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AVANZADOS DEL INSTITUTO POLITÉCNICO
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PARA OBTENER EL GRADO DE

MAESTRO EN CIENCIAS

EN LA ESPECIALIDAD DE

MATEMÁTICAS
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Resumen

En esta tesis se estudia el método de perturbación para la valuación de una opción

europea cuando los precios del activo no siguen el modelo gaussiano de parámetros

constantes; esto debido a observaciones emṕıricas que no estan presentes en el modelo

clásico: la curva de la volatilidad impĺıcita, y que la función de distribución tiene un

mayor máximo, colas que decaen menos rápido y que son asimétricas. Se consideran

dos modelos, el primero sigue siendo un modelo gaussiano, pero sus parámetros serán

funciones continuas que dependen del tiempo; el segundo será un modelo de difusión

con saltos y distribución de saltos doble exponencial. Para el primer modelo, las val-

uaciones son 5-8 veces mas rápidas que la valuación exacta y el error en el intervalo

[K − 15%, K + 15%] es menor a 0.1ε, donde K es el precio de ejercicio y ε es la mag-

nitud de la perturbación. Para el segundo modelo, las aproximaciones son 50-60 veces

mas rápidas que la valuación exacta y el error es menor a 0.5λ en el mismo intervalo,

donde λ es la magnitud de la perturbación.
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Abstract

This thesis will study the perturbation method for the valuation of an European call

option when the asset prices are not governed by the Gaussian model with constant

parameters; this will be due to empirical phenomena not well fitted by the classic model:

the volatility smile, the higher peak and the assymetric fat tails of the return distribution

of assets. Two models are considered, the first one remains a Gaussian model but the

parameters will be assumed continuous time-dependent functions, the second one will

be a double-exponential jump-diffusion. For the first model, the valuations are 5-8 times

faster than the exact valuation and the error in the interval [K − 15%, K + 15%] is less

than 0.1ε, where K stands for the strike price and ε for the perturbation magnitude. For

the second model, the approximations are 50-60 times faster than the exact valuation

and the error is less than 0.5λ on the same interval, where λ stands for the perturbation

magnitude.
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Prof. Michael Porter and Prof. Héctor Jasso, for their helpful observations, thoughtful

advice and great classes.

My sincere appreciation goes to all the faculty and staff of the Mathematics De-

partment at CINVESTAV, they have always provided a peaceful working environment.

My recognition to all the researchers, they have been an example of hard work and

perseverance.

I thank CONACyT for the financial support, and for keeping the state of science

moving forward.

To professors Maribel Loaiza, Nikolai Vasilevski, Ruy Fabila and Onésimo Hernández-
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Chapter 1

Introduction

Is it well known that despite the success of the Black-Scholes model (which uses the

geometric Brownian motion as model for the underlying asset price behavior), it fails

into fitting two empirical phenomena observed in real life data. First, the tails of

the return distribution are heavier than those of the normal distribution, also, the

distribution has asymmetric decay. Second, the implied volatility is not constant, this

fact is known as the volatility smile.

As a result, in the last years Lévy processes have become an indispensable tool when

modelling market fluctuations, nevertheless, the first time a Lévy processes was used

for this purpose seems far away from now. In 1900, Bachelier used the Brownian motion

to evaluate stock prices in his PhD thesis The Theory of Speculation, this was indeed

the first paper in mathematical finance. From a physicist’s point of view, Osborne used

the exponential of a Brownian motion, exp (Wt), as a stock price model in 1959, based

on the Weber-Fetcher law. In 1965, Samuelson noticed that the formula obtained by

Bachelier applied to a perpetual option leaded to an unbounded price, additionally,

for an absolute Brownian motion, negative values for the stock prices were possible. In

order to ensure non-negative valuations, Samuelson introduced the geometric Brownian

motion.

The exponential Gaussian processes could give accurate results in short periods of

time, however, as Mandelbrot observed (1963), the logarithm of some financial instru-

ments have a heavy-tailed distribution, his solution was the introduction of a symmetric
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α-stable Lévy motion with index α < 2. This established the first pure-jump model.

Press introduced a non-stable model combining a Brownian motion and an indepen-

dent compound Poisson process with normally distributed jumps for the log price in

1967. Madan and Seneta used the variance gamma process as model for the log prices

in 1987. Eberlein and Keller (1995) studied the exponential hyperbolic Lévy motion

as a stock price model. In 1995, Bandorff-Nielsen, who introduced the generalized hy-

perbolic distributions in 1977, proposed an exponential normal inverse Gaussian Lévy

process. Later, the whole family of generalized hyperbolic distributions was analyzed

by Eberlein and Prause (1998).

The specialized needs of investors and the availability of preferential information to

some of them gave rise to over the counter contracts in which the parts were committed

to buy/sell stock at a fixed price. Options (not only of stocks) have been negotiated

even before the existence of financial markets. It was until 1973 that the Chicago Board

of Trade (CBOT) opened the Chicago Board Options Exchange (CBOE), the first reg-

ulated options exchange. At present, the derivatives markets trade not only options,

and the number of options traded are billions. The regulation of the option trading

brought with it a big question: which is the fair price of a certain option? Black and

Scholes found this theoretical value for European options the same year the CBOT was

open (1973), also in this year, Merton gave the option pricing formula for the jump

model. Given that trading of American options started only one month before of the

Black-Scholes model publication, the price of American options was not considered in

the theory. In 1979, Cox, Ross and Rubestein introduced the Binomial Options Pricing

Model, a discrete-time numerical method, slower than the Black-Scholes formula, but

more accurate for longer-dated options and for not classical European options (Ameri-

can options, options with dividend payments, etc).

As it was mentioned before, the unsuitability of the Gaussian model with constant

parameters in the actual financial market has developed the necessity of finding more

complex models to fit stock prices; and the attempt to find the theoretical value of

an option under non-Gaussian models has resulted in a generalization of the Black-

Scholes equation: from a differential to a pseudo-differential problem. The analytic
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Chapter 1. Introduction

solution of such problem is not always in closed formulas, and most of the time the

numerical valuation is not time-efficient, so precise and fast approximation methods

are appreciated.

In this work, the perturbation method is considered as an approximation for the val-

uation problem of an European call option, and two specific models will be considered

to see that under appropriate circumstances this method works well. The first case will

be a Gaussian model whose parameters are continuous time-dependent functions. The

second model for the log prices will be a Lévy process with characteristic exponent a ra-

tional function, namely, a double-exponential jump-diffusion, known as Kou model. The

latter model fits the empirical phenomena stated before, and the parameters contained

in it can be easily interpreted.

Chapter 2 will be dedicated to all the necessary financial and stochastic background.

In Chapter 3, the Gaussian model with continuous time-dependent parameters will

be analyzed; for this scenario an explicit formula is known, but as mentioned early, the

exact valuation is not time-efficient. As an example of the perturbation method, only

the volatility will be considered as a continuous time-dependent function of the form

σ0 (1 + εϕ (t)), and several functions ϕ will be considered. In this case, two accurate

and fast asymptotic approximations were found. The first one is linear respect to ε,

so once the main terms are calculated, the valuation for different values of ε could be

computed really fast. The second approximation is more precise and with computation

times similar to the first one for a single value of ε, but as it is not linear, when a set

of values of ε is fixed, the computation time for the new valuation is not negligible and

is multiplied for the number of values of ε considered.

In Chapter 4, the Kou model will be used, as stated before, the price of the under-

lying assets will be modeled as exponentials of Lévy process; specifically, a Brownian

motion plus a compound Poisson process with rate of jumps λ and an asymmetrical

double exponential distribution. Again, an explicit formula for the European call option

exists, expressed as an integral of an exponential function of the characteristic exponent;

but it lacks a good numerical implementation as the integrand is highly oscillatory. A

numerical valuation is attainable, thanks to the saddle point method, also known as the

3



steepest descent method, given that the oscillation on the new contour is manageable.

This valuation is very time consuming, so, a reliable and fast approximation for small

values of λ will be developed using the perturbation method.

Finally, Chapter 5 contains a summary of the results obtained in this work.
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Chapter 2

Preliminaries

2.1 The financial market

Financial markets are the mechanisms that allows people and organizations to trade

negotiable instruments called financial securities. Some of the most common contracts

are described below.

2.1.1 Bonds

Security debts in which the issuer must pay to the holder the deposit of the bond

and some fixed or variable interest (or coupon) at a future date (called maturity).

Bonds could be emitted by governments, regional public authorities, credit institutions,

companies, or supranational institutions (World Bank, International Monetary Fund,

Inter-American Development Bank...). The price of a fixed-rate bond at the time

t ∈ [0, T ] is Bt = B0e
∫ t
0 r(h)dh, r (t) ≥ 0; where B0 is the deposit or initial amount

and r (t) is the interest rate.

2.1.2 Commodities

Physical assets such as oil, gold, silver, natural gas, coffee beans, etc. Some commodities

like silver, gold or copper have universal prices and are determined daily based on supply

and demand. Oil, natural gas and electronic parts, for example, have levels of quality
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2.1. The financial market

that affects their daily fluctuations.

2.1.3 Shares

A share of stock gives the holder a share of ownership in a corporation. Almost all

shares can be traded freely and could give to the owner economic and political rights,

such as dividends or voting rights on certain issues related to the company. The stock

exchange value of a corporation is the price of all the shares of it. The price of a share

is volatile and depends on many factors.

Before defining derivatives, let’s mention two practices to trade financial securities:

• Going long. A long position is taken if the investor (holder) owns (buy) the

security and will profit it if the price of the security goes up.

• Going short. It is the selling of a financial security that the seller does not own

at the time of the sell. The seller hopes to buy the security at a lower price. The

seller expects the price of the financial instrument to decline and to make a profit

of this situation.

2.1.4 Derivatives

Derivatives are contracts whose values are derived from other financial instruments

(bonds, stocks, commodities, loans, indexes...). The main types of derivatives are:

Swaps

Contracts where two counterparties are committed to exchange amounts of money at

different periods of time, these amounts of money are called the legs of the swap.

Options

Options are contracts that give the holder the right (but not the obligation) to buy or

sell some particular asset (the underlying asset) with spot price S, for an agreed price

(strike price, K) in a later date (exercise date), but before the expiration date. The
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Chapter 2. Preliminaries

writer has the obligation to trade the asset if the holder wants to. If the holder has the

right to buy the underlying, the options is named a call option; in the other hand, if

the holder has the right to sell the asset, the option is a put option. The gain of money

resulting of exercising the option is called the payoff.

Options are usually divided in different classes as follow.

Plain vanilla options Options whose payoff is given by

max {0, S −K} for a call option,

max {0, K − S} for a put option.

Plain vanilla options could be differentiated by their exercise date:

• European options. The holder has the right to exercise the option only at the

expiry.

• American options. The holder has the right to exercise the option any time up to

the expiration date.

Options with non-vanilla exercise rights Options with the same payoff of the

plain vanilla options but different exercise dates, as examples we have:

• Bermudan options. The holder has the right to exercise at different fixed times

before the expiry.

• Canary options. The holder has the right to exercise various times but not before

a set time period.

Exotic options with vanilla exercise right Options with the same exercise date

of the vanilla ones but with different payoffs. Examples:

• Basket options. The payoff depends on the weighted average of several underly-

ings.

• Exchange options. The holder has the right to trade an underlying for another

one at the exercise date.
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2.2. Lévy processes

Exotic ”path-dependent” options Options whose exercise date and/or payoff de-

pend on the behavior of the underlying in a period of time. Examples:

• Asian options. The payoff is not given by the price of the underlying at the

exercise date, but by the average of the price over some prefixed period of time.

• Look-back options. The payoff is determined by the lowest or highest price of the

underlying over some period of time.

• Binary options. The payoff is either a fixed amount or nothing at all, depending

on the underlying price at the expiry.

• Barrier options. The option becomes or vanishes if the underlying price reaches

a fixed value.

Futures

Standardized contracts to buy or sell some financial instruments at a certain date in

the future at a market determined price.

Forwards

Agreement between two counterparties to buy or sell some financial instruments in a

fixed date in the future at a prefixed price. Forwards are different from futures because

they are over-the-counter contracts (not regularized) and their price is an agreement,

in contrast to the futures, whose price is determined by the market.

Futures and forwards may not be confused with options. Options give the right to

buy or sell, in futures and forwards the trade must be done.

2.2 Lévy processes

In order to understand why Lévy processes provide useful models for market fluctuations

we will study some basic definitions and properties. The demonstrations of the results

in this section can be found on [7].
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Chapter 2. Preliminaries

2.2.1 Probability measures

Let Ω be a set and F a σ−algebra of Ω (a collection of subsets of Ω containing ∅,Ω; and

closed under complement, and numerable unions and intersections), the pair (Ω,F) is

called a measurable space.

A σ−additive measure is a map µ : F −→ [0,+∞) that satisfy the conditions

• µ [∅] = 0

• {An}∞n=1 ⊂ F and Ai ∩ Aj = ∅ for i 6= j then µ [∪∞n=1An] =
∞∑
n=1

µ [An].

Additionally,

• if µ [Ω] < +∞, the measure µ is called finite;

• if there is {An}∞n=1 ⊂ F such that µ [An] < +∞ for all n, and ∪∞n=1An = Ω, then

the measure µ is called σ−finite.

The triple (Ω,F, µ) is a measure space. Let (Ω,F, µ), (Ω,F′, µ) be measure spaces, a

function f : Ω −→ Ω is said to be (F,F′)−measurable, or shortly, a measurable function

if f−1 (A′) ∈ F for all A′ ∈ F′.

Let P be the measure corresponding to the triple (Ω,F,P); if P [Ω] = 1, P is called

a probability measure, and (Ω,F,P) is said to be a probability space. The sets in F are

called events, and for any event A ∈ F , P [A] is the probability of the event A.

