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Oscar Garćıa Hernández

to obtain the degree of

Master of Science

in the speciality of

Mathematics

Advisor

Dr. Ernesto Lupercio Lara
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Resumen

Este trabajo es una introducción a la descomposición semiortogonal en geometría algebraica y sus
aplicaciones a problemas de racionalidad. La descomposición semiortogonal en geometría algebraica
esta motivada por la célebre conjetura de Maxim Kontsevich en simetría espejo homológica (homolog-
ical mirror symetry) el cual es un tema interesante y maravilloso difícil de evitar en este trabajo, pero
no lo mensionaremos aquí. Particularmente esta conjetura conecta geometría algebraica y simpléctica
el cual es un problema muy interesante en matemáticas y física.

En geometría birracional uno de los más importantes conceptos es la explosión (desingularización)
de una variedad y nosotros damos una formula para la descomposición semiortogonal de la categoría
derivada de gavillas coherentes en la explosión de una variedad y en particular describimos la categoría
derivada de la explosión de P2 en a lo más 8 puntos en posició general.
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Preface

This work provides an introduction to semiorthogonal decomposition in algebraic geometry as well as
some applications to rationality problems. Semiorthogonal decomposition is motivated by the Maxim
Kontsevich’s celebrated conjecture in homological mirror symmetry which in turn is an interesting
and wonderful topic that is complicated to avoid in this work, but we do not talk about it here.
Particularly this conjecture connects algebraic and symplectic geometry which is an amazing problem
in mathematics and physics.

In birational geometry one of the most important concept is the blow up of a variety and we give
a formula for the semiorthogonal decomposition of the derived category of coherent sheaves on the
blow up and in particular we describe the derived category of coherent sheaves on the blow up of P2

at the most on 8 points in general position.
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Introduction

Investigation of derived categories of coherent sheaves on algebraic varieties became one of the most
important topics in the modern algebraic geometry. Besides other reasons this is mainly caused by
the homological mirror symmetry conjecture of Maxim Kontsevich.

Mirror Symmetry was discovered several years ago in string theory as a duality between families of
3-dimensional Calabi-Yau manifolds, more precisely, complex algebraic manifolds possessing holomor-
phic volume elements without zeroes. The name comes from the symmetry among Hodge numbers.
For dual Calabi-Yau manifolds X, Y of dimension n (not necessarily equal to 3) one has

dim Hp(X,Ωq) = dim Hn−p(X,Ωq).

Physicists conjectured that conformal field theories associated with mirror varieties are equivalent.
Mathematically, MS is considered now as a relation between numbers of rational curves on such a
manifold and Taylor coefficients of periods of Hodge structures considered as functions on the moduli
space of complex structures on a mirror manifold. Recently it has been realized that one can make
predictions for numbers of curves of positive genera and also on Calabi-Yau manifolds of arbitrary
dimensions.

In 1994 Kontsevich at ICM [Kon94] changed the perspective of mirror symmetry and introduced
a new approach to it, the homological mirror symmetry and his celebrated conjecture. Briefly and
vaguely this conjecture connects algebraic and symplectic geometry, two amazing branches of math-
ematics that apparently have no anything in common and predicts that there is an equivalence of
categories between the derived category of coherent sheaves on a Calabi-Yau variety and the derived
Fukai category (Fukaya category of Lagrangian submanifolds) of its mirror. In this sense, the Fukaya
category is the category of A-branes and the derived category of coherent sheaves is the category of
B-branes.

Whereas the derived category of coherent sheaves is a familiar object, even the definition of the
Fukaya category is far more complicated. Moreover, the Fukaya category is not a category in the
usual sense, but an A∞-category.

Of course, even the formulation of this conjecture is vague, as it is difficult to grasp mathematically
the real meaning of mirror. The conjecture has been verified for elliptic curves by Polishchuk and Zaslov
in [PZ03]. Seidel has undertaken a detailed investigation of a special quartic K3 surface in [Sei03].

In chapter 1 we will give the basic theory of derived and triangulated categories introduced by
Verdier in his thesis [Ver65] and following our geometric approach we introduce the Fourier-Mukai
functors and Serre functors. Finally, we introduce Hochschild homology and cohomology of a geometric
derived category which are important invariants of the derived category of coherent sheaves of a given
algebraic variety.

ix



x INTRODUCTION

One year later of Kontsevich’s Homological Mirror Symmetry conjecture at ICM [Kon94] Boldal
and Orlov [BO95] introduce semiorthogonal decomposition for algebraic varieties which nowdays takes
part of the modern algebraic geometry [BO02] and [Orl03]. In chapter 2 we introduce semiorthogonal
decomposition for a given triangulated category and prove the Beilinson’s Theorem 2.1, a start point
for this theory. Basically in this work we present only one method for construct a semiorthogonal
decomposition which to be honest was discovered by Beilinson [Bei78]. Semiorthogonal decomposition
can be thought as "linear algebra on triangulated categories" and what is been trying to do, it is to find
a birational invariant in terms of the decomposition of the derived category of an algebraic variety.
To be more precise, if we have a semiorthogonal decomposition of the bounded derived category of a
cubic fourfold X in terms of exceptional objects E1, . . . , En

DDD(X) = 〈AX , E1, . . . , En〉,

with AX is the orthogonal complement of the objects E1, . . . , En, there exist evidence and examples
[Kuz15b] where the following conjecture holds.

Conjecture: X is rational if and only if there is a smooth projective K3 surface Y such that
AX

∼= DDD(Y ).

So following this approach, from the birational point of view Fano varieties are important objects
and provide interesting examples of semiorthogonal decompositions, in particular hypersurfaces are
Fano varieties and the semiorhogonal decomposition for cubic 3-folds and cubic 4-folds will give us
conditions for rationality.

Del Pezzo surfaces are so important in algebraic surfaces as Fano varieties are in the higher di-
mensional case. In chapter 3 we prove the main results of this work, the Orlov’s formula for the
semiorhogonal decomposition of the projectivization of a vector bundle and for the blow up of an alge-
braic variety, Proposition 3.1.1 (Orlov I) and Theorem 3.1 (Orlov II) respectively, which will provide
a formula for the semiorhogonal decomposition for del Pezzo surfaces which are blow ups of P2 at the
most on 8 points in general position.

Through this work X will be an algebraic variety in the sence of [Sha74] or [Har77], sometimes is
convenient think of X as an algebraic variety in the sence of [GH78].



Introducción

La categorí derivada de gavillas coherentes en variedades algebraícas se ha convertido en uno de los
principales objetos de estudio en gemetría algebraica. Una de las principales razones es la conjetura
de Maxim Kontsevich, homological mirror symmetry (simetría especular homológica).

Simetrí espejo o Simetrí de espejo se descubrió a atrás en teoría de cuerdas como una dualidad entre
familias de variedades Calabi-Yau de dimensión 3, más precisamente, variedades complejas algebraicas
que tienen una forma de volumen nunca cero. El nombre viene de la simetría entre los números de
Hodge. Para variedades Calabi-Yau X, Y de dimensión n (no necesariamente 3) uno

dim Hp(X,Ωq) = dim Hn−p(X,Ωq).

Físicos conjeturan que teorias conformes de campo asociadas con variedades espejo son equiva-
lentes. Matemáticamente, SE es considerada ahora una relación entre números de curvas racionales
en una variedad y coeficientes de Taylor de períodos de estructuras de Hodge consideradas como fun-
ciones en el espacio moduli de estructuras complejas en una variedad espejo. Recientemente se ha
encontrado que uno puede hacer predicciones para los números de curvas de género positivo y también
en variedades Calabi-Yau de dimensión arbitraria.

En 1994 Kontsevich en ICM [Kon94] cambió la perspectiva de simetría espejo e introdujo un
nuevo enfoque de esta, simetría especular homológica (homological mirror symmetry) y su celebrada
conjetura. Brevemente y vagamente esta conjetura conecta geometría algebraica y simpléctica, dos
ramas asombrosas de las matemáticas que aparentemente no tienen algo en común y predice que
hay una equivalencia entre la categoría derivada de gavillas coherentes en una variedad Calabi-Yau
y la categoría derivada de Fukaya (categoría de subvariedades Lagrangianas) de su espejo. En este
sentido, la categoría derivada de Fukaya es la categoría de A-branas y la categoría derivada de gavillas
coherentes es la categoría de B-branas.

Mientras que la categoría de gavillas coherentes es un objeto conocido y bien entendido, incluso la
definición de la categoría de Fukaya es más complicada. Más aun, la categoría de Fukaya no es una
catagoría en el sentido usual, si no una A∞-categoría.

Claro, incluso la formilación de esta conjetura es vaga así como difícil de formular, matemáti-
camente, el concepto de espejo. La conjetura se ha verificado para el caso de curvas elípticas por
Polishchuk y Zaslov en [PZ03]. Seidel ha investigado un caso de una cuadrica K3 especial en [Sei03].

En el capítulo 1 vamos a dar la teria básica de categorías trianguladas introducida por Verdier en
su tesis [Ver65] y siguiendo nuestro enfoque geométrico introducimos los funtores de Fourier-Mukai y
Serre. Finalmente, introducimos la homología y cohomología de Hochschild de una categoría derivada
geométrica las cuales son invariantes importantes de la categoría derivada de gavillas coherentes en
una variedad algebraica dada.
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xii INTRODUCCIÓN

Un adespués de la conjetura de Kontsevich, simetría especular homológica en el ICM [Kon94] Boldal
y Orlov [BO95] introducen la descomposición semiortogonal para variedades algebraicas la cual forma
parte de la geometría algebraica moderna actual, citeBO02 y [Orl03]. En el capítulo 2 introducimos
la descomposición semiortogonal para categorías trianguladas y provamos el teorema de Beilinson 2.1,
el cual es un punto de partida para esta teoría. Básicamente en este trabajo presentamos sólo un
metodo para construir una descomposición semiortogonal, el cual para ser honesto fue descubierto por
Beilinson [Bei78]. Descomposición semiortogonal se puede pensar como "álgebra lineal en categorías
trianguladas" y lo que se esta tratando de hacer, es encontrar un invariante biracional en terminos de
la descomposición semiortogonal de la categoría derivada de una variedades algebraica. Para ser más
preciso, si tenemos una descomposición semiortogonal de la categoría derivada acotada de una cúbica
X ⊂ P4 en terminos de objetos excepcionales E1, . . . , En,

DDD(X) = 〈AX , E1, . . . , En〉,

con AX el complemento ortogonal de los objetos E1, . . . , En, existe evidencia y ejemplos [Kuz15b]
donde la siguiente conjetura se comple.

Conjetura: X es racional si y sólo si existe una superficie K3 suave y projectiva Y , tal que
AX

∼= DDD(Y ).

Siguiendo esta idea, desde el punto de vista birracional las variedades de Fano son objetos impor-
tantes y dan ejemplos interesantes de descomposiciones semiortogonales, en particular hipersuperficies
son variedades de Fano y la descomposición semiortogonal para una cúbica en P4 y en P5 va a darnos
una condición de racionalidad.

Superficies de Del Pezzo son tan importantes en superficies algebraicas como lo son las variedades
de Fano en el caso de mayor dimensión. En el capítulo 3 probamos los principales recultados, la
formula de Orlov para la descomposición semiortogonal de la projectivización de un haz vectorial y
para la desingularización o explosión (blow up) de una variedad algebraica, Proposición 3.1.1 (Orlov
I) y Teorema 3.1 (Orlov II) respectivamente, las cuales nos darán una descomposición semiortogonal
para superficies del Pezzo las cuales se pueden ver como explosiones de P2 en a lo más 8 puntos en
posición general.

En este trabajo X va ha ser una variedad algebraica en el sentido de [Sha74] o [Har77], algunas
veces es conveniente pensar en X como una variedad algebraica en el sentido de [GH78].



1

Triangulated Categories

1.1 Derived categories
Derived categories were defined by Verdier in his thesis [Ver65] back in 60’s. When appeared they were
used as an abstract notion to formulate general results, like Grothendieck-Riemann-Roch theorem, for
which actually they were devised by Grothendieck. Later on, they were actively used by Hartshorne
as a technical tool in [Har66]. The situation changed with appearance of Beilinson’s brilliant paper
[Bei78], when they attracted attention as the objects of investigation. Finally, results of Bondal and
Orlov [BO95], [BO02] put them on their present place in the center of algebraic geometry.

We refer to [GM02] for a classical treatment of derived categories, and to [Huy06] for a more
geometrically point of view. Here we restrict ourselves to give an introduction into the subject.

From now on k will be a field.

Definition 1.1. A complex over a k-linear abelian category A is a pair (F •, d•F ), with F i ∈ A is a
collection of objects and diF : F i → F i+1 are morphisms, such that di+1

F ◦ diF = 0 for all i ∈ Z. A
complex is bounded if Fi = 0 for all |i| � 0. A morphism of complexes

(F •, d•F )
ϕ−→ (G•, d•G)

is a collection of morphisms ϕi : F i → Gi in A commuting with the differentials: ϕi+1 ◦ diF = diG ◦ ϕi

for all i ∈ Z. The category of bounded complexes in A is denoted by Comb(A).

One of the most important functors is the following

Definition 1.2. Let A be a k-linear abelian category and let (F •, d•F ) be a complex in A. The i−th
cohomology of the complex (F •, d•F ) is an object of A defined by

Hi(F •) =
Ker(diF : F i → F i+1)

Im(di−1
F : F i−1 → F i)

.

