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Abstract

In 1935, Erdős and Szekeres proved that every set of n points in general

position in the plane contains the vertices of a convex polygon of 1
2 log2(n)

vertices. In 1961, they constructed for every positive integer t, a set of

n := 2t−2 points in general position in the plane, such that every convex

polygon with vertices in this set has at most log2(n) + 1 vertices. The set

obtained from that construction is now called the Erdős-Szekeres set.

In 1978, Erdős asked if every sufficiently large set of points in general

position in the plane contains the vertices of a convex polygon of k vertices,

with the additional property that no other point of the set lies in its interior.

Shortly after, Horton provided a construction with no such convex polygon

of 7 vertices. The set obtained from that construction is now called the

Horton set.

In 2001, Károlyi, Pach and Tóth introduced a family of point sets to solve

an Erdős-Szekeres type problem; this set has been used to solve several other

Edős-Szekeres type problems. In this thesis we refer to these sets as nested

almost convex sets. A nested almost convex set X has the property that

the interior of every triangle determined by three points in the same convex

layer of X , contains exactly one point of X .

In this thesis we study the Erdős-Szekeres set, the Horton set, the nested

almost convex sets, and their representations in the plane with integer

coordinates of small absolute values.

For the Erdős-Szekeres set of n points, we show how to realize

its construction with integer coordinates of absolute values at most

O(n2 log2(n)3).
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For the Horton set set of n points, we show how to realize its construction

with integer coordinates of absolute values at most 1
2n

1
2
log(n/2). We

also prove that any set of points with integer coordinates combinatorially

equivalent (with the same order type) to the Horton set, contains a point

with a coordinate of absolute value at least c·n
1
24

log(n/2), where c is a positive

constant.

For the nested almost convex sets, we obtain a characterization. Our

characterization implies that there exists at most one (up to order type)

nested almost convex set of n points. We use our characterization to obtain

a linear time algorithm to construct nested almost convex sets of n points,

with integer coordinates of absolute values at most O(nlog2 5). Finally, we

use our characterization to obtain an O(n log n)-time algorithm to determine

whether a set of points is a nested almost convex set.



Resumen

En 1935, Erdős y Szekeres demostraron que todo conjunto de n puntos en

el plano en posición general, contiene los vértices de un poĺıgono convexo de
1
2 log2(n) vértices. En 1961, ellos construyeron, para todo entero positivo t,

un conjunto de n := 2t−2 puntos en el plano en posición general, tal que todo

poĺıgono convexo con vértices en este conjunto contiene a los más log2(n)+1

vértices. El conjunto obtenido por esta construcción es ahora conocido como

el conjunto de Erdős-Szekeres.

En 1978, Erdős preguntó si todo conjunto en posición general lo

suficientemente grande contiene los vértices de un poĺıgono convexo de k

vértices, con la propiedad adicional de que no hay otro punto del conjunto en

su interior. Poco tiempo después, Horton proporcionó una construcción de

un conjunto sin tales poĺıgonos convexos de 7 vértices. El conjunto obtenido

por esta construcción es ahora conocido como el conjunto de Horton.

En 2001 Károlyi, Pach y Tóth, introdujeron una familia de conjuntos

de puntos para solucionar un problema tipo Erdős-Szekeres; este ha sido

utilizado para solucionar varios otros problemas tipo Erdős-Szekeres. En

esta tesis nos referimos a estos conjuntos como conjuntos casi convexos

anidados. Un conjunto casi convexo anidado X tiene la propiedad de que

el interior de todo triángulo determinado por tres puntos de la misma capa

convexa de X , contiene exactamente un punto de X .

En esta tesis nosotros estudiamos el conjunto de Erdős-Szekeres,

el conjunto de Horton, los conjuntos casi convexos anidados, y sus

representaciones en el plano con coordenadas enteras de valor absoluto

pequeño.
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Para el conjunto de Erdős-Szekeres de n puntos, nosotros mostramos

como realizar su construcción con coordenadas enteras de valor absoluto a

lo más O(n2 log2(n)3).

Para el conjunto de Horton de n puntos, nosotros mostramos como

realizar su construcción con coordenadas enteras de valor absoluto a lo más
1
2n

1
2
log(n/2); nosotros también demostramos que todo conjunto de puntos

combinatoriamente equivalente (con el mismo tipo de orden) al conjunto

de Horton, contiene un punto con coordenadas con valor absoluto al menos

c · n
1
24

log(n/2), donde c es una constante positiva.

Para los conjuntos casi convexos anidados, nosotros obtenemos una

caracterización. Como consecuencia de nuestra caracterización existe a lo

más (bajo tipos de orden) un conjunto casi convexo anidado de n puntos.

Nosotros usamos nuestra caracterización para obtener un algoritmo de

tiempo lineal para construir conjuntos casi convexos anidados de n puntos,

con coordenadas enteras de valor absoluto a lo más O(nlog2 5). Finalmente,

nosotros usamos nuestra caracterización para obtener un algoritmo de

tiempo O(n log n) para determinar si un conjunto de puntos es un conjunto

casi convexo anidado.
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por permitirme participar en el Proyecto 253261 ”Conjuntos de Puntos en

Mallas Enteras” de Ciencia Básica, CONACyT.

ix





Contents

1 Introduction 1

1.1 The Horton Set . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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Chapter 1

Introduction

Let X be a set of five points in the plane in general position, i.e. such no

three of them are collinear. Consider the points in the convex hull of X . If

there are three, four or five points in the convex hull of X , it looks like in

Figure 1.1a, Figure 1.1b or Figure 1.1c, respectively. Note that X always

defines a convex quadrilateral, i.e. four points in convex position. This was

observed by Esther Klein in 1935 [18]. According to this, she proposed the

following problem.

(a) 5 points in the convex
hull

(b) 4 points in the convex
hull

(c) 3 points in the convex
hull

Figure 1.1: Illustration of a convex quadrilateral in five points sets, according
to the number of points in their convex hull.

Problem 1 (The happy ending problem). Is it true that, for every s

there exist an ES(s), so that if there are given ES(s) points in the plane in

general position, one can always find s of them which determine the vertices

of a convex s-gon?

1
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One of the most prolific mathematicians of the 20th century was Paul

Erdős. He wrote around 1525 mathematical articles, solved and proposed

numerous problems in different areas of mathematics. One of them solved

problems is “The happy ending problem”, it was solved by Erdős and

Szekeres in 1935 [18]. This problem let to the marriage of George Szekeres

and Esther Klein; for this reason Paul Paul Erdős name it “The happy

ending problem”.

In [18] Erdős and Szekeres proved that

ES(s) ≤
(

2s− 4

s− 2

)
+ 1

and conjectured that ES(s) = 1 + 2s−2 for s ≥ 3. More than 80 years

later the value of ES(s) is still unknown for s > 6. For s ≤ 6 it is known

that: ES(3) = 3, it follows from that every three points in general position

are in convex position; ES(4) = 5, it was observed by Klein in 1935 [18];

ES(5) = 9, according to Erdős and Szekeres in [18] it was first proved by

Makai; ES(6) = 17, it was proved by Szekeres and Peters in 2006 in [43].

On the lower bound of the happy ending problem, Erdős and Szekeres

prove in 1960 [19] that ES(s) ≥ 2s−2 + 1. For this Erdős and Szekeres

provided a set of n := 2s−2 points in general position in the plane such

that every convex 0k-gon of this set has at most s − 1 vertices. This set

is known as the Erdős-Szekeres set. On the upper bound of the happy

ending problem, Suk prove in 2016 [42] that

ES(s) ≤ 2s+2s4/5 + 1.

In [20], Erdős introduced the following variation of The happy ending

problem.

Problem 2 (Erdős problem). For any positive integers s ≥ 3 and l ≥ 1

determine the smallest positive integer E(s, l), if it exist, that satisfies the

following. Every set of at least E(s, l) points, contains s points in convex

position with at most l points in their interior.

In [20], Erdős also says that he did not get satisfactory bounds for E(s, l),
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the reason of that would be given by Horton few years later. In 1983, Horton

surprised the community with a simple proof that E(s, 0) does not exist for

s ≥ 7 [29]. Horton construct an arbitrarily large point set with no empty

convex heptagons; this set is known as the Horton Set.

On the values of E(s, 0) for s ≤ 6 it is known that: E(3, 0) = 3, it

follows from the fact that every three points in general position are in convex

position; E(4, 0) = 5, it follows from the observation of Klein on convex

quadrilaterals in five points set; the value of E(5, 0) is between 30 and 463,

this bounds were obtained by Overmars and Koshelev [39, 34].

In 2001 [32] Károlyi, Pach and Tóth prove a modular version of the

Erdős problem. They prove that every set of at least B(s, l) points in general

position, contains s points in convex position such that the number of points

in the interior of their convex hull is 0 mod(l). For this Károlyi, Pach and

Tóth introduce a some sets that, although they had no name, they have

been used in other works related to the problem of Erdős. We refer to this

sets as the nested almost convex sets.

In this thesis we are interested good representations of three points sets:

the the Horton set, the Erdős-Szekeres set and the nested almost convex

set. In the way, we introduce structural properties and some result related

to this sets.

In the remaining of this chapter we introduce some concepts, and

afterwards we specify the results obtained in this thesis.

Order types

Although the number of distinct sets of n points in the plane (in general

position) is infinite, for most problems in Combinatorial Geometry only a

finite number of them can be considered as essentially distinct. For the

case n = 3, any three points in the plane in general position look like the

vertices of a triangle. For the case n = 4, any four points in general position

look like the vertices of a convex quadrilateral, or look like the vertices of a

triangle with a point in its interior (See Figure 1.2). In this thesis we use a

equivalence relation on point sets, known as the order type [24] to decide if

two sets are essentially distinct.
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(a) Convex position.
(b) No convex position.

Figure 1.2: The two possible order types for a four points set.

The order type is one of the various equivalence relations on point sets

proposed by Goodman and Pollack [23, 25, 26, 24]. It has been widely used

in Combinatorial Geometry to classify point sets; two sets of points are

consider essentially the same if they have the same order type.

The order type of a point set X = {x1, x2, . . . , xn} is a mapping that

assigns to each ordered triplet (xi, xj , xk) an orientation. If xk is to the

left of the directed line from xi to xj , the orientation of (xi, xj , xk) is

counterclockwise. If xk is to the right of the directed line from xi to xj ,

the orientation of (xi, xj , xk) is clockwise. We say that two set of points

have the same order type, if there exist a bijection between these sets that

preserves the orientation of all triplets. In Figure 1.3 there is an example of

two sets with the same order type.

(a) A points set, X .

1

2

3

4

5
6

7

0

(b) A drawing of X .

Figure 1.3: An example of two different points sets with the same order
type.
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Drawings

Since their inception, order types were defined with computational

applications in mind (see [24] for example). The orientation of a triple

is determined by the sign of a determinant; many algorithms use precisely

this determinant as their geometric primitive. Given that the determinant

of an integer valued matrix is an integer, for numerical computations it is

best if a point set has integer coordinates. Two main reasons are that integer

arithmetic is much faster than floating point arithmetic, and that floating

point arithmetic is prone to rounding errors. The latter is easily taken care

of with an integer representation that can handle arbitrarily large numbers.

If a set of n points has already integer coordinates, it is best if

these coordinates have as small absolute value as possible—again, for

computational reasons. Even though rounding errors can be avoided using

arbitrarily large integers, the cost of computation increases as the numbers

get larger. Also, if we wish to store the point set, the number of bits needed

depend on the size of the coordinates.

Definition 1. Let S be a set of n points in general position in the plane. A

drawing of S is a set of points with integer coordinates and with the same

order type as S. The size of a drawing is the maximum of the absolute values

of its coordinates.

For the reasons mentioned above, it is of interest to find the drawing of

S of minimum size. In [27] Goodman, Pollack and Sturmfels presented sets

of n points in general position whose smallest drawings have size 22
c1n , and

proved that every point set has a drawing of size at most 22
c2n (where c1

and c2 are positive constants).

Aichholzer, Aurenhammer and Krasser [1] have assembled a database

of drawings. For n = 3, . . . , 11, the database contains a drawing of every

possible set of n points in general position in the plane. The main advantage

of having these drawings is that one can use them to compute certain

combinatorial parameters of all point sets up to eleven points. The order

type data base stops at eleven because the size of the database grows

prohibitively fast. Thus, we cannot hope to store drawings for all point
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sets beyond small values of n; it is convenient however, to have programs

that generate small drawings of infinite families of point sets which are of

known interest in Combinatorial Geometry. In this direction, some sets have

been drawn with small size.

Convex sets: In 1926 Jarńık [30] showed how to found a draw of a set

of points in convex position with size O(n3/2). He also proved that his

construction is optimal.

Double circle: The Double Circle of 2n points is constructed as follows.

Start with a convex n-gon; arbitrarily close to the midpoint of each edge,

place a point in the interior of this polygon; finally place a point at each

vertex of the polygon. In 2013, Bereg et al. [10] provided a linear time

algorithm to generate a drawing of the Double Circle. Their drawing has

size O(n3/2); they also proved a lower bound of Ω(n3/2) on the size of every

drawing of the Double Circle.

ComPoSe: ComPoSe is a multinational Collaborative Research Project

(CRP) within the EUROCORES (EUROpean COllaborative RESearch)

program EuroGIGA (Graphs in Geometry and Algorithms) of the

European Science Foundation (ESF). In [21] the Authors provide drawings

for up to 1000 points for: Convex sets, Horton set, Double chain, Double

circle, Double ZigZag chain and Anomalous sets. The sets Double chain,

Double ZigZag chain and Anomalous sets were constructed similar to

Double circle and Convex sets. The Horton set was constructed using

our method (Chapter 2) from [8].

We are mainly interested in having an algorithm that generates small

drawings of the Horton set, the Erdős-Szekeres set and the nested almost

convex sets. However, the problem of finding small drawings also raises

interesting theoretical questions; we provide some of these later.
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1.1 The Horton Set

A k-hole of a point set S, is a subset of k points of S, that are the vertices

of a convex polygon with no other point of S in its interior. Besides being

the Horton set, is the first construction of an arbitrarily large set without

a 7-hole, every construction that we know of without 7-holes, contains the

Horton set as a subset. Additionally, the Horton set has been the better

extremal example in other problem related to holes. Some of them are the

following.

