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Introduction

This dissertation is about two types of Toeplitz operators: radial and vertical.
We present a description of the C∗-algebra generated by Toeplitz operators
with radial symbols by its eigenvalues sequence. It is about vertical Toeplitz
operators and its corresponding spectral functions. It is shown a description
of the C∗-algebra generated by vertical Toeplitz operators by means of its
spectral functions and the relation among them.

The motivation for this description is as follows:
Toeplitz operators
Let D : = {z ∈ C| |z| < 1} be the unit disc. Let L2(D, dA) be the space of

square integrable functions defined on the unit disc.
Let A2(D) ⊂ L2(D, dA) be the Bergman space which consists of analytic

functions on the disc.
Denote by L(A2(D)) the space of bounded operators acting on the Bergman

space.
The Bergman space is a reproducing kernel space:

f(z) = 〈f,Kz〉, con z ∈ D.

where
Kz(w) =

1

(1− wz)2
.

The Bergman projection P : L2(D, dA)→ A2(D) has the integral represen-
tation

Pf(z) =

∫
D

f(w)

(1− zw)2
dA(w)

The Toeplitz operator Ta, with symbol a ∈ L∞(D) has the integral represen-
tation

Taf(z) =

∫
D

a(w)f(w)

(1− zw)2
dA(w).

Next we consider radial Toeplitz operators.
Radial operators
The set {en}n∈N, where

en(z) =
√
n+ 1zn

1
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is an orthonormal basis for A2(D).
Among other equivalences, an operator S ∈ L(A2(D)) is said to be radial

if and only if there exist {µn}n∈N ∈ `∞(N) such that

Sen = µnen, ∀n ∈ N.

For Toeplitz operators, Ta is radial if and only if a(z) = a(|z|) is a radial
function.

The eigenvalues of the Toeplitz operator Ta are calculated in an explicit
form

µn = (n+ 1)

∫ 1

0

a(r)rndr.

Hausdorff moment problem
Given a sequence µ ∈ `∞(N) we wish to determine if there exist a ∈

L∞(0, 1) such that µ(Ta) = µ.
Such a problem is known as the “Hausdorff moment problem” and for its

solution we recall the following definition: let m be a natural number and let
x = {xn}n∈N be a complex number sequence. The m-difference of x is denoted
by 4m

n (x) = (−1)m
∑m

j=0

(
m
j

)
(−1)jxn+j.

(Hausdorff moment problem) µ is the corresponding eigenvalue sequence of
the Toeplitz operator Ta if and only if (k+ 1)

(
k
m

)
|4m

k−m σ| ≤ C for 0 ≤ m ≤ k
where σn = µn

n+1
[42, p.101].

The equation µn = (n + 1)
∫ 1

0
a(r)rndr is related as a transformation of

a(r) into the sequence {µn}n∈N. This transformation is strongly related to the
Laplace transform, and in fact is a discrete analogous to this one. We will take
advantage of this fact latter.

First description of the C∗-algebra generated by radial Toepllitz
operators

We consider the C∗-algebra generated by

{Ta : a is bounded and radial}.

Given that the radial operators are determined by its eigenvalues sequence it
is possible to give a description of this C∗-algebra describing the C∗-algebra
generated by

{µ : µ = µ(Ta) for a bounded and radial}.
Suárez [37] gives a description as we describe next. We denote by T the C∗-
algebra generated by Toeplitz operators with bounded defining symbols

{Ta : a ∈ L∞(D)}.

He considers two set of sequences

d1 = {x ∈ `∞(N) : sup
n
n| 41

n (x)| <∞},
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d2 = {x ∈ `∞(N) : sup
n
n2| 42

n (x)| <∞}.

d1 is a self-adjoint subalgebra of `∞ and therefore d1
`∞ is a C∗-algebra. Suárez

proves that d2 ⊂ d1 y d1
`∞

= d2
`∞ .

Let S ∈ L(A2(D)) be a radial operator.
S ∈ T if and only if µ(S) ∈ d1

`∞ .
S ∈ T if and only if µ(S) ∈ d2

`∞ .
This equivalence characterizes the eigenvalues sequence of operators be-

longing to the Toeplitz algebra. At first it’s difficult to decide if a sequence
belongs to the `∞−closure of sequences that satisfies the Hausdorff condition.
Introducing d1 and d2 simplifies the situation. The disadvantage is neither d1

and d2 are closed.
Radial operator and the set d2

To prove the equivalence S ∈ T if and only if µ(S) ∈ d2
`∞ , Suárez intro-

duces an operators set for which its eigenvalue sequence are characterized by
d2.

For such a task he uses the Berezin transform, which plays an important
role from this point forward.

The Berezin transform is defined by B0 : L(A2(D))→ C∞(D),

B0(S)(z) =
〈SKz, Kz〉
〈Kz, Kz〉

The invariant Laplacian is

4̃ = (1− |z|2)4

with 4 = ∂∂.
Suárez makes use of

D = {S ∈ L(A2(D)) : ∃ T ∈ L(A2(D)) tal que 4̃B0(S) = B0(T )}.

Given that the Berezin transform is one to one, the invariant Laplacian of
an operator S ∈ D is defined by

4̃(S) = T.

Therefore another eigenvalue characterization is obtained: S ∈ D if and only
if µ(S) ∈ d2.

The set of sequences VSO(N): second description of the C∗-algebra
generated by radial Toeplitz operators

Grudsky, Maximenko and Vasilevski use another set of sequences

VSO(N) =

{
x ∈ `∞(N) : lim

j
k
−1
|xj − xk| = 0

}
.
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VSO(N) is a subalgebra of `∞(N). The relation between d1 and VSO(N) is as
follows

d1 ⊂ VSO(N),

and

d1
`∞

= VSO(N).

To prove the preceding equality, they use De la Vallé-Poussin mean.
It is, let x ∈ VSO(N) and ε > 0. There exists δ ∈ (0, 1) such that

yj =
1

1 + bjδc

j+bjδc∑
k=j

xk,

with y ∈ d1 and ‖y − x‖ < ε.
This way is easier to check if a sequence belongs to VSO(N). In other

words, the C∗-algebra generated by

{Ta : a radial and bounded}

is isometrically isomorphic to VSO(N).
Results
The main of the work is to extend this description to the case of weighted

Bergman spaces over the unit ball A2
λ(Bn), where the weight parameter λ ∈

(−1,∞). The development of the dissertation is stated in the following para-
graphs.

Chapter 1 and Chapter 2 are based on the joint work with Wolfram Bauer
and Nikolai Vasilevski.

Chapter 1 it is about the (m,λ)-Berezin transform

Bm,λ : L(A2
λ(Bn))→ C∞(Bn),

which is defined by Daniel Suárez for the Bergman space over the unit disc.
Nam, Zheng and Zhong extend this definition to the unit ball.

So, in this chapter we present the weighted generalization of two approxi-
mation theorems, i.e., we establish conditions under which the convergence of
the sequence

TBm,λ(S) → S1

happens in operator norm.
For the first Theorem 1.3.7, the Schur test is used for guarantee convergence

in operator norm (Lema 1.3.2).
The second Theorem 1.3.9, uses the invariant Laplacian (1.29).
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In Chapter 2 we consider radial operators and its eigenvalue sequences. A
bounded radial operator S belonging to the Toeplitz algebra satisfies Theo-
rems 1.3.7 and 1.3.9. It is

TBm,λ(S) → S

in operator norm.
Definition 2.1.1 established S is radial if and only if S = Rad(S).
In Lemma 2.1.6 it is shown radialization commutes with the (m,λ)-Berezin

transform, i.e.,
Rad ◦Bm,λ(S) = Bm,λ ◦Rad(S)

This way Bm,λ(S) is radial and therefore TBm,λ is radial. Particularly this
shows that

Rad ∩ T = T({Ta : a is bounded and radial}).
If a ∈ L∞(0, 1) is a radial symbol a straightforward calculation shows that

the eigenvalue sequence of Ta is written as

β
(n)
a,λ(k) =

1

B(n+ k − 1, λ+ 1)

∫ 1

0

a(
√
r)rk+n−2(1− r)λdr,

and Proposition 2.3.1 establishes β(n)
a,λ ∈ d1 and β(n)

a,λ ∈ d2.
In proposition 2.3.2 it is shown that if µ ∈ d2 then S ∈ D and the following

bound holds
‖4̃(S)‖ ≤ (6 + 4|λ|) sup

n
n2| 42

n (µ)|.

The most important result is Theorem 2.3.4, which establishes the `∞-norm
closure of B

(n)
λ is equal to VSO(N) with

B
(n)
λ = {β(n)

a,λ : a ∈ L∞(0, 1)}.

Chapter 3 is based on the joint work with Ondrej Hutník, Egor Maximenko
and Nikolai Vasilevski. In Chapter 3 the so called vertical Toeplitz operators
are treated.

For h ∈ R, Hh : A2
λ(Π)→ A2

λ(Π) the shift operator is Hhf(z) = f(z − h).
An operator S ∈ L(A2

λ(Π)) is vertical if and only if

HhS = SHh, ∀h ∈ R.

For the Toeplitz operator Tb, b ∈ L∞(Π), Tb is vertical if and only if
b(z) = b(Im(z)).

According to [39, Theorem 3.1],A2
λ(Π) is isometrically isomorphic to L2(R+)

by means of a unitary operator R. This way the vertical Toeplitz operator Tb
is unitarily equivalent to a multiplication operator γb,λI acting on L2(R+), i.e.,

R∗TbR = γb,λI, where
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γb,λ(x) =
(2x)λ+1

Γ(λ+ 1)

∫ ∞
0

b(y) e−xy yλdy.

The purpose of this chapter is to describe the C∗-algebra generated by

Γλ = {Tb : b ∈ L∞(R+)}.

To this end we use similar techniques to those applied in the radial case. In
order to consider the corresponding (m,λ)-Berezin transform for the vertical
case, we introduce the functions sequence {ψn,λ}n∈N which is an approximation
to the identity. In explicit form

ψn,λ(x) =
1

B(n+ λ, n+ λ)

xn+λ

(1 + x)2(n+λ)
, x ∈ R.

This sequence can be obtained from the usual Berezin transform with some
modifications in order to facilitate calculations. Here we take advantage of the
multiplicative group structure of R+.

The logarithmic metric ρ : R+ × R+ → R+ is given by

ρ(x, y) = | ln(x)− ln(y)|.

In fact we obtain that Γλ is isometrically isomorphic to

VSO(R+) = {f ∈ L∞(R+) : f is uniformlly continuous
with respect to the logarithmic metric}.

Equivalently

VSO(R+) =

{
f ∈ L∞(R+) : lim

x
y
→1
|f(x)− f(y)| → 0

}
.

This way we give a characterization of the C∗-algebra generated by vertical
Toeplitz operators by means of spectral functions. Similarly to the radial case,
note this description is better than d1

`∞−type description. It is easier to check
if a sequence belongs to VSO(R+).

Using known results for shift invariant operators it is shown that a bounded
operator T is vertical if there exist σ ∈ L∞(R+) such that

R∗TR = Mσ.

Chapter 4 is a joint work with Egor Maximenko and Nikolai Vasilevski. In
Chapter 4 we show the relation among radial and vertical cases. To this point
we have that the C∗-algebra generated by

Γλ = {γb,λ : b ∈ L∞(R+)}
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is equal to VSO(R+).
We also have that the C∗-algebra generated by

B
(n)
λ = {β(n)

a,λ : a ∈ L∞(0, 1)}

is equal to VSO(N).
In the calculation of the sequence β(n)

a,λ (some a ∈ L∞(0, 1)) we apply a
discrete analogous of the Laplace transform. Because of the appearance of
the Laplace transform in the formula for γb,λ (some b ∈ L∞(R+)) and the
description for the C∗-algebras above, one might expect a relation between
radial and vertical symbols.

We establish the relation among radial and vertical symbols in Lemma 4.2.1
So we give a description of the radial case by means of vertical case techniques.
This is done without using d1 and d2 sets neither the (m,λ)-Berezin transform.
The main result again is Theorem 4.2.5: the `∞-closure of

{β(n)
a,λ : a ∈ L∞(0, 1)}

is equal to VSO(N).
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Chapter 1

(m,λ)-Berezin transform and
approximation of operators on
weighted Bergman spaces
over the unit ball.

1.1 Preliminaries

Let Bn :=
{
z ∈ Cn : |z|2 := |z1|2 + · · · + |zn|2 < 1

}
be the open unit ball in

Cn equipped with the standard weighted measure

(1.1) dvλ(z) = cλ(1− |z|2)λdv(z),

where λ > −1 is fixed. Here cλ is given by

(1.2) cλ :=
Γ(n+ λ+ 1)

πnΓ(λ+ 1)
,

so that vλ(Bn) = 1. We write L2(Bn, dvλ) for the Hilbert space of all functions
that are square-integrable with respect to dvλ. The corresponding norm and
inner product are denoted by ‖ · ‖λ and 〈·, ·〉λ, respectively.

Let Z+ := {0, 1, · · · } be the set of non-negative integers. With α ∈ Zn+
we use the standard notations zα := zα1

1 · · · zαnn , α! := α1! · · ·αn! and |α| :=
α1 + · · ·+ αn.

By a straightforward calculation one verifies that

(1.3) ‖wα‖λ =

√
α!Γ(n+ λ+ 1)

Γ(n+ |α|+ λ+ 1)
.

9
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The Bergman (orthogonal) projection Bλ from L2(Bn, dvλ) onto A2
λ(Bn) can

be expressed as an integral operator in the explicit form[
Bλϕ

]
(z) =

∫
Bn

ϕ(w)

(1− 〈z, w〉)n+λ+1
dvλ(w) with ϕ ∈ L2(Bn, dvλ),

where 〈z, w〉 := z1w1 + · · ·+ znwn denotes the Euclidean inner product on Cn.
The reproducing kernel of the Bergman space A2

λ(Bn) is given by

(1.4) Kλ
z (w) =

1

(1− 〈w, z〉)n+λ+1
=

∞∑
|α|=0

Γ(n+ |α|+ λ+ 1)

α!Γ(n+ λ+ 1)
zαwα.

We frequently use the normalized version of the Bergman kernel and write

kλz (w) =
Kλ
z (w)

‖Kλ
z ‖λ

=
(1− |z|2)

n+λ+1
2

(1− 〈w, z〉)n+λ+1
.

By φz(w) denote a biholomorphism of Bn that interchanges 0 and z. More
precisely, we choose the explicit form of φz(w) given, for example, in [46, p.5]
such that φ0(w) = −w. Recall [46, p.37] that the complex Jacobian det(φ′z) of
φz has the form

det(φ′z(w)) = (−1)n
(1− |z|2)

n+1
2

(1− 〈w, z〉)n+1
= (−1)nk0

z(w).

It is standard that the kernel Kλ
z transforms under the biholomorphisms φu as

(1.5) Kλ
z (w) = kλu(z)Kλ

φu(z)

(
φu(w)

)
kλu(w).

Given z ∈ Bn we introduce the unitary operator Uz on A2
λ(Bn) which acts

as the weighted composition(
Uzf

)
(w) :=

[
det(φ′z(w))

]n+λ+1
n+1 (f ◦ φz)(w)

=(−1)
n(n+λ+1)

n+1
(1− |z|2)

n+λ+1
2

(1− 〈w, z〉)n+λ+1
(f ◦ φz)(w)

=(−1)
n(n+λ+1)

n+1 kλz (w) · f ◦ φz(w).

It is easy to check that Uz is self-adjoint and so U2
z = I. Since φ0 induces a

reflection at the origin we have(
U0f

)
(w) = (−1)

n(n+λ+1)
n+1 f(−w).

If we fix z ∈ Bn, then we can define an automorphism on the algebra
L(A2

λ(Bn)) of all bounded operator on A2
λ(Bn) by

(1.6) L
(
A2
λ(Bn)

)
3 S 7−→ Sz := UzSUz ∈ L

(
A2
λ(Bn)

)
.
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In particular, if S = Ta is a Toeplitz operator it can be verified that (Ta)z =
Ta◦φz .

Finally, we introduce a convenient convention for simplifying the notations.
In various of estimates throughout this chapter we will denote by C a positive
constant whose value may change from place to place.

1.2 The (m,λ)-Berezin transform

Recall that the m-Berezin transform for the unweighted Bergman space over
the unit disk and over the unit ball were defined in [35] and [29], respectively.
In the case where λ 6= 0 the notion of the (k, α)-Berezin transform for measures
on the weighted p-Bergman space over Bn was introduced in [28].

A generalization of the concept of the m-Berezin transform to an arbitrary
bounded operator on the Bergman space A2

λ(Bn) requires a modification of
the definition in [28]. We will follow the recipe in [29] and first introduce some
notation. Put

(1.7) Cm,α :=

(
m

|α|

)
(−1)|α|

|α|!
α1! · · ·αn!

,

so that

(1.8)
m∑
|α|=0

Cm,α z
αwα = (1− 〈z, w〉)m .

Definition 1.2.1. For any S ∈ L(A2
λ(Bn)), we define its (m,λ)-Berezin trans-

form by

(1.9) (Bm,λS) (z) :=
cλ+m

cλ

m∑
|α|=0

Cm,α
〈
Szw

α, wα
〉
λ
.

