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Chapter 1

Introduction

In this work, we study first order conditions for deterministic discrete-time op-
timal control problems in infinite horizon. Our main purpose is to establish
a discrete maximum principle (MP), in analogy with the continuous case, and
a transversality condition (TC) as a necessary and sufficient condition for op-
timality. We also present an extension of the maximum principle to dynamic
games.

We propose a different one from those and show how it can be useful to solve
certain problems. The continuous-time maximum principle was established at
the end of the 1950s for the finite dimensional case [19]. See [8] for the history
of this discovery. Right after this discovery the corresponding theory was devel-
oped for discrete-time dynamics in finite horizon, under appropriate convexity
assumptions. See, for example, [13] and [14]. An account of the state of the art
in the infinite horizon framework, can be found in the recent book by Blot and
Hayek [5]; however there is not a single example in that book. In Section 3.2.3 of
[5], Blot and Hayek prove a maximum principle for bounded processes without
considering control constraints; they prove that there exist a sequence of vec-
tors, usually called adjoint variables that satisfy certain conditions; their proof
relies in the classical methods for optimization in Banach spaces, so there is no
construction of the adjoint variables. We give an explicit form of the adjoint
variables. In [17], Michel introduced several types of transversality conditions
(some of them known from earlier publications). We propose a new transversal-
ity condition from those in [17] and show how it can be useful to solve certain
problems. In [3], Aseev et al. developed a necessary condition in the form
of a maximum principle for weakly overtaking solutions based on ideas of the
continuous-time framework.

Our approach. We use Gateaux differentials to obtain the maximum princi-
ple. We calculate a Gateaux derivative, under a technical assumption, and use
it to obtain necessary conditions for optimality. Right after that we consider
convexity-concavity assumptions to establish sufficient conditions.



We consider the extension our results to case where the sets are constrained by
the state (in addition of time); to that end we consider Markov strategies. Us-
ing the maximum principle and the transversality condition, we find the Euler
equation and a new transversality condition in the Euler equation approach..
Finally, we consider the maximum principle for dynamic games.

Organization of this work. In Chapter two, we introduce the optimal control
model that we are interested and study the first order conditions for optimal-
ity. Chapter 3 contains variants of the theory developed in Chapter 2. Finally,
Chapter 4 considers the related topics to the subject.
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Notation

- If M is a matrix, the M* denotes the transpose of M.

- Given a function g = (g%, ...,g%) : R* x R™ — R¥, we denote
ogt ogt
28y £ (xy)
P 0x1 0x,
a_g(xy )’) = E T . k]
X
E(X ) 0g" (%, ¥)
oxy Yo Ox, Y
and
ogt ogt
ey ()
a aanrl axn+m
8 . .
a_('x’ )’) = . c. >
y k o k
(xy) ... (%, y)
0Xni1 Y 0Xpsm Y
, g’ : . . :
where, for each i =0,...,n+m, a—(x, y) is the partial derivative of g/ at
X
(x, ).

- As usual, N denotes the set {1,2,...} and Ny denotes N U {0}.

- Let Ay, A5 ... be a sequence of square matrices, we write
' ArAri1--- Ay if 1<t
A =
s=t I if t>t,

where I is the identity matrix.



Chapter 2

The Maximum Principle

In this chapter, we are concerned with deterministic nonstationary discrete-time
optimal control problems in infinite horizon. We show, using Gateaux differen-
tials, that the so-called Maximum Principle (MP) and a transversality condition
(TC) are necessary conditions for optimality. Under additional assumptions, the
MP and the TC are also sufficient for optimality.

2.1 The Optimal Control Model

In this section, we present the model concerning discrete-time nonstationary (or
time-varying) deterministic dynamic optimization problems in infinite horizon.
Dynamic optimization problems are also known as optimal control problems.
As usual, N denotes the set {1,2,...} and Ny denotes N U {0} .

Let X c R" be the state space, and U c R™ be the control set. Con-
sider a sequence {X; |t € Ny} of non-empty subsets of the state space, and
{U; c U | t € Ny} the family of feasible control sets. For each t € Ny, x € X;, and
u € U;, we denote by f;(x,u) the corresponding state in X;,1. Thus, given an
initial state xg, the state of the system evolves according to the equation

Xer1 = fr (e, up), (2-1)

where, for each t € Ny, f; : X;xU; — X;4+1. We want to optimize the performance
index

th(xt’ U), (2.2)
=0

where g; : X; X U; — R is a given function for each t € Ny.
A sequence ¢ = {u;} is called an open-loop strategy, or simply a plan, when-
ever u, is in U; for all t € Ng; we denote the set of plans from xg as ¥(xg). Given
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a plan ¥ = {u;}, we denote by {xlf'} the sequence induced by ¢ in (2.1), i.e.,

xlé' = X0
o= 16 ) fore=01,.. ..

The Optimal Control Problem (OCP) is to find a plan y, also called control
policy, that maximizes the performance index (2.2) subject to (2.1).
In a compact form, a nonstationary OCP can be described by the three-tuple

(F(xo), {f2}, (&), (2.3)

with components as above.
For the OCP to be well-defined, the following assumption is supposed to
hold throughout the remainder of this chapter.

Assumption 2.1. The three-tuple in (2.3) satisfies the following for each xq €
Xo.‘

(a) the set W(xq) is nonempty;

(b) for each ¢ = (uo,us,...) € ¥(xo),
Z gt(x;p, u;) < 0o;
=0

(c) there exists ¢ = (ug,us,...) € P(xo) such that
Z gt(x;p’ U) > —00;
=0

(d) for eacht € Ny, f; and g, are differentiable in the interior of X, X Uy.

