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Overview

The local zeta functions over local fields, i.e. R,C,Qp,Fp((T )), are ubiquitous ob-
jects in mathematics and mathematical physics see e.g. [2, 5–7, 10, 12, 15, 18–20, 23,
27, 29, 31, 33–35, 37–39]. For instance these objects are deeply connected with string
and Feynman amplitudes. Let us mention that the works of Speer [29] and Bollini,
Giambiagi and González Domínguez [7] on regularization of Feynman amplitudes in
quantum field theory are based on the work of Gel’fand and Shilov [18] on the analytic
continuation of Archimedean local zeta functions. For connections with String theory
see e.g. [9] and the references therein. In the non-Archimedean setting, for instance
in the p-adic case, the local zeta functions are related to the number of polynomial
congruences mod pm and exponential sums mod pm. There are many intriguing conjec-
tures connecting the poles of non-Archimedean local zeta functions, with the topology
of complex singularities, see e.g. [12,14,16,17,20,26,28,31–33,36,38,39].

Let K be a non–Archimedean local field of arbitrary characteristic with valuation
v, let OK be its ring of integers with group of units O⇥

K
, let PK be the maximal

ideal in OK . We fix a uniformizer parameter p of OK . We assume that the residue
field of OK is Fq, the finite field with q elements. The absolute value for K is defined
by |z| := |z|K = q�v(z), and for z 2 K⇥, we define the angular component of z by
ac(z) = zp�v(z). We consider f(x, y) 2 OK [x, y] a non-constant polynomial and � a
character of O⇥

K
, that is, a continuous homomorphism from O⇥

K
to the unit circle,

considered as a subgroup of C⇥. When �(z) = 1 for any z 2 O⇥
K

, we will say that � is
the trivial character and it we denote it as �triv. We associate to these data the local
zeta function,

Z(s, f,�) :=

Z

O2
K

�(ac f(x, y)) |f(x, y)|s |dxdy|, s 2 C,

where Re(s) > 0, and |dxdy| denotes the Haar measure of (K2,+) normalized such
that the measure of O2

K
is one.

It is not difficult to see that Z(s, f,�) is holomorphic on the half plane Re(s) > 0.
Furthermore, in the case of characteristic zero, Igusa [21] and Denef [11] proved that
Z(s, f,�) is a rational function of q�s, for an arbitrary polynomial in several variables.
When char(K) > 0, new techniques are needed since there is no a general theorem
of resolution of singularities, nor an equivalent method of p- adic cell decomposition.
In [22] Igusa introduced the stationary phase formula (SPF) and conjectured that by
using it, the rationality of the local zeta functions can be established in arbitrary
characteristic. This conjecture has been verified in several cases, see e.g. [24,28,38] an
the references therein.

A considerable advance in the study of local zeta functions in arbitrary characteristic
has been obtained for a large class of polynomials which satisfy a non–degeneracy con-
dition. Roughly speaking, the idea is to attach a Newton polyhedron to the polynomial
f and then define a non degeneracy condition with respect to the Newton polyhedron.
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Then one may construct a toric variety associated to the Newton polyhedron, and
use toric resolution of singularities in order to establish a meromorphic continuation
of Z(s, f,�), see e.g. [2, 26] for a good discussion about the Newton polyhedra tech-
nique in the study of local zeta functions. The first use of this approach was pioneered
by Varchenko [30] in the Archimedean case. After Varchenko’s article, several authors
have been used his methods to study local zeta functions, oscillatory integrals, and
exponential sums, see for instance [13,14,25,26,28,33,38] and the references therein.

In this dissertation we study local zeta functions for arithmetically non-degenerate
polynomials. In [28] Saia and Zúñiga-Galindo introduced the notion of arithmetically
non–degeneracy for polynomials in two variables, this notion is weaker than the classi-
cal notion of non–degeneracy due to Kouchnirenko, see e.g. [2]. They used this notion
to study local zeta functions Z(s, f,�triv) when f is an arithmetically non–degenerate
polynomial with coefficients in a non–Archimedean local field of arbitrary characteris-
tic. They established the existence of a meromorphic continuation for Z(s, f,�triv) as a
rational function of q�s, and gave an explicit list of candidate poles for Z(s, f,�triv) in
terms of a family of arithmetic Newton polygons which are associated with f . In this
dissertation, we extend the results of Saia and Zúñiga-Galindo to twisted local zeta
function Z(s, f,�), for � arbitrary, and f a polynomial in two variables with coeffi-
cients in a local field of arbitrary characteristic which is non-degenerate in the sense of
Saia and Zúñiga-Galindo.

By using the techniques of [28] we obtain an explicit list of candidate poles of
Z(s, f,�) in terms of the equations of the straight segments defining the boundaries of
the arithmetic Newton polygon attached to f .

The following result describes the poles of the meromorphic continuation of Z(s, f,�)
for arbitrary �:

Theorem 2.5.1 Let f(x, y) 2 K[x, y] be a non-constant polynomial. If f(x, y)
is arithmetically non-degenerate with respect to its arithmetic Newton polygon �A(f),
then the real parts of the poles of Z(s, f,�) belong to the set

{�1} [ P(�geom(f)) [ P(�A(f)).

In addition Z(s, f,�) vanishes for almost all �.

The main contribution of this dissertation is the study of the exponential sums
mod pm attached to arithmetically non-degenerate polynomials. Exponential sums
mod pm have been studied intensively, see e.g. [3, 4, 14, 16,38].

By fixing an additive character  : K ! C, exponential sums mod pm can written
as

E(z, f) =

Z

O2
K

 (zf(x, y)) |dx dy|,

where z = pmu, u 2 O⇥
K
. A central problem consists in describing the asymptotic

behavior of E(z, f) as |z| ! 1. Our main result about exponential sums mod pm for
arithmetically non-degenerate polynomials is the following:
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Theorem 3.1.1 Let f(x, y) 2 K[x, y] be a non constant polynomial which is

arithmetically modulo p non–degenerate with respect to its arithmetic Newton polygon.

Assume that Cf ⇢ f�1(0) and assume all the notation introduced previously. Then the

following assertions hold.

1. For |z| big enough, E(z, f) is a finite linear combination of functions of the form

�(ac z)|z|�(log
q
|z|)j� ,

with coefficients independent of z, and � 2 C a pole of Z(s, f,�) (with �|1+pOK =
�triv) or (1� q�s�1)Z(s, f,�triv), where

j� =

(
0 if � is a simple pole

0, 1 if � is a double pole.

Moreover all the poles � appear effectively in this linear combination.

2. Assume that � := max{��geom , ��A
✓
} > �1. Then for |z| > 1, there exist a positive

constant C(K), such that

|E(z, f)| 6 C(K)|z|� log
q
|z|.

The results presented in this dissertation will be published in an article written in
collaboration with Dr. Edwin León-Cardenal in the Journal de Théorie des Nombres
de Bordeaux. I am very grateful to professor Wilson A. Zúñiga-Galindo for suggesting
me the thematic for this dissertation and for your kind guiding during whole process
of writing this work.

After the completion of this work, a natural problem consists in extending the
results presented here to the case of polynomials in an arbitrary number of variables.

This dissertation is organized as follows. In Chapter 1, we review some basic facts
about local zeta functions and exponential sums mod pm. We also review Igusa’s
stationary phase formula, which will be used along this dissertation. In Chapter 2, we
prove Theorem 2.5.1 and give some examples. The full calculation of these examples is
very long, for this reason in Chapter 2 we only sketch these calculations. The complete
calculations are presented in Appendices, A and B. In Chapter 3, we prove Theorem
3.1.1
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Chapter 1

Preliminaries

For the sake of completeness, we review some basic concepts about the theory
of local zeta functions on non-Archimedean fields of arbitrary characteristic, see 1.1,
we also make a brief presentation of Igusa’s stationary phase formula as in [38], in
section 1.2.2 we review the basic aspects of exponential sums mod pm defined over
non–Archimedean local fields, finally we present an explicit formula for Z(s, f,�) for
polynomials that are non-degenerate with respect to their Newton polyhedron, see
sections 1.3, 1.3.1 and 1.3.2.

1.1 Local Zeta Functions

Let K be a non–Archimedean local field, which is a locally compact topological
field with respect to a non-discrete topology. By a well-known theorem, see e.g. [34], a
such field is isomorphic (as topological field) to a finite extension of the field of p-adic
numbers Qp, or isomorphic to a finite extension of Fp((T )), the field of formal Laurent
series with coefficients in a finite field Fp. Let | · |K := | · | be the absolute value of K (K
is a complete metric space for the distance induced by | · |). Let OK be the valuation
ring of K which is

OK = {x 2 K; |x| 6 1}.

Let PK the unique maximal ideal of OK , this is a principal ideal, we fix a generator p,
which is also called a uniformizer parameter of OK . The quotient field OK/PK is called
the residue field of K, and it is the finite field of cardinality q = pe, p prime number.
The group of units of OK is O⇥

K
= {x 2 OK : |x| = 1}. We will assume that | · | is a

normalized absolute value, which means that |x| = q�v(x), where v(x) 2 Z [ {1} is a
valuation on K. The canonical mapping OK ! OK/PK

⇠= Fq is called the reduction
mod p. We denote by RK a fixed set of representatives of Fq in OK . Then every element
x of K \ {0} can be represented as a convergent series with respect to | · | as follows:

x = pm0

1X

m=0

amp
m, am 2 RK , a0 6= 0,

1



Preliminaries 2

where m0 = v(x).

Example 1.1.1. The field of p-adic numbers Qp is defined as the completion of the

field of rational numbers with respect to the p- adic norm | · |p, which is defined as

|x|p =
(
0 if x = 0

p�r
if x = pr a

b
,

where a and b are integers co-prime with p.

The group (Kn,+) is locally compact group, where Kn is endowed with the product
topology. We denote by |dx| = |dx1 · · · dxn| the Haar measure on (Kn,+) normalized
so that

R
On

K
|dx| = 1. A quasicharacter of K⇥ is a continuous homomorphism ! :

K⇥ ! C⇥. The set of quasicharacters, that we will denote by ⌦ (K⇥), has an Abelian
group structure, and to a given complex number s we may associate a quasicharacter
!s 2 ⌦ (K⇥) by setting !s (x) = |x|s

K
. Once we pick ! (p) = q�s, for every ! 2 ⌦ (K⇥),

one has
! (x) = !s (x)� (ac x) , (1.1.1)

where � := ! |
O

⇥
K
, is a group homomorphism with finite image. Put formally �(0) = 0.

For z 2 K, we define the angular component of z by ac(z) = zp�v(z). Equation (1.1.1)
shows that

⌦
�
K⇥� ' C/

�
2⇡

p
�1/ ln q

�
⇥
�
O⇥

K

�⇤
,

where
�
O⇥

K

�⇤ is the group of characters of O⇥
K

; therefore ⌦ (K⇥) is a one dimen-
sional complex manifold. Note that � (!) := Re(s) depends only on !, and |! (x)|C =
!�(!) (x), thus it makes sense to define the following open subset of ⌦ (K⇥) ,

⌦(a,b)

�
K⇥� =

�
! 2 ⌦

�
K⇥� ; � (!) 2 (a, b) ✓ R

 
.

Then the local zeta functions Z(s, f,�) of f and � is defined by the integral

Z(s, f,�) =

Z

On
K

�(ac f(x)) |f(x)|s |dx|,

for s 2 C satisfying Re(s) > 0. In the case in which � is the trivial character we
simply write Z(s, f). The local zeta functions admit a meromorphic continuation to
the complex plane as rational functions of q�s, see [23, Theorem 8.2.1].

1.1.1 Poincaré Series
Let f(x) 2 OK [x1, · · · , xn] be a non-constant polynomial. A classical problem in

number theory consists in studying the number of solutions of polynomial congruences
f(x) ⌘ 0 (mod Pm

K
), more precisely, to study the behavior of the numbers

Nm := #{x 2 (OK/P
m

K
)n; f(x) ⌘ 0 (mod Pm

K
)},

1.1. Local Zeta Functions
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with N0 = 1, as m tends to infinity. To study this problem one introduces the Poincare
series

P (t) =
X

m>0

Nmq
�mntm, t 2 C,

with |t| < 1. The following formula established a relation between P (t) and certain
local zeta functions

P (t) =
1� tZ(s, f)

1� t
, t = q�s,

with Re(s) > 0, where

Z(s, f) =

Z

On
K

|f(x)|s |dx|,

see [23, Theorem 8.2.2]. This formula shows that the local zeta functions have arith-
metical nature. In [8], Borevich and Shafaverich conjectured in the 60’s, that in the case
of characteristic zero, that P (t) is a rational function. This conjecture was established
by Igusa in the middle of the 70’s as a Corollary of the following Theorem:

Theorem 1.1.1 ([23, Theorem 8.2.1]). Let K be a local field of characteristic zero.

Let f(x) be a non-constant polynomial in K[[x1, · · · , xn]]. There exist a finite number

of pairs (NE, ⌫E) 2 (N \ {0})⇥ (N \ {0}), E 2 T, such that

Y

E2T

(1� q⌫E�sNE)Z(s, f)

is a polynomial in q�s
with rational coefficients.

1.2 Some Technical Results

In this section, we summarized some results of [23], that will be used later on.

Lemma 1.2.1 ([23, Lemma 8.2.1]). Take a 2 OK, � a character of O⇥
K
, e 2 N. Then

Z

a+peOK

�(ac(x))N |x|sN+n�1 dx

=

8
><

>:

(1�q
�1)q�en�eNs

1�q�n�Ns if a 2 peOK ,�N = �triv

q�e�(ac(a))N |a|sN+n�1
if a /2 peOK ,�N |1+pea�1OK

= �triv

0 all other cases.

Proof. The proof of the lemma is an easy variation of the one given in [23].

The next result is an easy consequence of Lemma 1.2.1 and will be used frequently
in the following sections.

1.2. Some Technical Results
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Lemma 1.2.2. Take h(x, y) 2 OK [x, y], then

X

(x0,y0)2(Fq
⇥)2

Z

OK

�(ac (h(x0, y0) + pz)) |h(x0, y0) + pz|s |dz|

equals 8
>>>>>>>>><

>>>>>>>>>:

q
�s(1�q

�1)N
(1�q�1�s) + (q � 1)2 �N if � = �triv

P

(x0,y0)2(Fq
⇥)2

h(x0,y0) 6=0

�(ac(h(x0, y0))) if � 6= �triv and �|U = �triv

0 all other cases,

where N = Card{(x0, y0) 2 (Fq
⇥)2 | h(x0, y0) = 0}, and U = 1 + pOK.

Proof. We have that

X

(x0,y0)2(Fq
⇥)2

Z

OK

�(ac (h(x0, y0) + pz)) |h(x0, y0) + pz|s |dz|

=
X

(x0,y0)2(Fq
⇥)2

h(x0,y0)=0

Z

OK

�(ac (h(x0, y0) + pz)) |h(x0, y0) + pz|s |dz|

+
X

(x0,y0)2(Fq
⇥)2

h(x0,y0) 6=0

Z

OK

�(ac (h(x0, y0) + pz)) |h(x0, y0) + pz|s |dz|.

(1.2.1)

By Lemma 1.2.1 the first sum in the right hand side of (1.2.1) is equal to
Z

OK

�

✓
ac

✓
h(x0, y0)

p
+ z

◆◆
|dz| =

X

(x0,y0)2(Fq
⇥)2

Z

h(x0,y0)
p +OK

�(ac (z) |dz|,

=

(
q
�s(1�q

�1)N
(1�q�1�s) if � = �triv

0 all other cases.

1.2. Some Technical Results
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Now, for the second sum in the right hand side of (1.2.1), we have

X

(x0,y0)2(Fq
⇥)2

h(x0,y0) 6=0

Z

OK

�(ac (h(x0, y0) + pz)) |h(x0, y0) + pz|s |dz|

=
X

(x0,y0)2(Fq
⇥)2

h(x0,y0) 6=0

Z

h(x0,y0)+pOK

�(ac w)|dw|,

=

8
>>>>>><

>>>>>>:

(q � 1)2 �N if � = �trivP

(x0,y0)2(Fq
⇥)2

h(x0,y0) 6=0

�(ac(h(x0, y0))) if � 6= �triv and �|U = �triv

0 all other cases.

where N = Card{(x0, y0) 2 (Fq
⇥)2 | h(x0, y0) = 0}, and U = 1 + pOK .

1.2.1 Igusa’s stationary phase formula
There is an interactive procedure that allows in many cases to calculate the local

zeta functions in an explicit way. We recall here the stationary phase formula. Let c�
be the conductor of a character � of O⇥n

K
is defined as the smallest c 2 N \ {0} such

that � is trivial on 1 + pcOK .
Denote by x̄ the reduction mod p of x 2 OK , we denote by f(x) the reduction of

the coefficients of f(x) 2 OK [x] (we assume that not all of the coefficients of f are in
PK). We fix a set of representatives R of Fq in OK , that is, Rn is mapped bijectively
onto Fn

q
by the canonical homomorphism On

K
! (OK/PK)

n ' Fn

q
. Now take T ✓ Fn

q

and denote by T its preimage under the aforementioned homomorphism, we denote by
ST (f) the subset of Rn mapped bijectively to the set of singular points of f in T . We
define also

⌫T (f̄ ,�) :=

8
>><

>>:

q�nCard{t 2 T | f̄(t) 6= 0} if � = �triv

q�nc�
P

{t2T |f̄(t̄) 6=0} mod P
c�

�(ac (f(t))) if � 6= �triv,

and

�T (f̄ ,�) :=

(
q�nCard{t 2 T | t̄ is a non singular root of f̄} if � = �triv

0 if � 6= �triv.

Denote by ZT (s, f,�) the integral
R

T

�(ac f(x)) |f(x)|s |dx|.

1.2. Some Technical Results
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Lemma 1.2.3 ([38, Igusa’s Stationary Phase Formula]). With all the notation above

we have

ZT (s, f,�) = ⌫T (f,�) + �T (f,�)
(1� q�1)q�s

(1� q�1�s)

+

Z

ST (f)

�(ac f(x)) |f(x)|s |dx|,

where Re(s) > 0.

Lemma 1.2.4 ([38, [Lemma 2.4]). Let T ✓ On

K
be the preimage under the canonical

homomorphism OK ! OK/PK of a subset T ✓ Fn

q
. Let f(x) 2 OK [x] be a polynomial

such that Sing
f
(K) \ T = ;, then

Z

T

�(ac f(x)) |f(x)|s |dx| =

8
><

>:

L1(q�s)
1�q�1 q�s if � = �triv,

L2(q�s) if � 6= �triv,

where L1(q�s), L2(q�s) 2 Q[q�s].

We now show the stationary phase formula gives a small set of candidates for the
poles of Z(s, f,�) in terms of the Newton polyhedron �geom(f), see [38].

Theorem 1.2.1 ([38, [Theorem A]). Let K be a non-Archimedean local field, and

let f(x) 2 OK [x] be a polynomial globally non-degenerate with respect to its Newton

polyhedron �geom(f). Then the Igusa local zeta functions Z(s, f,�) is a rational function

of q�s
satisfying:

1. if s is a pole of Z(s, f,�), then

s = � |a�|
m(a�)

+
2⇡

log q

k

m(a�)
, k 2 Z

for some facet � of �geom(f) with perpendicular a�, and m(a�) 6= 0, or

s = �1 +
2⇡

log q
k, k 2 Z;

2. if � 6= �triv and the order of � does not divide any m(a�) 6= 0, where � is a facet

of �geom(f), then Z(s, f,�) is a polynomial in q�s
, and its degree is bounded by

a constant independent of �.

Now we might mention the following result, which is essential for to obtain asymp-
totic expansions for exponential sums attached to certain polynomials, as we will see
in Chapter 2.

We recall here that the critical set of f is defined as

Cf := Cf (K) = {(x, y) 2 K2 | rf(x, y) = 0}.

1.2. Some Technical Results
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Theorem 1.2.2 ([23, [Lemma 8.4.1]). Assume that char(K) = 0 and Cf is contained

in f�1(0). Then there exists e > 0 in N, such that Z(s, f,�) = 0 unless c� 6 e , for

� = !|
O

⇥
K
.

1.2.2 Exponential Sums mod pm

We recall that for a given z =
P1

n=n0
znpn 2 Qp, with zn 2 {0, . . . , p � 1} and

zn0 6= 0, the fractional part of z is

{z}p :=
(
0 if n0 � 0
P�1

n=n0
znpn if n0 < 0.

Then for z 2 Qp, exp(2⇡
p
�1 {z}

p
), is an additive character on Qp, which is trivial on

Zp but not on p�1Zp.
If TrK/Qp(·) denotes the trace function of the extension, then there exists an integer

d � 0 such that TrK/Qp(z) 2 Zp for |z|  qd but TrK/Qp(z0) /2 Zp for some z0 with
|z0| = qd+1. d is known as the exponent of the different of K/Qp and by, e.g. [34, Chap.
VIII, Corollary of Proposition 1] d � e� 1, where e is the ramification index of K/Qp.
For z 2 K, the additive character

{(z) = exp(2⇡
p
�1
�
TrK/Qp(p

�dz)
 
p
),

is a standard character of K, i.e. { is trivial on OK but not on p�1OK . In our case, it
is more convenient to use

 (z) = exp(2⇡
p
�1
�
TrK/Qp(z)

 
p
),

instead of {(·), since we will use Denef’s approach for estimating exponential sums,
see Proposition (3.1.1) below.

Now, let K be a local field of characteristic p > 0, i.e. K = Fq((T )). Take

z(T ) =
1X

i=n0

ziT
i 2 K,

we define Res(z(T )) := z�1. Then one may see that

 (z(T )) := exp(2⇡
p
�1 TrFq/Fp(Res(z(T )))),

is a standard additive character on K.
Fixing an additive character  : K ! C, the exponential sums mod pm attached

to f is defined as
E(z, f) =

Z

On
K

 (zf(x)) |dx|,

1.2. Some Technical Results
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where z = p�mu, u 2 O⇥
K

.
Notice that

Z

On
K

 (zf(x)) |dx| =
X

x̃2(OK/Pm
K )n

q�mn  (zf(x̃)) |dx|.

A central mathematical problem consists in describing the asymptotic behavior of
E(z, f) as |z| ! 1.

We denote by CoefftkZ(s, f,�) the coefficient ck in the power series expansion of
Z(s, f,�) in the variable t = q�s.

Proposition 1.2.1 ([12, Proposition 1.4.4]). Let u 2 O⇥
K

and m 2 Z Then E(up�m)
equals

Z(0,�triv) + Coeff
tm�1

(t� q)Z(s,�triv)

(q � 1)(1� t)
+
X

� 6=�triv

g��1�(u)Coeff
tm�c(�)Z(s,�),

where c(�) denotes the conductor of �, i.e. the smallest c > 1 such that � is trivial on

1 + P c

K
and g� is the Gaussian sum

g� = (q � 1)�1q1�c(�)
X

x2(OK/P
c(�)
K )⇥

�(v)  (v/pc(�)).

1.3 Newton’s polyhedron and non-degeneracy condi-

tions

There exists a generic class of polynomials named non-degenerated with respect to its

Newton Polyhedron for which is possible to give a small set of candidates for the poles
of Z(s, f). For sake of completeness, we review some basic notions well known about
Newton polyhedron and non-degenerated polynomials, see e.g [14], for this reason we
do not give proofs.

Definition 1.3.1. Given a non-constant polynomial f(x) =
P
l

alxl 2 K[x], for x =

(x1, · · · xn), satisfying f(0) = 0, we define the support of f as: Supp(f) = {l 2 Nn; al 6=
0}, and Newton polyhedron �geom(f) of f as:

�geom(f) := ConvexHull{
[

l2Supp(f)

(l + Rn

>0)}.

A face of �geom(f) of codimension 1 is named a facet. Each facet is lying on an
affine hyperplane of the form

P
i

ai,jxi = m(aj), where aj is a vector whose coordinates

are positive integers. Note that each proper face ⌧ of �geom(f) is the finite intersection
of the facets of �geom(f) which contain ⌧ .

We set h·i for the usual inner product in Rn and identify the dual vector space with
Rn.

1.3. Newton’s polyhedron and non-degeneracy conditions
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Definition 1.3.2. For a 2 (R)n, we define m(a) = inf
x2�geom(f)

{ha ·xi} and the first meet

locus of a as

F (a) = {x 2 �geom(f)|ha · xi = m(a)},

where a ·x denotes the scalar product
P

n

i
aixi

of a = (a1, · · · , an) and x = (x1, · · · , xn).

Now we define an equivalence relation on (R)n by a ⇠ a0 if only if F (a) = F (a0). In
particular F (0) = �geom(f) and F (a) is a proper face of �geom(f), if a 6= 0. Moreover
F (a) is a compact face iff a 2 (R+)n . A vector a 2 Rn is called primitive if the
components of a are integers whose greatest common divisor is one. Furthermore for
every facet of �geom(f) there exist a unique primitive vector in Nn \ {0}, which is
perpendicular to that facet.

We will first give a selection of some definitions and properties of a polyhedral
subdivision of Rn.

If ⌧ is a face of �geom(f), we define the cone associated to ⌧ as �⌧ = {a 2
(R+)n| F (a) = ⌧}. Let �1, · · · , �n are the facets of �geom(f) containing ⌧ , and let
a1, · · · , an be the orthogonal vectors to �1, · · · , �n respectively. Then one proves that
R>0\{(0, · · · , 0)} is the disjoint union of the�⌧ = {�a1+· · ·+�an | �1, · · · ,�n 2 R>0},
and its dimension is equal to n � dim ⌧ . This gives the geometry of the other equiv-
alence classes �⌧ . It is well-known that the closure of � , � := {a 2 (R+)n : F (a) �
⌧} = {�1a1 + · · ·+ �eae : �i 2 R,�i > 0}.

Definition 1.3.3. If a1, · · · , ae 2 Rn\{0}, we call {�1a1+· · ·+�eae : �i 2 R,�i > 0}the
cone strictly positively spanned by the vectors a1, · · · , ae. Suppose a cone � is strictly

positively spanned by vectors a1, · · · , ae 2 Rn\{0}. If a1, · · · , ae are linearly independent

over R,� is called a simplicial cone. If moreover a1, · · · , ae 2 Zn, we say � is a rational

simplicial cone. If {a1, · · · , ae} is a subset of a basis of the Z- module Zn
, we call � a

simple cone.

