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RESUMEN

Un ideal I tiene la propiedad de persistencia fuerte si
(

Ik+1 : I
)
= Ik para k ≥ 1.

En esta tesis estudiamos esta propiedad para varias familias de ideales. En par-
ticular, probamos que los ideales monomiales, cuyo conjunto mı́nimo de gener-
adores son homogéneos de grado 2, tienen la propiedad de persistencia fuerte.
Decimos que una hipergráfica simple C tiene la propiedad de persistencia fuerte,
si su ideal de aristas I(C) tiene la propiedad de persistencia fuerte. Mostramos que
una hipergráfica simple tiene la propiedad de persistencia fuerte si y sólo si alguna
de sus componentes conexas la tiene. También demostramos que una hipergráfica
simple con a lo más 4 vértices y una hipergráfica simple no mezclada Köning sin
4-ciclos tienen la propiedad de persistencia fuerte. Además demostramos que I(C)
tiene la propiedad de persistencia fuerte si y sólo si el ideal pesado Iw(C) tiene la
propiedad de persistencia fuerte. El resultado anterior también se obtuvo para la
propiedad de persistencia. Finalmente, introducimos y estudiamos la propiedad
de persistencia fuerte simbólica.

Otra propiedad que se estudia en esta tesis es la propiedad Gorenstein para el
subanillo monomial homogéneo SG asociado a una gráfica G. Mostramos que si SG
es normal, entonces SG es Gorenstein si y sólo si G es no mezclada y su número de
cubierta es d |V(G)|

2 e. También demostramos que si |V(G)| es par y SG es Gorenstein,
entonces G es bipartita.

Además introducimos el ideal monomial I(D) asociado a una gráfica orientada
pesada D. Determinamos la descomposición irredundante irreducible de I(D). En
particular, caracterizamos los primos asociados de I(D). También caracterizamos
cuando I(D) es no mezclado y damos una caracterización explı́cita (combinatoria)
de esta propiedad cuando D es bipartita, un whiskers o un ciclo. Finalmente es-
tudiamos la propiedad Cohen-Macaulay de I(D) para algunos grafos orientados
pesados.





ABSTRACT

An ideal I has the strong persistence property if
(

Ik+1 : I
)
= Ik for k ≥ 1. In this

thesis we study this property for some families of ideals. In particular, we prove
that the monomial ideals whose minimal set of generators has degree two have the
strong persistence property. We say a clutter C has the strong persistence property
if its edge ideal I(C) has the strong persistence property. We show a clutter has the
strong persistence property if and only if at least one of its connected components
has the strong persistence property. Also, we prove that a clutter with at most 4
vertices and an unmixed König clutter without 4-cycles have the strong persistence
property. Furthermore, we show I(C) has the strong persistence property if and
only if its weighted ideal Iw(C) has the strong persistence property. We prove
the last result for the persistence property. Finally, we introduce and study the
symbolic strong persistence.

Another property studied in this thesis is the Gorenstein property for the homo-
geneous monomial subrings SG associated to a graph G. We prove that if SG is
normal, then SG is Gorenstein if and only if G is unmixed and its cover number is
dn

2 e. Also, if |V(G)| is even and SG is Gorenstein, then we show that G is bipar-
tite.

Furthermore, we introduce the edge ideal I(D) associated to a weighted oriented
graph D. We determine irredundant irreducible decomposition of I(D). In par-
ticular, we characterize the associated primes. Also, we characterize the unmixed
property for I(D) and we give an explicit (combinatorial) characterization, for this
property when D is bipartite, D is a whisker or D is a cycle. Finally, we study the
Cohen-Macaulay property of I(D), for some weighted oriented graphs D.
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PREFACE

The structure of the dissertation is as follows. In Chapter 1 we introduce the gen-
eral concepts and results used in this thesis, we study the monomial ideals, their
minimal sets of generators and their primary decomposition. Also, we charac-
terised when a monomial ideal is prime, irreducible or primary.

In Chapter 2, we work with two of the most studied asymptotic properties, the
strong persistence property and the persistence property. An ideal I has the strong
persistence property if (Ik+1 : I) = Ik for each k. Furthermore, ideal I has the per-
sistence property if Ass(Ik) ⊆ Ass(Ik+1) for each k. We start studying the case of
monomial ideals whose minimal set of generators consists of monomials of degree
2, we prove that these ideals have the strong persistence property. Thus, we obtain
that the strong persistence property is satisfied for a more general class that the
edge ideals of graphs. Another class that generalises to the edges ideals of graphs
are the squarefree monomial ideals. There ideals are associated to clutters. fur-
thermore, we say that a clutter has the strong persistence property if its squarefree
monomial ideal has the strong persistence property. There are some squarefree
monomial ideals without the strong persistence property. In this chapter we find
subfamilies and examples of squarefree monomial ideal with the strong persis-
tence property and we give tools and results that permit to verify this property. In
particular, we prove that a clutter has the strong persistence property if and only
if any of its connected components has the strong persistence property. This result
helps us to study the strong persistence property in a clutter from its connected
components. Another examples of these results is: if C contains an edge f such
that the set {g ∩ f | g ∈ E(C)} is a chain, then we show I(C) has the strong per-
sistence property. Also, if |V(C)| ≤ 4 or C is an unmixed König clutter without
4-cycles, then we prove that C has the strong persistence property. In addition, we
introduce the weight ideal Iw of a squarefree monomial ideal I, and we prove that
I has the strong persistence property if and only if Iw has this property. This result
permits to find non-squarefree monomial ideals that satisfy the persistence prop-
erty. Finally, we introduce the concept of symbolic strong persistence as a tool for
the study of asymptotic properties.

Let G be a simple graph, whose vertex set is V = {x1, . . . , xn}. Let R = K[x1, . . . , xn]
be a polynomial ring over a field K and we take R′ = K[t, x1t, . . . , xnt] the subring
of R[t] where t is a new variable. Hence, the homogeneous monomial subring of
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G is the ring SG = R′[{xixjt | {xi, xj} ∈ E(G)}] ⊆ R[t]. Thus, SG is a standard
k-algebra. A standard k-algebra is called Gorenstein if it is Cohen-Macaulay and
its canonical module is a principal ideal. In [9] is proven that if G is bipartite, then
SG is Gorenstein if and only if G is unmixed. In Chapter 3 we prove that if SG is
normal, then SG is Gorenstein if and only if G is unmixed and τ(G) = dn

2 e. This
generalizes the result given in [9], since if G is bipartite, then G is normal. Further-
more, we prove that if n is even and SG is Gorenstein, then G is bipartite.

A weighted oriented graph is a triple D = (V, E, w) where V = {x1, . . . , xn},
E ⊆ V × V and w is a function w : V → N. The underlying graph of D is the
simple graph G whose vertex set is V and whose edge set is {{x, y} | (x, y) ∈ E}.
In Chapter 4, we introduce the edge ideal I(D) of D, given by I(D) = (xix

w(xj)

j |
(xi, xj) ∈ E(D)) in R = K[x1, . . . , xn]. We study the vertex covers of D. In partic-
ular, we introduce the notion of strong vertex cover. We characterize the irredun-
dant irreducible decomposition of I(D) and we show that each irreducible ideal
of this decomposition is associated with a strong vertex cover of D. Furthermore,
we prove that I(D) is unmixed if and only if the underlying graph of D is un-
mixed and every strong vertex cover of D is minimal. When D is bipartite, D is
a whisker of D is a cycle, we give an effective (combinatorial) characterization of
the unmixed property of I(D). Also, we study the Cohen-Macaulay property of
I(D). In particular, we show that unmixed property and Cohen-Macaulayness are
equivalent when D is a path or D is complete and in both cases we give a com-
binatorial characterization of these properties. Finally, we give an example where
Cohen-Macaulay property depend of the field K.
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CHAPTER 1
INTRODUCTION

1.1 MONOMIAL IDEALS

Let R = K[x1, . . . , xn] be a polynomial ring over a field K. If B ⊆ R, in this thesis
we denoted by Mon(B) the set of monomials of B. Given E ⊆ [n], xE denotes the
squarefree monomial ∏i∈E xi and x denotes the monomial x1 · · · xn = x[n].

Definition 1.1 An ideal I of R is called monomial if it is generated by a set of
monomials.

Definition 1.2 Given a polynomial f = ∑m∈Mon(R) amm in R, the support of f is
{m ∈ Mon(R) | am 6= 0} and it is denoted by supp( f ).

Proposition 1.3 An ideal I of R is monomial if and only if supp( f ) ⊆ I for each
polynomial f ∈ I.

Proof. ⇒) I is generated by a set of monomials M. Now, given f ∈ I we have
that f = f1g1 + . . . + fkgk, where gi ∈ M and fi ∈ R for i = 1, . . . , k. Consequently,
supp( f ) ⊆ ∪k

i=1 supp( fi){gi}, where supp( fi){gi} = {mgi | m ∈ supp( fi)}.
Therefore supp( f ) ⊆ I, since supp( fi){gi} ⊆ I.

⇐) We takeM = ∪ f∈I supp( f ), thenM ⊆ I and (M) ⊆ I. Furthermore if f ∈ I,
then f = ∑m∈supp( f ) amm. Thus, f ∈ (M). Hence I = (M), therefore I monomial.

2

Proposition 1.4 A monomial ideal is generated by a finite set of monomials.

Proof. Let I a monomial ideal. Since R is Noetherian, I is generated by a finite
number of polynomials f1, . . . , fk. Hence, I is generated by ∪k

i=1 supp( fi). 2
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Remark 1.5 Let I be a monomial ideal generated byM ⊆ Mon(R), then a mono-
mial m ∈ I if and only if there is v ∈ M such that v|m.

Lemma 1.6 If I ∈ Mon(R) and M is a set of monomial generators of I, then M
is minimal (among the sets of monomial generators of I) if and only if any two
distinct monomials ofM are not divided.

Proof. ⇒) Suppose m, n ∈ M, m 6= n such that m|n, thenM\ {n} generates I.
This contradicts the minimality ofM.

⇐) By Remark 1.5, each proper subset ofM does not generate I. 2

Proposition 1.7 If I ∈ Mon(R), then I has a unique minimal monomial generating
set.

Proof. Let G, H be minimal generating sets of I. If u ∈ G, then by Remark 1.5,
v|u for some v ∈ H. Furthermore u′|v for some u′ ∈ G, hence u′|u. Thus, by
Lemma 1.6, u = u′ so u = v. Consequently, G ⊆ H. Similarly we obtain the other
inclusion. 2

Definition 1.8 We say thatM⊆ Mon(R) is a minimal set of monomials if it does
not have divisibility relations.

Corollary 1.9 Each minimal set of monomials is finite.

Proof. If M is a minimal set of monomials, then M is the minimal monomial
generating set of I = (M). Hence, by Proposition 1.4,M is finite. 2

We have a natural bijection between the set of monomial ideals of R and the col-
lection of minimal sets of monomials given by I 7−→ G(I).

Definition 1.10 GivenM ⊆ Mon(R),Mmin is the set of monomials v ofM such
that if u ∈ M and u|v ⇒ u = v. Also,Mmax is the set of monomials v ofM such
that if u ∈ M and v|u⇒ u = v.

Remark 1.11 IfM⊆ Mon(R), then (Mmin) = (M).

Proof. Now, we take v ∈ M ⊆ Mon(R). Since {m ∈ Mon(R) | m|v} is finite, there
is a minimal u (in the sense of divisibility) inM such that u|v. Hence, u ∈ Mmin

so u ∈ (Mmin). Therefore, (M) = (Mmin).
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Lemma 1.12 IfM⊆ Mon(R), thenMmin andMmax are finite.

Proof. Mmin andMmax are minimal sets of monomials then by Corollary 1.9, they
are finite. 2

Corollary 1.13 Let M ⊆ Mon(R) be an infinity set, then there exist a sequence
m1, m2, . . . inM with mi 6= mj if i 6= j such that mi|mi+1 for each i.

Proof. By Lemma 1.12, Mmax is finite. Hence, A = {m ∈ M | m|m′ for some
m′ ∈ Mmax} is finite. Consequently, M = M\ A is infinite. Since Mmax ⊆ A,
if u ∈ M, then there is v ∈ M such that u 6= v and u|v. Furthermore, if v ∈ A,
then there is m′ ∈ Mmax such that v|m′. So u|m′, a contradiction. Therefore, v /∈ A
implies v ∈ M. 2

Definition 1.14 A monomial ideal is called squarefree, if G(I) consists of square-
free monomials (i.e., monomials xα1

1 · · · x
αn
n where αi ∈ {0, 1}).

Definition 1.15 A clutter C is a pair (V, E) where V is a set and E consists of sub-
sets of V such that f * g and g * f for each f , g ∈ E. The elements of V and E are
called vertices and edges, respectively.

Definition 1.16 Let C be a clutter with vertex set {x1, . . . , xn}. The edge ideal
of C, denoted by I(C), is the squarefree monomial ideal I(C) =

(
{xi1 · · · xis} |

{xi1 , . . . , xis} ∈ E(C)}
)

in the polynomial ring K[x1, . . . , xn].

Remark 1.17 There is a bijection between squarefree monomial ideals in K[x1, . . .
, xn] and clutters with vertices in {x1, . . . , xn}, since inclusion in {x1, . . . , xn} im-
plies divisibility in K[x1, . . . , xn].

Proposition 1.18 A monomial ideal P is prime if and only if G(P) ⊆ {x1, . . . , xn}.

Proof. ⇒) We take u ∈ G(P). Since u ∈ Mon(R), there is xi ∈ {x1, . . . , xn} such
that u = xiv and v ∈ mon(R). Thus, xi ∈ P or v ∈ P since P is prime. If v ∈ P,
then there is v′ ∈ G(P) such that v′|v. Hence, v′|u and v′ 6= u. A contradiction
by Lemma 1.6. Consequently, xi ∈ P. So xi ∈ G(P), since P is prime. Therefore
u = xi, by Lemma 1.6.

⇐) Since G(P) ⊆ {x1, . . . , xn}, R/(G(I)) ∼= K[xi | xi /∈ G(I)]. Thus, R/(G(I)) is a
domain. Therefore (G(I)) is prime. 2
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Proposition 1.19 Let {Iα}α∈Φ be a family of monomial ideals of R. Then, ∑α∈φ Iα

and ∩α∈φ Iα are monomial ideals.

Proof. ∑α∈Φ Iα is generated by ∪α∈ΦG(Iα), then the sum is a monomial ideal. Now,
if f ∈ ∩α∈Φ Iα, then f ∈ Iα. Thus, supp( f ) ⊆ Iα for each α. Hence, supp( f ) ⊆
∩α∈Φ Iα. Therefore, ∩α∈φ Iα is a monomial ideal, by Proposition 1.3. 2

Remark 1.20 If I, J are monomial ideals of R, then I ∩ J is generated by B =
{lcm(u, v) | u ∈ G(I), v ∈ G(J)}.

Proof. If m ∈ β, then m = lcm(u, v) for u ∈ G(I) and v ∈ G(J). Thus u|m
and v|m, so m ∈ I ∩ J. Hence B ⊆ I ∩ J. By Proposition 1.19, I ∩ J is monomial.
Consequently, if m′ ∈ G(I ∩ J) ⊆ I ∩ J, then there are u′ ∈ G(I) and v′ ∈ G(J) such
that u′|m′ and v′|m′. Consequently gcd(u′, v′)|m′. Therefore I ∩ J ⊆ (B). 2

Lemma 1.21 If I, J ∈ Mon(R), then (I : J) = ∩u∈G(J)(I : u).

Proof. If m ∈ (I : J), then mJ ∈ I. In particular mu ∈ I for u ∈ G(J). So, (I : J) ⊆
(I : u). Now, we take m′′ ∈ ∩u∈G(J)(I : u). If f ∈ J, then f = ∑m′∈supp( f ) am′m′, By
Proposition 1.3, if m′ ∈ supp( f ), then m′ ∈ J. Consequently, there is u ∈ G(J) such
that u|m′. Furthermore m′′u ∈ I, so m′′ ·m′ ∈ I. This implies m′′ f ∈ I. Therefore
m′′ ∈ (I : J) and ∩u∈G(J)(I : u) ⊆ (I : J). 2

Definition 1.22 Let A be a ring. If I is an ideal and L a subset of A, then the
quotient ideal of I by L, denoted by (I : L), is the ideal {x ∈ A | xL ⊆ I}.

Proposition 1.23 If I and J are monomial ideals, then I J and (I : J) are also mono-
mial ideals.

Proof. Since {uv | u ∈ G(I), v ∈ G(J)} generated I J, I J is a monomial ideal. By
Lemma 1.21 and by Proposition 1.19 it is sufficient to prove (I : m) ∈ Mon(R) for
each m ∈ Mon(R). Now, if f ∈ (I : m), then supp( f m) = {um | u ∈ supp( f )}.
Since I is monomial, um ∈ I for each u ∈ supp( f ). Consequently supp( f ) ⊆
(I : m). Therefore (I : m) is monomial, by Proposition 1.3. 2

Definition 1.24 Let ≤ be a total order on Mon(R), we say that ≤ is a monomial
order if

i) 1 ≤ u ∀u ∈ Mon(R)
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ii) if u ≤ v, then um ≤ vm for each m ∈ Mon(R).

Example 1.25 The lexicographical order ≤lex is the follow monomial order:

xα1
1 · · · x

αn
n ≤lex xβ1

1 · · · x
βn
n if and only if αj < β j where j = min{i ∈ [n] | αi 6= βi}.

Remark 1.26 If≤ is a monomial order of K[x1, . . . , xn], then ≤̃ is a monomial order
in K[x1, . . . , xn, xn+1] given by xa1

1 · · · x
an+1
n+1 ≤̃xb1

1 · · · x
bn+1
n+1 if an+1 < bn+1 or an+1 =

bn+1 and xa1
1 · · · x

an
n ≤ xb1

1 · · · x
bn
n .

Example 1.27 Given a permutation σ of [n], the σ-lexicographical order is the fol-
lowing monomial order ≤σ−lex given by xα1

1 · · · x
αn
n ≤σ−lex xβ1

1 · · · x
βn
n if and only if

ασ(j) < βσ(j) where j = min{i ∈ [n] | ασ(i) 6= βσ(i)}.

Remark 1.28 If Div(R) = {(u, v) ∈ Mon(R)×Mon(R) | u|v} and ≤ is a mono-
mial order in R, then Div(R) ⊆ {(u, v) ∈ Mon(R) | u ≤ v}.

Lemma 1.29 Let R = K[x1, . . . , xn] be a polynomial ring with n ≥ 2. If u, v ∈
Mon(R) with (u, v), (v, u) /∈ Div(R), then there is a monomial order ≤ on R such
that u ≤ v.

Proof. We can suppose u = xa1
1 · · · x

an
n and v = xb1

1 · · · x
nn
n . Thus, there are i, j ∈ [n]

such that ai < bi and bj < aj, since (u, v), (v, u) /∈ Div(R). We take σ a permutation
of [n] such that σ(1) = i. Hence, u <σ−lex v. 2

Proposition 1.30 Div(R) is the intersection of all monomial orders over R.

Proof. Let {≤α}α∈Λ be the family of every monomial orders over R. By Re-
mark 1.28, Div(R) ⊆ ∩α∈Λ ≤α. Now if (u, v), (v, u) /∈ Div(R), then by Lemma 1.29
there exist monomial orders ≤1 and ≤2, such that u ≤1 v and v ≤2 u. Hence,
(u, v), (v, u) /∈ ∩α∈Λ ≤α. 2

Proposition 1.31 Let ≤ be a monomial order over R, then each descendent chain
m1 > m2 > · · · in Mon(R) is finite.

Proof. Since T =
(
{mi | i ∈ N}

)min is finite. We take k = min{i ∈ N | mi ∈ T}.
If there is mk+1, then mk+1 /∈ T. So, there is mi ∈ T such that mi|mk+1. Thus,
mi < mk+1, implies i > k + 1. A contradiction, since mi ∈ T. Therefore, the
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descendent chain m1 > m2 > · · · has k elements. 2

Definition 1.32 If ≤ is a monomial order and A ⊆ Mon(R), then max≤(A) =
{m ∈ A | m ≥ n for each n ∈ A} and min≤(A) = {m ∈ A | m ≤ n for each n ∈ A}.

Proposition 1.33 Let I be a monomial ideal of R, then rad(I) is monomial.

Proof. If f ∈ rad(I), then f k ∈ I for some k. If {u} = max(supp( f )), then
uk ∈ supp( f k). Since I is monomial, uk ∈ I. Hence, u ∈ rad(I) and f1 =
f − auu ∈ rad(I), where au is the coefficient of u in f . If we continue with this
process, then we obtain that supp( f ) ⊆ rad(I). Therefore, rad(I) is monomial by
Proposition 1.3. 2

Remark 1.34 If u ∈ Mon(R), then lib(u) = ∏xi|u xi. Furthermore, if I is a mono-
mial ideal, then rad(I) is generated by {lib(u) | u ∈ G(I)}.

Lemma 1.35 If f ∈ R such that | supp( f )| ≥ 2, then | supp( f g)| ≥ 2 for each
g ∈ R.

Proof. We take a monomial order≤. If max(supp( f )) = {u} and min(supp( f )) =
{v}, then u > v, since | supp( f )| ≥ 2. We take {g1} = max(supp(g)) and
{g2} = min(supp(g)). Thus, vg2 < mn ≤ ug1 for (m, n) ∈ supp( f )× supp(g) \
{(v, g2), (u, g1)}. Therefore | supp( f g)| ≥ 2. 2

Remark 1.36 An element a of a ring is said squarefree if b2|a implies b is a unit.
By Lemma 1.35, a monomial xα1

1 · · · x
αn
n is squarefree if and only if αi ∈ {0, 1}. In

particular, we recover Definition 1.14.

Example 1.37 If J = 〈x1x2 + x1x3, x2
1x2

2, x2
2x2

3, x2
1x2

3〉, then rad(J) = 〈x1x2, x2x3, x1x3〉.
Observe rad(J) is a monomial ideal and J is not a monomial ideal.

Proposition 1.38 If I, J ∈ Mon(R), then I 6= I J and J 6= I J.

Proof. We take a monomial order ≤. Furthermore, we take {u} = min
(
Mon(I)

)
and {v} = min

(
Mon(J)

)
. If m ∈ Mon(I J), then m = u1v1 with u1 ∈ Mon(I) and

v1 ∈ Mon(J). Thus, u1 ≥ u so m > u, since v > 1. Hence, u ∈ I \ I J. Similarly
v ∈ J \ I J, I 6= I J and J 6= I J. So, u ∈ I \ I J and v ∈ J \ I J . 2
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Definition 1.39 Let I be an ideal of a ring A and a ∈ A we say that a is integer
over I if there is a polynomial h = xk + a1xk−1 + · · ·+ ak ∈ A[x] where ai ∈ Ii such
that h(a) = 0. The set of all elements of A integers on I is called the integer closure
of I and denoted by I.

Remark 1.40 If a ∈ I, then h(a) = 0, where h(x) = x − a. Consequently I ⊆ I.
Furthermore, if a ∈ I, then there is f (x) ∈ A[x] such that f (a) = ak + a1ak−1 +
· · ·+ ak = 0. Consequently ak = −a1ak−1 − · · · − ak ∈ I. Hence I ⊆ rad(I).

Proposition 1.41 If I is an ideal of a ring A, then I is an ideal of A.

Proof. By Lemma 8.2.2 and Proposition 8.2.3 in [ ], I is a subgroup. Now, we take
a ∈ A and b ∈ I, then there is g(x) = xk + a1xk−1 + a2xk−2 + · · ·+ ak with ai ∈ Ii

such that g(b) = 0. Thus, if h(x) = xk + aa1xk−1 + a2a2xk−2 + · · · + akak, then
aiai ∈ Ii and h(ab) = 0. Therefore, ab ∈ I. 2

Proposition 1.42 If I is a monomial ideal of R, then I is a monomial ideal generated
by
{

u ∈ Mon(R) | uk ∈ Ik}.

Proof. See [12, Theorem 1.4.2]. 2

Definition 1.43 Given a monomial ideal I, we define the Newton’s polyhedron of
I as the intersection of the convex closure in Rn of the set {v ∈ Zn

+ | xv ∈ I}. The
Newton’s polyhedron is denoted by N(I).

Remark 1.44 If P is a prime ideal of a ring A, then P = P.

Definition 1.45 Let A be a commutative ring, we say that an ideal I of A is normal
if Ii = Ii for each i.

1.2 PRIMARY DECOMPOSITION

Definition 1.46 An ideal I of a ring A is primary if for each a, b ∈ A such that
ab ∈ I implies a ∈ I or bk ∈ I for some k.

