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Clases Caracteŕısticas de
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Resumen

Los haces de superficies son haces fibrados suaves cuya fibra es una superficie cerrada

orientable. Una forma adecuada de clasificarlos es a través de sus clases caracteŕısticas,

las cuales resultan ser elementos de los grupos de cohomoloǵıa del espacio clasificante del

grupo de difeomorfismos de la superficie que preservan orientación. Para superficies de

género mayor o igual a dos, la cohomoloǵıa de este espacio coincide con la cohomoloǵıa

del grupo modular de la superficie; más aún, existen clases caracteŕısticas llamadas clases

de Mumford-Morita-Miller, que permitieron en el trabajo desarrollado por Madsen-Weiss

[18], dar una descripción de la cohomoloǵıa racional del grupo modular para géneros muy

grandes. Para el caso de género uno la cohomoloǵıa del grupo modular está relacionada

con el espacio de formas automorfas a través del isomorfismo de Eichler-Shimura [12]. Este

trabajo aborda la definición y existencia de clases caracteŕısticas de haces de superficies.

Abstract

Surface bundle are differentiable fiber bundles with fiber a orientable closed surface. Char-

acteristic classes are a very useful tool in the attempting to classify such bundles, char-

acteristic classes are elements of cohomology groups of classifying space of orientation-

preserving diffeomorphism group of a surface. In the case when the genus of surface is

higher than one the cohomology of such a space turns out to be the same as the co-

homology of mapping class group of surface; in fact, there exist classes called Munford-

Morita-Miller classes that were used by Madsen and Weiss to give a characterization of the

rational cohomology group of stable mapping class group in terms of these classes [18]. If

the genus of surface is equal to one, the cohomology of classifying space of orientation- pre-

serving diffeomorphism group of torus is related to space of automorphic forms using the

Eichler-Shimura isomorphism [12]. This work deals with the definition and non-triviality

of characteristic classes of surface bundles.
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Introduction

Surface bundles are a natural generalization of vector bundles. In this theory as in the

theory of vector bundles characteristic classes of surface bundles provide a powerful tool to

measure how nontrivial a given surface bundle is. Surface bundles are, roughly speaking,

differentiable fiber bundles with fiber a closed orientable surface. Characteristic classes

of surface bundles are elements of cohomology group of classifying space of orientation-

preserving diffeomorphism group of a surface. In the case when the genus of surface

is higher than one the cohomology of such a space turns out to be the same as the

cohomology of mapping class group of surface; in fact, there exist classes called Munford-

Morita-Miller classes that were used by Madsen and Weiss to give a characterization of

the rational cohomology group of stable mapping class group in terms of these classes [18].

If the genus of surface is equal to one, the cohomology of classifying space of orientation-

preserving diffeomorphism group of torus is related to space of automorphic forms using

the Eichler–Shimura isomorphism [12].

These notes follow the work which was worked out in the late 80’s by Shigeyuki Morita

[25, 26, 27]. We study the definition, existence of characteristic classes of surface bundles

and do some explicit calculations.

In the first chapter we introduce the definition of characteristic classes of a surface

bundle and its classification according to the surface used as fiber, namely S2, T 2 or Σg,

the 2-dimensional sphere, the torus or a surface of higher genus, respectively. We argue

why we only study the case when the fiber is either a torus or a surface of higher genus.

In the second chapter we talk about the torus bundles, we give the dimensions of the

rational cohomology groups of the classifying space of orientation-preserving diffeomor-

phism group of T 2 and provide an example of non-trivial characteristic class of a torus

bundle.

In the last chapter we define certain characteristic classes of a Σg-bundle, that is, the

Miller-Morita-Mumford classes, and prove the non-triviality of the first characteristic class

of a Σg-bundle.
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1

Surface Bundles

In this chapter we define the notion of surface bundle, and we give the motivation to

define the characteristic classes of such surface bundles.

1.1 Characteristic classes of differentiable fiber bundles

In this section we give the motivation and the definition of characteristic classes for dif-

ferentiable fiber bundles.

Definition Let F be a C∞ manifold. An F -bundle is a differentiable fiber bundle whose

fibers are diffeomorphic to F .

Here Diff F , the diffeomorphism group of F equipped with the C∞ topology, is the

structure group of such bundles. It is interesting in its own right, it also has a relationship

with K-theory but here it is related to the fundamental problem of determine the set of

all isomorphism classes of F -bundles

π : E −→M

over a given manifold M . It is well-known ([21] or [16] chapter 4 sect. 11–13) that if

BDiff F denotes its classifying space, then there is a natural bijection:

{isomorphism classes of F -bundles over M} ∼= [M,BDiff F ]

where the right hand side stands for the set of homotopy classes of continuous mappings

from M to BDiff F .

1



Example Suppose that M is the n-dimensional sphere Sn, we have canonical identifica-

tions ([31], Corollary 18.6)

[Sn,BDiff F ] ∼= πn(BDiff F )/π1(BDiff F )

∼= πn−1(Diff F )/π0(Diff F ).

Here the quotient is under the action of π1(BDiff F ) which is by conjugation. So that we

need to know the homotopy groups of BDiff F or Diff F . It becomes almost impossible

to compute these groups for a general manifold F , for example in the case when n = 1,

[S1,BDiff F ] can be identified with the set of all conjugancy classes of π0(Diff F ) which is

the group of path components of Diff F . Unfortunately, however, it is almost impossible

to compute these groups for a general manifold F . The problem to determine the set

[M,BDiff F ] should be even more difficult.

In such a situation, it is natural to seek methods of determining whether two given

F -bundles (over the same manifold) are isomorphic to each other o not. One such method

is obtained by applying characteristics classes of F -bundles.

Definition Let A be an abelian group and let k be a nonnegative integer. Suppose

that, to any F -bundle π : E −→ M , there is associated a certain cohomology class

α(π) ∈ Hk(M ;A) of the base space in such a way that it is natural with respect to any

bundle map. Then we say that α(π) is a characteristic class of F -bundles of degree

k with coefficients in A. Here by natural we mean that for any bundle map

E1
f //

π1

��

E2

π2

��
M1 f

//M2

between two F -bundles πi : Ei −→Mi with i = 1,2, we have the equality

α(π1) = f ∗(α(π2))

2



In the terminology of the classifying space, we can write α ∈ Hk(BDiff F ;A) and if

f : X −→ BDiff F is the classifying map of the given bundle π : E −→ M , then we

have α(π) = f ∗(α). Namely characteristic classes of F -bundles are nothing but elements

of cohomology group of BDiff F . It follows immediately from the definition that two

F -bundles over the same base space which have a different characteristic class are not

isomorphic to each other. Thus it is desirable to define as many characteristic classes as

possible.

1.2 Surface bundles

In this section we define what a surface bundle is, we also give the concept of tangent

bundle along the fiber which is going to be useful to define characteristic classes of a

surface bundle. Finally we rewrite the main problem stated before in terms of surface

bundles.

A 2-dimensional C∞ manifold, which is compact, connected and without boundary,

will simply be called a closed surface. The classifying of closed surfaces was done already

in the beginning of twentieth century. As it is well know, the Euler characteristic together

with the property of being orientable or not can serve as a complete set of invariants.

In particular, the set of the diffeomorphism classes of closed orientable surfaces can be

described by the series:

S2, T 2, Σg (g = 2,3, · · · ).

Here S2 and T 2 denote the 2-dimensional sphere and torus, respectively, and Σg stands for

a closed orientable surface of genus g. Of course we have Σ0 = S2, Σ1 = T 2. Henceforth

we assume that an orientation is fixed on each Σg.

Definition A differentiable fiber bundle with fiber Σg is called a surface bundle or a

Σg-bundle.

Let π : E −→ M be a Σg-bundle. Then the set of all tangent vectors on the total

space E which are tangent to the fibers, namely the set:

ξ = {X ∈ TE | π∗(X) = 0}
3



becomes a 2-dimensional vector bundle over E. We call ξ the tangent bundle along

the fiber of the given Σg-bundle. Sometimes the notation Tπ will also be used for ξ.

This concept is defined not only for surface bundles but also for general fiber bundles.

Definition A surface bundle π : E −→ M is said to be orientable if its tangent bundle

along the fiber Tπ is orientable. If a specific orientation is given on Tπ, then it is called

an oriented surface bundle.

Henceforth in this work, all surface bundles are assumed to be oriented and all bundle

maps between them are assumed to preserve the orientation on each fiber.

Definition Two Σg-bundle πi : Ei −→ M with i = 1,2 over the same manifold M are

said to be isomorphic if there exist a diffeomorphism f̃ : E1 → E2 such that the following

diagram

E1
f //

π1

��

E2

π2

��
M M

commutes and f̃ preserves the orientation on each fiber.

Our main problem can now be stated as follows:

Determine the set of isomorphism classes of

Σg-bundles over a given manifold.

Let Diff+ Σg denote the group of all the orientation preserving diffeomorphisms of Σg

equipped with the C∞ topology. It serves as the structure group of oriented Σg-bundles.

4



1.3 Mapping class group of surfaces

Next we introduce the mapping class group of a surface. It is connected with many areas

in mathematics. Here, for instance, is related to the cohomology groups of classifying

space of structural group of the surface bundles as it is pointed out in Section 1.4.

Let F be a C∞ manifold and let Diff F be its diffeomorphism group. The group of

path components of Diff F , namely

π0(Diff F ),

is called the diffeotopy group of F . In this work, we denote this group by D(F ). If we

write Diff0 F for the identity component of Diff F , then we have

D(F ) = Diff F/Diff0 F.

We can also define this group as follows:

Definition Two diffeomorphism ϕ, ψ ∈ Diff F of a C∞ manifold F are said to be isotopic

to each other if there exist a C∞ mapping

Φ : F × [0,1] −→ F

such that Φ(−,t) : F × {t} −→ F is a diffeormorphism for any t ∈ [0,1] and Φ(−,0) =

ϕ,Φ(−,1) = ψ.

It can be shown that this notion of isotopy is an equivalence relation. In fact, two dif-

feomorphisms are isotopic if and only if they belong to the same connected component of

Diff F . Hence we can say that D(F ) is the group of all isotopy classes of diffeomorphisms

of F . It follows that in the case of bundles over M = S1, we have a natural identification:

{isomorphism classes of F -bundles over S1}

∼= {conjugacy classes of D(F )}.

Now we restrict to the case when F is a closed orientable surface Σg and consider only

orientation preserving diffeomorphisms f : Σg → Σg. In the same way as before we can

5



consider the orientation preserving diffeotopy group of Σg, D+(Σg), also known as the

mapping class groupMg of Σg.