For xo € X, define the OCP performance index (also known as objective
function) v : ¥(xp) = R U {—co} by

v = > g up). (2.4)
=0

Assumption 2.1(a)-(b) ensures that v is well defined. For the three-tuple (2.1)
and xg € Xg, the OCP is to find ¥ € ¥(xg) such that

V() = v()

for all ¥ € W(xo). In such a case, we say that i is an optimal plan. The
optimization problem makes sense by Assumption 2.1(c).
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2.2 Necessary Conditions

In this section, we introduce the Maximum Principle (MP) (2.5)-(2.6) and the
Transversality Condition (TC) (2.7) as necessary conditions for the existence of
an optimal plan. We suppose that the initial state xo € Xy is fixed. Recall that
Assumption 2.1 holds. We will require the concept of Gateaux differential.

Definition 2.2. [11, pp.2-4] Let X be a linear space and V a subset of X. Let
peV andgelX.

(a) We say that p is an internal point in the direction q if there exist a real
number g9 > 0 such that p + &q is in V for all € € (—&g, ).

(b) Suppose p is an internal point in the direction q. Let h : V — R be a
function. If the derivative

dh
on(p; q) := E(p +£q)

£=0
exists, we say that 8p(p;q) is the Gateaux differential of h at p in the
direction q.

The next proposition shows an application of Gateaux differentials.

Proposition 2.3. Let X be a linear space and V a subset of X. Let p € V be
an internal point in the direction g € X and h : V — R a given function. If the
Gateauz differential of h at p in the direction q exists and h has a mazimum at
p, then

on(p;q) = 0.
Proof. See Theorem 1 in page 178 of [16]. |

The plan to prove the MP (2.5)-(2.6) and the TC (2.7) below is straightfor-
ward: we will calculate the Gateaux differential, in a certain direction, of the
performance index (2.4) at the optimal plan.

We will need the following assumption to estimate the Gateaux differential of

0
the function v in (2.4). As usual, 5x and — denote the gradients corresponding
X y
to the first and the second variables, respectively.
Assumption 2.4. Let y = (ilo,i1,...) € P(xo). For each T € Ny, define the
the sequence of functions p; : Ur — R" as

. 98, jrawy o\ [T Ofs, draw
P =22 Wi [ ] Z= i),
s=1+1
where tﬁT (w) = (do, - - ., Ug—1, U, Urs1, - .. ). We suppose that, for eaé:oh T € Ny, there
exists an open neighborhood O C Uy of ity such that the series Z pr converges

t=7+1
uniformly on O;.
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If Ay, Ao ... is a sequence of square matrices, we write

where I is the identity matrix.

Computing the Gateaux differential of v may be too technical; calculations
are in the following lemma. The proof is in the Appendix A. We consider the
vector space A of all sequences in R” with the standard addition and scalar
multiplication. We consider row vectors y € R™, so the transpose y* is a column
vector.

ArApr A, if T <t

I if t>t,

Lemma 2.5. Let lﬁ = {i;} € W(xg) be a plan for which Assumption 2.4 holds.
Let y € R™ and v € Ng. Then ¢ is an internal point in the direction Y™ € A,

where Y™ is defined as
y if t=1
T,y =

t
0 if t#m,

for all t € Ng. Moreover, the Gateaux differential of v at  in the direction ¢
exists and is given by

o)

- 08 i T Ofs, b o \OFe i o . Oge g
8u Wy ’y>=(z i | ] af; (¥ iy ) ({y (Y die)y +a—gy(xf,ur)y,

t=7+1 s=1+1

where v is the function in (2.4).
We can now state one of our main results.

Theorem 2.6. Let ¢ = {ii;} € ¥(xo) be a plan for which Assumption 2.4 holds.
If & is an optimal plan of the OCP (2.1)-(2.3), then there exists a sequence
{A)721 in R™ such that

(a) For allt € N,

0 i 0 i

%(X;K i) + /lz+1a_];t(xltp, i) = Ay, (2'5)
(b) For allt € Ny,

0 i 0 i

a;gyt(xltp, i) + /l;+1a—§j(x;/’, uy) =0, (2.6)

(c) For every h € N, we have the transversality condition (TC)

t-1

lim 2, [ | ‘Zfs 7, i) = 0. (2.7)

t—00 X
s=h
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Moreover, each A; is given by
-1

w3 Bt | 5

k=t s=t

us) (28)

Proof. (a) Pick an arbitrary v € N. Then
=) 6g J t-1 6f
A = Z a—(x, ,Uy) H P
=T S=T

-1

§ t’l|| A’S
S=T
t—

t=T+1

) 1
0 i
(Z (t& t (S9 S)af‘r(xfsu‘r
= - X
t=T+1 s=t+1
0 o
= _agT (XT,MT) + Ari1 a; (x7, 7).

(b) Fix 7 € Ng and y € R™ arbitrary. By Lemma 2.5 and Proposition 2.3,

S 1 0fs .
(Zﬁ( S [ f(w) iy + iy <o

t=T+1 s=7+1

dgr
dy

Since this holds for any y € R™, (b) follows.

that is

0
T+1 3 f (x‘r’“‘r)y ]

(¢) By Assumption 2.4, the series

00 6gk . k-1 f
—— (., tig)

converges for any h € N and

s=h k=t dx s=t s=h
oo k-1
08k . i
= D e ) (¥ i)
k=t s=h

Letting r tend to infinity, (¢) follows.
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Actually, the MP (2.5)-(2.6) is so-named in analogy with the well-known
maximum principle in the continuous case (see [19]). See [8] for the history of
the MP.