Remark 1.3.1. 1. One can partition the cone �⌧ associated to ⌧ into a finite num-

ber of rational simplicial cones such that each �i is spanned by vectors from the

set {a1, · · · , ae}, without introducing new rays.

2. One can even find a partition of �⌧ into simple cones, but general it will then be

necessary to introduce new generators.

Summarizing given a polynomial f(x) 2 K[x], f(0) = 0, with Newton polyhedron
�geom(f), there exists a finite partition of Rn

+ of the form:

Rn

+ = {(0, · · · 0)} [
[

i

�i,

where each �i is a simplicial cone contained in an equivalence class of '. Moreover,
by Remark 1.3.1, it is possible to refine this partition in such a way that each �i is a
simple cone contained in an equivalence class of '.

1.3. Newton’s polyhedron and non-degeneracy conditions
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Once we have a simplicial conical subdivision subordinated to �geom(f), it is possible
to reduce the computation of Z(s, f,�) to integrals over the cones in �⌧ . In order to do
that let f(x) 2 K[x] be a non-constant polynomial satisfying f(0) = 0, and let �geom(f)
be its Newton polyhedron . We fix a simplicial conical subdivision {�⌧}�⇢�geom(f) of
Rn

+ subordinated to �geom(f), we set

E�⌧ := {(x1, · · · , xn) 2 On

K
| (v(x1), · · · , v(xn)) 2 ��},

Z(s, f,�,�⌧ ) :=

Z

E�⌧

�(ac f(x))|f(x)|s |dx|, and

Z(s, f,�, O⇥n

K
) :=

Z

O
⇥n
K

�(ac f(x))|f(x)|s |dx|.

Therefore we have that,

Z(s, f,�) = Z(s, f,�, O⇥n

K
) +

X

⌧⇢�geom(f)

Z(s, f,�,�⌧ ). (1.3.1)

A non-constant polynomial f , satisfying f(0) = 0, is called non-degenerated with

respect to its Newton polyhedron �geom(f) in the sense of Kouchnirenko, if for each
compact face ⌧ ⇢ �geom, the face function is the polynomial f⌧ (x) =

P
l2⌧

alxl, satisfies

the system of equations

f⌧ (x1, · · · , xn) =
@f⌧
@x1

=
@f⌧
@x2

= · · · = @f⌧
@xn

= 0,

has no solution in (K \ {0})n. We say that f is non-degenerated over Fq if not any of
the polynomials f and f⌧ , with ⌧ a face of �geom(f), has a singularity in (F⇥

q
)n.

1.3.1 Example
The following examples correspond to polynomials with coefficients in K.

Example 1.3.1. Let f(x, y) = (y3 � x2)2 + x4y4. We assume that the characteristic of

the residue field of K is different from 2. Note that, the support of f(x, y) is given for

Supp(f) = {(4, 0), (2, 3), (4, 4), (0, 6)}, the origin of K2
is its only singular point, and

this polynomial is degenerate with respect to �geom(f).
Now, the conical subdivision of R2

+ subordinated to the geometric Newton polygon

of f(x, y) is R2
+ = {(0, 0)} [

S9
j=1�j, where the �j are in Table 1.1.

1.3.2 An explicit formula for Z(s, f,�)

In the following theorem in [14], there is another proof of the fact that Z(s, f,�) is
a rational function of q�s. Summarizing, the authors provide a formula for Z(s, f,�)
that holds if f is non-degenerated over Fq with respect to all the faces of its Newton
polyhedron and if the conductor c� of � is equal to 1.

1.3. Newton’s polyhedron and non-degeneracy conditions
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(0, 6)

(2, 3)

(4, 0)

(4, 4)

(a)

�1,3
�3,5

�5,7

�7,9

(b)

Figure 1.1: (a) �geom((y3 � x2)2 + x4y4). (b) Conical partition of R2
+ induced by it.

Cone Generators
�1,3 (0, 1)R+ \ {0}+ (1, 1)R+ \ {0}
�3,5 (1, 1)R+ \ {0}+ (3, 2)R+ \ {0}
�5,7 (3, 2)R+ \ {0}+ (2, 1)R+ \ {0}
�7,9 (2, 1)R+ \ {0}+ (1, 0)R+ \ {0}

Table 1.1: Conical subdivision of R2
+ \ {(0, 0)}.

Theorem 1.3.1. [14] Let p be prime number. Let f be like in definition 1.3.1. Suppose

that f is non-degenerated over the finite field Fq with respect to all the faces of its

Newton polyhedron �geom(f). Let � be a character of Z⇥
p

with conductor c� = 1. Denote

for each face ⌧ of �geom(f) by N⌧ the number of elements in the set

{a 2 (Fq)
n | f

⌧
(a) = 0}.

Let s be a complex variable with Re(s) > 0. Then Z(s, f,�) =
P

⌧2�geom(f)

L⌧S�⌧ , with

L⌧ =

8
<

:

q�n((q � 1)n � qN⌧

q
s�1

qs+1�1) for � = �triv,

q�n
P

a2(F⇥
q )n

�(f⌧ (a)) for � 6= �triv,

and S�⌧ =
P

k2Nn\�⌧

q��(k)�m(k)s,
for each face ⌧ of �geom(f) (including ⌧ = �geom(f)),

with �(k) = k1, · · · , kn, and m(k) as in defintion 1.3.2.

We have S��geom(f)
= 1 and the other S�⌧ , can be calculated as follows. Take a

partition of the cone �⌧ associated to the proper face ⌧ into rational simplicial cones

�i. Then clearly S�⌧ =
P

i
S�, where the summation is over the rational simplicial

1.3. Newton’s polyhedron and non-degeneracy conditions
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cones �i and

S�i =
X

k2Nn\�i

q�(k)�m(k)s.

Let �i be the cone strictly positively spanned by the linearly independent vectors a1, · · · , ar 2
N\{0}. Then

S�i =

P
h

q�(h)+m(h)s

(q�(a1)+m(a1)s � 1) · · · (q�(ar)+m(ar)s � 1)
,

where h runs through the elements of the set

Zn \
(

rX

j=1

�jaj | 0 6 �j < 1, for j = 1, · · · , r
)
.

Remark 1.3.2. 1. Clearly S�⌧ is a rational function in q�s
for s 2 C and this does

not depend on the Newton polyhedron of f .

2. Note that L⌧ is depend on the specific coefficients of the polynomial f and is a

rational function in q�s
for s 2 C.

1.3. Newton’s polyhedron and non-degeneracy conditions



Chapter 2

Igusa’s Local Zeta Functions for

Arithmetically Non Degenerate

Polynomials

In this chapter we study the twisted local zeta function associated to a polynomial
in two variables with coefficients in a non–Archimedean local field of arbitrary charac-
teristic. Under the hypothesis that the polynomial is arithmetically non degenerate, we
obtain an explicit list of candidates for the poles in terms of geometric data obtained
from a family of arithmetic Newton polygons attached to the polynomial, see Theorem
2.4.1. The notion of arithmetical non degeneracy due to Saia and Zúñiga-Galindo is
weaker than the usual notion of non degeneracy due to Kouchnirenko, see Section 2.2.
This chapter is an extended version of the results in [1].

2.1 Arithmetic Newton Polygons and Non-Degenera-

cy Conditions.

2.1.1 Semi–quasihomogeneous polynomials
Let L be a field, and a, b two coprime positive integers. A polynomial f(x, y) 2

L[x, y] is called quasihomogeneous with respect to the weight (a, b) if it has the form

f(x, y) = cxuyv
lY

i=1

(ya � ↵ix
b)ei , c 2 L⇥

. Note that such a polynomial satisfies f(tax, tby) = tdf(x, y), for every t 2 L⇥, and
thus this definition of quasihomogeneity coincides with the standard one after a finite
extension of L. The integer d is called the weighted degree of f(x, y) with respect to
(a, b).

13
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A polynomial f(x, y) is called semi–quasihomogeneous with respect to the weight
(a, b) when

f(x, y) =

lfX

j=0

fj(x, y), (2.1.1)

and the fj(x, y) are quasihomogeneous polynomials of degree dj with respect to (a, b),
and d0 < d1 < · · · < dlf . The polynomial f0(x, y) is called the quasihomogeneous

tangent cone of f(x, y).
We set

fj(x, y) := cjx
ujyvj

ljY

i=1

(ya � ↵i,jx
b)ei,j , cj 2 L⇥.

We assume that dj is the weighted degree of fj(x, y) with respect to (a, b), thus

dj := ab

0

@
ljX

i=1

ei,j

1

A+ auj + bvj.

Now, let f(x, y) 2 L[x, y] be a semi-quasihomogeneous polynomial of the form
(2.1.1), and take ✓ 2 L⇥ a fixed root of f0(1, ya). We put ej,✓ for the multiplicity of ✓
as a root of fj(1, ya). To each fj(x, y) we associate a straight line of the form

wj,✓(z) := (dj � d0) + ej,✓z, j = 0, 1, · · · , lf ,

where z is a real variable.

Definition 2.1.1. 1. The arithmetic Newton polygon �f,✓ of f(x, y) at ✓ is

�f,✓ = {(z, w) 2 R2
+ | w 6 min

06j6lf

{wj,✓(z)}}.

2. The arithmetic Newton polygon �A(f) of f(x, y) is defined as the family

�A(f) = {�f,✓ | ✓ 2 L⇥, f0(1, ✓
a) = 0}.

If Q = (0, 0) or if Q is a point of the topological boundary of �f,✓ which is the
intersection point of at least two different straight lines wj,✓(z), then we say that Q is a
vertex of �A(f). The boundary of �f,✓ is formed by r straight segments, a half–line, and
the non–negative part of the horizontal axis of the (w, z)�plane. Let Qk, k = 0, 1, · · · , r
denote the vertices of the topological boundary of �f,✓, with Q0 := (0, 0). Then the
equation of the straight segment between Qk�1 and Qk is

wk,✓(z) = (Dk � d0) + "kz, k = 1, 2, · · · , r. (2.1.2)

2.1. Arithmetic Newton Polygons and Non-Degeneracy Conditions.
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The equation of the half–line starting at Qr is,

wr+1,✓(z) = (Dr+1 � d0) + "r+1z. (2.1.3)

Therefore
Qk = (⌧k, (Dk � d0) + "k⌧k), k = 1, 2, · · · r, (2.1.4)

where ⌧k := (Dk+1�Dk)
"k�"k+1

> 0, k = 1, 2, · · · r. Note that Dk = djk and "k = ejk,✓, for
some index jk 2 {1, . . . , lj}. In particular, D1 = d0, "1 = e0,✓, and the first equation
is w1,✓(z) = "1z. If Q is a vertex of the boundary of �f,✓, the face function is the
polynomial

fQ(x, y) :=
X

wj,✓(Q)=0

fj(x, y), (2.1.5)

where wj,✓(z) is the straight line corresponding to fj(x, y).

Definition 2.1.2. 1. A semi-quasihomogeneous polynomial f(x, y) 2 L[x, y] is

called arithmetically non-degenerate modulo p with respect to �f,✓ at ✓, if the

following conditions holds.

(a) The origin of F2
q

is a singular point of f , i.e. f(0, 0) = rf(0, 0) = 0;

(b) f(x, y) does not have singular points on (F⇥
q
)2;

(c) for any vertex Q 6= Q0 of the boundary of �f,✓, the system of equations

fQ(x, y) =
@fQ
@x

(x, y) =
@fQ
@y

(x, y) = 0,

has no solutions on (F⇥
q
)2.

2. If a semi–quasihomogeneous polynomial f(x, y) 2 L[x, y] is arithmetically non-

degenerate with respect to �f,✓, for each ✓ 2 L⇥
satisfying f0(1, ya) = 0, then

f(x, y) is called arithmetically non-degenerate with respect to �A(f).

2.2 Arithmetically non-degenerate polynomials

Let a� = (a1(�), a2(�)) be the normal vector of a fixed edge � of �geom(f). It is well
known that f(x, y) is a semi–quasihomogeneous polynomial with respect to the weight
a�, in this case we write

f(x, y) =

lfX

j=0

f�

j
(x, y),

where f�

j
(x, y) are quasihomogeneous polynomials of degree dj,� with respect to a�, cf.

(2.1.1). We define

�A

�
(f) = {�f,✓ | ✓ 2 L⇥, f�

0 (1, ✓
a1(�)) = 0},

2.2. Arithmetically non-degenerate polynomials
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i.e. this is the arithmetic Newton polygon of f(x, y) regarded as a semi quasihomoge-
neous polynomial with respect to the weight a�. Then we define

�A(f) =
[

� edge of �geom(f)

�A

�
(f).

Definition 2.2.1. f(x, y) 2 L[x, y] is called arithmetically non-degenerate modulo p
with respect to its arithmetic Newton polygon, if for every edge � of �geom(f), the semi–

quasihomogeneous polynomial f(x, y), with respect to the weight a�, is arithmetically

non-degenerate modulo p with respect to �A

�
(f).

2.3 Examples

In this section we show two examples to illustrate the geometric ideas presented in
the previous sections.

2.3.1 The local zeta function of (y3 � x2)2 + x4y4

This examples are adapted to our case from [28]. We obtain an explicit list of
candidates for the poles in terms of geometric data obtained from a family of arithmetic
Newton polygons attached to the polynomial in each example.

Computation of Z(s, f,�,�i), i = 1, 2, 3, 4, 6, 7, 8, 9.

These integrals correspond to the case in which f is non–degenerate on �i. We
show the Newton polygon and the correspond conical subdivision of R2

+ in the figure
1.1 of the example 1.3.1.

The integral corresponding to �3, can be calculated as follows.

Z(s, f,�,�3) =
1X

n=1

Z

pnO
⇥
K⇥pnO

⇥
K

�(ac f(x, y))|f(x, y)|s|dxdy|

=
1X

n=1

q�2n�4ns

Z

O
⇥2
K

�(ac (pny3 � x2)2 + p4nx4y4)|(pny3 � x2)2 + p4nx4y4|s|dxdy|.

We set g3(x, y) = (pny3 � x2)2 + p4nx4y4, then g3(x, y) = x4 and the origin is the only
singular point of g3. We decompose O⇥2

K
as

O⇥2

K
=

G

(a,b)2(F⇥
q )2

(a, b) + (pOK)
2,

2.3. Examples
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thus

Z(s, f,�,�3) =
1X

n=1

q�2n�4ns
X

(a,b)2(F⇥
q )2

Z

(a,b)+(pOK)2
�(ac g3(x, y))|g3(x, y)|s|dxdy|

=
1X

n=1

q�2n�4ns�2
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac g3(a+ px, b+ py))|g3(a+ px, b+ py)|s|dxdy|.

Now, by using the Taylor series for g around (a, b):

g(a+ px, b+ py) = g(a, b) + p

✓
@g

@x
(a, b)x+

@g

@y
(a, b)y

◆
+ p2(higher order terms),

and the fact that @g3

@x
(a, b) = 4a3 6⌘ 0 mod p, we can change variables in the previous

integral as follows (
z1 =

g3(a+px,b+py)�g3(a,b)
p

z2 = y.
(2.3.1)

This transformation gives a bianalytic mapping on O2
K

that preserves the Haar measure.
Hence by Lemma 1.2.2, we get

Z(s, f,�,�3) =
1X

n=1

q�2n�4ns�2
X

(a,b)2(F⇥
q )2

Z

OK

�(ac (g3(a, b) + pz1))|g3(a, b) + pz1)|s |dz1|,

=

8
><

>:

q
�2�4s(1�q

�1)2

(1�q�2�4s) if � = �triv

q
�2�4s(1�q

�1)2

(1�q�2�4s) if �4 = �triv,�|U = �triv

0 all other cases,

where U = 1 + pOK .
We note here that for i = 1, 2, 4, 6, 7, 8 and 9, the computation of the Z(s, f,�,�i)

are similar to the case Z(s, f,�,�3).

Computation of Z(s, f ,�,�5) (An integral on a degenerate face in the sense

of Kouchnirenko)

Z(s, f,�,�5) =
1X

n=1

Z

p3nO
⇥
K⇥p2nO

⇥
K

�(ac f(x, y)) |f(x, y)|s|dxdy|, (2.3.2)

=
1X

n=1

q�5n�12ns

Z

O
⇥2
K

�(ac((y3 � x2)2 + p8nx4y4))|(y3 � x2)2 + p8nx4y4|s |dxdy|.

2.3. Examples
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Let f (n)(x, y) = (y3 � x2)2 + p8nx4y4, for n > 1. We define

� : O⇥2
K

�! O⇥2
K

(x, y) 7�! (x3y, x2y).
(2.3.3)

� is an analytic bijection of O⇥2
K

onto itself that preserves the Haar measure, so it can
be used as a change of variables in (2.3.2). We have (f (n) � �)(x, y) = x12y4gf (n)(x, y),

with gf (n)(x, y) = (y � 1)2 + p8nx8y4, and then

I(s, f (n),�) :=
Z

O
⇥2
K

�(ac((y3 � x2)2 + p8nx4y4)) |(y3 � x2)2 + p8nx4y4|s |dxdy|,

=

Z

O
⇥2
K

�(ac(x12y4gf (n)(x, y))) |gf (n)(x, y)|s |dxdy|.

Now, we decompose O⇥2
K

as follows:

O⇥2
K

=

 
G

y0 6⌘1 mod p

O⇥
K
⇥ {y0 + pOK}

!
[

O⇥
K
⇥ {1 + pOK},

where y0 runs through a set of representatives of F⇥
q

in OK . By using this decomposition,

I(s, f (n),�) =

X

y0 6⌘1 mod p

1X

j=0

q�1�j

Z

O
⇥2
K

�(ac(x12[y0 + pj+1y]4gf (n)(x, y0 + pj+1y))) |dxdy|

+
1X

j=0

q�1�j

Z

O
⇥2
K

X (x12[1 + pj+1y]4gf (n)(x, 1 + pj+1y)) |dxdy|,

where

X (x12[1 + pj+1y]4gf (n)(x, 1 + pj+1y)) =

�(x12[1 + pj+1y]4gf (n)(x, 1 + pj+1y))⇥ |x12[1 + pj+1y]4gf (n)(x, 1 + pj+1y)|s.

2.3. Examples
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Finally,

I(s, f (n),�) =
X

y0 6⌘1 mod p

1X

j=0

q�1�j

Z

O
⇥2
K

�(ac(f1(x, y))) |dxdy|

+
4n�2X

j=0

q�1�j�(2+2j)s

Z

O
⇥2
K

�(ac(f2(x, y))) |dxdy|

+q�4n�8ns

Z

O
⇥2
K

�(f3(x, y)) |f3(x, y)|s |dxdy|

+
1X

j=4n

q�j�1�8ns

Z

(O⇥
K)2

�(ac(f4(x, y))) |dxdy|,

where

f1(x, y) = x12(y0 + pj+1y)4((y0 � 1 + pj+1y)2 + p8nx8(y0 + pj+1y)4),

f2(x, y) = x12(1 + pj+1y)4(y2 + p8n�(2+2j)x8(1 + pj+1y)4),

f3(x, y) = x12(1 + pj+1y)4(y2 + x8(1 + pj+1y)4),

and

f4(x, y) = x12(1 + pj+1y)4(p2+2j�8ny2 + x8(1 + pj+1y)4).

We note that each f
i
, (i = 1, 2, 3, 4), does not have singular points on (F⇥

q
)2, so we

may use the change of variables (2.3.1) and proceed in a similar manner as in the
computation of Z(s, f,�,�3).

We want to call the attention of the reader to the fact that the definition of the fi’s
above depends on the value of |(pj+1y)2 + p8nx8(1 + pj+1y)4|, which in turn depends
on the explicit description of the set {(w, z) 2 R2 | w  min{2z, 8n}}. The later
set can be described explicitly by using the arithmetic Newton polygon of f(x, y) =
(y3 � x2)2 + x4y4, see Example 1 in Section 2.4.3.

Summarizing, when � = �triv,

Z(s, f,�triv) = 2q�1(1� q�1) +
q�2�4s(1� q�1)

(1� q�2�4s)
+

q�7�16s(1� q�1)2

(1� q�2�4s)(1� q�5�12s)

+
q�8�18s(1� q�1)2

(1� q�3�6s)(1� q�5�12s)
+

q�3�6s(1� q�1)

(1� q�3�6s)
+

(1� q�1)2q�6�14s

(1� q�1�2s)(1� q�5�12s)

� (1� q�1)2q�9�20s

(1� q�1�2s)(1� q�9�20s)
+

(q � 2)(1� q�1)q�6�12s

(1� q�5�12s)
+

(1� q�1)(q�10�20s)

(1� q�9�20s)

+
q�9�20s

(1� q�1�s)(1� q�9�20s)
{q�1(q�1�s � q�1)N + (1� q�1)2(1� q�1�s)

�q�2(1� q�1�s)T )},

(2.3.4)

2.3. Examples
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where N = (q� 1)Card{x 2 F⇥
q
| x2 = �1} and T = Card{(x, y) 2 (F⇥

q
)2|y2+x8 = 0}.

When � 6= �triv and �|1+pOK = �triv we have several cases: If �2 = �triv, we have

Z(s, f,�) =
(1� q�1)2q�6�14s

(1� q�1�2s)(1� q�5�12s)
� (1� q�1)2q�9�20s

(1� q�1�2s)(1� q�9�20s)
. (2.3.5)

When �4 = �triv,

Z(s, f,�) = q�1(1� q�1) +
q�3�4s(1� q�1)

(1� q�2�4s)
+

q�2�4s(1� q�1)2

(1� q�2�4s)

+
q�7�16s(1� q�1)2

(1� q�2�4s)(1� q�5�12s)
.

(2.3.6)

In the case where �6 = �triv, we obtain

Z(s, f,�) =
q�8�18s(1� q�1)2

(1� q�3�6s)(1� q�5�12s)
+

q�3�6s(1� q�1)2

(1� q�3�6s)

+
q�4�6s(1� q�1)

(1� q�3�6s)
+ q�1(1� q�1).

(2.3.7)

If �12 = �triv, then

Z(s, f,�) = �4(y0)�
2(y0 � 1)

(q � 2)(1� q�1)q�6�12s

(1� q�5�12s)
, (2.3.8)

where �̄ is the multiplicative character induced by � in F⇥
q
. Finally for �20 = �triv

Z(s, f,�) =
(1� q�1)(q�10�20s)

(1� q�9�20s)
. (2.3.9)

In all other cases Z(s, f,�) = 0.

2.3.2 The local zeta function of (y3 � x2)2(y3 � cx2) + x4y4

Let g(x, y) = (y3 � x2)2(y3 � cx2) + x4y4, with c 2 O⇥
K

and c 6⌘ 1 mod p. In this
example we assume that the characteristic of the residue field of K is different from 2
and 3. As in example 2.3.1, the origin of K is the only singular point of g(x, y) and it
is degenerate with respect to its geometric Newton polygon. The conical subdivision of
R2

+ subordinated to the geometric Newton polygon of g(x, y) is the same as in Table
1.1 and Figure 1.1.

2.3. Examples
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Computation of Z(s, g,�,�i), i = 1, 2, 3, 4, 6, 7, 8, 9.

These integrals correspond to the case in which g is non–degenerate on �i. The
integral corresponding to �6 can be calculated as follows.

Z(s, g,�,�6) =
1X

m=1

1X

n=1

Z

p3n+2mO
⇥
K⇥p2n+mO

⇥
K

�(ac g(x, y)) |g(x, y)|s|dxdy|,

=
1X

m=1

1X

n=1

q(�5�18s)n+(�3�9s)m

Z

O
⇥2
K

�(ac g6(x, y))|g6(x, y)|s |dxdy|,

where g6(x, y) = (y3 � pmx2)2(y3 � cpmx2) + p2n+3mx4y4, note that g6(x, y) = y9. By
using the change of variables (2.3.1) with the function g6 and by applying Lemma 1.2.2,
we obtain

Z(s, g,�,�6) =

8
>>><

>>>:

q
�8�27s(1�q

�1)2

(1�q�3�9s)(1�q�5�18s) if � = �triv

q
�8�27s(1�q

�1)2

(1�q�3�9s)(1�q�5�18s) if �9 = �triv,�|U = �triv

0 all other cases,

where U = 1 + pOK .
We note here that for i = 1, 2, 3, 4, 7, 8 and 9, the computation of the Z(s, f,�,�i)

are similar to the case Z(s, f,�,�6).

Computation of Z(s, g,�,�5) (An integral on a degenerate face in the sense

Kouchnirenko)

Z(s, g,�,�5) =
1X

n=1

Z

p3nO
⇥
K⇥p2nO

⇥
K

�(ac g(x, y))|g(x, y)|s|dxdy|,

=
1X

n=1

q�5n�18ns

Z

O
⇥2
K

�(ac(g(n)(x, y))|g(n)(x, y)|s|dxdy|.

where g(n)(x, y) = (y3�x2)2(y3�cx2)+p2nx4y4, for n > 1. We use the map � defined in
(2.3.3), giving g(n)��(x, y) = x18y6gg(n)(x, y), with gg(n)(x, y) = (y�1)2(y�c)+p2nx2y2,
then we have to compute

I(s, g(n),�) :=

Z

O
⇥2
K

�(ac(g(n)(x, y))|g(n)(x, y)|s|dxdy|,

=

Z

O
⇥2
K

�(ac(x18y6gg(n)(x, y)))|gg(n)(x, y)|s|dxdy|.