Note that a direct application of the Cauchy-Schwarz inequality gives the
following pointwise estimate

∣∣ (Bm,λS) (z)
∣∣ ≤ ‖S‖cλ+m

cλ

m∑
|α|=0

∣∣Cm,α∣∣‖wα‖2
λ =: C(λ,m, n) ‖S‖,

where the constant C(λ,m, n) > 0 is independent of z ∈ Bn. That is, Bm,λS
is a bounded function on Bn with

(1.10) ‖Bm,λS‖∞ ≤ C(λ,m, n) ‖S‖.
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As usual we can define the (m,λ)-Berezin transform of a functions a ∈
L∞(Bn) by

Bm,λ(a)(z) := Bm,λ(Ta)(z) =
cλ+m

cλ

m∑
|α|=0

Cm,α
〈
(a ◦ φz)wα, wα

〉
λ

=
cλ+m

cλ

∫
Bn

(a ◦ φz)(w) cλ(1− |w|2)λ+mdv(w)

=

∫
Bn

(a ◦ φz)(w) dvλ+m(w).(1.11)

As was mentioned earlier Definition 1.2.1 is different from the one in [28],
where the (m,λ)-Berezin transform B̃m,λ for finite, complex valued, regular
measures ν on Bn was introduced. In fact, in the special case of ν := advλ
with a ∈ L∞(Bn) the last one gives

B̃m,λ(ν)(z) =

∫
Bn

(a ◦ φz)(w) dvm(w),

where the different from (1.11) right hand side is independent of the weight
parameter λ. This seems to be inadequate as the initial data (measures and,
more generally, operators) are defined on the specific weighted Bergman space
A2
λ(Bn).

The next two propositions give alternative formulas for the (m,λ)-Berezin
transform that, from time to time, are more suitable to work with. Note that
the formula of the second proposition, in the particular case when n = 1 and
λ = 0, coincides with the definition of the m-Berezin transform on the unit
disk by Suárez [35].

Proposition 1.2.2. Let S ∈ L (A2
λ(Bn)), m ≥ 0 and z ∈ Bn. Then

(Bm,λS) (z) =
cλ+m

cλ

(
1− |z|2

)m+λ+n+1×∫
Bn

∫
Bn

(1− 〈u,w〉)mKm+λ
z (u)Km+λ

z (w)S∗Kλ
w(u)dvλ(u)dvλ(w).
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Proof. We have

(Bm,λS)(z) =
cλ+m

cλ

m∑
|α|=0

Cm,α〈Szwα, wα〉λ

=
cλ+m

cλ

m∑
|α|=0

Cm,α

∫
Bn
S
(
φαz k

λ
z

)
(w)φαz (w)kλz (w)dvλ(w)(1.12)

=
cλ+m

cλ

m∑
|α|=0

Cm,α ×(1.13) ∫
Bn

∫
Bn
φαz (u)kλz (u)φαz (w)kλz (w)S∗Kλ

w(u)dvλ(u)dvλ(w).

In the last equality we use that

S
(
φαz k

λ
z

)
(w) = 〈S

(
φαz k

λ
z

)
, Kλ

w〉λ = 〈φαz kλz , S∗Kλ
w〉λ.

Then, by (1.8) and (1.5), the expression (1.12) equals to
cλ+m

cλ

∫
Bn

∫
Bn

(
1− 〈φz(u), φz(w)〉

)m
kλz (u)kλz (w)S∗Kλ

w(u)dvλ(u)dvλ(w)

=
cλ+m

cλ

∫
Bn

∫
Bn

(
kλz (u)kλz (w)

Kλ
w(u)

) m
λ+n+1

kλz (u)kλz (w)S∗Kλ
w(u)dvλ(u)dvλ(w)

=
cλ+m

cλ

(
1− |z|2

)m+λ+n+1×

×
∫
Bn

∫
Bn

(
1− 〈u,w〉

)m
Km+λ
z (u)Km+λ

z (w)S∗Kλ
w(u)dvλ(u)dvλ(w),

which finishes the proof.

Proposition 1.2.3. Let S ∈ L (A2
λ(Bn)), m ≥ 0 and z ∈ Bn. Then

(1.14)

(Bm,λS) (z) =
cλ+m

cλ

(
1− |z|2

)m+λ+n+1
m∑
|α|=0

Cm,α
〈
S(wαKm+λ

z ), wαKm+λ
z

〉
λ
.

Proof. We have∫
Bn

∫
Bn

(
1− 〈u,w〉

)m
Km+λ
z (u)Km+λ

z (w)S∗Kλ
w(u)dvλ(u)dvλ(w)

=
m∑
|α|=0

Cm,α

∫
Bn

∫
Bn
uαwαKm+λ

z (u)Km+λ
z (w)S∗Kλ

w(u)dvλ(u)dvλ(w)

=
m∑
|α|=0

Cm,α

∫
Bn
S(uαKm+λ

z )(w)wαKm+λ
z (w)dvλ(w).

Thus the result follows from Proposition 1.2.2.
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Lemma 1.2.4. Given z, w ∈ Bn the automorphism U := φφw(z) ◦φw ◦φz of Bn
extends to a unitary transformation of Cn and

UzUw = VUUφw(z),

where the operator VU is given by(
VUf

)
(u) = (det U)

n+λ+1
n+1 · f

(
Uu
)
.

Proof. Since U in an automorphism of the unit ball having 0 as a fixed point
it follows by the Cartan theorem that U acts by multiplication with a unitary
matrix. This matrix will also be denoted by U , i.e., U(u) = Uu.

Differentiating the equality φφw(z) ◦ U = φw ◦ φz we have

φ′φw(z)(U(u))U ′(u) = φ′w(φz(u))φ′z(u),

which implies

(−1)nk0
φw(z)(Uu) det U = (−1)nk0

w(φz(u)) · (−1)nk0
z(u).

As kλz = (k0
z)

n+λ+1
n+1 and (Uzf)(w) = (−1)

n(n+λ+1)
n+1 kλz (w) · (f ◦ φz)(w), the appli-

cation of the last formula gives

(UzUwf)(u) = kλz (u) · kλw(φz(u)) · (f ◦ φw ◦ φz)(u)

= (det U)
n+λ+1
n+1 · (−1)

n(n+λ+1)
n+1 kλφw(z)(Uu) · (f ◦ φφw(z) ◦ U)(u)

= (VUUφw(z)f)(u).

Note that (det U)
n+λ+1
n+1 is a complex number of modulus one.

Theorem 1.2.5. Let S ∈ L (A2
λ(Bn)), m ≥ 0 and z ∈ Bn. Then Bm,λSz =

(Bm,λS) ◦ φz.

Proof. By definition

(Bm,λSz)(0) =
cλ+m

cλ

m∑
|α|=0

Cm,α〈U0SzU0w
α, wα〉λ

=
cλ+m

cλ

m∑
|α|=0

Cm,α〈Sz(−w)α, (−w)α〉λ

=
cλ+m

cλ

m∑
|α|=0

Cm,α〈Szwα, wα〉λ = Bm,λS(z) = (Bm,λS) ◦ φz(0).
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For any η ∈ Bn, by Proposition 1.2.2 and Lemma 1.2.4 we have

(Bm,λSz) ◦ φη(0)

= Bm,λ((Sz)η)(0)

=
cλ+m

cλ

∫
Bn

∫
Bn

(1− 〈u,w〉)m ((Sz)η)∗Kλ
w(u)dvλ(u)dvλ(w)

=
cλ+m

cλ

∫
Bn

∫
Bn

(1− 〈u,w〉)m UηUzS∗UzUηKλ
w(u)dvλ(u)dvλ(w)

=
cλ+m

cλ

∫
Bn

∫
Bn

(1− 〈u,w〉)m VUUφz(η)S∗Uφz(η)V
∗
UK

λ
w(u)dvλ(u)dvλ(w)

= Bm,λSφz(η)(0),

where VU is the unitary operator of Lemma 1.2.4. This implies the lemma
statement.

Next two lemmas are preparatory for Proposition 1.2.8, which states the
commutativity of the (m,λ)-Berezin transforms for different values of the pa-
rameter m.

Lemma 1.2.6. Let S ∈ L (A2
λ(Bn)) and m, j ≥ 0. If |S∗Kλ

z (w)| ≤ C for any
w ∈ Bn. Then

(Bm,λBj,λ)(S) = (Bj,λBm,λ)(S).

Proof. Due to Theorem 1.2.5, we need to check only that (Bm,λBj,λ)S(0) =
(Bj,λBm,λ)S(0).
Property (1.11), Proposition 1.2.2, and Fubini theorem imply that

Bm,λ(Bj,λS)(0) = Bm,λ(TBj,λS)(0)

= cm+λ

∫
Bn
Bj,λS(z)(1− |z|2)m+λdv(z)

=

∫
Bn

cm+λcj+λ
cλ

(1− |z|2)m+j+2λ+n+1×∫
Bn

∫
Bn

(1− 〈u,w〉)jKj+λ
z (u)Kj+λ

z (w)S∗Kλ
w(u)dvλ(u)dvλ(w)dv(z)

=

∫
Bn

∫
Bn

∫
Bn

cm+λcj+λ
cλ

(1− |z|2)m+j+2λ+n+1(1− 〈u,w〉)jKj+λ
z (u)×

Kj+λ
z (w)S∗Kλ

w(u)dvλ(u)dvλ(w)dv(z)

=

∫
Bn

∫
Bn

cm+λcj+λ
cλ

(1− 〈u,w〉)j×∫
Bn

(1− |z|2)m+j+2λ+n+1Kj+λ
z (u)Kj+λ

z (w)dv(z)S∗Kλ
w(u)dvλ(u)dvλ(w).
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Introduce

Fm,j(u,w) = (1− 〈u,w〉)j
∫
Bn

(1− |z|2)m+j+2λ+n+1Kj+λ
z (u)Kj+λ

z (w)dv(z),

and observe that it can be represented as a finite sum

Fm,j(u,w) =
l∑

i=1

Hi(u)Gi(w)

for certain holomorphic functions Hi and Gi. By [8, Lemma 9], it is sufficient
to show that Fm,j(w,w) = Fj,m(w,w), where w ∈ Bn, which can be easily
verified by changing the variables:

Fm,j(w,w)

= (1− |w|2)j
∫
Bn

(1− |z|2)m+j+2λ+n+1|Kj+λ
z (w)|2dv(z)

= (1− |w|2)j
∫
Bn

(1− |φw(z)|2)m+j+2λ+n+1|Kj+λ
w (φw(z))|2|k0

w(z)|2dv(z)

= (1− |w|2)m
∫
Bn

(1− |z|2)m+j+2λ+n+1|Km+λ
z (w)|2dv(z)

= Fj,m(w,w).

Denote by S1 = S1(A2
λ(Bn)) the set of all trace class operators acting on

A2
λ(Bn). Given A ∈ S1, we write tr[A] for its trace, and recall that the trace

norm of A is given by
‖A‖S1 := tr

[√
A∗A

]
.

Given f, g ∈ A2
λ(Bn), the one-dimensional operator f ⊗ g, acting on A2

λ(Bn)
by the formula (f ⊗ g)h = 〈h, g〉λf obviously belongs to S1. Furthermore,

‖f ⊗ g‖S1 = ‖f‖λ · ‖g‖λ

and tr [f ⊗ g] = 〈f, g〉λ. Recall as well that if A ∈ S1 has rank m, then one
has the inequality

‖A‖S1 ≤
√
m
(
tr [
√
A∗A]

) 1
2
.

Lemma 1.2.7. For any S ∈ L (A2
λ(Bn)), there exists sequences {Sα}, satisfy-

ing the property

(1.15) |S∗αKλ
z (w)| ≤ C(α),

such that Bm,λSα converges to Bm,λS point-wise.
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Proof. Both the density of H∞ in A2
λ(Bn) and the density of finite rank oper-

ators in the ideal K of compact operators on L(A2
λ(Bn)) imply that the set

F :=

{
l∑

j=1

fj ⊗ gj : fj, gj ∈ H∞
}

is dense in the ideal K in the norm topology. At the same time the ideal K
is dense in L(A2

λ(Bn)) with respect to the strong operator topology. Thus, for
each S ∈ L (A2

λ(Bn)) there exists a sequence {Sα} of finite rank operators

Sα =

l(α)∑
j=1

fα,j ⊗ gα,j

converging strongly to S. The representation (1.14) shows that Bm,λSα con-
verges to Bm,λS point-wise. To finish the proof we estimate

|S∗αKλ
z (w)| =

∣∣∣∣∣∣
l(α)∑
j=1

(gα,j ⊗ fα,j)Kλ
z (w)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
l(α)∑
j=1

〈Kλ
z (w), fα,j(w)〉λgα,j(w)

∣∣∣∣∣∣
≤

l(α)∑
j=1

|fα,j(z)||gα,j(w)| ≤
l(α)∑
j=1

‖fα,j‖∞‖gα,j‖∞ < C(α).

Proposition 1.2.8. Let S ∈ L (A2
λ(Bn)) and m, j ≥ 0. Then

(Bm,λBj,λ) (S) = (Bj,λBm,λ) (S).

Proof. Let S ∈ L (A2
λ(Bn)). By Lemma 1.2.7 there exists a sequence {Sα} of

operators that satisfy (1.15) and the point-wise convergence Bm,λSα → Bm,λS
holds. Lemma 1.2.6 implies that

(1.16) Bm,λ(Bj,λSα)(z) = Bj,λ(Bm,λSα)(z).

By representation (1.11),

Bm,λ(Bj,λSα)(z) =

∫
Bn

(Bj,λSα) ◦ φz(u)dvm+λ(u).

Then, as the sequence {Sα} converges in the strong operator topology to S,
by its construction, we have

‖(Bj,λSα) ◦ φz‖∞ = ‖(Bj,λSα)‖∞ ≤ ‖Bj,λ‖ · ‖Sα‖ ≤ C(j, λ) · ‖S‖.

Furthermore (Bj,λSα)◦φz(u) converges to (Bj,λS)◦φz(u), thus Bm,λ(Bj,λSα)(z)
converges to Bm,λ(Bj,λS)(z). Analogously, Bj,λ(Bm,λSα)(z) converges to
Bj,λ(Bm,λS)(z). Thus passing to the limit in (1.16) finishes the proof.
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Corollary 1.2.9. For all λ > −1 and m ∈ Z+ the (m,λ)-Berezin transform
is one-to-one on bounded operators on A2

λ(Bn).

Proof. Since Bm,λ restricted to functions coincides with the usual Berezin
transform on A2

λ+m(Bn) (cf. (1.11)) it is one-to-one on functions (or Toeplitz
operators). Now assume that S ∈ L(A2

λ(Bn)) such that Bm,λ(S) ≡ 0. Then
we obtain from Proposition 1.2.8 that

0 = B0,λBm,λ(S) = Bm,λB0,λ(S)

and from the last remark we see that B0,λ(S) ≡ 0. Since B0,λ is known to be
one-to-one on bounded operators over A2

λ(Bn) we conclude that S = 0, which
finishes the proof.

Recall that the pseudo-hyperbolic metric on the unit ball is defined as

ρ(z, w) := |φz(w)| = |φw(z)|.

As is well known ρ(·, ·) is invariant under the automorphisms φu of Bn. The
next result shows the Lipschitz continuity of B0,λS with respect to this metric.

Theorem 1.2.10. Let S ∈ L(A2
λ(Bn)). Then there exists a constant C(n, λ) >

0 such that
|B0,λS(z)−B0,λS(w)| ≤ C(n, λ)‖S‖ ρ(z, w).

Proof. By definition and the above properties of the trace class operators we
have

|B0,λS(z)−B0,λS(w)| = |〈Sz1, 1〉λ − 〈Sw1, 1〉λ|
= |tr [Sz(1⊗ 1)]− tr[Sw(1⊗ 1)]|
= |tr [Sz(1⊗ 1)− SUw(1⊗ 1)Uw]|
= |tr [Sz(1⊗ 1)− SUz(UzUw1⊗ UzUw1)Uz]| = D.

By Lemma 1.2.4,

|B0,λS(z)−B0,λS(w)| = D < ‖Sz‖‖1⊗ 1− Uφw(z)1⊗ Uφw(z)1‖S1

≤
√

2‖Sz‖
(
2− 2|〈1, kλφw(z)〉λ|2

)1/2

= 2‖S‖
[
1− (1− |φw(z)|2)n+λ+1

]1/2
≤ C(n, λ)‖S‖|φw(z)|,

which according to the definition of the pseudo-hyperbolic metric shows the
result

Now representation (1.11) yields
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Corollary 1.2.11. Let S ∈ L(A2
λ(Bn)), and a(z) = B0,λS(z). Then

lim
m→∞

‖Bm,λ(a)− a‖∞ = 0.

Proof. Let ε > 0 and choose δ > 0 with |a(z)− a(w)| < ε whenever z, w ∈ Bn
with ρ(z, w) < δ. If w ∈ Bn and m ∈ N, then according to (1.11) we have that

|Bm,λ(a)(w)− a(w)| ≤

≤cλ+m

∫
Bn

∣∣a ◦ φw(z)− a ◦ φw(0)
∣∣(1− |z|2)λ+mdv(z)

≤cλ+m

{∫
0≤|z|<δ

+

∫
1>|z|≥δ

} ∣∣a ◦ φw(z)− a ◦ φw(0)
∣∣(1− |z|2)λ+mdv(z).

Since ρ(·, ·) is invariant under the automorphisms φw and ρ(z, 0) < |z| (see,
for example, [46, page 28]), we have ρ(φw(z), φz(0)) = ρ(z, 0) < δ in the first
integral, and therefore by the Lipschitz continuity of a:

(1.17) cλ+m

∫
0≤|z|<δ

∣∣a ◦ φw(z)− a ◦ φw(0)
∣∣(1− |z|2)λ+mdv(z) < ε.

Now, we estimate the second integral above.

cλ+m

∫
1>|z|≥δ

∣∣a ◦ φw(z)− a ◦ φw(0)
∣∣(1− |z|2)λ+mdv(z)(1.18)

≤2cλ+m‖a‖∞
∫

1>|z|≥δ
(1− |z|2)λ+mdv(z)

≤2cλ+m‖a‖∞(1− δ)λ+mvol(Bn).