As it will be mentioned later in the last chapter, the mapping class group Mg plays

an important role also in the Teichmüller theory regarding complex structures on Σg. For

this reason, Mg is also called the Teichmüller modular group.

It is clear from the definition that isotopy is a much stronger condition than homotopy.

However, in the case of two-dimensional manifolds, it is classically known that they are

equivalent. Hence we can say that Mg is the group of all homotopy classes of orienta-

tion preserving diffeomorphism of Σg. Moreover it is also known that Mg is canonically

isomorphic to the group of all homotopy classes of orientation preserving homotopy equiv-

alences of Σg. In fact, since the time of Nielsen, who flourished in the first half of the

twentieth century, it has been known that there exist a natural isomorphism:

Mg
∼= Out+π1(Σg) = Aut+ π1(Σg)/ Inn π1(Σg).

Here Aut+π1(Σg) denotes the normal subgroup of the automorphism group of π1(Σg), with

index two, consisting of those elements which act on H2(Σg;Z) = H2(π1(Σg);Z) trivially,

and Innπ1(Σg) denotes the normal subgroup of all the inner automorphism.

We refer the reader to the book [4] for basic facts about the mapping class group.

1.4 Classification of surface bundles

In this section we overview what we are going to carry out, in a thorough way, in the next

two chapters.

In the case where g = 0, namely for the sphere, it was proved by Smale [29] that the

natural inclusion

SO(3) ⊂ Diff+ S
2

is a homotopy equivalence. It follows from this fact that any S2-bundle is isomorphic to the

sphere bundle of some uniquely defined 3-dimensional oriented vector bundle. Hence the

classification of S2-bundles over a given manifold M is equivalent to that of 3-dimensional

6



oriented vector bundles over M . Since the homotopy type of the classifying space BSO(3)

is known [23], we may say that this problem is solved.

♠

Next we consider the case g = 1, namely surface bundle whose fibers are diffeomorphic

to the torus T 2. If we identify T 2 with R2/Z2, then T 2 acts on itself by diffeomorphism

(which just are translations.) Hence T 2 can be naturally considered as a subgroup of

Diff0 T
2 which is the indentity component of Diff T 2. Moreover it is known by Earle-Ells

[10] that the inclusion

T 2 ⊂ Diff0 T
2

is a homotopy equivalence. On the other hand, we have an isomorphism

Diff+ T
2/Diff0 T

2 =M1
∼= SL(2;Z).

Passing to classifying space we obtain a fibration

BT 2 −→ BDiff+ T
2 −→ BSL(2;Z)

(see [24], Proposition 8.1 & Theorem 11.4.) Notice that BSL(2;Z) is an Eilenberg-

MacLane space K(SL(2;Z),1), and thus the cohomology of BSL(2;Z) is that of the

discrete group SL(2;Z). The structure of the group SL(2;Z) is classically well known,

and we have a homotopy equivalence BT 2 ∼= CP∞ × CP∞ (it is because ES1 × ES1 is

contractible space with free action S1 × S1, the quotient by this action is BS1 × BS1 so

B(T 2) = B(S1× S1) ∼= BS1×BS1, therefore BT 2 ∼= CP∞×CP∞.) Based on these facts

we can compute the cohomology of BDiff+ T
2 which serve as the characteristic classes of

T 2-bundles. More about this is going to be developed in the second chapter.

♠

In the case where g ≥ 2, the situation changes drastically. More precisely, Earle and Eells

proved in [11] Theorem 1.c, that Diff0 Σg is contractible so that

BDiff+ Σg = K(Mg,1).

It follows immediately from this that

7



Proposition 1.1 Let g ≥ 2. Then for any C∞ manifold M , we have a natural bijection:

{isomorphism class of Σg-bundle over M}

∼= {conjugacy class of homomorphism π1(M) −→Mg}

(see [13] lemma 1.19.) In particular if M is simply connected, then any Σg-bundle over

it is trivial since π1(M) = 0 and the constant homomorphism to the identity would be

the only one, therefore just one class of isomorphisms of Σg-bundle would be, in fact, it is

going to be the class of the trivial bundle. However in general, it is almost impossible to

determine the set of all conjugacy classes of homomorphism from a given group toMg. It

may be better to understand the above proposition as starting point for the construction

of a classification theory rather than a direct role.

Now let α be a characteristic class of Σg-bundle of degree k with coefficients in a abelian

group A. Then we can write

α ∈ Hk(BDiff Σg;A) = Hk(K(Mg,1);A) =: Hk(Mg;A)

In other words, characteristic classes of surfaces bundles of genus g ≥ 2 are nothing but

cohomology classes of mapping class group Mg.

8



2

Characteristic Classes of

Torus Bundles

In this chapter we study the problem to determine the non-triviality of characteristic

classes of differentiable fiber bundles whose fibers are diffeomorphic to the 2-dimensional

torus T 2, that is, the problem to compute the cohomology group H∗(BDiff+ T
2). More

precisely, we determine H∗(BDiff+ T
2;R) for R = Q or Zp with p 6= 2,3.

2.1 Introduction

Let Diff0 T
2 be the connected component of the identity of Diff+ T

2. Then as is well-

known the factor group Diff+ T
2/Diff0 T

2, which is the mapping class group of T 2, can

be naturally identified with SL(2;Z). Therefore we have a fibration

BDiff0 T
2 −→ BDiff+ T

2 −→ K(SL(2;Z),1). (2.1)

T 2 acts on itself by “translations” (viewed T 2 = R2/Z2) and hence it can be considered

as subgroup of Diff0 T
2. We see that the action by conjugation of SL(2;Z) on this group

T 2 ⊂ Diff0 T
2 is the same as the standard one. Earle and Eells (see [10], Corollary 7.G)

proved that the inclusion T 2 ⊂ Diff0 T
2 is a homotopy equivalence so that BDiff0 T

2 has

the homotopy type of BT 2 ' BS1 ×BS1 ' CP∞ ×CP∞. If we choose suitable elements

x,y ∈ H2(BDiff0 T
2;Z), we can write

H∗(BDiff0 T
2;Z) = Z[x,y]

9



on which SL(2;Z) acts through the automorphism of it given by γ → tγ−1, where γ ∈

SL(2;Z).

Now let {Es,t
r ,dr} be the Serre spectral sequence for cohomology (with coefficients in

a commutative ring R) of the fibration 2.1. Then by the above argument, the E2-term is

given by
∞⊕
t=0

Es,t
2 = Hs(SL(2;Z);R[x,y]) ⇒ H∗(BDiff+ T

2).

Since SL(2;Z) = 〈α,β | α4 = α2β−3 = 1〉 = Z4 ∗Z2 Z6 (see [28], I.4) where

α =

 0 1

−1 0

 and β =

 0 1

−1 1


therefore the abelianization H1(SL(2;Z)) of SL(2;Z) is a cyclic group of order 12 and the

kernel of the natural surjection SL(2;Z)→ H1(SL(2;Z)) is the commutator subgroup of

SL(2,Z), which in turn is isomorphic to a free group of rank 2 (see [5], Exercise 8 in II.4).

Moreover the composition of the restriction map with the transfer map

H∗(SL(2;Z))

×12

((
res // H∗(F2)

tr // H∗(SL(2;Z))

is multiplication by 12 (see [1], Chapter II.5.) Hence applying an argument of group

cohomology (see [6], Proposition III.10.1), we obtain

Proposition 2.1 If s ≥ 2, then
∞⊕
t=0

Es,t
2 = Hs(SL(2;Z);R[x,y]) is annihilated by 12. In

particular if R = Q or Zn with (n,12) = 1, then

∞⊕
t=0

Es,t
2 = Hs(SL(2;Z);R[x,y]) = 0 for s ≥ 2.

Corollary 2.2 Let k = Q or Zp (p is a prime different from 2 and 3). Then

Hn(BDiff+ T
2; k) ∼= E0,n

2 ⊕ E
1,n−1
2 .

10



2.2 The action of SL(2;Z) on cohomology of the fiber

As is well-known SL(2;Z) has the following presentation (see [28])

SL(2;Z) = 〈α,β | α4 = α2β−3 = 1〉.

Here, for the convenience of later computations, we choose two generators α =

 0 1

−1 0


and β =

 0 1

−1 1

. The action of SL(2;Z) on H∗(BDiff0 T
2;Z) = Z[x,y] is given by

α(x) = −y, α(y) = x

β(x) = x− y, β(y) = x

because tα−1 = α and tβ−1 =

 1 1

−1 0

.

Now for each q ∈ N, let Lq be the submodule of Z[x,y] consisting of homogeneous

elements of degree 2q. Equivalently, Lq is the 2q-th cohomology group H2q(BDiff0 T
2;Z) =

H2q(BT 2;Z). We choose a basis {xq,xq−1y, · · · ,xyq−1,yq} for Lq and let

Aq, Bq ∈ SL(q + 1;Z)

be the matrix representations of the actions of α and β on Lq with respect to the above

basis. Observe that

Aq = (a
(q)
i,j ) =



0 0 · · · 0 (−1)q

0 0 · · · (−1)q−1 0

...
...

...
...

0 −1 · · · 0 0

1 0 · · · 0 0



11



and

Bq = (b
(q)
i,j )



1 1 · · · 1 1

−q −(q − 1) · · · −1 0

...
...

...
...

(−1)q+1q (−1)q+1 · · · 0 0

(−1)q+2 0 · · · 0 0


are given by

a
(q)
i,j = δij :=

(−1)q+1−i j = q + 2− i,

0 otherwise

(i,j = 1, · · · ,q + 1).

b
(q)
i,j = (−1)i+1

(
q − j + 1

i− 1

)
where

(
s

t

)
= 0 if t > s (i,j = 1, · · · , q + 1).

In the following section we study some basic properties of the matrices Aq and Bq,

their mod p reduction and rationalization. In particular we begin computing their minimal

polynomials. We will use these facts in Section 2.4 to compute H0(SL(2;Z);Lq(p)) and

H1(SL(2;Z);Lq(p)) with rational and mod p coefficients. Then we will assemble all this

information to get H∗(BDiff+ T
2;Q) and H∗(BDiff+ T

2;Zp) for p 6= 2, 3.

