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Overview

The local zeta functions over local fields, i.e. R, C,Q,,F,((T")), are ubiquitous ob-
jects in mathematics and mathematical physics see e.g. [2,5-7, 10, 12, 15, 18-20, 23,
27,29, 31,33-35,37-39|. For instance these objects are deeply connected with string
and Feynman amplitudes. Let us mention that the works of Speer [29] and Bollini,
Giambiagi and Gonzélez Dominguez |7] on regularization of Feynman amplitudes in
quantum field theory are based on the work of Gel’fand and Shilov [18] on the analytic
continuation of Archimedean local zeta functions. For connections with String theory
see e.g. |9] and the references therein. In the non-Archimedean setting, for instance
in the p-adic case, the local zeta functions are related to the number of polynomial
congruences mod p™ and exponential sums mod p™. There are many intriguing conjec-
tures connecting the poles of non-Archimedean local zeta functions, with the topology
of complex singularities, see e.g. [12,14,16,17,20,26,28,31-33, 36, 38, 39].

Let K be a non—Archimedean local field of arbitrary characteristic with valuation
v, let O be its ring of integers with group of units Oy, let Px be the maximal
ideal in Og. We fix a uniformizer parameter p of Ox. We assume that the residue
field of Ok is F,, the finite field with ¢ elements. The absolute value for K is defined
by |z] = |z|x = ¢ *®), and for z € K*, we define the angular component of z by
ac(z) = zp~"#). We consider f(z,y) € Oglr,y] a non-constant polynomial and y a
character of Oj, that is, a continuous homomorphism from O to the unit circle,
considered as a subgroup of C*. When x(z) =1 for any z € Oy, we will say that x is
the trivial character and it we denote it as ;... We associate to these data the local
zeta function,

Z(s, f,x) = /X(ac f(@9) |f(z,9)” |dedy], s € C,

0%

where Re(s) > 0, and |dzdy| denotes the Haar measure of (K?,+) normalized such
that the measure of O% is one.

It is not difficult to see that Z(s, f,x) is holomorphic on the half plane Re(s) > 0.
Furthermore, in the case of characteristic zero, Igusa [21] and Denef [11] proved that
Z(s, f,x) is a rational function of ¢—*%, for an arbitrary polynomial in several variables.
When char(K) > 0, new techniques are needed since there is no a general theorem
of resolution of singularities, nor an equivalent method of p- adic cell decomposition.
In [22] Igusa introduced the stationary phase formula (SPF) and conjectured that by
using it, the rationality of the local zeta functions can be established in arbitrary
characteristic. This conjecture has been verified in several cases, see e.g. [24,28,38] an
the references therein.

A considerable advance in the study of local zeta functions in arbitrary characteristic
has been obtained for a large class of polynomials which satisfy a non—degeneracy con-
dition. Roughly speaking, the idea is to attach a Newton polyhedron to the polynomial
f and then define a non degeneracy condition with respect to the Newton polyhedron.




Then one may construct a toric variety associated to the Newton polyhedron, and
use toric resolution of singularities in order to establish a meromorphic continuation
of Z(s, f,x), see e.g. [2,26] for a good discussion about the Newton polyhedra tech-
nique in the study of local zeta functions. The first use of this approach was pioneered
by Varchenko [30] in the Archimedean case. After Varchenko’s article, several authors
have been used his methods to study local zeta functions, oscillatory integrals, and
exponential sums, see for instance 13,14, 25,26, 28,33, 38] and the references therein.

In this dissertation we study local zeta functions for arithmetically non-degenerate
polynomials. In [28] Saia and Zuniga-Galindo introduced the notion of arithmetically
non—degeneracy for polynomials in two variables, this notion is weaker than the classi-
cal notion of non—degeneracy due to Kouchnirenko, see e.g. [2]. They used this notion
to study local zeta functions Z (s, f, x4rw) When f is an arithmetically non—degenerate
polynomial with coefficients in a non—Archimedean local field of arbitrary characteris-
tic. They established the existence of a meromorphic continuation for Z(s, f, xsiv) as a
rational function of ¢~*, and gave an explicit list of candidate poles for Z(s, f, Xiriy) in
terms of a family of arithmetic Newton polygons which are associated with f. In this
dissertation, we extend the results of Saia and Zuniga-Galindo to twisted local zeta
function Z(s, f,x), for x arbitrary, and f a polynomial in two variables with coeffi-
cients in a local field of arbitrary characteristic which is non-degenerate in the sense of
Saia and Zuniga-Galindo.

By using the techniques of [28] we obtain an explicit list of candidate poles of
Z(s, f,x) in terms of the equations of the straight segments defining the boundaries of
the arithmetic Newton polygon attached to f.

The following result describes the poles of the meromorphic continuation of Z (s, f, x)
for arbitrary x:

Theorem 2.5.1  Let f(x,y) € K|x,y] be a non-constant polynomial. If f(x,y)
is arithmetically non-degenerate with respect to its arithmetic Newton polygon TA(f),
then the real parts of the poles of Z(s, f,x) belong to the set

{=1}UP@T™(f) UPITA(S)).

In addition Z(s, f,x) vanishes for almost all x.

The main contribution of this dissertation is the study of the exponential sums
mod p™ attached to arithmetically non-degenerate polynomials. Exponential sums
mod p™ have been studied intensively, see e.g. [3,4,14,16,38].

By fixing an additive character ¥ : K — C, exponential sums mod p"™ can written
as

B(eof) = [ W(fo) |do dyl,
0%
where z = p™u, u € Of. A central problem consists in describing the asymptotic

behavior of E(z, f) as |z| — oco. Our main result about exponential sums mod p™ for
arithmetically non-degenerate polynomials is the following:




Theorem 3.1.1  Let f(x,y) € K[x,y] be a non constant polynomial which is
arithmetically modulo p non-degenerate with respect to its arithmetic Newton polygon.
Assume that Cy C f71(0) and assume all the notation introduced previously. Then the
following assertions hold.

1. For |z| big enough, E(z, f) is a finite linear combination of functions of the form
x(ac 2)|z[*(log, |2])™,

with coefficients independent of z, and A € C a pole of Z(s, f, x) (with X|14+p0, =
Xtriv) or (1 — q_s_l)Z<57 fs Xtriv), where

.0 if X is a stmple pole
= 0,1 if X is a double pole.

Moreover all the poles X appear effectively in this linear combination.

2. Assume that  := max{Srgeom, ﬁrgx} > —1. Then for |z| > 1, there exist a positive
constant C(K), such that

|E(z, /) < C(K)|2| log, |z].

The results presented in this dissertation will be published in an article written in
collaboration with Dr. Edwin Leén-Cardenal in the Journal de Théorie des Nombres
de Bordeaux. I am very grateful to professor Wilson A. Ziuniga-Galindo for suggesting
me the thematic for this dissertation and for your kind guiding during whole process
of writing this work.

After the completion of this work, a natural problem consists in extending the
results presented here to the case of polynomials in an arbitrary number of variables.

This dissertation is organized as follows. In Chapter 1, we review some basic facts
about local zeta functions and exponential sums mod p™. We also review Igusa’s
stationary phase formula, which will be used along this dissertation. In Chapter 2, we
prove Theorem 2.5.1 and give some examples. The full calculation of these examples is
very long, for this reason in Chapter 2 we only sketch these calculations. The complete
calculations are presented in Appendices, A and B. In Chapter 3, we prove Theorem
3.1.1
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Chapter 1

Preliminaries

For the sake of completeness, we review some basic concepts about the theory
of local zeta functions on non-Archimedean fields of arbitrary characteristic, see 1.1,
we also make a brief presentation of Igusa’s stationary phase formula as in [38], in
section 1.2.2 we review the basic aspects of exponential sums mod p™ defined over
non—Archimedean local fields, finally we present an explicit formula for Z(s, f, x) for
polynomials that are non-degenerate with respect to their Newton polyhedron, see
sections 1.3, 1.3.1 and 1.3.2.

1.1 Local Zeta Functions

Let K be a non—Archimedean local field, which is a locally compact topological
field with respect to a non-discrete topology. By a well-known theorem, see e.g. [34], a
such field is isomorphic (as topological field) to a finite extension of the field of p-adic
numbers Q,, or isomorphic to a finite extension of F,((7")), the field of formal Laurent
series with coefficients in a finite field F,. Let |- |k := |- | be the absolute value of K (K
is a complete metric space for the distance induced by | - |). Let Ok be the valuation
ring of K which is

Ok ={zr € K;|z| < 1}.

Let Pk the unique maximal ideal of Ok, this is a principal ideal, we fix a generator p,
which is also called a uniformizer parameter of O . The quotient field O / Pk is called
the residue field of K, and it is the finite field of cardinality ¢ = p®, p prime number.
The group of units of Ok is O = {z € Ok : |z| = 1}. We will assume that |- | is a
normalized absolute value, which means that |z| = ¢~*®), where v(z) € Z U {o0} is a
valuation on K. The canonical mapping Ox — Ok /Px = F, is called the reduction
mod p. We denote by R a fixed set of representatives of F, in O. Then every element

z of K\ {0} can be represented as a convergent series with respect to | - | as follows:
o
x=pm ™, ap € Ry, a9 # 0,
m=0
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where my = v(x).

Example 1.1.1. The field of p-adic numbers Q, is defined as the completion of the
field of rational numbers with respect to the p- adic norm |- |,, which is defined as

0 ifr=0
‘x|p: —r - _ T a
p" fr=py,

where a and b are integers co-prime with p.

The group (K™, +) is locally compact group, where K™ is endowed with the product
topology. We denote by |dz| = |dzy - - - dz,,| the Haar measure on (K™, +) normalized
so that fo;g |dx| = 1. A quasicharacter of K* is a continuous homomorphism w :
K> — C*. The set of quasicharacters, that we will denote by Q (K*), has an Abelian
group structure, and to a given complex number s we may associate a quasicharacter
ws € Q (K*) by setting wy (x) = |z} Once we pick w (p) = ¢—*, for every w € Q (K*),
one has

w () = ws () x (ac ), (1.1.1)

where y = w | oy Is a group homomorphism with finite image. Put formally x(0) = 0.

For z € K, we define the angular component of z by ac(z) = zp~>*). Equation (1.1.1)
shows that

Q(K*) ~C/ (2rv—1/Inq) x (0%)",

where (O))" is the group of characters of O}; therefore Q(K*) is a one dimen-
sional complex manifold. Note that o (w) := Re(s) depends only on w, and |w (z)|s =
Wo(w) (), thus it makes sense to define the following open subset of Q (K*),

Qap) (K*) ={w e Q(K");0(w) € (a,b) CR}.
Then the local zeta functions Z(s, f, x) of f and y is defined by the integral
25,00 = [ xlae f(a) £ |da],
Ok

for s € C satisfying Re(s) > 0. In the case in which y is the trivial character we
simply write Z(s, f). The local zeta functions admit a meromorphic continuation to
the complex plane as rational functions of ¢—*%, see [23, Theorem 8.2.1].

1.1.1 Poincaré Series

Let f(z) € Oklxy, - ,x,] be a non-constant polynomial. A classical problem in
number theory consists in studying the number of solutions of polynomial congruences
f(z) =0 (mod Pj*), more precisely, to study the behavior of the numbers

N = #{x € (Ox/Pg)"; f(x) = 0 (mod Pg')},

1.1. Local Zeta Functions
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with Ny = 1, as m tends to infinity. To study this problem one introduces the Poincare
series

P(t) = Nug ™", teC,
m2=0
with [t| < 1. The following formula established a relation between P(t) and certain
local zeta functions

_ 1_tZ(87f)

P(t) T—;

U= q—s,
with Re(s) > 0, where

Z@Jw:/umwwm
Ok

see [23, Theorem 8.2.2]. This formula shows that the local zeta functions have arith-
metical nature. In [8], Borevich and Shafaverich conjectured in the 60’s, that in the case
of characteristic zero, that P(t) is a rational function. This conjecture was established
by Igusa in the middle of the 70’s as a Corollary of the following Theorem:

Theorem 1.1.1 (|23, Theorem 8.2.1]). Let K be a local field of characteristic zero.
Let f(x) be a non-constant polynomial in K[[x1,--+ ,x,]]. There exist a finite number

of pairs (Ng,vg) € (N\ {0}) x (N\ {0}), E € T, such that

[T - a2 )

EeT

s

s a polynomial in q—° with rational coefficients.

1.2 Some Technical Results

In this section, we summarized some results of [23], that will be used later on.

Lemma 1.2.1 (|23, Lemma 8.2.1]). Take a € Ok, x a character of Oj, e € N. Then

/‘xmmeﬂW%*dx

a+peOk
_,—1y,—en—eNs 3
% if a € p°Or, XV = Xwriw
= q_eX(a’C<a’>>N|a’|SN+n_l ZfCL ¢ peOKu XN’1+p€a_1OK = Xtriv
0 all other cases.
Proof. The proof of the lemma is an easy variation of the one given in [23]. O

The next result is an easy consequence of Lemma 1.2.1 and will be used frequently
in the following sections.

1.2. Some Technical Results
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Lemma 1.2.2. Take h(z,y) € Oklz,y], then

> [ xtac (b o) + p2)) IhGoos o) +
(0,90)€(Fq™ )20
equals

( ,—S -1 .
q(l(q = S))N+(q_1)2_N Zf X = Xtriv

(To,0)E(Fy)?
h(Z0,70)7#0

0 all other cases,

pz|® |dz|

> x(ac(h(wo,90))) if X # Xeriv and X|u = Xtriv

where N = Card{(To,7,) € (F,)? | h(Zo,7y) = 0}, and U = 1+ pOx.

Proof. We have that

(To,7o)E€(Fq™)

— / (ac (h(zo,y0) +p2)) [h(x0, y0) + p2z|* |dz|
Ok

(Zo, yO)E(F *)
h(fCO Yo)= 0

3 / (ac (h(zo,y0) + p2)) |h(0, 50) + p2l° |dz]
Ok

+ Z x(ac (h(wo, yo) + p2)) [h(wo, yo) + pz[* [dz].
OK

(To,0)E(Fq™)
h(zo, yo);éO

By Lemma 1.2.1 the first sum in the right hand side of (1.2.1)

/X(ac (@+)) EEED

O (@0,90)€(Fq™)? h(zg.u0)
P

—s(1_,—1 .
_ % ZfX = Xtriv
0 all other cases.

is equal to

x(ac (2) |dz],

+OK

1.2. Some Technical Results
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Now, for the second sum in the right hand side of (1.2.1), we have

3 / x(ac (h(xo, 3o) + p2)) [h(xo,0) + p2l® |dz]
(@o.To)E(F*)2 * OF
h(Zo,9¢)#0

- > lae w)ldu],
xy2 / P(@o,y0)+pOK

(To,¥o)E(Fq
hZo0,90)#0
((q_1)2_N ifX:Xtriv
> x(ac(h(Zo, 7)) tf X # Xeriv and X|v = Xtriv
(To,90)E€(Fq™)?
h(EO@O)#O

L0 all other cases.

where N = Card{(Zo,7,) € (F,*)* | h(To,7,) =0}, and U = 1 + pOy. O

1.2.1 Igusa’s stationary phase formula

There is an interactive procedure that allows in many cases to calculate the local
zeta functions in an explicit way. We recall here the stationary phase formula. Let ¢,
be the conductor of a character x of Ox" is defined as the smallest ¢ € N\ {0} such
that x is trivial on 1 4 p¢Og.

Denote by Z the reduction mod p of 2 € Ok, we denote by f(z) the reduction of
the coefficients of f(x) € Ok[z] (we assume that not all of the coefficients of f are in
Pr). We fix a set of representatives R of F, in Ok, that is, R™ is mapped bijectively
onto F? by the canonical homomorphism Of — (O /Pk)" ~ F?. Now take T C F7
and denote by T its preimage under the aforementioned homomorphism, we denote by
Sr(f) the subset of R™ mapped bijectively to the set of singular points of f in 7. We
define also

qincard{E S T | f(%) 7£ O} ZfX = Xtriv

VT(f? X) =
q—ncx Z X(GC (f(t))) Zf X 7é Xtriv,

{teT|f(£)#0} mod P°x

and

¢ "Card{t € T | t is a non singular root of f} if X = Xuriv
0 if X F Xtriv-

Denote by Zr(s, f,x) the integral [ x(ac f(x)) |f(z)]* |dx].
T

UT(f: X) = {

1.2. Some Technical Results
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Lemma 1.2.3 ([38, Igusa’s Stationary Phase Formulal). With all the notation above
we have

Za(su 1.0 = va(Fo) + v (o) L)L
+/nwmmmme

Sr(f)
where Re(s) > 0.
Lemma 1.2.4 ([38, [Lemma 2.4|). Let T C O} be the preimage under the canonical

homomorphism Ok — Ok [Pk of a subset T C F. Let f(x) € Ok|z] be a polynomial
such that Sing;(K)N'T =0, then

Li(q™*) .,
1—q¢ L g ZfX = Xtriv,

/nmmmummmu
T LQ(q_s) ZfX 7£ Xtrivs

where Ly(q~%), L2(¢~°) € Q[g™*].

We now show the stationary phase formula gives a small set of candidates for the
poles of Z(s, f, x) in terms of the Newton polyhedron I'*°™(f), see [38].

Theorem 1.2.1 ([38, [Theorem A|). Let K be a non-Archimedean local field, and
let f(x) € Ogklx] be a polynomial globally non-degenerate with respect to its Newton
polyhedron T'9¢°"(f). Then the Igusa local zeta functions Z (s, f,x) is a rational function
of q° satisfying:

1. if s is a pole of Z(s, f,x), then

la| 27 k

m(a,)  logg m(a,)’
for some facet y of T'9°™( f) with perpendicular a.,, and m(a) # 0, or
2
Nk kel
log q

keZ

S =

s=—1+

2. if X # Xuriw and the order of x does not divide any m(a.) # 0, where v is a facet
of T9¢°™(f), then Z(s, f,x) is a polynomial in q—*, and its degree is bounded by
a constant independent of x.

Now we might mention the following result, which is essential for to obtain asymp-
totic expansions for exponential sums attached to certain polynomials, as we will see
in Chapter 2.

We recall here that the critical set of f is defined as

Cp = Cy(K) ={(z,y) € K* | Vf(z,y) = 0},

1.2. Some Technical Results
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Theorem 1.2.2 (|23, [Lemma 8.4.1]). Assume that char(K) =0 and Cy is contained
in f71(0). Then there exists e > 0 in N, such that Z(s, f,x) = 0 unless ¢, < e , for

X:W’o;{-

1.2.2 Exponential Sums mod p™

We recall that for a given z = ZZO:”O 2,p" € Qp, with z, € {0,...,p — 1} and
Zno 7 0, the fractional part of z is

0 if ng >0
{z}p = ~1 o
neny ZnP" 1 g < 0.

Then for z € Q,, exp(2my/—1 {z}p), is an additive character on Q,, which is trivial on
Z, but not on p~'Z,.

If T'r /g, () denotes the trace function of the extension, then there exists an integer
d > 0 such that Tryq,(2) € Z, for |z| < ¢% but Trg/qg,(20) ¢ Z, for some z, with
|z0] = q?*!. d is known as the exponent of the different of K/Q, and by, e.g. [34, Chap.
VIII, Corollary of Proposition 1] d > e — 1, where e is the ramification index of K/Q,.
For z € K, the additive character

s(z) = exp(2mvV/—1{Trg/q, (p’dz)}p),

is a standard character of K, i.e. s is trivial on O but not on p~'Og. In our case, it
is more convenient to use

U(z) = exp(27r\/—_1 {TT‘K/QP(Z)}p),

instead of s(-), since we will use Denef’s approach for estimating exponential sums,
see Proposition (3.1.1) below.
Now, let K be a local field of characteristic p > 0, i.e. K =F,((7T")). Take

2(T) = i zT' € K,

i=ng
we define Res(z(T)) := z_;. Then one may see that
W((T) 1= exp(2rv/=T Tre, s, (Res(:(T)),

is a standard additive character on K.
Fixing an additive character ¥ : K — C, the exponential sums mod p™ attached
to f is defined as

E@ﬁ:/denmu

Ok

1.2. Some Technical Results
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where z = p~™u, u € O.
Notice that

/ U(sf@) ldal = Y g (e (5) |dal.

on #e(Ox /P)"

A central mathematical problem consists in describing the asymptotic behavior of
E(z, f) as |z| = oc.

We denote by Coeflyr Z (s, f, x) the coefficient ¢, in the power series expansion of
Z(s, f,x) in the variable t = ¢—*°

Proposition 1.2.1 ([12, Proposition 1.4.4|). Let v € O and m € Z Then E(up™™)
equals

t— q S, X mv
Z(Ov Xtriv) + Coemm—l ( (q ) 1 _tt + Z 9x— 1X Coe.ﬁ;tm*C(X)Z(Sa X)a
X#Xt'rzv

where c(x) denotes the conductor of x, i.e. the smallest ¢ > 1 such that x is trivial on
1+ P; and g, is the Gaussian sum

g =(qg=1)7"g" " x(v) Uu/peN).

ze(Ox P )x

1.3 Newton’s polyhedron and non-degeneracy condi-
tions

There exists a generic class of polynomials named non-degenerated with respect to its
Newton Polyhedron for which is possible to give a small set of candidates for the poles
of Z(s, f). For sake of completeness, we review some basic notions well known about
Newton polyhedron and non-degenerated polynomials, see e.g [14], for this reason we
do not give proofs.

Definition 1.3.1. Given a non-constant polynomial f(x) = Y ajz' € K[z], for z =
I

(21, xy), satisfying f(0) = 0, we define the support of f as: Supp(f) = {l € N";q; #
0}, and Newton polyhedron T9°™(f) of f as:

roeem(f) := Convex Hull{ U (I+R%y)}
1€ Supp(f)

A face of T9°™(f) of codimension 1 is named a facet. Each facet is lying on an
affine hyperplane of the form Y a; ;2* = m(a;), where a; is a vector whose coordinates

are positive integers. Note that each proper face 7 of I'9°°™( f) is the finite intersection
of the facets of I'°°™*( f) which contain 7.

We set (-) for the usual inner product in R™ and identify the dual vector space with
R™.

1.3. Newton’s polyhedron and non-degeneracy conditions
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Definition 1.3.2. Fora € (R)", we define m(a) = anf (f){(a-x)} and the first meet
:L.E eom

locus of a as

F(a) = {z € I""(f)|{a - x) = m(a)},
where a-x denotes the scalar product ) a;x" of a = (ay, -+ ,an) and x = (x1,-+ , Ty).