Since the normalizing constant cλ+m has at most polynomial growth asm→∞
(see the definition (1.2) and [13, Formula 8.328.2]) it is clear that the right
hand side converges to zero as m → ∞. The assertion follows by combining
the estimates (1.17) and (1.18).

1.3 Approximation by Toeplitz operators

We start this section with a technical statement which is due to [30, Proposi-
tion 1.4.10] and also stated as Lemma 3.1 in [29].

Lemma 1.3.1. Suppose a < 1 and a+ b < n+ 1. Then

sup
z∈Bn

∫
Bn

dv(w)

(1− |w|2)a |1− 〈w, z〉|b
<∞.
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Let 1 < q < ∞ and p be the conjugate exponent of q. Note that the
inequality

(1.19) q = 1 +
1

p− 1
<
n+ 2(1 + λ)

n+ 1 + λ
= 1 +

1 + λ

n+ 1 + λ
=: R

is equivalent to
p > 2 +

n

1 + λ
.

In what follows we use the norm ‖ · ‖p,λ, which is defined in the standard way,

‖f‖p,λ =

(∫
Bn
|f(z)|pdvλ(z)

) 1
p

.

Lemma 1.3.2. Let S ∈ L (A2
λ(Bn)), p > n

1+λ
+ 2, and let h(z) = (1− |z|2)−a

with
a =

(1 + λ)(n+ 1 + λ)

n+ 2(1 + λ)
=

1 + λ

R
.

Then there exists C(n, p, λ) > 0 such that

(1.20)
∫
Bn
|(SKλ

z )(w)|h(w)dvλ(w) ≤ C(n, p, λ)‖Sz1‖p,λh(z),

for all z ∈ Bn, and

(1.21)
∫
Bn
|(SKλ

z )(w)|h(z)dvλ(z) ≤ C(n, p, λ)‖S∗w1‖p,λh(w),

for all w ∈ Bn.

Proof. Given z ∈ Bn, the equality

Uz1 = (1− |z|2)
n+λ+1

2 Kλ
z ,

implies

SKλ
z =

1

(1− |z|2)
n+λ+1

2

SUz1

=
1

(1− |z|2)
n+λ+1

2

UzSz1 = (Sz1 ◦ φz)Kλ
z .

Then we change the variable u = φz(w) and apply the Hölder inequality:∫
Bn

|(SKλ
z )(w)|

(1− |w|2)a
dvλ(w)
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= cλ

∫
Bn

|Sz1 ◦ φz(w)||Kλ
z (w)|(1− |w|2)λ

(1− |w|2)a
dv(w)

=
1

(1− |z|2)a

∫
Bn

|Sz1(u)|
|1− 〈u, z〉|n+λ+1−2a(1− |u|2)a

dvλ(u)

≤ ‖Sz1‖p,λ
(1− |z|2)a

(
cλ

∫
Bn

dv(u)

(1− |u|2)aq−λ|1− 〈u, z〉|(n+λ+1−2a)q

)1/q

.

According to (1.19) we have aq−λ < 1 and aq−λ+(n+λ+1−2a)q < n+1,
and inequality (1.20) follows from Lemma 1.3.1.

The second inequality (1.21) follows from (1.20) after replacing S by S∗,
interchange w and z, and making use of the next equality

(1.22)
(
S∗Kλ

w

)
(z) =

〈
S∗Kλ

w, K
λ
z

〉
λ

=
〈
Kλ
w, SK

λ
z

〉
λ

= SKλ
z (w),

which holds for all z, w ∈ Bn.

Lemma 1.3.3. Let S ∈ L(A2
λ(Bn)) and p > 2 + n

1+λ
. Then

‖S‖ ≤ C(n, p, λ)

(
sup
z∈Bn
‖Sz1‖p,λ

)1/2(
sup
z∈Bn
‖S∗z1‖p,λ

)1/2

,

where C(n, p, λ) is the constant of Lemma 1.3.2.

Proof. By (1.22) we have that

(Sf)(w) =
〈
Sf,Kλ

w

〉
λ

=

∫
Bn
f(z)(S∗Kλ

w)(z)dvλ(z)

=

∫
Bn
f(z)(SKλ

z )(w)dvλ(z),

for f ∈ A2
λ(Bn) and w ∈ Bn. Now Lemma 1.3.2 and the Schur theorem (see,

for example, [45, Corollary 3.2.3]) imply the result.

Lemma 1.3.4. Let {Sm} be a bounded sequence in L(A2
λ(Bn)) with

lim
m→∞

‖B0,λSm‖∞ = 0.

Then
sup
z∈Bn
|〈(Sm)z1, f〉λ| → 0

as m→∞ for any f ∈ A2
λ(Bn), and

(1.23) sup
z∈Bn
|(Sm)z1(·)| → 0

uniformly on compact subsets of Bn as m→∞.
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Proof. To prove the first statement it is sufficient to check that for each multi-
index k

sup
z∈Bn
|〈(Sm)z1, w

k〉λ| → 0 as m→∞.

Using (1.4) we calculate

B0,λSm(φz(u)) = B0,λ(Sm)z(u) = (1− |u|2)n+λ+1 〈(Sm)zK
λ
u , K

λ
u〉λ

= (1− |u|2)n+λ+1

∞∑
|α|=0

∞∑
|β|=0

Γ(n+ |α|+ λ+ 1)

α!Γ(n+ λ+ 1)

Γ(n+ |β|+ λ+ 1)

β!Γ(n+ λ+ 1)

× 〈(Sm)zw
α, wβ〉λuαuβ.

Given a multi-index k and r ∈ (0, 1), we calculate

∫
|u|<r

B0,λSm(φz(u))uk

(1− |u|2)n+λ+1
dvλ(u)

=
∞∑
|α|=0

∞∑
|β|=0

Γ(n+ |α|+ λ+ 1)

α!Γ(n+ λ+ 1)

Γ(n+ |β|+ λ+ 1)

β!Γ(n+ λ+ 1)

×
〈
(Sm)zw

α, wβ
〉
λ

∫
|u|<r

uα+kuβdvλ(u)

=
∞∑
|α|=0

Γ(n+ |α|+ λ+ 1)

α!Γ(n+ λ+ 1)

Γ(n+ |α|+ |k|+ λ+ 1)

(α + k)!Γ(n+ λ+ 1)

×
〈
(Sm)zw

α, wα+k
〉
λ

∫
|u|<r
|uα+k|2dvλ(u)

=
∞∑
|α|=0

Γ(n+ |α|+ λ+ 1)

α!Γ(n+ λ+ 1)

Γ(n+ |α|+ |k|+ λ+ 1)

(α + k)!× πnΓ(λ+ 1)
×

×
〈
(Sm)zw

α, wα+k
〉
λ

∫
|u|<r
|uα+k|2(1− |u|2)λdv(u).

Passing in the last integral to the polar coordinates u = sξ, where s ∈ R+ and
ξ ∈ S2n−1, and making use of the formulas (where dS is the surface measure
on S2n−1) ∫

Bn
f(u)dv(u) =

∫ 1

0

s2n−1dr

∫
S2n−1

f(sξ)dS(ξ),

∫
S2n−1

|ξm|2dS(ξ) =
2πnm!

(n− 1 + |m|)!
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the last expression is equal to
∞∑
|α|=0

Γ(n+ |α|+ λ+ 1)

α!Γ(n+ λ+ 1)

Γ(n+ |α|+ |k|+ λ+ 1)

Γ(λ+ 1)Γ(n+ |α|+ |k|)
×

〈
(Sm)zw

α, wα+k
〉
λ

2

∫ r

0

s2n+2|α|+2|k|−1(1− s2)λds

=
∞∑
|α|=0

Γ(n+ |α|+ λ+ 1)

α!Γ(n+ λ+ 1)

Γ(n+ |α|+ |k|+ λ+ 1)

Γ(λ+ 1)Γ(n+ |α|+ |k|)
×

×
〈
(Sm)zw

α, wα+k
〉
λ

∫ r2

0

sn+|α|+|k|−1(1− s)λds

=
∞∑
|α|=0

Γ(n+ |α|+ λ+ 1)

α!Γ(n+ λ+ 1)

〈
(Sm)zw

α, wα+k
〉
λ
Ir2(n+ |α|+ |k|, λ+ 1)

=
〈
(Sm)z1, w

k
〉
λ
Ir2(n+ |k|, λ+ 1)+

∞∑
|α|=1

Γ(n+ |α|+ λ+ 1)

α!Γ(n+ λ+ 1)

〈
(Sm)zw

α, wα+k
〉
λ
Ir2(n+ |α|+ |k|, λ+ 1).

Here the function Ix(a, b) is defined in the standard way (see, for example, [13,
Formula 8.392]

Ix(a, b) =
Γ(a+ b)

Γ(a)Γ(b)

∫ x

0

ta−1(1− t)b−1dt.

Then we have

|
〈
(Sm)z1, w

k
〉
λ
| ≤ 1

Ir2(n+ |k|, λ+ 1)

∣∣∣∣∫
|u|<r

B0,λSm(φz(u))uk

(1− |u|2)n+λ+1
dvλ(u)

∣∣∣∣
+

∣∣∣∣∣∣
∞∑
|α|=1

Γ(n+ |α|+ λ+ 1)

α!Γ(n+ λ+ 1)

〈
(Sm)zw

α, wα+k
〉
λ

Ir2(n+ |α|+ |k|, λ+ 1)

Ir2(n+ |k|, λ+ 1)

∣∣∣∣∣∣
≤ 1

Ir2(n+ |k|, λ+ 1)
‖B0,λSm‖∞ cλ

∫
|u|<r

|uk|
(1− |u|2)n+1

dv(u)

+
∞∑
|α|=1

Γ(n+ |α|+ λ+ 1)

α!Γ(n+ λ+ 1)
‖(Sm)z‖‖wα‖2,λ‖wα+k‖2,λ

Ir2(n+ |α|+ |k|, λ+ 1)

Ir2(n+ |k|, λ+ 1)

≤ ‖B0,λSm‖∞
cλ

Ir2(n+ |k|, λ+ 1)

∫
|u|<r

|uk|
(1− |u|2)n+1

dv(u)

+ C
∞∑
|α|=1

Ir2(n+ |α|+ |k|, λ+ 1)

Ir2(n+ |k|, λ+ 1)
= I + Σ,
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where C > 0 is a constant independent of m and z. In the last line estimat-
ing Σ we used the boundedness of the sequence {Sm} and the easily verified
inequality

Γ(n+ |α|+ λ+ 1)

α!Γ(n+ λ+ 1)
‖wα‖2,λ‖wα+k‖2,λ < 1.

The first summand I above tends to zero as m → ∞ due to the assumptions
of the lemma. We estimate now the series in the second summand Σ. By [13,
Formula 8.328.2]

lim
|α|→∞

Γ(n+ |α|+ |k|+ λ+ 1)

Γ(n+ |α|+ |k|)
1

(n+ |α|+ |k|)λ+1
= 1,

thus there exists C > 0 such that

Γ(n+ |α|+ |k|+ λ+ 1)

Γ(n+ |α|+ |k|)
1

(n+ |α|+ |k|)λ+1
< C.

Then

Σ1 :=
∞∑
|α|=1

Ir2(n+ |α|+ |k|, λ+ 1)

Ir2(n+ |k|, λ+ 1)

=
Γ(n+ |k|)Γ(λ+ 1)

Γ(n+ |k|+ λ+ 1)

(∫ r2

0

tn+|k|−1(1− t)λdt

)−1

×
∞∑
|α|=1

Γ(n+ |α|+ |k|+ λ+ 1)

Γ(n+ |α|+ |k|)Γ(λ+ 1)

∫ r2

0

tn+|α|+|k|−1(1− t)λdt

≤ C
Γ(n+ |k|)

Γ(n+ |k|+ λ+ 1)

(∫ r2

0

tn+|k|−1(1− t)λdt

)−1

×

×
∞∑
|α|=1

(n+ |α|+ |k|)λ+1

∫ r2

0

tn+|α|+|k|−1(1− t)λdt.

Estimating the multiple (1− t)λ in both integrals:

(1− r2)λ ≤ (1− t)λ ≤ 1, for λ ≥ 0,

1 ≤ (1− t)λ ≤ (1− r2)λ, for λ ∈ (−1, 0),

we come to the following estimate

Σ1 ≤ C
Γ(n+ |k|+ 1)

Γ(n+ |k|+ λ+ 1)
(1− r2)−|λ|

∞∑
|α|=1

(n+ |α|+ |k|)λr2|α|

= C
Γ(n+ |k|+ 1)

Γ(n+ |k|+ λ+ 1)
(1− r2)−|λ|

∞∑
m=1

(
m+ n− 1

n

)
(n+m+ |k|)λ r2m.
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The power series in r in the last line has the radius of convergence equal to
1 and the value 0 at 0, thus the value of Σ can be made as small as needed
taking r sufficiently closed to 0.

Both above estimates, on I and on Σ, are independent of z ∈ Bn, which
proves the first statement of the lemma.

To prove the second statement of the lemma we use the series representation
(1.4),

|(Sm)z1(u)| = |〈(Sm)z1, K
λ
u〉λ|

≤
∞∑
|α|=0

Γ(n+ |α|+ λ+ 1)

α!Γ(n+ λ+ 1)
|〈(Sm)z1, w

α〉λ| · |uα|

≤
l−1∑
|α|=0

Γ(n+ |α|+ λ+ 1)

α!Γ(n+ λ+ 1)
|〈(Sm)z1, w

α〉λ|+

∞∑
|α|=l

Γ(n+ |α|+ λ+ 1)

α!Γ(n+ λ+ 1)
‖Sm‖ · ‖wα‖λ · |uα|

≤
l−1∑
|α|=0

Γ(n+ |α|+ λ+ 1)

α!Γ(n+ λ+ 1)
|〈(Sm)z1, w

α〉λ|+

C
∞∑
|α|=l

(
Γ(n+ |α|+ λ+ 1)

α!Γ(n+ λ+ 1)

) 1
2

|uα|

= Σ1 + Σ2.

To estimate Σ2 we use the Cauchy-Schwarz inequality,

Σ2 = C
∞∑
j=l

(
Γ(n+ j + λ+ 1)

j!Γ(n+ λ+ 1)

) 1
2 ∑
|α|=j

[
j!

α!

] 1
2

|uα|

≤ C
∞∑
j=l

(
Γ(n+ j + λ+ 1)

j!Γ(n+ λ+ 1)

) 1
2

∑
|α|=j

j!

α!
|uα|2

 1
2
∑
|α|=j

1

 1
2

= C
∞∑
j=l

(
Γ(n+ j + λ+ 1)

j!Γ(n+ λ+ 1)

) 1
2
(

(n+ j − 1)!

j!(n− 1)!

) 1
2

∑
|α|=j

j!

α!
|uα|2

 1
2

.

Let now |u| ≤ r < 1, using the multi-nomial theorem for the expression in the
last brackets ∑

|α|=j

j!

α!
|uα|2 = |u|2j,



26 CHAPTER 1. (M,λ)BEREZIN TRANSFORM

we finely have

Σ2 ≤ C

∞∑
j=l

(
Γ(n+ j + λ+ 1)

j!Γ(n+ λ+ 1)

) 1
2
(

(n+ j − 1)!

j!(n− 1)!

) 1
2

rj.

Choosing l sufficiently large we can make Σ2 as small as needed, Σ1, with l
already fixed, tends uniformly to zero as m→∞ by the first statement of the
lemma. This ends the proof.

Lemma 1.3.5. Let {Sm} be a sequence in L(A2
λ(Bn)) such that ‖B0Sm‖∞ → 0

as m→∞ and that for some p > 2 + n
1+λ

(1.24) sup
z∈Bn
‖(Sm)z1‖p,λ ≤ C and sup

z∈Bn
‖(S∗m)z1‖p,λ ≤ C,

where C > 0 is independent of m. Then Sm → 0 as m→∞ in the L(A2
λ(Bn))-

norm.

Proof. By Lemma 1.3.3 and (1.23) we have

‖Sm‖ ≤ C(n, p, λ)

(
sup
z∈Bn
‖(Sm)z1‖p,λ

)1/2(
sup
z∈Bn
‖(S∗m)z1‖p,λ

)1/2

≤ C(n, p, λ).

Then, for 2 + n
1+λ

< s < p, Hölder’s inequality gives

sup
z∈Bn
‖(Sm)z1‖ss,λ ≤ sup

z∈Bn

∫
|w|>r

|(Sm)z1(w)|sdvλ(w)+

sup
z∈Bn

∫
|w|≤r

|(Sm)z1(w)|sdvλ(w)

≤ sup
z∈Bn
‖(Sm)z1‖sp,λ

(∫
|w|>r

dvλ(w)

)1−s/p

+

sup
z∈Bn

∫
|w|≤r

|(Sm)z1(w)|sdvλ(w),

where, by (1.23), the second term tends to 0 as m→∞. By the first inequal-
ity in (1.24), the first term above can be made arbitrarily small by taking r
sufficiently close to 1. Finally Lemma 1.3.3 yields

‖Sm‖ ≤ C(n, s, λ)

(
sup
z∈Bn
‖(Sm)z1‖s,λ

)1/2(
sup
z∈Bn
‖(S∗m)z1‖s,λ

)1/2

≤ C(n, s, λ)

(
sup
z∈Bn
‖(Sm)z1‖s,λ

)1/2

→ 0.
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Corollary 1.3.6. Let S ∈ L(A2
λ(Bn)) such that for some p > 2 + n

1+λ
,

(1.25)
sup
z∈Bn
‖Sz1− (TBm,λ(S))z1‖p,λ ≤ C and sup

z∈Bn
‖S∗z1− (TBm,λ(S∗))z1‖p,λ ≤ C,

where C > 0 is independent of m. Then TBm,λ(S) → S as m → ∞ in
L(A2

λ(Bn))-norm.

