
Centro de Investigación y de Estudios
Avanzados del Instituto Politécnico Nacional

Unidad Zacatenco
Departamento de Matemáticas
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Directores de Tesis:
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Abstract

In this work we compute the cohomology ring of the space Conf(RPm, k), the space of k ordered
pairwise different points in the m-dimensional real projective space RPm, with coefficients in a
commutative ring with unit where 2 is invertible.

The computation is based on the observation that the configuration space of k ordered pairwise
different orbits in the m-dimensional sphere (with respect to the antipodal action) is a 2k-fold covering
of Conf(RPm, k). This observation also helps us in the computation of the cohomology ring of the
configuration space of k ordered points in the punctured real projective space RPm−? with the same
coefficients. Finally we compute the Lusternik-Schnirelmann category and topological complexity of
some of the auxiliary orbit configuration spaces.

Resumen

En este trabajo calculamos el anillo de cohomoloǵıa del espacio Conf(RPm, k), el espacio de
k puntos distintos en el espacio proyectivo real m-dimensional RPm, con coeficientes en un anillo
conmutativo con unidad donde 2 es invertible.

El cálculo está basado en la observación de que el espacio de configuraciones de k órbitas disjuntas
ordenadas es un 2k-recubrimiento de Conf(RPm, k). Esta observación nos ayuda en el cálculo del
anillo de cohomoloǵıa del espacio de configuraciones del espacio proyectivo agujereado RPm−? con los
mismos coeficientes. Por último calculamos la categoŕıa de Lusternik-Schnirelmann y la complejidad
topológica de algunos espacios de configuraciones de órbitas auxiliares.
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Chapter 1

Introduction

This chapter contains a very informal –and concrete– motivation for this work, as well as a brief
exposition of the main results. We begin with the motivations for the computation of the cohomology
ring away from 2 of Conf(RPn, k), the configuration space of k points in RPn.

1.1 Topological complexity

In recent years, there have been many developments regarding applications of algebraic topology to
problems of a slightly less abstract nature. One of such applications is topological complexity which,
speaking in very broad strokes, tells us the smallest number of plans required to move around a
space. So, for instance, we can ask about a certain collection of points in a space and to whether
it is possible to arrive at other different collection of points without too much ambiguity in our
choice (these points can be positions of some airplanes in the sky, for instance, and we could try to
determine if they can all arrive at their destinations with some specified number of turns without
colliding—this analogy is fairly vague, but gives the feeling of what topological complexity sees. See
Figure 1.1).

Figure 1.1: Choose a way to go from one configuration of airplanes to another
(avoiding collisions).

A little more specifically, given a topological space X, with PX its path space, its topological
complexity is defined as the sectional category of the fibration PX −→ X ×X given by evaluation
of endpoints of a curve. So, in essence, we are asking whether it is possible to chose, for each pair
of endpoints in X, some path of X connecting them in such a way that the choosing is continuous

1



in some finite number of chunks of X ×X. The points of discontinuities among these local sections
correspond to instabilities for the choice of the path connecting two points x and y (see Figure 1.2).
A very good introductory reference for this subject is [7].

x y

Figure 1.2: Which path is from x to y the right one?

Topological complexity has the desirable property, from an algebraic topology standpoint, that
it is homotopy invariant. So if the space that is currently being studied proves too complicated or
cumbersome to work with, we can replace it with an easier one. Two of the main tools to compute
the topological complexity of a space, which are used in this work, are a lower bound given by the
so-called zero-cup-length of the cohomology ring of the space in question, and an upper bound related
to the homotopical dimension of the space.

The importance of the computation of H∗(Conf(RPn−?, k)) is now apparent: it gives information
pertaining a possible lower bound for the topological complexity of Conf(RPn − ?, k) and, if we are
lucky enough, perhaps even enough information to completely determine TC(Conf(RPn − ?, k))!

1.2 Configuration spaces

The configuration space of n points on a space X is simply the space of all ordered n-tuples of
elements in X with pairwise different entries. This by itself may sound a little bit artificial, but a
very simple, yet powerful way to think about configuration spaces, is to think about n bodies in
3-dimensional space. Since the positions of the bodies are all different between them, this can be
modeled using the space Conf(R3, n). We can then study this space to try to get some information
regarding, say, the n body problem.
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There has been work about understanding the algebraic topology of configuration spaces, both
ordered and unordered versions of them. Perhaps the first cases studied in this sense were Conf(R2, n)
and B(R2, n) (B denotes unordered configurations), and it turns out that their fundamental groups
are the pure braid group and the Artin braid group on n strings.

Much more is known about configuration spaces, however. A couple of examples of results giving
better understanding about them are the work of Fadell and Neuwirth [5], where in particular we
can find the very useful Fadell-Neuwirth fibrations, and the work of Bödigheimer, Cohen and Taylor
[2], where they give an additive description of the homology of B(M,k), where B is a manifold.

As a contribution to the body of knowledge regarding algebraic topology of configuration spaces,
in this work we aim to give a multiplicative structure for H∗(Conf(RPn, k);R), where R is a com-
mutative ring with unit where 2 is invertible. Perhaps more important that the given description
itself are the techniques used to get it. A part of said techniques is the use of orbit configuration
spaces, a generalization of configuration spaces for spaces which admit a group action, and an iso-
morphism between invariants in the cohomology of orbit configuration spaces and the cohomology of
usual configurations. Here it is important that 2 is invertible, otherwise we get a rather complicated
relationship between said cohomologies.

1.3 Main results

The main results are stated next where k and n stand for integers greater than 1.

Theorem 3.3.8. Suppose R is a commutative ring with unit where 2 is invertible. For n odd, there
is an R-algebra isomorphism

H∗(Conf(RPn, k);R) ∼= Λ(ιn)⊗R[C+]/K,

where

• ιn has degree n and is the image of the generator in RPn under the projection on the first
coordinate Conf(RPn, k)

π1−→ RPn,

• the generators in C+ have degree n− 1 and are detailed at the beginning of Section 4, and

• K is the ideal generated by the relations specified in Theorem 3.3.6.

Theorem 3.3.15. Let R be a commutative ring with unit where 2 is invertible. For n even, there is
an R-algebra isomorphism

H∗(Conf(RPn, k);R) ∼= Λ(ω)⊗R[E ]/J ,

where

• ω is a generator of degree 2n− 1 specified in Theorem 3.1.9,
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• the set of generators E have degree 2n− 2 and are defined just above Lemma 3.3.12, and

• J is the ideal generated by the relations in Lemma 3.3.12.

Remark 1.3.1. Theorem 3.3.8 and the known description of the cohomology ring of configuration
spaces on spheres ([6, 9]) imply that there is a ring isomorphism

H∗(Conf(Sn, k);R) ∼= H∗(Conf(RPn, k);R)

provided n is odd. Compare with Remark 3.3. But there is no such an isomorphism if n is even, in
view of Theorem 3.3.15.

The approach used in this work for Theorems 3.3.8 and 3.3.15 allows us to get information on
the cohomology ring of configuration spaces on punctured real projective spaces.

Theorem 3.4.1. Let R be a commutative ring with unit where 2 is invertible. For n ≥ 2 odd, there
is an R-algebra isomorphism

H∗(Conf(RPn − ?, k);R) ∼= R[C+]/K.

Theorem 3.4.4. Let R be a commutative ring with unit where 2 is invertible. For n ≥ 2 even, there
is an R-algebra isomorphism

H∗(Conf(RPn − ?, k);R) ∼= R[E ′]/J ′,

where the generators E ′ and the relations J ′ are detailed in Section 3.4.

Since the cohomology groups described here are R-free of rank independent of the actual ring R,
we deduce:

Corollary 1.3.2. There is no odd torsion in the integral cohomology of Conf(RPn, k) and
Conf(RPn − ?, k).

The general strategy for proving these results is finding covering projections and studying their
cohomological properties. The viewpoint used in this work corrects and extends the method used
in [16]. In addition, these results fix a couple of errors in the descriptions given in [10] for some of
these cohomology rings (see Remarks 3.1 and 3.2).

1.4 Applications

Although it is not mentioned in the main results, a key ingredient to get them was a computation
of H∗(ConfZ2(Rn − {0}, k)) as a ring, which corrects previous computations found in [16]. Now we
state some aplications regarding higher topological complexity and Lusternik-Schnirelmann category
of ConfZ2(Rn − {0}, k). These results are found in full detail in Chapter 4.

4



The description of H∗(ConfZ2(Rn − {0}, k)) gives lower bounds for topological complexity and
Lusternik-Schnirelmann category of ConfZ2(Rn−{0}, k). These lower bounds, combined with results
regarding upper bounds for topological complexity and Lusternik-Schnirelmann category found in
[4],[1] and [11] yield the following Corollaries:

Corollary 1.4.1. For n > 2, cat(ConfZ2(Rn − {0}, k)) = k.

Corollary 1.4.2. Let n > 2. Then TCs(ConfZ2(Rn−{0}, k)) = sk if n is odd, whereas, if n is even,
TCs(ConfZ2(Rn − {0}, k)) ∈ {sk − 1, sk}.

Corollary 1.4.3. Let n > 2 (any parity). Then TCs(ConfZ2(Rn − {0}, k)) agrees with the s-th
zero-divisors cup-length of ConfZ2(Rn − {0}, k).

5





Chapter 2

Preliminaries

In this Chapter we will define and state some of the results used often during the remainder of this
work. These results are in nearly all cases given with references, so we will just provide statements
here and we will point the reader to the respective sources of the results for their proofs.

2.1 Some algebraic lemmas

A lemma that aids our computations in Section 3.3 is Lemma 2.1.2. Here we state first Nakayama’s
Lemma and then, as a corollary, we obtain the lemma adapting an argument found in [14].

Theorem 2.1.1 (Nakayama’s Lemma). Let R be a commutative ring with identity. Let M be a
finitely generated module over R. Then if there is an ideal I ⊆ R such that IM = M , then there
exists an element r ∈ R with r ≡ 1 mod I such that rM = 0.

Lemma 2.1.2. Let R, M as above. If M is a free R-module of rank n, then any set A of n elements
generating M is a basis.

Proof (Following [14, Proposition 1.2]).

Consider a basis B of M and a bijection f̄ from B toA. This extends to a surjective endomorphism
f : M −→ M . Let S = R[x]. We consider M as an S-module with the action of x given by
xm = f(m). Note that we have 〈x〉M = M , where 〈x〉 denotes the ideal generated by x in S. By
Nakayama’s Lemma, there is s ∈ S such that sM = 0 with s − 1 ∈ 〈x〉. Therefore s = rx + 1 for
some r ∈ S and we have −rxm = m for all m ∈M . Thus f is an isomorphism and A is a basis.

2.2 Some topological lemmas

In this section we give an account of results used repeatedly in section 3.1 to compute degrees of
certain compositions of maps.
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Lemma 2.2.1. Let f : Sn −→ Sn be a map. If f is not surjective, then it is nulhomotopic.

Corollary 2.2.2. Let f : Sn−1 −→ Rn − {0} be a map such that f(x) = kx + c where k > 0 and

c ∈ Rn is constant. If ‖c‖ > k, then f̄(x) =
f(x)

‖f(x)‖
is nulhomotopic.

y /∈ Imf̄

‖c‖

f(x) = kx+ c

Figure 2.1: The normalization of f misses y, therefore is nulhomotopic by Lemma 2.2.1.

The argument for proving this corollary is illustrated in Figure 2.1. Note that when we look
at the image of f̄ , we see that it misses at least one point in the sphere that corresponds to some
point antipodal to the image of f . Instead of proving this corollary, we will prove the following
generalization:

Corollary 2.2.3. Let f : Sn−1 −→ Rn − {0} be a map such that

f(x) = g(x) + c

where g : Sn−1 −→ Rn − {0} is a map and c ∈ Rn − {0} is constant. If ‖c‖ > ‖g(x)‖ for all x ∈ Sn,

then f̄(x) =
f(x)

‖f(x)‖
is nulhomotopic.

Proof. Assume that the conditions of the corollary hold for some g, c, and let y0 = − c
‖c‖ ∈ S

n. We

claim that y0 /∈ Imf̄ . Indeed, suppose on the contrary that y0 ∈ Imf̄ , so there exists an element
x0 ∈ Sn such that f(x0) = λc, with λ ∈ R−. We have

λc = f(x0) = g(x0) + c,

which implies
(λ− 1)c = g(x0)
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and, since λ < 0,
(1− λ)‖c‖ = ‖(λ− 1)c‖ = ‖g(x0)‖.

Recall that, by hypothesis, 0 < ‖c‖ − ‖g(x0)‖. Therefore

0 < ‖c‖ − (1− λ)‖c‖ = ‖c‖ − ‖(λ− 1)c‖ = ‖c‖ − ‖g(x0)‖ ≤ ‖g(x0) + c‖,

0 < (1− (1− λ))‖c‖,

0 < λ,

which is a a contradiction. The result follows from Lemma 2.2.1.
The previous Corollaries in essence are saying that if we have a map to Rn − {0} of the form

g(x) + c such that c is not enclosed in the image of g(x), then the map in question is nulhomotopic.

Lemma 2.2.4. Let f : Sn−1 −→ Rn−{0} be a map such that f(x) = kx+c where k > 0 and c ∈ Rn.

If ‖c‖ < k, then f̄(x) =
f(x)

‖f(x)‖
is homotopic to the identity map.

Proof. We have

f̄(x) =
f(x)

‖f(x)‖
=

kx+ c

‖kx+ c‖
=

x+ c
k

‖x+ c
k
‖
.

Consider the map

H(x, t) =
x+ t c

k

‖x+ t c
k
‖
.

This map satisfies H(x, 0) = x and H(x, 1) = f̄(x). We claim that this is a well-defined homotopy
H : Sn × I −→ Sn. Indeed, suppose x+ t c

k
= 0 for some x ∈ Sn and t ∈ [0, 1]. Then

kx+ tc = 0,

therefore
k = ‖kx‖ = ‖tc‖ ≤ ‖c‖ < k

which is a contradiction.

