graph obtained from adding a vertex vc to G which is adjacent to every vertex in
V (G), that is,

V (c(G)) = V (G) ∪ {vc} and E(c(G)) = E(G) ∪ {(vc, u) | u ∈ V (G)}.

Proposition 3.1.12. Let G be a t-regular graph with n vertices. If f is a divisor of n,
then (d, r) given by

du = (
n

f
, t+ f, . . . , t+ f) and ru = (f, 1, . . . , 1)

is an arithmetical structure of c(G).

Proof. Just note that d, r ∈ Nn+ and

(
n
f

−1n
−1tn L(G, (f + t)1n)

) (
f
1n

)
= 0.

The following result gives a more difficult to find type of arithmetical structures of
the cone graph.

Proposition 3.1.13. Let G be a graph with n vertices and (d, r) ∈ Nn+ × Nn+ such that

L(G,d)r = a1 and a|
∑n

i=1 ri = |r|. If g = gcd(a, r1, . . . , rn), then (d̃, r̃) given by

d̃u = (

∑n
i=1 ri
a

,d1, . . . ,dn) and r̃u = (
a

g
,
r1
g
, . . . ,

rn
g

)

is an arithmetical structure of c(G).

Proof. The result follows from the fact that d̃, r̃ ∈ Nn+ and( |r|
a

−1n
−1tn L(G,d)

) (
a
g
rt

g

)
= 0.

3.2 Arithmetical Graphs and Diophantine equations

The problem of giving a complete characterization of the arithmetical structures of a
graph is quite complex. It’s equivalent to find some solutions of a Diophantine equation.
In the case of the complete graph Kn, one of the most simple and known graphs we
have
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Proposition 3.2.1. If c = lcm(d1 + 1, . . . ,dn + 1), then

A(Kn) =

{
(d, r) ∈ (Nn+ × Nn+)

∣∣∣∣∣
n∑
i=1

1

di + 1
= 1 and ri =

c

di + 1
for all i

}
. (3.2)

Therefore, now we are dealing with Egyptian fractions, a known difficult problem
in arithmetic. Let us note that even when an arithmetical structure gives a solution
of the diophantine equation as in (3.2) above, not every solution of the diophantine
equation is an arithmetical structure. We can see the latter, for example, on the path
with five vertices P5 in remark 3.1.11.
Now we present a partial description of the arithmetical structures of a general tree
and a description of the arithmetical structures of the star [7].
Let T = (V,E) be any tree, since the blocks of T are its edges, applying Theorem 2.3
[7] we get that the arithmetical structures of T must satisfy the following

Proposition 3.2.2 (Proposition 3.1 [7]). If T is a tree, let
−→
T be the digraph obtained

from T by replacing every edge by two arcs, one for each directions, and

a : E(
−→
T )→ Q+

be a weight on the arcs of
−→
T , then

A(T ) =

{
(d, r) ∈ NV (T )

+ ×NV (T )
+

∣∣∣∣∣ ∑
uv∈E(T )

au,v = dv ∀ v ∈ V (T ) and au,vav,u = 1 ∀ uv ∈ E(T )

}
.

A simpler example of trees are the ”star” graphs, trees where all its vertices, except
for one of them, are leaves. We denote the star with n+ 1 vertices as Sn. Next result
gives a description of the arithmetical structures of a star.

Corollary 3.2.3 (Corollary 3.2, [7]). If Sn is the star with ”center” v and 1, 2, . . . , n as
their leaves, then

A(Sn) =

{
(d, r) ∈ Nn+1

+ × Nn+1
+

∣∣∣∣∣ dv =
n∑
i=1

1

di
, rv = lcm{di}ni=1 and ri =

rv
di

}
.

Proof. The ⊇ part is easy to see. Now, by Proposition 3.2.2, since all the vertices of
Sn except its center has degree one, det(L(Sn,d)) = 0 if and only if dv =

∑n
i=1

1
di

for
some di ∈ N+. We know that L(Sm,d) is an almost non-singular M -matrix, so the rest
is just to check that r is in the kernel of L(Sm,d) and then we have the ⊆ part.
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For general trees, we can say something else, is very easy to calculate the order of
the critical group associated to any of its arithmetical structures (expresion (3.1)), the
next result was proved by Lorenzini [11]

Proposition 3.2.4 (Corollary 2.5 [11]). Let T be a simple tree. If (d, r) is an arithmetical
structure of T , then ∣∣∣K(T,d, r)

∣∣∣ =
∏

v∈V (T )

rdT (v)−2
v

3.3 Counting Arithmetical Structures

In this section we treat another interesting aspect about arithmetical graphs. On the
past section we give descriptions of the sets of arithmetical structures for some graphs
but we know that the sets A(G) are finite for simple connected graphs G, see Lemma
1.6 [11], therefore a natural way to proceed is trying to count the number of elements
in the set A(G). Actually, in the case of paths we can give the number of arithmetical
structures as well as with cycles, see [6] and [4].

3.3.1 Paths

Theorem 3.3.1. The number of arithmetical structures of the path Pn+1 is equal to
the n-th Catalan number

Catn =
1

n+ 1

(
2n

n

)
Moreover, the number of arithmetical structures (d, r) with r(1) = #{i | ri = 1} = 2 is
the (n− 1)-th Catalan number Catn−1.

With the purpose of giving the prove of this theorem we first present another two
other results

Lemma 3.3.2. Let r ∈ R(Pn) with n ≥ 2 vertices, then

r1 = rn = 1

Furthermore, if rj = 1 for some 1 < j < n, then

(r1, . . . , rj) ∈ R(Pj) and (rj, . . . , rn) ∈ R(Pn−(j−1))

.
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Proof. First, note that (d.r) is an arithmetical structure on Pn if and only if the
following equalities hold:

r1d1 = r2; ridi = ri−1 + ri+1 for 1 < i < n; and rndn = rn−1 (3.3)

In consequence, we have that:

r1 | r2 =⇒ r1 | r3 =⇒ · · · =⇒ r1 | rn.

Since r is a primitive vector, we conclude that r1 = 1. The same argument starting
with the last equation and moving up yields rn = 1.
Now, if rj = 1 for some 1 < j < n, then we can see that (r1, . . . , rj) ∈ R(Pj) by
changing dj to d̃j := rj−1.
A similar argument, using the final n− (j−1) equations defining the pair (d, r), shows
that (rj, . . . , rn) ∈ R(Pn−(j−1)).

Corollary 3.3.3. Let r = (r1, . . . , rn) be a primitive positive integer vector. Then
r ∈ R(Pn) if and only if

(a) r1 = rn = 1, and

(b) ri|(ri−1 + ri+1) ∀ i ∈ [2, n− 1].

Proof. Condition (a) is part of Lemma 3.3.2, and the necessity of condition (b) follows
from equations (3.3). On the other side, if r satisfies these two conditions then the
corresponding d ∈ D(Pn) can be recovered from the equations given in (3.3).

