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Chapter 1

Introduction

In this work, we study first order conditions for deterministic discrete-time op-
timal control problems in infinite horizon. Our main purpose is to establish
a discrete maximum principle (MP), in analogy with the continuous case, and
a transversality condition (TC) as a necessary and sufficient condition for op-
timality. We also present an extension of the maximum principle to dynamic
games.

We propose a different one from those and show how it can be useful to solve
certain problems. The continuous-time maximum principle was established at
the end of the 1950s for the finite dimensional case [19]. See [8] for the history
of this discovery. Right after this discovery the corresponding theory was devel-
oped for discrete-time dynamics in finite horizon, under appropriate convexity
assumptions. See, for example, [13] and [14]. An account of the state of the art
in the infinite horizon framework, can be found in the recent book by Blot and
Hayek [5]; however there is not a single example in that book. In Section 3.2.3 of
[5], Blot and Hayek prove a maximum principle for bounded processes without
considering control constraints; they prove that there exist a sequence of vec-
tors, usually called adjoint variables that satisfy certain conditions; their proof
relies in the classical methods for optimization in Banach spaces, so there is no
construction of the adjoint variables. We give an explicit form of the adjoint
variables. In [17], Michel introduced several types of transversality conditions
(some of them known from earlier publications). We propose a new transversal-
ity condition from those in [17] and show how it can be useful to solve certain
problems. In [3], Aseev et al. developed a necessary condition in the form
of a maximum principle for weakly overtaking solutions based on ideas of the
continuous-time framework.

Our approach. We use Gâteaux differentials to obtain the maximum princi-
ple. We calculate a Gâteaux derivative, under a technical assumption, and use
it to obtain necessary conditions for optimality. Right after that we consider
convexity-concavity assumptions to establish sufficient conditions.
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3

We consider the extension our results to case where the sets are constrained by
the state (in addition of time); to that end we consider Markov strategies. Us-
ing the maximum principle and the transversality condition, we find the Euler
equation and a new transversality condition in the Euler equation approach..
Finally, we consider the maximum principle for dynamic games.

Organization of this work. In Chapter two, we introduce the optimal control
model that we are interested and study the first order conditions for optimal-
ity. Chapter 3 contains variants of the theory developed in Chapter 2. Finally,
Chapter 4 considers the related topics to the subject.
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Notation

- If M is a matrix, the M∗ denotes the transpose of M.

- Given a function g = (g1, . . . , gk ) : Rn × Rm → Rk , we denote

∂g

∂x
(x, y) =



∂g1

∂x1
(x, y) . . .

∂g1

∂xn
(x, y)

...
. . .

∂gk

∂x1
(x, y) . . .

∂gk

∂xn
(x, y)



,

and

∂g

∂y
(x, y) =



∂g1

∂xn+1
(x, y) . . .

∂g1

∂xn+m
(x, y)

...
. . .

∂gk

∂xn+1
(x, y) . . .

∂gk

∂xn+m
(x, y)



,

where, for each i = 0, . . . , n + m,
∂g j

∂xi
(x, y) is the partial derivative of g j at

(x, y).

- As usual, N denotes the set {1, 2, . . . } and N0 denotes N ∪ {0} .

- Let A1, A2 . . . be a sequence of square matrices, we write

t∏
s=τ

As =




AτAτ+1 · · · At i f τ ≤ t

I i f τ > t,

where I is the identity matrix.
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Chapter 2

The Maximum Principle

In this chapter, we are concerned with deterministic nonstationary discrete-time
optimal control problems in infinite horizon. We show, using Gâteaux differen-
tials, that the so-called Maximum Principle (MP) and a transversality condition
(TC) are necessary conditions for optimality. Under additional assumptions, the
MP and the TC are also sufficient for optimality.

2.1 The Optimal Control Model

In this section, we present the model concerning discrete-time nonstationary (or
time-varying) deterministic dynamic optimization problems in infinite horizon.
Dynamic optimization problems are also known as optimal control problems.
As usual, N denotes the set {1, 2, . . . } and N0 denotes N ∪ {0} .

Let X ⊂ Rn be the state space, and U ⊂ Rm be the control set. Con-
sider a sequence {Xt | t ∈ N0} of non-empty subsets of the state space, and
{Ut ⊂ U | t ∈ N0} the family of feasible control sets. For each t ∈ N0, x ∈ Xt , and
u ∈ Ut , we denote by f t (x, u) the corresponding state in Xt+1. Thus, given an
initial state x0, the state of the system evolves according to the equation

xt+1 = f t (xt, ut ), (2.1)

where, for each t ∈ N0, f t : Xt×Ut → Xt+1. We want to optimize the performance
index

∞∑
t=0

gt (xt, ut ), (2.2)

where gt : Xt ×Ut → R is a given function for each t ∈ N0.

A sequence ψ = {ut } is called an open-loop strategy, or simply a plan, when-
ever ut is in Ut for all t ∈ N0; we denote the set of plans from x0 as Ψ(x0). Given

6



2.1. THE OPTIMAL CONTROL MODEL 7

a plan ψ = {ut }, we denote by
{
xψt

}
the sequence induced by ψ in (2.1), i.e.,

xψ0 = x0

xψt+1 = f t (xψt , ut ) for t = 0, 1, . . . .

The Optimal Control Problem (OCP) is to find a plan ψ, also called control
policy, that maximizes the performance index (2.2) subject to (2.1).

In a compact form, a nonstationary OCP can be described by the three-tuple

(Ψ(x0), { f t } , {gt }), (2.3)

with components as above.
For the OCP to be well-defined, the following assumption is supposed to

hold throughout the remainder of this chapter.

Assumption 2.1. The three-tuple in (2.3) satisfies the following for each x0 ∈
X0:

(a) the set Ψ(x0) is nonempty;

(b) for each ψ = (u0, u1, . . . ) ∈ Ψ(x0),

∞∑
t=0

gt (xψt , ut ) < ∞;

(c) there exists ψ = (u0, u1, . . . ) ∈ Ψ(x0) such that

∞∑
t=0

gt (xψt , ut ) > −∞;

(d) for each t ∈ N0, f t and gt are differentiable in the interior of Xt ×Ut .

For x0 ∈ X0, define the OCP performance index (also known as objective
function) v : Ψ(x0) → R ∪ {−∞} by

v(ψ) =
∞∑
t=0

gt (xψt , ut ). (2.4)

Assumption 2.1(a)-(b) ensures that v is well defined. For the three-tuple (2.1)
and x0 ∈ X0, the OCP is to find ψ̂ ∈ Ψ(x0) such that

v(ψ̂) ≥ v(ψ)

for all ψ ∈ Ψ(x0). In such a case, we say that ψ̂ is an optimal plan. The
optimization problem makes sense by Assumption 2.1(c).
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2.2 Necessary Conditions

In this section, we introduce the Maximum Principle (MP) (2.5)-(2.6) and the
Transversality Condition (TC) (2.7) as necessary conditions for the existence of
an optimal plan. We suppose that the initial state x0 ∈ X0 is fixed. Recall that
Assumption 2.1 holds. We will require the concept of Gâteaux differential.

Definition 2.2. [11, pp.2-4] Let X be a linear space and V a subset of X. Let
p ∈ V and q ∈ X.

(a) We say that p is an internal point in the direction q if there exist a real
number ε0 > 0 such that p + εq is in V for all ε ∈ (−ε0, ε0).

(b) Suppose p is an internal point in the direction q. Let h : V → R be a
function. If the derivative

δh (p; q) :=
dh
dε

(p + εq)
�����ε=0

exists, we say that δh (p; q) is the Gâteaux differential of h at p in the
direction q.

The next proposition shows an application of Gâteaux differentials.