Now we define an equivalence relation on (R)" by a ~ o’ if only if F'(a) = F(d’). In
particular F'(0) = I'**"(f) and F'(a) is a proper face of I'°™(f), if a # 0. Moreover
F(a) is a compact face iff a € (RT)™ . A vector a € R™ is called primitive if the
components of a are integers whose greatest common divisor is one. Furthermore for
every facet of I'9*"(f) there exist a unique primitive vector in N\ {0}, which is
perpendicular to that facet.

We will first give a selection of some definitions and properties of a polyhedral
subdivision of R".

If 7 is a face of I'9(f), we define the cone associated to 7 as A, = {a €
(R)™ F(a) = 7}. Let ~1,---,7, are the facets of T'9°™(f) containing 7, and let
ai,--- ,a, be the orthogonal vectors to 7y, -+ , 7, respectively. Then one proves that

R>o\{(0,---,0)} is the disjoint union of the A, = {Aa1+---+Aa, | A1,--- , A\ € Rog},
and its dimension is equal to n — dim 7. This gives the geometry of the other equiv-
alence classes A,. It is well-known that the closure of A | A := {a € (R*)" : F(a) D
T}:{)\1G1+"'+)\eaeZ)\Z'ER,/\i>O}.

Definition 1.3.3. Ifa, - ,a. € R"\{0}, we call {\ja1+-- -+ Aeae : N\; € R, \; > 0} the
cone strictly positively spanned by the vectors ay,--- ,a.. Suppose a cone A is strictly
positively spanned by vectors ay,- -+ ,a. € R"\{0}. Ifay,- -, a. are linearly independent
over R, A is called a simplicial cone. If moreover ay,--- ,a., € Z", we say A is a rational
simplicial cone. If {ay,--- ,a.} is a subset of a basis of the Z- module Z", we call A a
simple cone.

Remark 1.3.1. 1. One can partition the cone A, associated to T into a finite num-
ber of rational simplicial cones such that each A; is spanned by vectors from the
set {ay,- -+, ac}, without introducing new rays.

2. One can even find a partition of A, into simple cones, but general it will then be
necessary to introduce new generators.

Summarizing given a polynomial f(x) € K[z], f(0) = 0, with Newton polyhedron
[9eom(f), there exists a finite partition of R’} of the form:

R} = {(0.--0)} Ul JA.,

where each A; is a simplicial cone contained in an equivalence class of ~. Moreover,
by Remark 1.3.1, it is possible to refine this partition in such a way that each A; is a
simple cone contained in an equivalence class of ~.

1.3. Newton’s polyhedron and non-degeneracy conditions
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Once we have a simplicial conical subdivision subordinated to I'9°™( f), it is possible
to reduce the computation of Z(s, f, x) to integrals over the cones in A,. In order to do
that let f(z) € K|z] be a non-constant polynomial satisfying f(0) = 0, and let I'9°°™( f)
be its Newton polyhedron . We fix a simplicial conical subdivision {A;},crseom(py of
R” subordinated to I'**™(f), we set

EAT = {(1’1, T ’xn) € O?( | (U($1), T ,’U(l‘n)) € A’Y}’
Z(s. 580 = [ xae SIS dal, and

En,

Z(s.5..08) = |

Ok

x(ac f(2))|f(2)] |dz].
Therefore we have that,

Z(s, f,x) = Z(s, [ O+ Y Zls, frx, ). (1.3.1)

rCTgeom ()

A non-constant polynomial f, satisfying f(0) = 0, is called non-degenerated with
respect to its Newton polyhedron T'9°°™(f) in the sense of Kouchnirenko, if for each

compact face 7 C T'9°™ the face function is the polynomial f,(x) = > a;2!, satisfies
ler
the system of equations

_ofy _ofr  _0f
 Oxry Ory - Oz,

fr(wly"' 7xn) =0,
has no solution in (K \ {0})". We say that f is non-degenerated over F, if not any of
the polynomials f and f., with 7 a face of I'**™(f), has a singularity in (F))".

1.3.1 Example
The following examples correspond to polynomials with coefficients in K.

Example 1.3.1. Let f(x,y) = (y> — 2?)* + 2'y*. We assume that the characteristic of
the residue field of K is different from 2. Note that, the support of f(z,y) is given for
Supp(f) = {(4,0),(2,3),(4,4),(0,6)}, the origin of K?* is its only singular point, and
this polynomial is degenerate with respect to T9¢™(f).

Now, the conical subdivision of R subordinated to the geometric Newton polygon

of f(z,y) is RZ = {(0,0)} U U?Zl Aj, where the A; are in Table 1.1.

1.3.2  An explicit formula for Z(s, f, x)

In the following theorem in [14], there is another proof of the fact that Z(s, f, x) is
a rational function of ¢~*. Summarizing, the authors provide a formula for Z(s, f, x)
that holds if f is non-degenerated over [F, with respect to all the faces of its Newton
polyhedron and if the conductor ¢, of x is equal to 1.

1.3. Newton’s polyhedron and non-degeneracy conditions
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(0,6)

(a) (b)

Figure 1.1: (a) T'9°"((y3 — 22)? + 2%y*). (b) Conical partition of R? induced by it.

| Cone | Generators |
Az | (0,DR N\ {0} + (1, DR, \ {0}
Azs | (LDRA {0} +(3,2)R, \ {0}
Asr | (3,2)R N\ {0} + (2, DR, \ {0}
Ay | (2 1)R+ \ {0} + (1, 0)R+ \ {0}

Table 1.1: Conical subdivision of R% \ {(0,0)}.

Theorem 1.3.1. [14] Let p be prime number. Let f be like in definition 1.3.1. Suppose
that f is non-degenerated over the finite field ¥, with respect to all the faces of its
Newton polyhedron 9™ (f). Let x be a character of ) with conductor ¢, = 1. Denote
for each face T of T9°™(f) by N, the number of elements in the set

{a € (F)" | [(a) =0}
Let s be a complex variable with Re(s) > 0. Then Z(s, f,x) = >,  L;Sa., with

rergeom f)

¢ (g =1 = gN.Z525)  for X = Xerios
=3¢ ¥ x(f(a) for X # Xerivs

ae(Fg )"

and Sa. = Y, q 7%~ m(k)s: for each face T of T9eo™( £ (including T = T9¢°™(f) ),

keNTNA L
with o(k) = ky,- -+ , kn, and m(k) as in defintion 1.3.2.
We have SAFgeom(f) = 1 and the other Sa_, can be calculated as follows. Take a

partition of the cone A, associated to the proper face T into rational simplicial cones
A;. Then clearly S, = ), Sa, where the summation is over the rational simplicial

1.3. Newton’s polyhedron and non-degeneracy conditions
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cones A\; and

SAZ- _ Z qa(k:)—m(k)s‘

keENTNA;
Let A; be the cone strictly positively spanned by the linearly independent vectors ay, - -+ ,a, €
NV\{0}. Then
Z qo(h)+m(h)s
h

SAi = (qg(a1)+m(a1)s _ 1) - (qU(ar)"!‘m(llr)S o 1)7

where h runs through the elements of the set

Z"Q{Z)\jaj o<\ <1l forj=1,--- ,r}.
j=1
Remark 1.3.2. 1. Clearly Sa, is a rational function in ¢=° for s € C and this does

not depend on the Newton polyhedron of f.

2. Note that L, is depend on the specific coefficients of the polynomial f and is a
rational function in q~° for s € C.

1.3. Newton’s polyhedron and non-degeneracy conditions



Chapter 2

Igusa’s Local Zeta Functions for
Arithmetically Non Degenerate
Polynomials

In this chapter we study the twisted local zeta function associated to a polynomial
in two variables with coefficients in a non—-Archimedean local field of arbitrary charac-
teristic. Under the hypothesis that the polynomial is arithmetically non degenerate, we
obtain an explicit list of candidates for the poles in terms of geometric data obtained
from a family of arithmetic Newton polygons attached to the polynomial, see Theorem
2.4.1. The notion of arithmetical non degeneracy due to Saia and Zuniga-Galindo is
weaker than the usual notion of non degeneracy due to Kouchnirenko, see Section 2.2.
This chapter is an extended version of the results in [1].

2.1 Arithmetic Newton Polygons and Non-Degenera-
cy Conditions.

2.1.1 Semi—quasihomogeneous polynomials

Let L be a field, and a,b two coprime positive integers. A polynomial f(z,y) €
L]z, y] is called quasihomogeneous with respect to the weight (a,b) if it has the form

l
fla,y) = cay’ [ (0" — cua”)",c € L

=1

. Note that such a polynomial satisfies f(t%z,t%) = t¢f(x,y), for every t € L*, and
thus this definition of quasihomogeneity coincides with the standard one after a finite
extension of L. The integer d is called the weighted degree of f(x,y) with respect to

(a,b).

13
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A polynomial f(z,y) is called semi—quasihomogeneous with respect to the weight

(a,b) when
f(x7y):ij($7y)7 (2'1'1)

and the f;(z,y) are quasihomogeneous polynomials of degree d; with respect to (a,b),

and dy < d; < --- < dj;. The polynomial fo(z,y) is called the quasihomogeneous
tangent cone of f(z,y).
We set

Lj

filx,y) == cjatiy® H(y“ —aa’)4 ) ¢j € L™
i=1

We assume that d; is the weighted degree of f;(x,y) with respect to (a,b), thus

L
dj = ab €i,j + au; + ij.
=1

Now, let f(x,y) € L[x,y] be a semi-quasihomogeneous polynomial of the form
(2.1.1), and take 6 € L* a fixed root of fy(1,y*). We put e;4 for the multiplicity of ¢
as a root of f;(1,y*). To each f;(x,y) we associate a straight line of the form

'lUjﬂ(Z) = (dj - dU) + €507, j = 07 17 T 7lf7
where z is a real variable.

Definition 2.1.1. 1. The arithmetic Newton polygon I'yg of f(x,y) at 8 is

= 2 < mi .
Lo ={(z,w) € RY |w < Og;lgﬂlf{wy,e(@}}-

2. The arithmetic Newton polygon TA(f) of f(x,y) is defined as the family
T4(f)={Tse |0 € L, fo(1,0") = 0}.

If @ = (0,0) or if Q is a point of the topological boundary of I';y which is the
intersection point of at least two different straight lines w; ¢(2), then we say that Q is a
vertez of T'A(f). The boundary of T'; is formed by r straight segments, a half-line, and
the non—negative part of the horizontal axis of the (w, z)—plane. Let Qx, k =0,1,--- ,r
denote the vertices of the topological boundary of I'fy, with Qg := (0,0). Then the
equation of the straight segment between Qy_; and Qj, is

wro(2) = (D —do) +exz, k=1,2,--- 1. (2.1.2)

2.1. Arithmetic Newton Polygons and Non-Degeneracy Conditions.
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The equation of the half-line starting at Q,. is,

Wri1,0(2) = (Dri1 — do) + &ry12. (2.1.3)

Therefore
Qk = (Tk’(Dk_d0)+€ka)7 k: 172;"'T; (214)
where 73, 1= (IZZT—EZZ“) >0, k=1,2,---r. Note that D, = d;, and ¢; = e¢;, 9, for
some index j, € {1,...,[;}. In particular, D; = dy, €1 = epp, and the first equation

is wyg(2) = 12. If Q is a vertex of the boundary of I'y, the face function is the
polynomial

fQ(xvy) = Z fj($7y), (215)

w;,0(Q)=0

where w; ¢(2) is the straight line corresponding to f;(z,y).

Definition 2.1.2. 1. A semi-quasihomogeneous polynomial f(x,y) € Llx,y] is
called arithmetically non-degenerate modulo p with respect to 'ty at 0, if the
following conditions holds.

(a) The origin of Fy is a singular point of f. i.e. f(0,0) = Vf(0,0) =0;
(b) f(z,y) does not have singular points on (]]_:‘;)27.
(c) for any vertex Q # Qq of the boundary of I'yg, the system of equations

— of of
Foliry) = 52(w0) = 2. =0,

has no solutions on (F)?.

2. If a semi—quasihomogeneous polynomial f(x,y) € Llz,y| is arithmetically non-
degenerate with respect to I'yg, for each 6 € L* satisfying fo(1,y*) = 0, then
f(z,y) is called arithmetically non-degenerate with respect to TA(f).

2.2 Arithmetically non-degenerate polynomials

Let a, = (a1(7), a2(7y)) be the normal vector of a fixed edge v of I'°*"(f). It is well
known that f(x,y) is a semi—quasihomogeneous polynomial with respect to the weight
a~, in this case we write

Ly
flay)=> fl(xy),
=0

where f;(:v, y) are quasihomogeneous polynomials of degree d; , with respect to a., cf.
(2.1.1). We define

D) ={Tpe [ 6 € L™, f3(1,67)) =0},

2.2. Arithmetically non-degenerate polynomials
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i.e. this is the arithmetic Newton polygon of f(z,y) regarded as a semi quasihomoge-
neous polynomial with respect to the weight a,. Then we define

r(f) = U .

~ edge of I'geom( f)

Definition 2.2.1. f(z,y) € L[z,y| is called arithmetically non-degenerate modulo p
with respect to its arithmetic Newton polygon, if for every edge vy of T9°°"(f), the semi—
quasihomogeneous polynomial f(z,y), with respect to the weight a., is arithmetically
non-degenerate modulo p with respect to Ff(f).

2.3 Examples

In this section we show two examples to illustrate the geometric ideas presented in
the previous sections.

2.3.1 The local zeta function of (y° — 22)? + ziy*

This examples are adapted to our case from [28]. We obtain an explicit list of
candidates for the poles in terms of geometric data obtained from a family of arithmetic
Newton polygons attached to the polynomial in each example.

Computation of Z(s, f,x,A;),i=1,2,3,4,6,7,8,9.

These integrals correspond to the case in which f is non—degenerate on A;. We
show the Newton polygon and the correspond conical subdivision of R% in the figure
1.1 of the example 1.3.1.

The integral corresponding to Az, can be calculated as follows.

[e.e]

Zs v =30 [ e fla)| o)l ldods)
PO Xpn Ok

n=1

= g / Xlac (p"y? = 2%)” + p™aty [ (p"y” — 2%)° + p"aly || dxdy].
n=1 Ok

K

We set g3(z,y) = (p™y® — 2%)? + p'"aty?, then g;(z,y) = x* and the origin is the only
singular point of g;. We decompose OIX: as

0 = || (a.b)+ (pOx)?,

(@b)e(Fg)?

2.3. Examples
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thus

Zs.fox Ay =g 3 / x(ac gale, 1)) lgs(z, )| dody]
n=1 (@, )E(IF (a,b)+(pOk)

- Zq—zn—4ns—2 Z / x(ac gs(a+ px, b+ py))lgs(a + pz, b+ py)|*|drdy|.
n=1

@he(Ey)?” Ok

Now, by using the Taylor series for g around (a, b):
. dg dg 2/7
gla+px,b+py) =gla,b)+p %(a, b)x + a—y(a, b)y | + p~(higher order terms),

and the fact that %—f(a, b) = 4a® # 0 mod p, we can change variables in the previous
integral as follows

2 = g3(a+px,b+py)—gs(a,b)
4 (2.3.1)

22 =Y.

This transformation gives a bianalytic mapping on O% that preserves the Haar measure.
Hence by Lemma 1.2.2, we get

Z(57f7X7A3) =

Sogmin N [ x(ac (gs(a,b) + p2))lgs(a, b) + p2)]* |dzl,
n=l (@b)E(Fy )20
2—4s —1)2 .
qg(+45)) if X = Xiriv
— ) t0-g)? if 4 _ . — )
(1—g—2-%) X = XtrunX‘U = Xtriv

0 all other cases,

where U =1+ pOy.
We note here that for i = 1,2,4,6,7,8 and 9, the computation of the Z(s, f, x, A;)
are similar to the case Z(s, f, x, As).

Computation of Z(s, f, y, As) (An integral on a degenerate face in the sense
of Kouchnirenko)

Zs.fxd) =S [ xae fw) £ ldsdy) (232)

=1
pSnOIX( XPQW’OIX(

Z —b5n—12ns / ( C((yS — ) p8”x4y4))](y3 —ZL‘2)2 —I—p8”x4y4|8 |dxdy|

O><2

2.3. Examples



Igusa’s Local Zeta Functions for Arithmetically Non Degenerate Polynomials 18

Let f™(z,y) = (y° — 2?)? + p"ay?, for n > 1. We define

d: 02 — OF

(z,y) — (23y, 2%y). (2.3.3)

® is an analytic bijection of O%* onto itself that preserves the Haar measure, so it can
be used as a change of variables in (2.3.2). We have (f™ o ®)(z,y) = 2'2y* f()(z, y),
with f()(z,y) = (y — 1)* + p¥"28y*, and then
I(s, f™,x) =
/ X(ac((y® = 2)* +p™a'y")) [(y° — o) + p™a'y"|" |dwdyl,
0)?
— [ ety F0 ) [ )| [dndy].

O><2
K
Now, we decompose O5? as follows:

052 = ( || O x{w +pOK}> J O3 > {1+ 90k},

yo#1 mod p

where yo runs through a set of representatives of F in O . By using this decomposition,
I(s, f™,x) =

Z Z ¢ / x(ac(z[yo + Pj+1y]4ﬁ"/)($7 Yo +p'"y))) |dadyl

yo#1 mod p j=0

0x?
+> 0t / X( (1 + p ) FO (@, 1+ pithy)) [dadyl,
Jj=0 X2
OK

where

X (22[1+ p Ty (2,1 4 pithy)) =
X(@2 [+ Ty FO) (2,1 4+ pP ) x |2 21+ pP Ty O (2, 1+ )

2.3. Examples
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Finally,

6090 = S0 [ et s

yoZ1 mod p j=0 0x2
K

4An—2

+ a0 [ el fae.) |dod

Jj=0 2
O

fginns / (s, 9)) oo, p)I* |dady

X2
OK

S a [ el fiGe.0) ldody),
= (05
where
Sl y) = 2o +9y) ((wo — 1+ 97" 1y)? + 9™ 2% (o + 97 1y)Y),
fo(z,y) = 2 (14 p/ ) (i + p* = G203 (1 4 p/ty)h),
fa(,y) = 22 (1 4+ p ) (y° + 251+ p? T y)h),

and
fa(z,y) = (1 + p/ ) (p*TP 57 + 23 (14 p7Hy)h).

We note that each f,, (i = 1,2,3,4), does not have singular points on (qu)z, SO we
may use the change of variables (2.3.1) and proceed in a similar manner as in the
computation of Z(s, f, x, Asz).

We want to call the attention of the reader to the fact that the definition of the f;’s
above depends on the value of |(p?™y)? 4+ p*"2®(1 + p/Ty)*|, which in turn depends
on the explicit description of the set {(w,2) € R? | w < min{2z,8n}}. The later
set can be described explicitly by using the arithmetic Newton polygon of f(z,y) =
(y3 — 22)% + 2*y*, see Example 1 in Section 2.4.3.

Summarizing, when x = Y¢riv,

L o o —2 43(1 q- ) —7 168(1 )
Z(S7 fa Xtrw) - 2q <1 q ) + (1 q—2 45) + (1 _ q—2 43)(1 —5 128)
—8 185(1 ) —3 65(1 q ) (1 —q 1>2q—6 14s
+(1 —q 3— 68)(1 —5— 125) + (1 —q 3— 65) (1 —q 1- 2s)(1 —5— 123)
(=g 203 (=20 -q g™  (1—g 1)(q ) (2.3.4)
(]_ _ q—l 25)(1 _ q—9—205) (1 _ q—5—128> (]_ _ q—9—205)
¥ . = IV - P -

(1 _ qflfs)(l _ q797205>
¢ (1—q "))},

2.3. Examples



Igusa’s Local Zeta Functions for Arithmetically Non Degenerate Polynomials

20

where N = (¢ —1)Card{z € F* | 2> = =1} and T = Card{(x,y) € (F})?*|y*+2° = 0}.
When x # Xuriv and X|14p0x = Xiriv We have several cases: If Y% = Xtriv, We have

(1 _ q—1)2q—6—14s (1 _ q—1>2q—9—205

Z = - ) 2.3.
(5, f,x) (1—q1=25)(1— ¢ 5 125) (1 —q 1=25)(1 — g~9-205) (2.3.5)
When x* = Xriv,
—3-4s -1 —24s ~1\2
_ 4 (1—-¢q q (1—¢
Z(s, ) =a (1= a7 ) + = )¢ - ,2,45)
N q—7—168(1 _ q—1)2
(1 _ q—2—4s)(1 _ q—5—125)'
In the case where X% = y;,4», we obtain
( f ) —8 185(1 ) N q—3—65(1 _q—1)2
X (1—q3 63)(1 —5-12s) (1 — ¢=3-69)
g 68(1 —q") 1 1 (23.7)
+ == +q (1—q).
If X12 = Xtriv, then
—2)(1 — -1\ ,—6—12s
205, 1,20 = X @) — =D ) (23.5)

(1 — o125 ;
where Y is the multiplicative character induced by x in F*. Finally for x* = Xy

(1= )™

Z(87 f7 X) = (1 _ q—9—208)

(2.3.9)

In all other cases Z(s, f,x) = 0.

2.3.2 The local zeta function of (y* — 22)%(y® — cz?) + 2ty?

Let g(z,y) = (v* — 2?)*(y® — c?) + 2*y?, with ¢ € O and ¢ #1 mod p. In this
example we assume that the characteristic of the residue field of K is different from 2
and 3. As in example 2.3.1, the origin of K is the only singular point of g(x,y) and it
is degenerate with respect to its geometric Newton polygon. The conical subdivision of
R? subordinated to the geometric Newton polygon of g(z,y) is the same as in Table
1.1 and Figure 1.1.

2.3. Examples
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Computation of Z(s,g,x,4;),i=1,2,3,4,6,7,8,9.

These integrals correspond to the case in which ¢ is non-degenerate on A;. The
integral corresponding to A6 can be calculated as follows.