2.3 Some technical lemmas

Let p denotes either a prime or 0. We write Aq(p) and Bq(p) for the corresponding

elements of SL(q + 1,Zp) if p is a prime or of SL(q + 1;Q) if p = 0. It is easy to prove

Lemma 2.3 1. If q is odd, then A2
q = B3

q = −I. Moreover the minimal polynomials

of Aq and Bq are t2 + 1 and t3 + 1 respectively.

2. If q is even, then A2
q = B3

q = I and the minimal polynomials of Aq and Bq are t2−1

and t3 − 1 respectively.

12



Corollary 2.4 If q is odd, then both of Aq(p) + I and Bq(p) − I are invertible provided

p 6= 2. In fact we have

(Aq(p) + I)−1 = −1

2
(Aq(p)− I) and

(Bq(p)− I)−1 = −1

2
(B2

q (p) +Bq(p) + I).

Now let Lq(p) be either Lq ⊗ Zp if p is a prime or Lq ⊗ Q if p = 0. Aq(p) and Bq(p)

act on Lq(p). We assume q is even and define

L−q (p) = {u ∈ Lq(p) | Aq(p)u = −u})

L′q(p) = {u ∈ Lq(p) | (B2
q (p) +Bq(p) + I)u = 0}.

Lemma 2.5 If p 6= 2 and q = 2r, then

dimL−q (p) =

 r + 1 r : odd

r r : even

Proof. It is easy to see that

{xq − yq,xq−1y + xyq−1,xq−2y2 − x2yq−2, · · · ,xr+1yr−1 − xr−1yr+1,xryr} r : odd

or

{xq − yq,xq−1y + xyq−1,xq−2y2 − x2yq−2, · · · ,xr+1yr−1 + xr−1yr+1} r : even

forms a basis of L−q (p).

Next we determine dimL′q. We first consider the case p = 0.

Lemma 2.6 TraceBq = 1, 1, 0,−1,−1, 0 according as q ≡ 0,1, 2, 3, 4, 5 mod 6.

13



Proof. Observe that Bq = (b
(q)
ij ), where

b
(q)
i,j = (−1)i+1

(
q − j + 1

i− 1

)
(i,j = 1, · · · , q + 1).

(Here we understand that
(
s
t

)
= 0 if t > s). In other words the j-th column of Bq consist

of coefficients of the polynomial (1− t)q−j+1.

(1− t)5 (1− t)4 (1− t)3 (1− t)2 (1− t) (1− t)0

· · · 1
+

''

1
+

''

1
+

''

1
+

''

1
+

''

1

· · · −5 −4
+

''

−3
+

''

−2
+

''

−1
+

''

0 = TraceB1

· · · 10 6 3
+

''

1
+

''

0
+

''

0 = TraceB2

· · · −10 −4 −1 0
+

''

0
+

''

0 = TraceB3

· · · 5 1 0 0 0
+

''

0 = TraceB4

· · · −1 0 0 0 0 0 = TraceB5

...
...

...
...

...
...

Bq is naturally a minor matrix of Bq+1 and if we multiply (1− t)q−j+1 by tq−j+1, we find

out that

TraceBq = the coefficient of tq in the power series

1 + t(1− t) + t2(1− t)2 + · · ·

But we have
∞∑
n=0

(t(1− t))n =
1

1− t+ t2

=
1

(t− ω)(t− ω)

where ω = exp(2πi/6) =
1

2
+

√
3

2
i.

Note that
1

ω − ω
= −
√

3

3
i

so
1

(t− ω)(t− ω)
= −
√

3

3
i · 1

t− ω
+

√
3

3
i · 1

t− ω
14
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Figure 2.1

but

1

t− ω
= −

∞∑
n=0

ω−(1+n)tn,
1

t− ω
= −

∞∑
n=0

ω−(1+n)tn &
√

3 i = 2ω − 1.

Thus
1

(t− ω)(t− ω)
=

1

3
(2ω − 1)(

∞∑
n=0

ω−(1+n) − ω−(1+n))tn

therefore

TraceBq =
1

3
(2ω − 1)(ω−(1+q) − ω−(1+q))

=
1

3
(2ω5q − 2ωq+2 − ω5(q+1) + ωq+1) (because ω−1 = ω = ω5)

=
1

3
(ω5q − ωq+2 + ωq+1 − ωq+2 + ω5q − ω5(q+1))

=
1

3
(ω5q − ωq+2 + ωq + ω5q − ω5(q+1)) (because ωq(ω − ω2) = ωq

since ω − ω2 = 1)

=
1

3
(ωq − ωq+2 + ω5q − ω5q+4) (because −ω5q(ω5 − 1) = −ω5q+4

since ω5 − 1 = ω4.)

Then the desired result follows from a direct computation.

Lemma 2.7 If q is even, then

rank(B2
q +Bq + I) = 2k + 1 for q = 6k, 6k + 2 or 6k + 4.

15



Proof. According to Lemma 2.3 (ii), the characteristic polynomial of Bq is

(t− 1)a(t2 + t+ 1)b

for some a,b ∈ N. Moreover Lq = Ker(Bq−I)⊕Ker(B2
q+Bq+I), where dim Ker(Bq−I) = a

and dim Ker(B2
q +Bq + I) = 2b. Because the degree of characteristic polynomial of Bq is

q + 1 and

(t− 1)a(t2 + t+ 1)b = (ta − ata−1 +
(a− 1)a

2
ta−2 + · · · )

(
t2b + bt2b−1 + bt2b−2 + · · ·

)
= ta+2b + (b− a)ta+2b−1 + · · ·

we obtain

a+ 2b = q + 1 and a− b = TraceBq.

but by Lemma 2.6, TraceBq = 1, 0,−1 as q = 6k, 6k + 2 or 6k + 4 respectively.

A simple computation implies the result.

Next we show that the above lemma also holds even if we replace Bq by Bq(p) for

p 6= 3.

Lemma 2.8 Let Bq = (b
(q)
ij ) and define Cq = (c

(q)
ij ) by

c
(q)
ij = b

(q)
q+2−i,q+2−j.

Then we have Cq = B−1q . In other words, Bq and B−1q are mutually symmetric with respect

to the “center” of them.

Proof. We use induction on q. If q = 1, then

B1C1 =

 1 1

−1 0


0 −1

1 1

 = I.

We assume that BiCi = I for i = 1, · · · ,q − 1. Now let b
(q)
i be the i-th row of Bq and let

c
(q)
j be the j-th column of Cq. We can write

Bq =

 ∗ Bq−1

(−1)q 0

 , Cq =


0

c
(q)
q+1

Cq−1


16



Hence by the induction assumption, it sufficies to prove

b
(q)
i c

(q)
q+1 = δi,q+1

for i = 1, · · · , q + 1. Now

i∑
k=1

b
(q)
kj =

i∑
k=1

(−1)k+1

(
q − j + 1

k − 1

)

=

(
q − j + 1

0

)
+

i∑
k=2

(−1)k+1

[(
q − j
k − 2

)
+

(
q − j
k − 1

)]
= (−1)i+1

(
q − j
i− 1

)
= b

(q)
i,j+1 = b

(q−1)
ij

for any i,j where j ≤ q. Hence we have

b
(q)
1 + b

(q)
2 + · · ·+ b

(q)
i = (b

(q−1)
i1 b

(q−1)
i2 · · · b

(q−1)
iq 1)

= (b
(q−1)
i 1) (i = 1, · · · , q) and

b
(q)
1 + b

(q)
2 + · · ·+ b

(q)
q+1 = ((−1)q

(
q−1
q

)
(−1)q

(
q−2
q

)
· · · (−1)q

(
0
q

)
1)

= (0 1).

From this we can deduce

b
(q)
i = (b

(q−1)
i 1)− (b

(q−1)
i−1 1) (i = 2, · · · , q).

Also we have

i∑
k=1

c
(q)
k,q+1 =

i∑
k=1

b
(q)
q+2−k,1

=
i∑

k=1

(−1)q+3−k
(

q

q + 1− k

)

= (−1)q+2

(
q

q

)
+

i∑
k=2

(−1)q+3−k
[(

q − 1

q − k

)
+

(
q − 1

q + 1− k

)]

= (−1)q+3−1
(
q − 1

q − i

)

= −b(q)q−i+1,2 = −c(q)i+1,q = −c(q−1)iq

17



so
i−1∑
k=1

c
(q)
k,q+1 + c

(q)
i,q+1 = −c(q−1)iq

−c(q)iq + c
(q)
i,q+1 =

thus we obtain

c
(q)
q+1 = c(q)q −

c(q−1)q

0

 .

Now it is easy to see that

b
(q)
1 c

(q)
q+1 =

q+1∑
k=1

ck,q+1

=

q+1∑
k=1

b
(q)
k1 = (−1)q

(
q − 1

q

)
= 0

and b
(q)
q+1c

(q)
q+1 = 1.

On the other hand if 2 ≤ i ≤ q, then

b
(q)
i c

(q)
q+1 = b

(q)
i

(
c
(q)
q −

(
c
(q−1)
q

0

))
= −b(q)i

(
c
(q−1)
q

0

)
= ((b

(q−1)
i−1 1)− (b

(q−1)
i 1))

(
c
(q−1)
q

0

)
= 0

by the induction assumption (the second equality follows from the fact that b
(q)
i c

(q)
q =

b
(q−1)
i c

(q−1)
q ). This completes the proof.

Lemma 2.9 For each q let B
(r)
q,s where 1 ≤ r ≤ q+ 1 and 1 ≤ s ≤ q+ 2− r be the matrix

defined by

B(r)
q,s =


b
(q)
1 s b

(q)
1 s+1 · · · b

(q)
1 s+r−1

...
...

b
(q)
r s b

(q)
r s+1 · · · b

(q)
r s+r−1

 .

Then we have detB
(r)
q,s = 1 for all r,s.

18



Proof. First observe that B
(r)
q,s = B

(r)
q−s+1,1. Hence we may assume that s = 1 and we

simply write B
(r)
q instead of B

(r)
q,1 . If r = q + 1, then detBq+1

q = detBq = 1. So assume

that r < q + 1. As in the proof of Lemma 2.8 we have

i∑
k=1

b
(q)
kj = b

(q−1)
ij

for any i,j where j ≤ q. Hence if we define B
(r)

q to be the matrix obtained from B
(r)
q by

the following rule:

the i-th row of B
(r)

q =
i∑

k=1

(the k-th row of B(r)
q ),

then we have

B
(r)

q = B
(r)
q−1

and clearly detB
(r)
q = detB

(r)

q = detB
(r)
q−1. Hence inductively we have

detB(r)
q = detB

(r)
q−1 = · · · = detB

(r)
r−1 = detBr−1 = 1.