Problem 3. What is the minimum number of k-holes in every set of n

points in the plane?

The case of empty triangles of Problem 3 was first considered by

Katchalski and Meir [33]. They constructed a set of n points with 200n2

empty triangles and showed that every set of n points contains Ω(n2) of

them. This bound was later improved by Bárány and Füredi [6], who showed

that the Horton set has 2n2 empty triangles.

The Horton set was then used in a series of papers as a building block to

construct sets with fewer and fewer k-holes. The first of these constructions

was given by Valtr [46]; it was later improved by Dumitrescu [17] and the

final improvement was given by Bárány and Valtr [7].

Problem 4. What is the minimum number of empty monochromatic

triangles in every two-colored set of n points in the plane?

Since every set of 10 points contains a 5-hole, every two-colored set of

at least 10 points contains an empty monochromatic triangle. The first

non trivial lower bound of Ω(n5/4), on the number of empty monochromatic

triangles in every two-colored set of n points, was given by Aichholzer et

al [2]. This was later improved by Pach and Tóth [40] to Ω(n4/3). The

known set with the least number of empty monochromatic triangles is given

in [2]; it is based on the known set with the fewest number of empty triangles,

which in turn is based on the Horton set. Devillers et al. [16] considered

other chromatic variants of these problems. In particular, they described a
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three-coloring of the points of the Horton set with no empty monochromatic

triangles.

In Chapter 2, we study the problem of drawing the Horton set in an

integer grid with small size. We provide a drawing of size 1
2n

1
2
log(n/2) of the

Horton set of n points; our drawing can be easily constructed in linear time.

We also show a lower bound of c · n
1
24

log(n/2) (for some constant c > 0) on

the minimum size of any drawing of the Horton set.

1.2 The Erdős-Szekeres Set

The first construction of the Erdős-Szekeres set was introduced in 1960 in

[19]. This construction had some inaccuracies, which were corrected by

Kalbfleisch and Stanton in 1995 in [31]. The construction described in [31]

uses integer-valued coordinates; where the size of these coordinates grows

quickly with respect to n. This has led some researchers to conjecture that

the Erdős-Szekeres construction cannot be carried out with small integer

coordinates.

As an example here are some excerpts from the book “Research Problems

in Discrete Geometry” [12] by Brass, Moser and Pach regarding the

Erdős-Szekeres construction.

“The complexity of this construction is reflected by the fact

that none of the numerous papers on the Erdős-Szekeres convex

polygon problem includes a picture of the 16-point set without

a convex hexagon.”

“Kalbfleisch and Stanton [31] gave explicit coordinates for the

2t−2 points in the Erdős-Szekeres construction. However, even

in the case of t = 6 the coordinates are so large that they cannot

be used for a reasonable illustration.”

“The exponential blowup of the coordinates in the above lower

bound constructions may be necessary. It is possible that all

extremal configurations belong to the class of order types that

have no small realizations.”
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Also, in the survey [37] on the Erdős-Szekeres problem by Morris and Soltan

we find the following.

“The size of the coordinates of the points in the configurations

given by Kalbfleisch and Stanton [31] that meet the conjectured

upper bound on N(n) grows very quickly. A step toward showing

that this is unavoidable was taken by Alon et al. [4].”

In Chapter 3 we prove that the Erdős-Szekeres construction can be realized

in a rather small integer grid of size O(n2 log2(n)3). This solves an open

problem of [12], which we discuss, together with other problems, at the end

of Chapter 3.

1.3 The Nested Almost Convex Sets

We define formally the nested almost convex sets as follows.

Definition 2. Let X be a point set; let k be the number of convex layers of

X ; and for 1 ≤ j ≤ k, let Rj be the set of points in the j-th convex layer of

X . We say that X is a nested almost convex set if:

1. Xj := R1 ∪R2 ∪ · · · ∪Rj is in general position,

2. the vertices in the convex hull of Xj are the elements of Rj, and

3. any triangle determined by three points of Rj contains precisely one

point of Xj−1 in its interior.

In previous papers, two constructions of nested almost convex sets have

been presented. The first construction was introduced by Károlyi, Pach and

Tóth in [32]. The second construction was introduced by Valtr, Lippner and

Károlyi in [48] six years later.

Construction 1: Let X1 be a set of two points. Assume that j > 0 and

that Xj has been constructed. Let z1, . . . zr denote the vertices of Rj in

clockwise order. Let Pj be the polygon with vertices in Rj . Let εj , δj > 0.

For any 1 ≤ i ≤ r, let `i denote the line through zi orthogonal to the
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(a) Construction 1 (b) Construction 2

Figure 1.4: Examples of nested almost convex sets

bisector of the angle of Pj at zi. Let z′i and z′′i be two points in `i at

distance εj of zi. Finally, move z′i and z′′i away from Pj at distance δj , in

the direction orthogonal to `i, and denote the resulting points by u′i and

u′′i , respectively. Let Rj+1 = {u′i, u′′i : i = 1 . . . r} and Xj+1 = Xj ∪ Rj+1.

It is easy to see that if εj and
εj
δj

are sufficiently small, then Xj+1 is an

almost convex set. See Figure 1.4a.

Construction 2: Let X1 be a set of one point. Let R2 be a set of three

points such that, the point in X1 is in the interior of the triangle determined

by R2. Let X2 = X1 ∪ R2. Now recursively, suppose that Xj and Rj

have been constructed and construct the next convex layer Rj+1 as in

Construction 1. See Figure 1.4b.

This sets have been used in the following problems.

A modular version of the Erdős problem. In 2001 [32] Károlyi, Pach

and Tóth use the nested almost convex sets to prove that, for any s ≥
5l/6 +O(1), there is an integer B(s, l) with the following property. Every

set of at least B(s, l) points in general position contains s points in convex

position such that the number of points in the interior of their convex hull is

0, modulo (l). This ”modular” version of the Erdős problem was proposed

by Bialostocki, Dierker, and Voxman [11]. This was proved for s ≥ l+ 2 by

Bialostocki et al. The original upper bound on B(s, l) was later improved

by Caro in [14].

A version of the Erdős problem in almost convex sets. We say

that X is an almost convex set if every triangle with vertices in X contains
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at most one point of X in its interior. Let N(s) be the smallest integer

such that every almost convex set of at least N(s) points contains an

s-hole. In 2007 [48] Valtr Lippner and Károlyi use the nested almost

convex sets to prove that:

N(s) =

2(s+1)/2 − 1 if s ≥ 3 is odd

3
22s/2 − 1 if s ≥ 4 is even.

(1.1)

The authors use the nested almost convex sets to attain the equality in

(1.1). The existence of N(s) was first proved by Károlyi, Pach and Tóth

in [32]. The upper bound for N(s) was improved by Kun and Lippner in

[35], and it was improved again by Valtr in [47].

Maximizing the number of non-convex 4-holes. In 2014 [3]

Aichholzer, Fabila-Monroy, González-Aguilar, Hackl, Heredia, Huemer,

Urrutia and Vogtenhuber prove that the maximum number of non-convex

4-holes in a set of n points is at most n3/2 − Θ(n2). The authors use the

nested almost convex sets to prove that some sets have n3/2−Θ(n2 log(n))

non-convex 4-holes.

Blocking 5-holes. A set of points B blocks the convex k-holes in X , if

any k-hole of X contains at least one element of B in the interior of its

convex hull. In 2015 [13] Cano, Garcia, Hurtado, Sakai, Tejel and Urritia

use the nested almost convex sets to prove that: n/2− 2 points are always

necessary and sometimes sufficient to block the 5-holes of a point set with

n elements in convex position and n = 4k. The authors use the nested

almost convex sets as an example of a set for which n/2 − 2 points are

sufficient to block its 5-holes.

In Chapter 4, we introduce a characterization of nested almost convex

sets. Our characterization implies that there exists at most one (up to order

type) nested almost convex set of n points. We use our characterization

to obtain a linear time algorithm to construct nested almost convex sets

of n points, with integer coordinates of absolute values at most O(nlog2 5).
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Finally, we use our characterization to obtain an O(n log n)-time algorithm

to determine whether a set of points is a nested almost convex set.



Chapter 2

The Horton Set

In this chapter we are mainly interested in having small drawings of the

Horton set. First, in Section 2.1, we define the Horton set and exhibit two

of its constructions. Afterwards, in Section 2.2, we provide a drawing of

size 1
2n

1
2
log(n/2) of the Horton set of n points. Finally, in Section 2.3, we

introduce a lower bound of c · n
1
24

log(n/2) (for some c > 0) on the minimum

size of any drawing of the Horton set.

2.1 Background

2.1.1 Definition of the Horton Set

Let X be a set of n points in the plane with no two points having the same

x-coordinate. Let p0, p1, . . . , pn−1 be the points in X sorted from left to right

by their x-coordinate. In this chapter we denote by Xeven the subset of the

even-indexed points, and we denote by Xodd the subset of the odd-indexed

points. Thus

Xodd = {pi : i is odd} Xeven = {pi : i is even}.

Definition 3. Let X and Y be two sets of points in the plane. We say that

X is high above Y if:

• every line determined by two points in X is above every point in Y ,

13
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and

• every line determined by two points in Y is below every point in X.

In Figure 2.1 we introduce an example of a set of points X where Xodd

is high above Xeven.

Figure 2.1: The eight points Horton set, as example of a set of points X
where Xodd is high above Xeven.

Definition 4. A Horton set is a set Hk of 2k points, with no two points

having the same x-coordinate, that satisfies the following properties. See

Figure 2.1.

1. H0 is a Horton set;

2. both Hk
even and Hk

odd are Horton sets (k ≥ 1);

3. Hk
odd is high above Hk

even (k ≥ 1).

2.1.2 Previous construction

In this subsection we provide two ways to obtain the Horton set. First

we introduce the construction given by Horton in [29]; it was the first

construction of the Horton set. Afterwards we introduce a more intuitive

way to define the Horton set given in [6] by Bárány and Füredi.

Horton’s Construction: Let k be a positive integer. Let a1, a2, . . . , ak be

the binary expansion of the integer i, 0 ≤ i ≤ 2k. Note that leading 0’s are
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not omitted. Let c = 2k + 1 and define

di =
k∑
j=1

ajc
j−1

let pi be the point (i, di) and define Hk to be the set of points {pi : i =

0 . . . 2k−1}.

Bárány and Füredi’s Construction: Let

H0 := {(1, 1)} and H1 := {(1, 1), (2, 2)}.

For k ≥ 2 obtain Hk using recursively:

Hk := {(2x− 1, y) : (x, y) ∈ Hk−1}

∪ {(2x, y + 32
k−1

) : (x, y) ∈ Hk−1}.

The previous two constructions have exponential size; we have not seen

in the literature a drawing of subexponential size.

2.2 Construction of the Horton set with small

integer coordinates.

Let

f(i) :=

0 if i = 1.

2
i(i−1)

2
−1 if i ≥ 2.

g(i) :=

0 if i = 1.

f(i)− f(i− 1) if i ≥ 2.
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Let P 0 := {(0, 0)}. For 1 ≤ i ≤ k, let

P ieven := {(2x, y) : (x, y) ∈ P i−1}

P iodd := {(2x+ 1, y + g(i)) : (x, y) ∈ P i−1}

P i := P ieven ∪ P iodd

In this section we prove that Pk is a drawing of the Horton set of n = 2k

points; with size 1
2n

1
2
log(n/2). Note that Pk can be easily constructed in

linear time.

Theorem 1. There exist a drawing of the Horton set of n points of size
1
2n

1
2
log(n/2) for n ≥ 16.

Proof. We prove by induction on k that P k is the desired drawing. It can

be verified by hand that P 4 has size equal to 32 = 1
216

1
2
log(16/2); assume

that k ≥ 5. By induction P keven and P kodd are Horton sets; it only remains to

show that P kodd is high above P keven. We only prove that every point of P kodd
is above every line through two points of P keven; the proof that every point

of P keven is below every line through two points of P kodd is analogous.

Let p0, p1, . . . , pn−1 be the points of P k sorted by their x-coordinate. Let

0 ≤ i < j ≤ n − 1 be two even integers, and let ` be the directed line from

pi to pj . By definition P kodd is above the horizontal line passing through

p1; in particular, since the smallest y-coordinate of P kodd is equal to g(k),

P kodd is above the line segment joining the points (1, g(k)) and (n− 3, g(k)).

Therefore, it suffices to show that (1, g(k)), (n−3, g(k)) and pn−1 are above

`.

We will define a line `′ with the property that if (1, g(k)) and (n−3, g(k))

are above `′, then (1, g(k)), (n− 3, g(k)) and pn−1 are above `. Afterwards

we will show that indeed (1, g(k)) and (n− 3, g(k)) are above `′.

If the slope of ` is non-positive, define `′ to be the line passing through

the points (n−6, f(k−1)) and (n−4, 0); if the slope of ` is positive, define `′

to be the line passing through the points (0, 0) and (2, f(k− 1)). Note that

the largest y-coordinate of P keven is equal to
∑k−1

i=1 g(i) = f(k−1). Therefore

the slope of ` is at least −f(k − 1)/2 and at most f(k − 1)/2; in particular
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Figure 2.2: The two possible definitions of `′ in the proof of Theorem 1.

the absolute value of the slope of `′ is larger or equal to the absolute value

of the slope of `. The farthest point of P keven to the right that ` can contain

while having non-positive slope is pn−4 (which has x-coordinate equal to

n− 4); the farthest point of P keven to the left that ` can contain while having

positive slope is p0. Therefore in both cases if (1, g(k)) and (n − 3, g(k))

are above `′, then they are also above `; see Figure 2.2. (As (2, f(k − 1)),

(n− 6, f(k − 1)), (n− 4, 0), (n− 3, g(k)) are not in P k, they may have the

same x coordinate that a point in P k.)

If ` has non-positive slope and (1, g(k)) is above `, then pn−1 is also above

`′ since pn−1 has larger x-coordinate. If ` has positive slope and (n−3, g(k))

is above `′, then pn−1 must also be above `. Otherwise ` intersects the line

segment joining (n− 3, g(k)) and pn−1; this line segment has slope equal to

f(k−1)/2, since the y-coordinate of pn−1 is equal to
∑k

i=1 g(i) = f(k). This

in turn would imply that ` has slope larger than f(k−1)/2—a contradiction.