Clearly a morphism of complexes ϕ : F • → G• induces a morphism in cohomology Hi(ϕ) :
Hi(F •) → Hi(G•). Therefore the cohomology is a functor

Hi : Comb(A) → A.

1



2 1. TRIANGULATED CATEGORIES

A morphism of complexes ϕ : F • → G• is called a quasi-isomorphism if for all i ∈ Z the morphism
Hi(ϕ) is an isomorphism. The class of all quasi-isomorphism in Comb(A) is denoted by Qiso.

Definition 1.3. The bounded derived category of an abelian category A is the localization of Comb(A)
with respect to the class of quasi-isomorphisms,

DDDb(A) = Comb(A)[Qiso−1].

Of course, this definition itself requires an explanation, which we will skip and we refer to [GM02]
for describing this in detail instead. Here we just restrict ourselves by saying that a localization of a
category C in a localizing class of morphisms S is a category C[S−1] with a functor Q : C → C[S−1]
such that Q(S) are isomorphisms and the functor has a universal property, namely any functor K :
Comb(A) → B transforming the morphisms in S into isomorphisms can be uniquely factorized trough
C[S−1], i.e. there exist a unique functor G : C[S−1] → B such that K = G ◦Q.

Although sometimes it is more convenient to consider the unbounded, left bounded or right
bounded version of the derived category which are denoted by DDD∗(A), ∗ = ∅1,+,− respectively,
we will only consider the bounded case.

The cohomology functors descend to the derived category, so Hi : DDDb(A) → A is an additive
functor for each i ∈ Z. Further, there is a full and faithful embedding functor

A → DDDb(A),

taking an object F ∈ A to the complex · · · → 0 → F → 0 → · · · with zeroes everywhere outside of
degree zero, in which the object F sits. This complex has only one nontrivial cohomology which lives
in degree zero and equals F .

1.2 Triangulated categories

Triangulated categories are the kind of categories we will be interested in throughout, were introduced
independently and around the same time by Puppe and in Verdier’s thesis [Ver65] under the supervision
of Grothendieck. The most important structure on the derived category is the triangulated structure.

Definition 1.4. A triangulated category is an additive category T equipped with

• an automorphism of T called the shift functor and denoted by [1] : T → T , the powers of the
shift functor are denoted by [k] : T → T for all k ∈ Z;

• a class of chains of morphisms in T of the form

F1
ϕ1−→ F2

ϕ2−→ F3
ϕ3−→ F1[1] (1.1)

called distinguished triangles,

which satisfy a number of axioms see [GM02].
1The unbounded case.



1.2. TRIANGULATED CATEGORIES 3

Instead of listing all them we will discuss only the most important axioms and properties.
From now on by triangulated category T we will mean in a k-linear triangulated category.
First, each morphism F1

ϕ1−→ F2 can be extended to a distinguished triangle (1.1). The extension
is unique up to a noncanonical isomorphism, the third vertex of such a triangle is called a cone of the
morphism ϕ1 and is denoted by Cone(ϕ1).

Further, a triangle (1.1) is distinguished if and only if the triangle

F2
ϕ2−→ F3

ϕ3−→ F1[1]
ϕ1[1]−−−→ F2[1] (1.2)

is distinguished. Such triangle is referred to as the rotation of the original triangle. Clearly, rotating
a distinguished triangle in both directions, one obtains an infinite chain of morphisms

· · · → F3[−1]
ϕ3[−1]−−−−→ F1

ϕ1−→ F2
ϕ2−→ F3

ϕ3−→ F1[1]
ϕ1[1]−−−→ F2[1]

ϕ2[1]−−−→ F3[1]
ϕ3[1]−−−→ F1[2] → · · · ,

called a helix. Any consecutive triple of morphisms in a helix is thus a distinguished triangle.
The sequence of k-vector spaces

· · · → Hom(G,F3[−1])
ϕ3[−1]◦(−)−−−−−−−→ Hom(G,F1)

ϕ1◦(−)−−−−→ Hom(G,F2)
ϕ2◦(−)−−−−→ Hom(G,F3)

ϕ3◦(−)−−−−→ Hom(G,F1[1]) → · · · ,

is obtained by applying the funtor Hom(G,−) to a helix, is a long exact sequence. Analogously, the
sequence of k-vector spaces

· · · → Hom(F1[1], G)
(−)◦ϕ3−−−−→ Hom(F3, G)

(−)◦ϕ2−−−−→ Hom(F2, G)
(−)◦ϕ1−−−−→ Hom(G,F1)

(−)◦ϕ3[−1]−−−−−−−→ Hom(F3[−1], G) → · · · ,

obtained by applying the functor Hom(−, G) to a helix, is a long exact sequence.
In a triangulated category the isomorphisms are determined by a cone, i.e. a morphism F1

ϕ1−→ F2

is and isomorphism if and only if Cone(ϕ1) = 0. This follows from the following fact, if in the
triangle (1.1) one has ϕ3 = 0 the F2

∼= F1 ⊕ F3.

Definition 1.5. Let T be a triangulated category. A full additive subcategory S ⊂ T is called a
triangulated subcategory if S[1] = S (it is closed under the shift functor) and is closed under isomor-
phisms and cones, i.e. if we assume that in a distinguished triangle (1.1) we have F1, F2 ∈ S then
Cone(ϕ1) = F3 ∈ S.

The most important example of a triangulated category is the derived category of an abelian
category.

Derived category DDDb(A) carries a natural triangulated structure.

Definition 1.6. Let (F •, d•F ) a complex and ϕ : F • → G• a morphism of complexes over A. The
shift functor [1] : DDDb(A) → DDDb(A) is defined by

(F [1])i = F i+1, diF [1] = −di+1
F , (ϕ[1])i = −ϕi+1, (1.3)

and we write (F [1]•, d•F [1]). The cone of ϕ is defined by

Cone(ϕ)i = Gi ⊕ F i+1, dCone(ϕ) = (dG + ϕ,−dF ), (1.4)

and is denoted by (Cone(ϕ)•, d•Cone(ϕ)).
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A morphism of complexes F • ϕ−→ G• extends to a distinguished triangle by morphisms

κ : G• → Cone(ϕ)•, κ(gi) = (gi, 0); ρ : Cone(ϕ)• → F [1]• ρ(gi, f i+1) = f i+1.

Definition 1.7. A distinguished triangle in DDDb(A) is a triangle isomorphic to the triangle

F • ϕ−→ G• κ−→ Cone(ϕ)•
ρ−→ F [1]• (1.5)

defined above.

The following theorem was proved by Verdier in his thesis [Ver65].

Theorem 1.1 (Verdier). The shift functor [1] : DDDb(A) → DDDb(A) and the class of distinguished trian-
gles (1.5) provide DDDb(A) with a structure of a triangulated category

Note that the previous theorem is also valid for DDD∗(A), ∗ = ∅,+,− respectively.
For F,G ∈ A the spaces of morphisms in the derived category between F and shifts of G are

identified with the Ext-groups in the original abelian category

Hom(F,G[i]) = Exti(F,G).

For arbitrary objects F,G ∈ DDDb(A) we will use this as definition.

Definition 1.8. Let F,G ∈ DDDb(A),

Exti(F,G) := Hom(F,G[i]).

With this definition the long exact sequences obtained by applying Hom functors to a helix can be
rewritten as

· · · → Exti−1(G,F3) → Exti(G,F1) → Exti(G,F2) → Exti(G,F3) → Exti+1(G,F1) → · · · ,

· · · → Exti−1(F1, G) → Exti(F3, G) → Exti(F2, G) → Exti(G,F1) → Exti+1(F3, G) → · · · .

Example 1.2.1. Let A := Vect(k) be the category of finite dimensional vector spaces over k, A is
and abelian category. Moreover it is a semisimple, i.e. any exact sequence in A splits, or equivalently
is isomorphic to a sequence of the form 0 → A

(1A,0)−−−−→ A⊕B → B → 0. For instance, the category of
abelian groups is not semisimple: the sequence 0 → Z 2−→ Z → Z/(2) → 0 does not split. An object in
Com(A) is cyclic if all its differentials are zero, the subcategory of cyclic objects Com0(A) ⊂ Com(A)
is isomorphic to the category

∏∞
n=−∞A[n], where A[n] is the "n-th copy of A". Since Vect(k) is

semisimple then there is an equivalence of categories DDD(Vect(k)) →
∏

n∈Z Vect(k)[n] = Com0(Vect(k)).
In fact, any complex A• ∈ DDD(Vect(k)) is isomorphic to its cohomology complex

⊕
n∈ZHn(A•)[−n]

(with trivial differentials). Note that all of this works for any semisimple abelian category A.

Example 1.2.2. Let X be an algebraic variety over k. It is well know that the category of quasi-
coherent and coherent sheafs on X, Qcoh(X) and coh(X) respectively, are abelian categories see
[Huy06], [GM02] or [Har77] thus we can consider the derived categories of them DDD∗(Qcoh(X)) and
DDD∗(coh(X)), ∗ =,+,− respectively.
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In algebraic geometry the most important triangulated category for an algebraic variety X is the
bounded derived category of coherent sheaves on X. To make notation more simple we will use the
shorthand

DDD(X) := DDDb(coh(X)).

Although most of the results we will discuss are valid in much more generality, we restrict to the
case of smooth projective varieties. Sometimes one also may need some assumptions on the base field,
so let us assume for simplicity that k = C, from now on.

1.3 Triangulated functors
Definition 1.9. A triangulated functor between triangulated categories T1 → T2 is a pair (Φ, φ), where
Φ : T1 → T2 is a k-linear functor T1 → T2, which takes distinguished triangles of T1 to distinguished
triangles of T2, and φ : Φ ◦ [1]T1 → [1]T2 ◦ Φ is an isomorphism of functors. Usually the isomorphism
φ will be left implicit.

Definition 1.10. Let Φ : T1 → T2 be a triangulated functor. The kernel of Φ is defined to be the full
subcategory

Ker(Φ) = {F ∈ T1|Φ(F ) = 0}.

As one can expect

Lemma 1.1. Let Φ : T1 → T2 triangulated functor. Then Ker(Φ) is a triangulated category.

Proof. By definition Φ(F ) = 0 if and only if Φ(F )[1] = 0. Thus F [1] ∈ Ker(Φ) if and only if F ∈ Ker(Φ).
Also if F1, F2 ∈ Ker(Φ) such that Φ(F1) → Φ(F2) → Φ(F2) → Φ(F1)[1] is a triangle in T2 then it is
isomorphic to 0 → 0 → 0 → 0[1], and in particular Φ(F3) = 0. This proves the lemma.

There is a powerful theory (see [GM02] for the classical or [Kel06] for the modern approach) which
allows to extend an additive functor between abelian categories to a triangulated functor between their
derived categories. If an initial functor Φ is right exact, one extends it as the left derived functor LΦ
by applying the original functor Φ to a projective resolution of the object, and if the initial functor Φ
is left exact, one extends it as the right derived functor RΦ by applying Φ to an injective resolution.
We will not develop this theory here. Instead, we list the most important, from the geometric point
of view, triangulated functors between derived categories of coherent sheaves, see [Har66], or [Huy06]
for more details.

1.3.1 Pullbacks and pushforwards, twisted pullbacks, tensor products and local
Hom’s.

Pullbacks and pushforwards.
Let f : X → Y be a morphism of smooth projective algebraic varieties. It gives an adjoint pair of

functors (f∗, f∗), where

• f∗ : coh(Y ) → coh(X) is the pullback functor,

• f∗ : coh(X) → coh(Y ) is the pushforward functor..
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Since f∗ is right exact and f∗ is left exact, this adjoint pair induces and adjoint pair of derived functors
(Lf∗, Rf∗) on the derived categories, where

• Lf∗ : DDD(Y ) → DDD(X) is the left derived pullback functor,

• Rf∗ : DDD(X) → DDD(Y ) is the right derived pushforward functor.

The cohomology sheaves of the derived pullback and pushforward applied to a coherent sheaf F
are well known as the classical higher pullbacks and pushforwards.

Lif
∗(F) = Hi(Lf∗(F)), Rif∗(F) = Hi(Rf∗(F)).

When f : X → Spec(k) is the structure morphism of a k-scheme, the pushforward functor is
identified with the global sections functor Γ(X,−), so that Rf∗ = RΓ(X,−) and Rif∗ = H i(X,−).
On the other hand the functors Γ(X,−) and Hom(OX ,−) are equal, so their derived functors are
isomorphic, thus

Exti(OX ,−) ∼= RiΓ(X,−) ∼= H i(X,−).

For instance

Proposition 1.3.1. Let X = Pn, then for 0 ≤ j, i ≤ n and l > 0

Extl(O(−i),O(−j)) = Extl(ωi(i), ωj(j)) = 0.

And
Ext•(ωi(i), ωi(i)) = Ext•(ωi(i), ωi(i)) = k.

The last assertion means, Ext0(O(−i),O(−i)) = Ext0(ωi(i), ωi(i)) = k and Extl(O(−i),O(−i)) =
Extl(ωi(i), ωi(i)) = 0 for l > 0.

Proof. It is just a simple cohomology computation, indeed for example

Extl(O(−i),O(−j)) ∼= Ext•(O,O(i− j)) ∼= H l(X,O(i− j)).

The result follows since it is well know the cohomology in projective spaces, [Har77].

Tensor products and local Hom‘s.
Another important adjoint pair of functors on the category coh(X), of coherent sheaves, is (⊗,Hom).

In fact these are bifunctors, and the adjunction is a functorial isomorphism

Hom(F1 ⊗F2,F3) ∼= Hom(F1,Hom(F2,F3)).