It turns out that the sequence {4;} given in Theorem 2.6 must be unique.

Proposition 2.7. Suppose that a plan ¥ € W(xo) satisfies (2.5) and the TC
(2.7). Then

iai k,uk)l_[ ay(x‘, s (2.9)
k=t

Proof. Let {47};2, be a sequence satisfying (2.5) and (2.7). It can be proved by
induction that

/l;=

w S)l—[_(-xl9 l)+/lh+11—[_(xl’u)

for h > t. Now, letting h tend to infinite

Comparing with (2.9), the result follows. m]

Corollary 2.8. The sequence {1;};2, given in Theorem 2.6 is unique.

2.3 Sufficient Conditions

We have seen that the MP (2.5)-(2.6) and the TC (2.7) are necessary conditions
for optimality. Under suitable assumptions, they are also sufficient; see Theorem
2.11 and Assumption 2.10 below.

As in the previous section, we require a proposition concerning Géateaux
differentials.

Proposition 2.9. Let X be a linear space. Suppose V is a convex subset of X
and h : V — R a concave function. If p € V satisfies 6p(p;q — p) = 0 for all
q €V, then p mazimizes h.

Proof. Since V is convex, p is an internal point in the direction ¢ — p for any
q € V. By concavity of h,

h(p +&(q — p)) 2 h(p) + e(h(q) — h(p)),
for all 0 < € < 1. That is

h(p +e&(q—p)) — h(p)
E

> h(q) — h(p).

Letting & | 0 yields the result. O
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The following convexity-concavity assumption ensures the sufficiency of the
MP (2.5)-(2.6) and the TC (2.7).

Assumption 2.10. The optimal control model (2.3) satisfies the following:
(a) the set of plans ¥ (xg) is conver;
(b) the performance index v in (2.4) is concave;

(c) there exists a sequence of non-positive numbers m;, with Yio,m; > —oo
such that g,(xlt//, u) = my for ally = (ug,uy,...) € P(xg).

Theorem 2.11. Let ¢ € W(xo) be a plan for which Assumption 2.4 holds.
Suppose that  satisfies the MP (2.5)-(2.6) and the TC (2.7). If Assumption
2.10 holds, then s is an optimal plan for the OCP (2.1)-(2.3).

Proof. For each k € Ny, consider the function vl’; : Y(xg) — R given by

v (uo, ur, ... ) = v, . - .y Uk Ukats Bks2s - - - ), where v is the performance index

(2.4). Proceeding as in the proof of Lemma 2.5, we find

Sy (g =) =
R N =] fe 4 dgr i
2D e [] Sedia| Sodin + Bl ) e - ).
7=0 \t=7+1 dx s=T+1 dx ay 8)7

By Proposition 2.7 and (2.6), we have & « (,¥) = 0, which by Proposition 2.9
v

yields that ¢ is a maximum of vé. Let ¢ € W(xg) be any plan. By Assumption
2.10(c)

V() = vy )

k
= V& W)
k )
2 gt(xl,p, u) + Z ms.
t=0 t=k+1
Letting k — oo, we obtain V() = v(y). O

2.4 Examples

Example 2.12 (A consumption-investment problem). Let B,y € (0,1) and
1
(rB)

r > 0 such that

’
at time t € Ng. At each time t = 0,1,..., the investor consumes a fraction
u; € (0,1) of the assets. Suppose that the investor wishes to mazimize

< 1. Assume that x, is the wealth of certain investor
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Z Bt(xtut)l_ys
t=0

subject to the dynamics of the assets

Xer1 = (1 —u)xy,

where xg > 0 is given.
In the present context, our control model in Section 2.1 has the following
components

o state space Xy = X := (0, );

e control space U, = U := (0,1);

o system functions fi: X XU — X with f;(x,u) :=r(1 —u)x;
o return functions g; : X x U — R with g;(x,u) := B (xu)'™7.

To use Theorem 2.6, we proceed as follows. From (2.5)-(2.6):

Ar = ,Bt(l - 7)(xgtbﬂt)7yﬁt + Aar(L—ay) Vienw, (2-1())

0= -Y&Yi) ™ = Aar Veew,. (2.11)

Combining these equations, we obtain A, = B'(1 - )/)(xlfﬁ,)"’ and

1[/ . -y
1r = A1 _ ﬂ(xtﬂf"”l) .

A x'fﬂt

Using the fact that = r(l- ﬁ,)x;b, we obtain

t+1

i (1—dy)

rp)? =

Ty
X, Uy Ut
Solving this difference equation, we find
. 1-a
Uy = ————,
T 1-c/a)
%
where ¢ is some constant and a = (r’i) . {a;} is a bounded sequence, since

u; € (0,1) for all t € Ng. Hence, it cannot diverge to infinite. Thus, ¢ must be
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zero since a < 1, otherwise u; = % — oo. Therefore u; = 1 —a for all
t € Ng.

We prove that Assumption 2.4 holds. Let T € Ny and consider p} : [0,1] - R
as in the assumption. Observe that

v o_

x, =r(1- ut_l)xlf_l

=r(1—u)r(l —u9)x’,

-1
= l_[ r(l—us)xf+1
s=7+1
-1
ofs . w | u
= 1_[ E(xsvus)x7-+17
s=T+1

for any plan . Since u; € (0,1) for all t € Ny, we have |x'f| < r'|xg| for any
plan .