Proof. We set Sm = S − TBm,λ(S). By Proposition 1.2.8 we have

B0,λ(Sm) = B0,λS −B0,λ(TBm,λ(S)) = B0,λS −Bm,λ(B0,λS),

which, by Corollary 1.2.11, tends uniformly to 0 as m→∞, hence

‖B0,λ(Sm)‖∞ → 0.

To finish the proof we use Lemma 1.3.5.

Theorem 1.3.7. Let S ∈ L(A2
λ(Bn)). If there is p > 2 + n

1+λ
such that

(1.26) sup
z∈Bn
‖T(Bm,λS)◦φz1‖p,λ ≤ C and sup

z∈Bn
‖T ∗(Bm,λS)◦φz1‖p,λ ≤ C,

where C > 0 is independent of m. Then TBm,λ(S) → S as m → ∞ in
L(A2

λ(Bn))-norm.

Proof. We prove first that

(1.27) sup
z∈Bn
‖Sz1‖p,λ <∞.

The equality T(Bm,λS)◦φz = (TBm,λS)z, together with Lemma 1.3.3, implies

‖TBm,λS‖

≤ C(n, p, λ)

(
sup
z∈Bn
‖T(Bm,λS)◦φz1‖p,λ

)1/2(
sup
z∈Bn
‖T ∗(Bm,λS)◦φz1‖p,λ

)1/2

< C,

(1.28)

where C is independent of m. Let Sm = S−TBm,λS, then by arguments in the
proof of Corollary 1.3.6 we have

‖B0,λSm‖∞ → 0, as m→∞.

By (1.28) the sequence {Sm} is bounded; thus taking a polynomial f with
‖f‖q,λ = 1, by Lemma 1.3.4 we have

sup
z∈Bn
|〈(Sm)z1, f〉λ| → 0, as m→∞.
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Then for any z0 ∈ Bn and any ε > 0, there is (a sufficiently large) m such that

|〈Sz01, f〉λ| ≤ sup
z∈Bn
|〈(Sm)z1, f〉λ|+ |〈(TBm,λS)z01, f〉λ| ≤ ε+ C,

with C being independent of m and z0. This proves (1.27). Further, the
equality

T ∗(Bm,λS)◦φz = TBm,λSz = TBm,λ(S∗z ) = T(Bm,λ(S∗))◦φz ,

together with (1.26) and (1.27), implies (1.25), and Corollary 1.3.6 finishes the
proof.

Another approach to approximation theorems involves the invariant Lapla-
cian and its application to the (m,λ)-Berezin transform.
Recall that the invariant Laplacian ∆̃ on Bn, defined for u ∈ C2(Bn) and
z ∈ Bn, is given by

(1.29)
(
∆̃u
)
(z) := ∆(u ◦ φz)(0), where ∆ := 4

n∑
j=1

∂2

∂zj∂zj
.

Here ∂
∂zj

and ∂
∂zj

denote the Cauchy-Riemann operators with respect to the
complex coordinate zj, j = 1, · · · , n and ∆ is the standard Laplacian on
Cn ∼= R2n. Let S ∈ L(A2

λ(Bn)) and m ∈ Z+, then we wish to calculate the
function

∆̃Bm,λS ∈ C∞(Bn).

Note that in the case λ = 0 and n = 1 this calculation was done in Proposition
2.4. of [35]. According to Theorem 1.2.5 we have

∆̃
[
Bm,λS

]
(z) = ∆

(
Bm,λS ◦ φz

)
(0) = ∆

(
Bm,λSz

)
(0)

and therefore we can assume that z = 0. We intend to use the form of Bm,λS
in Proposition 1.2.2. We apply ∆ to the z-dependent part of Bm,λS in the
integral representation given there. Hence we have to evaluate the derivative

∆

[
(1− |z|2)m+λ+n+1

(1− 〈u, z〉)n+m+λ+1(1− 〈z, w〉)n+m+λ+1

]
(0) =

= −4(m+ n+ λ+ 1) + 4(m+ n+ λ+ 1)2〈u,w〉.

Inserting this relation into the expression of Bm,λS given in Proposition 1.2.2
shows

(1.30) ∆(Bm,λS)(0) = −4(m+ n+ λ+ 1)(Bm,λS)(0)+

+ 4(m+n+λ+ 1)2 cλ+m

cλ

∫
Bn

∫
Bn

(
1−〈u,w〉

)m〈u,w〉S∗Kλ
w(u) dvλ(u)dvλ(w).
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On the other hand the same proposition shows that

(1.31)
cλ
cλ+m

(Bm,λS) (0)− cλ
cλ+m+1

(Bm+1,λS) (0) =

=

∫
Bn

∫
Bn

(
1− 〈u,w〉

)m〈u,w〉S∗Kλ
w(u) dvλ(u)dvλ(w).

Combining the equations (1.30) and (1.31) now implies

∆(Bm,λS)(0) = 4(m+ n+ λ+ 1)(m+ n+ λ)
(
Bm,λS

)
(0)

− 4
cλ+m

cλ+m+1

(m+ n+ λ+ 1)2
(
Bm+1,λS)(0).

According to (1.2) we have
cλ+m

cλ+m+1

(m+ n+ λ+ 1)2 = (n+m+ λ+ 1)(λ+m+ 1)

and we have shown the following relation, which in the case of λ = 0 and n = 1
is found in [35]:

Proposition 1.3.8. Let S ∈ L(A2
λ(Bn)). For all m ∈ Z+ and λ > −1 it holds

(1.32)
∆̃
[
Bm,λS

]
= 4(m+ n+ λ+ 1)

[
(m+ n+ λ)

(
Bm,λS

)
− (m+ λ+ 1)

(
Bm+1,λS

)]
.

Moreover, for all k,m we have

(1.33) ∆̃Bm,λ

(
Bk,λS

)
= Bm,λ

(
∆̃Bk,λS

)
.

Proof. It suffices to prove (1.33). According to Proposition 1.2.8 and using
(1.32) we have

∆̃Bm,λ

(
Bk,λS

)
=

=∆̃Bk,λ

(
Bm,λS

)
=4(k + n+ λ+ 1)

[
(k + n+ λ+ 1)Bk,λBm,λS − (k + λ+ 1)Bk+1,λBm,λS

]
=4(k + n+ λ+ 1)

[
(k + n+ λ+ 1)Bm,λBk,λS − (k + λ+ 1)Bm,λBk+1,λS

]
=Bm,λ

(
∆̃Bk,λS

)
.

which shows the assertion.

For the remaining part of the section we specialize to the case of dimension
n = 1. Proposition 1.3.8) then implies

(1.34) Bm,λ(S)−Bm+1,λ(S) =
∆̃[Bm,λ(S)]

4(m+ λ+ 2)(m+ λ+ 1)

and we can prove an analogue of Lemma 4.1 in [37]. We write D := B1 ⊂ C
for the open unit disc.
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Proposition 1.3.9. Let S ∈ L(A2
λ(D)) where λ > −1. Assume that

‖T∆̃(Bm,λS)‖ ≤ C

independently of m ≥ m0 and for some m0 ∈ Z+. Then we have

(1.35) lim
m→∞

TBm,λS = S,

where the convergence is with respect to the norm topology of A2
λ(D).

Proof. According to (1.34) we can write

TBm+1,λS = TB0,λS −
m∑
k=0

{
TBk,λS − TBk+1,λS

}
= TB0,λS −

m∑
k=0

T∆̃(Bk,λS)

4(k + λ+ 2)(k + λ+ 1)
.

>From the boundedness assumption on the norms ‖T∆̃(Bk,λS)‖ we conclude
that the right hand side of the equation converges in norm to some operator
R ∈ L(A2

λ(D)). The continuity property of the usual Berezin transfrom B0,λ,
cf. (1.10) implies that

lim
m→∞

B0,λTBm,λS = B0,λR.

On the other hand note that Proposition 1.2.8 and Corollary 1.2.11 imply the
pointwise convergence

B0,λ(TBm,λS) = B0,λBm,λ(S) = Bm,λB0,λ(S) −→ B0,λS

and it follows that B0,λS = B0,λR. Finally the injectivity of B0,λ shows that
S = R.



Chapter 2

Eigenvalue characterization
of radial operators on
weighted Bergman spaces
over the unit ball.

2.1 Radial operators
Denote by U(n) the compact group of all n × n complex unitary matrices
equipped with the Haar measure dU . Recall that for each U ∈ U(n), the
operator

VUf(w) = (det U)
n+λ+1
n+1 f(Uw)

is unitary on A2
λ(Bn).

Definition 2.1.1. An operator S ∈ L(A2
λ(Bn)) is called radial if SVU = VUS,

for all U ∈ U(n). The radialization of S is defined by

Rad(S) :=

∫
U(n)

V ∗USVUdU ,

where the integral is taken in the weak sense.

We mention that the operator Rad(S) is radial, and that Rad(S) = S for
each radial operator S.

With a ∈ L∞(Bn) and z ∈ Bn the radialization of a in z is defined by

rad(a)(z) :=

∫
U(n)

a(Uz)dU .

Note that rad(a) is a radial function, i.e., a(z) = a(|z|), and that Rad(Ta) =
Trad(a). We need the following result.

31
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Lemma 2.1.2. The set of Toeplitz operators with bounded measurable symbols
is dense in the algebra of all bounded operators on A2

λ(Bn) with respect to strong
operator topology.

Proof. In case of the unweighted Bergman space λ = 0 the proof can be found
in [10]. However, the arguments almost literally serve for any λ ∈ (−1,∞).

Recall that the standard monomial basis [eα : α ∈ Zn+] of A2
λ(Bn) is given

by

(2.1) eα(z) :=

√
Γ(n+ |α|+ λ+ 1)

α!Γ(n+ λ+ 1)
zα.

The next result gives an independent characterization of the radial opera-
tors.

Proposition 2.1.3. An operator S ∈ L(A2
λ(Bn)) is radial if and only if it

is diagonal with respect to the basis (2.1) and its eigenvalue sequence µ =
{µα}α∈Zn+ is of the form µα = µ̃|α| for some bounded sequence {µ̃`}`≥0, that is
Seα = µ̃|α|eα, for all α ∈ Zn+.

Proof. Let S be a diagonal operator with Seα = µ̃|α|eα, for all α ∈ Zn+. For
each m ∈ Z+ consider the finite dimensional subspace Hm of A2

λ(Bn) defined
by

Hm = span {eα : |α| = m} .
Then for all f ∈ Hm we have that Sf = µ̃mf . Furthermore each subspace Hm

is invariant under the operators VU with U ∈ U(n). Thus SVU = VUS, and S
is radial.

Conversely, assume that S is radial. Using Lemma 2.1.2 select a sequence
{ak}k∈Z+ ⊂ L∞(Bn) such that

lim
k→∞

Tak = S (in SOT).

An application of the Banach Steinhaus theorem in combination with the
Lebesgue’s dominated convergence theorem shows that the radialization “Rad”
is continuous with respect to the SOT and therefore we have convergence in
SOT.

Trad(ak) = Rad (Tak) −→ Rad(S) = S, (as k →∞).

As a consequence we can assume that ak is a radial function for each k ∈ Z+

and therefore Tak is diagonal with Takeα = µ
(k)
|α|eα. For all α ∈ Zn+ it follows

Seα = lim
k→∞

Takeα = µ̃|α|eα, with µ̃|α| := lim
k→∞

µ
(k)
|α| ,

showing that S is diagonal with respect to the orthonormal basis [eα : α ∈ Zn+]
and that its eigenvalue sequence only depends on |α| for each α ∈ Zn+.
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Corollary 2.1.4. The set of all bounded radial operators acting on A2
λ(Bn) is

a C∗-algebra which is isomorphic and isometric to `∞(Z+). The isomorphism
is given by the mapping

S 7−→ µ̃(S),

where µ̃(S) is the eigenvalue sequence of the radial operator S in Proposition
2.1.3.

An interesting and important class of radial operators is provided by Toeplitz
operators Ta with bounded measurable radial symbols a = a(|z|). In Proposi-
tion 2.3.1 we will show that the eigenvalue sequences of such operators obey
very specific properties. This implies that the class of radial Toeplitz operators
is a quite restricted subset of the algebra of all radial operators.

Let Ta,n,λ be the Toeplitz operator with radial generating symbol a acting
on A2

λ(Bn). It is well known (see [24] for the one-dimensional case and [16] for
the general case) that Ta,n,λ is diagonal with respect to the basis (eα)α∈Zn+ :

Ta,n,λeα = β
(n)
a,λ(|α|+ 1)eα, α ∈ Zn+,

where the corresponding eigenvalues depend only on the norm of the multi-
indices and are of the form

(2.2) β
(n)
a,λ(k) =

1

B(n+ k − 1, λ+ 1)

∫ 1

0

a(
√
r)rk+n−2(1− r)λ dr, k ∈ N.

We analyze now the (m,λ)-Berezin transform of radial operators. Given
S ∈ L(A2

λ(Bn)), we have

(2.3) rad ◦Bm,λ(S)(z) =
cλ+m

cλ

m∑
|α|=0

Cm,α

∫
U(n)

〈SUzwα, wα〉λ dU .

Then SUz = UUzSUUz for all U ∈ U(n) and with f ∈ L2(Bn, dvλ) it follows

(
UUzf

)
(w) = (−1)

n(n+λ+1)
n+1

(1− |Uz|2)
n+λ+1

2

(1− 〈w,Uz〉)n+λ+1
f ◦ φUz(w) = (∗).

By using the relation φUz = U ◦ φz ◦ U∗ we find

(∗) = (−1)
n(n+λ+1)

n+1
(1− |z|2)

n+λ+1
2

(1− 〈U∗w, z〉)n+λ+1
f ◦U ◦φz ◦U∗(w) =

[
VU∗ ◦Uz ◦VUf

]
(w),
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which shows that SUz = VU∗ ◦Uz ◦VU ◦S ◦VU∗ ◦Uz ◦VU . Plugging these relation
into (2.3) yields:

rad ◦Bm,λ(S)(z) =
cλ+m

cλ

m∑
|α|=0

Cm,α

∫
U(n)

〈
(VU ◦ S ◦ VU∗)z(Uw)α, (Uw)α

〉
λ
dU

=
cλ+m

cλ

m∑
|α|=0

Cm,α

∫
U(n)

〈
(VU ◦ S ◦ VU∗)zwα, wα

〉
λ
dU

= Bm,λ ◦ Rad (S)(z).

In the second equality we have used the following simple observation:

Lemma 2.1.5. Let S ∈ L(A2
λ(Bn)) and U ∈ U(n). Then it follows for all

m ∈ Z+
m∑
|α|=0

Cm,α
〈
S(Uw)α, (Uw)α

〉
λ

=
m∑
|α|=0

Cm,α
〈
Swα, wα

〉
λ
.

Proof. Recall that any bounded operator S ∈ L(A2
λ(Bn)) can be written as an

integral operator with kernel KS(w, v) :=
[
S∗Kλ

w(v)
]

: Bn × Bn → C. In fact,
let g ∈ A2

λ(Bn), then

[Sg](w) =
〈
Sg,Kλ

w

〉
λ

=
〈
g, S∗Kλ

w

〉
λ

=

∫
Bn
g(v)

[
S∗Kλ

w(v)
]
dvλ(v).

Let U ∈ U(n) be fixed, then we find

m∑
|α|=0

Cm,α
〈
S(Uw)α, (Uw)α

〉
λ

=
m∑
|α|=0

Cm,α

∫
Bn×Bn

KS(w, v)
(
Uv
)α(Uw)αdvλ(v)dvλ(w)

=

∫
Bn×Bn

KS(w, v)
(
1− 〈Uv,Uw〉

)m
dvλ(v)dvλ(w)

=

∫
Bn×Bn

KS(w, v)
(
1− 〈v, w〉

)m
dvλ(v)dvλ(w)

=
m∑
|α|=0

Cm,α
〈
Swα, wα

〉
λ
,

and the assertion follows.

Summarizing the above remark shows:
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Lemma 2.1.6. The “radialization” commutes with the (m,λ)-Berezin trans-
form for all λ > −1 and m ∈ Z+, i.e.

(2.4) rad ◦Bm,λ(S) = Bm,λ ◦ Rad (S), S ∈ L(A2
λ(Bn)).

In particular, S is a radial operator if and only if Bm,λ(S) is a radial function.

Proof. If Bm,λ(S) is a radial function then it follows from (2.4) that

Bm,λ(S) = rad ◦Bm,λ(S) = Bm,λ ◦ Rad(S).

Since Bm,λ is one-to-one on bounded operators (cf. Proposition 1.2.8, (iii)) we
have S = Rad(S) and S is a radial operator.

On the other hand, if S is a radial operator, then we obtain rad◦Bm,λ(S) =
Bm,λ(S) showing that Bm,λ(S) is a radial function.

We note that the (m,λ)-Berezin transform of a radial operator can be ex-
pressed in terms of its eigenvalue sequence. We need first the next preparatory
formula:

Lemma 2.1.7. Let α, β ∈ Zn+, then

Sn(j, β) :=
∑
|α|=j

(α + β)!

α!β!
=

(
n+ j + |β| − 1

j

)
.

Proof. Let ` ∈ Z+ and with t ∈ (−1, 1) consider the power series

∞∑
j=0

(j + `)!

j!`!
tj =

1

`!

d`

dt`

∞∑
j=0

t`+j =
1

`!

d`

dt`

(
t`

1− t

)

=
1

`!

d`

dt`

[
1

1− t
−

`−1∑
r=0

tr

]
= (1− t)−`−1.

Put x = (t, t, · · · , t) ∈ (−1, 1)n, then it follows from the last identity

∑
α∈Zn+

(α + β)!

