
Centro de Investigación y de Estudios Avanzados

del Instituto Politécnico Nacional

Unidad Zacatenco

Departamento de Matemáticas

Emparejamientos en gráficas

bipartitas y problemas de asignación

Tesis que presenta

M. en C. Marcos César Vargas Magaña

Para obtener el grado de

DOCTOR EN CIENCIAS

En la Especialidad de Matemáticas

Director de la tesis:

Dr. Carlos Enrique Valencia Oleta

Ciudad de México Febrero, 2017

Center for Research and Advanced Studies

of the National Polytechnic Institute

Campus Zacatenco

Department of Mathematics

Matchings in bipartite graphs

and assignment problems

Thesis presented by

M.Sc. Marcos César Vargas Magaña

to obtain the degree of

DOCTOR OF SCIENCE

in the speciality of Mathematics

Thesis Advisor:

Ph.D. Carlos Enrique Valencia Oleta

Ciudad de México Febrero, 2017

Resumen

El problema de asignación es uno de los problemas mas estudiado en optimización combinatoria,

el cual ha sido estudiado por muchos autores a lo largo de muchos años; véase por ejemplo [1] y [2]

y las referencias alĺı contenidas. La principal contribución de esta tesis es la introducción de algunas

variantes del problema de asignación y la presentación de algunos algoritmos que permiten resolver

estas variantes de manera eficiente.

Primeramente resolvemos algunas variantes con pesos a los problemas de encontrar todas las aris-

tas que están en al menos un emparejamiento óptimo y la enumeración de todos los emparejamientos

óptimos posibles. De manera mas precisa, dada una gráfica bipartita con pesos en las aristas, pre-

sentamos un algoritmo para encontrar todas las aristas que están en al menos un emparejamiento

perfecto de peso ḿınimo con la misma complejidad en tiempo que resolver un problema de asignación

en la misma gráfica. Actualmente el mejor tiempo es O(m
√
n log (nW)), donde m es el número de

aristas, n el número de vértices y W es el peso absoluto máximo. También resolvemos el problema de

enumerar todos los emparejamientos perfectos de costo ḿınimo en tiempo O(AP +M log n), donde

AP es el tiempo para resolver el problema de asignación en la misma gráfica yM es el número de em-

parejamientos perfectos óptimos. Las versiones sin pesos de estos problemas han sido muy estudiadas

por varios autores, véase por ejemplo [20, 21, 22] y [23]. Por último, originado de una aplicación a un

problema real en la industria, proponemos y resolvemos una variante del problema de asignación donde

tenemos un conjunto de aristas preferenciales, y el objetivo es encontrar un emparejamiento perfecto

óptimo que contenga la mayor cantidad de aristas en este conjunto. Resolvemos este problema en la

misma complejidad de tiempo del problema de asignación.

En una segunda parte de la tesis, estudiamos el problema de asignación aleatorio. Mas precisa-

mente, estudiamos el problema de asignación con costos aleatorios con distribución exponencial en

el caso de gráficas bipartitas no completas y bajo algunas hipótesis en la distribución de las aristas,

obtenemos el valor esperado del peso ḿınimo de un emparejamiento de tamaño k. Otros autores han

estudiado el caso para gráficas bipartitas completas.

Finalmente, en esta tesis presentamos una variante estocastica en dos fases del problema de asig-

nación; el cual es parte de una colaboracion con cient́ıficos de los Laboratorios-HP y de la Universidad

v

vi

de Missouri y el cual aun se encuentra en proceso. En este caso el proceso se realiza en dos fases, en

el presente está la fase de asignación y en el futuro está la fase de elaboración. Cada vértice tiene una

probabilidad conocida de no estar presente en la fase de elaboración. Si un vértice está presente y des-

ocupado en la fase de elaboración, porque no fue asignado o su pareja no llegó a la fase de elaboración,

este incurre en un alto costo de penalización. El objetivo es encontrar una asignación de cualquier

tamaño que minimize el peso total de la asignación más el valor esperado de la penalización total. El

algoritmo obtenido para resolver este problema tiene la misma complejidad de tiempo que resolver un

problema de emparejamiento de peso ḿınimo en una gráfica del mismo tamaño. Este problema tiene

muchas aplicaciones en la asignación de recursos, entre muchas otras.

Abstract

The assignment problem is one of the most studied problems in combinatorial optimization, has

been studied by several authors through many years; see for instance [1] and [2] and the references

therein. The contribution of this thesis is the introduction of some variants of the assignment problem

and the presentation of algorithms to solve them in a efficient way.

Firstly, we solve the weighted variants of the problem of finding the edges that occur in at least

one perfect matching and enumerating all the possible perfect matchings. More precisely, given a

bipartite graph with edge weights, we give an algorithm for finding all the edges that occur in at

least one minimum weight perfect matching in the same time complexity than solving the assignment

problem in the same input. Currently the best time is O(m
√
n log (nW)), where m is the number of

edges, n is the number of vertices and W is the maximum absolute weight. We also solve the problem

of enumerating all the minimum weight perfect matchings in time O(AP +M log n), where AP is

the time complexity for solving the assignment problem in the same input and M is the number of

optimum perfect matchings. The unweighted variants of these problems have beed addressed by several

researchers; see for instance [20, 21, 22] and [23]. Finally, originated from a real life application in the

industry we propose and solve a variant of the assignment problem where we have a set of preference

edges and the objective is to find an optimum perfect matching that contains as many of the preference

edges as possible. We solve this problem in the same time complexity of the assignment problem.

In the second part of this thesis we study the random assignment problem. More precisely, we

study the random assignment problem with random exponential weights in the case of non-complete

bipartite graphs. Under some hypothesis on the distribution of the edges, we obtain the expected

minimum weight of a matching of size k. Other authors have studied the case for complete bipartite

graphs.

Finally, in this thesis we present an stochastic two phased version of the assignment problem,

which is part of a work in progress in collaboration with scientists of the HP-Labs and the University of

Missouri. The process is made in two phases, in the present is the assignment phase and in the future

is the preforming phase. Each vertex has a known probability of not being present at the performing

phase. If a vertex is present and idle at the performing phase, because it was not assigned or its mate

vii

viii

did not reach the performing phase, it incurs in a high penalization cost. The objective is to find an

assignment of any size that minimizes the total assignment weight plus the expected total penalization

cost. The algorithm obtained to solve this problem is of the same time complexity than solving a

minimum weight matching problem in a graph of the same size. This problem has many applications

in the workforce allocation science, among many others.

Reconocimientos

El principal agradecimiento es para mi esposa Estela Garćıa, por acompañarme

pacientemente a lo largo de todos estos sacrificios. También agradezco a mi madre

Esperanza Magaña por su gran apoyo al inicio de mis estudios.

También quiero agradecer a mi asesor Carlos Valencia por su apoyo y orientación durante

este proyecto y a mis sinodales.

A special thank to Cipriano Santos and Professor Haitao for allowing me the honor of

working with they.

Quiero agradecer al Consejo Nacional de Ciencia y Tecnoloǵıa (CONACYT) por otorgarme

la beca durante estos años para poder concluir mis estudios.

ix

Dedicatoria

Al gran “YO SOY”.

Dice el necio en su corazón: no hay Dios.

Salmos 14:1

xi

Contents

Resumen v

Abstract vii

Reconocimientos ix

Dedicatoria xi

Introduction 1

Chapter 1. Preliminaries 5

1.1. Graph theory . 5

1.1.1. r-partite graphs . 8

1.1.2. Complete graphs . 9

1.1.3. Trees and forests . 9

1.1.4. Digraphs . 10

1.1.5. Matchings . 11

1.2. Linear optimization . 12

1.2.1. Duality theory . 15

1.3. Probability . 17

Chapter 2. Bipartite matching problems 19

2.1. Maximum cardinality matchings . 20

2.2. Finding the edges that occur in at least one perfect matching 23

2.3. Enumerating all the perfect matchings in a bipartite graph . 26

Chapter 3. The assignment problem 27

3.1. The auction algorithm . 29

Chapter 4. Classification of the optimum solutions of the assignment problem 33

4.1. Optimality conditions for the assignment program . 34

4.2. The subgraph Gcs . 36

xiii

xiv CONTENTS

4.2.1. Constructing Gcs from ε-optimal solutions. 38

4.3. Applications of the subgraph Gcs . 40

4.3.1. Finding all the edges that occur in at least one optimum matching 40

4.3.2. Classification of the edges of a weighted bipartite graph . 41

4.3.3. Enumerating all the minimum weight perfect matchings . 42

4.3.4. The assignment problem with preferences . 43

4.4. Performance analysis . 45

Chapter 5. The random assignment problem 51

5.1. The random assignment problem for a complete bipartite graph 51

5.2. The non-complete random assignment problem . 54

5.2.1. Random bipartite graph models . 54

5.2.2. Conjectures for the non-complete random assignment problem 55

5.2.3. Proof for the Erdõs-Renyi bipartite graphs . 56

Chapter 6. A stochastic assignment problem 59

6.1. The problem formulation . 59

6.2. Reduction to a minimum weight matching problem . 60

Chapter A. Maximum cardinality weighted matchings 65

A.1. The minimum weight maximum cardinality matching problem 65

A.2. The minimum weight one-side perfect matching problem . 67

A.3. The minimum weight matching problem . 69

Bibliography 71

Index 73

Introduction

In the field of combinatorial optimization there are several problems that have been extensively

studied. Here we work on one of the most important, the Assignment Problem. The importance of

this problem relies on its wide field of practical applications and its theoretical results. The objective

of this work is to explore, propose and solve several variations of the assignment problem.

The assignment problem is a fundamental theoretical problem and can be studied from several

points of view. The most usual methods to attack this problem is by means of graph theory and linear

optimization. In Chapter 1 we give all the necessary concepts of this topics to make this work as

independent as possible.

Suppose that we have a set of n persons and a set of s jobs, where each person can perform a

subset of the jobs. If a person is competent to perform a certain job, we say that they are a feasible

pair. If we want a one-to-one assignment of as many persons as possible to perform one job each,

then this problem is called the Maximum cardinality Matching Problem. The algorithms for solving

this problem have reached impressive time bounds and currently the best known time is O(m
√
n) [13],

where m is the number of feasible pairs. If the instance satisfies special properties, then there is an

algorithm that solves it in O(m) time [15]. This problem is highly related to the Minimum Vertex

Cover Problem. One special case is when we ask for an assignment that covers all the persons and

all the jobs. This problem is called The Perfect Matching Problem. We can also ask for all the edges

that occur in at least one perfect matching. Or to enumerate all the perfect matchings. We discuss

all these problems in detail in Chapter 2.

If each feasible pair person-job incurs in a cost that depends on the properties of the person and the

job, then we can ask for a one-to-one assignment of all the persons to all the jobs that minimizes the

total cost. This problem is called the Minimum Weight Perfect Matching Problem or The Assignment

Problem. This problem and algorithms for solving it [10, 7, 11] are discussed in Chapter 3.

Moreover, we can ask for the corresponding weighted variants of problems involving unweighted

perfect matchings. For example we can ask for all the edges that occur in at least one minimum

weight perfect matching, or to enumerate all the minimum weight perfect matchings. Since there can

be several perfect matchings of minimum weight, we can impose a set of preferred feasible pairs and

1

2 Introduction

ask for one optimum perfect matching that contains as many of our preferences as possible. All this

novel problems and their solutions are some of our contributions. In Chapter 4 we discuss our results

and the tools developed to solve this problems. These results are contained in [32].

What if the costs are random numbers on a continuous range. Can we say something relevant about

the behavior of the minimum weight perfect assignments? The answer is yes. Several authors have

proven important results about this problem [31] when the costs are uniform in [0, 1] or exponencial

with rate 1. It has been proven that if any pair person-job is a feasible pair, then the expected value of

a minimum weight perfect matching is
∑n

i=1 1/i2. This value clearly converges to π2/6 as is proven by

the Riemann zeta function ζ(2). There is even a result for the behavior of a minimum cost assignment

of a given target size k. In Chapter 5 we describe the relevant results of this problem, and as another

contribution we explore the case where not all pairs are feasible pairs. Under some hypothesis on

the distribution of the random edges, we prove that the optimum cost for perfect assignments is

(1/d)
∑n

i=1 1/i2 −→ ζ(2)/d, where d ∈ (0, 1] is the density of the graph. We prove a result in general

for assignments of a given target size k.

Now let us consider a variation where the costs are not random anymore. This time the assignment

is made in the present and the the jobs are performed sometime in the future. Each person has a

probability of not being available at the performing time and similarly each job has a probability of

not being required at the performing time. If a person is present and idle at the performing time, it

incurs a high penalization cost. And a job required at the performing time with no person to perform

it also incurs in a penalization cost. The objective is to find an assignment of any size that minimizes

the total assignment cost plus the expected total penalization cost. This is a problem with lots of

applications in scheduling and workforce allocation problems. In Chapter 6 we show how to solve this

problem efficiently.

Matching problems can be used to solve a wide range of interesting problems. Consider the

following problem that arises in transportation science. We have a bus network with several trips that

need to be served. The problem is to find the minimum number of vehicles needed to serve all the

trips, along with the trips corresponding to each vehicle. To model this problem we can construct a

network with directed edges. We have one node for each trip and one directed edge from a node i

to a node j if trip j can be served by the same vehicle after serving trip i. Then the nodes in every

directed path represents the trips that can be served by the same vehicle. Therefore, the solution to

this problem is to find a minimum set of node-disjoint paths that cover all the nodes.

This problem can be transformed to a maximum cardinality matching problem. The bipartite graph

induced by this transformation is as follows. We have as vertices a copy of the nodes in the left side

and another copy in the right side. For every directed edge (i, j) we append an edge between node

i in the left and node j in the right. It turns out that there is a one-to-one correspondence between

the matchings and the node-disjoint paths. In particular a maximum cardinality matching leads to a

minimum set of node-disjoint paths. This holds because every path in the directed network leaves two

vertices of the bipartite graph unmatched, therefore minimizing the number of paths is equivalent to

maximizing the cardinality of the matching.

The assignment problem enhances the reach of the bus network problem. For example, each edge

can carry a cost representing how bad is the connection between a trip and the next. And the problem

Introduction 3

now is to find the minimum number of vehicles to serve all the trips at minimum cost. Using the

previous reduction, this problem is reduced to the problem of finding a minimum weight maximum

cardinality matching.

Another fields of applications occur in mathematics, computer science, operations research, bio-

chemistry, electrical engineering, and many others. For example, solving the All different constraint

problem [25, 26], computing the triangular form of sparse matrices [27], as an alternative for solving

the shortest path problem [10], etc. More examples of interesting applications can be found in [1].

CHAPTER 1

Preliminaries

The objective of this chapter is to introduce the basic concepts and notations that we will use

throughout the document. We want to give the necessary background related to topics in graph theory,

linear optimization, optimization algorithms, probability and some other minor topics. If the reader is

interested in more about this topics, please refer to the bibliography [3, 1, 4, 2, 5] and [6].

1. Graph theory

A graph G is the pair G = (V,E), where V is a nonempty set of elements called vertices and E is a

multi-set of unordered pairs of elements of V called edges. The set E is of the form E = {{u, v} :

u, v ∈ V }. For simplicity we will denote an edge {u, v} by the concatenation uv. We can represent a

graph in the plane with points and lines, where each vertex v ∈ V is represented by a point and each

edge uv is represented by a line between point u and point v. This can be seen in figure 1.1.

Given an edge uv, it is said that the edge is incident to u and v and vice versa. It is also said

that u and v are the endpoints of an edge uv. In a graph, a collection of edges that have the same

endpoints are called multiple edges or parallel edges. An edge whose endpoint is the same vertex is

called a loop. If a graph has no multiple edges nor loops then it is called a simple graph, otherwise is

called a multigraph. We can see an example of this type of edges in figure 1.1.

Two vertices are said to be adjacent if there is an edge between them. Two edges are adjacent

if they share one of its endpoints. A subset of edges such that no two of them are adjacent is called

independent.

We denote the cardinality of a set A by |A|. A set A is said to be maximal with respect to some

property PROP if A has property PROP and it is not a proper subset of any set that satisfies property

PROP . The set A is said to be maximum with respect to property PROP if A has property PROP

and any other set B having property PROP is such that |B| ≤ |A|.
5

6 Chapter 1. Preliminaries

e1

e2

e3

1 2

3

Figure 1.1. An example of a graph with two parallel Edges e1, e2; and a loop e3.

Let G = (V,E) and G′ = (V ′, E′) be graphs. If V ′ ⊆ V and E′ ⊆ E, then G′ is a subgraph of G,

and G is a supergraph of G′. We denote this relation by G′ ⊆ G. If G′ 6= G then the relations can be

refered as proper subgraph and proper supergraph respectively and is denoted by G′ ⊂ G.

An induced subgraph of G = (V,E) is a subgraph G′ = (V ′, E′) where E′ is the subset of all the

edges of G whose both endpoints are in V ′. It is also said that G′ is induced by V ′.

The number of edges incident to a vertex v of G is called the degree of v. We denote the degree

by degG(v) or simply by deg(v) if the graph G is understood. A vertex of degree zero is called isolated .

Given a subset U ⊆ V , the set of neighbors of U denoted by NG(U) (or simply N(U)) is composed

by all the vertices not in U that can be reached from U by one single edge, it is defined by

N(U) = {w ∈ V \U | vw ∈ E for some v ∈ U}.

The minimum degree of a graph G is denoted by δ(G) and is defined by

δ(G) = min{deg(v)| v ∈ V }.

Similarly, the maximum degree ∆(G) of a graph G is

∆(G) = max{deg(v)| v ∈ V }.

A walk in a graph is denoted by W = v0v1v2 . . . vk which is a subgraph on the vertices {v0, . . . , vk}
where there is an edge between each consecutive pair vi, vi+1. Note that we can walk on an edge more

than once. Vertices v0 and vk are the ends of the walk, all other vertices are the inner vertices of the

walk. The length len(W) of the walk is k. See figure 1.2.

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

Figure 1.2. A walk in thick edges W = x4x5x6x7x11x10x6x5x1.

Similar, a trail T is a walk with all of its edges distinct (see figure 1.3). Note that we can still

repeat a vertex more than once. A path P is a trail with all of its vertices distinct (see figure 1.4). In

the later case we have a path from vertex v0 to vertex vk.

Section 1. Graph theory 7

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

Figure 1.3. A trail in thick edges T = x4x5x6x7x11x10x6x2x1.

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

Figure 1.4. A path in thick edges P = x4x5x1x2x6x7x11x10x9.

Given a path P and u, v two vertices in P , we write P [u, v] to denote the subpath of P having

endpoints u and v. Given A and B subsets of vertices, an A-B-path is a path P = v0v1 . . . vk such

that P ∩A = {v0} and P ∩B = {vk}. A shortest path from u to v is a path of minimum length with

endpoints u, v.

The distance from a vertex u to a vertex v, denoted by dist(u, v), is the length of a shortest path

joining such vertices. If no such path exists we define dist(u, v) =∞, otherwise

(1) dist(u, v) = min
P is an u−v−path

len(P).

