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Resumen

Se presenta una exposicion esencialmente autocontenida de la teoria clasica de Hodge
sobre variedades Riemanianas y Kéahlerianas compactas sin frontera; para después exten-
der la descomposicion de Hodge a variedades g-convexas no compactas. En el primer
capitulo se estudian las bases de la geometria compleja. En el segundo se demuestra la
descomposicion de Hodge y otros teoremas concernientes a la cohomologia de variedades
Kahlerianas. Por ultimo se presenta la nocion de espacios g-convexos y se estudian ciertas
propiedades de estos.
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Abstract

We present an almost-self-contained exposition of the classic Hodge theory for compact
Riemannian and Kéahlerian manifolds with no boundaries. Thereafter, we study Hodge
decomposition over non-compact g-convex manifolds. In Chapter 1 we study the founda-
tions of complex geometry. In Chapter 2 we prove the Hodge decomposition and other
important theorems concerning the cohomology of kahlerian manifolds. Finally, in the
last chapter we expose the notions of g-convex spaces and certain properties of them.
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Introduction

The goal of this work is to give an extensive almost self contained and detailed exposition
of the principal cohomology groups in Kéahler manifolds. All the manifolds are supposed
to be compact in the first part of the thesis; and in the second part we ask for additional
properties in order to obtain similar results without the compactness assumption.

Consider a Riemannian manifold X and a Euclidean or Hermitian bundle E over X.
We assume that E is equipped with a connection D compatible with the metric. In
particular, recall that a connection is a differential operator analogous to the exterior dif-
ferentiation acting on forms of arbitrary degree and with values in £. The most important
point is that any connections satisfies and which satisfies the Leibniz rule for the exterior
product. The Laplace-Beltrami operator is then defined as the self-adjoint differential
operator of second order A = DD}, + Dy, Dp, where D7, is the Hilbert space adjoint of
Dpg. One easily shows that Ag is an elliptic operator. The finiteness theorem for elliptic
operators then shows that the space #9(X, E) of harmonic ¢-forms with values in E is
finite dimensional, if X is compact (we say that a form u is harmonic if Au = 0). If we
assume in addition that the connection satisfies D% = 0, the operator Dy acting on forms
of all degrees defines a complex called the de Rham complex with values in the local sys-
tem of coefficients defined by E. The corresponding cohomology groups will be denoted
by H}p(X, E). The fundamental observation of Hodge theory is that any cohomology
class contains a unique harmonic representative element, because X is compact. It then
leads to an isomorphism, called the Hodge isomorphism

Hpp(X, E) = App(X, E) (1)

When the manifold X and the bundle E are holomorphic, there exists a canonical co-
nnection Dg called the Chern connection, which is compatible with the Hermitian metric
on E and has the following properties: Dpg splits into a sum Dgp = D% + D7 of a
connection D’ of type (1,0) and a connection DY of type (0,1), such that D2 = D% =0
and DD}, + DiDy = O(E) (the Chern curvature tensor of the bundle). The operator
D' acting on the forms of bidegree (p, q) then defines for fixed p, a complex called the
Dolbeault complex. When X is compact, the Dolbeault cohomology groups HP4(X, E)

xiil
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satisfy a Hodge isomorphism analogous to (1), namely
HP(X, B) = #74(X, ), )

where J#P9(X, E) denotes the space of harmonic (p, ¢)-forms with values in F, relative
to the anti-holomorphic Laplacian A}, = DED% + D} DY. By using this latter result,
one easily proves the Serre duality theorem

HP(X,E)* = H"P" (X, E*), n=dime X, (3)

which is the complex version of the Poincaré duality theorem. The central theorem
of Hodge theory concerns compact Kéhler manifolds: A Hermitian manifold (X,w) is
called Kdhlerian if the Hermitian (1,1)-form w =143, wj, dz; A dZy, satisfies dw = 0. A
fundamental example of a compact Kéahlerian manifold is given by the projective algebraic
manifolds. If X is compact Kéhlerian and if E is a local system of coefficients on X, the
Hodge decomposition theorem asserts that

HY (X, E) = @ HP(X,E) (Hodge decomposition) (4)
p+q=k
Hra(X, FE) = HYP(X, E") (Hodge symmetry) (5)

The intrinsic character of these decompositions will be shown in this work, via the the
Bott-Chern cohomology groups (also called d9-cohomology groups). Different cohomo-
logical properties of compact Kéahler manifolds are obtained by means of the primitive
decomposition and the Hard Lefschetz theorems (which is in turn the result of the exis-
tence of an sl(2) action on harmonic forms )

In the second part of the thesis, we give a brief exposition of plurisubharmonic func-
tions. We firstly present and study the harmonic and subharmonic functions and its
properties. We also introduce the concept of a domain of holomorphy and give a list of
equivalent characterizations. The main objective is to define the the domains of holomor-
phy D as those which has a plurisubharmonic exhausting function.

Then, we introduce the concepts of a ringed space and of a complex model space, in
order to define a complex space. We discuss certain properties of these spaces.

Next, we introduce the concept of a strongly ¢-complete subvariety of a complex an-
alytic space and we show that they have a fundamental system of strongly g-complete
neighborhoods. As a consequence, a Demailly’s proof of Ohsawa’s result is presented: ev-
ery non compact irreducible n-dimensional analytic space is strongly n-complete. Finally,
it is shown that L2-cohomology theory readily implies both, Ohsawa’s Hodge decomposi-
tion and the Lefschetz isomorphism theorems for absolutely g-convex manifolds.

Certain methods exposed here are widely used nowadays in research in the field of
complex geometry, such as the modifications of Kahler metrics and use of the geometry of

Hodge decomposition for absolutely g-convex manifolds X1V RODOLFO AGUILAR



INTRODUCCION XV

the manifolds to obtain properties in the cohomology. One is in particular interested in
deducing vanishing theorems. So we intent here to give a background to the use of these
techniques for further research in the area of complex geometry.

RODOLFO AGUILAR XV Hodge decomposition for absolutely g-convex manifolds
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Chapter 1

Preliminaries

In this chapter, we introduce and study the notion of a complex structure on a diffe-
rentiable manifold. A complex manifold X of (complex) dimension n is a differentiable
manifold locally equipped with a complex-valued coordinates (called holomorphic coordi-
nates) z1,. .., 2z, such that the diffeomorphisms from an open set of C" to an open set of
C™ given by coordinate changes are biholomorphic.

1.1 Manifolds and vector bundles

A topological manifold is a topological space X equipped with a covering by open sets
U;, which are homeomorphic, via maps ¢; called local charts, to open sets of R”. One can
show [Mil65] that such an n is necessarily independent of the index ¢ when X is connected;
n is then called the dimension of X.

Definition 1.1.1. A €* differentiable manifold is a topological manifold equipped with a
system of local charts ¢; : U; — R™ such that the open sets U; cover X ,each ¢; is bijective
onto its image, and the change of chart morphisms

¢jo ;" (UinT;) — ¢;(Us N ;)
are all differentiable bijections of class €*.

Definition 1.1.2. A €* differentiable function on such a manifold, or on a open set, is
any function f such that for each U;, the composition fo¢; ' is differentiable of class €*.

A real, respectively complex, topological vector bundle of rank m over a topological space
X is a topological space F equipped with a map 7 : £ — X such that there exists an
open cover {U;} of X, where we have “local trivialisation” homeomorphisms

T - Wﬁl(Ui) = U,L X Rm( resp. Uz X (Cm>

1



2 CHAPTER 1. PRELIMINARIES

such that {7~1(U;)} is an open cover of F and:

1. We have

priorn, =7

on m1(U;), where pr;(z,y) = x is the projection on the first coordinate.

2. The transition functions
T; 0 Ti_l : Ti(ﬂ'_l(Ui nu,)) — Tj(ﬂ'_l(Ui nU;))

are continuous on the first variable and R-linear (resp. C-linear) on the second
variable, i.e. on each fibre u x R™, (res. u x C™). Such a transformation

UlﬂUjXRm%UlﬂijRm

must respect the first projection, by condition 1 above, and thus the second entry
is described by a real matrix of type (m,m), whose coefficients, by continuity, are
continuous functions of the first variable u € U;NU;. (In the complex case, we must
consider complex matrices.) These matrices are called transition matrices.

Definition 1.1.3. Given a €% differentiable manifold X, a vector bundle E over X is
equipped with a €% differentiable structure if and only if we are can give local trivialisations
whose transition matrices are €.

Remark 1.1.4. The bundle E is then equipped with the structure of a €* manifold for
which m is €, as well as the local trivialisations ;.

A section of a vector bundle E = X is a map o : X — E such that 7 o 0 = Id,. This
section is said to be continuous, resp. differentiable, or €% differentiable, if o is so. If
7: E — X is a vector bundle and x € X, we write E, := 7 '(x) and it is called the fibre
over z. It is canonically a vector space with a structure given by any of the trivialisations
of E in the neighbourhood of z.

A vector bundle 7 : F — X is said to be trivial if it admits a global trivialisation
¢ E = X xR" Equivalently, £ must admit n global sections which provide a basis
of the fibre I, at each point # € X. These sections are given by ¢ = ¢! o é;, where
é;: X = X x R" is given by é;(x) = (z,¢;), where the e; form the standard basis of R".
Let U be an open subset of X. A frame for F over U is a set of n sections {sy,...,s,},
such that {si(x),...,s.(z)} is a basis for E, for any x € U. Any vector bundle £ admits
a frame in some neighbourhood of any given point in the base space, constructed just as
before for the global sections but in a given trivialisation.

Hodge decomposition for absolutely g-convex manifolds 2 RODOLFO AGUILAR



CHAPTER 1. PRELIMINARIES 3

Definition 1.1.5. Let E — M be a vector bundle. An Euclidean metric (resp. Hermitian)
of class € over E is an inner product (resp. hermitian inner product) on each fiber E,
of E, varying smoothly with x € M. i.e. such that if e = (e1,...,ex) is a frame for E,

then the functions
hij(z) = (ei(z), ;(x))

are €°°. A frame e for E is called unitary if e1(x),. .., ex(x) is an orthonormal basis for
E, for each x; unitary frames always exist locally, since we can take any frame and apply
the Gram-Schmidt process.

Let 7p : E — X and 7w : F — X be vector bundles over X. A morphism ¢ : E — F
of vector bundles is a continuous map such that 7z o¢ = 7, and ¢ is linear on each fibre.
This means that in local trivialisations, ¢ becomes linear (C-linear in the case of complex
bundles) on the fibres u x R™; this definition is independent of the choice of the open set
containing u € X, since the transition functions are also linear on the fibres. We have an
analogous definition for differentiable bundles, but in this case ¢ is also €*.

Given a vector bundle F, we can define its dual E* and its exterior powers /\k E,
which are differentiable of the same class as F. The points of E* are the linear forms
acting on the fibres of 7 : E' — X. The vector bundle E* admits a natural trivialisation
when F is trivialised, this is

o mgh(U) 2 U < (R™)* (vesp. U; x (C™)*)

with the same open cover {U;}. The transition matrices of E* are the inverses of the
transposes of the transitions matrices of E. Similarly, the points of /\k E can be identified
with the alternating k-linear forms acting on the fibres of g« : E* — X.

1.2 The tangent bundle

If X is a €* differentiable manifold, the tangent bundle Tx of X is a €*! differentiable
bundle of rank n = dimX which we can define as follows. If X is covered by open sets U;
equipped with €* diffeomorphisms ¢; to open sets of R™, then T’ is covered by open sets
U; xR™, where the identifications (or transition morphisms) between U;N\U; xR™ C U; xR"
and U; NU; x R C U; x R™ are given by

(u, ) = (u, ¢y, (v)).

Here ¢;; = ¢, o ¢; ! is the transition diffeomorphism between the open sets ¢;(U; N U;)
and ¢;(U; N U;) of R", and ¢,;, is its Jacobian matrix at the point u. A section of the
tangent bundle of a differentiable manifold is called a vector field.

RODOLFO AGUILAR 3 Hodge decomposition for absolutely g-convex manifolds



4 CHAPTER 1. PRELIMINARIES

There exist two intrinsic ways of describing the elements of the tangent bundle. The
points of the tangent bundle can be identified with equivalence classes of differentiable
maps 7 : [—€,¢] = X (for an € € R e > 0 varying with ) for the equivalence relation

d d
N =7 <= 7(0) =(0), E%h:o = E%h:o-

The second equality in this definitions makes sense in any local chart for the neighbour-
hood of 7(0). We call these equivalence classes “jets of order 1”. To check that the set
defined in this way has the structure of the vector bundle introduced earlier, it suffices
to note that the jets of order 1 of an open set U of R™ can be identified, via the map
v+ (7(0),7(0)), with U x R™, and that a diffeomorphism ¢ : U = V between two open
sets of R™ induces the isomorphism (1), 1,) between the spaces of jets of order 1 of U and
V.

Another definition of the tangent vectors, i.e. of the elements of the tangent bundle,
consists in identifying them with the derivations of the algebra of the real differentiable
functions on X with values in R supported at a point x € X. This means that we consider
the linear maps

V€N X) =R
satisfying Leibniz rule

(fg) = flx)d(g) + g(x)v(f)

for a point x € X. The equivalence between the two definitions is realised by the map
which to a jet v associates the derivation 1, (f) = 22|, _,

Definition 1.2.1. A differential form of degree k is a section of/\k(TX)*, the k-antisymmetric
linear functions defined on the cotangent bundle.

In general, we write \' T g for the bundle of real differential 1-forms, and A Txc=
Hom(7Tx,C) for its complexification, this is its tensor product with C. Similarly, the
bundle of real (resp. complex) k-forms is written A" T% g (vesp. A" Tk c). We see
immediately that if f is a real €% differentiable function on X, then df is a €*~! section

of ATk k.- We also see that if xy,...,z, are local coordinates defined on an open set
U C X, we have for any x € U, the n derivations
0 0 f
—| ,...,=——| defined b =
0x; }1” " Oz, ‘“f R BY 5, | F= ox; (z)
these form a basis for the fibre T'x at x, then the dxf =dr,, N...Ndz;,,1 <13 <... <

i, < n provide a basis of the fibre of A\ T g, at each point of the open set U. Indeed
by the definition of T'x, the coordinates x; provide a local trivialisation of Tx, where the
corresponding local basis is given at each point x € U by the derivations %b. The dx;

simply form the dual basis of \' T g at each point of U.

Hodge decomposition for absolutely g-convex manifolds 4: RODOLFO AGUILAR
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1.3 Complex manifolds

Definition 1.3.1. Let U C C" be an open subset and let f : U — C be a continuously
differentiable function. Then f is said to be holomorphic if

of
0z;

=0 fori=1,...,n.

Let X be a differentiable manifold of dimension 2n.

Definition 1.3.2. We say that X is equipped with a complex structure if X is covered by
open sets U; which are diffeomorphic, via maps called ¢;, to open sets of C™, in such a
way that the transition diffeomorphisms

¢j e} (ﬁ;l : (bz(Uz N Uj) — (b](Uz e} Uj)
are holomorphic functions.

The (complex) dimension of X is by definition equal to n. On a complex manifold, a
map f with values in C defined on an open set U is said to be holomorphic if f o ¢; ! is
holomorphic on ¢;(U N U;). Once again, this definition does not depend on the choice of
chart, since the change of chart morphisms is holomorphic and compositions of holomor-
phic functions are also holomorphic.

We will give some examples

Example 1.3.3. The complex projective space P" := P{ is the most important compact
complex manifold. By definition, P* is the set of lines in C"*! or equivalently

P" = (C™\ {0})/C",

where C* acts by multiplication on C"**. The points of P are written as (zo: 211 ... 2n).
Here, the notation intends to indicate that for a A € C* the two points (Azo : Azy : ... Azy)
and (zo : 21 ¢ ... : z,) define the same point in P™. Only the origin (0,...,0) does not

define a point in P™.

The standard open covering of P™ is given by the n + 1 open subsets
U ={(20:...:2,)]z #£0} C P".
If P" is endowed with the quotient topology via
m: C\ {0} — (C"T\ {0})/C" =P,

then the U;’s are indeed open.

RODOLFO AGUILAR 5 Hodge decomposition for absolutely g-convex manifolds
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Consider the bijective maps

20 Zi—1 Ri+1 Zn
(—,..., , ey —)

which is well defined. For the transition maps ¢;j = ¢; o (bj’l 2 o;(UrnU;) — ¢i(U;NU;)

one has

¢ Ui —C" (201 ... 2) —

w1 Wi—1 Wig1 wi—1 1w Wnp,
gbij(wl,...,wn):(—..., . Sy J ,—7—],...,—>.
Note that ¢;(U; NU;) = C* \ Z(w;), where Z(w;) is the set where w; equals zero. These
maps are obviously bijective and holomorphic.

There is a more elegant way to describe the transition functions. Namely, we may

identify ¢;(U;) with the affine subspace {(z0,...,2n)|z: = 1} C C*"™. Then ¢;(U; N U;) =
{(20,---,20)|25 = 1,2: # 0} and ¢i;(20, ., 2n) = 2"+ (20, -+, 20)-
Example 1.3.4 (Complex tori). Let X be the quotient C"/Z*", where Z** C R*" = C"
1s the natural inclusion. Then X can be endowed with the quotient topology of m : C* —
Cr/Z* = X. IfU C C" is a small open subset such that (U+(a1+1by, . .., a,+1ib,))NU =
@ for all 0 # (ay, by, ..., an,b,) € Z*", then U — w(U) is bijective. Covering X by those
provides a holomorphic atlas of X . The transition functions are just translations by vectors
in Z*". Explicitly, if = € C", then the polydis U = B.(z) with ¢ = (1/2,...,1/2) has the
above property.

We can also define the notion of a holomorphic vector bundle.

Definition 1.3.5. A differentiable complex vector bundle, this is that its fibres are C-vector
spaces, 7g : B — X over a complex manifold X is said to be equipped with a holomorphic
structure if we have trivialisations

T - 7T-_1(UZ‘) = UZ x C"

1

such that the transition matrices 7,; = 7; o 7, * have holomorphic coefficients.

The above trivialisations will be called “holomorphic trivialisations”. If E is a holo-
morphic vector bundle, E is in particular a complex manifold such that the projection
7 is holomorphic. Indeed we can assume, in the definition above, that the sets U; are
charts, i.e. identified via ¢; with open sets of C"; then the (¢; x Idcn) o 7; give charts for
E whose transition functions are clearly holomorphic.

A holomorphic section of a holomorphic vector bundle 7 : £ — X over an open
set U of X is a section s : X — E of g which is a holomorphic map. For example,
a holomorphic local trivialisation 7; of £ as above is given by the choice of a family of
holomorphic sections of E/, whose values at each point u of U; form a basis of the fibre E,,
over C.

Hodge decomposition for absolutely g-convex manifolds 6 RODOLFO AGUILAR
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Example 1.3.6 (The holomorphic tangent bundle). This bundle is defined exactly like the
real tangent bundle of a differentiable manifold. Given a system of charts ¢ : U; = V; C
C", we define T as the union of the U; x C", glued by identifying U;NU; x C* C U; x C"
and U;NU; x C* C U; x C" via

(u,v) = (u, ¢y, (v)).

Here the holomorphic Jacobian matriz ¢;; is the matriz with holomorphic coefficients

k
Bai;lj(u), where ¢i; = ¢j o ¢; ', and the operator a% is defined as

o 1,0 .0

— = —(=— —1i=—).

82’[ 2 891;1 83/1)
We can also, as in section 1.2, define the holomorphic tangent bundle as the set of complez-
valued derivations of the C-algebra of holomorphic functions, or as the set of jets of order
1 of holomorphic maps from the complex disk to X.

1.4 Integrability of almost complex structures

In the following, V' shall denote a finite-even-dimensional real vector space.

Definition 1.4.1. An endomorphism I : V. — V with I? = —1d is called an almost
complex structure on V.

Clearly, if I is an almost complex structure then I € GI(V), the general linear group,
this is [ is invertible. If V' is the real vector space underlying a complex vector space then
v +— % - v defines an almost complex structure / on V in the following way, if z; = z; +iy;
then

I —Y1

n T
1 —

L _yn

Un L,

. The converse holds true as well:

Lemma 1.4.2. If I is an almost complex structure on a real vector space V', then V
admits in a natural way the structure of a complex vector space.

Proof. The C-module structure on V' is defined by (a +ib) -v = a-v + b - I(v), where
a,b € R. The R-linearity of I and the assumption I? = —1Id yield ((a + ib)(c + id)) - v =
(a +1ib)((c + id) - v) and in particular i(i - v) = —v. O

RODOLFO AGUILAR 7 Hodge decomposition for absolutely g-convex manifolds



8 CHAPTER 1. PRELIMINARIES

Thus, almost complex structures and complex structures are equivalent notions for
vector spaces. In particular, an almost complex structure can only exist on an even
dimensional real vector space.

Corollary 1.4.3. Any almost complex structure on V induces a natural orientation on

V.

Proof. Using the lemma, the assertion reduces to the statement that the real vector space
C™ admits a natural orientation. We may assume n = 1 and use the orientation given
by the basis (1,47). The orientation is well-defined, as it does not change under C-linear
automorphisms. O

For a real vector space V' the complex vector space V ®g C is denoted by V¢ and it is
called the complexification of V. Thus, the real vector space V' is naturally contained in
the complex vector space V¢ via the map v — v ® 1. V is then called the real part of the
complexification Vg. Moreover, V' C V¢ is the part that is left invariant under complex
conjugation on Vg, which is defined by (v® \) ;= v ® A for all v € V and \ € C.

Suppose that V is endowed with an almost complex structure I, then we will also
denote by [ its C-linear extension to an endomorphism Vi — V. Clearly the only
eigenvalues of I on V¢ are &4, because the identity I? = — Id still holds in V.

Definition 1.4.4. Let I be an almost complex structure on a real vector space V and let
I : Ve — C be its C-linear extension. Then the +i eigenspaces are denoted V0 and V!,
respectively; i.e.,

VI = Lv e Ve|I(v) =i v} and VO = {v € Vg|I(v) = —i - v}

Lemma 1.4.5. Let V' be a real vector space endowed with an almost complex structure I.
Then
V(C — vl,O D vO,l

Complex conjugation on V¢ induces an R-linear isomorphism between VP and V1.

Proof. Notice that V30 N V% = 0, because v = 0 is the only vector in V¢ which satisfies
1w = —iv. Hence, the canonical map

Ve VO = Ve
(v,w) = v+ w

is injective. The first assertion follows from the existence of the inverse map

v %(U —il(v)) ® %(v +il(v)).

Hodge decomposition for absolutely g-convex manifolds 8 RODOLFO AGUILAR
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Because of I(vFil(v)) = I(v) £ iv = xi(v F il (v)).

For the second assertion we write v € Vg as v = x + 1y with z,y € V. Then
(v—il(v)) = (x —iy + il(z) + I(y)) = (v + iI(v)). Hence, complex conjugation in-
terchanges the two factors. O

One should be aware of the existence of two almost complex structures of V. One
is given by I and the other one by i. They coincide on the subspace V' but differ by
a sign on VO In V19 we have I(v — il(v)) = i(v — il (v)), as shown in the last proof.
This is, it is equivalent to multiply for i. But as in V%!, I has eigenvalue —i it will differ
for a sign.

Obviously, V'Y and V%! are complex subspaces of Vi with respect to both almost
complex structures. In the sequel, we will always regard V¢ as the complex vector space
with respect to 7. The C-linear extension of I is the additional structure that gives rise
to the above decomposition.

Lemma 1.4.6. Let V' be a real vector space endowed with an almost complex structure 1.
Then the dual space V* = Homg(V,R) has a natural almost complex structure given by
I(f)(v) = f(I(v)). The induced decomposition on (V*)c = Homg(V,C) = (V)* is given
by

(V)0 = {f € Homg(V,C)|f(I(v)) = if(v)} = (V)"

(V)™ = {f € Homg(V,C)|f(I(v)) = —if(v)} = (V)"
Also note that (V*)'° = Home((V, I),C)

The proof is natural. Now we endow this structure to the tangent bundle of a complex
manifold.

Lex X be a complex manifold, and let ¢; : U; — C™ be holomorphic local charts.
Then the real tangent bundle Ty, g can be identified, via the differential ¢;., with U; x C".
Moreover, the change of chart morphisms ¢; o ¢;* are holomorphic by hypothesis, i.e.
have C-linear differentials, for the natural identifications:

Ten, =C", Vo e C”
It follows that the R-linear operators
[Z' . TUZ'.R — TUi,R?

identified with Id x¢ acting on U; x C", glue together on U; NU; and define a global endo-
morphism, written 7, of the bundle Tx g. Obviously [ satisfies the identity I? = Id x (— Id);
thus I defines an almost complex structure on each fibre T’ ,, for every fixed point x € X.
The differentiability of I even shows that T'x g is thus equipped with the structure of a
differentiable complex vector bundle. This leads us to introduce the following definition.

RODOLFO AGUILAR 9 Hodge decomposition for absolutely g-convex manifolds
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Definition 1.4.7. An almost complex structure on a differentiable manifold is an endo-
morphism I of Txr such that I? = —1d; I* = Id x(—1d); i.e. I*(x.v) = (x, —v) equiva-
lently, it is the structure of a complex vector bundle on Tx .

We saw that a complex structure on X naturally induces an almost complex structure.

Definition 1.4.8. An almost complex structure I on a manifold X is said to be integrable
if there exists a complex structure on X which induces I.

In the case of a complex manifold, the relation between T’x g, seen as a complex vector
bundle, and the holomorphic tangent bundle T'x of X is as follows: the bundle Tx is
generated, in the charts U;, by the elements

0 10 0
82’]' N 2 a.ij Gyj ’

which are naturally elements of Ty, ® C. Thus, in fact, we have and inclusion of complex
vector bundles
Tx C TX,R ® C.