Suppose ` has non-positive slope. Then it suffices to show that (1, g(k))

is above `′. This is the case since:
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∣∣∣∣∣∣∣
n− 6 f(k − 1) 1

n− 4 0 1

1 g(k) 1

∣∣∣∣∣∣∣
= 2g(k)− (n− 5)f(k − 1)

= 2f(k)− (n− 3)f(k − 1)

= 2f(k)− 2kf(k − 1) + 3f(k − 1)

= 3f(k − 1)

> 0.

Suppose ` has positive slope. Then it suffices to show that (n− 3, g(k))

is above `′. This is the case since:

∣∣∣∣∣∣∣
0 0 1

2 f(k − 1) 1

n− 3 g(k) 1

∣∣∣∣∣∣∣
= 2g(k)− (n− 3)f(k − 1)

= 2f(k)− (n− 1)f(k − 1)

= 2f(k)− 2kf(k − 1) + f(k − 1)

= f(k − 1)

> 0.

Finally the largest x-coordinate of P k is equal to n− 1, and the largest

y-coordinate of P k is equal to

k∑
i=1

g(i) = f(k) = 2
k(k−1)

2
−1 =

1

2
n

1
2
log(n/2),

since k = log n. Therefore, P k is a drawing of the Horton set of n points of

size 1
2n

1
2
log(n/2).
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2.3 Lower Bound for the Size of the Horton Sets

Drawings

Consider the set in the Figure 2.3b; it is a drawing of a Horton Set since it

has the same order type than the set in Figure 2.3a. However, the set in the

Figure 2.3b does not satisfy Definition 4.

Definition 5. We call a drawing that satisfies Definition 4, an isothetic

drawing of the Horton set.

(a) An isothetic drawing of the
Horton set. (b) A no isothetic drawing of the

Horton set.

Figure 2.3: An example of a drawing of the Horton set, and a other drawing
of the same Horton set that does not satisfy the definition of Horton set.

In this section we prove the following lower bounds on the size of drawings

of the Horton set.

Theorem 2. For a sufficiently large value of k, every isothetic drawing of

the Horton set of n = 2k points has size at least n
1
8
logn.

Theorem 3. Every drawing of the Horton set of n = 2k points has size

at least c · n
1
24

log(n/2), for a sufficiently large value of n and some positive

constant c.

This section is divided in three parts. First, we introduce some

information on the structure of the isothetic drawings of the Horton set.
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Afterwards, we obtain a recursive expression for the lower bounds for the

size of isothetic drawings of the Horton set. Finally, we prove Theorem 2

and Theorem 3.

In the following two subsections P is an isothetic drawing of the Horton

set of n := 2k points, and p0, p1, . . . , pn−1 are the points of P sorted by their

x-coordinate.

2.3.1 Isothetic drawings

In this subsection, first we introduce an auxiliary structure for the isothetic

drawings of the Horton set; afterward we introduce a measure for the width

of these sets.

We recursively define a complete rooted binary tree T , as follows. P is

the root of T ; and if Q ⊂ P is a vertex of T , of at least two points, then

Qeven and Qodd are its left and right children, respectively. Furthermore, for

each vertex in T , label the edge incident to its left child with a “0” and the

edge incident with its right child with a“1”; the labels encountered in a path

from a leaf {pi} to the root are precisely the bits in the binary expansion of

i; see Figure 2.4.

By construction, the vertices of T are sets of 2i points of P (for some

0 ≤ i ≤ k). Let Ti be the set of vertices of T that consist of exactly 2i points

of P : we call it the i-th1 level of T . The first level, T1, are the vertices of

T that consist of a pair of points of P . For each such pair, we consider the

line defined by them.

Let R be the closed vertical slab bounded by the vertical lines through

pn/4 and p3n/4−1. Let Q be a vertex at the first level of T and let pi and

pj be its leftmost and rightmost points respectively. Suppose that Q is a

left child. Then the two most significant bits in the binary expansion of

i are “00”, and the two most significant bits in the binary expansion of j

are “10”. This implies that i ≤ n/4 and j − i = n/2; in particular pj is

contained in R, while pi is to the left of R. In this case, we say that Q

is left-to-right crossing. By similar arguments if Q is a right child, then pi

1In the literature the i-th level of a binary tree are those vertices at distance i from
the root; we have precisely the opposite order.
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is contained in R, while pj is to the right of R. In this case we say that

Q is right-to-left crossing. Note that the vertices in the first level of T , in

their left to right order in T , are alternatively left-to-right and right-to-left

crossing (see Figure 2.4). The following lemma relates the left to right order

of these vertices in T , to the bottom-up order of their corresponding pairs

of points of P .

Figure 2.4: The Horton set and its associated tree T .

Lemma 4. The lines defined by the vertices of the first level of T do not

intersect inside R. In particular, the bottom-up order of convex hull of these

vertices corresponds to their left to right order in T .

Proof. Let Q1 and Q2 be two vertices in the first level of T such that Q1 is a

left child and Q2 is a right child. Without loss of generality assume that in

the left to right order in T , Q1 is before Q2. Then, Q1 is left-to-right crossing

and Q2 is right-to-left crossing. Let γ1 and γ2 be the lines defined by Q1

and Q2, respectively. If γ1 and γ2 intersect inside R, then the leftmost point

of Q1 is above γ2 or the rightmost point of Q2 is below γ1—a contradiction

to property 3 of Definition 4. Since between every two left children there is

a right child, and between every two right children there is a left child, the

result follows.

By construction every vertex of T is an isothetic drawing of the Horton
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set. The main idea behind the proof of the lower bound on the size of

isothetic drawings of the Horton set is to lower bound the size of these

drawings in terms of the size of their children. We define some parameters

on the vertices of T , that make this idea more precise.

Let 2 ≤ t ≤ k be an integer. Let `1, `2, `3 and `4 be four vertical lines

sorted from left to right, such that:

• All of them are contained in the interior of R.

• There are exactly 2k−t points of P between both pairs (`1, `2) and

(`3, `4).

Figure 2.5: The bounding lines of Q, together with its width and girth.

Let Q be a vertex of T with more than two points. For each of the `i, we

define two parameters of Q. Let γD(Q) be the line defined by the leftmost

descendant of Q in T1. Let γU (Q) be the line defined by the rightmost

descendant of Q in T1. Note that Q is bounded from below by γD(Q) and

from above by γU (Q) (Lemma 4). Let QL and QR be the left and right

children of Q, respectively. Define widthi(Q) as the distance between the

points γD(Q)∩ `i and γU (Q)∩ `i, and girthi(Q) as the distance between the

points γU (QL) ∩ `i and γD(QR) ∩ `i; see Figure 2.5.

2.3.2 Pushing girths and widths

In this subsection we give a lower bound the girth of a vertex of T , in terms

of the girth of one of its children. This bound is expressed in Lemma 5.
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Before proceeding we need one more definition. Let Q be a vertex of T with

more than two points and let P (Q) be its parent. If Q is the left child of

P (Q), let S(Q) be the right child of Q; otherwise let S(Q) be the left child

of Q.

Lemma 5. Let Q be a vertex at the l-th level of T , for some 1 ≤ t < l < k.

If the distance between `1 and `2 is d1, and the distance between `3 and `4

is d2, then:

(1) girth1(P (Q)) ≥
(

(d1)2

(d1+d2)d2

)
2l−t−1 girth4(Q)− width1(S(Q)) and,

(2) girth4(P (Q)) ≥
(

(d2)2

(d1+d2)d1

)
2l−t−1 girth1(Q)− width4(S(Q)).

Proof. We will prove inequality (1); the proof of (2) is analogous. Assume

that Q is the left child of P (Q) and let Q′ be the right child of P (Q); the case

when Q is the right child of P (Q) can be proven with similar arguments.

Note that is S(Q) is the right child, QR, of Q.

Let p′1 and p′2 be two consecutive points in QL lying between `3 and `4

at a horizontal distance of at most ∆x := d2/2
l−t−1 from each other; such

a pair exists as there are 2l−t−1 points of QL between `3 and `4. Let p′′

be the point in QR that lies between p′1 and p′2 (in the x-coordinate order).

Let ϕ be the line through p′2 and p′′. Let ∆y := min {girth3(Q), girth4(Q)};
note that the slope of ϕ is at most −∆y/∆x. Recall that by Lemma 4,

γD(QR) and γU (QL) do not intersect between `1 and `4; this implies that

girth3(Q) ≥ d1
d1+d2

girth4(Q), in particular ∆y ≥ d1
d1+d2

girth4(Q). Therefore,

the slope of ϕ is at most

−∆y/∆x = −
(

d1
d1 + d2

girth4(Q)

)
/∆x =

d1
(d1 + d2)d2

2l−t−1 girth4(Q).

Define the following points q1 := γD(QR) ∩ `1, q2 := ϕ ∩ `1 and q3 :=

γD(Q′)∩`1. See Figure 2.6 (in it the straight lines ϕ and ϕ′ were represented

by curved lines). Note that the leftmost point of γD(Q′)∩Q′ is to the left of

`1; since this point is above ϕ, q2 cannot be above q3. Therefore, the distance

from q1 to q2 is at most the distance from q1 to q3; the distance from q1 to q3

is precisely girth1(P (Q)) + width1(S(Q)). We now show that the distance
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Figure 2.6: Schematic depiction of the proof of Lemma 5.

from q1 to q2 is at least (d1)2

(d1+d2)d2
2l−t−1 girth4(Q)—this completes the proof

of (1).

Let ϕ′ be the line parallel to ϕ and passing through the intersection point

of `3 and γD(QR). Note that ϕ′ is below ϕ. Therefore, the distance from q1

to q2 is at least the distance of q1 to the intersection point of ϕ′: this is at

least d1(∆y/∆x) = (d1)2

(d1+d2)d2
2l−t−1 girth4(Q).

Two obstacles prevent us from directly applying Lemma 5. One is that

the difference between d1 and d2 may be too big and in consequence (d1)2

(d1+d2)d2

or (d2)2

(d1+d2)d1
too small. This situation can be fixed with following Lemma.

Lemma 6. For t := d2 log ke and k ≥ 16, P has size at least n
1
2
logn or

`1, `2, `3, `4 can be chosen so that the ratio between d1 and d2 is at least 1/2

and at most 2.

Proof. Let ϕ1, . . . , ϕ2t−1 be consecutive vertical lines such that:

• all of them lie in the interior of R and,
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• between every pair of two consecutive lines (ϕi, ϕi+1) there are exactly

2k−t points of P .

For 1 ≤ i < 2t−1, let ∆i be the distance between ϕi and ϕi+1; let

∆′1 ≤ ∆′2 ≤ · · · ≤ ∆′2t−1−1 be these distances sorted by size. We look for

a pair ∆′i ≤ ∆′j , such that one is at most two times the other. Suppose

there is no such pair; then ∆′i+1 ≥ 2∆′i. Since between the two lines defining

∆′1 there are exactly 2k−t points of P , and no three of them have the same

integer x-coordinate, ∆′1 ≥ 2k−t−1. Therefore,

∆′2t−1−1 ≥ 2k−t−1 · 22t−1−2 ≥ 2
1
2
k2+k−t−3 ≥ 2

1
2
k2+k−2 log(k)−4 ≥ n

1
2
logn.

The latter part of the inequality follows from our assumption that k ≥ 16.

Therefore, if there is no such pair, P has size at least n
1
2
logn.

The second obstacle is that the second term in the right hand sides of

inequalities (1) and (2) of Lemma 5 may be too large. In this case, we prune

T to get rid of vertices of large width; this is done by choosing an integer

l ≤ k − 1 and then removing from P all the points contained in either: all

the vertices of Tl that are a left child to their parent, or all the the vertices

of Tl that are a right child to their parent (see Figure 2.7). We call this

operation pruning the l-th level of T . The resulting set is a drawing of the

Horton set, as shown by the following lemma.

Lemma 7. Let P ′ be the subset of P that results from pruning the l-th level

of T . Then:

(1) P ′ is an isothetic drawing of the Horton set of n/2 points.

(2) Suppose that l ≤ k − 3. Let T ′ be the tree associated to P ′, and Q′

be any vertex at the l-th level of T ′ (for some l′ > l). Then there

exist a vertex Q at the (l′ + 1)-level of T that contains Q′. Moreover,

S(Q′) ⊂ S(Q).

Proof. Assume without loss of generality that the left children are removed

when pruning T . If l = k − 1, (2) holds trivially, and (1) holds because in
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Figure 2.7: P and T after the removal of the vertices of T1 that are a right
child to their parent.

that case P ′ = Podd. Assume that l ≤ k − 2, and let s := k − l; we proceed

by induction on s.

Note that Peven and Podd are each an isothetic drawing of the Horton set

of n/2 points. Moreover, their corresponding trees, Teven and Todd, are the

subtrees of T rooted at Peven and Podd, respectively. Therefore, when we

prune the l-th level of T , we also prune the l-th level of Teven and Todd. By

induction and (1), this produces two isothetic drawings of the Horton set of

n/4 points; let P ′′0 ⊂ Peven and P ′′1 ⊂ Podd be these drawings, respectively.

We first prove (∗): P ′ can be constructed from P by, starting at p0,

alternatively removing and keeping intervals of 2k−l−1 consecutive points of

P .

For s = 1, this is trivial since 2k−l−1 = 1 and P ′ = Podd. Thus, by

induction, P ′′0 and P ′′1 are constructed from Peven and Podd by, starting at

their leftmost point, alternatively removing and keeping intervals of 2k−l−2

consecutive points of Peven and Podd, respectively. Let I ′1, . . . , I
′
2l+1 ⊂ Peven

and J ′1, . . . , J
′
2l+1 ⊂ Podd be these intervals (in order). Finally, (∗) follows

by letting Ii := I ′i ∪ J ′i .
We now prove 1 and 2.

(1) Note that (∗) implies that P ′even = P ′′0 and P ′odd = P ′′1 . Thus
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P ′even ⊂ Peven and P ′odd ⊂ Podd; in particular P ′odd is high above P ′even.

Therefore, P ′ is an isothetic drawing of the Horton set of n/2 points.