Let µ and ν be two σ−finite measures on (Ω,F). µ is called absolutely continuous

w.r.t. ν if for A ∈ F, ν [A] = 0 implies µ [A] = 0; in such case we denote µ << ν. In

the case where µ << ν and ν << µ, µ and ν are called equivalent measures.

Theorem 2.2.1 (Radon−Nikodým)

Let µ, ν be σ−finite measures on (Ω,F). The following statements are equivalent

i. µ << ν.

ii. There is a non-negative measurable function f , such that µ = fν. The function

f is called the Radon-Nikodým derivative of µ relative to ν, and it is denoted by

f = dµ
dν

.
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2.2. Lévy processes

The Borel σ−algebra of Rn, denoted by B (Rn), is the smallest σ−algebra that

contains all the open sets in Rn. A function f : Rn −→ R is called measurable if it is

(B (Rn) ,B (R))−measurable. If P << λ, where λ is the Lebesgue measure, p = dP
dλ

is

called the density of the measure P.

2.2.2 Random variables

A Rn−valued random variable is a (F,B (Rn))−measurable mapping

X : Ω −→ Rn. It will be denoted P [X ∈ B] for P [ω ∈ Ω : X (ω) ∈ B]. Thus, we

define a probability measure on B (Rn) by the map B (Rn) 3 B 7−→ P [X ∈ B], such

probability is called the distribution of X and it is denoted by PX .

Let X be a measurable function on a measure space, if X (ω) satisfies a property B

outside a 0 measure set, X is said to satisfy the property B almost everywhere (a.e.).

If the measure space is a probability space, instead of a.e., we will say that X satisfies

the property B almost surely (a.s.).

Les (Ω,F,P) be a probability space. If the set {Fk}∞k=1 of σ−sub-algebras of F,

satisfies P
[

n⋂
k=1

Ajk

]
=

n∏
k=1

P [Ajk ] whenever Ajk ∈ Fk, and all jk are distinct; the

sub−σ−algebras F1,F2, ... are said to be independent. Let Xj be a Rnj -valued ran-

dom variable for j = 1, ... the collection {Xj} is called independent if the σ−algebras

σ (X1) , ... are independent.

Let X be a real-valued random variable, if the integral
∫

Ω
X (ω)P (dω) exists, it is

called the expectation of X and it is denoted by E [X]. Given X and a measurable

function g, the expectation of g (X) (if exists) is given by

E [g (X)] =
∫
Rn g (x)PX (dω). If U ∈ F it will be written E [X;U ] := E [XχU ] :=∫

U
X (ω)P (dω).

Let F′ be a σ−sub-algebra of F, and X be a random variable such that

E [|X|] < +∞. There is a random variable Y , called a version of the conditional

expectation E [X | F′], that satisfies the following conditions:

i. Y is F′−measurable;

ii. E [|Y |] < +∞;

10



Chapter 2. Preliminaries

iii. E [Y ;U ] = E [X;U ] for any U ∈ F′.

We denote Y = E [X | F′] for such random variable.

Example 2.2.1 A random variable X follows a normal distribution with drift µ and

variance σ2, if its density is of the form

1√
2πσ2

e−
(x−µ)2

2σ2 .

Its distribution is given by PX (x) = P (X ≤ x) = 1√
2πσ2

∫ x
−∞ e

− (z−µ)2

2σ2 dz.

Example 2.2.2 A positive random variable Y is said to follow an exponential distribu-

tion with parameter λ > 0 if it has a probability density function of the form λe−λyχy≥0.

The distribution function of Y is given by

PY (y) = P (Y ≤ y) = 1− e−λy.

2.2.3 Lévy processes

A stochastic process is a family X = (X (t))t≥0 of Rn−valued random variables, all

of them defined on (Ω,F,P). Given ω ∈ Ω, a trajectory of the process X is a map

[0,+∞) 3 t 7−→ X (t, ω) ∈ Rn.

The stochastic process Y is said to be a modification of the stochastic process X if

P [X (t) = Y (t)] = 1 for t ∈ [0,+∞).

Let Ω be a non-empty set, suppose that F (t) is a σ−algebra for any t ≥ 0 such that:

if s ≤ t, every set in F (s) is also in F (t). The collection of such σ−algebras, {F (t)}t≥0,

is called a filtration. An adapted stochastic process is a stochastic process (X (t))t≥0

such that X (t) is Ft−measurable, where F (t) belongs to the filtration {F (t)}t≥0.

Definition 2.2.1 A stochastic process (X (t))t≥0 is a Lévy process if the following prop-

erties are satisfied

1. X (0) = 0 a.s.;
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2.2. Lévy processes

2. given a trajectory of the process, almost surely, it is right-continuous on

[0,+∞) and for any t > 0 the left limit exists;

3. it has independent increments, that is, for 0 ≤ t0 < t1 < ... < tm, the random

variables X (t0) , X (t1)−X (t0) , ..., X (tm)−X (tm−1) are independent;

4. the distribution of X (t+ s)−X (t) does not depend on s;

5. it is stochastically continuous, that is, lims−→t P [|X (s)−X (t)| > ε] = 0 for all

t ≥ 0 and ε > 0.

If a stochastic process satisfy all the above conditions but (2), it is called a Lévy

process in law, and it can be constructed a version of that process such that (2) is

satisfied.

Example 2.2.3 The classical example of Lévy process is the Brownian motion. Given

a probability space (Ω,F,P), suppose that for each ω ∈ Ω there is a continuous function

W (t) for t ≥ 0 such that W (0) = 0 and that depends on ω; W = (W (t))t≥0 is called

a Brownian motion if for all 0 = t0 < t1 < ... < tm the increments W (t1) = W (t1) −

W (t0), W (t2)−W (t1), ... , W (tm)−W (tm−1) are independent and each of these incre-

ments is normally distributed with E [W (ti+1)−W (ti)] = 0 and V ar [W (ti+1)−W (ti)] =

ti+1 − ti.

Example 2.2.4 Let zi, i ≥ 1 be a sequence of independent exponential random variables

with parameter λ and Zn =
∑n

i=1 zi. The process(N (t))t≥0 defined by

N (t) =
∑
n≥1

χt≥Zn

is called a Poisson process with intensity λ.

Example 2.2.5 A compound Poisson process with intensity λ > 0 and jump size dis-

tribution f is a stochastic process Z defined as

Z =
Nt∑
i=1

Yi,
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Chapter 2. Preliminaries

where the jump sizes Yi are i.i.d. with distribution f , and (N (t))t≥0 is a Poisson process

with intensity λ, independent from (Yi)i≥1 .

Another useful definition will be martingales. Let (Ω,F,P) be a probability space,

T a fixed positive number, and {F (t)}t∈[0,T ] a filtration of sub−σ−algebras of F, an

adapted stochastic process (M (t))t∈[0,T ] is said to be a martingale if E [M (t) |F (s)] =

M (s) for all 0 ≤ s ≤ t ≤ T .

2.2.4 Laplace and Fourier transforms

Definition 2.2.2 Let the function f (τ) be measurable in τ ∈ (0,+∞), and such that

|f (τ)| ≤ Meδτ for some positive constants M and δ. The Laplace transformation of

the function f (τ) is defined by

[Lf ] (ω) =
∫ +∞

0
e−ωτf (τ) dτ ω ∈ C,Rω > δ.

The inverse formula is given by

f (τ) =
1

2πi

∫
Γb

[Lf ] (ω) eωτdω,

where Γb = {ξ ∈ C : Rξ = b} for a fixed b > δ.

Definition 2.2.3 The Fourier transform of a function f , denoted by f̂ = Ff , is defined

as

f̂ (ξ) = Ff (ξ) =

∫
Rn

e−i〈ξ,x〉f (x) dx.

The inverse Fourier transform F−1 is defined by

f (x) = F−1f̂ (x) =

(
1

2π

)n ∫
Rn

ei〈ξ,x〉f̂ (ξ) dx.

The existence of the Fourier transform is assured for all the functions in L1 (Rn). If
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2.2. Lévy processes

µ is a measure on Rn, its Fourier transform is:

µ̂ (ξ) =

∫
Rn

e−i〈ξ,x〉µ (dx) ,

and exists for all finite measures. For the particular case of a probability measure PY
with density p and absolutely continuous w.r.t. to the Lebesgue measure, the Fourier

transform is given by P̂Y (ξ) = p̂ (ξ). The following one is a very similar definition used

in probability theory.

2.2.5 Generating triplet and characteristic exponent

Definition 2.2.4 The characteristic function of a measure µ is defined as

^
µ (ξ) = µ̂ (−ξ) ;

and for a distribution of a random variable Y , as

E
[
ei〈ξ,Y 〉

]
=

∫
Rn

ei〈ξ,Y 〉PY (dx) ;

or
^

PY (ξ) = P̂Y (−ξ), if it is gd by
^

PY .

Let the m-fold self-convolution of a probability measure µ be denoted by

µm = µ ∗ · · · ∗ µ (m times).

Definition 2.2.5 The probability measure µ (on Rn) is indefinitely divisible if, there

is a probability measure µm (on Rn) for any m ∈ N such that µ = µmm.

The characterization mentioned exists since all the Lévy processes are in a one-to-

one correspondence to all the indefinitely divisible probability measures.

Lemma 2.2.1 There exists a unique continuous function φ : Rn −→ C for each in-

finitely divisible µ, such that φ (0) = 0 and exp [φ (ξ)] = µ̂ (ξ) ∀t ≥ 0.
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Chapter 2. Preliminaries

µt = F−1 exp [tφ] is well-defined and infinitely divisible, also there is a Lévy process in

law, X, such that PXt = µt.

Lemma 2.2.2 Let (Xt)t≥0 be a Lévy process in law on Rn, then for any t ≥ 0, PXt is

infinitely divisible and PXt = µt, where µ = PX1.

Theorem 2.2.2 If X and Y are Lévy processes in law on Rn such that PX1 = PY1, X

and Y are identical in law.

Theorem 2.2.3 Any X Lévy process in law on Rn has a modification that is a Lévy

process.

The last results give the following representation for the characteristic function of

the distribution of the n−dimensional Lévy process (Xt)t≥0, called the Lévy-Khintchine

formula:

E
[
ei〈ξ,Xt〉

]
= e−tψ(ξ), ξ ∈ Rn, t ≥ 0, (2.1)

where ψ (ξ) is called the characteristic exponent of X, and two Lévy processes have the

same characteristic exponent if they have the same law.

Theorem 2.2.4 .

i. Let X be a Lévy process on Rn. Then its characteristic exponent admits the

representation

ψ (ξ) =
1

2
〈Bξ, ξ〉 − i 〈a, ξ〉 −

∫
Rn

(
ei〈x,ξ〉 − 1− i 〈x, ξ〉χ|x|≤1 (x)

)
Π (dx) , (2.2)

where B is a symmetric non-negative-definite n × n matrix, a ∈ Rn, and Π is a

measure on Rn satisfying

Π ({0}) = 0,
∫
Rn min

{
|x|2 , 1

}
Π (dx) <∞. (2.3)

ii. The representation (2.2) is unique.
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2.2. Lévy processes

iii. Conversely, if B is a symmetric non-negative-definite n× n matrix, a ∈ Rn, and

Π is a measure on Rn satisfying (2.3); then, there exists a Lévy process X defined

by Equations (2.1) and (2.2).

The triple (a,B,Π) is called the generating triplet of X, and Π is called the Lévy

measure of X.

Definition 2.2.6 Let X be a Lévy process on Rn with generating triplet

(a,B,Π), then, the infinitesimal generator of X is the operator

[Lf ] (x) =
1

2

n∑
j,k=1

bj,k
∂2f

∂xj∂xk
+ 〈a, f ′ (x)〉

+

∫
Rn

(
f (x+ y)− f (x)− χ|y|≤1 (y) 〈y, f ′ (x)〉

)
Π (dy) ,

where f is in the space of infinitely differentiable functions vanishing faster than any

rational function at infinity: S (Rn).

For the one-dimensional case with generating triplet (µ, σ2,Π):

Lf (x) =
σ2

2
f ′′ (x) + µf ′ (x)

+

∫
R

(
f (x+ y)− f (x)− χ|y|≤1 (y) yf ′ (x)

)
Π (dy)

ψ (ξ) =
σ2

2
ξ2 − iµξ +

∫
R

(
1− eiyξ + iyξχ|y|≤1 (y)

)
Π (dy) ,

so, using f (x) = eixξ (f ′ (x) = iξeixξ, f ′′ (x) = −ξ2eixξ)

Leixξ = −σ
2

2
ξ2eixξ + iµξeixξ

+

∫
R

(
eixξeiyξ − eixξ − χ|y|≤1 (y) iξyeiyξ

)
Π (dy)

= −eixξ
(
σ2

2
ξ2 − iµξ +

∫
R

(
1− eiyξ + iξyχ|y|≤1 (y)

)
Π (dy)

)
= −eixξψ (ξ) (2.4)
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2.2.6 Regular Lévy processes of exponential type

Definition 2.2.7 Let δ− < 0 < δ+, and ν ∈ (0, 2]. A Lévy process is called a Regular

Lévy process of Exponential type [δ−, δ+] and order ν > 0 (RLPE) if the following two

conditions are satisfied:

• the characteristic exponent admits a representation

ψ (ξ) = −iµξ + φ (ξ) , (2.5)

where φ is holomorphic in the strip Iξ ∈ (δ−, δ+) , it is continuous up to the

boundary of the strip, and it admits a representation

φ (ξ) = c |ξ|ν +O (|ξ|ν1) , (2.6)

as ξ →∞ in the strip Iξ ∈ [δ−, δ+] , where ν1 < ν;

• there exist ν2 < ν and C such that the derivative of φ in Equation (2.5) admits a

bound

|φ′ (ξ)| ≤ C (1 + |ξ|)ν2 , Iξ ∈ [δ−, δ+] . (2.7)

2.2.7 Equivalent martingale measures

Equivalent changes of measure take an important role in arbitrage pricing theory. The

results in this section can be found in [2]. Let X be a Lévy process such that the stock

price is modeled as St = S0e
Xt , for an initial known price S0, and for all t ≥ 0. Let S∗t

denote the discounted stock price, i.e, S∗t = e−
∫ t
0 r(h)dhSt.