Proof of Theorem 3.3.1. For the second assertion, the description in Corollary 3.3.3 is
a known interpretation of the Catalan numbers, see [13, page 34, Problem 92]. The
first assertion then follows from the recurrence Catn =

∑n−1
i=0 CatiCatn−1−i, since the

same recurrence holds for arithmetical structures by Lemma 3.3.2.

3.3.2 Cycles

We first need to stablish some notation for multisets. A multiset is a list S =
[a1, . . . , al], where order does not matter, and repeats are allowed. The number l is the
size or cardinality of S. We will use square brackets to distinguish multisets from ordi-
nary sets. If ai ∈ T for all i then we say that S is a multisubset of T . We write MSetl(T )
to denote the set of multisubsets of T of size l and let

((
n
k

))
= |MSetl([n])| =

(
n+l−1

l

)
.
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Similarly, MSet≤l(T ) denotes the set of multisubsets of T of size at most l. There is
a bijection MSetn−1(n + 1) → MSet≤n−1([n]) that erases all instances of n + 1, which
implies that

∑n−1
l=0

((
n
l

))
=
((
n+1
n−1

))
.

Now, we can address the case of counting the arithmetical structures of the cycle with
n vertices, denoted by Cn.

Theorem 3.3.4 (Theorem 27, [4]). Let 1 ≤ k ≤ n and l = n− k. Then

#
{

(d, r) ∈ A(Cn)
∣∣∣ r(1) = k

}
=

((
n

n− k

))
=

(
2n− k − 1

n− k

)
Hence, the total number of arithmetical structures on Cn is

n∑
k=1

((
n

n− k

))
=

n−1∑
l=0

((n
l

))
=

((
n+ 1

n− 1

))
=

(
2n− 1

n− 1

)
.

The proof of this theorem requires the developement of more theory, we refer the
reader to [4] for an extense reading of it, our intention is to show that in this case we
can count the number of arithmetical structues as we did in 3.3.1 with paths. Moreover,
from the article [4] we have the next result.

Theorem 3.3.5 (Theorem 26, [4]). Let (d, r) ∈ A(Cn) be an arithmetical structures
of the cycle. Then

r(1) = 3n−
n∑
j=1

dj (3.4)

and

K(Cn,d, r) = Zr(1) . (3.5)

Thus, the following result comes directly from theorems 3.3.4 and 3.3.5.

Corollary 3.3.6 (Corollary 28, [4]). The number of arithmetical structures (d, r) ∈
A(Cn) such that

∑n
i=1 di = k is((

n

k − 2n

))
=

(
k − n− 1

k − 2n

)
for every n ≥ 2 and 2n ≤ k ≤ 3n− 1.
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3.3.3 Small Arithmetical Graphs

In this section we list the arithmetical structures of some simple connected graphs with
2 ≤ n ≤ 5 vertices.

Graph Arithmetical Structures (d, r) # of A. S.’s

K2 ( (1, 1), (1, 1) ) 1

P3 ( (2, 1, 2) , (1, 2, 1) ) 2
( (1, 2, 1) , (1, 1, 1) )

( (1, 5, 2), (3, 1, 2) )
( (1, 3, 3), (2, 1, 1) )
( (1, 2, 5), (3, 2, 1) )
( (2, 5, 1), (2, 1, 3) )

K3 ( (2, 2, 2), (1, 1, 1) ) 10
( (2, 1, 5), (2, 3, 1) )
( (3, 3, 1), (1, 1, 2) )
( (3, 1, 3), (1, 2, 1) )
( (5, 2, 1), (1, 2, 3) )
( (5, 1, 2), (1, 3, 2) )

( (2, 1, 2, 1), (1, 1, 1, 1) )
( (2, 1, 3, 1), (1, 2, 1, 1) )

P4 ( (3, 1, 1, 2), (1, 1, 2, 1) ) 5
( (2, 2, 1, 3), (1, 2, 3, 1) )
( (3, 1, 2, 2), (1, 2, 2, 1) )

Recall that Sm is the star graph with m leaves, T2 is defined on definition 2.3.4 and
let Qn be the graph Kn − {e} for some e ∈ E(V ), that is, the graph resulting from
removing one edge to the complete graph with n vertices.
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Graph Arithmetical Structures (d, r) # of A. S.’s

( (2, 1, 2, 2), (2, 2, 1, 1) ), ( (1, 2, 6, 3), (6, 3, 1, 2) )
( (1, 2, 4, 4), (4, 2, 1, 1) ), ( (1, 2, 3, 6), (6, 3, 2, 1) )
( (3, 1, 1, 1), (1, 1, 1, 1) ), ( (2, 2, 2, 1), (2, 1, 1, 2) )

S3 ( (2, 2, 1, 2), (2, 1, 2, 1) ), ( (1, 3, 6, 2), (6, 2, 1, 3) ) 14
( (1, 3, 3, 3), (3, 1, 1, 1) ), ( (1, 3, 2, 6), (6, 2, 3, 1) )
( (1, 4, 4, 2), (4, 1, 1, 2) ), ( (1, 4, 2, 4), (4, 1, 2, 1) )
( (1, 6, 3, 2), (6, 1, 2, 3) ), ( (1, 6, 2, 3), (6, 1, 3, 2) )

( (2, 1, 6, 1), (2, 3, 1, 1) ), ( (1, 2, 6, 1), (3, 2, 1, 1) )
( (3, 1, 4, 1), (1, 2, 1, 1) ), ( (2, 2, 3, 1), (1, 1, 1, 1) )
( (1, 3, 4, 1), (2, 1, 1, 1) ), ( (5, 1, 3, 1), (1, 3, 2, 2) )
( (3, 3, 2, 1), (1, 1, 2, 2) ), ( (1, 5, 3, 1), (3, 1, 2, 2) )
( (6, 1, 2, 5), (2, 7, 5, 1) ), ( (5, 2, 2, 1), (1, 2, 3, 3) )
( (2, 5, 2, 1), (2, 1, 3, 3) ), ( (1, 6, 2, 5), (7, 2, 5, 1) )

T2 ( (7, 1, 2, 3), (1, 4, 3, 1) ), ( (6, 2, 1, 11), (3, 7, 11, 1) ) 26
( (4, 4, 1, 3), (1, 1, 3, 1) ), ( (2, 6, 1, 11), (7, 3, 11, 1) )
( (1, 7, 2, 3), (4, 1, 3, 1) ), ( (9, 1, 2, 2), (1, 5, 4, 2) )
( (8, 2, 1, 5), (1, 3, 5, 1) ), ( (5, 5, 1, 2), (1, 1, 4, 2) )
( (2, 8, 1, 5), (3, 1, 5, 1) ), ( (1, 9, 2, 2), (5, 1, 4, 2) )
( (11, 3, 1, 2), (1, 3, 8, 4) ), ( (3, 11, 1, 2), (3, 1, 8, 4) )
( (14, 2, 1, 3), (1, 5, 9, 3) ), ( (2, 14, 1, 3), (5, 1, 9, 3) )