The diameter of a graph G = (V,E) is the largest distance between any two vertices of G. It is

given by

(2) diam(G) = max
u,v∈V

dist(u, v).

A cycle is a path that intersects at its endpoints. See figure 1.5. A graph with no cycles is called

acyclic .

A non empty graph G = (V,E) is said to be connected if for every u, v ∈ V there is at least

one u-v-path, otherwise it is called disconnected . A maximal connected subgraph of G is called a

connected component of G (see figure 1.6).

A k-regular graph is a graph where deg(v) = k for all v ∈ V . In particular, if the graph is 3-regular

then it is called cubic . See figure 1.7.

8 Chapter 1. Preliminaries

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

Figure 1.5. A cycle in thick edges C = x4x5x1x2x6x7x11x10x9x8x4.

G H

Figure 1.6. G a connected graph. H a disconnected graph with two components.

A 2-regular graph. A cubic (3-regular) graph.

Figure 1.7. Examples of regular graphs.

1.1. r-partite graphs

Let G = (V,E) be a graph and r ∈ N, r ≥ 2. The graph G is called r-partite if its vertex set V can

be partitioned into r disjoint classes V = X1 tX2 t · · · tXr such that if u, v ∈ Xi, then u and v are

not adjacent. In other words, every edge has its ends in different classes. See figure 1.8.

A very important case of r-partite graphs is for r = 2. In this case the graph is called bipartite.

We denote a bipartite graph G by G = (U tV,E) where U and V are the partitions of the vertices. A

bipartite graph with n = |U | = |V | is called balanced . Otherwise is called unbalanced . See figure 1.8.

One interesting result about the characterization of bipartite grpahs that can be found in [5] is the

following.

Proposition 1.1 ([5]). A graph G is bipartite if and only if any cycle in G is of even length.

Section 1. Graph theory 9

U V

A 3–partite graph. A balanced biartite graph.

Figure 1.8. Examples of r-partite graphs.

1.2. Complete graphs

A complete graph is a simple graph where every u 6= v ∈ V are adjacent. Such graphs are generally

denoted by Kn, where n is the cardinality of the vertex set. A complete r-partite graph Kn1,...,nr =

(X1tX2t· · ·tXr, E), where n1 = |X1|, . . . , nr = |Xr|, is a simple graph where every pair of vertices

u 6= v not in the same partition are adjacent. In particular, a complete bipartite graph G = (U tV,E)

with n = |U |, s = |V | is denoted by Kn,s. See figure 1.9.

The complete graph K6. The complete 3-partite graph K2,2,2.

Figure 1.9. Examples of complete graphs.

1.3. Trees and forests

A tree is a connected acyclic graph. A forest is a graph where every connected component is a tree.

A leaf in a tree is a vertex of degree one. A rooted tree is a tree with a special vertex r called the

root, see figure 1.10.

Respect to the characterization of trees, there is an interesting result given in the following The-

orem, which can be found in [5].

10 Chapter 1. Preliminaries

r1 r3

r2

Figure 1.10. A forest composed by 3 trees with roots {r1, r2, r3}.

Theorem 1.2. Let T = (V,E) be a graph. The following statements are equivalent

(1) T is a tree.

(2) Any two vertices of T are linked by a unique path in T .

(3) T is minimally connected, i.e. T is connected but T\{uv} is disconnected for every

edge uv ∈ T .

(4) T is maximally acyclic, i.e. T contains no cycle but T ∪ {uv} does, for any two

non-adjacent vertices u, v ∈ T .

A spanning tree of a connected graph G is a connected subgraph over all the vertices of G which

is a tree. Note that every tree on n vertices has n− 1 edges.

1.4. Digraphs

A directed graph (or digraph) D = (V,A) consists of a set of vertices V and a set A that contains

ordered pairs of vertices called arcs or directed edges. An arc from u to v is denoted (uv) and means

that we have an edge directed from u to v. In this case the vertex u is the tail and the vertex v is the

head . Arcs can be represented by arrows, see figure 1.11. The reverse arc of an arc (uv) is the arc

given by (uv)R = (vu).

1 2

34

Figure 1.11. A digraph.

Section 1. Graph theory 11

Definitions for walk , trail , path, cycle, etc. can be easily extended to digraphs. The only difference

is that we must respect the direction of the arcs. Arcs can be parallel only if they have the same

orientation. We also have the following definitions for digraphs.

• deg−(v) = |{(uv) ∈ E}|, the indegree.

• deg+(v) = |{(vu) ∈ E}|, the outdegree.

• N−(U) = {v ∈ V \U | (vu) ∈ E for some u ∈ U}.
• N+(U) = {v ∈ V \U | (uv) ∈ E for some u ∈ U}.
• δ−(D) = min{deg−(v) | v ∈ V }.
• δ+(D) = min{deg+(v) | v ∈ V }.
• ∆−(D) = max{deg−(v) | v ∈ V }.
• ∆+(D) = max{deg+(v) | v ∈ V }.

A digraph is strognly connected if we can go from any vertex to any other vertex using a directed

path. A strongly connected component of a digraph is a maximal strongly connected subgraph. Note

that the strongly connectec components of a digraph are disjoint, because if two of them share one

vertex, then the union of the two components is a strongly connected component, which violates the

maximality condition of the components.

Proposition 1.3. In a digraph, an arc is part of a directed cycle if and only if the arc is part of

a strongly connected component.

Proof. If we contract every strongly connected component to a single vertex the resulting digraph

is acyclic, and therefore any arc not in a strongly connected component cannot be in a directed cycle.

Then any arc in a directed cycle is in a strongly connected component.

If an arc (uv) is in a strongly connected component, then there exists a directed path P from u

to v and the path P ∪ {(uv)} is a directed cycle. �

1.5. Matchings

Our interest will focus on bipartite graphs, therefore we only consider matchings in bipartite graphs.

Matchings in general graphs have been well studied but they are out of the scope of this work.

Let G = (U t V,E) be a bipartite graph. A matching is given by a subset M ⊆ E of independent

edges. A vertex v is said to be covered or assigned under the matching M if v is incident to some

edge of the matching. Otherwise the vertex is called uncovered or unassigned .

An integer weight function over the edges of a graph is given by w : E → Z and assigns one integer

weight to each edge. We can define the weight of a matching M as

(3) w(M) =
∑
uv∈M

w(uv).

The cardinality of a matching is the number of edges it has. A perfect matching in a balanced

bipartite graph is a matching that covers all the vertices. A one-side perfect matching in an unbalanced

graph is a matching that covers all the vertices of the smallest side.

12 Chapter 1. Preliminaries

An alternating path respect to a matching is a path that alternates between edges in the matching

and edges not in the matching. An augmenting path respect to a matching is an alternating path

with endpoints uncovered by the matching. Augmenting paths have the property that we can use the

symmetric difference M4P between the matching M and the path P to increase the cardinality of the

matching by one. The symmetric difference of two sets A,B is defined as A4B = (A\B) ∪ (B\A).

There is an interesting result about k-regular bipartite graphs, that states that every regular bipar-

tite graph has perfect matchings.

Proposition 1.4 ([1], Corollary 2.3). Every k-regular bipartite graph, with k ≥ 1, has a perfect

matching.

2. Linear optimization

In the theory of linear optimization the objective is to use linear inequalities to optimize a restricted

linear objective function.

A linear optimization problem looks like the following general linear programming problem.

(4)

minimize: c · x
subject to: ai · x = bi, i ∈ I1,

ai · x ≥ bi, i ∈ I2,

ai · x ≤ bi, i ∈ I3,

xj ≥ 0, j ∈ N1,

xj ≤ 0, j ∈ N2.

Where c = (c1, . . . , cn) is the cost vector , x = (x1, . . . , xn) is the set of decision variables, and

the ai are n-dimensional vectors. I1, I2 and I3 are disjoint subsets of indices for the linear constraints.

And N1, N2 are disjoint subsets of {1, . . . , n} for the sign of the desition variables. Variables with

index not in N1 ∪N2 are sign free.

A vector x that satisfies all of the constraints is called a feasible solution. The set of all feasible

solutions is called the feasible region. The linear function c · x =
∑n

j=1 cjxj is called the objective

function. A feasible solution that minimizes the objective function is called an optimal solution, and

the respective value is called the optimal value. If there is no bound below on the values induced by

the feasible solutions then we say that the optimal value is −∞. Note that if we want to maximize

c · x, then we just need to minimize −c · x.

Any constraint of the form ai ·x = bi is equivalent to the two constraints ai ·x ≤ bi and ai ·x ≥ bi.
And every constraint of the form ai · x ≤ bi is equivalent to −ai · x ≥ −bi. Therefore, any linear

Section 2. Linear optimization 13

program can be expresed in the following form.

(5)

minimize: c · x
subject to: a1 · x ≥ b1

a2 · x ≥ b2
...

am · x ≥ bm

Which in turn can be expresed equivalently as

(6)
minimize: c · x

subject to: Ax ≥ b

Where A is the matrix with rows a1, . . . , am, and b = (b1, . . . , bm) is the requirement vector .

The general linear program (6), and therefore any linear program, can be transformed into the

following standard form linear program:

(7)

minimize: c · x
subject to: Ax = b

x ≥ 0

This can be accomplished via a process described in [3, Chapter 1], which consists of elimination

of free variables and elimination of inequality constraints. The two resulting problems are equivalent

in the sense that given a feasible solution to one problem, we can construct a feasible solution of the

other with the same value. This implies that both problems have the same optimal value.

Linear programming techniques are extremely useful in a wide range of optimization problems.

Many interesting optimization problems can be translated to the language of linear optimization even

though in many cases this is not obvious. In the following example we show an interesting problem

taken from [3, exercise 1.12]. Our solution to this exercise is based on some basic properties of the

distance from a point to a multidimensional plane.

Example 1.5. Consider a set P described by linear inequality constraints, that is, P = {y ∈ Rn :

ai · y ≤ bi, i = 1, . . . ,m}. A ball with center x and radius r is defined as the set of all points within

euclidean distance r from x. We are interested in finding a ball with the largest posible radius, which

is entirely contained within the set P . The center of such ball is called the Chebychev center of P .

Provide a linear formulation of this problem.

Solution. Observe that the largest ball should touch at least one of the hyperplanes ai · y = bi,

and the segment from the center x to such plane is orthogonal to the plane. Therefore we need to

maximize the distance from the candidate center x to the closest hyperplane.

It turns out that the distance from a point x to the i-th plane ai · y = bi is given by disti(x) =
−ai · x+ bi
|ai|

. One important observation is that the sign of disti(x) is positive if and only if the point

x is in the side of the plane oposite to where the vector ai is pointing to. And this is always the case

in the feasible region P . This ensures that disti(x) ≥ 0 ∀x ∈ P .

14 Chapter 1. Preliminaries

This lead us to the following formulation.

maximize: min
i

{
−ai · x+ bi
|ai|

}

subject to: ai · x ≤ bi i=1,. . . , m.

Note that the optimum objective value is the radius of the optimum ball, because each distance

from the point to a plane is a posible radius. Since we need the minimum radius we can reformulate

as:

maximize: r

subject to: ai · x+ |ai|r ≤ bi i=1,. . . , m

ai · x ≤ bi i=1,. . . , m.

The resulting x is the center and r is the radius of the optimum ball. �

A polyhedron is a set of the form {x ∈ Rn : Ax ≥ b}, where A is an m × n matrix and b is an

m-dimensional vector. As we can observe, any feasible region of a linear program is a polyhedron. A

vector x ∈ P is a vertex of P if there exists some n-dimensional vector c such that c · x < c · y for

all x 6= y ∈ P . In other words, x is a vertex if there is an hyperplane that touches the polyhedron

only at point x. In particular, the polyhedron described by a linear program in standar form is called

a polyhedron in standard form. The following corollary found in [3] explains about the existence of

vertices in polyhedra.

Corollary 1.6 ([3], Corollary 2.2). Every nonempty bounded polyhedron and every nonempty

polyhedron in standard form has at least one vertex.

One of the most important results of linear optimization is given in the following theorem, which

raises the importance of the vertices of a polyhedron.

Theorem 1.7 ([3], Theorem 2.8). Consider the linear programming problem of minimizing c · x
over a polyhedron P . Suppose that P has at least one vertex. Then either the optimal value is

equal to −∞, or there exists a vertex which is optimal.

The importance of this theorem relies on the fact that the efficient algorithms that solve linear

programming problems like the simplex method ([3], Chapter 3), exploit this property at each iteration

to go from one vertex to another one of smaller cost. Since we always have a vertex that has optimum

value then the algorithm will reach an optimum solution at some point.

If a vector x satisfies with equality a linear equality or inequality constraint, then it is said that the

constraint is active at x. Given a polyhedron described by linear equality and inequality constraints, a

vector x is a basic solution if (i) all equality constraints are active and (ii) out of all the constraints

that are active, n of them are linearly independent. Moreover, the vertex x is called a basic feasible

solution if it is a basic solution and satisfies all of the constraints. Indeed it is proven in [3] that x is a

vertex if and only if it is a basic feasible solution.

Section 2. Linear optimization 15

The following theorem shows a more algebraic point of view of the vertices of polyhedra in standard

form. It basically states that every vertex can be obtained by means of solving a system of linear

equations.

Theorem 1.8 ([3], Theorem 2.4). Consider the constraints Ax = b and x ≥ 0 and assume that

the m × n matrix A has linearly independent rows. A vector x ∈ Rn is a basic solution if and

only if Ax = b and there exists a subset of indices B(1), . . . , B(m) such that:

(a) The columns AB(1), . . . , AB(m) are linearly independent.

(b) If i 6= B(1), . . . , B(m), then xi = 0.

Since every vertex is a basic solution, then every vertex can be obtained by solving a system of linear

equations of the form Bx = b, where B is an m×m submatrix of A with columns AB(1), . . . , AB(m).

In the following corollary is given an important result about the number of vertices of a linear

programming problem.

Corollary 1.9 ([3], Corollary 2.1). Given a finite number of linear inequality constraints, there

can only be a finite number of vertices in the feasible region.

The proof of this corollary is based on the fact that every subset of n linearly independent constraints

define a unique basic solution, therefore the number of vertices is bounded by the number of ways

that we can chose n constraints out of the total finite number of constraints. This result is important

because this implies that any algorithm that searches optimal solutions in the vertices of the polyhedron

will terminate after a finite number of steps. However, the number of vertices can be exponential in

the number of constraints. The most famous example of this is the unit cube {x ∈ Rn : 0 ≤ xi ≤ 1}
which is defined by 2n constraints but has 2n vertices.

2.1. Duality theory

Now we present an alternative method for attacking linear programming problems. This approach is

known as duality theory . Given a linear program called the primal problem, the objective of duality

is to formulate a different linear program known as the dual problem, which is based on the primal

problem.

The basic idea behind duality theory is to assign a price variable with each constraint and search

for optimal prices under which the presence or absence of the constraints does not affect the optimal

value. In general terms, in the dual problem there is a dual price variable for each primal constraint

and a dual constraint for each primal variable. We give a precise relation in the following formulations,

where the matrix A of the primal problem has rows ai and colums Aj . We have the decision variables

x = (x1, . . . , xn), the cost vector c = (c1, . . . , cn), the dual prices p = (p1, . . . , pm) and the requirement

vector b = (b1, . . . , bm).

16 Chapter 1. Preliminaries

(8)

Primal problem Dual problem

minimize: c · x maximize: p · b
subject to: ai · x ≥ bi, i ∈M1, subject to: pi ≥ 0, i ∈M1,

ai · x ≤ bi, i ∈M2, pi ≤ 0, i ∈M2,

ai · x = bi, i ∈M3, pi free, i ∈M3,

xj ≥ 0, j ∈ N1, p ·Aj ≤ cj , j ∈ N1,

xj ≤ 0, j ∈ N2, p ·Aj ≥ cj , j ∈ N2,

xj free, j ∈ N3, p ·Aj = cj , j ∈ N3.

Observe that while in the primal problem we address a minimization problem, in the dual problem

we address a maximization problem. This makes sense because of the fact that p · b ≤ c · x for

every feasible solutions x and p, as we will see later. In particular, for feasible solutions we have that

p · b = c · x if and only if both solutions are optimal.

If we focus on standard from problems, we get the following primal dual relation, where p′ is

the vector p transposed.

(9)

Primal problem Dual problem

minimize: c · x maximize: p · b
subject to: Ax = b, subject to: p′A ≤ c.

x ≥ 0,

The following result found in [3] states, in informal language, that the dual of the dual is the

primal.

Theorem 1.10 ([3], Theorem 4.1). If we transform the dual of a primal problem into an equiv-

alent minimization problem and then form its dual, then we obtain a problem equivalent to the

original problem.

The following results which can be found in [3] are the central foundations of duality theory.

Theorem 1.11 ([3], Theorem 4.3, Weak duality). If x is a feasible solution of the primal problem

and p is a feasible solution of the dual problem, then p · b ≤ c · x.

Corollary 1.12 ([3], Corollary 4.2). Let x and p be feasible solutions to the primal and the dual,

and suppose that p · b = c · x. Then, x and p are optimal solutions to the primal and the dual

respectively.

Theorem 1.13 ([3], Theorem 4.4, Strong duality). If a linear programming problem has an

optimal solution, so does its dual, and the respective optimal values are equal.

Section 3. Probability 17

There is a pair of necessary and sufficient conditions for the feasible primal and dual solutions to

be optimal. They are given in the following theorem that can be found in [3].

Theorem 1.14 ([3], Theorem 4.5, Complementary slackness). Let x and p be feasible solutions

to the primal and the dual problems respectively. The vectors x and p are optimal solutions for

the two respective problems if and only if:

pi(ai · x− bi) = 0, ∀i,(10)

(cj − p ·Aj)xj = 0, ∀j.(11)

3. Probability

In probability theory, a random variable with Bernoulli distribution takes value 1 with success probability

p ∈ [0, 1] and value 0 with failure probability (1− p). This distribution is useful for modeling scenarios

where we only get two posible outcomes. The value 1 represents one of the outcomes, usually the

success, and the value 0 represents the other outcome, the failure.

A Bernoulli random variable is a variable which takes random values according to the bernoulli

distribution, that is, if X is such random variable with parameter p, then Pr(X = 1) = p and

Pr(X = 0) = 1− p. The probability mass function f of the bernoulli distribution is given by

(12) f(k, p) =

{
p if k = 1,

1− p if k = 0.

The expected value of a random variable X is like a probabilistic average. Formally, if a random

variable takes values in the set {x1, . . . , xn}. Then the expected value of the random variable is:

(13) E[X] = x1 · Pr(X = x1) + · · ·+ xn · Pr(X = xn).

From the definition of expected value, we can get the expected value of a bernoulli random variable

with parameter p as follows.

(14) E[X] = 0 · Pr(X = 0) + 1 · Pr(X = 1) = p.

The variance of a random variable measures how far a set of values of the variable is spread. The

lower the variance the more concentrated the values are at the mean. In particular, a variance of zero

indicates that all the values are identical. Formally, the variance of a random variable X is defined as

(15) V ar(X) = E[(X − E[X]2)] = E[X2]− (E[X])2.