Proposition 1.47 If I is primary, then rad(I) is prime.
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Proof. If ab ∈ rad(I) = P, then (ab)k ∈ I for some k. Thus, akbk ∈ I consequently
ak ∈ I or bkt ∈ I for every t. Therefore a ∈ rad(I) or b ∈ rad(I). 2

Example 1.48 The converse affirmation of the above proposition is not true. If
I = (x2

1, x1x2), then rad(I) = (x1). Consequently rad(I) is prime. But I is not
primary.

Proposition 1.49 If rad(I) is maximal, then I is primary.

Proof. If M = rad(I), then M is the unique prime ideal containing I, and A/I is
local with maximal ideal M/I. So, if b ∈ A \M, then b ∈ A/I is a unit. Let a, b ∈ A
such that ab ∈ I, if b /∈ M, then I is primary. 2

Definition 1.50 A primary ideal I is P-primary if rad(I) = P and P is prime.

Proposition 1.51 The intersection of a finite family of P-primary ideals is P-primary.

Proof. Let I1, . . . , Ik be P-primary ideals. Now, we take a, b ∈ A such that ab ∈
∩k

i=1 Ii ⊆ P. If a /∈ Ij for some j, then bs ∈ Ij for some s. Thus, b ∈ P. So, then there
is ri such that bri ∈ Ii for each i, since P = rad(Ii). We take r = max{r1, . . . , rk},
then bk ∈ ∩k

i=1 Ii. Hence, ∩k
i=1 Ii is primary. Furthermore, rad(∩k

i=1 Ii) ⊆ P. Now,
if a ∈ P, then there is ui such that aui ∈ Ii for each i. If u = max{u1, . . . , uk}, then
au ∈ ∩k

i=1 Ii implies a ∈ rad(∩k
i=1 Ii). Therefore P = rad(∩k

i=1 Ii). 2

Definition 1.52 Given I an ideal, we say that a collection of primary ideals {Q1, . . . ,
Qk} is a primary decomposition of I if I = ∩k

i=1Qi.

Lemma 1.53 Let I1, . . . , Ik be ideals and P a prime ideal such that ∩k
i=1 Ii ⊆ P, then

Ij ⊆ P for some j.

Proof. By induction over k. For k = 2, we take I1, I2 ideals such that I1 ∩ I2 ⊆ P.
If I1 * P, then there is a ∈ I1 \ P. Furthermore, if b ∈ I2, then ab ∈ I1 ∩ I2 ⊆ P.
Consequently, b ∈ P implies I2 ⊆ P. Now, we take I1, . . . , Ik, Ik+1 ideals such that
∩k+1

i=1 Ii ⊆ P. If J = ∩t+1
i=2 Ii, then I1 ∩ J ⊆ P. Consequently I1 ⊆ P or J ⊆ P. In the

second case, by induction hypothesis, there is Ii ⊆ P for 2 ≤ i ≤ k + 1. 2

Corollary 1.54 If P is a prime ideal such that P = ∩k
i=1 Ii, where Ii is an ideal, then

P = Ij for some j.
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Proof. By Lemma 1.53, Ij ⊆ P for some j. Furthermore, P ⊆ ∩k
i=1 Ii ⊆ Ij, then

P = Ij. 2

Definition 1.55 A primary decomposition Q = {Q1, . . . , Qk} of an ideal I is mini-
mal if no proper subset of Q is a primary decomposition of I.

Lemma 1.56 A primary decomposition Q = {Q1, . . . , Qk} of I is minimal if and
only if ∩i∈SQi ⊂ Qj for every S  [k] with j /∈ S.

Proof. ⇒) If ∩i∈SQi ⊆ Qj, then Q \ {Qj} is a decomposition primary of I, a con-
tradiction.

⇐) If Q is not minimal then there is S  [k] such that ∩i∈SQi = I = ∩k
j=1Qj ⊆ Qj

for j /∈ S. 2

Corollary 1.57 If {Q1, . . . , Qk} is a minimal primary decomposition of I. Then for
any S ⊆ [k] we have {Qi | i ∈ S} is a minimal primary decomposition of J =
∩i∈SQi.

Proof. If S′ ⊆ S and j ∈ S \ S′, then by Lemma 1.56 ∩i∈S′Qi  Qj. Hence, {Qi | i ∈
S} is a monomial primary decomposition of J. 2

Proposition 1.58 Let A be a ring, with Q a minimal primary decomposition of I.
Hence, P = rad(Q) with Q ∈ Q if and only if P = (I : a) for some a ∈ A.

Proof. See [1, Theorem 4.5]. 2

Corollary 1.59 Let Q and Q′ minimal primary decompositions of I. Then

{rad(Q) | Q ∈ Q} = {rad(Q′) | Q′ ∈ Q′}.

Proof. By Proposition 1.58. 2

Let A be a ring. If M is a A-module and x ∈ M, then ann(x) = {a ∈ A | a · x =
0}. A prime ideal P of A is an associated prime of M if exist x ∈ M such that
P = ann(x). The set of associated primes M is denoted by Ass(M). If I is an ideal
of A, then A/I is an A-module. Furthermore ann(x) = (I : x). Also Ass(A/I) is
denoted by Ass(I).

Corollary 1.60 If Q is a minimal primary decomposition of I, then {rad(Q) | Q ∈
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Q} = Ass(A/I).

Proof. By Proposition 1.58. 2

Corollary 1.61 Let I be an ideal with a primary decomposition and P a prime ideal
such that I ⊆ P. Then P is minimal prime containing I if and only if P is minimal
in Ass(I).

Proof. Suppose that P is minimal containing I andQ is a minimal primary decom-
position of I. By Lemma 1.53, there is some ideal T ∈ Q such that T ⊆ P. Thus,
I ⊆ rad(T) ⊆ P and rad(T) is prime so, rad(T) = P. Hence P is minimal of Ass(I).
Now, if P is minimal of Ass(I) and Q is a minimal prime such that I ⊆ Q ⊆ P, then
Q ∈ Ass(I). Consequently Q = P, so P is a minimal prime of containing I. 2

Remark 1.62 In a Noetherian ring, the radical of an ideal is the intersection of its
associated primes.

Definition 1.63 An ideal I is irreducible if I = J ∩ L for some ideals I and J, then
J = I or L = I. Furthermore, I is an irreducible monomial ideal if I = J ∩ L with
J and L monomial ideals, then J = I or L = R.

Proposition 1.64 In a Noetherian ring each irreducible ideal is primary.

Proof. See [1, Lemma 7.12]. 2

Proposition 1.65 Let A be a Noetherian ring, then each ideal I of A has a primary
decomposition consisting by irreducible ideals.

Proof. See [1, Lemma 7.11]. 2

Proposition 1.66 An ideal is primary if and only if has a single associated prime.

Proof. By Corollary 1.59. 2

Remark 1.67 By Corollary 1.54, every prime ideal is irreducible.

Example 1.68 If I = 〈x4
1x3

2, x3
1x4

2〉, then I is a monomial ideal and I = 〈x6
1x2 +

x5
1x2

2, x4
1x3

2, x3
1x4

2〉 ∩ 〈x3
1x4x2, x4

1x3x2, x5
1 + x1x22x6

2〉. Hence I is the intersection of two
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non-monomial ideals.

Proposition 1.69 A monomial ideal I is irreducible-monomial if and only if G(I)
consists of powers of variables.

Proof. ⇒) Assume there is u ∈ G(I) such that xixj|u for some i, j ∈ [n] and i 6= j.
If u = xα1

1 · · · x
αn
n , then I = (G(I) ∪ {xαi

i }) ∩ (G(I) ∪ { u
x

αi
i
}). Consequently I is not

irreducible, since xαi
i , u

x
αi
i

/∈ I.

⇐) Let J, H be monomial ideals such that J ∩ H = I. Suppose J 6= I, then there
is u ∈ G(J) such that xαi

i - u for each xαi
i ∈ G(I). On the other hand, lcm(u, v) ∈

J ∩ H = I for each v ∈ H. Thus, x
αj
j | lcm(u, v) for some x

αj
j ∈ G(I). So, αj ≤

max{uj, vj}, where u = xu1
1 · · · x

un
n and v = xv1

1 · · · x
vn
n . Since xαj - u, uj < αj.

Hence, αj = vj and v ∈ I. Therefore H = I, so I is irreducible. 2

Corollary 1.70 Let I be a monomial ideal. Then the following conditions are equiv-
alent:

1) I is primary.

2) If xi|m for some m ∈ G(I), then there is k such that xk
i ∈ G(I).

Proof. 1)⇒ 2) We assume m = x
αi1
i1
· · · xαim

im . If m = m′x
αj
ij

for some j ∈ [m], then

m′ ∈ I, since m ∈ G(I). Thus, (x
αj
ij
)r ∈ I, for some r. Therefore xk

ij
∈ G(I) for some

k.

2) ⇒ 1) We consider A = {xi | xs
i ∈ G(I) for some s} and A′ = {x1, . . . , xn} \ A.

We take f , g ∈ R such that f g ∈ I and f /∈ I. If supp( f ) is minimal, then supp( f )∩
I = ∅, since in otherwise f = f1 + f2 where supp( f1) ∩ I = ∅, supp( f2) ⊆ I,
f1g = f g − f2g ∈ I and f1 ∈ I. If g /∈ rad(I), then there is u ∈ supp(g) such
that xi - u for each xi ∈ A. Now, we take a monomial order ≤ and v = min≤{u ∈
supp(g) | u /∈ rad(I)}, then vm ∈ I where m = min≤ supp( f ). Thus h|vm for some
h ∈ G(I). Furthermore gcd(h, v) = 1, so h|m, a contradiction. Hence g ∈ rad(I)
so, gk ∈ I for some k. Therefore I is primary. 2

Example 1.71 The ideal (x2
1, x1x2, x2

2) is a monomial primary but it is not an irredu-
cible-monomial ideal.

Corollary 1.72 If I is an irreducible-monomial ideal, then I is primary.
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Proof. By Proposition 1.69, G(I) consists of powers of variables. Therefore I is
primary, by Corollary 1.70. 2

Example 1.73 By Corollary 1.70, (x1) and (x2
1, x1, x2, xk

2) are primary ideal for each
k. Furthermore (x2

1, x1x2) = (x1) ∩ (x2
1, x1x2, xk

2), then (x2
1, x1x2) has an infinite

number of primary decompositions consisting of monomial ideals.

Proposition 1.74 If I is a monomial ideal, then I has a minimal primary decompo-
sition formed by irreducible-monomial ideals.

Proof. We suppose G(I) = {u1, . . . , uk} where ui = x
ai1
1 · · · x

ain
n . We take Ui =

{x
aij
i | aij 6= 0} for each i ∈ [k]. Now, if e = (m1, . . . , mk) ∈ ∏k

i=1 Ui, then we
define the monomial ideal Ie = (m1, . . . , mk). Ie is an irreducible-monomial and
I = ∩e∈Ω Ie with Ω = ∏k

i=1 Ui. Therefore I has a minimal primary decomposition.
2

Definition 1.75 An irreducible-monomial ideal J is I-minimal if J is minimal in
the set of irreducible-monomial ideals that contains I.

Proposition 1.76 If I is a monomial ideal and Ω is the set of the I-minimal ideal,
then I = ∩J∈Ω J.

Proof. If J ∈ Ω, then I ⊆ J. Hence, I ⊆ ∩J∈Ω J. Now, we consider G(I) =
{m1, . . . , mr}. If m /∈ I, then mi - m for each 1 ≤ i ≤ r. Thus, for each i there is

αi
ji

such that αi
ji
> β ji where mi = xαi

1
1 · · · x

αi
n

n . We take A = {xαj1
j1

, . . . , x
αjr
jy } and

A = {B ⊆ A | I ⊆ (B)}. If D is a minimal set in A, then J = (D) is I-minimal.
Therefore m /∈ ∩J∈Ω J. 2

Remark 1.77 A minimal irreducible decomposition of a monomial ideal is unique,
see [12, Theorem 1.3.1].

Proposition 1.78 If A is a finite set of irreducible-monomial ideals without con-
tention relation, then A is a minimal primary decomposition of ∩I∈A I.

Proof. We consider A = {I1, . . . , Ir}, then ∩r
i=1 Ii is a primary decomposition, since

Ii is irreducible for 1 ≤ i ≤ r. Now, Ii * Ij for each i 6= j, then there exist mi ∈ G(Ii)
such that mi /∈ Ij. Thus, if m = lcm(m1, . . . , mj−1, mj+1, . . . ), then m ∈ ∩i 6=j Ii and
m /∈ Ij. Hence, ∩i 6=j Ii * Ij for each j. 2
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Corollary 1.79 The set of I-minimal ideals is a minimal primary decomposition of
I.

Corollary 1.80 Each associated prime ideal of a monomial ideal is a monomial
ideal.

Proof. By Proposition 1.74, Proposition 1.33 and Corollary 1.60. 2

Corollary 1.81 If P is an associated prime of a monomial ideal I, then there is u ∈
Mon(R) such that P = (I : u).

Proof. Since P is an associated prime of I, P = (I : f ) for some f ∈ R. Since
(I : f ) = ∩u∈supp( f )(I : u) and by Corollary 1.54, P = (I : u) for some u ∈ supp( f ).

2

Definition 1.82 Let I be a monomial ideal of R, I has the persistence property if
Ass(A/Ik) ⊆ Ass(A/Ik+1) for all k.

Definition 1.83 Let G = (V, E) be a graph. If f ∈ E(G), then we take the mono-
mial f̃ = x1 · · · xj where f = {x1, . . . , xj}. In this context the edge ideal of G is the
ideal I(G) =

(
f̃ | f ∈ E(G)

)
.

Lemma 1.84 Let I be the edge ideal of a graph G. If P is a monomial ideal, then P
is a prime ideal containing I if and only if G(P) is a vertex cover of G.

Proof. ⇒) We assume E(G) = { f1, . . . , fk}. Since I ⊆ P, for each 1 ≤ i ≤ k there is
xji ∈ G(P) such that xji | f̃i. So {xji} = xji ∩ fi ⊆ G(P) ∩ fi. Hence, G(P) is a vertex
cover of G.

⇐) Since G(P) is a vertex cover, G(P) ⊆ {x1, . . . , xn}. Thus, P is a prime ideal.
Furthermore, if g ∈ E(G), then there is xi ∈ G(P) such that xi|g̃ so, xi ∈ g. There-
fore, G(P) is a vertex cover of G. 2

Corollary 1.85 Let I be the edge ideal of a graph G, then P is an associate prime of
I if and only if G(P) is a minimal vertex cover of G.

Proposition 1.86 Let G be a graph and I(G) the edge ideal, then I(G) is normal if
and only if any two odd cycles in G can be joined by an edge of G.

Proof. See [28, p.322]. 2





CHAPTER 2
ON THE STRONG PERSISTENCE

PROPERTY FOR MONOMIAL IDEALS

2.1 INTRODUCTION

Let R be a commutative Noetherian ring. The associated primes set of an ideal I is
Ass(I) = {P ∈ Spec(R) | P = (I : a) for some a ∈ R}. If I = Q1 ∩ · · · ∩Qs is a min-
imal primary decomposition of I, then Ass(I) = {rad(Q1), . . . , rad(Qs)} where
rad(Qi) is the radical of Qi. I has the persistence property if Ass(Ik) ⊆ Ass(Ik+1)
for each k. In [18] is showed that the edge ideal of a simple graph has the persis-
tence property, and they use that these edge ideals satisfy (Ik+1 : I) = Ik for each k.
Recently was proved that this concept implies the persistence property (see [13])
and it is called the strong persistence property. These concepts are not equivalent,
in [18, Example 2.18] is given a squarefree monomial ideal with the persistence
property, but it does not have the strong persistence property. Assuming this ter-
minology, in [18, Lemma 2.12] was proved that the edge ideal of a simple graph
has the strong persistence property. In this chapter we study the strong persistence
property for edge ideals of graphs with loops, weighted graphs, and clutters.

This chapter is organized as follow: in Sect. 2.2 we prove the edge ideals of graphs
with loops have the strong persistence property. In Sect. 2.3 we prove that the edge
ideal of a vertex–weighted graph (G, w) has the strong persistence property. Fur-
thermore, we prove that I(G)k and I(G, w)k have the same associated primes. In
Sect. 2.4 we study the edge ideals of clutters. In particular, we show that a clut-
ter has the strong persistence property if and only if at less one of its connected
component has the strong persistence property. Also, we prove that a König un-
mixed clutter without 4-cycles and squarefree monomials in four variables have
the strong persistence property. Furthermore, we show that (I2 : I) = I, if I is
a squarefree monomial ideal. Finally we prove that the strong persistence prop-
erty is closed under c-minor and cones. In Sect. 2.5 we give some properties of
the strong persistence property. Also, we introduce the symbolic persistence pro-
perty and we show that an ideal has this property if it has the strong persistence
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property.

2.2 GRAPHS WITH LOOPS

A graph with loops is a triplet G = (V, E, L) where G = (V, E) is a simple graph
with V = {x1, . . . , xn} and L ⊆

{
(xi, xi) | xi ∈ V

}
, L is called the set of loops of G.

Let R = K[x1, . . . , xn] be a polynomial ring, as usual we use xa as abbreviation for
xa1

1 · · · x
an
n , where a = (a1, . . . , an) is an integer vector with ai ≥ 0. If f = {xi, xj} ∈

E or f = (xi, xi) ∈ L, then we take the monomial f̃ = xixj or f̃ = x2
i , respectively.

The edge ideal of a graph with loops G = (V, E, L) is the ideal I(G) =
(
{ fi | fi ∈

E ∪ L}
)
= I(G) +

(
{x2

i | (xi, xi) ∈ L}
)

where I(G) =
(
{xixj | {xi, xj} ∈ E}

)
is the

edge ideal of G = (V, E).

Example 2.1 Graph with loops, where L =
{
(x1, x1), (x3, x3)

}
.

t���x1 x2
t
@
@@

x3 t���
�
�
�

x4
t

For an integer vector a = (a1, . . . , an) with ai ≥ 0, we define the simple graph
Ga with vertex set is Va = {x1

1, . . . , xa1
1 , . . . , x1

i , . . . , xai
i , . . . , x1

n, . . . , xan
n }, and whose

edge set

Ea =

{
{xki

i , x
kj
j } |

{xi, xj} ∈ E, ki ≤ ai, and k j ≤ aj; or
(xi, xj) ∈ L and 1 ≤ ki < k j ≤ ai

}
,

where j in xj
i is only an index. Furthermore, if xi ∈ V(G), then we define the

duplication of xi in Ga as the simple graph Gaxi = Ga+ei where ei is the i-th unit
vector in Rn. This operation is commutative, that is (Gaxi)xj = (Gaxj)xi for each
xi, xj ∈ V. Furthermore, if f = {xi, xj} ∈ E, then we denote by (Ga) f = Ga+ei+ej ;
and if f = (xi, xi) ∈ L, then (Ga) f = Ga+ei+ei .

Definition 2.2 Let G a simple graph. A matching of G is a set of pairwise disjoint
edges. The matching number of G, denoted by ν(G), is the size of any maximum
matching of G. A matching that covers all vertices of V(G) is called a perfect
matching of G.
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Notation: Mon(R) is the set of monomials in R = K[x1, . . . , xn]. If I = (m1, . . . , ms)
with mi ∈ Mon(R), then G(I) is the minimal monomial generating set of I.

Proposition 2.3 Let G be a graph with loops whose vertex set is V = {x1, . . . , xn}.
If a = (a1, . . . , an) is an integer vector where ai ≥ 0, then Ga has a matching of size
l if and only if xa ∈ I(G)l.

Proof. ⇒) Let P = {g1, . . . , gl} be a matching of Ga where gj = {x
kij
ij

, x
srj
rj }. Now,

we consider the monomial xb = ∏l
j=1 xij xrj ∈ I(G)l. If b = (b1, . . . , bn), then

bi =
∣∣ {r | xr

i ∈
⋃l

j=1 gj}
∣∣ for each 1 ≤ i ≤ n. Since P is a matching, bi ≤ ai.

Therefore, xb | xa and xa ∈ I(G)l.

⇐) We take E ∪ L = { f1, . . . , fq}. If xa ∈ I(G)l, then there exist an integer vec-
tor α = (α1, . . . , αq) such that α1 + · · · + αq = l and xa = m f̃ α1

1 · · · f̃ αq
q with m ∈

Mon(R). We can assume that α1 > 0. If f1 = {xr, xs} ∈ E, then α1 ≤ ar and α1 ≤ as

since f̃ α1
1 | xa. If P1 = {g1, . . . , gα1}, where gj = {x

ar−j+1
r , xas−j+1

s } for j ≤ α1, then
P1 is a matching of Ga of size α1. If f1 = (xr, xr) ∈ L, then 2α1 ≤ ar since f̃ α1

1 | xa.
Consequently, P1 = {g1, . . . , gα1}, where gj = {x

ar−2j+2
r , xar−2j+1

r } for j ≤ α1, is a
matching of Ga of size α1. Hence,

Gb = Ga \
α1⋃

j=1

gj and xb =
xa

f̃ α1
1

= m f̃ α2
2 · · · f̃ αq

q ∈ I(G)l−α1 ,

where b = a− α1(er + es) if f1 ∈ E or b = a− 2α1er if f1 ∈ L. Following with the
processes, we obtain matchings P1, . . . , Pq such that

V(Pi+1) ∩
( i⋃

j=1

V(Pj)
)
= ∅ since V(Pi+1) ⊆ V(Ga) \

i⋃
j=1

V(Pj).

Therefore, ∪q
j=1Pj is a matching of Ga of size l. 2

Corollary 2.4 xa ∈ I(G)k \ I(G)k+1 if and only if k = ν(Ga).

Definition 2.5 The deficiency of a simple graph G is given by

def(G) = |V(G)| − 2ν(G).

Theorem 2.6 ([18]) If G is a simple graph, then

def(G) = max{c0(G \ S)− |S| | S ⊆ V(G)},
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where c0(G) denotes the number of odd components (components with an odd
number of vertices) of G.

Proposition 2.7 Let G = (V, E, L) be a graph with loops, so def(Ga f ) = δ for all
f ∈ F = E ∪ L if and only if def(Ga) = δ and ν(Ga f ) = ν(Ga) + 1 for all f ∈ F.

Proof. We take a maximum matching g1, . . . , g` of Ga. If f ∈ F, then g1, . . . , g`, g
is a matching of Ga f , where g = {xai+1

i , x
aj+1
j } when f = {xi, xj} ∈ E and g =

{xai+1
i , aai+2

i } when f = (xi, xi) ∈ L. Hence, ν(Ga f ) ≥ ν(Ga) + 1. This implies
def(Ga) = |V(Ga)| − 2ν(Ga) ≥ |V(Ga f )| − 2ν(Ga f ) since |V(Ga f )| = |V(Ga)|+ 2.
Therefore, def(Ga) ≥ def(Ga f ).

⇒) By contradiction, suppose def(Ga) > δ. Thus, by Theorem 2.6, there is an
S ⊆ V(Ga) such that c0(Ga \ S) − |S| > δ. We set r = c0(Ga \ S) and H1, . . . , Hr

the odd components of Ga \ S. We take xki
i ∈ Hk for some 1 ≤ k ≤ r and

ki ≤ ai. If f = (xi, xi) ∈ L, then we take the subgraph H′k of Ga f \ S induced by
V(Hk) ∪ {xai+1

i , xai+2
i }. We obtain that the odd connected components of Ga f \ S

are H1, H2, . . . , Hk−1, H′k, Hk+1 . . . , Hr. Consequently,

c0(Ga f \ S)− |S| > δ = def(Ga f ).

A contradiction. Now, assume f = {xi, xj} ∈ E(G). If {xki
i , x

kj
j } ∈ E(Hk), then we

consider the subgraph Hk′ of Ga f \ S induced by V(Hk)∪ {xai+1
i , x

aj+1
j }. We obtain

that the odd connected components of Ga f \S are H1, H2, . . . , Hk−1, H′k, Hk+1 . . . , Hr.
So,

c0(Ga f \ S)− |S| > δ = def(Ga f ).

This implies V(Hk) = {xki
i } and aj = 0 or x

kj
j ∈ S for each k j ≤ aj. Hence, the odd

components of Ga f \ (S ∪ {xaj+1
j }) are H1, . . . , Hr, {xai+1

i }. Thus,

c0(Ga f \ (S ∪ {xaj+1
j }))− |S ∪ {xaj+1

j }| = c0(Ga \ S)− |S| > δ = def(Ga f ).