Moreover, for an almost complex manifold (X, I), the complexified tangent bundle T'x g ®
C contains a complex vector subbundle, denoted by T)lgo and defined as the bundle of
eigenvectors of the complex structure I associated to the eigenvalue i. As a real vector
bundle, T)lgo is naturally isomorphic to Tx g via the application R (real part), which to
a complex field u + v associates its real part u. Moreover, this identification relates the
operators ¢ on T)l(’0 and [ on Tx g. Clearly T)l(’0 is generated by the u—iJu, for all u € Tx .

In conclusion, we have shown the following.

Proposition 1.4.9. If X is a complex manifold, then X admits an almost complex struc-
ture I, and the subbundle T)l(’0 C Txr ® C defined by I is equal, as a complex vector
subbundle of Tx g @ C, to the holomorphic tangent bundle Tx.

Complex conjugation acts naturally on the complexified tangent bundle Tx ¢ of a
differentiable manifold X. If I is an almost complex structure on X, we have the subbundle
T)Ogl of Tx ¢, defined as the complex conjugate of T)l(’o. We can also define it as the set
of the complexified tangent vectors which are the eigenvectors of I associated to the
eigenvalue —i. Thus, it is clear that we have a direct sum decomposition

X, C=TaTy" (1.1)

Remark 1.4.10. When X s an almost complexr manifold, the vector bundle T)I(’0 does not
have a priori the structure of a holomorphic bundle. In what follows, if X is a complex
manifold, a section of Tx will be taken to mean a holomorphic section of Tx, while a
section of T)l(’0 will be a differentiable section.

Hodge decomposition for absolutely g-convex manifolds ]_0 RODOLFO AGUILAR
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A €' vector field x over a manifold X naturally defines a derivation

X CNX) = X)), k< T+1, x(f) = df (),

i.e. a linear map satisfying Leibniz rule: x(fg) = fx(g9) + gx(f). As df € \' T% g, it
acts naturally on x. Conversely, as explained previously, such a derivation gives a tangent
vector at each point of X, and thus a vector field which is easily shown to be €*~'. This
enable us to define the Lie bracket of two %" fields, thanks to the following elementary
lemma.

Lemma 1.4.11. Let x, ¢ be two derivations
X, 9 €HX) = ¢N(X), 121
Then the commutator

Xoy —ox: € X) = E(X)

18 again a derivation.

Proof. For arbitrary f,g € €2, we compute

(xoy =¥ ox)(fg) =x(v(f9)) — ¥ (x(f9))
=x(f¥(9) + g (f)) =¥ (fo(g) + gv(f))
=x()(g) + fx(g) + x(9)¢ ) (f) + gx(f)
—(f)x(g) — fx(g) — ¥(9)x(f) — g¥x(f)
=fx(g9) + gxv(f) — fx(g) — g¥x(f)
=f(xov—vox)(g)+g(xo—1ox)(f)

Thus we can give the following definition.

Definition 1.4.12. The bracket [x,v] of the vector fields x,v is the vector field corre-
sponding to the derivation x o — 1) o x.

In local coordinates x; on X, the vector field x can be written uniquely as x = ), Xi%;

and we have a similar expression for the vector field ¥ =}, @bi%.

Lemma 1.4.13. We have the formula

[x, ] = Z(X@M) 1/’()(1)) or;

RODOLFO AGUILAR ]_1 Hodge decomposition for absolutely g-convex manifolds
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Proof. We must check that for a €? function f, we have

o) = 300 = v) 5
But,
v =df(w) = (3 g—idwi) (Z%a Z% v Z%xz
and af
Xf) =2 g

so we obtain

op; Of 0*f
X© 77Z} ZXZ ¢] 61’ ]Z (8 8:E] wj 8@890])

and a similar expression for ¢ o x(f). The symmetry of the second derivatives then gives

DGl = ( gi i aX]) af'

2%

The following is an immediate consequence of lemma 1.4.13.

Corollary 1.4.14. If x,v are two €' vector fields and f is a €' function, all of which
are differentiable, then

D fo] = fIG 8]+ X ()
Proof. By 1.4.13 we have

o Pl = Y () — F0)

— ZUXWZ) — fo(x:) + vix(f)) 8((9;

i

= o v] +x(f)v
0

Hodge decomposition for absolutely g-convex manifolds ]_2 RODOLFO AGUILAR
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In the following we consider X as a differentiable manifold, unless additional informa-
tion is explicitly stated, therefore T'x will refer to the tangent bundle of this manifold.

Definition 1.4.15. If X and Y are differentiable manifolds and ¢ : X — Y 1is a diffe-
rentiable map, for each v € X we define a map

dgb : TXJX — TY,(;&(:L‘)Y

called the differential of ¢ at x, as follows: givenv € Tx X, we let dp,(v) be the derivation
at ¢(z), in the sense of tangent vectors, that acts on f € €*(Y) by the rule

dx(v)(f) = v(f o 9)

Definition 1.4.16. If ¢ : X — Y is a differentiable map and v(y) = > v;(y)dy; is a
differential p-form on'Y , the pull-back ¢*v is the differential p-form on X obtained after
making the substitution y = ¢(x) in v, i.e.

¢ () =Y v(d(x))dei, A+ Adgy,

If we have a second map ¢ : Y — Y’ and if w is a differentiable form onY’, then ¢* (¢ *w)
is obtained by means of the substitutions z = ¥ (y), y = ¢(x), thus

¢" (P'w) = (poy)w
Moreover, we always have d(¢*v) = ¢*(dv)

Definition 1.4.17. Let X be an n-dimensional manifold, and let E C Tx be a €' vector
subbundle of rank k, its rank as vector bundle. Such and E is called a distribution on X.
We say that the distribution E s integrable if X is covered by open sets U such that there
exists a €1 map

by U—RVF

such that for every x € U, the vector subspace E, C Tx , is equal to Ker dg,

As the differential is linear, therefore the image of 1.i vectores are Li., hence ¢ is a sub-
mersion, and each fibre ¢~!(v) is a closed submanifold of U having the property that its
tangent space at each point is equal to the fibre of £ at that point. The following theorem
characterises the integrable distributions. As the proof would lead as astray, we omit it,
and refer to [Voi02].

Theorem 1.4.18 (Frobenius). A distribution E is integrable if and only if for all €*
vector fields x,v contained in E, the bracket [x, ] is also contained in E.

RODOLFO AGUILAR ]_3 Hodge decomposition for absolutely g-convex manifolds
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Note firstly that the bracket of vector fields over a differentiable manifold X extends by
C- linearity to the complexified vector fields, i.e. to the differentiable seccions of T'x c.
Now, let (X, I) be an almost complex manifold. As mentioned before, the almost complex
structure operator I splits the bundle Tx ¢ into elements of type (1,0) and elements of
type (0,1). The bundle T )1(’0 is the complex conjugate of the bundle T)O(’I. The following
theorem gives an exact description of the integrable almost complex structures.

Theorem 1.4.19 (Newlander-Nirenberg). The almost complex structure I is integrable

if and only if we have
(18, 784 7

Remark 1.4.20. By passing to the conjugate, this is equivalent to the condition that the
bracket of two vector fields of type (1,0) is of type (1,0).

This theorem is a difficult one to prove in analysis, for it implies, in particular, that the
manifold X whenever it is assumed to be only differentiable actually admits the structure
of a real analytic manifold. Following Weil (1957), we will show that when (X, I) are
assumed to be real analytic, The Newlander-Nirenberg Theorem follows easily from the
following analytic version of the Frobenius theorem 1.4.18.

Theorem 1.4.21. Let X be a complex manifold of dimension n, and let E be an holo-
morphic distribution of rank k over X, i.e. a holomorphic vector subbundle of rank k of
the holomorphic tangent bundle Tx. Then E is integrable in the holomophic sense if and
only if we have the integrability condition

[E,E|CE

Here, the integrability in the holomorphic sense means that X is covered by open sets
U such that there exists a holomorphic submersive map

qu U — (Cn_k

satisfying
E, = ker(@ : TU,u — T(Cn—k’¢(u))
for every u € U.
Proof. We first reduce the problem to use the real Frobenius theorem, by noting that
the conditions that E is holomorphic and that [E, E] C E automatically imply that the

real distribution E C Tx g also satisfies the Frobenius integrability condition, so it is
integrable. X is then covered by open sets U such that there exists a submersion

¢U2U—>V

Hodge decomposition for absolutely g-convex manifolds ]_4 RODOLFO AGUILAR
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where V is open in R2"*) satisfying
(éRE)u = KeI‘((ﬁ*,u : TU,U,R — TRQ(nfk),¢(u))7 Yu - U

Next, we show that there exists a complex structure on the image of ¢, for which ¢ is
holomorphic. To do so, we first note that if v = ¢(u), Ty, = Ty./(RE),, as quotient of
vector spaces as one result of linear algebra implies, and RE is stable under the endomor-
phism [ corresponding to the almost complex structure on 7y, there is then an induced
complex structure on Ty, via the differential of ¢;. As v can be the image of different w;,
this structure would depend of the u; chosen, but as F is of constant rank, all of (RE),,
are isomorphic, this is we have the same complex structure on 7y, regardless the point
u;. Thus, there exists an almost complex structure on Ty for which the differential of ¢
is C-linear at every point, and if we show that we can give a V' one complex structure ¢
would be holomorphic.

Finally, to see that this almost complex structure is integrable, we take a complex
submanifold of U transverse to the fibres of ¢y, which exists up to restricting U. Via
¢y, this submanifold becomes locally isomorphic to V', by the Theorem of the Inverse
Function and the fact that ¢y is a submersion, and this isomorphism is compatible with
the almost complex structures. Thus, the almost complex structure on 7Ty is integrable,
and it makes ¢y into a holomorphic map. O]

Proof of the theorem 1.4.19 in the real analytic case. Theorem 1.4.21 implies the New-
lander-Nirenberg theorem in the real analytic case as follows. Since everything is local, we
may assume that X is an open set U of R?" and that [ is a real analytic map with values
in End R?", satisfying I o I = —1Id. Up to restricting U, we may assume that I is given
by a convergent power series. If we consider R?" as a subspace of C?" this power series
extends to the whole complex domain and gives a holomorphic map I from an open set
Uc of C*" (a neighbourhood of U) to End C*". This map of course satisfies the condition
Iol =—1. Now, this map I gives a holomorphic distribution E¢ of rank n on Uc, where
we define
E(Qu C Tl’o ~

Uc,u
to be the eigenspace associated to the eigenvalue —i of I. Note that by definition, along
U, we have E¢, = T&,}L CTy,®C=C™

By definition, the sections of T)O(’1 on U are generated over C by the y + ily, where
X is a real vector field over U. Similarly, the sections of E¢ on Ug are generated by the
X + iIx, where y is a real or complex vector field on Ug. It follows immediately that if I
satisfies the integrability condition of theorem 1.4.19, then the holomorphic distribution
Ec is thus integrable, which gives (at least locally) a holomorphic submersion

¢:Uc—>Cn

RODOLFO AGUILAR ]_5 Hodge decomposition for absolutely g-convex manifolds
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whose fibres are integral holomorphic submanifolds of the distribution F¢. O

1.5 The operators 0 and 0

Let (X,I) be an almost complex manifold; the decomposition (1.1) Txc = Ty’ ® Ty
induces a dual decomposition

Ty = (Tx)" & (Tx)™ (1.2)

When X is a complex manifold, the bundle (T%)"° of complex differential forms of type
(1,0), i.e. C-linear forms, is generated in holomorphic local coordinates 21, ..., z, by the
dz;, i.e. a form a of type (1,0) can be written locally as o = ), c;dz;, where the «; are
©* functions if a is €*. Since d(dz;) = 0, it follows that

do = Zdai A dz; (1.3)

Furthermore, the decomposition (1.2) also induces the decomposition of the complex k-
forms into forms of type (p, q), for p+q = k:

k P4
NTic= D ATk (14)

pt+q=k
where the bundle A"?T% is equal to
p

AT @ \(T5)

More generally, the bundle A”?T% admits as generators in holomorphic local coordi-
nates z1,..., z, the differential forms

dZ[/\d_:dZil/\.../\dZip/\dzjl/\.../\dzjq,

where I, J are sets of ordered indices 1 <4, < ... <4, <mand 1 <j <...<j, <n.
Note that these forms are closed, i.e. annihilated by the exterior differential operator
d, again because of d(dz;) = 0. A form « of type (p,q) can thus be written locally as
o= Z[,J ay gdzr A dzy. 1t follows that

do = Zd(l/LJ VAN dZ[ A dZJ

I,J

is the sum of a form of type (p,¢ + 1) and a form of type (p + 1, q).

Hodge decomposition for absolutely g-convex manifolds ]_6 RODOLFO AGUILAR



CHAPTER 1. PRELIMINARIES 17

Definition 1.5.1. For a €1 differential form « of type (p,q) on a complex manifold X,
we define Oa to be the component of type (p,q + 1) of da. Similarly, we define Oc to be
the component of type (p+ 1,q) of da.

For (p,q) = (0,0), a form of type (p,q) is a function f. Therefore df is then the
C-antilinear part of df, and this it vanishes if and only if f is holomorphic.

By definition, we have
-y of 3 of .
df = i a—%dzz + : a—zidzz,

and thus of
f = ;a—zd@.

As mentioned above, a k-differential form « decomposes uniquely into components aP+?
of type (p,q), p+ q=k. We then set

Oa = Zéa”’q, da = Z@a”’q.
p,q p,q

The following lemmas describe the essential properties of the operators 9, 0.
Lemma 1.5.2. The operator 0 satisfies Leibniz’ rule
OaNB)=0aAB+ (=) aAdp,
where k is the degree of the form a. Similarly, the operator O satisfies Leibniz’ rule
Ia A B)=0dan+(—1Fanop.

Proof. The second assertion follows from the first, since by definition of the operators J
and 0, we have the relation

8(1:5_6.

As for the first relations, it suffices to prove it for « of type (p, ¢) and S of type (p/,¢'). We
then obtain it immediately in this case, by taking the component of type (p+p',¢+¢ +1)
of d(a A B). O

Lemma 1.5.3. We have the following relations between the operators O and O.

9 =0,00+00=0,0%=0.

RODOLFO AGUILAR ]_7 Hodge decomposition for absolutely g-convex manifolds
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Proof. This follows from the formulas
dod=0, d=0+0.
Indeed, these relations imply that
P +00+00+0 =d* =0.

Now, if a is a form of type (p,q), then 9%« is of type (p + 2.q), (00 + 00)« is of type
(p+1,9+1) and J ais of type (p,¢+2). Thus, d?a = 0 implies that 9%« = (00 +00)a =
2

0 a=0. ]
The Poincaré lemma shows the local exactness of the operator d:

Lemma 1.5.4 (See [Lee03]). Let a be a closed differential form of strictly positive degree
on a differentiable manifold. Then, locally there exists a differential form [ such that
a=dp.

We say that « is locally exact.

_ Now consider a complex manifold X. Let a = 03 be a form of type (p,q) which is
O-exact. Then we have da = 0 by Lemma 1.5.3. With the following propositions we show
a partial converse, which is the analogue of the Poincaré lemma for the operator 0.

Theorem 1.5.5. Let f be a €% function (for k > 1) on an open set of C. Then, locally
on this open set, there exists a €* function g (for k > 1), such that

dg
%= f. (1.5)

Remark 1.5.6. Such a function g is defined up to the addition of a holomorphic function.

Proof. We set
1
g(z) = —/ de A dw.
2w Jp w— 2

Note first, that for w = z+iy one has dwAdw = (dx+idy) A (dx—idy) = —2idz Ady. The
existence of ¢ as well as the assertion that dg = f will be shown by splitting ¢ into two
parts. This splitting will depend on a chosen point z, € B. or rather on a neighbourhood
of such a point.

Let zo € B := B. and let ¢ : B — R be a differentiable function with compact
supp(¢)) C B and such that |, = 1 for some open neighbourhood of zp € V C B. If

Hodge decomposition for absolutely g-convex manifolds ]_8 RODOLFO AGUILAR
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fi=1v-fand fo:=(1—1)- f, then f = f; + fo. In order to see that the above integral
is well-defined we consider first the following integrals

1 .
gi(z) = —/ fi(w) dw A dw, i =1,2.
27TZ B

w—z

Since fa|y = 0, the second one is obviously well defined for z € V. The first integral can
be rewritten as

g1(2) = %/B il(f”idedw
h(2)

2 Jow — 2
1
:—,/Mdu/\dﬂ, foru:=w—z
u

1 . ) )
= — / filz+re®)e™dp Adr, for u=re*¥ and du A du = 2irdp A dr.
™ Jc

, since supp(f1) C B is compact

The last integral is clearly well-defined. Since the integral defining g splits into the two
integrals just considered, we see that the function g in the assertion is well-defined on V'
and thus everywhere on B.

In order to compute dg, we use the same splitting of g = g, + g as before. Let us first
consider dg,. Since (w — 2z)~! is holomorphic as a function of z for w in the complement

of V', one finds
892 )
82’ 27rz/f —————dw Adw =0

forall zeV
Using the above expression for g; we get

g1, . 1 [Ofi(z+71e¥)

9 (Z)_W/C P e “Pdp A\dr
1 Ofi 0(Z+re ™) 0fid(z+re¥)\
N / <8w 0z * 9w 0z e rdp Ndr
= (Z{; (z 4+ 7re¥)e dp A dr

1 0f1 dw N dw
Y I '
" omi c 0w w— z
Thus, for z € V one has
dg O0g1  0gs O0g1 1 Ofi, dwAdw B
0z 0z 0z 0z omi Bau—;(w) o, N =10
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Here, (x) is a consequence of Stokes’ theorem:

=—1

1 % dw N dw 11. / %wdw/\w

2mi Jg Ow fay—- 27160
_ -1 fi(w) since (w — z)~ ! is
B %}Slgcl) /B\Bé(z) d(w — Zdw "holomorphic on B\ Bj(z)

= 1 lim/ de. since supp(f;) C B

2mi 60 Jops () W — 2
2m

— ilz’m filz +de)dp = fi(2)

2160 J

B\Bs(z) OW T w =2

O

The following proposition is known as the Grothendieck-Poincaré lemma. The first

proof of it is due to Grothendieck and was presented by Serre in the Séminaire Cartan in
1958.

Proposition 1.5.7 Lg -Poincaré lemma in several variables). Let a be a €1 form of type
(p,q) with ¢ > 0. If da = 0, then there locally exists on X a €1 form B of type (p,q—1)
such that o = 0.

Proof. We first reduce to the case where p = 0 by the following argument. Locally, we
can write in holomorphic coordinates z1, ..., z,:

o = ZO&LJdZ[ A\ dZ},

1,J

where the sets of indices I are of cardinal p and the sets of indices J are of cardinal q.
Then

50& = ZEQI,J /\dZ[ /\dZJ
1,J
by lemma 1.5.2. It follows that if O = 0, for every I of cardinal p the form a; of type

(0, q) defined by
oy = Za[ﬂ]dz]
J

is g—ck)sed. If the proposition is proved for forms of type (0,¢), then locally we have
ar = 0B, and

o = (—1)p5(2d7;[ A /8[)
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It remains to show the proposition for forms of type (0,¢q). Such a form can be written
a = Y ,aydZ;. Choose k minimal such that no dz; occurs in this sum for i > k.
Thus, we can write a = a1 A dZ, + ao, with ay free of dz; for ¢ > k. By assumption,
0= 50& = (50&1) VAN de +50&2. If we set 51 = (8/(‘921)0@, then this 1mphes 5@'051 = 5,’0&2 =0
for ¢ > k. Therefore, the functions a; are holomorphic in zx11,..., 2,.

By the one-dimensional Poincaré lemma 1.5 the function

1 ay(z Zhe1, W, 2k z
e — N _
gJ(Z):—2 : ( ’ — — n)dw/\dw
mi Jp., w— 2
satisfies g% = ay on B, C C. Moreover, the function ¢; is holomorphic in zxy1,..., 2,

and differelfltiable in the other variables.

Set v := (=1)7,c; 97dZ k), where the sum runs over all the indices .J such that
k € J. Then 9;y(z) = 0 for i > k and 0y(2) = —a; A d%. Hence, a + 0y = ay is
still O-closed, but it does not involve any dz; for i > k anymore. Then one concludes by
induction. O

In the following we will use results from sheaf theory, we refer to Chapter A, and B
in [GRT77].

Let o/P? be the sheaf of germs of differential forms of bidegree (p,q) with complex
valued € coefficients. The Grothendieck-Poincaré Lemma asserts that all O-closed forms
of type (p,q) with ¢ > 0 are locally J-exact. In other words, the complex of sheaves
(a7/P*,0) is exact in degree ¢ > 0: and in degree ¢ = 0, Ker 0 is the sheaf Q% of germs of
holomorphic forms of degree p on X.

More generally, if £ is a holomorphic vector bundle of rank r over X, there exists
a natural operator d acting on the space €°(X, \""T% @ E) of € (p, q)-forms with
values in E. In a holomorphic trivialisation of E, 7y : E|y = U x C*, such a section can

be written (aq, ..., k), where the a; are € forms of type (p,q) on U. We then set
Opa = (0ay, ..., 00);

it is a section of ATy ®c E. We will show that this local definition in fact gives a form
da € GPITH(E).

Lemma 1.5.8. Let V be and open subset of X and 7y : Ely =V x C* a holomorphic
trivialisation of E over V. Then for a € &/%(E), we have

EUOé\UmV = 5\/Oé\Umv
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Proof. Let Myy be the transition matrix, with holomorphic coefficients, which enables us
to pass from the trivialisation 7y to the trivialisation 7,. Then, by definition, if ay is a
section of E over U, ay = (a1y, ..., apy) in the trivialisation 77, and ay is a section of
E over V, ay = (a1y,...,ay) in the trivialisation 7y, the sections ay and ay coincide
on U NV if and only if

(041,V, - ,Oék,v)t = MUV(O-/l,Ua . 7ak,U)-

We can of course replace the functions «; by differential forms. The form a can be written
(a1u,...,04p) in the trivialisation 7y and (v, ..., a;y) in the trivialisation 7, and
we have, as above,

(Oél’v, Ce ,Oék7v)t = A]w'[]\/'(OéLU7 C.e 7ak,U)-

To see that dyalyny = Ov|unv, by the above and the definition of dy, dy, it suffices to
show that _ B _ B
(aOéL\h e ,80[]61\/)75 = MUv(aOéLU, e ,80[]67(]).

But this follows immediately from the Leibniz formula lemma 1.5.2 and the fact that the
matrix Myy has holomorphic coefficients. O

It then follows that the Grothendieck-Poincaré Lemma still holds for forms with values
in E. For every integer p =0, 1,...,n, the Dolbeault cohomology groups H?%(X, E) are
defined as being the cohomology of the complex of global forms of type (p, ¢) (indexed by

q):

p?'

H"(X,E) = HY(¢>(X, \Tx ® E)). (1.6)

There is the following fundamental result of sheaf theory (de Rham-Weil Isomorphism
Theorem): Let ((£°,0) be a resolution of a sheaf .# by acyclic sheaves, i.e. a complex
(£*,0) given by an exact sequence of sheaves

: 50 50
0FL PP L 1L ot

where H*(X, #?%) = 0 for all ¢ > 0 and s > 1. (To arrive at this latter condition of
acyclicity, it is enough for example that the .Z7 are flasque or soft, for example a sheaf
of modules over the sheaf of ring °°).)Then there is a functorial isomorphism

HY(D(X,.2%) — HY(X, 7). (1.7)

We apply this in the following situation. Let </ P4(E) be the sheaf of germs of € sections
of A" T%®E. Then («/?*(E), 0) is a resolution of the locally free &'x-module Q% @ O(E)
(Grothendieck-Poincaré Lemma), and the sheaves .&77?(FE) are acyclic as € *°-modules.

According to (1.7), we obtain
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Theorem 1.5.9 (Dolbeault Isomorphism Theorem(1953)). For all holomorphic vector
bundles E on X, there exists a canonical i.somorphism

HP(X,E) ~ H?(X,0% @ E).

If X is projective algebraic and if E is an algebraic vector bundle, the theorem of
Serre (GAGA) [Ser56], shows that the algebraic cohomology groups HY(X, Q% ® O(E))
computed via the corresponding algebraic sheaf in the Zariski topology are isomorphic to
the corresponding analytic cohomology groups. Since our point of view here is exclusively
analytic, we will no longer need to refer to this comparison theorem.

1.6 Connections
Definition 1.6.1. Assume given a real or complex € wvector bundle E of rank r on

a differentiable manifold M of class €°°. A connection D on E is a linear differential
operator of order 1

g+1

D: CKOO(M,/CI\TJ’\} ®E) = ¢*(M, \ Ti; ® E)
such that D satisfies Leibnitz rule:
D(f Au)=df Au+ (=1)%87 f A Du (1.8)
for all forms f € €°(M, N' Ty;),u € €°(X,\"T5; @ E).
On an open set 0 C M where E admits a trivialization 7 : Elq — Q x C7, if we let

0 be a frame over (2, then we define the connection matrix I'(D, ) associated with the
connection D and the frame 6 by setting first

De, = Ty(D,0) ¢,
p=1

and then
1
[(D,0) = [[pe(D, )], T,0(D,0) € )\ Tis.

We shall denote the matrix I'(D, #) simply by I
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We can use the connection matrix to explicitly represent the action of D on a section
of E. Namely, if u is a section of F over €2, then for a given frame 6,

Du = D(ZUA(Q)GA)
=3 dus(6) - ey + Y un(6) Dex
o A
=3 [dus(0) + 3 un ()T, (0)] - e,

Du = Z[du(@) +Tul - e,. (1.9)

[

Where we have set du ~, (du,)i1<a<, and the wedge product inside the brackets in (1.9)
is ordinary matrix multiplication of matrices with differential form coefficients. Thus a
connection D can be written

Du~, du+T Au.

