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Abstract

This thesis deals with some kinds of games that have Nash equilibria that
are also Pareto optimal. Our main objective is to create a collection that
brings together results that characterize these kinds of games.

We present results for static games and dynamic games: the first are
studied with an approach on potential games and discontinuous games and
the second are studied from an approach of potential differential games and
stochastic games.

The results presented are illustrated with examples to be able to appre-
ciate how they are used and observe that we do not work with the empty
case.





Resumen

Esta tesis trata de tipos de juegos que tienen equilibrios de Nash que también
son óptimos de Pareto. Nuestro principal objetivo es crear una colección que
reúna los resultados que caracterizan este tipo de juegos.

Presentamos resultados para juegos estáticos y juegos dinámicos: los
primeros se estudian con un enfoque sobre juegos potenciales y juegos dis-
continuos, los segundos se estudian desde un enfoque de juegos diferenciales
porenciales y juegos estocsticos.

Los resultados presentados se ilustran con ejemplos para poder apreciar
cómo se utilizan y observar que no trabajamos con el caso vaćıo.
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1 Introduction

In game theory one of the main problems is knowing how to choose which is
the best strategy for each player.

Two of the most studied and known strategies are the so-called Nash
equilibria and the Pareto-optimal, the first is a type of best strategy for
non-cooperative games, while the seconds is a best strategy for cooperative
games. At the outset, these concepts are incompatible [8], [9]. But, on the
other hand, there are particular games in which Nash equilibria turn out to
be Pareto-optimal, for instance [7], [20].

Cooperative and non-cooperative games are different kinds of games, in
problems of economy, natural resources, electronics, etc., we will be able to
find Nash equilibria that are also Pareto-optimal.

Figure 1: Cooperative and non-cooperative games

The motivation to study this kind of games with Nash equilibria that
are also Pareto-optimal, is to obtain criteria to choose the best strategy that
turns out to be the solution for the game.

The following examples allow us to observe what is studied in this thesis.

Example 1.1. Players are maximizing. (1, 1), (2, 2), (3, 3) are Nash equi-
libria (see Definition 2.3). Moreover, (3, 3) is the only one which is also
Pareto-optimal (see Definition 2.2).

Players 1 2 3
1 1,1 -1,-2 -1,-3
2 -2,-1 2,2 -2,-3
3 -3,-1 -3,-2 3,3
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Example 1.2. The battle of the sexes. Players are maximizing. (F, F ) and
(C,C) are both Nash equilibria (see Definition 2.3), and both Pareto-optimal
(see Definition 2.2).

Players F C
F 3,2 1,1
C 0,0 2,3

Example 1.3. Matching pennies. Two platers 1, 2. A1 = A2 = {a, s}.The
players wish to maximize their payoffs given by:

Players a s
a -1,1 1,-1
s 1,-1 -1,1

There is no Nash equilibrium (see Definition 2.3) in A := A1 ×A2. How-
ever, all pairs in A1 × A2 are Pareto-optimal (see Definition 2.2).

In the first example we have three Nash equilibria and only one is Pareto-
optimal. In the second we have that all the Nash equilibria are Pareto-
optimal. Finally, in the third example we do not have Nash equilibria but all
are Pareto-optimal. This shows us that studying this problem makes sense.

The thesis is structured as follows. In section 2 we study the static games,
from two approaches: potential games and discontinuous games. The first
approach was introduced by Monderer and Shapley [21], and the second
by Scalzo [29]. Section 3 studies dynamic games. This section is divided
in two parts, (deterministic) differential games, and stochastic games. The
former part is based on the work of Fonseca-Morales and Hernández-Lerma
[10, 11, 12]. On the other hand, the part on stochastic games considers the
discrete-time case [13, 14] and stochastic differentials games [10, 11]. Finally,
in Section 4, we present the conclusions obtained in this thesis.

Oscar Camacho-Franco 2
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2 Static games

In this section we consider games in normal form defined as follows.

Definition 2.1. A game G in normal form can be expressed as a triplet

G := (N, {Ai, i ∈ N} , {ri, i ∈ N}) , (2.1)

where N = {1, 2, . . . , n} is the set of players and, for every i ∈ N , Ai is the
action set for the player i, and ri : A→ R is the payoff function for player i,
with

A := A1 × · · · × An. (2.2)

For notational convenience, sometime we write (2.1) as G = (N,A, r),
with A as in (2.2), and r := (r1, . . . , rn).

If the action sets Ai are all finite, then G is said to be a finite game.

A vector a = (a1, . . . , an) ∈ A is called a strategy profile.
For every i ∈ N , we write A−i :=

∏
j 6=iAj. Hence the vectors a−i ∈ A−i

are of the form
a−i = (a1, . . . , ai−1, ai+1, . . . an) .

Given a strategy profile a = (a1, . . . , an) ∈ A and given an action a′i ∈ Ai,
for some i ∈ N , we define the strategy profile

(a−i, a
′
i) := (a1, . . . , ai−1, a

′
i, ai+1, . . . , an) .

Notation. For each a ∈ A, let r(a) := (r1(a), . . . , rn(a)) ∈ Rn. The game’s
payoff set is R := { r(a) |a ∈ A} ⊂ Rn. If u := (u1, . . . , un) and v :=
(v1, . . . , vn) are in Rn.

u > vmeans : ui > vi ∀i ∈ N,
u > vmeans : u > v and u 6= v,

u� vmeans : ui > vi for all i = 1, . . . , n.

In game theory, two of the most important solution concepts are Nash
equilibria and Pareto optimal.

The following definitions characterize the strategies called Pareto optimal
and Nash equilibrium.

Oscar Camacho-Franco 3



2.1 Potential games 4

Definition 2.2. A strategy profile a∗ = (a∗1, . . . , a
∗
n) in A is said to be

• weakly maximal Pareto efficient strategy (or maximal Slater optimal)
for G if, there does not exist a ∈ A such that

r(a)� r(a∗)

• Pareto optimal (or efficient or non inferior or non improvable) for G
if there does not exist a ∈ A such that

r(a) > r(a∗).

In this case r(a∗) ∈ Rn is called a Pareto optimal value, and the set of all
Pareto optimal values is called the Pareto frontier.

Definition 2.3. An strategy profile a∗ = (a∗1, . . . , a
∗
n) is called a Nash equi-

librium (NE) for the game G if, for each player i ∈ N ,

ri(a
∗
−i, a

∗
i ) ≥ ri(a

∗
−i, ai), ∀ai ∈ Ai

For convenience we give the following definition.

Definition 2.4. An strategy profile a∗ = (a∗1, . . . , a
∗
n) is said to be a Pareto-

optimal Nash equilibrium (Pareto efficient Nash equilibrium) if it is both a
Nash equilibrium and a Pareto optimum.

From Definition 2.3, one can see that the difficulty for obtaining Nash
equilibria lies in the fact that one has to solve n coupled optimization prob-
lems.

We now analyze two approaches: the first using potential games, which
has been the most classic approach to studying the Pareto-optimal Nash equi-
libria, and the second presenting discontinuous games, a different approach
to the traditional, which presents us with new techniques for studying the
Pareto-optimal Nash equilibria.

2.1 Potential games

In this subsection G = (N,A, r) denotes a game in normal form, as in Defini-
tion 2.1. We now start whit formal definitions for different classes of potential
games.

Oscar Camacho-Franco 4



2.1 Potential games 5

Definition 2.5. Let G = (N,A, r) and P : A → R be a certain function.
The game G is called

a) an exact potential game if, for every i ∈ N and a ∈ A,

ri(a−i, xi)− ri(a−i, x′i) = P (a−i, xi)− P (a−i, x
′
i) ∀xi, x′i ∈ Ai;

b) a weighted potential game if there exist positive numbers w1, . . . , wn such
that, for every i ∈ N and a ∈ A,

ri(a−i, xi)− ri(a−i, x′i) = wi [P (a−i, xi)− P (a−i, x
′
i)] ∀xi, x′i ∈ Ai;

c) a best-response potential game if, for every i ∈ N and a ∈ A,

arg max
xi∈Ai

ri(a−i, xi) = arg max
xi∈Ai

P (a−i, xi).

The function P is respectively called exact potential, weighted potential and
best-response potential.

Figure 2: Some classes of potential games

The potential games help us to have an optimization approach, which is
easier to solve and give conditions to have a Pareto-optimal Nash equilibrium.