A contradiction, therefore def(Ga) = def(Ga f ) for all f ∈ F. Therefore, ν(Ga f ) =
ν(Ga) + 1, since |V(Ga f )| = |V(Ga)|+ 2 for all f ∈ F.

⇐) def(Ga f ) = |V(Ga f )|+ 2ν(Ga f ) = |V(Ga)|+ 2− 2(ν(Ga) + 1) = def(Ga) = δ.
2

Theorem 2.8 I(G) has the strong persistence property if G is a simple graph.
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Proof. See [18, Lemma 2.12]. 2

Theorem 2.9 If G is a graph with loops, then
(

Ik+1 : I
)
= Ik with I = I(G).

Proof. We take a monomial m = xa ∈ (Ik+1 : I). If m f ∈ Ik+2 for some f =
xixj ∈ G(I), then m(xixj) = m′g1 · · · gk+2 with gi ∈ G(I) and m′ ∈ Mon(R). Thus,
m ∈ Ik. So, we can assume that m f ∈ Ik+1 \ Ik+2 for each f ∈ G(I). Conse-
quently, by Corollary 2.4, ν(Ga f ) = k + 1 for each f ∈ G(I). Hence, def(Ga f ) =
|V(Ga)|+ 2− 2(k + 1) = |V(Ga)| − 2k for each f ∈ G(I). Furthermore, by Propo-
sition 2.7, def(Ga f ) = def(Ga) = |V(Ga)| − 2ν(Ga), then ν(Ga) = k. Therefore, by
Proposition 2.3, m = xa ∈ Ik. 2

Corollary 2.10 I(G) has the persistence property if G is a graph with loops.

Proof. By Theorem 2.9 and [13, Lemma 2.12]. 2

2.3 WEIGHTED MONOMIAL IDEALS

Let I be a monomial ideal, recall that an irreducible monomial ideal J is I-minimal
if J is minimal in the set of irreducible monomial ideals (with the form {xαi1

i1
, . . . ,

xαis
is }) such that I ⊆ J. The set of I-minimal ideals is a minimal primary decompo-

sition of I.

Definition 2.11 For m1, m2 ∈ Mon(R), ms
1 || m2 if ms

1|m2 and ms+1
1 - m2.

Proposition 2.12 Let I be a monomial ideal. If (x
αi1
i1

, . . . , xαis
is ) is a I-minimal ideal,

then for each 1 ≤ t ≤ s there is m ∈ G(I) such that x
αit
it
|| m.

Proof. Since J = (x
αi1
i1

, . . . , xαis
is ) is an I-minimal ideal, then I ⊆ J. Thus, if x

αit
it
- u for

each u ∈ G(I), then I ⊆
(
{xαi1

i1
, . . . , xαis

is } \ {x
αit
it
}
)
. This contradicts the minimality

of J. Hence, x
αit
it
|u for some u ∈ G(I). Now, if x

αit+1
it
|m for each m ∈ G(I) such that

x
αit
it
|m, then I ⊆ (x

αi1
i1

, . . . , x
αit+1
it

, . . . , xαis
is ) * J. A contradiction, therefore there is

m ∈ G(I) such that x
αit
it
|| m. 2
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Definition 2.13 A weight over a polynomial ring R = K[x1, . . . , xn] is a function
w : {x1, . . . , xn} → N, wi = w(xi) is called the weight of the variable xi. Given a
monomial ideal I and a weight w, the weighted ideal of I and w is Iw =

(
h(m)|m ∈

G(I)
)

where h is the isomorphism h : R→ K[xw1
1 , . . . , xwn

n ] given by xi 7→ xwi
i .

Remark 2.14 Since h is an isomorphism, G((Iw)k) = G((Ik)w), so (Iw)k = (Ik)w.

Theorem 2.15 Let I be a monomial ideal and w a weight over R, then

i) Ass(Ik
w) = Ass(Ik) for each k;

ii) I has the persistence property if and only if Iw has the persistence property;

iii) I has the strong persistence property if and only if Iw has the strong persis-
tence property.

Proof. i) If (x
βi1
i1

, . . . , xβis
is ) is an Ik

w-minimal ideal, then by Proposition 2.12 there is

m′ ∈ G(Ik
w) such that x

βij
ij
|| m′, so there is rij such that βij = wijrij for 1 ≤ j ≤ s.

If m = xα1
1 · · · x

αn
n ∈ G(Ik), then h(m) = xα1w1

1 · · · xαnwn
n ∈ G(Ik

w) ⊆ (x
βi1
i1

, . . . , xβis
is ).

Hence, there exist t ≤ s, such that x
βit
it
|h(m). Thus, witrit = βik ≤ wit αit implies

rit ≤ αit and x
rit
it
|m. Consequently Ik ⊆ (xr1

i1
, . . . , xrs

is ). Now, if (x
αj1
j1

, . . . , x
αjl
jl
) is

an Ik-minimal, then Ik
w ⊆ (x

wj1
αj1

j1
, . . . , x

wjl
αjl

jl
). So, (xr1

i1
, . . . , xrs

is is Ik-minimal and(
x

wj1
αj1

j1
, . . . , x

wjl
αjl

jl

)
is Ik

w-minimal. Therefore, (x
αi1
i1

, . . . , xαis
is ) is Ik-minimal if and

only if (x
wi1

αi1
i1

, . . . , xwis αis
is ) is Ik

w-minimal. Taking radicals of the Ik
w-minimal and

Ik-minimal ideals we obtain Ass(Ik
w) = Ass(Ik).

ii) By i).

iii) ⇒) Since h is an isomorphism of k-algebras between R′ = K[xw1
1 , . . . , xwn

n ]
and R, h(I) has the strong persistence property in K[xw1

1 , . . . , xwn
n ]. Also, m =

xλ1
1 · · · x

λn
n ∈ R′ if and only if wi|λi for each i. Thus, Iw ∩ K[xw1

1 , . . . , xwn
n ] = h(I).

Now, if m ∈ (Ik+1
w : Iw), then gm = `g1 · · · gk+1 for each g ∈ G(Iw) where gi ∈

G(Iw). We take m = xa1
1 · · · x

an
1 and ` = xb1

1 · · · x
bn
n . If ri and ti are the remainders

obtained by dividing ai and bi by wi respectively, then wi|ri − ti, since G(Iw) ⊆
K[xw1

1 , . . . , xwn
n ]. So, ri = ti and we take m′ = xa1−r1

1 · · · xan−rn
n and `′ = xb1−r1

1 · · ·
xbn−rr

n . Hence, m′, `′ ∈ K[xw1
1 , . . . , xwn

n ] and gm′ = `′g1 · · · gk+1. Since G(Iw) =
G(h(I)), m′ ∈

(
h(I)k+1 : h(I)

)
= h(I)k implies m′ ∈ Ik

w. Therefore m ∈ Ik
w, since

m′|m.
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⇐) We take m ∈ (Ik+1 : I) ∩Mon(R), then m f = ` f1 · · · fk+1 with f , f1, . . . , fk+1 ∈
G(I). So h(m)h( f ) = h(`)h( f1) · · · h( fk+1) ∈ Ik+1

w . Thus, h(m) ∈ (Ik+1
w : Iw) = Ik

w
since G(Iw) = G(h(I)). This implies, h(m) = `g1 · · · gk with gi = h(g′i) ∈ G(Iw)
where g′i ∈ G(I). Since h(m) ∈ R′ = K[xw1

1 , . . . , xwn
n ], ` ∈ R′. Therefore, m =

h−1(`)g′1 · · · g′k ∈ Ik, since h is an isomorphism. 2

Definition 2.16 A weighted graph (G, w) consists of a simple graph G and a func-
tion w : V(G)→N. The weight of x ∈ V(G) is w(x).

Definition 2.17 The edge ideal of the weighted graph (G, w) denoted by I(G, w)

is the ideal generated by {xwi
i x

wj
j | xixj ∈ E(G)}, where wk = w(xk).

Corollary 2.18 If I = I(G) and J = I(G, w), then Ass(Jk) = Ass(Ik) for all k.

Proof. By Theorem 2.15, since J = Iw. 2

Theorem 2.19 The edge ideal I(G, w) has the strong persistence property.

Proof. By Theorem 2.15, since I(G) has the strong persistence property. 2

2.4 SQUAREFREE MONOMIAL IDEAL

Let R = K[x1, . . . , xn] be a polynomial ring and let C be a clutter where V(C) =
{x1, . . . , xn}. If f = {xi1 , . . . , xir} ∈ E(C), then we denote by f̃ the squarefree
monomial xi1 · · · xir . Hence, if f1 ⊆ f2 ⊆ X = {x1, . . . , xn}, then f̃1| f̃2. We say that
a clutter C has the strong persistence property if its edge ideal I(C) has the strong
persistence property.

Lemma 2.20 Let f , g be squarefree monomials, if there exists an integer k ≥ 2 such
that f k|mg, then f k−1|m.

Proof. Since f k|mg, mg = f k` with ` ∈ Mon(R). We take m′ = gcd( f , g), then
f = m′ f ′ and g = m′g′ with gcd( f ′, g′) = 1. Hence, gcd( f , g′) = gcd(m′, g′) = u.
Consequently u2|g. But g is a squarefree monomial, so gcd( f , g′) = 1. Thus g′|`,
since mg′ = f ′ f k−1`. Therefore m = f k−1( f ′u′) where ` = u′g′ implies f k−1|m. 2
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Corollary 2.21 Let I be a squarefree monomial ideal. If G(I) has at most two ele-
ments, then I has the strong persistence property.

Proof. Let m be a monomial in (Ik+1 : I). So, for each f ∈ G(I) there are monomials
`, g1, . . . , gk+1 with gi ∈ G(I), such that m f = `g1 · · · gk+1. If f = gi for some i, then
m ∈ Ik. Now, if f 6= gi for each i, then gi = g1 since |G(I)| ≤ 2. Thus gk+1

1 |m f .
Hence, by Lemma 2.20, gk

1|m and m ∈ Ik. 2

Theorem 2.22 If I is a squarefree monomial ideal, then (I2 : I) = I.

Proof. Let m be a monomial in (I2 : I), then for each f1 ∈ G(I) there are h1, g1 ∈
G(I) and a monomial `1 such that m f1 = `1g1h1. Consequently,

m2 f1 = `1(mg1)h1 = `1`2g2h2h1

where mg1 = `2g2h2 and g2, h2 ∈ G(I). Follows, multiplying by m we obtain

mr f1 = `1 · · · `rgrhr · · · h2h1,

where mgi−1 = `igihi and gi, hi ∈ G(I) for 2 ≤ i ≤ r. If r ≥ |G(I)|, then gr = hj or
hj = hi for some 1 ≤ i < j ≤ r. Hence, h2

j |mr f1 and by Lemma 2.20, hj|mr. Thus,
hj|m, since hj is squarefree. Therefore m ∈ I. 2

Corollary 2.23 If I is a squarefree monomial ideal and k ≥ 2, then (Ik : I) ⊆ I.

Proof. By Theorem 2.22, (Ik : I) ⊆ I. Hence, Ik ⊆ I2 and (Ik : I) ⊆ (I2 : I). 2

Theorem 2.24 A clutter has the strong persistence property if and only if some of
its connected components has the strong persistence property.

Proof. Let C1, . . . , Cr the connected components of C with Vi = V(Ci).

⇐) We can suppose that C1 has the strong persistence property. We take a mono-
mial m ∈ (Ik+1 : I). We can write m = m1 · · ·mr where mi ∈ Mon(K[Vi]) and
we take ai such that mi ∈ Iai

i \ Iai+1
i . For each f ∈ C1 we consider s f such that

m1 f ∈ I
s f
1 \ I

s f +1
1 and s1 = min{s f | f ∈ C1}. Thus m1 f ∈ Is1

1 for each f ∈ C1, so
m1 ∈

(
Is1
1 : I1

)
= Is−1

1 . Hence,

m ∈ I
s1−1+

r
∑

i=2
ai

and m f ∈ I
s f +

r
∑

i=2
ai
\ I

s f +1+
r
∑

i=2
ai

for each f ∈ C1.



2.4 SQUAREFREE MONOMIAL IDEAL 23

Since m f ∈ Ik+1, s f +
r
∑

i=2
ai ≥ k + 1. Then, s1 +

r
∑

i=2
ai ≥ k + 1. Therefore m ∈

Ik.

⇒) If Ii = I(Ci) has no the strong persistence property, then there is ki and a
monomial mi ∈ (Iki+1

i : Ii) \ Iki
i . We take ai such that mi ∈ Iai

i \ Iai+1
i , then ai ≤

ki − 1. Now, we consider m = m1 · · ·mr, then m ∈ Ib \ Ib+1, for b = ∑r
i=1 ai. If we

take fi ∈ E(Ci), then m fi ∈ Isi , where si = a1 + · · · + ki + 1 + · · · + ar. But si ≥
∑r

j=1 aj + 2, thus s = min{s1, . . . , sr} ≥ ∑r
j=1 aj + 2. Therefore m ∈ (Is : I) \ Is−1.

2

Example 2.25 Let C be a clutter. If f1, f2 ∈ {A ⊆ V(G) | A ∩ f = ∅ if f ∈ E(C)},
then by Theorem 2.24 and Corollary 2.21, C ∪ { f1, f2} has the strong persistence
property.

Lemma 2.26 Let C be a clutter. If there exists an edge f ∈ E(C) such that A =
{g ∩ f | g ∈ E(C)} is a chain, then I(C) has the strong persistence property.

Proof. If m is a monomial in (Ik+1 : I), then m f̃ = g̃ f̃1 · · · f̃k+1 where fi ∈ E(C)
and g ⊆ V(C). So, f ⊆ g ∪ f1 ∪ · · · ∪ fk+1. Since A is a chain, we can assume
fk+1 ∩ f ⊆ fk ∩ f ⊆ · · · ⊆ f1 ∩ f . Thus, f ⊆ g∪ f1 and f̃ |g̃ f̃1. Therefore m ∈ Ik. 2

Corollary 2.27 If C is a clutter without the strong persistence property, then for
f ∈ E(C) there are f1, f2 ∈ E(C) such that f ∩ f1 * f ∩ f2 and f ∩ f2 * f ∩ f1.

Definition 2.28 Let C be a clutter, A ⊆ V(C) is a vertex cover if A ∩ e 6= ∅ for
each e ∈ E(C). The cover number of C is τ(C) = min{|A| | A is a vertex cover}.
C is unmixed if |B| = τ(C) for each minimal vertex cover B. A matching is a set
of disjoint edges {e1, . . . , es} of C. It is perfect if ∪s

i=1ei = V(C). Furthermore, C is
König if there is a matching with τ(C) edges.

Proposition 2.29 Let C be a König clutter, then C is unmixed if and only if there
is a perfect matching e1, . . . , eg with g = τ(C), such that for any two edges e 6= e′

and for any two distinct vertices x ∈ e, y ∈ e′ contained in some ei, one has that
(e \ {x}) ∪ (e′ \ {y}) contains an edge.

Proof. See Corollary 2.11 in [19]. 2

Definition 2.30 The incidence matrix of a clutter C, denoted by AC , is the matrix
whose columns are the characteristic vectors of the edges of C. A r-cycle of C is a
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r× r-submatrix of AC with exactly two 1’s in each row and each column.

Theorem 2.31 Let C be a König unmixed clutter. If C does not contain 4-cycles,
then C has the strong persistence property.

Proof. By Proposition 2.29, C has a perfect matching e1, . . . , es where s = τ(C).
If C does not have the strong persistence property, then by Corollary 2.27 there
exist f1, f2 ∈ E(C) and vertices x1 ∈ ( f1 ∩ e1) \ f2 and x2 ∈ ( f2 ∩ e1) \ f1. Now by
Proposition 2.29, there exist f ∈ E(C) such that f ⊆ ( f1 \ x1) ∪ ( f2 \ x2). We can
assume e1 ∩ ( f2 ∪ f1) is minimal in

B =
{

e1 ∩ (g2 ∪ g1) | g1, g2 ∈ E(C), g2 ∩ e1 * g1 ∩ e1, and g1 ∩ e1 * g2 ∩ e1
}

.

Thus, (e1 ∩ f ) ⊆ e1 ∩ (( f1 \ x1)∪ ( f2 \ x2)) = e1 ∩ ( f1 ∪ f2 \ x1x2). Hence, e1 ∩ ( fi ∪
f ) ⊆ (e1 ∩ ( f1 ∪ f2)) \ xj where {i, j} = {1, 2}. Since e1 ∩ ( f1 ∩ f2) is monomial in
B, e1 ∩ f ⊆ e1 ∩ f2 or e1 ∩ f2 ⊆ e1 ∩ f . But x2 ∈ (e1 ∩ f2) \ (e1 ∩ f ), then e1 ∩ f ⊆
e1 ∩ f2. Now, if ( f1 ∩ f ) ⊆ (e1 ∪ f2), then f ⊆ ( f1 ∪ f2) ∩ f ⊆ ( f1 ∩ f ) ∪ ( f2 ∩ f ) ⊆
(e1 ∪ f2) ∪ ( f2 ∩ f ) ⊆ (e1 ∪ f2). So, f ⊆ (e1 ∩ f ) ∪ f2 ⊆ (e1 ∩ f2) ∪ f2 ⊆ f2. But
x2 ∈ f2 \ f , a contradiction. Hence, there is y1 ∈ ( f1 ∩ f ) \ (e1 ∪ f2). Similarly there
is y2 ∈ ( f2 ∩ f ) \ (e1 ∪ f1). Consequently, the matrix

x1 x2 y1 y2
f1
f2
e1
f


1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1


is a 4-cycle. A contradiction, therefore C has the strong persistence property. 2

Example 2.32 ([13]) Let C0 be the clutter with vertex set {x1, . . . , x6} whose edges
are x1x2x3, x1x2x4, x1x3x5, x1x4x6, x1x5x6, x2x3x6, x2x4x5, x2x5x6, x3x4x5 and x3x4x6.
C0 is an unmixed shellable clutter. But

(
I(C0)

3 : I(C0)
)
6= I(C0)

2, then C0 does not
have the strong persistence property.

Definition 2.33 The cone over a clutter C, denoted by Cx, is the clutter whose ver-
tex set is V(C) ∪ {x} and edge set { f ∪ {x} | f ∈ E(C)}, where x is a new vertex.

Proposition 2.34 C has the strong persistence property if and only if Cx has the
strong persistence property.
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Proof.⇒) If m= xαm′ ∈
(

I(Cx)k+1 : I(Cx)
)

with gcd(m′, x)=1, then f̃ m∈ I(Cx)k+1

for f ∈ E(Cx). Furthermore f̃ = g̃x with g ∈ E(G) then xk+1|g̃xm implying xk|m.
Thus, α ≥ k and g̃m′ ∈ I(C)k+1. Hence m′ ∈

(
I(C)k+1 : I(C)

)
= I(C)k, i.e., m′ =

` f̃1 · · · f̃k where fi ∈ E(C). Therefore, m = xα` f̃1 · · · f̃k = xα−k`( f̃1x) · · · ( f̃kx), so
m ∈ I(Cx)k.

⇐) If m ∈
(

I(C)k+1 : I(C)
)
, then f m = `g1 · · · gk+1 for each f ∈ I(C) and gi ∈ I(C).

Thus, ( f x)(mxk) = `(xg1) · · · (xgk+1) ∈ I(Cx)k+1. So, mxk ∈
(

I(Cx)k+1 : I(Cx)
)
=

I(Cx)k. Hence, mxk = `( f1x) · · · ( fkx) for fi ∈ I(C). Therefore m ∈ I(C)k. 2

Proposition 2.35 C has the persistence property if and only if Cx has the persis-
tence property.

Proof. If Q1, . . . , Qr is the monomial minimal primary decomposition of I(C)k and
Q′i = R[x] ·Qi, then Q′1, . . . , Q′r, (xk) is the monomial minimal primary decomposi-
tion of I(Cx)k. Hence, Ass(I(Cx)k) = Ass(I(C)k) ∪ {(x)}. 2

Proposition 2.36 C = (V, E) has the strong persistence property if and only if
C ′ = (V, E′) has the strong persistence property, where E′ =

{
f \ ∩g∈Eg | f ∈ E

}
.

Proof. Set A = ∩g∈Eg. By induction on k = |A|. If k = 0, then C = C ′. Now if
k ≥ 1 and x ∈ A, then C = C1x where C1 = C \ x. So, by induction hypothesis
C1 has the strong persistence property if and only if C ′ has the strong persistence
property. Therefore, we obtain the result by Proposition 2.34. 2

Proposition 2.37 A clutter C with 3 edges has the strong persistence property.

Proof. We assume E(C) = { f1, f2, f3} and V(X) = {x1, . . . , xn}. By Proposi-
tion 2.36, we can suppose that f1 ∩ f2 ∩ f3 = ∅. If C is not connected, then it
has a component with one edge. Hence, by Corollary 2.21 and Theorem 2.24, C has
the strong persistence property. Now, we assume that C is connected. If fi ∩ f j = ∅
for some i 6= j, then C has the strong persistence property by Lemma 2.26. Conse-
quently, we suppose aij = fi ∩ f j 6= ∅ for i 6= j. We set bi such that fi = aij ·∪ bi ·∪ air
for {i, j, r} = {1, 2, 3}. So, each pair of b1, b2, b3, a12, a13, a23 are disjoint. We take
m ∈ (Ik+1 : I) where I = I(C), then m f̃1 = ` f̃ α1

1 f̃ α2
2 f̃ α3

3 with α1 + α2 + α3 = k + 1.
If α1 > 0, then m ∈ Ik. Now, if α1 = 0, then b1|` since b1, f1, f3 are disjoint pairs.
This implies, ` = b1`

′ and ma12a13 = `′ f̃ α2
2 f̃ α3

3 . If α2 = 0, then `′ = u1a12 and
m = u1u2 f̃ αk−1

3 where f̃3 = u2a13. Thus, m ∈ Ik. Similarly if α3 = 0, then we
suppose α1 6= 0 and α2 6= 0. Consequently m = `′(b2b3a2

23) f̃ α2−1
2 f̃ α3−1

3 , imply-
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ing ak+1
23 |m and bα2

2 bα3
3 |m. Similarly, we can assume ak+1

12 |m and ak+1
13 |m. Hence,

(a12a13a23)
k+1bα2

2 bα3
3 |m so f̃ α2

2 f̃ α3
3 |m, since α2 + α3 = k+ 1. Therefore, m ∈ Ik+1 ⊆ Ik.

2

Proposition 2.38 If X is a set A ⊆ X and x /∈ X, then the clutter C whose edge set
is {X} ∪ {xxi | xi ∈ A} has the strong persistence property.

Proof. We set A = {x1, . . . , xr}, f0 = X and fi = {x, xi}. Since C is clutter,
r > 1. We take m ∈ (Ik+1 : I) where I = I(C), then m f̃i = `i f̃ α0i

0 f̃ α1i
1 · · · f̃ αri

r
where ∑r

j=0 αji = k + 1. If α0i = 0 for each i ≥ 1, then m ∈
(

Jk+1 : J
)
, where

J = ( f̃1, . . . , f̃r). But J is an edge ideal of a graph so, by Theorem 2.8, m ∈ Jk ⊆ Ik.
Thus, we can assume α01 > 0 and we take αi = αi1. If α1 = 0 and x - `1, then
xk−α0 || m and f̃ α0−1

0 || m, since

m = `1
f̃ α2
0
x1
·

f̃ α2
2 · · · f̃ αn

n

x
and f̃0 - f̃ α2

2 · · · f̃ αn
n .

So, xk−α0+1 || m f̃ j and f̃ α0−1
0 || m f̃ j for j 6= 1. Hence, m f̃ j /∈ Ik+1 a contradiction.

Now if α1 6= 0 or x|`1, then m = `1 f̃ α0
0 f̃ α1−1

1 f̃ α2
2 · · · f̃ αn

n or m = ab f̃ α0−1
0 f̃ α1

1 · · · f̃ αn
n ,

where `1 = xa and f̃0 = x1b. Therefore m ∈ Ik. 2

Theorem 2.39 If I is a squarefree monomial ideal in K[x1, x2, x3, x4], then I has the
strong persistence property.