2.3. Examples
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We decompose O⇥2
K

as follows:

O⇥2
K

=
�
O⇥

K
⇥ {y0 + pOK | y0 6⌘ 1, c mod p}

�
[
�
O⇥

K
⇥ {1 + pOK}

�

[
�
O⇥

K
⇥ {c+ pOK}

�
,

where y0 runs through a set of representatives of F⇥
q

in OK . By using the same strategy
of example 2.3.1: we use an analytic bijection � over the units as a change of variables
and then we split the integration domain according with the roots of the quasihomo-
geneous part of g. In each one of the sets of the splitting, calculations can be done by
using the arithmetical non–degeneracy condition and/or the stationary phase formula.
Thus we get

1. � = �triv,

Z(s, f,�triv) = 2q�1(1� q�1) +
q�2�6s(1� q�1)

(1� q�2�6s)
+

q�7�24s(1� q�1)2

(1� q�2�6s)(1� q�5�18s)

+
q�8�27s(1� q�1)2

(1� q�3�9s)(1� q�5�18s)
+

q�3�9s(1� q�1)

(1� q�3�9s)

+
q�6�20sU0(q�s)

(1� q�1�s)(1� q�6�20s)
+

q�7�20s(U1(q�s) + (1� q�1)2)

(1� q�1�s)(1� q�7�20s)

+
(1� q�1)2q�6�20s

(1� q�1�2s)(1� q�5�18s)
� (1� q�1)2q�6�20s

(1� q�1�2s)(1� q�6�20s)

+
(1� q�1)2(q�6�19s)

(1� q�5�18s)(1� q�1�s)
+

(q � 3)(1� q�1)q�6�18s

(1� q�5�18s)

+
(1� q�1)(q�7�20s)

(1� q�6�20s)
� (1� q�1)(q�8�20s)

(1� q�7�20s)

(2.3.10)

where

U0(q
�s) = q�2�s(1� q�1)N1 + T2(1� q�1�s){(q � 1)2 �N1},

N1 = Card{(a, b) 2 (F⇥
q
)2 | a18(b2(1� c) + a2) = 0},

T2 =
X

(a,b)2F⇥2
q

(b
2
(1�c)+a

2) 6=0

�(ac(a18(b2(1� c) + a2))),

U1(q
�s) = q�2�s(1� q�1)N2 + T3(1� q�1�s){(q � 1)2 �N2},

N2 = Card{(a, b) 2 (F⇥
q
)2 | a18bc6(c� 1)2 + a20c2 = 0},

and
T3 =

X

(a,b)2F⇥2
q

(b
2
(1�c)+a

2) 6=0

�(ac(a18(b2(1� c) + a2))).

2.3. Examples
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2. �2 = �triv, and �|U = �triv, U = 1 + pOK , we have

Z(s, f,�) = �(1� c)
(1� q�1)2q�6�20s

(1� q�1�2s)(1� q�5�18s)

��(1� c)
(1� q�1)2q�6�20s

(1� q�1�2s)(1� q�6�20s)

+�(c6(c� 1)2)
(1� q�1)2(q�6�19s)

(1� q�5�18s)(1� q�1�s)

+�(c6(c� 1)2)
(1� q�1)2(q�7�20s)

(1� q�7�20s)(1� q�1�s)
.

(2.3.11)

where �̄ is the multiplicative character induced by � in F⇥
q
.

3. �6 = �triv and �|U = �triv,

Z(s, f,�) =

�̄(�c)

✓
q�1(1� q�1) +

q�3�6s(1� q�1) + q�2�6s(1� q�1)2

(1� q�2�6s)

◆

+�̄(�c)

✓
q�7�24s(1� q�1)2

(1� q�2�6s)(1� q�5�18s)

◆
,

(2.3.12)

4. �9 = �triv and �|U = �triv, we obtain

Z(s, f,�) =
q�8�27s(1� q�1)2

(1� q�3�9s)(1� q�5�18s)
+

q�3�9s(1� q�1)2

(1� q�3�9s)

+
q�4�9s(1� q�1)

(1� q�3�9s)
+ q�1(1� q�1).

(2.3.13)

5. �18 = �triv and �|U = �triv, then

Z(s, f,�) = �(y0
7(y0 � 1))

(q � 3)(1� q�1)q�6�18s

(1� q�5�18s)
, (2.3.14)

6. �20 = �triv and �|U = �triv

Z(s, f,�) =
(1� q�1)(q�7�20s)

(1� q�6�20s)
� �(c8)

(1� q�1)(q�8�20s)

(1� q�7�20s)
. (2.3.15)

7. In all other cases Z(s, f,�) = 0.

2.3. Examples
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2.4 Integrals Over Degenerate Cones

From the examples in Section 2.3, we may deduce that when one deals with an in-
tegral of type Z(s, f,�,�) over a degenerate cone, we have to use an analytic bijection
� over the units as a change of variables and then, split the integration domain ac-
cording with the roots of the tangent cone of f . In each one of the sets of the splitting,
calculations can be done by using the arithmetical non–degeneracy condition and/or
the stationary phase formula. The purpose of this section is to show how this procedure
works.

2.4.1 Some reductions on the integral Z(s, f,�,�)

Proposition 2.4.1 ([28, Proposition 5.1]). Let f(x, y) 2 OK [x, y] be a semiquasiho-

mogeneous polynomial, with respect to the weight (a, b), with a, b coprime, and

f (m)(x, y) := p�d0mf(pamx, pbmy) =

lfX

j=0

p(dj�d0)mfj(x, y),

where m > 1, and

fj(x, y) = cjx
ujyvj

ljY

i=1

(ya � ↵i,jx
b)ei,j , cj 2 K⇥. (2.4.1)

Then there exists a measure–preserving bijection

� : O⇥2
K

�! O⇥2
K

(x, y) 7�! (�1(x, y),�2(x, y)),

such that F (m)(x, y) := f (m) � �(x, y) = xNiyMi gf (m)(x, y), with

gf (m)(x, y) =

lfX

j=0

p(dj�d0)m efj(x, y),

where one can assume that efj(x, y) is a polynomial of the form

efj(u, w) = cju
AjwBj

ljY

i=1

(w � ↵i,j)
ei,j . (2.4.2)

After using � as a change of variables in Z(s, f,�,�), one has to deal with integrals
of type:

I(s, F (m),�) :=

Z

O
⇥2
K

�(ac (F (m)(x, y))) |F (m)(x, y)|s |dxdy|.

2.4. Integrals Over Degenerate Cones
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Integrals I(s, F (m),�) will be computed in Propositions 2.4.2 and 2.4.3. The proof
of these propositions are based on the corresponding Proposition in [18], but several
simplifications were obtained. For the sake of completeness we present here the details
of the proofs, also with the aim of introduced some notation that we will need in the
remain of the chapter.

Proposition 2.4.2 ([28, Proposition 5.2]).

I(s, F (m),�) =
U0(q�s,�)

1� q�1�s
+

X

{✓2OK |f0(1,✓a)=0}

J✓(s,m,�),

where U0(q�s,�) is a polynomial with rational coefficients and

J✓(s,m,�) :=
1X

k=1+l(f0)

q�k

Z

O
⇥2
K

�(ac(F (m)(x, ✓ + pky))) |F (m)(x, ✓ + pky)|s |dxdy|.

Proof. From Proposition 2.4.1

F (m)(x, y) = xNiyMi

0

@
lfX

j=0

p(dj�d0)m efj(x, y)

1

A =

lfX

j=0

p(dj�d0)mf ⇤
j
(x, y), (2.4.3)

where

f ⇤
j
(x, y) = cjx

Aj+NiyBj+Mi

ljY

i=1

(y � ↵i,j)
ei,j . (2.4.4)

Set

R(f0) := {✓ 2 OK |f0(1, ✓a) = 0}
l(f0) := max

✓ 6=✓
0

✓,✓
02R(f0)

{v(✓ � ✓0)}, and

B(✓) = B(l(f0), ✓) := O⇥
K
⇥
�
✓ + p1+l(f0)OK

�
,

for ✓ 2 OK , with v(✓) 6 l(f0). By subdividing O⇥2
K

into equivalence classes modulo
p1+l(f0), we obtain that,

I(s, F (m),�) =
X

✓/2R(f0)

Z

B(✓)

�(ac(F (m)(x, y))) |Fm(x, y)|s |dxdy|

+
X

✓2R(f0)

Z

B(✓)

�(ac(F (m)(x, y))) |F (m)(x, y)|s |dxdy|.

2.4. Integrals Over Degenerate Cones
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Now we use the fact that OK = t1
k=0(p

kO⇥
K
) in B(✓). Thus B(✓) = O⇥

K
⇥ (✓ + pkO⇥

K
),

where k � 1 + l(f0) and our integral becomes

I(s, F (m),�) =
X

✓/2R(f0)

1X

k=1+l(f0)

q�k

Z

B(✓)

�(ac(F (m)(x, y))) |Fm(x, y)|s |dxdy|

+
X

✓2R(f0)

1X

k=1+l(f0)

q�k

Z

B(✓)

�(ac(F (m)(x, y))) |F (m)(x, y)|s |dxdy|. (2.4.5)

From (2.4.4), we have that for any (x, y) 2 O⇥2
K

,

f ⇤
j
(x, ✓ + pky)

=

8
>>>><

>>>>:

cjxAj+Ni(✓ + pky)Bj+Mi

ljQ
i=1

�
(✓ � ↵i,j) + pky

�ei,j if f ⇤
j
(1, ✓) 6= 0

cjxAj+Ni(✓ + pky)Bj+Mi

ljQ
i=1
i 6=i0

�
(✓ � ↵i,j) + pky

�ei,j pkei0,jyei0,j if f ⇤
j
(1, ✓) = 0,

where ✓ = ↵i0,j. We put

�j(x, y)

:=

8
<

:
xAj+Ni(✓ + pky)Bj+Mi

Qlj

i=1

�
(✓ � ↵i,j) + pky

�ei,j if f ⇤
j
(1, ✓) 6= 0

xAj+Ni(✓ + pky)Bj+Mi
Qlj

i=1
i 6=i0

�
(✓ � ↵i,j) + pky

�ei,j pkei0,jyei0,j if f ⇤
j
(1, ✓) = 0,

and note that in both cases the �j are polynomials satisfying |�j(x, y)| = 1, for any
(x, y) 2 O⇥2

K
. By abuse of notation we will write

f ⇤
j
(x, ✓ + pky) = cj�j(x, y)p

ke✓,jye✓,j . (2.4.6)

Finally we return to the computation of the integral I(s, F (m),�). Note that if ✓ /2 R(f0)
then from (2.4.3) and (2.4.6) we get that F (m)(x, ✓ + pky) has no singular points over
(F⇥

q
)2, therefore we may apply Lemma 1.2.3 in 2.4.5 to obtain the desired conclusion.

The next step is to compute the integral J✓(s,m,�), we introduce here some nota-
tion. For a polynomial h(x, y) 2 OK [x, y] we define Nh = Card{(x0, y0)
2 (Fq

⇥)2 | h(x0, y0) = 0}, and put

Mh =
q�s(1� q�1)Nh

1� q�1�s
+ (q � 1)2 �Nh and ⌃h :=

X

(a,b)2(Fq
⇥)2

h(a,b) 6=0

�(ac (h(a, b))).

Proposition 2.4.3. We fix ✓ 2 R(f0) and assume that f(x, y) is arithmetically non

degenerate with respect to �f,✓ (see Definition 2.1.2) . Let ⌧i, i = 0, 1, 2, · · · , r be the

abscissas of the vertices of �f,↵i,0, cf. (2.4.2) and Definition 2.1.1.
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1. J✓(s,m,�triv) is equal to

r�1X

i=0

q�(Di+1�d0)ms

✓
q�(1+s"i+1)([m⌧i]+1) � q�(1+s"i+1)([m⌧i+1]�1)

1� q�(1+s"i+1)

◆
Mg

+q�(Dr+1�d0)ms

✓
q�(1+s"r+1)[m⌧r]

1� q�(1+s"r+1)

◆
Mgr +

rX

i=1

q�(Di�d0)ms�(s"i[m⌧i])MG,

with

g(x, y) = �i+1(x, y)y
ei+1,✓ + pm(Di+1�Di)(higher order terms),

gr(x, y) = �r+1(x, y)y
er+1,✓ + pm(Dr+1�Di)(higher order terms),

and

G(x, y) =
X

ewi,✓(Vi)=0

�i(x, y)y
ei,✓ ,

where ewi,✓(ez) is the straight line corresponding to the term

p(dj�d0)m+kej,✓�j(x, y)y
ej,✓ ,

cf. (2.1.5).

2. In the case �|1+pOK = �triv, J✓(s,m,�) is equal to

r�1X

i=0

q�(Di+1�d0)ms

✓
q�(1+s"i+1)([m⌧i]+1) � q�(1+s"i+1)([m⌧i+1]�1)

1� q�(1+s"i+1)

◆
⌃g

+q�(Dr+1�d0)ms

✓
q�(1+s"r+1)[m⌧r]

1� q�(1+s"r+1)

◆
⌃gr +

rX

i=1

q�(Di�d0)ms�(s"i[m⌧i]).

3. In all other cases J✓(s,m,�) = 0.

Proof. From and (2.4.3) and (2.4.6) we have

F (m)(x, ✓ + pky) =

lfX

j=0

cjp
(dj�d0)m+kej,✓�j(x, y)y

ej,✓ . (2.4.7)

Then we associate to each term in (2.4.7) a straight line of the form ewj,✓(ez) := (dj �
d0)m+ ej,✓ez, for j = 0, 1, . . . , lf . We also associate to F (m)(x, ✓ + pky) the convex set

�F (m)(x,✓+pky) = {(ez, ew) 2 R2
+ | ew 6 min

06j6lf

{ ewj,✓(ez)}}.
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As it was noticed in [28], the polygon �F (m)(x,✓+pky) is a rescaled version of �f,✓. Thus
the vertices of �F (m)(x,✓+pky) can be described in terms of the vertices of �f,✓. More
precisely, the vertices of �F (m)(x,✓+pky) are

Vi :=

(
(0, 0) if i = 0

(m⌧i, (Di � d0)m+m"i⌧i) if i = 1, 2, . . . , r,

where the ⌧i are the abscissas of the vertices of �f (m),✓. The crucial fact in our proof is
that F (m)(x, ✓+ pky), may take different forms depending of the place that k occupies
with respect to the abscissas of the vertices of �F (m)(x,✓+pky). This leads to the cases:
(i) m⌧i < k < m⌧i+1, (ii) k > m⌧r, and (iii) k = m⌧i.

Case (i): m⌧i < k < m⌧i+1. There exists some jl 2 {0, . . . , lf} such that
(djl � d0)m+ k"jl = (Di+1 � d0)m+ k"i+1,

and
(djl � d0)m+ k"jl < (dj � d0)m+ k"j,

for j 2 {0, . . . , lf} \ {jl}. In consequence
F (m)(x, ✓ + pky) = p�(Di+1�d0)m�"i+1k(�i+1(x, y)y

ei+1,✓ + pm(Di+1�Di)(· · · ))
for any (x, y) 2 O⇥2

K
, where

�i+1(x, y)y
ei+1,✓ + pm(Di+1�Di)(· · · )

= �i+1(x, y)y
ei+1,✓ + pm(Di+1�Di)(terms with weighted degree > Di+1).

We put g(x, y) := �i+1(x, y)yei+1,✓ + pm(Di+1�Di)(· · · ). Then
Z

O
⇥2
K

�(ac(F (m)(x, ✓ + pky))) |F (m)(x, ✓ + pky)|s |dxdy|

= q�(Di+1�d0)ms�"i+1ks

Z

O
⇥2
K

�(ac(g(x, y)) |g(x, y)|s |dxdy|.

By using the following partition of O⇥2

K
,

O⇥2

K
=

G

(a,b)2(F⇥
q )2

(a, b) + (pOK)
2, (2.4.8)

we have Z

O
⇥2
K

�(ac(g(x, y)) |g(x, y)|s |dxdy|

=
X

(a,b)2(F⇥
q )2

Z

(a,b)+(pOK)2

�(ac g(x, y))|g(x, y)|s|dxdy|

=
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac g(a+ px, b+ py)) |g(a+ px, b+ py)|s |dxdy|.

(2.4.9)
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By definition of �j(x, y) ( in proof of Proposition 1.5.2), we see that @g

@y
(x, y) = ei+1,✓yei+1,✓�1

then @g

@y
(a, b) 6⌘ 0(mod p) for (a, b) 2 (F⇥

q
)2. Therefore the following is a measure pre-

serving map from O2
K

to itself:
(
z1 = x

z2 =
g(a+px,b+py)�g(a,b)

p .
(2.4.10)

By using (2.4.10) as a change of variables, (2.4.9) becomes:

X

(a,b)2(F⇥
q )2

Z

OK

�(ac (g(a, b) + pz2)) |g(a, b) + pz2|s |dz2|,

and then Lemma 1.2.2 implies that the later sum equals
8
>>>>>>><

>>>>>>>:

q
�s(1�q

�1)Ng

(1�q�1�s) + (q � 1)2 �Ng if � = �triv

P

(a,b)2(Fq
⇥)2

g(a,b) 6=0

�(ac(g(a, b))) if �|U = �triv

0 all other cases,

where U = 1 + pOK , and Ng = Card{(a, b) 2 (Fq
⇥)2 | g(a, b) = 0}.

Case (ii): k > m⌧r. There exists some jp 2 {0, . . . , lf} such that (djp�d0)m+k"jp =
(Dr+1�d0)m+k"r+1, and (djp�d0)m+k"jp < (dj�d0)m+k"j, for j 2 {0, . . . , lf}\{jp}.
Therefore

F (m)(x, ✓ + pky) = p�(Dr+1�d0)m�"r+1k(�r+1(x, y)y
er+1,✓ + pm(Dr+1�Di)(· · · ))

for any (x, y) 2 O⇥2
K

. A similar reasoning as in the previous case, shows that
Z

O
⇥2
K

�(ac(F (m)(x, ✓ + pky))) |F (m)(x, ✓ + pky)|s |dxdy|

=

8
>>>>>><

>>>>>>:

q
�(Dr+1�d0)ms�"r+1ksq�s(1�q

�1)Nr

(1�q�1�s) + (q � 1)2 �Nr if � = �triv

q�(Dr+1�d0)ms�"r+1ks
P

(a,b)2(Fq
⇥)2

gr(a,b) 6=0

�(ac(gr(a, b))) if �|U = �triv

0 all other cases.

Here
gr(x, y) = �r+1(x, y)y

er+1,✓ + pm(Dr+1�Di)(· · · )
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and
Nr = Card{(a, b) 2 (Fq

⇥)2 | gr(a, b) = 0}.

Case (iii): k = m⌧i. There are some j0s 2 {0, . . . , lf} such that

(dj1 � d0)m+ k"j1 = · · · = (djt � d0)m+ k"jt = (Di � d0)m+ k"i,

and for the remaining j’s,

(Di � d0)m+ k"i < (dj � d0)m+ k"j.

In this case

F (m)(x, ✓ + pky) = p�(Di�d0)m�"ik(F (m)
Vi

(x, y) + pm(Di+1�Di)(· · · ))

for any (x, y) 2 O⇥2
K

, where

F (m)
Vi

(x, y) =
X

ewi,✓(Vi)=0

�i(x, y)y
ei,✓ ,

and ewi,✓(ez) is the straight line corresponding to the term p(dj�d0)m+kej,✓�j(x, y)yej,✓ .
Therefore

Z

O
⇥2
K

�(ac(F (m)(x, ✓ + pky))) |F (m)(x, ✓ + pky)|s |dxdy|

= q�(Di�d0)ms�"iks

Z

O
⇥2
K

�(ac(G(x, y))|G(x, y)|s |dxdy|,

where G(x, y) = F (m)
Vi

(x, y) + pm(Di+1�Di)(· · · ), then the arithmetical non degeneracy
condition over f implies that some partial derivative of G is different from zero mod
p, lets say @G

@y
(a, b) 6⌘ 0 mod p for (a, b) 2 (F⇥

q
)2. So we may use the same strategy as

in case (i), to obtain
Z

O
⇥2
K

�(ac(F (m)(x, ✓ + pky))) |F (m)(x, ✓ + pky)|s |dxdy|

=

8
>>>>>><

>>>>>>:

q
�(Di�d0)ms�"iksq�s(1�q

�1)NG

(1�q�1�s) + (q � 1)2 �NG if � = �triv

q�(Di�d0)ms�"iks
P

(a,b)2(Fq
⇥)2

G(a,b) 6=0

�(ac(G(a, b))) if �|U = �triv

0 all other cases,
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where NG = Card{(a, b) 2 (Fq
⇥)2 | G(a, b) = 0}.

At this point we note that any k 2 N, k > 1, satisfies only one of the following
conditions: 8

><

>:

[m⌧i] 6 k 6 [m⌧i+1]� 1, for i = 0, 1, . . . , r � 1,

k = [m⌧i], for i = 0, 1, . . . , r,

k > [m⌧r] + 1,

where [x] denotes the greatest integer less than or equal to x 2 R.
Finally, from cases (i), (ii), (iii) and the previous observation, we have that

J✓(s,m,�triv) =
1X

k=1+l(f0)

q�k

Z

O
⇥2
K

�(ac(F (m)(x, ✓ + pky))) |F (m)(x, ✓ + pky)|s |dxdy|

=
r�1X

i=0

q�(Di+1�d0)ms

[m⌧i+1]�1X

k=[m⌧i]+1

q�k(1+s"i+1)Mg

+q�(Dr+1�d0)ms

1X

k=[m⌧r]+1

q�k(1+s"r+1)Mgr +
rX

i=1

q�(Di�d0)ms�(s"i[m⌧i])MG.

Some of the sums appearing in the previous expression can be estimated by means of
the following algebraic identity

P
B

k=A
zk = z

A�z
B+1

1�z
. We get

J✓(s,m,�triv)

=
r�1X

i=0

q�(Di+1�d0)ms

✓
q�(1+s"i+1)([m⌧i]+1) � q�(1+s"i+1)([m⌧i+1]�1)

1� q�(1+s"i+1)

◆
Mg

+q�(Dr+1�d0)ms

✓
q�(1+s"r+1)[m⌧r]

1� q�(1+s"r+1)

◆
Mgr +

rX

i=1

q�(Di�d0)ms�(s"i[m⌧i])MG.

Finally, when �|U = �triv, we have

J✓(s,m,�)

=
r�1X

i=0

q�(Di+1�d0)ms

✓
q�(1+s"i+1)([m⌧i]+1) � q�(1+s"i+1)([m⌧i+1]�1)

1� q�(1+s"i+1)

◆
⌃g

+q�(Dr+1�d0)ms

✓
q�(1+s"r+1)([m⌧r]+1)

1� q�(1+s"r+1)

◆
⌃gr

+
rX

i=1

q�(Di�d0)ms�(�1�s"i[m⌧i])⌃G.
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2.4.2 Poles of Z(s, f,�,�)

Definition 2.4.1. For a semi quasihomogeneous polynomial f(x, y) 2 K[x, y] which

is arithmetically non degenerate with respect to

�A(f) =
[

{✓2OK |f0(1,✓a)=0}

�f,✓,

we define

P(�f,✓) :=
r✓[

i=1

⇢
� 1

"i
,� (a+ b) + ⌧i

Di+1 + "i+1⌧i
,�(a+ b) + ⌧i

Di + "i⌧i

�
[

[

{"r+1 6=0}

⇢
� 1

"r+1

�
,

and

P(�A(f)) :=
[

{✓2OK |f0(1,✓a)=0}

P(�f,✓).

Where Di, "i, ⌧i are obtained form the equations of the straight segments that form the

boundary of �f,✓, cf. (2.1.2),(2.1.3), and (2.1.4).

Theorem 2.4.1. Let f(x, y) =
lfP
j=0

fj(x, y) 2 OK [x, y] be a semi- quasihomogeneous

polynomial, with respect to the weight (a, b), with a, b coprime, and fj(x, y) as in (2.4.1).

If f(x, y) is arithmetically non–degenerate with respect to �A(f), then the real parts of

the poles of Z(s, f,�,�) belong to the set

{�1} [
⇢
�a+ b

d0

�
[ {P(�A(f))}.

In addition, Z(s, f,�,�) = 0 for almost all �. More precisely, if �|1+pOK 6= �triv,
Z(s, f,�,�) = 0.

Proof. Let � := (a, b)R+, then the integral Z(s, f,�,�) admits the following expan-
sion:

Z(s, f,�,�) =
1X

m=1

Z

pamO
⇥
K⇥pbmO

⇥
K

�(ac(f(x, y)) |f(x, y)|s |dxdy|

=
1X

m=1

q�(a+b)m�d0ms

Z

O
⇥2
K

�(ac (F (m)(x, y))) |F (m)(x, y)|s |dxdy|,
(2.4.11)

cf. 2.4.3 and cf. 2.4.7. From Proposition 2.4.2,
Z

O
⇥2
K

�(ac (F (m)(x, y))) |F (m)(x, y)|s |dxdy| = U0(q�s,�)

1� q�1�s

+
X

{✓2OK |f0(1,✓a)=0}

J✓(s,m,�),
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thus (2.4.11) implies

Z(s, f,�,�) =
U0(q�s,�)

1� q�1�s
+

X

{✓2O⇥
K |f0(1,✓a)=0}

 1X

m=1

q�(a+b)m�d0msJ✓(s,m,�)

!
.

Next we use the explicit formula for J✓(s,m,�) given in Proposition 2.4.3 to obtain

1X

m=1

q�(a+b)m�d0msJ✓(s,m,�triv) (2.4.12)

=
r�1X

i=0

1X

m=1

q�(a+b)m�([m⌧i]+1)�(Di+1m+"i+1([m⌧i]+1))s

1� q�(1+s"i+1)
Mg

�
r�1X

i=0

1X

m=1

q�(a+b)m�([m⌧i+1]�1)�(Di+1m+"i+1([m⌧i+1]�1))s

1� q�(1+s"i+1)
Mg

+
1X

m=1

q�(a+b)m�([m⌧r]+1)�(Dr+1m+"r+1([m⌧r]+1))s

1� q�(1+s"r+1)
Mgr

+
rX

i=1

1X

m=1

q(a+b)m�[m⌧i]�(Dim�"i[m⌧i])sMG.

Remark 2.4.1. In order to compute the expression for the integral J✓(s,m,�triv) we

have to estimate sums of type
1X

m=1

q�[m⌧i].

Recall that ⌧i =
Di+1�Di

"i�"i+1
. Assume that m = n("i � "i+1) + l, where l 2 {0, · · · , "i �

"i+1 � 1}, and n 2 N \ {0}. Then

[m⌧i] = n(Di+1 �Di) + [l⌧i].

Therefore

1P
m=1

q�[m⌧i] =
"i�"i+1�1P

l=0

P

n> 1�l
("i�"i+1)

q�n(Di+1�Di)+[l⌧i].