Proposition 2.3. Let X be a linear space and V a subset of X. Let p ∈ V be
an internal point in the direction q ∈ X and h : V → R a given function. If the
Gâteaux differential of h at p in the direction q exists and h has a maximum at
p, then

δh (p; q) = 0.

Proof. See Theorem 1 in page 178 of [16]. �

The plan to prove the MP (2.5)-(2.6) and the TC (2.7) below is straightfor-
ward: we will calculate the Gâteaux differential, in a certain direction, of the
performance index (2.4) at the optimal plan.

We will need the following assumption to estimate the Gâteaux differential of

the function v in (2.4). As usual,
∂

∂x
and

∂

∂y
denote the gradients corresponding

to the first and the second variables, respectively.

Assumption 2.4. Let ψ̂ = (û0, û1, . . . ) ∈ Ψ(x0). For each τ ∈ N0, define the
the sequence of functions ρτt : Uτ → Rn as

ρτt (u) =
∂gt
∂x

(xψ̂
τ (u)

t , ût )
t−1∏

s=τ+1

∂ fs
∂x

(xψ̂
τ (u)

s , ûs),

where ψ̂τ (u) = (û0, . . . , ûτ−1, u, ûτ+1, . . . ). We suppose that, for each τ ∈ N0, there

exists an open neighborhood Oτ ⊂ Uτ of ûτ such that the series
∞∑

t=τ+1

ρt converges

uniformly on Oτ.



2.2. NECESSARY CONDITIONS 9

If A1, A2 . . . is a sequence of square matrices, we write

t∏
s=τ

As =




AτAτ+1 · · · At i f τ ≤ t

I i f τ > t,

where I is the identity matrix.
Computing the Gâteaux differential of v may be too technical; calculations

are in the following lemma. The proof is in the Appendix A. We consider the
vector space Λ of all sequences in Rm with the standard addition and scalar
multiplication. We consider row vectors y ∈ Rm, so the transpose y∗ is a column
vector.

Lemma 2.5. Let ψ̂ = {ût } ∈ Ψ(x0) be a plan for which Assumption 2.4 holds.
Let y ∈ Rm and τ ∈ N0. Then ψ̂ is an internal point in the direction ψτ,y ∈ Λ,
where ψτ,y is defined as

ψ
τ,y
t :=




y i f t = τ

0 i f t , τ,

for all t ∈ N0. Moreover, the Gâteaux differential of v at ψ̂ in the direction ψτ,y

exists and is given by

δv (ψ̂;ψτ,y ) = *
,

∞∑
t=τ+1

∂gt
∂x

(xψ̂t , ût )
t−1∏

s=τ+1

∂ fs
∂x

(xψ̂s , ûs)+
-

∂ fτ
∂y

(xψ̂τ , ûτ )y∗ +
∂gτ
∂y

(xψ̂τ , ûτ )y∗,

where v is the function in (2.4).

We can now state one of our main results.

Theorem 2.6. Let ψ̂ = {ût } ∈ Ψ(x0) be a plan for which Assumption 2.4 holds.
If ψ̂ is an optimal plan of the OCP (2.1)-(2.3), then there exists a sequence
{λt }

∞
t=1 in Rn such that

(a) For all t ∈ N,

∂gt
∂x

(xψ̂t , ût ) + λt+1
∂ f t
∂x

(xψ̂t , ût ) = λt, (2.5)

(b) For all t ∈ N0,

∂gt
∂y

(xψ̂t , ût ) + λt+1
∂ f t
∂y

(xψ̂t , ût ) = 0, (2.6)

(c) For every h ∈ N, we have the transversality condition (TC)

lim
t→∞

λt

t−1∏
s=h

∂ fs
∂x

(xψ̂s , ûs) = 0. (2.7)
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Moreover, each λt is given by

λt =

∞∑
k=t

∂gk
∂x

(xψ̂
k
, ûk )

k−1∏
s=t

∂ fs
∂x

(xψ̂s , ûs). (2.8)

Proof. (a) Pick an arbitrary τ ∈ N. Then

λτ :=
∞∑
t=τ

∂gt
∂x

(xψ̂t , ût )
t−1∏
s=τ

∂ fs
∂x

(xψ̂s , ûs)

=
∂gτ
∂x

(xψ̂τ , ûτ ) +
∞∑

t=τ+1

∂gt
∂x

(xψ̂t , ût )
t−1∏
s=τ

∂ fs
∂x

(xψ̂s , ûs)

=
∂gτ
∂x

(xψ̂τ , ûτ ) + *
,

∞∑
t=τ+1

∂gt
∂x

(xψ̂t , ût )
t−1∏

s=τ+1

∂ fs
∂x

(xψ̂s , ûs)+
-

∂ fτ
∂x

(xψ̂τ , ûτ )

=
∂gτ
∂x

(xψ̂τ , ûτ ) + λτ+1
∂ fτ
∂x

(xψ̂τ , ûτ ).

(b) Fix τ ∈ N0 and y ∈ Rm arbitrary. By Lemma 2.5 and Proposition 2.3,

*
,

∞∑
t=τ+1

∂gt
∂x

(xψ̂t , ût )
t−1∏

s=τ+1

∂ fs
∂x

(xψ̂s , ûs)+
-

∂ fτ
∂y

(xψ̂τ , ûτ )y∗ +
∂gτ
∂y

(xψ̂τ , ûτ )y∗ = 0,

that is
[
∂gτ
∂y

(xψ̂τ , ûτ )y∗ + λτ+1
∂ fτ
∂y

(xψ̂τ , ûτ )y∗
]
= 0.

Since this holds for any y ∈ Rm, (b) follows.

(c) By Assumption 2.4, the series

∞∑
k=h

∂gk
∂x

(xψ̂
k
, ûk )

k−1∏
s=h

∂ fs
∂x

(xψ̂s , ûs),

converges for any h ∈ N and

λt

t−1∏
s=h

∂ fs
∂x

(xψ̂s , ûs) = *
,

∞∑
k=t

∂gk
∂x

(xψ̂
k
, ûk )

k−1∏
s=t

∂ fs
∂x

(xψ̂s , ûs)+
-

t−1∏
s=h

∂ fs
∂x

(xψ̂s , ûs)

=

∞∑
k=t

∂gk
∂x

(xψ̂
k
, ûk )

k−1∏
s=h

∂ fs
∂x

(xψ̂s , ûs).

Letting t tend to infinity, (c) follows.
�
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Actually, the MP (2.5)-(2.6) is so-named in analogy with the well-known
maximum principle in the continuous case (see [19]). See [8] for the history of
the MP.

It turns out that the sequence {λt } given in Theorem 2.6 must be unique.

Proposition 2.7. Suppose that a plan ψ̂ ∈ Ψ(x0) satisfies (2.5) and the TC
(2.7). Then

λt =

∞∑
k=t

∂gk
∂x

(xψ̂
k
, ûk )

k−1∏
s=t

∂ fs
∂x

(xψ̂s , ûs). (2.9)

Proof. Let
{
λ ′t

}∞
t=1 be a sequence satisfying (2.5) and (2.7). It can be proved by

induction that

λ ′t =

h∑
s=t

∂gs
∂x

(xψ̂s , ûs)
s−1∏
i=t

∂ f i
∂x

(xψ̂i , ûi) + λ
′
h+1

h∏
i=t

∂ f i
∂x

(xψ̂i , ûi),

for h ≥ t. Now, letting h tend to infinite

λ ′t =

∞∑
s=t

∂gs
∂x

(xψ̂s , ûs)
s−1∏
i=t

∂ f i
∂x

(xψ̂i , ûi).