Suppose that E — M is a vector bundle equipped with a connection D. Let Hom(F, E)
be the vector bundle whose fibres are Hom(E,, E,). We want to show that the connection
D on E induces in a natural manner an element

Op(D) € (M, \ T;; ® Hom(E, E)).

to be called the curvature tensor.

First we want to give a local description of an arbitrary element y € € (M, A" T3, ®
Hom(F, E)) Let 6 be a frame for E over U in M. Then § = (eq, ..., e,) becomes a basis
for the free €>°(U, A" T;;)-module

p P 0
> (U, )\ Try @ Hom(E, E)) = €U, \ T5)) @cwpors,) € (U, \ Ti ® Hom(E, E)),

Since E|y =2 U x C", by using 0 to effect a trivialization, we see that

0 0
¢ (U, \ Tr; @ Hom(E, E)) = M, (U) = M, @ (U, \ Tr;)

where 9, is the vector space of r x r matrices and thus 90, (U) is the €=(U, \° T%,)-
module of r X r matrices with coefficients €>°(U, /\0 T5;). Therefore there is associated
with y under the above isomorphisms, an 7 X r matrix

p

X(0) = [x(0)po], X(0)0 € €U, \ T3
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Returning to the problem of defining the curvature, let £ — M be a vector bundle
with a connection D and let I'(#) = T'(D, 6) be the associated connection matrix. We
define

O(D, ) := dT(6) + I'(0) AT(0), (1.10)

which is an r x r matrix of 2-forms;i.e.,
Opr = dlps + > Ty Al

We call ©(D, 0) the curvature matrix associated with the connection matrix I'(6). We
have the following two simple propositions, the first showing how I'(#) and ©(#) transform,
and the second relating ©(0) to the operator d+1'(6).

Lemma 1.6.2. Let n be a change of frame and define I'(0) and ©(0) as above. Then
(a) dn+T(0)n = nL'(0n),
(b) ©(6n) =n~"'O(6)n.
Proof.  (a) Asn is a change of frame we have that
On = (anlep, e ,anrep) =(e},...,¢€.).

then
D(e,) =Y Tuy(n)e,,
= Z Fva(en)npvepv

v,p

and, on the other hand,
D( Z npoep) = Z dnpee, + Z Npol'7p€r.
p p T
By comparing coefficients, we obtain
nl'(0n) = dn + L(0)n. (1.11)

(b) Take the exterior derivative of the matrix equation (1.11), obtaining

dl'(9) - n —T(#) -dn =dn - T'(0n) +n - dT'(6n). (1.12)
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Where the sign minus in the first side of the equations comes from the fact that I"
is a matrix of 1-forms and as n are 0-forms, this is, complex numbers, no sign minus
appears.

Also from (1.11):
L(0n) =n~"dn+n~"T(0)n, (1.13)

and thus we obtain by substituting (1.13) into (1.12) an algebraic expression for
ndl(6n) in terms of the quantities dT'(0),T'(6),dn,n and n~'. Then we can write

n[dl'(0n) +T(6n) AT (0n)] (1.14)

in terms of these same quantities. Writing this out and simplifying, we find that
(1.14) is the same as
[dI'(0) +T'(0) AT(0)]n

which proves part (b).

Lemma 1.6.3. [d+T(8)][d+T(0)]¢(0) = O(0)€(6).

Proof. By straightforward computation we have (deleting the notational dependence on
0)
(A4+D)(d4+D)E =d* ¢+ T -dé+d(T-€) +T AT - €
=I-d¢+dl'-&—T-d¢+T AT - £
=dI'-£+T AT - €
p— @ . 5'
O

Definition 1.6.4. Let D be a connection in a vector bundle E — M. Then the curvature
Op(D) is defined to be that element © € €°(M, \*Ti; @ Hom(E, E)) such that the
C-linear mapping

0 2
©:6>(M, \T;; ® E) — €>(M, \T;,; ® E)
has the representation with respect to a frame
O(0) =0(D,0) =dI'(0) + T'(0) ANT(0).

We see by Lemma 1.6.2(b) that O (D) is well defined, since ©(D, 0) satisfies the transfor-
mation property which ensures that ©(D, ) determines a global element in € (M, /\2 Th®
Hom(E, E))
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Proposition 1.6.5. D? = O, as an operator mapping

p+2

p
¢>(M, \T;; ® E) — ¢*(M, ]\ Tr; ® E), where D* = Do D.

The only unproved part is for p > 0, but we observe that Lemma 1.6.3 is still valid in
this case. Then the curvature is the obstruction to D? = 0 and therefore the obstruction
that the sequence

0 1 9
¢ (M, \ Ty ® E) =5 €=(M, \ Ty @ B) = (M, \Tjy ® E) — -+ —

be a complex.

In particular we can discuss the operator

0 2
D?: (M, \ Ty ® E) — €=(M, \T;, ® E).
and the fact that D? is linear over /\0 Ty, ie., for u a section of E' and f a ¢ function

D*(f -u)=D(df @u+ f- Du)
= —df ADu+df ANDu+ f-D*u
:f~D2u.

Now suppose that E is equipped with a Euclidean metric (resp. Hermitian) of class
%> and that the isomorphism E|o = 2 x C" is given by a € frame (e,). We then have
a canonical bilinear pairing, (resp. sesquilinear)

p+q

¢ (M, /P\TJ;; ® E) x € (M, /q\m ® E) = ¢~(M, ]\ Tj; ® C)
(u,v) — {u,v} (1.15)

given by

{u,v} = ZU)\/\@H@)\,G#), u = Zu,\@)e,\, v = Zv#@)eu.
A

The connection D is called Hermitian if it satisfies the additional property

d{u,v} = {Du, v} + (—1)%&“{u, Dv}.

RODOLFO AGUILAR 27 Hodge decomposition for absolutely g-convex manifolds



28 CHAPTER 1. PRELIMINARIES

By assuming that (e,) is orthonormal, we have that D is Hermitian if and only if I'* = —T°
where * denotes the conjugate transpose of the matrix. This is because, if we suppose D
hermitian

0=d{ex, e,} = {Dey, e.} +{exr, De,}
= {Zrmem eu} + {eM eruep}
p=1 p
= F,u)\ +f)\,u7

which is also valid if I'* = —I'". This means that iI" is a 1-form with values in the space
Herm ((C", (C”) of hermitian matrices. The identity d? = 0 implies

0 = d*{u,v} = d({Du,v} + (=1)*{u, Dv})
= d{Du, v} + (—1)Pd{u, Dv}
= {D*u,v} + (—=1)""{Du, Dv} + (=1)"{Du, Dv} + {u, D*v}
= {D*u, v} + {u, D*v},

ie. {O(D)Au,v}+ {u,©(D) Av} = 0. Therefore ©(D)* = —O(D) and the curvature
©(D) is such that

iO(D) € €*(M, )\ T;; ® Herm(E, E)).

Now we study those properties of connections governed by the existence of a complex
structure on the base manifold. Let M = X be a complex manifold, dim¢ X =n and FE
a ¢ vector bundle of rank r over X, here, F is not assumed to be holomorphic. We
denote by €% (X, E) the space of > sections of the bundle A" 7T*X @ E. We have
therefore a direct sum decomposition

@%“XE

p+q=l

Connections of type (1,0) or (0,1) are operators acting on vector valued forms, which
imitate de usual operators 0,0 acting on (X, C). More precisely, a connection of type
(1,0) on E is a differential operator D’ of order 1 acting on €.¢(X, F) and satisfying the
two following properties

D' :€o(X, E) — €%, (X, E), (1.16)
D'(fAs)=0f As+ (—1)¥/ f A D's (1.17)
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for any f € 6;°, (X,C),s € 6,7, (X, E). The definition of a connection D" of type (0,1)

is similar. If 6 : Elg — Q x C" is a € trivialisation of E|q and if o = (o)) = 0(s), then
all such connections D’ and D" can be written
D's ~g 0o +T" A 0. (1.18)
D's~g o +T" No (1.19)
where I € €75(€2, Hom(C",C")),I'" € €55(€2, Hom(C", C")) are forms with matrix coeffi-
cients.

We have then that D := D’ 4+ D” is a connection in the sense of Definition 1.6.1;
conversely any connection D admits a unique decomposition D = D’ 4+ D" in terms of a
(1,0)-connection and a (0, 1)-connection.

Theorem 1.6.6. If H is a Hermitian metric on a holomorphic vector bundle E — X,
then H induces canonically a connection, D(H), on E which satisfies, for W and open
set mn X,

1. For&,ne €°(W,\' Ty ® )

d(&, n) = (D&, n) + (&, Dn);
i.e., D is compatible with the metric H.
2. If ¢ € O(W,E), i.e., is a holomorphic section of E, then D" = 0.

Proof. First, we point out that 2 is equivalent to the fact that the connection matrix I'(6)
is of type (1,0) for a holomorphic frame 6. This follows, since for £ € O(W, E) and 0 a
holomorphic frame, we have

DE(O) = (d+T'(0))(0)
= (0 +TU2(0))€(0) + (@ + TV (0))e(0),

where I' = 10 4 (1) i the natural decomposition. Therefore
D'E(0) = (0 +TT0(0))¢(0)

and

D"¢(0) = (9 +TV(9))€(0).
But 9¢(0) = 0 since ¢ and 6 are holomorphic. Thus

D"(0) = TV (0)(0).
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Suppose now that we have a connection D satisfying 1 and 2. Then let 0 = (eq,...,¢e,)
be a holomorphic frame over U C X and I the associated connection matrix. Since D is
compatible with the metric H, we have

dH = HT +T'H.

Since, in addition, D satisfies 2, we have seen that I is of type (1,0). Thus, by examining
types we see that

OH = HT
and
0H =T'H,
from which it follows that
[ =H '0H. (1.20)

We can define then I' by (1.20). Such a connection matrix clearly satisfies 1 and 2. [

This theorem gives a simple formula for the canonical connection, called the Chern
connection, in terms of the metric H, namely

0(9) = H(0)"'0H(6)

for a holomorphic frame 0. Moreover, D = D'+ D" has the following representation with
respect to a holomorphic frame 6,

D' =0 +T(0),
D" = 0. (1.21)

Proposition 1.6.7. Let D be the Chern connection of a Hermitian holomorphic vec-
tor bundle E — X, with Hermitian metric H. Let T'(0) := H '9H and O(E) be the
connection and curvature matrices defined by D with respect to a holomorphic frame 6.
Then

(a) T'(0) is of type (1,0), and OT'(9) = —I'(0) AT'(0).

(b) O(E) = 0r(#), and O(E) is of type (1,1).

(c) BO(E) = 0.
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Proof. Let H = H(#),I' = I'(#), and © = ©(F). Then we first note that I' is of type
(1,0) by Theorem 1.6.6. Then by using

we see that
or =0(H '0H)=-H -0H-H NOH
— —(H 'oH) A (H '9H) = —-T AT,

just using that the wedge product is matrix multiplication with wedge product of 1-forms,
therefore associative, which gives us part (a). Part (b) is simple computation, namely

O=d'+T AT =0+ T AT + 00
= oI

by using part (a). Part (c¢) then follows from

90 =0T = 0.
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Chapter 2

Hodge Decomposition

2.1 Differential operators on vector bundles

We first describe some basic concepts concerning differential operators (symbol, compo-
sition, adjunction, ellipticity), in the general setting of vector bundles. Let M be a €
differentiable manifold, dimg M = m, and let E, F' be K-vector bundles over M, with
K=Ror K=C, rank F =r'.

Definition 2.1.1. A (linear) differential operator of degree 6 from E to F is a K-linear
operator P : € (M, E) — €<(M, F), u~ Pu of the form

Pu(x) = Z ao () D%u(x),

o] <6

where Elg ~ Q x K", Flg ~ Q x K" are trivialized locally on some open chart Q C M

equipped with local coordinates xq, ..., Tm, and where ag(z) = (Aaru(T))1<r<r 1<u<r are
' X r- matrices with €> coefficients on Q. Here D* = (:2-)*1 ... (5:2-)*n as usual, and
ox1 Oxm ’

u = (uy)1<p<r, Du = (D%uy )1<p<, are viewed as column matrices.

This expression for P changes quite a bit if we choose a different set of coordinates.
However it turns out we can make invariant the top order part of P: if t € K is a parameter,

33
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we will consider the following for insight purposes u(x) = u(xy,z2) and o = (1, 1), then:

62

Da(etu(x)) _ axla:z? etu(a:))
0 , ou tu(z)
8271 (t(%Q( )6 )
_ Pu tu(z) 2 du du tu(z)
= man, W T g, @y, @

This is, by calculating in a similar fashion, we obtain that e~ P(¢!*(®)) is a polynomial
of degree § in t. For each § € T}, ,, choose a function u such that du(r) = ¢ and then set

op(z,§) = tli}m t° (e’t“(z)P(et“(x))) (x) € Hom(FE,, F,), (2.1)

and the top order term at x is of the form
£ () (0 u (Ogm)(z) =10 an(x)i ... &,
|oo|=6 |or|=6

which shows that 2.1 is independent of the choice of u and hence well-defined. We say
that op is the principal symbol of P. Notice that this is not just a smooth function on
T, but in fact a homogeneous polynomial of order ¢ on each fiber of T},. Now, if £, I, G
are vector bundles and

P:E>(M,E) — €M, F), Q:€¢®(MF)— (M,QG)

are differential operators of respective degrees dp, ¢, we have that for QoP : €°°(M, E) —
¢>°(M, Q) is a differential operator of degree dp + d¢ and that

0qor(,§) = 0q(x,§)op(x,§). (2.2)

Here the product of symbols is computed as a product of matrices. This follows directly
from (2.1) as

TQop = hm t~(0p+iq) (e*t“ oPo(Qo et“)

— op —tu tu\\ | 1; —dg —tu tu
tlgglot (e7 o P(e)) tlll_{rgot (e o Q(e™)) (2)
=0p-0Q.

Definition 2.1.2. Let M be a compact differentiable manifold of dimg M = n. A volume
form is a nowhere-vanishing top dimensional form, this is, a section in \" T3;. M is said
to be orientable if there exists a volume form over M.
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Assume that M is oriented and is equipped with a smooth volume form dV (z) =
v(z)dzy ... A dz,,, where y(x) > 0 is a smooth density. This is, the coefficients of v(x)
transform by

0
vydr =ydzy Ao Ade, = F(y(x)) |det # dz
x
where 4(y)dy is the representation with respect to the coordinates y = (y1, ..., yn), where

x — y(x) and % is the corresponding Jacobian matrix of the change of coordinates.

If F is a euclidean or hermitian vector bundle, we have a Hilbert space L*(M, E) of
global sections u of E with measurable coefficients, satisfying the L? estimate

HuH2 = /M |u(a;)\2dV(x) < +00. (2.3)

We denote by
(u,v) = /M(u(a:),v(x)>dv, u,v € L*(M, E) (2.4)

the corresponding L? inner product.

Definition 2.1.3. Let M be a differentiable manifold and E, F' vector bundles over M. Let
P:6*(M,E) — €*(M,F) be a C-linear map. Then a C-linear map P* : €°(M, F) —
E>*(M, E) is called a formal adjoint of P if

(Pu,v) = (u, P*v) whenever suppu Nsuppv CC M (2.5)
for allu € €°(M,E),v € €*(M,F).

Theorem 2.1.4. I[f P: €°(M,E) — € (M, F) is a differential operator and both E, F
are euclidean or hermitian, there exists a unique formal adjoint which extends to L*(M, E)
M a4 UNIQUE Way.

Proof. To prove uniqueness suppose there exist P*, S : €°(M,F) — €*(M, E) such
that

(Pf,g9)=(f,P"q) = (f,Sg).
This is
0= (f.(P" — S)g) = /M (f.(P* — S)g)aV.

and by using a partition of unity and sections with compact support we have that locally
P* = S which extends to all M, and by using the density of the set of elements u €
€ (M, E) with compact support in L?(M, E) it follows that P* is unique as well as its
extension. Since uniqueness is clear, it is enough, by a partition of unity argument, to show
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the existence of P* locally. Now, let Pu(z) = 37, <5 a(2)D*u(z) be the expansion of P
with respect to trivializations of F, F' given by orthonormal frames over some coordinate
open set 2 C M in order to avoid another terms in the sum for h;; = (e;, €;). Assuming
suppu Nsuppv CC €, an integration by parts, and using that D*(u(z)) = D*(u(z))
yields

(Pu,v):/QZaa,\#Do‘uu(x)ﬂ)\(:c)fy(x)dm

o] <6
/QZ 1), (2) D2 ((2)@arsva(2)) de
|a|<5
:/<u, Z(‘1)la‘V(x)_lDa(’Y(x)@gv(x)»dV(x)'
@ af<s

Hence we see that P* exists and is uniquely defined by

Po(z) =Y (=1) (@) D (y(z)abv(x)). (2.6)

o] <6

It follows immediately from 2.6 that the principal symbol of P* is

ope(1,6) = (1) Y b = (1) op(z,6)". (2.7)

|af=d

Definition 2.1.5. A differential operator P is said to be elliptic if op(z,£) € Hom(E,, F})
is ingective for every x € M and £ € Ty, \ {0}.

On the following we will assume that M is a compact oriented > manifold of dimen-
sion m, with volume form dV. Let E — M be a ¥ hermitian vector bundle of rank r
on M.

Definition 2.1.6. For any real number s, we define the Sobolev space W*(R™) to be the
H@'lbert space of tempered distributions u € §'(R™) such that the Fourier transform u is a

L? . function satisfying the estimate

full? = [ 1+ 16 O aA©) < +ox. 2.9
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Note that ||-||, is defined for all s € R, but we shall deal only with integral values in
our applications. Intuitively, ||£||, < +o0, for s a positive integer, means that £ has all
derivatives D“u of order |a| < s in L?. This follows from the fact that in R™ the norm
|-||, is equivalent to the norm

NI

3 /R D) A) (2.9)

la|<s

(see [H63], Chap. 1). This follows essentially from the basic facts about Fourier transforms
that

Deu(y) = y*a(y),
where y® =y ... yo, D% = (=)D .. Do Dy = 2 and ||ull, = ||al], -

= 3z
Ox;

More generally, we denote by W#(M, E) the Sobolev space of sections u : M — E
whose components are locally in W*(R™) on all open charts. More precisely, choose a
finite subcovering (€2;) of M by open coordinate charts 2 ~ R™ on which E is trivial.
Consider an orthonormal frame (e;x)1<a<r of Elq, and write u in terms of its components,
iLe. u =Y ujrejr We then set

2 2
lully = > llbyunlly
A

where (1;) is a partition of unity subordinate to (£;), such that ) 4% = 1.

The norm ||||, defined on E depends on the choice of partition of unity and the local
trivialization. It is a fact, which we shall not verify here, that the topology on W*(M, E)
is independent of the choices made; i.e., any two such norms are equivalent.

We have a sequence of inclusions of the Hilbert spaces W#(X, E)
e DWED WA D D W D

We will need the following two important results concerning this sequence of Hilbert
spaces, see [H63].

Lemma 2.1.7 (Sobolev Lemma). For an integer k € N and any real numbers s > k+ %,
we have W*(M, E) C €%(M, E) and the inclusion is continuous.

It follows immediately from the Sobolev lemma that

(YW*(M,E) = ¢>(M,E).

s>0
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Lemma 2.1.8 (Rellich Lemma). For allt > s, the inclusion
WHM,E) — W*(M, E)
18 a compact linear operator.

In Lemma 2.1.8 the compactness of X is strongly used, whereas it is inessential for
Lemma 2.1.7.

To give some appreciation of these propositions, we shall give proofs of them in special
cases to show what is involved. The general results for vector bundles and distributions
are essentially formalism and the piecing together of these special cases.

Lemma 2.1.9 (Sobolev). Let f be a measurable L* function in R™ with || f]|, < oo, for
s> [n/2] + k+ 1, a nonnegative integer. Then f € €*(R™) (after a possible change on a
set of measure zero).

Proof. Our assumption || f||, < oo means that

floy = [ eofie)ag

be the inverse Fourier transform, if it exists. We know that if the inverse Fourier transform
exists, then f(z) agrees with f(z) almost everywhere, and we agree to say that f € €°(R™)
if this integral exists, making the appropriate change on a set of measure zero. Similarly,
for some constant ¢

f©)| @+ jePy de < oo,

Let

D f(z) = ¢ / 9 f(e) de

will be continuous derivatives of f if the integral converges. Therefore we need to show
that for |a| < k, the integrals

[ eoefeas
converge, and it will follow that f € €*(R"). But, indeed, we have

€]
(1+¢P)?

€1 :
< |Ifll, (/m%) :
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by the inequality of Cauchy—Schwarz. Let

!
(1+¢f*)®

and S™! be the surface of the n-dimensional unit ball with respect to Euclidean norm.
Defining g(r,w) : RT x S"!' — R by

g:

g(r,w) = g(rw)

g9(§) d¢ = N ) g(r,w)dw | r"tdr
B oo 1 1 2/al
— /0 (/S(nl @ dw) P dy
oo .2(lal+25%
_y / Wd

where ¢ = fsrbfl dw. Now s has been chosen so that this last integral exists, and so we
have

we have

[17©] 17! ag < o<,
and the proposition is proved O]
Similarly, we can prove a simple version of Rellich’s lemma.

Lemma 2.1.10 (Rellich). Suppose that f,, € W*(R™) and that all f, have compact support
in K CC R". Assume that ||f,||, < 1. Then for any t < s there exists a subsequence f,,
which converges in ||-||,.

Proof. We observe first that for £, n € R", s € Z*,
(L+ €172 < 22P2(1 4 [€ = )2 (1 + n[*). (2.10)

To see this we write, using the triangle inequality, the fact that (|¢|—|n|)? > 0, and adding
positive terms

L+ ¢+ <1+ (¢ + n)* < 1+ 2(1¢) + )
<201+ <)@+ [nf*).
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Now let £ = ( + 7, and we obtain (2.10) easily.

Let ¢ : R™ — R a € function with compact support be chosen so that ¢ = 1 near K.
Then from a standard relation between the Fourier transform and convolution we have
that f, = ¢f, implies

fie) = [ ot~ nii.tayan (211)
Therefore we obtain from 2.10 and 2.11, and using again Cauchy—Schwartz that

~

(1+ [¢*) OE —m)| (1+ [nP)2

£O) <2 [l -y
S K57¢ HfVHS S KS,(b)

folm)| dn

where K, is a constant depending on s and ¢. Therefore ‘ fl,(f )‘ is uniformly bounded on

compact subsets of R™. Similarly, by differentiating (2.11) we obtain that all derivatives
of f,, are uniformly bounded on compact subsets in the same manner. Therefore, there is,
by Arzela—Ascoli’s theorem, a subsequence f,, such that fm converges in the > topology
to a € function on R™. Let us call {f,} this new sequence.

Let € > 0 be given. Suppose that t < s. Then there is a ball B, such that

1
——— <c¢
(1+1¢%)
for £ outside the ball B.. Then consider

ﬁhf/ﬂ%+£f?u+€WM
</

‘ 2
e[ |l fe

-/

where we have used the fact that || f, |, < 1. Since we know that f, converges on compact
sets, we can choose v, u large enough so that the first integral is < e, and thus f, is a
Cauchy sequence in the |[|-||, norm. O

(fo = f)(©)] 1+ 1€ dg

(14 [¢]*)* dé

‘ 2

(Fo = B[ L+ IePy dg 422

Definition 2.1.11. A section £ € €*°(M, E) has compact support on a (not necessarily
compact) manifold M if {x € X;&(x) # 0} is relatively compact in M. We shall denote
the compactly supported sections by Z(M,E) C €°(M, E).
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If P =37, <5 da(x)D* is a differential operator on R™, the Fourier inversion formula
gives

Pu(zx) = /R > aa(@)Eu(§)e ™ dA(€), Yu € D(R™),

m
o <6

where (z,&) = > 77| 2;{; is the usual Euclidean inner product, and

u(§) = (ZW)_m/u(x)e_i<’”’5> dz

is the Fourier transform of w.

A pseudodifferential operator is an operator Op, defined by a formula of the type

O, (u)(e) = [ ol )ile)e ™ dN©), ue F(R) (212)

where ¢ belongs to a suitable class of functions on 7Tj,.. The standard class of symbols
S3(R™) is defined as follows: Assume given § € R, S°(R™) is the class of > functions
o(x,&) on T§m such that for any «, f € N™ and any compact subset K C R™ one has an
estimate

DyDfo(x,€)| < Cap(1+[¢)°1, V(z,€) € K x R™, (2.13)

where § € R is regarded as the “degree” of o. Then Op,(u) is a well defined € function

on R™, since @ belongs to the class S(R™) of functions having rapid decay.

In the more general situation of operators acting on a bundle F and having values in
a bundle F' over a compact manifold M, we introduce the analogous space of symbols
S%(M; E, F). The elements of S°(M; E, F') are the functions

Ty 3 (x,€) — o(x, &) € Hom(E,, F,)

satisfying condition (2.13) in all coordinate systems. Finally, we take a finite trivializing
cover (§;) of M and a “partition of unity” (¢;) subordinate to ; such that > ¢? =1,
and we define

Op, (u) = > 9; Op,(¢ju), u € €=(M, E),

in a way which reduces the calculations to the situation of R™. The basic results pertaining
to the theory of pseudodifferential operators are summarized below.

