CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS DEL INSTITUTO POLITÉCNICO NACIONAL

UNIDAD ZACATENCO
DEPARTAMENTO DE MATEMÁTICAS

Propiedades asintóticas de ideales monomiales

Tesis que presenta

> Jonathan Toledo Toledo

Para Obtener el Grado de
Doctor en Ciencias
En la Especialidad de
Matemáticas

Director de Tesis:
Dr. Enrique Reyes Espinoza

CENTER FOR RESEARCH AND ADVANCED STUDIES OF THE NATIONAL POLYTHECHNIC INSTITUTE

CAMPUS ZACATENCO
DEPARTMENT OF MATHEMATICS

Asymptotic properties of monomial ideals

A dissertation presented by
Jonathan Toledo Toledo
To Obtain the Degree of
Doctor in Science
In the Speciality of
Mathematics

Thesis Advisor:
Dr. Enrique Reyes Espinoza

RESUMEN

Un ideal I tiene la propiedad de persistencia fuerte si $\left(I^{k+1}: I\right)=I^{k}$ para $k \geq 1$. En esta tesis estudiamos esta propiedad para varias familias de ideales. En particular, probamos que los ideales monomiales, cuyo conjunto mínimo de generadores son homogéneos de grado 2 , tienen la propiedad de persistencia fuerte. Decimos que una hipergráfica simple \mathcal{C} tiene la propiedad de persistencia fuerte, si su ideal de aristas $I(\mathcal{C})$ tiene la propiedad de persistencia fuerte. Mostramos que una hipergráfica simple tiene la propiedad de persistencia fuerte si y sólo si alguna de sus componentes conexas la tiene. También demostramos que una hipergráfica simple con a lo más 4 vértices y una hipergráfica simple no mezclada Köning sin 4 -ciclos tienen la propiedad de persistencia fuerte. Además demostramos que $I(\mathcal{C})$ tiene la propiedad de persistencia fuerte si y sólo si el ideal pesado $I_{w}(\mathcal{C})$ tiene la propiedad de persistencia fuerte. El resultado anterior también se obtuvo para la propiedad de persistencia. Finalmente, introducimos y estudiamos la propiedad de persistencia fuerte simbólica.

Otra propiedad que se estudia en esta tesis es la propiedad Gorenstein para el subanillo monomial homogéneo S_{G} asociado a una gráfica G. Mostramos que si S_{G} es normal, entonces S_{G} es Gorenstein si y sólo si G es no mezclada y su número de cubierta es $\left\lceil\frac{|V(G)|}{2}\right\rceil$. También demostramos que si $|V(G)|$ es par y S_{G} es Gorenstein, entonces G es bipartita.

Además introducimos el ideal monomial $I(D)$ asociado a una gráfica orientada pesada D. Determinamos la descomposición irredundante irreducible de $I(D)$. En particular, caracterizamos los primos asociados de $I(D)$. También caracterizamos cuando $I(D)$ es no mezclado y damos una caracterización explícita (combinatoria) de esta propiedad cuando D es bipartita, un whiskers o un ciclo. Finalmente estudiamos la propiedad Cohen-Macaulay de $I(D)$ para algunos grafos orientados pesados.

Abstract

An ideal I has the strong persistence property if $\left(I^{k+1}: I\right)=I^{k}$ for $k \geq 1$. In this thesis we study this property for some families of ideals. In particular, we prove that the monomial ideals whose minimal set of generators has degree two have the strong persistence property. We say a clutter \mathcal{C} has the strong persistence property if its edge ideal $I(\mathcal{C})$ has the strong persistence property. We show a clutter has the strong persistence property if and only if at least one of its connected components has the strong persistence property. Also, we prove that a clutter with at most 4 vertices and an unmixed König clutter without 4-cycles have the strong persistence property. Furthermore, we show $I(\mathcal{C})$ has the strong persistence property if and only if its weighted ideal $I_{w}(\mathcal{C})$ has the strong persistence property. We prove the last result for the persistence property. Finally, we introduce and study the symbolic strong persistence.
Another property studied in this thesis is the Gorenstein property for the homogeneous monomial subrings S_{G} associated to a graph G. We prove that if S_{G} is normal, then S_{G} is Gorenstein if and only if G is unmixed and its cover number is $\left\lceil\frac{n}{2}\right\rceil$. Also, if $|V(G)|$ is even and S_{G} is Gorenstein, then we show that G is bipartite.

Furthermore, we introduce the edge ideal $I(D)$ associated to a weighted oriented graph D. We determine irredundant irreducible decomposition of $I(D)$. In particular, we characterize the associated primes. Also, we characterize the unmixed property for $I(D)$ and we give an explicit (combinatorial) characterization, for this property when D is bipartite, D is a whisker or D is a cycle. Finally, we study the Cohen-Macaulay property of $I(D)$, for some weighted oriented graphs D.

Acknowledgements

I thank my family for their unconditional support and to my professors for their dedication in my formation.

I thank CONACyT for the PhD grant and ABACUS (CONACyT grant EDOMEX-2011-C01-165873) for the support.

Preface

The structure of the dissertation is as follows. In Chapter 1 we introduce the general concepts and results used in this thesis, we study the monomial ideals, their minimal sets of generators and their primary decomposition. Also, we characterised when a monomial ideal is prime, irreducible or primary.

In Chapter 2, we work with two of the most studied asymptotic properties, the strong persistence property and the persistence property. An ideal I has the strong persistence property if $\left(I^{k+1}: I\right)=I^{k}$ for each k. Furthermore, ideal I has the persistence property if $\operatorname{Ass}\left(I^{k}\right) \subseteq \operatorname{Ass}\left(I^{k+1}\right)$ for each k. We start studying the case of monomial ideals whose minimal set of generators consists of monomials of degree 2, we prove that these ideals have the strong persistence property. Thus, we obtain that the strong persistence property is satisfied for a more general class that the edge ideals of graphs. Another class that generalises to the edges ideals of graphs are the squarefree monomial ideals. There ideals are associated to clutters. furthermore, we say that a clutter has the strong persistence property if its squarefree monomial ideal has the strong persistence property. There are some squarefree monomial ideals without the strong persistence property. In this chapter we find subfamilies and examples of squarefree monomial ideal with the strong persistence property and we give tools and results that permit to verify this property. In particular, we prove that a clutter has the strong persistence property if and only if any of its connected components has the strong persistence property. This result helps us to study the strong persistence property in a clutter from its connected components. Another examples of these results is: if \mathcal{C} contains an edge f such that the set $\{g \cap f \mid g \in E(C)\}$ is a chain, then we show $I(\mathcal{C})$ has the strong persistence property. Also, if $|V(\mathcal{C})| \leq 4$ or \mathcal{C} is an unmixed König clutter without 4 -cycles, then we prove that \mathcal{C} has the strong persistence property. In addition, we introduce the weight ideal I_{w} of a squarefree monomial ideal I, and we prove that I has the strong persistence property if and only if I_{w} has this property. This result permits to find non-squarefree monomial ideals that satisfy the persistence property. Finally, we introduce the concept of symbolic strong persistence as a tool for the study of asymptotic properties.

Let G be a simple graph, whose vertex set is $V=\left\{x_{1}, \ldots, x_{n}\right\}$. Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field K and we take $R^{\prime}=K\left[t, x_{1} t, \ldots, x_{n} t\right]$ the subring of $R[t]$ where t is a new variable. Hence, the homogeneous monomial subring of
G is the ring $S_{G}=R^{\prime}\left[\left\{x_{i} x_{j} t \mid\left\{x_{i}, x_{j}\right\} \in E(G)\right\}\right] \subseteq R[t]$. Thus, S_{G} is a standard k-algebra. A standard k-algebra is called Gorenstein if it is Cohen-Macaulay and its canonical module is a principal ideal. In [9] is proven that if G is bipartite, then S_{G} is Gorenstein if and only if G is unmixed. In Chapter 3 we prove that if S_{G} is normal, then S_{G} is Gorenstein if and only if G is unmixed and $\tau(G)=\left\lceil\frac{n}{2}\right\rceil$. This generalizes the result given in [9], since if G is bipartite, then G is normal. Furthermore, we prove that if n is even and S_{G} is Gorenstein, then G is bipartite.
A weighted oriented graph is a triple $D=(V, E, w)$ where $V=\left\{x_{1}, \ldots, x_{n}\right\}$, $E \subseteq V \times V$ and w is a function $w: V \rightarrow \mathbb{N}$. The underlying graph of D is the simple graph G whose vertex set is V and whose edge set is $\{\{x, y\} \mid(x, y) \in E\}$. In Chapter 4, we introduce the edge ideal $I(D)$ of D, given by $I(D)=\left(x_{i} x_{j}^{w\left(x_{j}\right)} \mid\right.$ $\left.\left(x_{i}, x_{j}\right) \in E(D)\right)$ in $R=K\left[x_{1}, \ldots, x_{n}\right]$. We study the vertex covers of D. In particular, we introduce the notion of strong vertex cover. We characterize the irredundant irreducible decomposition of $I(D)$ and we show that each irreducible ideal of this decomposition is associated with a strong vertex cover of D. Furthermore, we prove that $I(D)$ is unmixed if and only if the underlying graph of D is unmixed and every strong vertex cover of D is minimal. When D is bipartite, D is a whisker of D is a cycle, we give an effective (combinatorial) characterization of the unmixed property of $I(D)$. Also, we study the Cohen-Macaulay property of $I(D)$. In particular, we show that unmixed property and Cohen-Macaulayness are equivalent when D is a path or D is complete and in both cases we give a combinatorial characterization of these properties. Finally, we give an example where Cohen-Macaulay property depend of the field K.

Table of Content

RESUMEN i
ABSTRACT iii
Preface vii
TABLE OF CONTENT ix
1 INTRODUCTION 1
1.1 MONOMIAL IDEALS 1
1.2 PRIMARY DECOMPOSITION 7
2 ON THE STRONG PERSISTENCE PROPERTY FOR MONOMIAL IDEALS 15
2.1 INTRODUCTION 15
2.2 GRAPHS WITH LOOPS 16
2.3 WEIGHTED MONOMIAL IDEALS 19
2.4 SQUAREFREE MONOMIAL IDEAL 21
2.5 THE SYMBOLIC STRONG PERSISTENCE PROPERTY 31
3 ON GORENSTEIN HOMOGENOEOUS MONOMIAL SUBRINGS OF GRAPHS 33
3.1 INTRODUCTION 33
3.2 SOME PROPERTIES OF UNMIXED GRAPHS 34
3.3 GORENSTEIN HOMOGENEOUS SUBRING OF GRAPHS 36
4 MONOMIAL IDEALS OF WEIGHTED ORIENTED GRAPHS 49
4.1 INTRODUCTION 49
4.2 WEIGHTED ORIENTED GRAPHS AND THEIR VERTEX COVERS 50
4.3 EDGE IDEALS AND THEIR PRIMARY DECOMPOSITION 53
4.4 UNMIXED WEIGHTED ORIENTED GRAPHS 57
4.5 COHEN-MACAULAY WEIGHTED ORIENTED GRAPHS 64
REFERENCES 69

CHAPTER

?

INTRODUCTION

1.1 MONOMIAL IDEALS

Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field K. If $B \subseteq R$, in this thesis we denoted by $\operatorname{Mon}(B)$ the set of monomials of B. Given $E \subseteq[n], x_{E}$ denotes the squarefree monomial $\prod_{i \in E} x_{i}$ and x denotes the monomial $x_{1} \cdots x_{n}=x_{[n]}$.

Definition 1.1 An ideal I of R is called monomial if it is generated by a set of monomials.

Definition 1.2 Given a polynomial $f=\sum_{m \in \operatorname{Mon}(R)} a_{m} m$ in R, the support of f is $\left\{m \in \operatorname{Mon}(R) \mid a_{m} \neq 0\right\}$ and it is denoted by $\operatorname{supp}(f)$.

Proposition 1.3 An ideal I of R is monomial if and only if $\operatorname{supp}(f) \subseteq I$ for each polynomial $f \in I$.

Proof. $\Rightarrow) I$ is generated by a set of monomials \mathcal{M}. Now, given $f \in I$ we have that $f=f_{1} g_{1}+\ldots+f_{k} g_{k}$, where $g_{i} \in \mathcal{M}$ and $f_{i} \in R$ for $i=1, \ldots, k$. Consequently, $\operatorname{supp}(f) \subseteq \cup_{i=1}^{k} \operatorname{supp}\left(f_{i}\right)\left\{g_{i}\right\}$, where $\operatorname{supp}\left(f_{i}\right)\left\{g_{i}\right\}=\left\{m g_{i} \mid m \in \operatorname{supp}\left(f_{i}\right)\right\}$. Therefore $\operatorname{supp}(f) \subseteq I$, since $\operatorname{supp}\left(f_{i}\right)\left\{g_{i}\right\} \subseteq I$.
$\Leftarrow)$ We take $\mathcal{M}=\cup_{f \in I} \operatorname{supp}(f)$, then $\mathcal{M} \subseteq I$ and $(\mathcal{M}) \subseteq I$. Furthermore if $f \in I$, then $f=\sum_{m \in \operatorname{supp}(f)} a_{m} m$. Thus, $f \in(\mathcal{M})$. Hence $I=(\mathcal{M})$, therefore I monomial.

Proposition 1.4 A monomial ideal is generated by a finite set of monomials.
Proof. Let I a monomial ideal. Since R is Noetherian, I is generated by a finite number of polynomials f_{1}, \ldots, f_{k}. Hence, I is generated by $\cup_{i=1}^{k} \operatorname{supp}\left(f_{i}\right)$.

Remark 1.5 Let I be a monomial ideal generated by $\mathcal{M} \subseteq \operatorname{Mon}(R)$, then a monomial $m \in I$ if and only if there is $v \in \mathcal{M}$ such that $v \mid m$.

Lemma 1.6 If $I \in \operatorname{Mon}(R)$ and \mathcal{M} is a set of monomial generators of I, then \mathcal{M} is minimal (among the sets of monomial generators of I) if and only if any two distinct monomials of \mathcal{M} are not divided.

Proof. $\Rightarrow)$ Suppose $m, n \in \mathcal{M}, m \neq n$ such that $m \mid n$, then $\mathcal{M} \backslash\{n\}$ generates I. This contradicts the minimality of \mathcal{M}.
$\Leftarrow)$ By Remark 1.5, each proper subset of \mathcal{M} does not generate I.

Proposition 1.7 If $I \in \operatorname{Mon}(R)$, then I has a unique minimal monomial generating set.

Proof. Let G, H be minimal generating sets of I. If $u \in G$, then by Remark 1.5 , $v \mid u$ for some $v \in H$. Furthermore $u^{\prime} \mid v$ for some $u^{\prime} \in G$, hence $u^{\prime} \mid u$. Thus, by Lemma 1.6, $u=u^{\prime}$ so $u=v$. Consequently, $G \subseteq H$. Similarly we obtain the other inclusion.

Definition 1.8 We say that $\mathcal{M} \subseteq \operatorname{Mon}(R)$ is a minimal set of monomials if it does not have divisibility relations.

Corollary 1.9 Each minimal set of monomials is finite.
Proof. If \mathcal{M} is a minimal set of monomials, then \mathcal{M} is the minimal monomial generating set of $I=(\mathcal{M})$. Hence, by Proposition 1.4, \mathcal{M} is finite.
We have a natural bijection between the set of monomial ideals of R and the collection of minimal sets of monomials given by $I \longmapsto G(I)$.

Definition 1.10 Given $\mathcal{M} \subseteq \operatorname{Mon}(R), \mathcal{M}^{\min }$ is the set of monomials v of \mathcal{M} such that if $u \in \mathcal{M}$ and $u \mid v \Rightarrow u=v$. Also, $\mathcal{M}^{\max }$ is the set of monomials v of \mathcal{M} such that if $u \in \mathcal{M}$ and $v \mid u \Rightarrow u=v$.

Remark 1.11 If $\mathcal{M} \subseteq \operatorname{Mon}(R)$, then $\left(\mathcal{M}^{\text {min }}\right)=(\mathcal{M})$.
Proof. Now, we take $v \in \mathcal{M} \subseteq \operatorname{Mon}(R)$. Since $\{m \in \operatorname{Mon}(R)|m| v\}$ is finite, there is a minimal u (in the sense of divisibility) in \mathcal{M} such that $u \mid v$. Hence, $u \in \mathcal{M}^{\min }$ so $u \in\left(\mathcal{M}^{\text {min }}\right)$. Therefore, $(\mathcal{M})=\left(\mathcal{M}^{\text {min }}\right)$.

Lemma 1.12 If $\mathcal{M} \subseteq \operatorname{Mon}(R)$, then $\mathcal{M}^{\text {min }}$ and $\mathcal{M}^{\max }$ are finite.
Proof. $\mathcal{M}^{\text {min }}$ and $\mathcal{M}^{\text {max }}$ are minimal sets of monomials then by Corollary 1.9 , they are finite.

Corollary 1.13 Let $\mathcal{M} \subseteq \operatorname{Mon}(R)$ be an infinity set, then there exist a sequence m_{1}, m_{2}, \ldots in \mathcal{M} with $m_{i} \neq m_{j}$ if $i \neq j$ such that $m_{i} \mid m_{i+1}$ for each i.

Proof. By Lemma 1.12, $\mathcal{M}^{\max }$ is finite. Hence, $A=\left\{m \in \mathcal{M}|m| m^{\prime}\right.$ for some $\left.m^{\prime} \in \mathcal{M}^{\max }\right\}$ is finite. Consequently, $M=\mathcal{M} \backslash A$ is infinite. Since $\mathcal{M}^{\max } \subseteq A$, if $u \in M$, then there is $v \in \mathcal{M}$ such that $u \neq v$ and $u \mid v$. Furthermore, if $v \in A$, then there is $m^{\prime} \in \mathcal{M}^{\max }$ such that $v \mid m^{\prime}$. So $u \mid m^{\prime}$, a contradiction. Therefore, $v \notin A$ implies $v \in \mathcal{M}$.

Definition 1.14 A monomial ideal is called squarefree, if $G(I)$ consists of squarefree monomials (i.e., monomials $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ where $\alpha_{i} \in\{0,1\}$).

Definition 1.15 A clutter \mathcal{C} is a pair (V, E) where V is a set and E consists of subsets of V such that $f \nsubseteq g$ and $g \nsubseteq f$ for each $f, g \in E$. The elements of V and E are called vertices and edges, respectively.

Definition 1.16 Let \mathcal{C} be a clutter with vertex set $\left\{x_{1}, \ldots, x_{n}\right\}$. The edge ideal of \mathcal{C}, denoted by $I(\mathcal{C})$, is the squarefree monomial ideal $I(\mathcal{C})=\left(\left\{x_{i_{1}} \cdots x_{i_{s}}\right\} \mid\right.$ $\left.\left.\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\} \in E(\mathcal{C})\right\}\right)$ in the polynomial ring $K\left[x_{1}, \ldots, x_{n}\right]$.

Remark 1.17 There is a bijection between squarefree monomial ideals in $K\left[x_{1}, \ldots\right.$,$\left.x_{n}\right]$ and clutters with vertices in $\left\{x_{1}, \ldots, x_{n}\right\}$, since inclusion in $\left\{x_{1}, \ldots, x_{n}\right\}$ implies divisibility in $K\left[x_{1}, \ldots, x_{n}\right]$.

Proposition 1.18 A monomial ideal P is prime if and only if $G(P) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$.
Proof. $\Rightarrow)$ We take $u \in G(P)$. Since $u \in \operatorname{Mon}(R)$, there is $x_{i} \in\left\{x_{1}, \ldots, x_{n}\right\}$ such that $u=x_{i} v$ and $v \in \operatorname{mon}(R)$. Thus, $x_{i} \in P$ or $v \in P$ since P is prime. If $v \in P$, then there is $v^{\prime} \in G(P)$ such that $v^{\prime} \mid v$. Hence, $v^{\prime} \mid u$ and $v^{\prime} \neq u$. A contradiction by Lemma 1.6. Consequently, $x_{i} \in P$. So $x_{i} \in G(P)$, since P is prime. Therefore $u=x_{i}$, by Lemma 1.6 .
\Leftarrow Since $G(P) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}, R /(G(I)) \cong K\left[x_{i} \mid x_{i} \notin G(I)\right]$. Thus, $R /(G(I))$ is a domain. Therefore $(G(I))$ is prime.

Proposition 1.19 Let $\left\{I_{\alpha}\right\}_{\alpha \in \Phi}$ be a family of monomial ideals of R. Then, $\sum_{\alpha \in \phi} I_{\alpha}$ and $\cap_{\alpha \in \phi} I_{\alpha}$ are monomial ideals.

Proof. $\sum_{\alpha \in \Phi} I_{\alpha}$ is generated by $\cup_{\alpha \in \Phi} G\left(I_{\alpha}\right)$, then the sum is a monomial ideal. Now, if $f \in \cap_{\alpha \in \Phi} I_{\alpha}$, then $f \in I_{\alpha}$. Thus, $\operatorname{supp}(f) \subseteq I_{\alpha}$ for each α. Hence, $\operatorname{supp}(f) \subseteq$ $\cap_{\alpha \in \Phi} I_{\alpha}$. Therefore, $\cap_{\alpha \in \phi} I_{\alpha}$ is a monomial ideal, by Proposition 1.3 .

Remark 1.20 If I, J are monomial ideals of R, then $I \cap J$ is generated by $B=$ $\{\operatorname{lcm}(u, v) \mid u \in G(I), v \in G(J)\}$.

Proof. If $m \in \beta$, then $m=\operatorname{lcm}(u, v)$ for $u \in G(I)$ and $v \in G(J)$. Thus $u \mid m$ and $v \mid m$, so $m \in I \cap J$. Hence $B \subseteq I \cap J$. By Proposition 1.19, $I \cap J$ is monomial. Consequently, if $m^{\prime} \in G(I \cap J) \subseteq I \cap J$, then there are $u^{\prime} \in G(I)$ and $v^{\prime} \in G(J)$ such that $u^{\prime} \mid m^{\prime}$ and $v^{\prime} \mid m^{\prime}$. Consequently $\operatorname{gcd}\left(u^{\prime}, v^{\prime}\right) \mid m^{\prime}$. Therefore $I \cap J \subseteq(B)$.

Lemma 1.21 If $I, J \in \operatorname{Mon}(R)$, then $(I: J)=\cap_{u \in G(J)}(I: u)$.
Proof. If $m \in(I: J)$, then $m J \in I$. In particular $m u \in I$ for $u \in G(J)$. So, $(I: J) \subseteq$ $(I: u)$. Now, we take $m^{\prime \prime} \in \cap_{u \in G(J)}(I: u)$. If $f \in J$, then $f=\sum_{m^{\prime} \in \operatorname{supp}(f)} a_{m^{\prime}} m^{\prime}$, By Proposition 1.3. if $m^{\prime} \in \operatorname{supp}(f)$, then $m^{\prime} \in J$. Consequently, there is $u \in G(J)$ such that $u \mid m^{\prime}$. Furthermore $m^{\prime \prime} u \in I$, so $m^{\prime \prime} \cdot m^{\prime} \in I$. This implies $m^{\prime \prime} f \in I$. Therefore $m^{\prime \prime} \in(I: J)$ and $\cap_{u \in G(J)}(I: u) \subseteq(I: J)$.

Definition 1.22 Let A be a ring. If I is an ideal and L a subset of A, then the quotient ideal of I by L, denoted by $(I: L)$, is the ideal $\{x \in A \mid x L \subseteq I\}$.

Proposition 1.23 If I and J are monomial ideals, then $I J$ and $(I: J)$ are also monomial ideals.

Proof. Since $\{u v \mid u \in G(I), v \in G(J)\}$ generated $I J, I J$ is a monomial ideal. By Lemma 1.21 and by Proposition 1.19 it is sufficient to prove $(I: m) \in \operatorname{Mon}(R)$ for each $m \in \operatorname{Mon}(R)$. Now, if $f \in(I: m)$, then $\operatorname{supp}(f m)=\{u m \mid u \in \operatorname{supp}(f)\}$. Since I is monomial, $u m \in I$ for each $u \in \operatorname{supp}(f)$. Consequently $\operatorname{supp}(f) \subseteq$ ($I: m$). Therefore $(I: m)$ is monomial, by Proposition 1.3 .

Definition 1.24 Let \leq be a total order on $\operatorname{Mon}(R)$, we say that \leq is a monomial order if
i) $1 \leq u \forall u \in \operatorname{Mon}(R)$
ii) if $u \leq v$, then $u m \leq v m$ for each $m \in \operatorname{Mon}(R)$.

Example 1.25 The lexicographical order $\leq_{\text {lex }}$ is the follow monomial order:

$$
x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \leq_{\operatorname{lex}} x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}} \text { if and only if } \alpha_{j}<\beta_{j} \text { where } j=\min \left\{i \in[n] \mid \alpha_{i} \neq \beta_{i}\right\}
$$

Remark 1.26 If \leq is a monomial order of $K\left[x_{1}, \ldots, x_{n}\right]$, then $\widetilde{\leq}$ is a monomial order in $K\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]$ given by $x_{1}^{a_{1}} \cdots x_{n+1}^{a_{n+1} \widetilde{\leq} x_{1}^{b_{1}} \cdots x_{n+1}^{b_{n+1}} \text { if } a_{n+1}<b_{n+1} \text { or } a_{n+1}=}$ b_{n+1} and $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}} \leq x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}$.