Now, take O = (n’,17) as a small neighborhood of 1 — a properly contained
i (0,1), we have

ol = |2 @4y [ L0,
t - t > Ut K s Us
ox 1 ox
) K
= |Br( =y i) i, =
Y(u)
Xr+1
' G 1y L
=B (L =y)(x, ) -
(1w
1-y
< Xl gy
(1 -y
(rB)”
Y
Since rp < 1 implies Br'™Y < 1, we have by the Weierstrass M-test that
r
Z p; converges uniformly on Or. A
t=7+1

Example 2.13 (A linear regulator problem). An OCP with linear system equa-
tion and a quadratic cost function is known as a LQ problem (also called a linear
requlator problem). LQ problems have been widely studied. See, for instance,
Chapter 5 of [15]. We consider a particular deterministic scalar case. The state
of the system evolves according to

Xt+1 = Xp + Uy, (212)
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for t € Ng. The performance index is
X 1 1
> 85+ 5], (2.13)
=0

where 0 < B < 1. Given xo € R, we want to minimize (2.13) subject to (2.12).
In the present context, our control model in Section 2.1 has the following
components

o state space X; = X :=R;

e control space U, = U :=R;

o system functions f; : X XU — X with fi(x,u) := x + u;

e cost functions g : X XU — R with g,(x,u) := ° [x2 + uz].

Considering (2.5)-(2.6) of Theorem 2.6:
A=BxY + A Viaw, (2.14)

0 = Btﬁt + ﬂt+1 V,eNo. (215)
From these equations, we obtain
X = A= A
= =B Vi1 + Bl
_ 1,0 ¥ 7 v
=-p (xp —x,4) + ﬁt(xtﬂ - X)),
which is equivalent to the difference equation

Bxl — (1 +2B)xY +xV =0 (2.16)

The solution of (2.16) is x‘,[' = ki1l + korly, for some constants ki and ko ; where
r1 and ro are the roots of equation Bx? — (1+2B)x +1 = 0. The transversality
condition (2.7) reduces to

A — 0.
From this fact and (2.14), we conclude that B’x‘f — 0. Now,

Bx = ky(Bry) + ki (Bra)'.

Since Br1 > 1 and Bro < 1, we conclude that k1 = 0, and by the initial condition,
k2 = X0. So
iy = xorht™t — xorly = (rg — Drhxq.



16 CHAPTER 2. THE MAXIMUM PRINCIPLE

To prove that Assumption 2.4 holds, let T € Ny and consider p; : R = R as
in the assumption. Take O = (—xg, Xg) , then we have

t-1
or = | el [ 2 dm .
t ax t ’ 8)(,' N s s
s=71+1
_ | pr 976
= ﬁ X;
. t-1
= ﬁt xf +u+ Z (ro — 1)x0r;
s=7+1

< |xollt =T+ 1|8

Thus, by the Weierstrass M-test, Z p; converges uniformly on Or. A

t=7+1



Chapter 3

Variants of The Maximum
Principle

3.1 Finite Horizon

In this section we consider again the non-stationary OCP (2.1)-(2.3), except
that the performance index (2.2) is now replaced by the finite-horizon function

T-1
th(xt,ut) +gr(x7). (3.1)
=0
In particular, the dynamic control model is as in (2.1), that is
Xea1 = fr(Xp, ), (32)
fort € {0,...,T — 1}, with a given initial condition x.
As before, given a plan ¥ = (ug,...,ur-1), we denote by {x‘f} the sequence
induced by ¢ in (3.2), i.e.,
x(g = xg (3.3)
= LG ). (3.4)

In this optimal control model, we want to find a plan i, also called a control
policy, that maximizes the performance index (3.1) subject to (3.2).

In compact form, the optimal control model can be described by the three-
tuple.

(Fr (xo): {fe}s {ge D), (3.5)

with components as above.
The following assumption is supposed to hold throughout the remainder of
this section.

17
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Assumption 3.1. The three-tuple in (3.5) satisfies the following for each xq €
X().'

(a) the set Wr(xg) is nonempty;

(b) for each t € {0,...,T =1}, f; and g, are differentiable in the interior of
X, x Uy and gr in the interior of Xr.

Throughout the following we fix the initial state xg. Define vy : Y7 (xg9) = R
by

T-1
@) = ) Ol ) + gr(xy). (3.6)
t=0

For the three-tuple (3.5) and xq € X, we want to find 4 € ¥r(xq) such that
vr () 2 vr (),

for all ¥ € Wr(xo). In this case, we say that ¢ is an optimal plan.
The following theorem is a consequence of Theorem 2.6 and Corollary 2.8.
Observe that the TC (2.7) reduces to the terminal condition (3.9).

Theorem 3.2. Let ¢ = (iig, ..., ir—1) € Yr(xo) be a plan such that each iy is
in the interior of U;. If ¥ is an optimal plan of the control model (3.1)-(3.5),
then there exist unique Aq,..., A7 in R™ such that

(a) For allte(l,...,T -1},

5 T
B i)+ A S ) = (3.7)

(b) For allte€{0,...,T -1},
0 . 0
a;g)]t(xlf,ut)+/lt+1 aj;( t’ t) - (38)

(c)
0
ar = L) (3.9)
Moreover, each A; is given by
-1

-y [ 4

s=t

us) (3.10)

Proof. Tt suffices to consider the special case of Theorem 2.6 in which gy only
depends of the first variable and g, = 0 for all # > T+ 1 and then apply Corollary
2.8. |
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To establish sufficient conditions, we need the following assumption.
Assumption 3.3. The control model (3.5) satisfies the following:

(a) the set of plans Wr(xq) is convex;

(b) the performance index v (3.6) is concave.
The next theorem is consequence of Theorem 2.11.

Theorem 3.4. Suppose that a plan W € Yr(xo) satisfies (3.7)-(3.9). If As-
sumption 3.8 holds, then  is an optimal plan for the control model (3.2)-(3.5).