( (2, 1, 5, 3), (3, 5, 1, 2) ), ( (2, 1, 5, 3), (3, 5, 1, 2) )
( (2, 1, 2, 6), (3, 4, 2, 1) ), ( (1, 2, 6, 2), (4, 3, 1, 2) )
( (1, 2, 4, 3), (3, 2, 1, 1) ), ( (1, 2, 3, 5), (5, 3, 2, 1) )
( (3, 1, 5, 2), (2, 5, 1, 3) ), ( (3, 1, 2, 3), (1, 2, 1, 1) )
( (3, 1, 1, 6), (2, 3, 3, 1) ), ( (2, 2, 6, 1), (2, 3, 1, 4) )

C4 ( (2, 2, 2, 2), (1, 1, 1, 1) ), ( (2, 2, 1, 6), (3, 2, 4, 1) ) 35
( (1, 3, 6, 1), (3, 2, 1, 3) ), ( (1, 3, 3, 2), (2, 1, 1, 1) )
( (1, 3, 2, 5), (5, 2, 3, 1) ), ( (4, 1, 3, 2), (1, 3, 1, 2) )
( (4, 1, 1, 4), (1, 2, 2, 1) ), ( (3, 2, 4, 1), (1, 2, 1, 3) )
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Graph Arithmetical Structures (d, r) # of
A. S.’s

((3, 2, 1, 3), (1, 1, 2, 1)), ((2, 3, 3, 1), (1, 1, 1, 2)), ((2, 3, 1, 4), (2, 1, 3, 1))
C4 ((1, 4, 4, 1), (2, 1, 1, 2)), ((1, 4, 2, 3), (3, 1, 2, 1)), ((6, 1, 2, 2), (1, 4, 2, 3)) 35

((6, 1, 1, 3), (1, 3, 3, 2)), ((5, 2, 3, 1), (1, 3, 2, 5)), ((4, 3, 1, 2), (1, 1, 3, 2))
((3, 4, 2, 1), (1, 1, 2, 3)), ((2, 5, 1, 3), (3, 1, 5, 2)), ((1, 6, 3, 1), (3, 1, 2, 3))
((1, 6, 2, 2), (4, 1, 3, 2)), ((6, 2, 1, 2), (1, 2, 4, 3)), ((5, 3, 2, 1), (1, 2, 3, 5))
((3, 5, 1, 2), (2, 1, 5, 3)), ((2, 6, 2, 1), (2, 1, 3, 4))

((2, 1, 21, 3), (6, 11, 1, 4)), ((2, 1, 13, 4), (4, 7, 1, 2)), ((2, 1, 9, 6), (3, 5, 1, 1))
((2, 1, 7, 10), (5, 8, 2, 1)), ((2, 1, 6, 18), (9, 14, 4, 1)), ((1, 2, 14, 2), (6, 5, 1, 3))
((1, 2, 8, 4), (4, 3, 1, 1)), ((1, 2, 6, 10), (10, 7, 3, 1)), ((3, 1, 21, 2), (4, 11, 1, 6))
((3, 1, 9, 3), (2, 5, 1, 2)), ((3, 1, 5, 6), (4, 9, 3, 2)), ((2, 2, 14, 1), (3, 5, 1, 6))
((2, 2, 5, 2), (3, 4, 2, 3)), ((1, 3, 11, 1), (4, 3, 1, 4)), ((4, 1, 13, 2), (2, 7, 1, 4))
((4, 1, 5, 4), (1, 3, 1, 1)), ((4, 1, 3, 12), (3, 8, 4, 1)), ((3, 2, 2, 6), (2, 3, 3, 1))
((2, 3, 3, 2), (1, 1, 1, 1)), ((1, 4, 4, 2), (2, 1, 1, 1)), ((4, 2, 8, 1), (1, 3, 1, 4))
((4, 2, 2, 4), (1, 2, 2, 1)), ((2, 4, 4, 1), (1, 1, 1, 2)), ((1, 5, 5, 1), (2, 1, 1, 2))
((6, 1, 9, 2), (1, 5, 1, 3)), ((6, 1, 5, 3), (2, 9, 3, 4)), ((6, 1, 3, 6), (1, 4, 2, 1))
((6, 1, 2, 30), (5, 18, 12, 1)), ((4, 3, 1, 12), (3, 4, 8, 1)), ((2, 5, 2, 2), (3, 2, 4, 3))

Qn ((1, 6, 2, 10), (10, 3, 7, 1)), ((6, 2, 2, 3), (1, 3, 3, 2)), ((6, 2, 1, 30), (5, 12, 18, 1)) 63
((3, 5, 1, 6), (4, 3, 9, 2)), ((2, 6, 1, 18), (9, 4, 14, 1)), ((6, 3, 1, 6), (1, 2, 4, 1))
((4, 5, 1, 4), (1, 1, 3, 1)), ((2, 7, 1, 10), (5, 2, 8, 1)), ((1, 8, 2, 4), (4, 1, 3, 1))
((10, 1, 7, 2), (1, 8, 2, 5)), ((10, 1, 2, 10), (1, 6, 4, 1)), ((6, 5, 1, 3), (2, 3, 9, 4))
((2, 9, 1, 6), (3, 1, 5, 1)), ((10, 2, 6, 1), (1, 7, 3, 10)), ((10, 2, 1, 10), (1, 4, 6, 1))
((4, 8, 2, 1), (1, 1, 3, 4)), ((3, 9, 1, 3), (2, 1, 5, 2)), ((1, 11, 3, 1), (4, 1, 3, 4))
((12, 1, 3, 4), (1, 8, 4, 3)), ((12, 3, 1, 4), (1, 4, 8, 3)), ((6, 9, 1, 2), (1, 1, 5, 3))
((2, 13, 1, 4), (4, 1, 7, 2)), ((1, 14, 2, 2), (6, 1, 5, 3)), ((10, 6, 2, 1), (1, 3, 7, 10))
((2, 14, 2, 1), (3, 1, 5, 6)), ((10, 7, 1, 2), (1, 2, 8, 5)), ((4, 13, 1, 2), (2, 1, 7, 4))
((18, 1, 6, 2), (1, 14, 4, 9)), ((2, 21, 1, 3), (6, 1, 11, 4)), ((8, 6, 1, 2), (1, 4, 14, 9))
((3, 21, 1, 2), (4, 1, 11, 6)), ((30, 1, 2, 6), (1, 18, 12, 5)), ((30, 2, 1, 6), (1, 12, 18, 5))
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The last graph with four vertices is K4, which have 215 arithmetical structures, we do
not include its arithmetical structures in here but in the following table we show some
other arithmetical graphs of five vertices, for example, the arithmetical structures of
the path and cycle of five vertices.