From the definition, the variance of a bernoulli variable is

(16) V ar(X) = p− p2 = p(1− p).

As an observation, the maximum of the variance expression p(1 − p) is reached at p = 1/2.

Therefore, the maximum variance that a bernoulli distribution can have is 0.25.

CHAPTER 2

Bipartite matching problems

In this chapter we talk about matching problems. These type of problems are related to the search

of matchings in bipartite graphs with no weights. The objective of this chapter is to introduce some

of the most important matching problems as well as their algorithms, to prepare the way for the

development of our algorithms of Chapter 4. The importance of these algorithms relies on the fact

that we will address some problems for weighted matchings in bipartite graphs and we will attack them

via a reduction to the respective unweighted problems.

From the point of view of graph theory, the bipartite perfect matching problem consists of finding

a perfect matching in a bipartite graph G = (U t V,E). Along with this problem, there are other

problems of interest in matching problems. For example, we have the bipartite maximum matching

problem which asks for a maximum cardinality matching. The bipartite maximal matching problem

which asks for a maximal cardinality matching. Observe that every maximum matching is maximal,

but a maximal matching may not be maximum. In this chapter we will only talk about the bipartite

perfect matching problem, which we will refer as the perfect matching problem. Observe that every

perfect matching is a maximum matching and a maximal matching.

For this chapter we will reserve the symbols m = |E|, n = |U | = |V | for the case of balanced

graphs, and n = |U | ≤ |V | = s for the case of unbalanced graphs. If we want to use this symbols for

another temporal purposes we will let it clear for the reader.

The perfect matching problem can be interpreted as follows. We have n men and n women. Each

men has a subset of friends in the women set. The objective is to marry all the men to all the women

such that every marriage is composed by a men and one of his women friends.

Given a balanced bipartite grpah G = (U t V,E), its adjacency matrix is an n× n matrix A with

entries auv given by

19

20 Chapter 2. Bipartite matching problems

(17) auv =

1 if uv ∈ E,
0 if uv /∈ E.

Note that each non-zero entry corresponds to an edge in the graph. Another way of seeing the

perfect matching problem is as the problem of selecting n entries of value 1 in the adjacency matrix,

such that there is one entry in every row and in every column.

The following theorem gives a necessary and sufficient condition for the existence of perfect match-

ings in bipartite graphs. This theorem is known as the marriage theorem.

Theorem 2.1 (Marriage theorem, [1] Theorem 2.2). Let G = (U t V,E) be a bipartite graph

with |U | = |V |. There exists a perfect matching (marriage) in G if and only if G fulfills the

following Hall’s condition.

(18) |U ′| ≤ |N(U ′)|, for every subset U ′ ⊆ U.

As a consequence of the Theorem 2.1, it is not hard to prove that every k-regular bipartite graph

has a perfect matching, as we saw in the Proposition 1.4. This holds because for all U ′, the subgraph

induced by U ′ tN(U ′) satisfies k|U ′| =
∑

v∈N(U ′) deg(v) ≤ k|N(U ′)|, threfore |U ′| ≤ |N(U ′)|.
A vertex cover C in a bipartite graph G = (U t V,E) is a subset of vertices such that every edge

of G is adjacent to some vertex in C. There is an interesting problem related to vertex covers that

asks for a vertex cover of minimum cardinality. We mention this problem because there is a strong

relation between vertex covers and maximum cardinality matchings.

Theorem 2.2 (König’s matching theorem, [1] Theorem 2.7). In a bipartite graph the cardinality

of a minimum vertex cover equals the cardinality of a maximum matching. That is

min
C vertex cover

|C| = max
M matching

|M |.

Observe that in the case of a bipartite graph with perfect matchings, a minimum vertex cover is

given by any of U or V . Also note that a vertex cover can be seen as a subset of rows and columns

of the adjacency matrix that cover all the 1-entries.

1. Maximum cardinality matchings

There are several algorithms for finding maximum matchings in bipartite graphs. The classic method

for solving this problem is based on labeling techniques, and has O(mn) time complexity. We will

present the algorithm later. The most important method for finding maximum matchings is due to

Hopcroft and Karp [13], and is based on a technique that at each iteration increments the size of the

current matching using a maximal set of augmenting paths. This algorithm achieves the best known

time complexity of O(m
√
n).

Section 1. Maximum cardinality matchings 21

A bipartite graph is called convex if for every j < k, the presence of edges uivj and uivk implies

the presence of edges uivh for all j < h ≤ k. As we will see later, in this particular case, a maxi-

mum cardinality matching can be found in O(n) time in an efficient implementation of the Glover’s

algorithm [15].

Lemma 2.3 (Augmentation lemma, [1] Lemma 3.3). If M is not a maximum matching in G,

then there exists an augmenting path P with respect to M such that M ′ = M4P is a matching

in G of cardinality |M |+ 1.

The following corollary gives a rule that helps us to know when we have reached a maximum

matching in a sequence of augmentations.

Corollary 2.4. A matching M has maximum cardinality if and only if there is no augmenting

path respecto to M .

The following algorithm, which can be found in [1, Algorithm 3.1], shows the classic method for

finding maximum matchings via a labeling technique. The set L contains vertices of U and the set R

collects vertices of V .

Algorithm 2.5 (Classic maximum cardinality matching algorithm).

Input: Bipartite graph G = (U t V,E).

Output: A maximum cardinality matching M .

1 Procedure maximum matching(G)

2 let M be a matching, possibly empty;

3 let L contain all unmatched vertices of U ;

4 R = φ;

5 while(L ∪R 6= φ) do

6 chose a vertex x from L ∪R;

7 if(x ∈ L) Scan leftvertex(x) else Scan rightvertex(x);

8 end;

9 return M ;

10 end

11

12 Procedure Scan leftvertex(u)

13 L = L\{u};
14 for(all unlabeled v ∈ N(u)) do

15 label v as l(v) = u;

16 R = R ∪ {v};
17 end;

18 end

22 Chapter 2. Bipartite matching problems

19

20 Procedure Scan rightvertex(v)

21 R = R\{v};
22 if(there is a matching edge uv ∈M);

23 label u as r(u) = v;

24 L = L ∪ {u};
25 else [we have found an augmenting path]

26 find the augmenting path by backtracking the labels: P = (. . . , r(l(x)), l(x), x);

27 M = M4P ;

28 let L contain all unmatched vertices of U ;

29 R = φ;

30 cancel all labels;

31 end;

32 end

The running time of the algorithm is derived from the fact that at each augmentation the matching

increases its cardinality by one. Therefore we need at most n augmentations. Since every vertex is

labeled at most once per augmentation, then we don’t scan the neighbors of a vertex u ∈ U more

than once, therefore we make an augmentation in O(m) time. This gives a total O(mn) time.

Since we can start the algorithm with an arbitrary matching, the best option is to start with the

largest matching that we can find using greedy-like methods. One important observation about this

algorithm is that it also produces a vertex cover for the input bipartite graph. This vertex cover is

given by the unlabeled vertices of U and the labeled vertices of V .

This is one of the simplest efficient algorithms for finding maximum cardinality matchings. As we

mentioned before, the most famous algorithm is the Hopcroft-karp algorithm [13] with time complexity

O(m
√
n) [1, Theorem 3.11], which can be consulted in [13, 1].

For reference, we present following the algorithm of Glover [15] for finding maximum cardinality

matchings in convex bipartite graphs. This algorithm can be implemented in O(n) time complexity

using an efficient data structure developed by Gabow and Tarjan [17]. Remember that a bipartite graph

G = (U tV,E) is convex if we can arrange its vertex sets U = {u1, . . . , un} and V = {v1, . . . , vs} such

that the set of neighbors of every u ∈ U is of the form N(u) = {vj , vj+1, . . . , vk}. Such arrangement

can be found in O(m+ n) time [16]. Assuming this arrangement has been found, the pseudocode for

the algorithm is the following.

Algorithm 2.6 (Maximum matchings in convex bipartite graphs, [1] Algorithm 3.4).

Input: Convex bipartite graph G = (U t V,E).

Output: A maximum cardinality matching M .

1 Procedure convex maximum matching(G)

2 M = φ;

3 for(every u ∈ U) do α(u) = max{j | vj ∈ N(u)};

Section 2. Finding the edges that occur in at least one perfect matching 23

4 for(j = 1 to s) do

5 if(vj has unmatched neighbors)

6 find an unmatched neighbor u of vj with minimum value α(u);

7 add the edge uvj to M ;

8 end;

9 end;

10 end

There is a probabilistic algorithm for finding the cardinality of a maximum matching and the

matched vertices without giving the matching. The result is summarized in the following theorem.

Theorem 2.7 ([1], Theorem 3.22). In a bipartite graph G = (U t V,E), with n = |U | and

s = |V |, the cardinality of a maximum matching and the matched vertices can be found in

O(nβ−1s) arithmetic operations, where O(nβ) is the time complexity for multiplying two n× n
matrices.

Currently, the best time complexity for multiplying two n × n matrices is O(n2.376) [18]. For the

particular case of perfect matchings, there is a probabilistic algorithm given by Lovász [19] that helps to

determine the existence of a perfect matching in a balanced bipartite graph. At each try, the algorithm

tries to determine whether the graph has a perfect matching or not. The algorithm returns the wrong

answer with probability 1/m. Therefore, after k iterations, the algorithm will return the correct answer

with probability (1− 1/mk). Since the algorithm mostly consists of computing the determinant of an

n×n matrix at each iteration, then the time complexity for k iterations is O(nβk). The algorithm can

be found in [1, Algorithm 3.5].

2. Finding the edges that occur in at least one perfect matching

Consider the following problem. There is a matchmaking agency that matches single men to single

women. There are n men and n women. Given the set of preferences of each man and woman the

agency can determine all the pairs man-woman that may like each other. Since the agency wants

to match all men to all women in a one-to-one relation, then the agency does not want to present

a woman to a man that can prevent a full assignment, because this is not good for the agency due

to profit optimization. Therefore the agency wants to remove all the pairs man-woman that prevent

a full assignment, and only present couples that allow a full assignment. This problem can be seen

as a bipartite matching problem where we want find all the edges that occur in at least one perfect

matching. The objective of this section is to present an algorithm that solves this problem efficiently.

The algorithm can be found in [22].

In order to simplify the notation, we will make use of the following definition. Given a bipartite

graph G with perfect matchings, we define the set of all its perfect matchings as:

(19) M(G) = {M : M is a perfect matching of G}.

24 Chapter 2. Bipartite matching problems

An edge that belongs to a perfect matching is called an allowed edge. The problem of finding all

the allowed edges in a bipartite graph G = (U t V,E) consists of obtaining the following subset of

edges.

(20) Ea = {uv ∈M : M ∈M(G)}.

Note that equivalentely,

Ea =
⋃

M∈M(G)

M.

There are very efficient algorithms to solve this problem. We can find one with the best time complexity

in [22]. The time complexity of the algorithm is O(m) given one perfect matching as input. Therefore

the time complexity of the overall process is dominated by the time complexity for finding the perfect

matching. The research goes a bit further. In [22] we can also find an algorithm for obtaining all

the edges that occur in at least one maximum cardinality matching. This is useful when the bipartite

graph has no perfect matchings. In this work we are only interested in bipartite graphs with perfect

matchings, therefore we are only interested in results for perfect matchings. The following proposition

summarizes one of the main results of [22].

Proposition 2.8 ([22]). Given a bipartite graph G = (U tV,E) and a perfect matching M . All

the edges that occur in at least one perfect matching can be found in O(|E|) time.

In the remaining of this section we will focus on summarizing the algorithm of [22] for finding

the allowed edges in a bipartite graph G = (U t V,E) with U = {u1, . . . , un} and V = {v1, . . . , vn}.
A cycle is called an alternating cycle with respect to a matching M if the cycle alternates between

matched and unmatched edges.

Theorem 2.9 ([22], Theorem 2.2). Let G = (U t V,E) be a balanced bipartite graph with

a perfect matching M , then an edge uv is an allowed edge if and only if it is included in an

alternating cycle with M .

Given a perfect matching M , we construct a directed graph induced by G = (U t V,E) and M .

The digraph is given by D = (U,A), with arc set A = {(ui
←−
M(vj)) |uivj ∈ E, uivj /∈ M}, where

←−
M(vj) is the mate of vj under the matching. In summary, D is the digraph resulting from directing

all the edges of G from U to V , and then contracting all the arcs that correspond to the matching.

See figure 2.1 for an example of this process, where the identity matching is used for simplicity of the

example.

In the following corollary we see how to transform the problem of finding edges in alternating cycles

to the problem of finding edges in directed cycles in a digraph. It is not hard to prove the veracity of

the corollary.

Section 3. Enumerating all the perfect matchings in a bipartite graph 25

u1

u2

u3

u4

v1

v2

v3

v4

U V

u1

u2

u3

u4

A bipartite graph with a matching in thick edges. The induced digraph by the matching.

Figure 2.1. Digraph induced by a perfect matching.

Corollary 2.10. Given a bipartite graph G = (U tV,E) with a matching M , and the respective

induced digraph D = (V ′, A). Then an edge uivj ∈ E is an allowed edge if and only if the arc

(v′iv
′
j) ∈ A is in a directed cycle.

Remember from Proposition 1.3 that an arc of a digraph is in a directed cycle if and only if the arc

is in a strongly connected component of the digraph. Therefore our task is reduced to the problem

of finding all the strongly connected components of the induced digraph. The problem of finding

all the strongly connected components of a digraph D = (V ′, A) can be solved efficiently by several

algorithms, in particular there is an O(|A|) time algorithm due to Tarjan [24]. For every arc (v′iv
′
j) ∈ A

that is present in a strongly connected component, the respective edge uivj ∈ E is an allowed edge.

We present the complete procedure in the following algorithm, where we use the algorithm of [24] for

the strongly connected components.

Algorithm 2.11 (Allowed edges in a bipartite graph with perfect matchings, [22]).

Input: A bipartite graph G = (U t V,E) and a perfect matching M .

Output: All the edges that occur in at least one perfect matching.

1 Procedure allowed edges(G,M)

2 Ea = M ;

3 construct the induced digraph D = (V ′, A);

4 find all the strongly connected components of D;

5 for(all arcs (v′iv
′
j) ∈ A of the strongly connected component) do Ea = Ea ∪ {uivj};

6 end

Note that every line in the algorithm takes O(m) time. One interesting result is that all the edges

of a k-regular bipartite graph are allowed edges. This result follows directly from the Proposition 1.4.

An example of this fact is the Figure 2.1.

26 Chapter 2. Bipartite matching problems

3. Enumerating all the perfect matchings in a bipartite graph

The problem of enumerating all the perfect matchings of a bipartite graph consists of displaying through

some device a list of all the different perfect matchings of a bipartite graph. We do not want to get

into much detail so we will only present a brief summary of one of the main results of reference [20]. In

this reference Takeaki gives an efficient algorithm to enumerate all the perfect matchings of a bipartite

graph. His approach to solve this problem is based on a technique developed by himself that he named

trimming and balancing, which was developed with the intention to be a general technique for speeding

up enumeration algorithms. The main result is given in the following theorem.

Theorem 2.12 ([20], Theorem 1). Perfect matchings in a bipartite graph G = (U t V,E) can

be enumerated in O(|E|
√
|U |) preprocessing time and O(log |U |) time per perfect matching.

There are older algorithms for solving this problem like the algorithm of Fukuda [21]. The algorithm

of Fukuda consists of a set of recursion calls. Each recursion call receives as input a balanced bipartite

graph G = (U t V,E) and a perfect matching M of G, and finds a perfect matching different from

M . Since we already have a perfect matching, finding a different perfect matching takes O(|E|) time

because we only need to find an alternating cycle with respect to M . If no other perfect matching M ′

is found then we display M . Otherwise we consider an edge uv in M\M ′ and make two recursion calls

in the instances (G\E1,M
′) and (G\E2,M), where E1 = {uv} and E2 = {uv′ | v 6= v′ ∈ N(u)}. The

algorithm displays all the perfect matchings since M(G) = M(G\E1) ∪M(G\E2). Furthermore, if

the algorithm is run in an instance G = (U tV,E) with U = {u1, . . . , un} and V = {v1, . . . , vn}, then

each recursion takes O(m + n) time, and finding the initial perfect matching takes O(m
√
n) using

Hopcropft-Karp [13]. This gives a total time O(m
√
n+ |M(G)|(m+ n)).

The algorithm of Takeaki is based on the algorithm of Fukuda combined with the trimming and

balancing speed up technique. The difference is that in the trimming technique the graph input at

each recursive point is reduced as much as possible. The reduction phase consists of removing all the

edges that are not in any perfect matching as in the previous section, as well as removing all the edges

that belong to all the perfect matchings of the input. The balancing phase is like a divide and conquer

approach, because it consists of balancing the workload between the two subproblems generated at

each recursion point. See the reference [20] for a detailed version of the algorithm. This approach

achieves an amortized time O(log(n)) for each recursion plus the time O(m
√
n) needed to find the

initial perfect matching.

CHAPTER 3

The assignment problem

Consider the following optimization problem. We have n persons and n jobs. Each person u is

competent to perform a set of jobs N(u). For each person u that can perform a job v there is a

weight w(uv), which can be interpreted as the cost incurred for assigning person u to perform job v.

The objective is to one-to-one assign all the persons to all the jobs minimizing the total assignment

weight. Informally, this is the Assignment problem.

More formally, in terms of graph theory, the assignment problem can be stated as follows. We

have a bipartite graph G = (U t V,E), with n = |U | = |V |, and an integer weight function over the

edges of G given by w : E → Z. The objective is to find a perfect matching of G of minimum weight.

We call the pair {G,w} an instance of the assignment problem, or equivalently an integer weighted

bipartite graph. A perfect matching of minimum weight is called an optimum matching.

In this chapter we will reserve the following symbols. m = |E|, n = |U | = |V |, and W =

maxuv∈E |w(uv)|. If we want to use this symbols for another temporal purposes we will let it clear for

the reader.

In terms of linear optimization, we can write the assignment problem in a more useful way as a

linear program. In this case the decision variables are {xuv : uv ∈ E}. And the cost vector is given by

the elements of {w(uv) : uv ∈ E}. Indeed, xuv = 1 if edge uv is in the resulting perfect matching,

and is zero otherwise.

27

28 Chapter 3. The assignment problem

The linear program that models the assignment problem, which we call the assignment program,

is as follows.

minimize:
∑
uv∈E

w(uv)xuv(21)

subject to:
∑

v∈N(u)

xuv = 1, ∀u ∈ U,(22)

∑
u∈N(v)

xuv = 1, ∀v ∈ V,(23)

xuv ∈ {0, 1}, uv ∈ E.(24)

Observe that the constraint (22) forces the incident edges of each u ∈ U to be exactly one, and

the constraint (23) does the same thing for each vertex v ∈ V . This two constraints force the feasible

solutions to be perfect matchings. Since xuv = 1 if and only if the edge uv is in the matching M , then

we will abuse the terminology to say under this relation that a perfect matching is a feasible solution

of the assignment program and that an optimum matching is an optimal solutions of the assignment

program.