Proof. Considering the case when gr only depends of the first variable and g; = 0
for all t > T + 1, Theorem 2.11 yields the result. O

3.2 Markov Strategies

In this section, we present a similar model to (2.1)-(2.3), but we consider that
the control set and the policies may depend of the state.

As usual, let X ¢ R” be the state space and U € R™ be the control set. Con-
sider a sequence {X; | t € Ny} of nonempty subsets of X, and {U;(x) | x € X;,t € Ny}
the family of feasible control sets. For each t € Ny, we define

Ky ={(x,u) | x € Xs,u € Us(x)}.

For each t € Ny, x € X;, and u € U;(x). We denote by f;(x,u) the corresponding
state in X;+1, where, for each t € Ny, f; : K; — X;.1 is a given function.

A sequence ¢ = {¢;} of functions ¢; : X; — R™ is called a Markovian strategy
whenever ¢, (x) € U;(x) for all x € X;, t € Ng. We denote the set of Markovian
strategies from xg as @(xg). Given a Markovian strategy ¢ = {¢,;}, we denote
by {x‘f} the state sequence induced by ¢, i.e.,

x¢ = xo (3.11)
x;p_'.l = ft(x;p, ‘Pt(x;p)) VreN,- (3.12)

We want to optimize

(o)

D et o (), (3.13)

=0

where g; : K, —» R for each r € Nyg. That is, we want to find a Markovian
strategy ¢ € @(xo) that maximizes the performance index (3.13).

In reduced form, the optimal control model can be described by the three-
tuple.

(@(x0), {fr}: {8 Ds (3.14)

with components as above.
For the OCP to be well defined, the following assumption is supposed to
hold throughout the remainder of the section.
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Assumption 3.5. The three-tuple in (3.14) satisfies the following for each
X0 € Xo:

(a) the set @(xg) is nonempty;

(b) for each ¢ = (po, ¢1,...) € D(xq),
D a6 () < oo;
=0

(c) there exists ¢ = (@0, ¢1,--.) € P(xg) such that
D8 i (xf)) > —oo;
=0

(d) for each t € Ny, f; and g, are differentiable in the interior of K.

For xg € Xq, define the performance index v : @(xg) = R U {—co} by
v(g) = D g @i (). (3.15)
=0

Assumption 3.5(a)-(b) ensures that the function v is well defined. For the three-
tuple (3.14) and xo € Xp, the optimal control problem is to find ¢ € @(x() such
that

V(@) 2 v(p),

for all ¢ € @(xg). If this holds, we say that ¢ is an optimal plan. The optimiza-
tion problem makes sense by Assumption 3.5(c).

Remark 3.6. For notational convenience, for everyt € Ng and ¢ € @(xqg), we
will write

8 (X, 0r) =g (x, 0 (x)) and  fr(x,¢) = fr(x, 0 (x)). (3-16)
A

To proceed as in Chapter 2, we need the following assumption, which is
analogous to Assumption 2.4.

Assumption 3.7. Let ¢ = (Qg, ¢1,...) € D(xq) be such that each ¢, is differ-
entiable in the interior of X;. For each T € Ny, define the sequence of functions
o 1 U (x¥) > R" as

t-1

pt()— 8 w(uw n[afs w(u) As)+6a—];s(xfw)¢)%is (xw (u))]
s=71+1

38 1 s .\ O 1 [0fs o\ Ofs N\ 005 [ ot

(,%(xm)ai'(xf ) T [5 r) « 5 (o) B (7).
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where ¢*(u) = (Qo, - - s Pr-1 Pu> Pr+1, - - -) and ¢y (x) = u for all x € X-. Given
T € Ny, we suppose that there exists an open meighborhood O, C U; (xT) of

@T(xf) such that Z o7 converges uniformly on Ox.

t=T+1

The following lemma contains the computation of the Gateaux differential
of the performance index v. Its proof is analogous to the one of Lemma 2.5,
except that now we consider A := {{¢;} | ¢ : X; > R™, 1 € Ng}.

Lemma 3.8. Let ¢ = {¢;} € @(xg) such that Assumption 3.7 holds. Let y € R™
and T € Ng. Then ¢ is an internal point in the direction ¢™Y € A, where ¢™Y 1is
defined as

. y ift=1 andx:xf
)’(x)._

0 otherwise.

Moreover, the Gateaux differential of v at ¢ in the direction ¢™> exists and is
given by

0
6 (‘py Ty) = _(-sz T)y +/1‘1'+1 afy (x‘(" T)y >

where v is the function in (3.15) and

oo k-1 ~
A= Y [% (£.¢0) [] (6@’; (15,60 + 52 (:£.6.) 2 (xf>)+

k=T1+1 s=T+1
9 5 \OGk o T (0Fs 5 .\ Ofs .\ 0
o o o [ (3 00 St oo

Repeating the same arguments in Theorem 2.6 and with the aid of Lemma
3.8, we can prove the next theorem.

Theorem 3.9. Let ¢ = {¢;} € D(xg) be such that Assumption 3.7 holds. If ¢ is
an optimal plan for the control model (3.11)-(3.14), then there exists sequence
{A:);2; in R"™ such that

(a) For allt € N,

0
agxt [,‘Pt) + ﬂt+1 f (Xt ,Sﬁt) = /11’ (317)

(b) For allt € Ny,

agt

ofi o
S af )+ A G ) =0 (318)

dy
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(¢) For all h € N,

t-1 ~
]| 5 (60 + G (0) Feen] =0 e

Moreover,

> k-1 A
I8 (2 6 Py [ (ﬁfs (8.6 + 22 (. 4,) (xf))] |

(3.20)

Proposition 3.10. Suppose that a plan € Y(xq) satisfies the MP (3.17)-
(3.18) and the TC (3.19). Then {A;} is given by (3.20).