In the following subsections we introduce ways to characterize Pareto-
optimal Nash equilibria in an environment of best-response potential games,
weighted potential games and exact potential games.

2.1.1 Best-response potential game

The next theorem illustrates one of the main advantages of identifying best-
response potential games; namely, if we have a potential function P for such
a game, then finding a Nash equilibrium can be done by optimizing P .

Oscar Camacho-Franco 5



2.1 Potential games 6

Theorem 2.6 (See [34]). Let G = (N,A, r) be a best-response potential game
with potential P.

a) A strategy a∗ ∈ A is a Nash equilibrium for G if and only if a∗ is a Nash
equilibrium for the coordination game (or team problem)

(N,A, (P, . . . , P )). (2.3)

b) If a∗ is a global maximizer for P, then a∗ is a Nash equilibrium for G.

The converse of Theorem 2.6(b) fails. (See Remark 2.11.)

If the game (2.3) is finite, then P attains its maximum value. This yield
the following corollary.

Corollary 2.7. Let G = (N,A, r) be a finite best-response potential game.
Then there exist a least one pure Nash equilibrium for G.

The following definition will allow us to characterize another class of
games.

Definition 2.8 (See [31]). Let G be a game in which, for each i ∈ N , Ai is
an interval of real numbers, and ri is of class C1. A differentiable function
P : A → R is said to be a fictitious-objective function for G if, for every
i ∈ N ,

∂P

∂ai
(a) =

∂ri
∂ai

(a) ∀ a ∈ A.

A fictitious-objective function is a best-response potential; see Definition
2.5(c).

The following theorem characterizes the class of fictitious-objective func-
tions.

Theorem 2.9 (See [31]). Let G be a game as in Definition 2.8. Then the
following statements are equivalents:

(a) A function P : A→ R is a fictitious-objective function for the game G.

(b) For every i ∈ N , there is a function fi : Πj 6=iAj → R such that

ri(a) = P (a) + fi(a−i) ∀ a ∈ A. (2.4)

Oscar Camacho-Franco 6



2.1 Potential games 7

Proposition 2.10. Let G be a game with fictitious-objective function P such
that, for each i ∈ N , fi ≡ ci with ci ∈ R. If a strategy profile a∗ maximize P ,
then a∗ is a NE (let us remember that NE means Nash equilibrium according
to Definition 2.3) that is also Pareto optimal for the game G.

Proof. Let a∗ be a maximizer of P , then, for every i ∈ N and a ∈ A,

P (a∗) = ri(a
∗)− ci ≥ P (a) = ri(a)− ci.

This implies that
ri(a

∗) ≥ ri(a). (2.5)

In particular,
ri(a

∗) ≥ ri(a
∗
−i, ai) ∀ i ∈ N, ∀ai ∈ Ai. (2.6)

Thus, (2.5)-(2.6) implies that a∗ is a NE that is also Pareto optimal for the
game G.

Remark 2.11. If G is a best-response potential game with potential P , then
not all the Nash equilibria of G are maximizers of P . For example, Mallozzi
[18] considers a game with two players, action sets A1 = A2 = [0, 1], and
payoffs ri(a1, a2) = a1a2 − 1, i = 1, 2. Then the set of Nash equilibria is
{(0, 0), (1, 1)}, but only (1, 1) maximizes the potential P (a1, a2) = a1a2.

Lemma 2.12. Suppose ri(a) = gi(ai) for all i ∈ N . Then P (a) = g1(a1) +
· · ·+ gn(an) satisfies Definition 2.8. Hence, if a∗ ∈ A maximizes P , then a∗

is a NE for G. If, in addition, the Ai and gi are all convex, then a∗ is also
Pareto optimal.

2.1.2 Exact and weighted potential games

The following results illustrate how to identify Pareto-optimal Nash equilibria
in exact potential and weighted potential games.

Proposition 2.13. Let G be a game with weighted potential function P . If
a∗ ∈ A maximizes P , then a∗ is a NE for the game G.

Proof. Let a∗ be a maximizer of P , then, for every a ∈ A,

P (a∗) ≥ P (a).

Oscar Camacho-Franco 7



2.1 Potential games 8

This implies that

P (a∗) ≥ P (a∗−i, ai) ∀ i ∈ N, ∀ ai ∈ Ai.

Moreover, for every i ∈ N and ai ∈ Ai,

ri(a
∗)− ri(a∗−i, ai) = wi

[
P (a∗)− P (a∗−i, ai)

]
≥ 0,

then, for every i ∈ N and ai ∈ Ai,

ri(a
∗) ≥ ri(a

∗
−i, ai).

Thus, a∗ is a NE for the game G.

Proposition 2.14. Let G be a weighted potential game, such that

ri(a) = wiP (a) for all i ∈ N and a ∈ A.

If a strategy profile a∗ maximizes P, then a∗ is a NE that is also Pareto
optimal for the game G.

Proof. Let a∗ be a maximizer of P . Then, by Proposition 2.13, a∗ is a NE
for the game G.

Suppose that a∗ is not a Pareto-optimal, then, there exist a ∈ A such
that

r(a) > r(a∗).

This implies that

n∑
i=1

ri(a) = P (a)
n∑
i=1

wi >
n∑
i=1

ri(a
∗) = P (a∗)

n∑
i=1

wi,

then,
P (a) > P (a∗).

This is a contradiction, since a∗ is maximizer of P . Therefore, a∗ is also
Pareto-optimal for the game G.

Theorem 2.15 (See [25]). Let G = (N,A, r) be a game as in (2.1) such
that Ai is convex in some Rki and ri is bounded for each i ∈ N . Suppose
that there is a C1 exact potential P for G. If P is concave, then the set of
maximizers of P equals the set of Nash equilibria of G.

Oscar Camacho-Franco 8



2.2 Multi-portfolio optimization: a potential game approach 9

2.2 Multi-portfolio optimization: a potential game ap-
proach

In this subsection, we present a multi-portfolio problem which is studied with
exact potential games.

We now consider a problem of multi-portfolio optimization. Yang et
al. [35] studied this problem as a generalization of Markowitz’s [19] mean-
variance problem, in which it is justified that the portfolio should be deter-
mined based on the trade-off between maximizing the expected return and
minimizing the risk.

Let w ∈ RN be the vector of weights defining the proportion of wealth
allocated among a total number of N -assets, and assume that the return of
the i-th asset over a single-period investment horizon is modeled as a random
variable denoted by ri. Let µ = (µi)

N
i=1 be the vector of expected returns

where µi = E [ri], and let R = (Rij)i,j be the positive definite covariance
matrix where Rij = E [(ri − µi)(rj − µj)]. In Markowitz’s mean-variance
portfolio optimization framework, the expected return of the portfolio is µTw
while the risk of the portfolio is wTRw. Then, considering the trade-off
between the expected return and the risk, the optimal portfolio is the solution
to the following problem:

maximize
w∈W

µTw − 1

2
ρwTRw, (2.7)

where ρ is a given positive constant specifying the investor’s level of risk
aversion, and W is the set of feasible portfolios specified by various trading
constraints. This formulation reveals that among the portfolios that have
the same risk, we should choose the one with largest expected return.

Let TC(·) be the market impact cost function. The market impact cost
associated with rebalancing from the current position w0 to a new position
w is given by TC(w −w0). Then the optimization problem (2.7) should be
revised as

maximize
w∈W

µTw − 1

2
ρwTRw − TC(w −w0). (2.8)

Mathematically, suppose there are M accounts and denote by wm the
portfolio vector of them-th account. Then, the market impact cost of account
m is TC(

∑M
m=1(wm −w0

m)) rather than TC(w −w0).
We analyze the multi-portfolio optimization problem under the mean-

variance framework (2.7)-(2.8). Specifically, the market impact cost function

Oscar Camacho-Franco 9



2.2 Multi-portfolio optimization: a potential game approach 10

TC(w) is modeled as

TC(w) = 〈[w]+ , c+(w)〉+ 〈[w]− , c−(w)〉 (2.9)

where [w]+ , [w]− ([w]+ = max (w,0) and [w]− = max (−w,0)) are the buy
and sell vector’s, and c+(w), c−(w) are the market impact price functions
for buy and sell giving the cost per unit for each asset.

For the market impact price function c+(w), we assume that it is sep-
arable among assets, i.e., c+(w) = (c+i (wi))

N
i=1, and c+i (wi) = Ω+

ii([wi]
+)p

with p ∈ [0.5, 1], where Ω+ is a positive diagonal matrix representing market
impact coefficients; the modeling is similar for sells. We assume the usual
choice p = 1.