Comparing with (2.9), the result follows. �

Corollary 2.8. The sequence {λt }
∞
t=1 given in Theorem 2.6 is unique.

2.3 Sufficient Conditions

We have seen that the MP (2.5)-(2.6) and the TC (2.7) are necessary conditions
for optimality. Under suitable assumptions, they are also sufficient; see Theorem
2.11 and Assumption 2.10 below.

As in the previous section, we require a proposition concerning Gâteaux
differentials.

Proposition 2.9. Let X be a linear space. Suppose V is a convex subset of X
and h : V → R a concave function. If p ∈ V satisfies δh (p; q − p) = 0 for all
q ∈ V, then p maximizes h.

Proof. Since V is convex, p is an internal point in the direction q − p for any
q ∈ V. By concavity of h,

h(p + ε(q − p)) ≥ h(p) + ε(h(q) − h(p)),

for all 0 ≤ ε ≤ 1. That is

h(p + ε(q − p)) − h(p)
ε

≥ h(q) − h(p).

Letting ε ↓ 0 yields the result. �
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The following convexity-concavity assumption ensures the sufficiency of the
MP (2.5)-(2.6) and the TC (2.7).

Assumption 2.10. The optimal control model (2.3) satisfies the following:

(a) the set of plans Ψ(x0) is convex;

(b) the performance index v in (2.4) is concave;

(c) there exists a sequence of non-positive numbers mt with
∑∞

t=0 mt > −∞

such that gt (xψt , ut ) ≥ mt for all ψ = (u0, u1, . . . ) ∈ Ψ(x0).

Theorem 2.11. Let ψ̂ ∈ Ψ(x0) be a plan for which Assumption 2.4 holds.
Suppose that ψ̂ satisfies the MP (2.5)-(2.6) and the TC (2.7). If Assumption
2.10 holds, then ψ̂ is an optimal plan for the OCP (2.1)-(2.3).

Proof. For each k ∈ N0, consider the function vk
ψ̂

: Ψ(x0) → R given by

vk
ψ̂

(u0, u1, . . . ) = v(u0, . . . , uk, ûk+1, ûk+2, . . . ), where v is the performance index

(2.4). Proceeding as in the proof of Lemma 2.5, we find

δvk
ψ̂

(ψ̂, ψ − ψ̂) =

k∑
τ=0

*
,

∞∑
t=τ+1



∂gt
∂x

(xψ̂t , ût )
t−1∏

s=τ+1

∂ fs
∂x

(xψ̂s , ûs)


∂ fτ
∂y

(xψ̂τ , ûτ ) +
∂gτ
∂y

(xψ̂τ , ûτ )+
-

(uτ − ûτ )∗.

By Proposition 2.7 and (2.6), we have δvk
ψ̂

(ψ̂, ψ) = 0, which by Proposition 2.9

yields that ψ̂ is a maximum of vk
ψ̂

. Let ψ ∈ Ψ(x0) be any plan. By Assumption

2.10(c)

v(ψ̂) = vk
ψ̂

(ψ̂)

≥ vk
ψ̂

(ψ)

≥

k∑
t=0

gt (xψt , ut ) +
∞∑

t=k+1

mt .

Letting k → ∞, we obtain v(ψ̂) ≥ v(ψ). �

2.4 Examples

Example 2.12 (A consumption-investment problem). Let β, γ ∈ (0, 1) and

r > 0 such that
(r β)

1
γ

r
< 1. Assume that xt is the wealth of certain investor

at time t ∈ N0. At each time t = 0, 1, . . . , the investor consumes a fraction
ut ∈ (0, 1) of the assets. Suppose that the investor wishes to maximize
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∞∑
t=0

βt (xtut )1−γ,

subject to the dynamics of the assets

xt+1 = r (1 − ut )xt,

where x0 > 0 is given.
In the present context, our control model in Section 2.1 has the following

components

• state space Xt ≡ X := (0,∞);

• control space Ut ≡ U := (0, 1);

• system functions f t : X ×U → X with f t (x, u) := r (1 − u)x;

• return functions gt : X ×U → R with gt (x, u) := βt (xu)1−γ.

To use Theorem 2.6, we proceed as follows. From (2.5)-(2.6):

λt = βt (1 − γ)(xψ̂t ût )−γût + λt+1r (1 − ût ) ∀t∈N, (2.10)

0 = βt (1 − γ)(xψ̂t ût )−γ − λt+1r ∀t∈N0
. (2.11)

Combining these equations, we obtain λt = βt (1 − γ)(xψ̂t ût )−γ and

1/r =
λt+1
λt
= β

*.
,

xψ̂t+1ût+1

xψ̂t ût

+/
-

−γ

.

Using the fact that xψ̂t+1 = r (1 − ût )xψ̂t , we obtain

(r β)
1
γ =

xψ̂t+1ût+1

xψ̂t ût
=

(1 − ût )
ût

rût+1.

Solving this difference equation, we find

ût =
1 − a

1 − c(1/a)t
,

where c is some constant and a = (rβ)
1
γ

r . {ût } is a bounded sequence, since
ût ∈ (0, 1) for all t ∈ N0. Hence, it cannot diverge to infinite. Thus, c must be
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zero since a < 1, otherwise ût = 1−a
1−c(1/a)t → ∞. Therefore ût = 1 − a for all

t ∈ N0.

We prove that Assumption 2.4 holds. Let τ ∈ N0 and consider ρτt : [0, 1]→ R
as in the assumption. Observe that

xψt = r (1 − ut−1)xψt−1
= r (1 − ut−1)r (1 − ut−2)xψt−2
...

=

t−1∏
s=τ+1

r (1 − us)xψτ+1

=

t−1∏
s=τ+1

∂ fs
∂x

(xψs , us)xψτ+1,

for any plan ψ. Since ut ∈ (0, 1) for all t ∈ N0, we have |xψt | < r t |x0 | for any
plan ψ.

Now, take Oτ = (η ′, η) as a small neighborhood of 1 − a properly contained
in (0, 1), we have

��ρτt (u)�� =
������

∂gt
∂x

(xψ̂
τ (u)

t , ût )
t−1∏

s=τ+1

∂ fs
∂x

(xψ̂
τ (u)

s , ûs)
������

=

�������
βtr (1 − γ)(xψ̂(u)

t ût )−γût
xψ̂(u)
t

xψ̂(u)
τ+1

�������

=

������
βt (1 − γ)(xψ̂(u)

t ût )1−γ
1

(1 − u)xψ̂τ

������

<
|x0 |1−γ

(1 − η)xψ̂τ
(βr1−γ)t .

Since
(r β)

1
γ

r
< 1 implies βr1−γ < 1, we have by the Weierstrass M-test that

∞∑
t=τ+1

ρτt converges uniformly on Oτ. 4

Example 2.13 (A linear regulator problem). An OCP with linear system equa-
tion and a quadratic cost function is known as a LQ problem (also called a linear
regulator problem). LQ problems have been widely studied. See, for instance,
Chapter 5 of [15]. We consider a particular deterministic scalar case. The state
of the system evolves according to

xt+1 = xt + ut, (2.12)
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for t ∈ N0. The performance index is

∞∑
t=0

βt
[ 1

2
x2t +

1

2
u2
t

]
, (2.13)

where 0 < β < 1. Given x0 ∈ R, we want to minimize (2.13) subject to (2.12).
In the present context, our control model in Section 2.1 has the following

components

• state space Xt ≡ X := R;

• control space Ut ≡ U := R;

• system functions f t : X ×U → X with f t (x, u) := x + u;

• cost functions gt : X ×U → R with gt (x, u) := βt
[
x2 + u2

]
.