α!β!
xα =

n∏
k=1

∞∑
j=0

(j + βk)!

j!βk!
tj

=
1

(1− t)|β|+n

=
∞∑
j=0

(
n+ |β|+ j − 1

j

)
tj.

Since xα = t|α| the result follows by comparing coefficients.
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Now we are ready to prove

Proposition 2.1.8. Let S be a radial operator with the eigenvalue sequence
{µ|α|}α∈Z+. Then its (m,λ)-Berezin transform has the form

(Bm,λS)(z)

=
cλ+m

cλ
(1− |z|2)m+λ+n+1

m∑
j=0

(−1)j
m!

(m− j)!

∞∑
k=0

[
Γ(n+ k +m+ λ+ 1)

Γ(n+m+ λ+ 1)

]2

× Γ(n+ λ+ 1)

Γ(n+ j + k + λ+ 1)

(
n+ j + k − 1

j

)
µj+k

|z|2k

k!
.

Proof. By (1.4) and then by (1.3), we have

〈S(wαKm+λ
z ), wαKm+λ

z 〉λ

=
∞∑
|β|=0

[
Γ(n+ |β|+m+ λ+ 1)

β! Γ(n+m+ λ+ 1)

]2

|zβ|2 〈Swα+β, wα+β〉λ

=
∞∑
|β|=0

[
Γ(n+ |β|+m+ λ+ 1)

β! Γ(n+m+ λ+ 1)

]2
(α + β)! Γ(n+ λ+ 1)

Γ(n+ |α|+ |β|+ λ+ 1)
µ|α|+|β| |zβ|2.

Using (1.14) and (1.7) we calculate then

(Bm,λS)(z) =

=
cλ+m

cλ
(1− |z|2)m+λ+n+1

m∑
|α|=0

Cm,α〈S(wαKm+λ
z ), wαKm+λ

z 〉λ

=
cλ+m

cλ
(1− |z|2)m+λ+n+1

m∑
|α|=0

(
m

|α|

)
(−1)|α|

|α|!
α!

×
∞∑
|β|=0

[
Γ(n+ |β|+m+ λ+ 1)

Γ(n+m+ λ+ 1)

]2
(α + β)! Γ(n+ λ+ 1)

Γ(n+ |α|+ |β|+ λ+ 1)

× µ|α|+|β|
(α + β)!

[β!]2
|zβ|2

=
cλ+m

cλ
(1− |z|2)m+λ+n+1

m∑
j=0

(
m

j

)
(−1)jj!

∞∑
k=0

[
Γ(n+ k +m+ λ+ 1)

Γ(n+m+ λ+ 1)

]2

× Γ(n+ λ+ 1)

Γ(n+ j + k + λ+ 1)

µj+k
k!

∑
|β|=k

k!

β!
|zβ|2

∑
|α|=j

(α + β)!

α! β!
.

Finally, the statement follows by the multinomial theorem and Lemma 2.1.7.
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Corollary 2.1.9. Let S be a radial operator with the eigenvalue sequence
{µ|α|}α∈Z+. Then its Berezin transform Bλ(S) := B0,λ(S) is given by

(BλS)(z) = (1− |z|2)n+λ+1

∞∑
k=0

Γ(n+ k + λ+ 1)

Γ(n+ λ+ 1)
µk
|z|2k

k!
.

2.2 Approximation of radial operators

We specify here the results of the previous sections to the case of radial opera-
tors. Given a symbol f ∈ L∞(Bn) and U ∈ U(n) we have for all g, h ∈ A2

λ(Bn)

〈
V ∗UTfVUg, h

〉
λ

=

∫
Bn
f(w)VUg(w)VUh(w)dvλ(w)

=

∫
Bn
f(U∗w)g(w)h(w)dvλ(w).

Hence it follows that V ∗UTfVU = Tf◦U∗ , and, more generally, for any finite
number of L∞-symbols f1, · · · , fl, we have

V ∗UTf1 · · ·TflVU = Tf1◦U∗ · · ·Tfl◦U∗ .

Lemma 2.2.1. Let S ∈ L(A2
λ(Bn)) be a radial operator and m ∈ Z+. Then we

have an integral representation of the Toeplitz operator with symbol Bm,λ(S):

(2.5) TBm,λ(S) =

∫
Bn
Swdvm+λ(w)

(in the weak sense). In particular, one obtains the norm estimate

(2.6) ‖TBm,λ(S)‖ ≤ ‖S‖.

Proof. For any z ∈ Bn, definition (1.9) and Lemma 1.2.4 yield

B0,λ

(∫
Bn
Swdvm+λ(w)

)
(z) =

〈(∫
Bn
Swdvm+λ(w)

)
z
1, 1
〉
λ

=

∫
Bn
〈UzUwSUwUz1, 1〉λ dvm+λ(w)

=

∫
Bn

〈
Uφz(w)V

∗
USVUUφz(w)1, 1

〉
λ
dvm+λ(w) = I0,

where the unitary matrix U has been defined in Lemma 1.2.4. The operator
S is radial, thus by Proposition 1.2.8 (ii), (1.11), and Proposition 1.2.8, (i) we
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have that

I0 =

∫
Bn

〈
Uφz(w)SUφz(w)1, 1

〉
λ
dvm+λ(w)

=

∫
Bn

(B0,λS) ◦ φz(w)dvm+λ(w)

= Bm,λB0,λS(z) = B0,λBm,λS(z) = B0,λ

(
TBm,λ(S)

)
(z).

The injectivity of B0,λ on L(A2
λ(Bn)) completes the proof of the integral repre-

sentation (2.5). The norm inequality (2.6) is an immediate consequence.

By T(L∞(Bn)) we denote the C∗-algebra generated by all Toeplitz opera-
tors Ta, with symbols a ∈ L∞(Bn), acting on A2

λ(Bn).

Theorem 2.2.2. Let S ∈ T(L∞(Bn)) be a radial operator. Then TBm,λ(S) → S
as m→∞ in L(A2

λ(Bn))-norm.

Proof. As S ∈ T(L∞(Bn)), there is a sequence of operators {Sk} which con-
verges in norm to S, and such that each operator Sk is a finite sum of finite
products of Toeplitz operators with L∞-symbols. Since the radialization is
continuous and S is radial we have

Rad(Sk)→ Rad(S) = S, as k →∞.

Using (2.6) of Lemma 2.2.1 shows

‖S − TBm,λ(S)‖ ≤ ‖S − Rad(Sk)‖+ ‖Rad(Sk)− TBm,λ(Rad(Sk))‖
+ ‖TBm,λ(Rad(Sk)) − TBm,λ(S)‖

≤ 2‖S − Rad(Sk)‖+ ‖Rad(Sk)− TBm,λ(Rad(Sk))‖,

and thus it is sufficient to prove that TBm,λ(Rad(Sk)) → Rad(Sk). Then, as each
Sk is a finite sum of finite products of Toeplitz operators with L∞-symbols, it
is sufficient to prove the convergence for the radialization of a finite product
of Toeplitz operators. That is, it is sufficient to prove that if

Q :=

∫
U(n)

Tf1◦U∗ · · ·Tfl◦U∗ dU ∈ L(A2
λ(Bn)),

with f1, · · · , fl ∈ L∞(Bn), then TBm,λ(Q) → Q as m→∞ and with respect to
the norm topology. By Lemma 2.2.1,

T(Bm,λ(Q))◦φz =

∫
Bn

(Qz)wdvm+λ(w)(2.7)

=

∫
Bn

∫
U(n)

Tf1◦U∗◦φz◦φw · · ·Tfl◦U∗◦φz◦φwdUdvm+λ(w).
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Since dU and dvm+λ(w) are probability measures, and each Toeplitz operator
Tf with bounded measurable symbol, considered as operator on Apλ(Bn), with
p of Theorem 1.3.7, obeys the estimate

‖Tf‖L(Apλ(Bn)) ≤ Cp,λ‖f‖∞,

where Cp,λ is the norm of the Bergman projection from Lp(Bn, dvλ) intoApλ(Bn),
we have the following norm estimate for (2.7) for all m ∈ Z+

‖T(Bm,λ(Q))◦φz‖L(Apλ(Bn)) ≤ C l
p,λ‖f1‖∞ · · · ‖fl‖∞,

and analogously ‖T ∗(Bm,λ(Q))◦φz‖L(Apλ(Bn)) ≤ C l
p,λ‖f1‖∞ · · · ‖fl‖∞. Finally, Theo-

rem 1.3.7 yields the uniform convergence TBm,λ(Q) → Q.

2.3 Eigenvalue sequences of radial Toeplitz op-
erators

Given a radial symbol a = a(|z|) ∈ L∞(0, 1), consider the corresponding
Toeplitz operator Ta acting on A2

λ(Bn). Recall that Ta is a radial operator
and diagonal with respect to standard monomial basis (2.1). The correspond-
ing eigenvalue sequence β(n)

a,λ = {β(n)
a,λ(m)}m∈N has the form ((2.2)). Given n

(the dimension of Bn) and λ (the weight parameter), we denote by

(2.8) B
(n)
λ = B

(n)
λ (L∞(0, 1)) :=

{
β

(n)
a,λ : a ∈ L∞(0, 1)

}
⊂ l∞(N)

the set of all eigenvalue sequences of Toeplitz operators Ta, with a ∈ L∞(0, 1),
acting on A2

λ(Bn). We introduce now several subsets on l∞ = l∞(N). Following
[37] we denote by d1 = d1(N) the set of all bounded sequences x = {xm}m∈N
such that

sup
m∈N

m|xm − xm+1| <∞,

and we write d2 = d2(N) for the set of all bounded sequences x = {xm}m∈N
such that

sup
m∈N

m2|xm − 2xm+1 + xm+2| <∞.

Finally we denote by VSO(N) the set of all bounded sequences that slowly
oscillate in the sense of Schmidt [32] (see also Landau [25] and Stanojević and
Stanojević [33]):

VSO(N) =
{
x ∈ `∞ : lim

j
k
→1
|xj − xk| = 0

}
.



40 CHAPTER 2. EIGENVALUE AND RADIAL OPERATORS

Alternatively, VSO(N) consists of all bounded functions N→ C that are uni-
formly continuous with respect to the “logarithmic metric” ρ(j, k) = | ln(j) −
ln(k)|.

It is known [37, Proposition 2.4] that both d1 and d2 have the same clo-
sure in l∞, and [17, Proposition 4.5] that this closure coincides with VSO(N).
Furthermore, [17, Proposition 3.8], VSO(N) is a C∗-subalgebra of l∞(N).

Proposition 2.3.1. Given any n ∈ N, λ ∈ (−1,∞), and a radial symbol
a ∈ L∞(0, 1), the corresponding eigenvalue sequence β(n)

a,λ belongs to both d1

and d2.

Proof. We start with the case of d1.

β
(n)
a,λ+1(m) =

Γ(m+ n+ λ+ 1)

Γ(λ+ 2)Γ(n+m− 1)

∫ 1

0

a(
√
r)rm+n−2 (1− r)λ(1− r) dr

=
m+ n+ λ

λ+ 1
β

(n)
a,λ(m)− n+m− 1

λ+ 1
β

(n)
a,λ(m+ 1)

= β
(n)
a,λ(m) +

m+ n− 1

λ+ 1

(
β

(n)
a,λ(m)− β(n)

a,λ(m+ 1)
)
.

Thus
m|β(n)

a,λ(m)− β(n)
a,λ(m+ 1)| ≤ 2(λ+ 1)‖a‖∞

showing that β(n)
a,λ ∈ d1. Consider now the case of d2.

β
(n)
a,λ+2(m) =

Γ(m+ n+ λ+ 2)

Γ(λ+ 3)Γ(m+ n− 1)

∫ 1

0

a(
√
r)rm+n−2 (1− r)λ(1− 2r + r2) dr

=
(m+ n+ λ+ 2)(n+m+ λ)

(λ+ 2)(λ+ 1)
β

(n)
a,λ(m)

− 2
(m+ n+ λ+ 1)(n+m− 1)

(λ+ 2)(λ+ 1)
β

(n)
a,λ(m+ 1)

+
(m+ n)(m+ n− 1)

(λ+ 2)(λ+ 1)
β

(n)
a,λ(m+ 2).

Then

(λ+ 2)(λ+ 1)β
(n)
a,λ+2(m)

= (m+ n)(m+ n− 1)
(
β

(n)
a,λ(m+ 2)− 2β

(n)
a,λ(m+ 1) + β

(n)
a,λ(m)

)
+ [(λ+ 1)(m+ n− 1) + (λ+ 1)(m+ n+ λ+ 1)] β

(n)
a,λ(m)

− 2(λ+ 1)(m+ n− 1)β
(n)
a,λ(m+ 1)

= (m+ n)(m+ n− 1)
(
β

(n)
a,λ(m+ 2)− 2β

(n)
a,λ(m+ 1) + β

(n)
a,λ(m)

)
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+ 2(λ+ 1)(m+ n− 1)
[
β

(n)
a,λ(m)− β(n)

a,λ(m+ 1)
]

+ β
(n)
a,λ(m)

Or

(m+ n)(m+ n− 1)
(
β

(n)
a,λ(m)− 2β

(n)
a,λ(m+ 1) + β

(n)
a,λ(m+ 2)

)
=

(
β

(n)
a,λ(m)− β(n)

a,λ(m+ 1)
)
− 2(λ+ 1)(m+ n− 1)

[
β

(n)
a,λ(m)− β(n)

a,λ(m+ 1)
]

which together with β(n)
a,λ ∈ d1 implies uniform boundedness of

m2
∣∣∣β(n)
a,λ(m)− 2β

(n)
a,λ(m+ 1) + β

(n)
a,λ(m+ 2)

∣∣∣ .
It follows that β(n)

a,λ ∈ d2.

Recall that the spaces d1 and d2 carry semi-norms ‖ · ‖d1 and ‖ · ‖d2 in
a natural way (see [37]). As was shown in Proposition 2.4 of [37] the norm
inequality ‖ · ‖d1 ≤ ‖ · ‖d2 holds proving that d2 ⊂ d1.

Observe now that the sequences β(n)
a,λ , for n > 1, are nothing but the shifted

sequences β(1)
a,λ. To formalize this we introduce two unilateral shift operators,

the left shift operator τL(x) and the right shift operator τR(x)

τL : x 7−→ (x1, x2, x3, · · · ), τR : x 7−→ (0, x0, x1, · · · ).

Due to [17, Propositions 3.10 and 3.11] both of them are bounded on VSO(N),
and have norm one. Now β

(n)
a,λ = τn−1

L (β
(1)
a,λ).

The last observation permits us to reduce our analysis to the set B
(1)
λ only.

We already know that B
(1)
λ ⊂ d2, and our next aim is to prove that B

(1)
λ is

dence in d2. This will be done in Theorem 2.3.3.

We define first the invariant Laplacian of an operator A ∈ L(A2
λ(Bn)).

With the notation in (1.29) put

Dλ :=
{
S ∈ L(A2

λ(Bn)) : ∃ T ∈ L(A2
λ(Bn)) such that ∆̃B0,λ(S) = B0,λ(T )

}
.

Note that T is uniquely defined since the Berezin transform B0,λ is one-to-one
and therefore we can define ∆̃ : Dλ −→ L(A2

λ(Bn)) by ∆̃S = T .

From Lemma 2.1.6 and Proposition 1.3.8 it is clear that ∆̃ maps radial
operator to radial operators. Let D = B1 be the open unit disc in C and for
each k ∈ Z+ denote by Pk the rank one projection of A2

λ(D) onto the subspace
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{ρek : ρ ∈ C} ⊂ A2
λ(D). If S ∈ L(A2

λ(D)) is a radial operator with bounded
eigenvalue sequence θ = {θk}k∈Z+ with respect to the standard orthonormal
bases (2.1) of A2

λ(D), then we can write

(2.9) S =
∞∑
k=0

θkPk.

where the convergence is in the strong sense. By a method analogue to the
proof of Lemma 3.2 in [37] one can check that

(2.10) B0,λ(S) =
∞∑
k=0

θkB0,λ(Pk) and ∆̃(B0,λS) =
∞∑
k=0

θk∆̃B0,λ(Pk).

Now we prove:

Proposition 2.3.2. Let S be the radial operator in (2.9). If θ ∈ d2 then
S ∈ Dλ and

(2.11) ‖∆̃S‖ ≤
(
6 + 4|λ|

)
‖θ‖d2 .

Proof. By a direct calculation one verifies that

B0,λ(Pk)(z) =
〈
Pkk

λ
z , k

λ
z

〉
λ

=
∣∣〈kλz , ek〉λ∣∣2(2.12)

= (1− |z|2)λ+2|ek(z)|2 =
Γ(2 + k + λ)

k!Γ(2 + λ)
(1− |z|2)λ+2|z|2k.

We calculate

∆(1− |z|2)λ+2|z|2k = (1− |z|2)λ
{

(λ+ 2 + k)2|z|2(k+1)

−
[
(λ+ 2 + k)(1 + k) + k(k + λ+ 1)

]
|z|2k + k2|z|2(k−1)

}
.

With θ−1 := 0 and by using (2.9) we find

∆̃
(
B0,λS

)
(z) =(1− |z|2)2∆

(
B0,λS

)
(z)

(2.13)

=(1− |z|2)2

∞∑
k=0

θk∆
(
B0,λPk

)
(z)

=
(1− |z|2)2+λ

Γ(2 + λ)

∞∑
k=0

|z|2k
[
θk−1

(λ+ k + 1)2Γ(1 + k + λ)

(k − 1)!
−

− θk
Γ(2 + k + λ)

[
(λ+ 2 + k)(1 + k) + k(k + λ+ 1)

]
k!