(2) Consider the following algorithm. Remove from T the subtrees rooted

at the vertices in the l-th level of T that are a left child to their parent;

afterwards, remove from each vertex of T the points in P \ P ′. After

this last step, each vertex at the l-th level of T that was not removed is

equal to its parent—producing a loop; remove these loops. We claim

that this algorithm produces T ′. For s = 1, this follows from (∗).
Let T ′even and T ′odd be the left and right subtrees of the root of T ′,

respectively. By induction T ′even and T ′odd can constructed from Teven

and Todd with the above algorithm, respectively. Since the root of T ′

is precisely the root of T minus the points in P \ P ′, the algorithm

produces T ′.

Now, suppose that l ≤ k − 3 and let Q′ be a vertex at the l′-th level

of T ′, for some l′ > l. By the algorithm, there is a vertex Q such that

Q′ = Q \ (P \ P ′); this vertex is in the (l′ + 1)-level of T . Finally, also

by the algorithm we have that S(Q′) ⊂ S(Q).

2.3.3 Lower bound

We are now ready to prove our lower bound on the size of isothetic drawings

of the Horton set.

Proof of Theorem 2. Set t := d2 log ke and assume that k ≥ 16. By

Lemma 6 `1, `2, `3 and `4 can be chosen so that, the ratio of the distance

between d1 and d2 is at least 1/2 and at most 2. Without loss of generality

assume that d1 ≤ d2. Let D be the distance between `1 and `4. We may

assume that

D < n
1
8
logn;

as otherwise we are done.

Let Q be a vertex in the (t + 1)-th level of T . Note that between two

consecutive points in every vertex at the l-th level of T there are exactly
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2k−l−1 points of P . This trivially holds for l = k; it holds for smaller values

of l, by induction on k− l. In particular, there are (2t+1 − 1)(2k−t−1 − 1) +

2t+1 − 2 = 2k − 2k−t−1 − 1 points of P between the leftmost and rightmost

point of Q.

As we will see, there are exactly two points of Q between `1 and `2, and

exactly two points of Q between `3 and `4.

Suppose that there were less than two points of Q between `1 and `2,

then the number of points of P would be at least the sum of the following.

• The number of points of P between `1 and `2; recall that this is equal

to 2k−t.

• The number of points of P between the leftmost and rightmost point

of Q that are not between `1 and `2; since there are exactly 2k−t−1−1

points of P between two consecutive points of Q, and at most one point

of Q between `1 and `2, this is at least (2k − 2k−t−1 − 1) − 2k−t−1 =

2k − 2k−t.

• Two, for the leftmost and rightmost point of Q.

In total this is at least 2k+1 = n+1—a contradiction; similar arguments

hold for `3 and `4.

Suppose that there are more than two points of Q between `1 and `2,

then the number of points of P between `1 and `2 is at least 2(2k−t−1)+3 =

2k−t + 3; this is a contradiction to the assumption that there are exactly

2k−t points of P between `1 and `2. The same argument holds for `3 and `4.

The two points of Q between `1 and `2, and the two points of Q between

`3 and `4, have integer coordinates. Therefore, by Pick’s theorem [41] the

area of their convex hull is at least one. Since these points are contained in

trapezoid bounded by γD(Q), γU (Q), `1 and `4, the area of this trapezoid

is also at least one. But this area is at most D(width1(Q) + width4(Q))/2.

Therefore

max{width1(Q),width4(Q)} ≥ 1/D. (2.1)
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This bound also holds for every vertex at a level higher than t+ 1 (since

all of these vertices contain vertices at the t+ 1-level as subsets).

Let t < l ≤ k be the largest positive integer such that there exists a

vertex R in the l-th level of T that satisfies:

max{width1(S(R)),width4(S(R))} ≥ 2(l−t−6)(l−t−7)/2

D
. (2.2)

Such an l and R exist since (2.2) holds for every vertex at the (t+ 6)-th

level of T . Indeed if Q is a vertex at the (t+ 6)-th level of T , then S(Q) is

in the (t+ 5) level of T and by (2.1):

max{width1(S(Q)),width4(S(Q))} ≥ 1/D =
2((t+6)−t−6)((t+6)−t−7)/2

D
.

Without loss of generality assume that

width1(S(R)) ≥ (2(l−t−6)(l−t−7)/2)/D

and that R is a left child. We may assume that l < k, otherwise (2.2) implies

that P has size at least n
1
8
logn (for a sufficiently large value of k).

We now apply Lemma 7 to prune T of all the vertices of large width

(that, is that satisfy (2.2)). Prune the l-th level of T by removing all the

vertices that are a left child to their parent. Let P ′ be the resulting point

set and T ′ its corresponding tree. No vertex of T ′ in a level higher than l

satisfies (2.2); otherwise, by part (2) of Lemma 7 there would be a vertex

at level of T higher than l that satisfies (2.2).

Let (P (R)′ = Q′l, Q
′
l+1, . . . , Q

′
k−1 = P ′) be the path from P (R)′ to the

root of T ′. We prove inductively for l ≤ m ≤ k − 1, that:

girth1(Q
′
m) ≥ 2(m−t−6)(m−t−7)/2

D
ifm ≡ l mod 2, (2.3)

girth4(Q
′
m) ≥ 2(m−t−6)(m−t−7)/2

D
ifm 6≡ l mod 2 (2.4)

(2.3) holds for m = l since girth1(Q
′
l+1) = girth1(P (R)′) ≥ width1(S(R)) ≥
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(2(l−t−6)(l−t−7)/2)/D. Assume that m > l and that both (2.3) and (2.4) hold

for smaller values of m. Suppose that m has the same parity as l. Then by

inequality (1) of Lemma 5 and inequalities (2.2) and (2.3):

girth1(Q
′
m) ≥

(
(d1)

2

(d1 + d2)d2

)
2m−t−2 girth4(Q

′
m−1)− width1(S(Q′m−1))

≥ 2m−t−5 girth4(Q
′
m−1)−

2(m−t−7)(m−t−8)/2

D

≥ 2m−t−5
2(m−t−7)(m−t−8)/2

D
− 2(m−t−7)(m−t−8)/2

D

≥ 2m−t−6
2(m−t−7)(m−t−8)/2

D

=
2(m−t−6)(m−t−7)/2

D

Therefore P ′ has size at least 2(k−t−7)(k−t−8)/2

D . This at least n
1
8
logn, for

a sufficiently large value of k. Since P ′ ⊂ P , the result follows. The proof

when m has different parity as l is similar, but uses inequality (2) of Lemma 5

instead.

To prove the general lower bound we do the following. Take a drawing

of the Horton set; find a subset of half of its points, for which we know that

there exists a linear transformation that maps it into an isothetic drawing;

afterwards, apply Lemma 2 to the image and use the obtained lower bound

to lower bound the size of original drawing.

Proof of Theorem 3. Let P ′ be a (not necessarily isothetic) drawing of the

Horton set of n points. As P and P ′ have the same order type we can label

P ′ with the same labels as P , such that corresponding triples of points in

P and P ′ have the same orientation. Let {p′0, . . . , p′n−1} be P ′ with these

labels.

Note that the clockwise order by angle of P ′odd around p′0 is (p′1, p
′
3, . . . ),

and that p′0 lies in an unbounded cell of the line arrangement of the lines

defined by every pair of points of P ′odd; thus, point p′0 can be moved towards

infinity without changing this radial order around p′0. Therefore, there is
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a direction ~d in which if P ′odd is projected orthogonally the order of the

projection is precisely (p′1, p
′
3, . . . ). We may rotate ~d as long as it does not

coincide with a direction defined by a pair of points of P ′ and the order of

P ′odd in this projection does not change. Let v′ and v′′ be the first vectors,

defined by pairs of points of P ′, encountered when rotating ~d to the left and

to the right, respectively; let v = v′ + v′′ = (a, b).

We may assume that ||v|| =
√
a2 + b2 ≤ 41/3(n/2)

1
24

log(n/2); otherwise

one of v′ and v′′ has length at least (1/2)41/3(n/2)
1
24

log(n/2), and therefore

a coordinate of value at least (1/4)2/3(n/2)
1
24

log(n/2). Let v⊥ = (b,−a).

Consider a change of basis from the standard basis to {v, v⊥}. Note that

under this transformation (x, y) is mapped to
(
ax+by
a2+b2

, ay−bx
a2+b2

)
. We multiply

the image of P ′ under this mapping by a2+b2, to obtain an isothetic drawing

of the Horton set on n/2 points. By Theorem 2, this drawing has size at least

(n/2)
1
8
log(n/2). Therefore, P ′ has size at least ((n/2)

1
8
log(n/2))/(a2 + b2) ≥

(1/4)2/3(n/2)
1
24

log(n/2).

2.4 Observations and Comments

• In this chapter, we are mainly interested in having small drawings of

the Horton set. However, the problem of finding small drawings also

raises interesting theoretical questions. For example, after learning of

our lower bound, Alfredo Hubard posed the following problem.

Problem 5. Does every sufficiently large set of points, for which there

exist a drawing of polynomial size, contains an empty 7-hole?

In particular our lower bound implies that any set of points that has

a drawing of polynomial size, cannot have large copies of the Horton

set. On this way, the problem of Erdős (Problem 2) is still open for

points sets on integer grids of polynomial size.

• In Matoušek’s book [36] (page 36), there is definition of the Horton

set very similar to the one given in Definition 4. The only difference is

that in that definition either Hk
even is high above Hk

odd or Hk
odd is high
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above Hk
even; i.e. this relationship is allowed to change at each step of

the recursion. As a result, for a fixed value of k, one gets a family of

“Horton sets” (with different order types), rather than a single Horton

set. Normally, this does not affect the properties that make Horton

sets notable. For example, none of the them have empty heptagons.

In some circumstances it does; as is the case of the constructions with

few k-holes [46, 17, 7].

We fixed one of these two options in order to make the proof of our

lower bound more readable, but our results should hold for the general

setting. Note that this choice fixes the order type of the Horton set.

However, an arbitrary drawing of the Horton set need not satisfy

Definition 4.

• We also believe that the machinery developed to prove Theorem 3 will

be useful for analyzing Horton sets in other settings.

• We point out that the constants in the exponent of the lower bounds

of Theorems 2 and 3 can be improved. We simplified the exposition

at the expense of these worse bounds.



Chapter 3

The Erdős-Szekeres Set

In this chapter we prove that the Erdős-Szekeres construction can be realized

in a rather small integer grid of size O(n2 log2(n)3). First, in Section 3.1,

we define the Erdős-Szekeres set. Afterwards, in Section 3.2, we provide a

drawing of size O(n2 log2(n)3) of the Erdős-Szekeres set of n points. Finally,

in Section 3.3, we discuss some Erdős-Szekeres type problems.

3.1 Background

3.1.1 Large Sets with Short Caps and Cups.

The Erdős-Szekeres set is made from smaller point sets, Sk,l, which we now

describe.

Let X be a set of r points in general position. We call X an r-cup if X
is in convex position and its convex hull is bounded from above by a single

edge. Similarly, we call X an r-cap if X is in convex position and its convex

hull is bounded from below by a single edge. See Figure 3.1.

Lemma 8. Let k ≥ 2 and l ≥ be integers. Then there is a set Sk,l with(
k+l−4
k−2

)
points that it does not contains a k-cup or an l-cap.

Proof. For k ≤ 2 or l ≤ 2, let Sk,l := {(0, 0)}. In other case, let

Sk,l := Lk,l ∪Rk,l;

33
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(a) A 4-cup (b) A 4-cup

Figure 3.1: An example of a 4-cup and a 4-cap

where:

Lk,l :=Sk−1,l;

Rk,l :={(x+ δk,l, y + δ′k,l) : (x, y) ∈ Sk,l−1}.

δk,l is chosen large enough so that Rk,l is to the right of Lk,l; and δ′k,l is

chosen large enough with respect to δk,l so that Rk,l is high above Lk,l.

It can be shown by induction on k + l that Sk,l has
(
k+l−4
k−2

)
points, and

that Sk,l does not contain a k-cup nor a l-cap.

3.1.2 Definition of the Erdős-Szekeres Set.

Definition 6. Let X be a set of 2k−2 points. We say that X is an

Erdős-Szekeres set if X contains disjoint sets Ti for 0 ≤ i ≤ k − 2 such

that:

1. For 0 ≤ i ≤ k − 2, |Ti| =
(
k−2
i

)
.

2. For 0 ≤ i ≤ k− 2, Ti does not contains a (i+ 2)-cap or a (k− i)-cup.

3. For 0 ≤ i ≤ k−2, every two points in Ti are connected by a line having

positive slope.

4. For 0 ≤ i, j ≤ k − 2, every two points in Ti and Tj, respectively, they

are connected by a line having negative slope.

5. Let i(1), i(2), i(3) be integers such that 0 ≤ i(1) ≤ i(2) ≤ i(3) ≤ k−2.

Let pi(1), pi(2), pi(3) be points in Ti(1), Ti(2) and Ti(3) respectively. Then
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the sequence of points (pi(1), pi(2), pi(3)) is in clockwise orientation.

Theorem 9 (Erdős-Szekeres). The Erdős-Szekeres set of 2k−2 points does

not contains k points in convex position.

Proof. Let X be the Erdős-Szekeres set of 2k−2 points, and for 0 ≤ i ≤ k−2,

let Ti be as in Definition 6. Let P be a convex polygon of X . We prove that

P has at most k − 1 points.

Let p and q be the leftmost and rightmost point in P , respectively. Note

that p and q splits the convex hull of P in two polygonal chains. Let U and

L be the upper and lower polygonal chains respectively (See Figure 3.2).

Let r be the index such that p is in Tr, and let s be the index such that q is

in Ts.

Figure 3.2: Example of the cap and the cup from a convex

In case that r = s, by Definition 2, U has at most r + 1 points and L

has at most k − r − 1 points. As p and q are in both U and L, in this case

P has at most (r + 1) + (k − r − 1)− 2 = k − 2 points. Assume that r < s.