Considering (2.5)-(2.6) of Theorem 2.6:

λt = βt xψ̂t + λt+1 ∀t∈N, (2.14)

0 = βt ût + λt+1 ∀t∈N0
. (2.15)

From these equations, we obtain

βt xψ̂t = λt − λt+1
= −βt−1ût−1 + βt ût

= −βt−1(xψ̂t − xψ̂t−1) + βt (xψ̂t+1 − xψ̂t ),

which is equivalent to the difference equation

βxψ̂t+1 − (1 + 2β)xψ̂t + xψ̂t−1 = 0. (2.16)

The solution of (2.16) is xψ̂t = k1r t1 + k2r t2 for some constants k1 and k2; where
r1 and r2 are the roots of equation βx2 − (1 + 2β)x + 1 = 0. The transversality
condition (2.7) reduces to

λt → 0.

From this fact and (2.14), we conclude that βt xψ̂t → 0. Now,

βt xψ̂t = k1(βr1)t + k1(βr2)t .

Since βr1 > 1 and βr2 < 1, we conclude that k1 = 0, and by the initial condition,
k2 = x0. So

ût = x0r t+12 − x0r t2 = (r2 − 1)r t2x0.
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To prove that Assumption 2.4 holds, let τ ∈ N0 and consider ρτt : R → R as
in the assumption. Take Oτ = (−x0, x0) , then we have

��ρτt (u)�� =
������

∂gt
∂x

(xψ̂
τ (u)

t , ût )
t−1∏

s=τ+1

∂ fs
∂x

(xψ̂
τ (u)

s , ûs)
������

=
����β

t xψ̂
τ (u)

t

����

= βt
������
xψ̂τ + u +

t−1∑
s=τ+1

(r2 − 1)x0r t2

������
< |x0 | |t − τ + 1| βt .

Thus, by the Weierstrass M-test,
∞∑

t=τ+1

ρτt converges uniformly on Oτ. 4



Chapter 3

Variants of The Maximum
Principle

3.1 Finite Horizon

In this section we consider again the non-stationary OCP (2.1)-(2.3), except
that the performance index (2.2) is now replaced by the finite-horizon function

T−1∑
t=0

gt (xt, ut ) + gT (xT ). (3.1)

In particular, the dynamic control model is as in (2.1), that is

xt+1 = f t (xt, ut ), (3.2)

for t ∈ {0, . . . ,T − 1}, with a given initial condition x0.
As before, given a plan ψ = (u0, . . . , uT−1), we denote by

{
xψt

}
the sequence

induced by ψ in (3.2), i.e.,

xψ0 = x0 (3.3)

xψt+1 = f t (xψt , ut ). (3.4)

In this optimal control model, we want to find a plan ψ, also called a control
policy, that maximizes the performance index (3.1) subject to (3.2).

In compact form, the optimal control model can be described by the three-
tuple.

(ΨT (x0), { f t } , {gt }), (3.5)

with components as above.
The following assumption is supposed to hold throughout the remainder of

this section.

17
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Assumption 3.1. The three-tuple in (3.5) satisfies the following for each x0 ∈
X0:

(a) the set ΨT (x0) is nonempty;

(b) for each t ∈ {0, . . . ,T − 1}, f t and gt are differentiable in the interior of
Xt ×Ut and gT in the interior of XT .

Throughout the following we fix the initial state x0. Define vT : ΨT (x0) → R
by

vT (ψ) =
T−1∑
t=0

gt (xψt , ut ) + gT (xψT ). (3.6)

For the three-tuple (3.5) and x0 ∈ X0, we want to find ψ̂ ∈ ΨT (x0) such that

vT (ψ̂) ≥ vT (ψ),

for all ψ ∈ ΨT (x0). In this case, we say that ψ̂ is an optimal plan.
The following theorem is a consequence of Theorem 2.6 and Corollary 2.8.

Observe that the TC (2.7) reduces to the terminal condition (3.9).

Theorem 3.2. Let ψ̂ = (û0, . . . , ûT−1) ∈ ΨT (x0) be a plan such that each ût is
in the interior of Ut . If ψ̂ is an optimal plan of the control model (3.1)-(3.5),
then there exist unique λ1, . . . , λT in Rn such that

(a) For all t ∈ {1, . . . ,T − 1},

∂gt
∂x

(xψ̂t , ût ) + λt+1
∂ f t
∂x

(xψ̂t , ût ) = λt, (3.7)

(b) For all t ∈ {0, . . . ,T − 1},

∂gt
∂y

(xψ̂t , ût ) + λt+1
∂ f t
∂y

(xψ̂t , ût ) = 0, (3.8)

(c)

λT =
∂gT
∂x

(xψ̂T ) (3.9)

Moreover, each λt is given by

λt =

T∑
k=t

∂gk
∂x

(xψ̂
k
, ûk )

k−1∏
s=t

∂ fs
∂x

(xψ̂s , ûs). (3.10)

Proof. It suffices to consider the special case of Theorem 2.6 in which gT only
depends of the first variable and gt ≡ 0 for all t ≥ T +1 and then apply Corollary
2.8. �
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To establish sufficient conditions, we need the following assumption.

Assumption 3.3. The control model (3.5) satisfies the following:

(a) the set of plans ΨT (x0) is convex;

(b) the performance index vT (3.6) is concave.

The next theorem is consequence of Theorem 2.11.

Theorem 3.4. Suppose that a plan ψ̂ ∈ ΨT (x0) satisfies (3.7)-(3.9). If As-
sumption 3.3 holds, then ψ̂ is an optimal plan for the control model (3.2)-(3.5).

Proof. Considering the case when gT only depends of the first variable and gt ≡ 0
for all t ≥ T + 1, Theorem 2.11 yields the result. �

3.2 Markov Strategies

In this section, we present a similar model to (2.1)-(2.3), but we consider that
the control set and the policies may depend of the state.

As usual, let X ⊂ Rn be the state space and U ⊂ Rm be the control set. Con-
sider a sequence {Xt | t ∈ N0} of nonempty subsets of X , and {Ut (x) | x ∈ Xt, t ∈ N0}

the family of feasible control sets. For each t ∈ N0, we define

Kt = {(x, u) | x ∈ Xt, u ∈ Ut (x)} .

For each t ∈ N0, x ∈ Xt , and u ∈ Ut (x). We denote by f t (x, u) the corresponding
state in Xt+1, where, for each t ∈ N0, f t : Kt → Xt+1 is a given function.

A sequence ϕ = {ϕt } of functions ϕt : Xt → R
m is called a Markovian strategy

whenever ϕt (x) ∈ Ut (x) for all x ∈ Xt , t ∈ N0. We denote the set of Markovian
strategies from x0 as Φ(x0). Given a Markovian strategy ϕ = {ϕt }, we denote
by

{
xϕt

}
the state sequence induced by ϕ, i.e.,

xϕ0 = x0 (3.11)

xϕt+1 = f t (xϕt , ϕt (xϕt )) ∀t∈N0
. (3.12)

We want to optimize

∞∑
t=0

gt (xϕt , ϕt (xϕt )), (3.13)

where gt : Kt → R for each t ∈ N0. That is, we want to find a Markovian
strategy ϕ ∈ Φ(x0) that maximizes the performance index (3.13).

In reduced form, the optimal control model can be described by the three-
tuple.

(Φ(x0), { f t } , {gt }), (3.14)

with components as above.
For the OCP to be well defined, the following assumption is supposed to

hold throughout the remainder of the section.
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Assumption 3.5. The three-tuple in (3.14) satisfies the following for each
x0 ∈ X0:

(a) the set Φ(x0) is nonempty;

(b) for each ϕ = (ϕ0, ϕ1, . . . ) ∈ Φ(x0),

∞∑
t=0

gt (xϕt , ϕt (xϕt )) < ∞;

(c) there exists ϕ = (ϕ0, ϕ1, . . . ) ∈ Φ(x0) such that

∞∑
t=0

gt (xϕt , ϕt (xϕt )) > −∞;

(d) for each t ∈ N0, f t and gt are differentiable in the interior of Kt .