Now we go back to the computation of J✓(s,m,�triv), from (2.4.12)
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(2.4.13)
1X

m=1

q�(a+b)m�d0msJ✓(s,m,�triv)

=
r�1X

i=0

⇢
1

1� q�1�s"i+1

"i�"i+1�1X

l=0

X

n> 1�l
"i�"i+1

⇢
q�(a+b)l�[l⌧i]�1�{Di+1l+"i+1[l⌧i]+"i+1}s

q�n{(a+b)("i�"i+1)+(Di+1�Di)�{Di+1("i�"i+1)�"i+1(Di+1�Di)}s}Mg

��

�
r�1X

i=0

⇢
1

1� q�1�s"i+1

"i+1�"i+2�1X

l=0

X

n> 1�l
"i+1�"i+2

⇢
q�1�(a+b)l+[l⌧i+1]�{Di+1l�"i+1[l⌧i+1]�"i+1}s

q�n{(a+b)("i+1�"i+2)+(Di+2�Di+1)+{"i+1(Di+2�Di+1)+Di+1("i+1�"i+2)}s}Mg

��

+
1

1� q�1�s"r+1

"i�"i+1�1X

l=0

X

n> 1�l
"i�"i+1

⇢
q�1�(a+b)l+[l⌧r+1]�{Dr+1l�"r+1[l⌧r+1]�"r+1}s

q�n{(a+b)("r�"r+1)+(Dr+1�Dr)+{"r+1(Dr+1�Dr)+Dr+1("r�"r+1)}s}Mgr

�

+
rX

i=1

⇢"i�"i+1�1X

l=0

X

n> 1�l
"i�"i+1

⇢
q�(a+b)l�[l⌧i]�{Dil�"i[l⌧i]}s

q�n{(a+b)("i�"i+1)+(Di+1�Di)+{"i(Di+1�Di)+Di("i�"i+1)}s}MG

��
.

Next we compute the geometric series appearing in the latter expression, this gives
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1X

m=1

q�(a+b)m�d0msJ✓(s,m,�triv)

=
r�1X

i=0

⇢
1

1� q�1�s"i+1

⇢
q�1�"i+1s�(a+b)("i�"i+1)�(Di+1�Di)�{"i+1(Di+1�Di)�Di+1("i�"i+1)}s

1� q�{(a+b)("i�"i+1)+(Di+1�Di)+{"i+1(Di+1�Di)+Di+1("i�"i+1)}s}

+

"i�"i+1�1X

l=1

q�(a+b)l�[l⌧i]�1�{Di+1l+"i+1[l⌧i]+"i+1}s

1� q�{(a+b)("i�"i+1)+(Di+1�Di)+{"i+1(Di+1�Di)+Di+1("i�"i+1)}s}

�
Mg

�

�
r�1X

i=0

⇢
1

1� q�1�s"i+1

⇢
q�1�"i+1s�(a+b)("i+1�"i+2)�(Di+2�Di+1)�{"i+1(Di+2�Di+1)�Di+1("i+1�"i+2)}s

1� q�{(a+b)("i+1�"i+2)+(Di+2�Di+1)+{"i+1(Di+2�Di+1)+Di+1("i+1�"i+2)}s}

+

"i+1�"i+2�1X

l=1

q�(a+b)l�[l⌧i+1]�1�{Di+1l+"i+1[l⌧i+1]+"i+1}s

1� q�{(a+b)("i+1�"i+2)+(Di+2�Di+1)+{"i+1(Di+2�Di+1)+Di+1("i+1�"i+2)}s}

�
Mg

�

+
1

1� q�1�s"r+1

⇢
q�1�"r+1s�(a+b)("r�"r+1)�(Dr+1�Dr)�{"r+1(Dr+1�Dr)�Dr+1("r�"r+1)}s

1� q�{(a+b)("r�"r+1)+(Dr+1�Dr)+{"r+1(Dr+1�Dr)+Dr+1("r�"r+1)}s}

+
"r�"r+1�1X

l=1

q�1�"r+1s�(a+b)l+[l⌧r+1]�{Dr+1l�"r+1[l⌧r+1]}s

1� q�{(a+b)("r�"r+1)+(Dr+1�Dr)+{"r+1(Dr+1�Di)+Dr+1("r�"r+1)}s}

�
Mgr

+
rX

i=1

⇢
q�(a+b)("i�"i+1)�(Di+1�Di)�{"i(Di+1�Di)�Di("i�"i+1)}s

1� q�{(a+b)("i�"i+1)+(Di+1�Di)+{"i(Di+1�Di)+Di("i�"i+1)}s}

+

"i�"i+1�1X

l=1

q�(a+b)l�[l⌧i]�{Dil�"i[l⌧i]}s

1� q�{(a+b)("i�"i+1)+(Di+1�Di)+{"i(Di+1�Di)+Di("i�"i+1)}s}

�
MG

Here we introduce the following notation to obtain a compact form for the sum

Bi,l := (a+ b)l + [l⌧i] + 1 + s(Di+1l + "i+1[l⌧i] + "i+1)

⇢i := (a+ b)("i � "i+1) + (Di+1 �Di)

�i := Di+1("i � "i+1) + (Di+1 �Di)"i+1,

Gi,l := (a+ b)l + [l⌧i+1] + 1 + s(Di+1l + "i+1[l⌧i+1] + "i+1)

�0
i
:= Di+1("i+1 � "i+2) + (Di+2 �Di+1)"i+1.

Therefore
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1X

m=1

q�(a+b)m�d0msJ✓(s,m,�triv)

=
r�1X

i=0

Mg

⇢
q�1�⇢i�{"i+1��i}s

(1� q�⇢i��is)(1� q�1�s"i+1)
+

"i�"i+1�1X

l=1

q�Bi,l

(1� q�⇢i��is)(1� q�1�s"i+1)

�

�
r�1X

i=0

Mg

⇢
q�1�⇢i+1�{"i+1��

0
i}s

(1� q�⇢i+1��0is)(1� q�1�s"i+1)
+

"i+1�"i+2�1X

l=1

q�Gi,l

(1� q�⇢i+1��0is)(1� q�1�s"i+1)

�

+Mgr

⇢
q�1�⇢r�{"r+1��r}s

(1� q�⇢r��rs)(1� q�1�s"r+1)
+

"r�"r+1�1X

l=0

q�Gr,l

(1� q�⇢r��rs)(1� q�1�s"r+1)

�

+
rX

i=1

MG

⇢
q�⇢i��

0
i�1s

1� q�⇢i��0i�1s
+

"i�"i+1�1X

l=0

q�Gi�1,l+(1+"i+1s)

1� q�⇢i��0i�1s

�
.

Similar equations holds in the case � 6= �triv. It follows that real parts of the poles
of

X

{✓2O⇥
K |f0(1,✓a)=0}

 1X

m=1

q�(a+b)m�d0msJ✓(s,m,�)

!
,

belong to the set

{�1} [
⇢
�a+ b

d0

�
[

[

{✓2O⇥
K |f0(1,✓a)=0}

P(�f,✓).

2.4.3 Examples
1. f(x, y) = (y3 � x2)2 + x4y4.

Let f(x, y) = (y3 � x2)2 + x4y4 2 K[x, y], as in Example 2.3.1. The polynomial
f(x, y) is a semiquasihomogeneous polynomial with respect to the weight (3, 2),
which is the generator of the cone �5, see Table 1.1. We note that f(x, y) =
f0(x, y) + f1(x, y), where f0(x, y) = (y3 � x2)2 and f1(x, y) = x4y4, c.f. (2.1.1). In
this case ✓ = 1 is the only root of f0(1, y3), thus �A(f) = �f,1.
Since f0(t3x, t2y) = t12f0(x, y) and f1(t3x, t2y) = t20f1(x, y), the numerical data
for �f,1 are: a = 3, b = 2,D1 = d0 = 12, ⌧1 = 4, "1 = 2, and D2 = 20, then
the boundary of the arithmetic Newton polygon �f,1 is formed by the straight
segments

w0,1(z) = 2z (0 6 z 6 4), and, w1,1(z) = 8 (z > 4),

2.4. Integrals Over Degenerate Cones
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together with the half–line {(z, w) 2 R2
+|w = 0}. The face functions are

f(0,0)(x, y) = (y3 � x2)2, f(4,8)(x, y) = (y3 � x2)2 + x4y4,

see figure 2.1: �A(f). Since that f(4,8)(x, y) does not have singular points on K⇥2,
f(x, y) is arithmetically non-degenerate.

(4, 8)

Figure 2.1: �A(f)

According to Theorem 2.4.1, the real parts of the poles of Z(s, f,�,�5) belong
to the set {�1,� 5

12 ,�
1
2 ,�

9
20} cf. (2.3.4)–(2.3.9).

2. g(x, y) = (y3 � x2)2(y3 � cx2) + x4y4. Let g(x, y) = (y3 � x2)2(y3 � cx2) + x4y4 2
K[x, y], with c 2 O⇥

K
and c 6⌘ 1 mod p as in Example 2.3.2. The polynomial

g(x, y) is a semiquasihomogeneous polynomial with respect to the weight (3, 2),
which is the generator of the cone �5, see Table 1.1. We note that g(x, y) =
g0(x, y) + g1(x, y), where g0(x, y) = (y3 � x2)2(y3 � cx2) and g1(x, y) = x4y4, c.f.
(2.1.1). In this case ✓ = 1 and ✓ = c, are the roots of g0(1, y3), thus �A(g) =
{�g,1,�g,c}.
Since g0(t3x, t2y) = t18g0(x, y) and g1(t3x, t2y) = t20g1(x, y), the numerical data
for �g,1 are: a = 3, b = 2,D1 = d0 = 18, ⌧1 = 1, "1 = 2, and D2 = 20, then
the boundary of the arithmetic Newton polygon �g,1 is formed by the straight
segments

w0,1(z) = 2z (0 6 z 6 1), and, w1,1(z) = 2 (z > 1),

together with the half–line {(z, w) 2 R2
+|w = 0}. The face functions are

g(0,0)(x, y) = (y3 � x2)2(y3 � cx2), g(1,2)(x, y) = (y3 � x2)2(y3 � cx2) + x4y4,

see figure 2.2: �g,1. Since g(1,2)(x, y) does not have singular points on K⇥2, g(x, y)
is arithmetically non-degenerate with respect to �g,1.
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(1, 2)

Figure 2.2: �g,1

On the other hand, the numerical data for �g,c are: a = 3, b = 2,D1 = d0 =
18, ⌧1 = 2, "1 = 1, and D2 = 20, then the boundary of the arithmetic Newton
polygon �g,c is formed by the straight segments

w0,c(z) = z (0 6 z 6 2), and, w1,c(z) = 2 (z > 2),

together with the half–line {(z, w) 2 R2
+|w = 0}

The face functions are g(0,0)(x, y) = (y3 � x2)2(y3 � cx2), g(2,2)(x, y) = (y3 �
x2)2(y3 � cx2) + x4y4, see figure 2.3: �g,c. Since g(2,2)(x, y) does not have singular
points on K⇥2, g(x, y) is arithmetically non-degenerate with respect to �g,c.

(2, 2)

Figure 2.3: �g,c

According to Theorem 2.4.1, the real parts of the poles of Z(s, g,�,�5) belong
to the set {�1,� 5

18 ,�
1
2 ,�

6
20 ,�

7
20} cf. (2.3.10)-(2.3.14).

2.5 Local zeta functions for arithmetically non-

degenerate polynomials

Take f(x, y) 2 K[x, y] be a non-constant polynomial satisfying f(0, 0) = 0. Assume
that

R2
+ = {(0, 0)} [

[

�⇢�geom(f)

��, (2.5.1)
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is a simplicial conical subdivision subordinated to �geom(f).
Let a� = (a1(�), a2(�)) be the perpendicular primitive vector to the edge � of

�geom(f), we also denote by ha�, xi = da(�) the equation of the corresponding support-
ing line (cf. Section 1.3). We set

P(�geom(f)) :=

⇢
�a1(�) + a2(�)

da(�)

���� � is an edge of �geom(f), da(�) 6= 0

�
.

Theorem 2.5.1. Let f(x, y) 2 K[x, y] be a non-constant polynomial. If f(x, y) is

arithmetically non-degenerate with respect to its arithmetic Newton polygon �A(f),
then the real parts of the poles of Z(s, f,�) belong to the set

{�1} [ P(�geom(f)) [ P(�A(f)).

In addition Z(s, f,�) vanishes for almost all �.

Proof. Consider the conical decomposition (2.5.1), then by (1.3.1) the problem of
describe the poles of Z(s, f,�) is reduced to the problem of describe the poles of
Z(s, f,�, O⇥2

K
) and Z(s, f,�,��), where � is a proper face of �geom(f). By Lemma

1.2.3, the real part of the poles of Z(s, f,�, O⇥2
K
) is �1.

For the integrals Z(s, f,�,��), we have two cases depending of the non degen-
eracy of f with respect to ��. If �� is a one–dimensional cone generated by a� =
(a1(�), a2(�)), and f�(x, y) does not have singularities on (K⇥)2, then the real parts of
the poles of Z(s, f,�,��) belong to the set

{�1} [
⇢
�a1(�) + a2(�)

d�

�
✓ {�1} [ P(�geom(f)).

If �� is a two–dimensional cone, f�(x, y) is a monomial, and then it does not have
singularities on the torus (K⇥)2, in consequence Z(s, f,�,��) is an entire function as
can be deduced from [38, Proposition 4.1]. If �� is a one-dimensional cone, and f�(x, y)
has not singularities on (O⇥

K
)2, then f(x, y) is a semiquasihomogeneous arithmetically

non-degenerate polynomial, and thus by Theorem 2.4.1, the real parts of the poles of
Z(s, f,�,��) belong to the set

{�1} [
⇢
�a1(�) + a2(�)

d�

�
[ P(�A(f)) ✓ {�1} [ P(�geom(f)) [ P(�A(f)).

From these observations the real parts of the poles of Z(s, f,�) belong to the set

{�1} [ P(�geom(f)) [ P(�A(f)).

Now we prove that Z(s, f,�) vanishes for almost all �. From (2.5.1) and (1.3.1) it
is enough to show that the integrals Z(s, f,�,��) = 0 for almost all �, to do so, we
consider two cases. If f is non–degenerate with respect to ��, Z(s, f,�,��) = 0 for
almost all �, as follows from the proof of Theorem 1.2.1. On the other hand, when f is
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degenerate with respect to �� and �� is a one dimensional cone generated by a�, then
f(x, y) is a semiquasihomogeneous polynomial with respect to the weight a� , thus by
Theorem 2.4.1, Z(s, f,�,��) = 0 when �|1+pOK 6= �triv. If �� is a two dimensional
cone, then � is a point. Indeed, it is the intersection point of two edges ⌧ and µ of
�geom(f), and satisfies the equations:

ha⌧ , �i = da(⌧) and haµ, �i = da(µ).

It follows that f(x, y) is a semiquasihomogeneous polynomial with respect to the weight
given by the barycenter of the cone: a⌧+aµ

2 . The weighted degree is da(⌧)+da(µ)
2 . Finally,

we may use again Theorem 2.4.1 to obtain the required conclusion.

2.5. Local zeta functions for arithmetically non-degenerate polynomials



Chapter 3

Exponential Sums mod pm.

In this chapter we give some estimations for the asymptotic behavior of exponential
sums mod pm attached to arithmetically non-degenerate polynomial, see Theorem
3.1.1.

3.1 Exponential Sums

Let K be a non–Archimedean local field of arbitrary characteristic with valuation
v, and take f(x, y) 2 K[x, y]. The exponential sum attached to f is

E(z, f) :=

Z

O2
K

 (zf(x, y)) |dxdy|,

for z = up�m where u 2 O⇥
K

and m 2 Z.

Lemma 3.1.1. E(z, f) can be thought of as an exponential sum.

E(z, f) = q�2m
X

(a,b)2(OK/Pm
K )2

 (zf(a, b)),

for z = up�m
where u 2 O⇥

K
and m 2 Z and f(x, y) 2 K[x, y].

Proof. In fact if we decompose O2
K

as

O2
K
=

G

(a,b)2(OK/pmOK)2

(a, b) + (pmOK)
2,

we obtain,

E(z, f) =
X

(a,b)2(OK/pmOK)2

Z

((a,b)+pmOK)2

 (up�mf(x, y))|dxdy|, (3.1.1)

= q�2m
X

(a,b)2(OK/pmOK)2

Z

O2
K

 (up�mf(a+ pmx1, b+ pmy1)|dx1dy1|,

41
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where (x1, y1) 2 O2
K

. Now, by using the Taylor series for f around (a, b):

f(a+ pmx1, b+ pmy1) =

f(a, b) + pm
✓

@f

@x1
(a, b)x1 +

@f

@y1
(a, b)y1

◆
+ pm+1(higher order terms),

we get,

E(z, f) = q�2m
X

(a,b)2(OK/Pm
K )2

 (zf(a, b)). (3.1.2)

Denef found the following nice relation between E(z, f) and Z(s, f,�).
We denote by CoefftkZ(s, f,�) the coefficient ck in the power series expansion of

Z(s, f,�) in the variable t = q�s.

Proposition 3.1.1 ([12, Proposition 1.4.4]). With the above notation

E(up�m, f) = Z(0, f,�triv) + Coeff
tm�1

(t� q)Z(s, f,�triv)

(q � 1)(1� t)

+
X

� 6=�triv

g��1�(u)Coeff
tm�c(�)Z(s, f,�),

where c(�) denotes the conductor of � and g� is the Gaussian sum

g� = (q � 1)�1q1�c(�)
X

x2(OK/P
c(�)
K )⇥

�(x)  (x/pc(�)).

We recall here that the critical set of f is defined as

Cf := Cf (K) = {(x, y) 2 K2 | rf(x, y) = 0}.

We also define

��geom = max
� edges of �geom(f)

⇢
�a1(�) + a2(�)

da(�)

���� da(�) 6= 0

�
,

and
��A

✓
:= max

✓2R(f0)
{P | P 2 P(�f,✓)}.

Theorem 3.1.1. Let f(x, y) 2 K[x, y] be a non constant polynomial which is arithmeti-

cally modulo p non–degenerate with respect to its arithmetic Newton polygon. Assume

that Cf ⇢ f�1(0) and assume all the notation introduced previously. Then the following

assertions hold.
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1. For |z| big enough, E(z, f) is a finite linear combination of functions of the form

�(ac z)|z|�(log
q
|z|)j� ,

with coefficients independent of z, and � 2 C a pole of Z(s, f,�) (with �|1+pOK =
�triv) or (1� q�s�1)Z(s, f,�triv), where

j� =

(
0 if � is a simple pole

0, 1 if � is a double pole.

Moreover all the poles � appear effectively in this linear combination.

2. Assume that � := max{��geom , ��A
✓
} > �1. Then for |z| > 1, there exist a positive

constant C(K), such that

|E(z, f)| 6 C(K)|z|� log
q
|z|.

Proof. 1. The proof follows by writing Z(s, f,�) in partial fractions and using
Proposition 3.1.1 and Theorem 2.5.1. For t = q�s,

Z(s, f,�) =
X

m>0

Z

v(f(x))=m

�(ac f(x)) |f(x)|s dx,

=
X

m>0

Coeff
tm(Z(s, f,�triv)) · tm.

Note that (1� q�s�1)Z(s, f,�triv) or Z(s, f,�) may have simple poles or double
poles. By Theorem 2.4.1, we know that the real part of the candidate poles � of
Z(s, f,�) can be ⇢i

�i
, ⇢i+1

�0i
or 1

"i
, where ⇢i

�i
6= ⇢i+1

�0i
. Then by expanding Z(s, f,�triv)

in partial fractions over the complex numbers, we consider the following cases.
Case (i): Simple poles. In this case by using the identity

1� q�⇢it�i = (1� q
�⇢i
�i t)

Q

⇠
�i=1
⇠ 6=1

(1� ⇠q
�⇢i
�i t), where ⇠ 2 C. Then we have

1

1� q�⇢it�i
=
X

⇠�i=1

c⇠

1X

l=0

q�
⇢i
�i
l⇠ltl,

for some constant c⇠ 2 C.
Case (ii):Double poles. Here we have essentially two subcases. In the first case,
when 1

"i
6= ⇢i

�i
, we obtain

1

(1� q�⇢it�i)(1� q�1t"i)

=
X

⇠�i=1

c⇠

 1X

l=0

q�
⇢i
�i
l⇠ltl

!
+
X

⇠"i=1

e⇠

 1X

l=0

q�
1
"i
l⇠ltl

!
,
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where c⇠, e⇠ are constants.
The second case, is when 1

"i
= ⇢i

�i
. Here we have

1

(1� q�⇢it�i)(1� q�1t"i)
=
X

⇠
�i=1
⇠
"i=1

0

B@
f⇠

⇣
1� q

�⇢i
�i ⇠t

⌘2 +
h⇠

1� q
�⇢i
�i ⇠t

1

CA

+
X

⇠
�i=1

⇠
"i 6=1

j⇠

 1X

l=0

q
�⇢i
�i

l⇠ltl
!

+
X

⇠
"i=1

⇠
�i 6=1

k⇠

 1X

l=0

q
�1
"i

l⇠ltl
!
,

for some constants f⇠, h⇠, j⇠, k⇠ 2 C. Note that

1
⇣
1� q

�⇢i
�i ⇠t

⌘2 =
1X

l=0

(l + 1)q
�⇢i
�i

l⇠ltl.

Therefore

Coeff
tmZ(s, f,�triv) =

X

⇠�i=1

(f⇠(m+ 1) + h⇠) ⇠
mq�

⇢i
�i
m.

We also note that for m big enough Z(s, f,�) is rational function identically zero
for almost all � (Theorem 2.4.1), the series

X

� 6=�triv

g��1�(u)Coeff
tm�1Z(s, f,�)

is a finite sum. Then, E(z, f) is asymptotically equal to
X

�

cm�(ac z)|z|��(log
q
|z|)j� ,

where � runs through all of the poles of Z(s, f,�triv), and cm are complex con-
stant.

2. For |z| big enough and � > �1, we have the estimation

|z|�(log
q
|z|)j� 6 C(K)|z|�(log

q
|z|),

which implies the desired estimation.
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Appendix A

The local zeta function of

(y3 � x2)2 + x4y4

In this section we shall compute explicitly the local zeta functions for f(x, y) =
(y3�x2)2+x4y4. We assume that the characteristic of the residue field of K is different
from 2. This polynomial is degenerate with respect to its geometric Newton polygon
in the sense of Kouchnirenko. We present the example 2.3.1 and 1 computed in full
detail and we obtain an explicit list of candidates for the poles in terms of geometric
data obtained from a family of arithmetic Newton polygons attached to the polynomial
f(x, y).

�1

�2

�3

�4

�5

�6 �7

�8

�9

Figure A.1: (a) �geom((y3 � x2)2 + x4y4). (b) Conical partition of R2
+ induced by it.

The conical subdivision of R2
+ subordinated to the geometric Newton polygon of

f(x, y) is R2
+ =

n
(0, 0) [

S9
j=1�j

o
.

45
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Table A.1: Rational Simple Cones
.

�1 (0, 1)R+

�2 (0, 1)R+ + (1, 1)R+

�3 (1, 1)R+

�4 (1, 1)R+ + (3, 2)R+

�5 (3, 2)R+

�6 (3, 2)R+ + (2, 1)R+

�7 (2, 1)R+

�8 (2, 1)R+ + (1, 0)R+

�9 (1, 0)R+

A.1 Computation of Z(s, f,�,�i), i = 1, 2, 3, 4, 6, 7, 8, 9

These integrals correspond to the case in which f is non-degenerate in the sense of
Kouchnirenko on �i, for i = 1, 2, 3, 4, 6, 7, 8, 9, as in section 1.3. The integrals can be
calculated as follows.

1. Case Z(s, f,�,�1).

Z(s, f,�,�1) =
1X

n=1

Z

O
⇥
K⇥pnO

⇥
K

�(ac f(x, y))|f(x, y)|s|dxdy|,

=
1X

n=1

Z

O
⇥
K⇥pnO

⇥
K

�(ac (y3 � x2)2 + x4y4)|(y3 � x2)2 + x4y4|s|dxdy|,

=
1X

n=1

q�n

Z

O
⇥2
K

�(ac (p3ny3 � x2)2 + p4nx4y4)|(p3ny3 � x2)2 + p4nx4y4|s|dxdy|,

=
1X

n=1

q�n

Z

O
⇥2
K

�(ac (g1(x, y)))|(g1(x, y))|s|dxdy|,

where g1(x, y) = (p3ny3 � x2)2 + p4nx4y4, with g1(x, y) = x4.
Note that we can write O⇥2

K
as follows

O⇥2
K

=
[̇

(a,b)2(F⇥
q )2

(a, b) + (pOK)
2. (A.1.1)

Thus we can write
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Z(s, f,�,�1) =
1X

n=1

q�n
X

(a,b)2(F⇥
q )2

Z

(a,b)+(pOK)2

�(ac(g1(x, y)))|g1(x, y)|s|dxdy|,

=
1X

n=1

q�n�2
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac(g1(a+ px, b+ py)))|g1(a+ px, b+ py)|s|dxdy|.

Set x = (x1, x2)and c = (c1, c2). The Taylor series expansion of g(c+ px) around
the origin is,

g(c+ px) = g(c) + p

✓
@g

@x1
cx1 +

@g

@x2
cx2

◆
+ p2(higher order terms) (A.1.2)

By using equation (A.1.2) an the fact that @g1

@x
(a, b) = 4a3 6= 0, we can change

variables in the previous integral as follows

⇢
z1 =

g1(a+px,b+py)�g1(a,b)
p ,

z2 = y,
(A.1.3)

z = (z1, z2) is an special restricted power series (SRP) in (x, y). ( c.f [23], Lemma
7.4.3).
We use the change of variables above and we obtain that, the mapping (x, y) !
(z1, z2) on O2

K
into O2

K
preserves the Haar measure.

Z(s, f,�,�1) =
1X

n=1

q�n�2
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac(g1(a+ px, b+ py))|g1(a+ px, b+ py)|s|dxdy|,

=
1X

n=1

q�n�2
X

(a,b)2(F⇥
q )2

Z

OK

�(ac (g1(a, b) + pz1))|g1(a, b) + pz1|s|dz1|,

=
1X

n=1

q�n�2I�1(s, (a, b)),

where, I�1(s, (a, b)) =
P

(a,b)2F⇥2
q

R
OK

�(ac (g1(a, b) + pz1))|g1(a, b) + pz1|sK |dz1|.