Proof. Let C be the clutter associated to I. By Proposition 2.37 and Theorem 2.24
we can assume that |E(C)| > 3 and C has no edges of cardinality 1. If C has only
edges of cardinality 3, then 4 ≤ |E(C)| ≤ (4

3) = 4. Hence, C is a complete clutter,
implies C is a base set of a polymatroid. Consequently, by [13, Proposition 2.4] C
has the strong persistence property. If C has only one edge of cardinality 2, then
|E(C)| ≤ 3. A contradiction, so there are f1, f2 ∈ E(C) such that | f1| = | f2| = 2.
By Theorem 2.8 we can suppose f = {x1, x2, x3} ∈ E(C). So, if f ′ ∈ E(C) \ { f },
then x4 ∈ f ′. Hence, we can assume f1 = {x1, x4} and f2 = {x2, x4}. Thus, if
f ′ ∈ E(C) \ { f1 f1, f2}, then f ′ = {x3, x4}. Therefore, by Proposition 2.38, C has the
strong persistence property. 2

Definition 2.40 If Y ⊆ {x1, . . . , xn} and m = xα1
1 · · · x

αn
n ∈ K[x1, · · · , xn], we set

degY(m) = ∑xi∈Y αi.
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Proposition 2.41 If C has an edge f0 such that | f0 ∩ f | = 1 for each f ∈ E(C) \ { f0},
then C has the strong persistence property.

Proof. We assume E(C) = { f0, f1, . . . , fr}. If q ∈ Ik is a monomial, then deg f0
(q) ≥

k, since | fi ∩ f0| = 1 for 0 ≤ i ≤ r. We take m ∈ (Ik+1 : I), then

m f̃0 = l f̃ α0
0 f̃ α1

1 · · · f̃ αr
r

where l is a monomial and α0 + α1 + · · · + αr = k + 1. If α0 > 0,then m ∈ Ik.
Now we assume α0 = 0. We consider | f0| = t. If deg(gcd( f̃0, l)) ≥ t − 1, then

deg( f̃0

gcd( f̃0,l)
) ≤ 1. Consequently, f̃0 | l f̃i for some i ≥ 1 with αi > 0. Thus,

m = l f̃i
f̃0

f̃
α1
1 ··· f̃

αr
r

f̃i
∈ Ik. Now, we suppose deg(gcd( f̃0, l)) ≤ t − 2 and we consider

f̃0

gcd( f̃0,l)
= xi1 · · · xis , then s ≥ 2 and

mxi1 · · · xis = l′ f̃ α1
1 · · · f̃ αr

r

where l′ = l
gcd( f0,l) . This implies gcd( f̃0, l′) = 1, since f̃0 is squarefree. Now, we

take f j1 , · · · , f js such that αja > 0 and xia | f̃ ja for each 1 ≤ a ≤ s, then deg f0

(
f̃ ja
xia

)
=

0, since | f0 ∩ f ja | = 1. Consequently, m = l′
f̃ j1
xi1
· · · f̃ js

xis

f̃
α1
1 ··· f̃

αr
r

f̃ j1
··· f̃ js

, and deg f0
(m) =

k + 1 − s, since deg f0
( f̃i) = 1 for 1 < i ≤ r. Hence deg f0

(m) ≤ k − 1, since

s ≥ 2. Thus, if fi 6= f0, then deg f0
(m f̃i) = deg f0

(m) + deg f0
( f̃i) ≤ k. This is a

contradiction, since m f̃i ∈ Ik+1 and | f0 ∩ f j| = 1 for 1 ≤ j ≤ r. 2

Proposition 2.42 If V(C) = {x1, x2, x3, x4, x5} with f0 ∈ E(C) such that | f0| = 2
and V(C) \ f0 ∈ E(C), then C has the strong persistence property.

Proof. We can assume E(C) = { f , f0, f1, . . . , fr} where f0 = {x1, x2} and f =
{x3, x4, x5}. We take m ∈ (Ik+1 : I), then

mx1x2 = m f̃0 = l f̃ α0
0 f̃ α f̃ α1

1 · · · f̃ αr
r

where α+ α0 + · · ·+ αr = k + 1. If gcd( f̃0, l) 6= 1 or α0 > 0 or l contains some edge,
then m ∈ Ik. Thus, we assume that gcd( f̃0, l) = 1, α0 = 0 and l does not contain an
edge. We take fi, f j such that x1 | f̃i and x2 | f̃ j with αi > 0 and αj > 0. If i = j, then

m = l f̃i
x1x2
· f̃ α f̃

α1
1 ··· f̃

αr
r

f̃i
∈ Ik. Now, we assume i 6= j, x2 /∈ fi and x1 /∈ f j. We take g =

( fi ∪ f j) \ {x1, x2}. Thus, g ⊆ {x3, x4, x5} = f . If g = f , then f̃ α | f̃i
x1
· f̃ j

x2
implying
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m = l f̃i
x1
· f̃ j

x2
· f̃ α f̃

α1
1 ··· f̃

αr
r

f̃i f̃ j
∈ Ik. So we assume |g| < 2. If f̃ α | f̃i· f̃ j

x1x2
l, then m ∈ Ik. So, we

can suppose f̃ α - f̃i· f̃ j
x1x2

l, then deg(gcd(l, g)) ≤ 2. We write m′ = f̃ α f̃ β1
1 · · · f̃ βr

r where
βt = αt if t /∈ {i, j} and βt = αt − 1 if t ∈ {i, j}. If there exist a1, a2, a3 ∈ {0, 1}
and 0 ≤ bi ≤ βi such that la1

(
f̃i
x1

)a2( f̃ j
x2

)a3
f̃ b1
1 · · · f̃ br

r ∈ Ib+1, where b = b1 + · · ·+ br

then m ∈ Ik, so we assume that for each sequence a1, a2, a3 ∈ {0, 1} and 0 ≤ bi ≤ βi

we have la1

(
f̃i
x1

)a2( f̃ j
x2

)a3
f b1
1 · · · f br

r ∈ Ib \ Ib+1, then we have m f̃i /∈ Ik+1. This is a
contradiction. 2

Proposition 2.43 If I is a square free monomial ideal of K[x1, x2, x3, x4, x5], such
that G(I) has an edges of cardinality 2, then I has the strong persistence property.

Proof. Let C be the clutter associated to I. We assume that f0 is an edge of car-
dinality 2. If {x1, x2, x3, x4, x5} \ f0 does not contain some edge, then | f ∩ f0| = 1
for each f ∈ E(C) \ { f0}. Thus, by Proposition 2.41, C has the strong persistence
property.

If g = {x1, x2, x3, x4, x5} \ f0 is an edge, then by Proposition 2.42, C has the strong
persistence property. Hence, we can suppose that g contains a proper edge. We
assume f0 = {x1, x2}, f1 = {x3, x4}, f2 = {x1, x4, x5}, f3 = {x1, x3}, f4 = {x2, x4},
f5 = {x2, x3, x5} are the edges of C. We take m ∈ (Ik+1 : I), then

m f̃0 = l f̃ α0
0 f̃ α1

1 f̃ α2
2 f̃ α3

3 f̃ α4
4 f̃ α5

5

where l a monomial and α0 + α1 + · · ·+ α5 = k + 1. If gcd(l, f̃0) 6= 1, or α0 > 0 or l
contains some edges, we obtain m ∈ Ik. So, we assume gcd(l, f̃0) = 1 and α0 = 0.
We take fi, f j such that αi > 0, αj > 0 and x1 | f̃i, x2 | f̃ j, then one of the following
condition holds:

1. { fi, f j} = { f2, f5}

2. { fi, f j} = { f3, f4}

3. { fi, f j} = { f2, f4}

4. { fi, f j} = { f3, f5}.

If fi = f2 = {x1, x4, x5} and f j = f5 = {x2, x3, x5}, then f̃i
x1

f̃ j
x2

= x3x4x2
5 and f̃1 |

f̃i
x1

f̃ j
x2

, since m = l f̃i
x1

f̃ j
x2

m′ where m′ = f̃
α1
1 f̃ α2

2 f̃ α3
3 f̃

α4
4 f̃ α5

5
f̃i f̃ j

∈ Ik−1. Hence, m ∈ ik. If

fi = f3 = {x1, x3} and f j = f4 = {x2, x4} then f̃i
x1

f̃ j
x2

= x3x4 and x3x4 | f̃i
x1

f̃ j
x2

,
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since m = l f̃1m′. This implies m ∈ ik. Now, we consider fi = f2 = {x1, x4, x5}
and f j = f4 = {x2, x4}. We take m′ = f β1

1 · · · f β5
5 where βt = αt if t /∈ {i, j} and

βt = αt − 1, so f̃i
x1

f̃ j
x2

= x2
4x5. If x1 | l or x2 | l or x3 | l, then f̃2 | lx2

4x5 or f̃4 | lx2
4x5

or f̃1 | lx2
4x5 respectively. Consequently, m ∈ Ik. Similarly, if β3 > 0 or β5 > 0

we obtain f̃1 f̃2 | x2
4x5 f̃3 or f̃1 f̃4 | x2

4x5 f̃5 respectively. This implies, x2
4x5 f̃3 ∈ I2 or

x2
4x5 f̃5 ∈ I2. Since m′

f̃3
or m′

f̃5
∈ Ik−2, we have m ∈ Ik. So, we assume l = x4xb

5, β3 = 0

and β5 = 0, implying m f1 /∈ Ik+1. This is a contradiction, hence m ∈ Ik. Similarly
we obtain m ∈ Ik, if fi = {x1, x3} and f j = {x2, x3, x5}. 2

Corollary 2.44 If I ⊆ K[x1, . . . , xn] is a squarefree monomial ideal without the
strong persistence property, then n ≥ 5 and there is k ≥ 3 such that (Ik : I) 6= Ik−1.

Proof. By Theorem 2.39 and Theorem 2.22. 2

Definition 2.45 Let C = (V, E) be a clutter with x ∈ V, the deleting of x is the
clutter C \ x with vertex set V \ {x} and edge set { f ∈ E | x /∈ f }. Furthermore,
the contraction of x is the clutter C�x with vertex set V \ {x} and whose edges are
f \ {x} with f ∈ E and there is not f ′ ∈ E such that f ′ \ {x} ⊂ f \ {x}.

Example 2.46 We consider the clutter C with vertex set V(C0) ∪ {x} and edge set
E(C0) ∪ {xx1}, where C0 is the clutter in Example 2.32. By Theorem 2.24, I(C) has
the strong property but C \ x = C0 has no the strong persistence property.

Proposition 2.47 Let C be a clutter and x ∈ V(C). If C has the (strong) persistence
property, then C�x has the (strong) persistence property.

Proof. We set E(C) = { f1, . . . , fr}. We can suppose { fi | x ∈ fi} = { f1, . . . , fr1}
and { fi | f j \ {x} * fi for each j ≤ r1} = { fr1+1, . . . , fr2}. We define f ′i = fi \ {x}
for i ≤ r2 and A =

⋃
i≤r2

f ′i . Also, we set I = I(C�x) and J = I(C). Thus,
f ′1, . . . , f ′r2

are the edges of C�x and f ′i = fi for r1 + 1 ≤ i. Furthermore, if i > r2,
then f ′j ⊆ fi for some j. So, for each 1 ≤ i ≤ r there is j ≤ r2 such that f̃ ′j | fi.
Consequently, if m ∈ G(Jk), then there is m′ ∈ G(Ik) such that m′|m. We take

L = (z1, . . . , zs) where zj = x
βij
j . Hence if L is an Ik-minimal ideal, then Jk ⊆ L.

Furthermore, G(rad(L)) = {xi1 , . . . , xis} ⊆ A since L is Ik-minimal. Now, we
suppose L is Jk-minimal and G(rad(L)) ⊆ A. If m ∈ G(Ik), then m = f̃ ′a1

1 · · · f̃
′ar2
r2

with a1 + · · ·+ ar2 = k. So, xαm = f̃ a1
1 · · · f̃

ar2
r2 ∈ Jk, where α = a1 + · · ·+ ar1 . Thus,
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zj|xαm for some j ≤ s. Since x /∈ A, gcd(x, zj) = 1, and zj|m. Therefore Ik ⊆ L.
Now, we will prove that L is an Ik-minimal ideal if and only if L is an Jk-minimal
ideal and G(rad(L)) ⊆ A. Assume L is Ik-minimal so, rad(L) ⊆ A. If L is not
Jk-minimal, then there is L′ such that Jk ⊆ L′ ⊂ L and rad(L′) ⊆ rad(L) ⊆ A.
Consequently, Ik ⊆ L′. A contradiction, therefore L is Jk-minimal. Now suppose
L is Jk-minimal and L is not Ik-minimal, then there is L′ such that Ik ⊆ L′ ⊂ L.
This implies Jk ⊆ L′, a contradiction, since L is Jk-minimal.

Hence, Ass(Ik) = {P ∈ Ass(Jk) | G(P) ⊆ A} for each k. Since J has the persistence
property, if P ∈ Ass(Ik), then P ∈ Ass(Jk+1) and G(P) ⊆ A. Thus, P ∈ Ass(Ik+1).
Therefore, I has the persistence property.

(Strong). Now, we set m ∈ (Ik+1 : I). If 1 ≤ i ≤ r2, then m f ′i = `i f ′αi1
1 · · · f

′αir2
r

where ` ∈ Mon(R) and αi1 + · · ·+ αir2 = k + 1. We take ui = αi1 + · · ·+ αir1 . If
i ≤ r1, then

xk+1m fi = xk+2m f ′i = xk+2`i( f ′1)
αi1 · · · ( f ′r2

)αir2 = xk+2−ui`i f αi1
1 · · · f

αir2
r2 .

Now if r1 + 1 ≤ i ≤ r2, then xk+1m fi = xk+1m f ′i = xk+1−u` f αi1
1 · · · f

αir2
r2 . Finally if

r2 + 1 ≤ i ≤ r, then there exist j ≤ r1 such that f ′j | fi. So,

xk+1m fi =
fi

f ′j
xk+1m f ′j =

fi

f ′j
xk+1−uj`j f

αj1
1 · · · f

αjr2
r2 .

Consequently, xk+1m ∈ (Jk+1 : J) = Jk. This implies xk+1m = ` f β1
1 · · · f βr

r with
` ∈ Mon(R) and β1 + · · · + βr = k. Since x - f j for j ≥ r1 + 1, xw|`, where
w = k + 1− (β1 + · · · + βr1). Therefore, ` = xw`′ where `′ ∈ Mon(R) and m =

`′( f ′1)
β1 · · · ( f ′r1

)βr1 ( fr1+1)
βr1+1 · · · f βr

r ∈ Ik. 2

Remark 2.48 The converse affirmation of Proposition 2.47 is not true. We take C0
as in Example 2.32. So, C0�{xi} is a simple graph for each i. Hence, by Theorem 2.9,
C0�{xi} has the strong persistence property.

Definition 2.49 Let C = (V, E) be a clutter and σ ∈ SV a permutation. We consider
the clutter σ(C) = (V, E′) where E′ = {xσ(i1) · · · xσ(is) | xi1 · · · xis ∈ E}.

Proposition 2.50 If C has the strong persistence property and σ ∈ SV(C), then σ(C)
also has the strong persistence property.

Proof. We take a morphism of k-algebras φ : R = K[x1, . . . , xn] → R given by
φ(xi) = xσ(i). Hence, φ is an automorphism of R, with φ(I(C)) = I(σ(C)). There-
fore, I(C) and I(σ(C)) are isomorphic. 2
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2.5 THE SYMBOLIC STRONG PERSISTENCE PROPERTY

In this section we study some properties of the strong persistence property in a
general ring. Furthermore, we introduce the symbolic strong persistence property
and we prove that the strong persistence property implies the symbolic strong
persistence property.

Theorem 2.51 An ideal I has the strong persistence property if and only if (It : Is) =
It−s for all s ≤ t.

Proof. We proceed by induction on s. For s = 1 we recover the strong persistence
property. Now, we take a ∈ (It : Is+1) with t ≥ s + 1 and x ∈ I, then axb ∈ It for
all b ∈ Is. Hence ax ∈ (It : Is). By induction hypothesis ax ∈ It−s. Consequently
a ∈ (It−s : I) and, by induction, a ∈ It−s−1. Therefore (It : Is+1) = It−s−1. 2

Corollary 2.52 If I has the strong persistence property, then It has the strong per-
sistence property.

Proof. By Theorem 2.51 (Ikt : It) = Ikt−t = It(k−1) for all k ≥ 1. Therefore, It has
the strong persistence property. 2

By [23] normal ideals in an integer domain satisfy (Ir : Is) = Ir−s for all s ≤ r.
Hence, by Theorem 2.51 a normal ideal has the strong persistence property, but
the converse affirmation is not true.

Example 2.53 ([28]) Let G be a simple connected graph, the I(G) has the strong
persistence property but if V(G) = {x1, x2, x3, x4, x5, x6, x7} and E(G) = {x1x2,
x2x3, x1x3, x3x4, x4x5, x5x6, x6x7, x5x7}, then I(G) is not normal.

Definition 2.54 Let P1, . . . , Pr be the minimal primes of I. The k-th symbolic power
of I is I(k) = q1 ∩ · · · ∩ qr, where qi is the Pi-primary component of Ik.

Remark 2.55 I(i) ⊆ (I(i+1) : I(1)) for each i.

Definition 2.56 I has the symbolic strong persistence property if
(

I(i+1) : I(1)
)
=

I(i) for each i.

Theorem 2.57 Strong persistence property implies the symbolic strong persistence
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property.

Proof. Let Min(I) = {P1, . . . , Pr} be the set of minimal primes containing I. We
take Id = Q1d ∩ · · · ∩ Qsdd a minimal primary decomposition of Id for each d. We
can suppose that there exists rd ≤ sd such that rad(Qid) ∈ Min(I) if and only
if i ≤ rd. Now for j > rk+1, then rad(Qj k+1) is not minimal. Consequently,
rad(Qj k+1) * rad(Qi k+1) with i ≤ rk+1. This implies rad(Qj k+1) * B, where
B =

⋃rk+1
i=1 rad(Qi k+1). Thus, there is aj ∈ rad(Qj k+1) \ B. So, bj = as1

j ∈ Qj k+1 for

some sj. Hence, bj ∈ Qjk+1 \ B. Now, we take a ∈ (I(k+1) : I(1)), then ax ∈ I(k+1)

for all x ∈ I(1). Consequently, if c = ∏j≥rk+1
bj, then axc ∈ Ik+1 for all x ∈ I since

I ⊆ I(1). So, ac ∈ Ik, since I has the strong persistence property. Furthermore, if
j > rk+1, then bj /∈ rad(Qik) for i ≤ rk. Thus, a ∈ Qik for 1 ≤ i ≤ rk, since ac ∈ Qik

and Qik is primary. Therefore, a ∈ I(k). 2

Proposition 2.58 An ideal I has the symbolic strong persistence property if and
only if

(
I(r) : I(s)

)
= I(r−s) for all s ≤ r.

Proof. Similar to proof of Theorem 2.51. 2



CHAPTER 3
ON GORENSTEIN HOMOGENOEOUS

MONOMIAL SUBRINGS OF GRAPHS

3.1 INTRODUCTION

Let G = (V(G), E(G)) be a graph whose vertex set and edge set are V(G) =
{x1, . . . , xn} and E(G) = {y1, . . . , yq}, respectively. Let y = {xi, xj} be an edge
of G, the characteristic vector of y is the vector vy ∈ {0, 1}n such that its i-th entry
is 1, its j-th entry is 1, and the remaining entries are zero, i.e., vy = ei + ej. We
denote by v1, . . . , vq the characteristic vector of y1, . . . , yq, respectively. We con-
sider the set w1, . . . , wr of all α ∈ Nn such that α ≤ vi for some i ∈ {1, . . . , r}. Let
R = K[x1, . . . , xn] be a polynomial ring over a field K, the homogeneous monomial
subring of G is the ring:

SG = K[xw1t, . . . , xwr t] ⊂ R[t]

where t is a new variable. Since (wi, 1) lies in the hyperplane xn+1 = 1 for each
i then, SG is a standard K-algebra, where a monomial xatb has degree b. We as-
sume that SG has this grading. If SG is normal, then according to Danilov-Stanley
formula (see [4, 6]), the canonical module of SG is the ideal given by

wS =
(
{xatb | (a, b) ∈NB ∩ (R+B)◦}

)
,

where B = {(w1, 1), . . . , (wr, 1)} and (R+B)o is the interior of R+B relative to
aff(R+B) (the affine hull of R+B). Furthermore, aff(R+B) = Rn+1. In [9] is proven
that if G is connected then S is normal if and only if there exists a edge between
every two vertex disjoint odd cycles. A vertex cover is a subset A of V(G) such
that A ∩ e 6= ∅ for each e ∈ E(G). The cover number of G, τ(G), is the cardinality
of a minimum vertex cover. G is called unmixed if every minimal vertex cover has
τ(G) elements.

A monomial algebraA is called Gorenstein ifA is Cohen-Macaulay and its canon-
ical module wA is a principal ideal. In [15] Hochsther proved that if A is normal
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then A is Cohen-Macaulay. Hence, if A is normal then A is Gorenstein if and only
if wA is principal. In [9] is proven that if G is bipartite then SG is Gorenstein if
and only if G is unmixed. In this chapter we prove that if SG is normal then SG is
Gorenstein if and only if G is unmixed and τ(G) = dn

2 e. Furthermore we prove
that if n is even and SG is Gorenstein, then G is bipartite.

3.2 SOME PROPERTIES OF UNMIXED GRAPHS

A subset F of V(G) is a stable set if y * F for each y ∈ E(G). The cardinality of a
maximum stable set is denoted by β(G). Furthermore, G is called well-covered if
every maximal stable set has β(G) elements. F is a (maximal) stable set if and only
if V(G) \ F is a (minimal) vertex cover. Hence, τ(G) + β(G) = |V(G)|. Further-
more, G is unmixed if and only if G is well-covered. A set of induced subgraphs
G1, . . . , Gs of G is a τ-reduction of G if

{
V(G1), . . . , V(Gs)

}
is a partition of V(G)

and τ(G) = ∑s
i=1 τ(Gi).

Proposition 3.1 Let G be a bipartite graph. G is unmixed if and only if there is a
τ-reduction y1, . . . , yr such that yi ∈ E(G).

Proposition 3.2 ([22]) If G is an unmixed graph, with τ(G) = n+1
2 , then there exist

a τ-reduction {H1, . . . , Hs} of G such that Hi ∈ E(G) for 1 ≤ i ≤ s− 1 and Hs is
an j-cycle with j ∈ {3, 5, 7}. Furthermore, if V(Hi) = {a, a′} and {a, b}, {a′, b′} ∈
E(G), then {b, b′} ∈ E(G).

Lemma 3.3 If G1, . . . , Gs is a τ-reduction of G, then ∑s
i=1 β(Gi) = β(G).

Proof. Since G1, . . . , Gs is a τ-reduction of G, ∑s
i=1 τ(Gi) = τ(G). Hence,

s

∑
i=1

β(Gi) =
s

∑
i=1
|V(Gi)| − τ(Gi) =

s

∑
i=1
|V(Gi)| −

s

∑
i=1

τ(Gi) = |V(G)| − τ(G) = β(G),

since
{

V(G1), . . . , V(Gs)
}

is a partition of V(G). 2

Lemma 3.4 If G is an unmixed graph with a τ-reduction G1, . . . , Gs, then β(Gi) =
|F ∩V(Gi)| for each F maximal stable of G.
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Proof. We take F a maximal stable set of G. Hence |F ∩ V(Gi)| ≤ β(Gi). Con-
sequently, by Lemma 3.3, |F| = ∑s

i=1 |F ∩ V(Gi)| ≤ ∑s
i=1 β(Gi) = β(G), since{

V(G1), . . . , V(Gs)
}

is a partition of V(G). But G is well-covered, then |F| = β(G).
Therefore |F ∩V(Gi)| = β(Gi). 2

Proposition 3.5 Let G be an unmixed graph with a τ-reduction G1, . . . , Gs such
that G1 = {x1, x2, x3, x4, x5, x6, x7} is a 7-cycle.

1) If {x1, y1} ∈ E(G) with y1 /∈ V(H1), then NG(y1) ∩ {x3, x6} 6= ∅.

2) If there is not a 4-cycle C such that V(C) ∩ V(G1) is an edge, then there is
a stable set {xi1 , xi2 , xi3} where 1 ≤ i1 < i2 < i3 ≤ 7, and deg(xij) = 2 for
j = 1, 2, 3.

Proof. 1) By contraction, suppose NG(y1) ∩ {x3, x6} = ∅. Hence A = {y1, x3, x6}
is a stable set. Consequently, there is a maximal stable set F of G such that A ⊆ F.
Thus, F ∩V(G1) = {x3, x6}. A contradiction by Lemma 3.4, since β(G1) = 3.