Z(s,9, v, Ag) = Z / x(ae g(z,9)) lg(z, y)*|dedy),

=ln= 1p3n+2m01><<><p2n+7n0;<<

:qu —5—18s)n+(—3—9s)m / X(CLC 96(x,y))|ge(x,y)|s |dxdy|,

m=1n=1
0x2

where go(z,y) = (y° — p™"2?)*(y° — cp™a?) + p** 2ty note that gg(z,y) = y°. By
using the change of variables (2.3.1) with the function gs and by applying Lemma 1.2.2,

we obtain
—8—27s(1_ ,—1)2 .
(1_?1—3—%)((11_3—5)—185) if X = Xtriv
Z(8,9,x,0¢) = L8751 ,—1)2 ,
(1,(1,1—3—%)((11,3—5)—183) Zf X9 = Xtriv, X|U = Xtriv
0 all other cases,

where U = 1 + pOk.
We note here that for i = 1,2,3,4,7,8 and 9, the computation of the Z(s, f, x, A;)
are similar to the case Z(s, f, x, A¢).

Computation of Z(s, g, x,As) (An integral on a degenerate face in the sense
Kouchnirenko)

2059, ) = z | e go)lgte. o) ldods),

1p3n0>< Xp2"OX
:Zq—Sn—ISns / X(ac(g(”)(x,y))|g(”)($,y)|8|d$dy|'
n=1 X2
OK

where g™ (z,y) = (v*—22)?(y® — ca?) +p*aiy?, for n > 1. We use the map ® defined in

(2.3.3), giving ¢ 0 ®(z,y) = 2309 (z, y), with g0 (z,y) = (y—1)2(y—c) + p*"a2y?,
then we have to compute

o920 = [ xlaels™ @ )lg o) oy,
O><2

_ / y(ac(@®ys g™ (z,))) g (z, y)|*|dady|.

X2
OK
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We decompose O as follows:

0i = (0 x {yo+ Ok | yo £ 1,¢ mod p}) U (O x {1+ pOx})
U (0f x {c+pOk}),

where yo runs through a set of representatives of F* in Og. By using the same strategy
of example 2.3.1: we use an analytic bijection ® over the units as a change of variables
and then we split the integration domain according with the roots of the quasihomo-
geneous part of g. In each one of the sets of the splitting, calculations can be done by
using the arithmetical non—-degeneracy condition and/or the stationary phase formula.
Thus we get

1. X = Xtrivs
B B —2—6s 1 — q—l) q—7—248(1 _ q—l)2
Z D=2t 1 g )+ T
<87 f7 Xtrw) q ( 4q ) + (1 _ q—2—6s) + (1 _ q—2—6s)(1 _ q—5—185)
N q—8—27s(1 _ q—1)2 N q—3—93(1 _ q—l)
(1 _ q—3—95)(1 _ q—5—185) (1 _ q—3—93)
N q—G—ZOSUO(q—5> q—7—205(U1(q—5> + (1 _ q—1)2)
(1 =g 1) (1 —¢072%) (1 =g =) (1 —q72%)
—1 —6—20s _ —1\2,,—-6—-20s
R Gt )*q . (=q)q
(1 _ q—l 23)(1 —5—185) (1 _ q—1—25)(1 _ q—6—203)
P Gt o U 195) (q=3)1 g Hg "™
(1 =g %)L —q ') (1—g571%)
L1 O
(1 — g—6-205) (1 — g~ 7—205)
(2.3.10)
where
Uog*) =q¢ (1= ¢ )N+ To(1 — ¢ *){(g — 1)* = M},
Ny = Card{(a,b) € (F¥)? | @*(5°(1 - ¢) + @) = 0},
T, = x(ac(a'®(B*(1 = ¢) +a?))),
(a,b)eFy?
(5* (1-0)+a%)#£0
Ur(g™) =q¢ (1= ¢ HNo + T5(1 — ¢ ) {(q — 1) = Na},
N, = Card{(a,b) € (F))* | a"*bc’(c — 1)* + a*°¢* = 0},
and

&
I

> xlac(a®(B*(1 - ¢) +a?))).
(a,b)eFx?
(0*(1-0)+a?)#0

2.3. Examples
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2. X2 = Xtrivs and X|U = Xtriv; U=1+ pOKa we have

(1 _ q71)2q767203

(1 _ q—1—2s)(1 _ q—5—185)
_y(l B _) (1 _ q—1)2q—6—203
(1 _ q71725)(1 _ q767205) (2 3 11)
5 ) (1 _ q—1)2<q—6—195) o
c(c—1
+X(C <C ) )(1 _ q—5—18s>(1 _ q—l—s)
1— g 1)2(g~72%)
ey |
+x(@(—1) )(1 g T 20s) (1 — g 1)
where Y is the multiplicative character induced by x in F.
3. XG = Xtriv and XlU = Xtriv,
Z(s, f,x) =
—3—6s —1 —2—6s —1\2
N L O B 0 B B S Sk B9
X(=0) (q (1-q )+ (1—q26) (2.3.12)
+>_<<_E> q77724s(1 _ q71)2
(1 _ q—Q—GS)(l _ q—5—188> )
4. Xg = Xtriv and XlU = Xtriv, W€ obtain
Z(s f X) _ q78727s(1 _ q71)2 N q73793(1 _ q71)2
» (1 _ q—3—95)(1 _ q—5—185) (1 _ q—3—98) (2 5 13)
+q—4—9s(1 _ q—1> N _1<1 _1) 0.
(1— g 39) q a )
5. Xlg = Xtriv and X|U = Xtriv, then
(T (e (¢—3) 1 —q gt
Z(S7 f7 X) = X(y07(y0 - 1)) (1 _ q—5—18s) ’ (2314)
6. X20 = Xtriv and X|U = Xtriv
(g™ (=)
Z(s, f,x) = =0 —x(@) == (2.3.15)

7. In all other cases Z(s, f,x) = 0.

2.3. Examples
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2.4 Integrals Over Degenerate Cones

From the examples in Section 2.3, we may deduce that when one deals with an in-
tegral of type Z(s, f,x, A) over a degenerate cone, we have to use an analytic bijection
® over the units as a change of variables and then, split the integration domain ac-
cording with the roots of the tangent cone of f. In each one of the sets of the splitting,
calculations can be done by using the arithmetical non-degeneracy condition and/or
the stationary phase formula. The purpose of this section is to show how this procedure
works.

2.4.1 Some reductions on the integral Z(s, f, x, A)

Proposition 2.4.1 (|28, Proposition 5.1|). Let f(z,y) € Oklz,y] be a semiquasiho-
mogeneous polynomial, with respect to the weight (a,b), with a,b coprime, and

ly

FU (@, y) = f(p e, ) = pl T (),

§=0
where m > 1, and

L
fi(z,y) = cjatiy® H(ya — a;j2%)% ;€ K*. (2.4.1)

i=1
Then there exists a measure—preserving bijection

D : OIX{2 —>OIX(2
(x,y) »—>(q)1(:c,y),<1)2(x,y)),

such that F™ (x,y) == f™ o ®(z,y) = xNiniJ%(x,y), with

ly

Fo () =3 phmdom £, y),

j=0
where one can assume that f](:c,y) is a polynomaial of the form

L

]A“;-(u, w) = cyuiw? H(w — ;). (2.4.2)

=1

After using ® as a change of variables in Z(s, f, x, A), one has to deal with integrals
of type:

f@Fwam:/&mdﬂM@w»WW@wwwmm

X2
OK

2.4. Integrals Over Degenerate Cones
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Integrals I(s, ™, x) will be computed in Propositions 2.4.2 and 2.4.3. The proof
of these propositions are based on the corresponding Proposition in [18], but several
simplifications were obtained. For the sake of completeness we present here the details
of the proofs, also with the aim of introduced some notation that we will need in the
remain of the chapter.

Proposition 2.4.2 (|28, Proposition 5.2|).
Uo(g™* x)
(m) Yo )
](S,F ,X) —m‘i‘ Z J0(37m7X)7
{0€0k|fo(1,0%)=0}
where Uy(q™%, x) is a polynomial with rational coefficients and

JG(Sv m, X) =

o0

a* [ x(ac(F™ (2,0 + p*y))) |[F™ (2,0 + pky)|* |dody|.
)

Proof. From Proposition 2.4.1

lf lf
F(m) (Q;7 y) - xNini Z p(dj*do)mfj (l’, y) — Z p(djfdo)mf;%x’ y)’ (243)
=0 j=0
where
lj
fi(@,y) = ca Ny B T (y = i)™, (2.4.4)

i=1

Set

R(fo) = {6 € Okl fo(1,6) = 0}
W(fo) = max {v(0 -6}, and
0,0'cR(fo)

B(0) = B(l(fy),0) :== O} x (0 +p""Oy),

for 6 € O, with v(0) < I(fy). By subdividing O;? into equivalence classes modulo
p! o) we obtain that,

I(s, F"™.x) = > | xlac(F™ (z,))) [F™(z,y)|* |dzdyl
9¢R(f0)3(9)

+ > x(ae(F™ () [F ()| |dadyl.
0€R(fo)p(g)

2.4. Integrals Over Degenerate Cones
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Now we use the fact that Ox = U2 (p*O)) in B(#). Thus B(f) = Oy x (6 + p*O%),
where k > 1+ [(fy) and our integral becomes

s, Y Y / (ac(F™ (z,4))) [F™(,y)|° |dady]

0¢ R(fo) k=1+1(fo) B(6)

EY Y [ e ) P e, (245)

OeR(fo) k=1+l(fo)  pgp)
From (2.4.4), we have that for any (z,y) € O,

fi(z,0+pky)

i €ij .
¢t (G 4 pry) M TT (0 — i) + phy) ™ if f7(1,0) #0
i=1
- lj €5 5 .
ey (B -+ )P T (6 )+ B9) 0 pRwsyes i £7(16) =0,
# 10
where 0 = «;, ;. We put
(2, y)
. . . . lj €i,j . %
a4 Ni (0 4 phy) Bt H§'=1 ((‘9 — ;) + Pky> if f (1,0) #0
PG4 g PO (0= o) + ) By F(1L0) =0,
%10
and note that in both cases the ~; are polynomials satisfying |v;(x,y)| = 1, for any
(z,y) € OX*. By abuse of notation we will write
£ (2,0 +p*y) = v (, y)pheoiy©e. (2.4.6)

Finally we return to the computation of the integral I(s, F™, x). Note that if 6 ¢ R(f,)

then from (2.4.3) and (2.4.6) we get that F(™)(x, 0 + p¥y) has no singular points over
(IF;)Q, therefore we may apply Lemma 1.2.3 in 2.4.5 to obtain the desired conclusion.
O

The next step is to compute the integral Jy(s,m, x), we introduce here some nota-
tion. For a polynomial h(z,y) € Ok[z,y] we define N;, = Card{(Z, Jy)
€ (Fy")? | h(To,7p) = 0}, and put

—s 1 o —1 N
M, = q 1(_ ?1_2 ho (g—1)*—=N, and X, := Z x(ac (h(a,b))).
q (@b)e(Fg*)?
7(@,b)#0

Proposition 2.4.3. We fiz 0 € R(fy) and assume that f(x,y) is arithmetically non
degenerate with respect to I'pg (see Definition 2.1.2) . Let 7;,,i = 0,1,2,--- ,r be the
abscissas of the vertices of ', ,, cf. (2.4.2) and Definition 2.1.1.

2.4. Integrals Over Degenerate Cones
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1. Jo(s,m, Xiriw) 1S equal to

Tzi —(Djiy1—do)ms q_(1+$€i+1)([mn}+1) — q_(1+55i+1)([mn+1]—1) M,
i—0 q 1 J— q*(l+5€i+1) g

g~ (Hserlmm]

+q—(Dr+1—do)ms < ) Mgr + Zq—(Di—do)ms—(sai[mTi])MG7
=1

1 — g~ (I+sert1)
with
9(x,y) = Y1 (2, y)y“ro + pm =P (higher order terms),

9-(2,y) = Vi1 (2, y)y 2o + pm L= (higher order terms),

and
Glr,y)= > ylz.yy,
W;,9(Vi)=0
where W; ¢(Z) is the straight line corresponding to the term

plbmdoImaheson, (o, y)y©ae,

¢f. (2.1.5).
2. In the case X|i4p0x = Xtrivs Jo(s,m,X) is equal to
r—1

(D do) q—(1+sai+1)([mn}+1) _ q—(l—i-sgiﬂ)([mn“]_l)
—(Di41—do)ms
Z q ( 1 — q_(1+55i+1) > Eg

1=0

Egr + Z q—(Di—do)ms—(sai[mTi])'

—(1+serta)[mrr]
+C]_(Dr+1—d0)ms (q i )
=1

1— q*(1+557'+1)

3. In all other cases Jy(s,m,x) = 0.
Proof. From and (2.4.3) and (2.4.6) we have

ly

(2,0 + pty) = 3 csp b, o, y)yoor (247)
7=0

Then we associate to each term in (2.4.7) a straight line of the form w; (%) := (d; —
do)m + ez, for j =0,1,...,1;. We also associate to F™(z,6 + p*y) the convex set

~ o~ 2 ~ . ~
Lpom (o+pty) = {(Z0) € RY [0 < Ogjgllf{wj,e@}}-

2.4. Integrals Over Degenerate Cones
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As it was noticed in [28], the polygon I'pwm) ;g4 pk, is @ rescaled version of I'yy. Thus
the vertices of I'pm)(y04phy) Can be described in terms of the vertices of I'yy. More
precisely, the vertices of I'pom) (g4 pky) are

o [0.0 ifi=0
e (mm;, (D; — do)m +me;m;) ifi=1,2,...,7,

where the 7; are the abscissas of the vertices of T'(m) ». The crucial fact in our proof is
that F™(z,0 + p*y), may take different forms depending of the place that k occupies
with respect to the abscissas of the vertices of I'pm) (5 g4phy)- This leads to the cases:
(i) mm; < k < m74q, (ii) k > m7,, and (iii) k = mm;.

Case (i): mn; < k < m71. There exists some j; € {0,...,{s} such that

(dj, — do)m + kej, = (Dig1 — do)m + kejq,
and
(dj, — do)m + kej, < (dj — do)m + kej,
for j € {0,...,1¢} \ {si}. In consequence
FU(x,0 + pty) = p~Prnidom=eeali(n, (g, y)yeie 4 pmPra=Pi(.))
for any (z,y) € OX?, where
Yogr (2, y)y e 4 pr PRI
= yig1 (@, y)yerro + pPi1=Di) (terms with weighted degree > D;yq).
We put g(x, y) 1= Yiy(x, )y 4+ pmPeer=PI () Then

[ @l F™ a6+ 5) [F™,6+ ') fdedy
O}?
=g Pz [ (aelglay) lo(e o)l dedy]
(o)
By using the following partition of OIX(Z,
0f = || (ab)+ (pOk)?, (2.4.8)
(@,b)e(Fy)?

we have

/ x(ac(g(x,y)) |g(z,y)|* |drvdy|

X2
OK

= > [ Moty (2.4.9)
(@b)€(Fq)2(a,b)+(pOx)?

= > /X(ac gla+pz,b+py)) |g(a+pz, b+ py)|® |dzdy).

@h)eE; )03
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By definition of v;(x, y) (in proof of Proposition 1.5.2), we see that g—g(x, Y) = e pycitto!
then g—g(&, b) # 0(mod p) for (a,b) € (F)). Therefore the following is a measure pre-
serving map from O% to itself:

29 = .
2 p

21 =
_ glatpz,bt+py)—g(a,b) (2410)

By using (2.4.10) as a change of variables, (2.4.9) becomes:

> [ xtae (9(a.b) + ) lgfa.b) + sl izl
@b)E(FF )0k

and then Lemma 1.2.2 implies that the later sum equals

( —s(1_,—1 N .
! (1(iqgl—2) <+ (q - 1)2 - Ng ZfX = Xtriv

B Z X(ac(g(a, b))) Zf X|U = Xtriv
(@b)e(Fq*)?

9(@,b)#£0
0 all other cases,

\

where U = 1+ pOy, and N, = Card{(a, b) € (F,*)? | g(@,b) = 0}.

Case (ii): k > m7,. There exists some j, € {0,..., [} such that (d;, —do)m+ke;, =
(Dyy1 —do)m~+keyqr, and (dj, —do)m~+ke;, < (dj—do)m-+kej, for j € {0,..., [;}\{jp}-
Therefore

FO (3,0 4 phy) = p~Prov—doim—sriik(y (g g)yereno 4 pmPrin=Di (L)
for any (z,y) € OX*. A similar reasoning as in the previous case, shows that
/ X(ac(F™ (2,0 + p*y))) [F™ (2,0 + p*y)|* |dady]

X2
OK

(g Pr1—do)ms—eriibsg—s(1_g—1)N,

1—q 1) + (C] - 1)2 — N, ZfX = Xtriv

— { g (Dre1—do)ms—eriks S x(ac(g-(a,b))) if X|u = Xtriv
(@b)e(Fq*)?
gr(@,b)#0
0 all other cases.

Here
gr(xa y) = Vr+1 (l’, y>y€r+1,0 + pm(DH_liDi)(' o )
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and

N, = Card{(a,b) € (F,*)* | 5:(a,b) = 0}.

Case (iii): k = m7. There are some j's € {0,...,l;} such that
(dj, —do)m +kej, = -+ = (dj, — do)m + ke, = (D; — do)m + ke,
and for the remaining j’s,
(D; — do)m + ke; < (dj — do)m + ke;.
In this case
F (.0 + pty) = p O m == (B () + pmPenPI()

for any (x,y) € OF?, where

Fé:")(w, y) = Vi@, y)y?,
w;,0(Vi)=0

s

and w; ¢(Z) is the straight line corresponding to the term p(di—do)m-tke; o

Therefore

i (.Z', y)yej’g'

/ x(ac(F™ (2,0 + pFy))) |F™ (x,0 + pFy)|° |dzdyl

X2
OK

=g et [ (aelGla,g)|Glay)|* dody)|.

X2
OK

where G(x,y) = F)Zn) (z,y) + pmPi+1=Did (... then the arithmetical non degeneracy
condition over f implies that some partial derivative of G is different from zero mod
p, lets say %—2(&, b) #0 mod p for (a,b) € (F))*> So we may use the same strategy as

in case (i), to obtain

/X(GC(F(m)(x,9+Pky))) [ (2,6 + pty)|° |dady|

X2
OK

/ q_(Di_dO)mS_Eiksq_s(1—q_1)

(1,q—1—s) No + (q - 1)2 - NG fo = Xtriv

_ g pedomssks S (ae(Glab)) if Xl = X
(@b)e(Fq*)?
G(a,b)#0
0 all other cases,
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where Ng = Card{(a,b) € (F,*)? | G(a,b) = 0}.
At this point we note that any £ € N,k > 1, satisfies only one of the following
conditions:

[mn] k< |mriq|—1, fori=0,1,....7r—1,
= [mm], fori=0,1,...,r,
k> [mr]+1,

where [x] denotes the greatest integer less than or equal to = € R.
Finally, from cases (i), (i1), (#ii) and the previous observation, we have that

J9(87 m, Xtriv) -

0 [ a0+ ) 10+ p) ey
O><2

k=1+1(fo)
r—1 [m7‘i+1]—1
Z q D;+1—do)m Z qfk(1+ssi+1)Mg
i= k=[mr;]+1
+q—(Dr+1—d0)ms Z q—k:(l—i-serrl)MgT + Z q_(Di_dO)ms_(SEi[mTi])Mg.
k=[m7]+1 i=1

Some of the sums appearing in the previous expression can be estimated by means of
) .. . A
the following algebraic identity Zf: AR 222" We get

28—z
1—z

Jo (8, My Xtriv)

— —(14se4 m7i]+1) _  —(14sg; mrieg]—1
—(Diy1—do)yms (q (1+seiy1)([mmi]+1) q (I+sei1)([mTit1] ))M

g

:Zq

_ g—(14se;
— 1 q ( +1)

q—(1+ser+1 )[mr]

+q—(DT+1—do)ms ( ) Mgr + Z q—(Di—do)ms—(sai[mTi])MG'
=1

1— q—(1+58r+1)

Finally, when x|y = X¢riv, We have

J0(87 m, X)
r—1 —(I+seit1)([mmi]+1) _ ,—(L+seipr)([mriqa]-1)
— —(Dj41—do)ms q q
- Z g ( 1 — g~ (I+seit1) ) %
i=0

- 1+ T Tr +1
+q_(Dr+1_d0)mS (q ( - +1)([m ] )) gr

1— q*(1+35r+1)

+ Z qf(Di7d0)msf(flfs€i[m7'i])ZG.

O

2.4. Integrals Over Degenerate Cones



Igusa’s Local Zeta Functions for Arithmetically Non Degenerate Polynomials 32

2.4.2 Poles of Z(s, f,x,A)

Definition 2.4.1. For a semi quasihomogeneous polynomial f(x,y) € Klz,y] which
15 arithmetically non degenerate with respect to

= U T

{6€0k | fo(1,0%)=0}

we define
1 (at+b)+m (a+b)+ﬂ:} { ! }
P([yp) = {—_’ - T . - ’
(Trp) @L:J1 gi’ Diy1 +EiTs D; + & {ETEJ;&O} Er+l
and
PLM = P,

{0€0K | fo(1,07)=0}
Where Dy, e;, T; are obtained form the equations of the straight segments that form the
boundary of I'sg, cf. (2.1.2),(2.1.3), and (2.1.4).

Ly
Theorem 2.4.1. Let f(x,y) = Z fi(z,y) € Oklz,y] be a semi- quasihomogeneous
=0

polynomial, with respect to the wezght (a,b), with a,b coprime, and f;(x,y) as in (2.4.1).
If f(x,y) is arithmetically non—degenerate with respect to T'A(f), then the real parts of
the poles of Z(s, f,x,A) belong to the set
a+b
Cnuf{-2upemy.