Proposition 2.2.1 (Fundamental theorem of asset pricing) The market model defined

by (Ω,F,P) and asset prices (St)t∈[0,T ] is arbitrage-free, if and only if, there exists an

equivalent probability measure Q such that the discounted assets (S∗t )t∈[0,T ] are martin-

gales with respect to Q.

Proposition 2.2.2 (Second fundamental theorem of asset pricing) A market defined by

17



2.2. Lévy processes

the assets
(
S0
t , S

1
t , ..., S

d
t

)
t∈[0,T ]

described as stochastic processes on (Ω,F,P) is complete,

if and only if, there is a unique martingale measure Q equivalent to P.

Definition 2.2.8 An equivalent martingale measure (EMM) is a probability measure

Q which is equivalent (in other words, it has the same null sets) to the given (historical)

probability measure P and under which the process S∗t is a martingale.

Given an equivalent measure, the characteristic exponent under such measure must

satisfies:

S0 = S∗0 = EQ [S∗t ] = S0E
Q [e−rteXt]

= S0e
−rtEQ [eXt] = S0e

−rtEQ [ei(−i)Xt]
= S0e

−rte−tψ
Q(−i) = S0e

−t(ψQ(−i)+r)

⇒

ψQ (−i) + r = 0

which is known as the EMM condition.

2.2.8 Esscher transform

The equivalent measure most used in the finance field is the so-called Esscher transform,

it was introduced in actuarial science since 1932 by F. Esscher. It is defined for a

parameter θ ∈ R by

dQ|Ft
dP|Ft

=
eθXt

EP [eθXt ]
=

eθXt

EP [ei(−iθ)Xt ]

=
eθXt

e−tψP(−iθ) = exp
{
θXt + tψP (−iθ)

}
.

The Esscher transform is considered because the minimal entropy martingale (MEM)

could be characterized as an Esscher transform, where the MEM is the solution of

inf {E (Q,P) | Q ∼ P and Q is a martingale} ,

with E (Q,P) = EQ
[
ln dQ

dP

]
= EP

[
dQ
dP ln dQ

dP

]
being the Kullback-Leibler distance (or

18
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relative entropy). As f (x) = x lnx is strictly convex, the relative entropy is a convex

functional of Q, and by the Jensen’s inequality E (Q,P) ≥ 0 and E (Q,P) = 0 if and

only if dQ
dP = 1 a.s.

Given this EMM, the characteristic exponential of the model under the new measure

is related to the one under the original measure as follow

e−tψ
Q(ξ) = EQ [eiξXt] = EP

[
dQ
dP

eiξXt
]

= EP
[
eθXt+tψ

P(−iθ)+iξXt
]

= etψ
P(−iθ)EP [ei(ξ−iθ)Xt] = e−t[ψ

P(ξ−iθ)−ψP(−iθ)]

⇔

ψQ (ξ) = ψP (ξ − iθ)− ψP (−iθ) . (2.8)

The last equation give us a particular EMM condition for the Esscher transform

ψQ (−i) = ψP (−i (1 + θ))− ψP (−iθ)

ψP (−i (1 + θ))− ψP (−iθ) + r = 0 (2.9)

Lemma 2.2.3 Let X be a RLPE of type [δ−, δ+], with δ+ − δ− > 1, under the historic

measure P. Then,

i. the function f (θ) = −ψP (−i (1 + θ))+ψP (−iθ) is strictly increasing on [−δ+,−δ− − 1] ;

ii. the Equation (2.9) has at most one root on [−δ+,−δ− − 1] ;

iii. the Equation (2.9) has a root on (−δ+,−δ− − 1) if and only if

lim
θ→−δ++0

f (θ) < r < lim
θ→−(δ−−1)−0

f (θ) . (2.10)

2.3 Stochastic calculus

Itô calculus has a lead role in the valuation of assets in continuous time, in the present

section, the Itô integral and its properties are introduced. The demonstrations of the

results in this section could be found in [8].
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Given a contract that occurs in the interval of time [0, T ], for some positive real

number T , we want to know the set of feasible events for each time t ∈ [0, T ], these sets

must be σ−algebras, in fact, the stochastic process used to model the price fluctuations

must be an adapted stochastic process to some filtration {F (t)}t∈[0,T ].

It is desirable to obtain a meaning for
∫ T

0
Y (t) dW (t), where (W (t))t≥0 is a Brow-

nian motion with a filtration {F (t)}t≥0, and (Y (t))t≥0 is an adapted stochastic process

to the filtration {F (t)}t≥0. The reason of such desire is that Y (t) will be the position

we take in an asset at time t, and this position depends on the path of the price path of

the asset up to time t. The problem in finding that meaning is that Brownian motion

paths cannot be differentiated with respect to time.

The typical construction of the Itô integral is the following. Let’s start defining

the Itô integral I (t) =
∫ t

0
Y (u) dW (u) for simple processes (Y (t))t≥0, those simple

processes are defined with paths to be constant in the intervals [tj, tj+1) for a given

partition Π = {t0 = 0, t1, t2, ..., tn−1, tn = T}, t0 < t1 < ... < tn. The Itô integral at

time tk ≤ t ≤ tk+1 is defined by

I (t) = Y (tk) [W (t)−W (tk)] +
k−1∑
j=0

Y (tj) [W (tj+1)−W (tj)] . (2.11)

Theorem 2.3.1 The Itô integral defined by (2.11) is a martingale.

Theorem 2.3.2 (Itô Isometry) The Itô integral defined by (2.11) satisfies

E
[
I2 (t)

]
= E

[∫ t

0

Y 2 (h) dh

]
.

Definition 2.3.1 Given a function f (t) defined for 0 ≤ t ≤ T , its quadratic variation

up to time T is

[f, f ] (T ) = lim
‖Π‖−→0

n−1∑
j=0

[f (tj+1)− f (tj)]
2 .

Theorem 2.3.3 The quadratic variation up to time T of a Brownian motion W is T

almost surely for all T ≥ 0.

The last results could be interpreted as the statement that the Brownian motion
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accumulates quadratic variation at rate one per unit of time, and the two forms of

writing this are

[W,W ] (T ) = T,

dW (t) dW (t) = dt,

Theorem 2.3.4 The quadratic variation accumulated up to time t by the Itô integral

(2.11) is

[I, I] (t) =

∫ t

0

Y 2 (h) dh.

Using the differential expression of the Itô integral, dI (t) = Y (t) dW (t), the last

result can be written as

dI (t) dI (t) = Y 2 (t) dW (t) dW (t) = Y 2 (t) dt,

which means that the Itô integral accumulates quadratic variation at rate Y 2 (t) per

unit of time.

Now, it is time to define the Itô integral for integrands that are allowed to vary

continuously with time, and also to jump. Let (Y (t))t≥0 be an adapted stochastic

process to the filtration {F (t)}t≥0, and assume that

E

[∫ T

0

Y 2 (t) dt

]
<∞. (2.12)

Aiming to define the Itô integral, the process (Y (t))t≥0 must be approximated by

simple processes in the following way: first choose an arbitrary partition of the interval

[0, T ], 0 = t0 < t1 < ... < tm = T , and use as approximation of (Y (t))t≥0 the simple

process with value Y (tj) in the interval [tj, tj+1) for each j = 1, ...,m. As the norm

of the partition approaches to zero, the approximation will be more accurate. It is

possible to choose a sequence of simple processes (Yn (t))t≥0 such that

lim
n−→∞

E

[∫ T

0

|Yn (t)− Y (t)|2 dt
]

= 0.
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The Itô integral of the process (Y (t))t≥0 is defined by

I (t) =

∫ t

0

Y (h) dW (h) = lim
n−→∞

∫ t

0

Yn (h) dW (h) , 0 ≤ t ≤ T . (2.13)

This definition has the same properties of the Itô integral for simple processes, this

can be seen in the next result.

Theorem 2.3.5 Let T be an arbitrary positive number, and let (Y (t))t≥0 be an adapted

stochastic process to the filtration {F (t)}t≥0 that satisfies (2.12); the Itô integral defined

in (2.13) has the following properties.

i. (Continuity) As a function of the upper limit of integration t, the paths of I (t)

are continuous.

ii. (Adaptivity) For each t, I (t) is F−measurable.

iii. (Linearity) If I (t) =
∫ t

0
Y (u) dW (h) and J (t) =

∫ t
0
Z (h) dW (h), then

I (t)± J (t) =

∫ t

0

[Y (u)± Z (t)] dW (u) ;

furthermore, for any constant c, cI (t) =
∫ t

0
cY (u) dW (u).

iv. (Martingale) I (t) is a martingale.

v. (Itô isometry) E [I2 (t)] = E
[∫ t

0
Y 2 (h) dh

]
.

vi. (Quadratic V ariation) [I, I] (t) =
∫ t

0
Y 2 (h) dh.

As we want to model the prices of assets with functions of stochastic processes, it is

needed a rule to differentiate expressions like f (W (t)), where f (x) is a differentiable

function and W (t) is a Brownian motion.

Theorem 2.3.6 (Itô formula for Brownian motion) Let f (x, t) be a function for which

the partial derivatives fx (x, t), ft (x, t) and fxx (x, t) are defined and continuous, and
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let W (t) be a Brownian motion, then, for every t ≥ 0

df (W (t) , t) = ft (W (t) , t) dt+
1

2
fxx (W (t) , t) dt+ fx (W (t) , t) dW (t) .

The last result is very important, but in the practice we need a similar rule for more

general processes, for example the processes covered by the next definition.

Definition 2.3.2 Let (W (t))t≥0 be a Brownian motion, an let {F (t)}t≥0 be an associ-

ated filtration. An Itô process is a stochastic process, (X (t))t≥0, of the form

X (t) = X (0) +

∫ t

0

σ (h) dW (h) +

∫ t

0

µ (h) dh, (2.14)

where, X (0) is non-random, and σ (t) and µ (t) are adapted stochastic processes.

Usually Itô processes are also known as diffusion Itô processes. In finance, σ (t) and

µ (t) are called volatility and drift respectively.

Lemma 2.3.1 The quadratic variation of the Itô process (X (t))t≥0 is

[X,X] (t) =

∫ t

0

σ2 (h) dh.

The previous lemma gives us an equivalent expression for the Itô process (X (t))t≥0

given by

dX (t) = σ (t) dW (t) + µ (t) dt,

which is more used in the financial field. The next definition lets us integrate adapted

processes respect to this wider class of stochastic processes.

Definition 2.3.3 Let (X (t))t≥0 be an Itô process represented as above, and let (Y (t))t≥0

be an adapted process. The integral of Y (t) respect to an Itô process is defined by

∫ t

0

Y (h) dX (h) =

∫ t

0

Y (h)σ (h) dW (h) +

∫ t

0

µ (h)Y (h) dh.

And for this new integral a new differentiation rule arises.
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Theorem 2.3.7 (Itô formula for an Itô process) Let (X (t))t≥0 be an Itô process rep-

resented as in (2.14), and let f (x, t) be a function for which the partial derivatives

fx (x, t), ft (x, t) and fxx (x, t) are defined and continuous, then, for every t ≥ 0

df (X (t) , t) = ft (X (t) , t) dt+ fx (X (t) , t) dX (t)

+
1

2
fxx (X (t) , t) dX (t) dX (t) .

Let (Ω,F,P) be a probability space, and let {Ft}t≥0 be a filtration on this space. All

processes will be adapted to this filtration. We want to define the stochastic integral

∫ t

0

f (h) dX (h) ,

were the process X can have jumps. Let’s consider in particular that X is right-

continuous and of the form X (t) = X (0) + I (t) + R (t) + J (t), where X (0) is a

non-random initial condition; the process

I (t) =

∫ t

0

Γ (h) dW (h)

is an Itô integral of an adapted process Γ (h) with respect to a Brownian motion relative

to the filtration. We will call I (t) the Itô integral part of X. The process R (t) is a

Lebesgue integral

R (t) =

∫ t

0

Θ (h) dh

for some adapted process Θ (t), and its called the Lebesgue integral part of X. The

continuous part of X (t) is defined to be

Xc (t) = X (0) + I (t) +R (t) = X (0) +

∫ t

0

Γ (h) dW (h) +

∫ t

0

Θ (h) dh. (2.15)

The quadratic variation of this process is

[Xc, Xc] (t) =

∫ t

0

Γ2 (h) dh

dXc (t) dXc (t) = Γ2 (t) .
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Finally, J (t) is an adapted process, pure jump process such that J (0) = 0, and

J (t) = lim
h↓t

J (h) ∀t ≥ 0,

and is called the pure jump part of X. The left-continuous version of this process will

be denoted by J (t−). We assume that J does not jump at time zero, it has only finitely

many jumps on each finite time interval (0, T ], and it is constant between jumps. Both

the Poisson and the compound Poisson process have these properties.

Definition 2.3.4 Let (X (t))t≥0 be a jump process of the form (2.15), and with its

parts described as above, such process will be called a jump process. Its continuous part

is Xc (t) = X (0) + I (t) + R (t), and for an adapted process (Y (t))t≥0, the stochastic

integral of Y (t) respect to the jump process is defined by

∫ t

0

Y (h) dX (h) =

∫ t

0

Y (h) Γ (h) dW (h) +

∫ t

0

Y (h) Θ (h) dh+
∑

0≤h≤t

Y (h) ∆J (h) .

Theorem 2.3.8 (Itô formula for jump process) Let X (t) be a jump process and f (x)

a function for which f ′ (x) and f ′′ (x) are defined continuous. Then

f (X (t)) = f (X (0)) +

∫ t

0

f ′ (X (h)) dXc (h) +
1

2

∫ t

0

f ′′ (X (h)) dXc (h) dXc (h)

+
∑

0≤h≤t

[f (X (h))− f (X (h−))] ,

where Xc denotes the continuous part of X, and X (t−) is the left continuous version

of X (t).
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The Gaussian model

Let’s use the sub-index notation to express the dependency of time. Let V (St, t) be

the value of an European call option with payoff V (ST , T ) = ϕ (ST ), where T is the

expiry date. The follow assumptions about the market are made:

• The trading takes place continuously in time.