2) We can suppose there is {x1, y1} ∈ E(G) with y1 /∈ V(C). By 1) assume
{y1, x3} ∈ E(G). If degG(x2) 6= 2, then there is {x2, y2} ∈ E(G) with y2 /∈ V(C). By
1) we can suppose {x4, y2} ∈ E(G). By hypothesis {y1, y2} /∈ E(G). Consequently,
there is a maximal stable set F ⊇ {y1, y2}. Hence, F ∩V(G1) ⊆ {x5, x6, x7}. There-
fore |F∩V(G1)| ≤ 2. A contradiction by Lemma 3.4, since β(G1) = 3. This implies
degG(x2) = 2. If degG(x7) = degG(x4) = 2, then {x3, x4, x7} is a stable set. Now,
we can assume degG(x4) 6= 2. So, there is {x4, y2} ∈ E(G) with y2 /∈ V(G). Thus,
by 1) {y2, x6}, since degG(x2) = 2. Hence, by the last argument degG(x5) = 2.
Furthermore by 1), degG(x7) = 2 since degG(x2) = degG(x5) = 2. Therefore
{x2, x5, x7} is a stable set. 2

Proposition 3.6 Let G be an unmixed graph with a τ-reduction G1, . . . , Gs such
that G1 = (x1, x2, x3, x4, x5) is a 5-cycle. If G has no a 4-cycle C such that V(C) ∩
V(G1) is an edge, then there is a stable set {xi1 , xi2} ⊆ V(G1) such that degG(xi1) =
degG(xi2) = 2.

Proof. Assume degG(x1) ≥ 3. If degG(x2) = degG(x5) = 2 we obtain the result.
So, we can suppose there are {x1, y1}, {x2, y2} ∈ E(G) such that y1, y2 /∈ V(G1).
By hypothesis {y1, y2} /∈ E(G). If A = {y1, y2, x4} is a stable set, then there is
a maximal stable set F such that A ⊆ F. But F ∩ V(G1) = {x4} a contradic-
tion by Lemma 3.4, since β(G1) = 2. So, we can assume {y1, x4} ∈ E(G). If
{x3, y3} ∈ E(G) with y3 /∈ V(G1), then A1 = {y1, y2, y3} is a stable set by hypothe-
sis. Hence, if F1 is a maximal stable set with A1 ⊆ F1, then F1 ∩ V(G1) ⊆ {x1, x5}.
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A contradiction by Lemma 3.4. Thus, degG(x3) = 2. Now if {x5, y5} ∈ E(G) with
y5 /∈ V(G1), then A2 = {y5, y1} /∈ E(G). So, there is a maximal stable set F2 with
A2 ⊆ F2 and F2 ∩V(G1) ⊆ {x2, x3}. A contradiction, therefore degG(x5) = 2. 2

3.3 GORENSTEIN HOMOGENEOUS SUBRING OF GRAPHS

Let SG be the homogeneous monomial subring of G, then R+B = H+
e1
∩ · · · ∩H+

en ∩
H+
(−`1,1) ∩ · · · ∩H+

(−`m,1) for some `1, . . . , `m ∈ Rn, where H+
w = {v ∈ Rn+1 | v ·w ≥

0}. Hence, if SG is normal, then:

ωS =
(
{xatb | (a, b) ∈NB ∩ (R+B)◦}

)
=

({
xatb | (a, b) · (−lj, 1) > 0 for j = 1, . . . , m

(a, b) · ei > 0 for i = 1, . . . , n

})
.

Notation. In this chapter we take |v| = v · 1 = ∑n
i=1 vi, where v = (v1, . . . , vn).

Lemma 3.7 If (w, a) ∈NB with w ∈ Rn and a ∈ R, then |w| ≤ 2a.

Proof. Since (w, a) ∈ NB then (w, a) = ∑r
i=1 λi(wi, 1), where λi ∈ N. Thus,

|w| = |∑r
i=1 λiwi| = ∑r

i=1 λi|wi| ≤ 2 ∑r
i=1 λi. Hence |w| ≤ 2a, since a = ∑r

i=1 λi.
2

Proposition 3.8 Let G be a connected graph. If τ is a generating tree of G and
ẽτ = ∑vi∈E(τ)(vi, 1) + en+1, then ẽτ ∈NB ∩ (R+B)◦.

Proof. Since R+B = H+
e1
∩ · · · ∩ H+

en ∩ H+
(−`1,1) ∩ · · · ∩ H+

(−`m,1), it is sufficient to
show that ẽτ · ei > 0 and ẽτ · (−`j, 1) > 0 for i = 1, . . . , n and j = 1, . . . , m. Since τ

is a generating tree, we have ẽτ · ei > 0 for i = 1, . . . , n. On the other hand, (vi, 1) ·
(−`j, 1) ≥ 0, since (vi, 1) ∈ R+B for vi ∈ E(τ). Furthermore, en+1 · (−`j, 1) = 1 >
0. Therefore ẽτ · (−`j, 1) > 0 for j = 1, . . . , m, since ẽτ = ∑vi∈E(τ)(vi, 1) + en+1. 2

Proposition 3.9 If I = {xj1 , . . . , xjd} is a maximal stable set and `′ = ∑d
i=1 eji , then

H(−`′,1) is a supporting hyperplane of R+B.

Proof. Since I is an independent set then `′ · vi ≤ 1 for i = 1, . . . , q. Hence, `′ ·
wj ≤ 1 and 0 ≤ (−`′, 1) · (wj, 1) for j = 1, . . . , r. We can assume without loss of
generality that I = {x1, . . . , xd} then C = V(G) \ I = {xd+1, . . . , xn} is a minimal
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vertex cover. Hence, there exists v1, . . . , vn−d ∈ E(G) such that vi ∩ C = {xd+i}
for i = 1, . . . , n− d. Thus, (e1, 1), . . . , (ed, 1), (ev1 , 1), . . . , (evn−d , 1) are independent
vector in H(−`′,1) ∩R+B. Therefore H(−`′,1) is a supporting hyperplane of R+B.

2

Let C be a minimal vertex cover of G, we suppose, without loss of generality,
that C = {x1, . . . , xc}. Since C is minimal, there exist y1, . . . , yc ∈ E(G) such that
yi ∩ C = {xi}. We can suppose, without loss of generality, that yi = {xi, xji} for
i = 1, . . . , c, where {xj1 , . . . , xjc} = {xc+1, . . . , xc+s} (some xji can be equal to each
other). We define

ẽ(C) = en+1 +
c

∑
i=1

(vi, 1) +
n

∑
j=s+c+1

(ej, 1)

where vi = ei + eji (the characteristic vector of yi). Then,

ẽ(C) = en+1 +
c

∑
i=1

(ei + eji + en+1) +
n

∑
i=s+c+1

(ei + en+1)

=
c

∑
i=1

ei +
c

∑
i=1

eji +
n

∑
i=s+c+1

(ei) + (1 + c + n− (s + c))en+1

= (1, . . . , 1︸ ︷︷ ︸
c

, ac+1, . . . , ac+s, 1, . . . , 1︸ ︷︷ ︸
n−(s+c)

, n− s + 1) (3.1)

where ac+i ≥ 1 for i = 1, . . . , s. Furthermore, c = ∑c
i=1 |ei| = ∑c

i=1 |eji | = ∑s
i=1 ac+i.

Proposition 3.10 If S is normal and C is a minimal vertex cover of G then xẽ(C) ∈
ωS

Proof. By definition ẽ(C) ∈ NB. Furthermore, (vi, 1) · (−`u, 1) ≥ 0 and (ej, 1) ·
(−`u, 1) ≥ 0 for 1 ≤ u ≤ m, since (vi, 1), (ej, 1) ∈ R+B. Also, en+1 · (−`u, 1) = 1 >
0. Hence, ẽ(C) · (−`u, 1) > 0 for 1 ≤ u ≤ m. By (3.1), ẽ(C) · ei > 0 for 1 ≤ i ≤ n.
Therefore, xẽ(C) ∈ ωS. 2

Proposition 3.11 Let G be a connected graph. If SG is normal and wS is principal,
then wS = (x1tβ) where β ≤ bn

2 c+ 1.

Proof. If ωS is principal then wS = (xvtβ) with (v, β) ∈ NB ∩ (R+B)◦. But
R+B = H+

e1
∩ · · · ∩ H+

en ∩ H+
(−`1,1) ∩ · · · ∩ H+

(−`m,1). Hence, if v = (v1, . . . , vn)

then vi = v · ei > 0. Furthermore (v, β) ∈ NB then vi ≥ 1. On the other
hand if b1 = max{|`1|, |`2|, . . . , |`m|}, then (1, b1) ∈ (R+B)◦. Also (1, n) ∈ NB.
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Thus, if b2 = max{b1, n} then (1, b2) ∈ NB ∩ (R+B)◦ and x1tb2 ∈ wS. Hence,
x1tb2 = (xvtβ)(xv′ tβ′) but 1 ≤ v, then 1 = v. Now by Proposition 3.8 xẽτ ∈ ωS,
thus xẽτ = (x1tβ)xu where xu ∈ SG. So, ẽτ − (1, β) = u ∈ NB. Since τ is a gen-
erating tree of G, |E(τ)| = n− 1. Hence, ẽτ = (v, n) where v = ∑vi∈E(τ) vi. Thus,
u = (v− 1, n− β) and by Lemma 3.7

2(n− β) ≥ |v− 1| = |v| − |1| = 2(n− 1)− n = n− 2.

Therefore, β ≤ bn
2 c+ 1. 2

Proposition 3.12 If G is a connected not bipartite graph and ` = (1
2 , . . . , 1

2) ∈ Rn,
then H(−`,1) is a supporting hyperplane of R+B.

Proof. If (wi, 1) ∈ B, then wi · ` = 1 or wi · ` = 1
2 or wi · ` = 0. Hence, wi · ` ≤ 1

and we have that (wi, 1) · (−`, 1) ≥ 0. Let C be an odd cycle of G, we take an edge
e and a generating tree τ such that C is the unique cycle of τ ∪ e. We can assume
that E(τ ∪ e) = {y1, . . . , yn} with E(C) = {y1, . . . , yk} where k is odd. If vi is the
characteristic vector of ti, then we can suppose vi = ei + ei+1 for i = 1, . . . , k − 1
and vk = ek + e1. Thus,

∑k
i=1(−1)i+1vi = (e1 + e2)− (e2 + e3) + (e3 + e4)− · · ·+ (ek + e1) = 2e1.

Hence, e1 ∈ R(v1, . . . , vk). In the same form we have that ei ∈ R(v1, . . . , vk) for
i = 1, . . . , k. Thus R(v1, . . . , vk) = Rk. Therefore, v1, . . . , vk are linearly inde-
pendent. Since τ is a generating tree, we can index its edges such that if Aj =
{y1, . . . , yk, yk+1, . . . , yk+j}, then the induced subgraph Gj = [Aj]τ is a connected
graph. We will prove that Aj is a linearly independent set, by induction on j. For
j = 0 it already has been proven. Now, we take

Aj+1 = {y1, . . . , yk, yk+1, . . . , yk+j, yk+j+1}.

Since Gj+1=[Aj+1]τ is connected and τ ∪ e has only one cycle, |V(Gj)∩ yk+j+1|=1.
So, we can suppose V(Gj) = {x1, . . . , xk, xk+1, . . . , xk+j} and yk+j+1 = {xs, xk+j+1}
with s ∈ {1, . . . , k + j}. Hence, R(v1, . . . , vk, vk+1, . . . , vk+j) ⊆ R(e1, . . . , ek+j) and
by induction hypothesis R(v1, . . . , vk, . . . , vk+j) = R(e1, . . . , ek+j). Furthermore,
since vk+j+1 = ek+j+1 + es then

R(v1, . . . , vk, . . . , vk+j, vk+j+1) = R(e1, . . . , ek+j+1).

Hence, (v1, 1), . . . , (vn, 1) are linearly independent of B and these are ortogonal to
(−`, 1). Therefore, H(−`,1) is a supporting hyperplane of R+B. 2
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Lemma 3.13 If G is a connected not bipartite graph, SG is normal and wS = (x1tb0),
then G is unmixed, τ(G) = dn

2 e and b0 = bn
2 c+ 1.

Proof. By Proposition 3.11, b0 ≤ bn
2 c+ 1. Furthermore, by Proposition 3.12 (1, b0) ·

(−`, 1) > 0 where ` = (1
2 , . . . , 1

2). Thus, b0 > ` · 1 = n
2 . Therefore, b0 = bn

2 c +
1.

Now, let C be a minimal vertex cover of G. By Proposition 3.10 xẽ(C) ∈ ωS, then
xẽ(C) = (x1tb0)xv, where xv ∈ SG. Consequently, xv = xẽ(C)−(1,b0) so ẽ(C) −
(1, b0) = v ∈NB. Hence, by (3.1)

v = (0, . . . , 0︸ ︷︷ ︸
c

, ac+1 − 1, . . . , ac+s − 1, 0, . . . , 0︸ ︷︷ ︸
n−(s+c)

, n− s + 1− b0).

On the other hand, {xc+1, . . . , xn} is an independent vertex set, since C = {x1, . . . ,
xc} is a vertex cover. Also, v ∈ NB and the only possible entries of v different to
zero are c + 1, . . . , c + s + 1 and n + 1, then v = ∑c+s

i=c+1 λi(ei + en+1) + λn+1en+1.
Thus, v · (∑n

i=1 ei) = ∑c+s
i=c+1 λi and v · en+1 = (∑c+s

i=c+1 λi) + λn+1. This implies
v · (∑n

i=1 ei) ≤ v · en+1, i.e. ∑s
i=1(ac+i − 1) ≤ n − s + 1− b0. Since ∑s

i=1 ac+i = c,
∑s

i=1(ac+i − 1) = c− s. So, c− s ≤ n− s + 1− b0. Consequently c ≤ dn
2 e, since

b0 = bn
2 c+ 1. By Proposition 3.9, H(−`′,1) is a supporting hyperplane of R+B where

`′ = ∑n
i=c+1 ei. Hence, (−`′, 1) · (1, b0) > 0 and b0 > `′ · 1 = n− c. Furthermore

b0 = bn
2 c+ 1, then c > n− b0 = dn

2 e − 1. Therefore c ≥ dn
2 e, so c = dn

2 e. 2

Theorem 3.14 ([9]) Let G be a bipartite graph, then SG is Gorenstein if and only if
G is unmixed

Theorem 3.15 If G is connected, SG is normal and n is even, then SG is Gorenstein
if and only if G is an unmixed bipartite graph.

Proof. ⇒) Suppose that G is not bipartite, then there exist an odd cycle C. We can
suppose C = (x1, . . . , x2l+1). By Proposition 3.11 and Lemma 3.13, ws = (x1tb0)
where b0 = bn

2 c + 1, τ(G) = n
2 and G is unmixed. By Proposition 3.1 there is

a τ-reduction {y1, . . . , yr} with yi ∈ E(G). So, r = n
2 . We take ui = vyi and

u = ∑r
i=1(ui, 1) + ∑l

j=1(vj, 1) + (e1, 1) where vj = e2j + e2j+1 for j = 1, . . . , l. So,

u = (1 + 1C, r + l + 1) where 1C = ∑2l+1
i=1 ei. Then, u ∈ H+

e1
∩ · · · ∩ H+

en .

We will prove that (1C, l + 1) ∈ (R+B)◦. By contradiction suppose there exist a
hyperplane H(−q,1) such that (−q, 1) · (vj, 1) = 0 and (e1, 1) · (−q, 1) = 0, since
(1C, l + 1) = ∑l

j=1(vj, 1) + (e1, 1). Consequently, if q = (q1, . . . , qn), then q1 = 1
and (ve, 1) ∈ H+

(−q,1) where ve = e1 + e2, since e = {x1, x2} ∈ E(C). This implies,
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0 ≤ −ve · q + 1, then q1 + q2 = q · ve ≤ 1, so q2 = 0. Also q3 = 1, since v2 · q = 1.
Similarly we prove that qj = 0 if j is even and qj = 1 if j is odd, for 1 ≤ j ≤ 2l + 1.
This implies q2l+1 = 1 and (−q, 1)(e1 + e2l+1, 1) = −2 + 1 = −1. A contradiction,
since {x1, x2l+1} ∈ E(C). Consequently, (1C, l + 1) ∈ (R+B)◦. Therefore, u ∈
(R+B)◦ ∩NB. Thus, (x, t)u = x1+1C tr+l+1 ∈ ws. Furthermore ws = (x1tr+1), then
(1C, l) ∈NB. Hence, by Lemma 3.7, 2l ≥ |1C| = |V(C)| = 2l + 1. A contradiction,
therefore G is bipartite. Furthermore by Theorem 3.14 G is unmixed.
⇐) By Theorem 3.14, SG is Gorenstein. 2

Proposition 3.16 If C = (x1, . . . , xr) is a cycle of G and R+B = H+
e1
∩ · · · ∩ H+

en ∩
H+
(−`1,1) ∩ · · · ∩ H(−`m,1), then ∑r

i=1 `
i
j ≤

s
2 where `j = (`1

j , . . . , `n
j ).

Proof. Since e = {xi, xi+1} ∈ E(C), then e · `j ≤ 1. So `i
j + `i+1

j ≤ 1 for 1 ≤ i ≤ s− 1
and `s

j + `1
j ≤ 1. Consequently,

2
r

∑
i=1

`i
j = (`1

j + `s
j) +

r−1

∑
i=1

(`i
j + `i+1

j ) ≤
r

∑
i=1

1 = r.

Hence, ∑r
i=1 `

i
j ≤

s
2 . 2

Definition 3.17 Let w = (v, b) be an element of R+B, then w = ∑
q
i=1 αi(vi, 1) +

∑n
i=1 βi(ei, 1) + λen+1 is a minimal representation of w in R+B if ∑

q
i=1 αi + ∑n

i=1 βi
is minimal and {i | λi 6= 0} ∪ {i | βi 6= 0} is minimal.

Remark 3.18 If w = (w1, . . . , wn+1) ∈ R+B and w = ∑
q
i=1 αi(vi, 1)+∑n

i=1 βi(ei, 1)+
λen+1 is a minimal representation, then wn+1 = ∑

q
i=1 αi + ∑n

i=1 βi + λ. Hence λ is
maximal, since ∑

q
i=1 αi + ∑n

i=1 βi is minimal.

Lemma 3.19 Let w = ∑
q
i=1 αi(vi, 1) + ∑n

i=1 βi(ei, 1) + λen+1 be a minimal represen-
tation of w in R+B. Hence,

1) A = {xi ∈ V(G) | βi 6= 0} is a stable set.

2) If Gw is the graph with V(Gw) = V(G) and E(Gw) = {yi ∈ E(G) | αi 6= 0},
then Gw has no even cycles.

3) If H is a connected component of Gw, then |V(H)∩A| ≤ 1. Let H1, . . . , Hs be
connected components of Gw such that V(Hi) ∩A = {zi}. Hence, H1, . . . , Hs
are trees; furthermore if Ai is the chromatic class of zi in Hi, then A1∪ · · · ∪ As
is a stable set in G.
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Proof. 1) Suppose xi1 , xi2 ∈ A such that yj = {xi1 , xi2} ∈ E(G). Hence,

w =
q

∑
i=1

α1
i (vi, 1) +

n

∑
i=1

β1
i (ei, 1) + (λ + γ1)en+1

where γ1 = min{βi1 , βi2}; α1
i = αi if i 6= j and α1

j = αj + γ1; β1
i = βi if i /∈ {i1, i2},

β1
i1

= βi1 − γ1 and β1
i2

= βi2 − γ1. Thus, ∑
q
i=1 α1

i + ∑n
i=1 β1

i < ∑
q
i=1 αi + ∑n

i=1 βi.
A contradiction, since the representation of w is minimal. Therefore, A is a stable
set.

2) Suppose C is an even cycle of Gw whose edges are yj1 , . . . , yj2k . Thus,

w =
q

∑
i=1

α2
i (vi, 1) +

n

∑
i=1

βi(ei, 1) + λen+1

where γ2 = min(αj1 , . . . , αj2k); α2
i = αi + (−1)iγ2 for 1 ≤ i ≤ 2k and α2

i = αi if
i /∈ {j1, . . . , j2k}. A contradiction, since |{i | α2

i 6= 0}| < |{i | αi 6= 0}|. Therefore,
Gw has no even cycles.

3) For facility we take w′ = ∑
q
i=1 αi(vi, 1)+∑n

i=1 βi(ei, 1). Suppose xi1 , xi2 ∈ V(H)∩
A, then βi1 6= 0 and βi2 6= 0. Since H is connected, there exist a path L of
H between xi1 and xi2 . We can assume E(L) = {yj1 , . . . , yjs}. We take γ3 =
min{αj1 , . . . , αjs , βi1 , βi2}, thus γ3 > 0. If s is odd, then

w = w′ + γ3 ∑s
i=1(−1)i+1(vji , 1)− γ3 ∑2

j=1(eij , 1) + (λ + γ3)en+1.

A contradiction, by Remark 3.18, since γ3 > 0. Hence, s is even. If γ3 = βi` for
` ∈ {1, 2}, then we can suppose γ3 = βi1 . Also, if γ3 = αi` for some ` ∈ {1, . . . , s},
then we can assume ` is even, since in other case we take zij = yis−j and E(L) =

{zi1 , . . . , zis}. So,

w = w′ + γ3 ∑s
i=1(−1)i+1(vji , 1) + γ3 ∑2

j=1(−1)j(eij , 1) + λen+1.

A contradiction, since βi1−γ3 = 0 or αi` −γ3 = 0. Therefore |V(H)∩A| ≤ 1.

Now, suppose C is a cycle of Hi. Since Hi is connected, there is a path L be-
tween C and zi. We can assume zi = x1, E(L) = {y1, . . . , y`}, and E(C) =
{y`+1, . . . , y`+k}. By 2) k is odd. We take γ = min{α1, . . . , α`, 2α`+1, . . . , 2α`+k, β1}.
Consequently,

w = w′− 2γ(e1, 1)+γ ∑`

i=1(−1)i+1(vi, 1)+
γ

2 ∑k
i=1(−1)`+1+i(vi, 1)+ (λ+

γ

2
)en+1.
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A contradiction, by Remark 3.18. Therefore Hi is a tree. Now, we take a1, b1 ∈ Ai.
Suppose {a1, b1} ∈ E(G), then there exist an even path L1 in Hi between zi and a1.
We can assume E(L1) = {y1, . . . , y`1} and {a1, b1} = y`1+1. Furthermore, there is
a path L2 in Gw between b1 and L1. We can assume E(L2) = {y`1+2, . . . , y`2}. If
{u} = V(L1) ∩V(L2), then we can assume that u ∈ yj−1 ∩ yj for some 2 ≤ j ≤ `1.
Hence, there is an odd cycle C′ with E(C′) = {yj, . . . , y`2}, since a1, b1 ∈ Ai.

w = w′ + γ′
j−1

∑
i=1

(−1)i+1(vi, 1) +
γ′

2

`2

∑
i=j

(−1)i+1(vi, 1)− γ′(e1, 1) + (λ +
γ′

2
)(en+1)

where γ′ = min{α1, . . . , αj−1, 2αj, . . . , 2α`2 , β1}. This is a contradiction, hence Ai
is a stable set in G. Now, assume ai ∈ Ai, aj ∈ Aj, and {ai, aj} ∈ E(G). Thus,
there are even paths L3 and L4 in Gw between zi, ai and zj, aj, respectively. We can
suppose E(L3) = {y1, . . . , yk1}, yk1+1 = {ai, aj}, E(L4) = {yk1+2, . . . , yk2}, zi = x1
and zj = x2. Hence,

w = w′ + ∑k2+1
i=1 (−1)i+1γ4(vi, 1)−∑2

i=1 γ4(ei, 1) + (λ + γ4)en+1

where γ4 = min{α1, . . . , α̂k1+1, . . . , αk2 , β1, β2}. A contradiction by Remark 3.18,
therefore A1 ∪ · · · ∪ As is a stable set in G. 2

Proposition 3.20 Let H1, . . . , Hr be the components of Gw, where Hi ∩ A = {zi}
and Ai is the chromatic class of zi in Hi, for i = 1, . . . , s. Furthermore, Hi ∩A = ∅
for i > s. We take Hj with j > s, hence

1) If Hj is not bipartite and e ∈ E(G) such that e ∩ Hj 6= ∅, then e ∩ (A1 ∪ · · · ∪
As) = ∅.