In addition, Z(s, f,x,A) =0 for almost all x. More precisely, if X|1+p0, F Xtrivs
Z(S7 f’ X7 A) =
Proof. Let A := (a,b)R,, then the integral Z(s, f, x,A) admits the following expan-
sion:

510 A Z [ ettt )l oy

pcl,'m()>< ><pbrno><

= D g lertmedme / x(ac (FU™(z,))) [F™ (z,y)|" |dvdyl,

m=1

(2.4.11)

ox?
cf. 2.4.3 and cf. 2.4.7. From Proposition 2.4.2,

[ xae (P [ ) oy = S

X2
OK

+ Z Jo(s,m, X),

{0€0K | fo(1,0%)=0}
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thus (2.4.11) implies

m=1

U 737 - —(a m— ms
Z<s,f,x,A>=M+ 3 (Zq<+b> b Je(s,m,x)>-

q—l—s
{0€0K|fo(1,0%)=0}

Next we use the explicit formula for Jy(s, m, x) given in Proposition 2.4.3 to obtain

Z q_(a+b)m_d°msJ9(s, My Xtriv) (2.4.12)
m=1
& g~ (@tO)m—([nril+1)=(Dipimtei (fmm]+1))s
=22 M,
‘ 1— q—(1+86i+1)

q—(a+b)m—([mTi+1]—1)—(Di+1m+€i+1 ([mTig1]—1))s

1— q—(1+351+1)

M,

g

0 (atbym—((m 1)~ (Dyamebey i (fmr 1 +1)s

+ Z 1 _ q*(1+S€T+1) Mg'”

m=1
r 00

+ Z Z q(aer)mf[m‘ri]7(Dimf€i[mn])sMG.

i=1 m=1

Remark 2.4.1. In order to compute the expression for the integral Jo(s,m, Xiriv) we
have to estimate sums of type
m=1

Recall that 7; = %:fi. Assume that m = n(e; — €;41) + 1, where l € {0,--- ,&; —

giv1 — 1}, and n € N\ {0}. Then

(m7;] = n(Diy1 — D;) + [I7i].

o0 Ei_5i+1—1
Therefore S ¢ lmml = 3" S g P Dolin]
m=1 =0 n> 1-1
Z(ei—eit1)

Now we go back to the computation of Jy(s, m, X4riv), from (2.4.12)

2.4. Integrals Over Degenerate Cones



Igusa’s Local Zeta Functions for Arithmetically Non Degenerate Polynomials

34

(2.4.13)

o0

E ~(atb)m— domsJ€($> m, Xtriv)

r—1
—(a+b)l—[lTi]-1—{Djiy1l+eit1[lTi]+€it1}s
(= > {a e

1=

q—n{(@+b)(8i—€i+1)+(Di+1—Di)—{DiH(Ei—8i+1)—5i+1(Di+1—Di)}8} Mg} }

r—1 €i41—Eiy2—1

§ § E q—l—(a+b)l+[lﬂ'+ﬂ—{Di+1l—€i+1[lTi+1}—€i+1}S
1 _ q—l S€i41

i= n>

L+1 s7,4»2

q_n{(a+b)(5i+l_5i+2)+(Di+2_Di+l)+{€i+1(Di+2_Di+1)+Di+l(5i+1_5i+2)}5}M } }
g

gi—€iy1—1

4y - E § —(a+b)l+[Irrp1]—{Drt1l—erp1llrrs1]—ers1}s
1 —1 SEr41

nz
€4

751+1

q_n{(a+b)(5r_5r+l)+(Dr+l_DT)+{5T+1 (Dr+1_Dr)+D'r+1(ET‘_ET+1)}5}MQT }

r gi—€i41—1
+Z{ Z Z { —(a+b)l—[lr;]—{D;l—e;[li]}s

i=1

/ E1_51-}—1

q—n{(a+b)(6i—€i+1)+(Di+1—Di)+{5i(Di+1—Di)+Di(ei_5i+l)}s} MG} } )

Next we compute the geometric series appearing in the latter expression, this gives
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)
Z qf(aer)mfdomst]g(S’ m, Xt'riv)

m=1
r—1 1 q_1_€i+1s_(a+b)(ai_€i+1)_(Di+1_Di)_{si-‘rl(Di+1_Di)_Di+1(Ei—€i+1)}8
= Z;{ 1 _ qflfsEiJrl { 1 — qf{(a+b)(5i75i+1)+(Di+17Di)+{5i+1(Di+1*Di)+Di+1(Ei*EiJrl)}S}
5i_£i+1_1 q—(a+b)l—[lTi]—l—{Di+1l+Ei+1[lTi}+Ei+1}S
+ Z 1— q*{(a+b)(€i*€i+1)+(Di+1*Dz‘)+{5i+l(Di+1*Di)‘i’DiJrl(Ei*EiJrl)}s} } g}
r—1 1 q_1_5i+15_(a+b)(€i+l_5i+2)_(Di+2_Di+l)_{5i+1(Di+2_Di+1)_Di+l(5i+1_5i+2)}3
- z_;{ 1— q71755i+1 { 1— q*{(a+b)(5i+l*5i+2)+(Di+2*Di+1)+{€i+1(D¢+27D¢+1)+D¢+1(5i+175¢+2)}s}
Ei+1—8i+2—1 q_(a+b)l_[l7—i+1]_1_{Di+ll+5i+1[lTi+1]+€i+1}s
+ ; 1 — g~ (@t (eir1—eir2)+(Dit2—Div1)Heir1(Dit2—Dir1)+Dit1(eir1—eiv2) }s} }Mg}
1 q_l_ETJrl5_(a+b)(sr_5r+1)_(DT+1_DT)_{ErJrl(DTJrl_DT)_DTJrl(ET_ETJrl)}S
+ 1 — q*1*35r+1 { 1 — q*{(a‘i’b)(frffr-&-l)“r(Dr-&-l7Dr)+{57‘+1(Dr+17Dr)+Dr+1(57‘757‘4»1)}5}

er—ery1-1 g 1mert1s— (@)l )= {Drsal—er i)}
+ ; 1— q*{(a+b)(€r7€r+1)+(Dr+1*Dr)+{€r+1(Dr+1*Di)+Dr+1(Er*€r+1)}5} } gr

2

i=1
gi—git1—1 —(a+b)l—[lr;]—{ Dil—ei[imi]}s
+ Z a Mg
— 1 — qf{(a+b)(€¢7€¢+1)+(Di+l*Di)‘i’{Ei(DiJrl*Di)‘i’Di(Ei*EiJrl)}S}

r { q_(a+b)(€i_€i+1)_(Di+l_Di)_{fi(Di+1_Di)—Di(5i_5i+1)}5

1 — g {(atb)(Ei=eir1)+(Dit1—Di)Hei(Dip1—Di)+Dilei—¢iv1)}s}

Here we introduce the following notation to obtain a compact form for the sum

Biy:=(a+b)l +[Ir;] + 1+ s(Dijal + €ia[ITi] + €i41)
pi = (a+b)(e;i — €ir1) + (Diy1 — Dy)
0; = Di1(ei — €iv1) + (Dig1 — Di)eiya,
Gip = (a+b)l + [lriy1] + 1+ s(Disal + eip1[lTipa] + €i1)

0; = Dit1(€ix1 — €iv2) + (Dig2 — Diy1)eisa.

Therefore
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Z qf(aer)mfdoms{]e(S’ m, Xtriv)

m=1
1 —1—pi—{eit1—di}s €i—€i+1—1 —B;,
= Z Mg{ (1 — qu'&S)(l _ q—1—seit1) + Z (1 _ piég)(l _ —l-sgi11) }
i=0 q q — q q
! —1—piy1—{eir1—9;}s gi41—€i+2—1 e
i Z Mg{ (1- qpiﬂégs)(l — g lTe) i Z (1- p”l‘gs)(l — g 1msei) }
i=0 q q — q q

qilfprf{s'rdrl*(sr}s Er&rtl 1 inr,l
M
+ gr{ (1 —q P TS)(l — q_l seri1) T ; (1 — q_,ﬂr—ﬁrs)(l _ q—1—55r+1) }

/
i—1

i—8_y gigit1=l G ) +(14eits)
qp q 1—1,1 i+1
el Y e

i—1
=0

Similar equations holds in the case x # Xiv. It follows that real parts of the poles

Z (i q—(a—i-b)m—doms(]e(S’ m, X)) :
m=1

{6€0fo(1,64)=0}

of

belong to the set

(1} U {—ac‘gb} v U P,

{0€0 | fo(1,04)=0}

2.4.3 Examples

L fz,y) = (y° —2?)* + 2'y".

Let f(z,y) = (y® — 2%)? + 2'y* € K|[z,y], as in Example 2.3.1. The polynomial
f(z,y) is a semiquasihomogeneous polynomial with respect to the weight (3,2),
which is the generator of the cone Aj, see Table 1.1. We note that f(z,y) =
fo(z,y) + fi(z,y), where fo(z,y) = (v* —2?)? and f(z,y) = z'y*, c.f. (2.1.1). In
this case § = 1 is the only root of fo(1,4?), thus I'4(f) =T ;.

Since fo(t3z, t%y) = t*2 fo(z,y) and fi(3z,t%y) = t*° fi1(z,y), the numerical data
for I'yy are: a = 3,b = 2,Dy = dy = 12,71 = 4,61 = 2, and Dy, = 20, then
the boundary of the arithmetic Newton polygon I's; is formed by the straight
segments

woa(z) =22 (0< 2<4), and, wii(z) =8 (z2>=4),
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together with the half-line {(z,w) € R% |w = 0}. The face functions are

f(070)(95:?/) = (?/3 - 5172)27 f(4,8)(9€7?/) = (y3 - 902)2 + x4y4,

see figure 2.1: ['(f). Since that f(4)(z,y) does not have singular points on K*?,
f(z,y) is arithmetically non-degenerate.

(4, 8)/

Figure 2.1: T4(f)

According to Theorem 2.4.1, the real parts of the poles of Z(s, f, x, As) belong
to the set {—1,—2, -2, —21 cf. (2.3.4)-(2.3.9).

120 207 20

2. gr,y) = (5 — 2 — ca?) + 2y Let g(r,y) = (1 — 22 — ca?) + 2y €

Klz,y], with ¢ € OF and ¢ # 1 mod p as in Example 2.3.2. The polynomial
g(z,y) is a semiquasihomogeneous polynomial with respect to the weight (3, 2),
which is the generator of the cone As, see Table 1.1. We note that g(z,y) =
go(z,y) + g1(z,y), where go(x,y) = (y> — 2%)%(y® — cx?) and gy (z,y) = 2y, c.f.
(2.1.1). In this case § = 1 and § = ¢, are the roots of go(1,y?), thus I'*(g) =
{FgJa ngc}-
Since go(t3z, t%y) go(x,y) and g, (3z, t?y) g1(z,y), the numerical data
for I'y; are: a = 3,b = 2,D; = dy = 18,71 = 1,61 = 2, and D, = 20, then
the boundary of the arithmetic Newton polygon I'y; is formed by the straight
segments

— t18 — t20

woa(z) =22 (0< 2<1), and, wii(z)=2(z=>1),
together with the half-line {(z,w) € R% |w = 0}. The face functions are
go0(®:y) = (* = 2*(y° — er®) gua(ey) = (v° —2*)(y° — ea®) + 2y,

see figure 2.2: T' ;. Since g12)(x, y) does not have singular points on K*2, g(z,v)
is arithmetically non-degenerate with respect to I'y ;.
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(1,2)/

Figure 2.2: 'y

On the other hand, the numerical data for I'y, are: a = 3,0 = 2,D; = dy =
18,7 = 2,61 = 1, and Dy = 20, then the boundary of the arithmetic Newton
polygon I'y . is formed by the straight segments

woe(2) =2 (0<2<2), and, wi(z) =2 (2> 2),

together with the half-line {(z,w) € R%|w = 0}

The face functions are go,) (r,y) = (v — 22)(y® — ca?), 9(2,2) (r,y) = (v* —

2?)?(y? — ca®) + 2ty?, see figure 2.3: Ty .. Since g(29)(2,y) does not have singular
points on K*?, g(x,y) is arithmetically non-degenerate with respect to I, .

Figure 2.3: I'y .

According to Theorem 2.4.1, the real parts of the poles of Z(s, g, x, As) belong
to the set {—1, -2, -1 —2 —%} cf. (2.3.10)-(2.3.14).

2.5 Local zeta functions for arithmetically non-

degenerate polynomials

Take f(x,y) € K[x,y] be a non-constant polynomial satisfying f(0,0) = 0. Assume

that
RY ={(0,0}u |J A, (2.5.1)
(f)

,ycl“genm
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is a simplicial conical subdivision subordinated to ['9¢*"( f).

Let a, = (ai(7),a2()) be the perpendicular primitive vector to the edge v of
['9eom( f), we also denote by (a., x) = d,(7y) the equation of the corresponding support-
ing line (cf. Section 1.3). We set

P(Fgeom(f)) — {_%ﬂ;zm‘ v 18 an edge Ongeom(f)7da(’7) 7& O} .

Theorem 2.5.1. Let f(z,y) € Klz,y] be a non-constant polynomial. If f(x,y) is
arithmetically non-degenerate with respect to its arithmetic Newton polygon T'A(f),
then the real parts of the poles of Z(s, f,x) belong to the set

{=13 UP@e(f)) UPIT(f)).
In addition Z(s, f,x) vanishes for almost all x.

Proof. Consider the conical decomposition (2.5.1), then by (1.3.1) the problem of
describe the poles of Z(s, f,x) is reduced to the problem of describe the poles of
Z(s, f,x, O5%) and Z(s, f,x,A,), where v is a proper face of T'9*™). By Lemma
1.2.3, the real part of the poles of Z(s, f,x, O%%) is —1.

For the integrals Z(s, f,x,A,), we have two cases depending of the non degen-
eracy of f with respect to A,. If A, is a one-dimensional cone generated by a, =
(a1(7),a2(7)), and f,(x,y) does not have singularities on (K *)?, then the real parts of
the poles of Z(s, f, x,A,) belong to the set

(o {-ar el ¢ yupEeny),

If A, is a two—dimensional cone, f,(z,y) is a monomial, and then it does not have
singularities on the torus (K*)?, in consequence Z(s, f,x,A,) is an entire function as
can be deduced from [38, Proposition 4.1]. If A, is a one-dimensional cone, and f,(x,y)
has not singularities on (O} )?, then f(z,y) is a semiquasihomogeneous arithmetically
non-degenerate polynomial, and thus by Theorem 2.4.1, the real parts of the poles of
Z(s, f,x,A,) belong to the set

(o {200 e € -1y upEEn) U PEA).

From these observations the real parts of the poles of Z(s, f, x) belong to the set
{=1yUPITe™(f)) UPTA(S)).

Now we prove that Z(s, f, x) vanishes for almost all x. From (2.5.1) and (1.3.1) it
is enough to show that the integrals Z(s, f, x, A,) = 0 for almost all x, to do so, we
consider two cases. If f is non-degenerate with respect to A, Z(s, f,x,Ay) = 0 for
almost all x, as follows from the proof of Theorem 1.2.1. On the other hand, when f is
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degenerate with respect to A, and A, is a one dimensional cone generated by a.,, then
f(x,y) is a semiquasihomogeneous polynomial with respect to the weight a, , thus by
Theorem 2.4.1, Z(s, f,x,A,) = 0 when x|i1pox # Xeriv- If A, is a two dimensional
cone, then v is a point. Indeed, it is the intersection point of two edges 7 and u of
roeem( ), and satisfies the equations:

(ar,7) = du(7) and (a,, ) = da(p).

It follows that f(x,y) is a semiquasihomogeneous polynomial with respect to the weight
given by the barycenter of the cone: @ The weighted degree is M. Finally,
we may use again Theorem 2.4.1 to obtain the required conclusion. m

2.5. Local zeta functions for arithmetically non-degenerate polynomials



Chapter 3

Exponential Sums mod p'".

In this chapter we give some estimations for the asymptotic behavior of exponential
sums mod p" attached to arithmetically non-degenerate polynomial, see Theorem
3.1.1.

3.1 Exponential Sums

Let K be a non—Archimedean local field of arbitrary characteristic with valuation
v, and take f(z,y) € K[x,y]. The exponential sum attached to f is

B(euf) = [ W(afy) ldndy).
O%
for z = up™™ where v € Oy and m € Z.
Lemma 3.1.1. E(z, f) can be thought of as an exponential sum.
Bef =g Y WEfab)
(a,b)€(Ok /PR)?
for z=up™™ where u € O and m € Z and f(x,y) € K[z,y].
Proof. In fact if we decompose O% as
O?( = |_| (a7 b) + (meK>27
(E,E)E(OK/meK)Z
we obtain,

B = Y / Y(up f(z,y))|dedy) (3.1.1)

(a’b)E(OK/PMOK)Q((a’b)_i_meKP

— g 3 /\If(upmf(a+pm$1,b+lﬂmyl)|d$1dyl|>
(a,b)G(OK/PmOK)QO%

41
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where (z1,y1) € O%. Now, by using the Taylor series for f around (a, b):

fla+p"z,b4p"y) =

fla,b) +p™ <§—£(a, b)x, + g—i(a, b)yl) + p" 1 (higher order terms),
we get,
E(z,f)=q¢" > Uzf(aD)). (3.1.2)

(a,b)€(Ok /P)?
[

Denef found the following nice relation between E(z, f) and Z(s, f, x).
We denote by Coeflyr Z (s, f, x) the coefficient ¢ in the power series expansion of
Z(s, f,x) in the variable t = ¢~*.

Proposition 3.1.1 ([12, Proposition 1.4.4|). With the above notation

E(up™, f) = Z(0, f, Xtriv) + Coeffym—1 (t zqqul()S(,lf,_ﬁt)m)

+ ) gerx(u) Coeffym—en Z(s, f,X),

X#Xtri’u

where ¢(x) denotes the conductor of x and g, is the Gaussian sum

g=(g—17"g"0 3 () (/pe).
@€ (Ox /PRY)*
We recall here that the critical set of f is defined as
Cy:=Cy(K) = {(z,y) € K* | V[(z,y) = 0}.

We also define

Brgeom = max { _a(y) +ax(y)

~ edges of ['9eom ( f)

do(7) # 0},

and
= max {P | P e P .
Bra GGR(fO){ | (Cro)}
Theorem 3.1.1. Let f(x,y) € K[x,y] be a non constant polynomial which is arithmeti-
cally modulo p non—degenerate with respect to its arithmetic Newton polygon. Assume

that C; C f~(0) and assume all the notation introduced previously. Then the following
assertions hold.
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1. For |z| big enough, E(z, f) is a finite linear combination of functions of the form

x(ac 2)[z[*(log, [2])™,
with coefficients independent of z, and A € C a pole of Z(s, f,x) (with X|14p0, =
Xtriv) or (1 - qisil)Z@’ fa Xtriv); where

. )0 if X is a stmple pole
= 0,1 if X is a double pole.

Moreover all the poles X appear effectively in this linear combination.

2. Assume that  := max{Srgeom, Brgl} > —1. Then for |z| > 1, there exist a positive
constant C(K), such that

Bz, f)] < C(K)]2|" log, |].

Proof. 1. The proof follows by writing Z(s, f,x) in partial fractions and using
Proposition 3.1.1 and Theorem 2.5.1. For ¢t = ¢~*,

205, f0) = / x(ae £(@)) |f(@)]* de,

m20(f(z))=m

- Z CO@ﬁim(Z(S’ f7 Xtriv)) A

m=0

Note that (1 — ¢ 51 Z(s, f, Xtriw) or Z(s, f,x) may have simple poles or double
poles. By Theorem 2.4.1, we know that the real part of the candidate poles \ of
Z(s, f,x) can be £, pgl or Eii, where £ ”gl. Then by expanding Z(s, f, Xtriv)
in partial fractions over the complex numbers, we consider the following cases.

Case (i): Simple poles. In this case by using the identity

1—qg Pt =(1— q%it) IT (1— fq%t), where ¢ € C. Then we have
ghi=1

§#£1

1 = o

=5l

1 _ _pzt(sz = Z Cg q % g t 9
q gdi=1 =0

for some constant ¢, € C.
Case (ii):Double poles. Here we have essentially two subcases. In the first case,
when f &, we obtain
1
(1 =g rit®) (1 —g7't=0)

=) e <i q‘giflglt’> + ) e (i q‘élglt’> :
=0 =0

£hi=1 gei=1
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where c¢, e¢ are constants.

The second case, is when Ei = £ Here we have
1 1

1 e he
— qg—Pitéi — ol Z —pj 5+ —Pi

éfi:l
> —Pq > 1
. ) iy
e (Zq W) + D ke (Zq% W) 7
edi=1 1=0 gei=1 1=0
il il

for some constants f, he, je, ke € C. Note that

;2 - i(l +1)g e
(1 — q#ft) =0

Therefore

CO@J%’"Z(& f7 Xtriv) = Z (fg(m -+ 1) + hg) é—mq—%m

gdi=1

We also note that for m big enough Z(s, f, x) is rational function identically zero
for almost all x (Theorem 2.4.1), the series

> g rx(u)Coeffyni Z(s, f,X)

XFXtriv

is a finite sum. Then, F(z, f) is asymptotically equal to

S emxlac 2)]z > (log, 2],

A

where A runs through all of the poles of Z(s, f, x¢riw), and ¢, are complex con-
stant.

2. For |z| big enough and 8 > —1, we have the estimation
|2[*(log, |2])™ < C(K)|2|" (log, |2]),

which implies the desired estimation.
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Appendix A

The local zeta function of
(?/3 . 332)2 4 :1:4y4

In this section we shall compute explicitly the local zeta functions for f(z,y) =
(y® —2?)? +2*y*. We assume that the characteristic of the residue field of K is different
from 2. This polynomial is degenerate with respect to its geometric Newton polygon
in the sense of Kouchnirenko. We present the example 2.3.1 and 1 computed in full
detail and we obtain an explicit list of candidates for the poles in terms of geometric
data obtained from a family of arithmetic Newton polygons attached to the polynomial

f(x,y).

Figure A.1: (a) 19" ((y3 — 2%)? + 2y?). (b) Conical partition of R% induced by it.

The conical subdivision of R? subordinated to the geometric Newton polygon of

fla,y) is R2 = {(0,0) U, Aj} .

45
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Table A.1: Rational Stmple Cones

A (0, DR,
Ay | (0, DR, + (1, DR,
As | (1L DR,
Ay | (LDR, + (3,2)R,
As | (3,2)R,
As | (3,2R, + (2, DR,
A | (2, 1R,
As | (2, DRy + (1,0)R,
AQ (170)R+

A.1 Computation of Z(s, f,x,A;),i=1,2,3,4,6,7,8,9

These integrals correspond to the case in which f is non-degenerate in the sense of
Kouchnirenko on A;, for i = 1,2,3,4,6,7,8,9, as in section 1.3. The integrals can be
calculated as follows.

1. Case Z(s, f,x,A1).

Z(Saf7X7A1) -
3 / v(ae F(z,9)|f (@, y)|dzdy],
" 0xxpnok
=> / x(ac (y° = 2%)* + 2"y (y° — 2%)? + 2'y|*|dady],
n:10;(><p"0}x(
=> q" / x(ac (p*y® — a?)? + "ty (p7"y° — 22)? + p™raty|*|dadyl,
n=1 O}X(Q
—3 g / x(ac (g1(, 9))] (91 (z, ) || ddly],

n=1

X2
OK

where g1(z,y) = (p™y* — 2%)* + p™a'y?, with g, (z,y) = 2",
Note that we can write O? as follows
0= |J (ab)+(pOx)* (A.1.1)
@b)e(Fy)?