Graph Arithmetical Structures (d, r) # of
A. S.’s

( (2, 2, 1, 4, 2), (2, 3, 4, 1, 1) ), ( (1, 3, 1, 3, 3), (3, 2, 3, 1, 1) )
( (1, 2, 2, 2, 4), (4, 3, 2, 1, 1) ), ( (3, 2, 1, 3, 1), (1, 2, 3, 1, 1) )
( (3, 1, 2, 3, 2), (2, 5, 3, 1, 1) ), ( (2, 3, 1, 2, 1), (1, 1, 2, 1, 1) )

P5 ( (2, 2, 2, 1, 1), (1, 1, 1, 1, 1) ), ( (2, 1, 3, 2, 3), (3, 5, 2, 1, 1) ) 14
( (1, 4, 1, 2, 2), (2, 1, 2, 1, 1) ), ( (1, 3, 2, 1, 2), (2, 1, 1, 1, 1) )
( (1, 2, 3, 1, 3), (3, 2, 1, 1, 1) ), ( (4, 1, 2, 2, 1), (1, 3, 2, 1, 1) )
( (3, 1, 3, 1, 1), (1, 2, 1, 1, 1) ), ( (2, 1, 4, 1, 2), (2, 3, 1, 1, 1) )

( (3, 1, 1, 3, 2), (2, 2, 3, 1, 1) ), ( (2, 2, 1, 7, 3), (6, 3, 7, 1, 2) )
( (2, 2, 1, 5, 4), (4, 2, 5, 1, 1) ), ( (2, 2, 1, 4, 6), (6, 3, 8, 2, 1) )
( (2, 1, 2, 2, 3), (3, 3, 2, 1, 1) ), ( (4, 1, 1, 2, 1), (1, 1, 2, 1, 1) )

( (3, 2, 1, 3, 1), (2, 1, 3, 1, 2) ), ( (3, 2, 1, 2, 2), (2, 1, 4, 2, 1) ) 46
( (3, 1, 2, 1, 1), (1, 1, 1, 1, 1) ), ( (2, 3, 1, 7, 2), (6, 2, 7, 1, 3) )
( (2, 3, 1, 4, 3), (3, 1, 4, 1, 1) ), ( (2, 3, 1, 3, 6), (6, 2, 9, 3, 1) )
( (2, 2, 2, 1, 2), (2, 1, 2, 2, 1) ), ( (2, 1, 3, 1, 2), (2, 2, 1, 1, 1) )
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Graph Arithmetical Structures (d, r) # of
A. S.’s

( (1, 3, 2, 11, 7), (21, 7, 11, 1, 3) ), ( (1, 3, 2, 5, 9), (9, 3, 5, 1, 1) )
( (1, 3, 2, 3, 15), (15, 5, 9, 3, 1) ), ( (1, 2, 3, 5, 7), (14, 7, 5, 1, 2) )
( (1, 2, 3, 3, 8), (8, 4, 3, 1, 1) ), ( (1, 2, 3, 2, 10), (10, 5, 4, 2, 1) )
( (2, 4, 1, 5, 2), (4, 1, 5, 1, 2) ), ( (2, 4, 1, 3, 4), (4, 1, 6, 2, 1) )
( (2, 3, 2, 2, 1), (3, 1, 2, 1, 3) ), ( (2, 2, 3, 1, 1), (2, 1, 1, 1, 2) )

( (1, 4, 2, 2, 12), (12, 3, 8, 4, 1) ), ( (1, 3, 3, 1, 6), (6, 2, 3, 3, 1) ) 46
( (1, 2, 4, 1, 6), (6, 3, 2, 2, 1) ), ( (1, 5, 2, 3, 5), (5, 1, 3, 1, 1) )
( (1, 4, 3, 1, 4), (4, 1, 2, 2, 1) ), ( (1, 3, 4, 1, 3), (3, 1, 1, 1, 1) )
( (1, 2, 5, 1, 4), (4, 2, 1, 1, 1) ), ( (2, 6, 1, 4, 2), (6, 1, 8, 2, 3) )
( (2, 6, 1, 3, 3), (6, 1, 9, 3, 2) ), ( (1, 6, 2, 2, 6), (6, 1, 4, 2, 1) )
( (1, 7, 2, 11, 3), (21, 3, 11, 1, 7) ), ( (1, 6, 3, 1, 3), (6, 1, 3, 3, 2) )
( (1, 4, 5, 1, 2), (4, 1, 1, 1, 2) ), ( (1, 2, 7, 1, 3), (6, 3, 1, 1, 2) )
( (1, 7, 3, 5, 2), (14, 2, 5, 1, 7) ), ( (1, 6, 4, 1, 2), (6, 1, 2, 2, 3) )
( (1, 3, 7, 1, 2), (6, 2, 1, 1, 3) ), ( (1, 9, 2, 5, 3), (9, 1, 5, 1, 3) )
( (1, 8, 3, 3, 2), (8, 1, 3, 1, 4) ), ( (1, 10, 3, 2, 2), (10, 1, 4, 2, 5) )
( (1, 12, 2, 2, 4), (12, 1, 8, 4, 3) ), ( (1, 15, 2, 3, 3), (15, 1, 9, 3, 5) )

( (3, 1, 1, 6, 6), (5, 7, 6, 1, 2) ), ( (3, 1, 1, 4, 7), (3, 4, 4, 1, 1) )
( (3, 1, 1, 3, 9), (4, 5, 6, 2, 1) ), ( (2, 2, 1, 12, 6), (11, 7, 12, 1, 3) )
( (2, 2, 1, 6, 8), (5, 3, 6, 1, 1) ), ( (2, 2, 1, 4, 14), (9, 5, 12, 3, 1) )
( (2, 1, 2, 5, 10), (9, 11, 5, 1, 2) ), ( (2, 1, 2, 3, 11), (5, 6, 3, 1, 1) )
( (2, 1, 2, 2, 13), (6, 7, 4, 2, 1) ), ( (4, 1, 1, 2, 5), (2, 3, 4, 2, 1) )

( (3, 2, 1, 2, 5), (3, 2, 6, 3, 1) ), ( (3, 1, 2, 2, 4), (3, 5, 2, 1, 2) ) 102
( (3, 1, 2, 1, 5), (2, 3, 2, 2, 1) ), ( (2, 3, 1, 3, 11), (8, 3, 12, 4, 1) )
( (2, 2, 2, 3, 3), (5, 4, 3, 1, 3) ), ( (2, 2, 2, 1, 5), (3, 2, 3, 3, 1) )
( (2, 1, 3, 1, 9), (4, 5, 2, 2, 1) ), ( (1, 3, 2, 18, 12), (35, 13, 18, 1, 4) )
( (1, 3, 2, 10, 13), (19, 7, 10, 1, 2) ), ( (1, 3, 2, 6, 15), (11, 4, 6, 1, 1) )
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Graph Arithmetical Structures (d, r) # of
A. S.’s