2) Suppose Hj is bipartite whose chromatic classes are D1
j and D2

j , and e ∈ E(G)

such that e ∩ (A1 ∪ · · · ∪ As) 6= ∅ and b ∈ e ∩ V(Hj). If b ∈ D1
j , then D2

j is a
stable set in G. Furthermore, if there are e1, e2 ∈ E(G) such that e1 ∩ Ai1 6= ∅,
e2 ∩ Ai2 6= ∅, and e1 ∩ D1

j 6= ∅, then e2 ∩V(Hj) ⊆ D1
j .

Proof. 1) There is an odd cycle C ⊆ Hj. By contradiction we can assume z ∈ e∩ A1.
Consequently there is an even path L in H1 between z1 and z. Furthermore, if
e = {z, z′}, then there is a path L′ in Hj between C and z′. We can suppose E(L) =
{y1, . . . , y`1} with `1 odd, E(L′) = {y`1+2, . . . , y`2}, E(C) = {y`2+1, . . . , y`3} and
y`1+1 = e, where z ∈ y`1 , z′ ∈ y`1+2, and y`2 ∩ V(C) = y`2 ∩ y`2+1 6= ∅. Hence
`1 + 2 is even and

w = w′ − γ(e1, 1) + γ
`2

∑
i=1

(−1)i+1(vi, 1) +
γ

2

`3

∑
i=`2+1

(−1)i+1(vi, 1) + (λ +
γ

2
)en+1
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where γ = min{α1, . . . , α`2 , 2α`2+1, . . . , 2α`3 , β1}. A contradiction by Remark 3.18.

2) We can assume e = {a, b} such that a ∈ A1 and b ∈ D1
j . By contradiction

suppose there is e′ = {a′, b′} ⊆ D2
j . Consequently, there is a even path L in H1

between z1 and a. We can assume z1 = x1, E(L) = {y1, . . . , y`1}, and e = y`1+1,
then `1 is even. Furthermore, there is an odd path L1 = {a1 = b, a2, . . . , as1 =
a′} in Hj between b and a′, then s1 is even. Also there is a path L2 in Hj be-
tween L1 and b′. We can assume L2 = {ak, b1, . . . , bs2 = b′}. Consequently, C =
(ak, ak+1, . . . , as1 , bs2 , bs2−1, . . . , b1) is an odd cycle. We take L′ = (a1 = b, a2, . . . , ak).
We can assume E(L′) = {y`1+2, y`2+3, . . . , y`1+k} and E(C) = {y`1+k+1, . . . , yu}.
Furthermore, e = y`1 + 1 and e′ = y`1+s1+1 where `1 and s1 are even. Hence
(−1)`1+2 = (−1)`1+s1+2 = 1 and

w = w′ − γ(e1, 1) + γ
`1+k

∑
i=2

(−1)i+1(vi, 1) +
γ

2

u

∑
i=`1+k+1

(−1)i+1(vi, 1) + (λ +
γ

2
)en+1

where γ = min{α1, . . . , α̂`1+1, . . . , α`1+k, α`1+k+1, . . . , ̂α`1+s1+1, . . . , αu, β1}. A con-
tradiction by Remark 3.18. 2

Now, suppose e1, e2 ∈ E(G) such that e1 ∩ Ai1 = {a1}, e2 ∩ Ai2 = {a2}, e1 ∩ D′j =
{b1} and e2 ∩ D2

j = {b2}. Hence, there are even paths L1 and L2 in Gw between
zi1 and a1; and zi2 and a2, respectively. Since b1 ∈ D1

j and b2 ∈ D2
j , there is odd

path L3 in Hj between b1 and b2. We can assume E(L1) = {y1, . . . , yk1}, e1 = yk1+1,
E(L3) = {yk1+2, . . . , yk2}, e2 = yk2+1 and E(L2) = {yk2+2, . . . , yu}. Also we can
suppose x1 = zi1 and x2 = zi2 . Thus, k1 and k2 are even; furthermore u is odd.
Consequently (−1)k1+2 = (−1)k2+2 = 1 and

w = w′ − γ′(e1, 1)− γ′(e2, 1) + γ′
u

∑
i=1

(−1)i+1(vi, 1) + (λ + γ′)en+1,

where γ′ = min{β1, β2, α1, . . . , α̂k1+1, . . . , αk2 , α̂k2+1, . . . , αu}.

Definition 3.21 Let H1, . . . , Hs1 , Hs1+1, . . . , Hs2 , Hs2+1, . . . , Hs3 be the connected com-
ponents of Gw such that |Hi ∩ A| = 1 if and only if i ≤ s1, Hi is bipartite for s1 <
i ≤ s2 and Hi is not bipartite if i > s2. Furthermore, D1

i and D2
i are the chromatic

classes of Hi for s1 < i ≤ s2 such that if e ∈ E(G) with e ∩ (A1 ∪ · · · ∪ As1) 6= ∅,
then e ∩ (Hs1+1 ∪ · · · ∪ Hs2) ⊆ D1

s1+1 ∪ · · · ∪ D1
s2

.

Proposition 3.22 If w = ∑
q
i=1 αi(vi, 1) + ∑n

i=1 βi(ei, 1) + λen+1 is a minimal rep-
resentation of w in R+B, then H(−λ,1) is a support hyperplane of R+B, where
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λ = (λ1, . . . , λn) and

λi =


1
2 if xi ∈ Hs2+1 ∪ · · · ∪ Hr

1 if xi ∈ (A1 ∪ · · · ∪ As1) ∪ (D2
s1+1 ∪ · · · ∪ D2

s2
)

0 otherwise.

Proof. By Lemma 3.19 and Proposition 3.20, (A1 ∪ · · · ∪ As1) ∪ (D2
s1+1 ∪ · · · ∪

D2
s2
) is a stable set. Furthermore, if e ∈ E(G) with e ∩ (A1 ∪ · · · ∪ As1), then

e ∩ (V(Hs1+1) ∪ · · · ∪ V(Hr)) = ∅. Hence, λ · vj ≤ 1 so (−λ, 1) · (vj, 1) ≥ 0 for
j = 1, . . . , q. Furthermore, λ · ei ≤ 1 implying (−λ, 1) · en+1 = 1 ≥ 0. Thus,
R+B ⊆ H+

(−λ,1). We take B1 = {ei | xi ∈ (A1 ∪ · · · ∪ As1) ∪ (D2
s1+1 ∪ · · · ∪ D2

s2
)}

and B3 = {vi | yi ∈ E(H1) ∪ · · · ∪ E(Hs2) such that xj ∈ yi with ej ∈ B2}. Conse-
quently, B1 ∪ B2 ∪ B3 ⊆ H(−λ,1). Furthermore, dim R(B1 ∪ B2 ∪ B3) = n, therefore
H(−λ,1) is a support hyperplane. 2

Proposition 3.23 Let w = ∑
q
i=1 αi(vi, 1) + ∑n

i=1 βi(ei, 1) + λen+1 is a minimal repre-
sentation of w ∈ R+B. Hence, w = (w1, . . . , wn+1) ∈ (R+B)◦ if and only if wi ≥ 0
for i = 1, . . . , n and λ > 0.

Proof. We have R+B = H+
e1
∩ · · · ∩ H+

en ∩ H+
(−`1,1) ∩ · · · ∩ H(−`m,1).

⇒) Since w ∈ (R+B)◦, w ∈ H+
ei
\ Hei for 1 ≤ i ≤ n, so wi > 0. By Proposition 3.22

H(−λ,1) is a support hyperplane of R+B. Hence, if β j 6= 0, then xj ∈ A1 ∪ · · · ∪ As1 .
Consequently, λj = 1 and (ej, 1) · (−λ, 1) = 0. Now, we take αj 6= 0. If yj ∈
E(Hs2+1) ∪ · · · ∪ E(Hr), then (vj, 1) · (−λ, 1) = 0, since λj1 = λj2 = 1

2 where yj =

{xj1 , xj2}. Now, if yj ∈ E(H1) ∪ · · · ∪ E(Hs2), then |yj ∩ (A1 ∪ · · · ∪ As1) ∪ (D2
s1+1 ∪

· · · ∪ D2
s2
)| = 1, since H1,∪ · · · ∪ Hs2 are bipartite. Thus, (vj, 1) · (−λ, 1) = 0.

This implies (−λ, 1) · (∑q
i=1 αi(vi, 1) + ∑n

i=1 βi(ei, 1)) = 0. Therefore λ > 0, since
w ∈

(
R+B

)◦ and H(−λ,1) is a support hyperplane of R+B.

⇐) Since wi > 0, w ∈ H+
ei
\ Hei for 1 ≤ i ≤ n. Furthermore, (vi, 1) · (−`j, 1) ≥ 0

and (ej, 1) · (−`1, 1) ≥ 0, since (vi, 1), (es, 1) ∈ R+B for 1 ≤ i ≤ q and 1 ≤ s ≤ n.
Hence w · (−`j, 1) = 1. Therefore w ∈ H+

(−`j,1)
\ H(−`j,1) so w ∈ (R+B)◦. 2

We assume G is well-covered graph with a reduction {H, ys1+1, . . . , ys1+s} where
H ∈ {C3, C5, C7} and E(H) = {y1, . . . , ys1}.

Proposition 3.24 Let w = ∑
q
i=1 αi(vi, 1) + ∑n

i=1 βi(ei, 1) + λen+1 be a minimal rep-
resentation of w in R+B such that wi > 0, ∑s1

i=1 αi is maximal, β(H′) < β(H)
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where E(H′) = {yi ∈ E(H) | αi > 1}. Furthermore, yi1 , yi2 ∈ E(Gw) such that
yi1 = {a1, b1}, yi2 = {a2, b2} with {bj} = yij ∩V(H) for j = 1, 2. Hence,

1) If xj ∈ V(H) such that yi3 = {b1, xj} ∈ E(H), then β j = 0.

2) If {b1, b2} or {b1, c, b2} is a path of E(H), then {a1, a2} /∈ E(G).

Proof. 1) Suppose β j > 0, then

w = w′ + λen+1 + γ(vi3 , 1)− γ(vi1 , 1) + γ(ej′ , 1)− γ(ej, 1),

where δ = min{αi1 , β j}, w′ = ∑
q
i=1 αi(vi, 1) + ∑n

i=1 βi(ei, 1) and b1 = yj′ . A contra-
diction, therefore β j = 0.

2) By contradiction, assume yi4 = {a1, a2} ∈ E(G). If yi5 = {b1, b2} ∈ E(G),
then

w = w′ + λen+1 + γ(vi4 , 1)− γ(vi1 , 1)− γ(vi2 , 1) + γ(vi5 , 1),

where γ = min = {αi1 , αi2} and w′ = ∑
q
i=1 αi(vi, 1) + ∑n

i=1 βi(ei, 1). But ∑s1
i=1 αi <

∑s1
i=1 α1 + γ. A contradiction, then {b1, b2} /∈ E(G). Consequently H 6= C3 and

there is path {b1, c, b2}. We can suppose yi1 = {b1, c}, yi2 = {c, b2} ∈ E(H). By
Proposition 3.5, H = C5. Thus,

w = w′ + λen+1 +
5

∑
i=3

(−1)i+1γ(vi, 1)− γ(vi1 , 1)− γ(vi2 , 1) + γ(vi4 , 1),

where γ = min{αi1 , αi2 , α4}. Since ∑s
i=1 αi is maximal, α4 = 0. We can suppose H =

(c, b2, x2, x1, b1). Since αi1 > 0 and αi2 > 0, then by 1) β1 = β2 = 0. By hypothesis,
α3 < 1 or α5 < 1. We assume α5 < 1, then there is yj1 = {x1, z1} ∈ E(Gw).
By the last argument {a1, z1} /∈ E(G). Suppose α3 ≥ 1. Since G is well-covered,
{a1, z1, b2} is not a stable set. If yj6 = {z1, b2} ∈ E(G), then

w = w′ + λen+1 + γ(v4, 1)− γ(vj1 , 1) + γ(vj6 , 1)− γ(v3, 1)

where γ = min{α3, αj1}. A contradiction, since in this representation of w the
coefficient of (v4, 1) is γ > 0. Hence, yj7 = {a1, b2} ∈ E(G). We can assume α1 is
maximal. We have

w = w′ + λen+1 + γ(v1, 1)− γ(vj1 , 1) + γ(vj7 , 1)− γ(vi7 , 1)

where γ = min{α2, αi1}. Since α1 is maximal, γ = α2 = 0. This implies there
is {c, c′} ∈ E(G). By the last argument {c′, a1} /∈ E(G). A contradiction since
G is well-covered. Therefore α3 < 1 and there is yj2 = {x2, z2} ∈ E(Gw) such
that z1, z2 ∈ V(G) \ V(H). By the last argument {z1, z2}, {z2, a2} /∈ E(G). Since



46 ON GORENSTEIN HOMOGENOEOUS MONOMIAL SUBRINGS OF GRAPHS

G is well-covered {a1, z1, z2} and {z1, z2, a2} are not stable sets. Hence yk1 =
{a1, z2}, yk2 = {z1, a2} ∈ E(G). Consequently,

w = w′ + λen+1 − γ
2

∑
s=1

(
(vis , 1) + (vjs , 1)

)
+ γ

2

∑
s=1

(
(vks , 1) + (vqs , 1)

)
where γ = min{αi1 , αi2 , αj1 , αj2} and yqs = {xs, bs} for s = 1, 2. A contradiction. 2

Proposition 3.25 Let G be an unmixed graph with τ(G) = n+1
2 . If w ∈ (R+B)◦,

then u = w− (1, n+1
2 ) ∈ R+B.

Proof. By Proposition 3.2, G has a reduction {H, ys+1, . . . , yn}, where H ∈ {C3, C5,
C7} and E(H) = {y1, . . . , ys}. First assume G satisfies

1) There is a minimal representation of w such that if {xi1 , xj1}, {xi2 , xj2} ∈ E(Gw)
with xi1 , xi2 ∈ V(H) and xj1 , xj2 /∈ V(H), then {xi1 , xi2} /∈ E(H).

If H = C3, we can assume degGw
(x2) = degGw

(x3) = 2, then α2 + α3, α2 + α1 ∈ N

since w ∈Nn+1. Hence,

u = w′ −
m

∑
i=4

(vi, 1)−
3

∑
i=1

γi(vi, 1)− γi1(vi1 , 1) + γi1(ei1 , 1) + (λ + γ1 − 1)en+1

where γ2 = α2− dα2e+ 1, γ1 = γ3 = 1− γ2, and γi1 = γ2 if yi1 = {x1, xk1} ∈ E(G)
or γi1 = 0 in other case. This implies u ∈ R+B. Now suppose H = C5, so we
can assume degGw

(x2) = degGw
(x3) = degGw

(x4) = 2. Consequently α2 + α3, α1 +

α2, α4 + α5 ∈N, since w ∈Nn+1. Thus,

u=w′−
m

∑
i=6

(vi1 , 1)−
5

∑
i=1

γi(vi, 1)−γi1(vi1− ei1 , 0)−γi4(vi4− ei4 , 0)+ (λ+γ1− 1)en+1

where γ2 = α2 − dα2e + 1, γ1 = γ3 = 1 − γ2, γ4 = α4 − dα4e + 1, γ5 = 1 −
γ4, and γi1 = 1 − α1 − α5 and γi4 = 1 − α3 − α5. Finally suppose H = C7. By
Proposition 3.5, we can suppose degG(x3) = degG(x5) = degG(x7) = 2. Also,
degG(x2) = 2, since G satisfies 1) of Proposition 3.25. Now assume degGw

(x6) = 2.
This implies

u = w′−
m

∑
i=8

(vi, 1)−
7

∑
i=1

γi(vi, 1)−γi1(vi1− ei1 , 0)−γi4(vi4− ei4 , 0)+ (λ−γ1− 1)en+1

where γ2 = α2 − dα2e + 1, γ1 = γ3 = 1 − γ2, γ4 = α4 − dα4e + 1 = γ6, γ5 =
γ7 = 1− γ4, γi1 = 1− γ1 − γ7, and γi4 = 1− γ3 − γ4. Finally if there is yi6 =
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(x6, xi6) ∈ Gw with xi6 /∈ V(H), then by Proposition 3.5 {x4, x1} ∩NG(xi6) 6= ∅.
We can suppose yi7 = {xi6 , x4} ∈ E(G). We also assume αi6 is minimal in the
representation of w. Hence,

w = w′ − γ(v4, 1) + γ(v5, 1)− γ(vi6 , 1) + γ(vi7 , 1) + λen+1

where γ = min{α4, αi6}. Since in the representation of w αi6 is minimal, α4 = 0. So,
α5 ∈N and

w′′ = w− αi6(vi6 , 1) + γ′(e7, 1) + (λ− γ′ + αi6)en+1

where γ′ = min{0, 1− α7}. Therefore w′′ ∈ (R+B)◦, w′′ · ei ≥ 1 and αi6 = 0, we
are in the last case.

Now, suppose w does not satisfy 1). We take a minimal representation of w =

∑
q
i=1 αi(vi, 1) + ∑n

i=1 βi(vi, 1) + λen+1. By Proposition 3.23 we can assume λ ≥ 1
and αi ≥ 1 for each i ∈ {s + 1, . . . , m}. We take V(H) = {x1, . . . , xs} and yi =
{xi, xi+1} for i = 1, . . . , s− 1 and ys = {xs, x1}. Furthermore yi1 = {x1, xk1}, yi2 =
{x2, xk2} ∈ E(Gw) with xk1 , xk2 /∈ V(H). Also we can assume that the representa-
tion of w satisfies αi1 + αi2 is minimal. First suppose H = C3. By Proposition 3.1
degG(x3) = 2, since G is unmixed. Hence,

u = w′ −
m

∑
i=4

(vi, 1)−
3

∑
i=1

γi(vi, 1)−
2

∑
j=1

uj(vij , 1) +
2

∑
j=1

uj(ekj , 1) + (λ− u1 − u2)en+1

where γ2 + γ3 = 1, γ1 = min{α1, 1− γ2, 1− γ3}, u1 + γ3 = u2 + γ2 = 1− γ1. Now
assume H = C5. By Proposition 3.6 we have that degG(x3) = degG(x5) = 2. By
Proposition 3.1 {xk1 , xk2} /∈ E(G). Since G is unmixed {xk1 , xk2 , x4} is not a stable
set, we can suppose yi3 = {xi1 , x4} ∈ E(G). Thus,

w = w′ + γ(v5, 1)− γ(v4, 1) + γ(vi3 , 1)− γ(vi1 , 1) + λen+1

where γ = min{α4, αi1}. Since αi1 + αi2 is minimal, γ = 0 and α4 = 0. Hence,
α5 ≥ 1 and w′′ = w− αi1(vi1 , 1) ∈ (R+B)◦, w′′ · ei ≥ 1 and w′′ satisfies 1). Finally
if H = C7, by Proposition 3.5 there is yi4 = {xi1 , x6}, yi5 = {xi5 , x4} ∈ E(G) and
degG(x3) = degG(x5) = degG(x7) = 2. We take

w = w′ + γ(v7, 1)− γ(v6, 1) + γ(vi4 , 1)− γ(vi1 , 1) + λen+1

where γ = min{αi1 , α6}. Since αi1 + αi2 is minimal, γ = 0 and α6 = 0. Hence α7 ≥ 1
and w′′ = w− αi1(vi1 , 1) ∈ (R+B)◦, w′′ · ei ≥ 1 and w′′ satisfies 1). 2

Theorem 3.26 If S is normal and G is connected not bipartite graph, then SG is
Gorenstein if and only if G is unmixed, τ(G) = dn

2 e and b0 = bn
2 c+ 1.
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Proof. ⇐) By Theorem 3.15, we can assume that n is odd. Since G is unmixed and
τ(G) = n+1

2 , then by Proposition 3.2, there exist a τ-reduction {H1, . . . , Hs} of G,
where Hi ∈ E(G) for 1 ≤ i ≤ s− 1 and Hs is a j-cycle with j ∈ {3, 5, 7}. We can
assume V(Hi) = {x2i−1, x2i} for i = 1, . . . , s− 1 and V(Hs) = {x2s−1, . . . , xn}. We
take R+B = H+

e1
∩ · · · ∩ H+

en ∩ H+
(−`1,1) ∩ · · · ∩ H+

(−`m,1). Consequently, `2i−1
j + `2i

j ≤
1 for 1 ≤ i ≤ s − 1, where `j = (`1

j , . . . , `n
J ). Hence, by Proposition 3.16, 1 · `j =

∑n
i=1 `

i
j ≤

n
2 . Thus, (1, n+1

2 ) · (−`j, 1) > 0. This implies, (1, n+1
2 ) ∈ NB ∩ (R+B)◦.

Now, if (v, b) ∈NB∩ (R+B)◦, then (v, b) · ei > 0 for 1 ≤ i ≤ n. This implies v ≥ 1.
Also, by Proposition 3.12, we have that b ≥ n+1

2 . Thus, u = (v, b) − (1, n+1
2 ) ∈

Zn+1
+ . By Proposition 3.25 u ∈ R+B. So, u ∈ Zn+1

+ ∩ R+B = NB, since SG is
normal. Therefore wS = (x1t

n+1
2 ) and SG is Gorenstein.

⇒) By Theorem 3.13. 2

Theorem 3.27 Let G be a graph such that SG is normal then SG is Gorenstein if and
only if G is unmixed and τ(G) = dn

2 e.

Proof. By Theorem 3.14 and Theorem 3.26. 2



CHAPTER 4
MONOMIAL IDEALS OF WEIGHTED

ORIENTED GRAPHS

4.1 INTRODUCTION

A weighted oriented graph is a triplet D = (V(D), E(D), w), where V(D) is a
finite set, E(D) ⊆ V(D)× V(D) and w is a function w : V(D) → N. The vertex
set of D and the edge set of D are V(D) and E(D), respectively. Some times for
short we denote these sets by V and E respectively. The weight of x ∈ V is w(x).
If e = (x, y) ∈ E, then x is the tail of e and y is the head of e. The underlying
graph of D is the simple graph G whose vertex set is V and whose edge set is
{{x, y} | (x, y) ∈ E}. If V(D) = {x1, . . . , xn}, then we consider the polynomial
ring R = K[x1, . . . , xn] in n variables over a field K. In this paper we introduce and

study the edge ideal of D given by I(D) = (xix
w(xj)

j : (xi, xj) ∈ E(D)) in R, (see
Definition 4.15).

In Sect. 4.2 we study the vertex covers of D. In particular we introduce the notion
of strong vertex cover (Definition 4.6) and we prove that a minimal vertex cover is
strong. In Sect. 4.3 we characterize the irredundant irreducible decomposition of
I(D). In particular we show that the minimal monomial irreducible ideals of I(D)
are associated with the strong vertex covers of D. In Sect. 4.4 we give the following
characterization of the unmixed property of I(D).

I(D) is unmixed G is unmixed and D has the minimal strong propert

All strong vertex
covers have the
same cardinality

All minimal vertex
covers have the
same cardinality

All strong vertex
covers are minimals
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Furthermore, if D is bipartite, D is a whisker or D is a cycle, we give an effective
(combinatorial) characterization of the unmixed property. Finally in Sect. ?? we
study the Cohen-Macaulayness of I(D). In particular we characterize the Cohen-
Macaulayness when D is a path or D is complete. Also, we give an example where
this property depend of the characteristic of the field K.

4.2 WEIGHTED ORIENTED GRAPHS AND THEIR VERTEX COV-

ERS

In this section we define the weighted oriented graphs and we study their vertex
covers. Furthermore, we define the strong vertex covers and we characterize when
V(D) is a strong vertex cover of D. In this paper we denote the set {x ∈ V | w(x) 6=
1} by V+.

Definition 4.1 A vertex cover C of D is a subset of V, such that if (x, y) ∈ E, then
x ∈ C or y ∈ C. A vertex cover C of D is minimal if each proper subset of C is not
a vertex cover of D.

Definition 4.2 Let x be a vertex of a weighted oriented graph D, the sets N+
D (x) =

{y | (x, y) ∈ E(D)} and N−D (x) = {y | (y, x) ∈ E(D)} are called the out-
neighbourhood and the in-neighbourhood of x, respectively. Furthermore, the
neighbourhood of x is the set ND(x) = N+

D (x) ∪ N−D (x).

Definition 4.3 Let C be a vertex cover of a weighted oriented graph D, we define

L1(C) = {x ∈ C | N+
D (x) ∩ Cc 6= ∅},

L2(C) = {x ∈ C | x /∈ L1(C) and N−D (x) ∩ Cc 6= ∅} and

L3(C) = C \ (L1(C) ∪ L2(C)),

where Cc is the complement of C, i.e. Cc = V \ C.

Proposition 4.4 If C is a vertex cover of D, then

L3(C) = {x ∈ C | ND(x) ⊂ C}.