Thus we can write

A.1. Computation of Z(s, f,x,A;),i=1,2,3,4,6,7,8,9
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s hnA Zq*n 3 / y(ac(gy(z, 1)1 (2 )| dxdy],

@)EFS)?(a,b)+(pOrc)?

=> " ) /X(aC(gl(aerx,bJrpy)))lgl(a+px,b+py)lsldxdy|-

@h)eF)?02.

Set x = (21, 29)and ¢ = (c1, ¢2). The Taylor series expansion of g(c + px) around
the origin is,

glc+px) =g(c)+p (g—glcml + g—icxg) + p?(higher order terms) (A.1.2)

By using equation (A.1.2) an the fact that 891( ,b) = 4a® # 0, we can change
variables in the previous integral as follows

2 = g1(a+pz,b+py)—g1(a,b)
{ P ’ (A.1.3)

f =Y,

z = (z1, 22) is an special restricted power series (SRP) in (z,y). ( c.f [23], Lemma
7.4.3).

We use the change of variables above and we obtain that, the mapping (z,y) —
(21, 22) on O% into O% preserves the Haar measure.

Z(87f7X7A1) =
g > [ xlac(gi(a + px, b+ py))lgi(a+ pa, b+ py)|*|dadyl,
(@b)e(Fs)%n2

~S i % / v(ae (g1(a.0) + p2))lgn(a,b) + pzuf*ldzal,

@b)E(Fq)? O

qin72IA1 (57 (CL, b))>

NE

n=1

where, T, (s, (68)) = Sapenss Jop (¢ (91(,) +p21))lgr (@ 8) + parlicld].
For to compute I, (s, (a,b)) we find that N = Card{(a,b) € (F})? :a* =0} =0,

then we use the Lemma 1.2.2 and we have that

A.1. Computation of Z(s, f,x,A;),i=1,2,3,4,6,7,8,9
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((q - 1)2 if X = Xtriv

Ia, (57 (av b)) = Z(a,B)e(F;)2 Y(EZL) if X = Xtriv

0 all other cases,

where Y is the multiplicative character induced by x in F,.

Now since that,

> x@) = {<q P A R LR

(EE)E(IFX)2 (q - ]‘) : 0 = 0 Zf Y4 % XtTiUJ
’ q

we obtain,

((q - 1)2 if X = Xtriv

In, (S’ (a> b)) = (q - 1)2 if Y4 = Xtriv

{ 0 all other cases.

Since that X* = X0 and x|y = Yuiw is equivalent to x* = X, We have that
Z(87 f7 X5 Al) = Zzozl q_n_21A1 (87 (aa b)) S0 we get7

(' (1~ ¢ if X = Xtriw

Z(Sv va:Al) = qil(l - qil) Zf Y4 = Xtriv

L0 all other cases,

where U = 1 + pOk.
2. Case Z(s, f,x,As).

Z(S>f7X7A2) =
S [ M)yl
m=1 n=1
pOEXptMOK
_ 00 oo —2m—n m n+m m n+m s
=2« /O x(ac (f(p™z, p" " y))|f(p"z, p" " y)[*|dxdyl,
m=1 n=1 K
=3 [ e (alen)laale )l oyl
m=1 n=1
0)?

A.1. Computation of Z(s, f,x,A;),i=1,2,3,4,6,7,8,9
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Since that polynomial go(z,y) = (p3*F™y® — 22)2 + pintimgty? we have that
§2<ZL’, y) = [E4.

By using equation (A.1.1), so we obtain that,

Z(37f7X7A2) =
Y3 3 [ el
m=1 n=1 @D)EFG)? (a,b)+(pOx)?

o0

= Y gm0 /X(ac (g2(a + px, b+ py))|ga(a + pz, b+ py)|*|dzdy].

m=n=1 @heE;)? oz

Then we apply the change variables (A.1.3) to function g» and since that %—f(a, b) =

4a® # 0, we obtain,

Z(S7f7X7A2) =
— 2m—n—4ms—2 s
D a > /x(ac (92(a,0) +p21))]g2(a,b) + p21)[*|dz],
m=1n=1 @beE(Fs)?0x
Z Z q—2m—n—4ms—2IA2<S’ (a’ b)),
: :1
where Ia, (s, (a,0)) = X gper Jo, X(ac (g2(a,b) +p21))|ga(a, b) + pzi[*|dal,

and since that, N = Card{(a,b) € (F})* : a* = 0} = 0, then by applying the
same procedure above we obtain

Z(s, fyx, Do) =00 S qrmenmdms=2], (s, (a,b)) so we get,

/ q7374s(1_q71

=gy if X = Xtrivs

—3—4s - .
Z(s, fix,A2) = % if X* = Xwrivs XU = Xtriv

L0 all other cases,

3. Case Z(s, f,x,As).

A.1. Computation of Z(s, f,x,A;),i=1,2,3,4,6,7,8,9
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Z<37 fa X Ad)
=Y [ e ()l Fldody),
e prORxpnOR
=2 0" / x(ac (py® —p*a®) + patyh) (07" — pet)? 4 ptaty!ldadyl,
O><2

n=1 K

_ Zq72n74ns / X(CLC (pnyB . $2>2 + p4nx4y4)|(pny3 . ZL’2>2 +p4nx4y4‘s’dxdy‘7

=S [ aclaste ) los(r. o) ldads],

n=1 OIX(Q

where g3(z,y) = (p"y® — 22)2 + p*"aty?, we have gy(z,y) = 2%, then the origin of
K is the only singular point of gs(z,y) over (]F;)?

By using equation (A.1.1), so we obtain that,

Z(87f7X7A3) =
Sarre 3 [ ae galow)los(ey)ldody],
n=1 (E7B)€(F;<)2 (a,b)-‘r(POK)Z
- Zq*%*‘*m*z Z /X(ac gs(a + px, b+ py))|gs(a+ px, b+ py)|*|dedy|.
n=1 @HEE)? 62

Then we apply the change variables (A.1.3) to function g3 and since that %if(d, b) =
4a® # 0, we obtain,
Z(Svf7X7A3) =

gy / x(ac (g3(a +pz, b+ py))lgs(a + pa, b+ py)|*|dzdyl,
= @HEET6n
_ - —2n—4ns—2 s
=> q > /X(Cw (93(a, b) + pz1))|gs(a, b) + pz1)|*|dz],
n=1

@b)e(Fq )20k

=D a7 R A (s, (a,0)),
n=1

A.1. Computation of Z(s, f,x,A;),i=1,2,3,4,6,7,8,9
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where Ia,(s, (a, b)) = Z@ae(m;pof x(ac (gs(a,b) +pz1))lgs(a, b) + p21)[*|dz |

Then since that N = Card{(a,b) € (FY)? : a* = 0} = 0, and by (A.1.3) we
obtain,

(g 215 (1—q~1)?

W if X = Xtrivs

—2—4s(7_,—1)2 .
Z(57 f7X7A3) = q(l_q(+4s)) ZfX4 = Xt?"iv;X|U = Xtriv

L0 all other cases,
where U = 1 + pOk.

4. Case Z(s, f,x,Ag).

Z(87f7X7A4) =

Y[ e fww)liy)lldd,

: X X
pn+3moK X pn+2m OK

=) > g / X((pPOmy POty g gty dady |,
Ox

= Z Z q(—2—4s)n+(—5—12s)m / X(CLC(Q4(CL’, y)))|g4(m, y)|s|dxdy|.

m=1 n=1
X2
Ok

where

X((p3n+6my3 p2n—i—6m 2) +p8n+20m 4 4)

X(CLC ((p3n+6my3 p2n+6m 2) +p8n+20m 4y ))

|(p3n+6my3 p2n-l—6m 2) +p8n+20m 4 4)|

and the polynomial g,(z,y) = (p"y> — 2?)? + p*"8mady?, then we have g,(x,y) =
a2, therefore the origin of K is the only singular point of g4(z,y) over (F))>.

We obtain that,

Z(57f7X7A4) =
Sy geremeson St [ e gl ) on(e ) ldody|.
m=1 n=1 @b)EFS)? (a,b)+(pOx )2

A.1. Computation of Z(s, f,x,A;),i=1,2,3,4,6,7,8,9
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Then since that %—%(E, b) = 4a@> # 0, we obtain,

(57 f7 X A4) =
=D g / x(ac (ga(a,b) +pz1))lga(a, b) + pzfldz ],
m=1n=1 @DH)EFS2 O

Z Z 274s)n+(75712s)m72IA4(S’ (a, b)),

where In, =} g 5er? | x(ac (ga(a,b) + pz1))|ga(a, b) + pz1)|*|dz1], then since
Ok

that N = Card{(a,b) € (F)*> : a* = 0} = 0, and by applying (A.1.4) to
In,(s,(a,b)), finally we obtain

/ q777165(1_q71)2

(1—g—2—45)(1—¢q—5—125) ZfX = Xtriv,

—7—165(1_ —1)2 .
Z(Sa s X5 A4) = (1_272743)((11_?175)7123) if X4 = Xtriv, X‘U = Xtriv

L0 all other cases,

5. Case Z(s, f, x, A¢).

2. fobe) =3 Y / x(ae f(z,9)|f(@,y))*|dedy],

m=1 n=1
p3n+2m0>< p2n+moi><{

»Q

[SIe)
m=1 n=1

—5=12s)n4(=3-6s)m / x(ac(gs(@,9)))|gs(z, y)|* |dzdyl,
O><2

where gg(z,y) = (2 — pa?)? + p®¥ 24yt we have gg(x,y) = 3° and we obtain
that the origin of K is the only singular point of gg(x,y) over (]qu) .

Now we obtain that,

Z(Saf7X7A6) =
Z Zq(—5—12s)n+(—3—68)m Z / x(ac gs(z,v))|g6(x, y)|*|dxdyl,

m=1n=1 (7—

@,b)€(Fq)(a,b)+(pOx )2

= Z Z ¢~ 128)n+ (-3 =6s)m—2 Z / X (ac(gs(a + pz, b+ py)))|dzdy|.

m=1n=1 (@b)e(Fg)’03,

A.1. Computation of Z(s, f,x,A;),i=1,2,3,4,6,7,8,9
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23

where X (ac(gs(a + pz, b+ py)))

= x(ac(gs(a + px, b+ py)))|gs(a + px, b+ py

)
Then we apply the change variables (A.1.3) to function gg and since that 896 ( b) =

6b” # 0, we obtain,

Z(S, f’ X AG) — Z Z q(—5—125)n+(—3—65)m—2]A6(S’ (CL, b)),

m=1 n=1

,(a,b)) =
then since that N = Card{(a,b) € (F .
(¢ — 1) if

if

where Iz (s @he f
K

y = Xtriv

_ =6 _ |

IAG (57 (a7 b)) = Z(E’B)G(F )2 X(b ) X = Xtriv
0 all other cases,

(ac (gs(a,0) + pz1))lgs(a, b) + pz1)[*[dz],

)? D =0} =0, we get,

where  is the multiplicative character induced by x in Fy, thus we resolving the

SuIn

(@b)e(Fy)?

and we have that,

( (q - 1)2 Zf X = Xtriv
[AG (57 (&7 b)) = (q - 1)2 Zf Y6 = Xtriv
0 all other cases,

\

Zf YG 7é Xtriv
Zf y6 = Xtriv;

(A.15)

Finally, since that X% = x4 and x|u = Xerio is equivalent to X% = x4, where

U =1+ pOg, we obtain

¢ q787185(1_q71)2
(1_q7376s)(1_q75712s)

if X = Xtriv,

—8—18s(1_ ,—1)2 .
Z(Sa X, Qg = (1_273765)((11_?1—5)7125) if XG = Xtriv, X‘U = Xtriv
0 all other cases,
6. Case Z(s, f,x,A7).
A.1. Computation of Z(s, f,x,A;),i=1,2,3,4,6,7,8,9
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s finAr) = zj / xlac F(z, 9)|f (@, y)]|dzdy],

anO}; X pn O}X(

:Zq—Sn / X(CLC (pSny3 p4n 2) +p12n 4 4)|(p3ny3 p4n 2) +p12n 4y | |dxdy|
n=1 OIX{Q
= gt / x(ac (y° —p"a®)® + paty?)|(y° — p"a?)? + p*aty[*|dadyl.
n=1 O><2
=3 o | vaelgrte)lar(al® ldedyl

Since that polynomial g;(x,y) = (y* — p"z?)? + p®zy*, we have g,(z,y) = o5,
then the origin of K is the only singular point of g7(x,y) over (IF)?.

We obtain that,

s, [, x, A7) = Zq‘3" sy / x(ac g7(x,y))lgr(x, y)|*|dzdy]

@DEFT)? (a,b)+(pO)?

= g2 N / x(ac gr(a+ pz, b+ py))lgr(a + pz, b+ py)|°|dzdy].
n= @b)e(Fy)’02,

Since that ( ,b) = 60’ # 0, we obtain,

s, f,x, Ar) = Zq‘?’” o2y /X(ac (97(a,b) + p21))lg7(a, b) + pz1) Pldz ],
@He(F;)? o3

_ Z q—3n—6ns—QIA7 (8, (CL, b)),
n=1

where ]A7(87 ((l, b)) - Z(E,E)E(IE‘(IX)2 Of X(CLC (97(a7 b) + pzl))|g7(a, b) + p21)|5|d21|,
K

then we applying the Lemma 1.2.2, and since that N = Card{(a,b) € (IFqX)2
B =0} =0,

then by applying (A.1.5) to Ia.(s, (a,b)) and we obtain

A.1. Computation of Z(s, f,x,A;),i=1,2,3,4,6,7,8,9
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/ q—3—ﬁs(1iq—1)2

T(1—q 365 if X = Xtrivs

—3—6S(1iq—1)2

Z(s, fix; A7) = q(l,qus); 2’fXG = Xtrivs X|U = Xtriv,

L0, all other cases.

7. Case Z(s, f,x, Ag).

Zo bt =25 [ xae o)l (o) ldody)

m=1 n=1 % %
p2n+mo XpnoK

ZZQ ~8-6ajn-m /X(GC(gs(rC,y))|gs(x,y)|5|dxdy|'
0;?

Where gg(z,y) = (y* — pt2ma?)? + pontimadyd we have gg(x,y) = b, then the
origin of K is the only singular point of gg(z, y), over (Fx)?.

By using equation (A.1.1), so we obtain that,

Z(37f7X7A8) =
S e S [ e sl =
m=1n=1 @DEFF)? (a,b)+(pOx)?
3OS g ememez 5 / x(ac gs(a+pz,b+py))lgs(a+ pz, b+ py)|*|dzdy.
m=1n=1 @be(Fs)? o2

Then we apply the change variables (A.1.3) to function gs and since that %—?(6, b) =
6h # 0, consequently

Z(S f X7A8):

qu —3—65)n—m—2 Z / (ac gs(a+pz,b+py))|gs(a + pz, b+ py)|*|dzdy|,

m=1 n=1 (@,b)e(Fy)

S [ xlac tosa.t) +pe)los(ad) + pan)ldai,

@heE;)z ” oK

_ i i q(73765)n7m72[A8(8’ (a’ b)),

m=1 n=1

I
Mg
1M
>Q
C»J
@
2
3

A.1. Computation of Z(s, f,x,A;),i=1,2,3,4,6,7,8,9
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where s, (5, (0:0)) = Sapeces 2 o, 1(ae (6s(0.0) +p21)lgs(a.b) +pz1) 1l

then N = Card{(a,b) € (F))?: D = = 0} = 0, thus we applying the Lemma 1.2.2
and (A.1.5), it follows that

(g4 05(1—q !

(1,q——3—6s))7 if X = Xtriv,

—4—6s(1_,—1 .
Z(S, f7X7 A8 - %7 ZfXG - Xtri’uaX‘U = Xtriv

0 all other cases,
note that X® = y;riv and X|y = Xwriw, U =1+ pOx is equivalent to x® = X4piv-
8. Case Z(s, f,x,Ao).

Z(s. f,xs Ag) = Z / x(ac f(z,9)|f (z, )| |dzdy],
"OXXOX
~Y g / xlac (i — p2a?)? + patyh)| (5 — p2na?)? 4 pnaty? | dady),

X2
=1 OK

=0 [ aclnle )l )l o

n

Since that the polynomial gg(z,y) = (y3—p*2?)?+p1"ziy?, we have go(z, y) = o5,
thus the origin of K is the only singular point of go(x,y) over ().

By using equation (A.1.1), Z(s, f, x, Ag) becomes

Zos b =3 Y [ xlac gu(w.n))lon(r. o) ldods|.

@D)EFG)? (a,b)+(pOx )2

=> "7 > /X(acgg(a+P:v,b+py))lgg(a+px,b+py)\s\dmdy\-

@hes) Ok

Then we apply the change variables (A.1.3) to function g9 and since that %—?(E, b) =
6b° # 0, we obtain,

A.1. Computation of Z(s, f,x,A;),i=1,2,3,4,6,7,8,9
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o7

Z(S f X7A9):

Zq_n_Q Z / (ac go(a + px,b+py))|ge(a + pz,b + py)|*|drdy|

n=1 (@b)e(Fy)?

Y Y /O (ac (go(a,b) + p=1))lgofa,b) + pz1)[ldz]

(@,b)e(Fy)

I
Mg

q_n_2]A9 (87 <a7 b))?

n=1

where In, (s, (a,b)) = Z(ayg)e( f (ac (go(a,b) + p21))|ge(a, b) + pz1)|*|dz1],

Ok

then given that N = Card{(a,b) € (F})?:b°=0} =0 we obtain,

( _ =6 L
Z(E,B)G(F;)Q X(b )7 Zf X = Xtriv
]AQ(S’ (a’a b)) -

0 all other cases,

where Y is the multiplicative character induced by x in IF,, we thus get

((¢—1)% if X = Xeriw
]Ag (S’ (CL, b)) = ((] - 1)2 ZlfYG = Xtriv

0 all other cases.

\
Finally, since that X° = x4, and Xlv = Xwriv,U = 1 + pOg is equivalent to
X% = Xtriv, We obtain

( _ _ .
a1 —q") if X = Xerios

Z(87 f7X7 A9) = q_l(l - q_l) ZfXG = Xtriv, X‘U = Xtriv

0 all other cases,

A.2 Computation of Z(s, f, x, As)

(An integral on a degenerate face in the sense Kouchnirenko).

A.2. Computation of Z(s, f, x, As)
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Z(s.fx0) = 3 / x(ae f(@, )| (@ y)|"|dzdyl,

el p3nOI>;Xp2nOI>;

_ Zq—sn—mns / X(ac((y3 _ :L'2>2 + pgnx4y4)|(y3 _ :EZ)Q + p8"x4y4|8|dxdy|.
n=1 OIX{Q

Let f™(z,y) = (y* — 2%)? + p®"ay?*, for n > 1. For compute the integral,

I(s, f™. %) = Jou2 x(ac((y® —2?)* +p*aty"))[(y* — 2%)? +p*aty'|*|dwdy|, n > 1,

we use the following change of variables:

L0 = 0F
(z,y) — (2%y, 2%y)

The map ® gives an analytic bijection of O;? onto itself and preserves the Haar
measure since that its Jacobian Jg(z,y) = xly satisfies |Js(z, y)|x = 1, for every
z,y € Oj. Thus

£ 0 Oz, y) = 212y f0) (z, y), with

fO (z,y) = (y = 1)° + p*a’y?, (A.2.1)

then we have that,

I(s, /), ) = / (ac(ey 7z, )| F (. )| dedy.

0x?
In order to compute the integral I(s, f(™, x),n > 1, we decompose O as follows:

0;2= || Ofx{w+p0x}|J Ok x {1+pO0x}). (A.2.2)

yoZL(modp)

where gy runs through a set of representatives of F* in O . From partition (A.2.1)
and formula (A.2.2), it follows that,

[(57 f(n)a X) =
> / Xlac(zy" ((y — 1)° + p™ 2y ]Iy — 1) + p* 2y |*| dady]
o1 (modp) * Ok *{yo+pOx}
+ / xlac(xy*((y — 1)% + p>a®y")]|(y — 1)* + p*"2®y**|dadyl.
OIX(X{I-FPOK}

A.2. Computation of Z(s, f, x, As)
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This integral admits the following expansion:

I(s, f™,x) =

DN / Xi(z,y) dady| + 3 g1 / Xo(x, y) |dudy|.
§=0

—
yoZL(modp) j 0X X0 OX X0

where

Xi(z,y) = xlac(@®(yo + P71 y) ((yo — L+ p7H1y)* + p¥28(yo + p/H1y)"))]

XZ(’ra y) =
Xlac(z2(1+p" ) (P 1y)? + p™ (1 + p? T y) )] < (07 1y)? +p™ (1 + p? )t

In order to compute integral I, we write I(s, ™, x) = Ji(s, f™, x)+Ja(s, F, x),
where

M fU0= Y Ya [ ) e
yo#1(modp) j=0 07 x0%

and

J2<S7 f(n)7X) - Zq_l_j / Xg(l’,y) |d1‘dy’
j=0

ORxOx

Now, integral Jo(s, f™, x) can write as

Ta(s, [, x) =

4An—2

> g / vlac(@'(1+ p7Hy) (7 + a1 4 y)Y)) | dady]

—~
! (0%)?

g / xlac(@?(1L+p ) (v* + 25 (L + p" ) )]y + 2® (1 + p/Hy) | ddy]
(Ok)?

Y g / xlac(x (1 + p iy (252 1 oS (1 + pT+iy)Y))]dady).

-~
= (05)?

A.2. Computation of Z(s, f, x, As)
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60

Now we obtain,

I(s, f" ) = > Zq‘” /

=0
yoZ1(modyp) j= OI>2><OIX(

4n—2

xlac(fi(wz,y))]|dvdy|

L3 e / xlac(fol, v)))|dzdy]

—
! (0%)?

g / slac(fa(, y) fa(z, w)lic|dady]

(0x)?

£ a [ ael fio, ) dsdy),

-
o (02

where

fil@,y) =2 (o + 9 y) (g — 1L+ p7Ty)?