This completes the proof.

Lemma 2.10 Assume that q is even and p 6= 3. Then we have

rank(B2
q (p) +Bq(p) + I) = 2k + 1 if q = 6k, 6k + 2 or 6k + 4.

Proof. Clearly we have

rank(B2
q (p) +Bq(p) + I) ≤ rank(B2

q +Bq + I).

Hence, in view of Lemma 2.7 we have only to show the existence of a minor of (B2
q +Bq+I)

of size (2k+ 1)× (2k+ 1) (for q = 6k, 6k+ 2 or 6k+ 4), whose determinant is a power of

3. Now observe that if i+ j > q + 2, then

b
(q)
ij = 0.

We are assuming that q is even so that B2
q = B−1q (see Lemma 2.3 (ii)). Hence by Lemma

2.8, if i+ j < q + 2, then

c
(q)
ij = 0
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Therefore the (i,j)-component of B2
q +Bq + I coincides with that of Bq if (i,j) belongs to

the set

K = {(i,j) | i+ j < q + 2 and j > i}.

If q = 6k + 2 or 6k + 4, then the minor matrix B
(2k+1)
q,2k+2 of Bq is completely contained in

the region of Bq corresponding to K

b11 b12 · · · b1,2k+2 b1,2k+3 · · · b1,4k+2 · · · b1q b1,q+1

b21 b22 · · · b2,2k+2 b2,2k+3 · · · b2,4k+2 · · · b2q b2,q+1

...
...

...
...

...
...

...

b2k,1 b2k,2 · · · b2k,2k+2 b2k,2k+3 · · · b2k,4k+2 · · · b2k,q b2k,q+1

b2k+1,1 b2k+1,2 · · · b2k+1,2k+2 b2k+1,2k+3 · · · b2k+1,4k+2 · · · b2k+1,q b2k+1,q+1

...
...

...
...

bq+1,1 bq+1,2 · · · · · · bq+1,q bq+1,q+1




so that B

(2k+1)
q,2k+2 can also be considered to be minor matrix of B2

q +Bq + I. But we have

detB
(2k+1)
q,2k+2 = 1

by Lemma 2.9. Now if q = 6k, choose the minor matrix B
(2k+1)
q,2k+1 , then the bottom ele-

ments of the first and the last columns of B
(2k+1)
q,2k+1 are not contained in the region of Bq

corresponding to K.

b11 b12 · · · b1,2k+1 b1,2k+2 · · · b1,4k+1 · · · b1q b1,q+1

b21 b22 · · · b2,2k+1 b2,2k+2 · · · b2,4k+1 · · · b2q b2,q+1

...
...

...
...

...
...

...

b2k,1 b2k,2 · · · b2k,2k+1 b2k,2k+2 · · · b2k,4k+1 · · · b2k,q b2k,q+1

b2k+1,1 b2k+1,2 · · · b2k+1,2k+1 b2k+1,2k+2 · · · b2k+1,4k+1 · · · b2k+1,q b2k+1,q+1

...
...

...
...

bq+1,1 bq+1,2 · · · · · · bq+1,q bq+1,q+1




If we denote D

(2k+1)
q,2k+1 = (dij) for the corresponding minor matrix of B2

q + Bq + I, then all

the entries of D
(2k+1)
q,2k+1 coincide with those of B

(2k+1)
q,2k+1 except the following two components:

d2k+1,1 = b
(q)
2k+1,2k+1 + 1
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d2k+1,2k+1 = b
(q)
2k+1,4k+1 + 1 = 2.

Here we have used Lemma 2.8 to deduce the second equality. Then by Lemma 2.9 we

conclude that

detD
(2k+1)
q,2k+1 = detB

(2k+1)
q,2k+1 +det


b1,2k+2 · · · b1,4k+1

...
...

b2k,2k+2 · · · b2k,4k+1

+det


b1,2k+1 · · · b1,4k

...
...

b2k,2k+1 · · · b2k,4k

 = 3.

This completes the proof.

2.4 Cohomology of BDiff+ T
2 with twisted coefficients

In this section we compute H∗(SL(2;Z); k[x,y]) for k = Q or Zp for p 6= 2,3. Notice

that H∗(BDiff+ T
2; k) can be deduced immediately from here using Proposition 2.1 and

Corollary 2.2.

Recall that we denote Lq(p) for Lq ⊗ Zp is p is a prime or for Lq ⊗ Q if p = 0. Now

let Z1(SL(2;Z)) be the set of all 1-cocycles of SL(2;Z) with values in Lq(p), namely it is

the set of all crossed homomorphisms

f : SL(2;Z) −→ Lq(p).

defined by f(ab) = f(a) + a · f(b) where the action is the multiplication of the matrix

represented in SL(q+1;Zp). Since SL(2;Z) is generated by two elements α and β, crossed

homomorphism f : SL(2;Z) → Lq(p) is completely determined by two values f(α) and

f(β). We have the following properties of the crossed homomorphism:

1. f(1) = 0,

2. f(α4) = f(α) + α · f(α) + α2 · f(α) + α3 · f(α),

3. f(α2) = f(α) + α · f(α),

4. f(β3) = f(β) + β · f(β) + β2f(β).
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Moreover the two relations α4 = 1 and α2 = β3 imply

(A3
q(p) + A2

q(p) + Aq(p) + I)f(α) = 0

(Aq(p) + I)f(α) = (B2
q (p) +Bq(p) + I)f(β).

Conversely if two elements f(α) and f(β) of Lq(p) satisfy the above two equations, then

there is defined the associated crossed homomorphism f : SL(2;Z) → Lq(p) with pre-

scribed values at α,β. If we combine the above argument with Lemma 2.3, we can conclude

Lemma 2.11 1. If q is odd, then

Z1(SL(2;Z);Lq(p)) = {(u,v) ∈ Lq(p)×Lq(p) | (Aq(p)+I)u = (B2
q (p)+Bq(p)+I)v}.

2. If q is even, then

Z1(SL(2;Z);Lq(p)) = {(u,v) ∈ Lq(p)×Lq(p) | (Aq(p)+I)u = 0, (B2
q (p)+Bq(p)+I)v = 0}.

Now let

δ : Lq(p) −→ Z1(SL(2;Z);Lq(p))

be the homomorphism defined by

δ(u)(γ) = (γ − 1)u (u ∈ Lq(p), γ ∈ SL(2;Z)).

Then by the definition of cohomology of groups ([7] Chaper IX.4), we have

H0(SL(2;Z);Lq(p)) = ker δ

= {u ∈ Lq(p) | Aq(p)u− u = Bq(p)u− u = 0} and

H1(SL(2;Z);Lq(p)) = Coker δ.

Proposition 2.12 H0(SL(2;Z);Q[x,y]) = Q.

Proof. It suffices to prove that the only polynomials in Q[x,y] which are left invariant

under the action of SL(2;Z) are constants. This follows from a direct computation details

of which are omitted.
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Remark 1 According to a classical result of Dickson [9] (see also Tezuka [32]), the sub-

ring of Zp[x,y] consisting of those elements which are invariant by the action of SL(2;Z),

namely H0(SL(2;Z);Zp[x,y]), is the polynomial ring generated by the following two ele-

ments

xpy − xyp and
xp

2
y − xyp2

xpy − xyp
≡ yp(p−1) + (xp − xyp−1)p−1.

Hence if we write dq(p) for dimH0(SL(2;Z);Lq(p)), then we have

∞∑
q=0

dq(p)t
q =

1

(1− tp+1)(1− tp(p−1))
.

Proposition 2.13 If q is odd and p 6= 2, then

H0(SL(2;Z);Lq(p)) = H1(SL(2;Z);Lq(p)) = 0.

Proof. According to Corollary 2.4, Bq(p) − I and Aq(p) − I are invertibles and so the

homomorphism δ : Lq(p)→ Z1(SL(2;Z);Lq(p)) is injective. HenceH0(SL(2;Z);Lq(p)) =

0. Next let (u,v) ∈ Z1(SL(2;Z);Lq(p)) be any element (see Lemma 2.11 (1)) so that

(Aq(p) + I)u = (B2
q (p) +Bq(p) + I)v.

By Corollary 2.4, we have

u = −1

2
(Aq(p)− I)(B2

q (p) +Bq(p) + I)v.

Since Bq(p)− I is invertible, there is an element w ∈ Lq(p) such that v = (Bq(p)− I)w.

Then

u = (Aq(p)− I)w.

Therefore

(u,v) = ((Aq(p)− I)w,(Bq(p)− I)w) = δw

and hence H1(SL(2;Z);Lq(p)) = 0.

Henceforth we assume that q is even and consider H1(SL(2,Z);Lq(p)). According to

Lemma 2.11 (2), we have an identification

Z1(SL(2;Z);Lq(p)) = L−q (p)⊕ L′q(p) (p 6= 2)
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where L−q (p) and L′q(p) have been defined in Section 2.2.

Proposition 2.14 If q is even, then

dimH1(SL(2;Z);Lq(0)) =



2m− 1 q = 12m

2m+ 1 q = 12m+ 2, 12m+ 4, 12m+ 6,

or 12m+ 8

2m+ 3 q = 12m+ 10.

Proof. We know that the homomorphism δ : Lq(0) → Z1(SL(2;Z);Lq(0)) is injective

(Proposition 2.12). Hence we have

dimH1(SL(2;Z);Lq(0)) = dimZ1(SL(2;Z);Lq(0))− (q + 1)

= dimL−q (0) + dimL′q(0)− (q + 1).

Then the result follows from Lemma 2.5 and Lemma 2.7.

Proposition 2.15 Assume q is even and let dq(p) = dimH0(SL(2;Z);Lq(p)) (see the

Remark 1) Then for p 6= 2,3, we have

dimH1(SL(2;Z);Lq(p)) = dimH1(SL(2;Z);Lq(0)) + dq(p).

Proof. By a similar argument as in the proof of Proposition 2.14, we have

dimH1(SL(2;Z);Lq(p)) = dimL−q (p) + dimL′q(p)− (q + 1) + dq(p).

Then the result follows because we have

dimL−q (p) = dimL−q (0) (p 6= 2)

by Lemma 2.5 and also we have

dimL′q(p) = dimL′q(0) (p 6= 3)

by Lemma 2.7 and Lemma 2.10.
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Finally, the next two theorems follow from the previous computations

Theorem 2.16

dim H̃n(BDiff+ T
2;Q) =



0 n 6≡ 1 (mod 4)

2m− 1 n = 24m+ 1

2m+ 1 n = 24m+ 5, 24m+ 9, 24m+ 13

or 24m+ 17

2m+ 3 n = 24m+ 21

Proof. From Corollary 2.2 we have

Hn(BDiff+ T
2;Q) ∼= E0,n

2 ⊕ E
1,n−1
2

but by Proposition 2.12 it turns out

Hn(BDiff+ T
2;Q) ∼= E1,n−1

2 .