If 0 € S°(M; E, F), then Op, extends uniquely to a continuous linear

Op, : W*(M,E) — W*°(M, F). (2.14)
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In particular if 0 € S™°(M;E,F) := NS*(M; E, F), then Op, is a continuous op-
erator sending an arbitrary distributional section of 2'(M, E) into € (M, F'). Such an
operator is called a regular operator. As we did before, we will prove a weaker version of
this.

Lemma 2.1.12. Let Op, defined as in 2.12, then Op, is a linear operator mapping
D(R™) into €= (R™).

Proof. Since u € Z(R™), we have, for any multiindex «,

cra(g) = (27r)_m/Dau(x)e_i<‘”’5> dz,

and hence, since u has compact support, [£%]|@(£)| is bounded for any «, which implies
that for any large NV,

Al < o +1e™),

i.e., u(&) goes to zero at oo faster than any polynomial. Then we have the estimate for
any derivatives of the integrand in (2.12),

| Doz, &)u(€)] < C(1+ [g)™ (L + ¢,

which implies that the integral in (2.12) converge nicely enough to differentiate under the
integral sign as much as we please, and hence Op,(u) € €°(R™). The same estimates
give that Op, is indeed a continuous linear mapping from D(R™) — €*°(R™). O

It is a standard result in the theory of distributions that the class R of regular ope-
rators coincides with the class of operators defined by means of a € kernel K(x,y) €
Hom(E,, F;). That is the operators of the form

R:9'(M,E) — €%(M,F), urs Ru, Ru(z)— /MK(x,y) uly) dV ().

Conversely, if dV (y) = v(y)dys A ...dy,, on Q; and if we write Ru = ) R(6;u), where
(0;) is a partition of unity, the operator R(fe) is the pseudodifferential operator associated
to the symbol o defined by the partial Fourier transform

—

o(z,€) = (V(W)0; () K (x,y)),(2,§), 0 € ST(M; E, F).

When one works with pseudodifferential operators, it is customary to work modulo the
regular operators and to allow operators more generally of the form Op, +R where R € R
is an arbitrary regular operator.
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Composition 2.1.13. If o € S(M; E,F) and o’ € S* (M;F,G). §, &' € R, there exists
a symbol o'y € ST (M; E, G) such that Op,, 0 Op, = Op,i¢e mod R. Moreover

o'So—o' -0 e ST YME,G).

Definition 2.1.14. A pseudodifferential operator Op, of degree ¢ is called elliptic if it
can be defined by a symbol o € S*(M; E, F) such that

lo(2,€) - ul = el [ul, V(z,) € T}y, Vu € B,
for [£| large enough, the estimate being uniform for x € M

If E and F have the same rank, the ellipticity condition implies that o(z, £) is invertible
for large £. By taking a suitable truncating function 6(¢) equal to 1 for large &, one sees
that the function o’(z, &) = 0(&)o(x, £) ! defines a symbol in the space S~°(M; F, E), and
according to 2.1.14 we have Op,, o Op, =Id+Op,, p € S (M; E, F). Choose a symbol
7 asymptotically equivalent at infinity to the expansion Id —p+ p®2 4. .. +(=1)7p%7 4. ...
It is clear then that one obtains an inverse Op, ., of Op, modulo R. An easy consequence
of this observations is the following:

Proposition 2.1.15 (Garding Inequality). Assume given P : €°(M,E) — € (M, F)

an elliptic differential operator of degree &, where rank £ = rank F' = r, and let P be an
extension of P with distributional coefficient sections. For all u € WO(M, E) such that
Pu e W*(M,F) one then has u € W and

lulloos < o (|| ]|+ uly)
where Cy is a positive constant depending only on s.
Proof. Since P is elliptic, there exists a symbol ¢ € S~%(M; F, E) such that
Op,oP =Id+R, ReR.

Then ||Op,(v)|/,,s < Cllv||, by applying (2.14). Consequently, in setting v = Pu, we see
that « = Op,(Pu) — Ru satisfies the desired estimate, using:

||u”s+5 - HRUHSM < lu + Ru||5+5 <c Pu

S

and finally

lull s < ¢ | Pul|_+11Rul

s+6

Schu

+ ¢ lully < €, (||Pu

)
[
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We conclude this section with the proof of the following fundamental finiteness theo-
rem, which is the starting point of L? Hodge theory.

Theorem 2.1.16 (Finiteness Theorem). Assume given E, F' hermitian vector bundles on
a compact manifold M, such that rank E = rank F' = r; and given P : €°(M,E) —
C>* (M, F) an elliptic differential operator of degree §. Then:

1. Ker P is finite dimensional.

2. P(>(M, E)) is closed and of finite codimension in €°°(M, F'); moreover, if P* is
the formal adjoint of P, there exists a decomposition:

©=(M,F) = P(¢=(M, E)) & Ker P*
as an orthogonal direct sum in WO(M, F) = L*(M, F).

Proof. 1. Take v € Ker P then Pu = 0 and Pu = 0. The Garding inequality show
shows that u € W**° for all s and that

< Cujully. (2.15)

lulls s

We will show that Ker P is closed in W°(M, E). Take u € €°>°(M, E) and (u,), a
sequence in Ker P such that u, — u in W°(M, E)). For every k there exists s > 0
such that s +¢ > k + %, and by the Sobolev Lemma

Wt e €%(M, E)

in a continuous ways, therefore u,, — u in €*(M, E), where P is continuous, hence
Pu,, — Pu and finally Pu = 0. Therefore Ker P is closed in W(M, E).

By the Rellich Lemma we have that the inclusion i : W°(M, E) — W°(M, E) is
compact. By (2.15) we obtain

By, (0,1) nKer P C io(By,(0,Co) N Ker P).

As Bj.,(0,Cy) NKer P is bounded in Wo(M, E) we have io(By., (0, Co) NKer P) is
relatively compact which implies that EH.”O(O, 1) N Ker P is a compact in Ker P C
WO(M, E). By the Riesz’ Lemma we have that dim Ker P < oo.

2. We first show that the extension

P: W (M,E) — W*(M, F)
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has closed image for all s. For any € > 0, there exists a finite number of elements
vy....,ox € W (M, F), N = N(¢), such that

N
lully < € llull,ys + > 1w v;)0] - (2.16)

j=1
Indeed the set

N
K, = {U € WM, Fie |lull, s+ D [{u,v)ol < 1} ,

J=1

is relatively compact in WO(M, F) and N, K,y = {0}. It follows that there are
clements (v;) such that K () are contained in the unit ball of W°(M, E), as required.
Substituting the main term ||ul||, given by (2.16) in the Garding inequality; we obtain

(1= Cu) lullps < C, (HﬁuHS + i [, Uj>o|> .

Define T' = {u € W*(M,E);u L v;,1,< j < N} and put € = 1/2C;. It follows
that
lull 45 < Cs

PUH , VueT.
This implies that P(T) is closed. As a consequence
P(Ws+(M, E)) = P(T) + Vect (15@1), . ,P(UN))

is closed in W*(M, E). Consider now the case s = 0. Since (M, E) is dense in
WO (M, E), we see that in WO(M, E) = L?>(M, E), one has
g L g
(P(WJ(M, E)) = (P(¢>(M, E)))" = Ker P*.

We have thus proven that

WM, E) = P(W%(M, E)) & Ker P*. (2.17)

Since P* is also elliptic, it follows that Ker P* is finite dimensional and that Ker P* =
Ker P* is contained in ¥*°. By applying the Garding inequality, the decomposition
formula (2.17) gives

W*(M,E) = P(W*°(M, E)) @ Ker P*. (2.18)
C*(M,E)=P(€>(M,FE))® Ker P". (2.19)
O
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2.2 Hodge theory of compact Riemannian manifolds

Definition 2.2.1. Let V and W be K finite dimensional vector spaces. A pairing of V
and W is a bilinear map (, ) : V xW — K. A pairing is called non-singular if whenever
w # 0 in W, there exists an element v € V' such that (v,w) # 0, and whenever v # 0 in
V', there exists an element w € W such that (v, w) # 0.

Let V and W be non-singularly paired by ( , ), and define
¢:V > Wby o(v)(w) = (v,w) forveViweW

We have that ¢ is injective. Suppose ¢(v) = ¢(v') thisis (v, w) = (v',w) for allw € W then
(v—2",w) =0 for all w € W as the pairing is non-singular it follows that v = v’. Similarly
there is an injective map W — V*. Therefore V and W have the same dimension, and
hence ¢ is an isomorphism of V' with W*. Thus a non-singular pairing of V and W in a
canonical way yields an isomorphism ¢ : V' — W* and similarly an isomorphism W — V*.

Definition 2.2.2. A Riemannian manifold (M, g) consists of a €*-manifold M and an
Euclidean inner product g, on each of the tangent spaces Ty, of M, such that x — g,
varies smoothly. This means that for any two smooth vector fields X,Y the inner product
9:(X |z, Y|z) is a smooth function of x.

Let (M, g) be an oriented Riemannian > manifold of dimension m, and let £ — M
be a hermitian vector bundle of rank r on M. We denote respectively by (&1,...,&n)

and (ey,...,e,) orthonormal frames of T); and of E on a coordinate chart Q C M, and
let (&7,...,€%), (e],...,e,) be the corresponding dual coframes of Ty, E* respectively.

Further, let dV be the Riemannian volume element on M. The exterior algebra A* T}, is
endowed with a natural inner product (e, e), given by

(ur Ao ANy, v A A ) = det((uy, Vi) J1<jk<ps Ui, Uk € Thy (2.20)

for all p, with A* T3, = @ A" T, an orthogonal direct sum. Thus the family of covectors
=& N...NE 1 <ip < ... <ip, defines an orthonormal basis of A°* T3;. One denotes
by (e,e) the corresponding inner product on A*T%, ® E, this is if o, 8 € AT} ® FE,
a=> a,®e€, =7 p;®e; for the frame e = (e), then (o, B) = (a;, F;) - (ei, e;) =
((ci, Bj)eir ) -

Definition 2.2.3. The Hodge operator x is the endomorphism of N\°* Ty, defined by a
collection of linear maps such that

m—p p

*:/}'\TJ]}—) /\T]’\}, uA*v = (u,v)dV, Vu,vE/\T]\}.
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The existence and uniqueness of this operator follows from the duality pairing

/p\m x m/\pT]@ R

(u,w) » uAw/dV := Zs([, CI)uswgy, (2.21)

where u = Zm:p urs, w = Z|J|=mfp w;€%, and where e(1,C1) is the sign of the per-
mutation (1,2,...,m) ~ (I,CI) defined by I followed by the complementary (ordered)
multi-indices 0. From this, we will deduce that

*U = Z e(I,Chyvr&g, = v/ (2.22)

|I|=p

First, it is clear that u A v" = (u,v) dV. In order to get one expression for (u,v) consider

() = D uw (&85

|JI=T|=p

now, taking (§) = (&;....,&,) an orthonormal frame of T); on a coordinate chart Q C M
we have that (£, &%) = 0 if and only if I # J. Suppose I # J then there exists ¢ € I such
that i ¢ J, therefore (7, &) = 0 for all j € J, this is ({7,£7) = 0 as the determinant will
have a row of zeros, hence

(u,v) =Y vy (2.23)

(2.22) follows from this.

More generally, the sesquilinear pairing {e, ®} defined by (1.15) induces an operator x
on the vector-valued forms, such that

p m—p
NIy @E— N\ Ty ®E, {s*t}=(s,t)dV, (2.24)
p
wt= > e(I,LNt G ®er, Vsite ATy OF, (2.25)

[I]=p,\

for t = Y t72& @ ey. Since e(1,C1)e(CI, 1) = (—=1)Pm=P) = (—=1)P(m=Y as p and p? are
both even or odd, we immediately obtain

p
wxt= (=1 Vton \Ty ®E. (2.26)
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We have that « is an isometry of A\* T3, ® E, this is for u,v € T}, ® E we have (u,v) =
(xu, *v), because taking orthonormal frames (£) and (e) for T, and E respectively, and
using (2.23) we have

(u,v) = Zs([, Che(I,Chusv; = (5, *v).

We will need also a variant of the x operator, namely the antilinear operator

p m—p
#: NTyy®E— N\ T; @ B,

defined by s A#t = (s,t) dV, where the exterior product A is combined with the canonical
pairing £ x E* — C. We have

#t= > (I,LNIaG ® e} (2.27)

[1|=p.X

Definition 2.2.4. Assume given a tangent vector 6 € Ty and a form u € NP Ty;. The
contraction au € NP~' Ty, is defined by

9—‘“(7717 cee 777p71) = U(97771; R 777;0*1)7 Mj S TM

In terms of the basis (§;), e_e is the bilinear operator characterized by

* [0 if 1 {ir,... 0},
&J(EM~--A§)—{(_1)k—1§;;A...Ag}kA...Aggp if 1 = iy

This same formula is also valid when (&) is not orthonormal, as we are taking derivations.

Proposition 2.2.5. Let u,v be forms of degree k and | respectively and 60 € Ty; a tangent
vector. Then
02(uAv) = (0ou) Av+ (=1)Fu A (0w),

this is 6_e is a derivation of the exterior algebra.

Proof. By linearity it is sufficient to consider the case when 6, u,v are basic vector and
forms, i.e.

0=E&, u=& N...N& , v=E8 N...NE
as seen before ou # 0 iff j € A := {iy,...,ix} analogously Ov # 0 iff j € B =
{j1,-.-,Jr}. Now we proceed by cases:
IfjeAbut j¢ B

Oa(unv) = (—1)" 7 ALLAE A LLAE

2

SANLNE = (fou) Ao

i Ji
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while u A (fv) = 0.
Similarly, of 7 € B but j ¢ A then:
k4+n—1 &% * * % * k
O(uAv) = (1) N NG NG NN N NE = (=D u A (Gw)
while (6_u) A v = 0. Hence in both cases the formula holds.
If ¢, € AN B then u A v =0, and hence 6.(u A v) = 0. On the other hand
k m—1 &% % * *
(Oau) Ao+ (=) u A (0av) =(=1)"E A ANE NN NG+
()G A LLANE N NE N NE =0

because ;‘1/\.../\5;/\... PN NG andgfl/\.../\{jk/\.../\gjfn/\.../\f;l differ only
in the position of £;. In the first product it is at the k + n position, and in the second
at the m position. Hence, the difference in sign is (—1)"~D+E+1=m) which leads to the
required cancellation. O

Moreover, if § = (e,0) € Ty,, the operator 6_e is the adjoint of OAe, iec.,

(0w, v) = (u, 0 Av), Yu,v € /\TX/[ (2.28)

Indeed, using a similar reasoning that in the previous proposition, by linearity, using
0 =&, u=¢r, v=_E; and using the fact that 0 acts as & this property is immediate.

Let E be a Hermitian vector bundle on M, and let Dy be a Hermitian connection on
E. We consider the Hilbert space L*(M, A" T3; ® E) of p-forms on M with values in E,
with the given L? scalar product

(5.) = /M<s,t> v

already introduced in (2.4). Here (s,t) is the specific scalar product on A’ T}, @ F
associated to the Riemannian scalar product on A" T, and the Hermitian pairing on E

Theorem 2.2.6. The formal adjoint of Dg acting on €<(M, N’ Ty; ® E) is given by
D = (—=1)™" x D *.

Proof. If s € €°(M, N’ T%; ® E) and t € €(M, \’*' T}, ® E) have compact support,
we have

(Dps, 1) — /M (Dps, #) AV — /M (Dps, t)
:/Md{s,*t}—(—1)p{s,DE*t}:(—1)p“/ {5, D+ 1}

M
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by an application of Stokes’ theorem and the fact that we have been working with mani-
folds without boundary. As a consequence (2.24) and (2.26) imply

(Dpsi t) = (—1)7+ (—1)ptm=1) / (5,4 % Dp %1} = (=1 (5, +Djg 5 1).

The desired formula follows. O]

Remark 2.2.7. In the case of the trivial connection don E = M xC, the formula becomes
d = (=1)™* x dx. If m is even, these formulas reduce to

d=—xdx, Dp=—xDgx*.

Definition 2.2.8. The Laplace—Beltrami operator is the second order differential operator
acting on the bundle N\ Ty, ® E, such that

Ap = DpDl+ DiDp.

In particular, the Laplace-Beltrami operator acting on A" Ty, is A = dd* + d*d.

Since D3, is the adjoint of D, the Laplacian A is formally self-adjoint i.e. (Ags,t) =
(s, Agt) whenever the forms s,t are € and that one of them has compact support.

Example 2.2.9. Let M be an open subset of R™ and g = >~ dz?. In that case we get

ou
u:ZuIdxl, du = Z 8xj dz; ANdxy,

|I|=p |T|=p,j

(u,v):/M(uv YAV = /Zumdv

One can write dv = ) dx; A (Ov/0x;) where Ov/0x; denotes the form v in which
all coefficients vy are differentiated as Ov;/O0x;. An integration by parts combined with
contraction and its adjoint gives

x ov
(d*u,v) = (u,dv) = / (u, 5 dz; A 8_%> dv
Z 0 Ou
/ 8—%JU dV— —/]w< Ej a—xj_la—xj,v> dV,
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Using the same notation for the du as used for dv. We get therefore

Fur g (2

0%8xk aij T
82u1
d*du = d d
v Z Oz ;j0xy, 8$] J(dai A day).
Ij.k
Since 5 5 5
a—x]_l(d‘xk VAN dI‘]) (a—‘r]_l d.l'k) dI[ - dl’k VAN (a—xj_l dSU[) y

using the property of derivation. We get that the second term will cancel with dd*u, and

(0/0z;)adxy, = 6j5. We obtain

82u1
Auz—Z( ' aa:?)dx[.
j

I

Consequently A has the same expression as the elementary Laplacian operator, up to a
minus Sign.

Now we proceed to calculate the symbol of the Laplacian.

For every € function f, Leibnitz rule gives e "/ Dg(e'/s) = tdf A s+ Dgs. By
definition of the symbol, we therefore find
p
opp(r.)-s=ENs, VEET],, Vse \Ty®E.

From formula (2.7), we obtain op: = —(op,)*, therefore

O-DfE(x7§) "5 = _5—137

where & € Ty is the adjoint tangent vector of £. The equality OAp = ODp0Dy + 0D10Dg,
and £4(E A s) = (£2€)s — € A (€1s) implies that

085 (#,€) -5 = —E N (§05) = Ea(E N 5) = —(€:6)s,
O-AE(Z‘7£> S= |§|28
In particular, Ag is always an elliptic operator.

Definition 2.2.10. Let E be a Hermitian vector bundle on a compact Riemannian man-
ifold. A Hermitian connection Dg is said to be flat if ©(Dg) = D% = 0.
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A standard example is the trivial bundle £ = M x C with the connection Dr = d
If we assume that Dpg is flat it implies that Dy defines a generalized de Rham complex

1 p
(M, E) 25 ¢>(M, NT; @ E) = - = €M, \Tj; @ B) 25 ...
The cohomology groups of this complex are denoted by H}, (M, E).

Definition 2.2.11. The space of harmonic forms of degree p relative to the Laplace—
Beltrami operator Ay = Dg D3, + D3, Dg is defined by

HP(M,E) = {s € €°(M, /p\m ® E); Aps = 0}, (2.29)

Using the linearity and the adjoint we have that (Ags, s) = ||Dgs|” + || D%s||”, we see
that s € JP(M, F) if and only if Dgs = Djs = 0.

Theorem 2.2.12. For any p, there exists an orthogonal decomposition

p
¢>(M, \ Ty, ® E) = #7(M,E) © Im Dy ® Im D},
p—1
Im Dy = D (¢ (M, \ Ty, ® E)),
p+1

Im D, = Dy, (¢(M, )\ Ty; ® E)).

Proof. By taking adjoint and using the remark before the Theorem, it is immediate that
HP(M, E) is orthogonal to both subspaces Im Dy and Im Dj,. The orthogonality of these
two subspaces is also clear, thanks to the assumption D% = 0:

(Dgs, Digt) = (Dgs,t) = 0.

We apply now the Finiteness theorem 2.1.16 to the elliptic operator Ay = A}, acting on
p-forms, i.e. on the bundle F = A" T}, ® E. We get

p p
€>(M, \T;, ® E) = #7(M, E) ® Ap(€>(M, \T;, ® E)),
Im Ag = Im(DpD}y + DyDg) C Im D + Im D},

where Im Dy and Im D}, are as defined in the statement of the Theorem. Further, since
Im D and Im D3, are orthogonal to J#7(M, E), these spaces are contained in Im Ag. [
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Theorem 2.2.13 (Hodge Isomorphism Theorem). The de Rham cohomology groups
H} o (M, E) are finite dimensional; moreover H},,(M,E) ~ 7 (M, E).

Proof. From the decomposition in Theorem 2.2.12, we obtain

p—1

BYp(M,E) = D(€>(M, ]\ Ty; ® E)) = Im Dg,
Z8n(M, E) = Ker Dg = (Im D})*" = 5#7(M, E) ® Im Dg.

The first equation is by definition. For the second take u € Im D}, such that u € Z%,, we
have that u = Do for certain v € €= (M, A\’ T3, ® E) but then

0= (DEDZ‘U7U) = (DEvaD*E’U)?

which implies Djv = v = 0. This shows that any de Rham cohomology class contains a
unique harmonic representative O

Theorem 2.2.14 (Poincaré duality). The bilinear pairing
ﬂﬂM@xﬂ?@Mﬂ%@,@ﬂH/sM
M

1 a non-singular pairing.

Proof. We can write

5= Z arné;®ey, t= Z By ® e,

|1|=p,A |J|=m—p,u

therefore as in 2.27

sAt= en(e)arnBréi NES
A
|l=p
| J[=m—p

A dual connection Dg- is defined in the following way
<DE*¢7S>:d<¢75>_<¢7DES>7 V¢EE*aS€E

where (—, —) : E* X E — ¢*°(M) is the pairing. Obviously Dg- is also a flat connection,
and for any s; € €°(M, E), so € €2°(M, E*) we have

d(s At) = (Dgs) At + (—=1)%85s A Dp.t. (2.30)
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As we are working with forms s,t representing the cohomology classes, we have that
Dg(s) = Dg(t) = 0. We will prove that the pairing in cohomology is well defined. Given
s1 another representative of the de Rham class s, then s; = s + Dgu for some form u,
and by Stokes’ formula

/SlAt:/ 8/\t+/ DEsl/\t
M M M
:/ s/\t~|—/ d(sl/\t):/ sAt.
M M M

Observe also from its definition that the bilinear function depends on the orientation on
M. For s € €°(M,N' T}, @ E),t € €°(M, \""' T}, ® E), we will prove using (2.30)
that

Dg. = (=1)P"'#D%s. (2.31)

We proceed in a similar way as in the proof of Theorem 2.2.6

DEst:/MDEsth /DES/\#t

/ d(s A #t) — (—=1)Ps A Dg#t

M

= (11 [ (s D) av

(P AP s, p D)
by applying # to the left side we obtain (2.31.) Proceeding in a similar way we obtain

(Dp-)"(#s) = (=1)""'4¢Dps (2.32)
and from (2.31) and (2.32) we obtain

Ap«(#s) = #Aps.

Consequently s € 7™ P(M, E*) if and only if s € (M, E). Since

/s/\#s:/ |s|>dV = ||s||”.
M M

It follows that the pairing is non-singular. O
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2.3 Hermitian and Kahler Manifolds

Let V be a complex vector space, which we can also consider as a real vector space
equipped with an endomorphism I of complex structure. Let W : Hom(V,R). Then
Ve = Homg(V, C) admits the decomposition

We =W o w!

into C- linear and C-antilinear forms. Let
2
Wl’l _ W1,0 ® WO,l C /\ We

and W' .= W5 N A® We. We then have

Lemma 2.3.1. There is a natural identification between the Hermitian forms on V- x V
and the elements of Wﬂé’l given by

h = w=—-Sh.

Here, S is the function sending a complex number to its imaginary part, h is a complez-

valued bilinear form which is C-linear on the left and C- antilinear on the right, and
satisfies h(u,v) = h(v,u)

Proof. Firstly, we define a bilinear form w on V' by w(u,v) = —Sh(u,v), if h is Hermitian,
then
w(v,u) = =Sh(v,u) = =Sh(u,v) = Sh(u,v) = —w(u,v)

and thus w is alternating. Thus it is an element of /\2 Wrg, and we need to check that it is
also an element of W1, But by definition, w is in W if and only if the natural extension
of w (by C-bilinearity) to a 2-form on V¢ vanishes on the bivectors (u,v), u, v € V10 this
is, it has no element of W% @ W0 hesides 0, and on the bivectors (u,v), u, v € VO,
the second property follows from the first by using complex conjugation. Now, V0 is
generated by the v = v —lv, v € V. Let v,u € V, we have:

w(,0) = w(u,v) —w(lu, [v) —i(w(u, [v) + w(lu,v)).

As h is C-linear on the left and C-antilinear on the right, we have h(Iu, Iv) = h(u,v) and
thus w(u,v) = w(lu, [v). Similarly, the condition

h(u, ITv) = —h(Iu,v)

implies that w(u, [v) = —w(lu,v). Thus w(u,v) = 0.
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Conversely, let us start from w € Wﬂé’l, and set

g(u,v) =w(u, Iv), h(u,v) = g(u,v) —iw(u,v).

We have

h(u, Iv) = g(u, Iv) —iw(u, [v) = —w(u,v) —ig(u,v) = —ih(u,v).
As w is alternating, we have Sh(u,v) = —Sh(v,u). Moreover, as w(u, [v) = —w(lu,v),
we have g(u,v) = g(v,u) and thus h(u,v) = h(v,u). Thus h is Hermitian. For the
definition it is clear that these two constructions are inverses of each other. O

Definition 2.3.2. We say that a real alternating form w of type (1,1) on V' is positive if
the corresponding Hermitian form h is positive definite.