( (1, 3, 2, 4, 19), (14, 5, 8, 2, 1) ), ( (1, 3, 2, 3, 27), (20, 7, 12, 4, 1) )
( (1, 2, 3, 10, 15), (29, 16, 10, 1, 3) ), ( (1, 2, 3, 4, 17), (11, 6, 4, 1, 1) )
( (1, 2, 3, 2, 23), (15, 8, 6, 3, 1) ), ( (5, 1, 1, 2, 3), (1, 2, 2, 1, 1) )
( (4, 2, 1, 2, 2), (1, 1, 2, 1, 1) ), ( (4, 1, 2, 1, 3), (1, 2, 1, 1, 1) )
( (3, 3, 1, 2, 3), (2, 1, 4, 2, 1) ), ( (3, 2, 2, 1, 2), (1, 1, 1, 1, 1) )
( (2, 4, 1, 4, 4), (3, 1, 4, 1, 1) ), ( (2, 3, 2, 3, 2), (5, 3, 3, 1, 4) )
( (2, 3, 2, 1, 3), (2, 1, 2, 2, 1) ), ( (2, 1, 4, 1, 7), (3, 4, 1, 1, 1) )
( (1, 4, 2, 14, 7), (27, 8, 14, 1, 5) ), ( (1, 4, 2, 4, 9), (7, 2, 4, 1, 1) )
( (1, 4, 2, 2, 19), (15, 4, 10, 5, 1) ), ( (1, 3, 3, 6, 6), (17, 7, 6, 1, 4) )
( (1, 3, 3, 2, 7), (5, 2, 2, 1, 1) ), ( (1, 3, 3, 1, 11), (8, 3, 4, 4, 1) )
( (1, 2, 4, 5, 10), (19, 11, 5, 1, 3) ), ( (1, 2, 4, 2, 11), (7, 4, 2, 1, 1) )

( (1, 2, 4, 1, 14), (9, 5, 3, 3, 1) ), ( (2, 5, 1, 3, 5), (4, 1, 6, 2, 1) ) 102
( (1, 5, 2, 2, 11), (9, 2, 6, 3, 1) ), ( (1, 3, 4, 2, 5), (7, 3, 2, 1, 2) )
( (7, 1, 1, 2, 2), (1, 3, 2, 1, 2) ), ( (6, 1, 2, 1, 2), (1, 3, 1, 1, 2) )
( (5, 3, 1, 2, 1), (1, 1, 2, 1, 2) ), ( (4, 3, 2, 1, 1), (1, 1, 1, 1, 2) )
( (3, 5, 1, 2, 2), (3, 1, 6, 3, 2) ), ( (3, 4, 2, 2, 1), (3, 2, 2, 1, 5) )
( (2, 6, 1, 12, 2), (11, 3, 12, 1, 7) ), ( (2, 5, 2, 1, 2), (3, 1, 3, 3, 2) )
( (2, 1, 6, 1, 6), (5, 7, 1, 1, 2) ), ( (1, 6, 2, 3, 6), (5, 1, 3, 1, 1) )
( (1, 5, 3, 1, 5), (4, 1, 2, 2, 1) ), ( (1, 4, 4, 1, 4), (3, 1, 1, 1, 1) )
( (1, 2, 6, 1, 8), (5, 3, 1, 1, 1) ), ( (7, 2, 1, 2, 1), (1, 2, 2, 1, 3) )
( (6, 2, 2, 1, 1), (1, 2, 1, 1, 3) ), ( (4, 5, 1, 2, 1), (2, 1, 4, 2, 3) )
( (3, 6, 1, 6, 1), (5, 2, 6, 1, 7) ), ( (3, 5, 2, 1, 1), (2, 1, 2, 2, 3) )
( (1, 7, 2, 14, 4), (27, 5, 14, 1, 8) ), ( (1, 7, 2, 2, 7), (6, 1, 4, 2, 1) )
( (1, 6, 3, 6, 3), (17, 4, 6, 1, 7) ), ( (1, 5, 4, 2, 3), (7, 2, 2, 1, 3) )
( (1, 3, 6, 2, 4), (11, 5, 2, 1, 4) ), ( (1, 2, 7, 2, 7), (13, 8, 2, 1, 3) )
( (3, 7, 1, 4, 1), (3, 1, 4, 1, 4) ), ( (2, 8, 1, 6, 2), (5, 1, 6, 1, 3) )
( (1, 7, 3, 2, 3), (5, 1, 2, 1, 2) ), ( (1, 4, 6, 2, 3), (11, 4, 2, 1, 5) )
( (1, 9, 2, 4, 4), (7, 1, 4, 1, 2) ), ( (3, 9, 1, 3, 1), (4, 1, 6, 2, 5) )
( (2, 7, 4, 1, 1), (3, 1, 1, 1, 4) ), ( (2, 11, 1, 3, 3), (8, 1, 12, 4, 3) )
( (2, 10, 2, 5, 1), (9, 2, 5, 1, 11) ), ( (2, 9, 3, 1, 1), (4, 1, 2, 2, 5) )
( (2, 6, 6, 1, 1), (5, 2, 1, 1, 7) ), ( (1, 11, 2, 2, 5), (9, 1, 6, 3, 2) )
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Graph Arithmetical Structures (d, r) # of
A. S.’s

( (2, 11, 2, 3, 1), (5, 1, 3, 1, 6) ), ( (1, 12, 2, 18, 3), (35, 4, 18, 1, 13) )
( (1, 11, 3, 1, 3), (8, 1, 4, 4, 3) ), ( (1, 10, 4, 5, 2), (19, 3, 5, 1, 11) )
( (1, 8, 6, 1, 2), (5, 1, 1, 1, 3) ), ( (1, 7, 7, 2, 2), (13, 3, 2, 1, 8) )
( (1, 2, 12, 1, 6), (11, 7, 1, 1, 3) ), ( (1, 13, 2, 10, 3), (19, 2, 10, 1, 7) )

( (1, 11, 4, 2, 2), (7, 1, 2, 1, 4) ), ( (2, 14, 1, 4, 2), (9, 1, 12, 3, 5) ) 102
( (2, 13, 2, 2, 1), (6, 1, 4, 2, 7) ), ( (1, 15, 2, 6, 3), (11, 1, 6, 1, 4) )
( (1, 15, 3, 10, 2), (29, 3, 10, 1, 16) ), ( (1, 14, 4, 1, 2), (9, 1, 3, 3, 5) )
( (1, 6, 12, 1, 2), (11, 3, 1, 1, 7) ), ( (1, 17, 3, 4, 2), (11, 1, 4, 1, 6) )
( (1, 19, 2, 4, 3), (14, 1, 8, 2, 5) ), ( (1, 19, 2, 2, 4), (15, 1, 10, 5, 4) )
( (1, 23, 3, 2, 2), (15, 1, 6, 3, 8) ), ( (1, 27, 2, 3, 3), (20, 1, 12, 4, 7) )