In the presence of multiple accounts, the market impact price function
depends on the aggregate trade from all accounts, i.e.,

c+(w1, . . . ,wM) = Ω+

(
M∑
m=1

[wm]+
)
,

c−(w1, . . . ,wM) = Ω−

(
M∑
m=1

[wm]−
)
,

and the market impact cost for each account is proportional to their individ-
ual trade amount. Under this consideration, the utility function for account
m is

um(w−m,wm) = µTwm −
1

2
ρmwT

mRwm

− 1

2
〈
[
wm −w0

m

]+
,Ω+

M∑
j=1

[
wj −w0

j

]+〉
− 1

2
〈
[
wm −w0

m

]−
,Ω−

M∑
j=1

[
wj −w0

j

]−〉.
(2.10)

Since the mean-variance framework focuses on a single-period investment,
we assume that µ, R, ρ, Ω+(−) are fixed.

As in (2.7)-(2.8), the feasible trading strategy w is in a closed and convex
constraint set W . In general, these portfolio constraints may consist of two
categories: individual constraints and global constraints.

1. Individual Constraints :

Oscar Camacho-Franco 10



2.2 Multi-portfolio optimization: a potential game approach 11

• Holding constraint: To reduce risk, a portfolio should not exhibit
large concentrations in any specific asset. Minimal and maximal
holdings can be controlled by constraints of this form: lm ≤ wm ≤
um.

• Long-only constraint (no short-selling constraint): In the process
of short-selling, we sell an asset that we borrowed from someone
else, and repay our loan after buying the asset back at a later date.
Short-selling is profitable if the asset price declines. Because of
the risk nature, it is prohibited or purposely avoided sometimes.
Mathematically, the long-only constraint corresponds to wm ≥ 0
and it is a special case of the holding constraint where lm = 0 and
um =∞.

• Budget constraint:
∑N

i=1wm,i ≤ bm.

2. Global Constraints : In some circumstances, there may exist regula-
tions on all accounts, and these regulations can be modeled as global
(coupling) constraints.

• Turnover or transaction size constraints over multiple accounts,
which are used to limit the average daily trade volume associated
with the k-th asset:

M∑
m=1

|wm,i − w0
m,i| ≤ Di, i = 1, . . . , N (2.11)

• Limitations on the amount invested over groups of assets with
related characteristics:

M∑
m=1

∑
i∈Jl

|wm,i − w0
m,i| ≤ Ul, l = 1, . . . , L. (2.12)

Where Jl ⊂ {1, . . . , N}.

We formulate the optimization as a Nash equilibrium problem (NEP):
each account m competes against the others by choosing a strategy that
maximizes his own utility function. Stated in mathematical terms, given the
strategies of other accounts w−m, account m solves the following optimization
problem:

maximize
wm∈Wm

um(w−m,wm) ∀m, (2.13)

Oscar Camacho-Franco 11



2.2 Multi-portfolio optimization: a potential game approach 12

where um is defined in (2.10), andWm is a non-empty, closed, and convex set
specified by the individual portfolio constraints. Since each accounts strategy
set is independent of the rival accounts, the joint strategy set of all accounts
has a Cartesian structure, i.e., W1 × · · · ×WM .

We will now reinterpret the problem as an exact potential game. As in
Subsection 2.1.2 a key rule in the study of potential games is played by the
following standard optimization problem, where the objective function is just
the exact potential function P :

maximize
w∈W1×···×WM

P (w). (2.14)

The relationship between the NEP (2.13) and optimization problem (2.14)
is given in the following lemma.

Lemma 2.16 (See [28]). Suppose that the NEP (2.13) is a potential game
with a concave potential function P . If w∗ is a Pareto optimal solution of
(2.14), then it is a NE of the NEP (2.13). Conversely, if P is continuously
differentiable and wne is a NE of the NEP (2.13), then wne is a Pareto
optimal solution of (2.14).

Notation. In is the n× n identity matrix and Jn is a n× n matrix with all
entries 1 and diag(ρ) is a diagonal matrix with diagonal vector ρ.

If X is an m × n matrix and Y is a p × q matrix, then the Kronecker
product X⊗Y is the mp× nq block matrix:

X⊗Y =

X11Y . . . X1nY
...

. . .
...

Xm1Y . . . XmnY

 .
2.2.1 Reformulation of the problem

Let us rewrite (2.13) in a more convenient form. In fact, the projections in
the utility functions [·]+ and [·]− are generally difficult to handle because of
the non convexity and non differentiability they bring about. To cope with
these difficulties, we introduce new nonnegative variables w̃m = [w̃+

m; w̃−m]
and make the following variable substitutions:[

wm −w0
m

]+
= w̃+

m,[
wm −w0

m

]−
= w̃−m,

wm −w0
m = w̃+

m − w̃−m ∀m.

Oscar Camacho-Franco 12



2.2 Multi-portfolio optimization: a potential game approach 13

Then the utility function (2.10) in terms of the new variable w̃ is:

ũm (w̃−m, w̃m) = µ̃mw̃m −
1

2
ρmw̃T

mR̃w̃m −
1

2
w̃T
mΩ̃

(
M∑
j=1

w̃j

)
, (2.15)

where

µ̃m =
[
µ− ρmRw0

m;−µ+ ρmRw0
m

]
,

Ω̃ =
[
Ω+ Ω−

]
,

R̃ =

[
R −R 0
0 −R R

]
.

With this change of variable, the new constraint set is

W̃m = {w̃m : [I− J] w̃ + w0
m ∈ W , w̃ ≥ 0},

which is convex in w̃m.
Note that um is not necessarily equivalent to ũm because [wm −w0

m]
+

is
by definition orthogonal to [wm −w0

m]
−

. However such an orthogonality is
not imposed between w̃+

m and w̃−m; instead, w̃+
m and w̃−m are only assumed

to be nonnegative. Nevertheless, in the following lemma we prove that this
orthogonality property is automatically satisfied at the optimal w̃+

m and w̃−m.

Lemma 2.17 (See [35]). In the optimization problem (2.13) of account m,
given any arbitrary but fixed feasible (w̃r)r 6=m, the optimal buy vector w̃+

m and
optimal sell vector w̃−m are orthogonal.

Now, we consider the more general scenario in which there is also coupling
in each accounts strategy set. For example, one accounts trading volume on a
particular asset can be limited by other accounts because of the average daily
trading volume (ADV) of the assets in the common investment universe.

The coupling in each accounts strategy set can be modeled as global
constraints over all accounts. This can be modeled as a NEP, in which
account m solves the following problem in terms of the new variable w̃:

maximize
w̃m∈W̃m, g̃(w̃)≤0

ũm(w̃−m, w̃m) ∀m, (2.16)

where g̃ is the global constraint:

g̃(w̃) =
M∑
m=1

g̃m(w̃m)−
[

(Di)
N
i=1

(Ul)
L
l=1

]
,
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2.2 Multi-portfolio optimization: a potential game approach 14

with

g̃m(w̃m) =

 (
w̃+
m,i + w̃−m,i

)N
i=1(∑

j∈Jl

(
w̃+
m,j + w̃−m,j

)
− Ul

)L
l=1

 .
It is easy to see from Definition 2.5 that the definition of potential functions
can readily be extended to the NEP and if solution maximizes the potential
function, then is also a NE of the NEP. The NE of the NEP (2.16) does not
necessarily maximize the potential function over the joint strategy set:

maximize
w̃∈W̃1×···×W̃M , g̃(w̃)≤0

Pne(w̃) = µ̃T w̃ − 1

2
w̃TMnew̃, (2.17)

where

Mne = diag(ρ)⊗ R̃ +
1

2
(IM + JM)⊗ Ω̃.

This is because the Cartesian structure in the joint strategy set of all
accounts is destroyed by the global constraints.