Note that the constraint (24) requires the decision variables to be integer. This could be a problem

because this type of problems belong to the class of integer programming problems, which are a lot

more dificult to solve than regular linear programming problems. However, Theorem 1.7 and the

following theorem found in [1] show that this is not a problem indeed. Because it shows that in this

case the constraint (24) is equivalent to the relaxed constraint xuv ≥ 0, for uv ∈ E. Therefore we

end up with a regular linear program in standard form.

Theorem 3.1 ([1], Theorem 2.18). The vertices of the assignment polyhedron uniquely corre-

spond to integer solutions of the assignment program.

This property can also be derived considering a special case of matrices. An n × n matrix A is

unimodular if det(A) = ±1. And an n × m matrix A is totally unimodular if every regular k × k

submatrix B of A is unimodular. Therefore, if the right-hand side vector b of the system Bx = b

is integer valued, then from Cramer’s rule follows that the solution x of the system is also integer

valued.

Proposition 3.2 ([1], Proposition 2.24). The coefficients matrix of the assignment program is

totally unimodular.

It follows from this proposition and from Theorem 1.8 that every feasible solution of the assignment

program is integer valued. Due to this property, the assignment problem can be solved using general

linear programming techniques. These techniques are guaranteed to finish in a finite number of steps

as Corollary 1.9 implies. But such general techniques perform pretty bad in practice. This has given a

wide field of study in the area of optimization algorithms for the development of specialized algorithms

Section 1. The auction algorithm 29

to solve the assignment problem exploiting its particular structure. Examples of such specialized

algorithms are the Hungarian method [7], the Goldberg & Kennedy algorithm [12], the Gabow &

tarjan algorithm [11], the Dinic & Kronrod algorithm [9], and the Auction algorithm [10]. Some of

them are better in theory and some of them are better in practice. In particular, we are interested in

the Auction algorithm because it is based on very intuitive concepts and it has proven to be of great

practical performance in our experiments in comparison to other algorithms of equal and even better

theoretical time complexity.

1. The auction algorithm

The ε-scaling Auction Algorithm [10] is a method that operates like a real auction. The original

algorithm is described in terms of persons and objects, but in this case persons compete for jobs. In

the dual program induced by the assignment program, part of the dual variables can be seen as prices

attached to the jobs. The optimization process is done in a competitive bidding, where the prices of

the jobs are properly modified in order to make the desired job of a person less desirable to the other

persons.

The theoretical time complexity of this algorithm is not the best currently known, but we have

an implementation that performs a lot better in practice over other algorithms with equal or better

theoretical time complexity. The time complexity of the ε-scaling auction algorithm is O(nm log(nW)).

In the ε-scaling auction algorithm every job v has a price p(v). This set of prices can be seen as

a price funciton over V defined by p : V → R. For every edge uv ∈ E we define the reduced cost of

job v for the person u as w(uv) − p(v). The objective in the auction algorithm is to find prices p(v)

for the jobs and a perfect matching M such that every person is assigned to the job that gives him

almost minimum reduced cost. This condition is expressed in the following definition.

Definition 3.3. Given ε > 0. A set of prices p and a perfect matching M are said to satisfy the

ε-Complementary Slackness Condition, or ε-CS condition for short, if they satisfy that

w(uv)− p(v) ≤ min
v′∈N(u)

{w(uv′)− p(v′)}+ ε, ∀uv ∈M.

The following theorem shows why this condition is important.

Theorem 3.4. Let ε > 0. If a perfect matching M satisfies the ε-CS condition with a set of

prices p, then M is within nε of being of minimum weight. That is, if a perfect matching M∗

is of minimum weight, then w(M) ≤ w(M∗) + nε.

Proof. From the definition of ε-CS condition follows that

w(M) =
∑
uv∈M

w(uv) =
∑
uv∈M

w(uv)−
∑
v∈V

p(v) +
∑
v∈V

p(v) =
∑
uv∈M

(w(uv)− p(v)) +
∑
v∈V

p(v)

≤
∑

uv∈M∗
(w(uv)− p(v) + ε) +

∑
v∈V

p(v) =
∑

uv∈M∗
w(uv) +

∑
uv∈M∗

ε = w(M∗) + nε.

�

30 Chapter 3. The assignment problem

Since we are working on integer weighted bipartite graphs, the following corollary shows how to

obtain an optimum matching via the ε-CS condition.

Corollary 3.5. If a perfect matching M and a set of prices p satisfy the ε-CS condition for

ε < 1
n , then M is of minimum weight.

Proof. If w∗ is the optimum weight, then theorem 3.4 implies that w(M) < w∗ + 1. Since the

weights are all integral then w(M) = w∗. �

The following pseudo-code shows how to obtain a perfect matching and a set of prices that satisfy

the ε-CS condition for a given ε > 0. If the given instance has perfect matchings, then the procedure

always terminates with the correct output as we will see later. It is important to remark that if the

instance has no perfect matchings then the procedure will fall into an infinite loop. This algorithm is

called the auction algorithm.

Algorithm 3.6 (The Auction Algorithm).

Input: Bipartite graph G, weights w, initial prices p and ε > 0.

Output: Perfect matching M and prices p that satisfy ε-CS.

1 Procedure get εCS(G,w, p, ε)

2 M = φ;

3 while(there is unassigned persons) do

4 take an unassigned person u;

5 find edges uv, uv′ with minimum and second minimum reduced cost, respectively;

6 γ = (w(uv′)− p(v′))− (w(uv)− p(v)) ≥ 0;

[note: if u has only 1 neighbor, define γ =∞]

7 if(v is assigned to a person u′) remove u′v from M ;

8 append uv to M ;

9 p(v) = p(v)− γ − ε;
10 end;

11 return {M,p};
12 end

Note that we allow the procedure to receive initial prices p. Such initial prices have no particular

restrictions, they can be any real values. The algorithm will automatically adjust them after each

iteration and will end up with the correct output as the following proposition shows. However, as we

will see later, the initial prices have a big impact on the running time of the procedure.

Proposition 3.7. If the procedure get εCS is applied to a feasible instance of the assignment

problem, then the procedure will terminate after a finite number of iterations and will return a

matching and a set of prices that satisfy the ε-CS condition. Regardless of the initial prices.

Section 1. The auction algorithm 31

Proof. The proof is based on the following loop invariant, which can be easily proven by induction.

At the start of each loop iteration, the edges of the matching M satisfy the ε-CS condition with the

current prices, and at the end of each loop iteration the edges of the new matching M still satisfy the

ε-CS condition with the new prices.

This invariant is true for the empty matching, and its true in general because the only change we

do in each iteration is to the price of one job and at the time the change is done such job is unassigned.

Also, the price is decreased in such a way that the new mate of the job satisfies the ε-CS condition.

Finally, since the price is decreased, then it means that this job will increase its reduced cost for all

other persons incident to it, therefore this change will not violate the ε-CS condition for the other

edges of the matching. This proves the veracity of the loop invariant.

Another observation is that at each iteration, only two things can happen. An unassigned job gets

assigned, increasing the size of the matching by one, or an assigned job gets assigned to a different

person, letting the size of the matching unchanged. Since after every iteration the price of an assigned

job is strictly decreased, then at some point after sufficient decrements to the prices of assigned jobs,

one unassigned job will become the best option of one unassigned person. At this point the size of the

matching will be increased by one. Therefore after a finite number of steps the matching reaches the

maximum cardinality, becoming a perfect matching that satisfies the ε-CS condition with the resulting

prices. �

Algorithm 3.8 (The ε-scaling Auction Algorithm).

Input: Bipartite graph G and weights w.

Output: Perfect matching M of minimum weight.

1 Procedure εScaling(G,w)

2 p(v) = 0, for all v ∈ V ;

3 ε = W and define some α > 1;

4 do

5 ε = ε/α;

6 {M,p} =get εCS(G,w, p, ε);

7 while(ε ≥ 1/n);

8 return M ;

9 end

There are some relevant notes about the get εCS procedure. Our objective is to find a perfect

matching M that satisfies the ε-CS condition for ε < 1
n , because according to the Corollary 3.5 the

resulting matching is optimum. It turns out that if the initial prices p are random and ε is very close

to 0, then the resulting matching will be optimum or very close to optimum but the running time will

be huge, and if ε is large then the running time will be small but the matching will be far from being

optimum. However, if the initial prices have a structure close to ε-CS condition prices structure, then

the running time is proven to be O(nm) [10]. The ε-scaling auction algorithm exploits this behavior

to efficiently find a perfect matching M that satisfies the ε-CS condition for our small ε < 1
n .

32 Chapter 3. The assignment problem

The idea of the ε-scaling auction algorithm is to fix a scaling factor α > 1. Then iteratively find

a sequence of pairs {M,p} that satisfy the ε-CS condition, where the sequence of values for ε is

{W/α,W/α2,W/α3, . . . ,W/αk}, with W/αk < 1/n. As an observation for a better understanding

of the algorithm, note that the resulting prices that satisfy the ε-CS condition for ε = W/αi, almost

satisfy the ε-CS condition for the next iteration with ε = W/α(i+1). The procedure is given in the

following algorithm. This algorithm is called the ε-scaling auction algorithm.

As we mentioned before, each call to get εCS takes time O(nm) time. And the number of scaling

phases is O(log(nW)). This gives us a total of O(nm log(nW)) running time for the ε-scaling auction

algorithm. The following corollary follows directly from Proposition 3.7 and from Corollary 3.5.

Corollary 3.9. If the procedure εScaling is applied to a feasible instance of the assignment problem,

then the procedure will terminate after a finite number of steps and will return an optimum matching.

As we have left clear, this algorithm only solves the assignment problem for perfect matchings in

balanced graphs. If we feed any of these algorithms with an unfeasible instance then the algorithms

will loop forever. In the Appendix A we can find some efficient techniques to attack the assignment

problem when the instance has no perfect matchings and we are interested in maximum cardinality

matchings.

CHAPTER 4

Classification of the optimum solutions of the assignment problem

In this chapter we present part of our original contributions. We keep working on feasible balanced

bipartite graphs G = (U t V,E), also we reserve the symbols m = |E|, n = |U | = |V |, and W =

maxuv∈E |w(uv)|. If we want to use this symbols for another temporal proposes we will mention it.

Recall that we call an optimum matching to a minimum weight perfect matching.

The objective of this chapter is to give efficient algorithms to solve the following three novel

problems on weighted bipartite graphs. The problem of finding all the edges that occur in at least

one minimum weight perfect matching. The problem of enumerating all the minimum weight perfect

matchings. And the assignment problem with preferences, which is a variation of the assignment

problem. In this problem we provide a weighted bipartite graph and a subset of preference edges

Epre ⊆ E, and we want to find a minimum weight perfect matching M that maximizes |M ∩ Epre|.
In other words, we want to achieve two different optimizations in one single step. We want to get a

minimum weight perfect matching that contains the maximum number of our preference edges.

The assignment problem with preferences has very important applications. Since the minimum

weight perfect matching is not necessarily unique, this problem allows us to chose the one that is more

useful for us. One possible application is in the following problem. Suppose we have n machines and n

tasks with an incurring time w(uv) for machine u to execute task v. We also consider in the problem

that some machines can overheat while executing certain tasks. The objective is to find a one-to-one

assignment of the machines to the tasks so that the total serial time is minimum and we also want

the minimum number of machines to be assigned to overheating tasks, without compromising the

minimum time.

Recall that unweighted versions of the first two problems that we address in this chapter have been

studied in [22, 23, 25].

In advance, assuming that we already have an ε-optimal solution of the dual assignment program

we can solve the problem of finding all the edges that occur in at least one optimum matching in O(m)

time. The problem of enumerating all the optimum matchings can be solved in O(m
√
n) preprocessing

33

34 Chapter 4. Classification of the optimum solutions of the assignment problem

time and O(log(n)) time per optimum matching. And the assignment problem with preferences can

be solved in O(m
√
n log(n)) time. In latter sections we will give a formulation of the dual assignment

program, and definitions for its ε-optimal solutions.

One important observation is that our previous summary was based on the fact that we start

with ε-optimal solutions of the dual assignment program. We decided to do things this way because in

general, all the algorithms that solve the assignment problem provide an optimal solution for the primal

assignment program, and also end up with an optimal or ε-optimal solution of the dual assignment

program, in some cases up to a constant [11]. Therefore, if the time complexity for solving the

assignment problem improves, then the total time of our algorithms get automatically improved.

1. Optimality conditions for the assignment program

Remember from chapter 3 that the assignment problem can be modeled by the following linear assign-

ment program.

minimize:
∑
uv∈E

w(uv)xuv(25)

subject to:
∑

v∈N(u)

xuv = 1, ∀u ∈ U,

∑
u∈N(v)

xuv = 1, ∀v ∈ V,

xuv ≥ 0, uv ∈ E.

Also remember that since xuv = 1 if and only if uv ∈M , we will abuse the terminology to say that a

perfect matching M is a feasible solution of the assignment program and that an optimum matching

is an optimum solution of the assignment program.

It follows from the formulations in (9) that the dual program associated to the assignment program,

called the dual assignment program is given by the following model, where the pair P = (π, p) conform

the set of dual prices. In particular π assigns prices to the vertices U and p assigns prices to the

vertices V . This interpretation of the dual prices is possible because there is one constraint for each

u ∈ U and one constraint for each v ∈ V .

The dual assignment program is given by the model:

maximize:
∑
u∈U

π(u) +
∑
v∈V

p(v)(26)

subject to: π(u) + p(v) ≤ w(uv), uv ∈ E.(27)

In what follows we give definitions of optimality and ε-optimality conditions for the assignment

problem in terms of linear optimization. Derived from the Complementary slackness theorem 1.14,

we obtain the following result, which can be found in almost any paper that addresses the assignment

problem.

Section 1. Optimality conditions for the assignment program 35

Proposition 4.1. Let M be a perfect matching and P = (π, p) be prices of the dual assignment

program. Then M is an optimum matching and P are optimal prices of the primal and the dual

assignment programs respectively, if

π(u) + p(v) ≤ w(uv), ∀uv ∈ E,(28)

π(u) + p(v) = w(uv), ∀uv ∈M.(29)

Proof. In our case, since the assignment program is in standard form and M is a feasible matching,

the complementary slackness theorem translates to M and P are optimal if

π(u) + p(v) ≤ w(uv), ∀uv ∈ E, (dual feasibility)

(w(uv)− π(u)− p(v))xuv = 0, ∀uv ∈ E, (slackness)

Note that in the last condition, xuv = 1 if and only if uv ∈M , therefore it is equivalent to

π(u) + p(v) = w(uv), ∀uv ∈M.

�

Note that optimality is not a definition, it is indeed a property. Following we present the definition of

ε-optimal solutions, which basically consists in allowing the solutions to violate the optimality condition

by a desired amount ε > 0.

Definition 4.2. Let ε > 0, M be a perfect matching, and P = (π, p) be dual prices. We say that

M and P are ε-optimal solutions of the primal and the dual assignment programs respectively,

if

π(u) + p(v) ≤ w(uv) + ε, ∀uv ∈ E,(30)

π(u) + p(v) = w(uv), ∀uv ∈M.(31)

Note that the definition (4.2) of ε-optimality for the primal and the dual assignment programs is

equivalent to the Definition 3.3 of the ε-complementary slackness condition of the auction algorithm.

The proof of this fact can be summarized as follows. Condition (31) lead us to π(u) = w(uv)− p(v),

for each uv ∈ M . Condition (30) implies that w(uv) − p(v) ≤ w(uv′) − p(v′) + ε for all v′ ∈ N(u).

Both combined imply that ∀uv ∈ M , w(uv) − p(v) = minv′∈N(u){w(uv′) − p(v′)} + ε. The other

direction is similar. The following proposition is an equivalent version of Theorem 3.4.

Proposition 4.3. Let M be a perfect matching and P = (π, p) be dual prices that are ε-

optimal. Then M is within nε of being optimum. That is, if w∗ is the optimum weight then

w(M) ≤ w∗ + nε.

36 Chapter 4. Classification of the optimum solutions of the assignment problem

Proof. If M∗ is a perfect matching of optimum weight w∗. Then it follows directly from the

definition of ε-optimal solutions that

w(M) =
∑
uv∈M

w(uv) =
∑
uv∈M

(π(u) + p(v)) ≤
∑

uv∈M∗
(w(uv) + ε) = w(M∗) + nε.

�

If we are interested in primal optimal solutions then we can make use of the following corollary.

Corollary 4.4. If M and P are ε-optimal solutions for ε < 1/n, then M is optimum.

The main result of this chapter is based on the following observation made by the author, which

can be a corollary of the Complementary slackness theorem 1.14. This observation is very important

because it is the basis for the characterization of all the optimal solutions of not only the assignment

program but any linear program in standard form.

Corollary 4.5. Given a linear program in standard form for minimizing c · x subject to {Ax =

b, x ≥ 0}. If p is an optimal dual solution, then a feasible primal solution x is optimal if and

only if xj = 0 for all j such that (cj − p ·Aj) 6= 0.

Proof. The proof follows directly from the complementary slackness theorem. Observe that in

standar form, the complementary slackness theorem translates to: feasible x and p are optimal if and

only if (cj −p ·Aj)xj = 0, for all j. Since p is already optimum then x is optimum if and only if xj = 0

whenever cj − p ·Aj 6= 0. �

This result is translated to the case of the assignment program in the following corollary.

Corollary 4.6. Given optimum dual prices P = (π, p) for the dual assignment program, a perfect

matching M is optimum if and only if w(uv)− π(u)− p(v) = 0 for all uv ∈M .

Proof. Follows from the fact that in a feasible solution, xuv = 0 if and only if uv /∈M . �

Observe that Corollary 4.6 is only useful in the presence of optimal prices. However, we do not

need to worry about ε-optimal solutions, because latter in this chapter we will present an O(n) time

algorithm to transform ε-optimal solutions with ε ≤ 1/(n+ 1) into optimal solutions.

2. The subgraph Gcs

In this section we introduce the most important object of this chapter, the subgraph Gcs. This subgraph

is important because it reduces problems in weighted perfect matchings to problems in unweighted

perfect matchings. This subgraph is given in the following definition.

Section 2. The subgraph Gcs 37

Definition 4.7. Given optimal dual prices P = (π, p), we define the subgraph Gcs(P) = (U t
V,Ecs), which is defined on the same vertex set, but the edge set is given by:

Ecs(P) = {uv ∈ E | π(u) + p(v) = w(uv)}.

Note that Gcs(P) is obtained by removing all the edges uv of G such that w(uv)−π(u)−p(v) 6= 0.

Also note that the subgraph only conserves edges but no weights. The following proposition follows

directly from the definition of the Gcs subgraph.

Proposition 4.8. The subgraph Gcs(P) can be obtained in linear O(m) time.

In order to make notation and proofs more clear, we want to define the following sets.

Definition 4.9. Let us define M(G,w) as the set of all the optimum perfect matchings of the

instance {G,w}, and define M(Gcs(P)) as the set of all the perfect matching of the subgraph

Gcs(P).