For to compute I�1(s, (a, b)) we find that N = Card{(a, b) 2 (F⇥
q
)2 : a4 = 0} = 0,

then we use the Lemma 1.2.2 and we have that
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I�1(s, (a, b)) =

8
>>>>><

>>>>>:

(q � 1)2 if � = �triv

P
(a,b)2(F⇥

q )2 �(a
4) if � = �triv

0 all other cases,

where � is the multiplicative character induced by � in Fq.

Now since that,

X

(a,b)2(F⇥
q )2

�(a4) =

(
(q � 1)2 if �4 = �triv

(q � 1) · 0 = 0 if �4 6= �triv,
. (A.1.4)

we obtain,

I�1(s, (a, b)) =

8
>>>>><

>>>>>:

(q � 1)2 if � = �triv

(q � 1)2 if �4 = �triv

0 all other cases.

Since that �4 = �triv and �|U = �triv is equivalent to �4 = �triv, we have that
Z(s, f,�,�1) =

P1
n=1 q

�n�2I�1(s, (a, b)) so we get,

Z(s, f,�,�1) =

8
>>>>><

>>>>>:

q�1(1� q�1) if � = �triv

q�1(1� q�1) if �4 = �triv

0 all other cases,

where U = 1 + pOK .

2. Case Z(s, f,�,�2).

Z(s, f,�,�2) =
1X

m=1

1X

n=1

Z

pmO
⇥
K⇥pn+mO

⇥
K

�(ac(f(x, y))|f(x, y)|s|dxdy|,

=
1X

m=1

1X

n=1

q�2m�n

Z

O
⇥2
K

�(ac (f(pmx, pn+my))|f(pmx, pn+my)|s|dxdy|,

=
1X

m=1

1X

n=1

q�2m�n�4ms

Z

O
⇥2
K

�(ac (g2(x, y)))|g2(x, y)|s|dxdy|.
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Since that polynomial g2(x, y) = (p3n+my3 � x2)2 + p4n+4mx4y4, we have that
g2(x, y) = x4.
By using equation (A.1.1), so we obtain that,

Z(s, f,�,�2) =
1X

m=1

1X

n=1

q�2m�n�4ms
X

(a,b)2(F⇥
q )2

Z

(a,b)+(pOK)2

�(ac (g2(x, y))|g2(x, y)|s|dxdy|,

=
1X

m=n=1

q�2m�n�4ms�2
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac (g2(a+ px, b+ py))|g2(a+ px, b+ py)|s|dxdy|.

Then we apply the change variables (A.1.3) to function g2 and since that @g2

@x
(a, b) =

4a3 6= 0, we obtain,

Z(s, f,�,�2) =
1X

m=1

1X

n=1

q�2m�n�4ms�2
X

(a,b)2(F⇥
q )2

Z

OK

�(ac (g2(a, b) + pz1))|g2(a, b) + pz1)|s|dz1|,

=
1X

m=1

1X

n=1

q�2m�n�4ms�2I�2(s, (a, b)),

where I�2(s, (a, b)) =
P

(a,b)2(F⇥
q )2

R
OK

�(ac (g2(a, b) + pz1))|g2(a, b) + pz1|s|dz1|,
and since that, N = Card{(a, b) 2 (F⇥

q
)2 : a4 = 0} = 0, then by applying the

same procedure above we obtain
Z(s, f,�,�2) =

P1
m=1

P1
n=1 q

�2m�n�4ms�2I�2(s, (a, b)) so we get,

Z(s, f,�,�2) =

8
>>>>><

>>>>>:

q
�3�4s(1�q

�1)
(1�q�2�4s) if � = �triv,

q
�3�4s(1�q

�1)
(1�q�2�4s) if �4 = �triv,�|U = �triv

0 all other cases,

3. Case Z(s, f,�,�3).
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Z(s, f,�,�3)

=
1X

n=1

Z

pnO
⇥
K⇥pnO

⇥
K

�(ac (f(x, y))|f(x, y)|s|dxdy|,

=
1X

n=1

q�2n

Z

O
⇥2
K

�(ac (p3ny3 � p2nx2)2 + p8nx4y4)|(p3ny3 � p2nx2)2 + p8nx4y4|s|dxdy|,

=
1X

n=1

q�2n�4ns

Z

O
⇥2
K

�(ac (pny3 � x2)2 + p4nx4y4)|(pny3 � x2)2 + p4nx4y4|s|dxdy|,

=
1X

n=1

q�2n�4ns

Z

O
⇥2
K

�(ac(g3(x, y)))|g3(x, y)|s|dxdy|,

where g3(x, y) = (pny3 � x2)2 + p4nx4y4, we have g3(x, y) = x4, then the origin of
K is the only singular point of g3(x, y) over (F⇥

q
)2.

By using equation (A.1.1), so we obtain that,

Z(s, f,�,�3) =
1X

n=1

q�2n�4ns
X

(a,b)2(F⇥
q )2

Z

(a,b)+(pOK)2

�(ac g3(x, y))|g3(x, y)|s|dxdy|,

=
1X

n=1

q�2n�4ns�2
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac g3(a+ px, b+ py))|g3(a+ px, b+ py)|s|dxdy|.

Then we apply the change variables (A.1.3) to function g3 and since that @g3

@x
(a, b) =

4a3 6= 0, we obtain,

Z(s, f,�,�3) =
1X

n=1

q�2n�4ns�2
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac (g3(a+ px, b+ py))|g3(a+ px, b+ py)|s|dxdy|,

=
1X

n=1

q�2n�4ns�2
X

(a,b)2(F⇥
q )2

Z

OK

�(ac (g3(a, b) + pz1))|g3(a, b) + pz1)|s|dz1|,

=
1X

n=1

q�2n�4ns�2I�3(s, (a, b)),
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where I�3(s, (a, b)) =
P

(a,b)2(F⇥
q )2

R

OK

�(ac (g3(a, b) + pz1))|g3(a, b) + pz1)|s|dz1|.

Then since that N = Card{(a, b) 2 (F⇥
q
)2 : a4 = 0} = 0, and by (A.1.3) we

obtain,

Z(s, f,�,�3) =

8
>>>>><

>>>>>:

q
�2�4s(1�q

�1)2

(1�q�2�4s) if � = �triv,

q
�2�4s(1�q

�1)2

(1�q�2�4s) if �4 = �triv,�|U = �triv

0 all other cases,

where U = 1 + pOK .

4. Case Z(s, f,�,�4).

Z(s, f,�,�4) =
1X

m=1

1X

n=1

Z

pn+3mO
⇥
K⇥pn+2mO

⇥
K

�(ac f(x, y))|f(x, y)|s|dxdy|,

=
1X

m=1

1X

n=1

q�2n�5m

Z

O
⇥2
K

X ((p3n+6my3 � p2n+6mx2)2 + p8n+20mx4y4)|dxdy|,

=
1X

m=1

1X

n=1

q(�2�4s)n+(�5�12s)m

Z

O
⇥2
K

�(ac(g4(x, y)))|g4(x, y)|s|dxdy|.

where

X ((p3n+6my3 � p2n+6mx2)2 + p8n+20mx4y4) =

�(ac ((p3n+6my3 � p2n+6mx2)2 + p8n+20mx4y4))⇥
|(p3n+6my3 � p2n+6mx2)2 + p8n+20mx4y4)|,s

and the polynomial g4(x, y) = (pny3�x2)2+p4n+8mx4y4, then we have g4(x, y) =
x4, therefore the origin of K is the only singular point of g4(x, y) over (F⇥

q
)2.

We obtain that,

Z(s, f,�,�4) =
1X

m=1

1X

n=1

q(�2�4s)n+(�5�12s)m
X

(a,b)2(F⇥
q )2

Z

(a,b)+(pOK)2

�(ac g4(x, y))|g4(x, y)|s|dxdy|.
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Then since that @g4

@x
(a, b) = 4a3 6= 0, we obtain,

Z(s, f,�,�4) =

=
1X

m=1

1X

n=1

q(�2�4s)n+(�5�12s)m�2
X

(a,b)2F⇥2
q

Z

OK

�(ac (g4(a, b) + pz1))|g4(a, b) + pz1|s|dz1|,

=
1X

m=1

1X

n=1

q(�2�4s)n+(�5�12s)m�2I�4(s, (a, b)),

where I�4 =
P

(a,b)2F⇥2
q

R

OK

�(ac (g4(a, b) + pz1))|g4(a, b) + pz1)|s|dz1|, then since

that N = Card{(a, b) 2 (F⇥
q
)2 : a4 = 0} = 0, and by applying (A.1.4) to

I�4(s, (a, b)), finally we obtain

Z(s, f,�,�4) =

8
>>>>><

>>>>>:

q
�7�16s(1�q

�1)2

(1�q�2�4s)(1�q�5�12s) if � = �triv,

q
�7�16s(1�q

�1)2

(1�q�2�4s)(1�q�5�12s) if �4 = �triv,�|U = �triv

0 all other cases,

5. Case Z(s, f,�,�6).

Z(s, f,�,�6) =
1X

m=1

1X

n=1

Z

p3n+2mO
⇥
K⇥p2n+mO

⇥
K

�(ac f(x, y))|f(x, y)|s|dxdy|,

=
1X

m=1

1X

n=1

q(�5�12s)n+(�3�6s)m

Z

O
⇥2
K

�(ac(g6(x, y)))|g6(x, y)|s |dxdy|,

where g6(x, y) = (y3 � px2)2 + p8n+6mx4y4 we have g6(x, y) = y6 and we obtain
that the origin of K is the only singular point of g6(x, y) over (F⇥

q
)2.

Now we obtain that,

Z(s, f,�,�6) =
1X

m=1

1X

n=1

q(�5�12s)n+(�3�6s)m
X

(a,b)2(F⇥
q )2

Z

(a,b)+(pOK)2

�(ac g6(x, y))|g6(x, y)|s|dxdy|,

=
1X

m=1

1X

n=1

q(�5�12s)n+(�3�6s)m�2
X

(a,b)2(F⇥
q )2

Z

O2
K

X (ac(g6(a+ px, b+ py)))|dxdy|.
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where X (ac(g6(a+ px, b+ py))) = �(ac(g6(a+ px, b+ py)))|g6(a+ px, b+ py)|s.
Then we apply the change variables (A.1.3) to function g6 and since that @g6

@y
(a, b) =

6b
5 6= 0, we obtain,

Z(s, f,�,�6) =
1X

m=1

1X

n=1

q(�5�12s)n+(�3�6s)m�2I�6(s, (a, b)),

where I�6(s, (a, b)) =
P

(a,b)2(F⇥
q )2

R

OK

�(ac (g6(a, b) + pz1))|g6(a, b) + pz1)|s|dz1|,

then since that N = Card{(a, b) 2 (F⇥
q
)2 : b

6
= 0} = 0, we get,

I�6(s, (a, b)) =

8
>>><

>>>:

(q � 1)2 if � = �trivP
(a,b)2(F⇥

q )2 �(b
6
) if � = �triv

0 all other cases,

where � is the multiplicative character induced by � in Fq, thus we resolving the
sum

X

(a,b)2(F⇥
q )2

�(b
6
) =

(
(q � 1) · 0 = 0 if �6 6= �triv

(q � 1)2 if �6 = �triv,
(A.1.5)

and we have that,

I�6(s, (a, b)) =

8
>>>>><

>>>>>:

(q � 1)2 if � = �triv

(q � 1)2 if �6 = �triv

0 all other cases,

Finally, since that �6 = �triv and �|U = �triv is equivalent to �6 = �triv where
U = 1 + pOK , we obtain

Z(s, f,�,�6 =

8
>>>>><

>>>>>:

q
�8�18s(1�q

�1)2

(1�q�3�6s)(1�q�5�12s) if � = �triv,

q
�8�18s(1�q

�1)2

(1�q�3�6s)(1�q�5�12s) if �6 = �triv,�|U = �triv

0 all other cases,

6. Case Z(s, f,�,�7).
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Z(s, f,�,�7) =
1X

n=1

Z

p2nO
⇥
K⇥pnO

⇥
K

�(ac f(x, y))|f(x, y)|s|dxdy|,

=
1X

n=1

q�3n

Z

O
⇥2
K

�(ac (p3ny3 � p4nx2)2 + p12nx4y4)|(p3ny3 � p4nx2)2 + p12nx4y4|s|dxdy|,

=
1X

n=1

q�3n�6ns

Z

O
⇥2
K

�(ac (y3 � pnx2)2 + p6nx4y4)|(y3 � pnx2)2 + p6nx4y4|s|dxdy|.

=
1X

n=1

q�3n�6ns

Z

O
⇥2
K

�(ac(g7(x, y))|g7(x, y)|s |dxdy|.

Since that polynomial g7(x, y) = (y3 � pnx2)2 + p6nx4y4, we have g7(x, y) = y6,
then the origin of K is the only singular point of g7(x, y) over (F⇥

q
)2.

We obtain that,

Z(s, f,�,�7) =
1X

n=1

q�3n�6ns
X

(a,b)2(F⇥
q )2

Z

(a,b)+(pOK)2

�(ac g7(x, y))|g7(x, y)|s|dxdy|

=
1X

n=1

q�3n�6ns�2
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac g7(a+ px, b+ py))|g7(a+ px, b+ py)|s|dxdy|.

Since that @g7

@y
(a, b) = 6b

5 6= 0, we obtain,

Z(s, f,�,�7) =
1X

n=1

q�3n�6ns�2
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac (g7(a, b) + pz1))|g7(a, b) + pz1)|s|dz1|,

=
1X

n=1

q�3n�6ns�2I�7(s, (a, b)),

where I�7(s, (a, b)) =
P

(a,b)2(F⇥
q )2

R

OK

�(ac (g7(a, b) + pz1))|g7(a, b) + pz1)|s|dz1|,

then we applying the Lemma 1.2.2, and since that N = Card{(a, b) 2 (F⇥
q
)2 :

b6 = 0} = 0,
then by applying (A.1.5) to I�7(s, (a, b)) and we obtain
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Z(s, f,�,�7) =

8
>>>>><

>>>>>:

q
�3�6s(1�q

�1)2

(1�q�3�6s) , if � = �triv,

q
�3�6s(1�q

�1)2

(1�q�3�6s) , if �6 = �triv,�|U = �triv,

0, all other cases.

7. Case Z(s, f,�,�8).

Z(s, f,�,�8) =
1X

m=1

1X

n=1

Z

p2n+mO
⇥
K⇥pnO

⇥
K

�(ac f(x, y))|f(x, y)|s|dxdy|,

=
1X

m=1

1X

n=1

q(�3�6s)n�m

Z

O
⇥2
K

�(ac(g8(x, y))|g8(x, y)|s|dxdy|.

Where g8(x, y) = (y3 � pn+2mx2)2 + p6n+4mx4y4 we have g8(x, y) = y6, then the
origin of K is the only singular point of g8(x, y), over (F⇥

q
)2.

By using equation (A.1.1), so we obtain that,

Z(s, f,�,�8) =
1X

m=1

1X

n=1

q(�3�6s)n�m�2
X

(a,b)2(F⇥
q )2

Z

(a,b)+(pOK)2

�(ac g8(x, y))|g8(x, y)|s|dxdy| =

1X

m=1

1X

n=1

q(�3�6s)n�m�2
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac g8(a+ px, b+ py))|g8(a+ px, b+ py)|s|dxdy|.

Then we apply the change variables (A.1.3) to function g8 and since that @g8

@y
(a, b) =

6b
5 6= 0, consequently

Z(s, f,�,�8) =
1X

m=1

1X

n=1

q(�3�6s)n�m�2
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac g8(a+ px, b+ py))|g8(a+ px, b+ py)|s|dxdy|,

=
1X

m=1

1X

n=1

q(�3�6s)n�m�2
X

(a,b)2(F⇥
q )2

Z

OK

�(ac (g8(a, b) + pz1))|g8(a, b) + pz1)|s|dz1|,

=
1X

m=1

1X

n=1

q(�3�6s)n�m�2I�8(s, (a, b)),
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where I�8(s, (a, b)) =
P

(a,b)2(F⇥
q )2

R
OK

�(ac (g8(a, b) + pz1))|g8(a, b) + pz1)|s|dz1|,
then N = Card{(a, b) 2 (F⇥

q
)2 : b

6
= 0} = 0, thus we applying the Lemma 1.2.2

and (A.1.5), it follows that

Z(s, f,�,�8 =

8
>>>>><

>>>>>:

q
�4�6s(1�q

�1)
(1�q�3�6s) , if � = �triv,

q
�4�6s(1�q

�1)
(1�q�3�6s) , if �6 = �triv,�|U = �triv

0 all other cases,

note that �6 = �triv and �|U = �triv, U = 1 + pOK is equivalent to �6 = �triv.

8. Case Z(s, f,�,�9).

Z(s, f,�,�9) =
1X

n=1

Z

pnO
⇥
K⇥O

⇥
K

�(ac f(x, y))|f(x, y)|s|dxdy|,

=
1X

n=1

q�n

Z

O
⇥2
K

�(ac (y3 � p2nx2)2 + p4nx4y4)|(y3 � p2nx2)2 + p4nx4y4|s|dxdy|,

=
1X

n=1

q�n

Z

O
⇥2
K

�(ac(g9(x, y)))|g9(x, y)|s |dxdy|.

Since that the polynomial g9(x, y) = (y3�p2nx2)2+p4nx4y4, we have g9(x, y) = y6,
thus the origin of K is the only singular point of g9(x, y) over (F⇥

q
)2.

By using equation (A.1.1), Z(s, f,�,�9) becomes

Z(s, f,�,�9) =
1X

n=1

q�n
X

(a,b)2(F⇥
q )2

Z

(a,b)+(pOK)2

�(ac g9(x, y))|g9(x, y)|s|dxdy|,

=
1X

n=1

q�n�2
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac g9(a+ px, b+ py))|g9(a+ px, b+ py)|s|dxdy|.

Then we apply the change variables (A.1.3) to function g9 and since that @g9

@y
(a, b) =

6b
5 6= 0, we obtain,
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Z(s, f,�,�9) =
1X

n=1

q�n�2
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac g9(a+ px, b+ py))|g9(a+ px, b+ py)|s|dxdy|

=
1X

n=1

q�n�2
X

(a,b)2(F⇥
q )2

Z

OK

�(ac (g9(a, b) + pz1))|g9(a, b) + pz1)|s|dz1|

=
1X

n=1

q�n�2I�9(s, (a, b)),

where I�9(s, (a, b)) =
P

(a,b)2(F⇥
q )2

R

OK

�(ac (g9(a, b) + pz1))|g9(a, b) + pz1)|s|dz1|,

then given that N = Card{(a, b) 2 (F⇥
q
)2 : b6 = 0} = 0 we obtain,

I�9(s, (a, b)) =

8
><

>:

P
(a,b)2(F⇥

q )2 �(b
6
), if � = �triv

0 all other cases,

where � is the multiplicative character induced by � in Fq, we thus get

I�9(s, (a, b)) =

8
>>>>><

>>>>>:

(q � 1)2 if � = �triv

(q � 1)2 if �6 = �triv

0 all other cases.

Finally, since that �6 = �triv and �|U = �triv, U = 1 + pOK is equivalent to
�6 = �triv, we obtain

Z(s, f,�,�9) =

8
>>>>><

>>>>>:

q�1(1� q�1) if � = �triv,

q�1(1� q�1) if �6 = �triv,�|U = �triv

0 all other cases,

A.2 Computation of Z(s, f,�,�5)

(An integral on a degenerate face in the sense Kouchnirenko).
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Z(s, f,�,�5) =
1X

n=1

Z

p3nO
⇥
K⇥p2nO

⇥
K

�(ac f(x, y))|f(x, y)|s|dxdy|,

=
1X

n=1

q�5n�12ns

Z

O
⇥2
K

�(ac((y3 � x2)2 + p8nx4y4)|(y3 � x2)2 + p8nx4y4|s|dxdy|.

Let f (n)(x, y) = (y3 � x2)2 + p8nx4y4, for n > 1. For compute the integral,
I(s, f (n),�) =

R
O

⇥2
K

�(ac((y3�x2)2+p8nx4y4))|(y3�x2)2+p8nx4y4|s|dxdy|, n > 1,
we use the following change of variables:

� :
O⇥2

K
! O⇥2

K

(x, y) 7�! (x3y, x2y)

The map � gives an analytic bijection of O⇥2
K

onto itself and preserves the Haar
measure since that its Jacobian J�(x, y) = x4y satisfies |J�(x, y)|K = 1, for every
x, y 2 O⇥

K
. Thus

f (n) � �(x, y) = x12y4gf (n)(x, y), with

gf (n)(x, y) = (y � 1)2 + p8nx8y4, (A.2.1)

then we have that,

I(s, f (n),�) =

Z

O
⇥2
K

|�(ac(x12y4gf (n)(x, y))|gf (n)(x, y)|s|dxdy|.

In order to compute the integral I(s, f (n),�), n > 1, we decompose O⇥2
K

as follows:

O⇥2
K

=
G

y0 6⌘1(modp)

O⇥
K
⇥ {y0 + pOK}

[�
O⇥

K
⇥ {1 + pOK}

�
, (A.2.2)

where y0 runs through a set of representatives of F⇥
q

in OK . From partition (A.2.1)
and formula (A.2.2), it follows that,

I(s, f (n),�) =
X

y0 6⌘1(modp)

Z

O
⇥
K⇥{y0+pOK}

�[ac(x12y4((y � 1)2 + p8nx8y4))]|(y � 1)2 + p8nx8y4|s|dxdy|

+

Z

O
⇥
K⇥{1+pOK}

�[ac(x12y4((y � 1)2 + p8nx8y4))]|(y � 1)2 + p8nx8y4|s|dxdy|.
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This integral admits the following expansion:

I(s, f (n),�) =

X

y0 6⌘1(modp)

1X

j=0

q�1�j

Z

O
⇥
K⇥O

⇥
K

X1(x, y) |dxdy|+
1X

j=0

q�1�j

Z

O
⇥
K⇥O

⇥
K

X2(x, y) |dxdy|.

where

X1(x, y) = �[ac(x12(y0 + pj+1y)4((y0 � 1 + pj+1y)2 + p8nx8(y0 + pj+1y)4))]

X2(x, y) =

�[ac(x12(1 + pj+1y)4((pj+1y)2 + p8nx8(1 + pj+1y)4))]⇥ |(pj+1y)2 + p8nx8(1 + pj+1y)4|s

In order to compute integral I, we write I(s, f (n),�) = J1(s, f (n),�)+J2(s, f (n),�),
where

J1(s, f
(n),�) =

X

y0 6⌘1(modp)

1X

j=0

q�1�j

Z

O
⇥
K⇥O

⇥
K

X1(x, y) |dxdy|,

and

J2(s, f
(n),�) =

1X

j=0

q�1�j

Z

O
⇥
K⇥O

⇥
K

X2(x, y) |dxdy|.

Now, integral J2(s, f (n),�) can write as

J2(s, f
(n),�) =

4n�2X

j=0

q�1�j�(2+2j)s

Z

(O⇥
K)2

�[ac(x12(1 + pj+1y)4(y2 + p8n�(2+2j)x8(1 + pj+1y)4))]|dxdy|

+q�4n�8ns

Z

(O⇥
K)2

�[ac(x12(1 + pj+1y)4(y2 + x8(1 + pj+1y)4))]|y2 + x8(1 + pj+1y)4|s|dxdy|

+
1X

j=4n

q�j�1�8ns

Z

(O⇥
K)2

�[ac(x12(1 + pj+1y)4(p2+2j�8ny2 + x8(1 + pj+1y)4))]|dxdy|.
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Now we obtain,

I(s, f (n),�) =
X

y0 6⌘1(modp)

1X

j=0

q�1�j

Z

O
⇥
K⇥O

⇥
K

�[ac(f1(x, y))]|dxdy|

+
4n�2X

j=0

q�1�j�(2+2j)s

Z

(O⇥
K)2

�[ac(f2(x, y))]|dxdy|

+q�4n�8ns

Z

(O⇥
K)2

�[ac(f3(x, y))]|f3(x, y)|sK |dxdy|

+
1X

j=4n

q�j�1�8ns

Z

(O⇥
K)2

�[ac(f4(x, y))]|dxdy|,

where

f1(x, y) = x12(y0 + pj+1y)4((y0 � 1 + pj+1y)2 + p8nx8(y0 + pj+1y)4),

f2(x, y) = x12(1 + pj+1y)4(y2 + p8n�(2+2j)x8(1 + pj+1y)4),

f3(x, y) = x12(1 + pj+1y)4(y2 + x8(1 + pj+1y)4),

f4(x, y) = x12(1 + pj+1y)4(p2+2j�8ny2 + x8(1 + pj+1y)4),

Now we write, I(s, f (n),�) = I1(s, f (n),�)+I2(s, f (n),�)+I3(s, f (n),�)+I4(s, f (n),�)
with,

I1(s, f
(n),�) =

X

y0 6⌘1(modp)

1X

j=0

q�1�j

Z

O
⇥
K⇥O

⇥
K

�[ac(f1(x, y))]|dxdy|.

I2(s, f
(n),�) =

4n�2X

j=0

q�1�j�(2+2j)s

Z

(O⇥
K)2

�[ac(f2(x, y))]|dxdy|.

I3 = (s, f (n),�)q�4n�8ns

Z

(O⇥
K)2

�[ac(f3(x, y))]|f3(x, y)|s|dxdy|.

I4 = (s, f (n),�)
1X

j=4n

q�j�1�8ns

Z

(O⇥
K)2

�[ac(f4(x, y))]|dxdy|.

And we find every integral Ii(s, f (n),�), i = 1, 2, 3, 4 after we compute

Z(s, f,�,�5) =
1X

n=1

q�5n�12nsI(s, f (n),�).
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(a) I1(s, f (n),�) =
P

y0 6⌘1(modp)

P1
j=0 q

�1�j
R

O
⇥
K⇥O

⇥
K

�(ac(f1(x, y))) |dxdy|.

Since polynomial

f1(x, y) = x12(y0 + pj+1y)4((y0 � 1 + pj+1y)2 + p8nx8(y0 + pj+1y)4),

we have f1(x, y) = x12y40(y0 � 1)2.
By using equation (A.1.1), so we obtain that,

I1(s, f
(n),�) =

X

y0 6⌘1(modp)

1X

j=0

q�1�j
X

(a,b)2(F⇥
q )2

Z

(a,b)+(pOK)2

�(ac f1(x, y))|dxdy|,

=
X

y0 6⌘1( mod p)

1X

j=0

q�3�j
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac f1(a+ px, b+ py))|dxdy|.