Example 1.27 Given a permutation σ of $[n]$, the σ-lexicographical order is the following monomial order $\leq_{\sigma-\text { lex }}$ given by $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \leq_{\sigma-l e x} x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}}$ if and only if $\alpha_{\sigma(j)}<\beta_{\sigma(j)}$ where $j=\min \left\{i \in[n] \mid \alpha_{\sigma(i)} \neq \beta_{\sigma(i)}\right\}$.

Remark 1.28 If $\operatorname{Div}(R)=\{(u, v) \in \operatorname{Mon}(R) \times \operatorname{Mon}(R)|u| v\}$ and \leq is a monomial order in R, then $\operatorname{Div}(R) \subseteq\{(u, v) \in \operatorname{Mon}(R) \mid u \leq v\}$.

Lemma 1.29 Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring with $n \geq 2$. If $u, v \in$ $\operatorname{Mon}(R)$ with $(u, v),(v, u) \notin \operatorname{Div}(R)$, then there is a monomial order \leq on R such that $u \leq v$.

Proof. We can suppose $u=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ and $v=x_{1}^{b_{1}} \cdots x_{n}^{n_{n}}$. Thus, there are $i, j \in[n]$ such that $a_{i}<b_{i}$ and $b_{j}<a_{j}$, since $(u, v),(v, u) \notin \operatorname{Div}(R)$. We take σ a permutation of $[n]$ such that $\sigma(1)=i$. Hence, $u<_{\sigma-\mathrm{lex}} v$.

Proposition 1.30 $\operatorname{Div}(R)$ is the intersection of all monomial orders over R.
Proof. Let $\left\{\leq_{\alpha}\right\}_{\alpha \in \Lambda}$ be the family of every monomial orders over R. By Re$\operatorname{mark} 1.28$, $\operatorname{Div}(R) \subseteq \cap_{\alpha \in \Lambda} \leq_{\alpha}$. Now if $(u, v),(v, u) \notin \operatorname{Div}(R)$, then by Lemma 1.29 there exist monomial orders \leq_{1} and \leq_{2}, such that $u \leq_{1} v$ and $v \leq_{2} u$. Hence, $(u, v),(v, u) \notin \cap_{\alpha \in \Lambda} \leq_{\alpha}$.

Proposition 1.31 Let \leq be a monomial order over R, then each descendent chain $m_{1}>m_{2}>\cdots$ in $\operatorname{Mon}(R)$ is finite.

Proof. Since $T=\left(\left\{m_{i} \mid i \in \mathbb{N}\right\}\right)^{\text {min }}$ is finite. We take $k=\min \left\{i \in \mathbb{N} \mid m_{i} \in T\right\}$. If there is m_{k+1}, then $m_{k+1} \notin T$. So, there is $m_{i} \in T$ such that $m_{i} \mid m_{k+1}$. Thus, $m_{i}<m_{k+1}$, implies $i>k+1$. A contradiction, since $m_{i} \in T$. Therefore, the
descendent chain $m_{1}>m_{2}>\cdots$ has k elements.

Definition 1.32 If \leq is a monomial order and $A \subseteq \operatorname{Mon}(R)$, then $\boldsymbol{m a x}_{\leq}(A)=$ $\{m \in A \mid m \geq n$ for each $n \in A\}$ and $\min _{\leq}(A)=\{m \in A \mid m \leq n$ for each $n \in A\}$.

Proposition 1.33 Let I be a monomial ideal of R, then $\operatorname{rad}(I)$ is monomial.

Proof. If $f \in \operatorname{rad}(I)$, then $f^{k} \in I$ for some k. If $\{u\}=\max (\operatorname{supp}(f))$, then $u^{k} \in \operatorname{supp}\left(f^{k}\right)$. Since I is monomial, $u^{k} \in I$. Hence, $u \in \operatorname{rad}(I)$ and $f_{1}=$ $f-a_{u} u \in \operatorname{rad}(I)$, where a_{u} is the coefficient of u in f. If we continue with this process, then we obtain that $\operatorname{supp}(f) \subseteq \operatorname{rad}(I)$. Therefore, $\operatorname{rad}(I)$ is monomial by Proposition 1.3 .

Remark 1.34 If $u \in \operatorname{Mon}(R)$, then $\operatorname{lib}(u)=\prod_{x_{i} \mid u} x_{i}$. Furthermore, if I is a monomial ideal, then $\operatorname{rad}(I)$ is generated by $\{\operatorname{lib}(u) \mid u \in G(I)\}$.

Lemma 1.35 If $f \in R$ such that $|\operatorname{supp}(f)| \geq 2$, then $|\operatorname{supp}(f g)| \geq 2$ for each $g \in R$.

Proof. We take a monomial order \leq. If $\max (\operatorname{supp}(f))=\{u\}$ and $\min (\operatorname{supp}(f))=$ $\{v\}$, then $u>v$, since $|\operatorname{supp}(f)| \geq 2$. We take $\left\{g_{1}\right\}=\max (\operatorname{supp}(g))$ and $\left\{g_{2}\right\}=\min (\operatorname{supp}(g))$. Thus, $v g_{2}<m n \leq u g_{1}$ for $(m, n) \in \operatorname{supp}(f) \times \operatorname{supp}(g) \backslash$ $\left\{\left(v, g_{2}\right),\left(u, g_{1}\right)\right\}$. Therefore $|\operatorname{supp}(f g)| \geq 2$.

Remark 1.36 An element a of a ring is said squarefree if $b^{2} \mid a$ implies b is a unit. By Lemma 1.35, a monomial $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ is squarefree if and only if $\alpha_{i} \in\{0,1\}$. In particular, we recover Definition 1.14 .

Example 1.37 If $J=\left\langle x_{1} x_{2}+x_{1} x_{3}, x_{1}^{2} x_{2}^{2}, x_{2}^{2} x_{3}^{2}, x_{1}^{2} x_{3}^{2}\right\rangle$, then $\operatorname{rad}(J)=\left\langle x_{1} x_{2}, x_{2} x_{3}, x_{1} x_{3}\right\rangle$. Observe $\operatorname{rad}(J)$ is a monomial ideal and J is not a monomial ideal.

Proposition 1.38 If $I, J \in \operatorname{Mon}(R)$, then $I \neq I J$ and $J \neq I J$.

Proof. We take a monomial order \leq. Furthermore, we take $\{u\}=\min (\operatorname{Mon}(I))$ and $\{v\}=\min (\operatorname{Mon}(J))$. If $m \in \operatorname{Mon}(I J)$, then $m=u_{1} v_{1}$ with $u_{1} \in \operatorname{Mon}(I)$ and $v_{1} \in \operatorname{Mon}(J)$. Thus, $u_{1} \geq u$ so $m>u$, since $v>1$. Hence, $u \in I \backslash I J$. Similarly $v \in J \backslash I J, I \neq I J$ and $J \neq I J$. So, $u \in I \backslash I J$ and $v \in J \backslash I J$.

Definition 1.39 Let I be an ideal of a ring A and $a \in A$ we say that a is integer over I if there is a polynomial $h=x^{k}+a_{1} x^{k-1}+\cdots+a_{k} \in A[x]$ where $a_{i} \in I^{i}$ such that $h(a)=0$. The set of all elements of A integers on I is called the integer closure of I and denoted by \bar{I}.

Remark 1.40 If $a \in I$, then $h(a)=0$, where $h(x)=x-a$. Consequently $I \subseteq \bar{I}$. Furthermore, if $a \in \bar{I}$, then there is $f(x) \in A[x]$ such that $f(a)=a^{k}+a_{1} a^{k-1}+$ $\cdots+a_{k}=0$. Consequently $a^{k}=-a_{1} a^{k-1}-\cdots-a_{k} \in I$. Hence $\bar{I} \subseteq \operatorname{rad}(I)$.

Proposition 1.41 If I is an ideal of a ring A, then \bar{I} is an ideal of A.
Proof. By Lemma 8.2.2 and Proposition 8.2.3 in [], \bar{I} is a subgroup. Now, we take $a \in A$ and $b \in \bar{I}$, then there is $g(x)=x^{k}+a_{1} x^{k-1}+a_{2} x^{k-2}+\cdots+a_{k}$ with $a_{i} \in I^{i}$ such that $g(b)=0$. Thus, if $h(x)=x^{k}+a a_{1} x^{k-1}+a^{2} a_{2} x^{k-2}+\cdots+a^{k} a_{k}$, then $a^{i} a_{i} \in I^{i}$ and $h(a b)=0$. Therefore, $a b \in \bar{I}$.

Proposition 1.42 If I is a monomial ideal of R, then \bar{I} is a monomial ideal generated by $\left\{u \in \operatorname{Mon}(R) \mid u^{k} \in I^{k}\right\}$.

Proof. See [12, Theorem 1.4.2].

Definition 1.43 Given a monomial ideal I, we define the Newton's polyhedron of I as the intersection of the convex closure in \mathbb{R}^{n} of the set $\left\{v \in \mathbb{Z}_{+}^{n} \mid x^{v} \in I\right\}$. The Newton's polyhedron is denoted by $N(I)$.

Remark 1.44 If P is a prime ideal of a ring A, then $\bar{P}=P$.

Definition 1.45 Let A be a commutative ring, we say that an ideal I of A is normal if $I^{i}=\overline{I^{i}}$ for each i.

1.2 PRIMARY DECOMPOSITION

Definition 1.46 An ideal I of a ring A is primary if for each $a, b \in A$ such that $a b \in I$ implies $a \in I$ or $b^{k} \in I$ for some k.

Proposition 1.47 If I is primary, then $\operatorname{rad}(I)$ is prime.

Proof. If $a b \in \operatorname{rad}(I)=P$, then $(a b)^{k} \in I$ for some k. Thus, $a^{k} b^{k} \in I$ consequently $a^{k} \in I$ or $b^{k t} \in I$ for every t. Therefore $a \in \operatorname{rad}(I)$ or $b \in \operatorname{rad}(I)$.

Example 1.48 The converse affirmation of the above proposition is not true. If $I=\left(x_{1}^{2}, x_{1} x_{2}\right)$, then $\operatorname{rad}(I)=\left(x_{1}\right)$. Consequently $\operatorname{rad}(I)$ is prime. But I is not primary.

Proposition 1.49 If $\operatorname{rad}(I)$ is maximal, then I is primary.
Proof. If $M=\operatorname{rad}(I)$, then M is the unique prime ideal containing I, and A / I is local with maximal ideal M / I. So, if $b \in A \backslash M$, then $\bar{b} \in A / I$ is a unit. Let $a, b \in A$ such that $a b \in I$, if $b \notin M$, then I is primary.

Definition 1.50 A primary ideal I is P-primary if $\operatorname{rad}(I)=P$ and P is prime.

Proposition 1.51 The intersection of a finite family of P-primary ideals is P-primary.

Proof. Let I_{1}, \ldots, I_{k} be P-primary ideals. Now, we take $a, b \in A$ such that $a b \in$ $\cap_{i=1}^{k} I_{i} \subseteq P$. If $a \notin I_{j}$ for some j, then $b^{s} \in I_{j}$ for some s. Thus, $b \in P$. So, then there is r_{i} such that $b^{r_{i}} \in I_{i}$ for each i, since $P=\operatorname{rad}\left(I_{i}\right)$. We take $r=\max \left\{r_{1}, \ldots, r_{k}\right\}$, then $b^{k} \in \cap_{i=1}^{k} I_{i}$. Hence, $\cap_{i=1}^{k} I_{i}$ is primary. Furthermore, $\operatorname{rad}\left(\cap_{i=1}^{k} I_{i}\right) \subseteq P$. Now, if $a \in P$, then there is u_{i} such that $a^{u_{i}} \in I_{i}$ for each i. If $u=\max \left\{u_{1}, \ldots, u_{k}\right\}$, then $a^{u} \in \cap_{i=1}^{k} I_{i}$ implies $a \in \operatorname{rad}\left(\cap_{i=1}^{k} I_{i}\right)$. Therefore $P=\operatorname{rad}\left(\cap_{i=1}^{k} I_{i}\right)$.

Definition 1.52 Given I an ideal, we say that a collection of primary ideals $\left\{Q_{1}, \ldots\right.$, $\left.Q_{k}\right\}$ is a primary decomposition of I if $I=\cap_{i=1}^{k} Q_{i}$.

Lemma 1.53 Let I_{1}, \ldots, I_{k} be ideals and P a prime ideal such that $\cap_{i=1}^{k} I_{i} \subseteq P$, then $I_{j} \subseteq P$ for some j.

Proof. By induction over k. For $k=2$, we take I_{1}, I_{2} ideals such that $I_{1} \cap I_{2} \subseteq P$. If $I_{1} \nsubseteq P$, then there is $a \in I_{1} \backslash P$. Furthermore, if $b \in I_{2}$, then $a b \in I_{1} \cap I_{2} \subseteq P$. Consequently, $b \in P$ implies $I_{2} \subseteq P$. Now, we take $I_{1}, \ldots, I_{k}, I_{k+1}$ ideals such that $\cap_{i=1}^{k+1} I_{i} \subseteq P$. If $J=\cap_{i=2}^{t+1} I_{i}$, then $I_{1} \cap J \subseteq P$. Consequently $I_{1} \subseteq P$ or $J \subseteq P$. In the second case, by induction hypothesis, there is $I_{i} \subseteq P$ for $2 \leq i \leq k+1$.

Corollary 1.54 If P is a prime ideal such that $P=\cap_{i=1}^{k} I_{i}$, where I_{i} is an ideal, then $P=I_{j}$ for some j.

Proof. By Lemma 1.53, $I_{j} \subseteq P$ for some j. Furthermore, $P \subseteq \cap_{i=1}^{k} I_{i} \subseteq I_{j}$, then $P=I_{j}$.

Definition 1.55 A primary decomposition $\mathcal{Q}=\left\{Q_{1}, \ldots, Q_{k}\right\}$ of an ideal I is minimal if no proper subset of \mathcal{Q} is a primary decomposition of I.

Lemma 1.56 A primary decomposition $\mathcal{Q}=\left\{Q_{1}, \ldots, Q_{k}\right\}$ of I is minimal if and only if $\cap_{i \in S} Q_{i} \subset Q_{j}$ for every $S \nsubseteq[k]$ with $j \notin S$.

Proof. $\Rightarrow)$ If $\cap_{i \in S} Q_{i} \subseteq Q_{j}$, then $\mathcal{Q} \backslash\left\{Q_{j}\right\}$ is a decomposition primary of I, a contradiction.
$\Leftarrow)$ If \mathcal{Q} is not minimal then there is $S \varsubsetneqq[k]$ such that $\cap_{i \in S} Q_{i}=I=\cap_{j=1}^{k} Q_{j} \subseteq Q_{j}$ for $j \notin S$.

Corollary 1.57 If $\left\{Q_{1}, \ldots, Q_{k}\right\}$ is a minimal primary decomposition of I. Then for any $S \subseteq[k]$ we have $\left\{Q_{i} \mid i \in S\right\}$ is a minimal primary decomposition of $J=$ $\cap_{i \in S} Q_{i}$.

Proof. If $S^{\prime} \subseteq S$ and $j \in S \backslash S^{\prime}$, then by Lemma $1.56 \cap_{i \in S^{\prime}} Q_{i} \nsubseteq Q_{j}$. Hence, $\left\{Q_{i} \mid i \in\right.$ $S\}$ is a monomial primary decomposition of J.

Proposition 1.58 Let A be a ring, with \mathcal{Q} a minimal primary decomposition of I. Hence, $P=\operatorname{rad}(Q)$ with $Q \in \mathcal{Q}$ if and only if $P=(I: a)$ for some $a \in A$.

Proof. See [1, Theorem 4.5].

Corollary 1.59 Let \mathcal{Q} and \mathcal{Q}^{\prime} minimal primary decompositions of I. Then

$$
\{\operatorname{rad}(Q) \mid Q \in \mathcal{Q}\}=\left\{\operatorname{rad}\left(Q^{\prime}\right) \mid Q^{\prime} \in \mathcal{Q}^{\prime}\right\}
$$

Proof. By Proposition 1.58
Let A be a ring. If M is a A-module and $x \in M$, then ann $(x)=\{a \in A \mid a \cdot x=$ $0\}$. A prime ideal P of A is an associated prime of M if exist $x \in M$ such that $P=\operatorname{ann}(x)$. The set of associated primes M is denoted by $\operatorname{Ass}(M)$. If I is an ideal of A, then A / I is an A-module. Furthermore ann $(\bar{x})=(I: x)$. Also $\operatorname{Ass}(A / I)$ is denoted by Ass(I).

Corollary 1.60 If Q is a minimal primary decomposition of I, then $\{\operatorname{rad}(Q) \mid Q \in$
$\mathcal{Q}\}=\operatorname{Ass}(A / I)$.
Proof. By Proposition 1.58 .

Corollary 1.61 Let I be an ideal with a primary decomposition and P a prime ideal such that $I \subseteq P$. Then P is minimal prime containing I if and only if P is minimal in $\operatorname{Ass}(I)$.

Proof. Suppose that P is minimal containing I and \mathcal{Q} is a minimal primary decomposition of I. By Lemma 1.53 , there is some ideal $T \in \mathcal{Q}$ such that $T \subseteq P$. Thus, $I \subseteq \operatorname{rad}(T) \subseteq P$ and $\operatorname{rad}(T)$ is prime so, $\operatorname{rad}(T)=P$. Hence P is minimal of Ass (I). Now, if P is minimal of $\operatorname{Ass}(I)$ and Q is a minimal prime such that $I \subseteq Q \subseteq P$, then $Q \in \operatorname{Ass}(I)$. Consequently $Q=P$, so P is a minimal prime of containing I.

Remark 1.62 In a Noetherian ring, the radical of an ideal is the intersection of its associated primes.

Definition 1.63 An ideal I is irreducible if $I=J \cap L$ for some ideals I and J, then $J=I$ or $L=I$. Furthermore, I is an irreducible monomial ideal if $I=J \cap L$ with J and L monomial ideals, then $J=I$ or $L=R$.

Proposition 1.64 In a Noetherian ring each irreducible ideal is primary.
Proof. See [1, Lemma 7.12].

Proposition 1.65 Let A be a Noetherian ring, then each ideal I of A has a primary decomposition consisting by irreducible ideals.

Proof. See [1, Lemma 7.11].

Proposition 1.66 An ideal is primary if and only if has a single associated prime.
Proof. By Corollary 1.59 .

Remark 1.67 By Corollary 1.54 , every prime ideal is irreducible.

Example 1.68 If $I=\left\langle x_{1}^{4} x_{2}^{3}, x_{1}^{3} x_{2}^{4}\right\rangle$, then I is a monomial ideal and $I=\left\langle x_{1}^{6} x_{2}+\right.$ $\left.x_{1}^{5} x_{2}^{2}, x_{1}^{4} x_{2}^{3}, x_{1}^{3} x_{2}^{4}\right\rangle \cap\left\langle x_{1}^{3} x^{4} x_{2}, x_{1}^{4} x^{3} x_{2}, x_{1}^{5}+x_{1} x_{2} 2 x_{2}^{6}\right\rangle$. Hence I is the intersection of two
non-monomial ideals.

Proposition 1.69 A monomial ideal I is irreducible-monomial if and only if $G(I)$ consists of powers of variables.

Proof. $\Rightarrow)$ Assume there is $u \in G(I)$ such that $x_{i} x_{j} \mid u$ for some $i, j \in[n]$ and $i \neq j$. If $u=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$, then $I=\left(G(I) \cup\left\{x_{i}^{\alpha_{i}}\right\}\right) \cap\left(G(I) \cup\left\{\frac{u}{x_{i}^{\alpha_{i}}}\right\}\right)$. Consequently I is not irreducible, since $x_{i}^{\alpha_{i}}, \frac{u}{x_{i}^{\alpha_{i}}} \notin I$.
$\Leftarrow)$ Let J, H be monomial ideals such that $J \cap H=I$. Suppose $J \neq I$, then there is $u \in G(J)$ such that $x_{i}^{\alpha_{i}} \nmid u$ for each $x_{i}^{\alpha_{i}} \in G(I)$. On the other hand, $\operatorname{lcm}(u, v) \in$ $J \cap H=I$ for each $v \in H$. Thus, $x_{j}^{\alpha_{j}} \mid \operatorname{lcm}(u, v)$ for some $x_{j}^{\alpha_{j}} \in G(I)$. So, $\alpha_{j} \leq$ $\max \left\{u_{j}, v_{j}\right\}$, where $u=x_{1}^{u_{1}} \cdots x_{n}^{u_{n}}$ and $v=x_{1}^{v_{1}} \cdots x_{n}^{v_{n}}$. Since $x^{\alpha_{j}} \nmid u, u_{j}<\alpha_{j}$. Hence, $\alpha_{j}=v_{j}$ and $v \in I$. Therefore $H=I$, so I is irreducible.

Corollary 1.70 Let I be a monomial ideal. Then the following conditions are equivalent:

1) I is primary.
2) If $x_{i} \mid m$ for some $m \in G(I)$, then there is k such that $x_{i}^{k} \in G(I)$.

Proof. 1) $\Rightarrow 2)$ We assume $m=x_{i_{1}}^{\alpha_{i_{1}}} \cdots x_{i_{m}}^{\alpha_{i m}}$. If $m=m^{\prime} x_{i_{j}}^{\alpha_{j}}$ for some $j \in[m]$, then $m^{\prime} \in I$, since $m \in G(I)$. Thus, $\left(x_{i_{j}}^{\alpha_{j}}\right)^{r} \in I$, for some r. Therefore $x_{i_{j}}^{k} \in G(I)$ for some k.
2) \Rightarrow 1) We consider $A=\left\{x_{i} \mid x_{i}^{s} \in G(I)\right.$ for some $\left.s\right\}$ and $A^{\prime}=\left\{x_{1}, \ldots, x_{n}\right\} \backslash A$. We take $f, g \in R$ such that $f g \in I$ and $f \notin I$. If $\operatorname{supp}(f)$ is minimal, then $\operatorname{supp}(f) \cap$ $I=\varnothing$, since in otherwise $f=f_{1}+f_{2}$ where $\operatorname{supp}\left(f_{1}\right) \cap I=\varnothing, \operatorname{supp}\left(f_{2}\right) \subseteq I$, $f_{1} g=f g-f_{2} g \in I$ and $f_{1} \in I$. If $g \notin \operatorname{rad}(I)$, then there is $u \in \operatorname{supp}(g)$ such that $x_{i} \nmid u$ for each $x_{i} \in A$. Now, we take a monomial order \leq and $v=\min _{\leq}\{u \in$ $\operatorname{supp}(g) \mid u \notin \operatorname{rad}(I)\}$, then $v m \in I$ where $m=\min _{\leq \operatorname{supp}(f)}$. Thus $h \mid v m$ for some $h \in G(I)$. Furthermore $\operatorname{gcd}(h, v)=1$, so $h \mid m$, a contradiction. Hence $g \in \operatorname{rad}(I)$ so, $g^{k} \in I$ for some k. Therefore I is primary.

Example 1.71 The ideal $\left(x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right)$ is a monomial primary but it is not an irredu-cible-monomial ideal.

Corollary 1.72 If I is an irreducible-monomial ideal, then I is primary.

Proof. By Proposition 1.69, $G(I)$ consists of powers of variables. Therefore I is primary, by Corollary 1.70 .

Example 1.73 By Corollary 1.70, $\left(x_{1}\right)$ and $\left(x_{1}^{2}, x_{1}, x_{2}, x_{2}^{k}\right)$ are primary ideal for each k. Furthermore $\left(x_{1}^{2}, x_{1} x_{2}\right)=\left(x_{1}\right) \cap\left(x_{1}^{2}, x_{1} x_{2}, x_{2}^{k}\right)$, then $\left(x_{1}^{2}, x_{1} x_{2}\right)$ has an infinite number of primary decompositions consisting of monomial ideals.

Proposition 1.74 If I is a monomial ideal, then I has a minimal primary decomposition formed by irreducible-monomial ideals.

Proof. We suppose $G(I)=\left\{u_{1}, \ldots, u_{k}\right\}$ where $u_{i}=x_{1}^{a_{i_{1}}} \cdots x_{n}^{a_{i_{n}}}$. We take $U_{i}=$ $\left\{x_{i}^{a_{i}} \mid a_{i_{j}} \neq 0\right\}$ for each $i \in[k]$. Now, if $e=\left(m_{1}, \ldots, m_{k}\right) \in \prod_{i=1}^{k} U_{i}$, then we define the monomial ideal $I_{e}=\left(m_{1}, \ldots, m_{k}\right) . I_{e}$ is an irreducible-monomial and $I=\cap_{e \in \Omega} I_{e}$ with $\Omega=\prod_{i=1}^{k} U_{i}$. Therefore I has a minimal primary decomposition.

Definition 1.75 An irreducible-monomial ideal J is I-minimal if J is minimal in the set of irreducible-monomial ideals that contains I.

Proposition 1.76 If I is a monomial ideal and Ω is the set of the I-minimal ideal, then $I=\cap_{J \in \Omega} J$.