• Unrestricted borrowing and lending of funds are possible at the same interest rate

at a specified time.

• The market is frictionless, that is, there are no transaction costs or taxes.

• There is no discrimination against the short sale.

3.1 The Black-Scholes model

The reasoning and the results in the following two sections can be found in [11]. Let’s

consider a market with two assets, the first one a risk-less bond of a bank account given

by

dBt = r (t)Btdt, B0 = 1

Bt = exp
{∫ t

0
r (h) dh

}
.

The second, a stock with the stochastic differential equation

dSt = µ (t)Stdt+ σ (t)StdWt, (3.1)
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3.1. The Black-Scholes model

for a fixed S0; where (Wt)t≥0 is a Brownian motion, and St is on the probability space

(Ω,F,P). Let’s assume that r, µ and σ are measurable functions in t. The last equation

can also be written as

St = S0 +

∫ t

0

µ (h)Shdh+

∫ t

0

σ (h)ShdWh ∀t ∈ [0, T ] , (3.2)

where the first integral is a Lebesgue integral, and the second one is understood in the

Itô sense, and both are assumed well-defined.

Lemma 3.1.1 The process given by the formula

St = S0 exp

{∫ t

0

σ (h) dWh +

∫ t

0

(
µ (h)− σ2 (h)

2

)
dh

}
∀t ∈ [0, T ] , (3.3)

is the unique solution of the stochastic differential equation (3.1), or equivalently, the

Itô integral equation (3.2).

Let φ (t) = (φ1 (t) , φ2 (t)) ∈ R2 represent the portfolio of an investor with a short

position in one call option, with φ1 (t) being the amount of shares of stocks held at time

t, and φ2 (t) be the amount of money deposited on a bank account or borrowed from a

bank. Let M (φ (t)) denote the wealth of the portfolio at time t, therefore

M (φ (t)) = φ1 (t)St + φ2 (t)Bt.

Definition 3.1.1 A trading strategy φ (t) is called self-financing if its wealth process

M (φ (t)) satisfies

dM (φ (t)) = φ1 (t) dSt + φ2 (h) dBh ∀t ∈ [0, T ] ,

or in integral form

M (φ (t)) = M (φ (0)) +

∫ t

0

φ1 (h) dSh +

∫ t

0

φ2 (h) dBh ∀t ∈ [0, T ] ,

where again, the first integral is understood in the Itô sense, and the second one is a
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Lebesgue integral, and both are assumed well-defined.

Since M (φ (t))− φ1 (t)St = φ2 (t)Bt,

dM (φ (t)) = (r (t)M (φ (t)) + (µ (t)− r (t))φ1 (t)St) dt+ φ1 (t)σ (t)StdWt.

Let’s introduce γt = B−1
t = exp

{
−
∫ t

0
r (h) dh

}
, then the discounted stock price is

S∗t = γtSt = S∗0 exp

{∫ t

0

σ (h)Wh +

∫ t

0

(
µ (h)− r (h)− σ2 (h)

2

)
dh

}
,

and

d (γtM (φ (t))) = (µ (t)− r (t))φ1 (t) γtStdt+ φ1 (t)σ (t) γtStdWt,

or in integral form

γtM (φ (t)) = M (φ (0)) +

∫ t

0

(µ (h)− r (h))φ1 (h) γhShdh+

∫ t

0

φ1 (h)σ (h) γhShdWh.

M∗ (φ (t)) = γtM (φ (t)) is the discounted wealth process andM
∗

(φ (t)) = γtM (φ (t))−

M (φ (0)) is called the discounted gain process.

Definition 3.1.2 A trading strategy φ (t) is called an arbitrage opportunity if

P [M∗ (φ (t)) ≥ 0] = 1

and

P [M∗ (φ (t)) > 0] > 0.

Additionally, we call a market arbitrage-free if no such portfolio exists in it.

Since the fundamental theorem of asset pricing give us a sufficient condition to check

for a market to be arbitrage-free, we will find such EMM. Let’s introduce the function

α (t) =
r (t)− µ (t)

σ (t)
,

29
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and suppose that µ, r and σ are such that

∫ T

0

|α (h)|2 dh <∞. (3.4)

Let’s consider the exponential process

zt = exp

{∫ t

0

α (h) dWt −
1

2

∫ t

0

α2 (h) dh

}
.

Lemma 3.1.2 The unique martingale measure Q for the discounted stock price process

S∗ is given by the Radon-Nikodým derivative

dQ
dP

= zT .

Under the martingale measure Q, the discounted stock price S∗ satisfies

dS∗t = σ (t)S∗t dW
∗
t ,

and the process W ∗
t = Wt −

∫ t
0
α (h) is a standard Brownian motion on a probability

space (Ω,F ,Q).

Hence, the market is both arbitrage-free and complete if the condition (3.4) holds.

Definition 3.1.3 A trading strategy φ (t) is called Q-admissible if the discounted wealth

process M∗ (φ (t)) follows a martingale under Q. The class of all Q-admissible trading

strategies will be denoted by Φ (Q).

The triple [S,B,Φ (Q)] is called the arbitrage-free Black-Scholes model of a financial

market, or briefly, the Black-Scholes model.

3.2 The Black-Scholes formula

For the particular case when µ, r and σ are continuous functions of time, (3.4) holds,

then the considered market [S,B,Φ (Q)] is a Black-Scholes model.

30



Chapter 3. The Gaussian model

Definition 3.2.1 An European contingent claim Y that settles at time T , is attainable

in the Black-Scholes model if it can be replicated by the means of an admissible strategy,

i.e, there exists φ such that M (φ (T )) = Y .

Given an attainable European contingent claim Y that settles at time T , we denote

its arbitrage price as πt (Y ) = M (φ (t)).

Proposition 3.2.1 Let Y be an attainable European contingent claim that settles at

time T . Then the arbitrage price πt (Y ) at time t ∈ [0, T ] in the Black-Scholes model

[S,B,Φ (Q)] is given by the risk-neutral valuation formula

πt (Y ) = BtE
Q [γTY | Ft] ∀t ∈ [0, T ] .

Let’s consider an European call option written on a stock S with expiry date T ,

strike price K, and payoff ϕ (ST ) = (ST −K)+. If γ̂t = exp
{
−
∫ T
t
r (h) dh

}
, then the

option price can be calculated as

V (St, t) = EQ [γ̂tϕ (ST ) | Ft] . (3.5)

Let’s note that

dWt = dW ∗
t + α (t) dt,

then

ST = St exp

{∫ T

t

σ (h) dW ∗
h +

∫ T

t

(
r (h)− σ2 (h)

2

)
dh

}
.

Let Σ =
∫ T
t
σ2 (h) dh, and l =

∫ T
t
σ (h) dW ∗

h ; then its probability density under the

measure Q is a normal distribution with volatility
√

Σ. Then (3.5) can be rewritten as

V (St, t) =
γ̂t√
2πΣ

∫
R

ϕ

(
St exp

{
l +

∫ T

t

(
r (h)− σ2 (h)

2

)
dh

})
exp

{
− l2

2Σ

}
dl.

Since

ST ≥ K ⇔ −D2 (t) = − ln
St
K
−
∫ T

t

(
r (h)− σ2 (h)

2

)
dh ≤

∫ T

t

σ (h) dW ∗
h ,
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3.3. Constant parameters

V (St, t) =
γ̂t√
2πΣ

∫ +∞

−D2(t)

St exp


∫ T
t

(
r (h)− σ2(h)

2

)
dh

+l

−K
 exp

{
− l2

2Σ

}
dl.

Making the change of variable L = l√
Σ

(
−d2 (t) = −D2(t)√

Σ

)
,

V (St, t) =

 St
∫ +∞
−d2(t)

exp

{
−(L−

√
Σ)

2

2

}
dL

−γ̂tKΦ (d2 (t))

 .
With the translation L̂ = L−

√
Σ ,

V (St, t) = StΦ (d1 (t))− exp

{
−
∫ T

t

r (h) dh

}
KΦ (d2 (t)) (3.6)

d1 (t) =
ln St

K
+
∫ T
t
r (h) dh√∫ T

t
σ2 (h) dh

+
1

2

√∫ T

t

σ2 (h) dh

d2 (t) =
ln St

K
+
∫ T
t
r (h) dh√∫ T

t
σ2 (h) dh

− 1

2

√∫ T

t

σ2 (h) dh

which is the Black-Scholes pricing formula for an European call option.

3.3 Constant parameters

The classical Black-Scholes scenario is when µ, r and σ are constants. In particular,

the valuation of an European call option is

u (S, t) = SΦ (d1)− e−r(T−t)KΦ (d2)

d1 =
ln S

K
+ r (T − t)

σ
√

(T − t)
+

1

2
σ
√

(T − t)

d2 =
ln S

K
+ r (T − t)

σ
√

(T − t)
− 1

2
σ
√

(T − t)

An example is given in Figure 3.1.
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Time to Expiry

τ=3

τ=2.5

τ=2

τ=1.5

τ=1

τ=0.5

τ=0
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40

60

80

C (S)

Figure 3.1: The European call value C (S, t) as a function of several values of time to
expiry and constant parameters: σ = 0.1, r = 0.05, K = 0.9, 0 ≤ t ≤ 3 = T .

3.4 Proportional dividends

In this case a new supposition is considered: in a time dt the underlying asset pays out

a dividend D (S, t) = D̂ (t)S. Let

Ŝ = Se−
∫ T
t D̂(θ)dθ, (3.7)

the Itô formula gives a representation of this new process:

dŜ = µ (t) Ŝdt+ σ (t) ŜdW. (3.8)

(3.1) and (3.8) are very similar, with Ŝ instead of S, so the effect of the dividends on the

asset price is that it is discounted by e−
∫ T
t D(θ)dθ, moreover, with the change of variable

(3.7), at the maturity S = Ŝ, so the payoff for a call option is the same, hence, the

Equation (3.6) holds and the solution is given by

u (S, t) = ŜΦ
(
d̂1 (t)

)
− exp

{
−
∫ T

t

r (h) dh

}
KΦ

(
d̂2 (t)

)
= Se−

∫ T
t D̂(θ)dθΦ

(
d̂1 (t)

)
−Ke−

∫ T
t r(h)dhΦ

(
d̂2 (t)

)
,

33



3.4. Proportional dividends

where

d̂1 (t) =
ln
(
S
K

)
−
∫ T
t
D̂ (θ) dθ +

∫ T
t
r (h) dh√∫ T

t
σ2 (h) dh

+
1

2

√∫ T

t

σ2 (h) dh,

d̂2 (t) =
ln
(
S
K

)
−
∫ T
t
D̂ (θ) dθ +

∫ T
t
r (h) dh√∫ T

t
σ2 (h) dh

− 1

2

√∫ T

t

σ2 (h) dh.

Examples are given in Figures 3.2 - 3.5.
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40

60

C (S)

Figure 3.2: The European call value with parameters σ = 0.1, r = 0.05, K = 90,
0 ≤ t ≤ 3 = T and dividends D = D0 sin t, D0 = 0.03.
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Figure 3.3: The European call value with parameters, r = 0.05, K = 90, D (t) = D0 =
0.03, σ (t) = 0.1 (1 + 0.3 sin t), 0 ≤ t ≤ 3 = T .
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Time to Expiry
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Figure 3.4: The European call value with parameters, r = 0.05, K = 90, D (t) = D0 =
0.03, σ (t) = 0.1 (1 + 0.05et), 0 ≤ t ≤ 3 = T .

3.5 Perturbation method

As an example of the perturbation method, the asymptotic expansion for an European

call option without dividends and constant parameters but σ (t) will be considered, it

will be supposed that σ (t) is of the form σ0 (1 + εϕ (t)).

Initially, the term containing σ (t) will be expanded:

∫ T

t

σ2 (θ) dθ = σ2
0 (T − t) + 2εσ2

0

∫ T

t

ϕ (θ) +O
(
ε2
)

Now, the volatility terms included in d1 and d2 will be approximated using the

Taylor’s series of
√

1 + δ and 1
1+δ

:

(∫ T

t

σ2 (θ) dθ

)1/2

= σ0

√
T − t

(
1 +

ε

T − t

∫ T

t

ϕ (θ) dθ

)
+O

(
ε2
)

(∫ T

t

σ2 (θ) dθ

)−1/2

=
1

σ0

√
T − t

(
1− ε

T − t

∫ T

t

ϕ (θ) dθ

)
+O

(
ε2
)

It is important to verify the values of ε where the conditions for the approximations

are valid, i.e. the ε for which the second derivatives are bounded:

∣∣∣∣ 2ε

T − t

∫ T

t

ϕ (θ) dθ

∣∣∣∣ < 1. (3.9)
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Figure 3.5: The European call value with parameters, r = 0.05, K = 90, D (t) = D0 =
0.03, σ (t) = 0.1 (1 + 0.03t), 0 ≤ t ≤ 3 = T .

Using these approximations in d1,2 we have

d1,2 (ε) =
ln
(
S
K

)
+ r (T − t)

σ0

√
T − t

± 1

2
σ0

√
T − t

+
ε

T − t

∫ T

t

ϕ (θ) dθ

(
−

ln
(
S
K

)
+ r (T − t)

σ0

√
T − t

± 1

2
σ0

√
T − t

)
+O

(
ε2
)

= d1,2 (0) + ε
−d2,1 (0)

T − t

∫ T

t

ϕ (θ) dθ +O
(
ε2
)
.