2.3 Generalities on configuration spaces

Definition 2.3.1. Let X be a topological space. We define the configuration space of k points in X
as

Conf(X, k) = {(x1, . . . , xk) | xi 6= xj if i 6= j} ⊆ Xk,

equipped with the subspace topology.

In this section and the following one, all manifolds will be connected and without boundary.
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Theorem 2.3.2 ([5, Theorem 1]). Let M be a manifold of dimension greater than 1. Then

Conf(M − {x0}, k − 1) −→ Conf(M,k)
π−→M,

where π is the projection on the first coordinate and x0 ∈M , is a locally trivial fiber bundle.

This theorem generalizes nicely as follows:

Theorem 2.3.3 (Theorem 1.1 [6]). Let M be a manifold of dimension greater than 1. Then

Conf(M − {x0, . . . , xl−1}, k − l) −→ Conf(M,k)
π−→ Conf(M, l),

is a locally trivial fiber bundle, where π is the projection on the first l coordinates and
x0, . . . , xl−1 ∈M .

Corollary 2.3.4. Let M be a manifold of dimension greater than 1, π a projection on l different
coordinates of Conf(M,k) and x0, . . . , xl−1 ∈M . Then

Conf(M − {x0, . . . , xl−1}, k − l) −→ Conf(M,k)
π−→ Conf(M, l),

is a locally trivial fiber bundle.

2.4 Generalities on orbit configuration spaces

Definition 2.4.1. Let X be a topological space and G be a group acting on X. We define the orbit
configuration space of k G-orbits in X as

ConfG(X, k) = {(x1, . . . , xk) | Gxi 6= Gxj if i 6= j} ⊆ Xk,

equipped with the subspace topology. We will usually call this space just the orbit configuration space
of k orbits in X.

Note 2.4.2. In Definition 2.4.1 we can put the condition Gxi ∩ Gxj = ∅ if i 6= j. Both definitions
are equivalent.

Note 2.4.3. While the previous definition and Definition 2.3.1 make sense for k = 1, we will always
assume k > 1 for both situations throughout this work.

Note 2.4.4. The notation ConfG(X, k) is overloaded. This is because G can act in several different
ways on X, yielding possibly distinct orbit configuration spaces. Thus the action of G on X has to
be kept in mind while working with these objects.

We will just say configuration space of k orbits when the group G and its action on X are
clear from the context. In [15], we can find the following generalization of Theorem 2.3.3 for orbit
configuration spaces:
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Theorem 2.4.5 ([15, Theorem 2.2.2]). Let G be a finite group acting freely on a manifold M of
dimension greater than 1. Then

ConfG(M −QG
l , k − l) −→ ConfG(M,k)

π−→ ConfG(M, l),

is a locally trivial fiber bundle, where π is the projection on the first l coordinates and QG
l denotes

the union of l disjoint G-orbits in M .

Corollary 2.4.6. Let G be a finite group acting freely on a manifold M of dimension greater than
1, π a projection on l different coordinates of ConfG(M,k) and QG

l the union of l disjoint G-orbits
in M . Then

ConfG(M −QG
l , k − l) −→ ConfG(M,k)

π−→ ConfG(M, l),

is a locally trivial fiber bundle.

Example 2.4.7. Take G = Z2 acting antipodally on M = Sn. The antipodal action is free and
therefore, by Corollary 2.4.6, we have a fibration

ConfZ2(S
n −QZ2

1 , k − 1) −→ ConfZ2(S
n, k)

π1−→ Sn.

Example 2.4.8. Take G = Z2 acting on M = Rn − {0} by

x 7−→ − x

‖x‖2
.

This action is obviously free, so we have a fibration

(Rn − {0})−QZ2
k−1 −→ ConfZ2(Rn − {0}, k)

π−→ ConfZ2(Rn − {0}, k − 1).

The preceding examples will be of great importance for the computations in Section 3.1.

Lemma 2.4.9. Let G be a group acting on spaces X, Y . Let f : X −→ Y be an equivariant injective
map. Then the image of

f×k : ConfG(X, k) −→ Y k

is contained in ConfG(Y, k), and we have

f×k : ConfG(X, k) −→ ConfG(Y, k).

Proof. Suppose f×k(x1, . . . , xk) 6∈ ConfG(Y, k) for some (x1, . . . , xk) ∈ ConfG(X, k). Then there
exist l, l′ ∈ {1, . . . , k} with two possibilities:

1. f(xl) = f(xl′). This contradicts the fact that f is injective.

2. f(xl) = gf(xl′) for some g ∈ G. In this case we have f(xl) = f(gxl′), and by injectivity
xl = gxl′ , which contradicts the fact that (x1, . . . , xk) ∈ ConfG(X, k).

11



The following fibration is useful to do computations regarding the cohomology of configuration spaces
in terms of cohomology of orbit configuration spaces

Corollary 2.4.10 (of [15, Proposition 2.2.1]). Let G be a finite group acting freely on a manifold
M . Then there is a fibration

ConfG(M,k) −→ Conf(M/G, k) −→ BGk. (2.4.1)

The Serre Spectral Sequence of the fibration (2.4.1) and the finiteness of |G| yield

Theorem 2.4.11. Let G be a finite group acting freely on a connected manifold X and let R be a
commutative ring with 1 such that |G| is a unit. Then there is an algebra isomorphism:

H∗(Conf(X/G, k);R) ∼= H∗(ConfG(X, k);R)G
k

.

Proof. Consider the Serre spectral sequence associated to

ConfG(M,k) −→ Conf(M/G, k) −→ BGk.

The spectral sequence has E2 term given by Ep,q
2 = Hp(BGk;Hq(ConfG(X, k))), where Gk = π1(BGk)

acts on the cohomology of the fiber. Thus we have

Ep,q
2
∼= Hp(BGk;Hq(ConfG(X, k))) ∼= Hp(Gk;Hq(ConfG(X, k))).

Now, since |G| is invertible, this implies that the composition

Hp(Gk;Hq(ConfG(X, k)))
res−→ Hp({e};Hq(ConfG(X, k)))

tr−→ Hp(Gk;Hq(ConfG(X, k)))

is an isomorphism, therefore Hp(Gk;Hq(ConfG(X, k))) vanishes for all p > 0.

H0(BGk;Hq(ConfG(X, k)))

Hp(BGk;H0(ConfG(X, k)))

1

2

3

...

0

Hp(BGk;Hq(ConfG(X, k)))

1 2 3 · · ·

Figure 2.2: E2 = E∞ term, all cohomology concentrated in horizontal degree 0.

Since the zeroth cohomology of a group has the form

H0(BGk;Hq(ConfG(X, k);R)) ∼= H0(Gk;Hq(ConfG(X, k))) ∼= Hq(ConfG(X, k);R)G
k

,

we get the desired isomorphism.
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2.5 Homotopy types of Conf(−, k)

A natural question that arises when studying configuration spaces is whether it is a homotopy functor.
In this section we give some remarks and results regarding this question.

Remark 2.5.1. Conf(−, k) is not necessarily homotopy invariant. Indeed, it is enough to consider
the open unit interval I = (0, 1), which is contractible, while Conf(I, k) is non-connected.

Perhaps one can ask for more interesting examples. One of such examples is given in an article
by P. Salvatore and R. Longoni:

Theorem 2.5.2 ([13, Theorem 2]). The spaces Conf(L7,1, k) and Conf(L7,2, k) are not homotopy
equivalent (whereas L7,1 ' L7,2).

One of the main features of this theorem is that L7,1 and L7,2 are closed manifolds of the same
dimension. In somewhat different spirit, as a consequence of the main results of this work, we have
the following family of examples:

Theorem 2.5.3. For n odd and k ≥ 3, Conf(RPn, k) and Conf(RPn+1 − ?, k) are not homotopy
equivalent, even though RPn ' RPn+1− ?. Moreover, these configuration spaces do not have isomor-
phic cohomology groups, therefore they are not stably homotopy equivalent.

Proof. Theorem 3.3.8 implies that

Hn−1(Conf(RPn, k)) 6= 0

while, Theorem 3.4.4 implies that

Hn−1(Conf(RPn+1 − ?, k)) = 0.

Therefore
Hn−1(Conf(RPn+1 − ?, k)) 6∼= Hn−1(Conf(RPn, k)).

These examples are not in the same spirit as the ones given by Salvatore and Longoni, since we are
working with manifolds of different dimension and one of them is open.

2.6 The cohomology of Conf(Rn, k)

The cohomology of Conf(Rn, k) was determined in [3].

Theorem 2.6.1. The cohomology of Conf(Rn, k) is isomorphic to the R-algebra generated by ele-
ments A′i,j, for 1 ≤ j < i ≤ k, subject to the relations

A′r,jA
′
r,i = A′i,j(A

′
r,i − A′r,j). (2.6.1)
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The generators A′i,j correspond to the classes (p′i,j)
∗(ιn−1), where the maps p′i,j : Conf(Rn, k) −→ Sn−1

are given by

p′i,j(x1, . . . , xk) =
xi − xj
‖xi − xj‖

and ιn−1 denotes the cohomology fundamental class of Sn−1.
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Chapter 3

The cohomology away from 2 of ordered
configurations on (punctured) projective
spaces

For our purposes we consider the antipodal action of the group Z2 on the sphere Sn. The cohomology
algebra of ConfZ2(S

n, k) was determined in [16] for n > 2, albeit with some minor corrections required.
We start by addressing the needed corrections, and extending the argument to n ≥ 2.

3.1 The cohomology of ConfZ2(Rn − {0}, k)

Xicotencatl’s approach is to look at the Serre spectral sequence associated to the fibration (cf.
Example 2.4.7)

ConfZ2(Rn − {0}, k − 1) ≈ ConfZ2(S
n −QZ2

1 , k − 1)→ ConfZ2(S
n, k)→ Sn, (3.1.1)

where the arrow on the right is the projection onto the first coordinate, and the homeomorphism on
the left is induced by the stereographic projection

Sn −QZ2
1
≈−→ Rn − {0}, (3.1.2)

where QZ2
1 is the orbit of (1, 0, . . . , 0).

Lemma 3.1.1. The action of Z2 on Rn − {0} in fibration (3.1.1) is given by

τ(x) = − x

‖x‖2
, (3.1.3)

and it makes (3.1.2) an equivariant homeomorphism.
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Proof. We consider the stereographic projection p : Sn −QZ2
1 −→ Rn − {0} given by

(x0, . . . , xn)
p7−→ 1

1− x0

(x1, . . . , xn),

with inverse

x = (x1, . . . , xn)
p−1

7−→ 1

‖x‖2 + 1

(
‖x‖2 − 1, x1, . . . , xn

)
.

Then, for x = (x1, . . . , xn) ∈ Rn − {0} with ‖x‖ < 1,

p−1τ(x) = p−1(− x

‖x‖2
)

=

(
‖ x
‖x‖2‖

2 − 1

‖ x
‖x‖2‖2 + 1

,−
x1
‖x‖2

‖ x
‖x‖2‖2 + 1

, . . . ,−
xn
‖x‖2

‖ x
‖x‖2‖2 + 1

)

=

(
1
‖x‖2 − 1

1
‖x‖2 + 1

,−
x1
‖x‖2

1
‖x‖2 + 1

, . . . ,−
xn
‖x‖2

1
‖x‖2 + 1

)

=

(
1− ‖x‖2

1 + ‖x‖2
,− x1

1 + ‖x‖2
, . . . ,− xn

1 + ‖x‖2

)
,

and

−p−1(x) = −
(
‖x‖2 − 1

‖x‖2 + 1
,

x1

‖x‖2 + 1
, . . . ,

xn
‖x‖2 + 1

)
=

(
1− ‖x‖2

1 + ‖x‖2
,− x1

1 + ‖x‖2
, . . . ,− xn

1 + ‖x‖2

)
.

Remark 3.1.2. In this work, while ConfZ2(S
n, k) will denote orbit configurations on Sn with respect

to the antipodal action on Sn, the notation ConfZ2(Rn − {0}, k) will mean orbit configurations on
Rn−{0} with respect to the action of τ on Rn−{0}, which is different to the antipodal action
on Rn−{0} (τ in fact acts as an inversion with respect to the unit sphere followed by the antipodal
map, as is apparent from Equation 3.1.3. See Figure 3.1).
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x
•

N

•
p−1(x)

•
−p−1(x)

•
τ(x)

Figure 3.1: τ in action.

Xicoténcatl then computes the cohomology of the fiber in (3.1.1) using, in an inductive way, the
Serre spectral sequence associated to the fibration (cf. Example 2.4.8)

(Rn − {0})−QZ2
k−2 → ConfZ2(Rn − {0}, k − 1)→ ConfZ2(Rn − {0}, k − 2). (3.1.4)

Proposition 3.1.3 ([10, Proposition 1, Remark 10], [16, Theorem 2.5]). The system of coefficients
in (3.1.4) is trivial and the Serre Spectral Sequence associated to it collapses. Therefore we have an
R-module isomorphism

H∗(ConfZ2(Rn − {0}, k − 1)) ∼= M1 ⊗M2 ⊗ · · · ⊗Mk−1, (3.1.5)

where the tensor product corresponds to the cohomology ring structure, and Mi denotes an R-free
module generated by a zero dimensional class 1 and by (n− 1)-dimensional spherical classes {Ai,0}∪
{Ai,j, Ai,−j}1≤j<i.

We next describe these generators and determine their multiplicative relations while correcting a
small typographical error found in [16]. Namely, we do not have

Ar,jAr,−i = (−1)n(Aj,0 + Ai,0 − Ai,j)(Ar,−i − Ar,j),

as it is claimed there, but rather the second expression in (c) of Proposition 3.1.5 below. First we
define the maps which will define our generators, as well as their duals.

For 0 ≤ |j| < i < k, define maps pi,j : ConfZ2(Rn − {0}, k − 1)→ Sn−1 given by:

pi,0(x1, . . . , xk−1) =
xi
‖xi‖

pi,j(x1, . . . , xk−1) =
xi − xj
‖xi − xj‖

(3.1.6)

pi,−j(x1, . . . , xk−1) =
xi − τxj
‖xi − τxj‖

,
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where the last two formulas hold for j > 0. As before, let ιn−1 be the cohomology fundamental class
of Sn−1. Define for j > 0

Ai,0 = p∗i,0(ιn−1)

Ai,j = p∗i,j(ιn−1)

Ai,−j = p∗i,−j(ιn−1).