The following theorem states a strong relation between the two sets M(G,w) and M(Gcs(P)).

This theorem is indeed the pillar of our algorithms.

Theorem 4.10. If P = (π, p) are optimal dual prices, then M(G,w) =M(Gcs(P)).

Proof. From Corollary 4.6 we know that a perfect matching M is optimum if and only if w(uv)−
π(u)− p(v) = 0 for all uv ∈M , which happens if and only if M ∈M(Gcs(P)). �

Note that Theorem 4.10 implies that the set M(Gcs(P)) is the same for all optimal prices P .

However, the following example shows that the subgraph Gcs(P) can be different for different optimal

prices P .

Example 4.11. Let G be a bipartite graph with U = {u0, u1, u2} and V = {v0, v1, v2} as in figure 4.1.

If P1 = (π1, p1), are the optimal prices given by the maps π1 : {u0 7→ −2, u1 7→ 0, u2 7→ 1} and

p1 : {v0 7→ 3, v1 7→ 1, v2 7→ 0} as in figure 4.1(b), then it is not difficult to check that

Ecs(P1) = {u0v0, u1v1, u2v1, u2v2}.

Besides, if P2 = (π2, p2) are different optimal prices given as in figure 4.1(c), then is not difficult to

check that

Ecs(P2) = {u0v0, u0v1, u1v1, u2v1, u2v2},
and as we can see Gcs(P1) 6= Gcs(P2).

It is important to remark that corollary 4.5 can be applied to any linear program in standard form

to classify its optimal primal solutions using one optimal dual solution. For instance, if we consider the

transportation problem on a bipartite graph G with given supplies, demands, capacities and per-uni

costs. Then using one optimal dual solution, we can construct a subgraph Gcs of G such that the

38 Chapter 4. Classification of the optimum solutions of the assignment problem

1

1
1

2
2

1

u0 v0

u1 v1

u2 v2

1

1

2

1

π1 p1
−2 u0 v0 3

0 u1 v1 1

1 u2 v2 0

1

1
1

2

1

π2 p2
0 u0 v0 1

0 u1 v1 1

1 u2 v2 0

(a): G (b): Gcs(P1) (c): Gcs(P2)

Figure 4.1. (a) An integer weighted bipartite graph {G,w}. (b) Optimal prices P1 and

the subgraph Gcs(P1). (c) Optimal prices P2 and the subgraph Gcs(P2).

set of all the optimal flows of the original instance is equal to the set of all the feasible flows on the

subgraph Gcs under the same supplies, demands and capacities. In the case of the transportation

problem there are also algorithms to find optimal dual solutions, but in general it is not always easy to

efficiently find optimal dual solutions of a linear program in standard form. However, we can always

use linear programing techniques like the simplex method [3, Chapter 3] or the dual simplex method

[3, Chapter 4] to obtain such optimal dual solutions.

2.1. Constructing Gcs from ε-optimal solutions.

Some of the algorithms that solve the assignment problem, especially those based on cost scaling

techniques, solve it by finding ε-optimal solutions for a small enough ε > 0 that guarantees the

optimality of the primal solution, as proposition 4.3 states. See for instance [10, 11, 12].

In some cases it is not obvious that an algorithm obtains ε-optimal solutions for the primal and

the dual linear assignment programs. For instance, the Gabow-Tarjan algorithm [11] works as follows.

Given a weighted bipartite graph {G,w} and ξ > 0, they define a new cost function on the edges given

by ŵ(uv) = ξ w(uv) for all uv ∈ E, then for ε = 1 they find ε-optimal solutions M and P̂ = (π̂, p̂)

for the new instance {G, ŵ}. It turns out that if we define the prices P = (π, p) as π(v) = π̂(u)/ξ

and p(v) = p̂(v)/ξ, then it is easy to prove that M and P = (π, p) are (1/ξ)-optimal solutions for the

original instance {G,w}. Therefore we can get ε-optimal solutions for any ε > 0 if we take ξ = 1/ε.

As we mentioned before, the subgraph Gcs(P) is only useful for optimal prices P . In this section

we provide an algorithm to transform ε-optimal solutions M and Pε = (πε, pε) with ε ≤ 1/(n + 1)

into optimal solutions M and P = (π, p), in linear time O(n). Observe that the matching M is not

changed by the transformation. This is due to the fact that when ε < 1/n the resulting matching is

proven to be already optimum as we saw in Corollary 4.4.

In summary, the algorithm finds a value t ∈ {0, . . . , n} such that if we define

p(v) = bpε(v) + t/(n+ 1)c, ∀v ∈ V,(32)

π(u) = w(uv)− p(v), ∀uv ∈M,(33)

then P = (π, p) is an optimal dual solution.

As we will prove, it turns out that an appropriate value of t that makes this algorithm work should

satisfy that

t 6= d(n+ 1)(dpε(v)e − pε(v))e mod (n+ 1), ∀v ∈ V.(34)

Section 2. The subgraph Gcs 39

Note that the expression in the right is an integer value in {0, . . . , n}. Since |V | = n and there are

n+ 1 possibilities for t, then there should be at least one available value for t that satisfies (34).

If ε ≤ 1/(n+ 1), the following algorithm shows how to accomplish our objective.

Algorithm 4.12.

Input: ε-optimal solutions M and Pε = (πε, pε).

Output: Optimal prices P = (π, p).

1 Procedure get optimal(M,Pε)

2 good(j)=true, for all j = 0, . . . , n;

3 good(d(n+ 1)(dpε(v)e − pε(v))e mod (n+ 1))=false, for all v ∈ V ;

4 get t such that good(t)==true;

5 p(v) = bpε(v) + t/(n+ 1)c for all v ∈ V ;

6 π(u) = w(uv)− p(v) for all uv ∈M ;

7 return P = (π, p);

8 end

It is not difficult to see that every line in the procedure get optimal takes O(n) time. This gives

an overall O(n) time. Now its time to prove that the procedure returns indeed optimal prices.

Lemma 4.13. Let r ∈ R, n ∈ Z and t ∈ {0, . . . , n}. If t 6= d(n+ 1)(dre− r)e mod (n+ 1), then

br + (t− 1)/(n+ 1)c = br + t/(n+ 1)c.

Proof. Let us define the equipartition of the interval [r, r + 1] given by Pi = r + i/(n + 1) for

i ∈ {0, . . . , n + 1}. It is not difficult to see from figure 4.2 that dre ∈ [Pi−1, Pi) if and only if

i = d(n + 1)(dre − r)e. Thus, if t 6= d(n + 1)(dre − r)e, then bPt−1c = bPtc = dre − 1 or bPt−1c =

bPtc = dre. That is, bPt−1c = bPtc. We need to consider t with modulus (n + 1) because of the

symetry of r and r + 1 when r is integral. �

R
r r + t−1

n+1 r + t
n+1 r + 1

dre = r + (n+1)(dre−r)
n+1

· · · · · ·

Figure 4.2. The equipartition of the interval [r, r + 1] defined by Pi.

Proposition 4.14. Let M and Pε = (πε, pε) be ε-optimal solutions with ε ≤ 1/(n+ 1), then the

procedure get optimal will return optimal prices P = (π, p).

Proof. The objective is to prove that the matching and the new prices satisfy a condition equivalent

to the optimality condition given in Proposition 4.1. Such equivalent condition is that each uv ∈ M

40 Chapter 4. Classification of the optimum solutions of the assignment problem

satisfies that w(uv)− p(v) ≤ w(uz)− p(z) for all z ∈ N(u). The proof of this equivalence is similar to

the proof discussed in the comments after the Definition 4.2. Note that the prices π are not present

in the condition because this condition is more like the optimality condition of the auction algorithm,

nonetheless to complete the dual prices we must define π(u) = w(uv)− p(v).

Let uv ∈ M and z ∈ N(u). If z = v, then the inequality is clear. Thus we can assume that

z ∈ N(u) \ v. Since M and Pε are ε-optimal, then w(uv)− pε(v) ≤ w(vz)− pε(z) + ε. Therefore,

w(uv)−p(v) = w(uv)−bpε(v)+t/(n+1)c

= w(uv)+d−pε(w)−t/(n+1)e

= dw(uv)−pε(v)−t/(n+1)e
ε-optimality
≤ dw(uz)−pε(z)+ε− t/(n+1)e

ε≤1/(n+1)
≤ dw(uz)−pε(z)+1/(n+1)−t/(n+1)e

= w(uz)+d−pε(z)−(t− 1)/(n+1)e

= w(uz)−bpε(z)+(t−1)/(n+1)c
(Lemma 4.13)

= w(uz)−bpε(z)+t/(n+1)c

= w(uz)−p(z).

Therefore, from proposition 4.1 we get that M and P are optimal solutions of the primal and the dual

assignment programs. �

With this algorithm in mind, we can take for granted that we can always get optimal solutions.

Remark 4.15. The current best time complexity to solve the assignment problem, and therefore to

find ε-optimal solutions for the primal and the dual assignment programs is O(
√
nm log(nW)). An

algorithm that achieves this complexity is given in [11].

3. Applications of the subgraph Gcs

In this section we will use the subgraph Gcs to solve the problems that we described at the beginning

of the chapter. The task is now simple because of Theorem 4.10 and because of the algorithms given

in [22, 20, 21]. Since we have reduced our problems to their respective unweighted variants.

3.1. Finding all the edges that occur in at least one optimum matching

This problem is the weighted variant of the problem addressed in Chapter 2, where we introduced

an algorithm for finding all the edges that occur in any bipartite perfect matching. This unweighted

version has been addressed by several authors [22, 23, 25].

Given a weighted bipartite graph {G,w}, this problem consists of finding the subgraph of G given

by Gopt = (U t V,Eopt), defined on the same vertex set but with edge set given by:

(35) Eopt = {uv ∈M : M ∈M(G,w)}.

Section 3. Applications of the subgraph Gcs 41

Observe that equivalently we can express the subset Eopt as follows.

(36) Eopt =
⋃

M∈M(G,w)

M.

Given optimal prices P = (π, p), Theorem 4.10 induces a way to compute the subgraph Gopt.

First, we construct Gcs(P) and then we obtain Eopt by finding all the edges that occur in at least one

perfect matching of Gcs(P), which can be done using the algorithm of [22] with one of its main results

is summarized in Proposition 2.8. Assuming that the instance has perfect matchings, the following

algorithm shows how to find Gopt.

Algorithm 4.16.

Input: An instance {G,w} and optimal dual prices P .

Output: The subgraph Gopt of G.

1 Procedure get Gopt(G,w, P)

2 construct the subgraph Gcs(P) = (U t V,Ecs);

3 get Eopt = {uv ∈ Ecs |uv is in any perfect matching of Gcs(P)};
4 return Gopt = (U t V,Eopt);

5 end

At this point it should not be dificult to see that the algorithm returns the correct output. However,

the following proposition states this more formally.

Proposition 4.17. The procedure get Gopt returns the subgraph Gopt from (36) of a weighted

bipartite graph.

Proof. It is not dificult to see that the procedure returns indeed
⋃
M∈M(Gcs(P)) M . But from Theo-

rem 4.10 we know thatM(Gcs(P)) =M(G,w). Therefore the procedure returns
⋃
M∈M(G,w) M . �

Theorem 4.18. Given a weighted bipartite graph {G,w} and optimal dual prices P , all the edges

of G that occur in at least one minimum weight perfect matching can be obtained in O(m)

time.

Proof. Analyzing the steps of the Algorithm 4.16, we get from proposition 4.8 that the sub-

graph Gcs(P) can be obtained in O(m) time, and from proposition 2.8 that Eopt can be computed in

O(|Ecs(P)|) time. This gives an overall O(m) time. �

3.2. Classification of the edges of a weighted bipartite graph

In this section we will briefly describe an interesting application of what we have constructed at this

point. We will classify the edges of a weighted bipartite graph in the following disjoint sets.

42 Chapter 4. Classification of the optimum solutions of the assignment problem

• Permanent edges: This subset of edges is integrated by the edges of Gopt that have no

adjacent edges or equivalently, edges that are adjacent to vertices of degree one. This type

of edges are present in every optimal matching. Formally, this set is:

Eper = {uv ∈ Eopt : degGopt(u) = degGopt(v) = 1}.

• Replaceable edges: This subset of edges is integrated by the edges of Gopt that have at least

one adjacent edge. This type of edges are present in at least one optimum matching, and

are missing in at least one optimum matching. The set is given formally as:

Erep = {uv ∈ Eopt : degGopt(u) = degGopt(v) > 1}.

• Forbidden edges: This subset of edges is integrated by the edges of G that are not in Gopt.

This type of edges never occur in an optimum matching. Formally, this set is given by:

Efor = E\Eopt.

Note that Eper ∪Erep = Eopt, and therefore Eper ∪Erep ∪Efor = E. Another important property

of a weighted bipartite graph that can be derived from the construction of Gopt is in the following

corollary which needs no proof.

Corollary 4.19 (Uniqueness). A weighted bipartite graph has a unique optimum matching if and

only if Gopt has n edges.

It is important to remark that this classification of the edges as well as the uniqueness property of

the optimum solutions can be obtained in O(m) time starting from optimal dual prices P = (π, p).

3.3. Enumerating all the minimum weight perfect matchings

The problem that we want to solve in this section is the weighted variant of the problem addressed

in Chapter 2, where we showed how to enumerate all the bipartite perfect matchings. In this case

we want to enumerate all the optimum perfect matchings of a weighted bipartite graph. The direct

algorithm derived from Theorem 4.10 is the following. Given optimal dual prices P , the first step is

to find the subgraph Gcs(P) and then we enumerate all the perfect matchings of Gcs(P) which can

be done by algorithms like [20, 21] as Theorem 2.12 states. In the following algorithm we give the

procedure to solve this problem.

Algorithm 4.20.

Input: An instance {G,w} and optimal dual prices P .

Output: The enumeration of the minimum weight perfect matchings of {G,w}.
1 Procedure enumerate MW Per Mat(G,w, P)

2 construct the subgraph Gcs(P) = (U t V,Ecs);

3 enumerate all the perfect matchings of Gcs(P);

4 return;

5 end

Section 3. Applications of the subgraph Gcs 43

Proposition 4.21. The procedure enumerate MW Per Mat enumerates all the minimum weight

perfect matchings of a weighted bipartite graph {G,w}.

Proof. We are enumerating all the elements of M(Gcs(P)), but we know from theorem 4.10 that

M(Gcs(P)) =M(G,w). �

Theorem 4.22. Given a weighted bipartite graph {G,w} and optimal dual prices P , all its

minimum weight perfect matchings can be enumerated in O(m+ |Ecs(P)|
√
n+M log n) time,

where M is the number of minimum weight perfect matchings.

Proof. Analyzing the steps of the Algorithm 4.20, we get from proposition 4.8 that the subgraph

Gcs(P) can be obtained in O(m) time, and from theorem 2.12 that we can enumerate all the perfect

matchings of Gcs(P) in O(|Ecs(P)|
√
n+M log n) time, giving an overall O(m+|Ecs(P)|

√
n+M log n)

time. �

Just as a justification of the long term in the running time. Note that the subgraph Gcs(P) can

have a lot less edges than G and also note that there can be a very small number of optimum perfect

matchings. Therefore, it is possible that every term in O(m+ |Ecs(P)|
√
n+M log n) dominates the

complexity.

3.4. The assignment problem with preferences

The assignment problem with preferences is a novel problem that can be stated informally in the

following application example. Suppose that we want to one-to-one assign resources to jobs at a

minimum total cost as in a traditional assignment problem. We also know that over the jobs that each

resource is capable of perform, he has some jobs of his preference that will make him happier if he

ends up performing one of this jobs. The objective in this case is to obtain, over all the minimum cost

assignments, the one that maximizes the persons assigned to a job of his preference. In other words,

maximize the preference as long as the optimality of the assignment cost allows it.

Formally, we have as input a weighted bipartite graph {G,w} and a subset of edges Epre of G which

can be seen as a set of assignment preferences. The assignment problem with preferences consists of

finding an optimum matching M such that |M ∩ Epre| is maximum over all the optimum matchings

of {G,w}. In other words, there is no other optimum matching that has more edges of Epre than M .

Note that there can be several optimum matchings that respect a maximum number of preferences.

This problem can be easily solved with the help of the subgraph Gcs. Given the subgraph Gcs(P)

for some optimal dual prices P , we define a new weight function wp : E(Gcs(P)) → {0, 1} over the

edges of Gcs(P), as follows

(37) wp(uv) =

0 if uv ∈ Epre
1 if uv /∈ Epre.

The algorithm for solving this problem can be derived from the following proposition.

44 Chapter 4. Classification of the optimum solutions of the assignment problem

Proposition 4.23. If M is a minimum weight perfect matching of the new instance

{Gcs(P), wp}, then M is an optimum matching of the original instance {G,w} such that

|M ∩ Epre| is maximized over the elements of M(G,w).

Proof. Since P are optimal dual prices, then from theorem 4.10 follows that M is an optimum

matching of {G,w}. Therefore since M(Gcs(P)) = M(G,w), then M maximizes |M ∩ Epre| over

M(G,w) if and only if there is no other perfect matching of Gcs(P) with more edges of Epre than M .

If M ′ is a perfect matching of Gcs(P) containing more edges of Epre than M , then the weight of

M ′ is smaller than the weight of M in the instance {Gcs(P), wp}, because M ′ has more edges with

zero weight than M . This contradicts the optimality of M on {Gcs(P), wp}. Therefore M maximizes

|M ∩ Epre| over M(G,w). �

In the following algorithm we give the complete procedure to solve this problem.

Algorithm 4.24.

Input: An instance {G,w}, optimal dual prices P , and a subset of edges Epre.

Output: A minimum weight perfect matching that contains a maximum number of edges of Epre.

1 Procedure AP preferences(G,w, P,Epre)

2 construct the subgraph Gcs(P) = (U t V,Ecs);

3 construct the wegith function wp, as in (37);

4 get a minimum wegith perfect matching M of {Gcs(P), wp};
5 return M ;

6 end

The output of the algorithm is the correct as is shown in the following proposition.

Proposition 4.25. The perfect matching returned by the procedure AP preferences is of mini-

mum weight and maximizes |M ∩ Epre| over the elements of M(G,w).

Proof. Follows directly from proposition 4.23. �

Theorem 4.26. Given a weighted bipartite graph {G,w}, optimal dual prices P and a subset

of edges Epre. A minimum weight perfect matching that maximizes |M ∩ Epre| over the set

of minimum weight perfect matchings, can be found in O(m + AP 01(Gcs, wp)) time. Where

AP 01(Gcs, wp) is the time needed to solve the assignment problem in an instance with {0, 1}-
weights.

Proof. Analyzing the steps of the Algorithm 4.24, we get from proposition 4.8 that the subgraph

Gcs(P) can be obtained in O(m) time. And the weight function can be constructed in O(m) time.