Corollary 3.11. The sequence {4;} given in Theorem 8.9 is unique.
We can proceed as in Section 2.3 to obtain sufficient conditions.
Assumption 3.12. The control model (3.11)-(3.14) satisfies the following:
(a) the set of plans d(xg) is convex;
(b) the performance index v in (3.15) is concave.

(c) there exists a sequence of mon-positive numbers m; with Yioom; > —oo
such that g,(x‘f, @) = my for all ¢ = (¢o, p1,...) € D(xg).

Theorem 3.13. Let ¢ € d(xg) such that Assumption 3.7 holds. Suppose that
¢ satisfies (3.17)-(3.19). If Assumption 3.12 holds, then ¢ is an optimal plan
for the control model (3.11)-(3.14).

Example 3.14 (Optimal economic growth). One of the most studied models in
economic growth is the Brock and Mirman model. Capital is represented by x,,
and u; denotes the consumption. The system’s dynamics is given by

_ a
Xt+1 = Atx[ — Uy,

where a € (0,1). The performance index to be mazximized is

Z B logu;.
=0

In the present context, our control model in Section 3.2 has the following
components
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o state space X; = X := (0, 00);

control space U := (0, 00) and control constraint sets U;(x) := (0, A;x%) for
all x € X;

o system functions f; : Ky — X with fi(x,u) := A;x® —u;
e cost functions g; : K, = R with g;(x,u) = B logu.

Theorem 3.9 for an optimal Markov strategy is

;1
0=p- @ —Arr1 Vien,, (3.21)
Qot(xt )
A= aAt[xf]dillel Vien- (3.22)

In page 33 of [9], Chow solved these equations using the guess and verify
method; he proposes a solution of the form ¢,(x) = dA;x*. By using this con-
~ t
jecture for gﬁ,(xf) and combining (3.21) and (3.22), one obtains A; = a—'8¢, We
dx;
can use this to evaluate

ap!
d([Axf]™ — dA,[x¥]2)

A1 =

on the right hand side of (3.22) and equating coefficients on both sides of (3.22),
one obtains d =1 — ap.

We verify Assumption 3.7. Let T € Ny and consider p; :— R as in the
assumption. Observe that

@7 (u) . . .
o = e () 0 () (7).

Now, take O = (n',m) as a small neighborhood of (1 — a,B)Atxf properly
contained in [0, A, [x¥]?]. We have

ﬁt -1 x¢T (u)

ol =155 o
X; s=T+1 s
,Bt(l’t_T+1
A; [xf](t —u
t
oY —i—
AT [xf]a -n
Thus, by the Weierstrass M-test, Z p; converges uniformly on Or. A

t=7+1



Chapter 4

Further Topics

4.1 The Euler Equation

Let us now go back to the optimal control model (3.11)-(3.14) in Section 3.2.
As usual in the Euler equation approach, we will consider the particular case
when the functions f; in (3.11)-(3.12) satisfy, for each ¢ € Ny, f;(x,u) = u for
all (x,u) € K;. We assume this and the well-posedness Assumption 3.5 to hold
during this section.

The particular form of the dynamic functions means that at time ¢, we are
directly determining the following state of the system, since, a plan ¢ € @(xq)
will determine x‘tp+1 identically as a function ¢, of x¥. Thus, we want to maximize
the performance index

v(p) = Z g (xf,xf ), (4.1)
t=0
where
x§ = X0 (4.2)
X = @ (x7) Yiew, (4.3)

and for each r € Ny, ¢;(x) € Us(x) for all x € X;.
For this problem, Assumption 3.7 reduces to the following one.

Assumption 4.1. Let ¢ = ($g, ¢1,...) € D(xg) such that each ¢, is differen-
tiable in the interior of X;. For each T € Ny, define the sequence of functions
(U (x9) > R" as

8 57 5T og 5T 690 390‘.
pm—[a; ) 2 ) B )] ] 2

24
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where ¢*(u) = (Qo, - - s Pr-1, Pu> Pr+1, - - -) and ¢y (x) = u for all x € X-. Given
T € Ny, we suppose that there exists an open neighborhood O, C Uy (xT of xTJrl

such that Z p; converges uniformly on Or.
t=7+1
The following theorem is a consequence of Theorem 3.9. Equation (4.4) is
the so-called Euler Equation (EE).

Theorem 4.2. Let ¢ be an optimal plan for the control model (4.1)-(4.3).
Suppose that ¢ satisfies Assumption 4.1. Then

(a) For each t € N,

08i-1 (¢ ¢\, & ;
9y (x‘f_l,x‘f) + — e (x‘f, x‘fﬂ) =0; (4.4)
(b) for each h € N,
. 081 ¢ @ - 0P )
th—)oo 3y (x _1 X ) ~ 2(x%) =0. (4.5)

1]
=

A

Proof. From Theorem 3.9 (a)-(b), there exist a sequence {1};2, such that, for
eacht e N

(t’ t+1

And, for each t € Nj

0
0= %(x x2) + A

These facts yield (a). Part (b), follows from part (¢) of Theorem 3.9 and the
681 1
(x¥ 1,xt) a

fact that A, =

To establish sufficient conditions we use the next assumption, which is iden-
tical to Assumption 3.12.