Define maps fi,j : Sn−1 −→ ConfZ2(Rn − {0}, 3) by

f1,0(x) = (x, 2e, 3e), f2,0(x) = (e,
x

2
, 3e), f2,1(x) = (e, e+

x

2
, 3e),

f2,−1(x) = (e,−e+
x

2
, 3e), f3,0(x) = (e,

3

2
e,
x

2
), f3,1(x) = (e,

3

2
e, e+

x

3
), (3.1.7)

f3,2(x) = (e,
3

2
e,

3

2
e+

x

4
), f3,−1(x) = (e,

3

2
e,−e+

x

4
), f3,−2(x) = (e,

3

2
e,−2

3
e+

x

4
),

where e = (1, 0 . . . , 0) ∈ Rn.

Lemma 3.1.4. With the notations above and with 0 ≤ |s| < r < 4 and 0 ≤ |j| < i < 4 then we have
the following homotopies

pr,sfi,j '

{
identity, if r = i and s = j;

constant, otherwise,
(3.1.8)

Proof. We will explicitly show the result for two cases, the remaining cases are proved in a similar
way.

1. pr,sf3,−2

(a) p1,0f3,−2(x) = p1,0(e, 3
2
e,−2

3
e+ x

4
) = e = constant.

(b) p2,0f3,−2(x) = p2,0(e, 3
2
e,−2

3
e+ x

4
) = e = constant.

(c) p2,1f3,−2(x) = p2,1(e, 3
2
e,−2

3
e+ x

4
) = e = constant.

(d) p2,−1f3,−2(x) = p2,−1(e, 3
2
e,−2

3
e+ x

4
) = e = constant.

(e) p3,0f3,−2(x) = p3,0(e, 3
2
e,−2

3
e+ x

4
) =

−2
3
e+ x

4

‖−2
3
e+ x

4
‖
' constant, by Corollary 2.2.2.

(f) p3,1f3,−2(x) = p3,1(e, 3
2
e,−2

3
e+ x

4
) =

−5
3
e+ x

4

‖−5
3
e+ x

4
‖
' constant, by Corollary 2.2.2.

(g) p3,−1f3,−2(x) = p3,−1(e, 3
2
e,−2

3
e+ x

4
) =

1
3
e+ x

4

‖1
3
e+ x

4
‖
' constant, by Corollary 2.2.2.
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(h) p3,2f3,−2(x) = p3,2(e, 3
2
e,−2

3
e+ x

4
) =

−13
6
e+ x

4

‖−13
6
e+ x

4
‖
' constant, by Corollary 2.2.2.

(i) p3,−2f3,−2(x) = p3,−2(e, 3
2
e,−2

3
e+ x

4
) =

x
4

‖x
4
‖

= x.

2. pr,sf2,1

(a) p1,0f2,1(x) = p1,0(e, e+ x
2
, 3e) = e = constant.

(b) p2,0f2,1(x) = p2,0(e, e+ x
2
, 3e) =

e+ x
2

‖e+ x
2
‖
' constant, by Corollary 2.2.2.

(c) p2,1f2,1(x) = p2,1(e, e+ x
2
, 3e) =

x
2

‖x
2
‖

= x.

(d) p2,−1f2,1(x) = p2,−1(e, e+ x
2
, 3e) =

2e+ x
2

‖2e+ x
2
‖
' constant, by Corollary 2.2.2.

(e) p3,0f2,1(x) = p3,0(e, e+ x
2
, 3e) = e = constant.

(f) p3,1f2,1(x) = p3,1(e, e+ x
2
, 3e) = e = constant.

(g) p3,−1f2,1(x) = p3,−1(e, e+ x
2
, 3e) = e = constant.

(h) p3,2f2,1(x) = p3,2(e, e+ x
2
, 3e) =

2e− x
2

‖2e− x
2
‖
' constant, by Corollary 2.2.2.

(i) p3,−2f2,1(x) = p3,−2(e, e+ x
2
, 3e) =

3e−τ(e+x
2

)

‖3e−τ(e+x
2

)‖ .

Note that, since 1
2
≤ ‖e + x

2
‖ for all x ∈ Sn, ‖−τ(e + x

2
)‖ ≤ 2 < ‖3e‖ for all x ∈ Sn.

Therefore, by Corollary 2.2.3,

p3,−2f2,1(x) ' constant.

Now put

A = {Ai,j, | 1 ≤ j < i < k} ∪ {Ai,−j | 1 ≤ j < i < k} ∪ {Ai,0 | 1 ≤ i < k}. (3.1.9)

Proposition 3.1.5. H∗(ConfZ2(Rn−{0}, k− 1)) is the graded commutative R-algebra generated by
the set A subject to the relations

(a) For 0 ≤ j < i < k,
A2
i,j = A2

i,−j = 0.

(b) For 1 ≤ i < r < k

Ar,0Ar,i = Ai,0(Ar,i − Ar,0),

Ar,0Ar,−i = (−1)nAi,0(Ar,−i − Ar,0),

Ar,iAr,−i = (−1)nAi,0(Ar,−i − Ar,i).
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(c) For 1 ≤ j < i < r < k

Ar,jAr,i = Ai,j(Ar,i − Ar,j),
Ar,jAr,−i = (−1)n(Aj,0 + Ai,0 − Ai,−j)(Ar,−i − Ar,j),
Ar,iAr,−j = (−1)nAi,−j(Ar,−j − Ar,i),
Ar,−jAr,−i = (−1)n(Ai,0 − Ai,j + (−1)nAj,0)(Ar,−i − Ar,−j).

Since [16] offers little detail on the actual derivation of the multiplicative relations above, for the
sake of completeness, we next give the full argument giving the correct relation for Ar,jAr,−i. Our
method differs slightly from the one sketched in [16].

Proof of the second relation in (c) of Proposition 3.1.5. In order to obtain the relation

Ar,jAr,−i = (−1)n(Aj,0 + Ai,0 − Ai,−j)(Ar,−i − Ar,j),

we start by considering the map α : ConfZ2(Rn − {0}, 3) −→ Conf(Rn, 3) given by

α(x, y, z) = (x, τy, z).

We will show that by applying α∗ to the known relation

A′3,1A
′
3,2 = A′2,1(A′3,2 − A′3,1)

we obtain the desired equality. We clearly have

α∗(A′3,2) = A3,−2

α∗(A′3,1) = A3,1,

and we next compute α∗(A′2,1). This will be achieved by computing the degrees of the compositions
p′2,1αfi,j : Sn−1 → Sn−1, as those degrees give the coefficients α∗(A′2,1) in terms of the basis A. Let
N : Rn − {0} −→ Sn−1 be the normalization map. We have

p′2,1αf1,0(x) = N(
−e
2
− x) = −N(

e

2
+ x), (3.1.10)

p′2,1αf2,0(x) = N(−2x− e) = −N(2x+ e), (3.1.11)

p′2,1αf2,1(x) = N(τ(e+
x

2
)− e), (3.1.12)

p′2,1αf2,−1(x) = N(τ(−e+
x

2
)− e) = −N(−e+

x

2
+ ‖−e+

x

2
‖2e), (3.1.13)

p′2,1αf3,0(x) = p′2,1αf3,1(x) = p′2,1αf3,2(x) (3.1.14)

= p′2,1αf3,−1(x) = p′2,1αf3,−2(x).

We need to compute the degrees of all these maps, and for most of them it is easily computed:
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• The maps in (3.1.10) and (3.1.11) are obviously homotopic to the antipodal map.

• By Corollary 2.2.3, the map in (3.1.12) is homotopic to the constant map since e is not enclosed
by the image of τ(e+ x

2
).

• The maps in (3.1.14) are all obviously constant maps.

Identifying the degree of p′2,1αf2,−1, however, requires some work: Let F : R×Rn −→ Rn be the map
given by

F (t, x) = F (t, (t1, t2, . . . , tn)) = (tt1, t2, . . . , tn).

Note that F (1, x) = x and F (−1, x) is x reflected across the hyperplane t1 = 0. As maps
Sn−1 −→ Sn−1, we have

N(−e+
x

2
+ ‖−e+

x

2
‖2e) = N(F (1,

x

2
) + (−1 + ‖−e+

x

2
‖2)e) ' N(F (−1,

x

2
) + (−1 + ‖−e+

x

2
‖2)e).

The homotopy on the right is given by

N(F (t,
x

2
) + (−1 + ‖−e+

x

2
‖2)e) for t ∈ [−1, 1],

and it is well defined: suppose there exist t ∈ [−1, 1] and x = (t1, . . . , tn) ∈ Sn−1 such that

F (t,
x

2
) + (−1 + ‖−e+

x

2
‖2)e = 0.

Then F (t, x
2
) = (1−‖−e+ x

2
‖2)e and so we have tt1

2
= 1−‖−e+ x

2
‖2 and ti = 0 for i > 1. The latter

condition, in turn, implies t1 = ±1.

• Suppose t1 = 1. Then t
2

= 1− ‖−e+ e
2
‖2 = 1− ‖− e

2
‖2 = 3

4
, so t = 3

2
> 1.

• Suppose t1 = −1. Then − t
2

= 1− ‖−e− e
2
‖2 = 1− ‖−3e

2
‖2 = −5

4
, so t = 5

2
> 1.

Both assumptions lead to a contradiction, so the homotopy is well defined. Now we will prove that,
as maps Sn−1 −→ Sn−1,

N(F (−1,
x

2
) + (−1 + ‖−e+

x

2
‖2)e) ' N(F (−1,

x

2
)).

Consider the homotopy

N(F (−1,
x

2
) + t(−1 + ‖−e+

x

2
‖2)e) for t ∈ [0, 1].

This homotopy is well defined: suppose there exist t ∈ [0, 1] and x = (t1, . . . , tn) ∈ Sn−1 such that

F (−1,
x

2
) + t(−1 + ‖−e+

x

2
‖2)e = 0.

Then F (−1, x
2
) = t(1 − ‖−e + x

2
‖2)e and so we have − t1

2
= t(1 − ‖−e + x

2
‖2) and ti = 0 for i > 1.

The latter condition, in turn, implies t1 = ±1.
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• Suppose t1 = 1. Then −1
2

= t(1− ‖−e+ e
2
‖2) = t(1− ‖− e

2
‖2) = t3

4
, so t = −2

3
< 0

• Suppose t1 = −1. Then 1
2

= t(1− ‖−e− e
2
‖2) = t(1− ‖−3e

2
‖2) = −t5

4
, so t = −2

5
< 0.

Both assumptions lead to a contradiction, so the homotopy is well defined. Therefore

p′2,1αf2,−1(x) ' −N(F (−1,
x

2
)) = −N(F (−1, x))

which is clearly a map of degree (−1)n+1.

Having understood the maps p′2,1αfi,j(x), we can read off the expression for α∗(A′2,1), namely,
α∗(A′2,1) = (−1)n(A1,0 + A2,0 − A2,−1). Then, by applying α∗ to the relation

A′3,1A
′
3,2 = A′2,1(A′3,2 − A′3,1),

we get
A3,1A3,−2 = (−1)n(A1,0 + A2,0 − A2,−1)(A3,−2 − A3,1),

which is the second relation asserted in ((c)) above in the case (r, i, j) = (3, 2, 1). The general case
follows by applying the maps

πr,i,j : FZ2(Rn − 0, k − 1) −→ FZ2(Rn − 0, 3)

given by πr,i,j(x1, . . . , xk−1) = (xj, xi, xr), and which evidently satisfy

π∗r,i,j(A1,0) = Aj,0, π∗r,i,j(A2,0) = Ai,0, π∗r,i,j(A2,1) = Ai,j,
π∗r,i,j(A2,−1) = Ai,−j, π∗r,i,j(A3,0) = Ar,0, π∗r,i,j(A3,1) = Ar,j,
π∗r,i,j(A3,2) = Ar,i, π∗r,i,j(A3,−1) = Ar,−j, π∗r,i,j(A3,−2) = Ar,−i.

The product relations in (a) and (b) can be obtained by considering the maps
ConfZ2(Rn − {0}, 2) −→ Conf(Rn, 3) given by:

(x, y) 7−→ (0, x, y)

(x, y) 7−→ (0, τx, y)

and computing the images of their cohomological counterparts applying arguments similar to the one
given in our previous proof.

Similarly, the first, third, and fourth product relations in (c) can be obtained, respectively, by
considering the maps ConfZ2(Rn − {0}, 3) −→ Conf(Rn, 3) given by:

(x, y, z) 7−→ (x, y, z)

(x, y, z) 7−→ (τx, y, z)

(x, y, z) 7−→ (τx, τy, z)

and computing their images in cohomology.
These relations imply that the cohomology of the fiber in (3.1.1) is additively generated by

products of the form Ai1,j1 · · ·Air,jr where il < il′ if l < l′. Furthermore, such products are in fact an
additive basis in view of (3.1.5). In summary, we have the following theorem.
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Theorem 3.1.6 (Corrected form of [16, Theorem 1.1]). For n ≥ 2, there is an R-algebra isomorphism

H∗(ConfZ2(Rn − {0}, k − 1)) ∼= R[A]/I, (3.1.15)

where I denotes the ideal generated by the relations (a), (b), (c) above, and A is defined in (3.1.9).

Now we determine the cohomology ring of the total space of (3.1.1), following Section 4 of [16].
Since n ≥ 2, Sn is simply connected and we have trivial coefficients on the Serre spectral sequence
associated to (3.1.1). Also, Sn has torsion free cohomology, therefore

Ep,q
2
∼= Hp(Sn;Hq(ConfZ2(Rn − {0}, k − 1))) ∼= Hp(Sn)⊗Hq(ConfZ2(Rn − {0}, k − 1)).

Proposition 3.1.7. For n odd, the Serre spectral sequence associated to

ConfZ2(Rn − {0}, k − 1) ≈ ConfZ2(S
n −QZ2

1 , k − 1)→ ConfZ2(S
n, k)

π1→ Sn,

collapses.