Proof. If $J \in \Omega$, then $I \subseteq J$. Hence, $I \subseteq \cap_{J \in \Omega J}$. Now, we consider $G(I)=$ $\left\{m_{1}, \ldots, m_{r}\right\}$. If $m \notin I$, then $m_{i} \nmid m$ for each $1 \leq i \leq r$. Thus, for each i there is $\alpha_{j_{i}}^{i}$ such that $\alpha_{j_{i}}^{i}>\beta_{j_{i}}$ where $m_{i}=x_{1}^{\alpha_{1}^{i}} \ldots x_{n}^{\alpha_{n}^{i}}$. We take $A=\left\{x_{j_{1}}^{\alpha_{j_{1}}}, \ldots, x_{j_{y}}^{\alpha_{j_{r}}}\right\}$ and $\mathcal{A}=\{B \subseteq A \mid I \subseteq(B)\}$. If D is a minimal set in \mathcal{A}, then $J=(D)$ is I-minimal. Therefore $m \notin \cap_{J \in \Omega} J$.

Remark 1.77 A minimal irreducible decomposition of a monomial ideal is unique, see [12, Theorem 1.3.1].

Proposition 1.78 If A is a finite set of irreducible-monomial ideals without contention relation, then A is a minimal primary decomposition of $\cap_{I \in A} I$.

Proof. We consider $A=\left\{I_{1}, \ldots, I_{r}\right\}$, then $\cap_{i=1}^{r} I_{i}$ is a primary decomposition, since I_{i} is irreducible for $1 \leq i \leq r$. Now, $I_{i} \nsubseteq I_{j}$ for each $i \neq j$, then there exist $m_{i} \in G\left(I_{i}\right)$ such that $m_{i} \notin I_{j}$. Thus, if $m=\operatorname{lcm}\left(m_{1}, \ldots, m_{j-1}, m_{j+1}, \ldots\right)$, then $m \in \cap_{i \neq j} I_{i}$ and $m \notin I_{j}$. Hence, $\cap_{i \neq j} I_{i} \nsubseteq I_{j}$ for each j.

Corollary 1.79 The set of I-minimal ideals is a minimal primary decomposition of I.

Corollary 1.80 Each associated prime ideal of a monomial ideal is a monomial ideal.

Proof. By Proposition 1.74, Proposition 1.33 and Corollary 1.60

Corollary 1.81 If P is an associated prime of a monomial ideal I, then there is $u \in$ $\operatorname{Mon}(R)$ such that $P=(I: u)$.

Proof. Since P is an associated prime of $I, P=(I: f)$ for some $f \in R$. Since $(I: f)=\cap_{u \in \operatorname{supp}(f)}(I: u)$ and by Corollary $1.54, P=(I: u)$ for some $u \in \operatorname{supp}(f)$.

Definition 1.82 Let I be a monomial ideal of R, I has the persistence property if $\operatorname{Ass}\left(A / I^{k}\right) \subseteq \operatorname{Ass}\left(A / I^{k+1}\right)$ for all k.

Definition 1.83 Let $G=(V, E)$ be a graph. If $f \in E(G)$, then we take the monomial $\widetilde{f}=x_{1} \cdots x_{j}$ where $f=\left\{x_{1}, \ldots, x_{j}\right\}$. In this context the edge ideal of G is the ideal $I(G)=(\widetilde{f} \mid f \in E(G))$.

Lemma 1.84 Let I be the edge ideal of a graph G. If P is a monomial ideal, then P is a prime ideal containing I if and only if $G(P)$ is a vertex cover of G.

Proof. $\Rightarrow)$ We assume $E(G)=\left\{f_{1}, \ldots, f_{k}\right\}$. Since $I \subseteq P$, for each $1 \leq i \leq k$ there is $x_{j_{i}} \in G(P)$ such that $x_{j_{i}} \mid \widetilde{f}_{i}$. So $\left\{x_{j_{i}}\right\}=x_{j_{i}} \cap f_{i} \subseteq G(P) \cap f_{i}$. Hence, $G(P)$ is a vertex cover of G.
$\Leftarrow)$ Since $G(P)$ is a vertex cover, $G(P) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$. Thus, P is a prime ideal. Furthermore, if $g \in E(G)$, then there is $x_{i} \in G(P)$ such that $x_{i} \mid \widetilde{g}$ so, $x_{i} \in g$. Therefore, $G(P)$ is a vertex cover of G.

Corollary 1.85 Let I be the edge ideal of a graph G, then P is an associate prime of I if and only if $G(P)$ is a minimal vertex cover of G.

Proposition 1.86 Let G be a graph and $I(G)$ the edge ideal, then $I(G)$ is normal if and only if any two odd cycles in G can be joined by an edge of G.

Proof. See [28, p.322].

CHAPTER

ON THE STRONG PERSISTENCE

PROPERTY FOR MONOMIAL IDEALS

2.1 INTRODUCTION

Let R be a commutative Noetherian ring. The associated primes set of an ideal I is $\operatorname{Ass}(I)=\{P \in \operatorname{Spec}(R) \mid P=(I: a)$ for some $a \in R\}$. If $I=Q_{1} \cap \cdots \cap Q_{s}$ is a minimal primary decomposition of I, then $\operatorname{Ass}(I)=\left\{\operatorname{rad}\left(Q_{1}\right), \ldots, \operatorname{rad}\left(Q_{s}\right)\right\}$ where $\operatorname{rad}\left(Q_{i}\right)$ is the radical of Q_{i}. I has the persistence property if $\operatorname{Ass}\left(I^{k}\right) \subseteq \operatorname{Ass}\left(I^{k+1}\right)$ for each k. In [18] is showed that the edge ideal of a simple graph has the persistence property, and they use that these edge ideals satisfy $\left(I^{k+1}: I\right)=I^{k}$ for each k. Recently was proved that this concept implies the persistence property (see [13]) and it is called the strong persistence property. These concepts are not equivalent, in [18, Example 2.18] is given a squarefree monomial ideal with the persistence property, but it does not have the strong persistence property. Assuming this terminology, in [18, Lemma 2.12] was proved that the edge ideal of a simple graph has the strong persistence property. In this chapter we study the strong persistence property for edge ideals of graphs with loops, weighted graphs, and clutters.
This chapter is organized as follow: in Sect. 2.2 we prove the edge ideals of graphs with loops have the strong persistence property. In Sect. 2.3 we prove that the edge ideal of a vertex-weighted graph (G, w) has the strong persistence property. Furthermore, we prove that $I(G)^{k}$ and $I(G, w)^{k}$ have the same associated primes. In Sect. 2.4 we study the edge ideals of clutters. In particular, we show that a clutter has the strong persistence property if and only if at less one of its connected component has the strong persistence property. Also, we prove that a König unmixed clutter without 4-cycles and squarefree monomials in four variables have the strong persistence property. Furthermore, we show that $\left(I^{2}: I\right)=I$, if I is a squarefree monomial ideal. Finally we prove that the strong persistence property is closed under c-minor and cones. In Sect. 2.5 we give some properties of the strong persistence property. Also, we introduce the symbolic persistence property and we show that an ideal has this property if it has the strong persistence
property.

2.2 GRAPHS WITH LOOPS

A graph with loops is a triplet $\mathcal{G}=(V, E, L)$ where $G=(V, E)$ is a simple graph with $V=\left\{x_{1}, \ldots, x_{n}\right\}$ and $L \subseteq\left\{\left(x_{i}, x_{i}\right) \mid x_{i} \in V\right\}, L$ is called the set of loops of \mathcal{G}. Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring, as usual we use x^{a} as abbreviation for $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$, where $a=\left(a_{1}, \ldots, a_{n}\right)$ is an integer vector with $a_{i} \geq 0$. If $f=\left\{x_{i}, x_{j}\right\} \in$ E or $f=\left(x_{i}, x_{i}\right) \in L$, then we take the monomial $\widetilde{f}=x_{i} x_{j}$ or $\widetilde{f}=x_{i}^{2}$, respectively. The edge ideal of a graph with loops $\mathcal{G}=(V, E, L)$ is the ideal $I(\mathcal{G})=\left(\left\{f_{i} \mid f_{i} \in\right.\right.$ $E \cup L\})=I(G)+\left(\left\{x_{i}^{2} \mid\left(x_{i}, x_{i}\right) \in L\right\}\right)$ where $I(G)=\left(\left\{x_{i} x_{j} \mid\left\{x_{i}, x_{j}\right\} \in E\right\}\right)$ is the edge ideal of $G=(V, E)$.

Example 2.1 Graph with loops, where $L=\left\{\left(x_{1}, x_{1}\right),\left(x_{3}, x_{3}\right)\right\}$.

For an integer vector $a=\left(a_{1}, \ldots, a_{n}\right)$ with $a_{i} \geq 0$, we define the simple graph \mathcal{G}^{a} with vertex set is $V^{a}=\left\{x_{1}^{1}, \ldots, x_{1}^{a_{1}}, \ldots, x_{i}^{1}, \ldots, x_{i}^{a_{i}}, \ldots, x_{n}^{1}, \ldots, x_{n}^{a_{n}}\right\}$, and whose edge set

$$
E^{a}=\left\{\left\{x_{i}^{k_{i}}, x_{j}^{k_{j}}\right\} \left\lvert\, \begin{array}{c}
\left\{x_{i}, x_{j}\right\} \in E, k_{i} \leq a_{i}, \text { and } k_{j} \leq a_{j} ; \text { or } \\
\left(x_{i}, x_{j}\right) \in L \text { and } 1 \leq k_{i}<k_{j} \leq a_{i}
\end{array}\right.\right\}
$$

where j in x_{i}^{j} is only an index. Furthermore, if $x_{i} \in V(\mathcal{G})$, then we define the duplication of x_{i} in \mathcal{G}^{a} as the simple graph $\mathcal{G}^{a x_{i}}=\mathcal{G}^{a+e_{i}}$ where e_{i} is the i-th unit vector in \mathbb{R}^{n}. This operation is commutative, that is $\left(\mathcal{G}^{a x_{i}}\right)^{x_{j}}=\left(\mathcal{G}^{a x_{j}}\right)^{x_{i}}$ for each $x_{i}, x_{j} \in V$. Furthermore, if $f=\left\{x_{i}, x_{j}\right\} \in E$, then we denote by $\left(\mathcal{G}^{a}\right)^{f}=\mathcal{G}^{a+e_{i}+e_{j}}$; and if $f=\left(x_{i}, x_{i}\right) \in L$, then $\left(\mathcal{G}^{a}\right)^{f}=\mathcal{G}^{a+e_{i}+e_{i}}$.

Definition 2.2 Let G a simple graph. A matching of G is a set of pairwise disjoint edges. The matching number of G, denoted by $v(G)$, is the size of any maximum matching of G. A matching that covers all vertices of $V(G)$ is called a perfect matching of G.

Notation: $\operatorname{Mon}(R)$ is the set of monomials in $R=K\left[x_{1}, \ldots, x_{n}\right]$. If $I=\left(m_{1}, \ldots, m_{s}\right)$ with $m_{i} \in \operatorname{Mon}(R)$, then $G(I)$ is the minimal monomial generating set of I.

Proposition 2.3 Let \mathcal{G} be a graph with loops whose vertex set is $V=\left\{x_{1}, \ldots, x_{n}\right\}$. If $a=\left(a_{1}, \ldots, a_{n}\right)$ is an integer vector where $a_{i} \geq 0$, then \mathcal{G}^{a} has a matching of size l if and only if $x^{a} \in I(\mathcal{G})^{l}$.

Proof. $\Rightarrow)$ Let $P=\left\{g_{1}, \ldots, g_{l}\right\}$ be a matching of \mathcal{G}^{a} where $g_{j}=\left\{x_{i_{j}}^{k_{i j}}, x_{r_{j}}^{s_{r_{j}}}\right\}$. Now, we consider the monomial $x^{b}=\prod_{j=1}^{l} x_{i_{j}} x_{r_{j}} \in I(\mathcal{G})^{l}$. If $b=\left(b_{1}, \ldots, b_{n}\right)$, then $b_{i}=\left|\left\{r \mid x_{i}^{r} \in \bigcup_{j=1}^{l} g_{j}\right\}\right|$ for each $1 \leq i \leq n$. Since P is a matching, $b_{i} \leq a_{i}$. Therefore, $x^{b} \mid x^{a}$ and $x^{a} \in I(\mathcal{G})^{l}$.
$\Leftrightarrow)$ We take $E \cup L=\left\{f_{1}, \ldots, f_{q}\right\}$. If $x^{a} \in I(\mathcal{G})^{l}$, then there exist an integer vector $\alpha=\left(\alpha_{1}, \ldots, \alpha_{q}\right)$ such that $\alpha_{1}+\cdots+\alpha_{q}=l$ and $x^{a}=m \widetilde{f}_{1}^{\alpha_{1}} \cdots \widetilde{f}_{q}^{\alpha_{q}}$ with $m \in$ $\operatorname{Mon}(R)$. We can assume that $\alpha_{1}>0$. If $f_{1}=\left\{x_{r}, x_{s}\right\} \in E$, then $\alpha_{1} \leq a_{r}$ and $\alpha_{1} \leq a_{s}$ since $\widetilde{f}_{1}^{\alpha_{1}} \mid x^{a}$. If $P_{1}=\left\{g_{1}, \ldots, g_{\alpha_{1}}\right\}$, where $g_{j}=\left\{x_{r}^{a_{r}-j+1}, x_{s}^{a_{s}-j+1}\right\}$ for $j \leq \alpha_{1}$, then P_{1} is a matching of \mathcal{G}^{a} of size α_{1}. If $f_{1}=\left(x_{r}, x_{r}\right) \in L$, then $2 \alpha_{1} \leq a_{r}$ since $\widetilde{f}_{1}^{\alpha_{1}} \mid x^{a}$. Consequently, $P_{1}=\left\{g_{1}, \ldots, g_{\alpha_{1}}\right\}$, where $g_{j}=\left\{x_{r}^{a_{r}-2 j+2}, x_{r}^{a_{r}-2 j+1}\right\}$ for $j \leq \alpha_{1}$, is a matching of \mathcal{G}^{a} of size α_{1}. Hence,

$$
\mathcal{G}^{b}=\mathcal{G}^{a} \backslash \bigcup_{j=1}^{\alpha_{1}} g_{j} \text { and } x^{b}=\frac{x^{a}}{\tilde{f}_{1}^{\alpha_{1}}}=m \widetilde{f}_{2}^{\alpha_{2}} \cdots \widetilde{f}_{q}^{\alpha_{q}} \in I(\mathcal{G})^{l-\alpha_{1}}
$$

where $b=a-\alpha_{1}\left(e_{r}+e_{s}\right)$ if $f_{1} \in E$ or $b=a-2 \alpha_{1} e_{r}$ if $f_{1} \in L$. Following with the processes, we obtain matchings P_{1}, \ldots, P_{q} such that

$$
V\left(P_{i+1}\right) \cap\left(\bigcup_{j=1}^{i} V\left(P_{j}\right)\right)=\varnothing \text { since } V\left(P_{i+1}\right) \subseteq V\left(\mathcal{G}^{a}\right) \backslash \bigcup_{j=1}^{i} V\left(P_{j}\right)
$$

Therefore, $\cup_{j=1}^{q} P_{j}$ is a matching of \mathcal{G}^{a} of size l.
Corollary $2.4 x^{a} \in I(\mathcal{G})^{k} \backslash I(\mathcal{G})^{k+1}$ if and only if $k=v\left(\mathcal{G}^{a}\right)$.

Definition 2.5 The deficiency of a simple graph G is given by

$$
\operatorname{def}(G)=|V(G)|-2 v(G)
$$

Theorem 2.6 ([18]) If G is a simple graph, then

$$
\operatorname{def}(G)=\max \left\{c_{0}(G \backslash S)-|S| \mid S \subseteq V(G)\right\}
$$

where $c_{0}(G)$ denotes the number of odd components (components with an odd number of vertices) of G.

Proposition 2.7 Let $\mathcal{G}=(V, E, L)$ be a graph with loops, so $\operatorname{def}\left(\mathcal{G}^{\text {af }}\right)=\delta$ for all $f \in F=E \cup L$ if and only if $\operatorname{def}\left(\mathcal{G}^{a}\right)=\delta$ and $v\left(\mathcal{G}^{a f}\right)=v\left(\mathcal{G}^{a}\right)+1$ for all $f \in F$.

Proof. We take a maximum matching g_{1}, \ldots, g_{ℓ} of \mathcal{G}^{a}. If $f \in F$, then $g_{1}, \ldots, g_{\ell,}, g$ is a matching of $\mathcal{G}^{a f}$, where $g=\left\{x_{i}^{a_{i+1}}, x_{j}^{a_{j+1}}\right\}$ when $f=\left\{x_{i}, x_{j}\right\} \in E$ and $g=$ $\left\{x_{i}^{a_{i}+1}, a_{i}^{a_{i}+2}\right\}$ when $f=\left(x_{i}, x_{i}\right) \in L$. Hence, $v\left(\mathcal{G}^{a f}\right) \geq v\left(\mathcal{G}^{a}\right)+1$. This implies $\operatorname{def}\left(\mathcal{G}^{a}\right)=\left|V\left(\mathcal{G}^{a}\right)\right|-2 v\left(\mathcal{G}^{a}\right) \geq\left|V\left(\mathcal{G}^{a f}\right)\right|-2 v\left(\mathcal{G}^{a f}\right)$ since $\left|V\left(\mathcal{G}^{a f}\right)\right|=\left|V\left(\mathcal{G}^{a}\right)\right|+2$. Therefore, $\operatorname{def}\left(\mathcal{G}^{a}\right) \geq \operatorname{def}\left(\mathcal{G}^{a f}\right)$.
\Rightarrow) By contradiction, suppose $\operatorname{def}\left(\mathcal{G}^{a}\right)>\delta$. Thus, by Theorem 2.6, there is an $S \subseteq V\left(\mathcal{G}^{a}\right)$ such that $c_{0}\left(\mathcal{G}^{a} \backslash S\right)-|S|>\delta$. We set $r=c_{0}\left(\mathcal{G}^{a} \backslash S\right)$ and H_{1}, \ldots, H_{r} the odd components of $\mathcal{G}^{a} \backslash S$. We take $x_{i}^{k_{i}} \in H_{k}$ for some $1 \leq k \leq r$ and $k_{i} \leq a_{i}$. If $f=\left(x_{i}, x_{i}\right) \in L$, then we take the subgraph H_{k}^{\prime} of $\mathcal{G}^{a f} \backslash S$ induced by $V\left(H_{k}\right) \cup\left\{x_{i}^{a_{i}+1}, x_{i}^{a_{i}+2}\right\}$. We obtain that the odd connected components of $\mathcal{G}^{a f} \backslash S$ are $H_{1}, H_{2}, \ldots, H_{k-1}, H_{k}^{\prime}, H_{k+1} \ldots, H_{r}$. Consequently,

$$
c_{0}\left(\mathcal{G}^{a f} \backslash S\right)-|S|>\delta=\operatorname{def}\left(\mathcal{G}^{a f}\right)
$$

A contradiction. Now, assume $f=\left\{x_{i}, x_{j}\right\} \in E(\mathcal{G})$. If $\left\{x_{i}^{k_{i}}, x_{j}^{k_{j}}\right\} \in E\left(H_{k}\right)$, then we consider the subgraph $H_{k^{\prime}}$ of $\mathcal{G}^{\text {af }} \backslash S$ induced by $V\left(H_{k}\right) \cup\left\{x_{i}^{a_{i}+1}, x_{j}^{a_{j}+1}\right\}$. We obtain that the odd connected components of $\mathcal{G}^{a f} \backslash S$ are $H_{1}, H_{2}, \ldots, H_{k-1}, H_{k}^{\prime}, H_{k+1} \ldots, H_{r}$. So,

$$
c_{0}\left(\mathcal{G}^{a f} \backslash S\right)-|S|>\delta=\operatorname{def}\left(\mathcal{G}^{a f}\right)
$$

This implies $V\left(H_{k}\right)=\left\{x_{i}^{k_{i}}\right\}$ and $a_{j}=0$ or $x_{j}^{k_{j}} \in S$ for each $k_{j} \leq a_{j}$. Hence, the odd components of $\mathcal{G}^{\text {af }} \backslash\left(S \cup\left\{x_{j}^{a_{j}+1}\right\}\right)$ are $H_{1}, \ldots, H_{r},\left\{x_{i}^{a_{i}+1}\right\}$. Thus,

$$
c_{0}\left(\mathcal{G}^{a f} \backslash\left(S \cup\left\{x_{j}^{a_{j}+1}\right\}\right)\right)-\left|S \cup\left\{x_{j}^{a_{j}+1}\right\}\right|=c_{0}\left(\mathcal{G}^{a} \backslash S\right)-|S|>\delta=\operatorname{def}\left(\mathcal{G}^{a f}\right)
$$

A contradiction, therefore $\operatorname{def}\left(\mathcal{G}^{a}\right)=\operatorname{def}\left(\mathcal{G}^{a f}\right)$ for all $f \in F$. Therefore, $v\left(G^{a f}\right)=$ $v\left(G^{a}\right)+1$, since $\left|V\left(\mathcal{G}^{a f}\right)\right|=\left|V\left(\mathcal{G}^{a}\right)\right|+2$ for all $f \in F$.

$$
\Leftarrow) \operatorname{def}\left(\mathcal{G}^{a f}\right)=\left|V\left(\mathcal{G}^{a f}\right)\right|+2 v\left(\mathcal{G}^{a f}\right)=\left|V\left(\mathcal{G}^{a}\right)\right|+2-2\left(v\left(\mathcal{G}^{a}\right)+1\right)=\operatorname{def}\left(\mathcal{G}^{a}\right)=\delta
$$

Theorem 2.8 $I(G)$ has the strong persistence property if G is a simple graph.

Proof. See [18, Lemma 2.12].

Theorem 2.9 If \mathcal{G} is a graph with loops, then $\left(I^{k+1}: I\right)=I^{k}$ with $I=I(\mathcal{G})$.
Proof. We take a monomial $m=x^{a} \in\left(I^{k+1}: I\right)$. If $m f \in I^{k+2}$ for some $f=$ $x_{i} x_{j} \in G(I)$, then $m\left(x_{i} x_{j}\right)=m^{\prime} g_{1} \cdots g_{k+2}$ with $g_{i} \in G(I)$ and $m^{\prime} \in \operatorname{Mon}(R)$. Thus, $m \in I^{k}$. So, we can assume that $m f \in I^{k+1} \backslash I^{k+2}$ for each $f \in G(I)$. Consequently, by Corollary 2.4, $v\left(\mathcal{G}^{a f}\right)=k+1$ for each $f \in G(I)$. Hence, $\operatorname{def}\left(\mathcal{G}^{a f}\right)=$ $\left|V\left(\mathcal{G}^{a}\right)\right|+2-2(k+1)=\left|V\left(\mathcal{G}^{a}\right)\right|-2 k$ for each $f \in G(I)$. Furthermore, by Proposition 2.7, $\operatorname{def}\left(\mathcal{G}^{a f}\right)=\operatorname{def}\left(\mathcal{G}^{a}\right)=\left|V\left(\mathcal{G}^{a}\right)\right|-2 v\left(\mathcal{G}^{a}\right)$, then $v\left(\mathcal{G}^{a}\right)=k$. Therefore, by Proposition 2.3, $m=x^{a} \in I^{k}$.

Corollary 2.10 $I(\mathcal{G})$ has the persistence property if \mathcal{G} is a graph with loops.

Proof. By Theorem 2.9and [13, Lemma 2.12].

2.3 WEIGHTED MONOMIAL IDEALS

Let I be a monomial ideal, recall that an irreducible monomial ideal J is I-minimal if J is minimal in the set of irreducible monomial ideals (with the form $\left\{x_{i_{1}}^{\alpha_{i_{1}}}, \ldots\right.$, $\left.x_{i_{s}}^{\alpha_{i_{s}}}\right\}$) such that $I \subseteq J$. The set of I-minimal ideals is a minimal primary decomposition of I.

Definition 2.11 For $m_{1}, m_{2} \in \operatorname{Mon}(R), m_{1}^{s}| | m_{2}$ if $m_{1}^{s} \mid m_{2}$ and $m_{1}^{s+1} \nmid m_{2}$.
Proposition 2.12 Let I be a monomial ideal. If $\left(x_{i_{1}}^{\alpha_{i_{1}}}, \ldots, x_{i_{s}}^{\alpha_{i_{s}}}\right)$ is a I-minimal ideal, then for each $1 \leq t \leq s$ there is $m \in G(I)$ such that $x_{i_{t}}^{\alpha_{i_{t}}} \| m$.