This adjoint pair induces an adjoint pair of derived functors (
L
⊗,RHom) on the derived categories,

where

•
L
⊗ : DDD(X)×DDD(X) → DDD(X) is the left derived tensor product functor,

• RHom : DDD(X)opp ×DDD(X) → DDD(X) s the right derived local Hom functor.

One special case of the RHom functor is very useful.
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Definition 1.11. Let F ∈ DDD(X). The object

F∨ := RHom(F,OX)

is called the derived dual object.

As in the case of coherent sheaves with the smoothness assumption on X there is a canonical
isomorphism

RHom(F,G) ∼= F∨ L
⊗G

for all F,G ∈ DDD(X).
Twisted pullbacks.
The derived pushforward functor Rf∗ also has a right adjoint functor f ! : DDD(Y ) → DDD(X), which

is called sometimes the twisted pullback functor. The pair (Rf∗,f !) is an adjoint pair and is known as
the Grothendieck duality. The twisted pullback f ! has a very simple relation with the derived pullback
functor, under our assumption of smoothness and projectivity

f !(F ) ∼= Lf∗(F )
L
⊗ ωX/Y [dim X − dim Y ],

where ωX/Y = ωX ⊗ f∗ω−1
Y , is the relative dualizing sheaf.

The functors we introduced have many interesting properties and obey a long list of relations. Here
we mention the most important of them. More details and proofs can be found in [GM02], [Har66] or
[Huy06].

Functoriality. Let X
f−→ Y

g−→ Z be a pair of morphisms. Then

R(g ◦ f)∗ ∼= Rg∗ ◦Rf∗,

L(g ◦ f)∗ ∼= Lf∗ ◦ Lg∗,

(g ◦ f)! ∼= f ! ◦ g!.

In particular, if Z = Spec(k) then the first formula gives an isomorphism RΓ ◦Rf∗ ∼= RΓ.
Local adjunctions. There are isomorphisms

Rf∗RHom(Lf∗(F ), G) ∼= RHom(F,Rf∗(G)),

Rf∗RHom(G, f !(F )) ∼= RHom(Rf∗(G), F ).

If one applies the functor RΓ to these formulas, the usual adjunctions are recovered. Another local
adjunction is the following isomorphism

Rf∗RHom(F
L
⊗G,H) ∼= RHom(F,RHom(G,H)).

Tensor products and pullbacks. Derived tensor product is associative and commutative, the pull-
back functor is a tensor functor, i.e.

Lf∗(F
L
⊗G) ∼= Lf∗(F )

L
⊗ Lf∗(G)
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Lf∗RHom(F,G) ∼= RHom(Lf∗(F ), Lf∗(G)).

The projection formula. In a contrast with the pullback, the pushforward is not a tensor functor. It
has, however, a weaker property

Rf∗(Lf
∗F

L
⊗G) ∼= F

L
⊗Rf∗(G), (1.6)

which is called projection formula and is very useful. A particular case is the following isomorphism

Rf∗(Lf
∗F ) ∼= F

L
⊗Rf∗(OX)

Base change. Let f : X → S and u : T → S be morphisms of schemes consider the fiber product
XT := X ×S T and the fiber square

XT X

T S.

uX

fT
u

f

Figure 1.1: Base change

Using adjunctions and functoriality of pullbacks and pushforwards, one can construct a canonical
morphism of functors Lu∗◦Lf∗ → RfT∗◦Lu∗X . The base change theorem says that it is an isomorphism
under appropriate conditions. To formulate these we need the following

Definition 1.12. A pair of morphisms f : X → S and u : T → S is called Tor-independent if for all
points x ∈ X, t ∈ T such that f(x) = s = u(t) one has

Tori(OX,x,OT,t) = 0 for i > 0.

Recall, for F ,G ∈ coh(X) the classical Tor is Tori(F ,G) = H−i(F
L
⊗ G)

Remark 1.1. If either f or u is flat then the square is Tor-independent. Furthermore, when X, S,
and T are all smooth there is a simple sufficient condition for a pair (f, u) to be Tor-independent:

dim(XT ) = dim(X) + dim(Y )− dim(S),

i.e. the equality of the dimension of XT and of its expected dimension, see [Kuz05b].

The following theorem is proved in [Kuz05b].

Theorem 1.2 (Base Change). The base change morphism Lu∗ ◦ Lf∗ → RfT∗ ◦ Lu∗X is an isomor-
phism if and only if the pair of morphisms f : X → S and u : T → S is Tor-independent.

If u is flat and f proper, then there exists of a functorial isomorphism, the flat base change

u∗ ◦ Lf∗ → RfT∗ ◦ u∗X , (1.7)

for any F ∈ DDD(X). Note that u and, therefore, uX are flat, u∗, u∗X are exact and need not be derived.
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1.3.2 Fourier-Mukay functors and Serre functor

Fourier-Mukai transform between derived categories is the derived version of the notion of a corre-
spondence, which has been studied for all kinds of cohomology theories, e.g. Chow groups, singular
cohomology, etc., for many decades. Functors that are of Fourier-Mukai type behave well in many re-
spects. They are exact, admit left and right adjoints, can be composed, etc. In fact, Orlov’s celebrated
result [Orl03], says that any equivalence between derived categories of smooth projective varieties is
of geometric origin, i.e. of Fourier-Mukai type.

The analogy to the classical Fourier transform is most striking in the case of abelian varieties.
Roughly, L2-functions are replaced by complexes of coherent sheaves and, in particular, the usual
integral kernel by an object in the derived category of the product of the variety [Muk94].

An intrinsic property of a derived category is the Serre functor. The notion of a Serre functor is a
categorical interpretation of the Serre duality.

Definition 1.13. A Serre functor in a triangulated category T is an autoequivalence ST : T → T
with a bifunctorial isomorphism

Hom(F,G)∨ ∼= Hom(G,ST (F )),

for any F,G ∈ T .

If a Serre functor exists, it is unique up to a canonical isomorphism and when T = DDD(X) with X
smooth projective algebraic variety, the Serre functor is given by a simple formula [BK89]

SDDD(X)(F ) = F
L
⊗ ωX [dim X]. (1.8)

The bifunctorial isomorphism in its definition is the Serre duality for X.
If X is a Calabi-Yau variety i.e. ωX

∼= OX then the corresponding Serre functor SDDD(X)
∼= [dim X]

is just a shift. This motivates the following

Definition 1.14. A triangulated category T is a Calabi− Yau category of dimension n ∈ Z if ST ∼= [n].
A triangulated category T is a fractional Calabi− Yau category of dimension p

q ∈ Q if Sq
T
∼= [p].

Of course, DDD(X) cannot be a fractional Calabi-Yau category with a non-integer Calabi-Yau dimen-
sion, see (1.8).

The crucial properties of a Serre functor are summarized in the theorem below proved in [BK89].

Theorem 1.3. Let T be a triangulated category. Then a Serre functor ST , if it exists, is unique up to
a unique isomorphism of functors. It is exact i.e., takes exact triangles to exact triangles, commutes
with the shift and if Φ : T1 → T2 is a triangulated equivalence, then there is a canonical isomorphism

Φ ◦ ST1
∼= ST2 ◦ Φ.

The wonderful thing about Serre functor is that it allows one to convert from a left adjoint functor
to a right adjoint functor and vice versa. Specifically
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Theorem 1.4. Let Φ : T1 → T2 be a functor between triangulated categories that admit Serre functors
ST1 ,ST2. Assume that Φ has a left adjoint Φ∗ : T2 → T1. Then

Φ! := ST1 ◦ Φ∗ ◦ S−1
T2 : T2 → T1

is a right adjoint to F.

Proof. Lef F ∈ T1 and G ∈ T2, then

Hom(Φ(F ), G) ∼= Hom(S−1
T2 (G),Φ(F ))∨ ∼= Hom(Φ∗ ◦ S−1

T2 (G), F )∨ ∼= Hom(F,ST1 ◦ Φ∗ ◦ S−1
T2 (G)),

and the result follows.

Let X and Y be smooth projective algebraic varieties.

Definition 1.15. Let K ∈ DDD(X × Y ) an object of the derived category of the product. The
Fourier −Mukay funtor with kernel K is defined by

ΦK :DDD(X) → DDD(X)

F 7→ RpY ∗(K
L
⊗ Lp∗X(F )) ∀ F,

where pX : X × Y → X and pY : X × Y → Y are the projections, some times we denote them by
p1, p2 respectively.

ΦK is also called the kernel functor or the integral functor with kernel K. Fourier-Mukai functors
form a nice class of functors, which includes most of the functors we considered before. This class is
closed under compositions and adjunctions.

Example 1.3.1. The identity functor 1DDD(X) : DDD(X) → DDD(X) is naturally isomorphic to the Fourier-
Mukay functor ΦO∆

with kernel the structure sheaf O∆ of the diagonal ∆ ⊂ X × X. Indeed, with
ι : X

∼−→ ∆ ⊂ X ×X the diagonal embedding one has

ΦO∆
(F ) = Rp2∗(O∆

L
⊗ Lp∗1(F )) = Rp2∗(ι∗OX

L
⊗ Lp∗1(F ))

∼= Rp2∗(Rι∗(Lι
∗Lp∗1(F )

L
⊗OX)) Projection formula (1.6)

∼= R(p2 ◦ ι)∗L(p1 ◦ ι)∗(F ) p2 ◦ ι = 1 = p1 ◦ ι
∼= F.

It is a remarkable fact that, when X = Pn the structure sheaf O∆ has a locally free resolution
[Bei78]. Define for E ∈ DDD(X) and F ∈ DDD(Y ) the shorthand

E � F = Lp∗X(E)
L
⊗ Lp∗Y (F ) ∈ DDD(X × Y ).

Lemma 1.2 (Beilinson). The following is a locally free resolution of O∆ on DDD(Pn × Pn):

0 → O(−n)�Ωn(n) → O(−n+1)�Ωn−1(n−1) → · · · → O(−1)�Ω1(1) → OPn×Pn → O∆ → 0 (1.9)
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Proof. According to [FL85] we need to construct a section s of O(1) � T (−1) on Pn × Pn such that
the zeros of s, Z(s) = ∆, with T the tangent bundle of Pn.

Fix a basis y0, . . . , yn of H0(Pn,O(1)). Consider the Euler exact sequence of vector bundles on Pn,

0 → O(−1) → On+1 → T (−1) → 0.

Taking global sections we get an isomorphism H0(Pn,On+1) ∼= H0(Pn, T (−1)). A basis of H(Pn,On+1)
is given by a dual basis y∨0 , . . . , y

∨
n (dual to the basis y0, . . . , yn), and denote by ∂/∂yi the image of y∨i

in H0(Pn, T (−1)). So there is a global section s of O(1)� T (−1) on Pn × Pn given by

s =

n∑
i=0

xi �
∂

∂yi
,

where the xi’s and yi’s are coordinates of the first and second factor on Pn × Pn, respectively. The
claim is that the zeros of s, are precisely along the diagonal of Pn × Pn, Z(s) = ∆.

Without lost of generality, suppose that x0, y0 6= 0. In the chart where y0 6= 0 we have the affine
coordinates Yi = yi/y0 for 1 ≤ i ≤ n. Then ∂/∂Yi for 1 ≤ i ≤ n is a basis for T at this chart. From
yi = Yiy0 it follows that

dYi =
y0dyi + yidy0

y2o
.

If we write
∂

∂yi
=

n∑
i=1

fi
∂

∂Yi

with fi = dYi(
∂
∂yi

), it follows that
∂

∂yi
=

1

y0

∂

∂Yi

if i 6= 0, and
∂

∂y0
= −

n∑
i=1

yi
∂y20

∂

∂Yi
.

Therefore

s =

n∑
i=0

xi �
∂

∂yi
=

n∑
i=1

xi
y0

∂

∂Yi
−

n∑
i=1

xoyi
y20

∂

∂Yi
=

n∑
i=1

xiy0 − yix0
y20

∂

∂Yi
.

Thus s = 0 precisely when
xi
x0

=
yi
y0

for all i, i.e. in the diagonal of Pn × Pn. Taking the Kuszul resolution of the section s gives the
result.

Example 1.3.2. Let L be a line bundle on X. The functor F 7→ F
L
⊗ L is an autoequivalence

DDD(X) → DDD(X) which is isomorphic to the kernel ι∗(L ), with ι : X
∼−→ ∆ ⊂ X × X the diagonal

embedding again, as in the previous example.
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Example 1.3.3. Consider once more the diagonal embedding ι : X
∼−→ ∆ ⊂ X ×X. Then

Φι∗(ωk
X)

∼= Sk[−nk],

with SX the Serre functor (1.8) and n = dim X.

It is important know when a Fourier-Mukay functor is fully faithful, i.e. an embedding. In general
one has the following proposition which is proved in [Huy06].

Proposition 1.3.2. Let Φ : T1 → T2 be a functor between triangulated categories such that Φ has a
right adjoint Φ! : T2 → T1. Then

Φ is fully faithfull ⇐⇒ ∃ g : 1T1
∼−→ Φ! ◦ Φ.

Similarly, If Φ∗ is left adjoint to Φ then

Φ is fully faithfull ⇐⇒ ∃ h : Φ∗ ◦ Φ ∼−→ 1T1 .

Adjoint functors of Fourier-Mukai functors are also Fourier-Mukai functors.

Lemma 1.3. The right adjoint functor of ΦK is the Fourier-Mukai functor

Φ!
K

∼= Φ
K∨

L
⊗ωX [dim X]

: DDD(Y ) → DDD(X).