Thus Theorem 2.16 follows from Proposition 2.13 and Proposition 2.14.

Remark 2 Since 5 ≡ 1 (mod 4) and 5 = 24 · 0 + 5, this implies that the first non-trivial

group is H5(BDiff+ T
2;Q) ∼= Q, on the other hand, taking 4k+1 = 24m+13 implies that

k = 3(2m+1), therefore the dimH4k+1(BDiff+ T
2;Q) is approximately 1

3
k. Note that the

ring structure on H∗(BDiff+ T
2;Q) defined by the cup product is trivial.

We can also obtain information on the torsion of H∗(BDiff+ T
2;Z) and use it to obtain:

Theorem 2.17 Mod 2 and 3 torsion, we have

H̃n(BDiff+ T
2;Z) =



torsion n ≡ 0 (mod 4)

free abelian group of rank n ≡ 1 (mod 4)

indicated in Theorem 2.16

0 n ≡ 2,3 (mod 4).
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Proof. If p 6= 2, 3, Corollary 2.2, Proposition 2.13 and Proposition 2.15 imply

dimHn(BDiff+ T
2;Zp) =


dq(p) n = 2q (q : even)

dimHn(BDiff+ T
2;Q) + dq(p) n = 2q + 1 (q : even)

0 n ≡ 2,3 (mod 4).

where dq(p) = dimH0(SL(2;Z);Lq(p)) and the dq(p)’s are given by the generating func-

tion
∞∑
q=0

dq(p)t
q =

1

(1− tp+1)(1− tp(p−1))

Hence if n ≡ 2, 3 (mod 4), then

Hn(BDiff+ T
2;Z) = 0 mod 2, 3 torsions

by the universal coefficient theorem. Similarly it is easy to deduce that Hn(BDiff+ T
2;Z)

has no p-torsion (p 6= 2, 3) if n ≡ 1 mod 4. This completes the proof.

Moreover it turns out that p-torsion appears in H4k(BDiff+ T
2;Z) for any prime p.

Remark 3 H∗(BDiff+ T
2;Z) has actually 2 and 3 torsion. This follows from the fol-

lowing argument. The projection BDiff+ T
2 → K(SL(2;Z),1) has a right inverse because

SL(2,Z) can be naturally considered as a subgroup of Diff+ T
2. Hence the homology

H∗(SL(2;Z);Z) ∼= H∗(K(Z12,1);Z)

embeds intoH∗(BDiff+ T
2;Z) as a direct summand. It is easy to check thatH1(BDiff+ T

2;Z) ∼=

Z12 and H2(BDiff+ T
2;Z) = 0.

Remark 4 By Theorem 2.16 and Theorem 2.17, we have an isomorphism

H4k(BDiff+ T
2;Zp) = Hom(H4k(BDiff+ T

2;Z),Zp) (p 6= 2, 3).

On the other hand we have

H4k(BDiff+ T
2;Zp) ∼= L2k(p)

SL(2;Z)
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by Corollary 2.2, where the right hand side denotes the subspace of L2k(p) consisting of

those elements which are left invariant by the action of SL(2;Z). Then in view of Remark

1, we can conclude that the p-primary part of H4k(BDiff+ T
2;Z) is non-trivial provided

2k can be expressed as a linear combination of p+ 1 and p(p− 1) with coefficients in non-

negative integers. Also it can be shown that mod 2 and 3 torsion we have an isomorphism

H4k(BDiff+ T
2;Z) ∼= L2k/K2k

where K2k denotes the submodule of L2k generated by elements γ(u)− u where u ∈ L2k,

and γ ∈ SL(2;Z).

2.5 Non-triviality of the characteristic classes

In this final section we construct an element of H5(BDiff+ T
2;Z) which has infinite order.

First it can be shown by a direct computation that the crossed homomorphism

f : SL(2;Z) −→ L2(0)

given by f(α) = x2−y2 and f(β) = 0 represents a non-zero element of H1(SL(2;Z);L2(0))

∼= Q (see Proposition 2.14.) We write [f ] ∈ H5(BDiff+ T
2;Q) for the corresponding

element (see Corollary 2.2.) Now let η be the canonical line bundle over CP 2 and let

T 2 → E(k,l) → CP 2 be the T 2-bundle associated to the complex 2-plane bundle ηk ⊕ ηl

on CP 2 with k,l ∈ Z. Let T 2 → E ′(k,l)→ CP 1 be the restriction of E(k,l) to CP 1 ⊂ CP 2.

Then we can write

E ′(k,l) = D2 × S1 × S1
⋃
gk,l

D2 × S1 × S1

where the pasting map gk,l : ∂D2 × S1 × S1 → ∂D2 × S1 × S1 is given by

gk,l(z1,z2,z3) = (z−11 ,zk1z2,z
l
1z3)

where z1 ∈ ∂D2, and z2,z3 ∈ S1. Now for an element γ =

a b

c d

 ∈ SL(2;Z), let

hγ : D2 × S1 × S1 → D2 × S1 × S1 be the diffeomorphism defined by

hγ(z1,z2,z3) = (z1,z
a
2z

b
3,z

c
2z
d
3)
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with z1 ∈ D2 and z2,z3 ∈ S1. It is easy to show that if two relations:

ak + bl = k and ck + dl = l

are satisfied, then hγ extends to a diffeomorphism h′γ : E ′(k,l) → E ′(k,l) which is an

automorphism as a T 2-bundle. Then since π3(Diff+ T
2) = 0, we can extend h′γ to an

automorphism Hγ : E(k,l)→ E(k,l). Hγ is nothing but the automorphism of E(k,l) as a

principal T 2-bundle defined by the automorphism of T 2 given by γ. Let Mγ(k,l) be the

mapping torus of Hγ. The natural projection

Mγ(k,l) −→ S1 × CP 2

has the structure of a T 2-bundle. Clearly the classifying map of this T 2-bundle is given

by

CP 2 //

i0

��

S1 × CP 2 //

i

��

S1

ĩ

��
BDiff0 T

2 // BDiff+ T
2 // K(SL(2,Z),1)

where i0 is characterized by the induced map i∗0 : H2(BDiff0 T
2;Z)→ H2(CP 2;Z) which

is given by i∗0(x) = kι, i∗0(y) = lι where ι ∈ H2(CP 2;Z) is the first Chern class of η, and

the map ĩ represents γ−1 ∈ π1(K(SL(2;Z),1)) = SL(2;Z). Therefore we conclude that

〈[S1 × CP 2],i∗([f ])〉 = i∗0(f(γ−1)) ∈ H4(CP 2;Q) ∼= Q.

If we choose γ =

2 −1

1 0

 and k = l = 1, then γ = β−1αβ−1 so that f(γ−1) = y2 − 2xy

and hence i∗0(f(γ−1)) = −ι2. This proves that the corresponding T 2-bundle represents a

non-zero element of H5(BDiff+ T
2;Q). Similarly we can construct non-zero elements of

H4k+1(BDiff+ T
2;Q), for k > 1, explicitly, but we stop here.
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3

Characteristic classes of

Σg-bundles with g ≥ 2

This chapter is focused in the non-triviality of the first Miller-Morita-Munford character-

istic class e1 of a surface bundle, with fiber of genus greater than one taking as base space

a surface. In order to define these classes and prove the non-triviality of e1 we introduce

some technical tools like the Gysin homomorphism and ramified coverings, as well as some

of their properties.

3.1 The Gysin homomorphism

In Section 3.4 we define characteristic classes of surface bundle where we shall make

essential use of the Gysin homomorphism. This homomorphism is very important for the

study of surface bundles as well as general manifolds. In this section we briefly summarize

basic facts concerning it.

Let F be an oriented closed manifold and let

π : E −→M

be an F -bundle over M . We assume this bundle is oriented; that is the tangent bundle

along the fiber of π, denoted by ξ = {X ∈ TE | π∗X = 0}, is orientable and is given a

specific orientation. Although we are only concerned with the case F = Σg, the Gysin

homomorphism is defined for general F -bundles. If we denote by {Ep,q
r } the spectral
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sequence for the cohomology of the above F -bundle, then its E2 term is given by

Ep.q
2
∼= Hp(M ;Hq(F ))

(see [20], Theorem 5.2.) Here Hq(F ) stands for the local coefficient system associated

to the q-dimensional cohomology Hq(π−1(p);Z) with p ∈ M of the fibers. If F is n-

dimensional, then clearly Hq(F ) = 0 for q > n so that

Ep,q
2 = 0 (q > n).

By the assumption, Hn(F ) is isomorphic to the constant local system Z. Hence

Ep,n
2
∼= Hp(M ;Z)

On the other hand, the homomorphism dr : Ep−r,n+r−1
r −→ Ep,n

r is trivial for any p and

r ≥ 2, it is because Ep−r,n+r−1
2 = Hp−r(M ;Hn+r−1(F )) and n + r − 1 ≥ n + 1 for r ≥ 2,

since Hq = 0 for q > n so that Ep−r,n+r−1
r+1 ⊂ Ep−r,n+r−1

2 = 0 for r ≥ 2.

0 = Ep−r.n+r−1
r

dr=0

''
Ep,n
r

dr

%%
Ep+r,n−r+1
r

where Ep,n
r+1 = ker dr ⊂ Ep,n

r , so that we obtain a series of monomorphism

Ep,n
∞ ⊂ · · · ⊂ Ep,n

3 ⊂ Ep,n
2
∼= Hp(M ;Z).

Now we denote the homomorphism

Hp(E;Z) −→ Ep−n,n
∞ ⊂ Ep−n,n

2
∼= Hp−n(M ;Z)

which is the composition of the natural projection Hp(E;Z) −→ Ep−n,n
∞ with the above

monomorphism (with shifted degree) by

π∗ : Hp(E;Z) −→ Hp−n(M ;Z) (3.1)
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and call it the Gysin homomorphism of the F -bundle π : E −→ M . Sometimes the

symbol π! is used instead of π∗. Note that this homomorphism goes in the opposite direc-

tion to the usual one which is induced by the projection π and also that it decreases the

degree by n, namely the dimension of fiber. Similarly we have the Gysin homomorphism

π∗ : Hp(M ;Z) −→ Hp+n(E;Z) (3.2)

in homology.