Proof. Since $J=\left(x_{i_{1}}^{\alpha_{i_{1}}}, \ldots, x_{i_{s}}^{\alpha_{i_{s}}}\right)$ is an I-minimal ideal, then $I \subseteq J$. Thus, if $x_{i_{t}}^{\alpha_{i_{t}}} \nmid u$ for each $u \in G(I)$, then $I \subseteq\left(\left\{x_{i_{1}}^{\alpha_{i_{1}}}, \ldots, x_{i_{s}}^{\alpha_{i_{s}}}\right\} \backslash\left\{x_{i_{t}}^{\alpha_{i_{t}}}\right\}\right)$. This contradicts the minimality of J. Hence, $x_{i_{t}}^{\alpha_{i_{t}}} \mid u$ for some $u \in G(I)$. Now, if $x_{i_{t}}^{\alpha_{i_{t}}+1} \mid m$ for each $m \in G(I)$ such that $x_{i_{t}}^{\alpha_{i_{t}}} \mid m$, then $I \subseteq\left(x_{i_{1}}^{\alpha_{i_{1}}}, \ldots, x_{i_{t}}^{\alpha_{i_{t}+1}}, \ldots, x_{i_{s}}^{\alpha_{i_{s}}}\right) \nsubseteq J$. A contradiction, therefore there is $m \in G(I)$ such that $x_{i_{t}}^{\alpha_{i_{t}}} \| m$.

Definition 2.13 A weight over a polynomial ring $R=K\left[x_{1}, \ldots, x_{n}\right]$ is a function $w:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow \mathbb{N}, w_{i}=w\left(x_{i}\right)$ is called the weight of the variable x_{i}. Given a monomial ideal I and a weight w, the weighted ideal of I and w is $I_{w}=(h(m) \mid m \in$ $G(I))$ where h is the isomorphism $h: R \rightarrow K\left[x_{1}^{w_{1}}, \ldots, x_{n}^{w_{n}}\right]$ given by $x_{i} \mapsto x_{i}^{w_{i}}$.

Remark 2.14 Since h is an isomorphism, $G\left(\left(I_{w}\right)^{k}\right)=G\left(\left(I^{k}\right)_{w}\right)$, so $\left(I_{w}\right)^{k}=\left(I^{k}\right)_{w}$.

Theorem 2.15 Let I be a monomial ideal and w a weight over R, then
i) $\operatorname{Ass}\left(I_{w}^{k}\right)=\operatorname{Ass}\left(I^{k}\right)$ for each k;
ii) I has the persistence property if and only if I_{w} has the persistence property;
iii) I has the strong persistence property if and only if I_{w} has the strong persistence property.

Proof. i) If $\left(x_{i_{1}}^{\beta_{i_{1}}}, \ldots, x_{i_{s}}^{\beta_{i_{s}}}\right)$ is an I_{w}^{k}-minimal ideal, then by Proposition 2.12 there is $m^{\prime} \in G\left(I_{w}^{k}\right)$ such that $x_{i_{j}}^{\beta_{i_{j}}} \| m^{\prime}$, so there is $r_{i_{j}}$ such that $\beta_{i_{j}}=w_{i_{j}} r_{i_{j}}$ for $1 \leq j \leq s$. If $m=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \in G\left(I^{k}\right)$, then $h(m)=x_{1}^{\alpha_{1} w_{1}} \cdots x_{n}^{\alpha_{n} w_{n}} \in G\left(I_{w}^{k}\right) \subseteq\left(x_{i_{1}}^{\beta_{i_{1}}}, \ldots, x_{i_{s}}^{\beta_{i_{s}}}\right)$. Hence, there exist $t \leq s$, such that $x_{i_{t}}^{\beta_{i_{t}}} \mid h(m)$. Thus, $w_{i_{t}} r_{i_{t}}=\beta_{i_{k}} \leq w_{i_{t}} \alpha_{i_{t}}$ implies $r_{i_{t}} \leq \alpha_{i_{t}}$ and $x_{i_{t}}^{r_{i_{t}}} \mid m$. Consequently $I^{k} \subseteq\left(x_{i_{1}}^{r_{1}}, \ldots, x_{i_{s}}^{r_{s}}\right)$. Now, if $\left(x_{j_{1}}^{\alpha_{j_{1}}}, \ldots, x_{j_{l}}^{\alpha_{j_{l}}}\right)$ is an I^{k}-minimal, then $I_{w}^{k} \subseteq\left(x_{j_{1}}^{w_{j_{1}} \alpha_{j_{1}}}, \ldots, x_{j_{l}}^{w_{j_{l}} \alpha_{j_{l}}}\right)$. So, $\left(x_{i_{1}}^{r_{1}}, \ldots, x_{i_{s}}^{r_{s}}\right.$ is I^{k}-minimal and $\left(x_{j_{1}}^{w_{j_{1}} \alpha_{j_{1}}}, \ldots, x_{j_{l}}^{w_{j_{l}} \alpha_{j_{l}}}\right)$ is I_{w}^{k}-minimal. Therefore, $\left(x_{i_{1}}^{\alpha_{i_{1}}}, \ldots, x_{i_{s}}^{\alpha_{i_{s}}}\right)$ is I^{k}-minimal if and only if $\left(x_{i_{1}}^{w_{i_{1}} \alpha_{i_{1}}}, \ldots, x_{i_{s}}^{w_{i_{s}} \alpha_{i_{s}}}\right)$ is I_{w}^{k}-minimal. Taking radicals of the I_{w}^{k}-minimal and I^{k}-minimal ideals we obtain $\operatorname{Ass}\left(I_{w}^{k}\right)=\operatorname{Ass}\left(I^{k}\right)$.
ii) By i).
iii) \Rightarrow) Since h is an isomorphism of k-algebras between $R^{\prime}=K\left[x_{1}^{w_{1}}, \ldots, x_{n}^{w_{n}}\right]$ and $R, h(I)$ has the strong persistence property in $K\left[x_{1}^{w_{1}}, \ldots, x_{n}^{w_{n}}\right]$. Also, $m=$ $x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}} \in R^{\prime}$ if and only if $w_{i} \mid \lambda_{i}$ for each i. Thus, $I_{w} \cap K\left[x_{1}^{w_{1}}, \ldots, x_{n}^{w_{n}}\right]=h(I)$. Now, if $m \in\left(I_{w}^{k+1}: I_{w}\right)$, then $g m=\ell g_{1} \cdots g_{k+1}$ for each $g \in G\left(I_{w}\right)$ where $g_{i} \in$ $G\left(I_{w}\right)$. We take $m=x_{1}^{a_{1}} \cdots x_{1}^{a_{n}}$ and $\ell=x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}$. If r_{i} and t_{i} are the remainders obtained by dividing a_{i} and b_{i} by w_{i} respectively, then $w_{i} \mid r_{i}-t_{i}$, since $G\left(I_{w}\right) \subseteq$ $K\left[x_{1}^{w_{1}}, \ldots, x_{n}^{w_{n}}\right]$. So, $r_{i}=t_{i}$ and we take $m^{\prime}=x_{1}^{a_{1}-r_{1}} \cdots x_{n}^{a_{n}-r_{n}}$ and $\ell^{\prime}=x_{1}^{b_{1}-r_{1}} \ldots$ $x_{n}^{b_{n}-r_{r}}$. Hence, $m^{\prime}, \ell^{\prime} \in K\left[x_{1}^{w_{1}}, \ldots, x_{n}^{w_{n}}\right]$ and $g m^{\prime}=\ell^{\prime} g_{1} \cdots g_{k+1}$. Since $G\left(I_{w}\right)=$ $G(h(I)), m^{\prime} \in\left(h(I)^{k+1}: h(I)\right)=h(I)^{k}$ implies $m^{\prime} \in I_{w}^{k}$. Therefore $m \in I_{w}^{k}$, since $m^{\prime} \mid m$.
$\Leftrightarrow)$ We take $m \in\left(I^{k+1}: I\right) \cap \operatorname{Mon}(R)$, then $m f=\ell f_{1} \cdots f_{k+1}$ with $f, f_{1}, \ldots, f_{k+1} \in$ $G(I)$. So $h(m) h(f)=h(\ell) h\left(f_{1}\right) \cdots h\left(f_{k+1}\right) \in I_{w}^{k+1}$. Thus, $h(m) \in\left(I_{w}^{k+1}: I_{w}\right)=I_{w}^{k}$ since $G\left(I_{w}\right)=G(h(I))$. This implies, $h(m)=\ell g_{1} \cdots g_{k}$ with $g_{i}=h\left(g_{i}^{\prime}\right) \in G\left(I_{w}\right)$ where $g_{i}^{\prime} \in G(I)$. Since $h(m) \in R^{\prime}=K\left[x_{1}^{w_{1}}, \ldots, x_{n}^{w_{n}}\right], \ell \in R^{\prime}$. Therefore, $m=$ $h^{-1}(\ell) g_{1}^{\prime} \cdots g_{k}^{\prime} \in I^{k}$, since h is an isomorphism.

Definition 2.16 A weighted graph (G, w) consists of a simple graph G and a function $w: V(G) \rightarrow \mathbb{N}$. The weight of $x \in V(G)$ is $w(x)$.

Definition 2.17 The edge ideal of the weighted graph (G, w) denoted by $I(G, w)$ is the ideal generated by $\left\{x_{i}^{w_{i}} x_{j}^{w_{j}} \mid x_{i} x_{j} \in E(G)\right\}$, where $w_{k}=w\left(x_{k}\right)$.

Corollary 2.18 If $I=I(G)$ and $J=I(G, w)$, then $\operatorname{Ass}\left(J^{k}\right)=\operatorname{Ass}\left(I^{k}\right)$ for all k.
Proof. By Theorem 2.15, since $J=I_{w}$.

Theorem 2.19 The edge ideal $I(G, w)$ has the strong persistence property.
Proof. By Theorem 2.15, since $I(G)$ has the strong persistence property.

2.4 SQUAREFREE MONOMIAL IDEAL

Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring and let \mathcal{C} be a clutter where $V(\mathcal{C})=$ $\left\{x_{1}, \ldots, x_{n}\right\}$. If $f=\left\{x_{i_{1}}, \ldots, x_{i_{r}}\right\} \in E(\mathcal{C})$, then we denote by \widetilde{f} the squarefree monomial $x_{i_{1}} \cdots x_{i_{r}}$. Hence, if $f_{1} \subseteq f_{2} \subseteq X=\left\{x_{1}, \ldots, x_{n}\right\}$, then $\widetilde{f}_{1} \mid \widetilde{f}_{2}$. We say that a clutter \mathcal{C} has the strong persistence property if its edge ideal $I(\mathcal{C})$ has the strong persistence property.

Lemma 2.20 Let f, g be squarefree monomials, if there exists an integer $k \geq 2$ such that $f^{k} \mid m g$, then $f^{k-1} \mid m$.

Proof. Since $f^{k} \mid m g, m g=f^{k} \ell$ with $\ell \in \operatorname{Mon}(R)$. We take $m^{\prime}=\operatorname{gcd}(f, g)$, then $f=m^{\prime} f^{\prime}$ and $g=m^{\prime} g^{\prime}$ with $\operatorname{gcd}\left(f^{\prime}, g^{\prime}\right)=1$. Hence, $\operatorname{gcd}\left(f, g^{\prime}\right)=\operatorname{gcd}\left(m^{\prime}, g^{\prime}\right)=u$. Consequently $u^{2} \mid g$. But g is a squarefree monomial, so $\operatorname{gcd}\left(f, g^{\prime}\right)=1$. Thus $g^{\prime} \mid \ell$, since $m g^{\prime}=f^{\prime} f^{k-1} \ell$. Therefore $m=f^{k-1}\left(f^{\prime} u^{\prime}\right)$ where $\ell=u^{\prime} g^{\prime}$ implies $f^{k-1} \mid m$.

Corollary 2.21 Let I be a squarefree monomial ideal. If $G(I)$ has at most two elements, then I has the strong persistence property.

Proof. Let m be a monomial in $\left(I^{k+1}: I\right)$. So, for each $f \in G(I)$ there are monomials $\ell, g_{1}, \ldots, g_{k+1}$ with $g_{i} \in G(I)$, such that $m f=\ell g_{1} \cdots g_{k+1}$. If $f=g_{i}$ for some i, then $m \in I^{k}$. Now, if $f \neq g_{i}$ for each i, then $g_{i}=g_{1}$ since $|G(I)| \leq 2$. Thus $g_{1}^{k+1} \mid m f$. Hence, by Lemma 2.20, $g_{1}^{k} \mid m$ and $m \in I^{k}$.

Theorem 2.22 If I is a squarefree monomial ideal, then $\left(I^{2}: I\right)=I$.
Proof. Let m be a monomial in $\left(I^{2}: I\right)$, then for each $f_{1} \in G(I)$ there are $h_{1}, g_{1} \in$ $G(I)$ and a monomial ℓ_{1} such that $m f_{1}=\ell_{1} g_{1} h_{1}$. Consequently,

$$
m^{2} f_{1}=\ell_{1}\left(m g_{1}\right) h_{1}=\ell_{1} \ell_{2} g_{2} h_{2} h_{1}
$$

where $m g_{1}=\ell_{2} g_{2} h_{2}$ and $g_{2}, h_{2} \in G(I)$. Follows, multiplying by m we obtain

$$
m^{r} f_{1}=\ell_{1} \cdots \ell_{r} g_{r} h_{r} \cdots h_{2} h_{1}
$$

where $m g_{i-1}=\ell_{i} g_{i} h_{i}$ and $g_{i}, h_{i} \in G(I)$ for $2 \leq i \leq r$. If $r \geq|G(I)|$, then $g_{r}=h_{j}$ or $h_{j}=h_{i}$ for some $1 \leq i<j \leq r$. Hence, $h_{j}^{2} \mid m^{r} f_{1}$ and by Lemma 2.20, $h_{j} \mid m^{r}$. Thus, $h_{j} \mid m$, since h_{j} is squarefree. Therefore $m \in I$.

Corollary 2.23 If I is a squarefree monomial ideal and $k \geq 2$, then $\left(I^{k}: I\right) \subseteq I$.
Proof. By Theorem 2.22, $\left(I^{k}: I\right) \subseteq I$. Hence, $I^{k} \subseteq I^{2}$ and $\left(I^{k}: I\right) \subseteq\left(I^{2}: I\right)$.

Theorem 2.24 A clutter has the strong persistence property if and only if some of its connected components has the strong persistence property.

Proof. Let $\mathcal{C}_{1}, \ldots, \mathcal{C}_{r}$ the connected components of \mathcal{C} with $V_{i}=V\left(\mathcal{C}_{i}\right)$.
$\Leftarrow)$ We can suppose that \mathcal{C}_{1} has the strong persistence property. We take a monomial $m \in\left(I^{k+1}: I\right)$. We can write $m=m_{1} \cdots m_{r}$ where $m_{i} \in \operatorname{Mon}\left(K\left[V_{i}\right]\right)$ and we take a_{i} such that $m_{i} \in I_{i}^{a_{i}} \backslash I_{i}^{a_{i}+1}$. For each $f \in \mathcal{C}_{1}$ we consider s_{f} such that $m_{1} f \in I_{1}^{s_{f}} \backslash I_{1}^{s_{f}+1}$ and $s_{1}=\min \left\{s_{f} \mid f \in \mathcal{C}_{1}\right\}$. Thus $m_{1} f \in I_{1}^{s_{1}}$ for each $f \in \mathcal{C}_{1}$, so $m_{1} \in\left(I_{1}^{s_{1}}: I_{1}\right)=I_{1}^{s-1}$. Hence,

$$
m \in I^{s_{1}-1+\sum_{i=2}^{r} a_{i}} \text { and } m f \in I^{s_{f}+\sum_{i=2}^{r} a_{i}} \backslash I^{s_{f}+1+\sum_{i=2}^{r} a_{i}} \text { for each } f \in \mathcal{C}_{1} .
$$

Since $m f \in I^{k+1}, s_{f}+\sum_{i=2}^{r} a_{i} \geq k+1$. Then, $s_{1}+\sum_{i=2}^{r} a_{i} \geq k+1$. Therefore $m \in$ I^{k}.
$\Rightarrow)$ If $I_{i}=I\left(\mathcal{C}_{i}\right)$ has no the strong persistence property, then there is k_{i} and a monomial $m_{i} \in\left(I_{i}^{k_{i}+1}: I_{i}\right) \backslash I_{i}^{k_{i}}$. We take a_{i} such that $m_{i} \in I_{i}^{a_{i}} \backslash I_{i}^{a_{i}+1}$, then $a_{i} \leq$ $k_{i}-1$. Now, we consider $m=m_{1} \cdots m_{r}$, then $m \in I^{b} \backslash I^{b+1}$, for $b=\sum_{i=1}^{r} a_{i}$. If we take $f_{i} \in E\left(\mathcal{C}_{i}\right)$, then $m f_{i} \in I^{s_{i}}$, where $s_{i}=a_{1}+\cdots+k_{i}+1+\cdots+a_{r}$. But $s_{i} \geq$ $\sum_{j=1}^{r} a_{j}+2$, thus $s=\min \left\{s_{1}, \ldots, s_{r}\right\} \geq \sum_{j=1}^{r} a_{j}+2$. Therefore $m \in\left(I^{s}: I\right) \backslash I^{s-1}$.

Example 2.25 Let \mathcal{C} be a clutter. If $f_{1}, f_{2} \in\{A \subseteq V(G) \mid A \cap f=\varnothing$ if $f \in E(\mathcal{C})\}$, then by Theorem 2.24 and Corollary 2.21, $\mathcal{C} \cup\left\{f_{1}, f_{2}\right\}$ has the strong persistence property.

Lemma 2.26 Let \mathcal{C} be a clutter. If there exists an edge $f \in E(\mathcal{C})$ such that $A=$ $\{g \cap f \mid g \in E(\mathcal{C})\}$ is a chain, then $I(\mathcal{C})$ has the strong persistence property.

Proof. If m is a monomial in $\left(I^{k+1}: I\right)$, then $m \widetilde{f}=\widetilde{g} \widetilde{f}_{1} \cdots \widetilde{f}_{k+1}$ where $f_{i} \in E(\mathcal{C})$ and $g \subseteq V(\mathcal{C})$. So, $f \subseteq g \cup f_{1} \cup \cdots \cup f_{k+1}$. Since A is a chain, we can assume $f_{k+1} \cap \bar{f} \subseteq f_{k} \cap f \subseteq \cdots \subseteq f_{1} \cap f$. Thus, $f \subseteq g \cup f_{1}$ and $\widetilde{f} \mid \widetilde{g} \widetilde{f}_{1}$. Therefore $m \in I^{k}$.

Corollary 2.27 If \mathcal{C} is a clutter without the strong persistence property, then for $f \in E(\mathcal{C})$ there are $f_{1}, f_{2} \in E(\mathcal{C})$ such that $f \cap f_{1} \nsubseteq f \cap f_{2}$ and $f \cap f_{2} \nsubseteq f \cap f_{1}$.

Definition 2.28 Let \mathcal{C} be a clutter, $A \subseteq V(\mathcal{C})$ is a vertex cover if $A \cap e \neq \varnothing$ for each $e \in E(\mathcal{C})$. The cover number of \mathcal{C} is $\tau(\mathcal{C})=\min \{|A| \mid A$ is a vertex cover $\}$. \mathcal{C} is unmixed if $|B|=\tau(\mathcal{C})$ for each minimal vertex cover B. A matching is a set of disjoint edges $\left\{e_{1}, \ldots, e_{s}\right\}$ of \mathcal{C}. It is perfect if $\cup_{i=1}^{s} e_{i}=V(\mathcal{C})$. Furthermore, \mathcal{C} is König if there is a matching with $\tau(\mathcal{C})$ edges.

Proposition 2.29 Let \mathcal{C} be a König clutter, then \mathcal{C} is unmixed if and only if there is a perfect matching e_{1}, \ldots, e_{g} with $g=\tau(\mathcal{C})$, such that for any two edges $e \neq e^{\prime}$ and for any two distinct vertices $x \in e, y \in e^{\prime}$ contained in some e_{i}, one has that $(e \backslash\{x\}) \cup\left(e^{\prime} \backslash\{y\}\right)$ contains an edge.

Proof. See Corollary 2.11 in [19].

Definition 2.30 The incidence matrix of a clutter \mathcal{C}, denoted by $A_{\mathcal{C}}$, is the matrix whose columns are the characteristic vectors of the edges of \mathcal{C}. A r-cycle of \mathcal{C} is a
$r \times r$-submatrix of $A_{\mathcal{C}}$ with exactly two 1 's in each row and each column.

Theorem 2.31 Let \mathcal{C} be a König unmixed clutter. If \mathcal{C} does not contain 4-cycles, then \mathcal{C} has the strong persistence property.

Proof. By Proposition 2.29, \mathcal{C} has a perfect matching e_{1}, \ldots, e_{s} where $s=\tau(\mathcal{C})$. If \mathcal{C} does not have the strong persistence property, then by Corollary 2.27 there exist $f_{1}, f_{2} \in E(\mathcal{C})$ and vertices $x_{1} \in\left(f_{1} \cap e_{1}\right) \backslash f_{2}$ and $x_{2} \in\left(f_{2} \cap e_{1}\right) \backslash f_{1}$. Now by Proposition 2.29, there exist $f \in E(\mathcal{C})$ such that $f \subseteq\left(f_{1} \backslash x_{1}\right) \cup\left(f_{2} \backslash x_{2}\right)$. We can assume $e_{1} \cap\left(f_{2} \cup f_{1}\right)$ is minimal in

$$
B=\left\{e_{1} \cap\left(g_{2} \cup g_{1}\right) \mid g_{1}, g_{2} \in E(\mathcal{C}), g_{2} \cap e_{1} \nsubseteq g_{1} \cap e_{1}, \text { and } g_{1} \cap e_{1} \nsubseteq g_{2} \cap e_{1}\right\}
$$

Thus, $\left(e_{1} \cap f\right) \subseteq e_{1} \cap\left(\left(f_{1} \backslash x_{1}\right) \cup\left(f_{2} \backslash x_{2}\right)\right)=e_{1} \cap\left(f_{1} \cup f_{2} \backslash x_{1} x_{2}\right)$. Hence, $e_{1} \cap\left(f_{i} \cup\right.$ $f) \subseteq\left(e_{1} \cap\left(f_{1} \cup f_{2}\right)\right) \backslash x_{j}$ where $\{i, j\}=\{1,2\}$. Since $e_{1} \cap\left(f_{1} \cap f_{2}\right)$ is monomial in $B, e_{1} \cap f \subseteq e_{1} \cap f_{2}$ or $e_{1} \cap f_{2} \subseteq e_{1} \cap f$. But $x_{2} \in\left(e_{1} \cap f_{2}\right) \backslash\left(e_{1} \cap f\right)$, then $e_{1} \cap f \subseteq$ $e_{1} \cap f_{2}$. Now, if $\left(f_{1} \cap f\right) \subseteq\left(e_{1} \cup f_{2}\right)$, then $f \subseteq\left(f_{1} \cup f_{2}\right) \cap f \subseteq\left(f_{1} \cap f\right) \cup\left(f_{2} \cap f\right) \subseteq$ $\left(e_{1} \cup f_{2}\right) \cup\left(f_{2} \cap f\right) \subseteq\left(e_{1} \cup f_{2}\right)$. So, $f \subseteq\left(e_{1} \cap f\right) \cup f_{2} \subseteq\left(e_{1} \cap f_{2}\right) \cup f_{2} \subseteq f_{2}$. But $x_{2} \in f_{2} \backslash f$, a contradiction. Hence, there is $y_{1} \in\left(f_{1} \cap f\right) \backslash\left(e_{1} \cup f_{2}\right)$. Similarly there is $y_{2} \in\left(f_{2} \cap f\right) \backslash\left(e_{1} \cup f_{1}\right)$. Consequently, the matrix

$$
\left.\begin{array}{l}
\\
f_{1} \\
f_{2} \\
e_{1} \\
f
\end{array} \quad \begin{array}{cccc}
x_{1} & x_{2} & y_{1} & y_{2} \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

is a 4-cycle. A contradiction, therefore \mathcal{C} has the strong persistence property.

Example 2.32 ([13]) Let \mathcal{C}_{0} be the clutter with vertex set $\left\{x_{1}, \ldots, x_{6}\right\}$ whose edges are $x_{1} x_{2} x_{3}, x_{1} x_{2} x_{4}, x_{1} x_{3} x_{5}, x_{1} x_{4} x_{6}, x_{1} x_{5} x_{6}, x_{2} x_{3} x_{6}, x_{2} x_{4} x_{5}, x_{2} x_{5} x_{6}, x_{3} x_{4} x_{5}$ and $x_{3} x_{4} x_{6}$. \mathcal{C}_{0} is an unmixed shellable clutter. But $\left(I\left(\mathcal{C}_{0}\right)^{3}: I\left(\mathcal{C}_{0}\right)\right) \neq I\left(\mathcal{C}_{0}\right)^{2}$, then \mathcal{C}_{0} does not have the strong persistence property.

Definition 2.33 The cone over a clutter \mathcal{C}, denoted by $\mathcal{C} x$, is the clutter whose vertex set is $V(\mathcal{C}) \cup\{x\}$ and edge set $\{f \cup\{x\} \mid f \in E(\mathcal{C})\}$, where x is a new vertex.

Proposition $2.34 \mathcal{C}$ has the strong persistence property if and only if $\mathcal{C} x$ has the strong persistence property.