This gives an overall O(m+AP 01(Gcs, wp)) time. �

Section 4. Performance analysis 45

Currently the fastest algorithm that solves an instance of the assignment problem with only {0, 1}-
weights is the algorithm found in [11], which solves a general assignment problem but in this case

W = 1. This result and Theorem 4.26 imply the following corollary.

Corollary 4.27. Given a weighted bipartite graph {G,w}, optimal dual prices P and a subset

of edges Epre. A minimum weight perfect matching that maximizes |M ∩Epre| over the set of

minimum weight perfect matchings, can be found in O(
√
nm log(n)) time.

An important observation is that the assignment problem with preferences works on an instance

of the assignment problem. And the instance {Gcs(P), wp} is also an instance of the assignment

problem. Therefore we can nest this algorithm to model hierarchy levels in the preferences. We could

for example, define preferences sets Epre 1, Epre 2, . . . , Epre k. In the first phase we consider all the

preferences Epre 1, . . . , Epre k to get the first subinstance {Gcs 1, wp 1}. Note that an optimal solution

in this first subinstance is a matching that maximizes the preferences from all the sets of preferences.

If we now apply the preferences algorithm to the instance {Gcs 1, wp 1} this time only considering

the preferences Epre 2, . . . , Epre k. Then we get an second subinstance {Gcs 2, wp 2} which in turn

satisfies that an optimum solution of it is such that from all the optimum matchings that maximize

the number of preferences from Epre 1, . . . , Epre k is the one that maximizes the preferences from

Epre 2, . . . , Epre k. And we can continue until we process all levels. For the purpose of illustration, lets

consider the following example. Let us say that we want to assign persons to tasks and the persons

have given their preferences of the tasks they would like to do. We still do not want to compromise

the optimality of the solution and we want to maximize the prefrerences. Besides, it turns out that

some of the persons are our friends and what we want to do is, from all the optimum solutions that

maximize the overall preferences we want to find the one that maximizes the preferences of our friends.

This problem can be solved using the approach just described above with two levels of preferences.

All the algorithms and methods described in this chapter only apply to bipartite graphs with perfect

matchings. If we want to attack problems in bipartite graphs with no perfect matchings then we can

make use of the transformations given in the Appendix A.

4. Performance analysis

In this section we present information about the performance of the algorithm for finding the subgraph

Gopt described previously in the applications of the subgraph Gcs, as the subgraph that has edge set

equal to all the edges that occur in at least one optimum matching. The instances were solved in a

Windows 8.1 PC with 64 bits architecture, Intel Core i5-4670 CPU @ 3.40GHz and 16GB of RAM.

The idea is not to just show its performance, which is good, but also compare it to when we

only solve the regular assignment problem on the same instance. It is important to mention that the

underlying algorithm used for solving the assignment problem, and therefore obtaining the ε-optimal

dual prices, was the Auction algorithm of Bertsekas [10] that we presented in Chapter 3.

Since obtaining data of real life scenarios that find application in the assignment problem is difficult,

we will test the performance in randomly generated instances.

46 Chapter 4. Classification of the optimum solutions of the assignment problem

In the Chapter 5, we will discuss a few models to generate random instances of the assignment

problem. Therein we describe a model that we call the Dispersed-degree model. This model is

designed to introduce randomness in the graph structure itself rather than in the edge weights, which

are distributed uniformly at random in the integer range {0, . . . , 109}. For each graph generated under

this model we use 4 parameters given by (n, s, d, r). The parameters n, s are the number of vertices in

the vertex sets U and V respectively, since we will only work on balanced instances then n = s for our

tests. The value d ∈ [0, 1] is a real number such that the resulting graph satisfies d ≈ |E|
n ∗ s

, in other

words d measures the proportion of edges in the graph respect to the complete bipartite graph with

the same vertices. And r ∈ [0, 1] is a real number that defines how dispersed are the degrees of the

vertices of U . For each vertex of U , we define its degree to be an integer random number uniformly

distributed in the interval [d · s − r̂, d · s + r̂], where r̂ = r · s ·min(d, 1 − d). In other words, r = 0

means all vertices of U have the same degree d · s, while r = 1 means that the degrees of U are as

dispersed as possible whithout violating the density.

Density

500 1,000 2,000 4,000 8,000 16,000 32,000
Nodes in each side of the graph

0

5

10

15

20

25

30

35

40

45

So
lv
in
g
tim

e
(s
ec
on
ds
)

Solving Gopt Solving AP

Density

500 1,000 2,000 4,000 8,000 16,000 32,000
Nodes in each side of the graph

0

10

20

30

40

50

60

70

80

90

So
lv
in
g
tim

e
(s
ec
on
ds
)

Solving Gopt Solving AP

Density

500 1,000 2,000 4,000 8,000 16,000 32,000
Nodes in each side of the graph

0

20

40

60

80

100

120

140

So
lv
in
g
tim

e
(s
ec
on
ds
)

Solving Gopt Solving AP

Density

500 1,000 2,000 4,000 8,000 16,000 32,000
Nodes in each side of the graph

0

20

40

60

80

100

120

140

160

180

So
lv
in
g
tim

e
(s
ec
on
ds
)

Solving Gopt Solving AP

Radius of dispersion r = 0

d = 0.2 d = 0.4

d = 0.6 d = 0.8

Figure 4.3. Time performance of solving the assignment problem vs solving the problem

of finding Gopt in the same instance, with radius of dispersion r = 0.0, different levels

of density and different graph sizes.

Section 4. Performance analysis 47

We present performance data in plots for different sequences of parameters of the Dispersed-degree

model. It is important to remark that, since for each fixed set of parameters we obtain different random

instances every time we request for one, then in order to reduce bias in the results we have generated

15 different random instances for each fixed set of parameters. Therefore, what we present is the

average solving time of 15 random instances with the same configuration.

In Figure 4.3 we fix the radius of dispersion in r = 0, each plot in turn fixes its own value of density,

and since we only consider balanced graphs (n = s) the only free parameter is the number of vertices

in each side of the graph, this parameter varies along the horizontal axis in every plot. Note that the

horizontal axis is in a logarithmic scale. Each plot shows two lines, the solid one for the time taken

to solve a regular assignemnt problem from scratch, and the dashed one for the time taken to find

the subgraph Gopt from scratch in the same instance. As we can observe, the lines are pretty close to

each other.

Density

500 1,000 2,000 4,000 8,000 16,000 32,000
Nodes in each side of the graph

0

5

10

15

20

25

30

35

40

45

So
lv
in
g
tim

e
(s
ec
on
ds
)

Solving Gopt Solving AP

Density

500 1,000 2,000 4,000 8,000 16,000 32,000
Nodes in each side of the graph

0

10

20

30

40

50

60

70

80

90

So
lv
in
g
tim

e
(s
ec
on
ds
)

Solving Gopt Solving AP

Density

500 1,000 2,000 4,000 8,000 16,000 32,000
Nodes in each side of the graph

0

20

40

60

80

100

120

140

So
lv
in
g
tim

e
(s
ec
on
ds
)

Solving Gopt Solving AP

Density

500 1,000 2,000 4,000 8,000 16,000 32,000
Nodes in each side of the graph

0

20

40

60

80

100

120

140

160

180

So
lv
in
g
tim

e
(s
ec
on
ds
)

Solving Gopt Solving AP

Radius of dispersion r = 0.4

d = 0.2 d = 0.4

d = 0.6 d = 0.8

Figure 4.4. Time performance of solving the assignment problem vs solving the problem

of finding Gopt in the same instance, with radius of dispersion r = 0.4, different levels

of density and different graph sizes.

Figure 4.4 shows similar information, but this time for the fixed radius of dispersion r = 0.4. It

might be difficult to see from the figures, but the lines are a bit closer now to each other.

48 Chapter 4. Classification of the optimum solutions of the assignment problem

Finally, in Figure 4.5 we show similar information about the time performance, but this time for

the fixed radius of dispersion r = 1.0, which is the maximum possible dispersion. Although this figure

shows the smallest difference between the lines from all the figures, in all the cases the lines show very

small difference.

Besides the small time difference between the two problems, it is impressive that we can solve an

instance of the assignment problem with 819, 200, 000 variables (edges) in about three minutes.

Density

500 1,000 2,000 4,000 8,000 16,000 32,000
Nodes in each side of the graph

0
5
10
15
20
25
30
35
40
45
50
55
60

So
lv
in
g
tim

e
(s
ec
on
ds
)

Solving Gopt Solving AP

Density

500 1,000 2,000 4,000 8,000 16,000 32,000
Nodes in each side of the graph

0
10
20
30
40
50
60
70
80
90
100
110
120

So
lv
in
g
tim

e
(s
ec
on
ds
)

Solving Gopt Solving AP

Density

500 1,000 2,000 4,000 8,000 16,000 32,000
Nodes in each side of the graph

0

20

40

60

80

100

120

140

So
lv
in
g
tim

e
(s
ec
on
ds
)

Solving Gopt Solving AP

Density

500 1,000 2,000 4,000 8,000 16,000 32,000
Nodes in each side of the graph

0
20
40
60
80
100
120
140
160
180
200

So
lv
in
g
tim

e
(s
ec
on
ds
)

Solving Gopt Solving AP

Radius of dispersion r = 1

d = 0.2 d = 0.4

d = 0.6 d = 0.8

Figure 4.5. Time performance of solving the assignment problem vs solving the problem

of finding Gopt in the same instance, with radius of dispersion r = 1.0, different levels

of density and different graph sizes.

Our hypotheses is that since the steps for finding Gopt after obtaining the ε-optimal solutions are

performed in the graph structure, then the more difficult the instance is for the assignment problem

solver the smaller the difference in time between the two problems will be. This fact explains the

behavior of the lines getting closer to each other when the radius r increases, i.e. making the assignment

problem instances more difficult to solve. Even though the problems generated by the Dispersed-degree

model are instances with medium level of dificulty for the Auction algorithm, the difference in solving

time between the two problems is very small. In conclusion, finding a random optimum matching by

Section 4. Performance analysis 49

means of solving the assignment problem is equally hard than finding all the optimum matchings in both

theory and practice. A similar conclusion is expected from the Assignment problem with preferences.

CHAPTER 5

The random assignment problem

The Random Assignment Problem consist of an instance {G = (U t V,E), w : R → E} of the

assignment problem where the weights w(uv) of the edges uv ∈ E are given independent randomly

distributed. Until now, the random assignment problem has been studied only for the complete bipartite

graph. In this chapter we study the random assignment problem for a not necessarily complete bipartite

graph, more precisely when G is an Erdős-Renyi bipartite graph.

Random assignment problems have been studied exhaustively for many authors in the last years.

See [30] and the references contained there for an overview of the last results and developments in

several types of random assignment problems. The analysis of random assignment problems is very

important in order to understand the properties of optimal solutions and feasible regions of assignment

problems, specially in large scale cases.

This chapter is organized as follows: we begin by recalling the most important known results about

the random assignment problem on the complete bipartite graph Kn,s, see for instance [31] and the

references contained there. In Section 2, we introduce the Erdős-Renyi model of a random bipartite

graph and some of their variants. After that we pose some conjectures about the random assignment

problem, but this time on non-complete bipartite graphs. We finish this chapter by presenting a proof

for the first of these conjectures; which establish the expectation value of the minimum weight of a

matching of size k for an Erdős-Renyi random bipartite graph. The proof presented is similar to the

given in [31] for complete bipartite graphs.

1. The random assignment problem for a complete bipartite graph

In this section we present the most important known results about the random assignment problem

on the complete bipartite graph Kn,s. Without loss of generality as shown in [31], we assume that

the weights of the edges are given independent exponentially distributed with rate 1. We denote the

minimum weight of a matching of size k in the complete bipartite graph Kn,s as Ck,n,s. In particular,

51

52 Chapter 5. The random assignment problem

let Cn = Cn,n,n. Let ζ(s) be the Riemann zeta function given by
∑∞

i=1
1
is . As before, we assume that

U = {u1, . . . , un} and V = {v1, . . . , vs}. Now, we present the most remarkable results for the random

assignment problem on the complete bipartite graph.

(38) It was proven that E[Cn]→ π2

6
= ζ(2), as n→∞.

(39) In general it was proven that E[Cn] =

n∑
i=1

1

i2
, which clearly converges to ζ(2).

(40) Moreover, in [31] was proved that E[Ck,n,s] =
∑
i,j≥0
i+j<k

1

(n− i)(s− j)
.

It is not difficult to prove by induction that E[Cn,n,n] reduces to

n∑
i=1

1

i2
, as we prove in the following

proposition.

Proposition 5.1. E[Cn,n,n] =
∑
i,j≥0
i+j<n

1

(n− i)(n− j)
=

n∑
i=1

1

i2
= E[Cn].

Proof. The base case of the induction is very easy to verify. Following we show the first three

cases for n = 1, 2, 3. In each case we have all the valid values for i and for j, and in the blue shaded

triangular array we show the terms 1
(n−i)(n−j) that will be added up in the summation.

• n = 1:

0 1

�
�
�i

j
0

E[C1,1,1] = 1.

• n = 2:

1 1/2

0 1/4 1/2

�
�
�i

j
0 1

E[C2,2,2] =
1

4
+

1

2
+

1

2
= 1 +

1

22
.

• n = 3:

2 1/3

1 1/6 1/4

0 1/9 1/6 1/3

�
�
�i

j
0 1 2

E[C3,3,3] =
1

9
+

1

4
+

2

6
+

2

3
= 1 +

1

22
+

1

32
.

Section 1. The random assignment problem for a complete bipartite graph 53

The inductive step is based on the observation represented in the following figure. We express the

concept in the case n = 4, but its not difficult to see that it is true for any n.

n = 4

3 1/4 1/3

2 1/8 1/6 1/4

1 1/12 1/9 1/6 1/3

0 1/16 1/12 1/8 1/4

�
�
�i

j
0 1 2 3

Following with the case n = 4 in the figure, the idea is to append to the array, the corresponding

values of the pink shaded semi-diagonal where i, j ≥ 1, i + j = 4. This makes the array i, j ≥ 1,

i+ j ≤ 4 to be identical to the array of the case n = 3, which is composed by the dark-blue and pink

shaded cells. Observe that, because of the inductive step for n = 3, such entries together with the

cell (i = 0, j = 0) complete the summation
∑4

i=1
1
i2

. Therefore, we only need to prove that the pink

entries sum equal to the bottom row and left column cells wihtout the cell (i = 0, j = 0), which is

very easy to verify it in the figure.

For general n, the sum of the appended pink diagonal can be expressed by A =

n−1∑
i=1

1

i(n− i)
.

Due to the symmetry of the array, the sum of the bottom row plus the left column, without the cell

(i = 0, j = 0), can be expressed by B = 2

n−1∑
i=1

1

n(n− i)
. In order to establish formally the identity of

the proposition, we prove following that A = B.

A =
n−1∑
i=1

1

i(n− i)
=

n−1∑
i=1

1

ni
+
n−1∑
i=1

1

n(n− i)
= 2

n−1∑
i=1

1

n(n− i)
= B

Assuming that the inductive step is true for n−1, i.e. E[Cn−1,n−1,n−1] =
∑n−1

i=1
1
i2

, we prove that

it is also true for n. To simplify the proof lets denote the summation terms by tn,i,j = 1
(n−i)(n−j) .

E[Cn,n,n] =
∑
i,j≥0
i+j<n

tn,i,j =
∑
i,j≥1
i+j<n

tn,i,j +
∑

i=0 or j=0
i+j<n

tn,i,j

=
∑
i,j≥1
i+j<n

tn,i,j + 2
n−1∑
i=1

1

n(n− i)︸ ︷︷ ︸
B

+
1

n2
=

∑
i,j≥1
i+j<n

tn,i,j +

n−1∑
i=1

1

i(n− i)︸ ︷︷ ︸
A

+
1

n2

=
∑
i,j≥1

i+j<n+1

tn,i,j +
1

n2
=

∑
i,j≥0

i+j<n−1

tn−1,i,j

︸ ︷︷ ︸
E[Cn−1,n−1,n−1]

+
1

n2
=

n∑
i=1

1

i2
= E[Cn].

54 Chapter 5. The random assignment problem

�

2. The non-complete random assignment problem

In this section we briefly describe the necessary definitions to understand the problem that we are

addressing. Given a bipartite graph G = (U t V,E), with n = |U |, s = |V | and m = |E|, we define its

density by ρ(G) =
m

n · s
∈ [0, 1]. Note that in a complete bipartite graph Kn,s we have m = n · s, and

therefore ρ(Kn,s) = 1. We denote the degree of a vertex x by deg(x). Following we will describe two

models to construct bipartite graphs of a given density d ∈ [0, 1].

2.1. Random bipartite graph models

In the Erdõs-Renyi model every possible edge of the bipartite graph has under a bernoulli distribution,

probability d to stay in the graph and (1−d) to be taken out of the graph. The pseudocode to generate

this type of random bipartite graphs is given in the following procedure. Which takes as argument the

number of vertices in U , the number of vertices in V and the desired density d.

Procedure erdos renyi(n, s, d):

1) U = {u1, . . . , un}, V = {v1, . . . , vn}, E = φ;

2) for each u ∈ U, v ∈ V :
3) if (getBernoulli(d)==1) add edge uv to E;

4) return G = (U t V,E);

The function getBernoulli(d) returns 1 with probability d and 0 with probability (1−d). It is not difficult

to see that in the resulting graph ρ(G) ≈ d. Observe that in this model for generating bipartite graphs,

the degrees of the vertices satisfy that deg(u) ≈ d · s for u ∈ U and deg(v) ≈ d ·n for v ∈ V . In other

words, we get almost null variability in the distribution of the degrees in each side.

The second model, the Dispersed-degree model, is designed to make the distribution of the degrees

in the side U more variable while preserving the desired density d. Basically, we define the degree of

each vertex u ∈ U as an integral uniform random number in an interval centered at d ·s. This interval is

of the form [d ·s−r, d ·s+r], where r is a custom radius of dispersion. Note that since deg(u) ∈ [0, s],

then r must satisfy r ≤ s ·min(d, 1− d) to keep the degrees in the valid range. Also note that since

the interval is centered in d · s, then E[deg(u)] = d · s, therefore ρ(G) ≈ d. Once we have defined the

degree of a vertex u ∈ U , we take its neighbors as a uniformly random subset of V of size deg(u).

The following pseudocode shows how to generate this class of graphs. It takes as input the number

of vertices in U , the number of vertices in V , the desired density d, and the custom radius of dispersion

0 ≤ r ≤ s ·min(d, 1− d).

Section 2. The non-complete random assignment problem 55

Procedure dispersed degree(n, s, d, r):

1) U = {u1, . . . , un}, V = {v1, . . . , vn}, E = φ;

2) for each u ∈ U define deg(u) := rand(d · s− r, d · s+ r);

3) for each u ∈ U:
4) take deg(u) uniform random elements of V as neighbors of u;

5) return G = (U t V,E);

The function rand(a,b) returns an uniform random integral number in the interval [a, b]. The random

subset of neighbors of each u ∈ U can be constructed by shuffling the set V uniformly at random and

then take the first deg(u) elements as neighbors of u.

In both models, the weights of the edges are given independent exponentially distributed of rate

λ = 1.