Now let’s work the approximation one step further, that is, taking the approximation

of the cumulative function in terms of the one obtained in the Constant parameters

Section,

Φ (d1,2 (ε)) = Φ (d1,2 (0)) + ε
1√
2π

exp

(
−(d1,2 (0))2

2

)
∂d1,2

∂ε
(0) +O

(
ε2
)

where
∂d1,2

∂ε
= −d2,1 (0)

T − t

∫ T

t

ϕ (θ) dθ.

With

I1,2 = − 1√
2π

d2,1 (0)

T − t
exp

(
−(d1,2 (0))2

2

)∫ T

t

ϕ (θ) dθ,
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Chapter 3. The Gaussian model

then

Φ (d1,2 (ε)) = Φ (d1,2 (0)) + εI1,2 +O
(
ε2
)
,

and the solution is approximated by

u (S, t) = SΦ (d1 (ε))−Ke−r(T−t)Φ (d2 (ε)) +O
(
ε2
)

(3.10)

= u0 (S, t) + ε
[
SI1 −Ke−r(T−t)I2

]
+O

(
ε2
)

uasy = u0 + ε
[
SI1 −Ke−r(T−t)I2

]
,

where u0 is the one given in Section 3.3. Denoting

u1 (S, t) = SI1 (S, t)−Ke−r(T−t)I2 (S, t) ,

the expansion is given by

uasy = u0 + εu1.

And it relates to the theoretical valuation as

u = uasy +O
(
ε2
)

As the corresponding figures will show, this linear approximation is much better

than to just consider the volatility as a constant parameter.

From (3.10) an alternative approximation is considered:

ualt (S, t) = SΦ (d1 (ε))−K exp (−r (T − t)) Φ (d2 (ε)) ,

where,

u = ualt +O
(
ε2
)
.

In all the examples, the option will be considered with a maturity of 3 years, strike

price 90, interest rate 0.05, and no dividend returns. The volatility will be σ0 = 0.1

affected by a different perturbation in each case. The option will be valuated
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3.5. Perturbation method

• at time t = 1 (two years before expiry);

• at discrete increments of size 0.25 in the interval S ∈ [80, 110], that is, 120 points;

• considered as a constant parameter case (Classic), using the exact formulas for

the case with time-dependent parameters, and using the two approximations con-

sidered (Asymptotic, Alternative);

• for 10 perturbation magnitudes, these magnitudes will be according to the appro-

priate ε given by (3.9) and specified in each case.

Tables comparing the computation time taken to do the calculations, and plots showing

the percent error (against the exact valuation) are shown. The calculations were per-

formed using Mathematica [15] on a PC with IntelrCoreTM 2 Duo P8600 (2.40GHz,

3MB L2 Cache, 1066MHz FSB), under an Arch Linux 64-bit operating system with

8GB of RAM.
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Chapter 3. The Gaussian model

3.5.1 Sine Case: σ (t) = σ0 (1 + ε sin (t))

For this case ε ≤ 0.65.

Table 3.1: Computation times (Seconds)

Perturbation: T = T (C0) + T (C1) +
∑

T (ε)

Classic term: T (C0) = 0.013147

Linear term: T (C1) = 2.04989

ε Theoretical T (ε) (ms) Alternative

0.50 16.2249 +0.945 2.06025

0.45 15.7925 +0.986 2.06688

0.40 16.6018 +0.997 2.26601

0.35 16.7844 +1.060 2.15497

0.30 16.3418 +1.096 2.13372

0.25 16.1353 +1.131 2.07219

0.20 15.8643 +1.513 2.03498

0.15 15.7780 +1.237 2.06195

0.10 15.6929 +1.163 2.07520

0.05 15.9888 +1.175 2.05208
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Figure 3.6: Percent error of valuation approximations.
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3.5. Perturbation method

3.5.2 Exponential Case: σ (t) = σ0

(
1 + εe

t
4

)
For this case ε ≤ 0.24.

Table 3.2: Computation times (Seconds)

Perturbation: T = T (C0) + T (C1) +
∑

T (ε)

Classic term: T (C0) = 0.01282

Linear term: T (C1) = 1.59957

ε Theoretical T (ε) (ms) Alternative

0.240 7.58800 +0.922 1.54766

0.225 7.78794 +0.951 1.48927

0.200 7.69392 +1.054 1.56674

0.175 7.50699 +1.095 1.54849

0.150 7.51256 +1.223 1.49520

0.125 7.50834 +1.102 1.50432

0.100 7.61747 +1.076 1.54081

0.075 7.50119 +1.147 1.52674

0.050 7.48821 +1.207 1.50973

0.025 7.50762 +1.166 1.58159
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Figure 3.7: Percent error of valuation approximations.
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3.5.3 Negative Exponential Case: σ (t) = σ0

(
1 + εe−

t
4

)
For this case ε ≤ 0.71.

Table 3.3: Computation times (Seconds)

Perturbation: T = T (C0) + T (C1) +
∑

T (ε)

Classic term: T (C0) = 0.013959

Linear term: T (C1) = 1.55556

ε Theoretical T (ε) (ms) Alternative

0.70 9.59455 +0.956 1.51937

0.60 9.17233 +1.022 1.49523

0.50 9.41991 +1.055 1.65938

0.40 9.20302 +1.027 1.49084

0.30 9.21084 +1.045 1.51117

0.25 9.27951 +1.038 1.54642

0.20 9.23386 +1.175 1.51708

0.15 9.26316 +1.102 1.52667

0.10 9.27299 +1.179 1.54929

0.05 9.22038 +1.225 1.51071
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Figure 3.8: Percent error of valuation approximations.
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3.5. Perturbation method

3.5.4 Linear Case: σ (t) = σ0 (1 + εt)

For this case ε ≤ 0.173.

Table 3.4: Computation times (Seconds)

Perturbation: T = T (C0) + T (C1) +
∑

T (ε)

Classic term: T (C0) = 0.013742

Linear term: T (C1) = 0.69997

ε Theoretical T (ε) (ms) Alternative

0.160 3.89090 +0.935 0.703176

0.140 3.96905 +1.025 0.678662

0.120 3.86180 +0.968 0.721801

0.100 3.84995 +0.997 0.714328

0.075 3.88358 +1.044 0.671299

0.050 3.92113 +1.082 0.668144

0.040 3.82112 +1.174 0.664001

0.030 3.87661 +1.111 0.653976

0.020 3.85492 +1.169 0.666319

0.010 3.78734 +1.607 0.681194
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Figure 3.9: Percent error of valuation approximations.
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Chapter 3. The Gaussian model

3.6 Conclusions

It seems that the perturbation method works well when the volatility is allowed to

be a continuous function of time of the form σ0 (1 + εϕ (t)), and the value of ε is

small enough that the correspondent linear approximation is valid. For the particular

set of parameters considered, the perturbation method shows errors of less than 0.1ε

w.r.t. the analytic valuation on the interval [K − 15%, K + 15%]. Additionally, another

approximation algorithm was proposed. The numerical valuation of the given examples

shows that the alternative method is approximately 3-4 times more precise than the

perturbation method. For a particular value of ε, both approximations are roughly 5-8

times faster than the theoretical valuation; however, the perturbation method has the

advantage that once u0 and u1 are calculated, the re-evaluation for a different value of ε

takes less than a millisecond; where for the alternative method the re-evaluation takes

the full amount of time.
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Chapter 4

Kou model

4.1 The model

The Kou model assumes that the logarithm of the asset price follows a Brownian motion

plus a compound Poisson process whose jumps sizes are distributed double exponen-

tially:

dSt
St

= µdt+ σdWt + d

(
Nt∑
i=1

Yi − 1

)
,

where Wt is a Brownian motion, Nt ∼ Poi (λ), {Yi} is a collection of independent

identically distributed non-negative random variables with density given by

f (dz) =
[
pη+e

−η+zχz>0 (z) + (1− p) η−e−η−zχz<0 (z)
]
dz,

with p being the probability of an upward jump, this means

Yi
d
=

 Z+, with probability p

−Z− with probability 1− p

 ,

where Z+ and −Z− are exponential random variables with means η−1
+ and η−1

− respec-

tively. In other words, η+, η− > 0 govern the decay of the tails for the distribution of

positive and negative jump sizes. It will be assumed that every source of randomness

is independent.
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4.1. The model

This control over the weight of the tails will cover one of the missing empirical

properties of the Black-Scholes model, the asymmetric distribution. The jump part

also contributes to a higher peak, another missing empirical property. This absences

on the traditional model, correspond to the overreaction and under-reaction to outside

news in the market.

If St = S0e
Xt , the model is represented by

Xt = at+ σWt +
Nt∑
i=1

Yi,

where a = µ− σ2

2
.

Let’s notice that in order to get bounded expectation for the stock price and the

valuation, the average upward jump size must not exceed 100% , i.e., η+ > 1.

The other missing property of the Black-Scholes framework is the volatility smile.

In the Kou model, if the implied volatility regarding the strike price is calculated, the

solution is a strict convex function (see [12], [14]). As if the same is done on the classic

Black-Scholes model, the solution is a constant volatility function.

The purpose of this Chapter is to show that the perturbation method is a good

approximation for the valuation problem when using the Kou model. First of all,

the theoretical valuation will be calculated under a risk-free market, using the Esscher

transform as the EMM. For the analytic valuation, it is desirable to know the probability

density of the model, unfortunately, for this model it is not available in closed form, so

the characteristic exponent will be a useful tool. In the Section 4.2, it will be shown that

the Esscher transform preserves the structure of the model, that is, the characteristic

exponent under the risk-neutral measure is also a rational function of the the same

form.

The numeric computation of the solution is not straightforward, the integrand is

highly oscillatory on the integration line (Rρ), this makes the numeric integration both

slow and imprecise. To find a reliable computation to compare the perturbation method

to, in the Section 4.5, we will use the saddle point method, also known as the steepest

descent method ; in it, the integration line will be transformed into a more suitable

contour for the numerical integration; for this, it will be necessary to find the saddle
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Chapter 4. Kou model

point ξ0 for each pair (S, t), and to use the steepest descent contour as the integration

line. As the characteristic exponent under the EMM is also a rational function, for

some points (S, t), the saddle point will be near (or even on) simple poles or essential

singularities, the method to address this caveat will be to use different representations

and use the correspondent contours as the integration contour.

Given the complexity of the analytic valuation for the double-exponential jump-

diffusion model, the necessity of a good and fast approximation is evident. As an

example, the perturbation method for relative small values of λ will be studied. Another

approximation could be done using the Fast Fourier Transform, but the accuracy of

the method is not well controlled. Additionally, the Integration-along-a-cut method

developed in [7] is not applicable on this model.

The next result will be useful to find a characterization of the Kou model with the

Lévy-Khintchine formula, the proof can be found in [2].

Proposition 4.1.1 Let Z be a compound Poisson process on Rn, with jump intensity

λ, and jump size distribution f . Its characteristic exponent is given by

E
[
ei〈ξ,Z〉

]
= exp

{
tλ

∫
Rn

(
ei〈ξ,Z〉 − 1

)
f (dh)

}
.

Since, for the jump part in the model

∫
R

(
eiξz − 1

) [
pη+e

−η+zχz>0 (z) + (1− p) η−e−η−|z|χz<0 (z)
]
dz

= iξ

[
p

(
1

η+ − iξ

)
+ (1− p)

(
1

η− + iξ

)]
,

then,

E
[
eiξZ

]
= exp

{
itλξ

[
p

(
1

η+ − iξ

)
+ (1− p)

(
1

η− + iξ

)]}
.

Using the independence of the variables, the exponent characteristic of the model

47



4.2. Risk-neutral universe

can be found:

e−tψ(ξ) = E
[
eiξ(G+Z)

]
= E

[
eiξG

]
E
[
eiξZ

]
= exp

{
t

(
−1

2
σ2ξ2 + iaξ + iξλ

[
p

(
1

η+ − iξ

)
+ (1− p)

(
1

η− + iξ

)])}
,

and finally

ψ (ξ) =
σ2

2
ξ2 − iaξ − iξλ

(
p

η+ − iξ
− 1− p
η− + iξ

)
. (4.1)

The last expression will be denoted by ψP (ξ) to specify that it is taken under the

historical probability measure P.

4.2 Risk-neutral universe

4.2.1 Geometric Brownian case

As λ→ 0, the jumps vanishes; and at λ = 0, the process becomes a geometric Brownian

motion; so S = S0e
G, G = at+σWt with a = µ− σ2

2
. It is well known that such variable

G has the density function

P (x) =
1√

2πσ2t
exp

{
−(x− at)2

2σ2t

}
,

and its characteristic exponent is given by

E
[
eiξG

]
= exp

{
iatξ − 1

2
σ2tξ2

}
.

Let’s find out if the structure of a geometric Brownian motion part is preserved

under a EMM; we know that the characteristic exponent is

ψP (ξ) =
σ2
P

2
ξ2 − iaξ,

then, if under the EMM the process structure is preserved, the characteristic exponent
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Chapter 4. Kou model

must be

ψQ
0 (ξ) =

σ2
Q

2
ξ2 − iµQξ.

The Proposition 9.8 in [2] tells us that σP = σQ = σ, and the EMM condition lets us

know the new drift:

µQ = r − σ2

2
.

As (3.4) holds for constant parameters, the EMM is unique and must coincide with

the one given by the Esscher transform; the correspondent parameter θ0 could be found

using Equation (2.9),

θ0 =
r − µ
σ2

.

Then, the characteristic exponent under the EMM is

ψQ
0 (ξ) =

σ2

2
ξ2 − i

(
r − σ2

2

)
ξ.

4.2.2 Kou model

For the Kou model it is easy to see that for

φP (ξ) =
σ2

2
ξ2 − iξλ

(
p

η+ − iξ
− 1− p
η− + iξ

)
,

φP (ξ) is holomorphic in Iξ ∈ (−η+, η−) , it is also continuous up to the boundary of the

strip; and as ξ →∞ in Iξ ∈ (−η+, η−), (2.5)− (2.6) holds for: c = σ2

2
, 0 = ν1 < ν = 2,

1 = ν2 < ν and C = σ2. So, the model considered is a RLPE of order ν = 2, intensity

c = σ2

2
and steepness parameters {−η+, η−}.