Proof. Consider a nowhere vanishing vector field on Sn. This gives a section

σ : Sn −→ ConfZ2(S
n, k)

of 3.1.1, by choosing k−1 vectors along the direction of the vector field and applying the exponential
map. Consequently we have a monomorphism

π∗1 : H∗(Sn) −→ H∗(ConfZ2(S
n, k)),

so the differentials with image in the 0-th row cannot be nonzero. Extending this using the description
of E2 we already have computed, we get the result.

Theorem 3.1.8 ([10, Proposition 14],[16, Proposition 5.2(a)]). For n > 2 odd, there is an R-algebra
isomorphism H∗(ConfZ2(S

n, k)) ∼= H∗(Sn)⊗H∗(ConfZ2(Rn − {0}, k − 1)).

Note that the multiplicative structure in E∞ = E2, which is just the tensor product of the multi-
plicative structures for the base and fiber, already gives the multiplicative structure of
H∗(ConfZ2(S

n, k)), by dimensional considerations —recall n is an odd integer greater than 1.

For n even, Xicoténcatl shows that the differential d0,n−1
n : E0,n−1

n −→ En,0
n is determined by

dn(Ai,j) = 2ιn for all Ai,j ∈ A (see also [10, Proposition 13]). In particular, if the characteristic
of R is 2, the conclusion of (and argument for) Theorem 3.1.8 holds also for any even n (the case
n = 2 requires an additional argument based on Brown representability, see the proof of Theorem
3.1.9 below). We close the section with a description of the R-cohomology algebra of ConfZ2(S

n, k)
for n even under the additional hypothesis—in force throughout the rest of this section—that the
characteristic of R is either zero (e.g. R = Z or R = Q) or an odd integer (e.g. R = Zt, odd t), so
that the map 2: R→ R given by multiplication by 2 is injective.
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It will be convenient to make a change of basis by defining Bi,j = Ai,j − A1,0, for |j| < i < k,
and B = {Bi,j | |j| < i < k and 1 < i}. A straightforward computation shows that a product of two
given elements in B satisfies the exact same relation holding for the product of the corresponding
two elements in A (keeping in mind that, by definition, B1,0 = 0). Let us denote by J the resulting
set of relations among the Bi,j’s. It is also clear that a new basis for H∗(ConfZ2(Rn − {0}, k − 1))
is obtained from the basis described just before Theorem 3.1.6 by replacing each factor Ai,j with
i > 1 by the corresponding Bi,j. In these conditions, the hypothesis on the characteristic of R, and
the fact that the differential sends every Ai,j to 2ιn imply that B is a basis for the kernel of d0,n−1

n .
More generally, let K = ker d0,n−1

n denote the (free) R-module generated by B, and let Kj denote
the R-module generated by products of j factors in K, where K0 and K−1 are set to be R and 0
respectively. Then a basis for Kj is given by the degree j(n−1) elements in the above modified basis
for H∗(ConfZ2(Rn − {0}, k − 1)) which do not contain the factor A1,0 (e.g. Kk−1 = 0). It is then
clear that the only non-trivial terms in the (n+ 1)-stage of the spectral sequence are given by

E
0,j(n−1)
n+1 = Kj, for 0 ≤ j ≤ k − 2;

E
n,j(n−1)
n+1 = ιnA1,0Kj−1 ⊕ (ιnKj)2, for 0 ≤ j ≤ k − 1;

where (−)2 denotes the mod 2 reduction of the given module (that is, tensoring with Z2). There are
no extension problems in the spectral sequence since its p = 0 column is R-free. Further, just as with
Theorem 3.1.8, if n > 2, the multiplicative structure of the cohomology of the total space follows by
dimensional considerations from that for the E∞-term of the spectral sequence. In fact:

Theorem 3.1.9. Assume that the characteristic of R is either zero or an odd integer. For even
n ≥ 2 there is an isomorphism of graded R-algebras

H∗(ConfZ2(S
n, k)) ∼= R[B]/J ⊗ Λ(λ, ω)/(2λ, λω)

where λ and ω are represented in the spectral sequence by ιn and ιnA1,0, respectively.

Proof. It only remains to argue the assertion about the multiplicative structure when n = 2. (The
issue is mentioned without explanation by Feichtner and Ziegler on the first half of page 100 in [10].)
The point is that, for any even n, 2B2

i,j = 0 by anticommutativity. But for n = 2 we need to rule
out the possibility that, as an element in H∗(ConfZ2(S

n, k)), the square of a 1-dimensional class Bi,j

agrees with the 2-dimensional 2-torsion class λ. This follows from Brown representability when the
coefficients are Z. For other coefficients R the assertion holds since the definition of the classes Bi,j

is natural with respect to the canonical ring morphism Z→ R.

Note R[B]/J =
⊕

0≤j≤k−2 Kj, a basis of which has already been described. In the E∞ term of
the spectral sequence, this R-subalgebra corresponds to the left hand side tower supported by 1.
Besides, two additional “copies” of this tower show up: one copy (tensored with Z2) is supported by
λ; another copy (shifted one level up) is supported by ω:
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n− 1

2(n− 1)

(k − 2)(n− 1)

(k − 1)(n− 1)

...
...

...

1 λ

ω

Figure 3.2: The E∞ term.

Remark 3.1.10. The additive version of Theorem 3.1.9 is obtained in [16, Theorem 5.2, items (b)
and (c)] assuming implicitly n > 2. On the other hand, for n > 2, the multiplicative relations among
generators in Theorems 3.1.6 and 3.1.9 correct those found in [10]. In fact, the multiplicative relations
described by Feichtner and Ziegler in [10, Proposition 11] for their generators in the cohomology of
ConfZ2(Rn − {0}, k− 1)) lead to inconsistencies. We illustrate the problem using Feichtner-Ziegler’s
notation, which the reader is assumed to be familiar with. (In particular, the notation for the fiber in
(3.1.1) will momentarily change to F〈ϕ〉(Rk \ {0}, n)). Take 1 ≤ i < j ≤ n, and let k be odd (so that
the generators ci, c

+
i,j, c

−
i,j are even dimensional and, therefore, commute without introducing signs).

Then Lemma 7 and Proposition 11 in [10] imply

c−i,jc
+
i,j + ci(c

+
i,j + c−i,j) = 0 = Ai(0) = Ai

(
c−i,jc

+
i,j + ci(c

+
i,j + c−i,j)

)
= c−i,jc

+
i,j − ci(c+

i,j + c−i,j).

This yields cic
+
i,j + cic

−
i,j = 0, if we work with integral coefficients. However the latter relation

contradicts Proposition 8(2) in [10].

3.2 (Z2)k-Action

In this section, R will denote a commutative ring with unit where 2 is (still) not necessarily invertible.
In [16], the action of the group (Z2)k on H∗(ConfZ2(S

n, k)) induced via antipodal maps on each
coordinate was determined for k ≤ 3, with most details omitted; here we generalize Xicoténcatl’s
result for all k, providing full details in typical cases, and correcting the description for k = 3.

Let us denote by εi : ConfZ2(S
n, k) −→ ConfZ2(S

n, k) the antipodal map on the i-th coordinate
and, by abuse of notation, its induced map in cohomology. We will work with the Serre spectral
sequence of (3.1.1), and determine the action of (Z2)k = 〈ε1, ε2, . . . , εk〉 on the cohomology of the

25



total space by understanding the action of each εi on the cohomology of the base and the fiber. We
first state the main results of this section (dealing with the action on the fiber), and then we recall
(from [16]) the details on how (Z2)k can be thought of as acting on the fiber of (3.1.1).

Theorem 3.2.1. For n ≥ 2, the action of (Z2)k on H∗(ConfZ2(Rn − {0}, k − 1)) is given by

εlAi,j =



(−1)n−1Aj,0 − Ai,0 + Ai,j if l = 1, j > 0;

−A|j|,0 − Ai,0 + Ai,j if l = 1, j < 0;

−Ai,0 if l = 1, j = 0, i ≥ 1;

Ai,−j if l > 1, |j| = l − 1;

(−1)nAi,0 if l > 1, i = l − 1, j = 0;

(−1)nAj,0 + (−1)nAi,0 + (−1)n−1Ai,−j if l > 2, i = l − 1, j > 0;

A|j|,0 + (−1)nAi,0 + (−1)n−1Ai,|j| if l > 2, i = l − 1, j < 0;

Ai,j otherwise.

(3.2.1)

Theorem 3.2.2. For n ≥ 2 even, the action of (Z2)k on the permanent cycles K∗ ⊆ H∗(ConfZ2(Rn−
{0}, k − 1)) is given by

εlBi,j =



−B|j|,0 −Bi,0 +Bi,j if l = 1, |j| > 0;

−Bi,0 if l = 1, j = 0, i > 1;

Bi,−j if l > 1, |j| = l − 1;

B|j|,0 +Bi,0 −Bi,−j if l > 2, i = l − 1, |j| > 0;

Bi,j otherwise.

(3.2.2)

Note that B1,0 = 0 in (3.2.2), and that the formulas in (3.2.2) are the same ones as those in
(3.2.1) for n even and replacing each A with B.

Unlike the maps εl for l > 1, ε1 does not preserve the fiber in (3.1.1). Indeed, ε1 covers the
antipodal map. This issue is dealt with in [16] by using the rotation

T =

(
In−1 0

0 −I2

)
∈ SO(n+ 1)

that interchanges the north and south poles N = (0, . . . , 0, 1), S = (0, . . . , 0,−1) ∈ Sn. In detail, the
restriction of T to Sn is Z2-equivariant and it is Z2-equivariantly isotopic to the identity, therefore
it induces a map T×k : ConfZ2(S

n, k) −→ ConfZ2(S
n, k) homotopic to the identity such that the

following diagram commutes:

ConfZ2(S
n, k)

π1
��

T×k◦ε1// ConfZ2(S
n, k)

π1
��

Sn
−T // Sn.
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Since −T fixes the north pole, T×k ◦ ε1—which is homotopic to ε1—restricts to a map on the corre-
sponding fiber. This allows us to understand the effect of T×k ◦ ε1 (and, consequently, of ε1) on the
spectral sequence. With this in mind note that, after removing the poles and taking into account
the stereographic projection, the map T induces a map T̃ : Rn − {0} −→ Rn − {0}, given by

T̃ (x) =
x̄

‖x‖2
,

where x̄ = (t1, . . . , tn−1,−tn) for x = (t1, . . . , tn). Thus, the action of T×k ◦ ε1 restricted to the fiber
is given by T̃×(k−1), so the action of ε1 on the cohomology of the fiber is the same as the action of
the map ε′1(x1, . . . , xk−1) = (T̃ (x1), . . . , T̃ (xk−1)), which from now on we will also denote by ε1. The
remaining actions restricted to the fiber are given by εl(x1, . . . , xk−1) = (x1, . . . , τxl−1, . . . , xk−1) for
1 < l ≤ k. The maps ε1, ε2 · · · εk : ConfZ2(Rn − {0}, k − 1)→ ConfZ2(Rn − {0}, k − 1) are related as
follows:

Lemma 3.2.3. For n odd, ε1 ' ε2 · · · εk. For n even, ε1 ' h×(k−1)ε2 · · · εk, with

h : Rn − {0} −→ Rn − {0}

given by h(x) = x̄.

Proof. Let g, f : Rn − {0} −→ Rn − {0} be the maps f(x) =
x

‖x‖2
and g(x) = −x. We have that

any Q ∈ O(n) is Z2-equivariant (with Z2 = 〈τ〉):

Q(τx) = Q

(
−x
‖x‖2

)
=
−Q(x)

‖x‖2
=
−Q(x)

‖Q(x)‖2
= τQ(x).

This, coupled with the injectivity of Q, implies that Q×(k−1) sends orbit configurations to orbit
configurations. Therefore h×(k−1), g×(k−1) are maps of orbit configurations spaces. We also have that
f is injective, and it is also Z2-equivariant:

f(τx) = f(− x

‖x‖2
) =

− x

‖x‖2

‖ −x
‖x‖2

‖2

=

−
(

x

‖x‖2

)
‖ x

‖x‖2
‖2

= τ

(
x

‖x‖2

)
= τf(x),

therefore f×(k−1) is a map between orbit configurations spaces. Note that τ = gf and R̃ = hf .
Therefore we have ε1 = R̃×(k−1) = (hf)×(k−1) = h×(k−1)f×(k−1). For n odd, it is known that there is a
homotopy through O(n) between g and h, so we have g×(k−1) ' h×(k−1) as maps of orbit configurations
spaces, therefore

ε1 = h×(k−1)f×(k−1) ' g×(k−1)f×(k−1) = τ×(k−1) = ε2 · · · εk
as maps of orbit configuration spaces. For n even, there is a homotopy through O(n) between g and
the identity. Therefore

ε1 = h×(k−1)f×(k−1) ' h×(k−1)g×(k−1)f×(k−1) = h×(k−1)τ×(k−1) = h×(k−1)ε2 · · · εk
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as maps of orbit configurations spaces.
Of course, Theorem 3.2.1 can be used to give a description of the effect in cohomology of the map
h×(k−1) : ConfZ2(Rn − {0}, k − 1)→ ConfZ2(Rn − {0}, k − 1) that arises in Lemma 3.2.3 for n even.
We omit the details as we will not have occasion of using such information. Yet, in the next section
we will need to describe the behavior of the map h×(k−1) on the permanent cycles K∗ of the previous
section.

Note that ε1 acts as multiplication by (−1)n+1 on the generator of the cohomology of the base
space of (3.1.1), and that εl acts trivially on said generator for l > 1. Thus we have the following
description of the action of (Z2)k on the total space of (3.1.1).

Corollary 3.2.4. For n > 1 odd, the action of (Z2)k on

H∗(ConfZ2(S
n, k)) ∼= H∗(Sn)⊗H∗(ConfZ2(Rn − {0}, k − 1)) = Λ(ιn)⊗R[A]/I

is the tensor product of the corresponding actions on each factor of the tensor product.