The above method of defining the Gysin homomorphism using the spectral sequence

is valid over Z, and we may say that it is theoretically the best one. However, it might

not be easy to see its geometrical meaning. To cover this point, let us examine the Gysin

homomorphism in the context of de Rham cohomology, although the coefficients must be

reduce to R. The Gysin homomorphism can be explained by means of an operation

π∗ : Ap(E) −→ Ap−n(M)

defined in the de Rham complex called integration along the fiber. Any differential

p-form on E can be expressed locally as a sum of the forms like

ω =
∑
i,j

fi,j(x,y)dxi1 ∧ · · · ∧ dxis ∧ dyj1 ∧ · · · ∧ dyjt .

Here x1, · · · ,xm with m = dimM and y1, · · · yn is assumed to coincide with the given

orientation of F . Here the summation is taken over the multiindices i = (i1, · · · ,is),

i1 < · · · < is, j = (j1, · · · ,jt), j1 < · · · < jt with s+ t = p. We now set

π∗(ω) =
∑

i,j(t=n)

(∫
F

fij(x,y)dy1 ∧ · · · ∧ dyn
)
dxi1 ∧ · · · ∧ dxip−n .

It can be easily shown that π∗ is in fact uniquely define by the above. The integration

along the fiber commutes with the exterior differential d, namely

d ◦ π∗ = π∗ ◦ d.

Hence it induces a homomorphism

π∗ : Hp(E;R) −→ Hp−n(M ;R),

31



and it can be shown that this coincides with the Gysin homomorphism which was defined

by using the spectral sequence.

In the cases where the base space M is an oriented closed manifold, there is a simple

interpretation of the Gysin homomorphism in terms of Poincaré duality. Namely, given a

continuous mapping f : N −→ N ′ between two oriented closed manifolds N,N ′, there is

a homomorphism

f∗ : Hp(N ;Z) −→ Hp−d(N ′;Z)

(also called the Gysin homomorphism) defined by the composition

Hp(N ;Z) //

D ∼=

��

Hp−d(N ′;Z)

Hn−p(N ;Z)
f∗ // Hn−p(N

′;Z)

(D′)−1∼=

OO

Here n = dimN , d = dimN − dimN ′, and D and D′ denote the Poincaré duality maps of

N,N ′ respectively. Similarly, the Gysin homomorphism

f ∗ : Hp(N
′;Z) −→ Hp+d(N ;Z)

in homology is defined by setting f ∗ = D−1 ◦ f ∗ ◦D′. Now let us go back to the original

situation where we are given an F -bundle π : E −→M and assume that M is an oriented

closed manifold. Then the total space E is also a closed manifold with the induced

orientation which is locally equal to the one on the product M × F . In this case, it can

be shown that the Gysin homomorphism

π∗ : Hp(E;Z) −→ Hp−n(M ;Z)

π∗ : Hp(M ;Z) −→ Hp+n(E;Z)

associated to the projection π defined through Poincaré duality coincide with the former

definition (3.1), (3.2).

The following proposition concerns basic properties of the Gysin homomorphism.

Proposition 3.1 1. Let F be an oriented closed manifold and let π : E −→ M be an

oriented F -bundle. Then for any α ∈ Hp(M ;Z) and β ∈ Hq(E;Z), the equality

π∗(π
∗(α) ∪ β) = α ∪ π∗(β)
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holds.

2. For any u ∈ Hp(M ;Z) and γ ∈ Hp+n(E;Z), we have

〈γ,π∗(u)〉 = 〈π∗(γ),u〉

where 〈−,−〉 is the Kronecker pairing.

In particular, in the situation of (1), if we further assume that M is an oriented

closed manifold and p+ q = dimE, then

〈π∗(α) ∪ β,[E]〉 = 〈α ∪ π∗(β),[M ]〉.

3. The Gysin homomorphism is natural with respect to bundle maps. More precisely,

given a map of oriented F -bundles

E
f //

π

��

E ′

π′

��
M

f̃ //M ′

the following diagram commutes

H∗(E)

π∗

��

H∗(E ′)

π′∗

��

f∗oo

H∗(M) H∗(M ′)
f̃∗oo

The following lemma gives a geometric description of the Gysin homomorphism in the

special case for covering maps. We will use it in Section 3.6.

Lemma 3.2 Let M be an n-dimensional oriented closed manifold and let π : M̃ −→ M

be a finite covering. We give M̃ the orientation induced from M . Suppose that the

Poincaré dual [M ] ∩ α ∈ Hn−k(M ;Z) of a cohomology class α ∈ Hk(M ;Z) is represented

by an (n − k)-dimensional oriented submanifold B of M . Then the Poincaré dual of

π∗(α) ∈ Hk(M̃ ;Z) can be represented by the oriented submanifold B̃ = π−1(B) of M̃ .
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Proof. Let N(B) be a closed tubular neighborhood of B in M . If we denote by ν the

normal bundle of B, then we can identify N(B) with the disk bundle D(ν) with respect

to a suitable metric. We set W = M \ IntN(B) and consider the following natural

homomorphism:

Hk(D(ν),∂D(ν);Z) ∼= Hk(N(B),∂N(B);Z)

∼= Hk(M,W ;Z) −→ Hk(M ;Z).

If we denote by U ∈ Hk(D(ν),∂D(ν);Z) the Thom class; then as is well known (see,

for example, [3] Proposition 6.24 (a)), the image of U under the above homomorphism

is nothing but the Poincaré dual of [B], namely α ∈ Hk(M ;Z). On the other hand,

π−1(N(B)) can serve as a closed tubular neighborhood N(B̃) of B̃, and moreover under

the homomorphism

Hk(N(B),∂N(B);Z)
π∗−→ Hk(N(B̃),∂N(B̃);Z)

induced by the projection, the above Thom class U clearly goes to that of the normal

bundle of B̃. The claim follows from this immediately.

3.2 Ramified coverings

In Section 3.6 we prove the non-triviality of the characteristic classes of surfaces bundles

defined in Section 3.4. The proof will be given by explicitly constructing surface bundles

with non-zero characteristic classes. In this section, we briefly discuss ramified coverings,

which are essential in such construction.

The concept of ramified covering (or branched covering) is obtained by generalizing

that of covering spaces, and there are various formulations in the framework of algebraic

varieties, complex manifolds or differentiable manifolds. Roughly speaking, a submanifold,

called the ramification locus or branch locus, is given in the base manifold, and away

from there it is a usual covering space. Suitable conditions are required on the ramification

locus according to each framework mentioned above.

Here we consider only the most simple type of ramified coverings, namely cyclic

ramified coverings.
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Let m be a positive integer. An m-fold cyclic ramified covering is defined by taking

the map

C 3 z 7→ zm ∈ C

as a model. This is the identity at the origin, and the usual covering map in C× = C\{0}.

From a slightly different viewpoint we can also interpret it as follows. The cyclic group

Z/m acts on C naturally by

C 3 z 7→ ζ · z = exp

(
2πi

m

)
z ∈ C

where ζ denotes the generator of Z/m. This action is free outside of the origin, and the

quotient space can be canonically identified with C. Moreover it is easy to see that the

projection to the quotient space

C −→ C/(Z/m) ∼= C

is equivalent to the above map.

Now a ramified covering is defined, locally, by taking a direct product of this model

with other manifolds. More concretely, assume that the cyclic group Z/m acts on an

oriented C∞ manifold N by orientation preserving diffeomorphism satisfying the following

condition: the fixed point set

F = {p ∈ N | ζ · p = p}

is a submanifold on N of codimension 2, and the action is free outside of F . Then, it can

be checked that the quotient space N = N/(Z/m) has a natural structure of an oriented

C∞ manifold by investigating the action of Z/m on the normal bundle of each connected

component of F . If we denote by

π : N −→ N

the natural projection to the quotient space, then F = π(F ) becomes a submanifold of

N of codimension 2. Moreover the restriction π : F −→ F is a diffeomorphism and

π : N \ F −→ N \ F is a covering map in the usual sense. Finally it is easy to see that

the map π : N −→ N is equivalent to the above model F × C 3 (p,z) 7→ (p,zm) ∈ F × C

near F .
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N

N

π

Figure 3.1

In such a situation, we call π : N −→ N an m-fold cyclic ramified covering, ramified along

F . It is also called simply an m-fold ramified covering.

3.3 Construction of ramified coverings

Let M be an oriented closed C∞ manifold. Assume that there is given an oriented

submanifold B ⊂ M of codimension 2. Following Atiyah [2] and Hirzebruch [14], let us

recall a sufficient condition for the existence of an m-fold ramified covering of M ramified

along B.

Let α ∈ H2(M ;Z) be the Poincaré dual of the fundamental homology class of B,

[B] ∈ Hn−2(M ;Z), where n = dimM . Recall that there is a canonical bijection

{isomorphism classes of line bundles over M} ∼= H2(M ;Z),

taking a line bundle L to its first Chern class c1(L) ∈ H2(M ;Z) (see [8] Theorem 5.A.)

Hence there exist a complex line bundle η over M which corresponds to α. This bundle

can be constructed explicitly as follows: let ν be the normal bundle of B in M and denote

by E(ν) its total space. Then ν is a 2-dimensional real vector bundle over B, and it has a

natural orientation induced by those of M and B. Hence we can consider ν as a complex

line bundle. Let N(B) be a closed tubular neighborhood of B. Then as is well known, by

choosing a Hermitian metric on ν, we can construct a diffeomorphism

ϕ : N(B) ∼= {v ∈ E(ν) | ||v|| < ε} where ε > 0

such that B ⊂ N(B) is sent to the 0-section of ν (cf. Figure 3.2).

Let π : E(ν) −→ B be the projection and set

π′ = π ◦ ϕ : N(B) −→ B.
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B

M

N(B)

B

E(ν)

Figure 3.2

The total space of the pullback bundle η0 = (π′)∗(ν) of ν by the map π′, which is a

complex line bundle over N(B), can be described as

E(η0) = {(p,v) | p ∈ N(B), v ∈ π−1(π′(p))}.

Then a natural section s : N(B) −→ E(η0) is defined by

N(B) 3 p 7−→ s(p) = (p,ϕ(p)) ∈ E(η0).

B
N(B)

s

Figure 3.3

This section never vanishes over N(B) \B. Hence it induces a trivialization

η0|N(B)\B ∼= (N(B) \B)× C.