+ 2B (yo + p Y)Y,

fom,y) = (1 + 97T y) (P + p® CF0aB (14 p? )Y,
fg(ZL‘ —ZL'IQ(l—I—pJ—H )4(y2+x8(1+pj+1y)4),
fa(w,y) = 22 (L +p ) (p*T2 750" 4+ 2B (1 + p?Hy)"),

Now we write, I(s, f™, x) = LI (s, f™, x)+L(s, f™,

with,

K fP0= > Sat |

yoZl(modp) j=0 OIX(XO;((

4dn—2

X)+1L3(s, £, x)+ 1 (s, f™,

xlac(fi(z,y))]|dzdy.

Ds, [ x) = 3 g7 / xlac(faolz.y))]|dzdy|
j=0

(0x)?

By = (5 £ 00 [ oty )y )y

L= (5800 3 a7 [ ael il ) dody.

j=4n (O)?

And we find every integral I;(s, f™, x),i = 1,2,3, 4 after we compute

o0

Z(S7 f7 X A5) = Z q_5n_12nSI(S

n=1

7f(n)7X)'

X)

A.2. Computation of Z(s

af>X7A5)
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(&) Li(s, FU%) = 2y t1tmodp) 20 @7 [ xlac(fi(z,y))) |dzdyl.

O xO%
Since polynomial

filz,y) =2 (yo + 9 y) ((yo — 1+ p71y)” + p¥ 2% (yo + p7H1y)Y),

we have Ta(e.y) = 2y — 1)
By using equation (A.1.1), so we obtain that,

L= Y S Y / y(ae fi(z,y))|dzdy],

YyoZ1(modp) 5=0 @DEFT)? (a,b)+(pOx)?
Y ==Y / ac fi(a + pz,b+ py))|dedy|.
yoZ1( mod p) j=0 (@,b)e(Fy )2 02

Then we apply the change variables (A.1.3) to function f;, and we note that

O ——(a, l_’) 2?Jo(yo )2 a # 0,

then

Lo n= Y g Y [ xae (i@, + pa)idal,

yo#1(mod p) j=0 @b)E(F)? Ok

- Z Zq_g ]]1 (a,b)),

yoZl(mod p) j=0

where I (s, (a,b)) = > @h)eEs)? of x(ac (fi(a,b)+pz1))|dz ], for to compute

it we use the Lemma 1.2.2, and given that Card{(a,b) € (F})*: @"*y3(y, —
1)2 =0} =0, we get

( (q - 1)2 Zf X = Xtriv

L(s,(a,0)) = 2(5,5) E(F))2 X@%G5(F — 1)?) if X = Xoriv

0 all other cases,

where X is the multiplicative character induced by x in [F,, then we have
that

A.2. Computation of Z(s, f, x, As)
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(q - 1)2 Zf X = Xtriv

[_1(5? (a7 b)) = YAL(gO)YQ(yO - 1)(q - 1)2 if Yu = Xtriv

\ 0 all other cases.

Finally, since that X'* = Xsip and x|v = Xuriv, U = 1 +pOx is equivalent to

X12 = Xtriv, and furthermore

Li(s, [, x) = Zy0¢1( mod p) Z;’io q3771,(s, (a,b)), we obtain
(q_l(l - q_l)(q - 2) Zf X = Xtriv

Li(s, [, x) = S X @)XW — Vg (1 — ¢ (g —2)  if X*2 = Xtriws X|U = Xtriv

0 all other cases,

(b) Io(s, f(n)’ X) = Zjigz q717j7(2+2j)s f(Of{)Q xlac(fa(x,v))]|dxdy|.

Since polynomial fo(x,y) = a'*(1 + p/*1y) (y7 + p*r =28 (1 + p7Tly)?),
we have fy(z,y) = 21292

By using equation (A.1.1) so we obtain that,

4n—2
(s, f™,x) = Z g IR Z / x(ac fo(x,y))|dzdy|,
=0

@b)EFS)?(a,b)+(pOrc)?

4n—2
=3t S [ Mae falat pab o+ py)ldody],
j=0 @HeF;)25n

Then we apply the change variables (A.1.3) to function f, where
22 @ b) = 12@0°) £ 0,

we use the change of variables above and we obtain that,

A.2. Computation of Z(s, f, x, As)
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4n—2
L(s, f,x) =Y ¢ 7 3" x(ac (f2(a,b) +p21))|da|
j=0 @bE(F)? Ok
4n—2
= Z g I, (s, (a, b)),
=0

where I5(s, (a,b)) = > (@h)erx? | x(ac (fa(a,b) + pz1))|dz1], given that
Ok

N = Card{(a,b) € (FX)*:@'%" = 0} =0,

we can assert that
4 .
(q - 1)2 Zf X = Xtriv

Ly(s, (a,0)) = Z(a,g)e(ﬂr;y Y12(5>Y2<5> if X = Xtriv

0 all other cases,

where Y is the multiplicative character induced by x in F,. Then we conclude

—12/=\=2(7 q_12 Z.fYQZXm'U
S Y20 = {( FrX =
@b)e(F))? 0 if X°# Xeri
( (q - 1)2 Zf X = Xtriv
ThUS, [_2(8’ (CL, b)) = (q - 1)2 Zf XQ = Xtriv

0 all other cases.

\
Finally, since that X? = X4 and x|o = Xeriw, U = 1+ pOg is equivalent
to X% = Xui» and the identity Zf:A P i i

1—z
/ q71—25(1iq(4n—1)(—172s))(17(171)2

1g1-2s ZfX = Xtriv,

we obtain that

n —1—2s(7_ (4n—1)(—1—2s)\(1_ ,—1)2 .
IQ(Saf( )7X) = g (=g 1q1-2s Y=g ) ZfX2 = Xtriv,X‘U = Xtriv
L0 all other cases,
(¢) L(s, f™,x) =g "% [ x(ac(fs(z, ) |fs(z,9)|*| dady].
(O)?
Since fa(z,y) = a(1 + p/y) (v + 231 + p*'y)*), we have fy(z,y) =
2122 4 220,

By using equation (A.1.1), so we obtain that,

A.2. Computation of Z(s, f, x, As)
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Iy(s, f™,x) =g "% > / x(ac f3(z, v))| f3(z,y)|*|dzdyl,

@HEFT)? (a,b)+(pOk)?

= g itz N / ac fs(a+px, b+ py))|fs(a+ pz, b+ py)|*|dzdyl.
@b)e(Fy P02

Then we apply the change variables (A.1.3) to function f3 where 0fs S (@,b) =
2(a@'?b) # 0, and we obtain

Iy(s, f™),x) =g~ "5 Y /x(ac (f3(a,b) + pz1))| fs(a, b) + pz1)[*|dz |
@b)E(Fg)? Ok
:C]_4n_8ns_2[_3(8, (a’ b)),

where I3(s, (a,0)) = 22 5e@) f x(ac (f3(a, b)+pz1))|f3(a, b)+pz1)[*|dz ],

thus we can resolve it applying the Lemma 1.2.2, and we obtain,

73(87 ((l, b)) = 1371(87 (a7 b)) + I3,2<S7 (av b))7

where

qi(i(lq_qlils))N + (q - 1)2 - N Zf X = Xtriv
I34(s, (a,b)) =

0 in other case,

where

N =(q — 1)Card{(a,b) € (F;)*: f5(a,b) = 0},
—Card{(@b) € (F)? : a*(F +3°) = 0} = (¢ - \Card{x € E} : a* = ~1}.
On the other hand
D @pewsy X(ac(f3(@0)) if X|lv = Xeio
Lya(s, (a,b) = {  F@D70
0 in other case,
where U = 1+ pOg.

Now, since that  is the multiplicative character induced by x in F,, we
have that

——19/32 . — o
Z(a,E)e(]F;)Q X(@u(b +a8)) if X = Xtriv
e
I3(s, (a,b)) = (70

0 all other cases.

A.2. Computation of Z(s, f, x, As)
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Now since that X = xuiv and x|u = Xerip implies x = x4 We get
(S e XE@XE +) i X=X

Lya(s, (a,b)) = (*+a®)#0

L0 all other cases.
Thus we can write

(T if X = Xtriv

I35(s, (a,b)) =

\ 0  all other cases,

N\ T2
where T'= 37 5 c 2 x2(@)x (b +a®).
(6 +a®)#£0

Finally, since that I3(s, (a,b)) = ¢~*" %" =21,(s, (a, b)), we obtain that
Iy = q 8723 1(s, (a, b)) + I32(s, (a,b))), and therefore

—s(1_,—1 .
g~ in—8ns=2 (q(l(,lq—%-s))]v +(g—1)2—= N+ T) if X = Xtriv

[3 -

0 in other case,
(@) L= Y2005 [ lac(file,y)) |dedy]
(0%)?
Since polynomial fa(z,y) = a1+ p/ Ty (p* 5y + 281+ p/Ty)*), we
have fy(x,y) = 2.

By using equation (A.1.1), so we obtain that,

Iy=Y q777% > / x(ac fu(z,y))|dzdyl,

j=dn (@D)EF)? (a,b)+(pOx)?
= Z g I38ns Z / x(ac fi(a+ px, b+ py))|dedyl.
g=dn (@b)e;)? o2,

By applying the change variables (A.1.3) to function f; and since that

91(a@,b) = 20a" # 0, then

L= Y [ Mae (fiat) + pa)ldal,

J=dn @b)E(Fg )20

= 3" g (s, (a,1)),

Jj=4n

A.2. Computation of Z(s, f, x, As)
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where 14(s, (a,b)) = Z(aﬁ)e(F;)Q | x(ac (fa(a,b)+pz1))|dz] for to compute
Ok

it we use the Lemma 1.2.2, and given that N = Card{(a,b) € (F))*: a* =
0} =0, we get

( (q - 1)2 Zf X = Xtriv

1_4(8) (CL, b)) - Z(E,B)G(F;)Q y(aﬂ]) ny = Xtriv

0 all other cases,

where ¥ is the multiplicative character induced by x in F,, we deduce,
—(= (q - 1)27 if Y% = Xtriv
Dapeq e X(@) = o
DeE)” 0 Zf X2O 7& Xtriv-
((q —1)? if X = Xtriw

Then we have that, I4(s, (a,0)) =< (¢ — 1% if X2 = Xeriv

{ 0 all other cases.

Finally, since that XQO = Xeriv a0d X[y = Xuriv I8 equivalent to Y20 = Yiriv
and Iy = >, 7% 14(s, (a,b)), we can assert that

(=811 — g™V if X = Xtrio,

L= g™ 1 =g if x* = Xerivs Xlu = Xeriv

L0 all other cases.

Now, since that Z(s, f,x,Ap) = > oo q o712 = 3% g o123~ [,
fori=1,---,4, then

When x = Xriv,

Z(s,9,x,Q5) =
(1 — g 1)2g 5145 B (1 — g 1)2q 9205 (A23)
(1= q1=2)(1 — ¢5-125) (1 — ¢~ 1=25)(1 — ¢q—9-205) 4
I [C e L € ek ) [ U )
(1— g5125) (1— ¢ 0-29)

q " —1/, —1-s -1 —1\2 —1-s
+(1 T q_g_ms){q (¢ 7=q¢ )N+(1-¢q¢ ) Q1—-q )
—q (1 —q )T,
where N = (¢ — 1)Card{z € F} : 2> = —1} and T = Card{(z,y) €

(F; 2l +a* = 0},

A.2. Computation of Z(s, f, x, As)
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When x # Xuriv and X|14p0, = Xtrio We several cases: if X2 = Xtriv, We have

0 -1\2,—1-2s(1 _ (4n—1)(—1-2s)
e —q¢ )’ (1 —g¢ )
O
> s
Ut gyt
(1—q12)(1— g5 125)  (1—q1-2)(1—q 9 20s)

(A.2.4)

It X12 = Xtriv, then

Z(s, f,x85) =X W)X T — ) Y _a™" (1 —q g —2)g"
n=1

. =g e
=X (W)X’ (W — 1) 1 =g 1= : (A.2.5)

20 _
For X™ = Xriv,

o

f;X?AS qutfm 12ns _ q71)<q74n78n571>

. 0 ?1‘1_13%:205) ) (A.2.6)

In all other cases, Z(s, f, x, As) = 0.

Summarizing the result obtain for all cones,

FOI“ X = Xtriv,
—2—4s -1 —7 16s
-1 N e O (1—q¢7')?
Z(s, fiXeriv) =2¢ (1 —q ) + (1 —q2%) + (1—q2 43)(1 q—o129)
78 18s 1 — —3—6s 1 — -1 1— 1\2 ,—6— 14s
n i ( _)1 L4 (__q) (_1q)q —
(1 — g3 65)(1 5 23) (1 —q¢3 65) (1 —q 25)(1 5 25)
B (1 —q 1)2q—9 205 N <q _ 2)(1 _ q—1>q—6 12s N (1 _ q—1)(q—10 205)
( —1- 23)(1 —9— 205) (1 _ q75712s) (1 _ q797203)
q79 203
+ ¢ =g ON+ (1 -q¢ ) A-q ')

(1 — g~ 1=5)(1 — g—9-20s) {a
—¢ (=g )T}, (A.2.7)

A.2. Computation of Z(s, f, x, As)
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where N = (¢ — 1)Card{z € F} : 2> = —1} and T = Card{(z,y) €
(F2)2ly? +2° = 0}.
When x # Xurio and X|14p0, = Xtriv We several cases: if X2 = Xeriv, We have

> e 19ms (1 _ q—1>2q—1—2s(1 _ q(4n—1)(—1—23)>
n=1

_ (1 _ q—l)2q—6—14s B (1 _ q—l)Qq—Q—QOS (A 5 8)
- (1 _ q—1—2s)<1 _ q—5—12s> (1 _ q—1—2s)(1 _ q—9—203>' e

When x* = Xtriv,

B B —3—4s 1 — -1 —2—4s 1 — —1)\2
Z(s, f,x) =g (1 —q) + 2 a _22% ) 4 a1 _(qzi>>

q—7—16s(1 . q—1)2

. A29
+(1 _ q—2—4s>(1 _ q—5—123) ( )
X% = Xtriv, We obtain
Z(S f X) _ q—8—18s(1 _ q—1)2 N q—3—6s(1 _ q—1)2
7 (1 _ q73763)(1 _ q75712s) (1 _ (]73768)
—4—6s —1

¢ 1 -qY) - -

+ =5 +q (1 —qh). (A.2.10)

For x'* = X¢riv, then
_ A= =2 = —bn—12ns -1 -1
Z(s, £,X) =X @)XW — 1) Y 4 (1—q " )a—2)q
n=1

(g—2)(1 - )g >
(1 _ q—5—128> ’

=X'W)X*(Wo — 1) (A.2.11)

where Y is the multiplicative character induced by x in Fy. Finally for

20 __
X = Xtriv,

o0

Z(S, 1, X) _ Z q—5n—12ns(1 . q—l)(q—4n—8ns—1)
n=1

_a ?1‘1:13(‘5_;:;05) . (A.2.12)
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In all other cases, > Z(s, f,x,A;) = 0.

A.2. Computation of Z(s, f, x, As)



Appendix B

The local zeta function of
(v — a2y — ca?) + oty

In this section we present the example 2.3.2 and 2 computed in full detail.
In this example we assume that the characteristic of the residue field of K
is different from 2. We shall compute explicitly the local zeta functions for
g(z,y) = (v* — 2?)*(y® — ca?) + 2*y*, with ¢ € OF and ¢ # 1(mod p). This
polynomial is degenerate with respect to its geometric Newton polygon in the
sense of Kouchnirenko. We obtain an explicit list of candidates for the poles in
terms of geometric data obtained from a family of arithmetic Newton polygons
attached to the polynomial g(z,y).

The conical subdivision of R? subordinated to the geometric Newton polygon of
g(z,y) isRZ = {(0,0) UU?:1 A}, and it do possible to reduce the computation of
Z(s, g, x) to the computation of the p-adic integrals Z (s, g, x, O ), Z(s, g, x, D, i =
1,---9).

B.1 Computation of Z(s, g, x,A;,i =1,2,3,4,6,7,8,9)

These integrals correspond to the case in which ¢ is non-degenerate on A;,i =
1,2,3,4,6,7,8,9.

(a) Case Z(87 9, X, A1)

70



The local zeta function of (y* — 22)*(y? — cz?) + xty? 71

= Zq_” / x(ac (g1(z,y))) [91(x,y)|.

n=1 X2
OK

where the polynomial g;(z,y) = (p3"y3 — 22)?(p3"y3 — cz?) + pt"aty?, and
g1(z,y) = —cab. By using equation (A.1.1), thus

2(5,9,x, A Zq_n > / x(ac gi(z,y))lg1(x, y)|°|dzdy],
@BEFT? (0,0)+(pOxc)2

=Y 0 Y [ e qlatpab pp)lgiact pab+py)ldody|
(@,b)elF 2 02

Now we apply the change variables (A.1.3) to function g; and since that
839; (a,b) = —6ca’® # 0(mod p), then
Z(Sag7X7A1) -

S 3 [ xae gulatprb py)losat po,b o+ py)ldody.
= (E,E)GF(;QO%

= Zq_n_2 Z /X(ac (gl(a>b) + pzl))|gl(a7 b) + pzl‘sydzl‘>

(@b)eFy® O

q_n_2]A1 (87 (CL, b)))

WE

n=1

where Lo, (s, (4.0) = Saperys J X (1(0,8) +p2)gs (0. +pald,
then by Lemma 1.2.2 and given that

N = Card{(a,b) € (FX)*:g,(a,b) = 0} = Card{(a,b) € (F*)*: —ca® =0} =0,

q q

then we get

B.1. Computation of Z(s,g,x,A;,i =1,2,3,4,6,7,8,9)
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( 9 )
(q - 1) Zf X = Xtriv

Ia (s, (a,b)) = Z( b)eFy 2 X(9,(a, [_9)) if X = Xtriv
gl(avb)7é0

\ 0 all other cases,

where Y is the multiplicative character induced by x in ;. Thus,
( 2 .
(g—1) if X = Xtriv

[Al (Sa (a7 b)) = Z(az) ]F><2 X( 6) Zf X = Xtriv

L0 all other cases,

Now since that X® = Xriv, and x| = Xiriv, U = 14 pOg implies x® = Xrio,

we have
Z y(—EG) — X(_C) 0 0 Zf X6 7£ XtTiU) (B 1 1)
(EE)G]FXQ X( E)(q - 1) Zf XG = Xitrivs
Therefore,
( (q - 1)2 Zf X = Xtriv

[Al (87 (CL, b)) = X(_E)(q - ]-)2 Zf XG = Xtriv, 7X|U = Xtriv,

\0 all other cases.
Finally, since that Z(s,g,x, A1) =Y oo ¢ " 21, (s, (a,b)), we conclude
(-1 -1 ; _
q (1 —dq ) Zf X = Xtriv

Z(Saga X5 AI) = X(_E)q_l(l - q_l); Zf XG - Xtriv;X‘U = Xtriv,

L0 all other cases,

(b) Case Z(Sa 9, X, AQ)

Z(s,9,00) = > / X(ac (g(z, ))lg(x,y)|* |dadyl,

m=1n=1
meX Xpn-&-moﬁ

=S > [ vfae (ga(e ) loaCe )| [dndy

m=1 n=1 2
Ok

B.1. Computation of Z(s,g,x,A;,i =1,2,3,4,6,7,8,9)



The local zeta function of (y* — 22)*(y? — cz?) + xty? 73

Since that polynomial go(x, y) = (p37+t7my3—22)2 (p3ntmy3 —ca?)+pint2mgpdyt)

and g3(z,y) = —ca® thus we obtain that the origin of K is the only singular
point of go(z,y) over (F;)? By using equation (A.1.1), so we obtain that,

Z(Sag7X7A2) =

S Y g ST [ e gl Fldndyl,

m=1 n=1 (E’E)GF;(Q(a,b)+(pOK)2

= Y gt % / X (ga(a + pz, b+ py))|dedyl,
m=n=1

= (@,b)eFy? 02,

where X'(g2(a + px, b+ py) = x(ac(gz(a+pz, b+ py))) g2(a + pz, b+ py)[*.
Now we apply the change variables (A.1.3) to function g, and since that
%(E, b) = —6ca® # 0, then

Z(Sag7X7A2) =

Z Zq—Qm—”—6mS_2 Z /X(ac (92(a,b) + pz1))]g2(a, b) + pz1)[*|dz],

m=1 n=1 (575)@}?;20]{

_ Z Z q72m7n76m372[A2 (57 (CL, b)),

m=1n=1

where Is,(5, (a,5)) = Sapess | x(ac (g2l 0)+p21))gala b)+p21) ldza .
Ok

Then since that N = Card{(a,b) € (F))* : gy(a,b) = 0} = Card{(a,b) €
(F¥)?: —ca® = 0} = 0, we have

( 9 )
(q - 1) Zf X = Xtriv

In, (s, (a,b)) = > @per2 X(9:(a, b)) if X = Xeriv

§2(a75)7é0
\0 all other cases,
where Y is the multiplicative character induced by x in F,. Then
( 2 .
(q - 1) Zf X = Xtriv

Iny (s, (a,b)) = E(E,E)GF;QY(—W) if X = Xtriv

L0, all other cases.
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Now since that X® = Xsrip and x|u = Xeriv, U = 14 pOx implies x® = Xrio,
thus follows by the same method as in procedure above,

Finally since Z(s, g, X, D2) = Y ooy Yoo q 2m=0ms=2] (s, (a, b)), we ob-
tain
—_q—1),—3—6s .
( % Zf X = Xtriv
—3-6s(1_—1 )
Z(SagaX7A2) = < X(_E)% Zf X6 = XtrivaX|U = Xtriv
© all other cases,
(c) Case Z(s, g, x,As).
Zs.gx80) =) [ x(ae g(x,9)lo(x, )| drdy,
1 /PO xp"OF
=S [ P - ) ety | dady.
n=1 0;22
where
X ((P"y3 2?)(p"y’ — ca®) +p*atyt) =
x(ac (p"y* — 2®)*(p"y* — ca®) + p2”9:4y4)|(p v’ = )P (p"y’ — ca?) + pPratytf

Since that polynomial g3(z,y) = (p"y® — 22)*(p"y® — ca?) + p?"z*y*, we have
93(z,y) = —ca%, we obtain that the origin of K is the only smgular point of
gs(z,y) over (F)2.

By using equation (A.1.1), so we obtain that,

Z(s,9. 8g) = Zq‘z” DY / oy X () on(a ) dady|.
+(pOxk)?

(@ b)GIF><2

o0

= (@)l 20%

Now we apply the change variables (A.1.3) to function g3 and since that
%5 (a@,b) = —6ca° # 0, we obtain

:Zq*Q”*G"S*Z Z /X(ac gs(a +px, b+ py))|gs(a+ vz, b+ py)|*|dedy|.