Corollary 3.2.5. Assume that the characteristic of R is either zero or an odd integer. For n ≥ 2
even, the action of (Z2)k on

H∗(ConfZ2(S
n, k)) ∼= R[B]/J ⊗ Λ(λ, ω)/(2λ, λω)

satisfies

εl(λ) =

{
−λ, if l = 1;

λ, if l > 1,

εl(ω) = ω, ∀ l ≥ 1,

and restricts to the action of (Z2)k on B stated in Theorem 3.2.2.

Theorem 3.2.2 is a straightforward consequence of the definitions and Theorem 3.2.1. In turn, it
suffices to prove the latter result in the special case k = 3. Indeed, on the one hand, Theorem 3.2.1
is elementary for k = 2. On the other, for k ≥ 3 and 0 < j < i < k, the map

πi,j : ConfZ2(Rn − {0}, k − 1)→ ConfZ2(Rn − {0}, 2)

given by
πi,j(x1, . . . , xk−1) = (xj, xi)

sends A1,0, A2,0, A2,1, and A2,−1 respectively to Aj,0, Ai,0, Ai,j, and Ai,−j, whereas, for 1 ≤ l ≤ k, πi,j
fits in the commutative diagram

ConfZ2(Rn − {0}, k − 1)

πi,j

��

εl // ConfZ2(Rn − {0}, k − 1)

πi,j

��
ConfZ2(Rn − {0}, 2) ε̄ // ConfZ2(Rn − {0}, 2),
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where

ε̄(x, y) =


ε3(x, y), if i = l − 1;

ε2(x, y), if j = l − 1;

ε1(x, y), if l = 1;

(x, y), otherwise.

The rest of this section is devoted to proving Theorem 3.2.1 in the case k = 3, i.e. to the proof of
the following set of equalities—which corrects the action reported in Table 2 of [16]:

ε1A1,0 = −A1,0,

ε1A2,0 = −A2,0,

ε1A2,1 = (−1)n−1A1,0 − A2,0 + A2,1,

ε1A2,−1 = −A1,0 − A2,0 + A2,−1,

ε2A1,0 = (−1)nA1,0,

ε2A2,0 = A2,0,

ε2A2,1 = A2,−1,

ε2A2,−1 = A2,1,

ε3A1,0 = A1,0,

ε3A2,0 = (−1)nA2,0,

ε3A2,1 = (−1)nA1,0 + (−1)nA2,0 + (−1)n−1A2,−1,

ε3A2,−1 = A1,0 + (−1)nA2,0 + (−1)n−1A2,1.

Recall the maps pi,j and fr,s introduced in (3.1.6) and (3.1.7). By abuse of notation, for |j| < i ≤ 2,
we will denote by fi,j the composition π2,1fi,j : Sn−1 −→ ConfZ2(Rn − {0}, 2). These maps, together
with the corresponding maps pr,s, detect the generators for ConfZ2(Rn−{0}, 2) in the sense of (3.1.8).
To prove the above set of relations, we will compute the degree of the compositions

Sn−1
fij // ConfZ2(Rn − {0}, 2)

εl // ConfZ2(Rn − {0}, 2)
pr,s // Sn−1

for 0 < l ≤ 3, |j| < i ≤ 2, and |s| < r ≤ 2. We start by computing the action of ε1.

1. ε1A1,0: We have

p1,0ε1f1,0(x) = x̄, p1,0ε1f2,0(x) = e, p1,0ε1f2,1(x) = e, p1,0ε1f2,−1(x) = e.

The first map is a reflection and the rest are constant maps, therefore

deg(p1,0ε1f1,0) = −1, deg(p1,0ε1f2,0) = 0, deg(p1,0ε1f2,1) = 0, deg(p1,0ε1f2,−1) = 0.

Thus, ε1A1,0 = −A1,0.
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2. ε1A2,0: Clearly, p2,0ε1f1,0(x) = N( ē
2
), which implies deg(p2,0ε1f1,0) = 0. Note that

N(R̃(y)) = N(ȳ) for all y ∈ Rn − {0}, therefore

p2,0ε1f2,0(x) = N(x̄) = x̄,

p2,0ε1f2,1(x) = N(R̃(e+ x
2
)) = N(e+ x̄

2
),

p2,0ε1f2,−1(x) = N(R̃(−e+ x
2
)) = N(−e+ x̄

2
);

The second and third maps are not surjective, therefore we have

deg(p2,0ε1f2,0) = −1, deg(p2,0ε1f2,1) = 0, deg(p2,0ε1f2,−1) = 0.

Thus ε1A2,0 = −A2,0.

3. ε1A2,1: We have

p2,1ε1f1,0(x) = N( e
2
− x̄) = −N(x̄− e

2
) ' −x̄,

therefore
deg(p2,1ε1f1,0) = (−1)n−1.

We also have
p2,1ε1f2,0(x) = N(2x̄− e) = N(x̄− e

2
),

so
deg(p2,1ε1f2,0) = −1.

Recall the map F defined earlier, given by (t, (t1, . . . , tn)) 7−→ (tt1, t2, . . . , tn). We have

p2,1ε1f2,1(x) = N(R̃(e+ x
2
)− e) = N(e+ F (1,x̄)

2
− ‖e+ x̄

2
‖2e)

' N(e+ F (−1,x̄)
2
− ‖e+ x̄

2
‖2e) ' N(F (−1,x̄)

2
).

The first homotopy is given by

N(e+
F (t, x̄)

2
− ‖e+

x̄

2
‖2e) with t ∈ [−1, 1].

As before, we have to check that this homotopy is well defined: suppose there exist t ∈ [−1, 1]
and x = (t1, . . . , tn) ∈ Sn−1 such that F (t, x̄

2
) + (1− ‖e+ x̄

2
‖2)e = 0. Then

F (t,
x̄

2
) = (−1 + ‖e+

x̄

2
‖2)e

and so we have tt1
2

= −1 + ‖e+ x̄
2
‖2 and ti = 0 for i > 1. This, in turn, implies t1 = ±1.

• Suppose t1 = 1. Then t
2

= −1 + ‖e+ e
2
‖2 = −1 + ‖3e

2
‖2 = 5

4
, so t = 5

2
> 1.

• Suppose t1 = −1. Then − t
2

= −1 + ‖e− e
2
‖2 = −1 + ‖ e

2
‖2 = −3

4
, so t = 3

2
> 1.
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Both assumptions lead to a contradiction, so the homotopy is well defined. The second homo-
topy is

N(
F (−1, x̄)

2
+ t(1− ‖e+

x̄

2
‖2)e), with t ∈ [0, 1].

Let us verify that this homotopy is well defined: suppose there exist t ∈ [0, 1] and

x = (t1, . . . , tn) ∈ Sn−1 such that F (−1,x̄)
2

+ t(1− ‖e+ x̄
2
‖2)e = 0. Then

F (−1, x̄)

2
= t(−1 + ‖e+

x̄

2
‖2)e

and so we have − t1
2

= t(−1 + ‖e+ x̄
2
‖2) and ti = 0 for i > 1. This, in turn, implies t1 = ±1.

• Suppose t1 = 1. Then −1
2

= t(−1 + ‖e+ e
2
‖2) = t(−1 + ‖3e

2
‖2) = t5

4
, so t = −2

5
< 0.

• Suppose t1 = −1. Then 1
2

= t(−1 + ‖e− e
2
‖2) = t(−1 + ‖ e

2
‖2) = −t3

4
, so t = −2

3
< 0.

Both assumptions lead to a contradiction, consequently the homotopy is well defined. Therefore
p2,1ε1f2,1 is homotopic to a composition of two reflections. Thus

deg(p2,1ε1f2,1) = 1.

Finally, since e is not enclosed by the image of R̃(−e+ x
2
), we have that the map

p2,1ε1f2,−1(x) = N(R̃(−e+
x

2
)− e)

is not surjective. Therefore
deg(p2,1ε1f2,−1) = 0,

and we conclude that ε1A2,1 = (−1)n−1A1,0 − A2,0 + A2,1.

4. ε1A2,−1: We clearly have

p2,−1ε1f1,0(x) = N( e
2
− τ(x̄)) = N(x̄+ e

2
) ' x̄

and
p2,−1ε1f2,0(x) = N(2x̄+ e) = N(x̄+ e

2
) ' x̄.

Therefore
deg(p2,−1ε1f2,0) = deg(p2,−1ε1f1,0) = −1.

On the other hand, since −e is not enclosed by the image of R̃(e+ x
2
), the map

p2,−1ε1f2,1(x) = N(R̃(e+
x

2
) + e)

is not surjective. Therefore
deg(p2,−1ε1f2,1) = 0.
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Finally,

p2,−1ε1f2,−1(x) = N(R̃(−e+ x
2
) + e) ' N(−e+ F (−1,x̄)

2
+ ‖−e+ x̄

2
‖2e)

' N(F (−1,x̄)
2

) ' x,

where the first homotopy is given by

N(−e+
F (t, x̄)

2
+ ‖−e+

x̄

2
‖2e), with t ∈ [−1, 1],

and the second one by

N(
F (−1, x̄)

2
+ t(−1 + ‖−e+

x̄

2
‖2)e), with t ∈ [0, 1].

We can show that these homotopies are well defined in a similar fashion to the previous case.
Therefore,

deg(p2,−1ε1f2,−1) = 1,

And we conclude that ε1A2,−1 = −A1,0 − A2,0 + A2,−1.

From now on we will just record the results of the computations, without writing out the details,
for these computations are entirely analogous to the computation of the action of ε1. Next we consider
ε2.

1. ε2A1,0 : We have

p1,0ε2f1,0(x) = −x, p1,0ε2f2,0(x) = −e, p1,0ε2f2,1(x) = −e, p1,0ε2f2,−1(x) = −e,

therefore

deg(p1,0ε2f1,0) = (−1)n, deg(p1,0ε2f2,0) = 0, deg(p1,0ε2f2,1) = 0, deg(p1,0ε2f2,−1) = 0.

Thus, ε2A1,0 = (−1)nA1,0.

2. ε2A2,0 : We have
p2,0ε2f1,0(x) = e,
p2,0ε2f2,0(x) = N(x

2
) = x,

p2,0ε2f2,1(x) = N(e+ x
2
) ' 0,

p2,0ε2f2,−1(x) = N(−e+ x
2
) ' 0;

therefore

deg(p2,0ε2f1,0) = 0, deg(p2,0ε2f2,0) = 1, deg(p2,0ε2f2,1) = 0, deg(p2,0ε2f2,−1) = 0.

Thus, ε2A2,0 = A2,0.
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3. ε2A2,1 : We have

p2,1ε2f1,0(x) = N(2e+ x) ' 0,
p2,1ε2f2,0(x) = N(x

2
+ e) ' 0,

p2,1ε2f2,1(x) = N(e+ x
2

+ e) ' 0,
p2,1ε2f2,−1(x) = N(−e+ x

2
+ e) = N(x

2
) = x;

therefore

deg(p2,1ε2f1,0) = 0, deg(p2,1ε2f2,0) = 0, deg(p2,1ε2f2,1) = 0, deg(p2,1ε2f2,−1) = 1.

Thus ε2A2,1 = A2,−1.

4. ε2A2,−1 : Note that ε22 = identity. Application of the previous case yields ε2A2,−1 = A2,1.

Next, ε3.

1. ε3A1,0 : We have

p1,0ε3f1,0(x) = x, p1,0ε3f2,0(x) = e, p1,0ε3f2,1(x) = e, p1,0ε3f2,−1(x) = e;

therefore

deg(p1,0ε3f1,0) = 1, deg(p1,0ε3f2,0) = 0, deg(p1,0ε3f2,1) = 0, deg(p1,0ε3f2,−1) = 0.

Thus, ε3A1,0 = A1,0.

2. ε3A2,0 : We have
p2,0ε3f1,0(x) = N(− e

2
),

p2,0ε3f2,0(x) = N(τ(x
2
)) = −x,

p2,0ε3f2,1(x) = N(τ(e+ x
2
)) ' 0,

p2,0ε3f2,−1(x) = N(τ(−e+ x
2
)) ' 0;

therefore

deg(p2,0ε3f1,0) = 0, deg(p2,0ε3f2,0) = (−1)n, deg(p2,0ε3f2,1) = 0, deg(p2,0ε3f2,−1) = 0.

Thus, ε3A2,0 = (−1)nA2,0.

3. ε3A2,1 : We have

p2,1ε3f1,0(x) = N(− e
2
− x) = −N( e

2
+ x) ' −x,

p2,1ε3f2,0(x) = N(−2x− e) = −N(2x+ e) ' −x,
p2,1ε3f2,1(x) = N(τ(e+ x

2
)− e) ' 0,

33



therefore

deg(p2,1ε3f1,0) = (−1)n, deg(p2,1ε3f2,0) = (−1)n, deg(p2,1ε3f2,1) = 0.

Lastly,

p2,1ε3f2,−1(x) = N(τ(−e+ x
2
)− e) ' N(e+ F (−1,−x)

2
− ‖−e+ x

2
‖2e)

' N(F (−1,−x)
2

) = −F (−1, x),

where the first homotopy is given by

N(e+
F (t,−x)

2
− ‖−e+

x

2
‖2e), with t ∈ [−1, 1],

and the second one is given by

N(
F (−1,−x)

2
+ t(1− ‖−e+

x

2
‖2)e), with t ∈ [0, 1].

Therefore
deg(p2,1ε3f2,−1) = (−1)n−1.

And we conclude ε3A2,1 = (−1)nA1,0 + (−1)nA2,0 + (−1)n−1A2,−1.

4. ε3A2,−1 : Note that ε23 = identity. By our previous computations,

A2,1 = ε3(ε3A2,1) = ε3((−1)nA1,0 + (−1)nA2,0 + (−1)n−1A2,−1)
= (−1)nA1,0 + A2,0 + (−1)n−1ε3A2,−1.

Therefore ε3A2,−1 = A1,0 + (−1)nA2,0 + (−1)n−1A2,1.