Now set W = M \B and paste the trivial bundle W ×C to η0 by the above trivilization to

obtain a complex line bundle η over M . More precisely, we identify (p,z) ∈ (N(B)\B)×C

with (p,zs(p)) ∈ E(η0). We can extend the section s of η0 to that of η by setting s = 1

over W .
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It is clear from the construction that η|B = ν. Moreover the zero locus of s is precisely

equal to B, and the image Ims of s intersects the 0-section M ⊂ E(η) transversely (cf.

Figure 3.4).

E(ν)

B s
M

Figure 3.4

In the above argument, we first assumed that M is a closed manifold. However, it can

be shown that this assumption is unnecessary for the construction of the complex line

bundle η.

In the case M is a complex manifold and B is a complex submanifold of codimension 1,

the above construction can be done entirely in the complex analytic category. Namely we

can construct η as a holomorphic line bundle over M , and the section s can be chosen to be

holomorphic. More concretely, choose a family Ui with i ≥ 1 of coordinate neighborhoods

of M with the property that B ⊂ ∪iUi and there is a coordinate function fi : Ui −→ C

such that

B ∩ Ui = {p ∈ B ∩ Ui | fi(p) = 0}.

We also set U0 = M \ B and consider the constant function f0 = 1 on U0. If we put

fij = fi ◦ f−1j , then {fij} becomes a 1-cocycle associated to the open covering {Ui}i≥0 of

M with values in C×. We can now define η to be the holomorphic line bundle determined

by this 1-cocycle. Also the section s which is induced by fi is holomorphic and clearly

satisfies the above condition. In [14] there is a description of a more general construction

including the case where B is expressed as the difference of two complex submanifolds.

With the above preparation in mind, we prove the following proposition.
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Proposition 3.3 ([14]) Let M be a closed oriented C∞ manifold and let B ⊂ M be

an oriented submanifold of codimension 2. Suppose that, for some positive integer m, the

homology class [B] ∈ Hn−2(M ;Z) determined by B is divisible by m in Hn−2(M ;Z). Then

there exist an m-fold cyclic ramified covering M̃ −→M ramified along B.

Proof. Let α ∈ H2(M ;Z) denote the Poincaré dual of [B] ∈ Hn−2(M ;Z). By the

assumption, there is an element β ∈ H2(M ;Z) such that mβ = α. If we denote by η

the complex line bundle corresponding to α, namely c1(η) = α, then there exist a section

s : M −→ E(η) satisfying the following three conditions:

1. s = 0 on B.

2. s 6= 0 on M \B.

3. Im s meets with M ⊂ E(η) transversely.

Let η′ be the complex line bundle with c1(η
′) = β. Then we have (η′)⊗m ∼= η. Hence we

can define a mapping

f : E(η′) −→ E(η)

by setting f(v) = v ⊗ · · · ⊗ v with v ∈ E(η′). If we set M̃ = f−1(Im s), then f : M̃ −→

Im s = M is the desired ramified covering.

3.4 Definition of characteristic classes

Let Σg be an oriented closed surface of genus g and let

π : E −→M

be an oriented Σg-bundle. If we denote by ξ the tangent bundle along the fiber of π, that

is, ξ = {X ∈ TE : π∗(X) = 0}, then by definition of oriented surface bundle ξ has a

structure of an oriented 2-dimensional real vector bundle. Hence its Euler class

e = χ(ξ) ∈ H2(E;Z)
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is defined. For each non-negative integer i, we consider the power

ei+1 ∈ H2(i+1)(E;Z)

of the Euler class e. We then apply the Gysin homomorphism (cf. Section 3.1)

π∗ : H2(i+1)(E;Z) −→ H2i(M ;Z)

to ei+1 and obtain a cohomology class of the base space M which we denote by

ei(π) = π∗(e
i+1) ∈ H2i(M ;Z).

Definition The cohomology class ei(π) ∈ H2i(M ;Z) which is defined for any Σg-bundle

π : E −→M as above is called the i-th characteristic class of surface bundle.

The fact that ei in fact defines a characteristic class of surface bundles, namely that

is natural under tha bundle maps, can be checked as follows. Let πi : Ei −→ Mi, with

i = 1,2, be two Σg-bundles and let

E1
f //

π1

��

E2

π2

��
M1 f

//M2

be a bundle map. Then by definition, the restriction of f to each fiber is an orientation

preserving diffeormorphism. Hence if ξi denotes the tangent bundle along the fibers of πi,

then we have

χ(ξ1) = f
∗
(χ(ξ2))

The naturality of the Gysin homomorphism (cf. Proposition 3.1(iii)) implies that

ei(π1) = f ∗(ei(π2))

which shows that ei is indeed a characteristic class. Hence from the description of made

in Section 1.4, we can write

ei ∈ H2i(BDiff+ Σg;Z) = H2i(Mg;Z)

for g ≥ 2. In other words, ei can be considered as a cohomology class ofMg of degree 2i.
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3.5 The first characteristic class e1 and the signature

The first characteristic class e1 is closely related to the signature which is an important

invariant of closed oriented 4-manifolds. Just to make sure, we recall the definition of the

signature, denoted signM , of a closed oriented 4k-dimensional manifold M . It is defined

as the signature of the symmetric bilinear form

H2k(M ;Q)⊗H2k(M ;Q) −→ H4k(M ;Q) ∼= Q

which is induced by the cup product, namely the number of positive eigenvalues minus

that of negative eigenvalues.

Now to state the relation between the signature and e1, let

π : E −→M

be an oriented Σg-bundle and assume that M is also an oriented closed surface. Then the

total space E becomes a closed 4-manifold equipped with a natural orientation so that its

signature sign E is defined.

Proposition 3.4 Let π : E −→M be an oriented Σg-bundle over closed oriented surface

M . Then we have the equality

〈e1,[M ]〉 = 3 sign E.

Proof. Let ξ be the tangent bundle along the fiber of the given Σg-bundle and let TE and

TM be the tangent bundles of E and M respectively. Consider the following diagrams

E(ξ)

""

� � // TE

��

// TM

��

and π∗(TM)

��

// TM

��
E π //M E π //M

Then we have

TE ∼= ξ ⊕ π∗(TM).

41



If p1 is the first Pontryagin class and χ is the Euler class, it follows that

p1(E) = p1(ξ ⊕ π∗(TM))

= p1(ξ) + p1(π
∗TM) (by a property of first Pontryagin class)

= p1(ξ) + π∗(p1(M)) (by naturality)

= χ(ξ)2 = e2

because p1 = χ2 for any 2-dimensional oriented real vector bundle (see [22], Theorem 15.3

and 15.8), and clearly 0 = p1(M) ∈ H4(M ;Z). We can conclude from this that

〈e1,[M ]〉 = 〈π∗(e2),[M ]〉

= 〈e2,π∗[M ]〉

= 〈e2,[E]〉

= 〈p1(E),[E]〉

= 3 sign E

where we have used Proposition 3.1 (ii) of Section 3.1 for the third equality and the

Hirzebruch signature theorem (see [15], §4) for the last equation.

In view of the above proposition, to prove the non-triviality of e1 it is enough to

construct a surface bundle over a surface which has non-zero signature. Such a surface

bundle was first constructed by Kodaira [17] in the framework of the theory of complex

surfaces. Slightly later, but independently, Atiyah [2] gave similar surface bundles.

In the next section, we prove the non-triviality of the first characteristic class e1 of

a surface bundle. The proof is given by slightly modifying Atiyah’s argument in [2].

While Atiyah’s argument proves the signature is non-zero, we prove directly that the first

characteristic class of the constructed surface bundle is non-trivial.
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3.6 Non-triviality of the first characteristic class e1

In this section we construct a surface bundle over a surface which has non-trivial first

characteristic class e1.

First we set M1 = Σg1 with g1 ≥ 2. Choose an m-fold cyclic covering ρ1 : M2 −→ M1

of M1 and let σ : M2 −→ M2 be a generator of its covering transformation group. If we

denote by g2 the genus of M2, then from the equality 2 − 2g2 = m(2 − 2g1) we obtain

g2 = mg1 − m + 1. Next let ρ2 : M3 −→ M2 be the covering induced by the kernel of

surjective homomorphism

ϕ : π1(M2)
))

// H1(M2;Z) // H1(M2;Z/m) ∼= (Z/m)2g2

which is a normal subgroup of π1(M2). Notice that [π1(M2) : kerϕ] = o(π1(M2)/ kerϕ) =

o((Z/m)2g2) and thus ρ2 is a m2g2-fold covering and so the genus of M3 is equal to

m2g2(g2 − 1) + 1.

In the product manifold M3 ×M2, let Γσiρ2 denote the graph of the map σiρ2 with

i = 1, · · · ,m

M2

M3

Γσ1ρ2

Γσ2ρ2

Γσ3ρ2

Γσmρ2

.

Figure 3.5

and set

D = Γσρ2 + · · ·+ Γσmρ2 .

Here we have Γσmρ2 = Γρ2 because σm = id. If we fix a complex structure on M1, namely

a structure of a Riemann surface, then M2 and M3 also have the induced structure of
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Riemann surface and D becomes a non-singular divisor of the complex surface M3 ×

M2. However, topologically it is enough to understand D as a topological sum of the m

submanifolds Γσiρ2 with i = 1, · · · ,m of codimension 2.

We will show below the homology class [D] of D is divisible by m in H2(M3×M2;Z).

In view of Proposition 3.3, it will then follow that there exist an m-fold cyclic covering

f : E −→M3 ×M2 ramified along D, and we obtain the following commutative diagram

consisting of bundle maps between surface bundles

D̃

⋂
D = f−12 (D2)

⋂
D2 = f−11 (D1)

⋂
D1

⋂
E

f //

π

��

M3 ×M2
f2 //

p

��

M2 ×M2
f1 //

p

��

M1 ×M1

p

��
M3 M3

ρ2 //M2
ρ1 //M1

(3.3)

Here f1 = (ρ1,ρ1), f2 = (ρ2, idM2) and p denotes the projection to the first factor. Also

D1 ⊂ M1 ×M1 is the diagonal set and D2 = f−11 (D1). The point here is the fact that

D = f−12 (D2).

Now to prove that [D] is divisible by m, it is enough to show that the Poincaré dual

of [D], denoted by [D]∗ ∈ H2(M3 ×M2;Z), is divisible by m. For that we will show that

the mod m reduction of [D]∗, which we denote by [D]∗m ∈ H2(M3 ×M2;Z/m), vanishes.