Let p′ be the highest point in U . Let U1 be the polygon chain from p to

p′, and let U2 be the polygonal chain from p′ to q. Note that, the edges in

U1 have positive slope and the edges in U2 have negative slope. Thus, the

points of U1 are in Tr and there are not two points of U2 in Ti for r ≤ i ≤ s.
Then,

|U | ≤ (r + 1) + (s− r + 1)− 1 ≤ s+ 1

Let q′ be the lowest point in L. Let L1 be the polygon chain from p to
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q′, and let L2 be the polygonal chain from q′ to q. Note that, the edges in

L1 have negative slope and the edges in L2 have positive slope. Thus, the

points of L2 are in Ts and there are at most two points in L1. Then,

|L| ≤ (k − s− 1) + (2)− 1 ≤ k − s

As p and q are in both U and L, then

|P | ≤ (s+ 1) + (k − s)− 2 ≤ k − 1

3.2 Construction of the Erdős-Szekeres set with

Small Integer Coordinates

3.2.1 A Superset of Sk,l

Let r ≥ 1 be an integer. In this section we construct a point set Pr in general

position in the plane with integer coordinates such that Pr has 2r points,

and for r = k + l − 1, Pr contains Sk,l as a subset.1

We define Pr recursively as follows.

• P0 := {(0, 0)};

• Pr := Lr ∪Rr; where:

Lr :=Pr−1

Rr :={(x+ δr, y + δ′r) : (x, y) ∈ Lr}

δr :=3 · 4r−1; (3.1)

δ′r :=(3r + 1) · 4r−1. (3.2)

Let Xr be the value of the largest x-coordinate of Pr; note that for r ≥ 1

Xr = Xr−1 + δr.

1More accurately, Pr contains a subset with the same order type as Sk,l.
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Since X0 = 0, by induction we have that

Xr = 4r − 1. (3.3)

Let Yr be the value of the largest y-coordinate of Pr; note that for r ≥ 1

Yr = Yr−1 + δ′r.

Since Y1 = 0, by induction we have that

Yr = r · 4r. (3.4)

Since

δr > Xr−1,

every point of Lr is to the left of every point of Rr.

For r ≥ 2, let pr be the rightmost point of Lr and let qr be the leftmost

point of Rr; let `r be the straight line passing through pr and qr; see

Figure 3.3. By construction of Pr, the point pr is the point of Lr of largest

y-coordinate, and the point qr is the point of Rr of smallest y-coordinate;

therefore, the slope mr of `r is given by

mr =
Yr − 2Yr−1
Xr − 2Xr−1

=
r4r − 2(r − 1)4r−1

4r − 1− 2(4r−1 − 1)

=
2r · 4r−1 + 2 · 4r−1

2 · 4r−1 + 1

=r + 1− r + 1

2 · 4r−1 + 1
. (3.5)

The mr are increasing, since

mr −mr−1 = 1 +
r

2 · 4r−2 + 1
− r + 1

2 · 4r−1 + 1
> 0;

the last inequality follows from the fact that r+1
2·4r−1+1

≤ 1
3 for r ≥ 2.

Let L′r−1 and R′r−1 be the translations of Lr−1 and Rr−1 in Rr,



38 CHAPTER 3. THE ERDŐS-SZEKERES SET

Figure 3.3: Illustration of Pr

respectively. Let `′r−1 be the line defined by the rightmost point of L′r−1
and the leftmost point of R′r−1. Thus, `′r−1 is the translation of `r−1 in Rr.

We now prove some properties of Pr.

Lemma 10. Among the lines passing through two points of Pr, `r is the

line with the largest slope.

Proof. We proceed by induction on r. For r = 0 and r = 1, the lemma holds

trivially. So assume that r > 1 and that the lemma holds for smaller values

of r. Let ` be a line passing through two points of Pr.

Suppose that ` passes through two points of Lr or through two points

of Rr. By induction the slope of ` is at most mr−1. Since mr > mr−1, the

slope of `r is larger than the slope of `.

Suppose that ` passes through a point p of Lr and a point q of Rr.

Consider the polygonal chain C := (p, pr, qr, q). Since p is to the left of pr

and qr is to the left of q, the slope of ` is at most the maximum of the slopes

of the edges of C. By induction each of these edges has slope at most mr.

Therefore, the slope of ` is at most the slope of `r.

Lemma 11. The rightmost point of Pr is above `r−1 and the leftmost point

of Pr is below `′r−1.



CHAPTER 3. THE ERDŐS-SZEKERES SET 39

Proof. The result holds trivially for r = 0 and r = 1; assume that r ≥ 2.

First we prove that the rightmost point p of Pr is above `r−1. Note that

p = (Xr, Yr). Let q be the point in `r−1 with x-coordinate equal to Xr;

note that since `r−1 contains the point (Xr−2, Yr−2), the y-coordinate of q

is equal to Yr−2 +mr−1(Xr−Xr−2). Therefore, it is sufficient to show that:

Yr > Yr−2 +mr−1(Xr −Xr−2).

Equivalently that
Yr − Yr−2
Xr −Xr−2

> mr−1.

This follows from

Yr − Yr−2
Xr −Xr−2

=
r4r − (r − 2)4r−2

4r − 1− (4r−2 − 1)

=
15r · 4r−2 + 2 · 4r−2

15 · 4r−2

=r +
2

15
,

and that by (3.5)

mr−1 = r − r

2 · 4r−2 + 1
.

Now we prove that the leftmost point of Pr is below `′r−1. Note that (0, 0)

is the leftmost point of Pr. Let q′ be the point in `′r−1 with x-coordinate

equal to 0; note that since `′r−1 contains the point (Xr−2 + δr, Yr−2 + δ′r),

the y-coordinate of q′ is equal to Yr−2 + δ′r −mr−1(Xr−2 + δr). Therefore,

it is sufficient to show that:

Yr−2 + δ′r −mr−1(Xr−2 + δr) > 0.

Equivalently that
Yr−2 + δ′r
Xr−2 + δr

> mr−1.
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This follows from

Yr−2 + δ′r
Xr−2 + δr

=
(r − 2)4r−2 + (3r + 1)4r−1

4r−2 − 1 + 3 · 4r−1

=
13r · 4r−2 + 2 · 4r−2

13 · 4r−2 − 1

=r +
2 · 4r−2 + r

13 · 4r−2 − 1
,

and that by (3.5)

mr−1 = r − r

2 · 4r−2 + 1
.

Lemma 12. The following properties hold.

(a) Rr is above `r−1;

(b) Lr is below `′r−1;

(c) no point of Lr−1 is below `r−1;

(d) no point of L′r−1 is below `′r−1;

(e) no point of Rr−1 is above `r−1; and

(f) no point of R′r−1 is above `′r−1.

Proof. For r = 0, 1, 2 the lemma can be verified directly or holds trivially;

assume that r > 2.

(a) By Lemma 11, the rightmost point of Rr is above `r−1. If a point p of

Rr is below `r−1, then the line defined by p and the rightmost point

of Rr has slope larger than mr−1— a contradiction to Lemma 10 and

the fact that Rr is a translation of Pr−1.

(b) By Lemma 11, the leftmost point of Lr is below `′r−1. If a point p of Lr

is above `′r−1, then the line defined by p and the leftmost point of Lr

has slope larger than the slope of `′r−1— a contradiction to Lemma 10

and the fact that `′r−1 is parallel to `r−1.
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(c) If a point p of Lr−1 is below `r−1, then the line defined by p and the

rightmost point of Lr−1 has slope larger than mr−1— a contradiction

to Lemma 10.

(d) Follows from (c) and the fact that Rr is a translation of Lr.

(e) If a point p of Rr−1 is above `r−1, then the line defined by p and the

leftmost point of Rr−1 has slope larger than mr−1— a contradiction

to Lemma 10.

(f) Follows from (e) and the fact that Rr is a translation of Lr.

Lemma 13. Rr is high above Lr.

Proof. For r = 0, 1, 2 the lemma holds trivially or can be verified directly;

assume that r > 2 and that lemma holds for smaller values of r. We proceed

by induction on r.

We first prove that Rr is above every line ` defined by two points of

Lr. By (a) of Lemma 12, Rr is above `r−1. By Lemma 10, the slope of `

is at most the slope of `r−1. Thus we may assume that ` does not contain

the rightmost point of Lr−1 nor the leftmost point of Rr−1. Suppose that

` passes through a point of Rr−1; then, by (e) of Lemma 12, this point is

below `r−1. Since the slope of ` is at most the slope of `r−1, Rr is above `

in this case. Suppose that ` passes through two points of Lr−1. Then, by

induction the leftmost point of Rr−1 is above `. Since the slope of ` is at

most the slope of `r−1, Rr is above ` in this case.

We now prove that Lr is below every line ` defined by two points of Rr.

By (b) of Lemma 12, Lr is below `′r−1. Since Rr is a translation of Pr−1, by

Lemma 10, we have that the slope of ` is at most the slope of `′r−1. Thus

we may assume that ` does not contain the rightmost point of L′r−1 nor the

leftmost point of R′r−1. Suppose that ` passes through a point of L′r−1; then,

by (d) of Lemma 12, this point is above `′r−1. Since the slope of ` is at most

the slope of `r−1, Lr is below ` in this case. Suppose that ` passes through

two points of R′r−1. Since Rr is translation of Pr−1, by induction we have
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that the rightmost point of L′r−1 is below `. Since the slope of ` is at most

the slope of `′r−1, Rr is above ` in this case. The result follows.

Proposition 14. Pr can be realized with non-negative integer coordinates

of size at most r4r.

Proof. This follows from Xr = 4r − 1 and Yr = r4r.

Proposition 15. Let k, l be positive integers. If r := k + l − 1 then Sk,l is

a subset of Pr.

Proof. The result holds for k ≤ 2 or l ≤ 2, since in these cases Sk,l = {(0, 0)}.
Therefore, the result holds for r ≤ 4. Assume that k, l ≥ 2, r ≥ 5 and that

the result holds for smaller values of r. By induction Sk−1,l and Sk,l−1 are

subsets of Pr−1. The result follows from Lemma 13 and by setting δk,l := δr

and δ′k,l := δ′r.

3.2.2 An small drawing of the Erdős-Szekeres set.

In this section we use the set of points described in Section 3.2.1 to realize,

with small integer coordinates, the construction given by Erdős and Szekeres

in [19]. The Erdős-Szekeres construction is made from a small number of

translations of Sk,l (for some values of k and l). We first describe these

translations.

Let t > 0 be an integer and let n := 2t−2. For every integer 1 ≤ i ≤ t−2

we define the vector

vi := (3(t− i),−3i).

Using these vectors, we define a set of t− 1 points w0, . . . , wt−2 recursively

as follows.

• w0 := (0, 0);

• wi+1 := wi + vi for i = 0, . . . , t− 3.

For i = 0, . . . , t−2, let Ci be the unit square whose lower left corner is equal

to wi.
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Lemma 16. The union,
⋃
Ci, of the squares Ci lies in a 3t2 × 3t2 integer

grid.

Proof. Note that the largest absolute value of the x-coordinates of the wi’s

is equal to
t−3∑
i=0

(3t− i) < 3t2;

and the largest absolute value of the y-coordinates of the wi’s is equal to

t−3∑
i=0

3i < 3t2.

Therefore,
⋃
Ci lies in a 3t2 × 3t2 integer grid.

Let Di be the square Ci scaled by factor of (t+ 1)4t+1, that is

Di := {
(
(t+ 1)4t+1x, (t+ 1)4t+1y

)
: (x, y) ∈ Ci}.

Lemma 17. Let 0 ≤ i < j < k ≤ t − 2 be three integers; let pi, pj , and pk

be points in Di, Dj and Dk, respectively. Then (pi, pj , pk) is a right turn.

Proof. For i = 0, . . . , t−3, let Wi be the set of vectors of the form u := q−q′

where q is a point of Ci+1 and q′ is a point of Ci. Note that the endpoints of

these vectors lie in a 2× 2 square centered at vi; let γi be the smallest cone

with apex at the origin and that contains Ci. By the previous observation

the γi only intersect at the origin; see Figure 3.4.

Let mi−1,i be the slope of a line passing through a point of Ci−1 and

a point of Ci and let mi,i+1 be the slope of a line passing through a point

of Ci and a point of Ci+1. The vector defining mi−1,i lies in γi−1 and the

vector defining mi,i+1 lies in γi. This implies that mi−1,i > mi,i+1. Let

0 ≤ i < j < k ≤ t − 2 be three integers. Let mi,j be the slope of a line

passing through a point of Ci and a point of Cj and let mj,k be the slope of

a line passing through a point of Cj and a point of Ck. Thus, we have that

mi,j > mj,k. (3.6)
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Figure 3.4: The vectors vi, the cones γi and the points wi, for t = 6

Note that (3.6) also holds for the lines defined by pairs points in the Di’s.

Therefore, (pi, pj , pk) is a right turn.

Let qi be the lower left corner of Di, and let S′t−i,i+2 be the translation

of St−i,i+2 by qi. That is

S′t−i,i+2 := {p+ qi : p ∈ St−i,i+2}.

The Erdős-Szekeres construction is given by

St =

t−2⋃
i=0

S′t−i,i+2.

Note that

|St| =
t−2∑
i=0

|St−i,i+2| =
t−2∑
j=0

(
t− 2

j

)
= 2t−2 = n.

Proposition 18. St lies in an integer grid of size O(n2 log2(n)3).

Proof. Recall that Di is a scaling of Ci by a factor of (t+ 1)4t+1. Therefore,

by Lemma 16, St lies in an integer grid of size

3t2(t+ 1)4t+1 = 192n2 log2(4n)2 log2(8n) = O(n2 log2(n)3).
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Proposition 19. St is in general position.

Proof. Let p1, p2, p3 be three points of St. If these three points are contained

in a same Di, then they are not collinear since Sk,l is in general position.

If the three of them are in different Di, then by Lemma 17 they are not

collinear. If two of them lie on a same Di and one of them in some Dj , then

they are not collinear since the slope of a line joining a point in Di and a

point in Dj is negative, while the slope of a line defined by two points in Sk,l

is greater or equal to zero. Therefore, St does not contain three collinear

points.

Theorem 20. Every convex k-gon of St has at most t− 1 vertices.

Proof. Let P be a convex k-gon of St. Let U and L be the upper and lower

polygonal chains of P , respectively. Let s be the index such that the leftmost

point of U (and L) is in Ds, and let r be the index such that the rightmost

point of U (and L) is in Dr.

Note that for all 0 ≤ i < j ≤ t− 2, the slopes of an edge joining a point

of Di with a point of Dj are negative; since the slope of an edge defined

by a pair of points in S′t−i,i+2 is greater or equal to zero, neither U nor L

contain two consecutive vertices in Di for s < i < r. By Lemma 17 such a

Di cannot contain a vertex of L. Therefore, P contains at most r − s − 1

vertices not in Ds ∪Dr.