Assumption 4.3. The control model (4.1)-(4.3) satisfies the following:
(a) the set of plans d(xp) is convex;
(b) the performance index is concave;

(c) there exists a sequence of mon-positive numbers m; with Yioom; > —o0
such that g,(x‘f, x‘fH) > my for all ¢ = (o, p1,...) € D(xp) .

Sufficient conditions follow from Theorem 3.13.
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Theorem 4.4. Let ¢ € @(xg) be such that Assumption 4.1 holds. Suppose that
@ satisfies (4.4)-(4.5). If Assumption 4.8 holds, then ¢ is an optimal plan for
the control model (4.1)-(4.3).

0 b G p] I
Proof. Define, for eacht € N, A, := %(xf, Xr,1). From (4.4), A1 = —a;g;t(x‘f, x‘fH)
for t € Ny. Thus, for each ¢t € N,

g .

A = %(x;p’ x:p+1 :
In addition, for each r € N
5 .
0= %(xf, X2 )+ A

Therefore, Theorem 3.13 yields the result. O

Example 4.5 (An economic growth model). Consider the following problem
concerning to an optimal growth model known as de Ak model; see section 2.5.2
of [12]. Let B € (0,1), 6 <0 and a > 1 such that (aﬁ)ﬁ > 1. The performance
indec s

©0 t

Z ’%(axt —x141)%,

=0

subject to x;11 € [0, ax,], for allt € N.
Our control model in this section has the following components

e state space X; = X := (0,00) with control constraints sets U;(x) = [0, ax]
for all x € X;

o return functions g; : Xy X X41 — R with g:(x,u) = %t(ax —u)?.
Hence, the Euler equation
—(ax‘t")_1 - x‘f)o_1 + ,Ba(ax‘f - xf+1)9_1, t=12...,
can be expressed as the difference equation

(%)
bxt+1

~ (1 +ab)xf +ax? | =0, (4.6)

with b := (aﬁ)ﬁﬁ> 1. Considering a linear solution ¢;(x) = ax, and substi-

tuting in (4.6), x‘f_l by a_le' we obtain @ = b~'. To prove that Assumption
4.1 holds, let T € Ny and consider p; : R — R as in the assumption. Take

O: = (1,1") as a small neighborhood of b‘le properly contained in [0, axf].
Then we have

lpf )| = |(a = b7 B'[(a — b~Hxf )P e
< |(a - hHop! [x‘ti’T(u)]o-1|
= ((a -pHop! [b"’u]0—1|
< |(a - b‘l)gﬁfn9—1| ]
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Thus, by the Weierstrass M-test, Z p; converges uniformly on Or. A

t=T+1

4.2 Dynamic Games

In this section, we consider non-cooperative dynamic games with N players and
state space X Cc R".
Assume that the state dynamics is given by

Xt+1 :fl(-xt7ut17"~’ufv)’ (47)

where, foreach j =1,..., N, ui is chosen by player j in the control set Utj Cc R™i,
We suppose that player j wants to “maximize” a performance index (also known
as payoff function) of the form

el G, o, (4.8)

=0

subject to (4.7) and a given initial state x.

We denote by pi (xo) the set of plans, or strategies, of player j, that is,
Yl = (u{), ujl, ...) with u{ € U,j for all t € Ny. The set of so-called multistrategies
v =@, . ..,y") is denoted by W(xg) := P (xg) X - X PN (xg) .

Given a multistrategy ¢ = (',...,¢N) € ¥(xo), we denote by {x'f} the
sequence induced by ¢ in (4.7), i.e.,

xlf = X0
1 N
x‘flﬂ =ft(x;l',ut,...,u, ).

We can specify a dynamic game in reduced form as

(¥(xo). i} {g] 1/ =1....N}). (4.9)

with components as above.
The following assumption is supposed to hold throughout the remainder of
the section.

Assumption 4.6. The three-tuple in (4.9) satisfies the following for each x¢ €
Xy and each j=1,...,N:

(a) the set W/ (xo) is nonempty,
(b) for each ¢ € ¥(xq),

(o]

J 1 N .
th(xtsup---,uz )< OO,
t=0
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(c) there exist a ¢ € W(xp) such that

(o)

N
Zg (x,,u,,...,ut ) > —o0;
=0

(d) for each t € Ny, f; and g{ are differentiable in the interior of X X U} x
X UtN

For xg € Xp and j = 1,... N, define v/ : ¥(xg) — R by
V) = Zg{(x‘f,utl,...,ufv). (4.10)
=0

Assumption 4.6(a)-(b) ensures that the function v/ is well defined.
We say that = (,...,¢N) € W¥(xq) is a Nash equilibrium if, for each
player j =1,..., N,
VW) =V T ) Yy ewi -

We want to use the Theorem 2.6 to characterize Nash equilibria (NE). To
that end we consider the following assumption.

Assumption 4.7. Let = @', ...,.¢yN) € ¥1(xg) X -+- x ¥N(xg). For each

7€Ngand j =1,...,N, define the sequence of functions p;” : Uy — R" as
T.J ~ af T.J ~ ~
Tj( )_ ( ll/ (u)7 [15" ) I—[ - l/l (u)v ;"'-’ ;v)v
s=T+1

where ™ () = (J1, ..., 0707, afr}(u), it e andt//T(u) =@, ..., 7 1,u, ﬁ£+1’ col).

Given T € Ny and ] =1,...,N, we suppose that there emzsts an open neighbor-
hood Oj C Uj of il such that % Py converges uniformly on O

The next theorem follows from Theorem 2.6.