Yang et al., inspired by [27], use a well-known result in convex analysis to
derive a relationship between a NE of the NEP (2.16) and a Pareto optimal
solution of (2.17): for a convex optimization problem with strong duality,
the pair consisting of a primal optimal solution and a dual optimal solution
is a saddle point of the Lagrangian [26]. Specifically, they assume that some
constraint qualifications such as Slater's condition are satisfied for (2.16) and
(2.17). Then let w̃ne = (w̃∗m)Mm=1 be a NE of the NEP (2.16), there exists
(λ∗m)Mm=1 ≥ 0 such that

w̃∗m = argmax
w̃m∈W̃m

ũm(w̃∗−m, w̃m)− 〈λ∗m, g̃(w̃∗−m, w̃m)〉,

0 ≤ λ∗m, g̃(w̃∗−m, w̃m) ≤ 0, λ∗m ⊥ g̃(w̃∗−m, w̃m) ∀m,
(2.18)

where a ⊥ b means aTb = 0. Similarly, let w̃∗ be a Pareto optimal solution
of (2.17). Then there exists ξ∗ ≥ 0 such that

w̃∗ = argmax
w̃∈W̃1×···×W̃M

Pne(w̃)− 〈ξ∗, g̃(w̃)〉,

0 ≤ ξ∗, g̃(w̃) ≤ 0, ξ∗ ⊥ g̃(w̃∗).
(2.19)

A comparison of (2.18) and (2.19) enables us to give a precise connection
between the NE of a NEP (2.16) and the Pareto optimal of its potential game
formulation (2.17), as summarized in the following proposition.
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2.2 Multi-portfolio optimization: a potential game approach 15

Proposition 2.18 (See [35]). Suppose that w̃∗ is a Pareto optimal solution
of (2.17) and satisfies (2.19). Then w̃∗ is a NE of the NEP (2.16), and
(2.18) holds with λ∗1 = λ∗2 = · · · = λ∗N = ξ∗. Conversely, suppose that w̃ne is
a NE of the NEP (2.16), and (2.18) holds with λ∗1 = λ∗2 = · · · = λ∗N = ξ∗,
then w̃ne is a Pareto optimal solution of (2.17) and satisfies (2.19).

To summarize, a NE of the NEP (2.16) is generally not a Pareto optimal
of (2.17), unless at the NE, the dual variables associated with the global
constraints for all accounts are identical. The NE of the NEP (2.16) that is
also the Pareto optimal of (2.19) is called a Variational Equilibrium (VE).
From now on, we mainly focus on the VE of the NEP (2.16), whose (existence
and) uniqueness comes readily from the strong convexity of (2.17).

Corollary 2.19 (See [35]). The NEP (2.16) has a unique VE.

Now, we consider a generic NEP where, for each m, the account m solves
the following convex optimization problem

maximize
wm∈Wm,g(w)≤0

um(w−m,wm), (2.20)

where um(w−m, ·) is concave onWm, g is convex onW1×· · ·×WM , andWm

is closed and convex. Suppose the NEP (2.20) has a differentiable concave
potential function P while some constraint qualifications such as Slater’s
condition are satisfied. We also introduce a new NEP

maximize
wm∈Wm

u(w−m,wm)− λTg(w−m,wm) ∀m, (2.21)

and denote its NE for a given λ as wne(λ).
The relationship between (2.20) and the NEP (2.21) is given in the fol-

lowing theorem.

Theorem 2.20 (See [35]). In the setting above, wve is a VE of the NEP
(2.20) if and only if wve = wne(λ

∗), where (wne(λ
∗),λ∗) satisfies

0 ≤ λ∗, g(wne(λ
∗)) ≤ 0, λ∗ ⊥ g(wne(λ

∗)). (2.22)

Proof. A variable is a VE of the NEP (2.20) if and only if it solves the
following optimization problem:

maximize
w∈W1×···×WM,g(w)≤0

P (w). (2.23)
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2.3 Discontinuous games 16

Since (2.23) is a convex optimization problem, the Pareto optimal solution
of (2.23) can be equally achieved from its dual problem, provided Slater’s
condition is satisfied [5]:

minimize
λ≥0

Q(λ), (2.24)

where Q(λ) = maxw∈W1×···×WN
P (w)− λ∗g(w) and λ is the Lagrange mul-

tiplier associated with g(w) ≤ 0.
For a fixed λ, the inner maximization problem in (2.24) is a potential

game equivalent to the following NEP:

maximize
wn∈Wm

um(w−m,wm)− λ∗g(w) ∀m. (2.25)

Since (w∗,λ∗) is a saddle point of the minimax problem (2.24), w∗ can
be obtained by solving (2.25) with λ = λ∗ while (w∗,λ∗) are primal feasible,
dual feasible and satisfy the complementary slackness condition.

2.3 Discontinuous games

In this subsection, we give conditions to characterize another class of games
with Pareto-optimal Nash equilibria. Our presentation is based on the results
of Scalzo and Parvulescu [29] and Nessah [23]. The study of this topic can be
traced back to Aumann [2] and his concept of strong Nash equilibrium (SNE).
Later on, Ichiishi [16] introduced the notation of social coalition equilibrium
and proved its existence. Scalzo [29] provided a theorem for the existence
of a weakly Pareto-optimal Nash equilibrium in discontinuous games based
on an aggregate function. Scalzo [30] investigates a class of discontinuous
games where the Pareto-optimal Nash equilibria are stable with respect to
perturbations of the characteristics of players. Nessah et al. [22] proved
the existence of a Pareto efficient strong Berge equilibrium (strong Berge
equilibrium was introduced by Berge [3]) which is also a SNE.

This subsection gives a characterization and existence of pure Pareto-
optimal Nash equilibria in discontinuous games, For this purpose, we pro-
ceed in two steps. First, we give a characterization of the pure Pareto-optimal
Nash equilibria in games satisfying the usual conditions of convexity, com-
pactness and continuity. However, for the sufficiency conditions, the concept
of non-stationary substitutes the usual assumption of strict (quasi) concav-
ity. Second, we give a set of sufficient conditions for the existence of such
equilibria. In this respect, U-dominance and individual dominance are intro-
duced. Under strict quasiconcavity of the payoff function and its weakened
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2.3 Discontinuous games 17

continuity, we prove two sufficient conditions.

We begin with the following definitions.

Definition 2.21. Let E be a vector space and Z ⊂ E a convex set.

• A function f : Z → R is quasiconcave on Z iff, any z1, z2 in Z and for
any θ ∈ [0, 1],

min {f(z1), f(z2)} ≤ f(θz1 + (1− θ)z2).

• A function f : Z → R is strictly-quasiconcave on Z iff, for any z1, z2 in
Z with z1 6= z2 and for any θ ∈ (0, 1), we have

min {f(z1), f(z2)} < f(θz1 + (1− θ)z2).

Figure 3: Function that are quasiconcave but not concave

This definition introduces a larger class of admissible payoff functions,
which may be discontinuous functions, to have a Pareto-optimal Nash equi-
libria.

Definition 2.22. The game G is called non-stationary if for each a, a′ ∈ A,
with r(a) 6= r(a′), then there exists â ∈ A such that

min (ri(a), ri(a
′)) < ri(â) for each i ∈ N.

Now, we prove existence results of pure Pareto-optimal Nash equilibria
in discontinuous games. We recall the concepts of transfer continuity and
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2.3 Discontinuous games 18

transfer quasiconcavity of a function, which are key elements to or main first
result.

Let ∆ be the n− 1-dimensional simplex defined as

∆ = {λ ∈ Rn such thatλi ≥ 0, ∀i ∈ N and
∑
j∈N

λj = 1}.

Consider the function Γ : (A×∆)× (A× A)→ R defined by

Γ((a, λ), (a′, a′′)) =
∑
i∈N

ri(a−i, a
′
i) +

∑
j∈N

λjrj(a
′′).

Ansari et al. [1] and Nessah and Tian [24] defined the following transfer
of continuity and quasiconcavity.

Definition 2.23. The function Γ is said to be transfer continuous in (a, λ)
if for each (a′, a′′) ∈ A× A where the following condition is satisfied

Γ((a, λ), (a′, a′′)) > Γ((a, λ), (a, a)),

then there exist a neighborhood N (a, λ) of (a, λ) and two elements b, c ∈ A
such that

Γ((â, λ̂), (b, c)) > Γ((â, λ̂), (â, â)) for each (â, λ̂) ∈ N (x, λ).

Definition 2.24 (See [24]). The function Γ is said to be transfer quasiconcave
in (y, z) if, for any subset {(y1, z1), . . . , (ym, zm)} ⊂ (A × A), there exist a
corresponding finite subset {(x1, λ1), . . . , (xm, λm)} ⊂ A × ∆ such that, for
any subset L ⊂ {1, . . . ,m} and any (x, λ) ∈ co{(xh, λh)|h ∈ L} (co denotes
the convex hull), we have

min
h∈L

Γ((x, λ), (yh, zh)) ≤ Γ((x, λ), (x, x)).