The vertices of P contained in Ss must form a cap and thus consists of

at most s + 1 vertices. Similarly, the vertices of P contained in Sr must

form a cup and therefore consists of at most t − r − 1 vertices. Therefore,

P has at most (r − s− 1) + (s+ 1) + (t− r − 1) = t− 1 vertices; the result

follows.

3.3 Observations and Comments

3.3.1 Implementation

A direct implementation of Section 3.2 gives way to an efficient algorithm

to compute the Erdős-Szekeres construction. By Proposition 18, the size of
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the grid needed by this algorithm is asymptotically small; however, there

are large constants hidden in such an implementation. In this section we

mention some optimizations we have done to further reduce the size of the

integer grid needed for the Erdős-Szekeres construction.

• Decrease the horizontal distance between left and right parts

of Sk,l.

In Section 3.2.1, to construct Pr, we gave explicit values to δr and δ′r.

This allowed us to show that Lr is to the left of Rr and that Rr is high

above Lr. However, it is enough to show that Lr is to the left of Rr

and that the rightmost point of Rr is above `r. That is that

Yr >
Yr − Yr−2
Xr −Xr−2

(Xr −Xr−2) + Yr−2. (3.7)

Let c > 0 be a constant and set Xr = (2 + c)r. It can be shown that

if we replace inequality (3.7) by an equality and solve for Yr, then Yr

is of order O
((

2 + 3
c

)r)
. Therefore, if we set c =

√
3, then both Xr

and Yr are of order O
((

2 +
√

3
)r)

. In the actual implementation we

choose δr so that

Xr =
⌈(

2 +
√

3
)r⌉

.

Then we choose δ′r so that

Yr =

⌈
Yr − Yr−2
Xr −Xr−2

(Xr −Xr−2) + Yr−2 + 1

⌉
.

The addition of the ceiling functions has prevented us from proving

that Yr is of order O
((

2 + 3
c

)r)
. If this is the case then Pr can be

realized in an integer grid of size O
(
nlog2(2+

√
3)
)

= O
(
n1.8999...

)
. In

Section 3.2.1, we opted to avoid using ceiling functions at the expense

of being able to show a slightly worse upper bound.

Inspired by this, we do likewise when constructing Sk,l. First we

construct Sk−1,l and Sk,l−1. Let Xk,l be the horizontal length of Sk,l.
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We choose

δk,l :=

⌈(
1 +
√

3
)(Xk−1,l +Xk,l−1

2

)⌉
.

For any two positive integers k and l, let `k,l be the straight line passing

through the rightmost point of Sk−1,l and the leftmost point of the

copy of Sk,l−1 in Sk,l. (This definition is similar to the definition of `r

for Pr.) We choose δ′k,l so that; the rightmost point in the translation

of Sk,l−1 is above `k−1,l; and the leftmost point of Sk−1,l is below the

corresponding translation of `k,l−1 in Rk,l.

• Separate the left and right parts of Sk,l by one in the last step

of the recursion.

The reason for choosing a relatively large horizontal separation

between the left and right parts of Sk,l is so that the slope of `k,

does not increase too quickly. We do not need to do this in the last

step of the construction. At each step in the construction of Si,j for

2 ≤ i ≤ k, 2 ≤ j ≤ k and i+ j < k, we separate the corresponding left

and right parts as before. In the last step, when constructing Sk,l, we

separate Sk−1,l from the copy of Sk,l−1 by one.

• Decrease the size of the squares (rectangles) Di.

In Section 3.2, for i = 0, . . . , t−2 we defined a square Di, inside which

we placed a copy of St−i,i+2. Di was chosen large enough so that Pr

fits inside Di for r = t + 1. Since we only need to fit St−i,i+2 we

replace Di by a rectangle of length Xt−1,i+2 and height Yt−i,i+2. The

definitions of the vi’s and wi’s are changed accordingly.

In Figure 3.5 we show S5,5 in 55×109 integer grid; in Figure 3.6 we show

S6 in a 58 × 62 integer grid; and in Figure 3.7 we show S7 in a 230 × 310

integer grid. For a comparison, we note that Kalbfleisch and Stanton [31]

realize S6 in a 6970× 1828 integer grid.
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Figure 3.5: S5,5 in 55× 109 integer grid.
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Figure 3.6: S6 in a 58× 62 integer grid.
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Figure 3.7: S7 in a 230× 310 integer grid.
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3.3.2 Open problems

In this section we propose some open Erdős-Szekeres type problems on point

sets in integer grids. Let diam(S) be the maximum distance between a pair

of points of S, and let mindist(S) be the minimum distance between a pair

of points of S. Alon, Katchalski and Pulleyblank [4], showed that if for some

constant α > 0, S satisfies

diam(S)

mindist(S)
≤ αn

1
2 ,

then S contains a convex k-gon of Ω
(
n

1
4

)
vertices; in [44], Valtr improved

this bound to Ω
(
n

1
3

)
. He also showed that if for some constant α > 0, S

satisfies
diam(S)

mindist(S)
≤ α
√
n,

then S contains a convex k-gon of Ω
(
n

1
3

)
vertices. That is, metric

restrictions on S may force large convex polygons.

This prompted the following two problems in [12].

Problem 6. Does there exist, for every β ≥ 1, a suitable constant ε(β) > 0

with the following property: any set of S of n points in general position in

the plane with diam(S)
mindist(S) < nβ contains a convex nε(β)-gon?

Problem 7. Does there exist, for every γ ≥ 1, a suitable constant ε(γ) > 0

with the following property: any set of n points in the general position in

the plane with positive integer coordinates that do not exceed nγ contains a

convex nε(γ)-gon?

Valtr in his PhD thesis [45] showed that the answer for Problem 6 is

“yes” for β < 1. He also noted, in passing, in page 55 of his thesis the

following.

“If τ = 1/2 then it is possible to construct an (nτ =
√
n)-dense

set of size n which contains no more than O(log n) vertices

of a convex polygon. Such a set can be obtained by an
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affine transformation from the construction of Erdős and

Szekeres [19]...”

S is said to be α-dense if diam(S)
mindist(S) ≤ α

√
n. So this observation solves

Problem 6 for β ≥ 1 as well. Problem 7 appeared first in Valtr’s thesis

(Problem 10), where it is attributed to Welzl.

In this Chapter we have shown that the answer to Problem 7 is “No”

for all γ ≥ 2. We conjecture that the answer to Problem 7 is “No” for all

γ ≥ 1. However, we conjecture that there exists a γ ∈ (1, 2) such that the

Erdős-Szekeres construction cannot be realized in an nγ × nγ integer grid.

We propose the following alternative to Problem 7.

Problem 8. Does there exist, for every γ ≥ 1 and every n > 0, a suitable

constant ε(γ) > 0 and a set S of n points in general position in the plane

with the following property: S has positive integer coordinates not exceeding

nγ, and S does not contain a convex ε(γ) log2(n)-gon?

Empty k-gons

A convex k-gon of S is empty if it does not contain a point of S in its interior.

In 1978, Erdős [20] asked whether an analogue of the Erdős-Szekeres theorem

holds for empty convex k-gons. That is, if for every k, every sufficiently large

point set in general position in the plane contains an empty k-gon.

Every set of at least three points contains an empty triangle; Esther

Klein [18] proved that every set of five points contains an empty convex

4-gon; Harborth [28] proved that every set of 10 points contains an empty

convex 5-gon; and Horton [29] constructed arbitrarily large point sets

without empty convex 7-gons. (His construction is now known as the Horton

Set.) The question for convex 6-gons remained open for more than a quarter

of a century until Nicolás [38] and independently Gerken [22] showed that

every sufficiently large set of points contains a convex empty 6-gon.

Alon et al. posed a problem in [4], similar to Problem 6, but for empty

convex k-gons. They asked whether if for some constant α > 0 every

sufficiently large α-dense set of points contains an empty convex 7-gon. Valtr

in [44] showed that there exist arbitrarily large
√

2
√

3/π-dense point sets
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not containing an empty convex 7-gon. His construction is based on the

Horton set.

The same question can be asked for point sets in an integer grid.

Problem 9. Does the following holds for every constant γ ≥ 0? Every

sufficiently large set of n points in the general position in the plane with

positive integer coordinates that do not exceed nγ contains an empty convex

7-gon.

As far as we know all constructions without an empty convex 7-gons are

based on the Horton set. This is particularly relevant for Problem 9 for the

following reason. In [9], Barba, Duque, Fabila-Monroy and Hidalgo-Toscano

proved that the Horton set cannot be realized in an integer grid of

polynomial size (See Chapter 2).





Chapter 4

The Nested Almost Convex

Sets

In this chapter, we obtain a characterization of when a set of points is a

nested almost convex set. This is done by first defining a family of trees.

If there exists a map, that satisfies certain properties, from the point set

to the nodes of a tree in the family, then the point set is a nested almost

convex set. This map encodes a lot of information about the point set. For

example, it determines the location of any given point with respect to the

convex hull; we use this information to obtain an O(n log n)-time algorithm

to decide whether a set of points is a nested almost convex set. This map

also determines the orientation of any given triplet of points. This implies

that for every n there exists essentially at most one nested almost convex

set. We further apply this information to obtain a linear-time algorithm

that produces a representation of a nested almost convex set of n points on

a small integer grid of size O(nlog2 5).

In Section 4.1 we introduce our characterization of nested almost convex

sets. As concequense of such characterization we obtain the following.

Theorem 21. If n = 2k−1− 2 or n = 3 · 2k−1− 2 there is exactly one order

type that correspond to a nested almost convex set with n points; for other

values of n, nested almost convex sets with n points do not exist.

In Section 4.2, we prove that a nested almost convex set of n points (if

55
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it exists), can be drawn in an integer grid of size O(nlog2 5) ' O(n2.322).

Furthermore, we provide a linear time algorithm to find this drawing. A

lower bound of Ω(n1.5) on the size of any drawing of a nested almost convex

set of n points can be derived from the following observations. Any drawing

of an n-point set in convex position has size Ω(n1.5) [30]; and every nested

almost convex set of n points has a Θ(n) points in convex position (this is

presented in detail in Section 4.1).

In Section 4.3, we are interested in finding an algorithm to decide whether

a given point set is a nested almost convex set. A straightforward O(n4)-time

algorithm for this problem can be given using Definition 2. This can be

improved to O(n2) as follows. Using the algorithm presented in Section 4.2

an instance of nested almost convex set can be constructed. Recently in

[5], Aloupis, Iacono, Langerman, Öskan and Wuhrer gave an O(n2)-time

algorithm to decide whether two given sets of n points have the same order

type. Thus, using their algorithm and our instance solves the decision

problem in O(n2) time. We further improve on this by presenting O(n log n)

time algorithm.

4.1 Characterization of Nested Almost

Convex Sets.

In this section we prove Theorem 22, in which the nested almost convex sets

are characterized. First we introduce some definitions.

Throughout this section: X will denote a set of n points in general

position; k will denote the number of convex layers of X ; Rj will denote the

set of points in the j-th convex layer of X , R1 being the most internal; and

Xj will denote the set of points in X , that are in Rj or in the interior of its

convex hull.

T1(k): We define T1(k) as the complete binary tree with 2k+1 − 1 nodes.

The j-level of T1(k) is defined as the set of the nodes at distance j

from the root.

Type 1: We say that X is of type 1 if |Rj | = 2j for 1 ≤ j ≤ k − 1. Note
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that if X is of Type 1, then for every 1 ≤ j ≤ k, the number of points

in Rj is equal to the number of nodes in the j-level of T1(k).

Type 1 labeling: An injective function ψ : X → T1(k) is a type 1 labeling,

if X is Type 1 and ψ labels the nodes (different to the root) of T1(k)

with different points of X .

T2(k): We define T2(k) as the tree that, its root has three children, and

each child is the root of a complete binary tree with 2k−1 − 1 nodes.

The j-level of T2(k) is defined as the set of the nodes at distance j− 1

from the root.

Type 2: We say that X is of type 2 if |R1| = 1 and |Rj | = 3 · 2j−2 for

2 ≤ j ≤ k. Note that if X is of Type 2, then for every 1 ≤ j ≤ k, the

number of points in Rj is equal to the number of nodes in the j-level

of T2(k).

Type 2 labeling: An injective function ψ : X → T2(k) is a Type 2 labeling,

if X is Type 2 and ψ labels the nodes (also the root) of T2(k) with

different points of X .

Labeling: Let T be equal to T1(k) or T2(k). We say that a map ψ : X → T

is a labeling, if ψ is a Type 1 labeling or a Type 2 labeling. Note that,

if X admits a labeling then n = 2k−1 − 2 or n = 3 · 2k−1 − 2.

In the following, when the map ψ : X → T is clear from the context, we say

that a point is the label of a node of T if the point is mapped to the node

by ψ. This way, given a node u of T , we denote by xu its label. We denote

by u(l) and u(r) the left and right children of u in T , respectively.

Nested: We say that a labeling is nested if, for 1 ≤ j ≤ k, the left to right

order of labels of the nodes in the j-level of T , corresponds to the

counterclockwise order of the points in Rj .

Adoptable: Given a point p in Rj and two points q1, q2 in Rj+1, we say

that q1, q2 are adoptable from p if, for every other point q3 in Rj+1, p

is in the interior of the triangle determined by q1, q2, q3. We say that
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a nested labeling is adoptable if, for every node u in T , xu(l) and xu(r)

are adoptable from xu.

We denote by Rj(u) the set of points in Rj that label a descendant of u.

With respect to the counterclockwise order, we denote by: first[Rj(u)], the

first point in Rj(u); last[Rj(u)], the last point in Rj(u); previous[Rj(u)], the

point in Rj previous to first[Rj(u)]; and next[Rj(u)], the point in Rj next

to last[Rj(u)]. See Figure 4.1.

Figure 4.1: Illustration of Rj(u), first[Rj(u)], last[Rj(u)], previous[Rj(u)],
and next[Rj(u)].

Well laid: We say that a nested labeling is well laid if, for every u in T ,

xu is in the intersection of the triangle determined by previous[Rk(u)],

first[Rk(u)], last[Rk(u)] and the triangle determined by first[Rk(u)],

last[Rk(u)],

next[Rk(u)].