Then we apply the change variables (A.1.3) to function f1, and we note that

@f1
@x

(a, b) = 12y40(y0 � 1)2a11 6= 0,

then

I1(s, f
(n),�) =

X

y0 6⌘1(mod p)

1X

j=0

q�3�j
X

(a,b)2(F⇥
q )2

Z

OK

�(ac (f1(a, b) + pz1))|dz1|,

=
X

y0 6⌘1(mod p)

1X

j=0

q�3�jI1(s, (a, b)),

where I1(s, (a, b)) =
P

(a,b)2(F⇥
q )2

R

OK

�(ac (f1(a, b)+pz1))|dz1|, for to compute

it we use the Lemma 1.2.2, and given that Card{(a, b) 2 (F⇥
q
)2 : a12y40(y0 �

1)2 = 0} = 0, we get

I1(s, (a, b)) =

8
>>>>><

>>>>>:

(q � 1)2 if � = �triv

P
(a,b)2(F⇥

q )2 �(a
12y40(y0 � 1)2) if � = �triv

0 all other cases,

where � is the multiplicative character induced by � in Fq, then we have
that
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X

(a,b)2(F⇥
q )2

�(a12y40(y0 � 1)2) =

(
�4(y0)�

2(y0 � 1)(q � 1)2, if �12 = 1

(q � 1) · 0 = 0 if �12 6= 1,

Thus,

I1(s, (a, b)) =

8
>>>>><

>>>>>:

(q � 1)2 if � = �triv

�4(y0)�
2(y0 � 1)(q � 1)2 if �12 = �triv

0 all other cases.

Finally, since that �12 = �triv and �|U = �triv, U = 1+ pOK is equivalent to
�12 = �triv, and furthermore

I1(s, f (n),�) =
P

y0 6⌘1( mod p)

P1
j=0 q

�3�jI1(s, (a, b)), we obtain

I1(s, f (n),�) =

8
>>>>><

>>>>>:

q�1(1� q�1)(q � 2) if � = �triv

�4(y0)�
2(y0 � 1)q�1(1� q�1)(q � 2) if �12 = �triv,�|U = �triv

0 all other cases,

(b) I2(s, f (n),�) =
P4n�2

j=0 q�1�j�(2+2j)s
R
(O⇥

K)2 �[ac(f2(x, y))]|dxdy|.

Since polynomial f2(x, y) = x12(1 + pj+1y)4(y2 + p8n�(2+2j)x8(1 + pj+1y)4),
we have f2(x, y) = x12y2.
By using equation (A.1.1) so we obtain that,

I2(s, f
(n),�) =

4n�2X

j=0

q�1�j�(2+2j)s
X

(a,b)2(F⇥
q )2

Z

(a,b)+(pOK)2

�(ac f2(x, y))|dxdy|,

=
4n�2X

j=0

q�3�j�(2+2j)s
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac f2(a+ px, b+ py))|dxdy|.

Then we apply the change variables (A.1.3) to function f2 where

@f2
@x

(a, b) = 12(a11b
2
) 6= 0,

we use the change of variables above and we obtain that,
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I2(s, f
(n),�) =

4n�2X

j=0

q�3�j�(2+2j)s
X

(a,b)2(F⇥
q )2

Z

OK

�(ac (f2(a, b) + pz1))|dz1|

=
4n�2X

j=0

q�3�j�(2+2j)sI2(s, (a, b)),

where I2(s, (a, b)) =
P

(a,b)2F⇥2
q

R

OK

�(ac (f2(a, b) + pz1))|dz1|, given that

N = Card{(a, b) 2 (F⇥
q
)2 : a12b

2
= 0} = 0,

we can assert that

I2(s, (a, b)) =

8
>>>>><

>>>>>:

(q � 1)2 if � = �triv

P
(a,b)2(F⇥

q )2 �
12(a)�2(b) if � = �triv

0 all other cases,

where � is the multiplicative character induced by � in Fq. Then we conclude
P

(a,b)2(F⇥
q )2

�12(a)�2(b) =

(
(q � 1)2 if �2 = �triv

0 if �2 6= �triv

Thus, I2(s, (a, b)) =

8
>>>>><

>>>>>:

(q � 1)2 if � = �triv

(q � 1)2 if �2 = �triv

0 all other cases.

Finally, since that �2 = �triv and �|U = �triv, U = 1 + pOK is equivalent
to �2 = �triv and the identity

P
B

k=A
zk = z

A�z
B+1

1�z
, we obtain that

I2(s, f (n),�) =

8
>>>>><

>>>>>:

q
�1�2s(1�q

(4n�1)(�1�2s))(1�q
�1)2

1�q�1�2s if � = �triv,

q
�1�2s(1�q

(4n�1)(�1�2s))(1�q
�1)2

1�q�1�2s if �2 = �triv,�|U = �triv

0 all other cases,

(c) I3(s, f (n),�) = q�4n�8ns
R

(O⇥
K)2

�(ac(f3(x, y))) |f3(x, y)|s| dxdy|.

Since f3(x, y) = x12(1 + pj+1y)4(y2 + x8(1 + pj+1y)4), we have f3(x, y) =
x12y2 + x20.

By using equation (A.1.1), so we obtain that,
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I3(s, f
(n),�) = q�4n�8ns

X

(a,b)2(F⇥
q )2

Z

(a,b)+(pOK)2

�(ac f3(x, y))|f3(x, y)|s|dxdy|,

= q�4n�8ns�2
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac f3(a+ px, b+ py))|f3(a+ px, b+ py)|s|dxdy|.

Then we apply the change variables (A.1.3) to function f3 where @f3

@y
(a, b) =

2(a12b) 6= 0, and we obtain

I3(s, f
(n),�) =q�4n�8ns�2

X

(a,b)2(F⇥
q )2

Z

OK

�(ac (f3(a, b) + pz1))|f3(a, b) + pz1)|s|dz1|

=q�4n�8ns�2I3(s, (a, b)),

where I3(s, (a, b)) =
P

(a,b)2(F⇥
q )2

R

OK

�(ac (f3(a, b)+pz1))|f3(a, b)+pz1)|s|dz1|,

thus we can resolve it applying the Lemma 1.2.2, and we obtain,

I3(s, (a, b)) = I3,1(s, (a, b)) + I3,2(s, (a, b)),

where

I3,1(s, (a, b)) =

8
><

>:

q
�s(1�q

�1)N
(1�q�1�s) + (q � 1)2 �N if � = �triv

0 in other case,

where

N =(q � 1)Card{(a, b) 2 (F⇥
q
)2 : f 3(a, b) = 0},

=Card{(a, b) 2 (F⇥
q
)2 : a12(b

2
+ a8) = 0} = (q � 1)Card{x 2 F⇥

q
: x2 = �1}.

On the other hand

I3,2(s, (a, b)) =

8
>><

>>:

P
(a,b)2(F⇥

q )2

f3(a,b) 6=0

�(ac(f3(a, b))) if �|U = �triv

0 in other case,

where U = 1 + pOK .
Now, since that � is the multiplicative character induced by � in Fq, we
have that

I3,2(s, (a, b)) =

8
>><

>>:

P
(a,b)2(F⇥

q )2

(b
2
+a

8) 6=0

�(a12(b
2
+ a8)) if � = �triv

0 all other cases.
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Now since that � = �triv and �|U = �triv implies � = �triv we get

I3,2(s, (a, b)) =

8
>><

>>:

P
(a,b)2(F⇥

q )2

(b
2
+a

8) 6=0

�12(a)�(b
2
+ a8) if � = �triv

0 all other cases.

Thus we can write

I3,2(s, (a, b)) =

8
><

>:

T if � = �triv

0 all other cases,

where T =
P

(a,b)2(F⇥
q )2

(b
2
+a

8) 6=0

�12(a)�(b
2
+ a8).

Finally, since that I3(s, (a, b)) = q�4n�8ns�2I3(s, (a, b)), we obtain that
I3 = q�4n�8ns�2(I3,1(s, (a, b)) + I3,2(s, (a, b))), and therefore

I3 =

8
><

>:

q�4n�8ns�2
⇣

q
�s(1�q

�1)N
(1�q�1�s) + (q � 1)2 �N + T

⌘
if � = �triv

0 in other case,

(d) I4 =
P1

j=4n q
�j�1�8ns

R

(O⇥
K)2

�(ac(f4(x, y))) |dxdy|

Since polynomial f4(x, y) = x12(1+ pj+1y)4(p2+2j�8ny2+x8(1+ pj+1y)4), we
have f4(x, y) = x20.
By using equation (A.1.1), so we obtain that,

I4 =
1X

j=4n

q�j�1�8ns
X

(a,b)2(F⇥
q )2

Z

(a,b)+(pOK)2

�(ac f4(x, y))|dxdy|,

=
1X

j=4n

q�j�3�8ns
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac f4(a+ px, b+ py))|dxdy|.

By applying the change variables (A.1.3) to function f4 and since that
@f4

@x
(a, b) = 20a19 6= 0, then

I4 =
1X

j=4n

q�j�8ns�3
X

(a,b)2(F⇥
q )2

Z

OK

�(ac (f4(a, b) + pz1))|dz1|,

=
1X

j=4n

q�j�8ns�3I4(s, (a, b)),
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where I4(s, (a, b)) =
P

(a,b)2(F⇥
q )2

R

OK

�(ac (f4(a, b)+pz1))|dz1| for to compute

it we use the Lemma 1.2.2, and given that N = Card{(a, b) 2 (F⇥
q
)2 : a20 =

0} = 0, we get

I4(s, (a, b)) =

8
>>>>><

>>>>>:

(q � 1)2 if � = �triv

P
(a,b)2(F⇥

q )2 �(a
20) if � = �triv

0 all other cases,

where � is the multiplicative character induced by � in Fq, we deduce,
P

a,b)2(F⇥
q )2 �(a

20) =

(
(q � 1)2, if �20 = �triv

0 if �20 6= �triv.

Then we have that, I4(s, (a, b)) =

8
>>>>><

>>>>>:

(q � 1)2 if � = �triv

(q � 1)2 if �20 = �triv

0 all other cases.

Finally, since that �20 = �triv and �|U = �triv is equivalent to �20 = �triv

and I4 =
P1

j=4n q
�j�8ns�3I4(s, (a, b)), we can assert that

I4 =

8
>>>>><

>>>>>:

q�4n�8ns�1(1� q�1) if � = �triv,

q�4n�8ns�1(1� q�1) if �20 = �triv,�|U = �triv

0 all other cases.

Now, since that Z(s, f,�,�5) =
P1

n=1 q
�5n�12nsI =

P1
n=1 q

�5n�12ns
P

i
Ii,

for i = 1, · · · , 4, then
When � = �triv,

Z(s, g,�,�5) =

(1� q�1)2q�6�14s

(1� q�1�2s)(1� q�5�12s)
� (1� q�1)2q�9�20s

(1� q�1�2s)(1� q�9�20s)
(A.2.3)

+
(q � 2)(1� q�1)q�6�12s

(1� q�5�12s)
+

(1� q�1)(q�10�20s)

(1� q�9�20s)

+
q�9�20s

(1� q�1�s)(1� q�9�20s)
{q�1(q�1�s � q�1)N + (1� q�1)2(1� q�1�s)

�q�2(1� q�1�s)T},

where N = (q � 1)Card{x 2 F⇥
q

: x2 = �1} and T = Card{(x, y) 2
(F⇥

q
)2|y2 + x8 = 0}.

A.2. Computation of Z(s, f,�,�5)
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When � 6= �triv and �|1+pOK = �triv we several cases: if �2 = �triv, we have

Z(s, f,�,�5) =
1X

n=1

q�5n�12ns (1� q�1)2q�1�2s(1� q(4n�1)(�1�2s))

(1� q�1�2s)

=
(1� q�1)2q�6�14s

(1� q�1�2s)(1� q�5�12s)
� (1� q�1)2q�9�20s

(1� q�1�2s)(1� q�9�20s)
. (A.2.4)

If �12 = �triv, then

Z(s, f,�,�5) = �4(y0)�
2(y0 � 1)

1X

n=1

q�5n�12ns(1� q�1)(q � 2)q�1

= �4(y0)�
2(y0 � 1)

(q � 2)(1� q�1)q�6�12s

(1� q�5�12s)
. (A.2.5)

For �20 = �triv,

Z(s, f,�,�5) =
1X

n=1

q�5n�12ns(1� q�1)(q�4n�8ns�1)

=
(1� q�1)(q�10�20s)

(1� q�9�20s)
. (A.2.6)

In all other cases, Z(s, f,�,�5) = 0.

Summarizing the result obtain for all cones,
For � = �triv,

Z(s, f,�triv) = 2q�1(1� q�1) +
q�2�4s(1� q�1)

(1� q�2�4s)
+

q�7�16s(1� q�1)2

(1� q�2�4s)(1� q�5�12s)

+
q�8�18s(1� q�1)2

(1� q�3�6s)(1� q�5�12s)
+

q�3�6s(1� q�1)

(1� q�3�6s)
+

(1� q�1)2q�6�14s

(1� q�1�2s)(1� q�5�12s)

� (1� q�1)2q�9�20s

(1� q�1�2s)(1� q�9�20s)
+

(q � 2)(1� q�1)q�6�12s

(1� q�5�12s)
+

(1� q�1)(q�10�20s)

(1� q�9�20s)

+
q�9�20s

(1� q�1�s)(1� q�9�20s)
{q�1(q�1�s � q�1)N + (1� q�1)2(1� q�1�s)

�q�2(1� q�1�s)T}, (A.2.7)
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where N = (q � 1)Card{x 2 F⇥
q

: x2 = �1} and T = Card{(x, y) 2
(F⇥

q
)2|y2 + x8 = 0}.

When � 6= �triv and �|1+pOK = �triv we several cases: if �2 = �triv, we have

Z(s, f,�) =
1X

n=1

q�5n�12ns (1� q�1)2q�1�2s(1� q(4n�1)(�1�2s))

(1� q�1�2s)

=
(1� q�1)2q�6�14s

(1� q�1�2s)(1� q�5�12s)
� (1� q�1)2q�9�20s

(1� q�1�2s)(1� q�9�20s)
. (A.2.8)

When �4 = �triv,

Z(s, f,�) = q�1(1� q�1) +
q�3�4s(1� q�1)

(1� q�2�4s)
+

q�2�4s(1� q�1)2

(1� q�2�4s)

+
q�7�16s(1� q�1)2

(1� q�2�4s)(1� q�5�12s)
. (A.2.9)

�6 = �triv, we obtain

Z(s, f,�) =
q�8�18s(1� q�1)2

(1� q�3�6s)(1� q�5�12s)
+

q�3�6s(1� q�1)2

(1� q�3�6s)

+
q�4�6s(1� q�1)

(1� q�3�6s)
+ q�1(1� q�1). (A.2.10)

For �12 = �triv, then

Z(s, f,�) = �4(y0)�
2(y0 � 1)

1X

n=1

q�5n�12ns(1� q�1)(q � 2)q�1

= �4(y0)�
2(y0 � 1)

(q � 2)(1� q�1)q�6�12s

(1� q�5�12s)
, (A.2.11)

where � is the multiplicative character induced by � in F⇥
q
. Finally for

�20 = �triv,

Z(s, f,�) =
1X

n=1

q�5n�12ns(1� q�1)(q�4n�8ns�1)

=
(1� q�1)(q�10�20s)

(1� q�9�20s)
. (A.2.12)
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In all other cases,
P

Z(s, f,�,�i) = 0.

A.2. Computation of Z(s, f,�,�5)



Appendix B

The local zeta function of

(y3 � x2)2(y3 � cx2) + x4y4

In this section we present the example 2.3.2 and 2 computed in full detail.
In this example we assume that the characteristic of the residue field of K
is different from 2. We shall compute explicitly the local zeta functions for
g(x, y) = (y3 � x2)2(y3 � cx2) + x4y4, with c 2 O⇥

K
and c 6⌘ 1(mod p). This

polynomial is degenerate with respect to its geometric Newton polygon in the
sense of Kouchnirenko. We obtain an explicit list of candidates for the poles in
terms of geometric data obtained from a family of arithmetic Newton polygons
attached to the polynomial g(x, y).
The conical subdivision of R2

+ subordinated to the geometric Newton polygon of
g(x, y) is R2

+ = {(0, 0)[
S9

j=1�j}, and it do possible to reduce the computation of
Z(s, g,�) to the computation of the p-adic integrals Z(s, g,�, O⇥

K
), Z(s, g,�,�i, i =

1, · · ·, 9).

B.1 Computation of Z(s, g,�,�i, i = 1, 2, 3, 4, 6, 7, 8, 9)

These integrals correspond to the case in which g is non-degenerate on �i, i =
1, 2, 3, 4, 6, 7, 8, 9.

(a) Case Z(s, g,�,�1).

70
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Z(s, g,�,�1) =
1X

n=1

Z

O
⇥
K⇥pnO

⇥
K

�(ac g(x, y))|g(x, y)|s|dxdy|,

=
1X

n=1

q�n

Z

O
⇥2
K

�(ac (g1(x, y))) |g1(x, y)|.

where the polynomial g1(x, y) = (p3ny3 � x2)2(p3ny3 � cx2) + p4nx4y4, and
g1(x, y) = �cx6. By using equation (A.1.1), thus

Z(s, g,�,�1) =
1X

n=1

q�n
X

(a,b)2F⇥2
q

Z

(a,b)+(pOK)2

�(ac g1(x, y))|g1(x, y)|s|dxdy|,

=
1X

n=1

q�n�2
X

(a,b)2F⇥2
q

Z

O2
K

�(ac g1(a+ px, b+ py))|g1(a+ px, b+ py)|s|dxdy|.

Now we apply the change variables (A.1.3) to function g1 and since that
@g1

@x
(a, b) = �6ca5 6⌘ 0(mod p), then

Z(s, g,�,�1) =
1X

n=1

q�n�2
X

(a,b)2F⇥2
q

Z

O2
K

�(ac g1(a+ px, b+ py))|g1(a+ px, b+ py)|s|dxdy|,

=
1X

n=1

q�n�2
X

(a,b)2F⇥2
q

Z

OK

�(ac (g1(a, b) + pz1))|g1(a, b) + pz1|s|dz1|,

=
1X

n=1

q�n�2I�1(s, (a, b)),

where I�1(s, (a, b)) =
P

(a,b)2F⇥2
q

R

OK

�(ac (g1(a, b)+pz1))|g1(a, b)+pz1|s|dz1|,

then by Lemma 1.2.2 and given that

N = Card{(a, b) 2 (F⇥
q
)2 : g1(a, b) = 0} = Card{(a, b) 2 (F⇥

q
)2 : �ca6 = 0} = 0,

then we get

B.1. Computation of Z(s, g,�,�i, i = 1, 2, 3, 4, 6, 7, 8, 9)
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I�1(s, (a, b)) =

8
>>>>>>><

>>>>>>>:

(q � 1)2 if � = �triv

P
(a,b)2F⇥2

q

g1(a,b) 6=0

�(g1(a, b)) if � = �triv

0 all other cases,

where � is the multiplicative character induced by � in Fq. Thus,

I�1(s, (a, b)) =

8
>>>>><

>>>>>:

(q � 1)2 if � = �triv

P
(a,b)2F⇥2

q
�(�ca6) if � = �triv

0 all other cases,

Now since that �6 = �triv, and �|U = �triv, U = 1+pOK implies �6 = �triv,
we have

X

(a,b)2F⇥2
q

�(�ca6) =

(
�(�c) · 0 = 0 if �6 6= �triv,

�(�c)(q � 1)2 if �6 = �triv,
(B.1.1)

Therefore,

I�1(s, (a, b)) =

8
>>>>><

>>>>>:

(q � 1)2 if � = �triv

�(�c)(q � 1)2 if �6 = �triv, ,�|U = �triv,

0 all other cases.

Finally, since that Z(s, g,�,�1) =
P1

n=1 q
�n�2I�1(s, (a, b)), we conclude

Z(s, g,�,�1) =

8
>>>>><

>>>>>:

q�1(1� q�1) if � = �triv

�(�c)q�1(1� q�1), if �6 = �triv,�|U = �triv,

0 all other cases,

(b) Case Z(s, g,�,�2).

Z(s, g,�,�2) =
1X

m=1

1X

n=1

Z

pmO
⇥
K⇥pn+mO

⇥
K

�(ac (g(x, y))|g(x, y)|s |dxdy|,

=
1X

m=1

1X

n=1

q�2m�n�6ms

Z

O
⇥2
K

�(ac (g2(x, y))) |g2(x, y)|s |dxdy|.
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Since that polynomial g2(x, y) = (p3n+my3�x2)2(p3n+my3�cx2)+p4n+2mx4y4,
and g2(x, y) = �cx6 thus we obtain that the origin of K is the only singular
point of g2(x, y) over (F⇥

q
)2. By using equation (A.1.1), so we obtain that,

Z(s, g,�,�2) =
1X

m=1

1X

n=1

q�2m�n�6ms
X

(a,b)2F⇥2
q

Z

(a,b)+(pOK)2

�(ac g2(x, y))|g2(x, y)|s|dxdy|,

=
1X

m=n=1

q�2m�n�6ms�2
X

(a,b)2F⇥2
q

Z

O2
K

X (g2(a+ px, b+ py))|dxdy|,

where X (g2(a+ px, b+ py) = �(ac(g2(a+ px, b+ py))) |g2(a+ px, b+ py)|s.
Now we apply the change variables (A.1.3) to function g2 and since that
@g2

@x
(a, b) = �6ca5 6= 0, then

Z(s, g,�,�2) =
1X

m=1

1X

n=1

q�2m�n�6ms�2
X

(a,b)2F⇥2
q

Z

OK

�(ac (g2(a, b) + pz1))|g2(a, b) + pz1)|s|dz1|,

=
1X

m=1

1X

n=1

q�2m�n�6ms�2I�2(s, (a, b)),

where I�2(s, (a, b)) =
P

(a,b)2F⇥2
q

R

OK

�(ac (g2(a, b)+pz1))|g2(a, b)+pz1)|s|dz1|.

Then since that N = Card{(a, b) 2 (F⇥
q
)2 : g2(a, b) = 0} = Card{(a, b) 2

(F⇥
q
)2 : �ca6 = 0} = 0, we have

I�2(s, (a, b)) =

8
>>>>>>><

>>>>>>>:

(q � 1)2 if � = �triv

P
(a,b)2F⇥2

q

g2(a,b) 6=0

�(g2(a, b)) if � = �triv

0 all other cases,

where � is the multiplicative character induced by � in Fq. Then

I�2(s, (a, b)) =

8
>>>>><

>>>>>:

(q � 1)2 if � = �triv

P
(a,b)2F⇥2

q
�(�ca6) if � = �triv

0, all other cases.
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Now since that �6 = �triv and �|U = �triv, U = 1+pOK implies �6 = �triv,
thus follows by the same method as in procedure above,
Finally since Z(s, g,�,�2) =

P1
m=1

P1
n=1 q

�2m�n�6ms�2I�2(s, (a, b)), we ob-
tain

Z(s, g,�,�2) =

8
>>>>><

>>>>>:

(1�q
�1)q�3�6s

1�q�2�6s if � = �triv

�(�c) q
�3�6s(1�q

�1)
(1�q�2�6s) if �6 = �triv,�|U = �triv

0 all other cases,

(c) Case Z(s, g,�,�3).

Z(s, g,�,�3) =
1X

n=1

Z

pnO
⇥
K⇥pnO

⇥
K

�(ac g(x, y))|g(x, y)|s|dxdy|,

=
1X

n=1

q�2n�6ns

Z

O
⇥2
K

X (pny3 � x2)2(pny3 � cx2) + p2nx4y4) |dxdy|.

where

X ((pny3 � x2)2(pny3 � cx2) + p2nx4y4) =

�(ac (pny3 � x2)2(pny3 � cx2) + p2nx4y4)|(pny3 � x2)2(pny3 � cx2) + p2nx4y4|s

Since that polynomial g3(x, y) = (pny3�x2)2(pny3�cx2)+p2nx4y4, we have
g3(x, y) = �cx6, we obtain that the origin of K is the only singular point of
g3(x, y) over (F⇥

q
)2.

By using equation (A.1.1), so we obtain that,

Z(s, g,�,�3) =
1X

n=1

q�2n�6ns
X

(a,b)2F⇥2
q

Z

(a,b)+(pOK)2
�(ac g3(x, y))|g3(x, y)|s|dxdy|,

=
1X

n=1

q�2n�6ns�2
X

(a,b)2F⇥2
q

Z

O2
K

�(ac g3(a+ px, b+ py))|g3(a+ px, b+ py)|s|dxdy|.

Now we apply the change variables (A.1.3) to function g3 and since that
@g3

@x
(a, b) = �6ca5 6= 0, we obtain
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Z(s, g,�,�3) =
1X

n=1

q�2n�6ns�2
X

(a,b)2F⇥2
q

Z

O2
K

�(ac g3(a+ px, b+ py))|g3(a+ px, b+ py)|s|dxdy|,

=
1X

n=1

q�2n�6ns�2
X

(a,b)2F⇥2
q

Z

OK

�(ac (g3(a, b) + pz1))|g3(a, b) + pz1)|s|dz1|,

=
1X

n=1

q�2n�6ns�2I�3(s, (a, b)),

where I�3(s, (a, b)) =
P

(a,b)2F⇥2
q

R

OK

�(ac (g3(a, b)+pz1))|g3(a, b)+pz1)|s|dz1|.

Then given that N = Card{(a, b) 2 (F⇥
q
)2 : g3(a, b) = 0} = Card{(a, b) 2

(F⇥
q
)2 : �ca6 = 0} = 0, we have

I�3(s, (a, b)) =

8
>>>>>>><

>>>>>>>:

(q � 1)2 if � = �triv

P
(a,b)2F⇥2

q

g3(a,b) 6=0

�(g3(a, b)) if � = �triv

0 all other cases.

where � is the multiplicative character induced by � in Fq. Then by applying
similar arguments to the case above and (B.1.1),
and given that Z(s, g,�,�3) =

P1
n=1 q

�2n�6ns�2I�3(s, (a, b)), we have

Z(s, g,�,�3) =

8
>>>>><

>>>>>:

(q�1)2q�2�6s

1�q�2�6s if � = �triv

�(�c) q
�2�6s(1�q

�1)2

(1�q�2�6s) if �6 = �triv,�|U = �triv

0 all other cases.