Definition 2.25. Let X and Y be two topological spaces. A correspondence
C : X → 2Y be said to be transfer closed-valued on X if for every x ∈ X,
y 6∈ C(x) implies that there exist some x′ ∈ X such that y 6∈ C(x′) (where
C(x′) is the topological closure of C(x′)).

Definition 2.26. Let X be a topological space and let Z be a non-empty
convex subset of E (where E be a Hausdorff topological vector space). A
correspondence C : X → 2Z is said to be transfer FS-convex on X if, for any
finite subset {x1, . . . , xp} ⊂ X, then

co{x1, . . . , xp} ⊂ ∪pj=1C(xj).
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2.3 Discontinuous games 19

Remark. Note that transfer FS-convexity of C implies that every point
x ∈ X is a fixed point of C(x), i.e., x ∈ C(x).

The previous definitions provide the necessary conditions for the following
theorem.

Theorem 2.27. Assume that the game G is convex, compact and non-
stationary. In addition, if Γ is transfer continuous in (x, λ) and it is transfer
quasiconcave in (y, z), then the game G has a Pareto-optimal Nash equilib-
rium.

Proof. Let consider the following correspondence C : A×A→ A×∆ defined
by

C(y, z) = {(x, λ) ∈ A×∆ such that Γ((x, λ), (y, z)) ≤ Γ((x, λ), (x, x))}.

Since Γ is transfer continuous in (x, λ) and transfer quasiconcave in (y, z),
then the correspondence C is transfer closed-valued and transfer FS-convex
on A × A. Then by Lemma 1 of Tian [32], the set ∩(y,z)∈A×AC(y, z) is
nonempty and compact. Let (x̄, λ̄) ∈ A×∆ be an element in ∩(y,z)∈A×AC(y, z).
Then for each (y, z) ∈ A× A, we have

Γ((x̄, λ̄), (y, z)) ≤ Γ((x̄, λ̄), (x̄, x̄)). (2.26)

First, if we fix z = x̄ in (2.26), then we deduce that x̄ is a Nash equilibrium
of G. Second, if we fix y = x̄ in (2.26), then obtain∑

j∈N

λ̄jrj(z) ≤
∑
j∈N

λ̄rj(x̄) for each z ∈ A. (2.27)

If x̄ is not maximal weakly Pareto efficient of G, there is a strategy z̄ ∈ A
such that for each i ∈ N , ri(z̄) > ri(x̄). Since λ ∈ ∆ then{

∀ i ∈ N, λ̄i ≥ 0
∃h ∈ N, λ̄h > 0.

Therefore, {
∀ i ∈ N, λ̄iri(z̃) ≥ λ̄iri(x̄)
∃h ∈ N, λ̄hrh(z̃) > λ̄hrh(x̄).

(2.28)

System (2.28) implies that
∑

j∈N λ̄jrj(z̃) >
∑

j∈N λ̄jrj(x̄) which is in contra-
diction with (2.27) and then x̄ is maximal weakly Pareto efficient of G.
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2.3 Discontinuous games 20

Definition 2.28 (See [33]). A function F : X → R is said to be transfer
weakly upper continuous if the condition

F (x′) > F (x)

implies that there exist a neighborhood Nx of x and x′′ ∈ X such that

F (x′′) ≥ F (z)

for any z ∈ Nx.

Scalzo [29] using the previous definition introduced by Tian and Zhou
[33] showed the following lemma to characterize some Pareto-optimal Nash
equilibria.

Lemma 2.29 (See [29]). Assume that A is a compact and convex subset of
a topological vector space and:

(a) the function F : x 7→ F (x) = U(x, x) is transfer weakly upper continuous
on A, where U(x, y) =

∑
i∈N ri(xi, y−i),

(b) the function U(·, z) is strictly quasiconcave on A for any z ∈ A,

(c) is x is a maximizer of F and if z ∈ A\{x}, then there exist at least a
λ ∈ (0, 1) such that

U(x, x) ≥ U(λx+ (1− λ)z, x).

Then, the game G has at least one Pareto-optimal Nash equilibrium.

Example 2.30. Considerer a concession game with two players and the unit
square A1 = A2 = [0, 1]. For player i = 1, 2 and a = (a1, a2) ∈ A = [0, 1]2,
let the payoff functions of the players be given by

ri(a1, a2) =


a−i − ai + 1 if ai < a−i,
1 if ai = a−i,
a−i + ai − 1 if ai > a−i.

This game does not satisfy condition (iii) of Lemma 2.29 so this lemma cannot
be applied. Indeed, the aggregate function is U(x, y) = r1(x1, y2)+r2(y1, x2).
Hence, we obtain

F (x) =


2x1 if x1 > x2,
2 if x1 = x2,
2x2 if x1 < x2.
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2.3 Discontinuous games 21

Let us consider x = (1, 1) and z = (0, 0). Clearly, x maximizes F and x 6= z.
For each λ ∈ (0, 1), we have U(λx+(1−λ)z, x)) = r1(λ, 1)+r2(1, λ) = 4−2λ.
Since 0 < λ < 1 and U(x, x) < U(λx + (1− λ)z, x) for each λ ∈ (0, 1). The
considered game is convex, compact and non-stationary. Let us prove that:

a) Γ is transfer continuous in (x, λ). Indeed, for each x, y, z ∈ A and λ ∈ ∆, if
Γ((x, λ), (y, z)) > Γ((x, λ), (x, x)), then there exist y′, z′ ∈ A with z′1 = z′2,
y′1 = y′2 = 0 and neighborhood N (x, λ) such that Γ((x′, λ′), (y′, z′)) >
Γ((x′, λ′), (x′, x′)) for each (x′, λ′) ∈ N (x, λ).

b) Γ is also transfer quasiconcave in (y, z). Indeed, for any finite subset
{(y1, z1), . . . , (ym, zm)} ⊂ A×A, there exist a corresponding finite subset
{(x1, λ1), . . . , (xm, λm)} ⊂ A × ∆ defined by x1 = · · · = xm = (0, 0)
and λ1 = · · · = λm = (1

2
, 1
2
) such that, for any subset L ⊂ {1, . . . ,m}

and any (x, λ) ∈ co{(xh, λh)|h ∈ L}, we have minh∈L Γ((x, λ), (yh, zh)) ≤
Γ((x, λ), (x, x))

Then by Theorem 2.27, the game G has a Pareto-optimal Nash equilibrium.

Example 2.31. Let us consider the normal form game of an oligopoly market
á la Cournot with n firms producing homogeneous goods O = (N, {Ai, i ∈
N}, {πi}i∈N where N = {1, . . . , n} is the set of firms. For each i ∈ N ,
Ai = [0, āi] is the production set or ith firm i’s capacity of production and
A = Πi∈NAi is the production set of the entire industry. Denote Ci(xi)
the cost function of the ith firm and P (ξ(x)) the inverse demand function,
where ξ(x) =

∑
i∈N xi is the total supply. The profit of the i-th firm is

given by πi(x) = xiP (ξ(x))−Ci(xi). Let us introduce the following function
Π : (A×∆)× (A× A)→ R defined by

Π((x, λ), (y, z)) =
∑
i∈N

πi(x−i, yi) +
∑
j∈N

λjπj(z).

Proposition 2.32 (See [23]). If O in Example 2.31 above is non-stationary,
Π is transfer continuous in (x, λ) and transfer quasiconcave in (y, z), then
the oligopoly market O has a Pareto-optimal Nash equilibrium.

In the following, we give some result of existence of Pareto-optimal Nash
equilibria. We introduce new concepts. Let us consider the following aggre-
gate function:

U(x, y) =
∑
i∈N

ri(xi, y−i).
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The game (2.1) is said to be U-dominated if for each x, y ∈ A, we have, if

U(x, x) > U(y, y),

then there exist x′ 6= y such that

U(x′, y) ≥ U(y, y).

Then U -dominance of the game (2.1) means that for each x, y ∈ A, if x
dominates y (U(x, x) > U(y, y)), then there is a strategy x′ which is weakly
preferred to y (U(x′, y) ≥ U(y, y)).

Definition 2.33. The game (2.1) is said individually dominated if for each
x, y ∈ A, the condition U(x, x) > U(y, y), implies there is a player j and a
strategy x′j 6= yj such that

rj(x
′
j, y−j) ≥ rj(y).

The game (2.1) is individuality dominated if for each x, y where x domi-
nates y then there is a player j and a strategy x′j which is weakly preferred
to y.