For x0 ∈ X0, define the performance index v : Φ(x0) → R ∪ {−∞} by

v(ϕ) =
∞∑
t=0

gt (xϕt , ϕt (xϕt )). (3.15)

Assumption 3.5(a)-(b) ensures that the function v is well defined. For the three-
tuple (3.14) and x0 ∈ X0, the optimal control problem is to find ϕ̂ ∈ Φ(x0) such
that

v(ϕ̂) ≥ v(ϕ),

for all ϕ ∈ Φ(x0). If this holds, we say that ϕ̂ is an optimal plan. The optimiza-
tion problem makes sense by Assumption 3.5(c).

Remark 3.6. For notational convenience, for every t ∈ N0 and ϕ ∈ Φ(x0), we
will write

gt (x, ϕt ) := gt (x, ϕt (x)) and f t (x, ϕt ) := f t (x, ϕt (x)). (3.16)

4

To proceed as in Chapter 2, we need the following assumption, which is
analogous to Assumption 2.4.

Assumption 3.7. Let ϕ̂ = (ϕ̂0, ϕ̂1, . . . ) ∈ Φ(x0) be such that each ϕ̂t is differ-
entiable in the interior of Xt . For each τ ∈ N0, define the sequence of functions

ρτt : Uτ (xϕ̂τ ) → Rn as

ρτt (u) =
∂gt
∂x

(
xϕ̂

τ (u)
t , ϕ̂t

) t−1∏
s=τ+1

[
∂ fs
∂x

(
xϕ̂

τ (u)
s , ϕ̂s

)
+
∂ fs
∂y

(
xϕ̂

τ (u)
s , ϕ̂s

) ∂ϕs
∂x

(
xϕ̂

τ (u)
s

)]
+

∂gt
∂y

(
xϕ̂

τ (u)
t , ϕ̂t

) ∂ϕt
∂x

(
xϕ̂

τ (u)
t

) t−1∏
s=τ+1

[
∂ fs
∂x

(
xϕ̂

τ (u)
s , ϕ̂s

)
+
∂ fs
∂y

(
xϕ̂

τ (u)
s , ϕ̂s

) ∂ϕs
∂x

(
xϕ̂

τ (u)
s

)]
,
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where ϕ̂τ (u) = (ϕ̂0, . . . , ϕ̂τ−1, ϕu, ϕ̂τ+1, . . . ) and ϕu (x) = u for all x ∈ Xτ. Given

τ ∈ N0, we suppose that there exists an open neighborhood Oτ ⊂ Uτ (xϕ̂τ ) of

ϕ̂τ (xϕ̂τ ) such that
∞∑

t=τ+1

ρτt converges uniformly on Oτ.

The following lemma contains the computation of the Gâteaux differential
of the performance index v. Its proof is analogous to the one of Lemma 2.5,
except that now we consider Λ := {{ϕt } | ϕt : Xt → R

m, t ∈ N0}.

Lemma 3.8. Let ϕ̂ = {ϕ̂t } ∈ Φ(x0) such that Assumption 3.7 holds. Let y ∈ Rm

and τ ∈ N0. Then ϕ̂ is an internal point in the direction ϕτ,y ∈ Λ, where ϕτ,y is
defined as

ϕ
τ,y
t (x) :=




y if t = τ and x = xϕ̂τ

0 otherwise.

Moreover, the Gâteaux differential of v at ϕ̂ in the direction ϕτ,y exists and is
given by

δv (ϕ̂; ϕτ,y ) =
∂gτ
∂y

(xϕ̂τ , ϕ̂τ )y∗ + λτ+1
∂ fτ
∂y

(xϕ̂τ , ϕ̂τ )y∗,

where v is the function in (3.15) and

λτ+1 :=
∞∑

k=τ+1



∂gk
∂x

(
xϕ̂
k
, ϕ̂k

) k−1∏
s=τ+1

(
∂ fs
∂x

(
xϕ̂s , ϕ̂s

)
+
∂ fs
∂y

(
xϕ̂s , ϕ̂s

) ∂ϕ̂s
∂x

(xϕ̂s )
)
+

+
∂gk
∂y

(
xϕ̂
k
, ϕ̂k

) ∂ϕ̂k
∂x

(xϕ̂
k

)
k−1∏

s=τ+1

(
∂ fs
∂x

(
xϕ̂s , ϕ̂s

)
+
∂ fs
∂y

(
xϕ̂s , ϕ̂s

) ∂ϕ̂s
∂x

(xϕ̂s )
)
.

Repeating the same arguments in Theorem 2.6 and with the aid of Lemma
3.8, we can prove the next theorem.

Theorem 3.9. Let ϕ̂ = {ϕ̂t } ∈ Φ(x0) be such that Assumption 3.7 holds. If ϕ̂ is
an optimal plan for the control model (3.11)-(3.14), then there exists sequence
{λt }

∞
t=1 in Rn such that

(a) For all t ∈ N,

∂gt
∂x

(xϕ̂t , ϕ̂t ) + λt+1
∂ f t
∂x

(xϕ̂t , ϕ̂t ) = λt, (3.17)

(b) For all t ∈ N0,

∂gt
∂y

(xϕ̂t , ϕ̂t ) + λt+1
∂ f t
∂y

(xϕ̂t , ϕ̂t ) = 0, (3.18)
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(c) For all h ∈ N,

lim
t→∞

λt

t−1∏
s=h

[
∂ fs
∂x

(
xϕ̂s , ϕ̂s

)
+
∂ fs
∂y

(
xϕ̂s , ϕ̂s

) ∂ϕ̂s
∂x

(xϕ̂s )
]
= 0. (3.19)

Moreover,

λt :=
∞∑
k=t



∂gk
∂x

(
xϕ̂
k
, ϕ̂k

) k−1∏
s=t

(
∂ fs
∂x

(
xϕ̂s , ϕ̂s

)
+
∂ fs
∂y

(
xϕ̂s , ϕ̂s

) ∂ϕ̂s
∂x

(xϕ̂s )
)
+

+
∂gk
∂y

(
xϕ̂
k
, ϕ̂k

) ∂ϕ̂k
∂x

(xϕ̂
k

)
k−1∏
s=t

(
∂ fs
∂x

(
xϕ̂s , ϕ̂s

)
+
∂ fs
∂y

(
xϕ̂s , ϕ̂s

) ∂ϕ̂s
∂x

(xϕ̂s )
)
.

(3.20)

Proposition 3.10. Suppose that a plan ψ̂ ∈ Ψ(x0) satisfies the MP (3.17)-
(3.18) and the TC (3.19). Then {λt } is given by (3.20).

Corollary 3.11. The sequence {λt } given in Theorem 3.9 is unique.

We can proceed as in Section 2.3 to obtain sufficient conditions.

Assumption 3.12. The control model (3.11)-(3.14) satisfies the following:

(a) the set of plans Φ(x0) is convex;

(b) the performance index v in (3.15) is concave.

(c) there exists a sequence of non-positive numbers mt with
∑∞

t=0 mt > −∞
such that gt (xϕt , ϕt ) ≥ mt for all ϕ = (ϕ0, ϕ1, . . . ) ∈ Φ(x0).

Theorem 3.13. Let ϕ̂ ∈ Φ(x0) such that Assumption 3.7 holds. Suppose that
ϕ̂ satisfies (3.17)-(3.19). If Assumption 3.12 holds, then ϕ̂ is an optimal plan
for the control model (3.11)-(3.14).