(d) Case Z(s, g,�,�4).

Z(s, g,�,�4) =
1X

m=1

1X

n=1

Z

pn+3mO
⇥
K⇥pn+2mO

⇥
K

�(ac g(x, y))|g(x, y)|s|dxdy|,

=
1X

m=1

1X

n=1

q(�2�6s)n+(�5�18s)m

Z

O
⇥2
K

X1(g4(x, y)) |dxdy|.

where

X1(g4(x, y)) = �(ac g4(x, y))|g4(x, y)|s,
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and the polynomial g4(x, y) = (pny3 � x2)2(pny3 � cx2) + p2n+2mx4y4), with
g4(x, y) = �cx6, we obtain that the origin of K is the only singular point of
g4(x, y) over (F⇥

q
)2.

By using equation (A.1.1), so we can assert that

Z(s, g,�,�4) =
1X

m=1

1X

n=1

q(�2�6s)n+(�5�18s)m
X

(a,b)2F⇥2
q

Z

(a,b)+(pOK)2

�(ac g4(x, y))|g4(x, y)|s|dxdy|,

=
1X

m=1

1X

n=1

q(�2�6s)n+(�5�18s)m�2
X

(a,b)2F⇥2
q

Z

O2
K

X2(g4(a+ px, b+ py))|dxdy|.

where X2(g4(a+ px, b+ py)) = �(ac g4(a+ px, b+ py)) |g4(a+ px, b+ py)|s.
Now we apply the change variables (A.1.3) to function g4 and since that
@g4

@x
(a, b) = �6ca5 6= 0, we see that,

Z(s, g,�,�4) =
1X

m=1

1X

n=1

q(�2�6s)n+(�5�18s)m�2
X

(a,b)2F⇥2
q

Z

O2
K

X2((g4(a+ px, b+ py))) |dxdy|,

=
1X

m=1

1X

n=1

q(�2�6s)n+(�5�18s)m�2I�4(s, (a, b)),

where I�4(s, (a, b)) =
P

(a,b)2F⇥2
q

R

OK

�(ac (g4(a, b)+pz1))|g4(a, b)+pz1)|s|dz1|,

then we apply Lemma 1.2.2 and given that N = Card{(a, b) 2 (F⇥
q
)2 :

g4(a, b) = 0} = Card{(a, b) 2 (F⇥
q
)2 : �ca6 = 0} = 0, we get that

I�4(s, (a, b)) =

8
>>>>>>><

>>>>>>>:

(q � 1)2 if � = �triv

P
(a,b)2(F⇥

q )2

g4(a,b) 6=0

�(g4(a, b)) if � = �triv

0 all other cases,

Finally, by applying (B.1.1) and since that

Z(s, g,�,�4) =
1X

m=1

1X

n=1

q(�2�6s)n+(�5�18s)m�2I�4(s, (a, b)),

we conclude that
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Z(s, g,�,�4) =

8
>>>>><

>>>>>:

(1�q
�1)2q�7�24s

(1�q�2�6s)(1�q�5�18s) if � = �triv

�(�c) q
�7�24s(1�q

�1)2

(1�q�2�6s)(1�q�5�18s) if �6 = �triv,�|U = �triv

0 all other cases,

(e) Case Z(s, g,�,�6).

Z(s, g,�,�6) =
1X

m=1

1X

n=1

Z

p3n+2mO
⇥
K⇥p2n+mO

⇥
K

�(ac g(x, y))|g(x, y)|s|dxdy|,

=
1X

m=1

1X

n=1

q(�5�18s)n+(�3�9s)m

Z

O
⇥2
K

�(ac(g6(x, y)))|g6(x, y)|s |dxdy|,

where polynomial g6(x, y) = (y3 � pmx2)2(y3 � cpmx2) + p2n+3mx4y4, we
have g6(x, y) = y9. Then we obtain that,

Z(s, g,�,�6) =
1X

m=1

1X

n=1

q(�5�18s)n+(�3�9s)m
X

(a,b)2F⇥2
q

Z

(a,b)+(pOK)2

X (g6(x, y))|dxdy|,

=
1X

m=1

1X

n=1

q(�5�18s)n+(�3�9s)m�2
X

(a,b)2F⇥2
q

Z

O2
K

X (g6(a+ px, b+ py)) |dxdy|,

where X (g6(x, y)) = �(ac(g6(x, y)))|g6(x, y)|s. Now we apply the change
variables (A.1.3) to function g6 and since that @g6

@y
(a, b) = 9(b

8
) 6= 0, we

obtain that,

Z(s, g,�,�6) =
1X

m=1

1X

n=1

q(�5�18s)n+(�3�9s)m�2
X

(a,b)2F⇥2
q

Z

OK

X (g6((a, b) + pz1))| |dz1|,

=
1X

m=1

1X

n=1

q(�5�18s)n+(�3�9s)m�2I�6(s, (a, b)),

where I�6(s, (a, b)) =
P

(a,b)2F⇥2
q

R

OK

X (g6((a, b) + pz1))|dz1|, then given that

N = Card{(a, b) 2 (F⇥
q
)2 : g6(a, b) = 0} = Card{(a, b) 2 (F⇥

q
)2 : b

9
= 0} =

0, we obtain
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I�6(s, (a, b)) =

8
>>>>>>><

>>>>>>>:

(q � 1)2 if � = �triv

P
(a,b)2F⇥2

q

g6(a,b) 6=0

�(g6(a, b)) if � = �triv

0 all other cases.

Then,

I�6(s, (a, b)) =

8
>>>>><

>>>>>:

(q � 1)2 if � = �triv

P
(a,b)2F⇥2

q
�(b

9
) if � = �triv

0 all other cases,

where � is the multiplicative character induced by � in Fq.

Now since that �9 = �triv and �|U = �triv, U = 1+pOK implies �9 = �triv,
we get

X

(a,b)2(F⇥
q )2

�(b9) =

8
><

>:

(q � 1)2 if �9 = �triv,�|U = �triv

0 all other cases.

(B.1.2)

Therefore,

I�6(s, (a, b)) =

8
>>>>><

>>>>>:

(q � 1)2 if � = �triv

(q � 1)2 if �9 = �triv,�|U = �triv

0 all other cases.

Finally, since that

Z(s, g,�,�6) =
1X

m=1

1X

n=1

q(�5�18s)n+(�3�9s)m�2I�6(s, (a, b)),

we obtain

Z(s, g,�,�6) =

8
>>>>><

>>>>>:

q
�8�27s(1�q

�1)2

(1�q�3�9s)(1�q�5�18s) if � = �triv

q
�8�27s(1�q

�1)2

(1�q�3�9s)(1�q�5�18s) if �9 = �triv,�|U = �triv

0 all other cases,

(f) Case Z(s, g,�,�7).
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Z(s, g,�,�7) =
1X

n=1

Z

p2nO
⇥
K⇥pnO

⇥
K

�(ac g(x, y))|g(x, y)|s|dxdy|,

=
1X

n=1

q�3n�9ns

Z

O
⇥2
K

X (g7(x, y)) |dxdy|.

where X (g7(x, y)) = �(ac(g7(x, y))) and the polynomials

g7(x, y) = (y3 � pnx2)2(y3 � cpnx2) + p3nx4y4, with g7(x, y) = y9,

therefore the origin of K is the only singular point of g7(x, y) over (F⇥
q
)2.

Then we have,

Z(s, g,�,�7) =
1X

n=1

q�3n�9ns
X

(a,b)2F⇥2
q

Z

(a,b)+(pOK)2
�(ac g7(x, y))|g7(x, y)|s|dxdy|

=
1X

n=1

q�3n�9ns�2
X

(a,b)2(F⇥
q )2

Z

O2
K

X (g7(a+ px, b+ py)) |dxdy|.

Now we apply the change variables (A.1.3) to function g7 and since that
@g7

@y
(a, b) = 9b

8 6= 0, we obtain that,

Z(s, g,�,�7) =
1X

n=1

q�3n�9ns�2
X

(a,b)2F⇥2
q

Z

O2
K

X (g7(a+ px, b+ py))|dxdy|

=
1X

n=1

q�3n�9ns�2
X

(a,b)2(F⇥
q )2

Z

O2
K

X (g7(a, b) + pz1) |dz1|

=
1X

n=1

q�3n�9ns�2I�7(s, (a, b)),

where I�7(s, (a, b)) =
P

(a,b)2(F⇥
q )2

R
OK

�(ac (g7(a, b)+pz1))|g7(a, b)+pz1)|s|dz1|,
then since N = Card{(a, b) 2 (F⇥

q
)2 : g7(a, b) = 0} = Card{(a, b) 2 (F⇥

q
)2 :

b9 = 0} = 0, we apply the argument above again, and for the equation
(B.1.2) in

Z(s, g,�,�7) =
1X

n=1

q�3n�9ns�2I�7(s, (a, b)),
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we conclude

Z(s, g,�,�7) =

8
>>>>><

>>>>>:

q
�3�9s(1�q

�1)2

(1�q�3�9s) if � = �triv

q
�3�9s(1�q

�1)2

(1�q�3�9s) if �9 = �triv,�|U = �triv

0 all other cases.

(g) Case Z(s, g,�,�8).

Z(s, g,�,�8) =
1X

m=1

1X

n=1

Z

p2n+mO
⇥
K⇥pnO

⇥
K

�(ac g(x, y))|g(x, y)|s|dxdy|,

=
1X

m=1

1X

n=1

q(�3�9s)n�m

Z

O
⇥2
K

�(ac (g8(x, y))) |g8(x, y)|s |dxdy|.

Since that polynomial g8(x, y) = (y3�pn+2mx2)2(y3�cpn+2mx2)+p3n+4mx4y4

we have g8(x, y) = y9, then we obtain that the origin of K is the only singular
point of g8(x, y) over (F⇥

q
)2. By using equation (A.1.1), so we obtain that,

Z(s, g,�,�8) =
1X

m=1

1X

n=1

q(�3�9s)n�m�2
X

(a,b)2(F⇥
q )2

Z

(a,b)+(pOK)2

�(ac g8(x, y))|g8(x, y)|sK |dxdy|,

=
1X

m=1

1X

n=1

q(�3�9s)n�m�2
X

(a,b)2(F⇥
q )2

Z

O2
K

X (g8(a+ px, b+ py))|dxdy|,

where X (g8(a+ px, b+ py))) = �(ac g8(a+ px, b+ py))|g8(a+ px, b+ py)|s.
Now we apply the change variables (A.1.3) to function g8 and since that
@g8

@y
(a, b) = 9b

8 6= 0, we can assert that,

Z(s, g,�,�8) =
1X

m=1

1X

n=1

q(�3�9s)n�m�2
X

(a,b)2(F⇥
q )2

Z

OK

�(ac (g8(a, b) + pz1))|g8(a, b) + pz1)|s|dz1|,

=
1X

m=1

1X

n=1

q(�3�9s)n�m�2I�8(s, (a, b)),
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where I�8(s, (a, b)) =
P

(a,b)2(F⇥
q )2

R
OK

�(ac (g8(a, b)+pz1))|g8(a, b)+pz1)|s|dz1|,
and since N = Card{(a, b) 2 (F⇥

q
)2 : g8(a, b) = 0} = Card{(a, b) 2 (F⇥

q
)2 :

b
9
= 0} = 0 we yields,

Z(s, g,�,�8) =
1X

m=1

1X

n=1

q(�3�9s)n�m�2I�8(s, (a, b),

and by applying (B.1.2) we conclude that

Z(s, g,�,�8 =

8
>>>>><

>>>>>:

q
�4�9s(1�q

�1)
(1�q�3�9s) if � = �triv

q
�4�9s(1�q

�1)
(1�q�3�9s) if �9 = �triv,�|U = �triv

0 all other cases.

(h) Case Z(s, g,�,�9).

Z(s, g,�,�9) =
1X

n=1

Z

pnO
⇥
K⇥O

⇥
K

�(ac g(x, y))|g(x, y)|s|dxdy|,

=
1X

n=1

q�n

Z

O
⇥2
K

�(ac (g9(x, y))) |g9(x, y)|s |dxdy|.

Since that polynomial g9(x, y) = (y3 � p2nx2)2(y3 � cp2nx2) + p4nx4y4, we
have g9(x, y) = y9 then we obtain that the origin of K is the only singular
point of g9(x, y) over (F⇥

q
)2.

Then we obtain that,

Z(s, g,�,�9) =
1X

n=1

q�n
X

(a,b)2(F⇥
q )2

Z

(a,b)+(pOK)2
�(ac g9(x, y))|g9(x, y)|s|dxdy|

=
1X

n=1

q�n�2
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac g9(a+ px, b+ py))|g9(a+ px, b+ py)|s|dxdy|.

Now we apply the change variables (A.1.3) to function g9 and since that
@g9

@y
(a, b) = 9b

8 6= 0, we get,
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Z(s, g,�,�9) =
1X

n=1

q�n�2
X

(a,b)2(F⇥
q )2

Z

(O⇥
K)2

�(ac g9(a+ px, b+ py))|g9(a+ px, b+ py)|s|dxdy|

=
1X

n=1

q�n�2
X

(a,b)2(F⇥
q )2

Z

OK

�(ac (g9(a, b) + pz1))|g9(a, b) + pz1)|s|dz1|

=
1X

n=1

q�n�2I�9(s, (a, b)),

where I�9(s, (a, b)) =
P

(a,b)2(F⇥
q )2

R

OK

�(ac (g9(a, b)+pz1))|g9(a, b)+pz1)|s|dz1|,

then given that

N = Card{(a, b) 2 (F⇥
q
)2 : g9(a, b) = 0} = Card{(a, b) 2 (F⇥

q
)2 : b

9
= 0} = 0

we obtain,

I�9(s, (a, b)) =

8
>>>>>>><

>>>>>>>:

(q � 1)2 if � = �triv

P
(a,b)2(F⇥

q )2

g9(a,b) 6=0

�(g9(a, b)) if � = �triv

0 all other cases,

where � is the multiplicative character induced by � in F.
Now since that Z(s, g,�,�9) =

P1
n=1 q

�n�2I�9(s, (a, b)), then as in the case
Z(s, g,�,�6), the equation (B.1.2) gives

Z(s, g,�,�9) =

8
>>>>><

>>>>>:

q�1(1� q�1) if � = �triv

q�1(1� q�1) if �9 = �triv,�|U = �triv

0 all other cases.

Now we are going to find Z(s, f,�,�i) for i = 1, 2, 3, 4, 6, 7, 8, 9 with the computes
above:
When � = �triv.

Z(s, f,�triv) = 2q�1(1� q�1) +
q�2�6s(1� q�1)

(1� q�2�6s)
+

q�7�24s(1� q�1)2

(1� q�2�6s)(1� q�5�18s)

+
q�8�27s(1� q�1)2

(1� q�3�9s)(1� q�5�18s)
+

q�3�9s(1� q�1)

(1� q�3�9s)
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When � 6= �triv and �|1 + pOK = �triv we have several cases: if �6 = �triv, we
have

Z(s, f,�) = �(�c)

✓
q�1(1� q�1) +

q�3�6s(1� q�1)

(1� q�2�6s)
+

q�2�6s(1� q�1)2

(1� q�2�6s)

◆

+�(�c)

✓
q�7�24s(1� q�1)2

(1� q�2�6s)(1� q�5�18s)

◆
.

In the case where �9 = �triv, we obtain

Z(s, f,�) =
q�8�27s(1� q�1)2

(1� q�3�9s)(1� q�5�18s)
+

q�3�9s(1� q�1)2

(1� q�3�9s)

+
q�4�9s(1� q�1)

(1� q�3�9s)
+ q�1(1� q�1).

In all other cases, Z(s, f,�) = 0.

B.2 Computation of Z(s, g,�,�5)

(An integral on a degenerate face in the sense Kouchnirenko).

Z(s, g,�,�5) =
1X

n=1

Z

p3nO
⇥
K⇥p2nO

⇥
K

�(ac g(x, y))|g(x, y)|s|dxdy|,

=
1X

n=1

q�5n�18ns

Z

O
⇥2
K

�(ac((y3 � x2)2(y3 � cx2) + p2nx4y4)

|(y3 � x2)2(y3 � cx2) + p2nx4y4|s|dxdy|.

Let g(n)(x, y) = (y3 � x2)2 + p2nx4y4, for n > 1. For compute the integral,

I(s, g(n),�) =
R
O

⇥2
K

�(ac((y3 � x2)2(y3 � cx2) + p2nx4y4))|(y3 � x2)2(y3 � cx2) +

p2nx4y4|s|dxdy|, for n > 1, we use the following change of variables:

� :
O⇥2

K
! O⇥2

K

(x, y) 7�! (x3y, x2y)

The map � gives an analytic bijection of O⇥2
K

onto itself and preserves the Haar
measure since that its Jacobian J�(x, y) = x4y satisfies |J�(x, y)|K = 1, for every
x, y 2 O⇥

K
. Thus

B.2. Computation of Z(s, g,�,�5)



The local zeta function of (y3 � x2)2(y3 � cx2) + x4y4 84

g(n) � �(x, y) = x18y6gg(n)(x, y), with

gg(n)(x, y) = (y � 1)2(y � c) + p2nx2y2, (B.2.1)

Then we have that,

I(s, g(n),�) =

Z

O
⇥2
K

�(ac(x18y6gg(n)(x, y)))|gg(n)(x, y)|s|dxdy|.

In order to compute the integral I(s, g(n),�), n > 1, we decompose O⇥2
K

as follows:

O⇥2
K

=
�
O⇥

K
⇥ {y0 + pOK |y0 6⌘ 1, c(mod p)}

�
[
�
O⇥

K
⇥ {1 + pOK}

�
[
�
O⇥

K
⇥ {c+ pOK}

�
,

(B.2.2)

where y0 runs through a set of representatives of F⇥
q

in OK . From partition (B.2.1)
and formula (B.2), it follows that,

I(s, g(n),�) =

Z

O
⇥
K⇥{y0+pOK}

�(ac(x18y6gg(n)(x, y)))|gg(n)(x, y)|s|dxdy|

+

Z

O
⇥
K⇥{1+pOK}

�(ac(x18y6gg(n)(x, y)))|gg(n)(x, y)|s|dxdy|

+

Z

O
⇥
K⇥{c+pOK}

�(ac(x18y6gg(n)(x, y)))|gg(n)(x, y)|s|dxdy|.

The integral I admits the following expansion:

I(s, g(n),�) =

q�1
X

y0 6⌘1,c(modp)

Z

O
⇥
K⇥OK

�(ac(x18(y0 + py)6gg(n)(x, y0 + py)))|gg(n)(x, y0 + py)|s|dxdy|

+q�1

Z

O
⇥
K⇥OK

�(ac(x18(1 + py)6gg(n)(x, 1 + py)))|gg(n)(x, 1 + py)|s|dxdy|

+q�1

Z

O
⇥
K⇥OK

�(ac(x18(c+ py)6gg(n)(x, c+ py)))|gg(n)(x, c+ py)|s|dxdy|.
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Now we use OK =
F1

j=0 p
jO⇥

k
and it follows that,

I(s, g(n),�) =

X

y0 6⌘1,c(modp)

1X

j=0

q�1�j

Z

O
⇥2
K

X (gg(n)(x, y0 + pj+1y)) |dxdy|

+
1X

j=0

q�1�j

Z

O
⇥2
K

X (gg(n)(x, 1 + pj+1y)) |dxdy|

+
1X

j=0

q�1�j

Z

O
⇥
K⇥OK

X (gg(n)(x, c+ pj+1y))) |dxdy|.

where

X (gg(n)(x, y0 + pj+1y)) =�(ac(x18(y0 + pj+1y)6gg(n)(x, y0 + pj+1y)))|gg(n)(x, y0 + pj+1y)|s

X (gg(n)(x, 1 + pj+1y)) =�(ac(x18(1 + pj+1y)6gg(n)(x, 1 + pj+1y)))|gg(n)(x, 1 + pj+1y)|s

X (gg(n)(x, c+ pj+1y))) =�[ac(x18(c+ pj+1y)6gg(n)(x, c+ pj+1y)))|gg(n)(x, c+ pj+1y)|s

Then we can write, I(s, g(n),�) = J1(s, g(n),�) + J2(s, g(n),�) + J3(s, g(n),�),
where

J1(s, g
(n),�) =

X

y0 6⌘1,c(modp)

1X

j=0

q�1�j

Z

O
⇥2
K

X (gg(n)(x, y0 + pj+1y)) |dxdy|

J2(s, g
(n),�) =

1X

j=0

q�1�j

Z

O
⇥2
K

X (gg(n)(x, 1 + pj+1y)) |dxdy|

J3(s, g
(n),�) =

1X

j=0

q�1�j

Z

O
⇥
K⇥OK

X (gg(n)(x, c+ pj+1y))) |dxdy|
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Then we can expand J2(s, g(n),�) and J3(s, g(n),�) as following

J2(s, g
(n),�) =

n�2X

j=0

q�1�j�(2+2j)s

Z

O
⇥2
K

�(ac g2(x, y))|dxdy|

+q�n�2ns

Z

O
⇥2
K

�(ac g3(x, y))|g3(x, y)|s|dxdy|

+
1X

j=n

q�1�j�2ns

Z

O
⇥2
K

�(ac g4(x, y))|dxdy|.

J3(s, g
(n),�) =

2n�2X

j=0

q�1�j�(j+1)s

Z

O
⇥2
K

�(ac g5(x, y))|dxdy|

+q�2ns�2n

Z

O
⇥2
K

�(ac g6(x, y))|g6(x, y)|s|dxdy|

+
1X

j=2n

q�1�j�2ns

Z

O
⇥2
K

�(ac g7(x, y))|dxdy|,

So, we can write

J1(s, g
(n),�) =I1(s, g

(n),�)

J2(s, g
(n),�) =I2(s, g

(n),�) + I3(s, g
(n),�) + I4(s, g

(n),�)

J3(s, g
(n),�) =I5(s, g

(n),�) + I6(s, g
(n),�) + I7(s, g

(n),�)
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where,

I1 =
X

y0 6⌘1,c(modp)

1X

j=0

q�1�j

Z

O
⇥2
K

�(ac g1(x, y))|dxdy|,

I2 =
n�2X

j=0

q�1�j�(2+2j)s

Z

O
⇥2
K

�(ac g2(x, y))|dxdy|,

I3 =q�n�2ns

Z

O
⇥2
K

�(ac g3(x, y))|g3(x, y)|s|dxdy|,

I4 =
1X

j=n

q�1�j�2ns

Z

O
⇥2
K

�(ac g4(x, y))|dxdy|,

I5 =
2n�2X

j=0

q�1�j�(j+1)s

Z

O
⇥2
K

�(ac g5(x, y))|dxdy|,

I6 =q�2ns�2n

Z

O
⇥2
K

�(ac g6(x, y))|g6(x, y)|s|dxdy, |

I7 =
1X

j=2n

q�1�j�2ns

Z

O
⇥2
K

�(ac g7(x, y))|dxdy|,

and,

g1(x, y) =x18(y0 + pj+1y)6((y0 � 1 + pj+1y)2(y0 + pj+1y � c) + p2nx2(y0 + pj+1y)2),

g2(x, y) =[x18(1 + pj+1y)6][y2(1� c+ pj+1y) + p2n�(2+2j)x2(1 + pj+1y)2)],

g3(x, y) =x18(1 + pny)6[(y2(1� c+ pn) + x2(1 + pny)2],

g4(x, y) =x18(1 + pj+1y)6[(p2+2j�2ny2(1� c+ pj+1y) + x2(1 + pj+1y)2],

g5(x, y) =[x18(c+ pj+1y)6][y(c� 1 + pj+1y)2 + p2n�(1+j)x2(c+ pj+1y)2)],

g6(x, y) =x18(c+ p2ny)6[(y(c� 1 + p2ny)2 + x2(c+ p2ny)2],

g7(x, y) =x18(c+ pj+1y)6[(p1+j�2ny(c� 1 + pj+1y)2 + x2(c+ pj+1y)2],

where the reduction of the coefficients of each function is

g1(x, y) =x18(y0)
7(y0 � 1)2 g2(x, y) =x18y2(1� c),

g3(x, y) =x18y2(1� c) + x20 g4(x, y) =x20,

g5(x, y) =x18y2c6(c� 1) g6(x, y) =x18yc6(c� 1)2 + x2c2,

g7(x, y) =x20c8.
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Note that we can find every integral Ii, i = 1, 2, 3, 4 and we compute Z(s, g,�,�5) =P1
n=1 q

�5n�18nsI(s, g(n),�), where I(s, g(n),�) = I1 + I2 + I3 + I4 + I5 + I6 + I7

Now we’ll find every integral Ii for i = 1, 2, 3, 4, 5, 6, 7.

(a) I1 =
P

y0 6⌘1,c(modp)

P1
j=0 q

�1�j
R

O
⇥2
K

�(ac g1(x, y))|dxdy|.

Since that the polynomial g1(x, y) = x18(y0 + pj+1y)6((y0 � 1+ pj+1y)2(y0 +
pj+1y � c) + p2nx2(y0 + pj+1y)2), we have g1(x, y) = x18y70(y0 � 1)2.
By using equation (A.1.1), so we obtain that,

I1 =
X

y0 6⌘1,c(modp)

1X

j=0

q�1�j
X

(a,b)2(F⇥
q )2

Z

(a,b)+(pOK)2

�(ac g1(x, y))|dxdy|

=
X

y0 6⌘1,c(modp)

1X

j=0

q�3�j
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac g1(a+ px, b+ py))|dxdy|.