( (2, 2, 1, 7, 2), (3, 4, 5, 1, 2) ), ( (2, 2, 1, 5, 3), (2, 3, 4, 1, 1) )
( (2, 2, 1, 4, 5), (3, 5, 7, 2, 1) ), ( (1, 3, 1, 6, 3), (5, 3, 4, 1, 2) )
( (1, 3, 1, 4, 4), (3, 2, 3, 1, 1) ), ( (1, 3, 1, 3, 6), (4, 3, 5, 2, 1) )
( (1, 2, 2, 5, 4), (7, 5, 3, 1, 2) ), ( (1, 2, 2, 3, 5), (4, 3, 2, 1, 1) )
( (1, 2, 2, 2, 7), (5, 4, 3, 2, 1) ), ( (3, 2, 1, 7, 1), (2, 3, 4, 1, 3) )
( (3, 2, 1, 4, 2), (1, 2, 3, 1, 1) ) ( (3, 2, 1, 3, 5), (2, 5, 8, 3, 1) )
( (3, 1, 2, 6, 2), (3, 7, 4, 1, 2) ) ( (3, 1, 2, 4, 3), (2, 5, 3, 1, 1) )
( (3, 1, 2, 3, 5), (3, 8, 5, 2, 1) ) ( (2, 3, 1, 7, 1), (3, 2, 3, 1, 4) )

C5 ( (2, 3, 1, 3, 2), (1, 1, 2, 1, 1) ) ( (2, 3, 1, 2, 6), (2, 3, 7, 4, 1) ) 126
( (2, 2, 2, 7, 1), (4, 3, 2, 1, 5) ) ( (2, 2, 2, 2, 2), (1, 1, 1, 1, 1) )
( (2, 2, 2, 1, 7), (2, 3, 4, 5, 1) ) ( (2, 1, 3, 5, 3), (5, 8, 3, 1, 2) )
( (2, 1, 3, 3, 4), (3, 5, 2, 1, 1) ) ( (2, 1, 3, 2, 6), (4, 7, 3, 2, 1) )
( (1, 4, 1, 6, 2), (5, 2, 3, 1, 3) ) ( (1, 4, 1, 3, 3), (2, 1, 2, 1, 1) )
( (1, 4, 1, 2, 6), (3, 2, 5, 3, 1) ) ( (1, 3, 2, 6, 2), (7, 3, 2, 1, 4) )
( (1, 3, 2, 2, 3), (2, 1, 1, 1, 1) ) ( (1, 3, 2, 1, 7), (3, 2, 3, 4, 1) )
( (1, 2, 3, 5, 3), (8, 5, 2, 1, 3) ) ( (1, 2, 3, 2, 4), (3, 2, 1, 1, 1) )
( (1, 2, 3, 1, 7), (4, 3, 2, 3, 1) ) ( (4, 2, 1, 5, 1), (1, 2, 3, 1, 2) )
( (4, 2, 1, 3, 3), (1, 3, 5, 2, 1) ) ( (4, 1, 2, 6, 1), (2, 5, 3, 1, 3) )
( (4, 1, 2, 3, 2), (1, 3, 2, 1, 1) ) ( (4, 1, 2, 2, 5), (2, 7, 5, 3, 1) )
( (3, 3, 1, 4, 1), (1, 1, 2, 1, 2) ) ( (3, 3, 1, 2, 4), (1, 2, 5, 3, 1) )
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Graph Arithmetical Structures (d, r) # of
A. S.’s

( (3, 2, 2, 3, 1), (1, 1, 1, 1, 2) ) ( (3, 2, 2, 1, 5), (1, 2, 3, 4, 1) )
( (3, 1, 3, 6, 1), (3, 5, 2, 1, 4) ) ( (3, 1, 3, 2, 2), (1, 2, 1, 1, 1) )
( (3, 1, 3, 1, 6), (2, 5, 3, 4, 1) ) ( (2, 4, 1, 5, 1), (2, 1, 2, 1, 3) )
( (2, 4, 1, 2, 3), (1, 1, 3, 2, 1) ) ( (2, 3, 2, 4, 1), (2, 1, 1, 1, 3) )
( (2, 3, 2, 1, 4), (1, 1, 2, 3, 1) ) ( (2, 2, 3, 5, 1), (3, 2, 1, 1, 4) )
( (2, 2, 3, 1, 3), (1, 1, 1, 2, 1) ) ( (2, 1, 4, 5, 2), (5, 7, 2, 1, 3) )
( (2, 1, 4, 2, 3), (2, 3, 1, 1, 1) ) ( (2, 1, 4, 1, 6), (3, 5, 2, 3, 1) )
( (1, 5, 1, 4, 2), (3, 1, 2, 1, 2) ) ( (1, 5, 1, 2, 4), (2, 1, 3, 2, 1) )
( (1, 4, 2, 3, 2), (3, 1, 1, 1, 2) ) ( (1, 4, 2, 1, 5), (2, 1, 2, 3, 1) )
( (1, 3, 3, 4, 2), (5, 2, 1, 1, 3) ) ( (1, 3, 3, 1, 4), (2, 1, 1, 2, 1) )
( (1, 2, 4, 3, 3), (5, 3, 1, 1, 2) ) ( (1, 2, 4, 1, 5), (3, 2, 1, 2, 1) )
( (5, 1, 2, 4, 1), (1, 3, 2, 1, 2) ) ( (5, 1, 2, 2, 3), (1, 4, 3, 2, 1) )
( (4, 1, 3, 3, 1), (1, 2, 1, 1, 2) ) ( (4, 1, 3, 1, 4), (1, 3, 2, 3, 1) )
( (3, 1, 4, 4, 1), (2, 3, 1, 1, 3) ) ( (3, 1, 4, 1, 3), (1, 2, 1, 2, 1) )