B.1. Computation of Z(s,g,x,A;,i =1,2,3,4,6,7,8,9)



The local zeta function of (y* — 22)*(y? — cz?) + xty? 75

Z(Sa97X7A3) =

Zq—2n76n572 Z /X(GC gg(a+px,b+py))’93(a+anb+m/)‘s‘d9gd?/‘a
n=1

— 7 2
(a,b)GIF,T O%{

- Zq_2n_6ns_2 Z X(CLC <g3(a7 b) + pzl))|g3(a7 b) + pzl)|s|d21|’
n=1

(a,b)eFx? Ox
_ Z q72n76n372[A3(8, (CL, b)),
n=1

where In, (s, (a,b)) = Z(E,E)e]F;Z f x(ac (gs(a,b)+p21))|gs(a, b)+pz1)|*[dz].
Ok

Then given that N = Card{(a,b) € (F})? : g5(a,b) = 0} = Card{(a,b) €
(Fy)? : —ca® = 0} = 0, we have

r 9 )
(q - 1) Zf X = Xtriv

Ing(s, (a,b)) = Z“’f)i?i; X(@3(@0)) i X = Xrio
gsla,

0 all other cases.

\
where Y is the multiplicative character induced by x in . Then by applying
similar arguments to the case above and (B.1.1),
and given that Z(s, g, x,As) = > o0, ¢ 2757215, (s, (a, b)), we have

((a=1)?q >0

1—q2-6s Zf X = Xtriv

o g—2-65(1_,—1)2 .
Z(s,9: X, D3) = { X(—O) =ity i X® = Xerios X|U = Xeriv

0 all other cases.

(d) Case Z(87 g, X, A4)

Zs. 9000 =33 / w(ac g(z,y))lg(z, 9)|"|dady],

n=1
pn+3m O[X( % pn+2m01>;

ZZQ(—Z—Gs)n+(—5—185)m /Xl(g4($,y)) |dxdy|.

m=1n=1

—_

m=

O X2
K
where

Xi(ga(w,y)) = x(ac ga(z,y))|ga(z,y)|*,

B.1. Computation of Z(s,g,x,A;,i =1,2,3,4,6,7,8,9)
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and the polynomial g4(z,y) = (p"y> — 2%)2(p"y?® — ca?) + p?F2mgtyt), with

Ga(z,y) = —cab, we obtain that the origin of K is the only singular point of

ga(z,y) over (Fy)>.
By using equation (A.1.1), so we can assert that

Z(Sag7X7A4) =

DI DD | xlac gutw.o))loute. ) Fldody|.

"= @)EFS (0 )+ (pOx)?

$OY g etz / Xy(g4(a+ px, b+ py))|dzdy).

m=1 n=1 (a,b)e IFXQ

—_
[y

—_

where X3(ga(a +pz, b+ py)) = x(ac ga(a+pz,b+py)) |gala +pz, b+ py)|*.
Now we apply the change variables (A.1.3) to function g, and since that
%i(a,b) = —6ca’ # 0, we sce that,

Z(8,9,x,A4) =
Z Z g 2O (oS m=2 / Xo((gala + pz, b+ py))) |dzdyl,
m=1 n=1 (@b)eF 2
:qu —2—6s)n+(—5—18s)m— 2] ( (a,b)),

m=1 n=1

where ]A4(37 <a7 b)) = Z(E,E)GF;Q f X(ac (94(a7 b)+pzl))|g4(a, b)+pzl)|s|d'zl|’
Ok

then we apply Lemma 1.2.2 and given that N = Card{(a,b) € (F))?
ga(a,b) =0} = Card{(a,b) € (F})*: —ca® = 0} = 0, we get that

(

(q o 1)2 Zf X = Xtriv
[A4 (S, (a, b)) = E(E,E)GQF(T)Q X(gll(aa 5)) Zf Y = Xtriv
?4(6,())7&0
\0 all other cases,

Finally, by applying (B.1.1) and since that

Z(s,9,x D) =Y > g0 SIm2 1, (s (a,D)),

m=1n=1

we conclude that

B.1. Computation of Z(s,g,x,A;,i =1,2,3,4,6,7,8,9)
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/ (1fq_1)2q_7_24s

(1—q—2-65)(1_q—5-15%) if X = Xtriv

g 7245 (1—g~1)2

Z(S, 9, X, A4) - X(_E) (17(]—2—63)(1,(1—5)—183) Zf XG = Xtriv, X’U = Xtriv

0 all other cases,

(e) Case Z(S, 9, X, Aﬁ)

205,008 = 33 / x(ae g(z, 9)lg(z, y) [’ |dzdy],

X X
p3n+2m0K X p2n+m OK

=3 gl / xlac(go(w, 9))\gs (. y)|* |dedyl.

ohs

where polynomial gs(x,y) = (y> — p™z?)?(y> — cp™x?) + p>"3mxiyt we
have gg(z,y) = y°. Then we obtain that,

Z(S,Q,X,A(;) =

Sy g S [ (),

=1 n—1 (@D)EFG (a,b)+(pOx)?

:qu —5-18s)n-+(—3—9s)m—2 Z /X(gﬁ(a+p$,b+py)) |dzdyl,

m=1n=1 (E,E)GF; 20%{

where X (gs(x,y)) = x(ac(gs(x,y)))|gs(x,y)|*. Now we apply the change
variables (A.1.3) to function gs and since that 896 = (a, b) = 9(b ) # 0, we
obtain that,

Z(5797X7A6) =
Z Z q(—5—18s)n+(—3—95)m—2 Z / X (gs((a,b) + pz1))| |dz),
m=1n=1 (EE)EIF;QOK
:qu —5—18s)n+(—3—9s)m— 2[ ( (a,b)),

1 n=1

3
I

where Iny(s, (a,0)) = X aeme | X(96((a,) +pz1))|dz], then given that
Ok

N = Card{(a,b) € (F})?*: g4(a,b) = 0} = Card{(a,b) € (F})*: b =0} =

0, we obtain

B.1. Computation of Z(s,g,x,A;,i =1,2,3,4,6,7,8,9)
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( 9 )
(q - 1) Zf X = Xtriv

In (s, (a,b)) = Z(E,E)GJF;Z X(96(@,0)) if X = Xtriw
EG(Evb)7é0

0 all other cases.
Then,
( (q - 1)2 Zf X = Xtriv

— /79 e
[AG (87 ((I, b)) = Z(E,E)G]F;Q X(b ) ZfX = Xtriv

0 all other cases,

where Y is the multiplicative character induced by x in F,,.

Now since that X° = Xrip and x|y = Xtriv, U = 1+ pOx implies X = Xirio,
we get

(q - 1>2 Zf Xg = Xtriv, X’U = Xtriv
> X)) = (B.1.2)

(@b)e(Fy)? 0 all other cases.

Therefore,

(q - 1)2 Zf X = Xtriv

[AG (87 (Cl, b)) = (q - 1)2 Zf Xg = Xtriv, X|U = Xtriv

0 all other cases.
Finally, since that

Z(s,9,x, D) = Y Y qTIIHEIIMTRL (s, (a, 1)),

m=1n=1

we obtain
¢ g8 2Ts(1—g1)2

(1—q—3-95)(1_q5-15%) if X = Xtriv

g 8-27s(1—g—1)2

Z(S, 9, X, AG) = (I—q 3 9%)(1—q 5 18%) if Xg = Xtrivs X|U = Xtriv

0 all other cases,

(f) Case Z(Sv 9, X, A'?)

B.1. Computation of Z(s,g,x,A;,i =1,2,3,4,6,7,8,9)
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o0

Zgd) =3 [ ac glo.p)lo(e o) dedy,
n=1"YP" pm

=Y i / X(ge(z,y)) |dady|.
n=1 OIX(Q

where X (g7(z,v)) = x(ac(gr(z,y))) and the polynomials
gr(z,y) = (° —p"a?)*(y° — ep"a?) +p™aty’, with gr(z,y) = o,

therefore the origin of K is the only singular point of g7(x,y) over (IFqX)Z.
Then we have,

Z(s,9,x,07) =
Z oy (ac gr(z,y))|g7(x,y)|°|dzdy]
n=1 a b EFXQ a b POK
n=1 @heEy)? oK

Now we apply the change variables (A.1.3) to function g; and since that
%g;( a,b) = 95" # 0, we obtain that,

Z(s,9,x, A7) =
Zq—?m Ins—2 Z / X g7 a—i-pl’ b+py))|dxdy|
(@b)eFy?
_ Z g ons=2 Z / X (gr(a,b) + pz1) |dz]|
02
n=1 (@b)e(F)) K

where Ia; (s, (a,0)) = X apemz Jo, x(ac (g7(a,b)+p21))lgr(a, b)+pz1)[*|dz],

then since N = Card{(a,b) € (F})* : g;(a,b) = 0} = Card{(a,b) € (F))*
v = 0} = 0, we apply the argument above again, and for the equation
(B.1.2) in

Z(s,9,x, A7) = Zq*”" 72 60 (s, (a,1)),

B.1. Computation of Z(s,g,x,A;,i =1,2,3,4,6,7,8,9)
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we conclude

—3-9s(1_g—1)2 .
E (l_q(—3—%s)) Zf X = Xtriv

—3-9s(71_ ,—1\2 .
Z(SagaX7A7) = 9 % Zf X9 = Xtm'va|U = Xtriv

all other cases.

(g) Case Z(s,g,x,As).

Z(S,Q,X,Ag) =

Y [ sty ldods)

p2n+mo>< Xpnoﬁ

[
M8
bjg

s /X(ac (95(x. ))) lgs(z,y)I" |dzdyl.

X2
OK

Since that polynomial gg(z,y) = (y°—p™T2mx?)2(y3 —cpT2mg?) p3ntimgpdyt
we have gg(z, y) = y°, then we obtain that the origin of K is the only singular
point of gs(z,y) over (F))?. By using equation (A.1.1), so we obtain that,

Z(Sag7X7A8) =

x(ac gs(z,y))|gs(z, y)|i|dzdyl,
@b)e(Fg)? (ab)+(pOx)?

X(gs(a + px, b+ py))|dxdy|,
@heF;)? &3

where X (gs(a + pz, b+ py))) = x(ac gs(a + pz, b+ py))|gs(a + pz, b+ py)I*.
Now we apply the change variables (A.1.3) to function gg and since that

%g;( ,b) = b # 0, we can assert that,

Z(S,Q,X,Ag) =
$OS genem § / x(ac (gs(a,b) + pz1))lgs(a,b) + pz)[*ldz ],
m=1n=1 (7*)€(FX)2 Ox

ZZ IR (s, (a,0),

B.1. Computation of Z(s,g,x,A;,i =1,2,3,4,6,7,8,9)
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where L, (s, (4.5) = X aeqes oy X(ac (gs(a. B)+p2))lgs(a. ) +p)|Fldz],
and since N = Card{( ) ( ) : gs(@,b) = 0} = Card{(a,b) € (IFqX)
by = 0} =0 we yields,

Z 3 v 9, XaAS qu —3=9s)n—m- 2IA8< (aab)>

m=1 n=1

and by applying (B.1.2) we conclude that

—4—9s(1_,—1 .
( % if X = Xtriv

—4—9s(1_—1 .
Z(S,g, X5 AS - % Zf Xg = Xtriv, X|U = Xtriv

L0 all other cases.

Case Z(S, 9, X AQ)

Z(5,9,X, D) = Z/ o x(ac g(x,y))|g(z,y)|*|dzdy],

=) " / x(ac (go(a,y))) lgo(,)|" |dadyl.

n=1 K

Since that polynomial go(x,y) = (y> — p>2?)*(y® — cp?™2?) + pinaty?, we
have Go(z,y) = y° then we obtain that the origin of K is the only singular
point of go(z,y) over (F;)?.

Then we obtain that,

Z(s,9,x, Do) =

S Y / x(ac golz,y))lgs (. y)*|dedy]
n=1 (a,b)+(»OK

@he®y) 2

=> "7 > /X(acgg(a+pfv,b+py))lgg(a+pw,b+py)|5|dxdy|-

@hey) 9k

Now we apply the change variables (A.1.3) to function go and since that
%—979(6, b) = 95> # 0, we get,
Y

B.1. Computation of Z(s,g,x,A;,i =1,2,3,4,6,7,8,9)



The local zeta function of (y* — 22)*(y? — cz?) + xty? 82

Z(57g7X7 A9) =
DY / x(ac go(a+px, b+ py))|ge(a+ pz, b+ py)|*|dzdyl
n=1 (E,E)E(]F;)Q (0;()2

@8

o Z /X(ac (99(a,b) + p21))|go(a, b) + pz1)[*[d2|

n=1 @b)e(Fy)? Oy

q_n_2]A9 (87 (CL, b)))

WE

n=1

where Ia, (57 (a7 b)) = Z(a,E)e(]F?)Q f X(CLC (99(aa b)"i_pzl))‘gQ(aa b)+pz1)‘s’dzl‘>
Ok
then given that

N = Card{(a,b) € (F})*: go(a,b) = 0} = Card{(a,b) € (F;)*: b =0} =0

we obtain,

(q - 1)2 Zf X = Xtriv

In,(s,(a,b)) = Z(E,E)G(F;)2 X(Go(@, b)) if X = Xerio

gg (aa b) #O

0 all other cases,

\
where Y is the multiplicative character induced by x in F.

Now since that Z(s, g, x, Do) = > or 1 ¢ " 2Ia,(s, (a,b)), then as in the case
Z(s,9,x, ), the equation (B.1.2) gives

(' (1 —q") if X = Xeriv

Z(8197X7A9) = q_l(l - q_l) Zf Xg - XtrimX'U = Xtriv

\ 0 all other cases.

Now we are going to find Z(s, f, x, A;) fori =1,2,3,4,6,7,8,9 with the computes
above:

When x = Xriv-

72765(1 _ qfl) q77724s(1 _ q71)2

Z(s, f,Xariw) =207 (1= q7) + 1

<S7 f: Xt ) q ( q ) + (1 _ q_Q_GS) + (1 _ (]_2_68)(1 . q_5_185)
q—8—27s(1 _ q—l)Q q—3—95(1 _ q—l)

+

(1 _ q*3*98)(1 _ q75718s> + (1 _ q73793)
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When x # X¢riv and x|1 4+ pOg = Xuiv We have several cases: if X% = Xeriv, WE
have

s PR q—3—65(1 . q—l) q—2—65(1 B q—1)2
Z<57f7 X) - X( ) (q (1 q ) + (1 . q_g_ﬁs) + (1 _ q—2—63> )

(=) <(1 _q;ﬁigh‘_q;l:&)) :

In the case where x” = Y40, We obtain

—8—27s 1 — —1)2 —3—9s 1 — —1)2
Z(s. fix) = — 9 A-¢)" o 0-q)
(1— ¢ 395)(1 — g0 18s) (1—q59%)
—4—9s -1
¢ 0= 4 1
+ =0 +q (1—q ).

In all other cases, Z(s, f,x) = 0.

B.2 Computation of Z(s, g, x, As)

(An integral on a degenerate face in the sense Kouchnirenko).

Z(5,9,X,As5) = Z /3 ; x(ac g(x,y))|g(z,y)|*|dzdy],
n=1 per IX<

xp2rO%

_ Zq—fm—lSns/ x(ac((y3 _ x2)2(y3 _ C$2) +p2"x4y4)
n=1 o

X2
K

(v — 2°)2(y° — ca®) + p*a'y" | dady].
Let g™ (z,y) = (y° — 22)? + p?"2*y*, for n > 1. For compute the integral,

I(s,9™,x) = Jore xlac((y® — 2*)*(y° — ca®) + p*a'y")) (1 — 2%)°(y° — ea?) +
pPatyt|*|dzdy|, for n > 1, we use the following change of variables:

X2 X2
O —O0f

(O3 )
(z,y) — (2%y, 2%y)

The map ® gives an analytic bijection of O;? onto itself and preserves the Haar
measure since that its Jacobian Jg(x,y) = xly satisfies |Js(z,y)|x = 1, for every
z,y € Oj. Thus

B.2. Computation of Z(s, g, x, As)
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9™ 0 B(xz,y) = 21%y8g™ (z,y), with

—_—

9" (x,y) = (y = 1)*(y — ¢) + p>"a*y?, (B.2.1)

Then we have that,

I(s,g™, ) :/ x(ac(z"®y’g (z,y))) g™ (z, y)|*|dzdy|.
02

In order to compute the integral I(s, g™, x),n > 1, we decompose O3* as follows:

X2
Oy =

(O x {yo +pOx|yo # 1,c(mod p)}) U (O x {1 +pOx}) U (O x {c +pOx}),
(B.2.2)

where y, runs through a set of representatives of F in O . From partition (B.2.1)
and formula (B.2), it follows that,

I(s,9™, x) = / xlac(z®y g (2, ) |g™ (2, )| dedy
O % x{yo+pOx}

+ [ e g . ) g . ) dody
0% ><{1+pOK}

—_—

+ [ ey g ., )g® (o )| ey
o) X{C-HJOK}

The integral I admits the following expansion:

I(s,9™, x) =
-1

] / w(ac(z™® (o + py)*g™ (@, yo + py))) [0 (s yo + py)|*|drdy]
yoZl, c(modp) O xOk

—

+q_1/o>< ) x(ac(z™ (14 py)°g™ (z, 1 + py)))|g )(90 1+ py)|*|dzdy|

—

[ aeta™ e+ g0 o )l o ) dady

B.2. Computation of Z(s, g, x, As)
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Now we use Ox = | ;2 p’O; and it follows that,
I(s, g™, x) =

S S / X (g (2, yo + 1 *y) |dady

yoZ1,c(modp) j=0

+Zq1j/?€(g(")(x,1+pj“y)) |dxdy|
7=0 OIX(2
$3a [ XGEes p) [dody|
7=0 0% x0x

where

(9% .0+ 7)) =x(acla™ (o + B9 (w0 + 9 g 50 + B )

X (g™ (2,1 + p ) =x(ac@3(1 + pTy)0g (2,1 + p )| (2, 1 + piy))?
xlac(@™®(c + pHy)0 g™ (2, ¢ + pit1y))) |g™ (z, ¢ + pT+y)|*

X (g (z,c + p'ty)))

Then we can Write? [(S7g(n)7X) = Jl(s7.g(n)7X) + JQ(Sag(n)7X> + J3(Sag(n)7X)7

where

yoZl,c(modp) j=0

N(s g )= > Zq‘” / X (g0, yo + p*1y)) |dudy)
O><2

To(s,9™ %) =Y g / X(g™ (z,1 4 p"y)) |dady]

Jj=0 2
Ox

Ts(s, 9" Zq_l : / X(gt)(x,c+ 1)) |dady)

—0
= 0% x0

B.2. Computation of Z(s, g, x, As)
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Then we can expand Jy(s, g™, x) and Js(s, g™, x) as following

n—2

Jo(s, 9™, x) = q‘l‘j‘@“j)s/x(ac 92(z,y))|dzdy|

Jj=0 2
Ok

+¢7"7 | x(ac gs(z,y))|gs(z, y)|*|dzdy|

—

X2
OK

#3007 [ (e guo.g)idody)

X2
OK

2n—2

Ta(s, 9™, x) = > gm0 / x(ac gs(z,y))|ddy|

—0
J 0;22

g / x(ac gs(@,9))|g6(z, )| dedy]

X2
OK

# 3 a [ ae glo ) idody,

Jj=2n %2
Ok

So, we can write

B.2. Computation of Z(s, g, x, As)
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where,
L= 3 Y0 [ xlac outo.n)ldedy)
w#Le(modp) =0
K
n—2
=Y [ yae ga(o,y)ldudy],
j:() OI><<2
y =g / v(ac gs(@.9))|gs(z, )| | dedy].
o)
L=Y a7 [ e gla,)ldody|.
j:n OI>22
2n—2
=32 a0 [ e gty dady|
j:() O});Q
Iy —g~2ns=20 / x(ac gs(@, 1)lg6 (@, 9)|°|dzdy, |
o)
E=3 a7 [ xlac gr(o.y)ldudy).
j=2n O><2
K
and,
gi(z,y) =z (o + P )’ ((yo — L+ Py (vo + 9y — ©) + p*" 2% (yo + p'Hy)?),
go(z,y) =[x (1 + p ) ) Y2 (1 — e+ pTThy) + pP P2 (1 4 pity)?)],
g3(z,y) =z (L4 p"y)°[(* (1 — c+ p") + 2*(1 + p"y)?],
X

=[2"%(c+ p Ty y(c — 1+ pThy)? + p? D22 (e 4 piTy)?)),
=z"%(c+ p™y)’[(y(c — 1+ p™y)* + 2°(c + p™"y)’],

(z,9)
(z,y)
(z,y) [
94(x7y) — 18(1+pj+ly)6[(p2+2j—2ny2(1 _C+pj+ly) +x2(1+pj+1y)2],
(z,y)
(z,y)
(z,y) =" (c+p )0 [(p" 7 y(c — 1+ 971 y)? + 2% (c+ p'Hy)7),

where the reduction of the coefficients of each function is

g1(z,y) =2 (yo) " (yo — 1)° Ga(x,y) =2"y*(1 —¢),

gs(z,y) =2'®y* (1 — ¢) + 2 Ga(z,y) =2

gs(x,y )—w18y206( - 1) Go(,y) =2'%yc®(c — 1)* + 2°¢,
gr(r,y) =

B.2. Computation of Z(s, g, x, As)
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Note that we can find every integral I;,7 = 1,2, 3,4 and we compute Z(s, g, x, As) =
Sool g (s, g™ X), where I(s, g™, x) = L+ L+ I+ I+ I + Ig + I
Now we’ll find every integral I; for i =1,2,3,4,5,6,7.