+
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+ θk+1
(k + 1)2Γ(3 + k + λ)

(k + 1)!

]
=(1− |z|2)2+λ

∞∑
k=0

|ek(z)|2ζk(λ).

In the last equality we have rearranged the summation and with k ∈ Z+ we
write

ζk(λ) :=
[
θk−1k(λ+ k + 1)− θk

[
(λ+ 2 + k)(1 + k) + k(k + λ+ 1)

]
+

+ θk+1(λ+ 2 + k)(k + 1)
]
.

A straightforward calculation shows that ζk(λ) = ζk,1 + λζk,2 + λζk,3 can be
decomposed into three parts where ζk,j for j = 1, 2, 3 are independent of λ and
given by

ζk,1 = (k + 1)
[
θk+1(2 + k)− 2(k + 1)θk + kθk−1

]
ζk,2 = (k + 1)

[
θk+1 − 2θk + θk−1

]
ζk,3 = θk − θk−1.

Consider the sequences ζ(j) := {ζk,j}k for j = 1, 2, 3. In Lemma 3.3 of [37]
it has been shown that ‖ζ(1)‖∞ ≤ 6‖θ‖d2 and in particular ζ(1) is bounded in
case of θ ∈ d2. Moreover, using ‖ · ‖d1 ≤ ‖ · ‖d2 (cf. Proposition 2.4. in [37])
we clearly have the estimates

‖ζ(2)‖∞ ≤ 2‖θ‖d2 and ‖ζ(3)‖∞ ≤ 2‖θ‖d1 ≤ 2‖θ‖d2 .

Hence θ ∈ d2 implies that ζ(λ) := {ζk(λ)}k is bounded with

(2.14) ‖ζ(λ)‖∞ ≤ ‖ζ(1)‖∞ + |λ|
(
‖ζ(2)‖∞ + ‖ζ(3)‖∞

)
≤
(
6 + 4|λ|

)
‖θ‖d2 .

Consider now the diagonal operator T =
∑∞

k=0 ζk(λ)Pk. From the previous
remark it follows that T ∈ L(A2

λ(D)) for all θ ∈ d2. An application of (2.12)
now shows that(

B0,λT
)
(z) =

∞∑
k=0

ζk(λ)
(
B0,λPk

)
(z) = (1− |z|2)λ+2

∞∑
k=0

ζk(λ)|ek(z)|2.

Comparison with (2.13) shows that

B0,λT = ∆̃
(
B0,λS

)
.

It follows that S ∈ Dλ with ∆̃S = T . The identity ‖ζ(λ)‖∞ = ‖T‖ = ‖∆̃S‖
together with the estimate (2.14) implies (2.11).
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Following the ideas in [37] we now can show:

Theorem 2.3.3. The closure of Γ
(1)
λ in l∞ coincides with the closure of d2 in

l∞.

Proof. It follows from Proposition 2.3.1 that γ(1)
a,λ ∈ d2 for all λ > −1 and

a ∈ L∞(0, 1), which shows that the closure of the eigenvalue sequences γ(1)
a,λ is

contained in the closure of d2. So it is sufficient to show that d2 is contained
in the closure of eigenvalue sequences γ(1)

a,λ where a ∈ L∞(0, 1).
Let s ∈ d2 and denote by S the radial operator on A2

λ(D) which has s as
eigenvalue sequence (with respect to the standard orthonormal basis (2.1)).
We show that we can approximate S in norm by Toeplitz operators with
symbols in L∞(0, 1). According to Proposition 2.3.2 it holds S ∈ Dλ and

(2.15) ‖∆̃S‖ ≤
(
6 + 4|λ|

)
‖s‖d2 .

Using Proposition 1.2.8, (i) and (1.33) gives for all m ∈ Z+:

B0,λ∆̃Bm,λ(S) = ∆̃B0,λBm,λ(S) = ∆̃Bm,λB0,λ(S)

= Bm,λ∆̃B0,λ(S) = Bm,λB0,λ(∆̃S) = B0,λBm,λ(∆̃S).

Since the Berezin transform B0,λ is one-to-one we conclude that ∆̃Bm,λ(S) =

Bm,λ(∆̃S). Therefore from (2.15) and from (2.6) of Lemma 2.2.1 we find the
estimate

‖T∆̃(Bm,λS)‖ = ‖TBm,λ(∆̃S)‖ ≤ ‖∆̃S‖ ≤
(
6 + 4|λ|

)
‖s‖d2 .

Hence, Theorem 1.3.9 shows that S = limm→∞ TBm,λ(S) with respect to the
norm topology and the assertion follows.

We can characterize now the C∗-algebra that is generated by Toeplitz op-
erators with bounded radial symbols.

Theorem 2.3.4. For each n ∈ N and λ ∈ (−1,∞), the l∞-closure of B
(n)
λ

coincides with VSO(N).

Proof. For n = 1 the result follows from Theorem 2.3.3 and the density of d2

in VSO(N).
Let now n > 1. Consider any γ ∈ VSO(Z+) and any ε > 0. Then γ̃ =
τn−1
R (γ) ∈ VSO(N). According to the case of n = 1, there is a function
a ∈ L∞(0, 1) such that ‖γ̃ − γ(1)

a,λ‖ < ε. Finally

‖γ − γ(n)
a,λ‖ = ‖τn−1

L (γ̃ − γ(1)
a,λ)‖ ≤ ‖γ̃ − γ

(1)
a,λ‖ < ε,

which proves the density of Γ
(n)
λ in VSO(N).
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We denote by Trad = Trad(L∞) the C∗-algebra generated by all Toeplitz op-
erators, with radial symbols a ∈ L∞(0, 1), acting on A2

λ(Bn). Let Rad(A2
λ(Bn))

be the set of all radial operators acting onA2
λ(Bn). The proof of Theorem 2.2.2,

in particular, shows that

T(L∞(Bn)) ∩ Rad(A2
λ(Bn)) = Trad(L∞),

which together with the next corollary affirmatively answers problem (i) in the
final section of [5].

Corollary 2.3.5. The algebras Trad for any n ∈ N and any λ ∈ (−1,∞) are all
isomorphic and isometric among each other, being isomorphic and isometric
to VSO(Z+).

In each case the isomorphism is generated by the following mapping

Ta 7−→ β
(n)
a,λ .

The set of initial generators T = {Ta : a ∈ L∞(0, 1)} is dense in Trad, that is
two different types of closures, the C∗-algebraic closure and topological (norm)
closure of the set T give the same result Trad.

Remark 2.3.6. As was mentioned in Corollary 2.3.5 the algebraic structure
of Trad does not depend on the dimension n of the unit ball, but the operators
themselves, the multiplicity of their eigenvalues, do depend on n.

The eigenvalue β(n)
a,λ(m), m ∈ N, has the multiplicity

(
n+m−1
n−1

)
.
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Chapter 3

Verical Toeplitz operators

3.1 Vertical operators
This chapter is devoted to the description of a certain class of Toeplitz op-
erators acting on the Bergman space over the upper half-plane and of the
C∗-algebra generated by them.

Let Π = {z = x + iy ∈ C | y > 0} be the upper half-plane, and let dµ =
dxdy be the standard Lebesgue plane measure on Π. For λ ∈ (−1,∞) consider
the weight measure dµλ = (λ+1)(2Im(z))λdµ. Recall that the Bergman space
A2
λ(Π) is the (closed) subspace of L2(Π, dµλ) which consists of all function

analytic in Π. It is well known that A2
λ(Π)

K
(λ)
Π,w(z) =

iλ+2

π(z − w)λ+2
;

thus the Bergman (orthogonal) projection of L2(Π, dµλ) onto A2(Π) is given
by

(Pf)(w) = 〈f,K(λ)
Π,w〉.

In this chapter we write K(λ)
Π,w as Kw.

Given a function g ∈ L∞(Π), the Toeplitz operator Tg : A2(Π) → A2(Π)
with generating symbol g is defined by Tgf = P (gf).

Let L(A2
λ(Π)) be the algebra of all linear bounded operators acting on the

Bergman space A2
λ(Π). Given h ∈ R, let Hh ∈ L(A2

λ(Π)) be the horizontal
translation operator defined by

Hhf(z) := f(z − h).

We call an operator S ∈ L(A2
λ(Π)) vertical (or horizontal translation invari-

ant) if it commutes with all horizontal translation operators:

∀h ∈ R, HhS = SHh.

47
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In this section we find a criterion for an operator from A2
λ(Π) to be vertical.

First we recall some known facts on translation invariant operators on the real
line.

Introduce the standard Fourier transform

(Ff)(s) :=
1√
2π

∫
R

e−ist f(t) dt,

being a unitary operator on L2(R).
For each h ∈ R, the translation operator τh : L2(R)→ L2(R) is defined by

τhf(s) := f(s− h).

An operator S on L2(R) is called translation invariant if τhS = Sτh, for all
h ∈ R. It is well known (see, for example, [20, Theorem 2.5.10]) that an
operator S on L2(R) is translation invariant if and only if it is a convolution
operator, i.e., if and only if there exists a function σ ∈ L∞(R) such that

(3.1) S = F−1MσF.

We introduce as well the associated multiplication by a character operator
MΘhf(s) := Θh(s)f(s), where Θh(s) := eish.

Note that τh and MΘ−h are related via the Fourier transform,

(3.2) MΘ−hF = Fτh.

Lemma 3.1.1. Let M ∈ L(L2(R)). The following conditions are equivalent:

(a) M is invariant under multiplication by Θh for all h ∈ R:

MMΘh = MΘhM.

(b) M is the multiplication operator by a bounded measurable function:

∃σ ∈ L∞(R) such that M = Mσ.

Proof. The part (b)⇒(a) is trivial: MσMΘh = MσΘh = MΘhMσ. The implica-
tion (a)⇒(b) follows from the relation (3.2) and the result on the translation
invariant operators cited above.

Let Θ+
h denote the restriction of Θh to R+. The following lemma states that

an operator on L2(R+) commutes withMΘ+
h
if and only if it is a multiplication

operator.

Lemma 3.1.2. Let M ∈ L(L2(R+)). The following conditions are equivalent:
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(a) M is invariant under multiplication by Θ+
h for all h ∈ R:

MMΘ+
h

= MΘ+
h
M.

(b) M is the multiplication operator by a bounded function:

∃σ ∈ L∞(R+) such that M = Mσ.

Proof. To prove that (a) implies (b), define the restriction operator

P : L2(R)→ L2(R+), g 7→ g|R+ ,

and the zero extension operator

J : L2(R+)→ L2(R), Jf(x) :=

{
f(x) if x > 0,

0 if x ≤ 0.

For every h ∈ R the following equalities hold:

JMΘ+
h

= MΘhJ, PMΘh = MΘ+
h
P.

If (a) holds, then the operator JMP is invariant under multiplication by Θh,
for all h ∈ R:

JMPMΘh = JMMΘ+
h
P = JMΘ+

h
MP = MΘhJMP,

and by Lemma 3.1.2 there exists a function σ1 ∈ L∞(R) such that JMP =
Mσ1 . Set σ = σ1|R+ . Then for all f ∈ L2(R+) and all x ∈ R+,

(Mσf)(x) = σ(x)f(x) = σ1(x)(Jf)(x) = (Mσ1Jf)(x)

= (JMPJf)(x) = (JMf)(x) = (Mf)(x),

and (b) holds. The implication (b)⇒(a) follows directly, as in the previous
lemma.

The Berezin transform [6, 7] of an operator S ∈ L(A2(Π)) is the function
Π→ C defined by

B(S)(w) :=
〈SK(λ)

Π,w, K
(λ)
Π,w〉

〈K(λ)
Π,w, K

(λ)
Π,w〉

.

Following [14, Section 2] (see also [41, Section 3.1]), we introduce the isometric
isomorphism R : A2(Π)→ L2(R+),

(Rφ)(x) :=
x(λ+1)/2√
Γ(λ+ 2)

∫
Π

φ(w) e−iwx dµλ(w).
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The operator R is unitary, and its inverse R∗ : L2(R+)→ A2(Π) is given by

(R∗f)(z) =
1√

Γ(λ+ 2)

∫
R+

ξ(λ+2)/2f(ξ) eizξ dξ.

The next theorem gives a criterion for an operator to be vertical, and is an
analogue of the Zorboska result [47] for radial operators.

Theorem 3.1.3. Let S ∈ L(A2(Π)). The following conditions are equivalent:

(a) S is invariant under horizontal shifts:

∀h ∈ R SHh = HhS.

(b) RSR∗ is invariant under multiplication by Θ+
h for all h ∈ R:

∀h ∈ R RSR∗MΘ+
h

= MΘ+
h
RSR∗.

(c) There exists a function σ ∈ L∞(R+) such that

S = R∗MσR.

(d) The Berezin transform of S is a vertical function, i.e., depends on Im(w)
only.

Proof. (a) ⇒ (b). Follows from the formulas R∗MΘ+
h

= H−hR
∗ and RHh =

MΘ+
−h
R.

(b) ⇒ (c). Follows from Lemma 3.1.2.
(c) ⇒ (d). Using the residue theorem we get

(RK
(λ)
Π,w)(x) =

x
λ+1
2√

Γ(λ+ 2)
e−ixw.

Therefore

B(S)(w) =
〈MσRK

(λ)
Π,w, RK

(λ)
Π,w〉

〈K(λ)
Π,w, K

(λ)
Π,w〉

=

∫ +∞

0

σ(x)
(2x Im(w))λ+2

Γ(λ+ 2)
e−2 Im(w)x dx

x
,

and B(S)(w) depends only on Im(w).
(d) ⇒ (a). Compute the Berezin transform of H−hSHh using the formula

HhKΠ,w = KΠ,w+h:

B(H−hSHh)(w) =
〈SHhK

(λ)
Π,w, HhK

(λ)
Π,w〉

‖K(λ)
Π,w‖2

=
〈SK(λ)

Π,w+h, K
(λ)
Π,w+h〉

‖K(λ)
Π,w+h‖2

= B(S)(w + h) = B(S)(w).

Since the Berezin transform is injective [34], H−hSHh = S.
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Corollary 3.1.4. The set of all vertical operators on L(A2
λ(Π)) is a commu-

tative C∗-algebra which is isometrically isomorphic to L∞(R+).

3.2 Vertical Toeplitz operators
In this section we establish necessary and sufficient conditions for a Toeplitz
operator to be vertical.

Lemma 3.2.1. Let g ∈ L∞(Π). Then Tg is zero if and only if g = 0 almost
everywhere.

Proof. The corresponding result for Toeplitz operators on the Bergman space
on the unit disk is well known, see, for example, [41, Theorem 2.8.2]. To
extend it to the upper half-plane case, we introduce the Cayley transform

ψ : Π→ D, w 7−→ w − i
w + i

,

the corresponding unitary operator

U : A2(D)→ A2(Π), f 7−→ (f ◦ ψ)ψ′,

and observe that U∗TgU = Tg◦ψ−1 .

The next elementary lemma gives a criterion for a function on R to be
almost everywhere constant. We use there the Lebesgue measure in Rn for
various dimensions (n = 1, 2, 3), indicating the dimension as a subindex: µn.

Lemma 3.2.2. Let f : R → C be a measurable function. Then the following
conditions are equivalent:

(a) There exists a constant c ∈ C such that f(x) = c for almost all x ∈ R.

(b) µ2(D) = 0, where D :=
{

(x, y) ∈ R2 | f(x) 6= f(y)
}
.

(c) µ1(Dx) = 0 for almost all x ∈ R, where Dx :=
{
y ∈ R2 | f(x) 6= f(y)

}
.

Proof. (a)⇒(b). Let C = {x ∈ R | f(x) 6= c}. The condition (a) means that
µ1(C) = 0. Since D ⊂ (C × R) ∪ (R× C), we obtain µ2(D) = 0.

(b)⇒(c). Follows from an application of Tonelli’s theorem to the charac-
teristic function of D.

(c)⇒(a). Choose a point x0 ∈ R such that µ1(Dx0) = 0 and set c := f(x0).
Then f = c almost everywhere.

Proposition 3.2.3. Let g ∈ L∞(Π). The operator Tg is vertical if and only
if there exists a function b ∈ L∞(R+) such that g(w) = b(Im(w)) for almost
every w ∈ Π.
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Proof. Sufficiency. For every h ∈ R, define gh : Π → C by gh(w) = g(w + h).
Then for almost all w ∈ C

gh(w) = g(w + h) = b(Im(w + h)) = b(Im(w)) = g(w).

Applying the formula H−hTgHh = Tgh we see that Tg is invariant with respect
to horizontal translations.

Necessity. Since Tg is vertical, for every h ∈ R we have Tg = H−hTgHh =
Tgh . By Lemma 3.2.1, g = gh almost everywhere. It means that for all h ∈ R
the equality µ2(Eh) = 0 holds where

Eh :=
{

(u, v) ∈ R2 | g(u+ h+ iv) 6= g(u+ iv)
}
.

Define Λ: R2 × R+ → C by

Λ(u, x, v) :=

{
0, g(x+ iv) = g(u+ iv);

1, g(x+ iv) 6= g(u+ iv).

Then for all h ∈ R {
(u, v) ∈ Π | Λ(u, u+ h, v) 6= 0

}
= Eh

and by Tonelli’s theorem∫
R2×R+

Λ(u, x, v) dµ3(u, x, v) =

∫
R2×R+

Λ(u, u+ h, v) dµ3(u, h, v)

=

∫
R

(∫
Π

Λ(u, u+ h, v) dµ2(u, v)

)
dh =

∫
R
µ2(Eh) dh = 0.

Therefore∫
R+

( ∫
R2

Λ(u, x, v) dµ2(u, x)

)
dv =

∫
R2×R+

Λ(u, x, v) dµ3(u, x, v) = 0,

and for almost v ∈ R+

µ2({(u, x) ∈ R2 | g(x+ iv) 6= g(u+ iv)}) =

∫
R2

Λ(u, x, v) dµ(u, x) = 0.