C5 ( (2, 1, 5, 3, 2), (3, 4, 1, 1, 2) ) ( (2, 1, 5, 1, 4), (2, 3, 1, 2, 1) ) 126
( (6, 2, 1, 4, 1), (1, 3, 5, 2, 3) ) ( (6, 2, 1, 3, 2), (1, 4, 7, 3, 2) )
( (5, 3, 1, 2, 3), (1, 3, 8, 5, 2) ) ( (5, 2, 2, 1, 4), (1, 3, 5, 7, 2) )
( (4, 4, 1, 3, 1), (1, 1, 3, 2, 3) ) ( (4, 2, 3, 2, 1), (1, 1, 1, 2, 3) )
( (3, 5, 1, 2, 2), (1, 1, 4, 3, 2) ) ( (3, 4, 2, 1, 3), (1, 1, 3, 5, 2) )
( (3, 2, 4, 1, 2), (1, 1, 1, 3, 2) ) ( (2, 6, 1, 4, 1), (3, 1, 3, 2, 5) )
( (2, 4, 3, 3, 1), (3, 1, 1, 2, 5) ) ( (2, 2, 5, 4, 1), (5, 3, 1, 2, 7) )
( (1, 7, 1, 3, 2), (4, 1, 3, 2, 3) ) ( (1, 7, 1, 2, 3), (3, 1, 4, 3, 2) )
( (1, 6, 2, 1, 4), (3, 1, 3, 5, 2) ) ( (1, 5, 3, 2, 2), (4, 1, 1, 2, 3) )
( (1, 4, 4, 1, 3), (3, 1, 1, 3, 2) ) ( (1, 3, 5, 3, 2), (8, 3, 1, 2, 5) )
( (1, 2, 6, 2, 3), (7, 4, 1, 2, 3) ) ( (1, 2, 6, 1, 4), (5, 3, 1, 3, 2) )
( (7, 1, 2, 3, 1), (1, 4, 3, 2, 3) ) ( (7, 1, 2, 2, 2), (1, 5, 4, 3, 2) )
( (6, 3, 1, 3, 1), (1, 2, 5, 3, 4) ) ( (6, 1, 3, 1, 3), (1, 4, 3, 5, 2) )
( (5, 4, 1, 2, 2), (1, 2, 7, 5, 3) ) ( (5, 3, 2, 2, 1), (1, 1, 2, 3, 4) )
( (5, 3, 2, 1, 3), (1, 2, 5, 8, 3) ) ( (5, 1, 4, 2, 1), (1, 2, 1, 2, 3) )
( (4, 3, 3, 1, 2), (1, 1, 2, 5, 3) ) ( (4, 1, 5, 1, 2), (1, 2, 1, 3, 2) )
( (3, 6, 1, 3, 1), (2, 1, 4, 3, 5) ) ( (3, 3, 4, 2, 1), (2, 1, 1, 3, 5) )
( (3, 1, 6, 3, 1), (3, 4, 1, 2, 5) ) ( (2, 7, 1, 2, 2), (2, 1, 5, 4, 3) )
( (2, 6, 2, 3, 1), (4, 1, 2, 3, 7) ) ( (2, 6, 2, 1, 3), (2, 1, 4, 7, 3) )
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Graph Arithmetical Structures (d, r) # of
A. S.’s

( (2, 3, 5, 3, 1), (5, 2, 1, 3, 8) ) ( (2, 3, 5, 1, 2), (2, 1, 1, 4, 3) )
( (2, 1, 7, 2, 2), (4, 5, 1, 2, 3) ) ( (2, 1, 7, 1, 3), (3, 4, 1, 3, 2) )
( (1, 7, 2, 2, 2), (5, 1, 2, 3, 4) ) ( (1, 6, 3, 1, 3), (4, 1, 2, 5, 3) )
( (1, 4, 5, 2, 2), (7, 2, 1, 3, 5) ) ( (1, 3, 6, 1, 3), (5, 2, 1, 4, 3) )
( (7, 2, 2, 2, 1), (1, 2, 3, 4, 5) ) ( (7, 1, 3, 2, 1), (1, 3, 2, 3, 4) )

C5 ( (6, 2, 3, 1, 2), (1, 2, 3, 7, 4) ) ( (6, 1, 4, 1, 2), (1, 3, 2, 5, 3) ) 126
( (4, 5, 2, 2, 1), (2, 1, 3, 5, 7) ) ( (4, 1, 6, 2, 1), (2, 3, 1, 3, 5) )
( (3, 5, 3, 2, 1), (3, 1, 2, 5, 8) ) ( (3, 5, 3, 1, 2), (2, 1, 3, 8, 5) )
( (3, 2, 6, 2, 1), (3, 2, 1, 4, 7) ) ( (3, 1, 7, 1, 2), (2, 3, 1, 4, 3) )
( (2, 5, 4, 1, 2), (3, 1, 2, 7, 5) ) ( (2, 2, 7, 1, 2), (3, 2, 1, 5, 4) )

For the rest of graphs with five vertices the number of arithmetical structures grows;
in fact the complete graph with five vertices, K5, have more than 2300 arithmetical
structures. Moreover, we finish this chapter with the following (see [6]).

Conjecture 3.3.7. Let G be a simple connected graph with n vertices, then∣∣∣A(Pn)
∣∣∣ ≤ ∣∣∣A(G)

∣∣∣ ≤ ∣∣∣A(Kn)
∣∣∣.





Chapter 4

Critical ideals of Threshold graphs

4.1 On the algebraic co-rank of Threshold Graphs

Given that every threshold graph can be obtained from exploding vertices of a graph
Tn [1] for some positive integer n, then we may concentrate to the Critical Ideals
of the family {Tn |n ≥ 1 } and in particular we study the co-rank of this family of
threshold graphs. For this, let us take the corollary 2.3.6 and number every vertex on
Tn accordingly with the degree class they belong.

Theorem 4.1.1. For every n ∈ N, there exists a square sub-matrix Un of L(Tn ) of
size n+ b n

3
c and with determinant equal to ± 1, that is, γ (Tn ) ≥ n+ b n

3
c

Proof. Let k ∈ N, and let L(Tn) .(I, J) be the sub-matrix of L(Tn) obtained from
taking the rows and the columns in I and J respectively, then we exhibit the matrix
Un.

Un =


L(Tn) .([2, 4, 5, 7, 8, ..., (2n− 3), (2n− 2), (2n)], [3, 4, 6, 7, 9, 10, ..., (2n− 1), (2n)]), if n = 3k − 1,

L(Tn) .([1, 3, 4, 6, 7, ..., (2n− 3), (2n− 2), (2n)], [2, 3, 5, 6, ..., (2n− 1), (2n)]), if n=3k ,

L(Tn) .([1, 3, 5, 6, 8, 9, ..., (2n− 3), (2n− 2), (2n)], [2, 4, 5, 7, 8, ..., (2n− 1), (2n)]), if n=3k + 1 .

where the row (column) i (j) is the row (column) that corresponds to the variable xi
(xj).

The reader can see in the appendix A.2 the algorithm which helped to find the
submatrices that we just presented for the proof. Moreover, on the above theorem we
have a lower bound for the algebraic co-rank of the graph Tn for a given n ∈ N, yet we

43
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think this is an upper bound as well.

Conjecture 4.1.2. γ (Tn ) = n+ b n
3
c for every positive integer n

4.2 The base/stable case

In this case we present the stable case of the family of Tn graphs. Now we define the
graph T

′
n as the graph obtained from Tn by duplicating every odd numbered vertex,

therefore we write the vertices of T
′
n as follows:

V (T
′

n) = V (Tn) ∪ { v′1, v
′

2, . . . v
′

2n−1 }

Remark 4.2.1. Note that, in other words, T
′
n = Td

n with d = (1, 0, 1, 0, . . . , 1, 0),

For this family of graphs we have the next result [see Corollary 2.2.11]

Theorem 4.2.2. γ (T
′
n) = 2n

Before presenting the proof of the theorem above we need to recall some basic
properties of the algebraic co-rank of a graph related to the stability and the clique
number of the graph.
For this, let us first define the stability and the clique numbers of a graph. A subset
S of the vertices of a graph G is called stable or independent if there is no edge of G
with ends in S. A stable set is called maximal if it is under the inclusion of sets.
The stability number of G, denoted by α(G), is given by

α(G) = max{|S | | S is a stable set of G}.