For the double-exponential jump-diffusion model, let’s first find the parameter θ
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4.2. Risk-neutral universe

that defines the Esscher transform; the EMM condition (2.9) is

σ2

2
+ a− r + σ2θ + λ

 p(1+θ)
η+−(1+θ)

− pθ
η+−θ

−
(

(1−p)(1+θ)
η−+(1+θ)

− (1−p)θ
η−+θ

)  = 0,

that after some calculations could be expressed as

µ− r + σ2θ + λ

[
pη+

(η+ − θ) (η+ − (1 + θ))
− (1− p) η−

(η− + θ) (η− + (1 + θ))

]
= 0. (4.2)

One might wonder if finding θ will be reasonable, and the Lemma 2.2.3 assure the

existence of such θ. In our case the condition in Equation (2.10) turns into

lim
θ→−η−+0

f (θ) < r < lim
θ→(η+−1)−0

f (θ) ,

where

f (θ) = µ+ σ2θ + λ

[
pη+

(η+ − θ) (η+ − (1 + θ))
− (1− p) η−

(η− + θ) (η− + (1 + θ))

]
.

Since the condition holds, then (4.2) has one root on (−η−, η+ − 1).

Now, from Equation (2.9), the characteristic exponent under the new measure is

ψQ (ξ) =
σ2

2
ξ2 − i

(
σ2θ + a

)
ξ − iλξ

{
p

η+ − iξ − θ
− 1− p
η− + iξ + θ

}
−λθ

{
p

η+ − iξ − θ
− 1− p
η− + iξ + θ

−
(

p

η+ − θ
− 1− p
η− + θ

)}
.

As with the geometric Brownian motion, we would like to know if the structure of

the model is preserved once the Esscher transform was applied, fortunately the structure
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is preserved once new parameters are specified (see [13]):

b = σ2θ + a = σ2

(
θ − 1

2

)
+ µ

η̂+ = η+ − θ

η̂− = η− + θ

ζ =
pη+

η+ − θ
+

(1− p) η−
η− + θ

p̂ =
pη+

ζ (η+ − θ)
=
pη+

ζη̂+

λ̂ = ζλ.

Then

ψQ (ξ) =
σ2

2
ξ2 − ibξ − iλ̂ξ

{
p̂

η̂+ − iξ
− 1− p̂
η̂− + iξ

}
.

Since the double-exponential jump-diffusion model will be seen as a perturbation to

the geometric Brownian model, the parameter λ acquires a lead role, then it must be

noted that Equation (4.1) depends on λ, so θ and ψQ are functions of λ too, and this

will be remarked with the following notation: ψQ (ξ, λ).

4.3 Pseudo-differential problem

Given that at time T the value of the option, the payoff ϕ (ST ), is known, the option

value is given by the martingale property of the EMM:

V (St, t) = e−r(T−t)EQ [ϕ (ST ) | St] .

Considering

u (Xt, t) = V
(
S0e

Xt , t
)

= V (St, t) ,

g (XT ) = ϕ
(
S0e

XT
)

= ϕ (ST ) ,

we have

u (x, t) = e−r(T−t)EQ [g (XT ) | Xt = x] .
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4.3. Pseudo-differential problem

Using τ = T−t, along with XT = Xτ +Xt from the independent increment property

of a Lévy process:

u (x, t) = e−rτ
∫
R

g (x+ y) pτ (y) dy

= e−rτ
∫
R

g (y) pτ (y − x) dy y 7→ y − x

where pτ is the density of Xτ under Q (and associated to its generating triplet), and

can be expressed using the Lévy-Khintchine formula

e−τψ
Q(−ξ) = EQ [e−iξXτ ]

=

∫
R

e−iξxpτ (x) dx

= p̂τ (ξ)

and the inverse Fourier Transform

pτ (x) =
1

2π

∫
R

eiξxp̂τ (ξ) dξ

=
1

2π

∫
R

e−iξxe−τψ
Q(ξ)dξ.

As ψQ (ξ) oscillates, we want to shift the line of integration to a more suitable one,

the following definition will help.

Definition 4.3.1 Let eρxf ∈ L1 (R) for some ρ ∈ R. The generalized Fourier trans-

form of f is given by

f̂ (ξ) = (Fρf) (ξ) =

∫
R

e−iξxf (x) dx, for ξ ∈ Rρ,

where Rρ = {v + iρ : v ∈ R}. If f is piece-wise-continuously differentiable, then the

inverse generalized Fourier transformation is given by

f (x) =
(
F−1
ρ f̂

)
(x) =

1

2π

∫
Rρ

eiξxf̂ (ξ) dξ, for x ∈ R.
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Given the form of ψQ, e−iξx−τψ
Q(ξ) is analytic in a strip on the complex plane, so,

using the Cauchy Integral Theorem

pτ (x) =
1

2π

∫
R

e−iξx−τψ
Q(ξ)dξ =

1

2π

∫
Rρ

e−iξx−τψ
Q(ξ)dξ.

Then,

u (x, t) = e−rτ
1

2π

∫
R

∫
Rρ

e−iξ(y−x)−τψQ(ξ)g (y) dξdy

=
1

2π

∫
R

∫
Rρ

e−iξ(y−x)−τ(r+ψQ(ξ))g (y) dξdy,

as the integral converges absolutely, the order of integration can be changed, so

u (x, t) =
1

2π

∫
Rρ

eiξx−τ(r+ψ
Q(ξ))

∫
R

e−iξyg (y) dydξ

=
1

2π

∫
Rρ

eiξxe−τ(r+ψ
Q(ξ)) (Fρg) (ξ) dξ

=
(
F−1
ρ e−τ(r+ψ

Q(ξ))Fρg
)

(x) , (4.3)

where ρ is such that eρxg ∈ L1 (R).

Using the inverse generalized Fourier transformation and (4.3):

Lf (x) = −
[
F−1
ρ

(
ψQ)Fρf] (x) .

We will use the following notation to specify the measure under which the risk-

neutral valuation will be calculated, the shifted line of integration, and the variable on

which the function is defined

[
LQ
ρ,xf

]
(x) = −

[
F−1
ρ

(
ψQ)Fρf] (x) ,

and then, LQ
ρ,x is a pseudo-differential operator with symbol −ψQ. In particular

[
LQ
ρ,xu
]

(x) = −
[
F−1
ρ e−τ(r+ψ

Q(ξ))Fρg
]

(x)
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4.4. Generalized Black-Scholes equation

Given that the pseudo-differential problem from which u (x, τ) is the solution will

give us the price behavior through time, it is reasonable to differentiate in τ the ex-

pression (4.3):

∂u

∂τ
= −ru+ LQ

ρ,xu =
(
−r + LQ

ρ,x

)
u

which can be represented as the differential equation

∂u

∂τ
+
(
r − LQ

ρ,x

)
u = 0,

called the generalized Black-Scholes equation; adding the boundary condition, the com-

plete problem is obtained

 ∂u
∂τ

(x, τ) +
(
r − LQ

ρ,x

)
u (x, τ) = 0 x ∈ R, τ ∈ (0, T )

u (x, 0) = g (x) x ∈ R
.

4.4 Generalized Black-Scholes equation

First, let’s apply the generalized Fourier transform to the problem, for the partial

derivative it results

[
Fρ
∂u

∂τ

]
(ξ, τ) =

∫
R

e−iξx
∂u

∂τ
(x, τ) dx

=
d

dτ

∫
R

e−iξxu (x, τ) dx =
d

dτ
[Fρu] (ξ, τ) ;

also, for ξ ∈ Rρ,

Fρ
[(
r − LQ

ρ,x

)
u
]

(ξ, τ) =

∫
R

e−iξx
(
r − LQ

ρ,x

)
u (x, τ) dx

=
(
r + ψQ (ξ)

)
[Fρu] (ξ, τ) ;
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and for the boundary, as eρx (ex −K)+ must be in L1 (R), so ρ < −1. Then, in

particular for an European call option, for ξ ∈ Rρ,

[Fρu] (ξ, 0) = [Fρg] (ξ)

=

∫
R

e−iξx (ex −K)+ dx =

∫ +∞

lnK

e−iξx (ex −K) dx

= −Ke
−iξ lnK

(ξ + i) ξ
. (4.4)

Then, the problem becomes
(
d
dτ

+ r + ψQ (ξ)
)

[Fρu] (ξ, τ) = 0, ξ ∈ Rρ, τ ∈ (0,+∞)

[Fρu] (ξ, 0) = −Ke−iξ lnK

(ξ+i)ξ
, ξ ∈ Rρ.

.

Now, the problem can be written to include the boundary condition into the differ-

ential equation.

So, let’s apply the Laplace transformation to the problem, for ξ ∈ Rρ, ρ < −1,

ω ∈ C, δ,

L
[(

d

dτ
+ r + ψQ (ξ)

)
(Fρu)

]
(ξ, ω)

=
(
r + ψQ (ξ)

)
[LFρu] (ξ, ω) +

∫ +∞

0

e−ωτd (Fρu) (ξ, τ) .

Integrating by parts

∫ +∞

0

e−ωτd (Fρu) (ξ, τ) =
(
r + ψQ (ξ) + ω

)
[LFρu] (ξ, ω) +

Ke−iξ lnK

(ξ + i) ξ
.

This can be summarized as

(
r + ω + ψQ (ξ)

)
[LFρu] (ξ, ω) = −Ke−iξ lnK

(ξ+i)ξ
ξ ∈ Rρ, ω ∈ C,Rω > δ.

The last expression can be divided by
(
r + ω + ψQ (ξ)

)
to obtain an equation for

[LFρu] (ξ, ω), and then apply the Laplace and Fourier inverse transforms to obtain a
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4.5. Numerical valuation

solution in a integral form:

[Fρu] (ξ, τ) = − 1
2πi

Ke−iξ lnK

(ξ+i)ξ

∫
Γb

eωx

ω+r+ψQ(ξ)
dω,

ξ ∈ Rρ, Γb = {ξ ∈ C : Rξ = b} , b > δ .

Considering the Residue Theorem

∫
Γb

eωx

ω + r + ψQ (ξ)
dω = 2πie−(r+ψQ(ξ)),

then

[Fρu] (ξ, τ) = −Ke−iξ lnK−τ(r+ψQ(ξ))

(ξ + i) ξ
,

u (x, τ) = −Ke
−rτ

2π

∫
Rρ

eiξ(x−lnK)−τψQ(ξ)

(ξ + i) ξ
dξ, (4.5)

ρ < −1. Which is the generalized Black-Scholes equation for the valuation of an

European call option.

4.5 Numerical valuation

As with other non-Gaussian models, the integral does not converge fast enough once

the Fourier transform has been performed, this is a result of the oscillatory nature of

the characteristic exponent; the easiest way to calculate the value is to use a numerical

approximation by deforming the integration contour into one in which Iξ is constant,

this happens in a steepest ascent or descent path, and it passes through a saddle point.

4.5.1 Saddle Point Method

We must express the integral in the form

∫
Rρ

f (ξ) eg(ξ)dξ.
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In our case

u (S, τ) = −Ke
−τr

2π

∫
Rρ

f (ξ) eg(ξ)dξ

f (ξ) =
exp

{
iτ λ̂ξ

{
p̂

η̂+−iξ −
1−p̂
η̂−+iξ

}}
(ξ + i) ξ

g (ξ) = i

[
ln
S

K
+ bτ

]
ξ − σ2

2
τξ2.

Let’s call H = H (S, τ) = ln S
K

+ bτ , then

g (ξ) = iHξ − σ2τ

2
ξ2,

g′ (ξ) = iH − σ2τξ

g′′ (ξ) = −σ2τ = σ2τeiπ. (4.6)

The stationary point ξ0 must satisfy

ξ0 = i
H

σ2τ
.,

Given (4.6), not only the directions of steepest descent are given by Θ = 0, π; but

the single paths of steepest descent are

Γ+ = {u+ ξ0 : u > 0}

Γ− = {−u+ ξ0 : u > 0} .

We will use the following representation given by the Taylor’s series

g (ξ)− g (ξ0) = −σ
2τ

2
(ξ − ξ0)2 ∈ R when ξ ∈ Γ,

where

g (ξ0) = −1

2

H2

σ2τ
.
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x

x

x

x

Figure 4.1: Local contour.

x

x

x

x

Figure 4.2: Steepest descent.

Taking the change of variable −w2 = g (ξ)− g (ξ0) ,

w+ =

√
σ2τ

2
(ξ − ξ0)→ dξ =

√
2

σ2τ
dw+

w− = −
√
σ2τ

2
(ξ − ξ0)→ dξ = −

√
2

σ2τ
dw−.

Noting that for the deformed contour Γ (ξ0) given by the steepest descent path,∫
Γ(ξ0)

dξ =
∫

Γ+
dξ −

∫
Γ−
dξ; and taking w = w+ = −w− :

∫
Γ(ξ0)

dξ =
∫ +∞
−∞ dw. So, we

have

eg(ξ0)

∫
Γ(ξ0)

f (ξ (w)) eg(ξ)−g(ξ0)dξ

=

√
2

σ2τ
e−

1
2
H2

σ2τ

∫ +∞

−∞
f (ξ (w)) e−w

2

dw,

where

ξ (w) = ξ (w, S, τ) =

√
2

σ2τ
w + i

H

σ2τ
.

The contour will not be appropriate when ξ0 is near the essential singularities−iη̂+, iη̂−,

and the poles. So we need to divide the imaginary axis and to choose an appropriate

approximation in each subset; as the value of ξ0 is determined by S and τ , it will be

more convenient to specify each case based on those parameters.
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x

x

x

x

Figure 4.3

x

x

x

x

Figure 4.4

1. Iξ0 ∈ (−∞,− (η̂+ − 1))

If we use the Laurent series of f and the Taylor series of eg, the integrand will

take the form of a infinite product that will be problematic to compute. So in

that case, the contours will be taken as the example in Figure 4.3.