For such v, by Lemma 3.2.2, there exists a constant c(v) such that g(u+ iv) =
c(v). Then for b : R+ → C defined by

b(v) =

{
c(v), if µ2({(u, x) ∈ R2 | g(x+ iv) 6= g(u+ iv)}) = 0,

0, otherwise,

we have g(w) = b(Im(w)) for almost all w ∈ Π.
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We say that a measurable function g : Π → C is vertical if there exists a
measurable function b : R+ → C such that g(w) = b(Im(w)) for almost all w
in Π.

The next result was proved in [39, Theorem 3.1] (see also [41, Theorem
5.2.1]).

Theorem 3.2.4. Let g(w) = b(Im(w)) ∈ L∞ be a vertical symbol. Then the
Toeplitz operator Tg acting on A2

λ(Π) is unitary equivalent to the multiplication
operator Mγa = RTgR

∗ acting on L2(R+). The function γb = γb(s) is given by

(3.1) γb,λ(s) :=

∫ ∞
0

b(t)
(2st)λ+1

Γ(λ+ 1)
e−2ts dt

t
, s ∈ R+.

In particular, this implies that the C∗-algebra generated by vertical Toeplitz
operators with bounded symbols is commutative and is isometrically isomor-
phic to the C∗-algebra generated by the set

Γλ :=
{
γb,λ | b ∈ L∞(R+)

}
.

3.3 Very slowly oscillating functions on R+

In this section we introduce and discuss the algebra VSO(R+) of very slowly
oscillating functions, and show that for any vertical symbol a ∈ L∞(R+), the
associated “spectral function” γa belongs to VSO(R+).

We introduce the logarithmic metric on the positive half-line by

ρ(x, y) :=
∣∣ln(x)− ln(y)

∣∣ : R+ × R+ → [0,+∞).

It is easy to see that ρ is indeed a metric and that ρ is invariant under dilations :
for all x, y, t ∈ R+,

ρ(tx, ty) = ρ(x, y).

Recall that themodulus of continuity of a function f : R+ → C with respect
to the metric ρ is defined for all δ > 0 as

ωρ,f (δ) := sup
{
|f(x)− f(y)| | x, y ∈ R+, ρ(x, y) ≤ δ

}
.

Definition 3.3.1. Let f : R+ → C be a bounded function. We say that f is
very slowly oscillating if it is uniformly continuous with respect to the metric ρ
or, equivalently, if the composition f ◦exp is uniformly continuous with respect
the usual metric on R. Denote by VSO(R+) the set of such functions.

Proposition 3.3.2. VSO(R+) is a closed C∗-algebra of the C∗-algebra Cb(R+)
of bounded continuous functions R+ → C with pointwise operations.
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Proof. Using the following elementary properties of the modulus of continuity
one can see that VSO(R+) is closed with respect to the pointwise operations:

ωρ,f+g ≤ ωρ,f + ωρ,g, ωρ,fg ≤ ‖f‖∞ωρ,g + ‖g‖∞ωρ,f ,
ωρ,λf = |λ|ωρ,f , ωρ,f∗ = ωρ,f .

The inequality ωρ,f (δ) ≤ 2‖f−g‖∞+ωρ,g(δ) and the usual “ ε
3
-argument” show

that VSO(R+) is topologically closed in Cb(R+).

Note that instead of the logarithmic metric ρ we can use an alternative
one:
Let ρ1 : R+ × R+ → [0,+∞) be defined by

ρ1(x, y) :=
|x− y|

max(x, y)
.

It is easy to see that ρ1 is a metric. To prove the triangle inequality ρ1(x, z) +
ρ1(z, y)− ρ1(x, y) ≥ 0, use the symmetry between x and y and consider three
cases: x < y < z, x < z < y, z < x < y. For example, if x < y < z, then

ρ1(x, z) + ρ1(z, y)− ρ1(x, y) =
(z − y)(x+ y)

yz
> 0.

The other two cases are considered analogously.

Lemma 3.3.3. For every x, y ∈ R+ the following inequality holds

(3.1) ρ1(x, y) ≤ ρ(x, y).

Proof. The metrics ρ and ρ1 can be written in terms of max and min as shown
below:

ρ(x, y) = ln
max(x, y)

min(x, y)
, ρ1(x, y) = 1− min(x, y)

max(x, y)
.

Since ln(u) ≥ 1− 1

u
for all u ≥ 1, the substitution u =

max(x, y)

min(x, y)
yields (3.1).

It can be proved that ρ(x, y) ≤ 2 ln(2)ρ1(x, y) if ρ1(x, y) < 1/2. Thus
VSO(R+) could be defined alternatively as the class of all bounded functions
that are uniformly continuous with respect to ρ1.

Theorem 3.3.4. Let b ∈ L∞(R+). Then γb,λ ∈ VSO(R+). More precisely,

‖γb,λ‖∞ ≤ ‖b‖∞,

and γb,λ is Lipschitz continuous with respect to the distance ρ:

(3.2) |γb,λ(y)− γb,λ(x)| ≤ 2(λ+ 1)ρ(x, y)‖b‖∞,

that is

(3.3) ωγb,λ(δ) ≤ 2δ‖b‖∞.
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Proof. The upper bound ‖γb,λ‖∞ ≤ ‖b‖∞ follows directly from the definition
(3.1) of γb,λ. Firs, we add and sustract

b(v)vλ

Γ(λ+ 1)
(2x)λ+1e−2yv

in the integrand and use the inequality |b(v)| ≤ ‖b‖∞, to obtain

|γb,λ(x)− γb,λ(y)| ≤ ‖b‖∞
Γ(λ+ 1)

∫ ∞
0

vλ
(
(2x)λ+1|e−2xv − e−2yv + e−2yv|(2x)λ+1 − (2y)λ+1|

) dv
v
.

Without lost of generality assume y > x, and solving the integrals we get the
inequality

|γb,λ(x)− γb,λ(y)| ≤ 2‖b‖∞ρ1(xλ+1, yλ+1) ≤ 2(λ+ 1)‖b‖∞ρ(x, y),

where the last inequality uses Lemma 3.3.3.

3.4 Density of Γλ in VSO(R+)

The set R+ provided with the standard multiplication and topology is a com-
mutative locally compact topological group, whose Haar measure is given by
dν(s) := ds

s
.

For each n ∈ N := {1, 2, . . .}, we define a function ψn,λ : R+ → C by

ψn,λ(s) =
1

B(n+ λ, n+ λ)

sn+λ

(1 + s)2(n+λ)
,

where B is the Beta function.

Proposition 3.4.1. The sequence (ψn,λ)
∞
n=1 is a Dirac sequence, i.e., it sat-

isfies the following three conditions:

(a) For each n ∈ N and every s ∈ R+,

ψn,λ(s) ≥ 0.

(b) For each n ∈ N, ∫ ∞
0

ψn,λ(s)(s)
ds

s
= 1.

(c) For every δ > 0,

lim
n→∞

∫
ρ(s,1)>δ

ψn,λ(s)(s)
ds

s
= 0.
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Proof. The property (a) is obvious, and (b) follows from the formula for the
Beta function:

B(x, y) =

∫ ∞
0

sx−1

(1 + s)x+y
ds.

We prove (c). Fix a δ > 0. The function s 7→ sn+λ−1

(1 + s)2(n+λ)
reaches its

maximum at the point sn := n+λ−1
n+λ+1

. It increases on the interval [0, sn] and
decreases on the interval [sn,∞). Since sn → 1, there exists a number N ∈ N
such that e−δ < sN . Let n ∈ N with n ≥ N . Then e−δ ≤ sN ≤ sn, and for all
s ∈ (0, e−δ] we obtain

sn+λ−1

(1 + s)2(n+λ)
≤ (e−δ)n+λ−1

(1 + e−δ)2(n+λ)
.

Integration of both sides from 0 to e−δ yields∫ e−δ

0

sn+λ−1

(1 + s)2(n+λ)
ds ≤

(
e−δ

(1 + e−δ)2

)n+λ

=

(
1

4 cosh2 (δ/2)

)n+λ

.

Applying Stirling’s formula ([13, formula 8.327]), we have

1

B(n+ λ, n+ λ)
=

Γ(2(n+ λ))

(Γ(n+ λ))2
∼ 4λΓ(2n)

(Γ(n))2
∼ 1

2
√
πn

4n+λ.

Since cosh(δ/2) > 1,∫ e−δ

0

ψn,λ(t)
dt

t
≤ 1

B(n+ λ, n+ λ)

(
1

4 cosh2 (δ/2)

)n+λ

∼ 1

2
√
πn cosh2(n+λ)(δ/2)

→ 0.

To prove a similar result for the integral from eδ to ∞, make the change of
variable s = 1/t:

lim
n→∞

∫ ∞
eδ

ψn,λ(t)
dt

t
= lim

n→∞

∫ e−δ

0

ψn,λ(s)
ds

s
.

Let

(3.1) Rn,δ :=

∫
ρ(s,1)>δ

ψn,λ(s)
ds

s
,

then

lim
n→∞

Rn,δ = lim
n→∞

∫ e−δ

0

ψn,λ(s)
ds

s
+ lim

n→∞

∫ ∞
eδ

ψn,λ(s)
ds

s
= 0.
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Introduce now the standard Mellin convolution of two functions a and b
from L1(R+, dν):

(3.2) (a ∗ b)(x) :=

∫ ∞
0

a(y)b

(
x

y

)
dy

y
, x ∈ R+,

being a commutative and associative binary operation on L1(R+, dν).
Note that (3.2) is well defined also if one of the functions a or b belongs to

L∞(R+) and the other belongs to L1(R+, dν). In that case a∗b ∈ L∞(R+) and
a∗b = b∗a. The associativity law also holds for any three functions a, b, c such
that one of them belongs to L∞(R+) and the other two belong to L1(R+, dν).

The next result is a special case of a well–known general fact on Dirac
sequences and uniformly continuous functions on locally compact groups. For
the reader’s convenience we write a proof for our case.

Theorem 3.4.2. Let σ ∈ VSO(R+). Then

(3.3) lim
n→∞

‖σ ∗ ψ(λ)
n − σ‖∞ = 0.

Proof. For every n ∈ N, δ > 0 and x ∈ R+,

|(σ ∗ ψn,λ)(x)− σ(x)| =
∣∣∣∣∫ ∞

0

σ

(
x

y

)
ψn,λ(y)

dy

y
−
∫ ∞

0

σ(x)ψn,λ(y)
dy

y

∣∣∣∣
≤
∫ ∞

0

∣∣∣∣σ(xy
)
− σ(x)

∣∣∣∣ψn,λ(y)
dy

y
= I1 + I2,

where

I1 =

∫
ρ(y,1)≤δ

∣∣∣∣σ(xy
)
− σ(x)

∣∣∣∣ψn,λ(y)
dy

y
,

I2 =

∫
ρ(y,1)>δ

∣∣∣∣σ(xy
)
− σ(x)

∣∣∣∣ψn,λ(y)
dy

y
.

If ρ(y, 1) ≤ δ, then ρ(x/y, x) = ρ(x, xy) = ρ(y, 1) ≤ δ. Thus

I1 ≤ ωρ,σ(δ)

∫
R
ψn,λ(y)

dy

y
= ωρ,σ(δ).

For the term I2 we obtain an upper bound in terms of Rn,δ, see (3.1):

I2 ≤ 2‖σ‖∞
∫
ρ(y,1)>δ

ψn(y)
dy

y
= 2‖σ‖∞Rn,δ.

Therefore
‖σ ∗ ψn − σ‖∞ ≤ ωρ,σ(δ) + 2‖σ‖∞Rn,δ.
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Given ε > 0, first apply the hypothesis that σ ∈ VSO(R+) and choose δ > 0
such that ωρ,σ(δ) < ε

2
. Then use the fact that Rn,δ → 0 and find a number

N ∈ N such that Rn,δ <
ε

4‖σ‖∞ for all n ≥ N . Then for all n ≥ N

‖σ ∗ ψn,λ − σ‖∞ <
ε

2
+
ε

2
= ε.

Recall now that, for each m,n ∈ N, the generalized Laguerre polynomial
(called also associated Laguerre polynomial) is defined by

L(α)
n (t) =

1

n!
t−α et

dn

dtn

(
e−t tn+α

)
, t ∈ R+.

Then, for each n ∈ N, we introduce the function φn,λ : R+ → C by

(3.4) φn,λ(t) =
Γ(λ+ 1)Γ(n)

Γ2(n+ λ)
tn+λ e−t L

(n+2λ)
n−1 (t).

Each function φn,λ is obviously bounded and continuous on R+, and admits
the following alternative representation

tλ

Γ(λ+ 1)
φn,λ(t) =

1

Γ2(n+ λ)

dn−1

dtn−1

(
e−t t2(n+λ)−1

)
.

and the explicit representation

φn,λ(t) =
Γ(λ+ 1)

B(n+ λ, n+ λ)
e−t tn+λ

n−1∑
k=0

(
n− 1

k

)
(−t)k 1

Γ(k + n+ 2λ+ 1)
.

The next lemma relates the functions ψn and φn via the Laplace transform
L, which is defined by

L(f)(s) :=

∫ ∞
0

f(t) e−st dt.

Lemma 3.4.3. For each n ∈ N,

(3.5) ψn,λ(s) = sλ+1L
(
tλφn,λ(t)

Γ(λ+ 1)

)
(s), s ∈ R+.

Proof. We can write

L
(
t2(n+λ)−1e−t

)
=

Γ(2(n+ λ))

(1 + s)2(n+λ)

(see [13, Formula 17.13.26]), use the propertie

L(F (n)(t)) = snf(s)− sn−1F (0)− · · · − sF (n−2)(0)− F (n−1)(0)
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of the Laplace transform. Since the function t2(n+λ)−1e−t and its first n − 1
derivatives have zero limit in 0 and ∞ it follows that

L
(
dn−1

dtn−1

(
t2(n+λ)−1e−t

))
= Γ(2(n+ λ))

sn−1

(1 + s)2(n+λ)

by multiplying both sides by tλ+1

Γ2(n+λ)
the equality(3.5) holds.

Given a function a : R+ → C, we define ã : R+ → C as ã(t) = a(1/t).
The mapping a 7→ ã is obviously an involution:

(3.6) ˜̃a = a,

and, for all a ∈ L∞(R+) and b ∈ L1(R+, dν), we have

(3.7) ã ∗ b = ã ∗ b̃.

The change of variable t = 1
u
yields

(3.8)
∫ ∞

0

a(t)b(st)
dt

t
= (ã ∗ b)(s).

The next lemma relates “spectral functions” γa with Mellin convolutions.

Lemma 3.4.4. Let α(u) = 2u e−2u, then for each b ∈ L∞(R+),

(3.9) γb,λ = b̃ ∗ α.

Proof. Rewrite γb,λ in the form

γb,λ(s) =

∫ ∞
0

b(t)

(
2(st)(λ+1) e−2st

Γ(λ+ 1)

)
dt

t

and apply (3.8).

Introduce the function m2(s) := 2s, then (3.5) and (3.9) imply that the
elements ψn of the Dirac sequence are in fact certain “spectral functions”:

ψn,λ = ˜(φn,λ ◦m2) ∗ α = γφn,λ◦m2 .

Now we are ready to prove the main result.
Recall first that, by Theorem 3.2.4, the C∗-algebra generated by vertical
Toeplitz operators with bounded symbols is isometrically isomorphic to the
C∗-algebra generated by the set

(3.10) Γλ =
{
γb,λ | b ∈ L∞(R+)

}
.
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Theorem 3.4.5. We have that Γλ = VSO(R+).

Proof. Let σ ∈ VSO(R+). For each n ∈ N, we define bn : R+ → C by

bn := σ̃ ∗ (φn,λ ◦m2).

From (3.4) it follows that φn ∈ L1(R+, dν), and thus bn ∈ L∞(R+). Then
equations (3.7), (3.6) and the associativity of Mellin convolutions yield

γbn,λ = b̃n ∗ α =
( ˜̃σ ∗ ˜(φn,λ ◦m2)

)
∗ α = σ ∗

(
˜(φn,λ ◦m2) ∗ α

)
= σ ∗ ψn,λ,

which means that σn ∗ψn,λ ∈ Γλ. To finish the proof apply Theorem 3.4.2.

Let us mention some important corollaries of the theorem. First of all
it implies that the C∗-algebra VT (L∞) generated by Toeplitz operators with
bounded vertical symbols is isometrically isomorphic to VSO(R+). Moreover
it shows that the set of initial generators of VT (L∞) (i.e., the Toeplitz oper-
ators with bounded vertical symbols) is dense in VT (L∞). That is, the two
quite different types of the closures, the C∗-algebraic closure and the topolog-
ical closure, of the set of initial generators end up with the same result: the
C∗-algebra VT (L∞) generated by Toeplitz operators with bounded vertical
symbols.

Then, the theorem permits us to compare and realize the difference be-
tween the algebra generated by general vertical operators and its subalgebra
generated by special vertical operators, Toeplitz operators with bounded ver-
tical symbols. The first one is isomorphic to L∞(R+), while the second, its
subalgebra, is isomorphic to VSO(R+).

In this connection it is interesting to consider “intermediate”, in a sense,
operators, the bounded vertical Toeplitz operators whose defining symbols are
unbounded. As it turns out such operators do not necessarily belong to the
algebra VT (L∞) generated by vertical Toeplitz operators with bounded sym-
bols.

The next section is devoted to an example of such an operator.

3.5 Example
Write here γb for γb,λ and λ = 0. Note that γb can be defined by the for-
mula (3.1) not only if b ∈ L∞(R+), but also if b ∈ L1(R+, e

−ηt dt) for all
η > 0.