Proof. If x ∈ L3(C), then N+
D (x) ⊆ C, since x /∈ L1(C). Furthermore N−D (x) ⊆ C,

since x /∈ L2(C). Hence ND(x) ⊂ C, since x /∈ ND(x). Now, if x ∈ C and ND(x) ⊂
C, then x /∈ L1(C) ∪ L2(C). Therefore x ∈ L3(C). 2
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Proposition 4.5 If C is a vertex cover of D, then L3(C) = ∅ if and only if C is a
minimal vertex cover of D.

Proof. ⇒) If x ∈ C, then by Proposition 4.4 we have ND(x) 6⊂ C, since L3(C) = ∅.
Thus, there is y ∈ ND(x) \ C implying C \ {x} is not a vertex cover. Therefore, C is
a minimal vertex cover.

⇐) If x ∈ L3(C), then by Proposition 4.4, ND(x) ⊆ C \ {x}. Hence, C \ {x} is a
vertex cover. A contradiction, since C is minimal. Therefore L3(C) = ∅.

Definition 4.6 A vertex cover C of D is strong if for each x ∈ L3(C) there is (y, x) ∈
E(D) such that y ∈ L2(C) ∪ L3(C) with y ∈ V+ (i.e. w(y) 6= 1).

Remark 4.7 Let C be a vertex cover of D. Hence, by Proposition 4.4 and since
C = L1(C) ∪ L2(C) ∪ L3(C), we have that C is strong if and only if for each x ∈ C
such that N(x) ⊂ C, there exist y ∈ N−(x) ∩ (C \ L1(C)) with y ∈ V+.

Corollary 4.8 If C is a minimal vertex cover of D, then C is strong.

Proof. By Proposition 4.5, we have L3(C) = ∅, since C. Hence, C is strong. 2

Remark 4.9 The vertex set V of D is a vertex cover. Also, if z ∈ V, then ND(z) ⊆
V \ z. Hence, by Proposition 4.4, L3(V) = V. Consequently, L1(V) = L2(V) =
∅. By Proposition 4.5, V is not a minimal vertex cover of D. Furthermore since
L3(V) = V, V is a strong vertex cover if and only if N−D (x) ∩ V+ 6= ∅ for each
x ∈ V.

Definition 4.10 If G is a cycle with E(D) = {(x1, x2), . . . , (xn−1, xn), (xn, x1)} and
V(D) = {x1, . . . , xn}, then D is called oriented cycle.

Definition 4.11 D is called unicycle oriented graph if it satisfies the following con-
ditions:

1) The underlying graph of D is connected and it has exactly one cycle C.

2) C is an oriented cycle in D. Furthermore for each y ∈ V(D) \ V(C), there is an
oriented path from C to y in D.

3) w(x) 6= 1 if degG(x) ≥ 1.
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Lemma 4.12 If V(D) is a strong vertex cover of D and D1 is a maximal unicycle
oriented subgraph of D, then V(D′) is a strong vertex cover of D′ = D \V(D1).

Proof. We take x ∈ V(D′). Thus, by Remark 4.9, there is y ∈ N−D (x) ∩ V+(D).
If y ∈ D1, then we take D2 = D1 ∪ {(y, x)}. Hence, if C is the oriented cycle of
D1, then C is the unique cycle of D2, since degD2

(x) = 1. If y ∈ C, then (y, x)
is an oriented path from C to x. Now, if y /∈ C, then there is an oriented path
L form C to y in D1. Consequently, L ∪ {(y, x)} is an oriented path form C to
x. Furthermore, degD2

(x) = 1 and w(y) 6= 1, then D2 is an unicycle oriented
graph. A contradiction, since D1 is maximal. This implies y ∈ V(D′), so y ∈
N−D′(x) ∩ V+(D′). Therefore, by Remark 4.9, V(D′) is a strong vertex cover of D′.

2

Lemma 4.13 If V(D) is a strong vertex cover of D, then there is an unicycle ori-
ented subgraph of D.

Proof. Let y1 be a vertex of D. Since V = V(D) is a strong vertex cover, there
is y2 ∈ V such that y2 ∈ N−(y1) ∩ V+. Similarly, there is y3 ∈ N−(y2) ∩ V+.
Consequently, (y3, y2, y1) is an oriented path. Continuing this process, we can as-
sume there exist y2, y3, . . . , yk ∈ V+ where (yk, yk−1, . . . , y2, y1) is an oriented path
and there is 1 ≤ j ≤ k − 2 such that (yj, yk) ∈ E(D), since V is finite. Hence,
C = (yk, yk−1, . . . , yj, yk) is an oriented cycle and L = (yj, . . . , y1) is an oriented
path form C to y1. Furthermore, if j = 1, then w(y1) 6= 1. Therefore, D1 = C ∪ L is
an unicycle oriented subgraph of D. 2

Proposition 4.14 Let D = (V, E, w) be a weighted oriented graph, hence V is a
strong vertex cover of D if and only if there are D1, . . . , Ds unicycle oriented sub-
graphs of D such that V(D1), . . . , V(Ds) is a partition of V = V(D).

Proof. ⇒) By Lemma 4.13, there is a maximal unicycle oriented subgraph D1 of
D. Hence, by Lemma 4.12, V(D′) is a strong vertex cover of D′ = D \ V(D1). So,
by Lemma 4.13, there is D2 a maximal unicycle oriented subgraph of D′. Con-
tinuing this process we obtain unicycle oriented subgraphs D1, . . . , Ds such that
V(D1), . . . , V(Ds) is a partition of V(D).

⇐) We take x ∈ V(D). By hypothesis there is 1 ≤ j ≤ s such that x ∈ V(Dj).
We assume C is the oriented cycle of Dj. If x ∈ V(C), then there is y ∈ V(C)
such that (y, x) ∈ E(Dj) and w(y) 6= 1, since degDj

(y) ≥ 2 and Dj is a unicycle
oriented subgraph. Now, we assume x /∈ V(C), then there is an oriented path L =
(z1, . . . , zr) such that z1 ∈ V(C) and zr = x. Thus, (zr−1, x) ∈ E(D). Furthermore,
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w(zr−1) 6= 1, since degDj
(zr−1) ≥ 2. Therefore V is a strong vertex cover. 2

4.3 EDGE IDEALS AND THEIR PRIMARY DECOMPOSITION

As is usual if I is a monomial ideal of a polynomial ring R, we denote by G(I)
the minimal monomial set of generators of I. Furthermore, there exists a unique
decomposition, I = q1 ∩ · · · ∩ qr, where q1, . . . , qr are irreducible monomial ideals
such that I 6= ⋂

i 6=j qi for each j = 1, . . . , r. This is called the irredundant irreducible
decomposition of I. Furthermore, qi is an irreducible monomial ideal if and only
if qi = (xa1

i1
, . . . , xas

is ) for some variables xij . Irreducible ideals are primary, then a
irreducible decomposition is a primary decomposition. For more details of pri-
mary decomposition of monomial ideals see [28, Chapter 6]. In this section, we
define the edge ideal I(D) of a weighted oriented graph D and we characterize its
irredundant irreducible decomposition. In particular we prove that this decompo-
sition is an irreducible primary decomposition, i.e, the radicals of the elements of
the irredundant irreducible decomposition of I(D) are different.

Definition 4.15 Let D = (V, E, w) be a weighted oriented graph with V = {x1, . . . ,
xn}. The edge ideal of D, denote by I(D), is the ideal of R = K[x1, . . . , xn] gene-

rated by {xix
w(xj)

j | (xi, xj) ∈ E}.

Definition 4.16 A source of D is a vertex x, such that ND(x) = N+
D (x). A sink of

D is a vertex y such that ND(y) = N−D (y).

Remark 4.17 Let D = (V, E, w) be a weighted oriented graph. We take D′ =
(V, E, w′) a weighted oriented graph such that w′(x) = w(x) if x is not a source
and w′(x) = 1 if x is a source. Hence, I(D) = I(D′). For this reason in this paper,
we will always assume that if x is a source, then w(xi) = 1.

Definition 4.18 Let C be a vertex cover of D, the irreducible ideal associated to C
is the ideal

IC =
(

L1(C) ∪ {x
w(xj)

j | xj ∈ L2(C) ∪ L3(C)}
)
.

Lemma 4.19 I(D) ⊆ IC for each vertex cover C of D.

Proof. We take I = I(D) and m ∈ G(I), then m = xyw(y), where (x, y) ∈ D. Since
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C is a vertex cover, x ∈ C or y ∈ C. If y ∈ C, then y ∈ IC or yw(y) ∈ IC. Thus,
m = xyw(y) ∈ IC. Now, we assume y /∈ C, then x ∈ C. Hence, y ∈ N+

D (x) ∩ Cc, so
x ∈ L1(C). Consequently, x ∈ IC implying m = xyw(y) ∈ IC. Therefore I ⊆ IC. 2

Definition 4.20 Let I be a monomial ideal. An irreducible monomial ideal q that
contains I is called a minimal irreducible monomial ideal of I if for any irre-
ducible monomial ideal p such that I ⊆ p ⊆ q one has that p = q.

Lemma 4.21 Let D be a weighted oriented graph. If I(D) ⊆ (xa1
i1

, . . . , xas
is ), then

{xi1 , . . . , xis} is a vertex cover of D.

Proof. We take J = (xa1
i1

, . . . , xas
is ). If (a, b) ∈ E(D), then abw(b) ∈ I(D) ⊆ J. Thus,

x
aj
ij
|abw(b) for some 1 ≤ j ≤ s. Hence, xij ∈ {a, b} and {a, b} ∩ {xi1 . . . xis} 6= ∅.

Therefore {xi1 , . . . , xis} is a vertex cover of D. 2

Lemma 4.22 Let J be a minimal irreducible monomial ideal of I(D) where G(J) =
{xas

i1
, . . . , xas

is }. If aj 6= 1 for some 1 ≤ j ≤ s, then there is (x, xij) ∈ E(D) where
x /∈ G(J).

Proof. By contradiction suppose there is aj 6= 1 such that if (x, xij) ∈ E(D), then

x ∈ M = {xa1
i1

, . . . , xas
is }. We take the ideal J′ = (M \ {xaj

ij
}). If (a, b) ∈ E(D), then

abw(b) ∈ I(D) ⊆ J. Consequently, xak
ik
|abw(b) for some 1 ≤ k ≤ s. If k 6= j, then

abw(b) ∈ J′. Now, if k = j, then by hypothesis aj 6= 1. Hence, x
aj
ij
|bw(b) implying

xij = b. Thus, (a, xij) ∈ E(D), so by hypothesis a ∈ M \ {xaj
ij
}. This implies

abw(b) ∈ J′. Therefore I(D) ⊆ J′ ( J. A contradiction, since J is minimal. 2

Lemma 4.23 Let J be a minimal irreducible monomial ideal of I(D) where G(J) =
{xa1

i1
, . . . , xas

is }. If aj 6= 1 for some 1 ≤ j ≤ s, then aj = w(xij).

Proof. By Lemma 4.22, there is (x, xij) ∈ E(D) with x /∈ M = {xa1
i1

, . . . , xas
is }. Also,

xx
w(xij

)

ij
∈ I(D) ⊆ J, so xak

ik
|xx

w(xij
)

ij
for some 1 ≤ k ≤ s. Hence, xak

ik
|x

w(xij
)

ij
, since

x /∈ M. This implies, k = j and aj ≤ w(xij). If aj < w(xij), then we take J′ = (M′)

where M′ = {M \ {xaj
ij
}} ∪ {x

w(xij
)

ij
}. So, J′ ( J. Furthermore, if (a, b) ∈ E(D), then

m = abw(b) ∈ I(D) ⊆ J. Thus, xak
ik
|abw(b) for some 1 ≤ k ≤ s. If k 6= j, then xak

ik
∈ M′
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implying abw(b) ∈ J′. Now, if k = j then x
aj
ij
|bw(b), since aj > 1. Consequently,

xij = b and x
w(xij

)

ij
|m. Then m ∈ J′. Hence I(D) ⊆ J′ ( J, a contradiction since J is

minimal. Therefore aj = w(xij). 2

Theorem 4.24 The following conditions are equivalent:

1) J is a minimal irreducible monomial ideal of I(D).

2) There is a strong vertex cover C of D such that J = IC.

Proof. 2)⇒ 1) By definition J = IC is a monomial irreducible ideal. By Lemma 4.19,
I(D) ⊆ J. Now, suppose I(D) ⊆ J′ ⊆ J, where J′ is a monomial irreducible ideal.
We can assume G(J′) = {xb1

j1
, . . . , xbs

js }. If x ∈ L1(C), then there is (x, y) ∈ E(D)

with y /∈ C. Hence, xyw(y) ∈ I(D) and yr /∈ J for each r ∈ N. Consequently
yr /∈ J′ for each r, implyinig y /∈ {xj1 , . . . , xjs}. Furthermore xbi

ji
|xyw(y) for some

1 ≤ i ≤ s, since xyw(y) ∈ I(D) ⊆ J′. This implies, x = xbi
ji
∈ J′. Now, if

x ∈ L2(C), then there is (y, x) ∈ E(D) with y /∈ C. Thus y /∈ J, so y /∈ {xb1
j1

, . . . , xbs
js }.

Also, xw(x)y ∈ I(D) ⊆ J′, then xbi
ji
|xw(x)y for some 1 ≤ i ≤ s. Consequently,

xbi
ji
|xw(x) implies xw(x) ∈ J′. Finally if x ∈ L3(C), then there is (y, x) ∈ E(D)

where y ∈ L2(C) ∪ L3(C) and w(y) 6= 1, since C is a strong vertex cover. So,
xw(x)y ∈ I(D) ⊆ J′ implies xbi

ji
|xw(x)y for some i. Furthermore y /∈ J = IC, since

y ∈ L2(C) ∪ L3(C) and w(y) 6= 1. This implies y /∈ J′ so, xbi
ji
|xw(x) then xw(x) ∈ J′.

Hence, J = IC ⊆ J′. Therefore, J is a minimal monomial irreducible of I(D).

1)⇒ 2) Since J is irreducible, we can suppose G(J) = {xa1
i1

, . . . , xas
is }. By Lemma 4.23,

we have aj = 1 or aj = w(xij) for each 1 ≤ j ≤ s. Also, by Lemma 4.21,

C = {xi1 , . . . , xis} is a vertex cover of D. We can assume G(IC) = {xb1
i1

, . . . , xbs
is },

then bj ∈ {1, w(xij)} for each 1 ≤ j ≤ s. Now, suppose bk = 1 and w(xik) 6= 1 for
some 1 ≤ k ≤ s. Consequently xik ∈ L1(C). Thus, there is (xik , y) ∈ E(D) where
y /∈ C. So, xik yw(y) ∈ I(D) ⊆ J and xar

ir |xik yw(y) for some 1 ≤ r ≤ s. Furthermore
y /∈ C, then r = k and ak = ar = 1. Hence, IC ∩ V(D) ⊆ J ∩ V(D). This implies,
IC ⊆ J, since aj, bj ∈ {1, w(xij)} for each 1 ≤ j ≤ s. Therefore J = IC, since J is
minimal. In particular ai = bi for each 1 ≤ i ≤ s.

Now, assume C is not strong, then there is x ∈ L3(C) such that if (y, x) ∈ E(D),
then w(y) = 1 or y ∈ L1(C). We can assume x = xi1 , and we take J′ the monomial

ideal with G(J′) = {xa2
i2

, . . . , xas
is }. We take (z1, z2) ∈ E(D). If x

aj
ij
|z1zw(z2)

2 for some
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2 ≤ j ≤ s, then z1zw(z2)
2 ∈ J′. Now, assume x

aj
ij
- z1zw(z2)

2 for each 2 ≤ j ≤ s.

Consequently z2 /∈ {xi2 . . . xis}, since aj ∈ {1, w(xij)}. Also z1zw(z2)
2 ∈ I(D) ⊆ J,

then xa1
i1
|z1zw(z2)

2 . But xi1 ∈ L3(C), so z1, z2 ∈ NG[xi1 ] ⊆ C. If xi1 = z1, then

there is 2 ≤ r ≤ s such that z2 = xir . Thus xar
ir | z1zw(z2)

2 . A contradiction, then
xi1 = z2, z1 ∈ C and (z1, xi1) ∈ E(D). Then, w(z1) = 1 or z1 ∈ L1(C). In both cases
z1 ∈ G(IC). Furthermore z1 6= z2 since (z1, z2) ∈ E(D). This implies z1 ∈ G(J′).
So, z1zw(z2)

2 ∈ J′. Hence, I(D) ⊆ J′. This is a contradiction, since J is minimal.
Therefore C is strong. 2

Theorem 4.25 If Cs is the set of strong vertex covers of D, then the irredundant
irreducible decomposition of I(D) is given by I(D) =

⋂
C∈Cs IC.

Proof. By [12, Theorem 1.3.1], there is a unique irredundant irreducible decompo-
sition I(D) =

⋂m
i=1 Ii. If there is an irreducible ideal I′j such that I(D) ⊆ I′j ⊆ Ij

for some j ∈ {1, . . . , m}, then I(D) = (
⋂

i 6=j Ii) ∩ I′j is an irreducible decompo-
sition. Furthermore this decomposition is irredundant. Thus, I′j = Ij. Hence,
I1, . . . , Im are minimal irreducible ideals of I(D). Now, if there is C ∈ Cs such that
IC /∈ {I1, . . . , Im}, then there is xαi

ji
∈ Ii \ IC for each i ∈ {1, . . . , m}. Consequently,

m = lcm(xα1
j1

, . . . , xαm
jm ) ∈ ⋂m

i=1 Ii = I(D) ⊆ IC. Furthermore, if C = {xi1 , . . . , xik},
then IC = (xβ1

i1
, . . . , xβk

ik
) where β j ∈ {1, w(xij)}. Hence, there is j ∈ {1, . . . , k} such

that x
β j
ij
|m. So, there is 1 ≤ u ≤ m such that x

β j
ij
| xαu

ju . A contradiction, since

xαu
ju /∈ IC. Therefore I(D) =

⋂
C∈Cs IC is the irredundant irreducible decomposition

of I(D). 2

Remark 4.26 If C1, . . . , Cs are the strong vertex covers of D, then by Theorem 4.25,
IC1 ∩ · · · ∩ ICs is the irredundant irreducible decomposition of I(D). Furthermore,
if Pi = rad(ICi), then Pi = (Ci). So, Pi 6= Pj for 1 ≤ i < j ≤ s. Thus, IC1 ∩
· · · ∩ ICs is an irredundant primary decomposition of I(D). In particular we have
Ass(I(D)) = {P1, . . . , Ps}.

Example 4.27 Let D be the following oriented weighted graph whose edge ideal
is I(D) = (x3

1x2, x4
2x3, x5

3x4, x3x2
5, x2

4x5).
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x3 x4

x5

x1

x2

5 2

2

3

4

From Theorem 4.24 and Theorem 4.25, the irreducible decomposition of I(D) is:

I(D) = (x3
1, x3, x2

4) ∩ (x3
1, x3, x5) ∩ (x2, x3, x2

4) ∩ (x2, x5
3, x5) ∩ (x2, x4, x2

5) ∩
(x3

1, x4
2, x5

3, x5) ∩ (x3
1, x4

2, x4, x2
5) ∩ (x2, x5

3, x2
4, x2

5) ∩ (x3
1, x4

2, x5
3, x2

4, x2
5).

Example 4.28 Let D be the following oriented weighted graph

x1 x2 x3 x4

2 5 7

Hence, I(D) = (x1x2
2, x2x5

3, x3x7
4). By Theorem 4.24 and Theorem 4.25, the irre-

ducible decomposition of I(D) is:

I(D) = (x1, x3) ∩ (x2
2, x3) ∩ (x2, x7

4) ∩ (x1, x5
3, x7

4) ∩ (x2
2, x5

3, x7
4).

In Example 4.27 and Example 4.28, I(D) has embedding primes. Furthermore the
monomial ideal (V(D)) is an associated prime of I(D) in Example 4.27. Propo-
sition 4.14 and Remark 4.26 give a combinatorial criterion for to decide when
(V(D)) ∈ Ass(I(D)).

4.4 UNMIXED WEIGHTED ORIENTED GRAPHS

Let D = (V, E, w) be a weighted oriented graph whose underlying graph is G =
(V, E). In this section we characterize the unmixed property of I(D) and we prove
that this property is closed under c-minors. In particular if G is a bipartite graph or
G is a whisker or G is a cycle, we give an effective (combinatorial) characterization
of this property.

Definition 4.29 An ideal I is unmixed if each one of its associated primes has the
same height.
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Theorem 4.30 The following conditions are equivalent:

1) I(D) is unmixed.

2) Each strong vertex cover of D has the same cardinality.

3) I(G) is unmixed and L3(C) = ∅ for each strong vertex cover C of D.

Proof. Let C1, . . . , C` be the strong vertex covers of D. By Remark 4.26, the associ-
ated primes of I(D) are P1, . . . , P`, where Pi = rad(ICi) = (Ci) for 1 ≤ i ≤ `.

1)⇒ 2) Since I(D) is unmixed, |Ci| = ht(Pi) = ht(Pj) = |Cj| for 1 ≤ i< j≤ `.

2) ⇒ 3) If C is a minimal vertex cover, then by Corollary 4.8, C ∈ {C1, . . . , C`}.
By hypothesis, |Ci| = |Cj| for each 1 ≤ i ≤ j ≤ `, then Ci is a minimal vertex
cover of D. Thus, by Lemma 4.5, L3(Ci) = ∅. Furthermore I(G) is unmixed, since
C1, . . . , C` are the minimal vertex covers of G.

3)⇒ 1) By Proposition 4.5, Ci is a minimal vertex cover, since L3(Ci) = ∅ for each
1 ≤ i ≤ `. This implies C1, . . . , C` are the minimal vertex covers of G. Since G is
unmixed, we have |Ci| = |Cj| for 1 ≤ i < j ≤ `. Therefore I(D) is unmixed. 2

Definition 4.31 A weighted oriented graph D has the minimal-strong property if
each strong vertex cover is a minimal vertex cover.

Remark 4.32 Using Proposition 4.5, we have that D has the minimal-strong prop-
erty if and only if L3(C) = ∅ for each strong vertex cover C of D.

Definition 4.33 D′ is a c-minor of D if there is a stable set S of D, such that D′ =
D \ NG[S].

Lemma 4.34 If D has the minimal-strong property, then D′ = D \ NG[x] has the
minimal-strong property, for each x ∈ V.

Proof. We take a strong vertex cover C′ of D′ = D \ NG[x] where x ∈ V. Thus,
C = C′ ∪ ND(x) is a vertex cover of D. If y′ ∈ L3(C′), then by Proposition 4.4,
ND′(y′) ⊆ C′. Consequently, ND(y′) ⊆ C′ ∪ ND(x) = C implying y′ ∈ L3(C).
Hence, L3(C′) ⊆ L3(C). Now, we take y ∈ L3(C), then ND(y) ⊆ C. This im-
plies y /∈ ND(x), since x /∈ C. Then, y ∈ C′ and ND′(y) ∪ (ND(y) ∩ ND(x)) =
ND(y) ⊆ C = C′ ∪ ND(x). So, ND′(y) ⊆ C′ implies y ∈ L3(C′). Therefore
L3(C) = L3(C′).



4.4 UNMIXED WEIGHTED ORIENTED GRAPHS 59

Now, if y ∈ L3(C) = L3(C′), then there is z ∈ C′ \ L1(C′) with w(z) 6= 1, such
that (z, y) ∈ E(D′). If z ∈ L1(C), then there exist z′ /∈ C such that (z, z′) ∈ E(D).
Since z′ /∈ C, we have z′ /∈ C′, then z ∈ L1(C′). A contradiction, consequently
z /∈ L1(C). Hence, C is strong. This implies L3(C) = ∅, since D has the minimal-
strong property. Thus, L3(C′) = L3(C) = ∅. Therefore D′ has the minimal-strong
property. 2

Proposition 4.35 If D is unmixed and x ∈ V, then D′ = D \ NG[x] is unmixed.

Proof. By Theorem 4.30, G is unmixed and D has the minimal-strong property.
Hence, by [28], G′ = G \ NG[x] is unmixed. Also, by Lemma 4.34 we have that D′

has the minimal-strong property. Therefore, by Theorem 4.30, D′ is unmixed. 2

Theorem 4.36 If D is unmixed, then a c-minor of D is unmixed.

Proof. If D′ is a c-minor of D, then there is a stable set S = {a1, . . . , as} such that
D′ = D \ NG[S]. Since S is a stable set, D′ = (· · · ((D \ NG[a1]) \ NG[a2]) \ · · · ) \
NG[as]. Hence, by induction and Proposition 4.35, D′ is unmixed. 2

Proposition 4.37 If V(D) is a strong vertex cover of D, then I(D) is mixed.