Let u be a node of T . We denote by Xu the set of points xv such that v is

descendant of u in T . We denote by Xu the set Xu ∪ {xu}. Given two sets

of points A and B, we call any directed line from a point in A to a point in

B, an (A,B)-line.

Internal separation: We say that a nested labeling is an internal

separation if for every node u of T , every point in X/Xu is to the

left of every (Xu(l),Xu(r))-line `.

External separation: We say that a nested labeling is an external
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separation if for every node u of T , every point in X/Xu is to the left

of every (Xu(l), {xu})-line and to the left of every ({xu},Xu(r))-line.

Theorem 22. Let X be a point set in general position. Then the following

statements are equivalent:

1. X is a nested almost convex set.

2. X admits a labeling that is nested, adoptable and well laid.

3. X admits a labeling that is an internal separation and an external

separation.

Proof of Theorem 22

The proof of Theorem 22 is divided into three parts: first we prove that

1 =⇒ 2; afterwards we prove that 2 =⇒ 3; and finally we prove that

3 =⇒ 1.

4.1.1 The nested almost convex Set admits a labeling that

is nested, adoptable and well laid (1 =⇒ 2).

In this part we assume that X is a nested almost convex set, and we introduce

a labeling ψ′ that is nested, adoptable and well laid.

It is clear from the definition of labeling that a necessary condition for

X to admit a labeling is that X must be type 1 or type 2. In the following

lemma we prove that, if X is a nested almost convex, then X is type 1 or

type 2.

Lemma 23. If X is a nested almost convex set then we have one of the

following cases:

1. |Rj | = 2j for 1 ≤ j ≤ k − 1.

2. |R1| = 1 and |Rj | = 3 · 2j−2 for 2 ≤ j ≤ k.

Proof. Suppose that R1 has three or more points. In this case, the interior

of the convex hull of R1 has at least one point of X ; this contradicts that R1
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is the first convex layer of X . Thus R1 = X1, and X1 has one or two points.

This proves the lemma for j = 1.

Any triangulation of Rj+1, has |Rj+1|−2 triangles and each triangle has

exactly one point of Xj in its interior; thus |Xj | = |Rj+1| − 2. In particular,

if |X1| = 2 or |X1| = 1 then |X2| = 4 or |X2| = 3, respectively. This proves

the lemma for j = 2.

For the other cases, note that

|Rj+1| = |Xj |+ 2 = |Rj |+ |Xj−1|+ 2 = 2|Rj |.

First we define ψ′ on a subset of nodes of T depending on whether X is

of type 1 or type 2.

• If X is of type 1: ψ′ labels the two nodes in the 1-level of T1(k), with

the two points in R1.

• If X is of type 2: ψ′ labels the node in the 1-level of T2(k), with the

point in R1; ψ
′ labels the three nodes in the 1-level of T2(k), with the

three points in R2 (such that, the left to right order of labels of the

nodes in the 2-level of T , coincides to the counterclockwise order of

the points in R2).

To define ψ′ on the other nodes of T , we use the following Lemma.

Lemma 24. Let p0, . . . , pt be the set of points in Rj in counterclockwise

order. Then, the points in Rj+1 can be listed in counterclockwise order as

q0, q1, . . . , q2t+1, where the points q2i, q2i+1 are adoptable from pi for 0 ≤ i ≤
t.

Proof. Let T be the set of triangles determined by three consecutive points

of Rj+1 in counterclockwise order. We first show that:

Claim 24.1. Each point of Rj is in exactly two consecutive triangles of T .

Assume that j ≥ 2 (and note that Claim 24.1 holds for j = 1). Let 4
be the interior of a triangle of T . By the almost convex set definition, there
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is one point of Xj in 4. This point must be in Rj , since the convex hull of

Rj+1 without 4 (and its boundary) is convex. Thus, there is one point of

Rj in the interior of each triangle of T . As the triangles of T are defined by

consecutive points of Rj+1, each point of Rj is in at most two triangles of

T . Thereby Claim 24.1 follows from |T | = |Rj+1| = 2|Rj |.
The two triangles of T that contain p0, are defined by four consecutive

points of Rj+1; let q0 be the second of these points. Let q0, q1, . . . q2t+1 be the

points of Rj+1 in counterclockwise order. Note that, for each pi, the middle

two points of the four points that define the two triangles that contain pi,

are q2i and q2i+1. Thus q2i and q2i+1 are adoptable from pi.

Now we define ψ′ on the other nodes of T recursively. For each labeled

node u, ψ′ labels u(l) and u(r) with the two points adoptable from the label

of u. We do this so that, the left to right order of the labels of the nodes in

the (j+1)-level of T , correspond to the counterclockwise order of the points

in Rj+1. Note that ψ′ is nested and adoptable. It remains to prove that ψ′

is well laid. We prove this in Lemma 26.

Lemma 25. If u is a node of T , the label of every descendant of u is

contained in the convex hull of Rk(u).

Proof. We claim that every set Rj−1(u), with at least two points, is

contained in the convex hull of Rj(u). Let p be a point in Rj−1(u) and

let q and q′ be the labels of the children of the node labeled by p. By

construction of ψ′, q and q′ are adoptable from p. As Rj−1(u) has at least

two points, Rj(u) has at least four points. Let 4 be a triangle determined

by q, q′ and another point of Rj(u). By definition of adoptable, p is in the

interior of 4 and in consequence in the interior of the convex hull of Rj . An

inductive application of the previous claim proves this lemma.

Lemma 26. Let u be a node of T . Then xu is in the intersection of the

triangle determined by previous[Rk(u)], first[Rk(u)] and last[Rk(u)] and the

triangle determined by first[Rk(u)], last[Rk(u)] and next[Rk(u)].



62 CHAPTER 4. THE NESTED ALMOST CONVEX SETS

Proof. Let j be the index such that the j-level of T contains u. Let R′k
be the set that contains first(Rk(v)) and last(Rk(v)) for all nodes v in the

j-level of T . Let T be the set of triangles determined by three consecutive

points of R′k in counterclockwise order. We first show the following claim.

Claim 26.1. Each point of Rj is in exactly two consecutive triangles of T .

Note that every point of X \ Xj , is the label of some descendant of a

node v in the j-level of T . Thus, by Lemma 25, every point of X \ Xj is in

the convex hull of Rk(v) for some node v in the j-level of T . Let A be the

region obtained from the convex hull of X , by removing the convex hull of

Rk(v) for each v in the j-level of T . Note that the set of points of X that

are in A is Xj .

Let 4 be the interior of a triangle of T . By the nested almost convex

set definition, there is one point of X in 4. As 4 is contained in A, this

point must be in Xj . This point must also be in Rj , since A without 4 (and

its boundary) is convex. Thus, there is one point of Rj in the interior of

each triangle of T . As the triangles of T are defined by consecutive points

of R′k, each point of Rj is in at most two triangles of T . Thereby Claim 26.1

follows from |T | = |R′k| = 2|Rj |.

Let 4′ be the intersection of the triangle determined by

previous[Rj+1(u)], first[Rj+1(u)] and last[Rj+1(u)], with the triangle

determined by first[Rj+1(u)], last[Rj+1(u)] and next[Rj+1(u)]. Note that

first[Rj+1(u)] and last[Rj+1(u)] are the labels of the children of u. By

definition of ψ′, xu is in the interior of every triangle determined by

first[Rj+1(u)], last[Rj+1(u)] and every other point of Rj+1; thus xu is in 4′.
By Claim 26.1, xu is in the interior of two triangles of T , but there are only

two triangles of T that intersect 4′; these are the triangles determined by

previous[Rk(u)], first[Rk(u)] and last[Rk(u)], and the triangle determined

by first[Rk(u)], last[Rk(u)], next[Rk(u)].
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4.1.2 Sets that admit a labeling that is nested, adoptable and

well laid, admit a labeling that is an internal separation

and an external separation (2 =⇒ 3).

In this part we assume that there is a labeling ψ′ of X that is nested,

adoptable and well laid; and we prove that ψ′ is an internal separation and

an external separation.

Lemma 27. ψ′ is an internal separation.

Proof. Let u be a node of T and recall that u(l), u(r) are the left and right

children of u, respectively. We need to prove that every point in X/Xu is to

the left of every (Xu(l),Xu(r))-line.

Let ` be the directed segment from first[Rk(u(l))] to last[Rk(u(r))]. By

Lemma 26, each point in X/Xu is in the interior of a triangle whose vertices

are to the left of, or on `; thus every point in X/Xu is to the left of `. By

Lemma 25, every point in Xu(l) ∪ Xu(r) is to the right of `. We claim that:

Claim 27.1. No (Xu(l),Xu(r))-line intersects `.

As the end points of `, first[Rk(u(l))] and last[Rk(u(r))], are in the

boundary of the convex hull of X ; to prove that every point in X/Xu is

to the left of every (Xu(l),Xu(r))-line, it is enough to show Claim 27.1.

Let P1 be the polygonal chain that starts at q1 := first[Rk(u(l))],

follows the points of Rk(u(l)) in counterclockwise order, and ends at

q2 := last[Rk(u(l))]. Similarly, let P2 be the polygonal chain that starts

at q3 := first[Rk(u(r))], follows the points of Rk(u(r)) in counterclockwise

order, and ends at q4 := last[Rk(u(r))]. To prove Claim 27.1 it is enough to

show that every (Xu(l),Xu(r))-line intersects both P1 and P2.

Let q be the intersection point of the diagonals of the quadrilateral

defined by q1, q2, q3 and q4. By Lemma 25 and Lemma 26, Xu(l) is contained

in the convex hull of P1 ∪ {q}, and Xu(r) is contained in the convex hull of

P2 ∪ {q}. Let `′ be an (Xu(l),Xu(r))-line. Note that the slope of `′, is in the

range from the slope of the line define by q1 and q3, to the slope of the line

define by q2 and q4, in counterclockwise order. Thus `′ intersects both P1

and P2.
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Lemma 28. ψ′ is an external separation.

Proof. Let u be a node of T . We need to prove that every point in X/Xu, is

to the left of every (Xu(l), {xu})-line and to the left of every ({xu},Xu(r))-line.

We prove that every point in X/Xu is to the left of every (Xu(l), {xu})-line.

That every point in X/Xu is to the left of every ({xu},Xu(r))-line can be

proven in a similar way.

Let P be the polygonal chain that starts at next[Rk(u)], follows the

points of Rk in counterclockwise order, and ends at previous[Rk(u)]. Note

that, by Lemma 26, X/Xu is contained in the convex hull of P . Thus, to

prove that every point in X/Xu is to the left of every (Xu(l), {xu})-line, it is

enough to show that xu is to the right of the directed line from last[Rk(u(l))]

to next[Rk(u)]. See Figure 4.2.

Figure 4.2: Illustration of the proof of Lemma 28

Let j be the index such that the j-level of T contains u. For j < i ≤ k,

let `i be the directed line from last[Ri(u(l))] to next[Ri(u)]. We show that xu

is to the right of `i by induction. As xu(l) and xu(r) are adoptable from xu,

and xu(l) = last[Rj+1(u(l))]; xu is in the interior of the triangle determined

by last[Rj+1(u(l))], xu(r) and next[Rj+1(u)]. Thus the induction holds for

i = j+1. Suppose that xu is to the right of `i. Let last[Ri+1(u(l))] and p be

the two children of last[Ri(u(l))]. Let next[Ri+1(u)] and q be the two children

of next[Ri(u)]. Let � be the quadrilateral determined by last[Ri+1(u(l))],

p, q and next[Ri+1(u)]. As last[Ri+1(u(l))], p, q and next[Ri+1(u)] are in
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Ri+1, and any triangulation of � has two triangles; there are two points of

Xi in �. As those points are last[Ri(u(l))] and next[Ri(u)], xu is not in the

interior of �. Thus xu is not between `i and `i+1, and therefore xu is to the

right of `i+1.

4.1.3 Sets that admit a labeling that is an internal separation

and an external separation, are nested almost convex

sets (3 =⇒ 1).

In this part we finish the proof of Theorem 22. We assume that there is a

labeling ψ′ of X that is an internal separation and an external separation,

and we prove that X is a nested almost convex set. For this it is enough

to prove Lemma 29. As consequence of Lemma 29 and Theorem 22,

Theorem 21 holds.

Lemma 29. Let X be an n-point set that admits a labeling ψ : X → T that

is an internal separation and an external separation. Then the order type of

X is determined by T and:

• If n = 2k−1 − 2, then X has the same order type than any n-point set

obtained from Construction 1.

• If n = 3 · 2k−1 − 2, then X has the same order type than any n-point

set obtained from Construction 2.

Proof. The labeling that X admits can be a type 1 labeling or a type 2

labeling. If X admits a type 1 labeling, |X | = 2k+1 − 2 for some integer

k; in this case, an almost convex set with the same cardinality than X can

be obtained using Construction 1. If X admits a type 2 labeling, |X | =

3 · 2k−1 − 2 for some integer k; in this case, an almost convex set with

the same cardinality than X can be obtained using Construction 2. Let Y
be an almost convex set with |X | points obtained from Construction 1 or

Construction 2. We prove that X and Y have the same order type, and that

this order type is determined by T .
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Assume that X admits a type 1 labeling. The case when X admits a

type 2 labeling can be proven in a similar way. As Y is an almost convex set,

Y admits a labeling that is an internal separation and an external separation.

Let ψY : Y → T be such type 1 labeling.

Let f := ψ−1Y (ψ′). We prove that f : X → Y is a bijection that preserves

the orientation of all triplets. Let x1, x2, x3 be different points in X , let

u1, u2, u3 be the nodes of T that x1, x2, x3 label in ψ′, and let y1, y2, y3 be the

labels of u1, u2, u3 in ψY . Note that f(x1) = y1, f(x2) = y2 and f(x3) = y3.

To prove that (x1, x2, x3) and (y1, y2, y3) have the same orientation, we show

that the position of u1, u2 and u3 in T determines the orientation of any

labeling of u1, u2 and u3.

Given a node w of T , denote by Tw the subtree of T that contains every

descendant of w. Let w be the farthest node from the root of T , such that

at least two of u1, u2, u3 are in Tw. If two of u1, u2, u3 are in the left subtree

of Tw or, two of u1, u2, u3 are in the right subtree of Tw; the orientation of

the labels of u1, u2, u3 is determined by an external separation. If there are

not two of u1, u2, u3 in the left subtree of Tw or in the right subtree of Tw;

there is one of u1, u2, u3 in the left subtree of Tw, one u1, u2, u3 in the right

subtree of Tw, and the other one is not in the left or right subtree of Tw.