Example 3.14 (Optimal economic growth). One of the most studied models in
economic growth is the Brock and Mirman model. Capital is represented by xt ,
and ut denotes the consumption. The system’s dynamics is given by

xt+1 = At xαt − ut,

where α ∈ (0, 1). The performance index to be maximized is

∞∑
t=0

βt log ut .

In the present context, our control model in Section 3.2 has the following
components
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• state space Xt ≡ X := (0,∞);

• control space U := (0,∞) and control constraint sets Ut (x) := (0, At xα) for
all x ∈ X ;

• system functions f t : Kt → X with f t (x, u) := At xα − u;

• cost functions gt : Kt → R with gt (x, u) = βt log u.

Theorem 3.9 for an optimal Markov strategy is

0 = βt
1

ϕ̂t (xϕ̂t )
− λt+1 ∀t∈N0

, (3.21)

λt = αAt [x
ϕ̂
t ]α−1λt+1 ∀t∈N0

. (3.22)

In page 33 of [9], Chow solved these equations using the guess and verify
method; he proposes a solution of the form ϕ̂t (x) = dAt xα. By using this con-

jecture for ϕ̂t (xϕ̂t ) and combining (3.21) and (3.22), one obtains λt =
αβt

dxϕ̂t
. We

can use this to evaluate

λt+1 =
αβt

d([At x
ϕ
t ]α − dAt [x

ϕ
t ]α)

,

on the right hand side of (3.22) and equating coefficients on both sides of (3.22),
one obtains d = 1 − αβ.

We verify Assumption 3.7. Let τ ∈ N0 and consider ρτt :→ R as in the
assumption. Observe that

α
xϕ̂

τ (u)
s+1

xϕ̂
τ (u)

s

=
∂ fs
∂x

(
xϕ̂

τ (u)
s , ϕ̂s

)
+
∂ fs
∂y

(
xϕ̂

τ (u)
s , ϕ̂s

) ∂ϕs
∂x

(
xϕ̂

τ (u)
s

)
.

Now, take Oτ = (η ′, η) as a small neighborhood of (1 − αβ) At x
ϕ̂
τ properly

contained in [0, At [x
ϕ̂
τ ]α]. We have

|ρτ (u) | =
������

βt

xϕ̂
τ (u)

t

t−1∏
s=τ+1

α
xϕ̂

τ (u)
s+1

xϕ̂
τ (u)

s

������

=

������

βtαt−τ+1

Aτ [x
ϕ̂
τ ]α − u

������

<

������

βt

Aτ [x
ϕ̂
τ ]α − η

������
.

Thus, by the Weierstrass M-test,
∞∑

t=τ+1

ρτt converges uniformly on Oτ. 4
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Further Topics

4.1 The Euler Equation

Let us now go back to the optimal control model (3.11)-(3.14) in Section 3.2.
As usual in the Euler equation approach, we will consider the particular case
when the functions f t in (3.11)-(3.12) satisfy, for each t ∈ N0, f t (x, u) = u for
all (x, u) ∈ Kt . We assume this and the well-posedness Assumption 3.5 to hold
during this section.

The particular form of the dynamic functions means that at time t, we are
directly determining the following state of the system, since, a plan ϕ ∈ Φ(x0)
will determine xϕt+1 identically as a function ϕt of xϕt . Thus, we want to maximize
the performance index

v(ϕ) =
∞∑
t=0

gt (xϕt , xϕt+1), (4.1)

where

xϕ0 = x0 (4.2)

xϕt+1 = ϕt (xϕt ) ∀t∈N0
, (4.3)

and for each t ∈ N0, ϕt (x) ∈ Ut (x) for all x ∈ Xt .

For this problem, Assumption 3.7 reduces to the following one.

Assumption 4.1. Let ϕ̂ = (ϕ̂0, ϕ̂1, . . . ) ∈ Φ(x0) such that each ϕ̂t is differen-
tiable in the interior of Xt . For each τ ∈ N0, define the sequence of functions

ρτt : Uτ (xϕ̂τ ) → Rn as

ρτt (u) =
[
∂gt
∂x

(
xϕ̂

τ (u)
t , xϕ̂

τ (u)
t+1

)
+
∂gt
∂y

(
xϕ̂

τ (u)
t , xϕ̂

τ (u)
t+1

) ∂ϕt
∂x

(
xϕ̂

τ (u)
t

)] t−1∏
s=τ+1

∂ϕs
∂x

(
xϕ̂

τ (u)
s

)
,

24



4.1. THE EULER EQUATION 25

where ϕ̂τ (u) = (ϕ̂0, . . . , ϕ̂τ−1, ϕu, ϕ̂τ+1, . . . ) and ϕu (x) = u for all x ∈ Xτ. Given

τ ∈ N0, we suppose that there exists an open neighborhood Oτ ⊂ Uτ (xϕ̂τ ) of xϕ̂τ+1

such that
∞∑

t=τ+1

ρτt converges uniformly on Oτ.

The following theorem is a consequence of Theorem 3.9. Equation (4.4) is
the so-called Euler Equation (EE).

Theorem 4.2. Let ϕ̂ be an optimal plan for the control model (4.1)-(4.3).
Suppose that ϕ̂ satisfies Assumption 4.1. Then

(a) For each t ∈ N,

∂gt−1
∂y

(
xϕ̂t−1, xϕ̂t

)
+
∂gt
∂x

(
xϕ̂t , xϕ̂t+1

)
= 0; (4.4)

(b) for each h ∈ N,

lim
t→∞

∂gt−1
∂y

(
xϕ̂t−1, xϕ̂t

) t−1∏
s=h

∂ϕ̂s
∂x

(xϕ̂s ) = 0. (4.5)

Proof. From Theorem 3.9 (a)-(b), there exist a sequence {λ}∞t=1 such that, for
each t ∈ N

λt =
∂gt
∂x

(xϕ̂t , xϕ̂t+1).

And, for each t ∈ N0

0 =
∂gt
∂y

(xϕ̂t , xϕ̂t+1) + λt+1.

These facts yield (a). Part (b), follows from part (c) of Theorem 3.9 and the

fact that λt = −
∂gt−1
∂y

(xϕ̂t−1, xϕ̂t ). �

To establish sufficient conditions we use the next assumption, which is iden-
tical to Assumption 3.12.

Assumption 4.3. The control model (4.1)-(4.3) satisfies the following:

(a) the set of plans Φ(x0) is convex;

(b) the performance index is concave;

(c) there exists a sequence of non-positive numbers mt with
∑∞

t=0 mt > −∞
such that gt (xϕt , xϕt+1) ≥ mt for all ϕ = (ϕ0, ϕ1, . . . ) ∈ Φ(x0) .

Sufficient conditions follow from Theorem 3.13.
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Theorem 4.4. Let ϕ̂ ∈ Φ(x0) be such that Assumption 4.1 holds. Suppose that
ϕ̂ satisfies (4.4)-(4.5). If Assumption 4.3 holds, then ϕ̂ is an optimal plan for
the control model (4.1)-(4.3).

Proof. Define, for each t ∈ N, λt :=
∂gt
∂x

(x
ϕ̂

t , x
ϕ̂

t+1). From (4.4), λt+1 = −
∂gt
∂y

(xϕ̂t , xϕ̂t+1)

for t ∈ N0. Thus, for each t ∈ N,

λt =
∂gt
∂x

(xϕ̂t , xϕ̂t+1).

In addition, for each t ∈ N0

0 =
∂gt
∂y

(xϕ̂t , xϕ̂t+1) + λt+1.