Remark 3.2.6. Theorems 3.2.1 and 3.2.2 correct results in [10]. The situation is closely related to
our discussion, in Remark 3.1, of the existence of inconsistencies with the determination in [10] of a
presentation for the cohomology ring of the fiber and base spaces in (3.1.1). As described next, the
problem can be traced back to the description in [10, Lemma 7] of the action of the various εi on
cohomology rings. To simplify the explanation, once again we adopt momentarily Feichtner-Ziegler’s
notation in [10]—which the reader is assumed to be familiar with. The proof of Lemma 7(iv) in
[10] is based on the asserted equality (A2 ◦A1)∗(c+

1,2) = (−1)kc+
1,2 whose proof, in turn, is reduced to

showing that the obvious map

A2 ◦ A1 : M({U1, U2, U
+
1,2})→M({U1, U2, U

+
1,2}) (3.2.3)

satisfies
(A2 ◦ A1)∗(c̃1,2) = (−1)kc̃1,2. (3.2.4)
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(Note that (3.2.3) is not to be understood as a composition of maps fromM({U1, U2, U
+
1,2}) to itself.)

Feichtner-Ziegler’s argument for (3.2.4) then proceeds by considering the central sphere S (of radius√
2) in ⊥U+

1,2 \ {0} which retracts from M({U1, U2, U
+
1,2}) (with retraction p). It is observed that

(3.2.3) restricts on S as the antipodal map (3.2.5)

and, from this, (3.2.4) is concluded. But such a conclusion is clearly flawed: The assertion in (3.2.5)
is right, and gives the (strict) commutativity of the diagram

S �
� //

antipodal

��

M({U1, U2, U
+
1,2})

A2◦A1

��
S �
� //M({U1, U2, U

+
1,2}).

But (3.2.4) cannot be drawn from this, since the map induced in cohomology by the inclusion
S ↪→ M({U1, U2, U

+
1,2}) has a nontrivial kernel. Indeed, Hk−1(M({U1, U2, U

+
1,2})) is free of rank 3,

while Hk−1(S) is free of rank 1. Instead, what would certainly give (3.2.4) is the existence of a
commutative diagram (at least up to homotopy)

M({U1, U2, U
+
1,2})

A2◦A1

��

p // S

antipodal

��
M({U1, U2, U

+
1,2})

p // S.

But (3.2.4) is false according to Theorem 3.2.1, so that such a diagram is impossible.

3.3 (Z2)k-Invariants

In this section R will denote a commutative ring with unit where 2 is invertible, and n will be an inte-
ger greater than or equal to 2. First we will compute the (Z2)k-invariants in
H∗(ConfZ2(Rn − {0}, k − 1)) starting with the case n odd, assumption that will be in force un-
til Theorem 3.3.8.

For 0 < i < k we let Ci,0 stand for Ai,0, and for 0 < j < i < k we define

C+
i,j = Ai,j + Ai,−j − Ai,0,

C−i,j = −Ai,j + Ai,−j − Aj,0.

For ease of notation, for a positive j we will also use the notation Ci,j and Ci,−j to stand respectively
for C+

i,j and C−i,j. Put
C+ = {C+

i,j | 1 ≤ j < i < k},
C− = {C−i,j | 1 ≤ j < i < k},
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C0 = {Ci,0 | 1 ≤ i < k}

and C = C+ ∪ C− ∪ C0. Clearly, C is a basis for Hn−1(ConfZ2(Rn − {0}, k − 1)) with inverse change
of basis map given by

Ai,j =
C+
i,j − C−i,j + Ci,0 − Cj,0

2
,

Ai,−j =
C+
i,j + C−i,j + Ci,0 + Cj,0

2
,

Ai,0 = Ci,0,

for 0 < j < i < k. These formulas make it clear that:

Proposition 3.3.1. H∗(ConfZ2(Rn − {0}, k − 1)) is additively generated by the products

Ci1,j1 · · ·Cir,jr (3.3.1)

with |jl| < il < k for l = 1, . . . , r.

Our first goal is to show that, in fact, an additive basis is formed by such products that satisfy
in addition

il < il′ if l < l′. (3.3.2)

Example 3.3.2. For n ≥ 2 odd, the multiplicative relations among the Ai,j’s yield

C−3,2C3,0 = −A2,0A3,0 + A3,−2A3,0 − A3,0A3,2

= −A2,0A3,−2 + A2,0A3,0 − A2,0A3,2

= −C+
3,2C2,0.

Example 3.3.3. For odd n, the multiplicative relations among the Ai,j’s yield

C+
4,3C

−
4,2 = −A2,0A4,−3 + A4,−3A4,−2 + A2,0A4,0 − A4,−2A4,0 − A4,−3A4,2 + A4,0A4,2

−A2,0A4,3 + A4,−2A4,3 − A4,2A4,3

= A2,0A4,−3 − A3,−2A4,−3 + A3,2A4,−3 − A3,−2A4,−2 + A3,0A4,−2 − A3,2A4,−2

−A2,0A4,0 + A3,−2A4,2 − A3,0A4,2 + A3,2A4,2 − A2,0A4,3 + A3,−2A4,3 − A3,2A4,3

= −C−3,2C−4,3 − C−4,2C+
3,2 − C+

3,2C2,0 − C−3,2C3,0 − C2,0C4,0.

Therefore, by the previous example,

C+
4,3C

−
4,2 = −C−3,2C−4,3 − C−4,2C+

3,2 − C2,0C4,0.

Note that the set of products in (3.3.1) satisfying (3.3.2) is in bijective correspondence with the
basis described just before Theorem 3.1.6. By Lemma 2.1.2 we see that the former set will be in
fact an additive basis of H∗(ConfZ2(Rn − {0}), k − 1) as long as it additively generates. In turn,
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the latter condition follows directly from the fact that the products Ai1,j1 · · ·Air,jr satisfying the
condition (3.3.2) form an additive basis, from the explicit form of the relations expressing the Ai,j’s
in terms of the Ci,j’s, and from the relations in item 2 of Lemma 3.3.4 below—which generalizes the
calculation illustrated in Example 3.3.2. The proof of the lemma is straightforward and left to the
reader.

Lemma 3.3.4. For n ≥ 2 odd, the elements of C satisfy the following multiplicative relations:

1. For 0 < j < i < r < k,

C+
r,iC

+
r,j = −C+

i,jC
+
r,j + C+

i,jC
+
r,i,

C+
r,iC

−
r,j = −C−i,jC−r,i − C+

i,jC
−
r,j − Cj,0Cr,0,

C−r,iC
+
r,j = C−i,jC

−
r,j + C+

i,jC
−
r,i − Ci,0Cr,0,

C−r,iC
−
r,j = C−i,jC

+
r,j − C−i,jC+

r,i + Cj,0Ci,0.

2. For 0 < i < r < k,

C+
r,iCr,0 = −Ci,0C−r,i,

C−r,iCr,0 = −Ci,0C+
r,i.

3. For 0 ≤ j < i < k,

(C+
i,j)

2 = 0,

(C−i,j)
2 = 0,

C+
i,jC

−
i,j = −Cj,0Ci,0.

The advantage of using C over A to compute invariants becomes apparent when describing the
action of (Z2)k as a straightforward verification yields

εlC
+
ij = C+

ij for all 0 < j < i and all l,

εlC
−
ij =

{
−C−ij , if i = l − 1 or j = l − 1;

C−ij , otherwise,

εlCi,0 =

{
−Ci,0, if i = l − 1 or l = 1;

Ci,0, otherwise.

Theorem 3.3.5. Suppose R is a commutative ring with unit where 2 is invertible. For n ≥ 2 odd,
the (Z2)k-invariants in H∗(ConfZ2(Rn − {0}, k − 1)) are multiplicatively generated by the set C+. In
fact, an additive basis of the invariants is formed by the products (3.3.1) satisfying (3.3.2) and jl > 0
for l = 1, . . . , r.
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Proof. Let x ∈ Hm(n−1)(ConfZ2(Rn − {0}, k − 1)) be an invariant. We will show that each of the
basis elements appearing with a nontrivial coefficient in the expression of x as a linear combination
of the basis of products (3.3.1) satisfying (3.3.2) has no factors belonging to C− or C0. Write

x =
∑

aICi1,j1 · · ·Cim,jm , (3.3.3)

where each coefficient aI is non-zero and the summation runs over some multi-indices

I = ((i1, j1), . . . , (im, jm))

such that |jl| < il and il < il′ if l < l′. Note that given our description of the (Z2)k-action on C,
each monomial Ci1,j1 · · ·Cim,jm is sent to a multiple of itself under the action of any element in (Z2)k.
Since 2 is invertible, this means that each term Ci1,j1 · · ·Cim,jm appearing in (3.3.3) is invariant. Fix
I, and consider the corresponding invariant monomial z = Ci1,j1 · · ·Cim,jm . Suppose that the set of
integers i such that we have a factor of the form C−i,j in z is non-empty, and let i0 be the greatest
element of this set. By applying εi0+1 to z we get that −z = εi0+1z = z, which is a contradiction, so
z has no factors belonging to C−. An entirely analogous argument shows that there are no factors
belonging to C0 in z either.

Theorem 3.3.6. Suppose R is a commutative ring with unit where 2 is invertible. For n ≥ 2 odd,
there is an R-algebra isomorphism

H∗(ConfZ2(Rn − {0}, k − 1))(Z2)k ∼= R[C+]/K,

where K is the ideal generated by the elements C+
i,j

2
and C+

r,iC
+
r,j−C+

i,j(C
+
r,i−C+

r,j) for 0 < j < i < r < k.

Proof. Lemma 3.3.4 gives an obvious ring map (with domain in R[C+]/K). This is an isomorphism
since it sets a bijective correspondence between the basis described in Theorem 3.3.5 and the usual
basis in the domain.

Remark 3.3.7. Note that the second relation in the preceding Theorem is identical to the known
relation (2.6.1). In particular, the cohomology ring described in Theorem 3.3.6 is isomorphic to the
cohomology ring of the standard configuration space of k − 1 ordered points in Rn.

Since the canonical projection Sn → RPn induces a (Z2)k covering space ConfZ2(S
n, k) →

Conf(RPn, k), Theorem 3.1.8, the fact that the (Z2)k-action on H∗(Sn) is trivial for odd n, and
the preceding theorem imply the following result:

Theorem 3.3.8. Suppose R is a commutative ring with unit where 2 is invertible. For n ≥ 2 odd,
there is an R-algebra isomorphism

H∗(Conf(RPn, k)) ∼= H∗(ConfZ2(S
n, k))(Z2)k ∼= Λ(ιn)⊗R[C+]/K.

Next, we describe (Z2)k-invariant permanent cycles in K∗ ⊆ H∗(ConfZ2(Rn − {0}, k − 1)) for n
even, assumption that will be in force throughout the rest of the section. For 0 < j < i < k define

D+
i,j = Bi,j +Bi,−j −Bi,0 −Bj,0,

D−i,j = Bi,j −Bi,−j,

Di,0 = Bi,0,
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and, for |j| < i with i ≥ 2, let

Di,j =


D+
i,j if j > 0;

D−i,|j|, if j < 0;

Di,0, if j = 0.

(Recall B1,0 = 0.) Put D = {D+
i,j | 0 < j < i < k} ∪ {D−i,j | 0 < j < i < k} ∪ {Di,0 | 1 < i < k}. With

this notation, the action described in (3.2.2) takes the form

εlD
+
i,j =

{
−D+

i,j, if i = l − 1;

D+
i,j, otherwise,

εlD
−
i,j =

{
−D−i,j, if j = l − 1;

D−i,j, otherwise,

and

εlDi,0 =

{
−Di,0, if l = 1;

Di,0, otherwise.

Clearly, D forms a basis for K with inverse change of basis given by

Bi,j =
D+
i,j +D−i,j +Di,0 +Dj,0

2
,

Bi,−j =
D+
i,j −D−i,j +Di,0 +Dj,0

2
,

Bi,0 = Di,0,

for 0 < j < i < k. We leave to the reader the verification of the following multiplicative relations
among the elements of D:

Lemma 3.3.9. Let R be a commutative ring with unit where 2 is invertible. Suppose n ≥ 2 even.
The elements of D satisfy the following multiplicative relations:

1. For 0 < j < i < r < k,

D+
r,iD

+
r,j = D−i,jD

−
r,j −D+

i,jD
−
r,i −Dj,0Di,0 +Dj,0Dr,0 −Di,0Dr,0,

D+
r,iD

−
r,j = D−i,j(D

+
r,j −D+

r,i),

D−r,iD
+
r,j = D+

i,j(D
+
r,j −D+

r,i),

D−r,iD
−
r,j = −D−i,jD−r,i +D+

i,jD
−
r,j.

2. For 0 < i < r < k,

D+
r,iDr,0 = −Di,0D

+
r,i,

D−r,iDr,0 = −Di,0D
−
r,i.
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3. For 0 < j < i < k,

(D+
i,j)

2 = 0,

(D−i,j)
2 = 0,

(Di,0)2 = 0,

D+
i,jD

−
i,j = 0.

By repeated applications of Lemma 3.3.9 we see that

Proposition 3.3.10. K∗ is additively generated by products of the form

Di1,j1
· · ·Dir,jr , (3.3.4)

where
il < il′ if l < l′. (3.3.5)

The set of these products is in bijective correspondence with the basis consisting of products
Bi1,j1 · · ·Bir,jr satisfying condition (3.3.5), and so by Lemma 2.1.2 the set of products of the form
(3.3.4) satisfying (3.3.5) is an additive basis of the permanent cycles in
H∗(ConfZ2(Rn − {0}, k − 1)).

Remark 3.3.11. The previous discussion and our description of ε`(D
±
i,j) easily yield that the map

h×(k−1) in Lemma 3.3 acts on the permanent cycles in Km as multiplication by (−1)m.

Next we define elements which are clearly (Z2)k-invariants; in fact we will show in Theorem 3.3.14
below that they are multiplicative generators for all (Z2)k-invariants. For 0 < j < i < r < k, put

I+
r,i,j = D+

i,jD
−
r,i,

I−r,i,j = D−i,jD
−
r,j,

and for 1 < j < i < k put

Ii,j,0 = Dj,0Di,0.