Theorem 4.8. Let yy € Y(xo) for which Assumption 4.7 holds. If  is a Nash
equilibrium, then, for each j = 1,...,N, there exists a sequence {/lj} o in R"
such that

(a) For allt €N,

(9g R ;
f( Soal,oLaNy+ Al af‘( «ak, . aNy = 2, (4.11)

(b) For allt € Ny,

agt 0f

~N
(l’? toc t)+/lt+16 (t’ to°

LNy =0, (4.12)
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(c) For all h € N,

t—1
) o "

lim A/ ]_[a—;(xf,ﬁ§,...,a§v) =0. (4.13)
s=h

t—o0

Moreover, each A} is given by

) 00 agj - R k-1 C()f‘ ;o R
A= a—;(xf,ui,...,uliv)l_[ o oal, . aM). (4.14)
k=t s=t

Assumption 4.9. Let y € ¥(xo). We assume that the game (2.3) salisfies the
following for each j=1,...,N,

(a) W/ (xo) is conver;
(b) the performance index v/ is concave;

(¢c) there exists a sequence of non-positive numbers m; with Y52, m; > —oco such

R PR N - o
that g,(xlf’,utl,...,u; ,u;,u; ,...,uf\]) > my for oll Y = (ué,u’l,...) S

W/ (x0).
Theorem 2.11 yields the next theorem.

Theorem 4.10. Lety € ¥(x0) be such that Assumptz'onj.’] holds. Suppose that
W satisfies (4.11)-(4.13). If Assumption 4.9 holds, then ¢ is a Nash Equilibrium.

Example 4.11. Consider the following game with linear dynamics
Xeg1 = Xp A up + o+ ul,
with xg € R given and performance index

St [+ ).

t=0

for each player j =1,...,N.
From (4.11)-(4.12), for each j =1,...,N.

M=+ A, Vien, (4.15)

0= B4+, Vien,. (4.16)

First, note that by (4.14), /l{ = A} forj=1,...,N. And by (4-16), u{ = u;

for j = 1,...,N. Proceeding as in Example 2.13, we find x‘f = xor!, where
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r=min {x|Bx? = [1+ (1+ N)Blx + 1 =0}. Thus,

v b
o X1 TN
MI =
N
xo(r — 1)t
=N Yj=1,...N

Assumption 4.7 can be proved exactly as Assumption 2.4 was proved in Example
2.13. A



Appendix A

Proof of Lemma 2.5

For the convenience of the reader, we restate here Lemma 2.5.

Lemma 2.5. Let § = {ii;} € ¥(xo) be a plan for which Assumption 2.4 holds.
Let y € R™ and v € Ng. Then ¢ is an internal point in the direction Y™ € A,

where Y™ is defined as
{ y if t=71
Y .

t
0 if t#m,

for all t € Ng. Moreover, the Gateaux differential of v at ¢ in the direction ¢
exists and is given by

(o)

A 0 7N = 0fs, 4 . 0fr, 4y . % 0gr 4y . *
6v<w;w”>=(z Sy [ Lo, ) af; N Gl

t=T+1 s=T+1

where v is the function in (2.4).

Proof. First, we prove that ¢ is an internal point in the direction y™Y. If
t = 1; there exists &; > 0 such that i, + ey € U; for all € € (-&,&;), since,
by assumption, i; belongs to an open neighborhood Oy c U;. So i + ey™
is in W(xqg) for all € € (—&.,&;). To prove the assertion about the Gateaux
differential, we compute the derivatives of the functions in (a)-(c) below.

(a) Foreachr > 7, define , : (er,er) = R as h(e) == fi(x7™ i +ey™).
We prove by induction that

13

’ 6 n Y . 8 7 Ty N
me =] a—f(xf”‘” i) % W e 4 £y)y”

s=7+1

Ifr+1=r1,

6j}+1

3y (Vi1 + Ey)y".

hi1(e) =

31
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Suppose that it holds for . Then, by the chain rule,

I ™Y . 3
i (&) = [fran VN i + ey )]

= [fonr @) + ewT2]

(9 + t+

ST (e + UM ) + f L et + oUW
t+1

[ Eoder™ iy v eu) f’( P gt ey’

s=T+1

(b) Define, for t > 7, k; : (—&r,&6¢) > R as

ke() == g (X iy + ey,

For t > 7, we have

ki(e) = g (VY iy + sy D))
= [g: (he—1 (&), i1y + Elﬁ:’y)]/
agt

== S8 (I v ey TV (e) + gy’(x‘f*g‘” iy + ey Y]

_ agt YT A 1 aj} VAR N af} Yy ™Y
_E(x’ , i) 1_[ 3_x(xs s lg) E(x‘r

s=T+1

9’2T +8y)y*
(¢) For each T € Ny, define I : (—&;,6;) > R as

T
I ™Y .
Ir(e) = > g™ iy + 2y )
t=0

For T > 7, we have

T 4
’ 7 oY >
(o) = | (el ,u,+s¢;y)}
=0

T

-1 R ’ . ’
= ng(x‘f, ﬁt)j| + g (Y e +£)] [ Z g (e u,)}

t=1+1

ag’( N Z K (#)

t=Tt+1

0 .y =1 0 I 7, 0 7 T,y
-y e i ( [] Lol ™ i) Lol i+ ey
t=7+1 s=7+1 dx ay

Ige Goev

+ Dy S +Ey)y.
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Finally,

S0 = [+ ™))

e=0
= Jim 7))
t—1 0 x T 6
:Z _(‘xtst<1_[ f(ss S) f T» T)y +E('x7’7 T)y
t=Tt+1 s=T+1
- 0 s T
=(Z %8 w8 i M (i a ) iy Py
t=7+1 s=1+1

Assumption 2.4 ensures the interchange between the limit and the derivative. O
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