Finally we have the following definitions and theorems demonstrated by
Nessah and Parvulescu [23].

Definition 2.34. A function F : A×A→ R is diagonal transfer continuous
in y if the condition

F (x, y) > F (y, y),

implies there is a point x′ ∈ A and a neighborhood N of y such that

F (x′, z) > F (z, z)

for each z ∈ N .

Theorem 2.35 (See [23]). Let A be convex and compact and U(x, y) be
diagonally transfer continuous in y as in the previous definitions. Assume
that:

(a) the game (2.1) is U-dominated, and

(b) the function x 7→ U(x, y) is strictly quasiconcave on A, for each y ∈ A.
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Then, the game (2.1) has at least one Pareto-optimal Nash equilibrium.

Definition 2.36. A correspondence Γ : A→ B is said to be upper hemicon-
tinuous at the point a ∈ A if for any open neighbourhood V of Γ(a) there
exists a neighbourhood U of a such that for all x in U , Γ(x) is subset of V .

Definition 2.37. A game G is said to be correspondence secure if whenever
x̄ ∈ A is not a Nash equilibrium, there exist a neighborhood N of x̄ and a
well-behaved correspondence (φ is upper hemicontinuous with nonempty and
closed values) φ : N → A (φ(z) = (φ1(z), . . . , φn(z))) so that for each z ∈ N ,
there exist a player j for whom zj 6∈ co{tj ∈ Aj | rj(tj, z−j) ≥ rj(yj, x−j)}
holds for each (x, yj) ∈ Graph(φj).

Theorem 2.38 (See [23]). Let the game in (2.1) be convex, compact and
correspondence secure. Assume that:

(a) the game (2.1) is individually dominated, and

(b) the function xi 7→ ri(xi, y−i) is strictly quasiconcave on Ai, for each
y−i ∈ A−i, i ∈ N .

Then the game (2.1) has at least one Pareto-optimal Nash equilibrium.

Example 2.39. Consider a game between two players on the unit square
A1 = A2 = [0, 1]. For player i = 1, 2 and t = (t1, t2) ∈ A = [0, 1]2, let the
payoff functions for the players be given by

r1(t1, t2) =


− t2

1−t2 t1 + 2−t2
1−t2 t2 if t1 > t2,

3 if t1 = t2,
t1 + t2 if t1 < t2,

,

r2(t1, t2) = t1 + t2.

It is clear that this game is convex, compact, and the function xi 7→ ri(xi, y−i)
is strictly quasiconcave in Ai for each y−i ∈ A−i, i = 1, 2.

Let us prove that

U(x, y) = r1(x1, y2) + r2(y1, x2)

is not strictly quasiconcave in x, for each y ∈ A. Let

x(1) =

(
1,

1

2

)
, x(2) =

(
1

2
, 1

)
and z = (1, 1).

Oscar Camacho-Franco 23



2.3 Discontinuous games 24

We obtain then

U(x(1), z) = 4 +
1

2
and U(x(2), z) = 3 +

1

2
,

therefore,

min
(
U(x(1), z), U(x(2), z)

)
= 3 +

1

2
.

Let λ ∈ (0, 1) and x(λ) = (1− λ)x(1) + λx(2) =
(
2−λ
2
, 1+λ

2

)
. This implies that

U(x(λ), z) =
3 + λ

2
+

4− λ
2

= 3 +
1

2
= min

(
U(x(1), z), U(x(2), z)

)
.

So Lemma 2.29 cannot be applied.
Let us prove that Γ is no transfer continuous in (x, λ). Indeed, let x =

(λ, λ) = (1
2
, 1
2
). Then for y = (1

2
, 1
2
) and z = (1, 1), we have

Γ((x, λ), (y, z)) =
13

2
> 6 = Γ((x, λ), (x, x)).

We have, for any neighborhood N (x)×N (λ) of (x, λ) and for all y′, z′ ∈ A,
there exist λ′ = 1

2
and x′ ∈ N (x) with x′1 = x′2 6= y′1 such that

Γ((x′, λ′), (y′, z′)) ≤ 9

2
+ x′1 + x′2 ≤

9

2
+

3

2
(x′1 + x′2) = Γ((x′, λ′), (x′, x′)).

So Theorem 2.35 cannot be applied. However, all conditions of Theorem 2.38
are satisfied. Indeed,

a) The game is convex, compact and correspondence secure: let x = (x1, x2)
be any strategy non equilibrium. If x1 6= x2 then there exist a neighbor-
hood N (x) of x (with x′1 6= x′2) and a well-behaved correspondence φ1 :
N (x)→ [0, 1] defined by φ1(z) = {z2} so that for each z ∈ N (x), we have
r1(y1, x

′
2) = 3 > r1(z) for each (x′, y1) ∈ Graph(φ1). If x1 = x2 (since x is

not an equilibrium then x1 < 1), then there exist a neighborhood Nε(x)
of x (with x′1, x

′
2 < 1− 3ε, for each x′ ∈ Nε(x) and for some ε > 0) and a

well-behaved correspondence φ2 : Nε(x) → [0, 1] defined by φ2(z) = {1}
so that for each z ∈ Nε(x), we have r2(x

′
1, y2) = 1 + x′1 > z1 + z2 = r2(z)

for each (x′, y1) ∈ Graph(φ2).

b) The game is individually dominated, let x, y ∈ A be such that U(y, y) <
U(x, x). If y1 = y2, then U(y, y) = 3 + 2y1. Since U(y, y) < U(x, x),

Oscar Camacho-Franco 24



2.3 Discontinuous games 25

hence x1 = x2 > y1. Consequently there exist a player j = 2 and strategy
x′2 = x2 > y1 such that r2(y1, x

′
2) = y1 + x′2 > 2y1 = r2(y). If y1 6= y2,

there exist a player j = 1 and a strategy x′1 = y2 such that r1(x
′
1, y2) =

3 > r1(y).

c) The function xi 7→ ri(xi, y−i) is strictly quasiconcave on [0, 1], i = 1, 2.

Therefore by Theorem 2.38 the game has a Pareto-optimal Nash equilibrium.

Oscar Camacho-Franco 25





27

3 Dynamic games

In this section we study games that change over time, so called dynamic
games.

3.1 Differential games

We introduce the class of open-loop differential games we are concerned with.
Let Ñ = {1, . . . , N}, with N ≥ 2, be the set of players and T := [0, h],

h ≤ ∞, where h is the game’s time horizon. For each i ∈ Ñ , the set of
feasible states for player i is Xi ⊂ Rli , and the set of feasible controls is
Ui ⊂ Rmi . Let X := X1 × · · · × XN ∈ Rl, with l := l1 + · · · + lN , and
U := U1 × · · · × UN ∈ Rm, with m := m1 + · · ·+mN .

Define, for each i ∈ Ñ , the open-loop strategy space for player i as

Ui := {ui : T → Ui| ui is Borel−measurable}, (3.1)

and let U := U1 × · · · ×UN be the space of open-loop multistrategies.
Given a multistaregy u ∈ U, a function x : T → X is called the admissible

state path for the game, corresponding to the multistrategy u, if x is the
unique solution to the system of ordinary differential equations

ẋ(s) = f(s,x(s),u(s)),

x(0) = x0,
(3.2)

where f is a given Rl-valued function defined on T × X × U , and x0 :=
(x10, . . . , xN0) ∈ X is a given initial condition.

For each i ∈ Ñ , let Li : T ×X×U → R be an instantaneous (or current)
payoff function for player i, and Si : X → R a terminal (or final) payoff
function, which is also known as a salvage or bequest function. The function
Si vanishes when h =∞.

The payoff function for player i is defined for each u ∈ U by

Jhi (u) :=

{ ∫ h
0
Li(s,x(s),u(s))ds+ Si(x(h)) whenh <∞,∫∞

0
e−βsLi(s,x(s),u(s))ds whenh =∞, (3.3)

where x is the admissible state path to the multistrategy u, and β > 0 is
an intertemporal discount rate, which is considered to be the same for every
player.
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3.1 Differential games 28

Notation. To simplify the notation, we type Ji instead of J∞i from now on.

Remark. Note that we can write f as a vector (f 1, . . . , fN) where each
coordinate f i is an Rli-valued function defined over T ×X × U .

If an index i ∈ Ñ is such that Ji = 0, then we will understand that player
i has no state variable in the game.