2.2. Conjectures for the non-complete random assignment problem

According to our random models, we denote Cdk,n,s as the minimum weight of a matching of size k

in an Erdõs-Renyi(n, s, d) bipartite graph. We also denote Cd,rk,n,s as the minimum weight matching of

size k in a Dispersed-degree(n, s, d, r) bipartite graph.

The conjectures that we present following are based on experimental results for the case n = s = k,

that is, the bipartite graph is balanced and the matching is perfect.

Conjecture 5.2. Based on experimental results, it seems that:

• E[Cdk,n,s] =
1

d
·
∑
i,j≥0
i+j<k

1

(n− i)(s− j)
, for an Erdõs-Renyi(n, s, d) graph.

• E[Cd,0k,n,s] =
1

d
·
∑
i,j≥0
i+j<k

1

(n− i)(s− j)
, for a Dispersed-Degree(n, s, d, r = 0) graph.

Based on weak experimental results, it seems that:

• E[Cd,rk,n,s] =
1

d
·
∑
i,j≥0
i+j<k

1

(n− i)(s− j)
, for a Dispersed-Degree(n, s, d, r) graph.

Note that when n = s = k, the expected value reduces to
1

d
·
n∑
i=1

1

i2
, which converges to

ζ(2)

d
.

In this section we will give a proof for the first conjecture, which corresponds to the general

Erdõs-Rengy(n, s, d) bipartite graph. That is, we will prove that E[Cdk,n,s] =
1

d
·
∑
i,j≥0
i+j<k

1

(n− i)(s− j)
.

56 Chapter 5. The random assignment problem

2.3. Proof for the Erdõs-Renyi bipartite graphs

Without loss of generality we assume that the weights are generic, meaning that not two distinct

assignments have the same weight, since this holds with probability 1 in the random model.

A vertex participates in an assignment if there is an edge incident to it in the matching. For

0 ≤ r ≤ k, we let σr be the minimum weight r-matching. Similar to the case of complete bipartite

graphs [31], we need to prove the following inductive step, which makes the proof follow directly.

(41) E[Cdk,n,s]− E[Cdk−1,n,s−1] =
1

nsd
+

1

(n− 1)sd
+ · · ·+ 1

(n− k + 1)sd
.

We believe that the proofs for the other two conjectures, on the Dispersed-Degree(n, s, d, r) ran-

dom bipartite graph, should be similar to this proof.

Lemma 5.3. Given an Erdõs-Renyi(n, s, d) bipartite graph. For each vertex v ∈ V and any

subset U ′ ⊆ U , the expected number of neighbors of v in U ′ is d · |U ′|.

Proof. Follows from the fact that the sum of |U ′| bernoulli variables with parameter d is a binomial

variable with parameters (|U ′|, d). �

Lemma 5.4. Suppose that r < min(n, s). Then every vertex that participates in σr also partic-

ipates in σr+1.

Proof. The proof follows directly from the fact that H = σr4σr+1 (symmetric difference) consists

of a single path which is not a cycle. Otherwise we could exchange some edges of σr and σr+1, via a

cycle or two paths in H, and find two different matchings of equal size and equal weight, which is not

possible since the weights are generic. �

Let us consider a modification of the original bipartite graph where we append one vertex un+1

to U linked to every vertex of V with random exponential weights of rate λ > 0. The original edges

remain exponential with rate 1. In other words, the new graph has vertex sets {U ′ = U ∪ {un+1}, V }
and edge set E′ = E ∪ {un+1v | v ∈ V }.

Lemma 5.5. Condition on the event that un+1 does not participate in σr. Then the probability

that it participates in σr+1 is:

(42)
λ

d(n− r) + λ
.

Proof. Without loss of generality, the vertices of U participating in σr are {u1, . . . , ur}. From

lemma 5.4 we know that only one vertex of {ur+1, . . . , un+1} can participate in σr+1. We say that

Section 2. The non-complete random assignment problem 57

vertex v is assigned to such vertex under σr+1. Let us define the subset of edges Evto be the neighbors

of v that are in {ur+1, . . . , un+1}.
It is easy to see that the vertex assigned to v under σr+1 is the one of Ev that has minimum

weight. Therefore, the probability that edge un+1v is in σr+1 is equal to the probability that edge

un+1v has minimum wight in Ev. Since the weight of the edge un+1v is exponential with rate λ and

all other edges of Ev are exponential with rate 1, then from Lemma 5.3 |Ev\{un+1v}| is in average

d · (n− r). Therefore, from the properties of the minimum of exponentially distributed variables, the

vertex un+1 will be assigned under σr+1 with probability equal to the one stated in the lemma. �

Corollary 5.6. The probability that un+1 participates in σk is:

(43) 1−
k−1∏
i=0

(n− i)d
(n− i)d+ λ

= λ

k−1∑
i=0

1

(n− i)d
+O(λ2), as λ→ 0.

Proof. Follows from the fact that the probability that un+1 is in σk equals 1 minus the probability

that it is not in any σr, for r = 1, . . . , k. Which according to lemma 5.5 is:

1−
k−1∏
i=0

(n− i)d
(n− i)d+ λ

= 1−
k−1∏
i=0

(
1 +

λ

(n− i)d

)−1
= 1−

[
k−1∏
i=0

(
1 +

λ

(n− i)d

)]−1

= 1−

[
1 + λ

k−1∑
i=0

1

(n− i)d
+O(λ2)

]−1
=
λ
∑k−1

i=0
1

(n−i)d +O(λ2)

1 +O(λ)

This concludes the proof because the denominator in the last expression approaches to one when

λ→ 0. �

Let w denote the weight of the edge un+1vs. X denote the weight of a minimum k-matching in

the graph induced by U and V . And Y denote the weight of a minimum (k−1)-matching in the graph

induced by U and V \{vs}. In other words X = Ck,n,s and Y = Ck−1,n,s−1.

Let I be the indicator variable for the event that w < X−Y . That is, the event that the minimum

k-matching that contains w is smaller than the minimum k-matching that does not.

Lemma 5.7. When λ→ 0,

(44) E[I] =

(
1

nsd
+

1

(n− 1)sd
+ · · ·+ 1

(n− k + 1)sd

)
λ+O(λ2).

Proof. It follows from Corollary 5.6 that the probability that un+1vs participates in the minimum

k-matching is given by (44). If it does, then w < X − Y . Conversely, if w < X − Y and no other

edge from un+1 induces a cost smaller than X, then un+1vs participates in the minimum k-matching,

and when λ→ 0, the probability that there are two distinct edges from un+1 that induce smaller cost

than X is of order O(λ2). �

58 Chapter 5. The random assignment problem

On the other hand, the fact that w is exponentially distributed of rate λ means that

(45) E[I] = P (w < X − Y) = E[1− e−λ(X−Y)] = 1− E[e−λ(X−Y)].

Hence E[I] regarded as a funciton of λ, is essentially the Laplace transform of X−Y . In particular,

E[X − Y] is the derivative of E[I] at λ = 0. That is,

E[X − Y] =
d

dλ
E[I]|λ=0 =

1

nsd
+

1

(n− 1)sd
+ · · ·+ 1

(n− k + 1)sd
.

This finishes the proof of equation 41, establishing conjecture for the Erdõs-Renyi random bipartite

graphs with random exponential weights.

Note that the proof is basically based on the fact that the expected number of neighbors of a

vertex v ∈ V from a subset U ′ ⊆ U is equal to d · |U ′|. This implies that, if the same is true for the

Dispersed-degree random bipartite graphs, then the conjecture in such case is also true according to

this proof.

CHAPTER 6

A stochastic assignment problem

1. The problem formulation

Consider the following scenario, which represents a variant of the assignment problem. We have n

machines that we need to assign to perform s tasks in a one-to-one relation, at minimum weight. This

time we must consider two phases, the assignment phase in the present and the performing phase in

the future. It implies that at the point where the tasks must be performed, some of the machines may

no longer be available with known probabilities, and some of the tasks may not be needed anymore

also with known probabilities. Therefore, if at the performing phase a machine is not performing a task

because it was not assigned or because its task is not needed, it incurs a penalization cost for having a

machine idle that could have participated in a different schedule. Similar, if at the performing phase a

task is not being performed by a machine because it was not assigned or because its assigned machine

is not available, it also incurs a penalization cost for having a task unperformed. Note that a machine

or a task incur in a penalization cost only if they are present with no mate at the performing phase.

Machines and tasks that satisfy this are said to be idle. Considering the uncertainty dependence of

this problem, the objective is to find an assignment that minimizes the sum of the assignment cost

plus the expected value of the penalization costs that we may incur in the resulting assignment.

The Stochastic Assignment Problem is modeled as a two-stage stochastic program (Birge and

Louveaux 2011 [35]). The input to the Stochastic Assignment Problem is the set {G,w, p, c}. Where

G is a bipartite graph G = (U t V,E) with edge weights w : E → Z, plus an availability probability

p(u) for each u ∈ U and p(v) for each v ∈ V , and a penalization cost c(u) for each u ∈ U and c(v)

for each v ∈ V . In order to express the problem as a mathematical formulation in the form of a linear

program, we need the following auxiliary variables.

• Bernoulli variables R̂u =

{
1 with probability p(u) : (u available),

0 with probability (1− p(u)) : (u not available).

59

60 Chapter 6. A stochastic assignment problem

• Bernoulli variables Ĵv =

{
1 with probability p(v) : (v available),

0 with probability (1− p(v)) : (v not available).

• Decision variables xuv =

{
1 if edge uv is in the assignment,

0 otherwise.

• Decision variables zu =

{
1 if vertex u is idle,

0 otherwise.

• Decision variables zv =

{
1 if vertex v is idle,

0 otherwise.

With the variables already defined, the Stochastic assignment problem can be expressed as the

following two-phase linear programing model, where x = {xuv} is the incidence vector of the

matching.

Phase I:

minimize:
∑
uv∈E

w(uv)xuv + E[Q(x)](46)

subject to:
∑

v∈N(u)

xuv ≤ 1, ∀u ∈ U,(47)

∑
u∈N(v)

xuv ≤ 1, ∀v ∈ V,(48)

xuv ∈ {0, 1}, ∀uv ∈ E.(49)

Phase II:

Q(x) := minimize:
∑
u∈U

c(u)zu +
∑
v∈V

c(v)zv(50)

subject to:
∑

v∈N(u)

Ĵvxuv + zu ≥ R̂u, ∀u ∈ U,(51)

∑
u∈N(v)

R̂uxuv + zv ≥ Ĵv, ∀v ∈ V,(52)

zu, zv ∈ {0, 1}, ∀u ∈ U, v ∈ V.(53)

Note that the resulting matching is not necessarily a perfect matching or even a maximum cardi-

nality matching. It can be a matching of any size, including the empty matching. Also note that in

the second phase formulation, the matching induced by xuv is fixed.

2. Reduction to a minimum weight matching problem

Now, the objective is to provide a simpler way to solve this nondeterministic problem. Fortunately we

can solve it via a reduction to a regular deterministic minimum weight matching problem, which in

Section 2. Reduction to a minimum weight matching problem 61

turn can be reduced to a minimum weight perfect matching problem as is shown in Appendix A. The

reduction starts with the following proposition.

Proposition 6.1. The variables zu that minimize the second phase model satisfy that:

E[zu] = p(u) ·

1−
∑

v∈N(u)

p(v)xuv

 .

Proof. First of all note that in order to achieve the minimization, zu must be the minimum value

that satisfies zu ≥ R̂u −
∑

v∈N(u) Ĵvxuv, with zu ∈ {0, 1}. Alos note that
∑

v∈N(u) Ĵvxuv ∈ {0, 1}.
This lead us to the following three possible cases:

• If R̂u = 0, then (R̂u −
∑

v Ĵvxuv) ≤ 0. Therefore zu = 0.

• If R̂u = 1 and
∑

v Ĵvxuv = 1, then (R̂u −
∑

v Ĵvxuv) = 0. Therefore zu = 0.

• If R̂u = 1 and
∑

v Ĵvxuv = 0, then (R̂u −
∑

v Ĵvxuv) = 1. Therefore zu = 1.

Therefore zu = 1 only in the third case. And since zu ∈ {0, 1}, then from the definition of the expected

value we have the following, where P [·] means the probability of the event inside the brackets.

E[zu] = 0 · P [zu = 0] + 1 · P [zu = 1]

= P [zu = 1]

= P [R̂u = 1] · P

[∑
v

Ĵvxuv = 0

]

The variable R̂u is a bernoulli variable with parameter p(u), therefore P [R̂u = 1] = p(u). Furthermore,

since xuv = 1 only with the vertex v assigned to u, then P
[∑

v Ĵvxuv = 0
]

represents the probability

that the vertex v assigned to u will not be available. Note that such probability is one if there is no

vertex assigned to u. Using the complement rule, P
[∑

v Ĵvxuv = 0
]

= 1−P
[∑

v Ĵvxuv = 1
]

, which

is the complement of the probability that the vertex assigned to u is available. Using the decision

variables xuv, we obtain that P
[∑

v Ĵvxuv = 0
]

= 1−
∑

v p(v)xuv, which ends the proof. �

Because of the symmetry of the problem, the following proposition can be proven in exactly the

same way as the previous proposition.

Proposition 6.2. The variables zv that minimize the second phase model satisfy that:

E[zv] = p(v) ·

1−
∑

u∈N(v)

p(u)xuv

 .

The two previous propositions help us to get a closed expression for the second phase of our

stochastic model. This is formulated and proved in the following proposition.

62 Chapter 6. A stochastic assignment problem

Proposition 6.3. The expected value of the second phase of the stochastic optimization model

E[Q(x)] can be expressed in the closed form:

E[Q(x)] = −
∑
uv∈E

p(u)p(v)[c(u) + c(v)]xuv +
∑
u

c(u)p(u) +
∑
v

c(v)p(v).

Proof. Since the variables zu, zv are independent, follows from propositions (6.1) and (6.2) that

in the minimization of the second phase we have:

E[Q(x)] = E

[∑
u

c(u)zu +
∑
v

c(v)zv

]
=

∑
u

c(u)E[zu] +
∑
v

c(v)E[zv]

=
∑
u

c(u)p(u) ·

1−
∑

v∈N(u)

p(v)xuv

+
∑
v

c(v)p(v) ·

1−
∑

u∈N(v)

p(u)xuv

=

∑
u

c(u)p(u) +
∑
v

c(v)p(v)−
∑
uv∈E

p(u)p(v)c(u)xuv −
∑
uv∈E

p(u)p(v)c(v)xuv.

Where as we can observe, agrees with the expression in the proposition statement. �

Proposition (6.3) says that given a fixed matching x = {xuv}, we can compute in closed form

the minimum of its expected penalization cost. In the following theorem we see the final step of the

reduction from a two-phase nondeterministic linear program to a deterministic linear program. The

resulting deterministic formulation is up to a constant factor, a minimum weight matching problem,

where the objective is to find a matching of minimum weight regardless of the cardinality, including

the empty matching which induces a zero weight.

Theorem 6.4. The two-phase formulation (46 - 53) is equivalent to the following minimum

weight matching problem formulation.

min:
∑
uv∈E

[w(uv)− p(u)p(v)(c(u) + c(v))]xuv +
∑
u∈U

c(u)p(u) +
∑
v∈V

c(v)p(v)︸ ︷︷ ︸
constant

(54)

sub:
∑

v∈N(u)

xuv ≤ 1, ∀u ∈ U,(55)

∑
u∈N(v)

xuv ≤ 1, ∀v ∈ V,(56)

xuv ∈ {0, 1}, ∀uv ∈ E.(57)

The proof of the theorem follows directly from Proposition 6.3. It is important to make a few

remarks about the reduction in Theorem 6.4. First note that although the objective function (54) does

no seem to be a minimum weight matching objective function, the term
∑

u c(u)p(u) +
∑

v c(v)p(v) is

Section 0. Reduction to a minimum weight matching problem 63

constant, and only depends on the fixed input of the penalization cost and availability probability vectors

{c, p}. Therefore, during the optimization, we only need to consider the term
∑

uv∈E w
′(uv)xuv, where

w′(uv) := w(uv) − p(u)p(v)(c(u) + c(v)) is a slight modification of the original input weights. Once

we have optimized considering only the non-constant term, we just need to append the constant term

value to the resulting optimum value to get the correct optimal value of (54). In other words, we can

use the principle: minx∈D{f(x) + C} = minx∈D{f(x)}+ C.

There are specialized algorithms for solving the minimum weight matching problem. These algo-

rithms have good time complexities, but fail to achieve good performance in practice. In our experience,

the best option in practice is to use graph transformations to transform the minimum weight matching

problem into a minimum weight one-side perfect matching problem. Then we can transform this min-

imum weight one-side perfect matching problem into a minimum weight perfect matching problem as

is shown in Appendix A. Finally, we can use the Auction algorithm to solve the problem and transform

the resulting solution into a solution of the original problem backtracking the transformations. The

solution of the original problem turns out to be composed by all the edges of the resulting optimum

matching of the transformation that are edges of the original graph.

The results presented in this chapter are part of a work in progress, and has been developed under

a collaboration of people from Cinvestav-IPN Marcos C. Vargas and Carlos E. Valencia; from the

University of Missouri Haitao Li; from the HP-Labs Cipriano Santos and Iván López; and from the

UAM-Azcapotzalco Sergio Pérez; see [34].

APPENDIX A

Maximum cardinality weighted matchings

The objective of this section is to provide some useful tools for addressing the problem of finding

minimum weight matchings that are not necessarily perfect. This tools consists of a set of graph

transformations that lead us to an equivalent minimum weight perfect matching problem, which we

already know how to solve efficiently. The equivalence is in the sense that given one optimal solution of

the original problem we can directly transform it into an optimal solution of the transformed problem,

and viceversa.

Such techniques are useful because in some cases it turns out that the input bipartite graph has

no perfect matchings and we are interested in finding the maximum cardinality matching of minimum

weight or finding a minimum weight matching regardless of the cardinality. These type of problems

can be solved using sophisticated algorithms, but most of them have a difficult implementation and

according to our experiments all perform poorly in practice. Therefore the transformations that we

will present combined with the great performance of the auction algorithm conform a more efficient

alternative.

For this section, the input weighted bipartite graph is {G = (U tV,E), w}, with U = {u1, . . . , un},
V = {v1, . . . , vs}, n ≥ s, |E| = m, and W = maxuv∈E |w(uv)|. Note that the bipartite graph is no

longer required to be balanced.

1. The minimum weight maximum cardinality matching problem

Given an integer weighted bipartite graph {G,w}, this problem consists of finding a maximum cardi-

nality matching of G of minimum weight. We will reduce this problem to the minimum weight perfect

matching problem by means of a graph transformation. Such transformation has pros and cons that

we will discuss after presenting the transformation.