The left adjoint functor of ΦK is the Fourier-Mukai functor

Φ∗
K

∼= Φ
K∨

L
⊗ωY [dim Y ]

: DDD(Y ) → DDD(X).

Proof. The functor ΦK is the composition of the derived pullback LpX∗ , the derived tensor prod-
uct with K and the derived pushforward RpY ∗ functors. Therefore its right adjoint functor is the
composition of their right adjoint functors, i.e. of the twisted pullback functor p!Y , the derived ten-
sor product with K∨, and the derived pushforward functor RpX∗. By Grothendieck duality we have
p!Y (G) ∼= LpY ∗(G)

L
⊗ ωX [dim X]. All of this gives the first formula . For the second formula note that

if K ′ = K∨ L
⊗ ωY [dim Y ] then the functor ΦK′ : DDD(Y ) → DDD(X) has a right adjoint, which by the first

part of the Lemma coincides with ΦK . Hence the left adjoint of ΦK is ΦK′ .

An important kind of triangulated categories are those that can be embedded in other ones, for
instance.

Definition 1.16. Let T be atriangulated category. A full triangulated subcategory A ⊂ T is called
right admissible if for the inclusion functor i : A ↪→ T there is a right adjoint i! : T → A, and
left admissible if there is a left adjoint i∗ : T → A. Subcategory A is called admissible if it is both right
and left admissible.
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1.3.3 Spectral sequence

The spectral sequences which we are interested on, are these that appears when two derived functors
are composed.

One is advised to imagine a stack of square-lined sheets of paper with each square numbered by a
pair of integers (p, q) ∈ Z2. An object Ep,q

r is assumed to sit in the (p, q)-th square at the r-th sheet.
Objects En sit at the last, "transfinite" sheet, and occupy the whole diagonal p+q = n. More precisely

Definition 1.17. A spectral sequence in an abelian category A is a collection of objects

E = (Ep,q
r , En),

n, p, q, r ∈ Z, r > 0, and morphisms

dp,qr : Ep,q
r → Ep+r,q−r+1

r ,

such that

i) dp+r,q−r+1
r ◦ dp,qr = 0 for all p, q, r.

ii) For (Ep,q
r , dp,qr ) we can construct the cohomology

Hp,q(Er) = Ker dp,qr /Im dp+r,q−r+1
r ,

and there are isomorphisms αp,q
r : Hp,q(Er) → Ep,q

r+1.

iii) For any pair (p, q) there exist r0 such that dp,qr = 0, dp+r,q−r+1
r = 0 for r ≥ r0. In this case αp,q

r

identify all Ep,q
r for r ≥ ro and we will denote this object by Ep,q

∞ .

iv) A decreasing regular filtration · · · ⊃ F pEn ⊃ F p+1En ⊃ · · · on each En and isomorphisms
βp,q : Ep,q

∞ → F pEp+q/F p+1Ep+q are given. Recall that a decreasing filtration is regular if⋂
F pEn = {0},

⋃
p F

pEn = En.

If these conditions are satisfied we say that the spectral sequence (Ep,q
r ) converges to (En) or that

(En) is the limit of (Ep,q
r ) and sometimes one writes Ep,q

r ⇒ En.

The important fact for us is the following Proposition which is proved in [Huy06].

Proposition 1.3.3. Let RΦ : DDDb(A) → DDDb(B) the right derived functor of a left exact functor Φ :
A → B. Then there exist a spectral sequence which converges

Ep,q
1 = RqΦ(Ap) ⇒ Rp+qΦ(A•),

for any A• ∈ Comb(A).
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1.4 Hochschild homology and cohomology
Hochschild homology and cohomology of algebras are well known and important invariants. In a
geometric situation we have the following, let X be a smooth projective algebraic variety, dim X = n
and ι : X

∼−→ X ×X the diagonal embedding:

Definition 1.18. Let X be a smooth projective algebraic variety. Define the Hochschild cohomology
of X by

HH•(X) = Ext•X×X(O∆,O∆),

and the Hochschild homology of X by

HH•(X) = Ext•X×X(O∆, ι∗ωX [n]).

One can define Hochschild homology and cohomology for triangulated categories as well under
some technical assumptions [Kuz09].

When T is geometric, i.e. T = DDD(X) for some variety X, Hochschild homology and cohomology
have an interpretation in terms of standard geometrical invariants.

Theorem 1.5 (Hochschild-Kostant-Rosenberg). Let X be a smooth projective algebraic variety. If
T = DDD(X) then

HHk(T ) =
⊕

q+p=k

Hq(X,∧pTX), HHk(T ) =
⊕

q−p=k

Hq(X,Ωp
X) =

⊕
q−p=k

Hp,q(X).

Thus the Hochschild cohomology is the cohomology of polyvector fields, while the Hochschild
homology is the cohomology of differential forms, or equivalently, the Hodge cohomology of X with
one grading lost. Since DDD(X) is a Calabi-Yau category whenever X is a Calabi-You variety, we have
the following

HH•(X) ∼= HH•(X)[n] (1.10)

with n = dim X. In fact this result holds for any Calabi-Yau triangulated category see [Kuz09].

Example 1.4.1. If T = DDD(Spec(k)) then HH•(T ) = HH•(T ) = k

Sometimes, if X is a smooth projective algebraic variety, we will write HH•(DDD(X)) and HH•(DDD(X))
instead of HH•(X) and HH•(X).



2

Semiorthogonal decomposition

Investigation of derived categories of coherent sheaves on algebraic varieties became one of the most
important topics in the modern algebraic geometry. Besides other reasons this is caused by the
Homological Mirror Symmetry conjecture of Maxim Kontsevich [Kon94] predicting that there is an
equivalence of categories between the derived category of coherent sheaves on a Calabi-Yau vari-
ety and the derived Fukai category of its mirror. Thus from the point of view of mirror symmetry
it is important to investigate when the derived category of coherent sheaves on a variety admits a
semiorthogonal decomposition. In recent years an extensive investigation of semiorthogonal decom-
positions of derived categories of coherent sheaves on algebraic varieties has been done, and now we
know quite a lot of examples and some general constructions. With time it is becoming more and more
clear that semiorthogonal components of derived categories can be thought of as the main objects in
noncommutative algebraic geometry.

The goal of this chapter is define what it will be called an exceptional collection and give the
definition of a semiorthogonal decomposition (s.o.d. for short) of a triangulated category. Basically
we will give only one method to construct s.o.d. for a given triangulated category, by means of a
exceptional object or an admissible subcategory. Finally, Hochschild homology and cohomolgy are
very interesting topics related to s.o.d. of a triangulated category which give us some interesting
geometric consequences.

Through this chapter X will always be a smooth projective algebraic variety.

2.1 Semiorthogonal decomposition
We begin with two-step semiorthogonal decomposition and then we will generalize s.o.d.

Definition 2.1. A (two-step) semiorthogonal decomposition of a triangulated category T is a pair of
full triangulated subcategories A, B ⊂ T such that

1. Hom(B,A) = 0,

2. for any T ∈ T there is a distinguished triangle

TB → T → TA → TB[1], (2.1)

with TB ∈ B and TA ∈ A.

15
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The semiorthogonal decomposition for T is denoted by T = 〈A,B〉.

The condition definition 2.1, 1., can be thought as a condition of semiorthogonality (as in linear
algebra) between the subcategory B and A and the condition definition 2.1, 2., tells us that T is
"generated" by B and A, it is said (2.1) is decomposition triangle for T , we will explain what "generated"
means later.

Before giving an example let us prove the following lemma.

Lemma 2.1. Assume that is given a semiorthogonal decomposition T = 〈A,B〉, then for any T ∈ T
the triangle (2.1) is unique and functorial. In particular

T −→ A
T 7−→ TA,

is a functor, left adjoint to the embedding functor A ↪→ T ,i.e. A is an admissible subcategory. Similarly

T −→ B
T 7−→ TB,

is right adjoint to the embedding functor B ↪→ T and B is an admissible subcategory.

Proof. Firstly, let us check that if T, T ′ ∈ T and ϕ ∈ Hom(T, T ′) then there exist a morphism from
the triangle TB → T → TA → TB[1] to the triangle T ′

B → T ′ → T ′
A → T ′

B[1]. Consider the long exact
sequence obtained by applying the functor Hom(−, T ′

A) to (2.1):

· · · → Hom(TB[1], T
′
A) → Hom(TA, T

′
A) → Hom(T, T ′

A) → Hom(TB, T
′
A) → · · · .

By definition 2.1, 1., we have that Hom(TB[1], T
′
A) = Hom(TB, T

′
A) = 0 and then Hom(TA, T

′
A)

∼=
Hom(T, T ′

A). This means that the composition T
ϕ−→ T ′ → T ′

A factors in an unique way as a compo-
sition T → TA → T ′

A. Denoting the obtained morphism by TA
ϕA−−→ T ′

A, the uniqueness implies the
functoriality of T 7→ TA. Furthermore, let A ∈ A if we apply the functor Hom(−, A) to (2.1) and using
again definition 2.1, 1., the semiorthogonality, we deduce and isomorphism Hom(TA, A) ∼= Hom(T,A),
which means that the functor T 7→ TA is left adjoint to the embedding A ↪→ T . The functoriality of
T 7→ TB and its adjunction property are proved analogously.

In particular Lemma (2.1) says that the mapping cone is functorial. Note that the composition
of the embedding A ↪→ T with the projection T → A is the identity. In fact, the construction of
lemma 2.1 can be reversed.

Lemma 2.2. Let A α−→ T be a left admissible subcategory with T α∗
−→ A left adjoint to α and suppose

α∗ ◦ α ∼= idA. Then α is a full and faithful and there is a semiorthogonal decomposition

T = 〈α(A), ker α∗〉. (2.2)

Analogously, if B β−→ T is a right admissible subcategory with T β!

−→ B right adjoint to β and β!◦β ∼= idB,
then β is full and faithful and there is a s.o.d.

T = 〈Ker β!, β(B)〉. (2.3)
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Proof. Let B ∈ Ker α∗ then by adjunction Hom(B,α(A)) = Hom(α∗(A), B) = 0, this proves defini-
tion 2.1, 1.

Let T ∈ T and consider the morphism T
uT−−→ αα∗(T ), see Proposition 1.3.2, and extend it to a

distinguished triangle
T ′ → T

uT−−→ αα∗(T ) → T ′[1]. (2.4)
Applying α∗ we get a distinguished triangle

α∗T ′ → α∗T
α∗uT−−−→ α∗αα∗(T ) → α∗T ′[1],

since α∗uT is an isomorphism it follows that α∗T ′ = 0, hence T ′ ∈ Ker α∗ , so (2.4) is a decomposition
triangle for T . To see that α∗uT is an isomorphism, consider the composition

α∗T
α∗uT−−−→ α∗αα∗(T ) → α∗T,

where the last morphism is induced by the counit adjunction, see Proposition 1.3.2. The composition
of this maps is an isomorphism by Propositon 1.3.2 again, the second morphism is an isomorphism by
α∗ ◦ α ∼= idA. Hence the first morphism is also an isomorphism. This proves the first s.o.d.

The second statement is proved analogously.

Lemmas 2.1 and 2.2 show that a two-step s.o.d is given by admissible subcategories and conversely,
a left or right admissible subcategory gives a s.o.d. Later in the chapter we will see that indeed this
is one of the most important (probably the unique) way to construct s.o.d.

The main example of a triangulated category is the derived category of an abelian category as we
saw in, chapter 1, so it is in our interest to construct a s.o.d for the bounded derived category of an
algebraic variety X.
Example 2.1.1. Let X be a k-scheme with structure morphism πX : X → Spec(k). Suppose that
H•(X,OX) = k then there is a semiorthogonal decomposition

DDD(X) = 〈Ker RπX∗, Lπ
∗
XDDD(k)〉.

Remember DDD(k) = DDD(Spec(k)).
Indeed, the functor RπX∗ is right adjoint to Lπ∗

X , subsection 1.3.1 and by the projection for-
mula (1.6)

RπX∗(Lπ
∗
X(F )) ∼= F

L
⊗RπX∗(OX) = F

L
⊗H•(X,OX) = F

L
⊗ k = F,

for any F ∈ DDD(k). Thus, the functor Lπ∗
X is fully faithful and right admissible. The result follows by

the second part of lemma 2.2.
Example 2.1.2. With the notation of the previous example 2.1.1. There is a semiorthogonal decom-
position

DDD(X) = 〈Lπ∗
XDDD(k),Ker (RπX∗ ◦ SX)〉,

SX is the Serre functor of DDD(X).
By Theorem 1.4 RπX∗ ◦ SX is left adjoint to Lπ∗

X and for any E,F ∈ DDD(k),

Hom(RπX∗ ◦ SX ◦ Lπ∗
X(E), F ) = Hom(Lπ∗

X(E), Lπ∗
X(F ))

= Hom(E,RπX∗ ◦ Lπ∗
X(F )),

so RπX∗ ◦ SX ◦ Lπ∗
X

∼= idDDD(k). Then the first semiorthogonal decomposition of the lemma 2.2 applies.
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We know that DDD(k) is the derived category of k-vector spaces and that the functor Lπ∗
X applied

to an object V • ∈ DDD(k) is just Lπ∗
X(V •) = V • ⊗ OX , a complex of trivial vector bundles with zero

differentials, Example 1.2.1.
On the other hand RπX∗(−) ∼= Ext•(OX ,−), see subsection 1.3.1 so we have

Definition 2.2. The kernel of Ext•(OX ,−) is denoted by
O⊥

X = {F ∈ DDD(X)|Ext•(OX , F ) = 0},

and is called the (right) orthogonal subcategory of OX . Analogously, the (left) orthogonal subcategory
of OX is

⊥OX = {F ∈ DDD(X)|Ext•(F,OX) = 0}.
In general, for any object E ∈ DDD(X) it is defined the (right and left) orthogonal subcategory E⊥

and ⊥E, respectively.
With this notation, the s.o.d. for DDD(X) in examples 2.1.1 and 2.1.2 can be rewritten as

DDD(X) = 〈O⊥
X ,OX〉 (2.5)

and
DDD(X) = 〈OX ,⊥OX〉,

where we write OX instead of Lπ∗
X(DDD(k)) = DDD(k)⊗OX .