Take C-linear coordinates zy,..., 2, on V. Then for 2z = (t1,...,t,), 2" = (t1,... ,tn),
we have h(z,2') = Z” h,-jtif;-, with h;; = h;; = h(e;, e;), where the e; form the basis of V
dual (z;). Using the elementary Sz = (z — 2)/(2i), we have

w(z, Z/) = %Z hij (tlf_; — t;t}) .
b,J
In other words, we have the equality of bilinear forms on V'
1
w = 5 Zhwzl A Zj < Wl’l

1,

The proof of Lemma 2.3.1 show that we can also identify such Hermitian forms A with
the symmetric bilinear forms associated to them by the relation g(u,v) = Rh(u,v). The
forms g obtained in this way are exactly those satisfying the condition g(Iu, [v) = g(u,v).

Definition 2.3.3. 1. A Hermitian manifold is a pair (X,w) where w is a positive
definite € (1,1)-form on X.

2. The metric w is said to be Kdhler if dw = 0.
3. X is called a Kahler manifold if X has at least one Kdahler metric.

Since w is real, the condition dw = 0, dw = 0, dw = 0 are all equivalent. It is clear
that the first implies the others by degree reasons, the others imply the first by using
d=d In local coordinates, we see that dw = 0 if and only if

Ghjk . %
Oz 0z

1<,k 1 <n.
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This follows immediately from the definition of dw

Oh;
ow=>" azjk dz A dzj A Z.
Lik
For xy, € X it is possible to choose coordinates z;...., z, such that h;;, = 0. These are

called euclidean coordinates. We calculate the 2n-form in these coordinates at z.

We have w = % > dz; A dz;, and so
j=1
j=1
= (> dain dyj) :
j=1
Using induction we have that

n k
(Z dz; A dyi> =k Y day, Adyy, A Aday, Ady;,.
j=1

1<j1 < <gr<n

It follows that
w" =nldr; Adyy A -+ Adax, A dy,.

In general coordinates one would get
w" = nldet(hj;) dezy Adys A -+ Adz, A dy,.

Consequently the (n,n) form

1
aV = —u” (2.33)

n!
is positive and coincides with the Hermitian volume element of X. If X is compact then

[ w" = n!Vol,(X) > 0. This simple observation already implies that a compact Kéahler
manifold must satisfy certain restrictive topological conditions:

Proposition 2.3.4. 1. If (X,w) is compact Kihler and if {w} denotes the cohomology
class of w in H*(X,R), then {w} # 0.
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2. If X is compact Kdhler, then H*(X,R) # 0 or 0 < k < n. Indeed, {w} is a
non-zero class of H*(X,R).

Proof. Using Leibnitz rule and induction we get that d(w*) = 0. Suppose that there is
some (2k — 1)-form ¢ with d¢ = w*. Then d(¢ A w™ ) = w", and by Stokes’ theorem

/Xw":/xd(gzﬁ/\w”_k):().

Example 2.3.5. The Fubini-Study metric is a canonical Kdhler metric on the projective
space P". Let P" = |JI_, U; be the standard open covering and

O

G U =ZC" (200 ... 0 2,) (—,...,—Z,...,—n).

Then one defines

<l
i

2
1,177
- ) e A(Uy),

B
Wi 1= %aalog (

which under ¢; corresponds to

=0

i o
gaﬁlog (Z lwg|” + 1) :

k=1

Let us first show that w;
AV (P™). Indeed

s (Z

=0

vinU; = wj|UmUj, i.e. that the w; glue to a global form wps €

o () m(550)

2
> =0onU;NU;. Since 2—1 15 the j-th coordinate

2 n
e
Zj

=0

V4 2 24
)= (2
Z. .

2 2
2 2

2 n
) + log <Z .
' 1=0

( J

Thus, it suffices to show that 00 log

Zi
23

function on U;, this follows from

9 log |2|*> = 0 (ig(zz)) - (%) =9 (%)

Next, we observe that wps is a real (1,1)-form. Indeed, 90 = 90 = —90, which came
from d? = 0, yields w; = w;. Moreover, wpg is closed, as w; = 5=0dlog() = 0.

0.
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It remains to show that wpg is positive definite, i.e. that wrs really is the Kdhler
form associated to a metric. This can be verified on each U; separately. A straightforward
computation yields

d0log | 1+ ) |w] ) = 3
: ( 2 (1+ 3wl
1

(1—’—Z|wl|2)22 J J

with hij = (14 Y |wi|*)di; — Waw;. The matriz (hy) is positive definite, since for u # 0
the Cauchy-Schwarz inequality for the standard hermitian product (, ) on C" yields

=1

As the Fubini-Study metric is a very prominent example of a Kdhler metric, we will dwell
on it a bit longer.

Let us consider the natural projection 7 : C"*1\ {0} — P". Then
" = i log({| ||2)
*upe = —00 .
FS B ogl||Z

Indeed, over 1= U; = {(20, ..., 2n)|2 # 0} one has

n

W*WFS = %8510g (Z

=0

2]

/)

_ o9 2) _ log(|z 2
= 00 (1og(|2I*) ~ log( "))

but ddlog(|z|*) = 0, as has been shown above.

We conclude this example by proving the equation

Wrs = 17
Pl

which serve as normalization in the definition of Chern classes. Moreover, since P! = S?
and thus H*(P',Z) = H*(S* Z) 2 Z, it shows that {wps} € H*(P',Z) is a generator.
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The integral is explicitly computed as follows

7 1
wps= [ —————dw Adw
/pl /<c 27 (14 |w[*)?

1 1
:—/ s—dr Ady
™ Jre (1 [, 9)[7)?

D T,
pr— 2 ————————— p— 1'
/o (1+172)2 ar

Example 2.3.6. Any positive definite Hermitian form w = i) hj, dz; AdZy, with constant
coefficients on C" defines a Kdhler metric on X.

Definition 2.3.7. A complex submanifold M of a complex manifold X is a differentiable
submanifold whose tangent space at each point is stable under the almost complex structure
operator I of X.

We note that the induced almost complex structure on M is integrable, since (M, I) also
satisfies the Newlander-Nirenberg integrability criterion.

Proposition 2.3.8. Let X be a Kdhler manifold with Kdhler metric h and let M be a
complex submanifold of X. Then h induces a Kahler metric on M, and with this metric
M becomes, therefore, a Kdhler manifold.

Proof. Let j: M — X be the injection mapping. Then hjy; = j*h defines a metric on M,
and j*w = wyy is the associated fundamental form to hy; on M. Since dwy; = j*dw = 0,
we have that wys is also a Kahler fundamental form. O

Theorem 2.3.9. Let w be a positive definite €°° (1,1)-form on X. For w to be Kdihler,
it is necessary and sufficient to show that at any point xog € X, there exists a holomorphic

coordinate system (z....,z,) centered at xy such that
w=71 Z wWimdzg AdZm, Wi :51m+0(]2\2) . (2.34)
1<l,m<n

If w is Kdhler, the coordinates (z;)1<j<n can be chosen such that

o 0 _
Wi, = <8_zl’ %> = O — Z CiklmZj %k + @ (’Z\g) ) (2-35)

1<j,k<n
where (¢jim) are the coefficients of the Chern curvature
_ o\" 0
O(Tx)ay = Y, Cjtimd2; AdZ @ (a?,) ® 5 (2.36)

gk, lm

associated to (T'x,w) at xy. Such a system (z;) will be called a geodesic coordinate system
at xg.
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Proof. As 2.34 implies that terms of the form aj;,2; + @;im2Zr do not occur, it implies
dz,w = 0, so the condition is sufficient. Assume now that w is Kahler. Then one can
choose local coordinates (z1,...,x,) such that (dzy,...,dx,) is an w-orthonormal basis
of Ty X. Therefore

w=1 Z Wi Ay A dZ,,, where
1<l;m<n
Ot = Ot + O (|2]) = Ot + Z (@jim; + @iy T;) + O (|2]%) . (2.37)

1<j<n

Since w is real, @y, = W, and we have a;lm = @jm. Furthermore, the Kahler condition
0w /0 ; = Owjm /Ox; at xg o, implies aji, = aijm,. Set now

1
Zm = T + ézl:ajlmxjxl, 1<m<n.
j7

Then (z,,) is a coordinate system at xq, and

1 1
dz,, = dz,, + 5 Z Qjim (dz ;)2 + 3 Z ajimxi(de;) = dx, + Z @jimxj da;
jvl ]:l ],l
and similarly
AZp = AT + Y aly,, T A7,
j.l

Therefore

P> Az ANdZy =1 dag ATy +1 Y ajpmz; dog A dT,,

g,lm
+1i Z W1 T Ay A dvy 4 O (|x|2)
J,lm
= z’Zd}lm dz; Adz,, + O (|a:|2) =w+0 (|Z|2) .
l,m

Condition (2.34) is proved. Suppose the coordinates (z,,) chosen from the beginning
so that (2.34) holds with respect to (z,,). Then the Taylor expansion (2.37) can be refined
into

Bim = Oum + O (|2]%)

= 5lm =+ Z(ajklma:ﬁk -+ a;klmxj:ck + a;(klmfjfk). (238)
7.k
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These new coefficients satisfy the relations

/ o " = — _
Aikim = Akjlms  Qjkim = Qjkmis  Gjkim = Qkjmi-

The Kahler condition Owyy,/0x; = Ow;pm /0 at x = xy gives the equality @y, = @ jm;

in particular ay,, . is invariant under all permutations of j, k,[. If we set

1
/
Zm = Tm + 3 5 Wt T TRTL, 1<m<n,
j7k7l

then by (2.38) we find

dz,, = dz,, + Za;klmxjxk dz;, 1< m <n,

jiked
w=71 Z da,, Adz,, +1 Z jkim® Tk dzg A dZ,, + O (|x|3) ,
1<m<n 7.k, lm
w=i1 Z dz, ANdzZ,, +1 Z QjkimziZK dzp A dZ,, + O (|z|3) ) (2.39)
1<m<n J,klm

It is now easy to compute the Chern curvature ©(Tx),, in terms of the coeflicients ;.
Indeed

o 0 —
<a—2l7 %> = 5lm + jzkajklijZk + (@) (’2‘3) s

g 0\ _ , 0 0\ o 2
a<8_zl7%> = {D a—zl;%} _Za]klmzkdzj+0(|z| ),

j.k
0 0 0
@(TX) . a_Zl —D'D (@_zz) - _ Z ajklmdzj A dEk &® 87 + O(|Z|) ,
7.k,m m
therefore ¢jkim = —ajum and the expansion (2.35) follows from (2.39) O

Remark 2.3.10. As a by-product of our computations, we find that on a Kdhler manifold
the coefficients of ©(Tx) satisfy the symmetry relations

Cjklm = Ckjml, Cjklm = Clkjm = Cjmlk = Clmjk-

Let (X,w) be a hermitian manifold and let z; = x; +iy;, 1 < j < n, be analytic
coordinates at a point z € X such that w(z) = i) dz; A dZ; is diagonalized at this
point. The associated hermitian form is the h(z) = 2) dz; ® dz; and its real part is
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the euclidean metric 2 > (dwz;)? + (dy;)?. It follows from this that |dz;| = |dy;| = 1/v/2,
|dz;| = |dz;| = 1, and that (0/0z,...,0/0z,) is an orthonormal basis of (T}X,w).
Formula 2.20 with u;, vy in the orthogonal sum (C ® Tx)* = T% @ T% defines a natural
inner product on the exterior algebra A\°*(C ® T'x)*. The norm of a form

u = ZULJdZ[/\dEj € /\(C@Tx)*
1,J

at the given point x is then equal to

[u(@)* = urs (@) (2.40)

The Hodge x operator 2.2.3 can be extended to C-valued forms by the formula
uAx0 = (u,v)dV. (2.41)

It follows that x is a C-linear isometry
P, n—g,n—p
< ANTx — N\ Tx.
this follows from the definition of x and the fact that for v, € A% T% with p; +p2 +¢1 +
¢2 = 2n but (p1 + p2, 1 + q2) # (n,n) implies 11 Az = 0.

The usual operators of hermitian geometry are the operators d,d = —xd*x, A =dd+4dd
already defined, and their complex counterparts

d=0+0
§=0"+0, O = (0)* = —x 0k, 0 = (0)" = — 0,
Ay =00*+9°0, Ag=00 +0 0

Another important operator, the so called Lefschetz operator, is the operator L of type
(1,1) defined by
Lu=wAu (2.42)

and its adjoint A:
(u, Av) = (Lu,v). (2.43)

by simple calculations we obtain
(Lu,v)ydV = Lu A*0 = w AuA*0 = u A (w A %) = (u,* *(L(xv)))dV

therefore A = x 1 o L o *.
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Definition 2.3.11. Let H : \* T% — A° T% be the counting operator defined by H|\w Ty =
(k —n) -1d, where dimg T% = 2n. Equivalently

where I1¥ is the projection in the subspace of differential forms of degree k.

With H, L, A, 11, etc., we dispose of a large number of linear operator on A*T% and
one might wonder whether they commute. In fact, they do not, but their commutators
can be computed. This is done in the next proposition.

Definition 2.3.12. If A, B are endomorphism (of pure degree) of the graded module
C=(X, \"* T%), their graded commutator (or graded Lie bracket is defined by)

[A,B] = AB — (—1)"BA (2.44)

where a, b are the degrees of A and B respectively. If C' is another endomorphism of degree
¢, one has the following formal Jacobi identity

(1) [A,[B,Cl] + (=1)* [B, [C, A]] + (-1)" [C, [A, B]] = 0. (2.45)

Proposition 2.3.13. Let (X,w) be a Hermitian manifold and consider the following lin-
ear operators on \°* T%: The associated Lefschetz operator L, its dual A, and the counting
operator H. They satisfy:

1. [H, L] =2L
2. [H,A] = —2A
3. [L,A] = H.

Proof. Let a € N"T%. Then [H,L)(e) = (k42 —n)(w A a) —w(k —n)a) = 2w A a.
Analogously, [H,A](a) = (K —2 —n)(Aa) — A((k — n)a) = —2Aa.

The third assertion is the most difficult one. We will prove it by induction on the
dimension of Tx. Assume we have a decomposition Tx = W; & W5 which is compati-
ble with the hermitian product and the almost complex structure, i.e. (Tx,(, ),I) =
(Wi, {, Y1, L) & (Wo,(, )o,I). Then AN°T% = A*Wy ® A°W5 and in particular
N Te = N°Wr e N Wi @ Wi @ Wi, Since Wy @ W, is orthogonal, the fundamen-
tal form w on Ty decomposes as w; @ wy, where w; is the fundamental form on W; (no
component in Wy @ W3 for the orthogonality). Hence the Lefschetz operator L on A\* T%
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is the direct sum of the Lefschetz operators L; and Ly acting on A®* Wj and A Wi, re-
spectively, i.e. L = Ly + Ly with L; and Ly acting as Ly ® 1 respectively 1 ® Ly on
N Wi A W3

Let a, 8 € \° T% and suppose that both are split, i.e. @ = a1 ® ag, 8 = 1 @ [a, with
a;, Bi € N* Wi, Then («, ) = (aq, B2) - {ag, B2). Therefore,

(o, LB) = (o, L1(B1) @ Ba) + (, 1 @ La(B2))

= (a1, L1 Br1){az, B2) + (a1, B1)(az, L2fBs)
= (Mg, Br) (o, B2) + (aa, Bi) (Asa, Ba)
=

A (1) ® ag, B1 @ Ba) + (a1 @ Ag(a2), Ba).
Hence A; + Ay, where A; is the dual Lefschetz operator on A® W7 . This yields

(L, Al(a1 ® a) = (L1 + Lo) (A (on) @ ag + a1 @ Ag(aa))
— (Al -+ Az)(Ll(al) ® (6] 4+ (05} X L2<a2)>
= [L1, M](a1) @ ag + a1 ® [La, As](az).

By induction hypothesis [L;, A;] = H; and therefore.

(L, af(a1 @ ag) = Hi(ag) ® ag + oy @ Ha(ay)
= (k1 —n1) (o1 ® aa) + (k2 — n2) (a1 ® az)
= (kl + kg — N — ng)(Oél X Oég),
for o; € /\k Wi and n; = dime(W;, I;).

1

It remains to prove the case dimc (7T, I) = 1. With respect to a basis x1,y; of Tx one
has

. 0 1 2
ATx = N\Tx e ANTx e \Tx
=R & (z]R @ yiR) @ wR
Moreover, L : N°T: — A’T% and A : N°T: — AT are given by 1 — w and
w — 1, respectively. Hence. [L,A”/\OT;} = —AL|/\0T;( = —1, [L,AHNT;( = 0, and
(L, Al g2y = 1. O

Corollary 2.3.14. [L", A)(e) = r(k —n+7r —1)L" Ya) for all « € N* T%.
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Proof. This is easily seen by induction on r as follows:
[L",Al(a) = L"Aa — AL"«
=L(L"'Aa — AL 'a) + LAL" 'a — ALL" '«
— LI Al(@) + [L,AJ(La)
=(r—D(k—-n+(r—-1) DL a)+2r—2+k—n)L" " (a)
=r(k—n+r—1)L""(a).
O

A consequence of these identities is the Lefschetz decomposition of the cohomology of
a compact Kahler manifold. To put this in proper perspective, we must first digress for a
moment and discuss representations of s[(2).

We have that s[(2) is the Lie algebra of the group SL(2); it is realized as the vector
space of 2 x 2 complex matrices with trace 0, and with the bracket

[A, B] = AB — BA.

We take as standard generators

0 1 10 0 0
=(o)om=(o ) =),

with the relations
(X,Y|=H, [HX]=2X, [HY]=-2Y.

Now, let V' be a finite-dimensional complex vector space End(V') its algebra of endomor-
phisms. We want to study Lie algebra maps

p:sl(2) = End(V),
i.e., linear maps p such that

p([A, B]) = p(A)p(B) — p(B)p(A).

Such a map is called a representation of sl(2) in V; V is called an s[(2)-module. A
subspace of V' fixed under p(sl(2)) is called a submodule , V' (or p) is called irreducible if
V' has no trivial submodules. By a fundamental result, which we won’t prove here, every
submodule W of an s[(2)-module V has a complementary submodule W+; thus every
s[(2)-module is the direct sum of irreducible sl(2) modules, and to study representations
of s1(2) we need only look at irreducibles ones.
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Suppose then that V' is an irreducible s[(2)-module. The key to analyzing the structure
of V is to look at the eigenspaces for p(H) (from now on, we will omit the p’s). These
are called weight spaces. First of all, note that if v € V is an eigen vector of H with
eigenvalue A, then Xv and Yv are also eigenvectors of H, with eigenvalues A + 2 and
A — 2, respectively: this follows from

H(Xv) = XHv+ [H, X]v
=X\ +2Xv
= (A +2)Xv,
and similarly for Yv. Since H can have only a finite number of eigenvalues, we see from
this that X and Y are nilpotent. We say that v € V is primitive if v is an eigenvector for

H and Xv = 0; primitive elements always exists, indeed, let vy be an eigenvector of H,
and consider the sequence of eigenvectors or H

2 n
Uo,XU(],X ’Uo,...,X Vo, - -

The nonzero terms in this sequence are linearly independent, since they are eigenvectors
with differing eigenvalues, so the sequence must terminate, and hence for some fixed k,
XF*vy =0, X* 1y # 0, and v = X* 1y is a primitive vector.

Proposition 2.3.15. If v € V' is primitive, then V is generated as a vector space by
v,Yv,Y?0,...

Proof. Since V is irreducible, we need only show that the linear span V' of {Y'v} is
fixed under sl(2). For the remarks before the proposition HV' C V' and YV’ C V' by
definition of linear span. We show XV’ C V' by induction: Xv = 0 trivially lies in V”,
and in general

XY =YXY" o+ HY" 1y,

SO
XYY" lweV = XYweV.

]

As before, the elements {Y"v}, that are nonzero are linearly independent. Thus we
have the picture of V : V = @V,, where V) is one-dimensional,

HWVy) =Vy, X(Va) =Vagz, Y(V)) =V
Proposition 2.3.16. All eigenvalues for H are integers, and we can write

V=V, @V @ ... ® Voo ® Vo,
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Proof. Let v be primitive, and suppose Y0 # 0, Y™™y =0, and Hv = M. Then

Xv =0,
XYv=YXv+ Hv = A\,
XY?*v=YXYv+ HYv
=YX+ A=2)Yv=(A+(A—2))Yv,

and in general XY™y =Y XY™ v + HY™ ' so we have

XY"v=A+A=2)+A=4)+-+A=2m—1))Y"

= (mA —m*+m)Y" o,
and since Y™ # 0, Y™y = 0,
m+DA—=n+1)°+n+1=0=\=n.
[

In summary, the irreducible s[(2) modules are indexed by nonnegative integers n; for
each such n the corresponding sl(2)-module V' (n) has dimension n + 1. The eigenvalues
of H acting on V(n) are —n, —n + 2,...,n — 2,n each appearing with multiplicity 1.

For any s[(2)-module V', not necessarily irreducible, we define the Lefschetz decompo-
sition of V' as follows: Let PV = Ker p(X); then

V=PVaYPVEY?’PVG---,

and this decomposition is compatible with the decomposition of V' into eigenspaces V,,

for H. We also see that the maps
Ym
Vin =2 Vo,

Xm

are isomorphism. Finally, in general,
(Ker X) N Vj = Ker(Y* 2 Vi — Vo).
We return to our hermitian manifold (X, w)
Corollary 2.3.17. There is a natural action of the Lie algebra s1(2) on the vector space

N T%, i.e. a morphism of Lie algebras p : sl(2) — End(A** T%), given by p(X) = L,
p(Y)=A, and p(H) = H.
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Definition 2.3.18. Let (X,w) and the induced operators L, A\, and H be as before. An
element a € /\k T% is called primitive if Aao = 0. The linear subspace of all primitive
elements o € N* T% is denoted by Prim* ¢ N\* T%

Proposition 2.3.19. Let (X,w) be an hermitian manifold, and let L and A be the asso-
ciated Lefschetz operators

1.

5.

There exists a direct sum decomposition of the form:
k
N\ Tx = L' (Prim*>). (2.46)
i>0

This is the Lefschetz decomposition. Moreover, (2.46) is orthogonal with respect to

()

If k > n, then Prim* = 0.

The map L™* : Prim* — A”""T% is injective for k < n.
The map L™ % : N"T% — N " T% is bijective for k < n.

If k < n, then Prim* = {a € A" T |L" *1a = 0}

Proof. 1. Since \*T% is a finite dimensional s[(2) representation, it is a direct sum of

irreducible ones. We have seen that any finite-dimensional s[(2) admits a primitive
vector v, i.e. Av = 0. Using Corollary 2.3.14 one finds that for any primitive v
the subspace v, Lv, L?v, . .. defines a subrepresentation. Thus the irreducible s[(2)-
representations are of this form. Altogether this proof the existence of the direct
sum decomposition (2.46).

. If @ € Prim”*, k > n and 0 < ¢ minimal with L‘a = 0, then by Corollary 2.3.14 one

has 0 = [L",A](a) = r(k —n+r — 1)L"'a. This yields r =0, i.e. o = 0.

Let 0 # o € Prim, & < n and 0 < 7 minimal with L'« = 0. Then again by Corollary
2.3.14 one finds 0 = [L", A](a) = r(k—n+r—1)L"! and, therefore K —n+r—1 = 0.
In particular L™ *(a) # 0. Moreover, L" ¥+l = 0, which will be used in the proof
of 5.

Follows from 1,2 and 3.

. We have seen already that Prim* c Ker(L"**1). Conversely, let a € /\l T with

L 1la = 0. Then L" *2Aa = L "2 Aa — AL"*2q = (n — k+2)L" *la = 0.
But by 4 the map L" %2 is injective on /\k*2 T%. Hence, Aa = 0.
O
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Let us consider a few special cases. Obviously, A\°T% = Prim® = C and \'T% =
Prim'. In degree two and four one has A\’7T% = wC @ Prim® and A\*T% = «?C @
L(Prim?) @ Prim®.

Now we proceed to calculate some famous identities.

Assume first that X = 2 € C” is an open subset and that w is the standard Kéhler

metric
w=1 E dz; A dz;.
1<j<n

For any form u € €>(Q, A"*T%) we have

ou=">y_ 0@@;1: dz, Adzg A dzy, (2.47)
1,0k

guzzaul‘]dz Ndzr AdzZ (2.48)
£ 82'k k I J- .

Since the global L? inner product is given by

U’U E UIJU[JdV
Qg

making similar computations as in Example 2.2.9 we show that

Z a(;‘sz"a%J dzr A dzZy), (2.49)
Ou= Z agzl J%J dzy Adzy). (2.50)
Lok =k TEk

We first prove a lemma due to Akizuki and Nakano.
Lemma 2.3.20. In C", we have [0, L] = id.

Proof. Using the same convention as in Example 2.2.9 for the notation, formula (2.50)
can be written more briefly as

Then we get
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u) =wA ﬂ and therefore using Leibnitz’ rule

Since w has constant coefficients Do 9_(w A
0 0 Ou
> (5 (“a—zk) ~en (553
By (i
- 0z
By Leibnitz = 1w = —1i dzg, so

Llu = dezk A — (9zk = {0u.

O

We are now ready to derive the basic commutation relations in the case of an arbitrary
Kéhler manifold (X, w).