Proof. $\Rightarrow)$ If $m=x^{\alpha} m^{\prime} \in\left(I(\mathcal{C} x)^{k+1}: I(\mathcal{C} x)\right)$ with $\operatorname{gcd}\left(m^{\prime}, x\right)=1$, then $\widetilde{f} m \in I(\mathcal{C} x)^{k+1}$ for $f \in E(\mathcal{C} x)$. Furthermore $\widetilde{f}=\widetilde{g} x$ with $g \in E(G)$ then $x^{k+1} \mid \widetilde{g} x m$ implying $x^{k} \mid m$. Thus, $\alpha \geq k$ and $\widetilde{g} m^{\prime} \in I(\mathcal{C})^{k+1}$. Hence $m^{\prime} \in\left(I(\mathcal{C})^{k+1}: I(\mathcal{C})\right)=I(\mathcal{C})^{k}$, i.e., $m^{\prime}=$ $\ell \widetilde{f}_{1} \cdots \widetilde{f}_{k}$ where $f_{i} \in E(\mathcal{C})$. Therefore, $m=x^{\alpha} \ell \widetilde{f}_{1} \cdots \widetilde{f}_{k}=x^{\alpha-k} \ell\left(\widetilde{f}_{1} x\right) \cdots\left(\widetilde{f}_{k} x\right)$, so $m \in I(\mathcal{C} x)^{k}$.
$\Leftarrow)$ If $m \in\left(I(\mathcal{C})^{k+1}: I(\mathcal{C})\right)$, then $f m=\ell g_{1} \cdots g_{k+1}$ for each $f \in I(\mathcal{C})$ and $g_{i} \in I(\mathcal{C})$. Thus, $(f x)\left(m x^{k}\right)=\ell\left(x g_{1}\right) \cdots\left(x g_{k+1}\right) \in I(\mathcal{C} x)^{k+1}$. So, $m x^{k} \in\left(I(\mathcal{C} x)^{k+1}: I(\mathcal{C} x)\right)=$ $I(\mathcal{C} x)^{k}$. Hence, $m x^{k}=\ell\left(f_{1} x\right) \cdots\left(f_{k} x\right)$ for $f_{i} \in I(\mathcal{C})$. Therefore $m \in I(\mathcal{C})^{k}$.

Proposition $2.35 \mathcal{C}$ has the persistence property if and only if $\mathcal{C} x$ has the persistence property.

Proof. If Q_{1}, \ldots, Q_{r} is the monomial minimal primary decomposition of $I(\mathcal{C})^{k}$ and $Q_{i}^{\prime}=R[x] \cdot Q_{i}$, then $Q_{1}^{\prime}, \ldots, Q_{r}^{\prime},\left(x^{k}\right)$ is the monomial minimal primary decomposition of $I(\mathcal{C} x)^{k}$. Hence, $\operatorname{Ass}\left(I(\mathcal{C} x)^{k}\right)=\operatorname{Ass}\left(I(\mathcal{C})^{k}\right) \cup\{(x)\}$.

Proposition $2.36 \mathcal{C}=(V, E)$ has the strong persistence property if and only if $\mathcal{C}^{\prime}=\left(V, E^{\prime}\right)$ has the strong persistence property, where $E^{\prime}=\left\{f \backslash \cap_{g \in E} g \mid f \in E\right\}$.

Proof. Set $A=\cap_{g \in E} g$. By induction on $k=|A|$. If $k=0$, then $\mathcal{C}=\mathcal{C}^{\prime}$. Now if $k \geq 1$ and $x \in A$, then $\mathcal{C}=\mathcal{C}_{1} x$ where $\mathcal{C}_{1}=\mathcal{C} \backslash x$. So, by induction hypothesis \mathcal{C}_{1} has the strong persistence property if and only if \mathcal{C}^{\prime} has the strong persistence property. Therefore, we obtain the result by Proposition 2.34 .

Proposition 2.37 A clutter \mathcal{C} with 3 edges has the strong persistence property.
Proof. We assume $E(\mathcal{C})=\left\{f_{1}, f_{2}, f_{3}\right\}$ and $V(X)=\left\{x_{1}, \ldots, x_{n}\right\}$. By Proposition 2.36, we can suppose that $f_{1} \cap f_{2} \cap f_{3}=\varnothing$. If \mathcal{C} is not connected, then it has a component with one edge. Hence, by Corollary 2.21 and Theorem 2.24, \mathcal{C} has the strong persistence property. Now, we assume that \mathcal{C} is connected. If $f_{i} \cap f_{j}=\varnothing$ for some $i \neq j$, then \mathcal{C} has the strong persistence property by Lemma 2.26. Consequently, we suppose $a_{i j}=f_{i} \cap f_{j} \neq \varnothing$ for $i \neq j$. We set b_{i} such that $f_{i}=a_{i j} \cup b_{i} \cup a_{i r}$ for $\{i, j, r\}=\{1,2,3\}$. So, each pair of $b_{1}, b_{2}, b_{3}, a_{12}, a_{13}, a_{23}$ are disjoint. We take $m \in\left(I^{k+1}: I\right)$ where $I=I(\mathcal{C})$, then $m \widetilde{f}_{1}=\ell \widetilde{f}_{1}^{\alpha_{1}} \widetilde{f}_{2}^{\alpha_{2}} \widetilde{f}_{3}^{\alpha_{3}}$ with $\alpha_{1}+\alpha_{2}+\alpha_{3}=k+1$. If $\alpha_{1}>0$, then $m \in I^{k}$. Now, if $\alpha_{1}=0$, then $b_{1} \mid \ell$ since b_{1}, f_{1}, f_{3} are disjoint pairs. This implies, $\ell=b_{1} \ell^{\prime}$ and $m a_{12} a_{13}=\ell^{\prime} \widetilde{f}_{2}^{\alpha_{2}} \widetilde{f}_{3}^{\alpha_{3}}$. If $\alpha_{2}=0$, then $\ell^{\prime}=u_{1} a_{12}$ and $m=u_{1} u_{2} \widetilde{f}_{3}^{\alpha_{k}-1}$ where $\widetilde{f}_{3}=u_{2} a_{13}$. Thus, $m \in I^{k}$. Similarly if $\alpha_{3}=0$, then we suppose $\alpha_{1} \neq 0$ and $\alpha_{2} \neq 0$. Consequently $m=\ell^{\prime}\left(b_{2} b_{3} a_{23}^{2}\right) \widetilde{f}_{2}^{\alpha_{2}-1} \widetilde{f}_{3}^{\alpha_{3}-1}$, imply-
ing $a_{23}^{k+1} \mid m$ and $b_{2}^{\alpha_{2}} b_{3}^{\alpha_{3}} \mid m$. Similarly, we can assume $a_{12}^{k+1} \mid m$ and $a_{13}^{k+1} \mid m$. Hence, $\left(a_{12} a_{13} a_{23}\right)^{k+1} b_{2}^{\alpha_{2}} b_{3}^{\alpha_{3}} \mid m$ so $\widetilde{f}_{2}^{\alpha_{2}} \widetilde{f}_{3}^{\alpha_{3}} \mid m$, since $\alpha_{2}+\alpha_{3}=k+1$. Therefore, $m \in I^{k+1} \subseteq I^{k}$.

Proposition 2.38 If X is a set $A \subseteq X$ and $x \notin X$, then the clutter \mathcal{C} whose edge set is $\{X\} \cup\left\{x x_{i} \mid x_{i} \in A\right\}$ has the strong persistence property.

Proof. We set $A=\left\{x_{1}, \ldots, x_{r}\right\}, f_{0}=X$ and $f_{i}=\left\{x, x_{i}\right\}$. Since \mathcal{C} is clutter, $r>1$. We take $m \in\left(I^{k+1}: I\right)$ where $I=I(\mathcal{C})$, then $m \widetilde{f}_{i}=\ell_{i} \widetilde{f}_{0}^{\alpha_{0 i}} \widetilde{f}_{1}^{\alpha_{1 i}} \cdots \widetilde{f}_{r}^{\alpha_{r i}}$ where $\sum_{j=0}^{r} \alpha_{j i}=k+1$. If $\alpha_{0 i}=0$ for each $i \geq 1$, then $m \in\left(J^{k+1}: J\right)$, where $J=\left(\widetilde{f}_{1}, \ldots, \widetilde{f}_{r}\right)$. But J is an edge ideal of a graph so, by Theorem 2.8, $m \in J^{k} \subseteq I^{k}$. Thus, we can assume $\alpha_{01}>0$ and we take $\alpha_{i}=\alpha_{i 1}$. If $\alpha_{1}=0$ and $x \nmid \ell_{1}$, then $x^{k-\alpha_{0}} \| m$ and $\widetilde{f}_{0}^{\alpha_{0}-1} \| m$, since

$$
m=\ell_{1} \frac{\widetilde{f}_{0}^{\alpha_{2}}}{x_{1}} \cdot \frac{\widetilde{f}_{2}^{\alpha_{2}} \cdots \widetilde{f}_{n}^{\alpha_{n}}}{x} \text { and } \widetilde{f}_{0} \nmid \widetilde{f}_{2}^{\alpha_{2}} \cdots \widetilde{f}_{n}^{\alpha_{n}}
$$

So, $x^{k-\alpha_{0}+1} \| m \widetilde{f}_{j}$ and $\widetilde{f}_{0}^{\alpha_{0}-1} \| m \widetilde{f}_{j}$ for $j \neq 1$. Hence, $m \widetilde{f}_{j} \notin I^{k+1}$ a contradiction. Now if $\alpha_{1} \neq 0$ or $x \mid \ell_{1}$, then $m=\ell_{1} \widetilde{f}_{0}^{\alpha_{0}} \widetilde{f}_{1}^{\alpha_{1}-1} \widetilde{f}_{2}^{\alpha_{2}} \cdots \widetilde{f}_{n}^{\alpha_{n}}$ or $m=a b \widetilde{f}_{0}^{\alpha_{0}-1} \widetilde{f}_{1}^{\alpha_{1}} \cdots \widetilde{f}_{n}^{\alpha_{n}}$, where $\ell_{1}=x a$ and $\widetilde{f_{0}}=x_{1} b$. Therefore $m \in I^{k}$.

Theorem 2.39 If I is a squarefree monomial ideal in $K\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$, then I has the strong persistence property.

Proof. Let \mathcal{C} be the clutter associated to I. By Proposition 2.37 and Theorem 2.24 we can assume that $|E(\mathcal{C})|>3$ and \mathcal{C} has no edges of cardinality 1 . If \mathcal{C} has only edges of cardinality 3 , then $4 \leq|E(\mathcal{C})| \leq\binom{ 4}{3}=4$. Hence, \mathcal{C} is a complete clutter, implies \mathcal{C} is a base set of a polymatroid. Consequently, by [13, Proposition 2.4] \mathcal{C} has the strong persistence property. If \mathcal{C} has only one edge of cardinality 2 , then $|E(\mathcal{C})| \leq 3$. A contradiction, so there are $f_{1}, f_{2} \in E(\mathcal{C})$ such that $\left|f_{1}\right|=\left|f_{2}\right|=2$. By Theorem 2.8 we can suppose $f=\left\{x_{1}, x_{2}, x_{3}\right\} \in E(\mathcal{C})$. So, if $f^{\prime} \in E(\mathcal{C}) \backslash\{f\}$, then $x_{4} \in f^{\prime}$. Hence, we can assume $f_{1}=\left\{x_{1}, x_{4}\right\}$ and $f_{2}=\left\{x_{2}, x_{4}\right\}$. Thus, if $f^{\prime} \in E(\mathcal{C}) \backslash\left\{f_{1} f_{1}, f_{2}\right\}$, then $f^{\prime}=\left\{x_{3}, x_{4}\right\}$. Therefore, by Proposition 2.38, \mathcal{C} has the strong persistence property.

Definition 2.40 If $Y \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$ and $m=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \in K\left[x_{1}, \cdots, x_{n}\right]$, we set $\operatorname{deg}_{Y}(m)=\sum_{x_{i} \in Y} \alpha_{i}$.

Proposition 2.41 If \mathcal{C} has an edge f_{0} such that $\left|f_{0} \cap f\right|=1$ for each $f \in E(\mathcal{C}) \backslash\left\{f_{0}\right\}$, then \mathcal{C} has the strong persistence property.

Proof. We assume $E(\mathcal{C})=\left\{f_{0}, f_{1}, \ldots, f_{r}\right\}$. If $q \in I^{k}$ is a monomial, then $\operatorname{deg}_{f_{0}}(q) \geq$ k, since $\left|f_{i} \cap f_{0}\right|=1$ for $0 \leq i \leq r$. We take $m \in\left(I^{k+1}: I\right)$, then

$$
m \widetilde{f}_{0}=l \widetilde{f}_{0}^{\alpha_{0}} \widetilde{f}_{1}^{\alpha_{1}} \cdots \widetilde{f}_{r}^{\alpha_{r}}
$$

where l is a monomial and $\alpha_{0}+\alpha_{1}+\cdots+\alpha_{r}=k+1$. If $\alpha_{0}>0$,then $m \in I^{k}$. Now we assume $\alpha_{0}=0$. We consider $\left|f_{0}\right|=t$. If $\operatorname{deg}\left(\operatorname{gcd}\left(\widetilde{f}_{0}, l\right)\right) \geq t-1$, then $\operatorname{deg}\left(\frac{\tilde{f}_{0}}{\operatorname{gcd}\left(\tilde{f}_{0}, l\right)}\right) \leq 1$. Consequently, $\widetilde{f}_{0} \mid l \widetilde{f}_{i}$ for some $i \geq 1$ with $\alpha_{i}>0$. Thus, $m=\frac{l \widetilde{f}_{i} \tilde{f}_{1}^{\alpha_{1}} \ldots \widetilde{f}_{r}^{\alpha_{r}}}{\tilde{f}_{0}} \frac{\tilde{f}_{i}}{\tilde{f}_{i}}$. Now, we suppose $\operatorname{deg}\left(\operatorname{gcd}\left(\widetilde{f}_{0}, l\right)\right) \leq t-2$ and we consider $\frac{\tilde{f}_{0}}{\operatorname{gcd}\left(\tilde{f}_{0}, l\right)}=x_{i_{1}} \cdots x_{i_{s}}$, then $s \geq 2$ and

$$
m x_{i_{1}} \cdots x_{i_{s}}=l^{\prime} \widetilde{f}_{1}^{\alpha_{1}} \cdots \widetilde{f}_{r}^{\alpha_{r}}
$$

where $l^{\prime}=\frac{l}{\operatorname{gcd}\left(f_{0}, l\right)}$. This implies $\operatorname{gcd}\left(\widetilde{f}_{0}, l^{\prime}\right)=1$, since \widetilde{f}_{0} is squarefree. Now, we take $f_{j_{1}}, \cdots, f_{j_{s}}$ such that $\alpha_{j_{a}}>0$ and $x_{i_{a}} \mid \widetilde{f}_{j_{a}}$ for each $1 \leq a \leq s$, then $\operatorname{deg}_{f_{0}}\left(\frac{\tilde{f}_{j_{a}}}{x_{i_{a}}}\right)=$ 0 , since $\left|f_{0} \cap f_{j_{a}}\right|=1$. Consequently, $m=l^{\prime} \frac{\widetilde{f}_{j_{1}}}{x_{i_{1}}} \cdots \frac{\tilde{f}_{j_{s}}}{x_{i s}} \frac{\tilde{f}_{1}^{\alpha_{1}} \cdots \tilde{f}_{r}^{a_{r}}}{\tilde{f}_{j_{1}} \cdots f_{j_{s}}}$, and $\operatorname{deg}_{f_{0}}(m)=$ $k+1-s$, since $\operatorname{deg}_{f_{0}}\left(\widetilde{f}_{i}\right)=1$ for $1<i \leq r$. Hence $\operatorname{deg}_{f_{0}}(m) \leq k-1$, since $s \geq 2$. Thus, if $f_{i} \neq f_{0}$, then $\operatorname{deg}_{f_{0}}\left(m \widetilde{f}_{i}\right)=\operatorname{deg}_{f_{0}}(m)+\operatorname{deg}_{f_{0}}\left(\widetilde{f}_{i}\right) \leq k$. This is a contradiction, since $m \widetilde{f}_{i} \in I^{k+1}$ and $\left|f_{0} \cap f_{j}\right|=1$ for $1 \leq j \leq r$.

Proposition 2.42 If $V(\mathcal{C})=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ with $f_{0} \in E(\mathcal{C})$ such that $\left|f_{0}\right|=2$ and $V(\mathcal{C}) \backslash f_{0} \in E(\mathcal{C})$, then \mathcal{C} has the strong persistence property.

Proof. We can assume $E(\mathcal{C})=\left\{f, f_{0}, f_{1}, \ldots, f_{r}\right\}$ where $f_{0}=\left\{x_{1}, x_{2}\right\}$ and $f=$ $\left\{x_{3}, x_{4}, x_{5}\right\}$. We take $m \in\left(I^{k+1}: I\right)$, then

$$
m x_{1} x_{2}=m \widetilde{f}_{0}=l \widetilde{f}_{0}^{\alpha_{0}} \widetilde{f}^{\alpha} \widetilde{f}_{1}^{\alpha_{1}} \cdots \widetilde{f}_{r}^{\alpha_{r}}
$$

where $\alpha+\alpha_{0}+\cdots+\alpha_{r}=k+1$. If $\operatorname{gcd}\left(\widetilde{f}_{0}, l\right) \neq 1$ or $\alpha_{0}>0$ or l contains some edge, then $m \in I^{k}$. Thus, we assume that $\operatorname{gcd}\left(\widetilde{f}_{0}, l\right)=1, \alpha_{0}=0$ and l does not contain an edge. We take f_{i}, f_{j} such that $x_{1} \mid \widetilde{f}_{i}$ and $x_{2} \mid \widetilde{f}_{j}$ with $\alpha_{i}>0$ and $\alpha_{j}>0$. If $i=j$, then $m=l \frac{\tilde{f}_{i}}{x_{1} x_{2}} \cdot \frac{\tilde{f}^{\alpha} \tilde{f}_{1}^{\alpha_{1}} \ldots \tilde{f}_{r}^{\alpha_{r}}}{\tilde{f}_{i}} \in I^{k}$. Now, we assume $i \neq j, x_{2} \notin f_{i}$ and $x_{1} \notin f_{j}$. We take $g=$ $\left(f_{i} \cup f_{j}\right) \backslash\left\{x_{1}, x_{2}\right\}$. Thus, $g \subseteq\left\{x_{3}, x_{4}, x_{5}\right\}=f$. If $g=f$, then $\widetilde{f}^{\alpha} \left\lvert\, \frac{\tilde{f}_{i}}{x_{1}} \cdot \frac{\tilde{f}_{j}}{x_{2}}\right.$ implying
$m=l \frac{\tilde{f}_{i}}{x_{1}} \cdot \frac{\widetilde{f}_{j}}{x_{2}} \cdot \frac{\tilde{f}^{\alpha} \tilde{f}_{1}^{\alpha_{1}} \ldots \tilde{f}_{r}^{\alpha r}}{\tilde{f}_{i} \tilde{f}_{j}} \in I^{k}$. So we assume $|g|<2$. If $\widetilde{f}^{\alpha} \left\lvert\, \frac{\tilde{f}_{i} \cdot \tilde{f}_{j}}{x_{1} x_{2}} l\right.$, then $m \in I^{k}$. So, we can suppose $\widetilde{f}^{\alpha}+\frac{\widetilde{f}_{i} \cdot \widetilde{f}_{j}}{x_{1} x_{2}} l$, then $\operatorname{deg}(\operatorname{gcd}(l, g)) \leq 2$. We write $m^{\prime}=\widetilde{f}^{\alpha} \widetilde{f}_{1}^{\beta_{1}} \cdots \widetilde{f}_{r}^{\beta_{r}}$ where $\beta_{t}=\alpha_{t}$ if $t \notin\{i, j\}$ and $\beta_{t}=\alpha_{t}-1$ if $t \in\{i, j\}$. If there exist $a_{1}, a_{2}, a_{3} \in\{0,1\}$ and $0 \leq b_{i} \leq \beta_{i}$ such that $l^{a_{1}}\left(\frac{\widetilde{f}_{i}}{x_{1}}\right)^{a_{2}}\left(\frac{\widetilde{f}_{j}}{x_{2}}\right)^{a_{3}} \widetilde{f}_{1}^{b_{1}} \cdots \widetilde{f}_{r}^{b_{r}} \in I^{b+1}$, where $b=b_{1}+\cdots+b_{r}$ then $m \in I^{k}$, so we assume that for each sequence $a_{1}, a_{2}, a_{3} \in\{0,1\}$ and $0 \leq b_{i} \leq \beta_{i}$ we have $l^{a_{1}}\left(\frac{\widetilde{f}_{i}}{x_{1}}\right)^{a_{2}}\left(\frac{\widetilde{f}_{j}}{x_{2}}\right)^{a_{3}} f_{1}^{b_{1}} \cdots f_{r}^{b_{r}} \in I^{b} \backslash I^{b+1}$, then we have $m \widetilde{f}_{i} \notin I^{k+1}$. This is a contradiction.

Proposition 2.43 If I is a square free monomial ideal of $K\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]$, such that $G(I)$ has an edges of cardinality 2 , then I has the strong persistence property.

Proof. Let \mathcal{C} be the clutter associated to I. We assume that f_{0} is an edge of cardinality 2. If $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \backslash f_{0}$ does not contain some edge, then $\left|f \cap f_{0}\right|=1$ for each $f \in E(\mathcal{C}) \backslash\left\{f_{0}\right\}$. Thus, by Proposition 2.41, \mathcal{C} has the strong persistence property.
If $g=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \backslash f_{0}$ is an edge, then by Proposition $2.42, \mathcal{C}$ has the strong persistence property. Hence, we can suppose that g contains a proper edge. We assume $f_{0}=\left\{x_{1}, x_{2}\right\}, f_{1}=\left\{x_{3}, x_{4}\right\}, f_{2}=\left\{x_{1}, x_{4}, x_{5}\right\}, f_{3}=\left\{x_{1}, x_{3}\right\}, f_{4}=\left\{x_{2}, x_{4}\right\}$, $f_{5}=\left\{x_{2}, x_{3}, x_{5}\right\}$ are the edges of \mathcal{C}. We take $m \in\left(I^{k+1}: I\right)$, then

$$
m \widetilde{f}_{0}=l \widetilde{f}_{0}^{\alpha_{0}} \widetilde{f}_{1}^{\alpha_{1}} \widetilde{f}_{2}^{\alpha_{2}} \widetilde{f}_{3}^{\alpha_{3}} \widetilde{f}_{4}^{\alpha_{4}} \widetilde{f}_{5}^{\alpha_{5}}
$$

where l a monomial and $\alpha_{0}+\alpha_{1}+\cdots+\alpha_{5}=k+1$. If $\operatorname{gcd}\left(l, \widetilde{f}_{0}\right) \neq 1$, or $\alpha_{0}>0$ or l contains some edges, we obtain $m \in I^{k}$. So, we assume $\operatorname{gcd}\left(l, \widetilde{f}_{0}\right)=1$ and $\alpha_{0}=0$. We take f_{i}, f_{j} such that $\alpha_{i}>0, \alpha_{j}>0$ and $x_{1}\left|\widetilde{f}_{i}, x_{2}\right| \widetilde{f}_{j}$, then one of the following condition holds:

1. $\left\{f_{i}, f_{j}\right\}=\left\{f_{2}, f_{5}\right\}$
2. $\left\{f_{i}, f_{j}\right\}=\left\{f_{3}, f_{4}\right\}$
3. $\left\{f_{i}, f_{j}\right\}=\left\{f_{2}, f_{4}\right\}$
4. $\left\{f_{i}, f_{j}\right\}=\left\{f_{3}, f_{5}\right\}$.