Therefore, Theorem 3.13 yields the result. �

Example 4.5 (An economic growth model). Consider the following problem
concerning to an optimal growth model known as de Ak model; see section 2.3.2
of [12]. Let β ∈ (0, 1), θ < 0 and a > 1 such that (aβ)

1
θ−1 > 1. The performance

index is
∞∑
t=0

βt

θ
(axt − xt+1)θ,

subject to xt+1 ∈ [0, axt ], for all t ∈ N.
Our control model in this section has the following components

• state space Xt ≡ X := (0,∞) with control constraints sets Ut (x) = [0, ax]
for all x ∈ X ;

• return functions gt : Xt × Xt+1 → R with gt (x, u) = βt

θ (ax − u)θ .

Hence, the Euler equation

−(axϕ̂t−1 − xϕ̂t )θ−1 + βa(axϕ̂t − xϕ̂t+1)θ−1, t = 1, 2, . . . ,

can be expressed as the difference equation

bxϕ̂t+1 − (1 + ab)xϕ̂t + axϕ̂t−1 = 0, (4.6)

with b := (aβ)
1
θ−1 > 1. Considering a linear solution ϕ̂t (x) = αx, and substi-

tuting in (4.6), xϕ̂t−1 by α−1xϕ̂t ; we obtain α = b−1. To prove that Assumption
4.1 holds, let τ ∈ N0 and consider ρτt : R → R as in the assumption. Take

Oτ = (η, η ′) as a small neighborhood of b−1xϕ̂τ properly contained in [0, axϕ̂τ ].
Then we have

��ρτt (u)�� =
���(a − b−1) βt [(a − b−1)xϕ̂

τ (u)
t ]θ−1b−t+τ+1���

<
���(a − b−1)θ βt [xϕ̂

τ (u)
t ]θ−1���

=
���(a − b−1)θ βt [bτ−tu]θ−1���

<
���(a − b−1)θ βtηθ−1��� .
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Thus, by the Weierstrass M-test,
∞∑

t=τ+1

ρτt converges uniformly on Oτ. 4

4.2 Dynamic Games

In this section, we consider non-cooperative dynamic games with N players and
state space X ⊂ Rn.

Assume that the state dynamics is given by

xt+1 = f t (xt, u1
t , . . . , u

N
t ), (4.7)

where, for each j = 1, . . . , N , u j
t is chosen by player j in the control set U j

t ⊂ R
m j .

We suppose that player j wants to “maximize” a performance index (also known
as payoff function) of the form

∞∑
t=0

g
j
t (xt, u1

t , . . . , u
N
t ), (4.8)

subject to (4.7) and a given initial state x0.
We denote by Ψ j (x0) the set of plans, or strategies, of player j, that is,

ψ j = (u j
0, u

j
1, . . . ) with u j

t ∈ U j
t for all t ∈ N0. The set of so-called multistrategies

ψ = (ψ1, . . . , ψN ) is denoted by Ψ(x0) := Ψ1(x0) × · · · × ΨN (x0) .
Given a multistrategy ψ = (ψ1, . . . , ψN ) ∈ Ψ(x0), we denote by

{
xψt

}
the

sequence induced by ψ in (4.7), i.e.,

xψ1 = x0

xψt+1 = f t (xψt , u
1
t , . . . , u

N
t ).

We can specify a dynamic game in reduced form as(
Ψ(x0), { f t } ,

{
g
j
t | j = 1, . . . , N

})
, (4.9)

with components as above.
The following assumption is supposed to hold throughout the remainder of

the section.

Assumption 4.6. The three-tuple in (4.9) satisfies the following for each x0 ∈
X0 and each j = 1, . . . , N:

(a) the set Ψ j (x0) is nonempty,

(b) for each ψ ∈ Ψ(x0),

∞∑
t=0

g
j
t (xt, u1

t , . . . , u
N
t ) < ∞;
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(c) there exist a ψ ∈ Ψ(x0) such that

∞∑
t=0

g
j
t (xψt , u

1
t , . . . , u

N
t ) > −∞;

(d) for each t ∈ N0, f t and g
j
t are differentiable in the interior of X × U1

t ×

· · · ×UN
t .

For x0 ∈ X0 and j = 1, . . . N , define v j : Ψ(x0) → R by

v j (ψ) =
∞∑
t=0

g
j
t (xψt , u

1
t , . . . , u

N
t ). (4.10)

Assumption 4.6(a)-(b) ensures that the function v j is well defined.
We say that ψ̂ = (ψ̂1, . . . , ψ̂N ) ∈ Ψ(x0) is a Nash equilibrium if, for each

player j = 1, . . . , N ,

v j (ψ̂) ≥ v j (ψ̂1, . . . , ψ̂ j−1, ψ j, ψ̂ j+1, . . . , ψ̂N ) ∀ψ j ∈Ψ j (x0) .

We want to use the Theorem 2.6 to characterize Nash equilibria (NE). To
that end we consider the following assumption.

Assumption 4.7. Let ψ̂ = (ψ̂1, . . . , ψ̂N ) ∈ Ψ1(x0) × · · · × ΨN (x0). For each
τ ∈ N0 and j = 1, . . . , N, define the sequence of functions ρ

τ, j
t : Uτ → Rn as

ρ
τ, j
t (u) =

∂g
j
t

∂x
(xψ̂

τ, j (u)
t , û1

t , . . . , û
N
t )

t−1∏
s=τ+1

∂ fs
∂x

(xψ̂
τ, j (u)

s , û1
s, . . . , û

N
s ),

where ψ̂τ, j (u) = (ψ̂1, . . . , ψ̂ j−1, ψ̂τj (u), ψ̂ j+1, . . . , ψ̂N ) and ψ̂τj (u) = (û j
0, . . . , û

j
τ−1, u, û

j
τ+1, . . . ).

Given τ ∈ N0 and j = 1, . . . , N, we suppose that there exists an open neighbor-
hood O

j
τ ⊂ U j

τ of û j
τ such that

∑∞
t=τ+1 ρ

τ, j
t converges uniformly on O

j
τ.

The next theorem follows from Theorem 2.6.

Theorem 4.8. Let ψ̂ ∈ Ψ(x0) for which Assumption 4.7 holds. If ψ̂ is a Nash

equilibrium, then, for each j = 1, . . . , N, there exists a sequence
{
λ
j
t

}∞
t=1

in Rn

such that

(a) For all t ∈ N,

∂g
j
t

∂x
(xψ̂t , û

1
t , . . . , û

N
t ) + λ j

t+1

∂ f t
∂x

(xψ̂t , û
1
t , . . . , û

N
t ) = λ j

t , (4.11)

(b) For all t ∈ N0,

∂g
j
t

∂yj
(xψ̂t , û

1
t , . . . , û

N
t ) + λ j

t+1

∂ f t
∂yj

(xψ̂t , û
1
t , . . . , û

N
t ) = 0, (4.12)
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(c) For all h ∈ N,

lim
t→∞

λ
j
t

t−1∏
s=h

∂ fs
∂x

(xψ̂s , û
1
s, . . . , û

N
s ) = 0. (4.13)

Moreover, each λ
j
t is given by

λ
j
t =

∞∑
k=t

∂g
j
k

∂x
(xψ̂

k
, û1

k, . . . , û
N
k )

k−1∏
s=t

∂ fs
∂x

(xψ̂s , û
1
s, . . . , û

N
s ). (4.14)

Assumption 4.9. Let ψ̂ ∈ Ψ(x0). We assume that the game (2.3) satisfies the
following for each j = 1, . . . , N,

(a) Ψ j (x0) is convex;

(b) the performance index v j is concave;

(c) there exists a sequence of non-positive numbers mt with
∑∞

t=0 mt > −∞ such

that gt (xψ̂t , û
1
t , . . . , û

j−1
t , u j

t , û
j+1
t , . . . , ûN

t ) ≥ mt for all ψ j = (u j
0, u

j
1, . . . ) ∈

Ψ j (x0).