65

66 Chapter A. Maximum cardinality weighted matchings

The concept of the transformation is to make a duplicate of the input weighted bipartite graph,

flip it around and then connect the two identical instances by adding one edge between each vertex and

its copy at weight 2sW , like in Figure A.1. More formally, given an integer weighted bipartite graph

{G = (U tV,E), w} we consider its flipped copy GC = (V ′ tU ′, E′) preserving the edge weights. We

connect these two graphs with the edges EU = {uiu′i | i = 1, . . . , n} and EV = {vjv′j | j = 1, . . . , s}
at weights 2sW . Now we have an instance Gd = (Ud t Vd, Ed), with Ud = U t V ′, Vd = V t U ′ and

Ed = E ∪ E′ ∪ EU ∪ EV . The weight function wd : Ed → Z is then,

wd(e) =

w(uivj) if e = uivj ∈ E,
w(uivj) if e = v′ju

′
i ∈ E′,

2sW if e ∈ EU ∪ EV .

Note that the new graph is balanced since |Ud| = |Vd| = n + s. Also note that it has perfect

matchings since EU ∪EV is a perfect matching. The important fact is that a minimum weight perfect

matching M ′ of {Gd, wd} induces a minimum weight maximum cardinality matching of {G,w} given

by M = M ′ ∩ E. All this process is illustrated in Figure A.1.

u1

u2

u3

v1

v2

3

2
1

2
4

U V

u1

u2

u3

v′1

v′2

v1

v2

u′1

u′2

u′3

3

2
1

2
4

3

2
1

2
4

Ud Vd

Figure A.1. Reduction from minimum weight maximum cardinality to minimum weight

perfect matching. The weight of edges between a vertex and its copy is 2sW (blue

and red edges).

Proposition A.1. Let {G,w} be an integer weighted bipartite graph. If M ′ is a minimum weight

perfect matching of {Gd, wd}, then M = M ′ ∩E is a minimum weight maximum cardinality matching

of {G,w}.

Proof. The matching M is of maximum cardinality because the edges with weights 2sW make it

preferable to grow the matching as long as possible before adding one edge with such weight.

To prove that M is of minimum weight, consider a diferent maximum cardinality matching M∗ of

G of smaller weight than M . Then we can form a perfect matching M ′′ of Gd by combining M∗, its

respective copy in GC and n+ s− 2|M∗| edges of EU ∪ EV . Since |M | = |M∗| then,

w(M ′) = (n+ s− 2|M |)2sW + 2w(M) > (n+ s− 2|M∗|)2sW + 2w(M∗) = w(M ′′)

which is a contradiction to the optimality of M ′. �

Section 2. The minimum weight one-side perfect matching problem 67

Now let us discuss the pros and cons. One trivial but important pro is that this transformation

always finds a maximum cardinality matching of minimum weight no matter the structure of the

instance. A potential problem is that the weight 2sW can be very large even in relatively small

instances. For example, consider s = 5000 and W = 250000, then 2sW = 2500000000, which

overflows in a 32-bit integer data type. Therefore unless we have access to the code and have enough

RAM space to double the data type precision, we will allways have to make a balance between the size

of the instance and the maximum magnitud of the weights.

2. The minimum weight one-side perfect matching problem

A one-side perfect matching in an unbalanced bipartite graph is a matching that covers all the vertices

in the smallest side, V in our case. Observe that a one-side perfect matching is a maximum cardinality

matching, therefore we can use the previous transformation to find one of minimum weight. But we

have invented a more efficient transformation that exploits the structure of this problem.

In summary, the transformation is similar to the previous one, but this time we only connect the

biggest side to its copy at any common custom weight, as is shown in Figure A.2. Formally, given an

integer weighted bipartite graph {G = (U t V,E), w} we consider its fliped copy GC = (V ′ t U ′, E′)
preserving the edge weights. We connect these two graphs with the edges EU = {uiu′i | i = 1, . . . , n}
all at a common weight K ∈ Z. We end up with an instance Gs = (Us t Vs, Es), with Us = U t V ′,
Vs = V t U ′ and Es = E ∪ E′ ∪ EU . The weight function ws : Es → Z is then,

ws(e) =

w(uivj) if e = uivj ∈ E,
w(uivj) if e = v′ju

′
i ∈ E′,

K if e ∈ EU .

The new graph is balanced since |Us| = |Vs| = n+ s. It has perfect matchings because G has one-side

perfect matchings.

u1

u2

u3

v1

v2

3

2
1

2
4

U V

u1

u2

u3

v′1

v′2

v1

v2

u′1

u′2

u′3

3

2
1

2
4

3

2
1

2
4

Us Vs

Figure A.2. Reduction from minimum weight one-side perfect matching to minimum

weight perfect matching. The weight of edges between a vertex and its copy is K ∈ Z
(blue edges).

68 Chapter A. Maximum cardinality weighted matchings

Proposition A.2. Let {G,w} be an integer weighted bipartite graph. If M ′ is a minimum weight

perfect matching of the transformation {Gs, ws}, then M = M ′ ∩ E is a minimum weight one-side

perfect matching of {G,w}.

Proof. Due to the symmetry of G and its copy, we have that w(M ′) = 2w(M) + (n− s)K where

(n− s)K is constant and therefore minimizing M is equivalent to minimizing M ′. �

The only problem with this transformation is that the input instance is forced to have one-side

perfect matchings. The big advantage is that now we do not inherit restrictions in the size of the

instance or the magnitud of the weights, because the dummy edges EU can have any common weight

of our choice, for example K = 0. Another advantage over the previous transformation is that this

transformation is solved faster by weight-scaling based algorithms, like the auction algorithm, because

a weight 2sW imply a bigger number of scaling phases.

Note that this transformation as well as the previous one, needs to double the size of the input

instance. One reasonable question is if we can do better when the input graph is almost balanced, for

example n = s+1 or n−s ≈ log(n). It turns out that we can via a another transformation. The idea of

this transformation is to append a set V ′ of (n−s) artificial vertices to V such that |V ∪V ′| = |U | = n.

And then append all possible edges between U and V ′ at a common weight K ∈ Z. This is shown in

Figure A.3. Formally, given an integer weighted bipartite graph {G = (U t V,E), w} we define a set

of artificial vertices V ′ = {vs+1, . . . , vn} and a set of edges E′ = {uivj | ui ∈ U, vj ∈ V ′} all with

weight K ∈ Z. Then we have an instance Ga = (U t Va, Ea), with Va = V t V ′ and Ea = E ∪ E′.
The weight function wa : Ea → Z is then,

wa(e) =

w(uivj) if e = uivj ∈ E,
K if e = uivj ∈ E′.

The new graph is balanced since |U | = |Va| = n. It has perfect matchings because G has one-side

perfect matchings.

u1

u2

u3

u3

v1

v2

3

2
1

2
4

5

U V

u1

u2

u3

u3

v1

v2

v3

v4

3

2
1

2
4

5

U Va

Figure A.3. Reduction from minimum weight one-side perfect matching to minimum

weight perfect matching, suited for almost balanced graphs. The weight of the edges

not in E is K ∈ Z (blue dashed edges).

Section 3. The minimum weight matching problem 69

Proposition A.3. Let {G,w} be an integer weighted bipartite graph. If M ′ is a minimum weight

perfect matching of the transformation {Ga, wa}, then M = M ′ ∩ E is a minimum weight one-side

perfect matching of {G,w}.

Proof. We have that w(M ′) = w(M) + (n − s)K where (n − s)K is constant and therefore

minimizing M is equivalent to minimizing M ′. �

In this case, the transformation appends (n−s)n edges, which is quadratic if n−s = O(n) implying

a remarkable poor performance. But if n− s is small enough, then then this transformation will have

much better performance than the previous transformation Gs. Note that since the auxiliary edges

form a complete bipartite graph all with the same weight, then in practice it is not necessary to store

them explicitly. This means that we can implement this transformation with no additional space other

than the occupied by the original input graph.

3. The minimum weight matching problem

The minimum weight matching problem consists of finding a matching of minimum weight regardless

of the cardinality, including the zero weight empty matching. The input bipartite graph can be either

balanced or unbalanced. In this case we will not reduce the problem directly to the minimum weight

perfect matching problem, instead we will reduce it to the minimum weight one-side perfect matching

problem, which we already know how to solve.

The idea of this transformation is to make a copy of the small side V and connect each vertex

to its copy at zero weight. See Figure A.4. That is, given an integer weighted bipartite graph

{G = (U t V,E), w}, make a copy V ′ = {v′1, . . . , v′s} of V and connect it with the edges EV =

{v′jvj | j = 1, . . . , s} all at zero weight. Thus we obtain an unbalanced instance Gm = (Um t V,Em),

with Um = U t V ′ and Em = E ∪ EV . The weight function wm : Em → Z is then,

wm(e) =

w(uivj) if e = uivj ∈ E,
0 if e = v′jvj ∈ EV .

The new graph is unbalanced but has one-side perfect matchings because EV is one such matching.

Proposition A.4. Let {G,w} be an integer weighted bipartite graph. If M ′ is a minimum weight

one-side perfect matching of the transformation {Gm, wm}, then M = M ′ ∩ E is a minimum weight

matching of {G,w}.

Proof. We have that w(M ′) = w(M) therefore minimizing M is equivalent to minimizing M ′. �

70 Chapter A. Maximum cardinality weighted matchings

u1

u2

u3

v1

v2

3

-2
1

2
4

U V

u1

u2

u3

v′1

v′2

v1

v2

3

-2
1

2
4

0

0

Um V

Figure A.4. Reduction from minimum weight matching problem to a minimum weight

one-side perfect matching problem.

Bibliography

[1] R. Burkard, M. Dell’Amico, and S. Martello, Assignment problems, Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, PA, 2009.

[2] L. Lovász and M.D. Plummer, Matching theory, AMS Chelsea Publishing, Providence, RI, 2009.

[3] D. Bertsimas and J.N. Tsitsiklis, Introduction to linear optimization, Athena Scientific, Belmont, MA, 1997.

[4] A. Schrijver, Combinatorial optimization: Polyhedra and efficiency, Algorithms and Combinatorics 24, Springer-

Verlag, Berlin, 2003.

[5] J. A. Bondy and U.S.R. Murty, Graph Theory, Graduate Texts in Mathematics 244, Springer-Verlag, New York,

2008.

[6] R. Diestel, Graph Theory, Graduate Texts in Mathematics 173, Springer-Verlag, Heidelberg, 2010.

[7] H.W. Kuhn, The hungarian method for the assignment problem, Naval Research Logistics Quarterly 2, Pages 83–97,

1955.

[8] H.N. Gabow, Scaling algorithms for network problems, Journal of computer and system sciences 31, Pages 148–168,

1985.

[9] E.A. Dinic and M.A. Kronrod, An algorithm for the solution of the assignment problem, Soviet Math. Dokl. Vol 10,

Pages 1324–1326, 1969.

[10] D.P. Bertsekas, Auction algorithms for network flow problems: A tutorial introduction, Computational optimization

and applications 1, Pages 7–66, 1992.

[11] H.N. Gabow and R.E. Tarjan, Faster scaling algorithms for network problems, SIAM J. Computation Vol. 18, No.

5, Pages 1013–1036, 1989.

[12] A.V. Goldberg and R. Kennedy, An efficient cost scaling algorithm for the assignment problem, Mathematical

programming 71, Pages 153–177, 1995.

[13] J. Hopcroft and R.M. Karp, An n5/2 algorithm for maximum matchings in bipartite graphs, SIAM J. Comput. 2,

Pages 225–231, 1973.

[14] H. Halt, N. Blum, K. Mehlhorn and M. Paul, Computing a maximum cardinality matching in a bipartite graph in

time O(n1.5
√
m/log n), Information Processing Letters 37, Pages 237–240, 1991.

[15] F. Glover, Maximum matching in a convex bipartite graph, Naval Research Logistics Quarterly, Vol. 14, Pages

313–316, 1967.

[16] K.S. Booth and G.S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using

PQ-tree algorithms, Journal of Computer and System Sciences, Vol. 13, Pages 335–379, 1976.

[17] H.N. Gabow and R.E. Tarjan, A linear-time algorithm for a special case of disjoint set union, Journal of Computer

and System Sciences, Vol. 30, Pages 209–221, 1985.

[18] D. Coppersmith and S.Winograd, Matrix multiplication via arithmetic progressions, Journal of Symbolic Computa-

tion, Vol. 9, Pages 251–280, 1990.

71

72 Bibliography

[19] L. Lovász, On determinants, matchings and random algorithms, Fundamentals of Computation Theory FCT’79,

Vol. 2, pages 565–574, Akademie Verlag, Berlin, 1979.

[20] T.Uno, A Fast Algorithm for Enumerating Bipartite Perfect Matchings, Lecture Notes in Computer Science, Springer

Verlag, Vol. 2223, Pages 367–379, 2001.

[21] K. Fukuda and T. Matsui, Finding All the Perfect Matchings in Bipartite Graphs, Appl. Math. Lett, Vol. 7, No. 1,

Pages 15–18, 1994.

[22] T. Tassa, Finding All Maximally-Matchable Edges in a Bipartite Graph, Theoretical Computer Science 423, Pages

50–58, 2012.

[23] M.C. Costa, Persistency in maximum cardinality bipartite matchings, Operation Research Letters 15, Pages 143–149,

1994.

[24] R. Tarjan. Depth first search and linear graph algorithms, SIAM Journal on Computing, Vol. 1, Pages 146–160,

1972

[25] J.C. Régin, A filtering algorithm for constraints of difference in CSPs, Proceedings of the 12th National Conference

on Artificial Intelligence (AAAI), Pages 362–367, 1994.

[26] I.P. Gent, I. Miguel and P. Nightingale, Generalised arc consistency for the AllDifferent constraint: An empirical

survey, Artificial Intelligence 172, Pages 1973–2000, 2008.

[27] A. Pothen and C.J. Fan, Computing the Block Triangular Form of a Sparse Matrix, ACM Transactions on Mathe-

matical Software, Vol. 16 Issue 4, Pages 303–324, 1990.

[28] J. Cheriyan, Randomized O(M |V |) algorithms for problems in matching theory, SIAM J. Comput. 26, Pages 1635–

1669, 1997.

[29] M. O. Rabin and V. V. Vazarani, Maximum matchings in general graphs through randomization, J. Algorithms 10,

Pages 557–567, 1989.

[30] P.A. Krokhmal and P.M. Pardalos, Random assignment problems, European J. Oper. Res. 194 (2009), no. 1, 1–17.

[31] Johan Wästlund, An easy proof of the ζ(2) limit in the random assignment problem, Electronic Communications in

Probability 14 (2009), p. 261-269.

[32] C. E. Valencia and M. C. Vargas, Optimum matchings in a weighted bipartite graph, Bolet́ın de la Sociedad Matem-

atica Mexicana 22 1 (2016), 1-12.

[33] C. E. Valencia and M. C. Vargas, The random assignment problem on Erdõs-Renyi bipartite random graph, in

progress.

[34] Hitao Li, Marcos C. Vargas, Cipriano Santos, Lyle Ramshaw, Ivan Lopez, Sergio Perez, and Carlos Valencia,

Optimizing Large-Scale Stochastic Resource Planning, in progress.

[35] Birge, J. R. and F. Louveaux. Introduction to Stochastic Programming. New York, Springer, 2011.

Index

A-B-path, 7

ε-CS condition, 29

ε-Complementary Slackness Condition, 29

ε-scaling auction algorithm, 32

M(G,w), 37

M(Gcs(P)), 37

M(G), 24

k-regular graph, 7

r-partite graph, 8

active, 14

acyclic graph, 7

adjacency matrix, 19

adjacent edges, 5

adjacent vertices, 5

allowed edge, 24

alternating cycle, 24

alternating path respect to a matching, 12

arcs, 10

assigned vertex, 11

assignment problem, 27

assignment problem with preferences, 43

assignment program, 28

auction algorithm, 30

augmenting path respect to a matching, 12

balanced bipartite graph, 8

basic feasible solution, 14

basic solution, 14

bernoulli distribution, 17

bernoulli random variable, 17

bipartite graph, 8

bipartite maximal matching problem, 19

bipartite maximum matching problem, 19

bipartite perfect matching problem, 19

cardinality of a matching, 11

cardinality of a set, 5

complementary slackness theorem, 17

complete r-partite graph, 9

complete graph, 9

connected component of a graph, 7

connected graph, 7

convex bipartite graph, 21

cost vector of a linear program, 12

covered vertex by a matching, 11

cubic graph, 7

cycle, 7

cycle on digraph, 11

decision variables of a linear program, 12

degree of a vertex, 6

density of a graph, 54

diameter of a graph, 7

digraph, 10

directed edges, 10

directed graph, 10

disconnected graph, 7

dispersed-degree model, 54

distance between vertices, 7

dual assignment program, 34

dual prices of the dual assignment program, 34

dual problem, 15, 16

duality theory, 15

edges, 5

endpoints, 5

ends of a walk, 6

erdõs-renyi model, 54

expected value, 17

expected value of a bernoulli variable, 17

feasible region of a linear program, 12

feasible solution of a linear program, 12

forbidden edges of a weighted bipartite graph, 42

forest, 9

general equivalent linear programming problem, 13

general linear programming problem, 12

graph, 5

graph Kn, 9

hall’s condition, 20

head of an arc, 10

incident, 5

indegree of a vertex, 11

73

74 Index

independent edges, 5

induced subgraph, 6

inner vertices of a walk, 6

instance of the assignment problem, 27

integer programming problems, 28

integer weight function, 11, 27

integer weighted bipartite graph, 27

isolated vertex, 6

leaf of a tree, 9

length of a walk, 6

loop, 5

matching, 11

maximal respect to a property, 5

maximum degree of a graph, 6

maximum respect to a property, 5

minimum degree of a graph, 6

multigraph, 5

multiple edges, 5

objective function of a linear program, 12

one-side perfect matching, 11

optimal solution of a linear program, 12

optimal value of a linear program, 12

optimum matching, 27

outdegree of a vertex, 11

parallel arcs, 11

parallel edges, 5

path, 6

path on digraph, 11

perfect matching, 11

permanent edges of a weighted bipartite graph, 42

polyhedron, 14

polyhedron in standard form, 14

primal problem, 15, 16

proper subgraph, 6

proper supergraph, 6

radius of dispersion, 54

random Assignment Problem, 51

reduced cost, 29

replaceable edges of a weighted bipartite graph, 42

requirement vector of a linear program, 13

reverse arc, 10

root of a tree, 9

rooted tree, 9

set of neighbors of a vertex set, 6

shortest path between vertices, 7

simple graph, 5

spanning tree of a graph, 10

standard form linear program, 13

stochastic assignment problem, 59, 60

strognly connected digraph, 11

strongly connected component of a digraph, 11

subgraph, 6

subpath, 7

supergraph, 6

symmetric difference of two sets, 12

tail of an arc, 10

totally unimodular, 28

trail, 6

trail on digraph, 11

tree, 9

unassigned vertex, 11

unbalanced bipartite graph, 8

uncovered vertex by a matching, 11

unimodular, 28

variance, 17

variance of a bernoulli variable, 17

vertex, 14

vertex cover, 20

vertices, 5

walk in a graph, 6

walk on digraph, 11

weight function, 11

weight of a matching, 11

Marcos César Vargas Magaña