In compact form, the class of differential games we are interested in can
be expressed as

Γhx0 := {Ñ , {Ui}i∈Ñ , {J
h
i }i∈Ñ , f}, h ≤ ∞. (3.4)

In the infinite horizon case, we write (3.4) as Γ∞x0 .

Definition 3.1. Consider two function P : T ×X×U → R and S : X → R.
These functions define an optimal control problem (OCP) in which a single
player (or controller) wants to maximize the payoff function defined, for each
u ∈ U, by

Jh(u) :=

{ ∫ h
0
P (s,x(s),u(s))ds+ S(x(h)) whenh <∞,∫∞

0
e−βsP (s,x(s),u(s))ds whenh =∞, (3.5)

subject to (3.2). A function u∗ ∈ U that solves this OCP is called an open-
loop optimal control or simply an optimal control.

When h =∞, we write J instead of J∞.

In the dynamic case, the Nash equilibrium and Pareto-optimal are defined
analogously to the static case. (See Definition 2.2(b) and Definition 2.3.)

We recall the following known facts for cooperative games.

Lemma 3.2. (a) Let λ = (λ1, . . . , λN) ∈ RN be such that λi > 0 for all

i ∈ Ñ , and λ1 + · · · + λN = 1. If u∗ ∈ U maximizes the scalar product
λ · r(u) =

∑N
i=1 λiJi(u), that is,

λ · r(u∗) = max
u

λ · r(u),

then u∗ is Pareto optimal.

(b) The converse of (a) is true provided that U is convex and J1, . . . , JN are
all concave.

Lemma 3.3. A multistrategy u∗ ∈ U is Pareto optimal if and only if, for
every i ∈ Ñ , u∗ maximizes Ji on the set

Ui := {u ∈ U | Jj(u) ≥ Jj(u
∗)∀j 6= i}.
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3.1.1 Potential differential games

As in the static case, finding an open-loop Nash equilibrium (OLNE) for an
N -player differential game is a difficult task due to the fact that a differential
game is the coupling of N - OCP’s.

Fonseca-Morales and Hernández-Lerma [10, 11, 12] studied this problem,
by means of potential differential games obtaining, defined as follows.

Definition 3.4. A differential game Γhx0 , h ≤ ∞, as in (3.4) is called an
open-loop PDG (OL-PDG) if there exist an OCP such that an open-loop
optimal solution of this OCP is an OLNE for Γhx0 .

The simplest example of a PDG with Pareto-optimal Nash equilibria is a
team game, defined as follow.

Example 3.5. (See Example 1 in [11].) Team games. The game (3.2)-(3.3)
is said to be a team game if the functions Li in (3.3) are all the same. In
other words, there is a function P (t,x,u) such that

Li(t,x(t),u(t)) = P (t,x(t),u(t)) ∀ i ∈ Ñ .

With this P in (3.5) (with h = ∞), it is trivially seen that a team game is
a PDG. That is, if u∗ ∈ U optimizes (3.5) subject (3.2), then u∗ is a Nash
equilibrium for (3.2)-(3.3); see [11]. Moreover, u∗ is Pareto optimal for (3.2)-
(3.3). Therefore, a team game lies in the class of games we are interested
in.

Theorem 3.6 (See [11]). Consider a differential game as in (3.2)-(3.3) with
f = (f 1, . . . , fN). Suppose that there are functions L̂i, f̂ i such that one of

the following conditions holds for every i ∈ Ñ :

(a) Li(t,x,u) = L̂i(t,ui).

(b) Li(t,x,u) = L̂i(t,x,ui), f i(t,x,u) = f̂ i(t,x).

(c) Li(t,x,u) = L̂i(t,xi,ui), f i(t,x,u) = f̂ i(t,xi,ui).

Then the differential game (3.2)-(3.3) is a PDG. The associated OCP has an
objective function J as in (3.5) with potential function

P = L̂1 + · · ·+ L̂N (3.6)

Hence, if u∗ = (u1, . . . .uN) ∈ U maximizes J , then u∗ is an open-loop Nash
equilibrium. In addition, if U is convex and Ji is concave on Ui for every
i ∈ N, then u∗ is also Pareto optimal.
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Proof. This result follows from Corollary 1 in [11] and Lemma 3.2 above.

The following example illustrates the previous theorem.

Example 3.7. Extraction of exhaustible resources under common access.
(See [11].)

Replace (3.2) and (3.3), respectively, by

ẋ(t) = −qi(t)−
∑
j 6=i

qj(t), x(0) = x0 > 0, (3.7)

Ji(u(·)) =

∫ ∞
0

e−ρtqaij (t)dt ∀i ∈ Ñ , (3.8)

with u(·) = (q1(·), . . . ,qN(·)), where qi(t) ≥ 0, lim x(t) ≥ 0 as t → ∞,
0 < ai < 1, and ρ > 0 is the discount rate. This game is a PDG with
potential function

P (u) :=
N∑
i=1

qaii .

The associated OCP has a unique solution, which is an open-loop Nash
equilibrium for the game (3.7)-(3.8) (see example 3 in [11]). Furthermore, by
the previous Theorem 3.6(a) this Nash equilibrium is also Pareto optimal.

Now, we impose the following hypothesis.
H: Let (3.2)-(3.3) be a PDG where the associated OCP has the objective

function (3.5).

Theorem 3.8. Assume H. If u∗ is a multistrategy such that, for every i ∈ Ñ ,
u∗ maximizes Ji on Ui and, in addition, u∗ maximizes (3.5), then u∗ is a
Pareto-optimal Nash equilibrium.

Proof. The theorem follows directly from Lemma 3.3 and the definition of a
PDG.

The following corollaries follow from Theorem 3.8 and Lemma 3.3.

Corollary 3.9. Assume H. If a multistrategy u∗ is the unique maximizer of
Jk for some k ∈ Ñ , and if u∗ is also maximizer for (3.5): that is, there is

an index k ∈ Ñ such that, for every u ∈ U,

Jk(u
∗) ≥ Jk(u) and (3.9)
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J(u∗) ≥ J(u), (3.10)

then u∗ is a Pareto-optimal Nash equilibrium. Furthermore, if u∗ is not the
unique multistrategy satisfying (3.9), then u∗ is a Nash equilibrium and it is
also weakly Pareto optimal.

Corollary 3.10. Consider the game (3.2)-(3.3). If a multistrategy u∗ is such

that, for each i ∈ Ñ ,
Ji(u

∗) ≥ Ji(u) u ∈ U, (3.11)

then u∗ is a Nash equilibrium that is also Pareto optimal.

In the following example, the Corollary 3.9 is satisfied.

Example 3.11. Consider two players. Let X = [0,∞) be the state space of
the game, and fix an initial state x0 ∈ X. The feasible control set for player
1 is U1 = [0,∞) and for player 2 is U2 = [0, 1].

The payoff function for player 1 is

J1(u) =

∫ ∞
0

e−ρt
[
u2(t)− x(t)− α

2
u2
1(t)
]
dt,

with α, ρ > 0 and for player 2 is

J2(u) =

∫ ∞
0

e−ρt [u2(t)− x(t)] dt,

which are subject to the system equation

ẋ(t) = 1 + u2(t)− u1(t)
√

x(t). x(0) = x0. (3.12)

This model is PDG with potential function

P (t,x,u) = u2 − x− α

2
u2
1.

The potential function P and (3.12) define the associated OCP to this
game. To obtain an optimal solution for the associated OCP, we have the
following Hamiltonian system:

H(·) = u2 − x− α

2
u2
1 + λ

[
1 + u2 − u1

√
x
]
,

u1 = −λ
α

√
x,

λ(t) + 1 ≥ 0, 0 ≤ u2 ≤ 1,

λ̇ = 1 + ρλ− 1

2α
λ2,

ẋ = 1 + u2 − u1

√
x, x(0) = x0.

Oscar Camacho-Franco 31



3.1 Differential games 32

Solving this Hamiltonian system, we have that the optimal solution u∗ =
(u∗1,u

∗
2) is

u∗1(t) = −λ
∗(t)

α

√
x∗(t),

u∗2(t) =


0 if λ∗(t) < −1,

1 if λ∗(t) ≥ −1,

where

λ∗(t) =
α
[
(ρ+ C) + k0e

−Ct(ρ− C)
]

1 + k0e−Ct
,

C =

√
ρ2 +

2

α
, λ0 = αρ+

2αC√
2α + 2

,

k0 =
(
√
2α
2
− 1)C −

[
ρ− λ0

α

]
(
√
2α
2

+ 1)C +
[
ρ− λ0

α

] .
The corresponding state variable is given by

x∗(t) = exp

(∫ t

0

λ∗(τ)

α
dτ

)[∫ t

0

(1 + u∗2(s)) exp

(∫ s

0

λ∗(τ)

α
dτ

)
ds+ x0

]
.