Note that if H•(X,OX) = k then Ext•(OX ,OX) = k. In general
Definition 2.3. Let E ∈ DDD(X), E is called an exceptional object if Ext•(E,E) = k.

Therefore, given an exceptional object E ∈ DDD(X), there are two semiorthogonal decompositions
DDD(X) = 〈E⊥, E〉 and DDD(X) = 〈E,⊥E〉,

where, again we write E instead of DDD(k)⊗ E.
Let us see some examples.

Example 2.1.3. 1) Suppose H•(X,OX) = Hom(OX ,OX) = C. (For instance, H•(X,OX) = C if
and only if X is connected.) Then by definition

(I) OX is exceptional if and only if H0(X,OX) = C and H>0(X,OX) = 0.

2) If (I) holds then any line bundle is exceptional. Indeed, it is enough to note
Exti(L ,L ) ∼= H i(X,L ∨ ⊗ L ) = H i(X,OX).

More generally, if E ∈ DDD(X) is an exceptional object and L is a line bundle then L
L
⊗ E is an

exceptional object.
Exceptionality is an intrinsic property of an object in a given triangulated category, since clearly

ΦL (F ) = F
L
⊗ L is an autoequivalence of a derived category.

Example 2.1.4 (Spec(C)). Suppose X = Spec(C) = pt then C is an exceptional object in DDD(C), more
over C[i] is an exceptional object for any i ∈ Z.

In fact, any exceptional object is of the form C[i] for some i. If E is an exceptional object and
E 6= C[i] for some i then E = C[i]⊕ C[j] 1 and this means that Hom(E,E) 6= k because there are at

1Since the category Vect(C) is semisimple each object is a direct sum of irreducible objects.
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least two linearly independent homomorphisms of E (namely the identity of C[i] and C[j] ), hence E
can not be an exceptional object.

Example 2.1.5 (Curves). Let C be a smooth projective curve of genus g. If there is an exceptional
object E ∈ DDD(C) then C ∼= P1, see [Oka11], and E ∼= OP1(k)[i] for some integers i and k. To see the
last part, any coherent sheaf in P1 can be represented as a direct sum of torsion sheafs or as a sum
of line bundles; torsion sheafs are not exceptional because their Ext1’s groups are not equal to zero
and sums of line bundles are not exceptional because they have more than one linearly independent
morphisms. So E is a line bundle and thus E ∼= OP1(k)[i].

2.1.1 General semiorthogonal decomposition

The construction of Lemma 2.2 can be iterated to produce a longer (multi-step) semiorthogonal
decomposition.

Definition 2.4. Let T a triangulated category. A semiorthogonal decomposition of T :

T = 〈A1, . . . ,Am〉, (2.6)

is a sequence A1, . . . ,Am of full triangulated subcategories of T such that

(i) Hom(Ai,Aj) = 0 for i > j;

(ii) for any T ∈ T there is a chain of morphisms

0 = Tm Tm−1 Tm−2 · · · T1 T0 = T

cm cm−1 c1
[1] [1] [1]

with ci = Cone(Ti → Ti−1) ∈ Ai, for 1 ≤ i ≤ m.

The subcategories Ai are called components of T with respect to (2.6). A sequence A1, . . . ,Am

satisfying the fist condition will be called semiorthogonal.

Remark 2.1. The first condition implies the objects Ti ∈ T and ci ∈ Ai are uniquely determined by
and functorial on T , see Lemma 2.1. The functor T → Ai, T 7→ ci are called projection functors, and
ci is called the component of T in Ai with respect to the decomposition (2.6).

Also the construction in (2.5) can be iterated to produce a semiorthogonal decomposition.

Definition 2.5. A sequence of exceptional objects E1, . . . , En ∈ DDD(X) is called an exceptional collection
if Ext•(Ei, Ej) = 0 for i > j.

Lemma 2.3. Assume E1, . . . , En ∈ DDD(X) is an exceptional collection. Then

DDD(X) = 〈E⊥
1 ∩ · · · ∩ E⊥

n , E1, . . . , En〉

is a semiorthogonal decomposition.
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Proof. By (2.5) for En ∈ DDD(X) we have a s.o.d. DDD(X) = 〈E⊥
n , En〉, since E1, . . . , En−1 ∈ E⊥

n there is
a s.o.d. E⊥

n = 〈E⊥
n−1, En−1〉 by (2.5), again. So DDD(X) = 〈E⊥

n−1 ∩ E⊥
n , En−1, En〉 and we repeat this

process until the required s.o.d. is obtained.

The semiorthogonal decomposition of Lemma 2.3 will give us many interesting examples, one of
them is the following.

Definition 2.6. An exceptional collection E1, . . . , En ∈ DDD(X) is called a full exceptional collection (for
short f.e.c.) if E⊥

1 ∩ · · · ∩ E⊥
n = 0.

Corollary 2.1. If E1, . . . , En ∈ DDD(X) is a full exceptional collection then DDD(X) = 〈E1, . . . , En〉.

Remark 2.2. The definitions of orthogonal subcategory, exceptional object, exceptional collection and
full exceptional collection can be defined in an arbitrary triangulated category, namely by definition
Exti(E,F ) = Hom(E,F [i]) for any objects E and F , Definition 1.8 so, for example if E is now an
object in a k-linear triangulated category then E is exceptional if Hom(E,E[i]) = k if i = 0 and
Hom(E,E[i]) = 0 if i 6= 0. Analogously the orthogonal subcategory, exceptional collection and full
exceptional collection are defined, and the results showed above about exceptional objects, orthogonal
subcategories, etc. are valid for k-linear triangulated categories. For instance see [Huy06].

The following proposition shows that indeed exceptionality is an intrinsic property of objects in a
given triangulated category.

Proposition 2.1.1. Let T be a k−linear triangulated category such that T Φ−→ T is an autoequivalence.
If E1, . . . , En ∈ T is a f.e.c then Φ(E1), . . . ,Φ(En) is a f.e.c.

Proof. In order to prove that Φ(E1), . . . ,Φ(En) are exceptional it is enough to note

Hom(Φ(Ei),Φ(Ei)[j]) ∼= Hom(Ei, Ei[j]), ∀i, j

To see that the collection is full, it is clear that

0 = Φ(E⊥
1 ∩ · · · ∩ E⊥

n )
Φ∼= Φ(E1)

⊥ ∩ · · · ∩ Φ(En)
⊥,

and the result follows.

The functor Lπ∗
X in Example 2.1.1 can be defined in an arbitrary k−linear triangulated category.

Definition 2.7. Let T be a triangulated category and let E ∈ T . We define the functor

DDD(k)
ΦE−−→ T

V • 7→ V • ⊗k E ∀ V •

The operation V •⊗kE in T is very simple, ΦE takes k to E. For instance, if V • is a graded vector
space with a three dimensional space in degree zero and a two dimensional space in degree five then
V • ⊗k E = (E[0]⊕ E[0]⊕ E[0])

⊕
(E[5]⊕ E[5]).

By Example 2.1.1 we have that the functor Lπ∗
X is fully faithful if OX is exceptional and the

converse is also true, if Lπ∗
X is fully and faithful then OX is exceptional.
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Lemma 2.4. Let T be a k−linear triangulated category. Then E ∈ T is an exceptional object if and
only if DDD(k)

ΦE−−→ T is fully and faithful, i.e an embedding.

Proof. By Proposition 1.3.2, it is enough to prove ΦE has a right adjoint functor Φ!
E with Φ!

E ◦ΦE
∼=

1DDD(k). Since the tensor functor (−)⊗k has to RHom as right adjoint,

Hom(ΦE(V
•), F ) = Hom(V • ⊗k E,F ) = Hom((V •, RHom(E,F )),

so we define Φ!
E(−) = RHom(E,−) as the right adjoint to ΦE .

Now, consider the composition Φ!
E ◦ ΦE(V

•) = RHom(E, V • ⊗k E) ∼= RHom(E,E) ⊗k V
•. Then

we see that Φ!
E ◦ ΦE

∼= 1DDD(k) if and only if RHom(E,E) = k if and only if E is exceptional.

Lemma 2.4 gives us another form to write the s.o.d. for DDD(X) in examples 2.1.1 and 2.1.2

DDD(X) = 〈DDD(pt)⊥,DDD(pt)〉 and DDD(X) = 〈DDD(pt),⊥DDD(pt)〉,

with DDD(k) = DDD(pt), and in general if we have an exceptional object E ∈ T then

T = 〈DDD(pt)⊥,DDD(pt)〉 and T = 〈DDD(pt),⊥DDD(pt)〉.

An important problem in the theory of s.o.d. is giving good necessary conditions for a exceptional
collection to be full, actually it is so complicated to construct a full exceptional collection. But if we
have good luck, we will find out a exceptional collection and so get a s.o.d as in Lemma 2.3. It will
be showed when X = Pn there is full exceptional collection. In fact there is a

Conjecture 2.1. Let T = 〈E1, . . . , En〉 be a s.o.d. given by an exceptional collection for triangulated
category. Then any exceptional collection of length n in T is full.

Recall that for T = DDD(X) we have HH0(T ) = H0(X,OX) by the HKR isomorphism, Theorem 1.5.
This and Lemma 2.4 motivate the following

Definition 2.8. A triangulated category T is called connected, if HH0(T ) = k.

Later, we will give some examples of connected triangulated categories. In retrospective, at this
point, it must be naive that if a triangulated category is connected then it has not s.o.d. Nevertheless,
there is a stronger version of s.o.d. that will be useful to prove it.

Definition 2.9. Let T be a triangulated category. We say that T = 〈A,B〉 is a completely orthogonal
decomposition if it is a s.o.d. and Hom(A,B) = 0. A triangulated category that has a completely
orthogonal decomposition is called decomposable otherwise it is called indecomposable.

Later, we will see that the derived category of an integral scheme is indecomposable, Proposi-
tion 2.3.1, and as one expects

Definition 2.10. A semiorthogonal decomposition T = 〈A1, . . . ,Am〉 is maximal, if each component
Ai is an indecomposable category, i.e., does not admit a nontrivial semiorthogonal decomposition.
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2.1.2 Mutations

If a triangulated category T has a semiorthogonal decomposition then usually it has quite a lot of
them. More precisely there are two groups acting on the set of semiorthogonal decompositions (the
group of autoeqivalences of T , and certain braid group); the action of the braid group is given by the
so called mutations.

Roughly speaking, the mutation drops one of the component of the s.o.d. and extends the obtained
semiorthogonal collection by inserting a new component at some other place. More precisely, the basic
two operations are defined as follows.

Definition 2.11. Let A α−→ T be and admissible subcategory. We define the left and right mutation functors
by

LA : T −→ T
T 7−→ Cone(αα!T → T ) ∀T ∈ T ,

RA : T −→ T
T 7−→ Cone(T → αα∗T )[−1] ∀F ∈ T ,

respectively.

The following lemma proved in [Kuz08] describes the above mutation functors.

Lemma 2.5. Let A α−→ T be and admissible subcategory so that we have two s.o.d. T = 〈A⊥,A〉 and
T = 〈A,⊥A〉. Then the left and right mutation functors vanish on A and induce mutually inverse
equivalences ⊥A LA−−→ A⊥ and A⊥ RA−−→ ⊥A.

Now we will explain what generated means in the paragraph after Definition 2.1.

Definition 2.12. Let S ⊂ T be a collection of objects of a triangulated category. The collection S
generated T if the smallest triangulated subcategory of T containing S is equivalent to T , via the
inclusion.

Although the smallest triangulated subcategory from Definition 2.12 must be closed under direct
summands and cones, in order to know how this subcategory looks like we need to assume the condition
of semiorthogonality.

Proposition 2.1.2. Let T be a triangulated category and suppose that A1, . . . ,Am are full triangulated
subcategories of T . If Hom(Aj ,Ai) = 0 for i > j, then the following conditions

(i) A1, . . . ,Am are admissible and T is generated by A1, . . . ,Am,

(ii) T has a s.o.d., T = 〈A1, . . . ,Am〉

are equivalent.
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Proof. (i) ⇒ (ii) Let F ∈ T and defined inductively

F0 := F and Fi := RAi(Fi−1), i = 1, . . . , n.

Note that Fi ∈ ⊥A1 ∩ · · · ∩ ⊥Ai for i = 1, . . . , n and RAi(Fi−1 is on the left of the triangle
Fi−1 → αα∗(Fi−1) → Cone(Fi−1 → αα∗(Fi−1)) → Fi−1[1], so we have a sequence of morphism

Fm → Fm−1 → · · · → F1 → F0 = F. (2.7)

Finally Fm ∈ ⊥A1∩· · ·∩⊥Am = 0, the last equality follows from the fact that A1, · · · ,Am generate
T , so all the properties of Definition 2.4 are satisfied.