Theorem 2.3.21. If (X,w) is Kdhler, then
0°,L]= 0, [0 L]=— id

*

[A,8] =— 0", [AO = i

Proof. 1t is sufficient to verify the first relation, because the second one is the conjugate
of the first, and the relations of the second line are the adjoin of those of the first line. If
(2;) is a geodesic coordinate system at a point zo € X,we know w = wy + O(|2|*) where
wp is the standard Kéhler form on C". Since the quantity [0, L] involves only the first
derivative, the calculations for C" with the standard Kahler form holds also on X, proving
the identity. O]

Corollary 2.3.22. If (X,w) is Kdhler, the complex Laplace-Beltrami operators satisfy
Ny =Ag5= %A.
Proof. It will be first shown that Az = Ay. We have
A5 =10,0"] = —i[0,[A, 9]
Since [0,0] = 0, in the graded commutator, Jacobi identity 2.45 implies that
— [0, 9] + [0,9,A]] =
hence Ay = [0, —i[0,A]] = [0,0"] = As. On the other hand
A=[0+0,0"+0]=20p+A05+10,0]+1[0,07.

Thus, it is enough to prove:
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Lemma 2.3.23. [0,0 | = [9,0*] = 0.
Proof. We have [0,0] = —i [0, [A, d]] and 2.45 implies
o [87 [A7 a“ + [A7 [av a]] + [av [87 AH =0,

hence —2[8, [A,d]] = 0 and [9,0] = 0. The second relation [9,d*] = 0 is the adjoint of
the first. O

]
Theorem 2.3.24. The operator A commutes with all operators ,0,9,0*,8 , L, A.

Proof. The identities [0, Ag] = [0%,Ag] = 0, [0,A5] = [0°,A5] = 0 and [A, 4] = 0 are
immediate. Furthermore, the equality [0, L] = dw = 0 together with the Jacobi identity
implies

[L,As] =[L,[0,0%]] = — [0, [0, L]] =i[0,0] = 0.
By adjunction, we also get [Ag, A] = 0. O

Let (X,w) be a Kéhler manifold and £ a holomorphic hermitian vector bundle of rank
r over X. We denote by Dg the Chern connection of F, by D}, = — x Dgx the formal
adjoint of Dg, and by D%, D the components of D}, of type (—1,0) and (0, —1).

Corollary 2.3.22 implies that the principal symbol of the operator A%, = D"D}F +
D' D" is one half that of Ap. The operator A’ acting on each space (X, A" Tx @ E)
is thus a self-adjoint elliptic operator. Since D? = 0, the following results can be obtained
in a way similar to those of 2.2.12.

Theorem 2.3.25. For every bidegree (p,q), there exists an orthogonal decomposition

p,q
¢>(X, \Tx ® E) = " & Im D}, & Im D}

where AP X, E) is the space of Al,-harmonic forms in € (X, A" Tx ® E).

The above decomposition shows that the subspace of d-cocycles in € (X, AP T4 QF)
is 71X, F) @ Im DY,. From this, we infer

Theorem 2.3.26 (Hodge isomorphism theorem). The Dolbeault cohomology group HP1(X, E)
is finite dimensional, and there is an isomorphism

HP ~ 79X, E).
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Theorem 2.3.27 (Serre duality theorem). The pairing
HP x H™Pn=9(X, B*) — C, (s,t) — / s AL
X

18 non-singular.

Proof. Let s € €°(X, NPTt @ E), s, € €°(X, \" 7" """ T @ E). Since s; A sy is of
bidegree (n,n — 1), we have

d(Sl N 82) = 5(81 VAN 82) = 581 A S9 + (_1)p+q81 A 582. (251)

Stokes’ formula implies that the above bilinear pairing can be factorized through Dolbeault
cohomology groups. The # operator defined as in (2.27) satisfies

n—p,n—q

b,q
#E>*(X, N\Tx ® E) — ¢>(X, N\ TxeFE).
Furthermore, 2.31 and 2.32 imply
O(#5) = (—=1)¥8 4 DVrs,  Din(#s) = (—1)8sT 1y Dlxs,

A/é* (#S) = #Alés7
where Dpg- is the Chern connection of E*. Consequently, s € 74(X, F) if and only

if #s € " P" 9 X,E*). Theorem 2.3.27 is then a consequence of the fact that the
integral ||s||” = [y s A #s does not vanish unless s = 0. O

2.4 Cohomology of Compact Kahler Manifolds

Let X be for the moment an arbitrary complex manifold. The following “cohomology”
groups are helpful to describe Hodge theory on compact complex manifolds which are not
necessarily Kahler.

Definition 2.4.1. We define the Bott-Chern cohomology groups of X to be

D,q p—1,g—1

HPL(X,C) = (%OO(X, A T%) N Ker d) j00E>=(X, \ Tx)

Then Hyo(X,C) has the structure of a bigraded algebra, which we call the Bott-Chern
cohomology algebra of X.
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As the group 99€>°(X, \*~ "' T%) is contained in both coboundary groups € (X, A" " T%)
or d€>(X, \"""(C @ Tx)*), the are canonical morphisms

H%Z‘(‘)(? (C) — prq(Xv C)? (252)
Hp (X,C) — Hp (X, C), (2.53)

of the Bott-Chern cohomology to the Dolbeault or De Rham cohomology. These mor-
phisms are homomorphisms of C-algebras. From the definition, conjugating and inter-
changing partial it follows that Hgr(X,C) = HRL(X,C). It can be shown from the
Hodge-Frolicher spectral sequence that Hp4 (X, C) is always finite dimensional if X is
compact.

We suppose from now on that (X,w) is a compact Kéhler manifold. The equality
A = 2Ay shows that A is homogeneous with respect to bidegree and that there is an
orthogonal decomposition, this u is harmonic for A if and only if u is harmonic for Aj.

H*(X,C)=  #7(X,C). (2.54)

As Az = Ay = Ay, we also have #9P(X,C) = s#r1(X,C). Using the Hodge isomor-
phism theorems for the De Rham and Dolbeault cohomology, we get:

Theorem 2.4.2 (Hodge decomposition theorem). On a compact Kihler manifold, there
are canonical isomorphisms

H*(X,C) ~ @ HP(X,C), Hodge decomposition
p+q=k
H(X,C) ~ Hre(X,C). Hodge symmetry.

The only point which is not a priori completely clear is that this decomposition is
independent of the Kahler metric. In order to show that this is the case, one can use
the following Lemma, which allows us to compare all three types of cohomology groups
considered in 2.4.1.

Lemma 2.4.3. Let u be a d-closed (p, q)-form. The following properties are equivalent:
1. u s d-exact;
2. u s 0-exact;
3. w is O-ezact;

4. w is 00-exact, i.e. u can be written u = 00v.
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5. w is orthogonal to "1 X, C).

Proof. It is obvious that 4 implies 1, 2, 3, just using 90 = —09 for 3 and Jv as the
element from the u comes. It is clear as well that 1 or 2 or 3 implies 5 using the Hodge
decomposition for harmonic forms. It is thus sufficient to prove that 5 implies 4. As
du = 0, we have Ou = Ou = 0, and as u is supposed to be orthogonal to HP?(X,C),
Theorem 2.3.25 implies u = ds, s € €°(X, A" ' T%). By the analogue of Theorem
2.3.25 for 9, we have s = h + dv + 9*w, with h € P17 1(X,C), v € €(X, NP "' T%)
and w € €°(X, \""7 T%). Therefore

u = 00v+ 00w = —H0v — O*Ow

using lemma 2.3.23. As du = 0, hence 99*9w = 0. Since (09" 0w, dw) = | 3*51{)“2 =0 we
conclude u = —ddv. O

Corollary 2.4.4. Let X be a compact Kdhler manifold. Then the natural morphisms

HB4(X,C) — H”(X.C), @D HYL(X,C) — Hfp(X,C)
p+q=k

are 1somorphisms.

Proof. The surjectivity of Hpk(X,C) — H™(X,C) comes from the fact that every
class in H?%(X, C) can be represented by a harmonic (p, ¢)-form, thus by a d-closed (p, q)-
form; the injectivity means nothing more than the equivalence 2.4.3 3 < 2.4.3 4. Hence
HE4(X,C) ~ HP(X,C) ~ #P(X,C), and the isomorphism @, ,_, HpH(X,C) —
HE (X, C) follows from (2.54). O

Let us quote now two simple applications of Hodge theory. The first of these is
a computation of the Dolbeault cohomology groups of P". As H]%p »(P",C) = C and
HPP(P" C) 5 {w”} # 0, the Hodge decomposition formula implies

Application 2.4.5. The Dolbeault cohomology groups of P" are
HPP(P",C)=C for0<p<mn, HPIYP" C)=0 forp+#q.

Proposition 2.4.6. Fvery holomorphic p-form on a compact Kdhler manifold X is d
closed

Proof. If u is a holomorphic form of type (p,0) then du = 0. Furthermore 9 u is of type
(p,—1), hence & u = 0. Therefore Au = 2Azu = 0, from where d*du = 0 which implies
du = 0. O
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Example 2.4.7. Consider the Heisenberg group G C Gl3C, defined as the subgroup of
matrices
1 =z 2
M=|01wy |, (92 ¢€C.

0 01
Let T be the discrete subgroup of matrices with entries x,y,z € Z[i| (or more generally
in the ring of integers of an imaginary quadratic field). Then X = G/I' is a compact
complex 3-fold, known as the Iwasawa manifold. The equality

0 dr dz—azdy
M7tdM =0 0 dy
0 0 0
shows that dx,dy,dz — xdy are left invariant holomorphic 1-forms on G. These forms

induce holomorphic 1-form on the quotient X = G/T". Since dz — x dy is not d-closed, we
see that X cannot be Kdhler.

Remark 2.4.8. For simplicity of notation we work here with constant coeficients, but
analogous results hold for cohomology with values in a local system of coefficients (flat
Hermitian bundle)_, as in 2.2.12. It is enough to replace everywhere in the proof the
operator d= 0+ 0 by D = Dy + DY, and to observe that one still has Ay = A, =
%AE (proof identical to that of Corollary 2.3.22). One can then deduce the ezistence of
1somorphisms
HG4(X,E) — H™(X,E), @ HRL(X,E) — Hpp(X,E)

ptq=Fk

and a canonical decomposition
H}p(X,E)= € H"(X,E).
p+q=k

In this context, the symmetry property of Hodge becomes
Hra(X, FE) ~ HP(X, E")

via the antilinear operator #. These observations are useful for the study of variations of
Hodge structures.

Definition 2.4.9. The Betti numbers and Hodge number of X are by definition

by, = dime H*(X,C), hP? = dimec H?(X,C). (2.55)
Thanks to Hodge decomposition, these numbers satisfy the relations
b= Y WP heP=hPe, (2.56)
pt+q=k
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As a consequence, the Betti numbers by, 1 of a compact Kéahler manifold are even.
Note that the Serre duality theorem gives the additional relation h?? = B"7 P4 which
holds as soon as X is compact.

Lemma 2.4.10. Ifu = Zizo Liuy,_o; is the primitive decomposition of a harmonic k-form
u, then all components uy_o; are harmonic.

Proof. Since [A, L] =0, we get 0 = Au = >, L' Auy_9;, hence Auy_o; = 0 by uniqueness.
O

Definition 2.4.11. Let (X,w) be a compact Kdihler manifold, then the Primitive coho-
mology is defined by

H"(X,C), := Ker(A : H*(X,C) — H*?(X,C))

and
HP(X), = Ker(A: H?(X) — prl’qfl(X)).

Another important result of Hodge theory (which is in fact a direct consequence of
2.3.19.

Proposition 2.4.12 (Hard Lefschetz Theorem). Let (X, w) be a compact Kdhler manifold
of dimension n. Then for k <n

L% H*(X,C) ~ H**(X,C)

and for any k
HY(X,C) = @ L'H**(X,C),.

i>0
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Chapter 3

Hodge decomposition for absolutely
g-convex manifolds

3.1 Plurisubharmonic Functions

Recall that the elementary Laplace operator A in C is defined by

0? 0? 0?
A = ==+ =5 = 4—_,
or?  0y? 0207
where z = x+iy. A €*-function v on a region D C C is called harmonic, as in the previous
chapter, if Au = 0 (as we have seen that the Laplacians only differ for a minus sign). We

state some of the well-known elementary properties of harmonic functions (see [Ahl79]).

Proposition 3.1.1. A real valued function u is harmonic on D C C if and only if u is
locally the real part of a holomorphic function. In particular, harmonic functions are €°°,
and even real analytic.

Proposition 3.1.2 (The Mean Value Property). If u is harmonic on D C C, then
1

" or

u(a)

whenever {z : |z —a|] <r} C D.

27
/ u(a 4 re) do
0

Proposition 3.1.3 (The Maximum Principle). If u is real valued and harmonic on D C
C, then:

(Strong version) If u has a local mazimum at the point a € D, then u is constant in a
neighborhood of a (and hence on the connected component of D which contains a).
(Weak version) If D CC C and u extends continuously to D, then u(z) < max,pu for
z€D.

79
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Notice that the strong version of the maximum principle implies the weak version.

Theorem 3.1.4 (The Dirichlet Problem). If Q := {z| |z —a| < r} and g € € (bS2), then
there is a unique continuous function u on ), such that u(z) = g(z) for z € bQ. This
harmonic extension u is given explicitly by the Poisson integral of g, i.e.,

1 27 r2_|C|2 »
u(a—k():% i mg(a—i—re )do  for |C] < 7.

The the solutions of the Laplace equation in one real variable are the linear functions
l(x) = ax +b. A function y = u(z) is said to be convex if on any interval [a, f] in its
domain u(x) is less than or equal to the unique linear function [ with u(«) = I(«) and
u(p) = I(B). Substituting harmonic functions for linear functions in the definition above
leads to the idea of subharmonic functions: A continuous function u is subharmonic on
D C C if on every disc Q CC D one has u < h, where h € €(Q) is the unique function
harmonic on 2 with A = u on bQ2. (The function h exists by the solution of the Dirichlet
problem for discs.)

For technical reasons it is convenient to include upper semicontinuous functions and
to admit the value —oo in the definition of subharmonic functions. Moreover, one usually
replaces discs by more general sets (although this does not really matter, as we will see
that it is a local property). As the Dirichlet problem cannot generally be solved in this
setting, one is led to the following formulation.

Definition 3.1.5. A function u : D — R U {—o0} is called subharmonic if u is upper
semicontinuous and if for every compact set K C D and every function h € €(K) which
1s harmonic on the interior of K and satisfies uw < h on bK it follows that w < h on K.

Recall that u is said to be upper semicontinuous on D in

limsupu(z) <wu(a) forae€ D, (3.1)
z—a
or, equivalently,
{z € D|u(z) < ¢} is open in D for every ¢ € R. (3.2)

An upper semicontinuous function takes on a maximum on every compact set (though
not necessarily a minimum). A function v : D — R is continuous if and only if v and —u
are upper semicontinuous.

From the (weak) maximum principle one sees immediately that harmonic functions
are subharmonic. We will give another examples after we have discussed some character-
izations of subharmonic functions.
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Lemma 3.1.6. Let D C C be open.
1. If u is subharmonic on D, so is cu for ¢ > 0.

2. If {un|a € A} is a family of subharmonic functions on D such that u = sup u, is
finite and upper semicontinuous, then u is subharmonic.

3. If {uj, 7 =1,2,...} is a decreasing sequence of subharmonic functions on D, then
u = lim;_, u; is subharmonic.

Proof. 1. It follows immediately from the definition.

2. We have that u is upper semicontinuous as hypothesis. Hence given K C D a
compact and h € € (K) which is harmonic on the interior of K and satisfies u < h
on bK, for definition of u, u, < h also on bK, as they are subharmonic it follow
that u, < h on K, and taking the supremum we obtain that © < h on K.

3. Suppose K C D is compact and h € €(K) is harmonic on int(K) with h >
w = limu; on bK. Given ¢ > 0, E; = {z € bK|u;(z) > h(z) + ¢} is a closed
subset of bK for j = 1,2,..., for this take any Cauchy sequence (z) € Ej, as
limsup;_, . u;(z) < wu;(limz;), our assertion follows easily. Moreover E;;; C Ej
and it is a decreasing sequence, so that N2, E; = &. By compactness of bK’, more
specifically, by the finite intersection property, there is [ € N with E; = &. Hence
u; < h+¢on bK, and so on K as well, because u; is subharmonic. This implies
that u < h+eon K foralle >0,ie,u<hon K.

m

As an application we present a curious property of arbitrary domains in C.

Given a domain D, dp(z) = sup{r|B,(z) C D} denotes the (Euclidean distance) from
the point z € D to the boundary of D. If D # C", then 0 < dp(2) < oo for all z € D,
and 0p extends to a continuous function on D by setting dp(z) = 0 for z € bD. One
has dp(z) = inf{|z — (| : ¢ € bD. The distance between two sets A and B is given by
dist(A, B) :=inf{|a — b| : a € A,b € B}.

Corollary 3.1.7. For every open set D in C the function u(z) = —logdp(z) is subhar-
monic on D.

Proof. If D = C, then u = —o0, and there is nothing to prove. If D # C, then u(z) is con-
tinuous, and for z € D one has u(z) = sup{—log|z — (| : ( € bD}. Since —log|z — (|is
harmonic, and hence subharmonic on D (it is, locally, the real part of a holomorphic
branch of —log(z — ()), the conclusion follows by Lemma 3.1.6. O
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We shall now discuss some other characterizations of subharmonic functions which are
useful in various situations. In particular, it will follow that subharmonicity is a local

property.
Recall from integration theory that for a Borel measure p on a compact set K and

an upper semicontinuous function u : K — RU {—oc}, the integral [udpu is well defined
(possibly = —o0). Moreover

/udu:inf{/ edu | p € €(K) andngu}, (3.3)
K K

and u € LYK, p) if and only if [udy > —oc.

Theorem 3.1.8. Let D be open in C. The following statements are equivalent for an
upper semicontinuous function u: D — R U {—o0}:

1. u 18 subharmonic.

2. For every disc 2 CC D and holomorphic polynomial f with u < Rf on bS2, one has
u<Rf on Q.

3. For every a € D there exists a positive number r, < dp(a) such that

1 27 )
u(a) < 2—/ u(a +re®)dd  for all0 <r <r,.
™ Jo

Remark 3.1.9. The result presented in the point (3) above is called the submean value
property . It is clearly a local property and it clearly holds if we change u by the sum
uy + ug. Therefore, we have:

Corollary 3.1.10. If u; and us are subharmonic on D, so is ui + us.
Before proving the Theorem we single out an important ingredient of the proof.

Lemma 3.1.11. An upper semicontinuous function u which satisfies the submean value
property satisfies the strong mazximun principle 3.1.3.

Proof. The argument is identical to the one which is often used to prove the maximum
principle for harmonic functions. Suppose u satisfies the submean value property and u
has a local maximum at a € D, i.e., there is p > 0 such that u(z) < u(a) for all z with
|z —al < p. We must assume that p < r,. If there were a point zy with r = |z —a| < p
and u(zp) < u(a), then

{6 € [0, 2n]|u(a + re?? < u(a))
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would have nonempty interior, by the upper semicontinuity of u; thus

2 2
/ u(a +re?)do < / u(a)dl = 2mu(a),
0 0

in contradiction to the hypothesis. So u must be constant in a neighborhood of a. O

Proof of Theorem 3.1.8. As f is a holomorphic polynomial, hence harmonic we have that
1 implies 2. In order to show 2 = 3,we suppose 2 = {z : [z —a| < r} CC D and let
v € €(bQ) with ¢ > u on bQ). After replacing ¢ by its Poisson integral, we may assume
that ¢ is continuous on Q and harmonic on Q. For 7 < 1, the function

pr(2) = pla+7(z —a))

is harmonic in a neighborhood of Q, and ¢, — ¢ on Q as 7 — 1. Now ¢, = Rf,, where
f- is holomorphic on €, and by considering the partial sums of the Taylor series of f;, it
follows that for € > 0, there is a holomorphic polynomial f with u < p <Rf < @ +¢€on
bQ. By 2 and the mean value property for the harmonic function R f, one obtains

u(a) < Rf(a) = % 0% Rf(a+re?df) < % /027r ola+re®)do +e.
Since ¢ is arbitrary, we have shown that
1 [ ,
u(a) < %/0 o(a+re) do

for every continuous function ¢ < w on b2, and thus 3 follows from 3.3.

Finally, to show 3 = 1, we take K’ C D be compact and suppose h € € (K) is harmonic
on int K and v < h on bK; we must show u < h on K. Notice that 3 and the mean
value property for h imply the submean value property for u — h on int K. Therefore, by
Lemma 3.1.11, (v — h)(2) < maxpg(u —h) <0 for z € K, ie., u < hon K. O

Proposition 3.1.12. If f is holomorphic on D, then |f|* for « > 0 and log|f| are
subharmonic on D.

Proof. For the first assertion we take a € D, as D is open, there exists a ball {2 of radius r
such that r < dp(a), using the Cauchy integral formula, and an inequality for the integral,
we obtain that |f(a)|” < 5= OQW |f(a+re™)|*dt if f(a) # 0. If f(a) = 0, it is obvious
that |f(a)|* < |f(2)|%, this implies that |f|* is harmonic.

For the second assertion we use the maximum principle and the fact that log is an

increasing function, this is, let ¢ := max|f|, and we take as the holomorphic polynomial
the constant log ¢ and by 2, log|f| is subharmonic. O
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The following property of the mean values of subharmonic functions is very useful.

Lemma 3.1.13. If u is subharmonic on the disc {|z — a| < p}, then

1 2w )
Alu: - 0 do
(u;r) 27r/0 u(a +re”)
s a nondecreasing function for 0 <r < p.

Proof. Let Q(r) = {|z — a|] < r} and suppose 0 < r; < ry < p. Let ¢ € € (bS2(r2)) satisfy
@ > u on bQ)(ry). By taking the Poisson integral of ¢, we may assume that ¢ € € (2(r2))
and ¢ is harmonic on Q(ry). By the mean value property, A(p;r) = p(a) for r < 7o,
and the subharmonicity of u implies u < ¢ on (ry). Hence A(u;ry) < A(p;ry) =
A(p, r9) for all such ¢, and it follows that A(u;r) < inf{A(y;7s) | ¢ continuous and ¢ >
won bQ(ry)} = A(u; ). O

It is well known that a ¢ function u(x) on an interval I C R is convex if and only if
u”(x) > 0 on I. An analogous characterization holds for smooth subharmonic functions,
giving a simple computational test for subharmonicity.

Proposition 3.1.14. A real valued function u € €*(D) is subharmonic on D if and only
if Au >0 on D.

Proof. We first show that Au > 0 implies that u is subharmonic. Let K C D be compact,
h € € (K) harmonic on int K, and suppose v = u —h < 0 on bK. If v(z) > 0 for some
z € K, then v would take on its maximum at a point ¢ € int K, and it would follow
that Av(a) < 0. Since Ah = 0, this contradicts Au(a) > 0, so we must have v < 0, i.e.,
u < h, on K. Next, if Au > 0, the preceding argument applied to u; = u + (1/5) |z|2 for
j=1,2,... shows that u; is subharmonic. As u;(z) decreases to u(z) as j — oo, Lemma
3.1.6 implies that u is subharmonic as well.

To prove the converse, let u be subharmonic and suppose there is a a € D such that
Au(a) < 0. By continuity, Au < 0 on a neighborhood U of a, and hence, by the first
part of the proof, —u is subharmonic on U. Thus v and —u are subharmonic on U, and
by the submean value property v is harmonic on U, but this would imply Au = 0 on U,
contradicting Au(a) < 0. So we must have Au > 0 on D. O

Definition 3.1.15. Let D be open in C*. A function w : D — R U {—o00} is said to be
plurisubharmonic on D if u is upper semicontinuous, and if for every a € D and w € C"
the function A — u(a + Aw) is subharmonic on the region {\ € C : a+ Aw € D}. The
class of plurisubharmonic functions on D is denoted by PSH (D).
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Remark 3.1.16. Certain properties of subharmonic functions are inherited by plurisub-
harmonic functions. For example, Lemma 3.1.6 holds for plurisubharmonic functions,
PSH(D) is closed under addition, and w € PSH(D) if and only if u is plurisubhar-
monic in some neighborhood of every point a € D. If f € O(D), then |f|*, a > 0, and
log | f| are plurisubharmonic on D. (This follows from Proposition 3.1.12— notice that
the restriction of f to a complex line is holomorphic where defined.)

On the other hand, Corollary 3.1.7 does not extend to higher dimensions. For example,
if D = C* — {0}, let u = —logdp(z). For a = (1,0) and w = (0,1), u(a + \w) =
—1logdp(1,\) = —log /1 + |A]?, and this function has a strict mazimum at \ = 0, so it
cannot be subharmonic (Lemma 3.1.11). So u is not plurisubharmonic. We shall see that

the regions D C C™ for which —log dp is plurisubharmonic are precisely the pseudoconvex
ones.

For plurisubharmonic functions of class € there is a differential characterization anal-
ogous to the one given in Proposition 3.1.14 for subharmonic functions.

Proposition 3.1.17. Let D C C" and suppose u € €*(D) is real valued. Then u €
PSH(D) if and only if the complex Hessian of u,

" Q% .
L, (u;w) Z 52,05 (2)w;wy,
jk=1

1s positive semidefinite on C" at every point z € D.

Proof. A straightforward computation gives

82
———u(a + M) = Ly (u, w 3.4
o+ ) = Lucru(u, ) (3.4
for w € C" and a+ Aw € D. By Proposition 3.1.14, u(a 4+ Aw) is subharmonic in X if and
only if the left side in (3.4) is nonnegative. O

Corollary 3.1.18. Suppose Q C C" and D C C™ are open, and F : D — € is holomor-
phic. ThenuoF € PSH(D) if u € PSH(Q2) N €*().