In addition, (3.9)-(3.10) hold. Therefore, the multistrategy u∗ is a Nash
equilibrium and Pareto optimal for the game.

3.1.2 Stochastic differential games

To define a stochastic differential game we replace (3.2) and (3.3) with

dx(s) = f(s,x(s),u(s))ds+ σ(s,x(s))dW (s),

x(0) = x0, s ≥ 0,
(3.13)

where x ∈ RN , W (·) is a d-dimensional Brownian motion, and

Ji(u) := E

[∫ ∞
0

e−ρtgi(t,x(t),u(t))dt

]
, (3.14)

respectively. In (3.13) and (3.14), u(·) is an open-loop multistrategy in U

for which (3.13) and (3.14) are well defined. For each i ∈ Ñ , let σi :=
(σi1, . . . , σiN) be row i of the N × d matrix σ in (3.14).

On the other hand, if we consider a stochastic differential game as in
(3.13)-(3.14), Theorem 3.6 becomes as follows.
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Theorem 3.12. Consider a stochastic differential game as in (3.13)-(3.14),
with f := (f1, . . . , fN). Suppose that there are functions ĝi, f̂i, and σ̂i, such

that one of the following conditions holds for every i ∈ Ñ :

(a) gi(t,x,u) = ĝi(t,ui).

(b) gi(t,x,u) = ĝi(t,x,ui), fi(t,x,u) = f̂i(t,x).

(c) gi(t,x,u) = ĝi(t,xi,ui), fi(t,x,u) = f̂i(t,xi,ui), σi(t,x) = σ̂i(t,xi).

Then the game (3.13)-(3.14) is a stochastic PDG where the associated OCP
has objective function J as in (3.5) and potential function

P = ĝ1 + · · ·+ ĝN . (3.15)

Hence, if u∗ = (u∗1, . . . ,u
∗
N) ∈ U maximizes J , then u∗ is an open-loop Nash

equilibrium. If, in addition, U is convex and Ji is concave on Ui for every
i ∈ Ñ , then the reward vector r(u∗) is a Pareto point.

Proof. See Theorem 4.1 in [10].

The following example illustrates Theorem 3.12.

Example 3.13. Competition for consumption of a productive asset. Assume
there are N players. The control sets are Ui := [0,∞) for all i ∈ Ñ . The
players wish to maximize the expected discounted utility of consumption

Ji(u) := E

[∫ ∞
0

eρtLi(ui(t))dt

]
with u = (u1, . . . ,uN), subject to the stock dynamics

dx(t) =

[
F (x(t))−

N∑
i=1

ui(t)

]
dt+ σ(x(t))dW (t), x(0) = x0,

where F and σ are given functions [17]. This game is as in Theorem 3.12
(a). Hence it is a stochastic PDG with potential function

P (u) :=
N∑
i=1

Li(ui).

Assuming that the instantaneous utility functions Li are strictly concave, the
optimal solutions of the OCP are both Nash equilibria and Pareto optimal.
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3.2 Discrete-time stochastic games

We consider dynamic stochastic games with N players and state space X ⊂
Rm. Let {ξt} be a sequence of independent random variables, and suppose
that each ξt takes values in a Borel space St (t = 0, 1, . . . ), that is, a Borel
subset of a complete and separable metric space. Assume that the state
dynamics is given by

xt+1 = ft(xt, u
1
t . . . . , u

N
t , ξt), t = 0, 1, . . . , (3.16)

where ujt is chosen by player j in the control set U j ⊂ Rmj (j = 1, . . . , N). In
general, the set U j may depend on time t, the current state xt, the action uit
of each player i 6= j, and the value st taken by ξt, for each t = 0, 1, . . . ,. We
suppose that player j wants to maximize a performance index (also known
as reward or payoff function) of the form

E
∞∑
t=1

rjt (xt, u
1
t , . . . , u

N
t ) (3.17)

subject to (3.16) and the given initial pair (x0, s0), which is supposed to be
fixed throughout the following.

Consider a game with dynamics and reward functions given by (3.16)
and (3.17), respectively. The state spaces {Xt} are subsets of Rm and each
control set Uj ⊂ Rmj for j = 1, . . . , N . Finally, we consider the sets Ψj

(j = 1, . . . , N) of open loop multistrategies. In reduced form, the game can
be expressed as:(

{Xt}, {ξt}, {Uj |j ∈ Ñ}, {ft}, {rjt |j ∈ Ñ}, {Ψj|j ∈ Ñ}
)
. (3.18)

Now, we consider Pareto solutions to dynamic games. That is, a (Markov
or open-loop) multi-strategy φ is called a Pareto solution for the game (3.18)
if φ maximizes the convex combination

E
∞∑
t=0

[
λ1r

1
t (xt, ut) + · · ·+ λNr

N
t (xt, ut)

]
, (3.19)

subject to (3.16), for some λj > 0 (j = 1, . . . , N) such that λ1 + · · ·+λN = 1.
González-Sánchez and Hernández-Lerma [13, 14] gave the following the-

orem.
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Theorem 3.14 (See [13]). Suppose that the functions rjt in (3.18) are of the
form

rjt (xt, ut) = gjt (u
j
t) j = 1, . . . , N, t = 0, 1, . . . . (3.20)

Then the game (3.18) is an open-loop potential game. Moreover, each open-
loop Pareto solution to the game (3.18) is also an OLNE (let us remember
that OLNE means open-loop Nash equilibrium according with the first para-
graph of Section 3.1.1).

Example 3.15. We consider the following deterministic game. The func-
tions ft and rjt in (3.16)-(3.17) are

ft(xt, u
1
u, u

2
u) = (xt − u1t − u2t )α, rjt (xt, u

1
u, u

2
u) = βt log (ujt), (3.21)

for j = 1, 2, where α, β ∈ (0, 1). In addition, suppose that x0 > 0 is given,
the controls ujt (j = 1, 2) are positive, and u1t + u2t < xt for each t = 0, 1, . . . .
Moreover, for any pair of positive numbers λ1 and λ2 such that λ1 + λ2 = 1,
and t = 0, 1, . . . , the open-loop strategies for this example are given as follow

ψ̂j(t) = λj(1− αβ)x̂t, j = 1, 2, (3.22)

where

log (x̂t) =

(
log (x0)−

α

1− α
log (αβ)

)
αt +

α

1− α
log (αβ). (3.23)

Sufficient conditions for open-loop strategies to be Nash equilibria are
also given in [13] and [14]; in particular, it is shown that the strategies (3.22)
are open-loop Nash equilibria. Moreover, the strategies (3.22) are also Pareto
solutions, i.e., they maximize the weighted sum

λ1

∞∑
t=0

βt log (u1t ) + λ2

∞∑
t=0

βt log (u2t )

subject to the dynamics xt+1 = (xt − u1t − u2t )α.
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4 Conclusions

In this work we analyze games with Pareto-optimal Nash equilibria, in the
static and dynamic cases. The main objective is to write a bibliographic
reference where one can consult results on some solutions to these games.
The static games are introduced in the Section 2, studying them firstly from
the point of view of the potential games and subsequently using the approach
of discontinuous games. The point of view of potential games yields results for
this kind of games . Subsequently we pay attention to a particular example in
the Subsection 2.2. Then we introduce the case of dynamic games in Section
3.

The main results and contributions are presented in Section 2. We pro-
posed conditions on the fictitious-objective function to have a Pareto-optimal
Nash equilibrium (see Proposition 2.10).

Subsection 2.3 is focused to present a different approach to the potential
games. This approach based on discontinuous games, extends the class of
admissible payoff functions to have a Pareto-optimal Nash equilibria.

We illustrate with various examples both approaches to the case of the
static games. Section 3 presents the results obtained by Fonseca-Morales and
Hernández-Lerma [10, 11, 12], and González-Sánchez and Hernández-Lerma
[13, 14]. These results are also illustrated with different examples. There are
many open problems, like the following ones:

1. Is it possible to weaken the conditions imposed in the discontinuous
games in order to obtain similar results?

2. Is it possible to extend the discontinuous games to the dynamical case?
3. In reference to the results presented in Section 3.1, do they hold in the

discrete-time case?
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