(ii) ⇒ (i) If A1, · · · ,Am is a s.o.d. for T we have a chain of morphisms as (2.7) with the property
Cone(Fi → Fi−1) ∈ Ai for all i, then the statement that A1, · · · ,Am generates follows. The only thing
that we have to check is that Ai admissible for any i. Let us show that Am is admissible, the functor

T α∗
−→ Am

F 7→ Fm−1,

where Fm−1 appears in (2.7), is right adjoint of the embedding functor αAm ↪→ T . Let A ∈ Am,
applying the functor Hom(A,−) to (2.7) we obtain Hom(A,Fm−1) = Hom(A,F0) which means

Hom(A,α∗(F )) = Hom(α(A), F ),

i.e. α∗ is right adjoint to α and clearly α∗α ∼= idAm , so Am is admissible. On the other hand, since
Am is admissible then Am

⊥ is admissible too, and by the s.o.d. of T we have

Am
⊥ = 〈A1, . . . ,Am−1〉, (2.8)

applying the same argument to the subcategory Am−1 with the s.o.d. (2.8) we deduce Am is admissible
and so on.

2.2 Semiorthogonal decomposition for Fano varieties
In this section we will show that for a Fano variety X there exist a s.o.d. given by line bundles, the fist
example is the projective space. In fact, DDD(Pn) has a full exceptional collection, Corollary 2.2, which
is a result proved by Beilinson. After proving Beilinson’s theorem 2.1 we will give a nice application
to moduli spaces, namely we will give an alternative construction of the moduli space of rank 2 vector
bundles in P2, and thus we will give examples of s.o.d. for some hypersurfaces, which are Fano varieties.
Finally, Hochschild homology is well behaved if one has a s.o.d. for a given triangulated category and
this fact has many interesting geometric consequences.

2.2.1 Beilinson’s Spectral sequence

Beilinson in his brilliant paper [Bei78] proved DDD(Pn) has an exceptional collection, more over duo to
the existence of a very special resolution of O∆, the structure sheaf of the diagonal ∆ in Pn×Pn, there
is nevertheless a highly intriguing structure that emerges, the Beilinson’s spectral sequence. After
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giving the proof of the convergence of this spectral sequence we will give some applications. We will
also describe Beilinson’s original proof, which is beautifully geometric and actually proves more −
giving an explicit presentation (2.11) of any F ∈ DDD(Pn) in terms of the exceptional collection.

Lemma 1.2 says that O∆ has a locally free resolution which we denote by L• → O∆, so inDDD(Pn×Pn)
one has L• ' O∆.

Theorem 2.1 (Beilinson’s Spectral sequence). For any F ∈ Coh(Pn) there exist two spectral sequences

Ep,q
1 := Hq(Pn,F(p))⊗k Ω

−p(−p) ⇒ Ep,q =

{
F , p+ q = 0,

0 , p+ q 6= 0,
(2.9)

and

Ep,q
1 := Hq(Pn,F ⊗ Ω−p(−p))⊗k O(p) ⇒ Ep,q =

{
F , p+ q = 0,

0 , p+ q 6= 0.
(2.10)

Proof. The theorem is a consequence of the spectral sequence given by the right and left derived
functor, Proposition 1.3.3.

Let F ∈ Coh(Pn) and let A• := p∗1(F)⊗L•, note that in A• the tensor product need not be derived,
as L• is a complex of locally free sheaves, (here pi : Pn × Pn → Pn, i = 1, 2 are the projections). Thus

Ap := F(p))� Ω−p(−p)

and

ΦO(−p))�Ωp(p)(F) = Rp2∗(A
p) = p2∗(F(p))� Ω−p(−p)) projection formula (1.6)

= Ω−p(−p)⊗ p2∗p
∗
1(F(p)) flat base change (1.7)

= Ω−p(−p)⊗ g∗f∗(F(p))

= Ω−p(−p)⊗ Γ(F(p)).

Hence
Rqp2∗(A

p) = RqΓ((F(p)))⊗k Ω
−p(−p) = Hq(Pn,F(p))⊗k Ω

−p(−p).

On the other hand, L• ' O∆ in DDD(Pn × Pn), so

ΦO∆
(F) = Φι∗OPn (F) = p2∗(p

∗
1(F)⊗O∆)

= p2∗(p
∗
1(F)⊗ ι∗OPn)

= p2∗ι∗(ι
∗p∗1(F)⊗OPn) projection formula (1.6)

= (p2 ◦ ι)∗(p1 ◦ ι)∗(F ⊗OPn) see Example 1.3.1
= F .

This proves the spectral sequence (2.9). The proof of the second spectral sequence (2.10) is analogous
just interchanging p1 and p2.
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Remark 2.3. The spectral sequences (2.9) and (2.10) hold for any object F ∈ DDD(Pn). Indeed, similar
computations show that

ΦO∆
(F ) = Rp2∗(Lp1∗F

L
⊗O∆) = R(p2 ◦ ι)∗(L(p1 ◦ ι)∗F ) = F,

and
ΦΩp(p)�O(−p))(F ) = RΓ(Pn,Ωp(p)

L
⊗ F )⊗kO(−p)

for F ∈ DDD(Pn) and we see that F is quasi-isomorphic to the complex

Fn ⊗k OPn(−n) → Fn−1 ⊗k OPn(−(n− 1)) → · · ·F1 ⊗k OPn(−1) → F0 ⊗k OPn , (2.11)

where Fi := RΓ(Pn,Ωp(p)
L
⊗ F ). Therefore this can be rewritten to get analogous spectral sequences

to those in Theorem 2.1 and they converge to the object F too.

Note that Ω−p(−p) is non-trivial for −n ≤ r ≤ 0, so Ep,q
1 in (2.9) and (2.10) are trivial for p < −n

or p > 0 independently of F . Also Ep,q
1 = 0 for q < 0 and q > n. Thus both spectral sequences are

concentrated in the second quadrant.

Corollary 2.2. The sequence of line bundles

O(−n), . . . ,O(−1),O ∈ DDD(Pn)

is a full exceptional collection. Hence, there is a s.o.d.

DDD(Pn) = 〈O(−n), . . . ,O(−1),O〉.

In general O(m), . . . ,O(n+m) is a f.e.c. for any m ∈ Z.

Proof. By Proposition 1.3.1 , O(−n), . . . ,O(−1),O) is an exceptional collection. In order to show it
is full let us prove O(−n)⊥ ∩ · · · ∩ O(−1)⊥ ∩ O⊥ = 0.

Let F ∈ Coh(Pn) such that F ∈ O(−n)⊥∩· · ·∩O(−1)⊥∩O⊥, applying (2.9) to F yields a spectral
sequence with

Ep,q
1 = Hq(Pn,F(p))⊗ Ω−p(−p) ∼= Extq(O,F(p))⊗ Ω−p(−p),

Ep,q
1 is non-trivial for −n ≤ p ≤ 0 but

Extq(O,F(p)) ∼= Extq(O(−p),F) = 0,

for n ≥ −p ≥ 0. Then Ep,q
1 = 0 and F ' 0 by (2.9).

For the general case, the resolution L• ' O∆ can be split into short exact sequences,

0 → O(−n))� Ωn(n) → O(−(n− 1))� Ωn−1(n− 1) → En−1 → 0

0 → En−1 → O(−(n− 2))� Ωn−2(n− 2) → En−2 → 0

...
0 → E1 → OPn×Pn → O∆ → 0.
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Each short exact sequence can be regarded as a distinguished triangle in DDD(Pn × Pn). Let F ∈
DDD(Pn), tensor product with Rp∗2(F ) and taking derived direct image under p1 yields distinguished
triangles

ΦEi+1(F ) → ΦO(−i)�Ωi(i)(F ) → ΦEi(F ) → ΦEi+1(F )[1].

(Morally we are using (2.10) this time). Clearly, ΦO(−i)�Ωi(i)(F ) ∼= H•(Pn, F
L
⊗ Ωi(i)) ⊗k O(−i)) is

contained in 〈O(−i)〉 for 0 ≤ i ≤ n and

Cone(ΦO(−n)�Ωn(n)(F ) → ΦO(−(n−1))�Ωn−1(n−1)(F )) ∼= ΦEn−1(F ) ∈ 〈O(−n),O(−(n− 1))〉.

By induction ΦEi(F ) ∈ 〈O(−n), . . . ,O(−i)〉 for all i and eventually F ' ΦO∆
(F ) ∈ 〈O(−n), . . . ,O(−1),O〉.

Thus O(−n), . . . ,O(−1),O is a f.e.c. by Proposition 2.1.2.

Since O(m+ n)
L
⊗ (−) : DDD(Pn) → DDD(Pn), tensor with a line bundle is an autoequivalence, the

general result follows by Proposition 2.1.1

The spectral sequence (2.9) gives us the

Corollary 2.3.
O,Ω1(1), . . . ,Ωn(n) ∈ DDD(Pn)

is a full exceptional collection. Hence, there is a s.o.d.

DDD(Pn) = 〈O,Ω1(1), . . . ,Ωn(n)〉
= 〈DDD(pt),DDD(pt), . . . ,DDD(pt)〉.

The last equality follows from Lemma 2.4, since the functors DDD(pt) → DDD(Pn), k 7→ O(i) as well as
DDD(pt) → DDD(Pn), k 7→ Ωi(i) are embeddings for all i.

2.2.2 Moduli space of rank 2 vector bundles in P2

The moduli space of rank 2 vector bundles on P2 .
Let us consider P2 = P(V ) with V a C-vector space of dimension 3. Let M(2; 0, 2)P2 the moduli

space of stable rank 2 vector bundles on P2 with first and second Chern class c1 = 0 and C2 = 2,
respectibely.

In general we know that in Pn, Ωn(n) ∼= OPn(−1).
Let F be a stable vector bundle of rank 2 with c1 = 0 and c2 = 2, the spectral sequence (2.9) in

the first sheet has the form

H2(P2, F (−2))⊗C O(−1) H2(P2, F (−1))⊗C Ω1(1) H2(P2, F )⊗C O

H1(P2, F (−2))⊗C O(−1) H1(P2, F (−1))⊗C Ω1(1) H1(P2, F )⊗C O

H0(P2, F (−2))⊗C O(−1) H0(P2, F (−1))⊗C Ω1(1) H0(P2, F )⊗C O,

Figure 2.1: Spectral Sequence of a stable vector bundle F .
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and in the second sheet the morphisms are given by the dashed arrows. Since F is stable

H0(P2, F (−2)) = H0(P2, F (−1)) = H0(P2, F ) = 0.

Therefore the first line of the Figure 2.1 is zero. On the other hand, by Serre duality

H2(P2, F (−k)) = H0(P2, F∨(k − 3))∨,

for 0 ≤ k ≤ 2 and again by stability

H0(P2, F∨(−1)) = H0(P2, F∨(−2)) = H0(P2, F∨(−3)) = 0,

thus the third line of the spectral sequence 2.1 is zero. Hence the spectral sequence degenerate to the
second line. By Riemann-Roch computations one gets

dimH1(P2, F ) = 0, and dimH1(P2, F (−1)) = dimH1(P2, F (−2)) = 2,

at the end we have a exact sequence

0 → O(−1)⊕O(−1) → Ω1(1)⊕ Ω1(1) → F → 0 (2.12)

where H1(P2, F (−2)) ⊗ O(−1) ∼= O(−1) ⊕ O(−1) and H1(P2, F (−1)) ⊗ Ω1(1) ∼= Ω1(1) ⊕ Ω1(1),
whenever we have chosen a base of H1(P2, F (−1)) and H1(P2, F (−2)).

Conversely, we can also do this construction in the oppositive direction, i.e. we can start with a
morphism of vector bundles O(−1) ⊕ O(−1)

ϕ−→ Ω1(1) ⊕ Ω1(1) and consider cokernels of ϕ and see
that they are stable vector bundles with the same parameters that we have fixed.

Thus we have a description of the moduli space M(2; 0, 2)P2 as a parameter space of these mor-
phisms. For short, let us write A⊗O(−1) ∼= O(−1)⊕O(−1) and B ⊗Ω1(1) ∼= Ω1(1)⊕Ω1(1) with A
and B two dimensional vector spaces, the exact sequence (2.12) can be rewritten as

0 → A⊗O(−1) → B ⊗ Ω1(1) → F → 0. (2.13)

Since Hom(A⊗O(−1), B⊗Ω1(1)) ∼= A∨⊗B⊗Hom(O(−1),Ω1(1)) and canonically V ∼= Hom(O(−1),Ω1(1)),
then the vector space A∨⊗B⊗V parametrizes the maps ϕ, of course there is and action of the group
GL(A)×GL(B) in this vector space (changing the base of A×B), and clearly the action of any elemenet
of the group does not change the isomorphic class of the cokernel in (2.13).

All together means that the moduli space M(2; 0, 2)P2 is the (GIT ) quotient of the form

M(2; 0, 2)P2 = A∨ ⊗B ⊗ V/GL(A)× GL(B).

See [OSS88] for details.

2.2.3 Semiorthogonal decomposition for Fano varieties

Most interesting examples of s.o.d. come from Fano varieties.

Definition 2.13. A Fano variety is a smooth projective connected variety X with ample anticanonical
class −KX . A Fano variety is prime if Pic(X) ∼= Z. The index of a Fano variety X is the maximal
integer r, such that −KX = rH for some H ∈ Pic(X).
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The main example is a hypersurface.