In this case, the orientation of the labels of u1, u2, u3 is determined by an

internal separation.

4.2 Drawings of Nested Almost Convex Sets with

Small Size.

Let X ′ be a nested almost convex set with n points, and let k be the number

of convex layers of X ′. In this section we construct a drawing of X ′ of size

O(nlog2 5). This section is divided into three parts. First, we construct a

2k+1 − 2 point set X with integer coordinates and size 2 · 5k+1. Afterwards,

we prove that X is a nested almost convex set. Finally, we obtain a subset

of X that is a drawing of X ′.
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Construction of X .

Recall that T1(k) is the complete binary tree with 2k+1 − 1 nodes, and the

j-level of T1(k) is the set of nodes at distance j from the root of T1(k).

Before defining X , we will construct a point set Y in convex position, and

for each node u in T1(k), we will define a set Yu ⊂ Y of consecutive points of

Y in counterclockwise order. The point xu will denote the midpoint between

the first and last points of Yu in counterclockwise order. The set X will be

the set of points xu such that u is a node of T1(k) different from the root.

Let p, o and q be points in the plane and let c ∈ [0, 1]. We denote by op

and oq the segments from o to p and from o to q, respectively. We say that

α = (q, o, p) is a corner, if the angle from op to oq counterclockwise is less

than π. Let α := (q, o, p) be a corner. We denote by LeftPoint(α, c) the point

in the segment oq at distance c|oq| from o. We denote by RightPoint(α, c)

the point in the segment op at distance c|op| from o. See Figure 4.3.

Recursively, we define a corner αu for each node u of T1(k). The corner

of the root of T1(k) is defined as ((0, 2 · 5k+1), (0, 0), (2 · 5k+1, 0)). Let u be

a node for which its corner αu has been defined; the corners of its left and

right children, u(l) and u(r), are defined as follows (See Figure 4.3):

αu(l) = (LeftPoint(αu, 2/5),LeftPoint(αu, 1/5),RightPoint(αu, 1/5))

αu(r) = (LeftPoint(αu, 1/5),RightPoint(αu, 1/5),RightPoint(αu, 2/5))

Figure 4.3: Illustration of corners αu, αu(l) and αu(r), where αu = (q, o, p).
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Let v be a leaf of T1(k+1). Note that v is a child of a leaf u of T1(k). If v

is the left child of u, let yv := LeftPoint(αu, 1/5). If v is the right child of u,

let yv := RightPoint(αu, 1/5). We define Y as the set of points yv such that

v is a leaf of T1(k + 1). Given a node u of T1(k), we define Yu as the set of

points yv such that v is a descendant of u, and v is a leaf of T1(k+ 1). With

respect to the counterclockwise order, we denote by: first[Yu], the first point

in Yu; last[Yu], the last point in Yu; previous[Yu], the point in Yu previous

to first[Yu]; and next[Yu], the point in Yu next to last[Yu].

Lemma 30. Let u be a node of T1(k). Let v1, v2, . . . , vt be the leaves

of T1(k + 1), that are descendant of u, ordered from left to right. Then

yv1 , yv2 , . . . , yvt are in convex position, and are the points in Yu in

counterclockwise order.

Proof. Let (q, o, p) := αu; q′ := LeftPoint(αu, 2/5); and p′ :=

RightPoint(αu, 2/5). Let 4(u) be the triangle determined by q′, o and p′.

inductively from the leaves to the root of T1(k), it can be proven that:

1. The set of points of Y in 4(u) is Yu; from which: first[Yu] is on the

segment from o to q′, last[Yu] is on the segment from o to p′, and the

other points are in the interior of 4(u).

2. The points q′, yv1 , yv2 , . . . , yvt , p
′ are in convex position, and appear in

this order counterclockwise.

This proof follows from 2.

By Lemma 30, Y is in convex position, and for each node u in T1(k), Yu
is a subset of consecutive points of Y in counterclockwise order. We denote

by xu the midpoint between first[Yu] and last[Yu]. Let X be the set of points

xu such that u is a node of T1(k) different from the root.

Let u be a node of T1(k) at distance j from the root, let (q, o, p) := αu

and let v be a leaf of T1(k+ 1). Recursively note that, the coordinates of q,

o and p are divisible by 2 · 5k+1−j . Thus, the coordinates of yv are divisible

by 2, xu has integer coordinates, and X has size 2 · 5k+1.
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X is a nested Almost Convex Set.

In this subsection we prove that X is a nested almost convex set. By

Theorem 22, it is enough to prove that X admits a labeling that is an

internal separation and an external separation. Let ψ : X → T1(k) be the

type 1 labeling that labels each node u of T1(k) different from the root,

with xu. We prove that ψ is both an internal separation and an external

separation.

Lemma 31. If u is a node of T1(k) at distance j from the root, then

first[Yu] = LeftPoint(αu, cj) and last[Yu] = RightPoint(αu, cj), where

cj =
1

4

(
1− 5(j−k−1)

)
.

Proof. Note that

cj =

j∑
i=k

(
1

5

)k+1−j
.

If j = k, then: u is a leaf of T1(k); cj = 1/5; and first[Yu] = LeftPoint(αu, cj)

and last[Yu] = RightPoint(αu, cj). Suppose that j < k, and that this lemma

holds for larger values of j. Let u(l) and u(r) be the left and right children

of u. Note that by induction,

first[Yu] = LeftPoint(αu(l), cj+1) = LeftPoint(αu, c∗)

where c∗ = (1/5)cj+1 + 1/5 = cj ; thus first[Yu] := LeftPoint(αu, cj). In a

similar way last[Yu] := RightPoint(αu, cj).

Lemma 32. ψ is an internal separation.

Proof. Let u be a node of T1(k) different from the root, and let u(l), u(r) be

the left and right children of u, respectively. We need to prove that every

point in X/Xu is to the left of every (Xu(l),Xu(r))-line.

Let ` be the directed segment from first[Yu(l)] to last[Yu(r)]. As each

point in X/Xu, is the midpoint between two points that are not to the

right of `, every point in X/Xu is not to the right of `. As every point in

Xu(l) ∪ Xu(r), is the midpoint between a point to the right of ` and a point
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that is not to the left of `, every point in Xu(l) ∪ Xu(r) is to the right of `.

We claim that:

Claim 32.1. No (Xu(l),Xu(r))-line intersects `.

As the endpoints of `, first[Yu(l)] and last[Yu(r)], are in the boundary of

the convex hull of Y; to prove that every point in X/Xu is to the left of

every (Xu(l),Xu(r))-line, it is enough to show Claim 32.1.

Let P1 be the polygonal chain that starts at first[Yu(l)], follows the points

of Yu(l) in counterclockwise order, and ends at last[Yu(l)]. Similarly, let P2

be the polygonal chain that starts at first[Yu(r)], follows the points of Yu(r)
in counterclockwise order, and ends at last[Yu(r)]. To prove Claim 32.1 it

is enough to show that every (Xu(l),Xu(r))-line intersects P1 and P2. This

follows from the fact that Xu(l) is contained in the convex hull of P1, and

Xu(r) is contained in the convex hull of P2.

Lemma 33. Let u be a node of T1(k) at distance j from the root, and let

(q, o, p) := αu. Suppose that the nodes in the j-level of T1(k), are ordered

from left to right.

1. If u is not the first node, then the points o, first[Yu], previous[Yu] and

q are collinear, and previous[Yu] = LeftPoint(u, c) for some c > 3/5.

2. If u is not the last node, then the points o, last[Yu], next[Yu] and p

are collinear, and next[Yu] = RightPoint(u, c) for some c > 3/5.

Proof. To prove 1 and 2, note that, for any two consecutive nodes in the

j-level of T1(k), there is a segment that contains one side of each the corners

corresponding to these nodes; then apply Lemma 31.

Lemma 34. ψ is an external separation.

Proof. Let u be a node of T1(k) and u(l), u(r) be the left and right children

of u, respectively. We need to prove that every point in X/Xu, is to the

left of every (Xu(l), {xu})-line and to the left of every ({xu},Xu(r))-line. We

prove that every point in X/Xu is to the left of every (Xu(l), {xu})-line. That
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every point in X/Xu is to the left of every ({xu},Xu(r))-line can be proven

in a similar way.

Let P be the polygonal chain that starts at next[Yu], follows the points

of Y in counterclockwise order, and ends at previous[Yu]. Note that X/Xu is

contained in the convex hull of P . Thus, to prove that every point in X/Xu
is to the left of every (Xu(l), {xu})-line, it is enough to show that next[Yu] is

to the left of the directed line from last[Yu(l)] to xu.

Let ` be the directed line from last[Yu(l)] to xu and let (q, o, p) := αu.

Note that xu and last[Yu(l)] are in the interior of the wedge determined by

αu, from op to oq in counterclockwise order. By Lemma 33-2, next[Yu] is on

op and next[Yu] = RightPoint(u, c) for some c > 3/5. To finish this proof

we show that ` intersects op at a point RightPoint(u, c′) for some c′ < 3/5.

Consider the following coordinate system, o is the origin, p has

coordinates (1, 0) and q has coordinates (0, 1). Assume that this is the

new coordinate system. Let t be such that the intersection point between `

and the abscissa is the point (t, 0); thereby, we need to prove that t < 3/5.

By Lemma 31, first[Yu] and last[Yu] have coordinates (0, cj) and

(cj , 0); thus, xu has coordinates (cj/2, cj/2). By construction of αu(l)

and Lemma 31, last[Yu(l)] is in the segment from (0, 1/5) to (1/5, 0) in

RightPoint(u(l), cj+1). Thus last[Yu(l)] has coordinates (15cj+1,
1
5(1− cj+1))

and the equation of ` is

x =
cj+1/5− cj/2

(1− cj+1)/5− cj/2
(y − cj/2) + cj/2

taking y = 0, s = k − j, and replacing cj and cj+1, we have that

t = − 1

40 · 5s
− 1

40(1 + 3/5s)
− 1

40(3 · 5s + 52s)
+

3

8(3/5s + 1)
+

1

8(3 + 5s)
+

1

8

finally, as 5s ≥ 1

t <
3

8
+

1

8(4)
+

1

8
=

17

32
<

3

5
.
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Construction of a Drawing of X .

In this subsection we find a subset of X that is a drawing of X ′. By

Theorem 21, there are two cases: X ′ is of type 1 and has n = 2k+1 − 2

points; or X ′ is of type 2 and has n = 3 · 2k−1 − 2 points. By Theorem 21,

if X ′ is type 1, X ′ and X have the same order type and X is a drawing of

X ′. Assume that X ′ is type 2.

Let w be the root of T1(k); u and u′ be the children of w; u(l) and u(r)

be the children of u; and u′(l) and u′(r) be the children of u′. We define T

as the tree obtained from T1(k), by making u′(l) the third child of u and

removing w, u′, u′(r) and every descendant of u′(r). Recall that T2(k) is

a tree such that, its root has three children, and each child is the root of

a complete binary tree with 2k−1 − 1 points. Note that T and T2(k) are

isomorphic.

Let X2 be the set of points xu such that u is in T . Let ψ′ : X2 → T

be such that ψ′(xu) = u. Note that: as ψ is an internal separation, ψ′ is

an internal separation; and as ψ is an external separation, ψ′ is external

separation. Thus by Theorem 22, X2 is a nested almost convex set.

By Theorem 21, as X2 has 3 · 2k−1 − 2 points, X2 and X ′ have the same

order type and X2 is a drawing of X ′.

4.3 Decision Algorithm for Nested Almost

Convexity.

Let X be a set of n points. In this section, we present an O(n log n) time

algorithm, to decide whether X is a nested almost convex set. This algorithm

is based in Theorem 22-2 and consists of four steps. At each step, it is verified

if X satisfies a certain property; X is a nested almost convex set if and only

if X satisfies each of these properties.

By Theorem 21, if X is a nested almost convex set, then n = 2k−1−2 or

n = 3 · 2k−1− 2 for some integer k. The first step is to verify whether X has

one of those cardinalities. If n = 2k−1− 2 let T := T1(k). If n = 3 · 2k−1− 2

let T := T2(k). Recall that: the j-level of T1(k) is defined as the set of the
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nodes at distance j from the root; and the j-level of T2(k) is defined as the

set of the nodes at distance j − 1 from the root.

By Lemma 23, if X is a nested almost convex set then: for 1 ≤ j ≤ k,

the number of nodes in the j-level of T is equal to the number of nodes in

the j-th convex layer of X . The second step is to verify whether X satisfies

Lemma 23. Chazelle [15] showed that, the convex layers of a given an n-point

set can be found in O(n log n) time; thus the second step can be done in

O(n log n) time. We denote by Rj the set of points in the j-th convex layer

of X .

The third step is to verify whether X satisfies Lemma 24. For 1 ≤ j ≤ k−
1, we do the following. Let p0, . . . , pt be the points in Rj in counterclockwise

order. We search for two consecutive points in Rj+1 that are adoptable by

p0. If those points exist, they are the only pair of consecutive points in

Rj+1 that are adoptable by p0. Let q0, q1, . . . , p2t+1 be the points in Rj+1 in

counterclockwise order, such that q0 and q1 are adoptable by p0. Then we

verify whether q2i, q2i+1 are adoptable by pi for 0 ≤ i ≤ t.
Let p be in Rj , and let qr, qr+1, qr+2, qr+3 be four consecutive points

in Rj+1. Note that qr+1 and qr+2 are adoptable by p, if and only if, p is

in the intersection of the triangle determined by qr, qr+1 and qr+2, and the

triangle determined by qr+1, qr+2 and qr+3. Thus, we can verify whether

q2i, q2i+1 are adoptable by pi in constant time; the third step hence requires

linear time.

If X satisfies Lemma 24, we can define a labeling ψ : X → T like the

one defined in Section 4.1-4.1.1. The fourth step is to verify if ψ is well laid,

this requires linear time.

According to the proof of Theorem 22, X is a nested almost convex set

if and only if X verifies the properties in previous four steps. This can be

done in O(n log n) time.
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[48] P. Valtr, G. Lippner, and G. Károlyi. Empty convex polygons in almost

convex sets. Periodica Mathematica Hungarica, 55(2):121–127, 2007.