For j > 0, we will sometimes write Ir,i,j and Ir,i,−j instead of I+
r,i,j and I−r,i,j respectively. Accordingly,

we will sometimes write I+
i,j,0 or even I−i,j,0 as a substitute for Ii,j,0. Let

E+ = {I+
r,i,j | 0 < j < i < r < k},

E− = {I−r,i,j | 0 < j < i < r < k},
E0 = {Ii,j,0 | 1 < j < i < k}

and
E = E+ ∪ E− ∪ E0.

The corroboration of the existence of the following relations is straightforward, although it can take
quite some time to write down. As such, it is left to the reader.
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Lemma 3.3.12. Let R be a commutative ring with unit where 2 is invertible. Suppose n ≥ 2 even.
The elements of E satisfy the relations listed below. Relations (a) through (c) express a product
I±r,i,jI

±
s,a,b with

0 ≤ j < i < r < k, 0 ≤ b < a < s < k, 2 ≤ i, 2 ≤ a, and r ≤ s (3.3.6)

as a linear combination of such products satisfying in addition

r < s and a 6∈ {r, i}. (3.3.7)

Those relations are listed according to the several possibilities for the indices r, i, j, s, a, and b when
they satisfy (3.3.6) but not (3.3.7).

(a) r = s

(a.a) j 6= 0 6= b

(a.a.a) |{i, j, a, b}| = 4 (can assume a < i)

(a.a.a.a) b < a < j

I+
r,i,jI

+
r,a,b = I+

j,a,b(I
−
r,i,a − I+

r,i,a + I+
r,i,j) + (Ii,b,0 − I+

i,j,a − Ii,j,0 − Ij,b,0)I+
r,a,b,

I−r,i,jI
−
r,a,b = I−j,a,bI

−
r,i,j − I+

i,j,bI
−
r,a,b,

I+
r,i,jI

−
r,a,b = I−j,a,b(I

+
r,i,j − I+

r,i,b) + (I−i,j,b − I
+
i,j,b − Ij,b,0 + Ii,b,0 − Ii,j,0)I−r,a,b,

I−r,i,jI
+
r,a,b = I+

j,a,bI
−
r,i,j − I+

i,j,aI
+
r,a,b.

(a.a.a.b) b < j < a

I+
r,i,jI

+
r,a,b = (I−a,j,b − I

+
a,j,b + Ia,b,0 − Ia,j,0 − Ij,b,0)(I+

r,i,a − I−r,i,a − I+
r,i,j)

+ I+
i,j,b(I

+
r,a,j − I+

r,a,b) + (Ii,b,0 − Ii,j,0 − Ij,b,0)I+
r,a,b,

I−r,i,jI
−
r,a,b = −I−a,j,bI

−
r,i,j − I+

i,j,bI
−
r,a,b,

I+
r,i,jI

−
r,a,b = I−a,j,b(I

+
r,i,b − I

+
r,i,j − I−r,i,b) + (Ii,b,0 − I+

i,j,b − Ij,b,0 − Ii,j,0)I−r,a,b,

I−r,i,jI
+
r,a,b = I+

i,j,b(I
+
r,a,j − I+

r,a,b) + (Ij,b,0 − Ia,b,0 + Ia,j,0 − I−a,j,b + I+
a,j,b)I

−
r,i,j.

(a.a.a.c) j < b < a

I+
r,i,jI

+
r,a,b = (I+

a,b,j − I
−
a,b,j − Ia,j,0 + Ia,b,0 + Ib,j,0)(I+

r,i,a − I−r,i,a − I+
r,i,j)

+ I−i,b,j(I
+
r,a,j − I+

r,a,b) + (Ii,b,0 − Ii,j,0 + Ib,j,0)I+
r,a,b,

I−r,i,jI
−
r,a,b = −I−i,b,jI

−
r,a,b − I

+
a,b,jI

−
r,i,j,

I+
r,i,jI

−
r,a,b = I+

a,b,j(I
+
r,i,b − I

−
r,i,b − I

+
r,i,j) + (Ib,j,0 − Ii,j,0 + Ii,b,0 − I−i,b,j)I

−
r,a,b,

I−r,i,jI
+
r,a,b = I−i,b,j(I

+
r,a,j − I+

r,a,b) + (I−a,b,j − I
+
a,b,j − Ib,j,0 + Ia,j,0 − Ia,b,0)I−r,i,j.

(a.a.b) |{i, j, a, b}| = 3 (can assume a ≤ i)
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(a.a.b.a) a = i (can assume b < j)

I±r,i,jI
±
r,i,b = 0.

(a.a.b.b) a = j

I±r,i,jI
±
r,j,b = 0.

(a.a.b.c) b = i is impossible.

(a.a.b.d) b = j

I±r,i,jI
±
r,a,j = 0.

(a.a.c) |{i, j, a, b}| = 2

I±r,i,jI
±
r,i,j = 0.

(a.b) j = 0 6= b (the case j 6= 0 = b is symmetric)

(a.b.a) |{i, a, b}| = 3

(a.b.a.a) i < b < a

Ir,i,0I
+
r,a,b = Ib,i,0I

+
r,a,b,

Ir,i,0I
−
r,a,b = Ib,i,0I

−
r,a,b.

(a.b.a.b) b < i < a or b < a < i

Ir,i,0I
+
r,a,b = −Ii,b,0I+

r,a,b,

Ir,i,0I
−
r,a,b = −Ii,b,0I−r,a,b.

(a.b.b) |{i, a, b}| = 2

(a.b.b.a) a = i

Ir,i,0I
±
r,i,b = 0.

(a.b.b.b) b = i

Ir,i,0I
±
r,a,i = 0.

(a.c) j = 0 = b (can assume a ≤ i)

Ir,i,0Ir,a,0 = 0.

(b) a = r < s
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(b.a) j 6= 0 6= b

(b.a.a) |{i, j, b}| = 3

(b.a.a.a) j < i < b

I+
r,i,jI

+
s,r,b = I+

b,i,j(I
+
s,r,b − I

+
s,r,i),

I−r,i,jI
−
s,r,b = I−b,i,jI

−
s,r,b + I−r,i,jI

+
s,b,j,

I+
r,i,jI

−
s,r,b = I+

b,i,jI
−
s,r,b + I+

r,i,jI
+
s,b,i,

I−r,i,jI
+
s,r,b = I−b,i,j(I

+
s,r,b − I

+
s,r,j).

(b.a.a.b) j < b < i

I+
r,i,jI

+
s,r,b = (I−i,b,j − I

+
i,b,j − Ib,j,0 + Ii,j,0 − Ii,b,0)(I+

s,r,i − I+
s,r,b),

I−r,i,jI
−
s,r,b = I−r,i,jI

+
s,b,j − I

−
i,b,jI

−
s,r,b,

I+
r,i,jI

−
s,r,b = (I+

r,i,j − I+
r,i,b)I

+
s,b,j + (−I−i,b,j + I+

i,b,j + Ib,j,0 − Ii,j,0 + Ii,b,0)I−s,r,b,

I−r,i,jI
+
s,r,b = I−i,b,j(I

+
s,r,j − I+

s,r,b).

(b.a.a.c) b < j < i

I+
r,i,jI

+
s,r,b = (I−i,j,b − I

+
i,j,b − Ij,b,0 + Ii,b,0 − Ii,j,0)(I+

s,r,b − I
+
s,r,i),

I−r,i,jI
−
s,r,b = I−r,i,jI

−
s,j,b − I

+
i,j,bI

−
s,r,b,

I+
r,i,jI

−
s,r,b = (I+

r,i,j − I+
r,i,b)I

−
s,j,b + (I−i,j,b − I

+
i,j,b − Ij,b,0 + Ii,b,0 − Ii,j,0)I−s,r,b,

I−r,i,jI
+
s,r,b = I+

i,j,b(I
+
s,r,j − I+

s,r,b).

(b.a.b) |{i, j, b}| = 2

(b.a.b.a) b = i

I±r,i,jI
±
s,r,i = 0.

(b.a.b.b) b = j

I±r,i,jI
±
s,r,j = 0.

(b.b) j = 0 6= b

(b.b.a) |{i, b}| = 2

(b.b.a.a) i < b

Ir,i,0I
+
s,r,b = Ib,i,0I

+
s,r,b,

Ir,i,0I
−
s,r,b = Ib,i,0I

−
s,r,b.
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(b.b.a.b) b < i

Ir,i,0I
+
s,r,b = −Ii,b,0I+

s,r,b,

Ir,i,0I
−
s,r,b = −Ii,b,0I−s,r,b.

(b.b.b) |{i, b}| = 1

Ir,i,0I
±
s,r,i = 0.

(b.c) j 6= 0 = b

I+
r,i,jIs,r,0 = I+

r,i,jIs,j,0,

I−r,i,jIs,r,0 = I−r,i,jIs,j,0.

(b.d) j = 0 = b

Ir,i,0Is,r,0 = 0.

(c) a = i < r < s

(c.a) j 6= 0 6= b

(c.a.a) |{j, b}| = 2

(c.a.a.a) j < b

I+
r,i,jI

+
s,i,b = (I−i,b,j − Ib,j,0 + Ii,j,0 − Ii,b,0 − I+

i,b,j)I
−
s,r,i,

I−r,i,jI
−
s,i,b = I−r,b,jI

−
s,i,b + I−r,i,jI

+
s,b,j,

I+
r,i,jI

−
s,i,b = (I+

r,i,j − I+
r,i,b)I

+
s,b,j,

I−r,i,jI
+
s,i,b = I−r,b,j(I

+
s,i,b − I

+
s,i,j).

(c.a.a.b) b < j

I+
r,i,jI

+
s,i,b = (−I−i,j,b + I+

i,j,b + Ij,b,0 − Ii,b,0 + Ii,j,0)I−s,r,i,

I−r,i,jI
−
s,i,b = I−r,i,jI

−
s,j,b + I+

r,j,bI
−
s,i,b,

I+
r,i,jI

−
s,i,b = (I+

r,i,j − I+
r,i,b)I

−
s,j,b,

I−r,i,jI
+
s,i,b = I+

r,j,b(I
+
s,i,b − I

+
s,i,j).

(c.a.b) |{j, b}| = 1

I±r,i,jI
±
s,i,j = 0.

(c.b) j = 0 6= b

Ir,i,0I
+
s,i,b = Ir,b,0I

+
s,i,b,

Ir,i,0I
−
s,i,b = Ir,b,0I

−
s,i,b.
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(c.c) j 6= 0 = b

I+
r,i,jIs,i,0 = I+

r,i,jIs,j,0,

I−r,i,jIs,i,0 = I−r,i,jIs,j,0.

(c.d) j = 0 = b

Ir,i,0Is,i,0 = 0.

(d) For 0 ≤ j < t < s < i < r < k,

I−i,s,jI
−
r,t,j = I−s,t,jI

−
r,i,j,

I−i,t,jI
−
r,s,j = −I−s,t,jI−r,i,j.

(e) For 0 < j < i < t < s < r < k,

I−s,t,iI
+
r,i,j = I+

t,i,jI
−
r,s,i,

I+
s,i,jI

−
r,t,i = −I+

t,i,jI
−
r,s,i.

Remark 3.3.13. Relations (d) and (e) in the previous lemma are not a consequence of the multi-
plicative relations among the elements in D, but rather a consequence of the fact that, in some cases,
there are different alternatives for associating four D’s to form a product of two I’s.

The relations in Lemma 3.3.12 imply that every product

Ir1,i1,j1 · · · Irm,im,jm with |jl| < il < rl < k and 1 < il for l = 1, . . . ,m (3.3.8)

can be written as a linear combination of products of the form (3.3.8) satisfying in addition

rl < rl′ if l < l′, (3.3.9)

the sets {il, rl}, with 1 ≤ l ≤ m, are pairwise disjoint, (3.3.10)

if ja = jb ≤ 0, say with ra < rb, then in fact ra < ib, (3.3.11)

if ja > 0 and ia = −jb, then in fact ra < ib. (3.3.12)

Theorem 3.3.14. Suppose R is a commutative ring with unit where 2 is invertible. For n ≥ 2 even,
the (Z2)k-invariants in K∗ ⊆ H∗(ConfZ2(Rn − {0}, k − 1)) are multiplicatively generated by the set
E. In fact, an additive basis for the invariants is given by all products of the form (3.3.8) satisfying
(3.3.9)–(3.3.12).

Proof. Suppose m odd and let x ∈ Km be an invariant. By Remark 3.3, we have that
x = ε1x = −ε2 · · · εkx = −x, so x = 0.
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Suppose now m is even and, as above, let x ∈ K∗ be an invariant. Write

x =
∑

aIDi1,j1
· · ·Dim,jm ,

where each aI is non-zero and the summation runs over all multi-indices

I = ((i1, j1), . . . , (im, jm))

such that |jl| < il for l = 1, . . . ,m and il < il′ if l < l′. Recall that an εl sends each monomial
Di1,j1

· · ·Dim,jm to a multiple of itself, therefore, since 2 is invertible, each Di1,j1
· · ·Dim,jm is invariant.

Fix I, and consider the corresponding monomial z = Di1,j1
· · ·Dim,jm . Note that the action of ε1 on

z implies that an even number of factors in z are of the form Di,0. Further, such factors can be
matched in pairs to yield a product of the form

Ii1,j1,0Ii2,j2,0 · · · where j1 < i1 < j2 < i2 < · · · . (3.3.13)

Likewise, for each l between 2 and k, we have two possibilities:

1. There is no factor D+
l−1,∗ in z (e.g. if l = 2). In this case, there is an even number of factors of

the form D−∗,l−1, because otherwise we would have z = εlz = −z.

2. There is (exactly) one factor D+
l−1,∗ in z. In this case, there is an odd number of factors of the

form D−∗,l−1 in z.

The first case allows us to associate products of the formD−i,jD
−
r,j, and the second allows us to associate

a product of the form D+
i,jD

−
r,i and products of the form D−i,jD

−
r,j. Further, just as with (3.3.13), the

new matchings can be done so to yield, together with (3.3.13), a unique expression of Di1,j1 · · ·Dim,jm

as a product of the form (3.3.8) satisfying in addition (3.3.9)–(3.3.12).