Example 2.2.1. Let V a vector space of dimension n+1 and let Y ⊂ P(V ) ∼= Pn be a hypersurface of
degree d. By Lefschetz hyperplane section theorem Pic(Y ) = Z and is generated by H, the restriction
of the class of a hyperplane in P(V ). On the other hand, the canonical sheaf of Y equals

ωY = OY (d− n− 1)

by adjunction formula and so the canonical class of Y

KY = (d− n− 1)H. (2.14)

Y is a Fano variety since P(V ) is so by (2.14) we have that the index of a hypersurface of degree d is
d− n− 1. See[Har77, II, 8, Example 8.20.2] for details.

Proposition 2.2.1. Let X be a Fano variety of index r, −KX = rH. Then the collection of line
bundles

OX((1− r)H), . . . ,OX(−H),OX ∈ Pic(X),

is an exceptional collection.

Proof. Indeed, for i > −r we have

H>0(X,OX(iH)) = H>0(X,OX(KX((i+ r)H))) = 0,

by Kodaira vanishing theorem, [Har77, III, 7]. Moreover,

H0(X,OX(iH)) = 0,

for i < 0 by ampleness of H and H0(X,OX) = k by connectedness of X. Thus the collection is
exceptional.

Note also that OX ,OX((1)H), . . . ,OX((r − 1)H) is an exceptional collection.
Applying Lemma (2.3) we have a s.o.d.

DDD(X) = 〈AX ,OX((1− r)H), . . . ,OX(−H),OX〉 (2.15)

where
AX = OX((1− r)H)⊥ ∩ · · · ∩ OX(−H)⊥ ∩ O⊥

X .

In some cases, the orthogonal complement AX in (2.15) vanishes or can be explicitly described.

Example 2.2.2. One of the most important example is the projective space, Pn is a Fano variety of
index n+1. The orthogonal complement of the maximal exceptional collection vanishes Corollary 2.2,
and we have

DDD(Pn) = 〈O(−n), . . . ,O(−1),O〉.

Example 2.2.3. Let V be a five dimensional vector space. Let Y ⊂ P(V ) be a hypersurface of degree
3, i.e. a smooth cubic 3-fold, Y is Fano variety of index 2 by (2.14), and so

DDD(Y ) = 〈AY ,OY ,OY (1)〉,
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Example 2.2.4. Let V be a six dimensional vector space. Let Y ⊂ P(V ) ∼= P5 be a hypersurface of
degree 3, i.e. a smooth cubic 4-fold, Y is Fano variety of index 3 by (2.14), and so

DDD(Y ) = 〈AY ,OY ,OY (1),OY (2)〉.

The following example is the most important for our purpose.

Example 2.2.5. Remember a Fano variety X of dimension 2 is a called a del Pezzo surface, if the
base field is C, then DDD(X) has a full exceptional collection. In order to prove it we need to describe
the derived category of the blow up of P2 in several points, ingeneral this result is Orlov’s blow up
formula and we will prove it in Chapter 3.

2.3 Hochschild Homology and semiorthogonal decomposition
One of the reasons Hochschild Homology is very useful is its additivity with respect to semiorthogonal
decompositions. A proof of the following theorem can be found in [Kuz09].

Theorem 2.2. Let T a triangulated category. If we have a s.o.d. T = 〈A1, . . . ,Am〉 then

HH•(T ) =
m⊕
i=1

HH•(Ai).

One of the nice consequences of this theorem is the following necessary condition for a category to
have a full exceptional collection.

Corollary 2.4. If a triangulated category T has a full exceptional collection then HHk(T ) = 0 for
k 6= 0 and dim HH0(T ) < ∞. Moreover, the length of any full exceptional collection in T equals
dim HH0(T ).

In particular, if X is a smooth projective variety and DDD(X) has a full exceptional collection, then
Hp,q(X) = 0 for p 6= q, and the length of the exceptional collection equals to

∑
p dim Hp,p(X).

Proof. Suppose T = 〈T1, . . . , Tm〉 is a s.o.d. given by a f.e.c, for k > 0 one has

HHk(T ) =

m⊕
i=1

HHk(Ti) =

m⊕
i=1

HHk(DDD(pt)) = 0

by Lemma 2.4 and Example 1.4.1, and if k = 0

HH0(T ) =
m⊕
i=1

HH0(DDD(pt)) =
m⊕
i=1

k,

and so dim HH0(T ) < ∞.
For the second part, suppose DDD(X) has a f.e.c. of length m then if k > 0 we get p 6= q, thus

0 = HHk(DDD(X)) =
⊕

p−q=k

Hp,q(X),
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by the first part and Example 1.4.1.
Therefore

m =

m∑
i=1

dim HH0(DDD(pt)) = dim HH0(DDD(X)) =
∑
p

dim Hp,p(X),

and the result follows.

In a contrast, the Hochschild cohomology is not additive, it depends not only on the components of
a s.o.d., but also on the way that these are glued together. However, if there is a completely orthogonal
decomposition then the Hochschild cohomology is additive, [Kuz09].

Lemma 2.6. If T = 〈A,B〉 is a completely orthogonal decomposition then

HH•(T ) = HH•(A)⊕ HH•(B). (2.16)

This lemma also has a nice consequence. Remember the definition of a connected triangulated
category, Definition 2.8 and indecomposable triangulated category, Definition 2.9.

Corollary 2.5. If T is a connected triangulated category then T has no completely orthogonal decom-
positions.

Proof. Assume T = 〈A,B〉 is completely orthogonal decomposition, then by Lemma 2.6

k = HH0(T ) = HH0(A)⊕ HH0(B),

hence one of the summands vanishes. But a nontrivial category always has nontrivial zero Hochschild
cohomology (since the identity functor always has the identity endomorphism).

The first examples of triangulated categories which have no nontrivial s.o.d. was found by Bridge-
land [Bri05].

Proposition 2.3.1. If X is a smooth projective algebraic variety then DDD(X) is indecomposable if and
only if X is connected.

Proof. In particular, HH0(DDD(X)) = H0(X,OX) and HH0(DDD(X)) = k if and only if X is connected and
the result follows.

Moreover

Proposition 2.3.2. If T is a connected Calabi-Yau category then T has no semiorthogonal decompo-
sitions.

Proof. Assume T is Calabi-Yau of dimension n and T = 〈A,B〉 is a s.o.d. For A ∈ A and B ∈ B we
have

Hom(A,B)∨ = Hom(B, ST (A)) = Hom(B,A[n]) = 0,

since A[n] ∈ A. Hence the decomposition is completely orthogonal and Corollary 2.5 applies.

Corollary 2.6. The category DDD(k) is indecomposable.
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Proof. Indeed, SDDD(k)
∼= 1DDD(k) so it is Calabi-Yau of dimension 0.

Besides, one can check that derived categories of curves of positive genus are indecomposable. The
following proposition is a consequence of Beilinson’s theorem 2.1 and [Oka11], see Example 2.1.5.

Proposition 2.3.3. Let C be a smooth projective curve of genus g. If g > 0 then DDD(C) is inde-
composable and if C ∼= P1 then any semiorthogonal decomposition of DDD(C) is given by an exceptional
pair.
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3

Semiorthogonal decomposition in
Birational geometry

It is expected (and has been partially confirmed) that we can understand the minimal model program
(MMP) in terms of the semiorthogonal decompositions of the derived category of coherent sheaves.
To be precise one expects that it can be defined a suitable triangulated category for each projective
variety with mild singularities, which equals to the bounded derived category of coherent sheaves
when the variety is smooth, and that each step of MMP yields a non trivial SOD of the category. In
particular we expect that a variety whose derived category admits no nontrivial s.o.d is minimal in
the sense of MMP (see [BO95]).

On the other hand, Fano varieties are important in the theory of higher dimensional varieties .
The interest in Fano varieties increased recently since Mori’s program predicts that every uniruled
variety is birational to a fiberspace whose general fiber is a Fano variety (with terminal singularities).
Thus del Pezzo surfaces are so important in the two dimensional theory as Fano varieties are in the
higher dimensional theory. In fact, it has been fount out a mysterious duality between M-Theory (in
physics) and del Pezzo surfaces which may provide a hint about the understanding of the symmetries
of this theory [Nei03]. Therefore studying s.o.d. for del Pezzo surfaces will be very rewarding. We
will prove that there is a s.o.d. for the derived categories of the projectivization of a vector bundle,
Proposition 3.1.1 (Orlov I) and of the blow up on a smooth projective algebraic variety, Theorem 3.1
(Orlov I) and hence we will compute a s.o.d. for del Pezzo surfaces.

3.1 Orlov I
Definition 3.1. Let f : X → Y be a morphism of smooth projective varieties. An object E ∈ DDD(X)
is called a relative exceptional object if

Rf∗RHom(E,E) ∼= OY . (3.1)

Note that when Y = Spec(k) the above condition is just the definition of an exceptional object;

since Rf∗(−) = Ext•(OX ,−) and (
L
⊗,RHom) is an adjoint pair, see subsection 1.3.1, we have

Rf∗RHom(E,E) ∼= Ext•(OX ,RHom(E,E)) ∼= Ext•(OX

L
⊗ E,E) ∼= Ext•(E,E) ∼= k.

33
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In the same way that an exceptional object gives a s.o.d. Lemma 2.3, also a relative exceptional
object gives a s.o.d.

Lemma 3.1. If E ∈ DDD(X) is a relative exceptional object then the functor

DDD(Y ) −→ DDD(X)

F 7→ E
L
⊗ Lf∗(F ) ∀ F,

is fully faithful and gives a s.o.d.

DDD(X) = 〈Ker Rf∗ ◦ RHom(E,−), E
L
⊗ Lf∗(DDD(Y ))〉.

Proof. We know that Rf∗RHom(E,−) is the left adjoint of E
L
⊗Lf∗(−) see subsection 1.3.1, and since

for any F ∈ DDD(Y ) one has

Rf∗ ◦ RHom(E,E
L
⊗ Lf∗(F ) ∼= Rf∗(RHom(E,E)

L
⊗ Lf∗(F )) ∼= Rf∗(RHom(E,E))

L
⊗ F,

the condition that E is a relative exceptional object implies Rf∗ ◦RHom(E,E
L
⊗Lf∗(−) ∼= 1DDD(Y ), i.e.

the functor E
L
⊗ Lf∗(F ) is fully faithful, thus Lemma 2.2 proves the result.

Let X = PY (V )
f−→ Y be the projectivization of a vector bundles V of rank r on Y , [Har77]. Then

Rf∗OX
∼= OY , hence any line bundle L on X is a relative exceptional object since RHom(L ,L ) ∼=

OX , in particular we have the tautological line bundle OX(−1) ↪→ f∗(V ) in X and thus for any n ∈ Z,

the functor OX(n)
L
⊗ Lf∗(−) : DDD(Y ) → DDD(X) is fully faithful by Lemma 3.1 and we denote

DDD(Y )(n) = OX(n)
L
⊗ Lf∗(DDD(Y )).

So, iterating the construction of Lemma 3.1 we get Orlov’s s.o.d. for the projectivization of a
vector bundle.

Proposition 3.1.1 (Orlov I). Let V be a vector bundle of rank r on Y and let X = PY (V )
f−→ Y be

its projectivization. Then there is a s.o.d.

DDD(X) = 〈DDD(Y )(1− r), . . . ,DDD(Y )(−1),DDD(Y )〉.

In order to prove Proposition 3.1.1 we have to rewrite all the statements in the subsection 2.2.1 in
such way we get an analogous corollary as that Corollary 2.2. It can be done without any difficulty
because there is not any new idea in the proof of Proposition 3.1.1 as Beilinson cleverly observes
[Bei78], nevertheless we make some remarks.

Remarks 3.1.1. 1. In Corollary 2.2 the i th copy of DDD(pt) is embedded in DDD(Pn) via the functor

pt → O(i). Here the i th copy of DDD(Y ) is embedded in DDD(X) via de functor Lf∗(−)
L
⊗O(i).
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2. As in Lemma 1.2 there is a locally free resolution for O∆. Let X = PY (V )
f−→ Y be the

projectivization of a vector bundle and let p, q : PY (V ) ×Y PY (V ) → PY (V ) the projections,
then there is a resolution

0 → OX(−n)�Ωn
X(n) → OX(−n+1)�Ωn−1

X (n−1) → · · · → OX(−1)�Ω1
X(1) → OX×Y X → O∆ → 0

(3.2)

3. In the same way that we found out the spectral sequences in Theorem 2.1 we can find analogous
spectral sequences for the projectivization of a vector bundle, namely for any object F ∈ DDD(X)
there is a spectral sequence which converges

Ep,q
1 := Lf∗Rqf∗(E

L
⊗OX(p))⊗ Ω−p

X (−p) ⇒ Ep,q =

{
F , p+ q = 0,

0 , p+ q 6= 0,

and there is another analogous to (2.10).

3.2 Orlov II: Semiorthogonal decomposition of a blow up
Remember X and Y are smooth projective algebraic varieties.

In birational geometry, the most important semiorthogonal decomposition is that given by a blow
up. Let X = BlZ(Y ) be the blow up of Y in a smooth subvariety Z of codimention c. Then we have
the following blow up diagram

X E = PZ(NZ/Y )

Y Z

i

p

j

f

Figure 3.1: Blow up

where the exceptional divisor E = f−1(Z) is isomorphic to the projectivization of the normal
bundle, and its natural map to Z is the standard projection of the projectivization. Under this
identification the normal bundle OE(E) of the exceptional divisor is isomorphic to the Grothendieck
line bundle OE(−1)

OE(E) ∼= OE(−1),

on the projectivization E ∼= PZ(NZ/Y ).
For each k ∈ Z, we consider the Fourier-Mukai functor with kernel OE(k), i.e.