Now we apply the change variables (A.1.3) to function g1 and since that
@g1

@x
(a, b) = 18y70(y0 � 1)2a17 6= 0, we obtain that,

I1 =
X

y0 6⌘1,c(modp)

1X

j=0

q�3�j
X

(a,b)2F⇥2
q

Z

OK

�(ac (g1(a, b) + pz1))|dz1|

=
X

y0 6⌘1,c(modp)

1X

j=0

q�3�jI1(s, (a, b)),

where I1(s, (a, b)) =
P

(a,b)2(F⇥)2

R

OK

�(ac (g1(a, b)+pz1))|dz1|, then we apply

the Lemma 1.2.2, and given that N = Card{(a, b) 2 (F⇥
q
)2 : g1(a, b) = 0} =

Card{(a, b) 2 (F⇥
q
)2 : a18y70(y0 � 1)2 = 0} = 0, we obtain

I1(s, (a, b)) =

8
>>>>>>><

>>>>>>>:

(q � 1)2 if � = �triv

P
(a,b)2(F⇥

q )2

g1(a,b) 6=0

�(g1(a, b)) if � = �triv

0 all other cases,

where � is the multiplicative character induced by � in F. Then,
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I1(s, (a, b)) =

8
>>>>>><

>>>>>>:

(q � 1)2 if � = �triv

P
(a,b)2(F⇥

q )2

(a18y07(y0�1)2) 6=0

�(a18y07(y0 � 1)2) if � = �triv

0 all other cases,

Therefore,

I1(s, (a, b)) =

8
>>>>>><

>>>>>>:

(q � 1)2 if � = �triv

P
(a,b)2(F⇥

q )2

(a18y07(y0�1)2) 6=0

�18(a)�(y07(y0 � 1)2) if � = �triv

0 all other cases,

where U = 1 + pOK . Now since that �18 = �triv and �|U = �triv implies
�18 = �triv, we get

I1(s, (a, b)) =

8
>>>>><

>>>>>:

(q � 1)2 if � = �triv

�7(y0)�2(y0 � 1)(q � 1)2 if �18 = �triv,�|U = 1

0 all other cases.

Finally, since that I1 =
P

y0 6⌘1,c(modp)

P1
j=0 q

�3�jI1(s, (a, b)), we obtain

I1 =

8
>>>>><

>>>>>:

q�1(q � 3)(1� q�1) if � = �triv

�7(y0)�2(y0 � 1)q�1(q � 3)(1� q�1) if �18 = �triv,�|U = �triv

0 all other cases.

(b) I2 =
P

n�2
j=0 q

�1�j�(2+2j)s
R

O
⇥2
K

�(ac g2(x, y))|dxdy|. Since that polynomial

g2(x, y) = [x18(1 + pj+1y)6][y2(1� c+ pj+1y) + p2n�(2+2j)x2(1 + pj+1y)2)],

we have g2(x, y) = x18y2(1� c). Then we get,

I2 =
n�2X

j=0

q�1�j�(2+2j)s
X

(a,b)2(F⇥
q )2

Z

(a,b)+(pOK)2

�(ac g2(x, y))|dxdy|

=
n�2X

j=0

q�3�j�(2+2j)s
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac g2(a+ px, b+ py))|dxdy|.
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Now we apply the change variables (A.1.3) to function g2 and since that
@g2

@x
(a, b) = 18(a17)(b

2
)(1� c) 6= 0, we obtain,

I2 =
n�2X

j=0

q�3�j�(2+2j)s
X

(a,b)2(F⇥
q )2

Z

OK

�(ac (g2(a, b) + pz1))|dz1|

=
n�2X

j=0

q�3�j�(2+2j)sI2(s, (a, b)),

where I2(s, (a, b)) =
P

(a,b)2(F⇥
q )2

R

OK

�(ac (g2(a, b) + pz1))|dz1|.

Now given N = Card{(a, b) 2 (F⇥
q
)2 : g2(a, b) = 0} = Card{(a, b) 2 (F⇥

q
)2 :

a18b
2
(1� c) = 0} = 0, we can assert that

I2 =

8
>>>>><

>>>>>:

(q � 1)2 if � = �triv

�(1� c)(q � 1)2 if �2 = �triv

0 all other cases,

.

Given that �2 = �triv and �|U = �triv implies �2 = �triv, we get

I2 =

8
>>>>><

>>>>>:

(q � 1)2 if � = �triv

�(1� c)(q � 1)2 if �2 = �triv,�|U = �triv

0 all other cases,

where U = 1 + pOK .
Finally, since that I2 =

P
n�2
j=0 q

�3�j�(2+2j)sI2(s, (a, b)), we conclude that

I2 =

8
>>>>><

>>>>>:

q
�1�2s(1�q

(n�1)(�1�2s))(1�q
�1)2

1�q�1�2s if � = �triv

�(1� c) q
�1�2s(1�q

(n�1)(�1�2s))(1�q
�1)2

1�q�1�2s , if �2 = �triv,�|U = �triv

0, all other cases.

(c) I3 = q�n�2ns
R

O
⇥2
K

�(ac g3(x, y))|g3(x, y)|s |dxdy|.

Since that polynomial g3(x, y) = x18(1+pny)6[(y2(1�c+pny)+x2(1+pny)2],
we have g3(x, y) = x18y2(1� c) + x20. Then we get that,
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I3 = q�n�2ns
X

(a,b)2(F⇥
q )2

Z

(a,b)+(pOK)2

�(ac g3(x, y))|g3(x, y)|s|dxdy|

= q�n�2ns�2
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac g3(a+ px, b+ py))|g3(a+ px, b+ py)|s|dxdy|.

Now we apply the change variables (A.1.3) to function g3, and like @g3

@y
(a, b) =

2(a18)(b) 6= 0, we obtain

I3 = q�n�2ns�2
X

(a,b)2(F⇥
q )2

Z

OK

�(ac (g3(a, b) + pz1))|g3(a, b) + pz1)|s|dz1|

= q�n�2ns�2I3(s, (a, b)),

where I3(s, (a, b)) =
P

(a,b)2(F⇥
q )2

R

OK

�(ac (g3(a, b)+pz1))|g3(a, b)+pz1)|s|dz1|.

Now given that

N1 =Card{(a, b) 2 (F⇥
q
)2 : g3(a, b) = 0}

=Card{(a, b) 2 (F⇥
q
)2 : a18(b

2
(1� c) + a2) = 0},

I3,1(s, (a, b)) =

8
><

>:

q
�s(1�q

�1)N1

(1�q�1�s) if � = �triv

0 all other cases.

and

I3,2(s, (a, b)) =

8
>>>>>>><

>>>>>>>:

(q � 1)2 �N1 if � = �triv

P
(a,b)2(F⇥

q )2

g3(a,b) 6=0

�(ac(g3(a, b)) if �|U = �triv

0 in other case,

where U = 1 + pOK .
Since that � is the multiplicative character induced by � in Fq, we have that

I3,2(s, (a, b)) =

8
>>>>>>><

>>>>>>>:

(q � 1)2 �N1 if � = �triv

P
(a,b)2(F⇥

q )2

a
18(b

2
(1�c)+a

2) 6=0

�(a18(b
2
(1� c) + a2)) if � = �triv

0 all other cases.
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Given that � = �triv and �|U = �triv implies � = �triv, we get

I3,2(s, (a, b)) =

8
><

>:

(q � 1)2 �N1 + T2 if � = �triv

0 all other cases.

By writing,
T2 =

P
(a,b)2(F⇥

q )2

(a18(b2(1�c)+a
2) 6=0

�(a18(b2(1� c) + a2)),

Finally, since that I3 = q�n�2ns�2
�
I3,1(s, (a, b)) + I3,2(s, (a, b))

�
, we obtain

that

I3 =

8
><

>:

q�n�2ns�2
⇣

q
�s(1�q

�1)N1

(1�q�1�s) + (q � 1)2 �N1 + T2

⌘
if � = �triv

0 all other cases.

(d) I4 =
P1

j=n
q�1�j�2ns

R

O
⇥2
K

�(ac g4(x, y))|dxdy|.

Since that polynomial g4(x, y) = x18(1+pj+1y)6[(p2+2j�2ny2(1�c+pj+1y)+
x2(1 + pj+1y)2], we have g4(x, y) = x20.
By using equation (A.1.1), so we obtain that,

I4 =
1X

j=n

q�1�j�2ns
X

(a,b)2(F⇥
q )2

Z

(a,b)+(pOK)2
�(ac g4(x, y))|dxdy|

=
1X

j=n

q�3�j�2ns
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac g4(a+ px, b+ py))|dxdy|.

Now we apply the change variables (A.1.3) to function g4 and since that
@g4

@x
(a, b) = 20a19 6= 0, we obtain that,

I4 =
1X

j=n

q�3�j�2ns
X

(a,b)2(F⇥
q )2

Z

OK

�(ac (g4(a, b) + pz1))|dz1|

=
1X

j=n

q�3�j�2nsI4(s, (a, b)),

where I4(s, (a, b)) =
P

(a,b)2(F⇥
q )2

R

OK

�(ac (g4(a, b) + pz1))|dz1|, then given

that N = Card{(a, b) 2 (F⇥
q
)2 : g4(a, b) = 0} = Card{(a, b) 2 (F⇥

q
)2 : a20 =

0} = 0, we obtain
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I4(s, (a, b)) =

8
>>>>><

>>>>>:

(q � 1)2 if � = �triv

P
(a,b)2(F⇥

q )2 �(a
20) if � = �triv

0 all other cases,

where � the multiplicative character induced by � in Fq.

Now since that �20 = �triv and �|U = �triv implies �20 = �triv, we get

P
(a,b)2(F⇥

q )2 �(a
20) =

8
><

>:

(q � 1)2 if �20 = �triv,�|U = �triv

0 all other cases,

where U = 1 + pOK .
Then,

I4(s, (a, b)) =

8
>>>>><

>>>>>:

(q � 1)2 if � = �triv

(q � 1)2 if �20 = �triv,�|U = �triv

0 all other cases.

Finally since that I4 =
P1

j=n
q�3�j�2nsI4(s, (a, b)), we conclude that

I4 =

8
>>>>><

>>>>>:

q�2ns�n�1(1� q�1) � = �triv

q�2ns�n�1(1� q�1) �20 = �triv,�|U = �triv

0 all other cases.

(e) I5 =
P2n�2

j=0 q�1�j�(j+1)s
R

O
⇥2
K

�(ac g5(x, y))|dxdy|,

where polynomial

g5(x, y) = [x18(c+ pj+1y)6][y(c� 1 + pj+1y)2 + p2n�(1+j)x2(c+ pj+1y)2)],

and g5(x, y) = x18y2c6(c� 1)2.

By using equation (A.1.1), so we obtain that,

I5 =
2n�2X

j=0

q�1�j�(j+1)s
X

(a,b)2(F⇥
q )2

Z

(a,b)+(pOK)2

�(ac g5(x, y))|dxdy|

=
2n�2X

j=0

q�3�j�(j+1)s
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac g5(a+ px, b+ py))|dxdy|.
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Now we apply the change variables (A.1.3) to function g5 and since that
@g5

@x
(a, b) = 18(a17)(b

2
)c6(c� 1)2 6= 0, we obtain that,

I5 =
2n�2X

j=0

q�3�j�(1+j)s
X

(a,b)2(F⇥
q )2

Z

OK

�(ac (g5(a, b) + pz1))|dz1|

=
2n�2X

j=0

q�3�j�(1+j)sI5(s, (a, b)),

where I5(s, (a, b)) =
P

(a,b)2(F⇥
q )2

R

OK

�(ac (g5(a, b) + pz1))|dz1|, thus we use

Lemma 1.2.2 and give that

N =Card{(a, b) 2 (F⇥
q
)2 : g5(a, b) = 0, }

=Card{(a, b) 2 (F⇥
q
)2 : a18b

2
c6(c� 1)2 = 0},

=0.

I5(s, (a, b)) =

8
>>>>>>><

>>>>>>>:

(q � 1)2 if � = �triv

P
(a,b)2(F⇥

q )2

g5(a,b) 6=0

�(ac(g5(a, b)) if �|U = �triv

0 in other case,

where U = 1 + pOK .
Now, since that � is the multiplicative character induced by � in Fq, we
have that

I5(s, (a, b)) =

8
>>>>>>><

>>>>>>>:

(q � 1)2 if � = �triv

P
(a,b)2(F⇥

q )2

a
18
b
2
c
6(c�1) 6=0

�18(a)�2(b)�(c6(c� 1)2) if � = �triv

0 all other cases.

and given that � = �triv and �|U = �triv implies � = �triv, we get

I5(s, (a, b)) =

8
>>>>><

>>>>>:

(q � 1)2 if � = �triv

�(c6(c� 1)2)(q � 1)2 if �2 = �triv,�|U = �triv

0, all other cases,

Finally, since that I5 =
P2n�2

j=0 q�3�j�(1+j)sI5(s, (a, b)), then we conclude
that
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I5 =

8
>>>>><

>>>>>:

q
�1�s(1�q

(2n�1)(�1�s))(1�q
�1)2

1�q�1�s if � = �triv

�(c6(c� 1)2) q
�1�s(1�q

(2n�1)(�1�s))(1�q
�1)2

1�q�1�s , if �2 = �triv,�|U = �triv

0, all other cases.

(f) I6 = q�2ns�2n
R

O
⇥2
K

�(ac g6(x, y))|g6(x, y)|s|dxdy|.

Since that polynomial g6(x, y) = x18(c+p2ny)6[(y(c�1+p2n)2+x2(c+p2ny)2],
we have g6(x, y) = x18yc6(c� 1)2 + x20c8.

By using similar argument apply in previous cases we get

@g6
@x

(a, b) = 2a17c6[9b(c� 1)2 + 10a2c2] 6= 0

and therefore,

I6 =q�2ns�2n�2
X

(a,b)2(F⇥
q )2

Z

OK

�(ac (g6(a, b) + pz1))|g6(a, b) + pz1|s|dz1|,

=q�2ns�2n�2I6(s, (a, b)),

where I6 =
P

(a,b)2(F⇥
q )2

R

OK

�(ac (g6(a, b) + pz1))|g6(a, b) + pz1|s|dz1|, then

we have

I6,1 =

8
><

>:

q
�s(1�q

�1)N2

(1�q�1�s) if � = �triv

0 all other cases,

where

N2 =Card{(a, b) 2 (F⇥
q
)2 : g6(a, b) = 0},

=Card{(a, b) 2 (F⇥
q
)2 : a18bc6(c� 1)2 + a20c2 = 0},

and

I6,2 =

8
>>>>>>><

>>>>>>>:

(q � 1)2 �N2 if � = �triv

P
(a,b)2(F⇥

q )2

g6(a,b) 6=0

�(g6(a, b)) if �|U = �triv

0 all other cases,

where U = 1 + pOK .

Now, since that � is the multiplicative character induced by � in Fq, we
have that
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I6,2(s, (a, b)) =

8
>>>>>>><

>>>>>>>:

(q � 1)2 �N2 if � = �triv

P
(a,b)2(F⇥

q )2

(bc4(c�1)2+a
2) 6=0

�(a18c2(bc4(c� 1)2 + a2)) if � = �triv

0 all other cases.

Give that � = �triv and �|U = �triv is equivalent to � = �triv, we get

I6,2 =

8
><

>:

(q � 1)2 �N2 + T3 if � = �triv

0 all other cases,

where T3 =
P

(a,b)2(F⇥
q )2

(bc4(c�1)2+a
2) 6=0

�(a18c2(bc4(c� 1)2 + a2)),

and since that I6 = q�2n�2ns�2(I6,1(s, (a, b)) + (I6,2(s, (a, b)), we conclude
that

I6 =

8
><

>:

q�n�2ns�2
⇣

q
�s(1�q

�1)N2

(1�q�1�s) + (q � 1)2 �N2 + T3

⌘
if � = �triv

0 all other cases.

(g) I7 =
P1

j=2n q
�1�j�2ns

R

O
⇥2
K

�(ac g7(x, y))|dxdy|.

Since that polynomial g7(x, y) = x18(c+ pj+1y)6[(p1+j�2ny(c� 1+ pj+1y)2 +
x2(c+ pj+1y)2], we have g7(x, y) = x20c8.
By using equation (A.1.1), so we obtain that,

I7 =
1X

j=2n

q�1�j�2ns
X

(a,b)2(F⇥
q )2

Z

(a,b)+(pOK)2

�(ac g7(x, y))|dxdy|

=
1X

j=2n

q�3�j�2ns
X

(a,b)2(F⇥
q )2

Z

O2
K

�(ac g7(a+ px, b+ py))|dxdy|.

Now we apply the change variables (A.1.3) to function g7 and since that
@g7

@x
(a, b) = 20c8a19 6= 0, we obtain that,

I7 =
X

y0 6⌘1,c(modp)

1X

j=0

q�3�j
X

(a,b)2(F⇥
q )2

Z

OK

�(ac (g7(a, b) + pz1))|dz1|,

=
1X

j=2n

q�3�j�2nsI7(s, (a, b)),

B.2. Computation of Z(s, g,�,�5)



The local zeta function of (y3 � x2)2(y3 � cx2) + x4y4 97

where I7(s, (a, b)) =
P

(a,b)2(F⇥
q )2

R

OK

�(ac (g7(a, b)+pz1))|dz1|, then by Lemma

1.2.2 and given that

N = Card{(a, b) 2 (F⇥
q
)2 : g1(a, b) = 0} = Card{(a, b) 2 (F⇥

q
)2} : a20c8 = 0} = 0,

I7 =

8
>>>>>>><

>>>>>>>:

(q � 1)2 if � = �triv

P
(a,b)2(F⇥

q )2

g7(a,b) 6=0

�(ac(g7(a, b)) if �|U = �triv

0 all other cases,

with U = 1 + pOK .
Now, since that � is the multiplicative character induced by � in Fq, we
have that

I7 =

8
>>>>><

>>>>>:

(q � 1)2 if � = �triv

P
(a,b)2(F⇥

q )2 �
20(a)�(c8) if � = �triv

0 all other cases.

Now since that � = �triv and �|U = �triv is equivalent to � = �triv, we get
that

P
(a,b)2(F⇥

q )2 �
20(a)�(c8) =

8
><

>:

�(c8)(q � 1)2 if �20 = �triv,�|U = �triv

0 all other cases.

Furthermore,

I7 =

8
>>>>><

>>>>>:

(q � 1)2 if � = �triv

�(c8)(q � 1)2 if �20 = �triv,�|U = �triv

0 all other cases.

Now since that I7 =
P1

j=2n q
�3�j�2nsI7(s, (a, b)), we obtain

I7 =

8
>>>>><

>>>>>:

q�1�2ns�2n(1� q�1) if � = �triv

�(c8)q�1�2ns�2n(1� q�1) if �20 = �triv,�|U = �triv

0 all other cases.

Finally, since that
Z(s, g,�,�5) =

P1
n=1 q

�5n�18nsI =
P1

n=1 q
�5n�18ns

P
i
Ii, for i = 1, · · · , 7,

then when � = �triv,
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Z(s, g,�,�5) =
1X

n=1

q�5n�18ns

✓
q�n�2ns�2�s(1� q�1)N1

(1� q�1�s)
+ (q � 1)2 �N1 + T2

◆

+
1X

n=1

q�5n�18ns

✓
q�2n�2ns�2�s(1� q�1)N2

1� q�1�s
+ (q � 1)2 �N2 + T3

◆

+
1X

n=1

q�5n�18ns

✓
q�1�2s(1� q(n�1)(�1�2s))(1� q�1)2

1� q�1�2s

◆

+
1X

n=1

q�5n�18ns

✓
q�1�s � q�2n�2ns(1� q�1)2

1� q�1�s

◆

+
1X

n=1

q�5n�18ns
�
q�1(q � 3)(1� q�1) + (1� q�1)(q�2ns�n�1)

�

+
1X

n=1

q�5n�18ns(1� q�1)(q�2ns�2n�1)

Therefore,

Z(s, g,�,�5) =
q�6�20sU0(q�s)

(1� q�1�s)(1� q�6�20s)
+

q�7�20sU1(q�s)

(1� q�1�s)(1� q�7�20s)
,

+
(1� q�1)2q�6�20s

(1� q�1�2s)(1� q�5�18s)
� (1� q�1)2q�6�20s

(1� q�1�2s)(1� q�6�20s)

+
(1� q�1)2(q�6�19s)

(1� q�5�18s)(1� q�1�s)
+

(1� q�1)2(q�7�20s)

(1� q�7�20s)(1� q�1�s)

+
(q � 3)(1� q�1)q�6�18s

(1� q�5�18s)
+

(1� q�1)(q�7�20s)

(1� q�6�20s)

�(1� q�1)(q�8�20s)

(1� q�7�20s)

where U0(q�s) = q�2�s(1� q�1)N1 + T2(1� q�1�s){(q � 1)2 �N1}, with
N1 = Card{(a, b) 2 (F⇥

q
)2 : a18(b

2
(1� c) + a2) = 0} and

T2 =
P

(a,b)2(F⇥
q )2

(b
2
(1�c)+a

2) 6=0

�(a18(b
2
(1� c) + a2)),

where, U1(q�s) = q�2�s(1� q�1)N2 + T3(1� q�1�s){(q � 1)2 �N2}, with
N2 = Card{(a, b) 2 (F⇥

q
)2 : a18bc6(c� 1)2 + a20c2 = 0}

and
T3 =

P
(a,b)2(F⇥

q )2

(b
2
(1�c)+a

2) 6=0

�(a18(b
2
(1� c) + a2)),
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When � 6= �triv and �|1+pOK = �triv we have several cases: if �2 = �triv, we
have

Z(s, g,�,�5) =
1X

n=1

q�5n�18ns�(1� c)
q�1�2s(1� q(n�1)(�1�2s))(1� q�1)2

1� q�1�2s

+
1X

n=1

q�5n�18ns�(c6(c� 1))
q�1�s � q�2n�2ns(1� q�1)2

1� q�1�s

= �(1� c)
(1� q�1)2q�6�20s

(1� q�1�2s)(1� q�5�18s)
� �(1� c)

(1� q�1)2q�6�20s

(1� q�1�2s)(1� q�6�20s)

+�(c6(c� 1)2)
(1� q�1)2(q�6�19s)

(1� q�5�18s)(1� q�1�s)
+ �(c6(c� 1)2)

(1� q�1)2(q�7�20s)

(1� q�7�20s)(1� q�1�s)

If �18 = �triv, then

Z(s, g,�,�5) = �(y0
7(y0 � 1))

1X

n=1

q�5n�18nsq�1(q � 3)(1� q�1)

= �(y0
7(y0 � 1))

(q � 3)(1� q�1)q�6�18s

(1� q�5�18s)

Finally for �20 = �triv, �|U = �triv, where U = 1 + pOK .

Z(s, g,�,�5) =
1X

n=1

q�5n�18ns(1� q�1)(q�2ns�n�1)+

+�(c8)
1X

n=1

q�5n�18ns(1� q�1)(q�2ns�2n�1)

=
(1� q�1)(q�7�20s)

(1� q�6�20s)
� �(c8)

(1� q�1)(q�8�20s)

(1� q�7�20s)

Summarizing over all cones, we conclude that,
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When � = �triv.

Z(s, f,�triv) = 2q�1(1� q�1) +
q�2�6s(1� q�1)

(1� q�2�6s)

+
q�7�24s(1� q�1)2

(1� q�2�6s)(1� q�5�18s)
+

q�8�27s(1� q�1)2

(1� q�3�9s)(1� q�5�18s)

+
q�3�9s(1� q�1)

(1� q�3�9s)
+

q�6�20sU0(q�s)

(1� q�1�s)(1� q�6�20s)

+
q�7�20sU1(q�s)

(1� q�1�s)(1� q�7�20s)
+

(1� q�1)2q�6�20s

(1� q�1�2s)(1� q�5�18s)

� (1� q�1)2q�6�20s

(1� q�1�2s)(1� q�6�20s)
+

(1� q�1)2(q�6�19s)

(1� q�5�18s)(1� q�1�s)

+
(1� q�1)2(q�7�20s)

(1� q�7�20s)(1� q�1�s)
+

(q � 3)(1� q�1)q�6�18s

(1� q�5�18s)

+
(1� q�1)(q�7�20s)

(1� q�6�20s)
� (1� q�1)(q�8�20s)

(1� q�7�20s)

where

U0(q
�s) =q�2�s(1� q�1)N1 + T2(1� q�1�s){(q � 1)2 �N1},

N1 =Card{(a, b) 2 (F⇥
q
)2 : a18(b

2
(1� c) + a2) = 0},

T2 =
X

(a,b)2(Fq)2

(b
2
(1�c)+a

2) 6=0

�(a18(b
2
(1� c) + a2)),

Furthermore,

U1(q
�s) =q�2�s(1� q�1)N2 + T3(1� q�1�s){(q � 1)2 �N2},
N2 =Card{(a, b) 2 (F⇥

q
)2 : a18bc6(c� 1)2 + a20c2 = 0},

T3 =
X

(a,b)2(F⇥
q )2

(b
2
(1�c)+a

2) 6=0

�(a18(b
2
(1� c) + a2)),

� 6= �triv and �|1+pOK = �triv we have several cases: if �2 = �triv, we have
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Z(s, g,�) = �(1� c)
(1� q�1)2q�6�20s

(1� q�1�2s)(1� q�5�18s)

��(1� c)
(1� q�1)2q�6�20s

(1� q�1�2s)(1� q�6�20s)
+ �(c6(c� 1)2)

(1� q�1)2(q�6�19s)

(1� q�5�18s)(1� q�1�s)

+�(c6(c� 1)2)
(1� q�1)2(q�7�20s)

(1� q�7�20s)(1� q�1�s)

In the case where �6 = �triv.

Z(s, f,�) = �(�c)

✓
q�1(1� q�1) +

q�3�6s(1� q�1)

(1� q�2�6s)
+

q�2�6s(1� q�1)2

(1� q�2�6s)

◆

+�(�c)

✓
q�7�24s(1� q�1)2

(1� q�2�6s)(1� q�5�18s)

◆
.

If �9 = �triv.

Z(s, f,�,�i) =
q�8�27s(1� q�1)2

(1� q�3�9s)(1� q�5�18s)

+
q�3�9s(1� q�1)2

(1� q�3�9s)
+

q�4�9s(1� q�1)

(1� q�3�9s)
+ q�1(1� q�1).

In the case where �18 = �triv.

Z(s, g,�,�5) = �(y0
7(y0 � 1))

(q � 3)(1� q�1)q�6�18s

(1� q�5�18s)

Finally for �20 = �triv.

Z(s, g,�,�5) =
(1� q�1)(q�7�20s)

(1� q�6�20s)
� �(c8)

(1� q�1)(q�8�20s)

(1� q�7�20s)

In all other cases, Z(s, f,�,�i) = 0.
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