Theorem 2.11 yields the next theorem.

Theorem 4.10. Let ψ̂ ∈ Ψ(x0) be such that Assumption 4.7 holds. Suppose that
ψ̂ satisfies (4.11)-(4.13). If Assumption 4.9 holds, then ψ̂ is a Nash Equilibrium.

Example 4.11. Consider the following game with linear dynamics

xt+1 = xt + u1
t + · · · + uN

t ,

with x0 ∈ R given and performance index

∞∑
t=0

βt
1

2

[
x2t + [u j

t ]
2

]
,

for each player j = 1, . . . , N.
From (4.11)-(4.12), for each j = 1, . . . , N.

λ
j
t = βt xψ̂t + λ

j
t+1 ∀t∈N, (4.15)

0 = βt û j
t + λ

j
t+1 ∀t∈N0

. (4.16)

First, note that by (4.14), λ
j
t = λ1t for j = 1, . . . , N. And by (4.16), u j

t = u1
t

for j = 1, . . . , N. Proceeding as in Example 2.13, we find xψ̂t = x0r t , where
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r = min
{
x | βx2 − [1 + (1 + N ) β]x + 1 = 0

}
. Thus,

û j
t =

xψ̂t+1 − xψ̂t
N

=
x0(r − 1)r t

N
∀j=1,...,N

Assumption 4.7 can be proved exactly as Assumption 2.4 was proved in Example
2.13. 4



Appendix A

Proof of Lemma 2.5

For the convenience of the reader, we restate here Lemma 2.5.

Lemma 2.5. Let ψ̂ = {ût } ∈ Ψ(x0) be a plan for which Assumption 2.4 holds.
Let y ∈ Rm and τ ∈ N0. Then ψ̂ is an internal point in the direction ψτ,y ∈ Λ,
where ψτ,y is defined as

ψ
τ,y
t :=




y i f t = τ

0 i f t , τ,

for all t ∈ N0. Moreover, the Gâteaux differential of v at ψ̂ in the direction ψτ,y

exists and is given by

δv (ψ̂;ψτ,y ) = *
,

∞∑
t=τ+1

∂gt
∂x

(xψ̂t , ût )
t−1∏

s=τ+1

∂ fs
∂x

(xψ̂s , ûs)+
-

∂ fτ
∂y

(xψ̂τ , ûτ )y∗ +
∂gτ
∂y

(xψ̂τ , ûτ )y∗,

where v is the function in (2.4).

Proof. First, we prove that ψ̂ is an internal point in the direction ψτ,y. If
t = τ; there exists ετ > 0 such that ûτ + εy ∈ Uτ for all ε ∈ (−ετ, ετ ), since,
by assumption, ûτ belongs to an open neighborhood Oτ ⊂ Uτ . So ψ̂ + εψτ,y

is in Ψ(x0) for all ε ∈ (−ετ, ετ ). To prove the assertion about the Gâteaux
differential, we compute the derivatives of the functions in (a)-(c) below.

(a) For each t > τ, define ht : (−ετ, ετ ) → Rn as ht (ε) := f t (xψ̂+εψ
τ,y

t , ût+εψ
τ,y
t ).

We prove by induction that

h′t (ε) =


t∏
s=τ+1

∂ fs
∂x

(xψ̂+εψ
τ,y

s , ûs)


∂ fτ
∂y

(xψ̂+εψ
τ,y

τ , ûτ + εy)y∗.

If t + 1 = τ,

h′t+1(ε) =
∂ f t+1
∂y

(xψ̂t , ût+1 + εy)y∗.

31
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Suppose that it holds for t. Then, by the chain rule,

h′t+1(ε) = [ f t+1(xψ̂+εψ
τ,y

t+1 , ût+1 + εψ
τ,y
t+1)]′

=
[

f t+1(ht (ε), ût+1 + εψ
τ,y
t+1)

] ′

=
∂ f t+1
∂x

(ht (ε), ût+1 + εψ
τ,y
t+1)h′t (ε) +

∂ f t+1
∂y

(ht (ε), ût+1 + εψ
τ,y
t+1)[ψτ,yt+1]∗

=



t+1∏
s=τ+1

∂ fs
∂x

(xψ̂+εψ
τ,y

s , ûs + εψ
τ,y
s )



∂ fτ
∂y

(xψ̂+εψ
τ,y

τ , ûτ + εy)y∗.

(b) Define, for t > τ, kt : (−ετ, ετ ) → R as

kt (ε) := gt (xψ̂+εψ
τ,y

t , ût + εψ
τ,y
t ).

For t > τ, we have

k ′t (ε) = [gt (xψ̂+εψ
τ,y

t , ût + εψ
τ,y
t )]′

= [gt (ht−1(ε), ût + εψ
τ,y
t )]′

=
∂gt
∂x

(xψ̂+εψ
τ,y

t , ût + εψ
τ,y
t )h′t−1(ε) +

∂gt
∂y

(xψ̂+εψ
τ,y

t , ût + εψ
τ,y
t )[ψτ,yt ]∗

=
∂gt
∂x

(xψ̂+εψ
τ,y

t , ût )


t−1∏
s=τ+1

∂ fs
∂x

(xψ̂+εψ
τ,y

s , ûs)


∂ fτ
∂y

(xψ̂+εψ
τ,y

τ , ûτ + εy)y∗

(c) For each T ∈ N0, define lT : ( − ετ, ετ ) → R as

lT (ε) :=
T∑
t=0

gt (xψ̂+εψ
τ,y

t , ût + εψ
τ,y
t )

For T > τ, we have

l ′T (ε) =


T∑
t=0

gt (xψ̂+εψ
τ,y

t , ût + εψ
τ,y
t )



′

=



τ−1∑
t=0

gt (xψ̂t , ût )


′

+ [gτ (xψ̂τ , ûτ + εy)]′ +


T∑
t=τ+1

gt (xψ̂+εψ
τ,y

t , ût )


′

=
∂gτ
∂y

(xψ̂+εψ
τ,y

τ , ûτ + εy)y∗ +
T∑

t=τ+1

k ′t (ε)

=

T∑
t=τ+1



∂gt
∂x

(xψ̂+εψ
τ,y

t , ût ) *
,

t−1∏
s=τ+1

∂ fs
∂x

(xψ̂+εψ
τ,y

s , ûs)+
-

∂ fτ
∂y

(xψ̂+εψ
τ,y

τ , ûτ + εy)y∗


+
∂gτ
∂y

(xψ̂+εψ
τ,y

τ , ûτ + εy)y∗.
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Finally,

δv (ψ̂;ψτ,y ) =
d
dε

[
v(ψ̂ + εψτ,y )

] �����ε=0
=

d
dε

[
lim
T→∞

lT (ε)
] ����ε=0

= lim
T→∞

[l ′T (ε)]
����ε=0

=

∞∑
t=τ+1



∂gt
∂x

(xψ̂t , ût ) *
,

t−1∏
s=τ+1

∂ fs
∂x

(xψ̂s , ûs)+
-

∂ fτ
∂y

(xψ̂τ , ûτ )y∗

+
∂gτ
∂y

(xψ̂τ , ûτ )y∗

= *
,

∞∑
t=τ+1

∂gt
∂x

(xψ̂t , ût )
t−1∏

s=τ+1

∂ fs
∂x

(xψ̂s , ûs)+
-

∂ fτ
∂y

(xψ̂τ , ûτ )y∗ +
∂gτ
∂y

(xψ̂τ , ûτ )y∗.

Assumption 2.4 ensures the interchange between the limit and the derivative. �
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