Proof. A computation gives L,(u o F;w) = Lpg(u; F'(a)w). Now use the Proposition
3.1.17. -

In order to extend Corollary 3.1.18 to arbitrary u € PSH(D), one needs to locally
approximate u by smooth plurisubharmonic functions. In order to get started we need
to know that plurisubharmonic functions are in L', at least locally, with respect to 2n-
dimensional Lebesgue measure.
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Lemma 3.1.19. Let D C C" be connected. If u € PSH(D) and uw # —oo on D, then
we L} (D). In particular, {z € D|u(z) = —oc} has Lebesgue measure 0.

loc

Proof. We first show that if u(a) > —oo at some point a € D, then u € L*(P(a,r)) for
every polydisc, this is the product of n open discs in C, P(a,r) CC D. Since u is bounded
from above on such a polydisc, it is enough to show [ Plasr) udV > —oo. By applying the
submean value property in each coordinate separately, one obtains

2w 2m
u(a) < (2%)"/ . / u(a + pe®)dé; .. .do,
0 0

forall p = (p1,...,pn) with 0 < p < r, where pe? = (p1e?t, ..., p,e?r). After multiplying
by p1...pndpi...dp, and integrating in p; from 0 to r;, 1 < j < n, it follows that

—00 < ufa) < [VolP(a,r)]l/ udV.

P(a,r)
The application of the Fubini-Tonelli theorem is legitimate as u is bounded from above.

Now consider the set £ = {a € D|u is integrable in a neighborhood of a}. F is clearly
open, and we just saw that F # @. The statement proved above also implies that if
a € D\ E, then u(z) = —oo for all z in some neighborhood of a, so D — E is open as
well. Since D is connected, F = D. n

Theorem 3.1.20. Let D C C" and set D; = {z € D||z| < j and dp(z) > 1/5}. Suppose
u € PSH(D) is not identically —oo on any component of D. Then there is a sequence
{u;} C €=(D) with the following properties

1. u; is strictly plurisubharmonic on Dj.
2. uj(2) > ujq1(z) for z € Dj, and lim;_ o u;(2) = u(z) for z € D.
3. If u is also continuous, the convergence in 2 is compact on D.

Proof. Let ¢ € €>°(B(0,1)), this is with compact support on B(0, 1) (the ball centered
in 0 with radius 1), such that ¢ > 0, ¢ is radial (i.e., ¢(z) = ¢(2')) if |z| = |Z/|), and
[ ¢dV =1. Since D; CC D, by Lemma 3.1.19 one has u € L'(D;) for each j =1,2,....
The integral v;(z) = ij uw(C)e(j(z — €))72"dV(¢) is thus defined for each z € C", and

standard results give v; € €. We set u;(2) = v;(2) + (1/§) |2]°. For z € D;, a lincar
change of variables gives

vi(z) = / ul(z — (/5)p(Q) dVI(Q). (3.5)
[¢l<1
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In order to prove 1 it is enough to show that v; € PSH (D), i.e., v;(a + Aw) satisfies the
submean value property at A = 0 for a € D; and w € C", since then

La(uj;w) = La(vj,w) + (1/5) [w]* > (1/5) [w|*.

But this follows easily from the corresponding property of u, as follows: for sufficiently
small r one has

L[ i L[ i :

o ). vj(a+r69w)d0:/<|<l [%/0 u(a +rew — ¢/5)do| o(¢)dV ()
> u(a —C/J dVv
> [ e ¢ie0avio
= vj(a).

Next, observe that the integral (3.5) is invariant under substitution of ¢ by e®(,t € R.
Thus
I ,
@)= [ o [ eia v avi (3.
lcl<1 L4T Jo

By Lemma 3.1.13 applied to the subharmonic function A — wu(z + A(—()), the inner
integral in 3.6 is nondecreasing in r = 1/j; thus v;(z) > v;41(2). Also, 3.6 and the
submean value property show v;(z) > u(z) [ o dV = u(z). If € > 0 is given, by the upper
semicontinuity of u there is a ball B(z,d) C {¢ € D|u(¢) < u(z) + €}; thus, for j > 1/,
one obtains from (3.5) and the above that u(z) < v;(z) < u(z) + €. This completes the
proof of 2 for {v;}; 3 follows by a similar argument. The corresponding statements for
{u;} are then obvious. O

We can now show that plurisubharmonic functions are invariant under holomorphic
maps.

Theorem 3.1.21. I[fQ Cc C*, D Cc C™ and F : D — ) is holomorphic, then uo F &€
PSH(D) for every u € PSH(S).

Proof. Without loss of generality we may assume that () is connected and that u €
PSH(Q) is # —oo. Choose a decreasing sequence {u;} with limwu; = u as in Theorem
3.1.20. If D’ cC D, then u; o F' is plurisubharmonic on D’ for j sufficiently large, by
the plurisubharmonicty of u; and Corollary 3.1.18. Since {u; o F'} decreases to uwo F' as
7] — 00, the conclusion follows from Lemma 3.1.6. O

In 1906 F. Hartogs discovered the first example exhibiting the remarkable extension
properties of holomorphic functions in more than one variable. It is this phenomenon,
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more that anything else, which distinguishes function theory in several variables from the
classical one-variable theory.

The phenomenon of simultaneous extension of all holomorphic functions from one
domain to a strictly larger one raises the question of characterizing those domains for
which this phenomenon does not occur: these are the so-called domains of holomorphy.

Definition 3.1.22. A holomorphic function f on D is completely singular at p € bD if
for every connected neighborhood U of p there is no h € O(U) which agrees with f on
some connected component of U N D. D is called a weak domain of holomorphy if for
every p € bD there is f, € O(D) which is completely singular at p. D is called a domain
of holomorphy if there exists f € O(D) which is completely singular at every boundary
point p € bD.

The concept of weak domain of holomorphy is not standard; it is, in fact, equivalent
to the concept of domain of holomorphy, but we will not prove that here.

We will characterized these sets and give some equivalences. We set:

I'={2eC"|z; =0for j <n,|z,| <1}
U{zeC"z; =0for j <n—1,|z_1] <1,|2,] =1},

and
'={ze€C"z;=0forj <n—1,|z,-1 < 1,|z,] <1];

we call the pair (I',T') the (standard) Hartogs frame in C". Note that I =T forn = 1. A
pair (I'*,T™) of compact sets in C” is called a Hartogs figure if there is a biholomorphic
map F': ' — I'*, such that F(T") = I'™.

We will state some results, for the proof we refer to [Ran86.

Lemma 3.1.23. Let (F*,f*) be a Hartogs figure. Then every f € O(I'*) has a holomor-
phic extension f € O(I'*).

Definition 3.1.24. A domain D C C" is called Hartogs pseudoconvex if foer every Har-
togs figure (I'*, ) with T* C D one has T* C D as well.

Theorem 3.1.25. A weak domain of holomorphy is Hartogs pseudoconver.

A function ¢ : D — R on the open set D is said to be an exhaustion function for D if
for every ¢ € R the set D, = {z € D|p(2) < c} is relatively compact in D. An exhaustion
function ¢ satisfies ¢(z) — oo as z — bD; this is also sufficient if D is bounded.
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Definition 3.1.26. An open set D in C™ is called pseudoconvex if there isu € PSH(D)N
€*(D) such that u is an exhaustion function for D, which satisfies L, (u,w) > 0 for every
z€D and w e C™.

Definition 3.1.27. A region D C C" is called plurisubharmonic convex if for every
compact set K C D, its plurisubharmonic convexr hull

I?pSH(D) ={z€ D :u(z) <supu for allu € PSH(D)}
K

15 relatively compact in D.

Next we introduce a version of the classical “continuity principle” which describes a
geometrically very intuitive analogue of linear convexity. If 2 CC C is an open disc and

¢ : ) — D is a continuous map which is holomorphic on €2, we shall say that ¢(2) is an
analytic disc S in  and call the set p(b{2) the “boundary” 95 of S.

Definition 3.1.28. A region D in C" is said to satisfy the continuity principle if for
every family {Sy|a € I} of analytic discs in D with

U S, cc D,

ael

it follows that
U S, cc D.

acl

The following Theorem gives the equivalence of all the definitions given before. See
[Ran86].

Theorem 3.1.29. The following properties are equivalent for an open set D in C"

1. There is a €* strictly plurisubharmonic exhaustion function for D (i.e., D is pseu-
doconvex according to the definition in 3.1.26).

. There is a plurisubharmonic exhaustion function for D.

. D is plurisubharmonic convex

2
3
4. For every analytic disc S in D one has dist(S,bD) = dist(0S,bD).
5. D satisfies the continuity principle.

6. D 1s Hartogs pseudoconvex.

7. —logdp is plurisubharmonic on D.

8

. D is a domain of holomorphy.
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3.2 ¢-Convex Spaces

In this section we will assume the knowledge of sheaf theory, for which we refer to [Ten75]

for a clear and general exposition, and [GR77] for a more complex point of view. We will
follow mainly [GR84] and [Dem12].

Definition 3.2.1. A topological space X together with a sheaf of ring &7 on X is called
a ringed space.

We recall briefly that sheaf of rings here means the following: for each point x € X
we have a commutative ring o7, of “germs at z” with a unit 1., and the union &7 of all
rings .7, is provided with a topology in such a way that:

1. the map which assigns to every a € & the unique z € X with a € &7, is locally a
homeomorphism.

2. for any open set U in X the set &/ (U) of “sections in o/ over U” is a ring with
unit (this means the map = — 1, is continuous and addition and multiplication are
continuous operations). Then, for each U and z € U, we have a natural homomor-
phism &/ (U) — <, of rings attaching to every section s € o7 (U) its germ s, at .
The knowledge of the rings <7 (U) for all open sets U together with the “restriction”
homomorphisms &/ (U) — o7 (V') for V' C U completely determines the sheaf <7.

Ringed space are usually denoted (X, .«7), the sheaf &7 is called the structure sheaf. Often
we simply write X instead of (X,.«) if it is clear from the context what the structure
sheaf is.

Any domain D in C" gives rise, by restriction, to the open ringed subspace (D, Op)

of (C", 6).

If f1,..., fr are finitely many continuous functions in a space X the set
is called the set of common zeros of fi,...,fr in X. As we can see it as the finite

intersection of closed subsets, it is closed in X, for N(f1,..., fix) = N(fi)NN(f2)N...N
N(fx). We are only interested in zero sets of holomorphic functions.

We next introduce the notion of a complex model space. Let D be a domain in C"
and let .# be an ideal sheaf in &p, which is of “finite type” on D, i.e. to every point
z € D there exists an open neighborhood U C D of z and functions fi,..., fr € O(U)
such that the sheaf .# is generated over U by f1,..., f, i.e.

Iy =0ufi+...+Oyfy
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The quotient sheaf &'/ is a sheaf of rings on D. We consider its support Y :=
Supp(Op/.#), that is the set of all points z € D, where (Op/.%), # 0, i.e. where
4, # 0,. Clearly in a neighborhood U of z as above we have Y N U = N(fi,..., fx), so
locally Y is the zero set of finitely many holomorphic functions. The restriction

ﬁy = (ﬁp/fﬂy

of Op/# toY is asheaf of rings on Y. The ringed space (Y, Oy ) is called a complex model
space (in D), more precisely: the complex model space defined by the ideal .# C &p of
finite type. Clearly D itself and the empty space are complex model spaces (defined by
the zero ideal sheaf resp. by & := Op).

Any finite set fi,..., fr of holomorphic functions defines a complex model space
(Y,0y) in D with Y = N(fy,..., fr), just perform the above construction for the ideal
S = 0Opfi+ ...+ Opfr. We give four simple examples:

1. NEIL’s parabola. This is the complex model space defined in C? with complex
3

coordinates w, z by the polynomial w? — z3.

2. The space of coordinate lines in C?. This space is defined by the polynomial wz.
Its underlying topological space N (wz) consists of two complex lines in C? meeting
in the origin.

3. The n-fold point. This is the complex model space defined in C with complex
coordinate z by the monomial 2" ; n > 1. Here N(z") is a single point p (origin)
and O, = (Oc/0cz")|, is a local €-algebra with n generators 1,¢,...,e""! and
g™ = 0(Artin-algebra). We see that in case n > 1 there live nilpotent germs # 0 on
the n-fold point-. If n = 1, we have (p, 0y) = (p,C), if n = 2, the space (p, 0),) is
called double point.

4. The cone in €3. This space is given by the polynomial w? — z,2,. The topological
space N (w?—2129)\{0} is a topological manifold of dimension 4, the origin 0 however
is a “singular” point of the cone: there is no neighborhood of 0 in N(w? — z;2y)
which is homeomorphic to a ball in R*.

Let us denote by £ := X X C the constant sheaf of field C over X with projection (z, c) —
x. A sheaf of ring &/ on X is called a sheaf of C-algebras, if o7 is a sheaf of modules
over £ with Supp &/ = X such that ¢(fg) = (c¢f)g for all c € A, f,g € “p,x € X. In
particular the identity section 1 € &7 is nowhere zero and ¢ : & — &7 (x,c) — cl, is a
sheaf monomorphism (of rings). We identify %" with «(.#") C &/ and C with C1, C 7.

A sheaf of C-algebras &7 is called a sheaf of local C-algebras if every stalk <7, is a
local ring with (unique) mazimal ideal m(7,) so that the quotient epimorphism <7, —
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a7, /m(4,) always induces an isomorphism C = o7, /m(%,). One identifies 7, /m(,)
with C and thus has a canonical direct sum o7, = C & m(7,) as C-vector space. A sheaf

mapping « : &/ — &/ between sheaves of C-algebras is called a C-homomorphism if every
stalk map «, : @7, — 27! is a C-algebra homomorphism. If .o, &7’ are sheaves of local C-
algebras such homomorphism are automatically stalk-wise local, i.e. «, maps m(7,) into

m ().

A ringed space (X, .o7) is called a C-ringed space if «7is a sheaf of local C-algebras. A
morphism (X, ox) — (Y, @) of C-ringed spaces consists of a continuous map f : X — Y
together with a C-algebra homomorphism f : <% — f«(e/x). Note that the image sheaf
f«(ex) always is, in a canonical way, a sheaf of ring (not necessarily of C-algebras) on Y’
so that maps f can be considered.

A morphism (f, f) : (X, @x) — (Y, o) canonically determines stalk maps

fx : dY,f(m) — ﬂxﬂ;, xr € X,

by composing the map @ ;) — fo(#x) () induced by f with the natural germ map

fo o fulex) fx) — @xg. These stalk maps determine f and are automatically local
C-algebra homomorphism.

If U is open in X clearly (U, o) with oy := &/x|U is a C-ringed space. We call
(U, o) an open C-ringed subspace of (X, 7x), the injection ¢ : U — X canonically
induces a morphism (U, o) — (X, @x).

We are now in position to introduce the notion of a complex space.

Definition 3.2.2. Let (X, Ox) be a C-ringed space such that X is a Hausdorff space: we
call (X, Ox) a complex space if every point of X has an open neighborhood U such that
the open C-ringed subspace (U, Oy) of (X, Ox) is isomorphic to a complex model space.

In other words a complex space is a ringed Hausdorff space which can be locally
realized (as a C-ringed space) by the zero set of finitely many holomorphic functions in
some domain of a complex number space. All complex model spaces, especially all spaces
(D, Op) and the double point (p, 0,), are complex spaces.

Morphisms between complex spaces are called holomorphic maps; isomorphisms are
called biholomorphic maps. We now discruss several possibilities of how good resp. how
bad a given complex space X = (X, &) may behave at a point € X. The situation is
optimal if x is a smooth point of X, i.e. if there exists an open neighborhood of x which
is isomorphic to a domain (D, Op). If all points of X are smooth the complex space X
is called a complex manifold. ( [Ten75] prove the equivalence between the two definitions
that we have now.) Smooth points are also called simple or regular. A non-regular point
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of X is called a singular point, e.g. the origin is a singular point of NEIL’s parabola
w? — 22 = 0 and of the cone w? — 2125 = 0. The space X is called irreducible at x if the
stalk @, is an integral domain, otherwise X is called reducible atx. All smooth points
are irreducible points, since for such a point x the stalk &, is isomorphic to the ring of
convergent power series at 0 € C". The origin is an irreducible point of NEIL’s parabola
and of the cone in C?, however a reducible point of the space of coordinate lines wz = 0
in C2. The space X is called locally irreducible if all point of X are irreducible. Complex
manifolds are locally irreducible.

The complex space X is called reduced at x if the stalk &, is a reduced ring, i.e. does
not contain nilpotent elements # 0. All irreducible point are reduced points of X, the
origin of wz = 0 also is a reduced point. We call X a reduced complex space if X is
reduce at all its points. The double point (p, €,) is the typical example of a non-reduced
complex space.

A reduced point x € X is called a normal point of X, if the stalk 0, is integrally
closed in its quotient ring. Smooth points are normal, X is irreducible at every normal
point. The origin of the cone w? — 2125 = 0 is a normal point, while the origin of NEIL’s
parabola is not. A complex space with normal points only is called a normal space.

Now, we will introduce the concept of g-convexity. Let M be a complex manifold,
dime M = n. A function v € €?(M,R) is said to be strongly (resp. weakly) g-convex at a
point 2 € M if i00v(x) has at least (n — g+ 1) strictly positive (resp. non-negative) eigen-
values, or equivalently if there exists a (n—g+1)-dimensional subspace F' C T, M on which
the complex Hessian H,v is positive definite (resp. semi-positive). Weak 1-convexity is
thus equivalent to plurisubharmonicity. Some authors use different conventions for the
number of positive eigenvalues in g-convexity. The reason why we introduce the number
n — q + 1 instead of ¢ is mainly due to the following result:

Proposition 3.2.3. If v € €%(M,R) is strongly (weakly) q-convex and if Y is a subma-
nifold of M, then vl|y is strongly (weakly) q-conver.

Proof. Let d =dimY . For every x € Y, there exists F' C T, M with dim F' = n—q+1 such
that Hv is (semi-)positive on F. Then G = FNT,Y has dimension > (n—q¢+1)—(n—d) =
d—q+ 1, and H(v|y) is (semi)- positive on G C T,Y. Hence v]y is strongly (weakly)
g-convex at x. ]

Proposition 3.2.4. Let v; € €*(M,R) be a weakly (strongly) q;-convez function, 1 <
j <s, and x € €*(R*,R) a convex function that is increasing (strictly increasing) in all
variables. Then v = x(v1,...,vs) is weakly (strongly) q-convex with ¢ —1 =Y (g; — 1).
In particular vy + - - - + v; is weakly (strongly) q-convex.
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Proof. Using that

(D*(J o h)(x = 0:J(h())0;0chi(x)aja; + Z D;h;(2)0;0k T (h(2)) O hu () aia.

2,5,k ,7,k,l
for a composition of real functions we have that

o 9x

Hv = j 8—%(111, v; +Zat ot (1, ., 05)0v; ® vy, (3.7)

and the second sum defines a semi-positive hermitian form. In every tangent space T, M
there exists a subspace Fj of codimension ¢; — 1 on which Hv; is semi-positive (positive
definite). Then F' = NF}; has codimension < ¢ — 1 and Hwv is semi-positive (positve
definite) on F. O

The above result cannot be improved, as shown by the trival example
v1(2) = =2z + 2P + |237, va(2) = |z1] — 2|z* + |23)*  on C3,

in which case ¢ = ¢o = 2 as they have the 2-dimensional subspace where the complex
hessian H,v; is positive definite, £ (22, 23), £ (21, 23) but v 4+ vy is only 3-convex, this is,
it is positive definite on Z(z3). However, formula (3.7) implies the following result:

Proposition 3.2.5. Let v; € €*(M,R), 1 < j < s, be such that every convez linear
combination Y a;v;, ap > 0, a; = 1, is weakly (strongly) q-convex. If x € €*(R*,R) is
a convez function that is increasing (strictly increasing) in all variables, then x(vy, ..., vs)
is weakly (strongly) q-conver.

The invariance property of Proposition 3.2.3 immediately suggests the definition of
g-convexity on complex spaces.

Definition 3.2.6. Let (X, Ox) be a complex space. A function v on X is said to be
strongly (resp. weakly) q-convex of class €* on X if X can be covered by patches G : U =
A, A C Q C C™ such that for each patch there exists a function © on Q with 0|40 G = v|y
which is strongly (resp. weakly) q-convex of class €*.

The notion of ¢g-convexity on a patch U does not depend on the way U is embedded
in CV, as shown by the following lemma.

Lemma 3.2.7. Let G : U - ACQCCN and G': U — A" c O < CV' be two patches
of X. Let v be a strongly (weakly) q-convex function on £ and v = |4 o G. For every

x € UNU' there exists a strongly (weakly) q-convex function ¢ on a neighborhood W' C
of G'(z) such that ¥y o G' coincides with v on G~ (W').
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Proof. The isomorphisms

G'oG':ADGUNU) = GUNU)cC A,
GoG™ 1 ADGUNU)=GUNU)CA

are restrictions of holomorphic maps H : W — @', H' : W' — Q defined on neighborhood
W s G(z), W' > G'(z); we can shrink W’ so that H'(W') ¢ W. If we compose the
automorphism (z, 2') — (2,2 — H(z)) of W x CN' with the function v(z) + |2/|> we see
that the function ¢(z, 2') = 6(2) + |2/ — H(2)|? is strongly (weakly) ¢-convex on W x €.
Now, W’ can be embedded in W x €)' via the map 2’ — (H'(Z’), '), so that the composite
function

0(z') = p(H'(2'),2') = 8(H'(") + |2 — H o H'(')|"

is strongly (weakly) g-convex on W’ by Proposition 3.2.3. Since HoG = G' and H'oG' = G
on G~H(W'), we have ' o G’ = 00 G = v on G (W’) and the lemma follows. O

A consequence of this lemma is that Proposition 3.2.4 is still valid for a complex space
X (all the extension ?; near a given point x € X can be obtained with respect to the
same local embedding).

Definition 3.2.8. A complex space (X, Ox) is said to be strongly (resp. weakly) q-convex
if X has a €°° exhaustion function 1 which is strongly (resp. weakly) q-convex outside
an exceptional compact set K C X. We say that X 1is strongly q-complete if 1 can be
chosen so that K = &. By convention, a compact complex space X 1s said to be strongly
0-complete, with exceptional compact set K = X.

We consider the sublevel sets
Xe={z e X|Y(x)<c} ceR (3.8)

If K C X., we may select a convex increasing function y such that x = 0 on | — oo, ¢] and
X' > 0 on e, +oo[. Then y ot =0 on X, so that x o1 is weakly g-convex everywhere in
virtue of 3.7. In the weakly g-convex case, we may therefore always assume K = &. The
following properties are almost immediate consequences of the definition:

Theorem 3.2.9. 1. If X 1s strongly (weakly) q-convez , every sublevel set X, contain-
ing the exceptional compact set K is strongly (weakly) q-conve.

2. If U; is a weakly gj-convex open subset of X, 1 < 5 < s, the intersection U =
UrN...NUs is weakly q-convex with ¢ —1 =" (¢; —1); U is strongly q-convex (resp.
q-complete) as soon as one of the sets U; is strongly qj-convex (resp. q;-complete).

RODOLFO AGUILAR 95 Hodge decomposition for absolutely g-convex manifolds



96 CHAPTER 3. HODGE DECOMPOSITION FOR ABSOLUTELY Q-CONVEX MANIFOLDS

Proof. 1. Let ¢ be an exhaustion of the required type on X. Then 1/(c — %) is an
exhaustion on X, . Moreover, this function is strongly (weakly) ¢g-convex on X, \ K,
thanks to Proposition 3.2.3 and 3.2.4.

2. Note that a sum ¢ = 91 + ... + 9, of exhaustion functions on the sets U; is an
exhaustion on U, choose the ;s weakly g;-convex everywhere and apply Proposition
3.2.4.

O

Corollary 3.2.10. Any finite intersection U = U; N ... N Uy of weakly 1-convexr open
subsets is weakly 1-convex. The set U is strongly 1-convez (resp. 1-complete) as soon as
one of the sets U; is strongly 1-convex (resp. 1-complete).

We prove now a rather useful result asserting the existence of g-complete neighbor-
hoods for g-complete subvarieties. The first step is an approximation-extension theorem
for strongly ¢-convex functions.

Proposition 3.2.11. Let Y be an analytic set in a complex space X and v a strongly
g-convex € function on Y. For every continuous function 6 > 0 on Y, there exists a
strongly q-convex € function ¢ on a neighborhood V' of Y such that ¥ < ¢|y < ¥ + 0.

Proof. Let Z;, be a stratification of Y, i.e. Zj is an increasing sequence of analytic subsets
of Y such that Y = UZ; and Z; \ Zx_; is a smooth k-dimensional manifold (possibly
empty for some k’s). We shall prove by induction on & the following statement:

There exists a Cﬁi" function @, on X which is strongly q-conver along Y and on a
closed neighborhood Vi, of Zy in X, such that ¥ < x|y < +9.

We first observe that any smooth extension ¢_; of ¥ to X satisfies the requirements
with Z_1 = V.1 = &. Assume that V;_; and @1 have been constructed. Then Z \
Vie1 C Zi \ Zg—1 is contained in Z,e,. The closed set Zj, \ Vj_; has a locally finite
covering (A,) in X by open coordinate patches Ay C €, € C™ in which Z}, is given by
equation 2} = (2xk+1,-.-,2xn,) = 0. Let 8y be € functions with compact support in
Ay such that 0 <@ <1and ) 0y,=1on Z\ Vi_1. We set

or(r) = pr_1( +ZQ,\ )’ log( 1+5A4|zk| ) on X.

For €y, > 0 small enough, we will have ¢ < 1|y < @rly < ¥ + 8. Now, we check
that ¢y, is still strongly g-convex along Y and near any xy € V;_1, and that ¢;, becomes
strongly g¢-convex near any zy € Zj \ Vy_1. We may assume that z, € Supp6, for
some i, otherwise ¢y coincides with ¢;_; in a neighborhood of xy. Select p and a small
neighborhood W CC €2, of x( such that
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1. if zg € Z \ Vi—1, then 6,(z¢) > 0and A, NW CC {xz € A,]0, > 0};

2. if zy € A, for some A (there is only a finite set I of such N's), then A, NW CC A,
and z,| A,~w has a holomorphic extension 2y to W;

3. if zg € Vj_1, then cpk_1|AmW has a strongly g-convex extension ¢y_; to w.