In this section we construct a non-bounded function b : R+ → C such that
b ∈ L1(R+, e

−ηt dt) for all η > 0 and γb ∈ L∞(R+), but γb /∈ VSO(R+). This
implies that the corresponding vertical Toeplitz operator is bounded, but it
does not belong to the C∗-algebra generated by vertical Toeplitz operators
with bounded generating symbols.

The idea of this example is taken from [17].
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Proposition 3.5.1. Define f : {z ∈ C | Re(z) ≥ 0} → C by

(3.1) f(z) :=
1

z + 1
exp

(
i

3π
ln2(z + 1)

)
,

where ln is the principal value of the natural logarithm (with imaginary part
in (−π, π]). Then there exists a unique function A : R+ → C such that A ∈
L1(R+, e

−ηu du) for all η > 0 and f is the Laplace transform of A:

f(z) =

∫ +∞

0

A(u) e−zu du.

Proof. For every z ∈ C with Re(z) ≥ 0 we write ln(z+1) as ln |z+1|+i arg(z+
1) with −π

2
< arg(z + 1) < π

2
. Then

|f(z)| = 1

|z + 1|

∣∣∣∣exp

(
i

3π

(
ln |z + 1|+ i arg(z + 1)

)2
)∣∣∣∣

=
1

|z + 1|
exp

(
−2 arg(z + 1)

3π
ln |z + 1|

)
=

1

|z + 1|1+
2 arg(z+1)

3π

.

Since |z + 1| ≥ 1 and −1
3
< −2 arg(z+1)

3π
< 1

3
,

|f(z)| ≤ 1

|z + 1|2/3
.

Therefore for every x > 0,∫
R
|f(x+ iy)|2 dy ≤

∫
R

dy

((x+ 1)2 + y2)2/3
<

∫
R

dy

(1 + y2)2/3
< +∞,

and f belongs to the Hardy class H2 on the half-plane {z ∈ C | Re(z) > 0}.
By Paley–Wiener theorem (see, for example, Rudin [31, Theorem 19.2]), there
exists a function A ∈ L2(R+) such that for all x > 0

f(x) =

∫ +∞

0

A(u) e−ux du.

The uniqueness of A follows from the injective property of the Laplace trans-
form. Applying Hölder’s inequality we easily see that A ∈ L1(R+, e

−ηu du) for
all η > 0: ∫ +∞

0

|A(u)| e−ηu du ≤ ‖A‖2

(∫ +∞

0

e−2ηu du

)1/2

=
‖A‖2√

2η
.
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Proposition 3.5.2. The function σ : R+ → C defined by

(3.2) σ(s) :=
s

s+ 1
exp

(
i

3π
ln2(s+ 1)

)
,

belongs to L∞(R+) \ VSO(R+). Moreover there exists a function b : R+ → C
such that b ∈ L1(R+, e

−ηt dt) for all η > 0 and σ = γb.

Proof. The function σ is bounded since |σ(s)| ≤ s
s+1
≤ 1 for all s ∈ R+. Let

A be the function from Proposition 3.5.1. Define b : R+ → C by

b(s) = A(2s).

Then for all η > 0∫ +∞

0

|a(t)| e−ηt du =
1

2

∫ +∞

0

|A(t)| e−ηt/2 dt < +∞,

and

γb(s) = 2s

∫ +∞

0

b(t) e−2st dt = 2s

∫ +∞

0

A(2t) e−2st dt

= s

∫ +∞

0

A(t) e−st dt =
s

s+ 1
exp

(
i

3π
ln2(s+ 1)

)
= σ(s).

Let us prove that σ /∈ VSO(R+). For all s, t ∈ R+

|σ(s)− σ(t)| =
∣∣∣∣(1− 1

s+ 1

)
exp

(
i

3π
ln2(s+ 1)

)
−
(

1− 1

t+ 1

)
exp

(
i

3π
ln2(t+ 1)

)∣∣∣∣
≥
∣∣∣∣exp

(
i

3π
ln2(s+ 1)

)
− exp

(
i

3π
ln2(t+ 1)

)∣∣∣∣
− 1

s+ 1
− 1

t+ 1

=

∣∣∣∣exp

(
i

3π

(
ln2(s+ 1)− ln2(t+ 1)

))
− 1

∣∣∣∣− 1

s+ 1
− 1

t+ 1
.

Replace s by the following function of t:

s(t) := t+
t+ 1

ln1/2(t+ 1)
.

Then

ln(s(t) + 1) = ln(t+ 1) + ln

(
1 +

1

ln1/2(t+ 1)

)
= ln(t+ 1) +

1

ln1/2(t+ 1)
− 1

2 ln(t+ 1)
+O

(
1

ln3/2(t+ 1)

)
.
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Denote ln2(s(t) + 1)− ln2(t + 1) by Lt and consider the asymptotic behavior
of Lt as t→ +∞:

Lt := ln2(s(t) + 1)− ln2(t+ 1) = −1 + 2 ln1/2(t+ 1) +O
(

1

ln(t+ 1)

)
.

Since Lt is continuous and tends to +∞ as t → +∞, for every T > 40 there
exists an integer t ≥ T such that Lt + 1 is equal to an integer multiple of 6π2,
say to 6mπ2:

Lt + 1 = 6mπ2.

For such t, ∣∣∣∣exp

(
i

3π
Lt

)
− 1

∣∣∣∣ =

∣∣∣∣exp

(
i

3π
(6mπ2 − 1)

)
− 1

∣∣∣∣
=

∣∣∣∣exp

(
− i

3π

)
− 1

∣∣∣∣ ≈ 0.106 >
1

10

and

|σ(s(t))− σ(t)| ≥
∣∣∣∣exp

(
i

3π
Lt

)
− 1

∣∣∣∣− 2

T + 1
>

1

10
− 1

20
=

1

20
.

It means that |σ(s(t))− σ(t)| does not converge to 0 as t goes to infinity. On
the other hand,

ρ(s(t), t) = ln
s(t)

t
≤ t+ 1

t ln1/2(t+ 1)
→ 0.

Thus σ /∈ VSO(R+).
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Chapter 4

Radial revisited

4.1 Very slowly oscillating functions and sequences
To describe the relations between VSO(N) and VSO(R+), we introduce the
piecewise-linear extensions of sequences as follows.

Let σ : N→ C. Denote by f the function R+ → C obtained from σ by the
piecewise-linear interpolation:

(4.1) f(x) :=

{
σ1, x ∈ (0, 1);

(j + 1− x)σj + (x− j)σj+1, x ∈ [j, j + 1), j ∈ N.

In what follows bxc stand for the integer part of x ∈ R+.

Lemma 4.1.1. Given σ : N→ C, we define f by (2.5). Then ‖f‖∞ = ‖σ‖∞,

(4.2) |f(x)− f(y)| ≤ (y − x)ωρ,σ(1), 0 < x < y

and

(4.3) |f(x)− f(y)| ≤ 2ωρ,σ(ρ(bxc, byc+ 1)), 1 ≤ x < y.

Proof. Put σ0 = σ1. Then (4.1) can be rewritten as

f(x) = (bxc+ 1− x)σbxc + (x− bxc)σbxc+1.

Since the value of f at every point x > 0 is a convex combination of two values
of the original sequence σ, the inequality ‖f‖∞ ≤ ‖σ‖∞ holds. On the other
hand, f is an extension of σ, therefore the inverse inequality is also true.

An elementary computation shows that if s, t > 0 and s, t belong to the
same interval [j, j + 1] for some j ∈ {0, 1, 2, . . .}, then

|f(s)− f(t)| = |t− s| |σj − σj+1|.

65



66 CHAPTER 4. RADIAL REVISITED

Since |σj − σj+1| ≤ ωρ,σ(ρ(j, j + 1)) ≤ ωρ,σ(1) for every j ∈ N and σ0 = σ1,

(4.4) |f(s)− f(t)| ≤ |t− s|ωρ,σ(1), btc = bsc = j ∈ Z+.

To prove (4.2), assume that 0 < x < y. The case bxc = byc is already covered
by (4.4). If bxc < byc, then insert intermediate integer points between x and
y and apply (4.4) in each segment of this division:

|f(x)− f(y)| ≤ |f(x)− σbxc+1|+
byc−1∑
j=bxc+1

|σj − σj+1|+ |σbyc − f(y)|

≤ (bxc+ 1− x)ωρ,σ(1) + (byc − bxc − 1)ωρ,σ(1)

+ (y − byc)ωρ,σ(1)

= (y − x)ωρ,σ(1).

To prove (4.3), suppose that 1 ≤ x < y. Then

|f(x)− f(y)| = |(1− u)σj + uσj+1 − (1− v)σk − vσk+1|
≤ (1− u)|σj − σk|+ u|σj+1 − σk+1|+ |u− v| |σk − σk+1|
≤ 2ωρ,σ(ρ(j, k + 1)).

For every function f ∈ VSO(R+) we denote by R(f) its restriction onto
N, and for every sequence σ ∈ VSO(N) we denote by E(σ) its piecewise-linear
extension defined in (4.1). Note that R(E(σ)) = σ for every σ ∈ VSO(N).

Theorem 4.1.2. The mapping R : VSO(R+) → VSO(N) is an epimorphism
of C∗-algebras. In particular, the set VSO(N) of sequences coincides with the
set of the restrictions of functions from VSO(R+):

VSO(N) = {R(f) : f ∈ VSO(R+)}.

Proof. It is easy to see that R(VSO(R+)) ⊆ VSO(N) and that R is a homomor-
phism. In order to prove that R is surjective, we start with σ ∈ VSO(N) and
construct f = E(σ), then ‖f‖∞ = ‖σ‖∞. Considering two cases: y − x <

√
δ

and y − x ≥
√
δ, we prove first that for every δ ∈ (0, 1/4)

(4.5) Ωρ,f (δ) ≤ max
(√

δ ωρ,σ(1), 2ωρ,σ(6
√
δ)
)
.

Let y − x <
√
δ, then by (4.2)

(4.6) |f(x)− f(y)| ≤
√
δ ωρ,σ(1).

If y − x ≥
√
δ, then

δ ≥ ρ(x, y) = ln
y

x
≥ y − x

y
and y ≥ y − x

δ
≥ 1√

δ
.
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Moreover
x ≥ y − yδ ≥ 3y

4
≥ 3

4
√
δ
.

Therefore

x− 1 ≥ 3

4
√
δ
− 1 =

3− 4
√
δ

4
√
δ
≥ 1

4
√
δ
.

Finally

ρ(bxc, byc+ 1) = ln
byc+ 1

bxc
≤ ln

y + 1

x− 1
= ln

y

x
+ ln

y + 1

y
+ ln

x

x− 1

≤ δ +
√
δ + 4

√
δ ≤ 6

√
δ.

Applying (4.3) we conclude that if y − x >
√
δ, then

(4.7) |f(x)− f(y)| ≤ ωρ,σ(6
√
δ).

Combining both cases y − x <
√
δ and y − x ≥

√
δ, we obtain from (4.6) and

(4.7) that
|f(x)− f(y)| ≤ max

(√
δ ωρ,σ(1), ωρ,σ(6

√
δ)
)
,

which implies (4.5). Inequality (4.5) guarantees that Ωρ,f (δ)→ 0 as δ → 0.

Remark 4.1.3. Theorem 4.1.2 was stated for the algebras of bounded very
slowly oscillating sequences and functions, but the proof of (4.5) does not
use the condition of boundedness. Therefore a result analogous to VSO(N) =
{R(f) : f ∈ VSO(R+)} holds also for the corresponding classes of sequences
and functions without the condition of boundedness.

4.2 From vertical to radial case
For the reader’s convenience we recall briefly the results of [18, 19] for the
vertical Toeplitz operators.

We denote by Γλ the set of all spectral functions (3.10) for b ∈ L∞(R+).
Remember here Theorem 3.4.5

Γλ is a dense subset of VSO(R+).

Passing to the radial case, we observe that in the non-weighted one-dimensional
case (λ = 0, n = 1) the sequence βa,0 is just the restriction to N of the func-
tion γb,0, where a and b are related by a(r) = b(− ln(r)). In the weighted case
the situation is a bit more complicated: in addition to the variable change
v = − ln(r), two “correcting factors”, an inner factor ξλ and an outer factor
ηn,λ are needed.
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Lemma 4.2.1. Let b ∈ L∞(R+). Define

(4.8) a(
√
r) = ξn,λ(r) b

(
− ln(r)

2

)
, 0 < r < 1,

where

(4.9) ξn,λ(r) =

(
− ln(r)

1− r

)λ
1

rn−1
, 0 < r < 1.

Then

(4.10) βa,n,λ(k) = ηn,λ(k)γb,λ(k), k ∈ N,

where

(4.11) ηn,λ(k) =
Γ(k + n+ λ)

kλ+1 Γ(k + n− 1)
.

Proof. Direct computation. We start with (2.2), substitute (4.8), and make
change of variables v = − ln(r):

βa,n,λ(k) =
1

B(k + n− 1, λ+ 1)

∫ 1

0

a(
√
r)rk+n−2(1− r)λ dr

=
Γ(k + n+ λ)

Γ(k + n− 1)Γ(λ+ 1)

∫ 1

0

b

(
− ln(r)

2

)
(− ln(r))λrk−1 dr

=
Γ(k + n+ λ)

kλ+1 Γ(k + n− 1)

kλ+1

Γ(λ+ 1)

∫
R+

b
(v

2

)
vλ e−kv dv

= ηn,λ(k)γb,λ(k).

Note that the function a defined by (4.8) can be unbounded, in general.

Lemma 4.2.2. Let b ∈ L∞(R+). For every L > 0 denote by χ(0,L) the char-
acteristic function of (0, L). Then

lim
L→+∞

sup
x≥1
|γb,λ(x)− γbχ(0,L),λ(x)| = 0.

Proof. For every x ≥ 1,

|γb,λ(x)− γbχ(0,L),λ(x)| ≤ ‖b‖∞ x
λ+1

Γ(λ+ 1)

∫ +∞

L

e−xv vλ dv

=
‖b‖∞

Γ(λ+ 1)

∫ +∞

Lx

e−t tλ dt

≤ ‖b‖∞
Γ(λ+ 1)

∫ +∞

L

e−t tλ dt.

The integrability of the function t 7→ e−t tλ ensures that the last expression
tends to 0 as L→ +∞.
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Lemma 4.2.3. The sequence ηn,λ = (ηn,λ(k))k∈N defined by (4.11) tends to 1
as k →∞, and, in particular, it is bounded.

Proof. We write

ηn,λ(k) =

(
k + n− 1

k

)λ+1
Γ(k + n− 1 + λ+ 1)

Γ(k + n− 1)(k + n− 1)λ+1
,

then using [13, Formula 8.328.2] we obtain required

lim
k→∞

ηn,λ(k) = 1.

As already was proved, the set Γλ is dense in VSO(R+). Now we are going
to deduce from this fact that Bn,λ is a dense subset of VSO(N).

Theorem 4.2.4. For each a ∈ L∞(0, 1), βa,n,λ belongs to VSO(N).

Proof. We start from a function a ∈ L∞(0, 1), and introduce a1 = a · χ[ 1
2
,1)

and a2 = a − a1 = a · χ[0, 1
2

]. We have that βa2,n,λ ∈ c0 ⊂ VSO(N). Thus it is
sufficient to show that βa1,n,λ ∈ VSO(N). Reverting (4.8) we define

b(v
2
) : = a1

(
e−

v
2

)(1− e−v

v

)λ
e−v(n−1).

As

lim
v→0

1− e−v

v
= 1,

the function b is bounded, thus γb,λ belongs to VSO(R+) and γb,λ|N ∈ VSO(N).
By (4.10), we have βa1,n,λ(k) = ηn,λ(k)γb,λ(k), k ∈ N, and thus βa1,n,λ ∈

VSO(N) as a product of two VSO(N)-sequences.

Theorem 4.2.5. The set Bn,λ is dense in VSO(N).

Proof. We start from a sequence ν ∈ VSO(N), and define the sequence σ as

σ(k) :=
ν(k)

ηn,λ(k)
, k ∈ N.

By Lemma 4.2.3, σ ∈ VSO(N). Using Theorem 4.1.2 we construct a function
f in VSO(R+) such that σ is the restriction of f to N. Since f ∈ VSO(R+),
by Theorem 3.4.5, for each ε > 0 there exists g ∈ L∞(R+) such that

‖f − γg,λ‖∞ <
ε

2‖ηn,λ‖∞
.
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By Lemma 4.2.2, we take L > 0 such that

sup
x≥1
|γg,λ(x)− γgχ(0,L),λ(x)| < ε

2‖ηn,λ‖∞
.

Define

a(
√
r) = χ(0,L)

(
− ln r

2

)
ξn,λ(r)g

(
− ln r

2

)
, 0 < r < 1.

Factor χ(0,L) insures that the function a vanishes near zero and is bounded.
By Lemma 4.2.1

βa,n,λ(k) = ηn,λ(k)γgχ(0,L),λ(k).

Therefore for every k ∈ N

|ν(k)− βa,n,λ(k)| = ηn,λ(k)|σ(k)− γgχ(0,L),λ(k)|

≤ ‖ηn,λ‖∞
(
‖f − γg,λ‖∞ + sup

x≥1
|γg,λ(x)− γgχ(0,L),λ(x)|

)
< ε.

Corollary 4.2.6. For every n ∈ N and λ > −1 the C∗-algebra generated by
Toeplitz operators Ta,n,λ with bounded measurable radial symbols a is isometri-
cally isomorphic to the algebra VSO(N). The isomorphism is generated by the
following assignment

Ta,n,λ 7−→ βa,n,λ.
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