(a) [1 = Zyo,ﬂél,c(modp) E;.O:O q_l_j fQ X(GC g1 (.CE, y))’dl’d@A
Ok

Since that the polynomial g (z,y) = 2'3(yo + p"Ty)°((yo — 1 +p71y)* (yo +
pHy — ) + p*a?(yo + pH1y)?), we have gi(z,y) = 2"y5(yo — 1)*.
By using equation (A.1.1), so we obtain that,

L= > Zq‘” >, / X(ac gi(z,y))|dzdy|

YoZ1,c(modyp) j=0 (@b)€(Fq)2(a,b)+(pOk)?
- 2 S S [eentermn i)
yo#£1l,c(modp) j=0 (@b)e(Fq )02

Now we apply the change variables (A.1.3) to function g; and since that
%1 (@,b) = 18y§(yo — 1)%a@'7 # 0, we obtain that,

YYD [ e (@a.b) + pa)laz

yoZl,c(modp) j=0 (@, B)E]F;QOK

= Z Zq 31 (s, (a, b)),

yoZ1,c(modp) j=0

where I, (s, (a,b)) = > (@heFr)? | x(ac (g1(a,b) +pz1))|dz |, then we apply
Ok

the Lemma 1.2.2, and given that N = Card{(a,b) € (F))*: g,(a,b) = 0} =
Card{(a,b) € (F))? : a"®yg(yo — 1)* = 0} = 0, we obtain

(q - 1)2 Zf X = Xtriv

I_l(s, (a,b)) = Z( ,B)e(JF532 X (79, (@, 5)) if X = Xeriv

0 all other cases,

where Y is the multiplicative character induced by x in F. Then,
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[_1(57 (a7 b)) =

((q—1)°

2 @

(a18y07

Therefore,
((q—1)?

2 @

(@18y07

Ii(s, (a, b))

0

\

where U = 1 + pOg. Now since that y'®

X18

= Xtriv, We get
(g —1)?

Ii(s, (a,b)) = ¢ X" (%0)x

0
Finally, since that [; =
(q

0

\

_ Zn 2q_1 j—
j=0

I (24+2j)s

(T — (g - 1)?

“Hg—=3)(1—q

X (@o)x* (W — 1)g~

Zf X = Xtriv

Hew?  X@0 (% — 1)) if X = Xerio

(70—1)%)#0

all other cases,

Zf X = Xtriv

B X o(@X@ @ — 1)) i X = Xerio

(¥o—1)2)70

all other cases,

= Xtriv and X‘U = Xtriv lmphes

Zf X = Xtriv

ifxlg = Xtriv7X|U =1

all other cases.

Zyo;‘él,c(modp) Z;.;O q737j1_1(37 (a,b)), we obtain

) Zf X = Xtriv

1<q - 3)(1 - q_l) Zf X18 - XtrimX‘U = Xtriv
all other cases.

| x(ac g2(z,y))|dzdy|. Since that polynomial

X2
OK

92(377 y) =

we have gz(x,y) = x'%y

n—2

=Yg

J=0
n—2

q
7=0

—3—j—(2+2j)s

[ (1 +p"y)l[y* (1

18,2

— e pTthy) P BRI (1 4 Ty,

(1-—

¢). Then we get,

2.

(@,b)e(F

2.

(@b)e(Fy

+27)s x(ac ga(z,y))|dxdy|

i )%(ab)+(pOx)?

/ x(ac gs(a + pz, b+ py))|dedy].
2oz
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Now we apply the change variables (A.1.3) to function gs and since that
9% (g, ) = 18(a'") (") (1 — ¢) # 0, we obtain,

n—2
=Y ¢ e 3y x(ac (g2(a,b) +pz1))|dz |
7=0 @b)E(Fq )20
n—2
=Y g (s, (a, D)),
§=0

where To(s, (4,0)) = Sapeqp 2 J x(ae (92(0,5) + p20)lda |

Ok
Now given N = Card{(a,b) € (F})? : g,(a,b) = 0} = Card{(a,b) € (F})?:
@'®’(1 — ) = 0} = 0, we can assert that

( (q - 1>2 Zf X = Xtriv
Iy = X(l - E)(q - 1)2 if %2 = Xtriv

L0 all other cases,

Given that XQ = Xtriv and X|U = Xtriv iInphes X2 = Xtriv, W€ get
( (q - 1)2 Zf X = Xtriv

I, = Y(l - E)(q - 1)2 if X2 = Xm'v,X|U = Xtriv

L0 all other cases,

where U = 1 + pOg.

Finally, since that I, = Z?;g q 37725 (s, (a, b)), we conclude that
(g 125 (1—qn D129 (1~ 1)2

1—g-1-25 Zf X = Xtriv
o _ g 17251 _g(n—1)(—1-25)y(1_4—1)2 .
12 - X(l - C)q (=g 1—q 1-2s lE 5 Zf X2 = Xtriv, X’U = Xtriv
L0, all other cases.
—n—2ns

I x(ac gs(x,y))|gs(z,y)|° [dzdyl.
ox?
Since that polynomial gs(z,y) = 2 (1+p"y)°[(y* (1 —c+p™y) +22(1+p"y)?],
we have g3(z,y) = 2'%y*(1 — ¢) + 2. Then we get that,

I =q
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L= [ e gaeo))los(o ) ldod
(E7E)€(F€;<)2 (a,b)—i—(pOK)z

=g e Y / x(ac gs(a+ pxz,b+py))lgs(a + pz, b+ py)|*|dzdyl.
@HEFES)? G2

Now we apply the change variables (A.1.3) to function g3, and like %—?(d, b) =
2(a@'®)(b) # 0, we obtain

I=q "7 Y x(ac (gs(a,b) + pz1))|gs(a, b) + pz1)|*[dz |
— qfnf2nsf273(57 (CL, b)),

where To(s, (a,5)) = Sapere J x(ac (gs(a,b)+pz1))lgs(a, b)+pzr)|*|dzal.

Ok

Now given that

Ny =Card{(a,b) € (F*)*:g,(@,b) =0}
—Card{(a,b) € (FX)?:a®(3*(1 — ¢) + @) = 0},

( ,—S(1_—1 1 i

_ % Zf X = Xtm'v

[371(87 (CL, b)) =

0 all other cases.

\
and

( .
(q_l)Q_Nl Zf X = Xtriv

Taa(s, (a,b)) = 4 2@pep X(0c(@(@0) if Xlv = Xirin
7 §3(575)7£0

\0 in other case,
where U = 1 4 pOk.

Since that  is the multiplicative character induced by x in F,, we have that
( .
(q_]-)z_Nl Zf X = Xtriv

- _ (718 (F2 (1 _ =) 4 =2 e
[372(57 (CL, b)) — Z (gb)e(ﬂ?;)z X(a (b (1 C) +a )) Zf X = Xtriv
a'®(b”(1—e)+a?)#0

0 all other cases.
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Given that X = Xtriv and X|U = Xtriv 1mphe5 X = Xtriv, We get
_ (=12 =N 4Ty if X=Xriv
]32(8, (CL, b)) =
0 all other cases.

By writing,
To=3%  @pewrye x(@P*(1—70)+d?),

(a'®(b?(1-2)+a?)#£0
Finally, since that I3 = ¢7"72"72 (I3(s, (a,b)) + I52(s, (a,b))), we obtain

that
—s(1_—1 .
g s (% +(q— 1)2 — Ny + T2) if X = Xtriv
I3 =
0 all other cases.
(d) L=, [ x(ac ga(x,y))|dwdy].
0x?

Since that polynomial g4(z, y) = B (1+p Ty [(p? T2 y2 (1 — e+ pTly) +
22(1 + p?y)?], we have gy(z,y) = 2%
By using equation (A.1.1), so we obtain that,

L=y gt Y / v(ac gi(z,))|ddy|
j:n ab pOK

(@,b)e(Fy)

— Z g3 Z /2 x(ac gs(a+ px, b+ py))|dxdyl.
= (@b)e(Fy)?

Now we apply the change variables (A.1.3) to function g, and since that
%(E, b) = 20@"? # 0, we obtain that,

- Zq_S_j_Q"S Z / ac (g4(a,b) +pz1))|dz |
j=n

€(F)? Ok

(ab
- Z q 272 (s, (a, b)),
j=n

where I4(s, (a,b)) = > @heEs)? x(ac (g4(a,b) + pz1))|dz1|, then given

that N = Card{(a,b) € (F))*: gy(a,b) = 0} = Card{(a,b) € (F})?:a* =

0} = 0, we obtain
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'(q - 1)2 Zf X = Xtriv

74(57 (CL, b)) = 9 Z(E,B)E(F;P X(CL2O) Zf X = Xtriv

0 all other cases,
where X the multiplicative character induced by x in IF,.
Now since that Y2° = x40 and | = Xeriv implies X2 = Y40, We get
(¢ — 1)2 if X = Xtrivs X|lv = Xtriv
D @hez X(@°) =
0 all other cases,
where U = 1 + pOg.

Then,
’(q - 1)2 Zf X = Xtriv

74(87 (CL, b)) = (q - 1)2 Zf XZO = Xtriv, X|U = Xtriv

\ 0 all other cases.

Finally since that Iy = Y22 q~*77"I,(s, (a,b)), we conclude that

;

q—Qns—n—l(l _ q—1> X = Xeriv

I4 = qunSinil(l - qil) X20 = Xtriv, X|U = Xtriv

\ 0 all other cases.

(e) Is = Y207 ¢ =U*Ds [ x(ac gs(x,y))|dwdyl,

0x2
where polynomial
g5(x,y) = [#"3(c + "y Nly(c — 1+ p/y)? + p* U2 (e 4+ p7 )P,
and g5(x,y) = x8y*c%(c — 1)2
By using equation (A.1.1), so we obtain that,

2n—2
=0 @b)EFG)? (a,b)+(pOx)?

=Y g S x(ac gs(a + px, b+ py))|dzdy|.
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Now we apply the change variables (A.1.3) to function g5 and since that
9% (3, b) = 18(a'")(b")e (¢ — 1)2 # 0, we obtain that,

2n—2
=Y gt 30 /ﬂw@wwwmwm
J=0 (@b)eFF)? Ok

2n—2

= > g IO (s, (a, 1)),
=0

where I5(s, (a,b)) = D @h)eEx 2 of x(ac (gs(a,b) + pz1))|dz1|, thus we use
K

Lemma 1.2.2 and give that
N =Card{(a,b) € (F))* : g5(@,b) =0,}
—Card{(a,b) € (FX)?: @b’ (¢ — 1)2 = 0},

q

=0.
4 2 3
(q - 1) Zf X = Xtriv
Ts(s, (a,b)) = Z(E,E)e@‘;)? x(ac(gs(@, b)) if xluv = Xeriv
§5(avb)¢0
0 in other case,

\
where U = 1+ pOg.
Now, since that  is the multiplicative character induced by x in F,, we
have that

4 .
(q - 1)2 if X = Xtriv

- _ ~18( A\ 2 (D)o (78 (= 2 v v
I5(s,(a,b)) = Zlg?);(y_;liox @x*(b)x(@(@€—1)%)  if X = Xeriv

\0 all other cases.
and given that X = Xtriv and X|U = Xtriv 1mp11es X = Xtriv, We get
(q - 1)2 Zf X = Xtriv

75(57 (a,0)) = Y(EG(E - 1)2)(q - 1)2 if X* = Xtrivs X|U = Xtriv

L0, all other cases,

Finally, since that Iy = 23282 q 3770+ (s, (a,b)), then we conclude
that
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qflfs(1_q(2n71)(7175))(1_(171)2

T_g—1-s Zf X = Xtriv
e n —1—s(1_,2n—1)(—1—s) _—1\2 .
I5 = X(C6(C - 1)2)q L= Tq 1 J—g) ) Zf X2 = Xtrivs X|U = Xtriv
L0, all other cases.
(f) Is =g > [ x(ac go(z,y))|gs(x,y)|*|dwdyl.
0x2

Since that polynomial gs(z,y) = z'8(c+p?"y)°[(y(c—14+p?") 2+ 22 (c+p?"y)?],
we have gg(z,y) = 2'8yc®(c — 1) + 2208,
By using similar argument apply in previous cases we get

o _
%(a, B) = 28" 7cS9b(c — 1) + 10a2c?] % 0
x
and therefore,
Ig :q—2ns—2n—2 X((IC (gﬁ(a’ b) + pzl))|96<a7 b) + p21|s|dz1|7

where I = > @h)eE)? of x(ac (gs(a,b) + pz1))|gs(a, b) + pz1|°|dz |, then
K

we have
—s(1_—1 .
_ : (1(_1,111175);\72 Zf X = Xtriv
Tos =
0 all other cases,
where
Ny =Card{(a,b) € (F))*: gs(a,b) = 0},
=Card{(a,b) € (F))*: a'*bc’(c — 1)* + a*°¢* = 0},
and
( .
(g —1) = N if X = Xtriv
76 9 = Z(E,B)E(IF; )2 X(§6<a7 5)) Zf X|U = Xtriv
’ 76(@h)70
0 all other cases,

\
where U = 1 4 pOk.
Now, since that ¥ is the multiplicative character induced by x in [, we
have that
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( .
(q - 1>2 - N2 Zf X = Xtriv

76 2(s, (a, b)) = > (@,b)e(Fq)? Y(EBEQ(EEA‘(E - 1)2 + 52)) if X = Xtriv
' (bet (c—1)2+a2)#0

0 all other cases.
Give that ¥ = xuip and x|u = Xuiv 1S equivalent to x = Xyriv, We get
_ (q_1)2_N2+T3 Zf X = Xtriv
Iso =

0 all other cases,
where T3 = 3 gpemrye  X(@°@ (et (e —1)* +a%),

(be*(e—1)2+a%)#0

and since that Iy = ¢~ 2" 2"72(I(s, (a,b)) + (I6.2(s, (a,b)), we conclude

that
—s(1_,—1 .

q—n—2n5—2 (% + (q — 1)2 — N2 —+ T3> Zf X = Xtriv
[6 —

0 all other cases.

(8) Ir =330, a7 772 [ xlac gr(w,y))|dzdy|.
0x?

Since that polynomial g7(z,y) = z'*(c+p*1y)°[(p"7 > y(c — 1+ p/Ty)* +

2?(c + p’y)?], we have g7 (z,y) = 225

By using equation (A.1.1), so we obtain that,

=Y gt Y / y(ac gr(e.y))|dxdy

= @HEED? (a,b)+(pOx)?
=Y g [ e gata+ pab sy
Jj=2n (@,b)e(Fy)? 02

Now we apply the change variables (A.1.3) to function g; and since that

%_9967(5, b) = 20c*@*? # 0, we obtain that,

I; = Z Zq_3_j Z /X(ac (97((1’ b) + pzl))|dzl|7

yo#1,c(modp) j=0 @bEFy)? O

o

— Z q 27 (s, (a, b)),

j=2n
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where

I:(s, (a,b) = Z(a,é)g(]}?;)? [ x(ac (g7(a,b)+pz1))|dz1]|, then by Lemma

Ok

1.2.2 and given that

N = Card{(a,b) € (FX)*:g,(a,b) = 0} = Card{(a,b) € (F*)*} :a*c® = 0} =0,

I; =

q q

( 9 )
(q - 1) Zf X = Xtriv

> @pew;y: X(ac(g:(a, b)) if Xlo = Xwriv

0 all other cases,

with U = 1+ pOk.

Now,
have t

I =

Now since that X = x4 and x|y = Xeriv 1S equivalent to x = Xyriv, We get

that

since that % is the multiplicative character induced by x in F,, we

hat
” .
(q - 1)2 Zf X = Xtriv

Z(E,B)E(F;)Q Y20 (E)Y(ES) Zf X = Xtriv

\ 0 all other cases.

Y(ngq - 1)2 Zf X20 = Xtriv, X’U = Xtriv

LapeEz X (@x(@) =

0 all other cases.
Furthermore,
4 .
(¢ —1)° if X = Xtriv
77 = Y(ES)((] - 1)2 Zf X20 = Xtriv, X|U = Xtriv
\0 all other cases.
Now since that I; = 722, q 37725 ] (s, (a,b)), we obtain
(—1—2ns—2n — ;
g 'l — g if X = Xtriv
]7 - Y(EB)q7172n372n(1 - q71> Zf X20 = Xtriv, X|U = Xtriv

\ 0 all other cases.

Finally, since that

Z(s,9

X Ag) = 3000 oIS = N g S Lofor o= 1,1, 7,

then when x = X¢riv,
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—n—2ns—2—s 1— -1 N-
ZSgX,A5 Zq—Sn 18ns( ( q ) 1—|—(q—1>2—N1+T2)

(I—q')
—2n—2ns—2—s -1
—5n—18ns [ 4 1— q N.
+Zq5 a ( 1_q(_1_s : 2+(q—1)2—N2+T3)
o —1-2s(1 _ ,(n—1)(—1-2s) _ —1\2
—5n—18 q (1—gq J(1—q)
n=1

oo —1-s —2n—2ns —1)\2
—5n—18ns [ 4 — 49 (1 —q )
+Zq—5n—18ns (q—1<q _ 3)(1 _ q—l) + (1 _ q—l)(q—Qns—n—l))

+ Z q—5n—18ns(1 o q—l)(q—Qns—Qn—l)

Therefore,
Z(S o A5) _ q —6— 20sU( ) q—7—205U1<q—s)
o (I—g ')A =g 072%)  (1—g )1 —qg7%)

N (1 —q l) q —6—20s B (1 _ q—1)2q—6—208
(1—q 2)(1— g5 18)  (1—q 1=2)(1 — g 6-20)

N (1 _ q )2(q—6 193) (1 _ (]_1 2(q—7—205)
(1—q 5 18)(1—qg1=5)  (1—q 720)(1—q %)

(q—=3)1—qg g™ L= g g ™*)

(1 — q5-18%) (1 — ¢=6-209)
(=g (@)
(1= g 7-20%)

where Uo(q_s) = q_2_5(1 — q_l)Nl + T2<1 — q—l—s){(q — 1)2 — Nl}, with
Ny = Card{(a,b) € (F})2: @%b’ (1 — ©) + a2) = 0} and
18,72 =
=3 (@,b)e(F))2 x(@® (0 (1 —¢) +a?),
(6° (1—2)+a2)#0
where, Ui(q ™) = ¢ 2 5(1 — ¢ Y)Na + T5(1 — ¢ *){(¢ — 1)* — N»}, with
N, = Card{(a,b) € (F})?: a**bc‘(c — 1)? + a*’¢* = 0}
and
1872 =
T3 =3 @pewry X@S(0(1-70)+a%),
(b*(1-2)+a%)#0
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When x # Xuriv and X|14p0, = Xeriv We have several cases: if x* = xyriv, We
have

q—1—25(1 _ q(n—l)(—l—Zs))<1 _ q—1)2

Z(s,9,x, D) = Z g ex(1 o)

1 — q7172s
—1—s —2n—2ns —1\2
E —5n— 18ns q —q (1 —q )
+ q (C - 1)) 1 _ q_l—s
1— —1)2 ,—6—-20s 1— —-1}2 ,—6—20s
_x(1-2) ( q)q _x(1-7 (1-g¢')%q

(1— ¢ —2)(1 — ¢5-18%)
o i (1 )2 (g519%)
+x(@(€-1) >(1 g8 (1 — g1

(1— g 125)(1 — g 6-209)
I (1— g 1)2(g~72%)
R e

If x'® = X4riv, then

Z(s.9,x,85) = X' (%0 — 1)) Zq%n g g =3)(1—q )

n=1

_ (T (e (¢g—3)(1— qil)q*6*188
=X®" (o — 1)) ==y

Finally for x* = Yuriu, X|or = Xeries Where U = 14 pOx.

Z S " X?AE) Zq—fm 18TL8 _ q—l)(q—2ns—n—1)+
n=1

)
Zq 5n— 18ns _ q71>(q72n872n71)
=1

(g 1)(q*7 ) s (L= (@)
o (1 —q5- 20s) X(C ) (1 _ q—7—205)

Summarizing over all cones, we conclude that,
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When X = Xtriv-

—2—6s -1
_ 1y, 4 l—q
Z(S7 fa Xt?‘il)) = 2q 1(1 -9 1) + (1 _ —2—65) )

q—7—24s(1 _ q—1)2 N q—8—27s<1 _ q—1)2

+(1 — 20 (1 — g5 18s) (1 — g 39)(1 — g5 189)
+q73795<1 - qfl) N q7672OsUO(q75)
(I—g %)  (I—g ') —q02)
N q—7—205U1 (q—s) (1 _ q—1>2q—6—205
(1 _ qflfs)(l _ q777203) (1 _ q71725)(1 _ q757185)
- (1— g 1)2q 6205 (1— g~ 1)2(q~1%)
(1 _ q—1—2s>(1 _ q—6—203) (1 _ q—5—18s)(1 _ q—l—s)
L (=g (g =31 - gD
(1— ¢ 7205)(1 — g~ 1-%) (1 — g 5-185)
=g @) (1))
(1 — ¢=6-209) (1— 7209
where
Uo(q™) =¢ (1 — ¢~ )N + To(1 — ¢ ) {(¢ = 1)* = Nu},
Ny =Card{(a,b) € (F¥)*: @b’ (1 — ©) + a*) = 0},
L= Y  x@®a-o-+a),
(@b)e(Fq)?
(5° (1-0)+a%)£0
Furthermore,

Ur(q®) =¢ 2 5(1 —q YNy + T3(1 — ¢ ) {(q — 1)* = No},
N, =Card{(a,b) € (F;)* :a"*bc’(c — 1)* + a*¢* = 0},
L= )  x@®a-0o+a),

(@b)e(Fy)>2

(6° (1—2)+a2)#£0

X # Xtriv @0d X|14p0x = Xtriv We have several cases: if X? = Xtriv, We have
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(1 — g~1)2q=6-20s
(1—q 1 2)(1 — g o 189
o oo (1= g )2 (g51%)
+X((c—1) >(1 I (1= 1)
(1 _ q—1>2(q—7—208)
(1—g¢2)(1—q ')

Z(s,9,x) =X(1—7¢)

(1 _ q71)2q767205
(1 _ q—1—2s)(1 _ q—6—205)

+X(@ (- 1))

—X(1-79)

In the case where x® = Yiriv-

B . PR q—3—6‘s(1 o q—l) q—2—63<1 _ q—1)2
Z(s, f,x) = x(—¢) (q (1-q¢ )+ (1— ¢ 2°6) + (1 — q=2-69) )

) ()

If Xg = Xtriv-
—8—27s —1)\2
q (1-¢7)
Z Al —
(57 fa X5 ) (1 o q73—95)<1 _ q75718s>
—3-9s(1 _ o~ 1)2 —4—9s 1— gL
L4 (1—g¢ )+q ( q)+q4u_q4)

(1— ¢35 9%) (1— ¢—5%)
In the case where ¥ = 4o

(q—3)1—q H)g o'

Z(s,9,X,As5) =X(To (Yo — 1)) (1 — g—o—155)

Finally for ¥ = Yrio-

O e 0 [ ) Ay € [ )
Z(Saga X5 AB) - (1 _ q,6,208) - X(C ) (1 N q,7,205)

In all other cases, Z(s, f, x,4;) = 0.
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