Proof. By Proposition 4.4 V(D) is not minimal, since L3(V(D)) = V(D). There-
fore, by Theorem 4.30, I(D) is mixed. 2

Remark 4.38 If V+ = V, then I(D) is mixed.

Proof. If xi ∈ V, then by Remark 4.17 N−D (xi) 6= ∅, since V = V+. Thus, there is
xj ∈ V such that (xj, xi) ∈ E(D). Also, w(xj) 6= 1 and xj ∈ V = L3(V). So, V is a
strong vertex cover. Hence, by Proposition 4.37, I(D) is mixed. 2

In the following three results we assume that D1, . . . , Dr are the connected compo-
nents of D. Furthermore Gi is the underlying graph of Di.

Lemma 4.39 Let C be a vertex cover of D, then L1(C) =
⋃r

i=1 L1(Ci) and L3(C) =⋃r
i=1 L3(Ci), where Ci = C ∩V(Di).

Proof. We take x ∈ C, then x ∈ Cj for some 1 ≤ j ≤ r. Thus, ND(x) = NDj(x).
In particular N+

D (x) = N+
Dj
(x), so C ∩ N+

D (x) = Cj ∩ N+
Dj
(x). Hence, L1(C) =⋃r

i=1 L1(Ci). On the other hand,
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x ∈ L3(C)⇔ ND(x) ⊆ C ⇔ NDj(x) ⊆ Cj ⇔ x ∈ L3(Cj).

Therefore, L3(C) =
⋃r

i=1 L3(Ci). 2

Lemma 4.40 Let C be a vertex cover of D, then C is strong if and only if each
Ci = C ∩V(Di) is strong with i ∈ {1, . . . , r}.

Proof. ⇒) We take x ∈ L3(Cj). By Lemma 4.39, x ∈ L3(C) and there is z ∈
N−D (x) ∩ V+ with z ∈ C \ L1(C), since C is strong. So, z ∈ N−Dj

(x) and z ∈ V(Dj),
since x ∈ Dj. Consequently, by Lemma 4.39, z ∈ Cj \ L1(Cj). Therefore Cj is
strong.

⇐) We take x ∈ L3(C), then x ∈ Ci for some 1 ≤ i ≤ r. Then, by Lemma 4.39,
x ∈ L3(Ci). Thus, there is a ∈ N−Di

(x) such that w(a) 6= 1 and a ∈ Ci \ L1(Ci), since
Ci is strong. Hence, by Lemma 4.39, a ∈ C \ L1(C). Therefore C is strong. 2

Corollary 4.41 I(D) is unmixed if and only if I(Di) is unmixed for each 1 ≤ i ≤ r.

Proof. ⇒) By Theorem 4.36, since Di is a c-minor of D.

⇐) By Theorem 4.30, Gi is unmixed thus G is unmixed. Now, if C is a strong
vertex cover, then by Lemma 4.39, Ci = C ∩ V(Di) is a strong vertex cover. Con-
sequently, L3(Ci) = ∅, since I(Di) is unmixed. Hence, by Lemma 4.39, L3(C) =⋃r

i=1 L3(Ci) = ∅. Therefore, by Theorem 4.30, I(D) is unmixed. 2

Definition 4.42 Let G be a simple graph whose vertex set is V(G) = {x1, . . . , xn}
and edge set E(G). A whisker of G is a graph H whose vertex set is V(H) =
V(G)∪ {y1, . . . , yn} and whose edge set is E(H) = E(G)∪ {{x1, y1}, . . . , {xn, yn}}.

Definition 4.43 Let D and H be weighted oriented graphs. H is a weighted ori-
ented whisker of D if D ⊆ H and the underlying graph of H is a whisker of the
underlying graph of D.

Theorem 4.44 Let H a weighted oriented whisker of D, where V(D) = {x1, . . . , xn}
and V(H) = V(D) ∪ {y1, . . . , yn}, then the following conditions are equivalents:

1) I(H) is unmixed.

2) If (xi, yi) ∈ E(H) for some 1 ≤ i ≤ n, then w(xi) = 1.
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Proof. 2) ⇒ 1) We take a strong vertex cover C of H. Suppose xj, yj ∈ C, then
yj ∈ L3(C), since ND(yj) = {xj} ⊆ C. Consequently, (xj, yj) ∈ E(G) and w(xj) 6=
1, since C is strong. This is a contradiction by condition 2). This implies, |C ∩
{xi, yi}| = 1 for each 1 ≤ i ≤ n. So, |C| = n. Therefore, by Theorem 4.30, I(H) is
unmixed.

1) ⇒ 2) By contradiction suppose (xi, yi) ∈ E(H) and w(xi) 6= 1 for some i. Since
w(xi) 6= 1 and by Remark 4.17, we have that xi is not a source. Thus, there is
xj ∈ V(D), such that (xj, xi) ∈ E(H). We take the vertex cover C = {V(D) \ xj} ∪
{yj, yi}, then by Proposition 4.4, L3(C) = {yi}. Furthermore ND(xi) \ C = {xj}
and (xj, xi) ∈ E(H), then xi ∈ L2(C). Hence C is strong, since L3(C) = {yi},
(xi, yi) ∈ E(G) and w(xi) 6= 1. A contradiction by Theorem 4.30, since I(H) is
unmixed. 2

Theorem 4.45 Let D be a bipartite weighted oriented graph, then I(D) is unmixed
if and only if

1) G has a perfect matching {{x1
1, x2

1}, . . . , {x1
s , x2

s}}where {x1
1, . . . , x1

s} and {x2
1, . . .

, x2
s} are stable sets. Furthermore if {x1

j , x2
i }, {x1

i , x2
k} ∈ E(G) then {x1

j , x2
k} ∈

E(G).

2) If w(xk
j ) 6= 1 and N+

D (xk
j ) = {xk′

i1
, . . . , xk′

ir }where {k, k′} = {1, 2}, then ND(xk
i`
) ⊆

N+
D (xk

j ) and N−D (xk
i`
) ∩V+ = ∅ for each 1 ≤ ` ≤ r.

Proof. ⇐) By 1) and [10, Theorem 2.5.7], G is unmixed. We take a strong vertex
cover C of D. Suppose L3(C) 6= ∅, thus there exist xk

i ∈ L3(C). Since C is strong,
there is xk′

j ∈ V+ such that (xk′
j , xk

i ) ∈ E(D), xk′
j ∈ C \ L1(C) and {k, k′} = {1, 2}.

Furthermore N+
D (xk′

j ) ⊆ C, since xk′
j /∈ L1(C). Consequently, by 3), ND(xk′

i ) ⊆
N+

D (xk′
j ) ⊆ C and N−D (xk′

i ) ∩ V+ = ∅. A contradiction, since xk′
i ∈ L3(C) and C is

strong. Hence, L3(C) = ∅ and D has the strong-minimal property. Therefore I(D)
is unmixed, by Theorem 4.30.

⇒) By Theorem 4.30, G is unmixed. Hence, by [10, Theorem 2.5.7], G satisfies 1).
If w(xk

j ) 6= 1, then we take C = N+
D (xk

j )∪ {xk
i | ND(xk

i ) 6⊆ N+
D (xk

j )} and k′ such that

{k, k′} = {1, 2}. If {xk
i , xk′

i′ } ∈ E(G) and xk
i /∈ C, then xk′

i′ ∈ ND(xk
i ) ⊆ N+

D (xk
j ) ⊆ C.

This implies, C is a vertex cover of D. Now, if xk
i1
∈ L3(C), then ND(xk

i1
) ⊆ C.

Consequently ND(xk
i1
) ⊆ N+

D (xk
j ) implies xk

i1
/∈ C. A contradiction, then L3(C) ⊆

N+
D (xk

j ). Also, N−G (xk
j ) 6= ∅, since w(xk

j ) 6= 1. So xk
j ∈ L2(C), since N−G (xk

j ) ∩
C = ∅. Hence C is strong, since L3(C) ⊆ N+

D (xk
j ) and xk

j ∈ V+. Furthermore
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{x′1, . . . , x′s} is a minimal vertex cover, then by Theorem 4.30 |C| = s, since D is
unmixed. We assume N+

D (xk
j ) = {xk′

i1
, . . . xk′

ir }. Since C is minimal, xk
i`

/∈ C for each

1 ≤ ` ≤ r. Thus, ND(xk
i`
) ⊆ N+

D (xk
j ). Now, suppose z ∈ N−D (xk

i`
)∩V+, then z = xk′

i`′
for some 1 ≤ `′ ≤ r, since ND(xk

i`
) ⊆ N+

D (xk
j ). We take C′ = N+

D (xk
j ) ∪ {xk

i | i /∈
{i1, . . . , ir}} ∪ N+

D (xk′
i`′
). Since ND(xk

iu) ⊆ N+
D (xk

j ) for each 1 ≤ u ≤ r, we have that

C′ is a vertex cover. If {xk
q, xk′

q } ∩ L3(C) 6= ∅, then {xk
q, xk′

q } ⊆ C′. So, xk′
q ∈ N+

D (xk
j )

implies q ∈ {i1, . . . , ir}. Consequently, xk
q ∈ N+

D (xk′
i`′
), since xk

q ∈ C′. This implies,

(xk
j , xk′

q ), (xk′
i`′

, xk
q) ∈ E(D). Also, N+

D (xk′
i`′
) ∪ N+

D (xk
j ) ⊆ C′, then xk′

i`′
/∈ L1(C′) and

xk
j /∈ L1(C′). Thus, C′ is strong, since xk

j , xk′
i`′
∈ V+. Furthermore, by Theorem 4.30,

|C′| = s. But xk′
i`
∈ N+

D (xk
j ) and xk

i`
∈ N+

D (xk′
i`′
), hence xk′

i`
, xk

i`
∈ C′. A contradiction,

so N−D (xk
i`
) ∩V+ = ∅. Therefore D satisfies 2). 2

Lemma 4.46 If the vertices of V+ are sinks, then D has the minimal-strong prop-
erty.

Proof. We take a strong vertex cover C of D. Hence, if y ∈ L3(C), then there is
(z, y) ∈ E(D) with z ∈ V+. Consequently, by hypothesis, z is a sink. A contradic-
tion, since (z, y) ∈ E(D). Therefore, L3(C) = ∅ and C is a minimal vertex cover.

2

Lemma 4.47 Let D be a weighted oriented graph, where G ' Cn with n ≥ 6.
Hence, D has the minimal-strong property if and only if the vertices of V+ are
sinks.

Proof. ⇐) By Lemma 4.46.

⇒) By contradiction, suppose there is (z, y) ∈ E(D), with z ∈ V+. We can assume
G = (x1, x2, . . . , xn, x1) ' Cn, with x2 = y and x3 = z. We take a strong vertex
cover C in the following form: C = {x1, x3, . . . , xn−1} ∪ {x2} if n is even or C =
{x1, x3, . . . , xn−2} ∪ {x2, xn−1} if n is odd. Consequently, if x ∈ C and ND(x) ⊆ C,
then x = x2. Hence, L3(C) = {x2}. Furthermore (x3, x2) ∈ E(D) with x3 ∈ V+.
Thus, x3 is not a source, so, (x4, x3) ∈ E(D). Then, x3 ∈ L2(C). This implies C is
a strong vertex cover. But L3(C) 6= ∅. A contradiction, since D has the minimal-
strong property. 2
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x1 x2

x5 x3

x4

1 1

w(x5) 6= 1

1

w(x3) 6= 1

D1

x1 x2

x5 x3

x4

w(x1) 6= 1 w(x2) 6= 1

1

1

1

D2

x1 x2

x5 x3

x4

1 1

w(x5) 6= 1

w(x4) 6= 1

w(x3) 6= 1

D3

x1 x2

x5 x3

x4

1 w(x2) 6= 1

w(x5) 6= 1

1

w(x3) 6= 1

D4

Theorem 4.48 If G ' Cn, then I(D) is unmixed if and only if one of the following
conditions hold:

1) n = 3 and there is x ∈ V(D) such that w(x) = 1.

2) n ∈ {4, 5, 7} and the vertices of V+ are sinks.

3) n = 5, there is (x, y) ∈ E(D) with w(x)=w(y)=1 and D 6'D1, D 6'D2, D 6'D3.

4) D ' D4.

Proof. ⇒) By Theorem 4.30, D has the minimal- strong property and G is unmixed.
Then, by [10, Exercise 2.4.22], n ∈ {3, 4, 5, 7}. If n = 3, then by Remark 4.38, D
satisfies 1). If n = 7, then by Lemma 4.47, D satisfies 2). Now suppose n = 4
and D does not satisfies 2), then we can assume x1 ∈ V+ and (x1, x2) ∈ E(D).
Consequently, (x4, x1) ∈ E(G), since w(x1) 6= 1. Furthermore, C = {x1, x2, x3}
is a vertex cover with L3(C) = {x2}. Thus, x1 ∈ L2(C) and (x1, x2) ∈ E(D) so
C is strong. A contradiction, since C is not minimal. This implies D satisfies 2).
Finally suppose n = 5. If D ' D1, then C1 = {x1, x2, x3, x5} is a vertex cover with
L3(C1) = {x1, x2}. Also (x5, x1), (x3, x2) ∈ E(D) with x5, x3 ∈ V+. Consequently,
C1 is strong, since x5, x3 ∈ L2(C1). A contradiction, since C1 is not minimal. If
D ' D2, then C2 = {x1, x2, x4, x5} is a vertex cover where L3(C2) = {x1, x5} and
(x2, x1), (x1, x5) ∈ E(D) with x2, x1 ∈ V+. Hence, C2 is strong, since x2, x1 /∈
L1(C2). A contradiction, since C2 is not minimal. If D ' D3, C3 = {x2, x3, x4, x5} is
a vertex cover where L3(C3) = {x3, x4} and (x4, x3), (x5, x4) ∈ E(D) with x4, x5 ∈
V+. Thus, C3 is strong, since x4, x5 /∈ L1(C3). A contradiction, since C3 is not
minimal. Now, since n = 5 and by 3) we can assume (x2, x3) ∈ E(D), x2, x3 ∈ V+

and there are not two adjacent vertices with weight 1. Since x2 ∈ V+, (x1, x2) ∈
E(D). Suppose there are not 3 vertices z1, z2, z3 in V+ such that (z1, z2, z3) is a
path in G, then w(x4) = w(x1) = 1. Furthermore, w(x5) 6= 1, since there are
not adjacent vertices with weight 1. So, C4 = {x2, x3, x4, x5} is a vertex cover of
D, where L3(C4) = {x3, x4}. Also (x2, x3) ∈ E(G) with w(x2) 6= 1. Hence, if
(x3, x4) ∈ E(D) or (x5, x4) ∈ E(D), then C4 is strong, since x3, x5 ∈ V+. But C4 is
not minimal. Consequently, (x4, x3), (x4, x5) ∈ E(D) and D ' D4. Now, we can
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assume there is a path (z1, z2, z3) in D such that z1, z2, z3 ∈ V+. Since there are
not adjacent vertices with weight 1, we can suppose there is z4 ∈ V+ such that
L = (z1, z2, z3, z4) is a path. We take {z5} = V(D) \ V((L)) and we can assume
(z2, z3) ∈ E(D). This implies, (z1, z2), (z5, z1) ∈ E(D), since z1, z2 ∈ V+. Thus,
C5 = {z1, z2, z3, z4} is a vertex cover with L3(C5) = {z2, z3}. Then C5 is strong,
since (z1, z2), (z2, z3) ∈ E(D) with z2 ∈ L3(C5) and z1 ∈ L2(C5). A contradiction,
since C5 is not minimal.

⇐) If n ∈ {3, 4, 5, 7}, then by [10, Exercise 2.4.22] G is unmixed. By Theorem 4.30,
we will only prove that D has the minimal-strong property. If D satisfies 2), then
by Lemma 4.46, D has the minimal-strong property. If D satisfies 1) and C is a
strong vertex cover, then by Proposition 4.14, |C| ≤ 2. This implies C is minimal.
Now, suppose n = 5 and C ′ is a strong vertex cover of D with |C ′| ≥ 4. If D ' D4,
then x2, x5 /∈ L3(C ′), since (N−D (x2) ∪ N−D (x5)) ∩ V+ = ∅. So ND(x2) 6⊆ C ′ and
ND(x5) 6⊆ C ′. Consequently, x1 /∈ C ′ implies C ′ = {x2, x3, x4, x5}. But x4 ∈ L3(C ′)
and N−D (x4) = ∅. A contradiction, since C ′ is strong. Now assume D satisfies 3).
Suppose there is a path L = (x1, x2, x3) in G such that w(x1) = w(x2) = w(x3) = 1.
We can suppose (x4, x5) ∈ E(D) where V(D) \ V(L) = {x4, x5}. Since w(x1) =
w(x3) = 1, x2 /∈ L3(C ′). If x2 /∈ C ′, then C ′ = {x1, x3, x4, x5} and x4 ∈ L3(C ′). But
N−D (x4) = {x3} and w(x3) = 1. A contradiction, hence x2 ∈ C ′. We can assume
x3 /∈ C ′, since x2 /∈ L3(C ′). This implies C ′ = {x1, x2, x4, x5} and L3(C ′) = {x1, x5}.
Thus, (x5, x1) ∈ E(D) and x5, x4 ∈ V+. Consequently (x3, x4) ∈ E(D), since x4 ∈
V+. A contradiction, since D 6' D2. Hence, there are not three consecutive vertices
whose weights are 1. Consequently, since D satisfies 3), we can assume w(x1) =
w(x2) = 1, w(x3) 6= 1 and w(x5) 6= 1. If w(x4) = 1, then x3, x5 /∈ L3(C ′) since
ND(x3, x5) ∩ V+ = ∅. This implies ND(x3) 6⊆ C ′ and ND(x5) 6⊆ C ′. Then, x4 /∈ C ′
and C ′ = {x1, x2, x3, x5}. Thus, (x5, x1), (x3, x2) ∈ E(D), since L3(C ′) = {x1, x2}.
Consequently, (x4, x5), (x4, x3) ∈ E(D), since x5, x3 ∈ V+. A contradiction, since
D 6' D1. So, w(x4) 6= 1 and we can assume (x5, x4) ∈ E(D), since x4 ∈ V+.
Furthermore (x1, x5) ∈ E(D), since x5 ∈ V+. Hence, (x3, x4) ∈ E(D), since D 6'
D3. Then (x2, x3) ∈ E(D), since x3 ∈ V+. This implies x1, x2, x3, x5 /∈ L3(C ′), since
N−D (xi) ∩ V+ = ∅ for i ∈ {1, 2, 3, 5}. A contradiction, since |C ′| ≥ 4. Therefore D
has the minimal-strong property. 2

4.5 COHEN-MACAULAY WEIGHTED ORIENTED GRAPHS

In this section we study the Cohen-Macaulayness of I(D). In particular we give a
combinatorial characterization of this property when D is a path or D is complete.
Furthermore, we show the Cohen-Macaulay property depends of the characteristic
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of K.

Definition 4.49 The weighted oriented graph D is Cohen-Macaulay over the field
K if the ring R/I(D) is Cohen-Macaulay.

Remark 4.50 If G is the underlying graph of D, then rad(I(D)) = I(G).

Proposition 4.51 If I(D) is Cohen-Macaulay, then I(G) is Cohen-Macaulay and D
has the minimal-strong property.

Proof. By Remark 4.50, I(G) = rad(I(D)), then by [14, Theorem 2.6], I(G) is
Cohen-Macaulay. Furthermore I(D) is unmixed, since I(D) is Cohen-Macaulay.
Hence, by Theorem 4.30, D has the minimal-strong property.

Example 4.52 In Example 4.27 and Example 4.28 I(D) is mixed. Hence, I(D) is
not Cohen-Macaulay, but I(G) is Cohen-Macaulay.

Conjecture 4.53 I(D) is Cohen- Macaulay if and only if I(G) is Cohen-Macaulay
and D has the minimal-strong property. Equivalently I(D) is Cohen-Macaulay if
and only if I(D) is unmixed and I(G) is Cohen-Macaulay.

Proposition 4.54 Let D be a weighted oriented graph such that V = {x1, . . . , xk}
and whose underlying graph is a path G = (x1, . . . , xk). Then the following condi-
tions are equivalent.

1) R/I(D) is Cohen-Macaulay.

2) I(D) is unmixed.

3) k = 2 or k = 4. In the second case, if (x2, x1) ∈ E(D) or (x3, x4) ∈ E(D), then
w(x2) = 1 or w(x3) = 1 respectively.

Proof. 1)⇒ 2) By [10, Corollary 1.5.14].

2) ⇒ 3) By Theorem 4.45, G has a perfect matching, since D is bipartite. Conse-
quently k is even and {x1, x2}, {x3, x4}, . . . , {xk−1, xk} is a perfect matching. If k ≥
6, then by Theorem 4.45, we have {x2, x5} ∈ E(G), since {x2, x3} and {x4, x5} ∈
E(G). A contradiction since {x2, x5} /∈ E(G). Therefore k ∈ {2, 4}. Furthermore by
Theorem 4.45, w(x2) = 1 or w(x3) = 1 when (x2, x1) ∈ E(D) or (x3, x4) ∈ E(D),
respectively.
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3) ⇒ 1) We take I = I(D). If k = 2, then we can assume (x1, x2) ∈ E(D). So,
I = (x1xw(x2)

2 ) = (x1) ∩ (xw(x2)
2 ). Thus, by Remark 4.26, Ass(I) = {(x1), (x2)}.

This implies, ht(I) = 1 and dim(R/I) = k− 1 = 1. Also, depth(R/I) ≥ 1, since
(x1, x2) /∈ Ass(I). Hence, R/I is Cohen-Macaulay. Now, if k = 4, then ht(I) =
ht(rad(I)) = ht(I(G)) = 2. Consequently, dim(R/I) = k − 2 = 2. Furthermore
one of the following sets {x2− xw(x1)

1 , x3− xw(x4)
4 }, {x2− xw(x1)

1 , x4− xw(x3)
3 }, {x1−

xw(x2)
2 , x4 − xw(x3)

3 } is a regular sequence of R/I, then depth(R/I) ≥ 2. Therefore,
I is Cohen-Macaulay. 2

Theorem 4.55 If G is a complete graph, then the following conditions are equiva-
lent.

1) I(D) is unmixed.

2) I(D) is Cohen-Macaulay.

3) There are not D1, . . . , Ds unicycles orientes subgraphs of D such that V(D1), . . . ,
V(Ds) is a partition of V(D)

Proof. We take I = I(D). Since I(G) = rad(I) and G is complete, ht(I) =
ht(I(G)) = n− 1.

1) ⇒ 3) Since ht(I) = n − 1 and I is unmixed, (x1, . . . , xn) /∈ Ass(I). Thus, by
Remark 4.26, V(D) is not a strong vertex cover of D. Therefore, by Proposition 4.14,
D satisfies 3).

3)⇒ 2) By Proposition 4.14, V(D) is not a strong vertex cover of D. Consequently,
by Remark 4.26, (x1, . . . , xn) /∈ Ass(I). This implies, depth(R/I) ≥ 1. Further-
more, dim(R/I) = 1, since ht(I) = n− 1. Therefore I is Cohen-Macaulay.

2)⇒ 1) By [10, Corollary 1.5.14]. 2

If D is complete or D is a path, then the Cohen-Macaulay property does not depend
of the field K. It is not true in general, see the following example.

Example 4.56 Let D be the following weighted oriented graph:
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x3

x2

x1

x9

x8

x7

x6

x5

x4

x11

x10

2

2

2

1

1

1

1

1

1

1

1

Hence,

I(D) = (x2
1x4, x2

1x8, x2
1x5, x2

1x9, x2
2x10, x2

2x5, x2
2x11, x2

2x8, x2
2x6, x2

3x7, x2
3x10, x2

3x6,

x2
3x9, x4x8, x4x7, x4x11, x5x10, x5x9, x5x11, x6x8, x6x9, x6x11, x7x10, x7x11, x9x11).

By [17, Example 2.3], I(G) is Cohen- Macaulay when the characteristic of the field
K is zero but it is not Cohen-Macaulay in characteristic 2. Consequently, I(D) is
not Cohen-Macaulay when the characteristic of K is 2. Also, I(G) is unmixed.
Furthermore, by Lemma 4.46, I(D) has the minimal-strong property, then I(D) is
unmixed. Using Macaulay2 [11] we show that I(D) is Cohen-Macaulay when the
characteristic of K is zero.
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