For the particular cases when Iξ0 ≤ −η̂+. The contours will be considered as in

Figure 4.4, since the residue could only be obtained from the series expansion.

We will take Γ (ξ0) = Γ1 + Γ2 + ∆1 + ∆2, where

Γ1 = {v + ξ0 : v ∈ R\ (−1, 1)} ,

Γ2 = {v − i (η̂+ − 1) : v ∈ (−1, 1)} ,

∆1 = {−1 + iδ : δ ∈ [Iξ0,− (η̂+ − 1)]} ,

∆2 = {1 + iδ : δ ∈ [− (η̂+ − 1) , Iξ0]} .

And for each part

A1 =

√
2

σ2τ
e

1
2
H2

σ2τ

∫
R\
(
−
√
σ2τ

2
,

√
σ2τ

2

) f (ξ1 (w)) e−w
2

dw,

ξ1 (w) =

√
2

σ2τ
w + i

H

σ2τ
;
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A2 =

√
2

σ2τ
eg(−i(η̂+−1))

∫ √
σ2τ

2

−
√
σ2τ

2

f (ξ2 (w)) e−w
2

dw,

g (−i (η̂+ − 1)) = H (η̂+ − 1) +
σ2τ

2
(η̂+ − 1)2 ,

ξ2 (w) =

√
2

σ2τ
w − i (η̂+ − 1) ;

A3 =

∫ −(η̂+−1)

Iξ0

f (−1 + iδ) eg(−1+iδ)dδ;

A4 =

∫ Iξ0

−(η̂+−1)

f (1 + iδ) eg(1+iδ)dδ.

To get

u (S, τ) = −Ke
−τr

2π
(A1 + A2 + A3 + A4) .

2. Iξ0 ∈ [− (η̂+ − 1) ,−1)

We will use

u (S, τ) = −Ke
−τr

2π

√
2

σ2τ
e−

1
2
H2

σ2τ

∫ +∞

−∞
f (ξ (w)) e−w

2

dw, (4.7)

ξ (w) =

√
2

σ2τ
w + i

H

σ2τ
,

as explained in the presentation of the method.

3. ξ0 = −i The integrand could be represented as

f (ξ) eg(ξ) =
f0 (ξ) eg(ξ)

ξ + i
,

where f0 does not have a pole in −i. Then

∫
R−i

f (ξ) eg(ξ)dξ =

√
2

σ2τ
eg(−i)

 ∫ +∞
−∞

[f0(ξ(w))−f0(−i)]
ξ(w)+i

e−w
2
dw

+f0 (−i)
∫ +∞
−∞

e−w
2

ξ(w)+i
dw
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with

f0 (−i) = −i exp

{
τ λ̂

{
p̂

η̂+ − 1
− 1− p̂
η̂− + 1

}}
g (−i) = H +

σ2

2
τ

ξ (w) =

√
2

σ2τ
w − i,

then ∫
R−i

f (ξ) eg(ξ)dξ = eg(−i)

 ∫ +∞
−∞

[f0(ξ(w))−f0(−i)]
w

e−w
2
dw

+f0 (−i)
∫ +∞
−∞

e−w
2

w
dw

 ,
where the first integral is well defined thanks to L’Hopital’s rule, and for the

second integral we will use the formula

∫ +∞

−∞

e−w
2

w − iε
dw = iπeε

2

[1− φ (ε)] ,

φ (ε) =
2√
π

∫ ε

0

e−v
2

dv. (4.8)

Then

u (S, τ) = −Ke
−τr

2π
eg(−i)

 ∫ +∞
−∞

[f0(ξ(w))−f0(−i)]
w

e−w
2
dw

+iπf0 (−i)

 .
4. Iξ0 ∈ (−1, 0) We will use Equation (4.7) but, we must add

2πiRes[feg,−i] = −2π exp

{
H +

σ2τ

2
+ λ̂τ

{
p̂

η̂+ − 1
− 1− p̂
η̂− + 1

}}

since the new contour is above the pole −i. So,

u (S, τ) = −Ke
−τr

2π

 √
2
σ2τ
e−

1
2
H2

σ2τ

(∫ +∞
−∞ f (ξ (w)) e−w

2
dw
)

+2πiRes[feg,−i]

 ,

ξ (w) =

√
2

σ2τ
w + i

H

σ2τ
.
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5. ξ0 = 0

The procedure is similar to the previous pole. The integrand is written as

f (ξ) eg(ξ) =
f0 (ξ) eg(ξ)

ξ
,

then ∫
R

f (ξ) eg(ξ)dξ =

√
2

σ2τ
eg(0)

 ∫ +∞
−∞

[f0(ξ(w))−f0(0)]
ξ(w)

e−w
2
dw

+f0 (0)
∫ +∞
−∞

e−w
2

ξ(w)
dw


with

f0 (0) = −i,

g (0) = 0,

ξ (w) =

√
2

σ2τ
w.

Again, the first integral is well defined thanks to L’Hopital’s rule, and we know

the value of the second integral (Equation (4.8)), so

∫
R

f (ξ) eg(ξ)dξ =

∫ +∞
−∞

[f0(ξ(w))+i]
w

e−w
2
dw

+π.

We must add 2πiRes[feg,−i] again since the new contour is above the pole −i,

then

u (S, τ) = −Ke
−τr

2π

 ∫ +∞
−∞

[f0(ξ(w))+i]
w

e−w
2
dw

+π + 2πiRes[feg,−i]

 .

6. Iξ0 ∈
(

0, λ̂(1−p̂)
σ2η̂−

]

We will use Equation (4.7) again, but now we must add 2πiRes[feg,−i] and

62



Chapter 4. Kou model

2πiRes[feg, 0] = 2π, so

u (S, τ) = −Ke
−τr

2π

 √
2
σ2τ
e−

1
2
H2

σ2τ

(∫ +∞
−∞ f (ξ (w)) e−w

2
dw
)

+2πiRes[feg,−i] + 2πiRes[feg, 0]

 ,

ξ (w) =

√
2

σ2τ
w + i

H

σ2τ
.

7. Iξ0 ∈
(
λ̂(1−p̂)
σ2η̂−

,+∞
)

At first thought, one may attempt to apply an analog method to the first case, but

the equivalent contours to be chosen in order to avoid the essential singularity

lead to an approximation error that it is not so easy to estimate. In order to

avoid such scenario, the saddle point method will be taken with the following

representation

u (S, τ) = −Ke
−τr

2π

∫
Rρ

f (ξ) eg(ξ)dξ

f (ξ) =
exp

{
−σ2

2
τξ2 + iτ λ̂p̂ξ

η̂+−iξ

}
(ξ + i) ξ

,

g (ξ) = iHξ − iτ λ̂ (1− p̂) ξ

η̂− + iξ
,

g′ (ξ) = i

[
H − τ λ̂ (1− p̂) η̂−

(η̂− + iξ)2

]
.

If g′
(
ξ0

)
= 0, ξ0 = i

(
η̂− ∓

√
τλ̂(1−p̂)η̂−

H

)
. Writing C =

√
τλ̂(1−p̂)η̂−

H
> 0 we have

the pair of saddle points ξ
+

0 = i (η̂− + C) and ξ
−
0 = i (η̂− − C) , as ξ

+

0 is always

above the singularity, we will work with ξ
−
0 , and it will be denoted simply by ξ0 .

g
(
ξ0

)
= (η̂− − C)

[
τ λ̂ (1− p̂)

C
−H

]
∈ R

Given that on the steepest descent path Ig
(
ξ
)

= Ig
(
ξ0

)
= 0, and being ξ0 a

saddle point, we can parametrize the curve as g
(
ξ
)
− g

(
ξ0

)
= −w2.
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4.5. Numerical valuation

Now, to find the path in order to use it as the contour of integration let’s denote

B = τ λ̂ (1− p̂)−Hη̂− + g
(
ξ0

)
,

then

ξ
±

= i

− (B − w2)±
√

(B − w2)2 + 4Hη̂−
(
g
(
ξ0

)
− w2

)
2H

 ,

in particular for w = 0,

η̂− − C =
−B ±

√
B2 + 4Hη̂−g

(
ξ0

)
2H

,

that after some substitutions leads to

−B2 = 4Hη̂−g
(
ξ0

)
,

changing the equation of the contour to

ξ = i
(
η̂− − C +

w

2H

(
w +
√
w2 − 4HC

))
.

For w ∈
[
−
√

4HC,
√

4HC
]
,
(
Rξ
)2

+
(
Iξ − η̂−

)2
= C; and for

w /∈
[
−
√

4HC,
√

4HC
]
, ξ is purely imaginary.

This contours are shown in Figure 4.5, given the orientation of the curves, we will

take −
∫ +∞
−∞ f

(
ξ (w)

)
e−w

2
dξ (w).

A problem arises as we transform the original contour of integration (Rρ) to this

new one, the integrand is not well defined on the vertical lines, so a new suitable

contour must be taken, our election is shown in Figure 4.6, where the integral

over the segments of line could be computed directly. As displayed, we need to

know the value of w that corresponds to the semicircle, this value is w0 =
√

2HC.

Now we need dξ over the semicircle in order to calculate the integral on the
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x

Figure 4.5

x

Figure 4.6

parametrized contour correspondent for the circle:

dξ =
i

2H

(
2w +

√
w2 − 4HC +

w2

√
w2 − 4HC

)
dw.

And now we can calculate the valuation as

u (S, τ) = −Ke
−τr

2π


− eg(ξ0)

∫ +w0

−w0
f
(
ξ (w)

)
e−w

2
dξ (w)

+
∫ −C
−∞ f (z + iη̂−) eg(z+iη̂−)dz

+
∫ +∞

+C
f (z + iη̂−) eg(z+iη̂−)dz

+ 2πiRes[feg,−i] + 2πiRes[feg, 0]

 ,

where the residues match the ones given before.

One might wonder if a similar procedure could be performed for the lower essential

singularity with the analogous representation, unfortunately, the correspondent

contour consists of vertical segments over the imaginary axis.

Given that we have covered all the possible values of the saddle point, the valuation

problem has been completely approximated. As an example, the Figure 4.7 shows the

value of an option for several times.
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Timeto Expiry
τ=0.5
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τ=1.5

τ=2
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V(S(T))
Saddle PointMethod (λ=0.1)

Figure 4.7: Saddle-point approximations for several values of time to expiry and pa-
rameters: µ = 0.12, σ = 0.16, r = 0.05, K = 98, λ = 0.1, p = 0.4, η+ = 10, η− = 5.

4.6 Perturbation method

It is the purpose of this work to find an easy way of get numerical valuations, as men-

tioned before, the jumps in the stock price will be interpreted as a perturbation to the

geometric Brownian model; then, to compute numerical data, a linear approximation

of the option value as a function of the intensity of the jumps (λ) will be used; from

(4.5):

u (x, τ) = u (x, τ, λ) = −Ke
rτ

2π

∫
Rρ

eiξ(x−lnK)−τψ(ξ)

(ξ + i) ξ
dξ

= u0 (x, τ) + λu′λ (x, τ, 0) +O
(
λ2
)

= u0 (x, τ) + λu1 (x, τ) +O
(
λ2
)
,

where u0 (x, τ) can be interpreted as the solution for constant parameters found in

Section 3.3. On the other hand

u1 (x, τ) = u′λ (x, τ, 0)

=
τKe−rτ

2π

∫
Rρ

exp {iξ (x− lnK)} exp
{
−τψQ

0 (ξ)
}(

∂ψQ

∂λ
(ξ, 0)

)
(ξ + i) ξ

dξ.
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To find the valuation, first we need to calculate

∂ψQ

∂λ
(ξ, λ) = −iσ2ξ

∂θ

∂λ
− iξ

{
p

η+ − iξ − θ
− 1− p
η− + iξ + θ

}
−θ
{

p

η+ − iξ − θ
− 1− p
η− + iξ + θ

− p

η+ − θ
+

1− p
η− + θ

}
+λD (ξ) .

For some function D, particularly,

∂ψQ

∂λ
(ξ, 0) = −iσ2ξθ′ (0)− iξ

{
p

η+ − iξ − θ0

− 1− p
η− + iξ + θ0

}
−θ0

{
p

η+ − iξ − θ0

− 1− p
η− + iξ + θ0

− p

η+ − θ0

+
1− p
η− + θ0

}
.

With the changes

η̄+ = η+ − θ0,

η̄− = η− + θ0,

p̄ =
η+

η̄+

p,

q̄ =
η−
η̄−

(1− p) ,

the equation can be reformulated as

∂ψQ

∂λ
(ξ, 0) = −iξ

{
σ2θ′ (0) +

p̄

η̄+ − iξ
− q̄

η̄− + iξ

}
.

To find θ′ (0) let’s use the Equation (4.2) and define

Ψ (θ, λ) = µ− r + σ2θ + λ

 pη+

(η+−θ)(η+−(1+θ))

− (1−p)η−
(η−+θ)(η−+(1+θ))

 ,
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4.6. Perturbation method

then the EMM condition can be written as

0 = Ψ (θ, λ)

⇒ 0 = Ψ′θ (θ, λ) θ′ (λ) + Ψ′λ (θ, λ)

⇒ 0 = Ψ′θ (θ, 0) θ′ (0) + Ψ′λ (θ, 0)

now,

Ψ′λ (θ, λ) = σ2θ′ (λ) + λ
d

dλ

 pη+

(η+−θ)(η+−(1+θ))

− (1−p)η−
(η−+θ)(η−+(1+θ))


+

 pη+

(η+−θ)(η+−(1+θ))

− (1−p)η−
(η−+θ)(η−+(1+θ))

 ,

in particular

Ψ′λ (θ, 0) = σ2θ′ (0)

[
p̄

η̄+ − 1
− q̄

η̄− + 1

]
,

and

Ψ′θ (θ, λ) = σ2 + λ
d

dθ

 pη+

(η+−θ)(η+−(1+θ))

− (1−p)η−
(η−+θ)(η−+(1+θ))

 ,

then

Ψ′θ (θ, 0) = σ2;

and finally,

θ′ (0) = − 1

2σ2

[
p̄

η̄+ − 1
− q̄

η̄− + 1

]
.