Using here Lemma 3.2, we obtain

H2(M1 ×M1;Z)→ H2(M1 ×M1;Z)
f∗1−→ H2(M2 ×M2;Z)← H2(M2 ×M2;Z)

[D1] 7→ [D1]
∗ 7→ f ∗1 [D1]

∗ = [D2]
∗ ←[ [D2]

and because D = f−12 (D2), we have

H2(M2 ×M2;Z)→ H2(M2 ×M2;Z)
f∗2−→ H2(M3 ×M2;Z)← H2(M3 ×M2;Z)

[D2] 7→ [D2]
∗ 7→ f ∗2 [D2]

∗ = [D]∗ ←[ [D] ,

then

[D]∗m = f ∗2 ([D2]
∗
m) = f ∗2 f

∗
1 ([D1]

∗
m).
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.

M3

12m

Γσρ2

Γσ2ρ2

Γσmρ2

...

· · ·

E︷ ︸︸ ︷ M3×M2

↓p

f−→

Figure 3.6

On the other hand, the group H2(M1 ×M1;Z) can be expressed as a direct sum

H2(M1 × {pt};Z)⊕ (H1(M1;Z)⊗H1(M1;Z))⊕H2({pt} ×M1;Z)

by the Künneth theorem. As an element of this group, we can write

[D1]
∗ = [M1]

∗ × 1 +
∑
i

αi × βi + 1× [M1]
∗

for some αi,βi ∈ H1(M1;Z), and [M1]
∗ is the Poincaré dual of the identity element in

H0(M1;Z) ∼= Z. Applying f ∗1 we obtain

f ∗1 ([D1]
∗
m) = ρ∗1[M1]

∗
m × ρ∗1(1) +

∑
i ρ
∗
1α1 × ρ∗1βi +ρ∗1(1)× ρ∗1[M1]

∗
m

=
∑

i ρ
∗
1α1 × ρ∗1βi

since ρ∗1 : H2(M1;Zm)→ H2(M2;Zm) is trivial. Now applying f ∗2 to f ∗1 ([D1]
∗
m) we get the

following

f ∗2 f
∗
1 ([D1]

∗
m) = (ρ2 × ρ2)∗(

∑
i ρ
∗
1α1 × ρ∗1βi)

=
∑

i ρ
∗
2(ρ
∗
1αi)× ρ∗2(ρ∗1α)

= 0

since ρ∗2 : H1(M2;Zm)→ H1(M3;Zm) is also trivial. Hence we obtain [D]∗m = f ∗2 f
∗
1 ([D1]

∗
m)

= 0. Therefore, the mapping

π : E −→M3
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in the diagram constructed above (cf. diagram (3.3)) is a surface bundle over M3. Its

fiber is an m-fold ramified covering of M2.

This construction of surface bundles is obtained by generalizing Atiyah’s argument in

[2], which treats the case m = 2, for arbitrary m. Hirzebruch [14] also develops another

method which yields surface bundles with smaller genera. However, our method above is

more suitable for generalizations in higher dimensions.

Finally, let us prove that the characteristic class e1 of this surface bundle is non-zero.

For that, we first prove the following general proposition which is used in our argument.

Proposition 3.5 Let π : E −→ M , π̃ : Ẽ −→ M be two surface bundles over the same

base space M . Suppose that there is given a mapping f : Ẽ −→ E, between the total

spaces, which is an m-fold cyclic ramified covering ramified along an oriented submanifold

D ⊂ E of codimension 2. Suppose further that D intersects each fiber of π transversely

at exactly m points and the following diagram is commutative where D̃ = f−1(D).

D̃

⋂
D

⋂
Ẽ

f //

π̃

��

E

π

��
M M

Then we have the following two equalities:

1. f ∗(ν) = m ν̃

2. ẽ = f ∗(e)− (m− 1)ν̃ = f ∗(e− (1− 1
m

)ν)

where ν ∈ H2(E;Z), ν̃ ∈ H2(Ẽ;Z) denote the Poincaré duals of D and D̃, respectively,

and e ∈ H2(E;Z), ẽ ∈ H2(Ẽ;Z) denote the Euler classes of the tangent bundles along the

fiber of π and π̃, respectively.
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Proof. 1. Following the proof of Lemma 3.2, the Poincaré dual of f ∗(ν) is f ∗(ν) ∩

[M̃ ] = [D̃]. Applying f∗ we obtain

f∗([D̃]) = f∗(f
∗(ν) ∩ [M̃ ])

= ν ∩ f∗([M̃ ]) (by Proposition 3.1 (i))

= ν ∩m[M ] (f is an m-fold)

= m[D]. (Poincaré Duality)

Therefore, dualizing we get f ∗(ν) = m ν̃.

2. Let N(D), N(D̃) be closed tubular neighborhoods of D,D̃, respectively. Then in

the commutative diagram

H2(E)

��

f∗ // H2(Ẽ)

��

H2(E \ IntN(D)) // H2(Ẽ \ IntN(D̃))

the images of two Euler classes e ∈ H2(E;Z), ẽ ∈ H2(Ẽ;Z) in H2(Ẽ \ IntN(D̃))

clearly coincide. On the other hand, from the exact sequence

· · · −→ H2(Ẽ,Ẽ \ IntN(D̃)) −→ H2(Ẽ) −→ H2(Ẽ \ IntN(D̃)) −→ · · ·

together with the isomorphism

H2(Ẽ,Ẽ \ IntN(D̃)) ∼= H2(N(D̃),∂N(D̃)) (by excision)

∼= Hn−2(D̃) (Thom isomorphism and Poincaré duality)

we conclude there exist an integer a ∈ Z such that

ẽ = f ∗(e) + aν̃.

In fact, the commutative diagram above implies that ẽ − f ∗(e) is in the kernel of

H2(Ẽ)→ H2(Ẽ \ IntN(D̃)), because of exactness, by the above isomorphism, and

the fact that H2(Ẽ) ∼= Hn−2(Ẽ), we conclude that the homomorphism H2(Ẽ,Ẽ \

IntN(D̃)) −→ H2(Ẽ) is the multiplication homomorphism by some integer.
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Now if we denote by g, g′ the genera of π,π̃, respectively, since D intersects each

fiber of π transversely at m points, then the covering along the fiber has m ramified

points, and so

2− 2g′ = m(2− 2g −m) +m

On the other hand, if we restrict both sides of ẽ = f ∗(e) + aν̃ to the fiber of π̃, and

using the part 1. of this proposition, then we obtain

2− 2g′ = m(2− 2g) + am.

From the last two equalities we can now conclude

a = 1−m.

Let us go back to the commutative diagram (3.3) and compute the first characteristic

class e1 of the surface bundle π : E −→ M3. If we denote by ẽ the Euler class of π, and

since the Euler class e of the trivial bundle M3 ×M2 → M3 is equal to (2 − 2g2)[M2]
∗,

then by the above proposition we have

ẽ = f ∗((2− 2g2)[M2]
∗ − (1− 1

m
)[D]∗).

Hence

〈e1, [M3]〉 = 〈ẽ2, [E]〉

(cf. the proof of Preposition 3.4)

= 〈
(
f ∗((2− 2g2)[M2]

∗ − (1− 1
m

)[D]∗)
)2
, [E]〉

(by the above equality)

= 〈
(
(2− 2g2)[M2]

∗ − (1− 1
m

)[D]∗
)2
, f∗[E]〉

(a property of Kronecker pairing)

= m〈
(
(2− 2g2)[M2]

∗ − (1− 1
m

)[D]∗
)2
, [M3 ×M2]〉
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(f is a m-fold)

= m〈
(
(2− 2g2)f

∗
2 [M2]

∗ − (1− 1
m

)f ∗2 [D2]
∗)2 , [M3 ×M2]〉

(since f ∗2 [M2]
∗ = [M2]

∗ and f ∗2 [D2]
∗ = [D]∗)

= m〈
(
(2− 2g2)[M2]

∗ − (1− 1
m

)[D2]
∗)2 , f2∗[M3 ×M2]〉

(a property of Kronecker pairing)

= m2g2+1〈
(
(2− 2g2)[M2]

∗ − (1− 1
m

)[D2]
∗)2 , [M2 ×M2]〉

(since f2 is an m2g2-fold)

= m2g2+1〈−2(1− 1
m

)(2− 2g2)[M2]
∗ ∪ [D2]

∗

+(2− 2g2)
2[M2]

∗ ∪ [M2]
∗

+(1− 1
m

)2[D2]
∗ ∪ [D2]

∗, [M2 ×M2]〉

= m2g2+1[〈−2(1− 1
m

)(2− 2g2)[M2]
∗ ∪ [D2]

∗, [M2 ×M2]〉

+〈(2− 2g2)
2[M2]

∗ ∪ [M2]
∗, [M2 ×M2]〉

+〈(1− 1
m

)2f ∗1 ([D1]
∗ ∪ [D1]

∗), [M2 ×M2]〉]

(since f ∗1 [D1]
∗ = [D2]

∗)

= m2g2+1[〈−2(1− 1
m

)(2− 2g2)[M2]
∗ ∪ [D2]

∗, [M2 ×M2]〉

+m2〈(1− 1
m

)2[D1]
∗ ∪ [D1]

∗, [M1 ×M1]〉]

(since f1 = ρ1 × ρ1)

= m2g2+1[−2(1− 1
m

)(2− 2g2)[M2]
∗m

+m2(1− 1
m

)2(2− 2g1)]

(since 〈[D1]
∗ ∪ [D1]

∗, [M1 ×M1]〉 = 2− 2g1)

= m2g2+1
(
−2(1− 1

m
)(2− 2g2)m+ (1− 1

m
)2m(2− 2g2)

)
(since 2− 2g2 = m(2− 2g1))

= (2g2 − 2)m2g2(m2 − 1).

Since this number is clearly positive we have finished the proof of non-triviality of e1.
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We summarize this construction simply as follows (cf. diagram (3.3)): we set M1 = Σg

and consider the trivial Σg-bundle M1 × M1 −→ M1. Then the image of the section

M1 3 p 7→ (p,p) ∈ M1 ×M1, namely the diagonal set D1, is a submanifold of the total

space of codimension 2 and intersects each fiber transversely. However, for any integer

m > 1, its homology class [D1] is no divisible by m in H2(M1 ×M1;Z). We then take a

suitable finite covering of the above trivial bundle along the fiber as well as the base so

that the homology class of the inverse image of D1 will be divisible by a given number

m. If we consider the associated ramified covering, applying Proposition 3.3, then the

resultant surface bundle satisfies the required conditions.
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