If $f_{i}=f_{2}=\left\{x_{1}, x_{4}, x_{5}\right\}$ and $f_{j}=f_{5}=\left\{x_{2}, x_{3}, x_{5}\right\}$, then $\frac{\tilde{f}_{1}}{x_{1}} \frac{\tilde{f}_{j}}{x_{2}}=x_{3} x_{4} x_{5}^{2}$ and $\tilde{f}_{1} \mid$ $\frac{\tilde{f}_{i}}{x_{1}} \frac{\widetilde{f}_{j}}{x_{2}}$, since $m=l \frac{\widetilde{f}_{i}}{x_{1}} \frac{\widetilde{f}_{j}}{x_{2}} m^{\prime}$ where $m^{\prime}=\frac{\tilde{f}_{1}^{\alpha_{1}} \tilde{f}_{2}^{\alpha_{2}} \tilde{f}_{3}^{\alpha_{3}} \tilde{f}_{4}^{\alpha_{4}} \tilde{f}_{5}^{\alpha_{5}}}{\tilde{f}_{i} \tilde{f}_{j}} \in I^{k-1}$. Hence, $m \in i^{k}$. If $f_{i}=f_{3}=\left\{x_{1}, x_{3}\right\}$ and $f_{j}=f_{4}=\left\{x_{2}, x_{4}\right\}$ then $\frac{\tilde{f}_{i}}{x_{1}} \frac{\tilde{f}_{j}}{x_{2}}=x_{3} x_{4}$ and $x_{3} x_{4} \left\lvert\, \frac{\tilde{f}_{f_{1}}}{x_{1}} \frac{\tilde{f}_{j}}{x_{2}}\right.$,
since $m=l \widetilde{f}_{1} m^{\prime}$. This implies $m \in i^{k}$. Now, we consider $f_{i}=f_{2}=\left\{x_{1}, x_{4}, x_{5}\right\}$ and $f_{j}=f_{4}=\left\{x_{2}, x_{4}\right\}$. We take $m^{\prime}=f_{1}^{\beta_{1}} \cdots f_{5}^{\beta_{5}}$ where $\beta_{t}=\alpha_{t}$ if $t \notin\{i, j\}$ and $\beta_{t}=\alpha_{t}-1$, so $\frac{\tilde{f}_{1}}{x_{1}} \frac{\tilde{f}_{j}}{x_{2}}=x_{4}^{2} x_{5}$. If $x_{1} \mid l$ or $x_{2} \mid l$ or $x_{3} \mid l$, then $\widetilde{f}_{2} \mid l x_{4}^{2} x_{5}$ or $\widetilde{f}_{4} \mid l x_{4}^{2} x_{5}$ or $\widetilde{f}_{1} \mid l x_{4}^{2} x_{5}$ respectively. Consequently, $m \in I^{k}$. Similarly, if $\beta_{3}>0$ or $\beta_{5}>0$ we obtain $\widetilde{f}_{1} \widetilde{f}_{2} \mid x_{4}^{2} x_{5} \widetilde{f}_{3}$ or $\widetilde{f}_{1} \widetilde{f}_{4} \mid x_{4}^{2} x_{5} \widetilde{f}_{5}$ respectively. This implies, $x_{4}^{2} x_{5} \widetilde{f}_{3} \in I^{2}$ or $x_{4}^{2} x_{5} \widetilde{f}_{5} \in I^{2}$. Since $\frac{m^{\prime}}{\tilde{f}_{3}}$ or $\frac{m^{\prime}}{\widetilde{f}_{5}} \in I^{k-2}$, we have $m \in I^{k}$. So, we assume $l=x_{4} x_{5}^{b}, \beta_{3}=0$ and $\beta_{5}=0$, implying $m f_{1} \notin I^{k+1}$. This is a contradiction, hence $m \in I^{k}$. Similarly we obtain $m \in I^{k}$, if $f_{i}=\left\{x_{1}, x_{3}\right\}$ and $f_{j}=\left\{x_{2}, x_{3}, x_{5}\right\}$.

Corollary 2.44 If $I \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ is a squarefree monomial ideal without the strong persistence property, then $n \geq 5$ and there is $k \geq 3$ such that $\left(I^{k}: I\right) \neq I^{k-1}$.

Proof. By Theorem 2.39 and Theorem 2.22 ,

Definition 2.45 Let $\mathcal{C}=(V, E)$ be a clutter with $x \in V$, the deleting of x is the clutter $\mathcal{C} \backslash x$ with vertex set $V \backslash\{x\}$ and edge set $\{f \in E \mid x \notin f\}$. Furthermore, the contraction of x is the clutter \mathcal{C} / x with vertex set $V \backslash\{x\}$ and whose edges are $f \backslash\{x\}$ with $f \in E$ and there is not $f^{\prime} \in E$ such that $f^{\prime} \backslash\{x\} \subset f \backslash\{x\}$.

Example 2.46 We consider the clutter \mathcal{C} with vertex set $V\left(\mathcal{C}_{0}\right) \cup\{x\}$ and edge set $E\left(\mathcal{C}_{0}\right) \cup\left\{x x_{1}\right\}$, where \mathcal{C}_{0} is the clutter in Example 2.32. By Theorem 2.24, $I(\mathcal{C})$ has the strong property but $\mathcal{C} \backslash x=\mathcal{C}_{0}$ has no the strong persistence property.

Proposition 2.47 Let \mathcal{C} be a clutter and $x \in V(\mathcal{C})$. If \mathcal{C} has the (strong) persistence property, then \mathcal{C} / x has the (strong) persistence property.

Proof. We set $E(\mathcal{C})=\left\{f_{1}, \ldots, f_{r}\right\}$. We can suppose $\left\{f_{i} \mid x \in f_{i}\right\}=\left\{f_{1}, \ldots, f_{r_{1}}\right\}$ and $\left\{f_{i} \mid f_{j} \backslash\{x\} \nsubseteq f_{i}\right.$ for each $\left.j \leq r_{1}\right\}=\left\{f_{r_{1}+1}, \ldots, f_{r_{2}}\right\}$. We define $f_{i}^{\prime}=f_{i} \backslash\{x\}$ for $i \leq r_{2}$ and $A=\bigcup_{i \leq r_{2}} f_{i}^{\prime}$. Also, we set $I=I(\mathcal{C} / x)$ and $J=I(\mathcal{C})$. Thus, $f_{1}^{\prime}, \ldots, f_{r_{2}}^{\prime}$ are the edges of \mathcal{C} / x and $f_{i}^{\prime}=f_{i}$ for $r_{1}+1 \leq i$. Furthermore, if $i>r_{2}$, then $f_{j}^{\prime} \subseteq f_{i}$ for some j. So, for each $1 \leq i \leq r$ there is $j \leq r_{2}$ such that $\widetilde{f}_{j}^{\prime} \mid f_{i}$. Consequently, if $m \in G\left(J^{k}\right)$, then there is $m^{\prime} \in G\left(I^{k}\right)$ such that $m^{\prime} \mid m$. We take $\mathcal{L}=\left(z_{1}, \ldots, z_{s}\right)$ where $z_{j}=x_{j}^{\beta_{i j}}$. Hence if \mathcal{L} is an I^{k}-minimal ideal, then $J^{k} \subseteq \mathcal{L}$. Furthermore, $G(\operatorname{rad}(\mathcal{L}))=\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\} \subseteq A$ since \mathcal{L} is I^{k}-minimal. Now, we suppose \mathcal{L} is J^{k}-minimal and $G(\underset{\operatorname{rad}}{(\mathcal{L})}) \subseteq A$. If $m \in G\left(I^{k}\right)$, then $m=\tilde{f}_{1}^{\prime a_{1}} \cdots \tilde{f}_{r_{2}} a_{r_{2}}$ with $a_{1}+\cdots+a_{r_{2}}=k$. So, $x^{\alpha} m=\widetilde{f}_{1}^{a_{1}} \cdots \widetilde{f}_{r_{2}}^{a_{r_{2}}} \in J^{k}$, where $\alpha=a_{1}+\cdots+a_{r_{1}}$. Thus,
$z_{j} \mid x^{\alpha} m$ for some $j \leq s$. Since $x \notin A, \operatorname{gcd}\left(x, z_{j}\right)=1$, and $z_{j} \mid m$. Therefore $I^{k} \subseteq \mathcal{L}$. Now, we will prove that \mathcal{L} is an I^{k}-minimal ideal if and only if \mathcal{L} is an J^{k}-minimal ideal and $G(\operatorname{rad}(\mathcal{L})) \subseteq A$. Assume \mathcal{L} is I^{k}-minimal so, $\operatorname{rad}(\mathcal{L}) \subseteq A$. If \mathcal{L} is not J^{k}-minimal, then there is \mathcal{L}^{\prime} such that $J^{k} \subseteq \mathcal{L}^{\prime} \subset \mathcal{L}$ and $\operatorname{rad}\left(\mathcal{L}^{\prime}\right) \subseteq \operatorname{rad}(\mathcal{L}) \subseteq A$. Consequently, $I^{k} \subseteq \mathcal{L}^{\prime}$. A contradiction, therefore \mathcal{L} is J^{k}-minimal. Now suppose \mathcal{L} is J^{k}-minimal and \mathcal{L} is not I^{k}-minimal, then there is \mathcal{L}^{\prime} such that $I^{k} \subseteq \mathcal{L}^{\prime} \subset \mathcal{L}$. This implies $J^{k} \subseteq \mathcal{L}^{\prime}$, a contradiction, since \mathcal{L} is J^{k}-minimal.
Hence, $\operatorname{Ass}\left(I^{k}\right)=\left\{P \in \operatorname{Ass}\left(J^{k}\right) \mid G(P) \subseteq A\right\}$ for each k. Since J has the persistence property, if $P \in \operatorname{Ass}\left(I^{k}\right)$, then $P \in \operatorname{Ass}\left(J^{k+1}\right)$ and $G(P) \subseteq A$. Thus, $P \in \operatorname{Ass}\left(I^{k+1}\right)$. Therefore, I has the persistence property.
(Strong). Now, we set $m \in\left(I^{k+1}: I\right)$. If $1 \leq i \leq r_{2}$, then $m f_{i}^{\prime}=\ell_{i} f_{1}^{\prime \alpha_{i 1}} \cdots f_{r}^{\prime \alpha_{i r_{2}}}$ where $\ell \in \operatorname{Mon}(R)$ and $\alpha_{i 1}+\cdots+\alpha_{i r_{2}}=k+1$. We take $u_{i}=\alpha_{i 1}+\cdots+\alpha_{i r_{1}}$. If $i \leq r_{1}$, then

$$
x^{k+1} m f_{i}=x^{k+2} m f_{i}^{\prime}=x^{k+2} \ell_{i}\left(f_{1}^{\prime}\right)^{\alpha_{i 1}} \cdots\left(f_{r_{2}}^{\prime}\right)^{\alpha_{i r_{2}}}=x^{k+2-u_{i}} \ell_{i} f_{1}^{\alpha_{i 1}} \cdots f_{r_{2}}^{\alpha_{i r_{2}}}
$$

Now if $r_{1}+1 \leq i \leq r_{2}$, then $x^{k+1} m f_{i}=x^{k+1} m f_{i}^{\prime}=x^{k+1-u} \ell f_{1}^{\alpha_{i 1}} \cdots f_{r_{2}}^{\alpha_{i r_{2}}}$. Finally if $r_{2}+1 \leq i \leq r$, then there exist $j \leq r_{1}$ such that $f_{j}^{\prime} \mid f_{i}$. So,

$$
x^{k+1} m f_{i}=\frac{f_{i}}{f_{j}^{\prime}} x^{k+1} m f_{j}^{\prime}=\frac{f_{i}}{f_{j}^{\prime}} x^{k+1-u_{j}} \ell_{j} f_{1}^{\alpha_{j 1}} \cdots f_{r_{2}}^{\alpha_{j_{2}}}
$$

Consequently, $x^{k+1} m \in\left(J^{k+1}: J\right)=J^{k}$. This implies $x^{k+1} m=\ell f_{1}^{\beta_{1}} \cdots f_{r}^{\beta_{r}}$ with $\ell \in \operatorname{Mon}(R)$ and $\beta_{1}+\cdots+\beta_{r}=k$. Since $x \nmid f_{j}$ for $j \geq r_{1}+1, x^{w} \mid \ell$, where $w=k+1-\left(\beta_{1}+\cdots+\beta_{r_{1}}\right)$. Therefore, $\ell=x^{w} \ell^{\prime}$ where $\ell^{\prime} \in \operatorname{Mon}(R)$ and $m=$ $\ell^{\prime}\left(f_{1}^{\prime}\right)^{\beta_{1}} \cdots\left(f_{r_{1}}^{\prime}\right)^{\beta_{r_{1}}}\left(f_{r_{1}+1}\right)^{\beta_{r_{1}}+1} \cdots f_{r}^{\beta_{r}} \in I^{k}$.

Remark 2.48 The converse affirmation of Proposition 2.47 is not true. We take \mathcal{C}_{0} as in Example 2.32. So, $\mathcal{C}_{0} /\left\{x_{i}\right\}$ is a simple graph for each i. Hence, by Theorem 2.9, $\mathcal{C}_{0} /\left\{x_{i}\right\}$ has the strong persistence property.

Definition 2.49 Let $\mathcal{C}=(V, E)$ be a clutter and $\sigma \in S_{V}$ a permutation. We consider the clutter $\sigma(\mathcal{C})=\left(V, E^{\prime}\right)$ where $E^{\prime}=\left\{x_{\sigma\left(i_{1}\right)} \cdots x_{\sigma\left(i_{s}\right)} \mid x_{i_{1}} \cdots x_{i_{s}} \in E\right\}$.

Proposition 2.50 If \mathcal{C} has the strong persistence property and $\sigma \in S_{V(\mathcal{C})}$, then $\sigma(\mathcal{C})$ also has the strong persistence property.

Proof. We take a morphism of k-algebras $\phi: R=K\left[x_{1}, \ldots, x_{n}\right] \rightarrow R$ given by $\phi\left(x_{i}\right)=x_{\sigma(i)}$. Hence, ϕ is an automorphism of R, with $\phi(I(\mathcal{C}))=I(\sigma(\mathcal{C}))$. Therefore, $I(\mathcal{C})$ and $I(\sigma(\mathcal{C}))$ are isomorphic.

2.5 THE SYMBOLIC STRONG PERSISTENCE PROPERTY

In this section we study some properties of the strong persistence property in a general ring. Furthermore, we introduce the symbolic strong persistence property and we prove that the strong persistence property implies the symbolic strong persistence property.

Theorem 2.51 An ideal I has the strong persistence property if and only if $\left(I^{t}: I^{s}\right)=$ I^{t-s} for all $s \leq t$.

Proof. We proceed by induction on s. For $s=1$ we recover the strong persistence property. Now, we take $a \in\left(I^{t}: I^{s+1}\right)$ with $t \geq s+1$ and $x \in I$, then $a x b \in I^{t}$ for all $b \in I^{s}$. Hence $a x \in\left(I^{t}: I^{s}\right)$. By induction hypothesis $a x \in I^{t-s}$. Consequently $a \in\left(I^{t-s}: I\right)$ and, by induction, $a \in I^{t-s-1}$. Therefore $\left(I^{t}: I^{s+1}\right)=I^{t-s-1}$.

Corollary 2.52 If I has the strong persistence property, then I^{t} has the strong persistence property.

Proof. By Theorem $2.51\left(I^{k t}: I^{t}\right)=I^{k t-t}=I^{t(k-1)}$ for all $k \geq 1$. Therefore, I^{t} has the strong persistence property.

By [23] normal ideals in an integer domain satisfy $\left(I^{r}: I^{s}\right)=I^{r-s}$ for all $s \leq r$. Hence, by Theorem 2.51 a normal ideal has the strong persistence property, but the converse affirmation is not true.

Example 2.53 ([28]) Let G be a simple connected graph, the $I(G)$ has the strong persistence property but if $V(G)=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right\}$ and $E(G)=\left\{x_{1} x_{2}\right.$, $\left.x_{2} x_{3}, x_{1} x_{3}, x_{3} x_{4}, x_{4} x_{5}, x_{5} x_{6}, x_{6} x_{7}, x_{5} x_{7}\right\}$, then $I(G)$ is not normal.

Definition 2.54 Let P_{1}, \ldots, P_{r} be the minimal primes of I. The k-th symbolic power of I is $I^{(k)}=q_{1} \cap \cdots \cap q_{r}$, where q_{i} is the P_{i}-primary component of I^{k}.

Remark $2.55 I^{(i)} \subseteq\left(I^{(i+1)}: I^{(1)}\right)$ for each i.

Definition 2.56 I has the symbolic strong persistence property if $\left(I^{(i+1)}: I^{(1)}\right)=$ $I^{(i)}$ for each i.

Theorem 2.57 Strong persistence property implies the symbolic strong persistence
property.
Proof. Let $\operatorname{Min}(I)=\left\{P_{1}, \ldots, P_{r}\right\}$ be the set of minimal primes containing I. We take $I^{d}=Q_{1 d} \cap \cdots \cap Q_{s_{d} d}$ a minimal primary decomposition of I^{d} for each d. We can suppose that there exists $r_{d} \leq s_{d}$ such that $\operatorname{rad}\left(Q_{i d}\right) \in \operatorname{Min}(I)$ if and only if $i \leq r_{d}$. Now for $j>r_{k+1}$, then $\operatorname{rad}\left(Q_{j k+1}\right)$ is not minimal. Consequently, $\operatorname{rad}\left(Q_{j k+1}\right) \nsubseteq \operatorname{rad}\left(Q_{i k+1}\right)$ with $i \leq r_{k+1}$. This implies $\operatorname{rad}\left(Q_{j k+1}\right) \nsubseteq B$, where $B=\bigcup_{i=1}^{r_{k+1}} \operatorname{rad}\left(Q_{i k+1}\right)$. Thus, there is $a_{j} \in \operatorname{rad}\left(Q_{j k+1}\right) \backslash B$. So, $b_{j}=a_{j}^{s_{1}} \in Q_{j k+1}$ for some s_{j}. Hence, $b_{j} \in Q_{j k+1} \backslash B$. Now, we take $a \in\left(I^{(k+1)}: I^{(1)}\right)$, then $a x \in I^{(k+1)}$ for all $x \in I^{(1)}$. Consequently, if $c=\prod_{j \geq r_{k+1}} b_{j}$, then $a x c \in I^{k+1}$ for all $x \in I$ since $I \subseteq I^{(1)}$. So, $a c \in I^{k}$, since I has the strong persistence property. Furthermore, if $j>r_{k+1}$, then $b_{j} \notin \operatorname{rad}\left(Q_{i k}\right)$ for $i \leq r_{k}$. Thus, $a \in Q_{i k}$ for $1 \leq i \leq r_{k}$, since $a c \in Q_{i k}$ and $Q_{i k}$ is primary. Therefore, $a \in I^{(k)}$.

Proposition 2.58 An ideal I has the symbolic strong persistence property if and only if $\left(I^{(r)}: I^{(s)}\right)=I^{(r-s)}$ for all $s \leq r$.

Proof. Similar to proof of Theorem 2.51.

CHAPTER

3

On Gorenstein homogenoeous MONOMIAL SUBRINGS OF GRAPHS

3.1 INTRODUCTION

Let $G=(V(G), E(G))$ be a graph whose vertex set and edge set are $V(G)=$ $\left\{x_{1}, \ldots, x_{n}\right\}$ and $E(G)=\left\{y_{1}, \ldots, y_{q}\right\}$, respectively. Let $y=\left\{x_{i}, x_{j}\right\}$ be an edge of G, the characteristic vector of y is the vector $v_{y} \in\{0,1\}^{n}$ such that its i-th entry is 1 , its j-th entry is 1 , and the remaining entries are zero, i.e., $v_{y}=e_{i}+e_{j}$. We denote by v_{1}, \ldots, v_{q} the characteristic vector of y_{1}, \ldots, y_{q}, respectively. We consider the set w_{1}, \ldots, w_{r} of all $\alpha \in \mathbb{N}^{n}$ such that $\alpha \leq v_{i}$ for some $i \in\{1, \ldots, r\}$. Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field K, the homogeneous monomial subring of G is the ring:

$$
S_{G}=K\left[x^{w_{1}} t, \ldots, x^{w_{r} r}\right] \subset R[t]
$$

where t is a new variable. Since $\left(w_{i}, 1\right)$ lies in the hyperplane $x_{n+1}=1$ for each i then, S_{G} is a standard K-algebra, where a monomial $x^{a} t^{b}$ has degree b. We assume that S_{G} has this grading. If S_{G} is normal, then according to Danilov-Stanley formula (see [4, 6]), the canonical module of S_{G} is the ideal given by

$$
w_{S}=\left(\left\{x^{a} t^{b} \mid(a, b) \in \mathbb{N} B \cap\left(\mathbb{R}_{+} B\right)^{\circ}\right\}\right),
$$

where $B=\left\{\left(w_{1}, 1\right), \ldots,\left(w_{r}, 1\right)\right\}$ and $\left(\mathbb{R}_{+} B\right)^{0}$ is the interior of $\mathbb{R}_{+} B$ relative to $\operatorname{aff}\left(\mathbb{R}_{+} B\right)$ (the affine hull of $\left.\mathbb{R}_{+} B\right)$. Furthermore, $\operatorname{aff}\left(\mathbb{R}_{+} B\right)=\mathbb{R}^{n+1}$. In [9] is proven that if G is connected then S is normal if and only if there exists a edge between every two vertex disjoint odd cycles. A vertex cover is a subset A of $V(G)$ such that $A \cap e \neq \varnothing$ for each $e \in E(G)$. The cover number of $G, \tau(G)$, is the cardinality of a minimum vertex cover. G is called unmixed if every minimal vertex cover has $\tau(G)$ elements.

A monomial algebra \mathcal{A} is called Gorenstein if \mathcal{A} is Cohen-Macaulay and its canonical module $w_{\mathcal{A}}$ is a principal ideal. In [15] Hochsther proved that if \mathcal{A} is normal
then \mathcal{A} is Cohen-Macaulay. Hence, if \mathcal{A} is normal then \mathcal{A} is Gorenstein if and only if $w_{\mathcal{A}}$ is principal. In [9] is proven that if G is bipartite then S_{G} is Gorenstein if and only if G is unmixed. In this chapter we prove that if S_{G} is normal then S_{G} is Gorenstein if and only if G is unmixed and $\tau(G)=\left\lceil\frac{n}{2}\right\rceil$. Furthermore we prove that if n is even and S_{G} is Gorenstein, then G is bipartite.

3.2 SOME PROPERTIES OF UNMIXED GRAPHS

A subset F of $V(G)$ is a stable set if $y \nsubseteq F$ for each $y \in E(G)$. The cardinality of a maximum stable set is denoted by $\beta(G)$. Furthermore, G is called well-covered if every maximal stable set has $\beta(G)$ elements. F is a (maximal) stable set if and only if $V(G) \backslash F$ is a (minimal) vertex cover. Hence, $\tau(G)+\beta(G)=|V(G)|$. Furthermore, G is unmixed if and only if G is well-covered. A set of induced subgraphs G_{1}, \ldots, G_{s} of G is a τ-reduction of G if $\left\{V\left(G_{1}\right), \ldots, V\left(G_{s}\right)\right\}$ is a partition of $V(G)$ and $\tau(G)=\sum_{i=1}^{S} \tau\left(G_{i}\right)$.

Proposition 3.1 Let G be a bipartite graph. G is unmixed if and only if there is a τ-reduction y_{1}, \ldots, y_{r} such that $y_{i} \in E(G)$.

Proposition 3.2 ([22]) If G is an unmixed graph, with $\tau(G)=\frac{n+1}{2}$, then there exist a τ-reduction $\left\{H_{1}, \ldots, H_{s}\right\}$ of G such that $H_{i} \in E(G)$ for $1 \leq i \leq s-1$ and H_{s} is an j-cycle with $j \in\{3,5,7\}$. Furthermore, if $V\left(H_{i}\right)=\left\{a, a^{\prime}\right\}$ and $\{a, b\},\left\{a^{\prime}, b^{\prime}\right\} \in$ $E(G)$, then $\left\{b, b^{\prime}\right\} \in E(G)$.

Lemma 3.3 If G_{1}, \ldots, G_{s} is a τ-reduction of G, then $\sum_{i=1}^{s} \beta\left(G_{i}\right)=\beta(G)$.
Proof. Since G_{1}, \ldots, G_{s} is a τ-reduction of $G, \sum_{i=1}^{S} \tau\left(G_{i}\right)=\tau(G)$. Hence,

$$
\sum_{i=1}^{s} \beta\left(G_{i}\right)=\sum_{i=1}^{s}\left|V\left(G_{i}\right)\right|-\tau\left(G_{i}\right)=\sum_{i=1}^{s}\left|V\left(G_{i}\right)\right|-\sum_{i=1}^{s} \tau\left(G_{i}\right)=|V(G)|-\tau(G)=\beta(G)
$$

since $\left\{V\left(G_{1}\right), \ldots, V\left(G_{s}\right)\right\}$ is a partition of $V(G)$.

Lemma 3.4 If G is an unmixed graph with a τ-reduction G_{1}, \ldots, G_{s}, then $\beta\left(G_{i}\right)=$ $\left|F \cap V\left(G_{i}\right)\right|$ for each F maximal stable of G.

Proof. We take F a maximal stable set of G. Hence $\left|F \cap V\left(G_{i}\right)\right| \leq \beta\left(G_{i}\right)$. Consequently, by Lemma 3.3, $|F|=\sum_{i=1}^{s}\left|F \cap V\left(G_{i}\right)\right| \leq \sum_{i=1}^{s} \beta\left(G_{i}\right)=\beta(G)$, since $\left\{V\left(G_{1}\right), \ldots, V\left(G_{s}\right)\right\}$ is a partition of $V(G)$. But G is well-covered, then $|F|=\beta(G)$. Therefore $\left|F \cap V\left(G_{i}\right)\right|=\beta\left(G_{i}\right)$.

Proposition 3.5 Let G be an unmixed graph with a τ-reduction G_{1}, \ldots, G_{s} such that $G_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right\}$ is a 7 -cycle.

1) If $\left\{x_{1}, y_{1}\right\} \in E(G)$ with $y_{1} \notin V\left(H_{1}\right)$, then $\mathrm{N}_{G}\left(y_{1}\right) \cap\left\{x_{3}, x_{6}\right\} \neq \varnothing$.
2) If there is not a 4-cycle C such that $V(C) \cap V\left(G_{1}\right)$ is an edge, then there is a stable set $\left\{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right\}$ where $1 \leq i_{1}<i_{2}<i_{3} \leq 7$, and $\operatorname{deg}\left(x_{i_{j}}\right)=2$ for $j=1,2,3$.