ΦOE(k)(−) : DDD(Z) −→ DDD(X)

F 7→ Ri∗(OE(k)
L
⊗ Lp∗(F )) ∀ F.
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Proposition 3.2.1. Suppose Z ⊂ X is of codimension c ≥ 2. Then the functor ΦOE(k) is fully faithful
for any k. Moreover, ΦOE(k) admits a right adjoint.

Proof. To prove the proposition let us see that ΦOE(k) has a right adjoint Φ!
OE(k) and Φ!

OE(k)◦ΦOE(k)
∼=

1DDD(Z), Proposition (1.3.2).
Simple computations of Hom(ΦOE(k)(F ), G), with F ∈ DDD(Z) and G ∈ DDD(X) show that the right

adjoint of ΦOE(k) is defined by

Φ!
OE(k)(−) : DDD(X) −→ DDD(Z)

G 7→ Rp∗(OE(−k)
L
⊗ Li!(F )) ∀ G.

On the other hand, the composition Φ!
OE(k) ◦ ΦOE(k) is given by

Φ!
OE(k)(ΦOE(k)(F )) = Φ!

OE(k)(Ri∗(OE(k)
L
⊗ Lp∗(F ))) (3.3)

∼= Rp∗(OE(−k − 1)
L
⊗ Li∗(Ri∗(OE(k)

L
⊗ Lp∗(F )))[−1])

∼= Rp∗(OE(−1)
L
⊗ Li∗(Ri∗(Lp

∗(F ))))[−1].

Fact: i is an embedding, hence the composition Li∗ ◦Ri∗ comes with a distinguished triangle

G
L
⊗OE(1)[1] → Li∗ ◦Ri∗(G) → G → G

L
⊗OE(1)[2],

see [Huy06, Cor. 11.4 (ii)].
If G = Lp∗(F ) we get

Lp∗(F )
L
⊗OE(1)[1] → Li∗ ◦Ri∗(Lp

∗(F )) → Lp∗(F ) → Lp∗(F )
L
⊗OE(1)[2], (3.4)

applying [−1], (−)
L
⊗OE(−1) and Rp∗(−) to (3.4) results

Rp∗(Lp
∗(F )) → Φ!

OE(k) ◦ ΦOE(k)(F ) → Rp∗(OE(−1)
L
⊗ Lp∗(F ))[−1] → Rp∗(Lp

∗(F ))[1].

Using the projection formula (1.6) and the fact that Rp∗(OE) ∼= OZ and Rp∗(OE(−1)) = 0, we
conclude that Φ!

OE(k) ◦ ΦOE(k)(F ) ∼= F , hence ΦOE(k) is fully faithful.

The following proposition is very useful.

Proposition 3.2.2. Let f : X → Y be a projective morphism of smooth projective varieties such that
Rf∗(−) : DDD(X) → DDD(Y ) sends OX to OY . Then Lf∗(−) : DDD(Y ) → DDD(X) is fully faithful and thus
DDD(Y ) is an admissible subcategory of DDD(X).
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Proof. The first assertion is an immediate consequence of the projection formula (1.6). Indeed, the
adjunction morphism 1DDD(Y ) → Rf∗ ◦ Lf∗ yields isomorphism

F → Rf∗ ◦ Lf∗(F ) ∼= F
L
⊗Rf∗(OX) ∼= F,

for any F ∈ DDD(Y ). Hence 1DDD(Y )
∼= Rf∗ ◦ Lf∗ and therefore Lf∗ is fully faithful which is equivalent to

the fact that Lf∗ admits a right adjoint, Proposition (1.3.2).

There are two particular cases where this Proposition 3.2.2 can be applied: the projectivization of
a vector bundle Proposition 3.1.1 (Orlov I) and the blow up of a variety. So if we consider the blow
up X = BlZ(Y ), Figure 3.1, then by the previous proposition the functor

Lf∗ : DDD(Y ) → DDD(X)

is fully faithful.
If we denote DDD(Z)(k) = ΦOE(k)(DDD(Z)) and DDD(Y ) = Lf∗(DDD(Y )), which makes sense because Propo-

sition 3.2.1 and 3.2.2 tell us these functors are embeddings

Theorem 3.1 (Orlov II, Orlov’s blow up formula). Let X = BlZ(Y ) the blow up in Figure 3.1 .
Then the Fourier-Mukai functors ΦOE(k) and Lf∗ give the following s.o.d.

DDD(X) = 〈DDD(Z)(1− c), . . . ,DDD(Z)(−1),DDD(Y )〉. (3.5)

Proof. To show DDD(X) has the s.o.d. (3.5) we have to check that the categories DDD(Z)(k) and DDD(Y ),
1 − c ≤ k ≤ −1, are admissible, semiorthogonal and generate DDD(X). By Proposition 3.2.1 and 3.2.2
these categories are admissible.

Let us prove that they are semiorthogonal, let F ∈ DDD(Z) and k > l integers. Analogous computa-
tions as in (3.3) give us for the composition Φ!

OE(k) ◦ ΦOE(l)

Rp∗(OE(l − k)
L
⊗ Lp∗(F )) → Φ!

OE(k) ◦ ΦOE(l)(F ) → Rp∗(OE(l − k − 1)
L
⊗ Lp∗(F ))[−1] → . . .

Recall that Rp∗(OE(−t)) = 0 for 1 ≤ t ≤ c − 1. As for 1 − c ≤ l < k ≤ −1 we have 1 − c ≤
l − k, l − k − 1 ≤ −1 hence Φ!

OE(k) ◦ ΦOE(l)(F ) ∼= 0, so Φ!
OE(k) ◦ ΦOE(l) = 0 and this shows that the

first c− 1 components of (3.5) are semiorthogonal.
For the composition Rf∗ ◦ ΦOE(k) we have

Rf∗◦ΦOE(k)(F ) = Rf∗(Ri∗(OE(k)
L
⊗Lp∗(F ))) = Rj∗(Rp∗(OE(k)

L
⊗Lp∗(F ))) = Rj∗(Rp∗(OE(k))

L
⊗F ) = 0,

since Rp∗(OE(k)) = 0 for 1 − c ≤ k ≤ −1, it follows that DDD(Z)(k) and DDD(Y ) are semiorthogonal for
1− c ≤ k ≤ −1.

It remains to show that the components we just described generated the whole category DDD(X), for
this see [Huy06].

Roughly speaking, we can interpret Theorem 3.1 by saying that the "difference" between the derived
categories of X and Y is given by a number of derived categories of subvarieties of codimension ≤ n−2,
where n = dimX = dimY .

As an application of Theorem 3.1 (Orlov II) we will see that if X is a del Pezzo surface then, DDD(X)
has a full exceptional collection, Example 2.2.5.

The theorem below classifies del Pezzo surfaces, [Kol99] or [Dol12].
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Theorem 3.2. Given a del Pezzo surface X then:

1. If ρ(X)1 = 1 then X ∼= P2,

2. X ∼= P1 × P1, X is the first minimal rational ruled surface F0 ,

3. X is the blow up of P2 in at most 8 points in general position.

If X ∼= P2 then Corollary 2.2 gives us the desired s.o.d. In the other cases

Corollary 3.1. Let X be a del Pezzo surface such that X � P2 then:

1. If X is the blow up of P2 in at most 8 points then there is a s.o.d.

DDD(X) = 〈DDD(p1)(−1), . . . ,DDD(pN )(−1),DDD(P2)〉

where Z = {p1, . . . , pN} ⊂ P2, N ≤ 8 is the number of points such that X = BlZ(P2).

2. If X ∼= P1 × P1 there is a s.o.d.

DDD(X) = 〈DDD(P1)(−1),DDD(P1)〉.

Proof. 1. Let N the number of points where we are blowing up in P2, clearlyDDD(Z) = 〈DDD(p1), . . .DDD(pN )〉
by Proposition 2.3.1. If DDD(Z)(−1) = 〈DDD(p1)(−1), . . . ,DDD(pN )(−1)〉 then the first s.o.d. follows
from Theorem 3.1 (Orlov II).

2. For the case X ∼= P1 × P1. It is known that the minimal rational ruled surfaces are the projec-
tivization of some vector bundles of rank 2 in P1, namely Fn = P(OP1 ⊕ OP1(−n)) → P1, for
n ≥ 0 [Dol12]. Then the second s.o.d. follows immediately from Proposition 3.1.1.

The above results suggest the following definition.

Definition 3.2. Let A be a triangulated category. We define the geometric dimension of A as

gdim(A) = min
A↪→DDD(X)
dim X=k

k

with A ↪→ DDD(X) is admissible and X smooth projective and connected variety.

Example 3.2.1. If A is a triangulated category of geometric dimension 0 then A ∼= DDD(k). Indeed,
be definition A should be an admissible subcategory of the derived category of a smooth projective
connected variety of dimension 0, i.e. of DDD(k) = DDD(Spec(k)). But this category is indecomposable
Corollary 2.6, hence A ∼= DDD(k).

1The rank of Pic(X), see [Kol99].
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Example 3.2.2. If A is a indecomposable triangulated category of geometric dimension 1 then A ∼=
DDD(C), where C is a curve of genus g ≥ 1. Indeed, by definition A should be an admissible subcategory
of the derived category of a smooth projective connected variety of dimension 1, i.e. of DDD(C). If g ≥ 1
then DDD(C) is indecomposable by Proposition 2.3.3 and so A = DDD(C). If g = 0, i.e. C ∼= P1, then
again by Proposition 2.3.3 any nontrivial decomposition of DDD(C) consists of two exceptional objects,
so if A ⊂ DDD(C) is its indecomposable admissible subcategory then A ∼= DDD(k), but then its geometric
dimension is 0.

A classification of triangulated categories of higher geometric dimension should be much more com-
plicated. For instance, it was found out recently that some surfaces of general type with pg = q = 0
(geometric genus and irregularity equal to zero) contain admissible subcategories with zero Hochschild
homology (so called quasiphantom categories). This categories are highly nontrivial examples of cate-
gories of geometric dimension 2, [Kuz12].

3.3 Higher dimensional varieties

A noncommutative K3 surface associated with a cubic fourfold.
Interesting 4-dimensional varieties are cubic 4-folds. There are examples of cubic 4-folds which

are known to be rational, but general cubic 4-folds are expected to be nonrational. In this section we
will mention vaguely how does rationality of cubic 4-folds correlate with the structure of their derived
categories.

For cubic 3-folds we have the following, see Clemens-Griffiths [CG72].

Proposition 3.3.1. Let Y ⊂ P(V ) be a smooth cubic 3-fold, by Example 2.2.3 we have a s.o.d.

DDD(Y ) = 〈AY ,OY ,OY (1)〉.

Then the category AY is highly non-trivial and cannot be the derived category of a smooth projective
variety.

Proof. Indeed, the Serre functor SAY
is such that S3

AY

∼= [5] [Kuz15a], so AY is a fractional Calabi-Yau
of dimension 5

3 and cannot be the derived category of a smooth projective variety by (1.8).

On the other hand, for a smooth cubic 4-fold it is not the case

Proposition 3.3.2. Let Y ⊂ P5 be a smooth cubic 4-fold, by Example 2.2.4 one has

DDD(Y ) = 〈AY ,OY (−2),OY (−1),OY 〉. (3.6)

The category AY is a connected Calabi-Yau category of dimension 2 with Hochschild homology isomor-
phic to that of K3 surfaces. In particular, AY is indecomposable and (3.6) is a maximal semiorthogonal
decomposition.

Proof. The proof of the fact that SAY
∼= [2] can be found in [Kuz15a]. The Hochschild homology

computation, is quite simple. One can compute the Hodge diamond of Y , see [GH78], and looks as
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1

0 0

0 1 0

0 0 0 0

0 1 21 1 0

0 0 0 0

0 1 0

0 0

1

Thus by HKR isomorphism, Theorem 1.5 we have HH•(DDD(Y )) = k[2] ⊕ k25 ⊕ k[−2]. Since AY

is the orthogonal complement of an exceptional collection of three objects in the category DDD(Y ), by
additivity of Hochschild homology, Theorem 2.2 it follows that

HH•(DDD(Y )) = k[2]⊕ k22 ⊕ k[−2].

By Theorem 2.2, again this coincides with the dimensions of Hochschild homology of K3 surfaces since
the Hodge diamond of them looks as

1

0 0

1 20 1

0 0

1

Since AY is a 2-Calabi-Yau category there is an isomorphism HHi(AY ) ∼= HHi+2(AY ) see (1.10)
and [Kuz15a]. Therefore, from the above description of Hochschild homology it follows that HH0(AY )
is one-dimensional, i.e., the category AY is connected. Indecomposability of AY then follows from
Propositionl 2.3.2 and the components generated by exceptional objects are indecomposable by Corol-
lary 2.6.

Being Calabi-Yau category of dimension 2, the nontrivial component AY of DDD(Y ) can be considered
as a noncommutative K3 surface.

In retrospective, it is a classic result that smooth cubic 3-folds are not rational, by Clemens-
Griffiths [CG72] and the Proposition 3.3.1 tell us that AY cannot be the derived category of a smooth
projective variety, which does not happen for cubic 4-folds. This strange fact motivates the

Conjecture 3.1 ([Kuz08]). A cubic fourfold Y is rational if and only if there is a smooth projective
K3 surface S and an equivalence AY

∼= DDD(S).
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