4. if 2o € Y\ V_1, then p_1|y~w has a strongly g-convex extension @j_; to W.

Take an arbitrary smooth extension @1 of pp_1| Ao 1o W and let é)\ be an extension
of 0)\|AH|"]W to W Then

B = Gr1+ Y Oaelog(1+e5* |4

is an extension of g0k|AumW to W, resp. of Oklynw to W in case 4. As the function
log(1 + 5% |24]?) is plurisubharmonic and as its first derivative (2, dZ}) (% + |24]%) 7! is
bounded by O(g5?), we see that

1005y, > 10051 — O (Z 5A> .

Therefore, for €5 small enough, @) remains g-convex on W in cases 3 and 4. Since all
functions Z) vanish along Z, N W, we have

1003), > i00@_1+ Y 0rex 1100 |25* > i00y_1 + 0,,,"i00 | 2} |
Nel
at every point of Z, N W. Moreover i09@)_; has at most (¢ — 1)-negative eigenvalues on
TZ, since Z;, C Y, whereas if)g’z:f
in €,. In case 1, we thus find that ¢, is strongly g-convex on W for ¢, small enough;

we also observe that only finitely many conditions are required on each ¢, if we choose a
locally finite covering of | J Supp 6, by neighborhoods W as above. Therefore, for €, small

is positive definite in the normal directions to Zj

enough, ¢y is strongly g-convex on a neighborhood V;c of Zy \ Vk_1. The function ¢} and
the set Vj, = VJ. UVj,_; satisfy the requirements at order k. It is clear that we can choose
the sequence ¢, stationary on every compact subset of X; the limit ¢ and the open set
V' = J Vj fulfill the proposition. ]

The second step is the existence of almost plurisubharmonic functions having poles
along a prescribed analytic set. By an almost plurisubharmonic function on a manifold
we mean a function that is locally equal to the sum of a plurisubharmonic function and a
smooth function, or equivalently, a function whose complex Hessian has bounded negative
part. On a complex space, we require that our function can be locally extended as an
almost plurisubharmonic function in the ambient space of an embedding.
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Lemma 3.2.12. Let Y be an analytic subvariety in a complex space X. There is an
almost plurisubharmonic function v on X such that v = —oc on'Y with logarithmic poles
andv € € (X \Y).

Proof. Since .y C Ox is a coherent subsheaf, there is a locally finite covering of X by
patches A, isomorphic to analytic sets in balls B(0,7,) C CNA; such that .#y admits a
system of generators gy = (gx;) on a neighborhood of each set A). We set

1
r2 — |z — NG
v(z) =m(...,vx(2),...) for A such that A, > z,

uA(2) = log |gr(2)|* — on Ay,

where m is a regularized max function defined as follows: select a smooth function p on
R with support in [—1/2,1/2], such that p > 0, [; p(u)du =1, [;up(u)du =0, and set

m(ty,...,t,) = [ max{t; +uy,...,t,+u,} H p(u;) du;.
Ry 1<j<p

It is clear that m is increasing in all variables and convex, thus m preserves plurisubhar-
monicity. Moreover, we have

mty, ..ty ty) =mty, ..t t)

assoon as t; < max{ty,...,t;_1,tj41,...,t,} —1. Asthe generators (g, ;) can be expressed
in terms of one another on a neighborhood of Ay M A, we see that the quotient |gy| /|9,
remains bounded on this set. Therefore none of the values vy(z) for Ay 3 z and 2 near
DA, contributes to the value of v(z), since 1/(r2 — |z — z,|*) tends to +oo on dA,. It
follows that v is smooth on X \ Y: as each v, is almost plurisubharmonic on Ay, we also
see that v is almost plurisubharmonic on X. O

Theorem 3.2.13. Let X be a complex space and Y a strongly q-complete analytic subset.
Then'Y has a fundamental family of strongly q-complete neighborhoods V' in X.

Proof. By Proposition 3.2.11 applied to a strongly g-convex exhaustion of ¥ and = 1,
there exists a strongly g-convex function ¢ on a neighborhood Wy of Y such that ¢ly is
an exhaustion. Let W, be a neighborhood of Y such that W, C W, and such that ©liw,
is an exhaustion. We are going to show that every neighborhood W C W; of Y contains
a strongly g-complete neighborhood V. If v is the function given by Lemma 3.2.12, we
set

v=v+yxop onW,
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where y : R — R is a smooth convex increasing function. If x grows fast enough, we get
© > 0 on OW and the (¢ — 1)-codimensional subspace on which i9dy is positive definite
(in some ambient space) is also positive definite for i09% provided that x’ be large enough
to compensate the bounded negative part of i90v. Then ¥ is strongly g-convex. Let 6

be a smooth convex increasing function on | — 0o, 0 such that 6(t) = 0 for ¢ < —3 and
0(t) = =1/t on ] —1,0[. The open set V' = {z € W|i(z) < 0} is a neighborhood of ¥ and
1 =@+ 000 is a strongly g-convex exhaustion of V. H

It it obvious by definition that a n-dimensional complex manifold M is strongly ¢-
complete for ¢ > n + 1. If M is connected an non compact, this property also holds for
g = n, i.e. there is a smooth exhaustion ¢» on M such that 001 has at least one positive
eigenvalue everywhere. In fact, one can even show that M has strongly subharmonic
exhaustion functions. Let w be an arbitrary hermitian metric on M. We consider the
Laplace operator A, defined by

0%
szazk’

A,v = Trace, (i00v) = Z Wik (2)

i<jk<n

where (w’*) is the conjugate of the inverse matrix of (wj;). Note that A, may differ
from the usual Laplace-Beltrami operator if w is not Kahler. We say that v is strongly
w-subharmonic if A,v > 0. Clearly, this property implies that i00v has at least one
positive eigenvalue at each point, i.e. that v is strongly n-convex. Moreover, since

92
Ayx(vy, ... vs) = %(vl, cUs) Ay + Z Fguyc(vl’ ey 0s) {0V, OUg)y,
J 3k J

subharmonicity has the advantage of being preserved by all convex increasing combina-
tions, whereas a sum of strongly n-convex functions is not necessarily n-convex. We shall
need the following partial converse.

Lemma 3.2.14. If ¢ is strongly n-convexr on M, there is a hermitian metric w such that
Y is strongly subharmonic with respect to w.

Proof. Let Uy cC Uj, A € N, be locally finite coverings of M by open balls equipped
with coordinates such that 9*)/02z,0z; > 0 on U;\. By induction on A, we construct a
hermitian metric wy on M such that 1 is strongly wy-subharmonic on Uy U ... U Uy_;.
Starting from an arbitrary wy, we obtain wy from wy_; by increasing the coefficient w;! ,
in (w)® ) = (wr_1x;)"" on a neighborhood of Uy. Then w = limwy is the required
metric. O
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Lemma 3.2.15. Let U W C M be open sets such that for every connected component
Us of U there is a connected component Wy of W such that Wyy N Us) # @ and
Wi(s)\ Us # @. Then there exists a function v € €=(M,R),v > 0, with support
contained in U UW, such that v is strongly w-subharmonic and > 0 on U.

Proof. We first prove that the result is true when U, W are small cylinders with the same
radius and axis. Let ag € M be a given point and z,..., 2, holomorphic coordinates
centered at ag. We set Rz; = xg;_1, Szj = 295, &' = (22, ..., T9,) and w = Y wji(x) dz; ®
dzy. Let U be the cylinder || < 7, |2'| < r, and W the cylinder r—e < 27 < r+4-¢,|2/| <.
There are constants ¢, C' > 0 such that

Z@jk(m)é‘jfk > c|¢]* and Z & (2)] < C on U.

Let x € €°(R,R) be a non-negative function equal to 0 on | — 0o, —7] U [r + &, +00[ and
strictly convex on | —r, r]. We take explicitly x(z1) = (1 +7) exp(—1/(x1+7)?) on [—7, 7]
and

v(z) = x(x1) exp(1/(|2']F = 72)) on UUW, v =0o0n M\ (UUW).

We have v € €°(M,R),v > 0 on U, and a simple computation gives

= w (@) Az + 1) = 2(21 +7)7?)

+ Zc};lj(x)(l 2y + 7)) (= 21;) (12 — |2 )

+ >0 @ (@) (men(d = 802 = 2'1) = 202 — P 6 ) (2 = /),

> 2c(z1 4 1) — Cy(my + 1) 22| (2 — |2/7) 2
+ (2¢|2’|? = Cor®) (% — |2/]F) 2

with constants C}, Cy independent of 7. The negative term is bounded by C5(z; + r)*4 +
cl2'|? (r2 — |2/[*) 74, hence

Ayv/v(x) > clay +1)7° + (c||” — CorH)(r? — |2/|P)

The last term is negative only when |2/| < Cyr?, in which case it is bounded by Csr— <
c(zy +7)75. Hence v is strongly w-subharmonic on U.
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Next, assume that U and W are connected. Then U U W is connected. Fix a point
a € W\U. If 2o € U is given, we choose a path ' C U U W from 2, to a a which
is piecewise linear with respect to holomorphic coordinate patches. Then we can find a
finite sequence of cylinders (U;, W;) of the type described above, 1 < j < N, whose axes
are segments contained in I', such that

UjuW; cUUW, W,;CU; and z €Uy, a € Wy CW\U.

For each such pair, we have a function v; € ¢°°(M) with support in Uj U Wj, v; > 0,
strongly w-subharmonic and > 0 on U;. By induction, we can find constants C; > 0 such
that vy + Chv1 + ... + Cjv; is strongly w-subharmonic on Uy U ... U; and w-subharmonic
on M\ W;. Then

Wy = Vg + Crvg + ... + Env, >0

is w-subharmonic on U and strongly w-subharmonic > 0 on a neighborhood € of the
given point zg. Select a countable covering of U by such neighborhoods 2, and set v(z) =
> epw;, (2) where g, is a sequence converging sufficiently fast to 0 so that v € €>°(M,R).
Then v has the required properties.

_In the general case, we find for each pair (Us, Wy(s)) a function vs with support in
Us U Wy, strongly w-subharmonic and > 0 on U;. Any convergent series v = > esvs
yields a function with the desired properties. O

Lemma 3.2.16. Let X be a connected, locally connected and locally compact topological
space. If U is a relatively compact open subset of X, we let U be the union of U with all
compact connected components of X \ U. Then U is open and relatively compact in X,
and X\ U has only finitely many connected components, all non compact.

Theorem 3.2.17 (Greene-Wu). Every n-dimensional connected non compact complex
manifold M has a strongly subharmonic exhaustion function with respect to any hermitian
metric w. In particular, M is strongly n-complete.

Proof. Let ¢ € € (M,R) be an arbitrary exhaustion function. There exists a sequence
of connected smoothly bounded open sets €2, CC M such that ﬁ:, cy. and M =JQ,.
Let Q, = Q{, be the relatively compact open set given by Lemma 3.2.16. Then Q, C €11,
M =JQ, and M \ Q, has no compact connected component. We set

Ul — QQ, Uy B Qu—i—l \ﬁl,_g for v Z 2.

Then OU, = 0€,11 U 0€,_s; any connected component U, of U, has its boundary
OU, s ¢ 0%,_o, otherwise U, s would be open and closed in M\ €,_», hence U, s would be
a compact component of M\ ©,_5. Therefore 9U, s intersects 0,11 C Uy y1. If OU, 41 45)
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is a connected component of U, containing a point of U, ,, then U, 145 N U, s # @
and U145 \U,,,S # @. Lemma 3.2.15 implies that there is a non-negative function
v, € €°°(M,R) with support in U, U U,41, which is strongly w-subharmonic on U,. An
induction yields constants C), such that

¢V:@+C’1U1+...+CVUV

is strongly w-subharmonic on Q, C Uy U ... UU,, thus ¢ = ¢ + > C,v, is a strongly
w-subharmonic exhaustion function on M. O]

By an induction on the dimension, the above result can be generalized to an arbitrary
complex space, as was first shown by T. Ohsawa.

Theorem 3.2.18 (Ohsawa). Let X be a complex space such that all irreducible compo-
nents have dimension < n.

1. X is always strongly (n + 1)-complete.

2. If X has no compact irreducible component of dimension n, then X is strongly
n-complete

3. If X has only finitely many irreducible components of dimension n, then X is
strongly n-convex.

Proof. We prove 1 and 2 by induction on n = dim X. For n = 0, property 2 is void
and 1 is obvious (any function can then be considered as strongly 1-convex). Assume
that 1 has been proved in dimension < n — 1. Let X’ be the union of X, the singular
points of X, and of the irreducible components of X of dimension at most n — 1, and
M = X \ X’ the n-dimensional part of X,e, the regular points of X. As dim X’ <n —1,
the induction hypothesis shows that X’ is strongly n-complete. By Theorem 3.2.13, there
exists a strongly n-convex exhaustion function ¢’ on a neighborhood V' of X’. Take a
closed neighborhood V' C V' and an arbitrary exhaustion ¢ on X that extends ¢'|z. Since
every function on a n-dimensional manifold is strongly (n + 1)-convex, we conclude that
X is at worst (n + 1)-complete, as stated in 1

In case 2, the hypothesis means that the connected components M; of M = X \ X’
have non compact closure Wj in X. On the other hand, Lemma 3.2.14 shows that there
exists a hermitian metric w on M such that |y is strongly w-subharmonic. Consider
the open sets U;, provided by Lemma 3.2.19 below. By the arguments already used in
Theorem 3.2.17, we can find a strongly w-subharmonic exhaustion ¢ = ¢ + >, Cj,v;,
on X, with v;, strongly w-subharmonic on Uj,, Suppv;, C U;, UU;,4; and C;, large.
Then v is strongly n-convex on X.
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Lemma 3.2.19. For each j, there exists a sequence of open sets U;,, CC M;, v € N,
such that

1. M;\V'c,Uj, and (U;,) is locally finite in M;;

2. For every connected component U;,, s of U, there is a connfcted component Uj 11 4(s)
Of Uj,ll+1 such that Uj7y+17t(5) N Uj,”u,s % @ and Uj7y+1,t(5) \ Uj,y,s 7é .

Proof. By Lemma 3.2.16 applied to the space Mj, there exists a sequence of relatively
compact connected open sets §2;, in Mj such that Mj \ ©;, has no compact connected
component, ﬁj,,, C 2,41 and Mj = JQ;,. We define a compact set K, C M; and an
open set W;,, C M; containing K, by

ij - (ﬁjgj \ Qj,u—l) \ V/) VVj,V - Qj,y—‘,—l \ﬁj,V—Q-

By induction on v, we construct an open set U;, CC W;, \ X’ C M, and a finite
set Fjp C 0U;, \ Q. We let F;_; = @. If these sets are already constructed for
v — 1, the compact set K; U Fj,_; is contained in the open set W;,, thus contained
in a finite union of connected components W, ;. We can write K;, U F;,_1 = |JLj, s
where L;,  is contained in W;, s\ X’ C M;. The open set W,,, \ X’ is connected
and non contained in 2;, U L;, ;, otherwise its closure Wj,l,,s would have no boundary
point in 9€; 41, thus would be open and compact Mj \ € ,_2, contradiction. We select
a point a; € (W, \ X')\ (@, U Lj,,) and a smoothly bounded connected open set
Ujvs CC W,s\ X' containing L;, s with a; € 0U;, . Finally, we set U;, = |J,Uj s
and let Fj, be the set of all points a,. By construction, we have U;, D K;, U Fj,_1,
thus YU;, D UK, = M; \ V', and 9U,,s > a, with ay € F}, C Uj,+1. Property 2
follows. m

We now prove 3. Let Y C X be the union of Xy, with all irreducible components of
X that are non compact of dimension < n. Then dimY < n — 1, so Y is n-convex and
Theorem 3.2.13 implies that there is an exhaustion function ¢ € ¥*°(X,R) such that v
is strongly n-convex on a neighborhood V of Y. Then the complement K = X \ V is
compact and 9 is strongly n-convex on X \ K. O]

We now follow [Dem90] to give a simple proof of Ohsawa’s Hodge decomposition
theorem.

Let M be a complex n-dimensional manifold admitting a Kéhler metric w and a
strongly g-convex plurisubharmonic exhaustion function . For any convex increasing
function y € (R, R), we consider the new Kéhler metric

wy = w +i00(x 0 1) = w + X' (¥)idY + X" (¥)idw A O
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and the associated geodesic distance d,. Then the norm of x” ()2 dy) with respect to
wy, is less that 1, thus if p is a primitive of (y”)!/? we have

[p((x)) — p(¥(y))| < dx(z,y).

Hence w, is complete as soon as lim;_ p(t) = +00, that is [;* x"(¢)"/?dt = +oc. In the
sequel, we always assume that y grows sufficiently fast at infinity so that this condition
is fulfilled. We denote by L¥™ (M) = @,,,_, L2 (M) the space of L? forms of degree k
with respect to the metric w,, by ,%’;k(]\/[ ) the subspace of L? harmonic forms of degree k
with respect to the associated Laplace-Beltrami operator A, = dd} +d;d and by (M )

the space of L?-harmonic forms of bidegree (r,s) with respect to Agx = %; + 5;5. As

wy is Kahler, we have Ay = Agx = %AX, hence
ALY = @ A (M), A (M) = H (M), (3.9)
r+s==k
for each £ =0,1,...,2n. Since w, is complete, we have orthogonal decompositions

L2C(M) = A0 (M) & Im™ 0, & Im"™* 9,
Ker™ 9y = (M) & Im"™* (3.10)

where 5X is the unbounded 9 operator acting on L? forms with respect to wy and where

Im"™* means closure of the range (in the specified bidegree). In particular J#*(M) is

isomorphic to the quotient Ker™* 5X /Im"™* EX. Of course, similar results also hold for
A,-harmonic forms.

Lemma 3.2.20. Let u be a form of type (r,s) with L?

loc

coefficients on M. If r+s > n+q,
then u € Li’(r’s)(M) as soon as x grows sufficiently fast at infinity.

Proof. At each point € M, there is an orthogonal basis (0/0z,...,0/0z,) of T, X in

which
w=i Y dzAdz, we=i Y NdzAdz,
1<j<n 1<j<n
where \; < ... < A, are the eigenvalues of w, with respect to w. Then the volume

elements dV = w™/2"n! are related by
dVy =X ...\, dV
and for a (r,s)-form u = ), ;ur ydzr A dz; we find

e 5 (I e

[I|=r,|J|=s \kel keJ
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In particular

AL A Arit .
dV = ————
A A )\1 ‘ ’ A1 )\

July dVy < " luf? AV

On the other hand, we have upper bounds
)\j S 1 + ClX/<w)7 1 S] S n— 17 >‘n S 1 + ClX/(w) + C2X”(¢),

where C (z) is the largest eigenvalue of 109y () and Cy(x) = |91]*; to find the n — 1 first
inequalities, we need only apply the minimax principle on the kernel of 9. As 100t has
at most ¢ — 1 zero eigenvalues on X \ K, the minimax principle also gives lower bound

A>1, 1<i<qg—1, N>14+eX (W), ¢<j<n,

where c(z) > 0 is the g-th eigenvalue of {90y (x) and c(x) > 0 on X \ K. Assuming
X' > 1, we infer easily

[l dVy _ (14 CoX ()" (1 + Cax(¥) + Cox" (1))
uf?av = LT+ e (@)=
< Cy(X ()™ X (@) TT) on X\ K,

for r + s > n + g, this is less than
Cs (X'(0) "+ X"(0)X (1)),

and it is easy to show that this quantity can be made arbitrarily small when y grows
sufficiently fast at infinity on M. O

It is a well-known result of Andreotti-Grauert [AG62] that the natural topology on the
cohomology groups H*(M,.%) of a coherent sheaf .# over a strongly g-convex manifold
is Hausdorff for £ > ¢. If # = O(FE) is the sheaf of sections of a holomorphic vector
bundle, this topology is given by the Fréchet topology on the Dolbeault complex of L2

forms with L2 d-differential. In particular, the morphism

er”* 0, — H*(M, Q")

is continuous and has a closed kernel, and therefore this kernel contains Im"* 5x- We thus
obtain a factorization

S5 (M) ~ Ker™ 0, /Im"™* 9, — H*(M,").
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Consider the direct limit
lig,%’;’“’s(M) — H*(M,Q") (3.11)
X

over the set of smooth convex increasing functions y with the ordering
X1 < X2 <= x1 < x2 and Lifk)(M) C Lf@(k)(M) for k =r + s;

this ordering is filtering by the proof of Lemma 3.2.22. It is well known that the De Rham
cohomology groups are always Hausdorff, hence there is a similar morphism

lim (M) — H*(M, C). (3.12)

Theorem 3.2.21 (Ohsawa). Let (M,w) be a Kdhler n-dimensional manifold. Suppose
that M is absolutely q-convex, i.e. admits a smooth plurisubharmonic exhaustion function
that is strongly q-convex on M \ K for some compact set K. Set Q" = O(N\ T*M).
Then the De Rham Cohomology groups with arbitrary (resp. compact) supports have
decompositions

HYM,C)~ €P H* (M, ), H'(M,Q°) ~ H*(M,Qr), k>n+q,
r+s=k

HN(M,C)~ €P Hi(M, ), H' (M, Q) ~ Hs(M,Qr), k<n-—q,
r4+s=k

and these groups are finite dimensional. Moreover, there is a Lefschetz isomorphism
WA N e HI (M, Q) — HY (M, Q%) r+s<n-—q.

The first decomposition in Theorem 3.2.21 follows now from (3.9) and the following
simple lemma

Lemma 3.2.22. The morphisms (3.11),(3.12) are one-to-one fork =r+s>n+q.

Proof. Let us treat for example the case of 3.11, Let u be a smooth 0-closed form of
bidegree (r,s), 7 + s > n + q. Then there is a choice of x for which u € L2 (M), so
u € Ker™ 0, and (3.11) is surjective. If a class {u} € H7:°(M) is mapped to zero in
H*(M,Q"), we can write u = dv for some smooth form v of bidegree (r,s — 1). In the
case r+s > n+q, we have v € Li’(r’s_l)(M) for some x = xo. Hence the class of u = d,v
in J2*(M) is zero and (3.11) is injective. When r + s = n + ¢, the form v need not lie in

any space Li’(r’sfl)(M ), but it suffices to show that u = v is in the closure of Im"* 9, for
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some . Let 6 € €°(R,R) be a cut-off function such that 6(¢t) =1 for t < 1/2, 0(t) =0
fort > 1 and |¢'| < 3. Then

0 (0(s)v) = 0(ey)Ov + &b ()Y A w.

By the proof of lemma 3.2.20, there is a continuous function C'(x) > 0 such that \v|i dv, <
C(1+ x"()/x' () |v]* dV, whereas !51#‘?( < 1/x"(¢) by the definition of w,. Hence we
see that

[ weoponiaves [ o)) b av

is finite for x large enough, and 8(0(e1))v) converges to dv = u in Ly o(r s)(M).
[

By Poincaré-Serre duality, the groups H¥(M,C) and H:(M,Q") with compact sup-
ports are dual to H>"~*(M,C) and H"*(M, Q" ") as soon as the latter groups are Haus-
dorff and finite dimensional. This is certainly true for k = r 4+ s < n — ¢, thus we obtain
a Hodge decomposition

HE(M,C)~ @ Hi(M, ), H[(M, ")~ H;(M,Q), k<n-—gq (3.13)

r+s=k
As in Ohsawa [Ohs81], it is easy to prove that the Lefschetz isomorphism
W' N e (M) — ATTT(M) (3.14)

yields in the limit an isomorphism from the cohomology with compact support onto the
cohomology without supports. Indeed, the natural morphism

Hi (M, Q") — Ker™ 9, /Im"™ 9, ~ H5(M), r+s<n—q (3.15)

is dual to S (M) — H"*(M,Q"™"), which is surjective for y large by Lemma
3.2.20 and the finite dimensionality of the target space. Hence 3.15 is injective for y large
and after a composition with (3.14) we get an injection

H (M, ) = A" (M),

If we take the direct limit over all y, combine with the isomorphism (3.11) and observe
that w, has the same cohomology class as w, we obtain an injective map

W A e HI(M Q) = HYT(MLQY), r+s<n—q. (3.16)
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As both sides have the same dimension by Serre duality and Hodge symmetry, this map
must be an isomorphism. Since 3.16 can be factorized through H*(M, ") or through
H» (M, Q" *), we infer that the natural morphism

HE(M, Q) — H*(M, Q) (3.17)

is injective for r + s < n — ¢ and surjective for r +s > n+ q. Of course, similar properties
hold for the De Rham cohomology groups.
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Glossary of Symbols and Notations

(T, f) Hartogs frame, 86

(F*f*) Hartogs figure, 86

H%L Bott-Chern cohomology, 73

L, complex Hessian, 83

L}, Locally L' functions, 84

N(fi,..., fr)set of common zeros of fi, ..., fr,
88

P(a,r) polydisc centered in a of polyra-
dious 7, 84

PS(D) plurisubharmonic functions on D,
82

P* formal adjoint , 35

[A, B] commutator of A, B, 63

# antilinear operator, 47

%¢.(D) Continuous function with compact
support on D, 84

P(M, FE) harmonic forms of degree p,
51

Op, pseudodifferential operator, 41

A Laplace—Beltrami operator, 49

1 contraction by a tangent vector, 47

s[(2) 2 x 2 matrices with trace 0, 65

0S bundary of an analytic disc, 87

op Principal symbol, 34

* Hodge Operator, 46
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