Proof. 1) By contraction, suppose $\mathrm{N}_{G}\left(y_{1}\right) \cap\left\{x_{3}, x_{6}\right\}=\varnothing$. Hence $A=\left\{y_{1}, x_{3}, x_{6}\right\}$ is a stable set. Consequently, there is a maximal stable set F of G such that $A \subseteq F$. Thus, $F \cap V\left(G_{1}\right)=\left\{x_{3}, x_{6}\right\}$. A contradiction by Lemma 3.4, since $\beta\left(G_{1}\right)=3$.
2) We can suppose there is $\left\{x_{1}, y_{1}\right\} \in E(G)$ with $y_{1} \notin V(C)$. By 1) assume $\left\{y_{1}, x_{3}\right\} \in E(G)$. If $\operatorname{deg}_{G}\left(x_{2}\right) \neq 2$, then there is $\left\{x_{2}, y_{2}\right\} \in E(G)$ with $y_{2} \notin V(C)$. By 1) we can suppose $\left\{x_{4}, y_{2}\right\} \in E(G)$. By hypothesis $\left\{y_{1}, y_{2}\right\} \notin E(G)$. Consequently, there is a maximal stable set $F \supseteq\left\{y_{1}, y_{2}\right\}$. Hence, $F \cap V\left(G_{1}\right) \subseteq\left\{x_{5}, x_{6}, x_{7}\right\}$. Therefore $\left|F \cap V\left(G_{1}\right)\right| \leq 2$. A contradiction by Lemma 3.4, since $\beta\left(G_{1}\right)=3$. This implies $\operatorname{deg}_{G}\left(x_{2}\right)=2$. If $\operatorname{deg}_{G}\left(x_{7}\right)=\operatorname{deg}_{G}\left(x_{4}\right)=2$, then $\left\{x_{3}, x_{4}, x_{7}\right\}$ is a stable set. Now, we can assume $\operatorname{deg}_{G}\left(x_{4}\right) \neq 2$. So, there is $\left\{x_{4}, y_{2}\right\} \in E(G)$ with $y_{2} \notin V(G)$. Thus, by 1) $\left\{y_{2}, x_{6}\right\}$, since $\operatorname{deg}_{G}\left(x_{2}\right)=2$. Hence, by the last argument $\operatorname{deg}_{G}\left(x_{5}\right)=2$. Furthermore by 1), $\operatorname{deg}_{G}\left(x_{7}\right)=2$ since $\operatorname{deg}_{G}\left(x_{2}\right)=\operatorname{deg}_{G}\left(x_{5}\right)=2$. Therefore $\left\{x_{2}, x_{5}, x_{7}\right\}$ is a stable set.

Proposition 3.6 Let G be an unmixed graph with a τ-reduction G_{1}, \ldots, G_{s} such that $G_{1}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ is a 5 -cycle. If G has no a 4 -cycle C such that $V(C) \cap$ $V\left(G_{1}\right)$ is an edge, then there is a stable set $\left\{x_{i_{1}}, x_{i_{2}}\right\} \subseteq V\left(G_{1}\right)$ such that $\operatorname{deg}_{G}\left(x_{i_{1}}\right)=$ $\operatorname{deg}_{G}\left(x_{i_{2}}\right)=2$.

Proof. Assume $\operatorname{deg}_{G}\left(x_{1}\right) \geq 3$. If $\operatorname{deg}_{G}\left(x_{2}\right)=\operatorname{deg}_{G}\left(x_{5}\right)=2$ we obtain the result. So, we can suppose there are $\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\} \in E(G)$ such that $y_{1}, y_{2} \notin V\left(G_{1}\right)$. By hypothesis $\left\{y_{1}, y_{2}\right\} \notin E(G)$. If $A=\left\{y_{1}, y_{2}, x_{4}\right\}$ is a stable set, then there is a maximal stable set F such that $A \subseteq F$. But $F \cap V\left(G_{1}\right)=\left\{x_{4}\right\}$ a contradiction by Lemma 3.4, since $\beta\left(G_{1}\right)=2$. So, we can assume $\left\{y_{1}, x_{4}\right\} \in E(G)$. If $\left\{x_{3}, y_{3}\right\} \in E(G)$ with $y_{3} \notin V\left(G_{1}\right)$, then $A_{1}=\left\{y_{1}, y_{2}, y_{3}\right\}$ is a stable set by hypothesis. Hence, if F_{1} is a maximal stable set with $A_{1} \subseteq F_{1}$, then $F_{1} \cap V\left(G_{1}\right) \subseteq\left\{x_{1}, x_{5}\right\}$.

A contradiction by Lemma 3.4. Thus, $\operatorname{deg}_{G}\left(x_{3}\right)=2$. Now if $\left\{x_{5}, y_{5}\right\} \in E(G)$ with $y_{5} \notin V\left(G_{1}\right)$, then $A_{2}=\left\{y_{5}, y_{1}\right\} \notin E(G)$. So, there is a maximal stable set F_{2} with $A_{2} \subseteq F_{2}$ and $F_{2} \cap V\left(G_{1}\right) \subseteq\left\{x_{2}, x_{3}\right\}$. A contradiction, therefore $\operatorname{deg}_{G}\left(x_{5}\right)=2$.

3.3 GORENSTEIN HOMOGENEOUS SUBRING OF GRAPHS

Let S_{G} be the homogeneous monomial subring of G, then $\mathbb{R}_{+} B=H_{e_{1}}^{+} \cap \cdots \cap H_{e_{n}}^{+} \cap$ $H_{\left(-\ell_{1}, 1\right)}^{+} \cap \cdots \cap H_{\left(-\ell_{m}, 1\right)}^{+}$for some $\ell_{1}, \ldots, \ell_{m} \in \mathbb{R}^{n}$, where $H_{w}^{+}=\left\{v \in \mathbb{R}^{n+1} \mid v \cdot w \geq\right.$ $0\}$. Hence, if S_{G} is normal, then:

$$
\begin{aligned}
\omega_{S} & =\left(\left\{x^{a} t^{b} \mid(a, b) \in \mathbb{N} B \cap\left(\mathbb{R}_{+} B\right)^{\circ}\right\}\right) \\
& =\left(\left\{x^{a} t^{b} \left\lvert\, \begin{array}{l}
(a, b) \cdot\left(-l_{j}, 1\right)>0 \text { for } j=1, \ldots, m \\
(a, b) \cdot e_{i}>0 \text { for } i=1, \ldots, n
\end{array}\right.\right\}\right) .
\end{aligned}
$$

Notation. In this chapter we take $|v|=v \cdot \mathbf{1}=\sum_{i=1}^{n} v_{i}$, where $v=\left(v_{1}, \ldots, v_{n}\right)$.

Lemma 3.7 If $(w, a) \in \mathbb{N} B$ with $w \in \mathbb{R}^{n}$ and $a \in \mathbb{R}$, then $|w| \leq 2 a$.
Proof. Since $(w, a) \in \mathbb{N} B$ then $(w, a)=\sum_{i=1}^{r} \lambda_{i}\left(w_{i}, 1\right)$, where $\lambda_{i} \in \mathbb{N}$. Thus, $|w|=\left|\sum_{i=1}^{r} \lambda_{i} w_{i}\right|=\sum_{i=1}^{r} \lambda_{i}\left|w_{i}\right| \leq 2 \sum_{i=1}^{r} \lambda_{i}$. Hence $|w| \leq 2 a$, since $a=\sum_{i=1}^{r} \lambda_{i}$.

Proposition 3.8 Let G be a connected graph. If τ is a generating tree of G and $\tilde{e}_{\tau}=\sum_{v_{i} \in E(\tau)}\left(v_{i}, 1\right)+e_{n+1}$, then $\tilde{e}_{\tau} \in \mathbb{N} B \cap\left(\mathbb{R}_{+} B\right)^{\circ}$.

Proof. Since $\mathbb{R}_{+} B=H_{e_{1}}^{+} \cap \cdots \cap H_{e_{n}}^{+} \cap H_{\left(-\ell_{1}, 1\right)}^{+} \cap \cdots \cap H_{\left(-\ell_{m}, 1\right)}^{+}$, it is sufficient to show that $\tilde{e}_{\tau} \cdot e_{i}>0$ and $\tilde{e}_{\tau} \cdot\left(-\ell_{j}, 1\right)>0$ for $i=1, \ldots, n$ and $j=1, \ldots, m$. Since τ is a generating tree, we have $\tilde{e}_{\tau} \cdot e_{i}>0$ for $i=1, \ldots, n$. On the other hand, $\left(v_{i}, 1\right)$. $\left(-\ell_{j}, 1\right) \geq 0$, since $\left(v_{i}, 1\right) \in \mathbb{R}_{+} B$ for $v_{i} \in E(\tau)$. Furthermore, $e_{n+1} \cdot\left(-\ell_{j}, 1\right)=1>$ 0 . Therefore $\tilde{e}_{\tau} \cdot\left(-\ell_{j}, 1\right)>0$ for $j=1, \ldots, m$, since $\tilde{e}_{\tau}=\sum_{v_{i} \in E(\tau)}\left(v_{i}, 1\right)+e_{n+1}$.

Proposition 3.9 If $I=\left\{x_{j_{1}}, \ldots, x_{j_{d}}\right\}$ is a maximal stable set and $\ell^{\prime}=\sum_{i=1}^{d} e_{j_{i}}$, then $H_{\left(-\ell^{\prime}, 1\right)}$ is a supporting hyperplane of $\mathbb{R}_{+} B$.

Proof. Since I is an independent set then $\ell^{\prime} \cdot v_{i} \leq 1$ for $i=1, \ldots, q$. Hence, ℓ^{\prime}. $w_{j} \leq 1$ and $0 \leq\left(-\ell^{\prime}, 1\right) \cdot\left(w_{j}, 1\right)$ for $j=1, \ldots, r$. We can assume without loss of generality that $I=\left\{x_{1}, \ldots, x_{d}\right\}$ then $\mathcal{C}=V(G) \backslash I=\left\{x_{d+1}, \ldots, x_{n}\right\}$ is a minimal
vertex cover. Hence, there exists $v_{1}, \ldots, v_{n-d} \in E(G)$ such that $v_{i} \cap \mathcal{C}=\left\{x_{d+i}\right\}$ for $i=1, \ldots, n-d$. Thus, $\left(e_{1}, 1\right), \ldots,\left(e_{d}, 1\right),\left(e_{v_{1}}, 1\right), \ldots,\left(e_{v_{n-d}}, 1\right)$ are independent vector in $H_{\left(-\ell^{\prime}, 1\right)} \cap \mathbb{R}_{+} B$. Therefore $H_{\left(-\ell^{\prime}, 1\right)}$ is a supporting hyperplane of $\mathbb{R}_{+} B$.

Let \mathcal{C} be a minimal vertex cover of G, we suppose, without loss of generality, that $\mathcal{C}=\left\{x_{1}, \ldots, x_{c}\right\}$. Since \mathcal{C} is minimal, there exist $y_{1}, \ldots, y_{c} \in E(G)$ such that $y_{i} \cap \mathcal{C}=\left\{x_{i}\right\}$. We can suppose, without loss of generality, that $y_{i}=\left\{x_{i}, x_{j_{i}}\right\}$ for $i=1, \ldots, c$, where $\left\{x_{j_{1}}, \ldots, x_{j_{c}}\right\}=\left\{x_{c+1}, \ldots, x_{c+s}\right\}$ (some $x_{j_{i}}$ can be equal to each other). We define

$$
\tilde{e}(\mathcal{C})=e_{n+1}+\sum_{i=1}^{c}\left(v_{i}, 1\right)+\sum_{j=s+c+1}^{n}\left(e_{j}, 1\right)
$$

where $v_{i}=e_{i}+e_{j_{i}}$ (the characteristic vector of y_{i}). Then,

$$
\begin{align*}
\tilde{e}(\mathcal{C}) & =e_{n+1}+\sum_{i=1}^{c}\left(e_{i}+e_{j_{i}}+e_{n+1}\right)+\sum_{i=s+c+1}^{n}\left(e_{i}+e_{n+1}\right) \\
& =\sum_{i=1}^{c} e_{i}+\sum_{i=1}^{c} e_{j_{i}}+\sum_{i=s+c+1}^{n}\left(e_{i}\right)+(1+c+n-(s+c)) e_{n+1} \\
& =(\underbrace{1, \ldots, 1}_{c}, a_{c+1}, \ldots, a_{c+s}, \underbrace{1, \ldots, 1}_{n-(s+c)}, n-s+1) \tag{3.1}
\end{align*}
$$

where $a_{c+i} \geq 1$ for $i=1, \ldots, s$. Furthermore, $c=\sum_{i=1}^{c}\left|e_{i}\right|=\sum_{i=1}^{c}\left|e_{j_{i}}\right|=\sum_{i=1}^{s} a_{c+i}$.

Proposition 3.10 If S is normal and \mathcal{C} is a minimal vertex cover of G then $x^{\tilde{e}(\mathcal{C})} \in$ ω_{S}

Proof. By definition $\tilde{e}(\mathcal{C}) \in \mathbb{N} B$. Furthermore, $\left(v_{i}, 1\right) \cdot\left(-\ell_{u}, 1\right) \geq 0$ and $\left(e_{j}, 1\right)$. $\left(-\ell_{u}, 1\right) \geq 0$ for $1 \leq u \leq m$, since $\left(v_{i}, 1\right),\left(e_{j}, 1\right) \in \mathbb{R}_{+} B$. Also, $e_{n+1} \cdot\left(-\ell_{u}, 1\right)=1>$ 0 . Hence, $\tilde{e}(\mathcal{C}) \cdot\left(-\ell_{u}, 1\right)>0$ for $1 \leq u \leq m$. By (3.1), $\tilde{e}(\mathcal{C}) \cdot e_{i}>0$ for $1 \leq i \leq n$. Therefore, $x^{\tilde{l}(\mathcal{C})} \in \omega_{S}$.

Proposition 3.11 Let G be a connected graph. If S_{G} is normal and w_{S} is principal, then $w_{S}=\left(x^{1} t^{\beta}\right)$ where $\beta \leq\left\lfloor\frac{n}{2}\right\rfloor+1$.

Proof. If ω_{S} is principal then $w_{S}=\left(x^{v} t^{\beta}\right)$ with $(v, \beta) \in \mathbb{N} B \cap\left(\mathbb{R}_{+} B\right)^{\circ}$. But $\mathbb{R}_{+} B=H_{e_{1}}^{+} \cap \cdots \cap H_{e_{n}}^{+} \cap H_{\left(-\ell_{1}, 1\right)}^{+} \cap \cdots \cap H_{\left(-\ell_{m}, 1\right) .}^{+}$. Hence, if $v=\left(v_{1}, \ldots, v_{n}\right)$ then $v_{i}=v \cdot e_{i}>0$. Furthermore $(v, \beta) \in \mathbb{N} B$ then $v_{i} \geq 1$. On the other hand if $b_{1}=\max \left\{\left|\ell_{1}\right|,\left|\ell_{2}\right|, \ldots,\left|\ell_{m}\right|\right\}$, then $\left(\mathbf{1}, b_{1}\right) \in\left(\mathbb{R}_{+} B\right)^{\circ}$. Also $(\mathbf{1}, n) \in \mathbb{N} B$.

Thus, if $b_{2}=\max \left\{b_{1}, n\right\}$ then $\left(\mathbf{1}, b_{2}\right) \in \mathbb{N} B \cap\left(\mathbb{R}_{+} B\right)^{\circ}$ and $x^{1} t^{b_{2}} \in w_{S}$. Hence, $x^{1} t^{b_{2}}=\left(x^{v} t^{\beta}\right)\left(x^{v^{\prime}} t^{\beta^{\prime}}\right)$ but $\mathbf{1} \leq v$, then $\mathbf{1}=v$. Now by Proposition $3.8 x^{\tilde{e}_{\tau}} \in \omega_{S}$, thus $x^{\tilde{e}_{\tau}}=\left(x^{1} t^{\beta}\right) x^{u}$ where $x^{u} \in S_{G}$. So, $\tilde{e}_{\tau}-(\mathbf{1}, \beta)=u \in \mathbb{N} B$. Since τ is a generating tree of $G,|E(\tau)|=n-1$. Hence, $\tilde{e}_{\tau}=(v, n)$ where $v=\sum_{v_{i} \in E(\tau)} v_{i}$. Thus, $u=(v-1, n-\beta)$ and by Lemma 3.7

$$
2(n-\beta) \geq|v-\mathbf{1}|=|v|-|\mathbf{1}|=2(n-1)-n=n-2
$$

Therefore, $\beta \leq\left\lfloor\frac{n}{2}\right\rfloor+1$.

Proposition 3.12 If G is a connected not bipartite graph and $\ell=\left(\frac{1}{2}, \ldots, \frac{1}{2}\right) \in \mathbb{R}^{n}$, then $H_{(-\ell, 1)}$ is a supporting hyperplane of $\mathbb{R}_{+} B$.

Proof. If $\left(w_{i}, 1\right) \in B$, then $w_{i} \cdot \ell=1$ or $w_{i} \cdot \ell=\frac{1}{2}$ or $w_{i} \cdot \ell=0$. Hence, $w_{i} \cdot \ell \leq 1$ and we have that $\left(w_{i}, 1\right) \cdot(-\ell, 1) \geq 0$. Let C be an odd cycle of G, we take an edge e and a generating tree τ such that C is the unique cycle of $\tau \cup e$. We can assume that $E(\tau \cup e)=\left\{y_{1}, \ldots, y_{n}\right\}$ with $E(C)=\left\{y_{1}, \ldots, y_{k}\right\}$ where k is odd. If v_{i} is the characteristic vector of t_{i}, then we can suppose $v_{i}=e_{i}+e_{i+1}$ for $i=1, \ldots, k-1$ and $v_{k}=e_{k}+e_{1}$. Thus,

$$
\sum_{i=1}^{k}(-1)^{i+1} v_{i}=\left(e_{1}+e_{2}\right)-\left(e_{2}+e_{3}\right)+\left(e_{3}+e_{4}\right)-\cdots+\left(e_{k}+e_{1}\right)=2 e_{1} .
$$

Hence, $e_{1} \in \mathbb{R}\left(v_{1}, \ldots, v_{k}\right)$. In the same form we have that $e_{i} \in \mathbb{R}\left(v_{1}, \ldots, v_{k}\right)$ for $i=1, \ldots, k$. Thus $\mathbb{R}\left(v_{1}, \ldots, v_{k}\right)=\mathbb{R}^{k}$. Therefore, v_{1}, \ldots, v_{k} are linearly independent. Since τ is a generating tree, we can index its edges such that if $A_{j}=$ $\left\{y_{1}, \ldots, y_{k}, y_{k+1}, \ldots, y_{k+j}\right\}$, then the induced subgraph $G_{j}=\left[A_{j}\right]_{\tau}$ is a connected graph. We will prove that A_{j} is a linearly independent set, by induction on j. For $j=0$ it already has been proven. Now, we take

$$
A_{j+1}=\left\{y_{1}, \ldots, y_{k}, y_{k+1}, \ldots, y_{k+j}, y_{k+j+1}\right\}
$$

Since $G_{j+1}=\left[A_{j+1}\right]_{\tau}$ is connected and $\tau \cup e$ has only one cycle, $\left|V\left(G_{j}\right) \cap y_{k+j+1}\right|=1$. So, we can suppose $V\left(G_{j}\right)=\left\{x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{k+j}\right\}$ and $y_{k+j+1}=\left\{x_{s}, x_{k+j+1}\right\}$ with $s \in\{1, \ldots, k+j\}$. Hence, $\mathbb{R}\left(v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{k+j}\right) \subseteq \mathbb{R}\left(e_{1}, \ldots, e_{k+j}\right)$ and by induction hypothesis $\mathbb{R}\left(v_{1}, \ldots, v_{k}, \ldots, v_{k+j}\right)=\mathbb{R}\left(e_{1}, \ldots, e_{k+j}\right)$. Furthermore, since $v_{k+j+1}=e_{k+j+1}+e_{s}$ then

$$
\mathbb{R}\left(v_{1}, \ldots, v_{k}, \ldots, v_{k+j}, v_{k+j+1}\right)=\mathbb{R}\left(e_{1}, \ldots, e_{k+j+1}\right)
$$

Hence, $\left(v_{1}, 1\right), \ldots,\left(v_{n}, 1\right)$ are linearly independent of B and these are ortogonal to $(-\ell, 1)$. Therefore, $H_{(-\ell, 1)}$ is a supporting hyperplane of $\mathbb{R}_{+} B$.

Lemma 3.13 If G is a connected not bipartite graph, S_{G} is normal and $w_{S}=\left(x^{1} t^{b_{0}}\right)$, then G is unmixed, $\tau(G)=\left\lceil\frac{n}{2}\right\rceil$ and $b_{0}=\left\lfloor\frac{n}{2}\right\rfloor+1$.

Proof. By Proposition 3.11, $b_{0} \leq\left\lfloor\frac{n}{2}\right\rfloor+1$. Furthermore, by Proposition $3.12\left(\mathbf{1}, b_{0}\right)$. $(-\ell, 1)>0$ where $\ell=\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$. Thus, $b_{0}>\ell \cdot \mathbf{1}=\frac{n}{2}$. Therefore, $b_{0}=\left\lfloor\frac{n}{2}\right\rfloor+$ 1.

Now, let \mathcal{C} be a minimal vertex cover of G. By Proposition $3.10 x^{\tilde{e}(\mathcal{C})} \in \omega_{S}$, then $x^{\tilde{c}(\mathcal{C})}=\left(x^{1} t^{b_{0}}\right) x^{v}$, where $x^{v} \in S_{G}$. Consequently, $x^{v}=x^{\tilde{e}(\mathcal{C})}-\left(\mathbf{1}, b_{0}\right)$ so $\tilde{e}(\mathcal{C})-$ $\left(\mathbf{1}, b_{0}\right)=v \in \mathbb{N} B$. Hence, by (3.1)

$$
v=(\underbrace{0, \ldots, 0}_{c}, a_{c+1}-1, \ldots, a_{c+s}-1, \underbrace{0, \ldots, 0}_{n-(s+c)}, n-s+1-b_{0}) .
$$

On the other hand, $\left\{x_{c+1}, \ldots, x_{n}\right\}$ is an independent vertex set, since $C=\left\{x_{1}, \ldots\right.$, $\left.x_{c}\right\}$ is a vertex cover. Also, $v \in \mathbb{N} B$ and the only possible entries of v different to zero are $c+1, \ldots, c+s+1$ and $n+1$, then $v=\sum_{i=c+1}^{c+s} \lambda_{i}\left(e_{i}+e_{n+1}\right)+\lambda_{n+1} e_{n+1}$. Thus, $v \cdot\left(\sum_{i=1}^{n} e_{i}\right)=\sum_{i=c+1}^{c+s} \lambda_{i}$ and $v \cdot e_{n+1}=\left(\sum_{i=c+1}^{c+s} \lambda_{i}\right)+\lambda_{n+1}$. This implies $v \cdot\left(\sum_{i=1}^{n} e_{i}\right) \leq v \cdot e_{n+1}$, i.e. $\sum_{i=1}^{s}\left(a_{c+i}-1\right) \leq n-s+1-b_{0}$. Since $\sum_{i=1}^{s} a_{c+i}=c$, $\sum_{i=1}^{s}\left(a_{c+i}-1\right)=c-s$. So, $c-s \leq n-s+1-b_{0}$. Consequently $c \leq\left\lceil\frac{n}{2}\right\rceil$, since $b_{0}=\left\lfloor\frac{n}{2}\right\rfloor+1$. By Proposition 3.9. $H_{\left(-\ell^{\prime}, 1\right)}$ is a supporting hyperplane of $\mathbb{R}^{+} B$ where $\ell^{\prime}=\sum_{i=c+1}^{n} e_{i}$. Hence, $\left(-\ell^{\prime}, 1\right) \cdot\left(\mathbf{1}, b_{0}\right)>0$ and $b_{0}>\ell^{\prime} \cdot \mathbf{1}=n-c$. Furthermore $b_{0}=\left\lfloor\frac{n}{2}\right\rfloor+1$, then $c>n-b_{0}=\left\lceil\frac{n}{2}\right\rceil-1$. Therefore $c \geq\left\lceil\frac{n}{2}\right\rceil$, so $c=\left\lceil\frac{n}{2}\right\rceil$.

Theorem 3.14 ([9]) Let G be a bipartite graph, then S_{G} is Gorenstein if and only if G is unmixed

Theorem 3.15 If G is connected, S_{G} is normal and n is even, then S_{G} is Gorenstein if and only if G is an unmixed bipartite graph.