In a similar way, a subset C of the vertices of a graph G is called a clique if all the
pairs of vertices in C are joined by an edge of G. A clique set is called maximal if it
is under the inclusion of sets.
The clique number of G, denoted by ω(G), is given by

ω(G) = max{|C | | C is a clique set of G}.

Lemma 4.2.3 ([5], Lemma 3.11). If G is a graph (possibly directed and with multiple
edges) and V is a vertex of G, then

γ(G)− γ(G \ v) ≤ 2.
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We refer the reader to [5] for the proof of the Lemma above. Now, is easy to prove
that

Theorem 4.2.4 ([5], Theorem 3.13). If G is a graph (possibly directed graph with
multiple edges) with n vertices, then

γ(G) ≤ 2(n− ω(G)) + 1 and γ(G) ≤ 2(n− α(G)).

Proof. From the last lemma we have the following inequality γ(G)− γ(G \ v) ≤ 2 for
all v ∈ V (G) and together with facts that the trivial graph (the graph with no edges)
has algebraic co-rank zero, and that the complete graph has algebraic co-rank 1, we
have the result

Therefore, we now can prove our theorem.

Proof of Theorem 4.2.2. First, the fact that γ (T
′
n) ≤ 2n comes from the above the-

orem, because clearly the stability number of T
′
n, α(T

′
n), is equal to 2n, and then we

have that γ (T
′
n) ≤ 2(3n− α(T

′
n)) = 2(3n− 2n) = 2n.

Now, to see the other inequality we present the following square sub-matrix of the
Laplacian matrix of T

′
n with length 2n and unitary determinant (we re-order rows and

columns to see this clear);

A(T
′

n) =



0 0 . . . 0 0 0 0 . . . 0 −1
0 0 . . . 0 0 0 0 . . . −1 −1
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . 0 0 0 −1 . . . −1 −1
0 0 . . . 0 0 −1 −1 . . . −1 −1

0 0
... 0 −1 x2 −1 . . . −1 −1

0 0 . . . −1 −1 −1 x4 . . . −1 −1
...

...
. . .

...
...

...
...

. . .
...

...
0 −1 . . . −1 −1 −1 −1 . . . x2n−2 −1
−1 −1 . . . −1 −1 −1 −1 . . . −1 x2n


In other words,
A(T

′
n) = L(T

′
n) .[((2n− 1)

′
, . . . 3

′
, 1
′
, 2, 4, . . . 2n), ((2n− 1), . . . 3, 1, 2, 4, . . . 2n)].

Finally, the following is our conjecture for the structure of the first non-trivial
critical ideals of the T

′
n’s graphs.
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Conjecture 4.2.5. Let n ∈ N,

I2n+1 (T
′
n , X,X

′
) =

{
x1x2x

′
1 − x1 − x

′
1 , x3(x1x

′
1 + x1 + x

′
1) , x

′
3(x1x

′
1 + x1 + x

′
1) ,{

(x2i + 1)x2i−1x2i+1, (x2i + 1)x2i−1x
′
2i+1, (x2i + 1)x

′
2i−1x2i+1, (x2i + 1)x

′
2i−1x

′
2i+1

}i=n−1
i=1

,{
x2i−1 (x2i+1x

′
2i+1x2i+2+x2i+1x

′
2i+1−x2i+1−x

′
2i+1 ) , x

′
2i−1 (x2i+1x

′
2i+1x2i+2+x2i+1x

′
2i+1−

x2i+1 − x
′
2i+1)

}i=n−1
i=1

,{
x2i+1x

′
2i+1x2i+2 + x2i+1x

′
2i+1x2i + 2x2i+1x

′
2i+1 − x2i+1 − x

′
2i+1

}i=n−1
i=1

,{
(x2i+1 + x

′
2i+1)x2i−1x2i+3 , (x2i+1 + x

′
2i+1)x2i−1x

′
2i+3 , (x2i+1 + x

′
2i+1)x

′
2i−1x2i+3 ,

(x2i+1 + x
′
2i+1)x

′
2i−1x

′
2i+3

}i=n−2
i=1

}
where X

′
= x

′
1, x

′
3, . . . , x

′
2n−1 are the variables that correspond to the duplicated odd

vertices of Tn on T
′
n.
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Pseudocodes

A.1 Computing Arithmetical Structures of Graphs

Algorithm A.1.1. Arithmetical Structures Genrator (M,K)

Input : A matrix M (adjacency matrix of a graph) of size n × n and a
positive integer K (depht of search)

Output: Arithmetical structures of the graph

A← ∅
Aaux← ∅
P ← [0, [1 for i in range(0, n)], 0]
NP ← ∅
k ← 0

48



A.1 Computing Arithmetical Structures of Graphs 49

while k ≤ K and len(P ) > 0 do
for g ∈ P do

h← g[0]
d← g[1]
L← Laplacian(M, g[1]) . The funtion Laplacian(M,d) gives the matrix M but
with the vector d on the diagonal
if det(L) = 0 then

r ← LeadingMinors(L) . This function computes the
principal lieading minors of size n− 1 of L and it changes the sign so that
the leading term is positive
if r ≥ 0 then

gcdr ← gcd(r) . the greatest common divisor from the elemets of r

rker ← [

√
(
r2i
gcdr

) for i = 1, . . . , n] . where ri is the i-th entry of r

append the triplet [d, rker, gcdr] to A

else
S ← DiophantineEquationSolutions(L) . solves the diophantine

equation ”Axy+Bx+Cy+D” associated to the Laplacian L (with the last
two entries as variables).
AddArithmStruct(L, S,A) . This function adds to A the Arith.
Structures obtained by solving the dioph. eq.
Addchildren(L, g,NP ) . adds the elements obtained from the
”descendents” (next level) of g

end

else

end
S ← DiophantineEquationSolutions(L)

AddArithmStruct(Laux(L), S, A)
Addchildren(L, g,NP )
P = Cut(NP,A) . The function Cut(P,A) reduce the list P eliminating the
case where d ≥ to some arithm. struct. in A
NP ← ∅
k ← k + 1

end
return A



50 Pseudocodes

end

A.2 Finding SubMatrix of Threshold Graphs

Algorithm A.2.1. First submatrix of size γ with unitary determinant (L)
Input : A matrix L (the generalize Laplacian) of size m×m
Output: the sets I and J that define the submatrix

n← (m/2)
n← n+ bn

3
c

C ← combinations[(1, 2, . . . ,m), n] . Combinations of the vector (1, . . . ,m) of size n
S ← ∅
i← 0
for I ∈ C do

i← i+ 1
for J ∈ C[i :] do

p← det(L(I, J))
if |p| = 1 then

return (L(I, J), I, J)
end

end

end
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