So,

u1 (x, τ) = τKe−rτF−1
ρ

(
∂ψQ

∂λ
(ξ, 0)

exp {−iξ lnK}
(ξ + i) ξ

exp
{
−τψQ

0 (ξ)
})

(x) .

Using again the convolution property of the Fourier transform:

u1 (x, τ) = τKe−rτ
∫ ∞
−∞
F−1
ρ

(
∂ψQ

∂λ
(ξ, 0)

exp {−iξ lnK}
(ξ + i) ξ

)
(v)

×F−1
ρ

(
exp

{
−τψQ

0 (ξ)
})

(x− v) dv.
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Let’s find F−1
ρ

(
exp

{
−τψQ

0 (ξ)
})

(x− v), denoting by Λ = σ2τ
2

, and β = x−v+d
σ2τ

with

d = τ
(
r − σ2

2

)
, this expression could be simplified:

F−1
ρ

(
exp

{
−τψQ

0 (ξ)
})

(x− v)

=
1

2π
e−Λβ2

∫
Rρ

exp
{
−Λ (ξ − iβ)2} dξ.

Additionally, the change of variable φ = ξ − iβ leads to an integral easier to handle,

1

2π
e−Λβ2

∫
Rρ−β

exp
{
−Λφ2

}
dφ.

Considering the parametrization of the line Rρ−β = [−∞+ iw,+∞+ iw] given by

γ (y) = y + iw where w = ρ− β:

∫
Rρ−β

exp
{
−Λφ2

}
dφ =

√
π

Λ
.

Therefore,

F−1
ρ

(
exp

{
−τψQ

0 (ξ)
})

(x− v)

=
1√

2πσ2τ
exp

−
(
x− v + τ

(
r − σ2

2

))2

2σ2τ

 .

For the other part,

F−1
ρ

(
∂ψQ

∂λ
(ξ, 0)

exp {−iξ lnK}
(ξ + i) ξ

)
(v)

= − i

2π
σ2θ′ (0)

∫
Rρ

exp {iξ (v − lnK)}
ξ + i

dξ (4.9)

− i

2π
p̄

∫
Rρ

exp {iξ (v − lnK)}
(ξ + i) (η̄+ − iξ)

dξ (4.10)

+
i

2π
q̄

∫
Rρ

exp {iξ (v − lnK)}
(ξ + i) (η̄− + iξ)

dξ. (4.11)
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4.6. Perturbation method

The integrand in (4.9) has only one simple pole at −i, since the integration line is below

the pole, we could consider it as

∫
Rρ

exp {iξ (v − lnK)}
ξ + i

dξ

=

2πiev−lnK v − lnK > 0

0 v − lnK ≤ 0.

For the integral in (4.11) the poles at −i and iη̄−are both above the line of integration,

∫
Rρ

exp {iξ (v − lnK)}
(ξ + i) (η̄− + iξ)

dξ

=

2πi
[
ev−lnK

η̄−+1
− e−η̄−(v−lnK)

η̄−+1

]
, v − lnK > 0

0, v − lnK ≤ 0.

In the case of the integral (4.10), we have a pole at −iη̄+below the line of integration,

and a pole at −i above the line,

∫
Rρ

exp {iξ (v − lnK)}
(ξ + i) (η̄+ − iξ)

dξ

=

2πi e
v−lnK

η̄+−1
, v − lnK > 0

2πi e
η̄+(v−lnK)

η̄+−1
, v − lnK ≤ 0.

Putting all together

F−1
ρ

(
∂ψQ

∂λ
(ξ, 0)

exp {−iξ lnK}
(ξ + i) ξ

)
(v)

=

e
v−lnK 1

2K

[
p̄

η̄+−1
− q̄

η̄−+1

]
+ q̄

η̄−+1
e−η̄−(v−lnK) v − lnK > 0

p̄
η̄+−1

eη̄+(v−lnK) v − lnK ≤ 0.
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Denoting

Ĉ =
1

2K

[
p̄

η̄+ − 1
− q̄

η̄− + 1

]
,

Ĉ− =
q̄

η̄− + 1
K η̄− ,

Ĉ+ =
p̄

η̄+ − 1

1

K η̄+
;

u1 (x, τ) = τKe−rτ Ĉ+

∫ lnK

−∞

exp

{
−
(
x−v+τ

(
r−σ

2

2

))2
−2σ2τ η̄+v

2σ2τ

}
√

2πσ2τ
dv (4.12)

+τKe−rτ Ĉ−

∫ +∞

lnK

exp

{
−
(
x−v+τ

(
r−σ

2

2

))2
+2σ2τ η̄−v

2σ2τ

}
√

2πσ2τ
dv (4.13)

+τKe−rτ Ĉ

∫ +∞

lnK

exp

{
−
(
x−v+τ

(
r−σ

2

2

))2
−2σ2τv

2σ2τ

}
√

2πσ2τ
dv (4.14)

Let’s work with the numerator of the exponents, let

d = τ

(
r − σ2

2

)
.

For (4.12), with D+ = d+ σ2τ η̄+,

(x− v + d)2 − 2σ2τ η̄+v = (v − (x+D+))2 + (x+ d)2 − (x+D+)2 .

For (4.13), with D− = d− σ2τ η̄−,

(x− v + d)2 + 2σ2τ η̄−v = (v − (x+D−))2 + (x+ d)2 − (x+D−)2 .

For (4.14), with D = d+ σ2τ ,

(x− v + d)2 + 2σ2τv = (v − (x+D))2 + (x+ d)2 − (x+D)2 .
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4.6. Perturbation method

u1 (x, τ) = τKe−rτ Ĉ+ exp

{
−(x+ d)2 − (x+D+)2

2σ2τ

}

×
∫ lnK

−∞

exp
{
− (v−(x+D+))2

2σ2τ

}
√

2πσ2τ
dv

+τKe−rτ Ĉ− exp

{
−(x+ d)2 − (x+D−)2

2σ2τ

}

×
∫ +∞

lnK

exp
{
− (v−(x+D−))2

2σ2τ

}
√

2πσ2τ
dv

+τKe−rτ Ĉ exp

{
−(x+ d)2 − (x+D)2

2σ2τ

}

×
∫ +∞

lnK

exp
{
− (v−(x+D))2

2σ2τ

}
√

2πσ2τ
dv.

With

C = Ĉ exp

{
−(x+ d)2 (x+D)2

2σ2τ

}
,

C− = Ĉ− exp

{
−(x+ d)2 (x+D−)2

2σ2τ

}
,

C+ = Ĉ+ exp

{
−(x+ d)2 (x+D+)2

2σ2τ

}
;

finally,

u1 (x, τ) = τKe−rτ


C+ (x, τ)

[
1− Φ

[
x−lnK+D+

σ
√
τ

]]
+C− (x, τ) Φ

[
x−lnK+D−

σ
√
τ

]
+C (x, τ) Φ

[
x−lnK+D

σ
√
τ

]
 .

4.6.1 Behavior of the approximation for a particular set of

parameters

It is know that the linear approximation used is precise only in a small interval around

the reference point, in this case λ = 0, so it is desirable to know appropriate conditions

in which the perturbation method is a good alternative.
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Figure 4.8: Impact of λ

It is easy to study the behavior of the approximation as λ and τ vary. To continue

with the previous example, the valuation approximations will be taken for the following

parameters: K = 98, µ = 0.12, σ = 0.16, r = 0.05, p = 0.4, η+ = 10, η− = 5. The

Figure 4.8 shows valuations for several values of λ using the perturbation method at

different times.

A comparison between the different valuations for a particular value of λ are dis-

played in Figure 4.9.

So far, it seems that the perturbation method is good for times to expiry not so

far away, and small values of λ; but to give a more concise analysis of the viability of

the approximation, let’s not only perform an analysis of the error compared to consider

just a classic Black-Scholes framework, but taking in consideration the resources (com-

putation time) necessary to valuate the option to different levels of precision, by the
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Figure 4.9: Comparison of Methods

means of using the developed methods: the explicit value (saddle-point method), the

classic method, and the perturbation one.

The computations presented in the following tables were performed on the same

machine as the one in the Chapter 3. 120 points were calculated in each case, at

fixed intervals of lenght 0.25 across the interval [83.25, 113], the interval corresponds to

K ± 15%.
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Case 1: τ = 0.5
Table 4.1: Computation Times (Milliseconds)

Perturbation: T = T (u0) + T (u1) +
∑

T (λ)

Classic term: T (u0) = 8.190

Linear term: T (u0) = 20.575

λ T (λ) Saddle P.

0.20 +0.810 1543.68

0.15 +0.793 1581.12

0.10 +0.813 1671.01

0.05 +0.878 1906.81

85 90 95 K 100 105 110
S(t)

5

10

15

20

25

30

Error (%)

Classic Error (τ=0.5)

λ=
0.2

0.15

0.1

0.05

85 90 95 K 100 105 110
S(t)

2

4

6

8

Error (%)

Perturbation Error (τ=0.5)

Case 2: τ = 1
Table 4.2: Computation Times (Milliseconds)

Perturbation: T = T (u0) + T (u1) +
∑

T (λ)

Classic term: T (u0) = 8.028

Linear term: T (u0) = 19.684

λ T (λ) Saddle P.

0.20 +0.759 1613.99

0.15 +0.749 1663.86

0.10 +1.089 1663.49

0.05 +0.810 1786.21

85 90 95 K 100 105 110
S(t)

5

10

15

20

25

Error (%)

Classic Error (τ=1)

λ=
0.2

0.15

0.1

0.05

85 90 95 K 100 105 110
S(t)

2

4

6

8

10

Error (%)

Perturbation Error (τ=1)
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Case 3: τ = 1.5
Table 4.3: Computation Times (Milliseconds)

Perturbation: T = T (u0) + T (u1) +
∑

T (λ)

Classic term: T (u0) = 7.693

Linear term: T (u0) = 19.666

λ T (λ) Saddle P.

0.20 +0.767 1569.26

0.15 +0.770 1545.55

0.10 +0.742 1769.03

0.05 +0.858 1776.42

85 90 95 K 100 105 110
S(t)

5

10

15

20

25

Error (%)

Classic Error (τ=1.5)

λ=
0.2

0.15

0.1

0.05

85 90 95 K 100 105 110
S(t)

2

4

6

8

10

Error (%)

Perturbation Error (τ=1.5)

Case 4: τ = 2
Table 4.4: Computation Times (Milliseconds)

Perturbation: T = T (u0) + T (u1) +
∑

T (λ)

Classic term: T (u0) = 9.566

Linear term: T (u0) = 21.686

λ T (λ) Saddle P.

0.20 +0.788 1597.14

0.15 +1.044 1524.60

0.10 +1.068 1690.53

0.05 +0.747 1649.26

85 90 95 K 100 105 110
S(t)

5

10

15

20

25
Error (%)

Classic Error (τ=2)

λ=
0.2

0.15

0.1

0.05

85 90 95 K 100 105 110
S(t)

2

4

6

8

10

Error (%)

Perturbation Error (τ=2)
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4.6.2 Conclusions

The saddle point method turned to be a great tool to find the analytic value, the only

error is present on the lower end of the spectrum for the asset price, due to the essential

singularity in the lower half plane. Unlike the essential singularity in the upper half

plane, no workaround was feasible. An exact numerical solution is always desired, but

the computation times for this method are too high, nonetheless, this theoretical value

worked as the reference to measure the precision of the perturbation method.

The approximation obtained, aside from being easy and fast to compute, has the

advantage (being linear) of allowing to get almost instant valuations for different values

of the perturbation magnitude (λ), once the classic valuation and the linear coefficient

have been computed. This will be useful for model fitting.

Additionally, the perturbation method can lead to concise observations for a defined

sets of parameters. For the parameters considered in the numerical example, a clear

conclusion could be made: the approximation is no more than 10% off the theoretical

value for S ∈ [K−15%, K+15%], τ ≤ 2 and λ ≤ 0.2. For the particular values studied,

it can be concluded that the error w.r.t. the saddle-point method on the mentioned

interval is bounded by 0.5λ. Additionally the computations are 50-60 times faster than

the analytic valuation.
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Summary

• The numeric computation of the valuation using a Gaussian model with non-

constant parameters is not time-efficient, leading to the necessity of fast and

accurate approximations, two algorithms were found.

• For Gaussian models with parameters and dividends of the form 1 + εϕ (t) with

adequate values of ε, the perturbation method gives a precise and time-efficient

algorithm for the valuation of European call options. For the numerical examples

studied, the computation times are 5-8 times faster than the theoretical valuation,

and the error is less than 0.1ε on the interval [K − 15%, K + 15%]. Also, as the

perturbation method is based on a linear approximation w.r.t. ε, once the main

terms u0 and u1 were calculated, the re-evaluation for different values of ε takes

only an extra millisecond each.

• For Gaussian models as mentioned in the last point, the alternative algotithm

found resulted 4 times more precise than the perturbation method, and equally

fast for a fixed value of ε, but once the value is changed, the re-evaluation takes

the full time to compute.

• The numerical implementation of the generalized Black-Scholes formula is not

straightforward for the Kou model, the saddle-point method was used to address

this problem, however, it is not fast to compute.
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• The perturbation method is a fast and accurate valuation approximation for Eu-

ropean call options under the Kou model. In particular, times to expiry τ < 2 and

jump intensities λ < 0.2 were studied. The perturbation method is 50-60 times

faster than the analytic valuation given by the saddle-point method, and the error

is less than 0.5λ on the interval [K − 15%, K + 15%]. Additionally, being linear

w.r.t. λ, the perturbation method allows fast re-evaluations for different values

of λ at an additional millisecond each.
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[10] S. Emmer and C. Klüppelberg (2004), Optimal portfolios when stock prices
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