The above analysis shows that the (Z2)k-invariants in K∗ are generated by the products of the
form (3.3.8) satisfying in addition (3.3.9)–(3.3.12). In fact, this is a basis, since such generators are
a subset of the additive basis of K∗ given by the products (3.3.1) satisfying (3.3.5).

We arrive at the complete description of the invariants for the case n even.

Theorem 3.3.15. Let R be a commutative ring with unit where 2 is invertible. For n even, there is
an R-algebra isomorphism

H∗(Conf(RPn, k)) = H∗(ConfZ2(S
n, k))(Z2)k ∼= Λ(ω)⊗R[E ]/J ,

where J is the ideal generated by the relations in Lemma 3.3.12.

Proof. Since we are assuming that 2 is a unit in R, the isomorphism of Theorem 3.1.9 reduces to

H∗(ConfZ2(S
n, k)) ∼= Λ(ω)⊗R[B]/J.

Recall from Corollary 3.2.5 that ω is fixed by the action of (Z2)k. The result follows from Theorem
3.3.14, which implies that the subring of Z2-invariants in the tensor factorR[B]/J has the presentation
R[E ]/J .
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3.4 Punctured real projective spaces

In this section we maintain the assumption that n is an integer greater than or equal to 2, and that
R will denote a commutative ring with unit where 2 is invertible. Note that the canonical projection
Sn → RPn induces a (Z2)k-covering space

ConfZ2(Rn − {0}, k) ≈ ConfZ2(S
n −QZ2

1 , k) −→ Conf(RPn − ?, k)

which, given that 2 is invertible in R, induces an isomorphism

H∗(Conf(RPn − ?, k)) ∼= H∗(ConfZ2(S
n −QZ2

1 , k))(Z2)k ∼= H∗(ConfZ2(Rn − {0}, k))(Z2)k .

In order to reuse the notation of the previous section when computing invariants, we will consider
that the group action in this section is that of the subgroup (Z2)k = 〈ε2, . . . , εk+1〉 < (Z2)k+1 on
Rn − {0} ≈ Sn − QZ2

1 . We can do this because in this case each εl preserves fibers, so there is no
need for the correcting rotation T used at the beginning of Section 3.2. In practice this means that,
when computing invariants, we just have to ignore the action of ε1. Thus Lemma 3.2.3 and Theorem
3.3.6 yield:

Theorem 3.4.1. Let R be a commutative ring with unit where 2 is invertible. For n ≥ 2 odd, there
is an R-algebra isomorphism

H∗(Conf(RPn − ?, k)) ∼= H∗(ConfZ2(Rn − {0}, k))(Z2)k ∼= R[C+]/K.

Note that the role of the parameter k in Theorem 4.5 changes here to k + 1. For instance, the
generators C+

i,j of C+ are now defined for 0 < j < i ≤ k.

For n even, we have only computed invariants in the permanent cycles K∗, but we now have
to account for all the invariants in the cohomology of ConfZ2(Rn − {0}, k). Start by noticing that
the considerations following Theorem 3.1.8 and Lemma 3.3.9 show that H∗(ConfZ2(Rn − {0}, k)) is
multiplicatively generated by A1,0 and the elements Di,j with |j| < i ≤ k subject only to the relations
in Lemma 3.3.9 together with A2

1,0 = 0. Further, an additive basis is given by all products of the
form (3.3.1) and products of the form

A1,0Di1,j1
· · ·Dir,jr (3.4.1)

satisfying (3.3.5).

It is natural to expect now more invariants than those found in the previous section. In fact, all
the elements in the set

E ′ = {I+
r,i,j | 0 < j < i < r ≤ k} ∪ {I−r,i,j | 0 < j < i < r ≤ k} ∪ {Di,0 | 1 < i ≤ k} ∪ {A1,0}

are clearly (Z2)k-invariant. Before showing these generate all other invariants, we describe their
multiplicative relations. First of all, while all relations in Lemma 3.3.12 are clearly inherited (albeit
with upper bound k+ 1 instead of k for indices r, i, j), the relations involving terms of the form Ii,j,0
are evidently not in the most primitive form. Instead, we have the following easy-to-check relations:
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Lemma 3.4.2. Let R be a commutative ring with unit where 2 is invertible. Suppose n ≥ 2 even.
For 0 < j < i < r ≤ k we have:

I+
r,i,jDi,0 = I+

r,i,jDj,0,

I+
r,i,jDr,0 = I+

r,i,jDj,0,

I−r,i,jDi,0 = I−r,i,jDj,0,

I−r,i,jDr,0 = I−r,i,jDj,0.

Therefore, any product of the form

Ds1,0 · · ·Dsm′ ,0
Ir1,i1,j1 · · · Irm,im,jm with 0 < |jl| < il < rl ≤ k for l = 1, . . . ,m

and 1 < sl ≤ k for l = 1, . . . ,m′
(3.4.2)

or

A1,0Ds1,0 · · ·Dsm′ ,0
Ir1,i1,j1 · · · Irm,im,jm with 0 < |jl| < il < rl ≤ k for l = 1, . . . ,m

and 1 < sl ≤ k for l = 1, . . . ,m′
(3.4.3)

can be written as a linear combination of products of the form (3.4.2) or (3.4.3) satisfying

sl < sl′ if l < l′, (3.4.4)

sl /∈ {r1, . . . , rm} ∪ {i1, . . . , im} for l = 1, . . . ,m′, (3.4.5)

as well as conditions (3.3.9)–(3.3.12).

Theorem 3.4.3. Let R be a commutative ring with unit where 2 is invertible. For n ≥ 2 even, the
(Z2)k-invariants in H∗(ConfZ2(Rn − {0}, k)) are multiplicatively generated by the set E ′. Moreover,
an additive basis is given by products of the form (3.4.2) together with products of the form (3.4.3)
all of which satisfy (3.4.4), (3.4.5), and (3.3.9)–(3.3.12).

Proof. The proof is almost the same as the proof of Theorem 3.3.14, except for two differences:

1. We ignore the action of ε1. This, however, only removes the condition of having an even number
of terms Di,0, and now we can just associate all terms Di,0.

2. We add A1,0 as a potential factor to all monomials. This does not affect our previous proof,
because A1,0 is already an invariant.

We thus get:

Theorem 3.4.4. Let R be a commutative ring with unit where 2 is invertible. For n ≥ 2 even, there
is an R-algebra isomorphism

H∗(Conf(RPn − ?, k)) ∼= H∗(ConfZ2(Rn − {0}, k))(Z2)k ∼= R[E ′]/J ′,

where J ′ is the ideal generated by the relations in Lemma 3.3.12 not involving a term Ii,j,0 together
with the relations of Lemma 3.4.2 and the relation A2

1,0 = 0.
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Chapter 4

Applications to the
Lusternik-Schnirelmann category and
topological complexity

4.1 Preliminaries

In this section we give the definitions of higher topological complexity, as in found in [1], and
Lusternik-Schnirelmann category, as in [4]. The remainder of the results from outside sources used
in this chapter are given with detailed references of their location in their respective sources.

Definition 4.1.1. The sectional category of a map p : E → B is the least number k such that there
is an open covering U0, U1, . . . , Uk of B such that there exist maps si : Ui → E with psi homotopic to
the inclusion Ui ↪→ B.

Definition 4.1.2. Let X be a path-connected space. The Lusternik-Schnirelmann category of X,
cat(X), is the sectional category of the fibration

P∗X
p→ X,

where P∗X denotes the based path space of X and p is evaluation at 1.

Definition 4.1.3. Let X be a path-connected space. The n-th topological complexity of X, TCn(X),
is the sectional category of the fibration

eXn = en : XJn → Xn, en(γ) = (γ(11), . . . , γ(1n))

where Jn is the wedge of n closed intervals [0, 1] (each with 0 as basepoint) and 1i stands for 1 in the
ith interval.
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4.2 Results

The results in the previous chapters are now used to study the category and all the higher topological
complexities1 of the auxiliary orbit configuration space ConfZ2(Rn − {0}, k) for n > 2 (hypothesis
that will be in force throughout this section, unless explicitly noted otherwise). In what follows all
references to cohomology use integer coefficients—omitting the coefficients from the notation.

The homotopy exact sequences associated to the fibrations in (3.1.4) inductively yield that
ConfZ2(Rn − {0}, k) is (n − 2)-connected. Further, from (3.1.5), the cohomology of this space is
torsion-free, and vanishes above dimension k(n − 1). Therefore ConfZ2(Rn − {0}, k) has the homo-
topy type of a cell complex X which is (n− 2)-connected and k(n− 1)-dimensional (see [12, Section
4.C]). Then the upper bounds in [4, Theorem 1.50] for the Lusternik-Schnirelmann category, and
in [1, Theorem 3.9] for the higher topological complexities immediately yield

cat(ConfZ2(Rn − {0}, k)) ≤ k and TCs(ConfZ2(Rn − {0}, k)) ≤ sk. (4.2.1)

The former inequality is in fact sharp, as the product A1,0 · · ·Ak,0 ∈ H∗(ConfZ2(Rn − {0}, k)) is
non-zero. We thus get:

Corollary 4.2.1. For n > 2, cat(ConfZ2(Rn − {0}, k)) = k.

Alternatively, we could use the observation that the rule A′i,j 7→ Ai−1,j−1, 1 ≤ j < i ≤ k + 1,
determines a ring monomorphism

H∗(Conf(Rn, k + 1)) ↪→ H∗(ConfZ2(Rn − {0}, k)).

so that the non-triviality of the product A′2,1 · · ·A′k+1,1 yields the existence of a non-trivial product
with k factors in H∗(ConfZ2(Rn − {0}, k)). Further, since these rings are torsion-free, we also get a
ring monomorphism

H∗(Conf(Rn, k+ 1))⊗H∗(Conf(Rn, k+ 1)) ↪→ H∗(ConfZ2(Rn−{0}, k))⊗H∗(ConfZ2(Rn−{0}, k)).

Consequently, the s-th zero-divisors cup-length of ConfZ2(Rn − {0}, k) is bounded from below by
the s-th zero-divisors cup-length of Conf(Rn, k + 1). Thus, the second inequality in (4.2.1) and [11,
Proposition 4.2] yield:

Corollary 4.2.2. Let n > 2. Then TCs(ConfZ2(Rn−{0}, k)) = sk if n is odd, whereas, if n is even,
TCs(ConfZ2(Rn − {0}, k)) ∈ {sk − 1, sk}.

Note that item (d) of Theorem 2.2 in [8] implies that the indetermination by one unit in the
case with an even n in Corollary 4.2.2 is resolved in terms of the s-th zero-divisors cup-length of
ConfZ2(Rn − {0}, k)):

1We use the reduced versions of these homotopy invariants, so that the category and all the higher topological
complexities of a contractible space are 0.
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Corollary 4.2.3. Let n > 2 (any parity). Then TCs(ConfZ2(Rn − {0}, k)) agrees with the s-th
zero-divisors cup-length of ConfZ2(Rn − {0}, k).

Since H∗(ConfZ2(Rn − {0}, k)) and H∗(ConfZ2(Rn+2 − {0}, k)) differ only by degree scaling,
Corollary 4.2.3 implies that, for fixed s and k, TCs(ConfZ2(Rn−{0}, k)) depends only on the parity
of n. In particular, the indeterminacy by one in Corollary 4.2.2 could be settled by considering the
situation for a single value of n. In our setting, n = 4 would be the most reasonable instance to
explore. However, for the analogous situation in [8] and [11], n = 2 is the right choice, in view of the
standard splitting

Conf(R2, k) ' X × S1 (4.2.2)

with X a CW complex of dimension k − 2. Indeed, standard cohomology considerations give
TCs(Conf(R2m, k)) ∈ {s(k − 1) − 1, s(k − 1)}, and then (4.2.2) implies that the actual answer is
given by the lower value.

Note that, just as above, the indeterminacy by one in Corollary 4.2.2 would be resolved with the
smallest value (and the restriction n > 2 in this section would be waived) by answering affirmatively
the following analogue of (4.2.2) in the case of ConfZ2(R2−{0}, k). So the question is: Is it true that
the latter space has the homotopy type of a product S1 ×X for some CW complex X of dimension
k − 1?

Evidence towards an affirmative answer for the previous question comes from the fact that the
result is true for k = 2. Indeed, note that R2 − {0} ≈ C∗, and consider the fibration

S1 −→ ConfZ2(C∗, 2) −→M, (4.2.3)

where S1 acts on C∗ by multiplication and on the total space diagonally, and where M denotes the
corresponding orbit space. First we show that M has the homotopy type of a wedge of three circles.
Note that there is a well-defined map

M
h−→ {(r, w) ∈ R+ × C∗ | r > 0, w 6= −1

r
, w 6= r} =: S

given by

[z1, z2] 7−→ (
√
z1z1,

√
z1z1

z1

z2),

where the space on the right has the subspace topology. This map has continuous inverse

(r, w) 7−→ [r, w]

and therefore is a homeomorphism. An illustration is given in Figure 4.1.
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Figure 4.1: S is homeomorphic to the complement of the hyperbola, the
diagonal and the vertical line in R+ × C∗.

Denote now by L3 the union of the lines (z, 0, 0), (z,−1, 0), (z, 1, 0) in R3. We consider now
f : S −→ R+ × R2 − L3 and g : R+ × R2 − L3 −→ S given by

f(r, w) = f(r, x, y) =

{
(r,

x

r
, y) if x ≥ 0,

(r, xr, y) otherwise;

and

g(r, x, y) =

{
(r, xr, y) if x ≥ 0,

(r,
x

r
, y) otherwise.
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These are well-defined maps and are inverses of each other, therefore S ≈ R+ × R2 − L3, and so
S ' S1 ∨ S1 ∨ S1. Also note that 4.2.3 admits a section: the composition

M
h−→ S ⊆ R+ × C∗ ↪→ ConfZ2(C∗, 2)

and, since 4.2.3 is a principal fibration, we have

ConfZ2(C∗, 2) ' S1 ×M ' S1 × (S1 ∨ S1 ∨ S1).
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[1] Ibai Basabe, Jesús González, Yuli B Rudyak, and Dai Tamaki. Higher topological complexity
and its symmetrization. Algebr. Geom. Topol., 14(4):223–244, 2014.
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