Proof. \Rightarrow) Suppose that G is not bipartite, then there exist an odd cycle C. We can suppose $C=\left(x_{1}, \ldots, x_{2 l+1}\right)$. By Proposition 3.11 and Lemma 3.13, $w_{s}=\left(x^{1} t^{b_{0}}\right)$ where $b_{0}=\left\lfloor\frac{n}{2}\right\rfloor+1, \tau(G)=\frac{n}{2}$ and G is unmixed. By Proposition 3.1 there is a τ-reduction $\left\{y_{1}, \ldots, y_{r}\right\}$ with $y_{i} \in E(G)$. So, $r=\frac{n}{2}$. We take $u_{i}=v_{y_{i}}$ and $u=\sum_{i=1}^{r}\left(u_{i}, 1\right)+\sum_{j=1}^{l}\left(v_{j}, 1\right)+\left(e_{1}, 1\right)$ where $v_{j}=e_{2 j}+e_{2 j+1}$ for $j=1, \ldots, l$. So, $u=\left(\mathbf{1}+\mathbf{1}_{C}, r+l+1\right)$ where $\mathbf{1}_{C}=\sum_{i=1}^{2 l+1} e_{i}$. Then, $u \in H_{e_{1}}^{+} \cap \cdots \cap H_{e_{n}}^{+}$.
We will prove that $\left(\mathbf{1}_{C}, l+1\right) \in\left(\mathbb{R}_{+} B\right)^{\circ}$. By contradiction suppose there exist a hyperplane $H_{(-q, 1)}$ such that $(-q, 1) \cdot\left(v_{j}, 1\right)=0$ and $\left(e_{1}, 1\right) \cdot(-q, 1)=0$, since $\left(\mathbf{1}_{C}, l+1\right)=\sum_{j=1}^{l}\left(v_{j}, 1\right)+\left(e_{1}, 1\right)$. Consequently, if $q=\left(q_{1}, \ldots, q_{n}\right)$, then $q_{1}=1$ and $\left(v_{e}, 1\right) \in H_{(-q, 1)}^{+}$where $v_{e}=e_{1}+e_{2}$, since $e=\left\{x_{1}, x_{2}\right\} \in E(C)$. This implies,
$0 \leq-v_{e} \cdot q+1$, then $q_{1}+q_{2}=q \cdot v_{e} \leq 1$, so $q_{2}=0$. Also $q_{3}=1$, since $v_{2} \cdot q=1$. Similarly we prove that $q_{j}=0$ if j is even and $q_{j}=1$ if j is odd, for $1 \leq j \leq 2 l+1$. This implies $q_{2 l+1}=1$ and $(-q, 1)\left(e_{1}+e_{2 l+1}, 1\right)=-2+1=-1$. A contradiction, since $\left\{x_{1}, x_{2 l+1}\right\} \in E(C)$. Consequently, $\left(\mathbf{1}_{C}, l+1\right) \in\left(\mathbb{R}_{+} B\right)^{\circ}$. Therefore, $u \in$ $\left(\mathbb{R}_{+} B\right)^{\circ} \cap \mathbb{N} B$. Thus, $(x, t)^{u}=x^{\mathbf{1 + 1}} \mathbf{1}_{C} t^{r+l+1} \in w_{s}$. Furthermore $w_{s}=\left(x^{1} t^{r+1}\right)$, then $\left(\mathbf{1}_{C}, l\right) \in \mathbb{N} B$. Hence, by Lemma $3.7,2 l \geq\left|\mathbf{1}_{C}\right|=|V(C)|=2 l+1$. A contradiction, therefore G is bipartite. Furthermore by Theorem $3.14 G$ is unmixed.
$\Leftarrow)$ By Theorem 3.14, S_{G} is Gorenstein.

Proposition 3.16 If $C=\left(x_{1}, \ldots, x_{r}\right)$ is a cycle of G and $\mathbb{R}_{+} B=H_{e_{1}}^{+} \cap \cdots \cap H_{e_{n}}^{+} \cap$ $H_{\left(-\ell_{1}, 1\right)}^{+} \cap \cdots \cap H_{\left(-\ell_{m}, 1\right)}$, then $\sum_{i=1}^{r} \ell_{j}^{i} \leq \frac{s}{2}$ where $\ell_{j}=\left(\ell_{j}^{1}, \ldots, \ell_{j}^{n}\right)$.

Proof. Since $e=\left\{x_{i}, x_{i+1}\right\} \in E(C)$, then $e \cdot \ell_{j} \leq 1$. So $\ell_{j}^{i}+\ell_{j}^{i+1} \leq 1$ for $1 \leq i \leq s-1$ and $\ell_{j}^{s}+\ell_{j}^{1} \leq 1$. Consequently,

$$
2 \sum_{i=1}^{r} \ell_{j}^{i}=\left(\ell_{j}^{1}+\ell_{j}^{s}\right)+\sum_{i=1}^{r-1}\left(\ell_{j}^{i}+\ell_{j}^{i+1}\right) \leq \sum_{i=1}^{r} 1=r .
$$

Hence, $\sum_{i=1}^{r} \ell_{j}^{i} \leq \frac{s}{2}$.

Definition 3.17 Let $w=(v, b)$ be an element of $\mathbb{R}_{+} B$, then $w=\sum_{i=1}^{q} \alpha_{i}\left(v_{i}, 1\right)+$ $\sum_{i=1}^{n} \beta_{i}\left(e_{i}, 1\right)+\lambda e_{n+1}$ is a minimal representation of w in $\mathbb{R}_{+} B$ if $\sum_{i=1}^{q} \alpha_{i}+\sum_{i=1}^{n} \beta_{i}$ is minimal and $\left\{i \mid \lambda_{i} \neq 0\right\} \cup\left\{i \mid \beta_{i} \neq 0\right\}$ is minimal.

Remark 3.18 If $w=\left(w_{1}, \ldots, w_{n+1}\right) \in \mathbb{R}_{+} B$ and $w=\sum_{i=1}^{q} \alpha_{i}\left(v_{i}, 1\right)+\sum_{i=1}^{n} \beta_{i}\left(e_{i}, 1\right)+$ λe_{n+1} is a minimal representation, then $w_{n+1}=\sum_{i=1}^{q} \alpha_{i}+\sum_{i=1}^{n} \beta_{i}+\lambda$. Hence λ is maximal, since $\sum_{i=1}^{q} \alpha_{i}+\sum_{i=1}^{n} \beta_{i}$ is minimal.

Lemma 3.19 Let $w=\sum_{i=1}^{q} \alpha_{i}\left(v_{i}, 1\right)+\sum_{i=1}^{n} \beta_{i}\left(e_{i}, 1\right)+\lambda e_{n+1}$ be a minimal representation of w in $\mathbb{R}_{+} B$. Hence,

1) $\mathcal{A}=\left\{x_{i} \in V(G) \mid \beta_{i} \neq 0\right\}$ is a stable set.
2) If G_{w} is the graph with $V\left(G_{w}\right)=V(G)$ and $E\left(G_{w}\right)=\left\{y_{i} \in E(G) \mid \alpha_{i} \neq 0\right\}$, then G_{w} has no even cycles.
3) If H is a connected component of G_{w}, then $|V(H) \cap \mathcal{A}| \leq 1$. Let H_{1}, \ldots, H_{s} be connected components of G_{w} such that $V\left(H_{i}\right) \cap \mathcal{A}=\left\{z_{i}\right\}$. Hence, H_{1}, \ldots, H_{s} are trees; furthermore if A_{i} is the chromatic class of z_{i} in H_{i}, then $A_{1} \cup \cdots \cup A_{s}$ is a stable set in G.

Proof. 1) Suppose $x_{i_{1}}, x_{i_{2}} \in \mathcal{A}$ such that $y_{j}=\left\{x_{i_{1}}, x_{i_{2}}\right\} \in E(G)$. Hence,

$$
w=\sum_{i=1}^{q} \alpha_{i}^{1}\left(v_{i}, 1\right)+\sum_{i=1}^{n} \beta_{i}^{1}\left(e_{i}, 1\right)+\left(\lambda+\gamma_{1}\right) e_{n+1}
$$

where $\gamma_{1}=\min \left\{\beta_{i_{1}}, \beta_{i_{2}}\right\} ; \alpha_{i}^{1}=\alpha_{i}$ if $i \neq j$ and $\alpha_{j}^{1}=\alpha_{j}+\gamma_{1} ; \beta_{i}^{1}=\beta_{i}$ if $i \notin\left\{i_{1}, i_{2}\right\}$, $\beta_{i_{1}}^{1}=\beta_{i_{1}}-\gamma_{1}$ and $\beta_{i_{2}}^{1}=\beta_{i_{2}}-\gamma_{1}$. Thus, $\sum_{i=1}^{q} \alpha_{i}^{1}+\sum_{i=1}^{n} \beta_{i}^{1}<\sum_{i=1}^{q} \alpha_{i}+\sum_{i=1}^{n} \beta_{i}$. A contradiction, since the representation of w is minimal. Therefore, \mathcal{A} is a stable set.
2) Suppose C is an even cycle of G_{w} whose edges are $y_{j_{1}}, \ldots, y_{j_{2 k}}$. Thus,

$$
w=\sum_{i=1}^{q} \alpha_{i}^{2}\left(v_{i}, 1\right)+\sum_{i=1}^{n} \beta_{i}\left(e_{i}, 1\right)+\lambda e_{n+1}
$$

where $\gamma_{2}=\min \left(\alpha_{j_{1}}, \ldots, \alpha_{j_{2 k}}\right) ; \alpha_{i}^{2}=\alpha_{i}+(-1)^{i} \gamma_{2}$ for $1 \leq i \leq 2 k$ and $\alpha_{i}^{2}=\alpha_{i}$ if $i \notin\left\{j_{1}, \ldots, j_{2 k}\right\}$. A contradiction, since $\left|\left\{i \mid \alpha_{i}^{2} \neq 0\right\}\right|<\left|\left\{i \mid \alpha_{i} \neq 0\right\}\right|$. Therefore, G_{w} has no even cycles.
3) For facility we take $w^{\prime}=\sum_{i=1}^{q} \alpha_{i}\left(v_{i}, 1\right)+\sum_{i=1}^{n} \beta_{i}\left(e_{i}, 1\right)$. Suppose $x_{i_{1}}, x_{i_{2}} \in V(H) \cap$ \mathcal{A}, then $\beta_{i_{1}} \neq 0$ and $\beta_{i_{2}} \neq 0$. Since H is connected, there exist a path \mathcal{L} of H between $x_{i_{1}}$ and $x_{i_{2}}$. We can assume $E(\mathcal{L})=\left\{y_{j_{1}}, \ldots, y_{j_{s}}\right\}$. We take $\gamma_{3}=$ $\min \left\{\alpha_{j_{1}}, \ldots, \alpha_{j_{s}}, \beta_{i_{1}}, \beta_{i_{2}}\right\}$, thus $\gamma_{3}>0$. If s is odd, then

$$
w=w^{\prime}+\gamma_{3} \sum_{i=1}^{s}(-1)^{i+1}\left(v_{j_{i}}, 1\right)-\gamma_{3} \sum_{j=1}^{2}\left(e_{i_{j}}, 1\right)+\left(\lambda+\gamma_{3}\right) e_{n+1} .
$$

A contradiction, by Remark 3.18, since $\gamma_{3}>0$. Hence, s is even. If $\gamma_{3}=\beta_{i_{\ell}}$ for $\ell \in\{1,2\}$, then we can suppose $\gamma_{3}=\beta_{i_{1}}$. Also, if $\gamma_{3}=\alpha_{i_{\ell}}$ for some $\ell \in\{1, \ldots, s\}$, then we can assume ℓ is even, since in other case we take $z_{i_{j}}=y_{i_{s-j}}$ and $E(\mathcal{L})=$ $\left\{z_{i_{1}}, \ldots, z_{i_{s}}\right\}$. So,

$$
w=w^{\prime}+\gamma_{3} \sum_{i=1}^{s}(-1)^{i+1}\left(v_{j_{i}}, 1\right)+\gamma_{3} \sum_{j=1}^{2}(-1)^{j}\left(e_{i_{j}}, 1\right)+\lambda e_{n+1}
$$

A contradiction, since $\beta_{i_{1}}-\gamma_{3}=0$ or $\alpha_{i_{\ell}}-\gamma_{3}=0$. Therefore $|V(H) \cap \mathcal{A}| \leq 1$.
Now, suppose C is a cycle of H_{i}. Since H_{i} is connected, there is a path \mathcal{L} between C and z_{i}. We can assume $z_{i}=x_{1}, E(\mathcal{L})=\left\{y_{1}, \ldots, y_{\ell}\right\}$, and $E(C)=$ $\left\{y_{\ell+1}, \ldots, y_{\ell+k}\right\}$. By 2$) k$ is odd. We take $\gamma=\min \left\{\alpha_{1}, \ldots, \alpha_{\ell}, 2 \alpha_{\ell+1}, \ldots, 2 \alpha_{\ell+k}, \beta_{1}\right\}$. Consequently,

$$
w=w^{\prime}-2 \gamma\left(e_{1}, 1\right)+\gamma \sum_{i=1}^{\ell}(-1)^{i+1}\left(v_{i}, 1\right)+\frac{\gamma}{2} \sum_{i=1}^{k}(-1)^{\ell+1+i}\left(v_{i}, 1\right)+\left(\lambda+\frac{\gamma}{2}\right) e_{n+1} .
$$

A contradiction, by Remark 3.18. Therefore H_{i} is a tree. Now, we take $a_{1}, b_{1} \in A_{i}$. Suppose $\left\{a_{1}, b_{1}\right\} \in E(G)$, then there exist an even path \mathcal{L}_{1} in H_{i} between z_{i} and a_{1}. We can assume $E\left(\mathcal{L}_{1}\right)=\left\{y_{1}, \ldots, y_{\ell_{1}}\right\}$ and $\left\{a_{1}, b_{1}\right\}=y_{\ell_{1}+1}$. Furthermore, there is a path \mathcal{L}_{2} in G_{w} between b_{1} and \mathcal{L}_{1}. We can assume $E\left(\mathcal{L}_{2}\right)=\left\{y_{\ell_{1}+2}, \ldots, y_{\ell_{2}}\right\}$. If $\{u\}=V\left(\mathcal{L}_{1}\right) \cap V\left(\mathcal{L}_{2}\right)$, then we can assume that $u \in y_{j-1} \cap y_{j}$ for some $2 \leq j \leq \ell_{1}$. Hence, there is an odd cycle C^{\prime} with $E\left(C^{\prime}\right)=\left\{y_{j}, \ldots, y_{\ell_{2}}\right\}$, since $a_{1}, b_{1} \in A_{i}$.

$$
w=w^{\prime}+\gamma^{\prime} \sum_{i=1}^{j-1}(-1)^{i+1}\left(v_{i}, 1\right)+\frac{\gamma^{\prime}}{2} \sum_{i=j}^{\ell_{2}}(-1)^{i+1}\left(v_{i}, 1\right)-\gamma^{\prime}\left(e_{1}, 1\right)+\left(\lambda+\frac{\gamma^{\prime}}{2}\right)\left(e_{n+1}\right)
$$

where $\gamma^{\prime}=\min \left\{\alpha_{1}, \ldots, \alpha_{j-1}, 2 \alpha_{j}, \ldots, 2 \alpha_{\ell_{2}}, \beta_{1}\right\}$. This is a contradiction, hence A_{i} is a stable set in G. Now, assume $a_{i} \in A_{i}, a_{j} \in A_{j}$, and $\left\{a_{i}, a_{j}\right\} \in E(G)$. Thus, there are even paths \mathcal{L}_{3} and \mathcal{L}_{4} in G_{w} between z_{i}, a_{i} and z_{j}, a_{j}, respectively. We can suppose $E\left(\mathcal{L}_{3}\right)=\left\{y_{1}, \ldots, y_{k_{1}}\right\}, y_{k_{1}+1}=\left\{a_{i}, a_{j}\right\}, E\left(\mathcal{L}_{4}\right)=\left\{y_{k_{1}+2}, \ldots, y_{k_{2}}\right\}, z_{i}=x_{1}$ and $z_{j}=x_{2}$. Hence,

$$
w=w^{\prime}+\sum_{i=1}^{k_{2}+1}(-1)^{i+1} \gamma_{4}\left(v_{i}, 1\right)-\sum_{i=1}^{2} \gamma_{4}\left(e_{i}, 1\right)+\left(\lambda+\gamma_{4}\right) e_{n+1}
$$

where $\gamma_{4}=\min \left\{\alpha_{1}, \ldots, \widehat{\alpha_{k_{1}+1}}, \ldots, \alpha_{k_{2}}, \beta_{1}, \beta_{2}\right\}$. A contradiction by Remark 3.18, therefore $A_{1} \cup \cdots \cup A_{s}$ is a stable set in G.

Proposition 3.20 Let H_{1}, \ldots, H_{r} be the components of G_{w}, where $H_{i} \cap \mathcal{A}=\left\{z_{i}\right\}$ and A_{i} is the chromatic class of z_{i} in H_{i}, for $i=1, \ldots, s$. Furthermore, $H_{i} \cap \mathcal{A}=\varnothing$ for $i>s$. We take H_{j} with $j>s$, hence

1) If H_{j} is not bipartite and $e \in E(G)$ such that $e \cap H_{j} \neq \varnothing$, then $e \cap\left(A_{1} \cup \cdots \cup\right.$ $\left.A_{s}\right)=\varnothing$.
2) Suppose H_{j} is bipartite whose chromatic classes are D_{j}^{1} and D_{j}^{2}, and $e \in E(G)$ such that $e \cap\left(A_{1} \cup \cdots \cup A_{s}\right) \neq \varnothing$ and $b \in e \cap V\left(H_{j}\right)$. If $b \in D_{j}^{1}$, then D_{j}^{2} is a stable set in G. Furthermore, if there are $e_{1}, e_{2} \in E(G)$ such that $e_{1} \cap A_{i_{1}} \neq \varnothing$, $e_{2} \cap A_{i_{2}} \neq \varnothing$, and $e_{1} \cap D_{j}^{1} \neq \varnothing$, then $e_{2} \cap V\left(H_{j}\right) \subseteq D_{j}^{1}$.

Proof. 1) There is an odd cycle $C \subseteq H_{j}$. By contradiction we can assume $z \in e \cap A_{1}$. Consequently there is an even path \mathcal{L} in H_{1} between z_{1} and z. Furthermore, if $e=\left\{z, z^{\prime}\right\}$, then there is a path \mathcal{L}^{\prime} in H_{j} between C and z^{\prime}. We can suppose $E(\mathcal{L})=$ $\left\{y_{1}, \ldots, y_{\ell_{1}}\right\}$ with ℓ_{1} odd, $E\left(\mathcal{L}^{\prime}\right)=\left\{y_{\ell_{1}+2}, \ldots, y_{\ell_{2}}\right\}, E(C)=\left\{y_{\ell_{2}+1}, \ldots, y_{\ell_{3}}\right\}$ and $y_{\ell_{1}+1}=e$, where $z \in y_{\ell_{1}}, z^{\prime} \in y_{\ell_{1}+2}$, and $y_{\ell_{2}} \cap V(C)=y_{\ell_{2}} \cap y_{\ell_{2}+1} \neq \varnothing$. Hence $\ell_{1}+2$ is even and

$$
w=w^{\prime}-\gamma\left(e_{1}, 1\right)+\gamma \sum_{i=1}^{\ell_{2}}(-1)^{i+1}\left(v_{i}, 1\right)+\frac{\gamma}{2} \sum_{i=\ell_{2}+1}^{\ell_{3}}(-1)^{i+1}\left(v_{i}, 1\right)+\left(\lambda+\frac{\gamma}{2}\right) e_{n+1}
$$

where $\gamma=\min \left\{\alpha_{1}, \ldots, \alpha_{\ell_{2}}, 2 \alpha_{\ell_{2}+1}, \ldots, 2 \alpha_{\ell_{3}}, \beta_{1}\right\}$. A contradiction by Remark 3.18.
2) We can assume $e=\{a, b\}$ such that $a \in A_{1}$ and $b \in D_{j}^{1}$. By contradiction suppose there is $e^{\prime}=\left\{a^{\prime}, b^{\prime}\right\} \subseteq D_{j}^{2}$. Consequently, there is a even path \mathcal{L} in H_{1} between z_{1} and a. We can assume $z_{1}=x_{1}, E(\mathcal{L})=\left\{y_{1}, \ldots, y_{\ell_{1}}\right\}$, and $e=y_{\ell_{1}+1}$, then ℓ_{1} is even. Furthermore, there is an odd path $\mathcal{L}_{1}=\left\{a_{1}=b, a_{2}, \ldots, a_{s_{1}}=\right.$ $\left.a^{\prime}\right\}$ in H_{j} between b and a^{\prime}, then s_{1} is even. Also there is a path \mathcal{L}_{2} in H_{j} between \mathcal{L}_{1} and b^{\prime}. We can assume $\mathcal{L}_{2}=\left\{a_{k}, b_{1}, \ldots, b_{s_{2}}=b^{\prime}\right\}$. Consequently, $C=$ $\left(a_{k}, a_{k+1}, \ldots, a_{s_{1}}, b_{s_{2}}, b_{s_{2}-1}, \ldots, b_{1}\right)$ is an odd cycle. We take $\mathcal{L}^{\prime}=\left(a_{1}=b, a_{2}, \ldots, a_{k}\right)$. We can assume $E\left(\mathcal{L}^{\prime}\right)=\left\{y_{\ell_{1}+2}, y_{\ell_{2}+3}, \ldots, y_{\ell_{1}+k}\right\}$ and $E(C)=\left\{y_{\ell_{1}+k+1}, \ldots, y_{u}\right\}$. Furthermore, $e=y_{\ell_{1}}+1$ and $e^{\prime}=y_{\ell_{1}+s_{1}+1}$ where ℓ_{1} and s_{1} are even. Hence $(-1)^{\ell_{1}+2}=(-1)^{\ell_{1}+s_{1}+2}=1$ and

$$
w=w^{\prime}-\gamma\left(e_{1}, 1\right)+\gamma \sum_{i=2}^{\ell_{1}+k}(-1)^{i+1}\left(v_{i}, 1\right)+\frac{\gamma}{2} \sum_{i=\ell_{1}+k+1}^{u}(-1)^{i+1}\left(v_{i}, 1\right)+\left(\lambda+\frac{\gamma}{2}\right) e_{n+1}
$$

where $\gamma=\min \left\{\alpha_{1}, \ldots, \widehat{\alpha_{\ell_{1}+1}}, \ldots, \alpha_{\ell_{1}+k}, \alpha_{\ell_{1}+k+1}, \ldots, \widehat{\alpha_{\ell_{1}+s_{1}+1}}, \ldots, \alpha_{u}, \beta_{1}\right\}$. A contradiction by Remark 3.18 .

Now, suppose $e_{1}, e_{2} \in E(G)$ such that $e_{1} \cap A_{i_{1}}=\left\{a_{1}\right\}, e_{2} \cap A_{i_{2}}=\left\{a_{2}\right\}, e_{1} \cap D_{j}^{\prime}=$ $\left\{b_{1}\right\}$ and $e_{2} \cap D_{j}^{2}=\left\{b_{2}\right\}$. Hence, there are even paths \mathcal{L}_{1} and \mathcal{L}_{2} in G_{w} between $z_{i_{1}}$ and a_{1}; and $z_{i_{2}}$ and a_{2}, respectively. Since $b_{1} \in D_{j}^{1}$ and $b_{2} \in D_{j}^{2}$, there is odd path \mathcal{L}_{3} in H_{j} between b_{1} and b_{2}. We can assume $E\left(\mathcal{L}_{1}\right)=\left\{y_{1}, \ldots, y_{k_{1}}\right\}, e_{1}=y_{k_{1}+1}$, $E\left(\mathcal{L}_{3}\right)=\left\{y_{k_{1}+2}, \ldots, y_{k_{2}}\right\}, e_{2}=y_{k_{2}+1}$ and $E\left(\mathcal{L}_{2}\right)=\left\{y_{k_{2}+2}, \ldots, y_{u}\right\}$. Also we can suppose $x_{1}=z_{i_{1}}$ and $x_{2}=z_{i_{2}}$. Thus, k_{1} and k_{2} are even; furthermore u is odd. Consequently $(-1)^{k_{1}+2}=(-1)^{k_{2}+2}=1$ and

$$
w=w^{\prime}-\gamma^{\prime}\left(e_{1}, 1\right)-\gamma^{\prime}\left(e_{2}, 1\right)+\gamma^{\prime} \sum_{i=1}^{u}(-1)^{i+1}\left(v_{i}, 1\right)+\left(\lambda+\gamma^{\prime}\right) e_{n+1}
$$

where $\gamma^{\prime}=\min \left\{\beta_{1}, \beta_{2}, \alpha_{1}, \ldots, \widehat{\alpha_{k_{1}+1}}, \ldots, \alpha_{k_{2}}, \widehat{\alpha_{k_{2}+1}}, \ldots, \alpha_{u}\right\}$.
Definition 3.21 Let $H_{1}, \ldots, H_{s_{1}}, H_{s_{1}+1}, \ldots, H_{s_{2}}, H_{s_{2}+1}, \ldots, H_{s_{3}}$ be the connected components of G_{w} such that $\left|H_{i} \cap \mathcal{A}\right|=1$ if and only if $i \leq s_{1}, H_{i}$ is bipartite for $s_{1}<$ $i \leq s_{2}$ and H_{i} is not bipartite if $i>s_{2}$. Furthermore, D_{i}^{1} and D_{i}^{2} are the chromatic classes of H_{i} for $s_{1}<i \leq s_{2}$ such that if $e \in E(G)$ with $e \cap\left(A_{1} \cup \cdots \cup A_{s_{1}}\right) \neq \varnothing$, then $e \cap\left(H_{s_{1}+1} \cup \cdots \cup H_{s_{2}}\right) \subseteq D_{s_{1}+1}^{1} \cup \cdots \cup D_{s_{2}}^{1}$.

Proposition 3.22 If $w=\sum_{i=1}^{q} \alpha_{i}\left(v_{i}, 1\right)+\sum_{i=1}^{n} \beta_{i}\left(e_{i}, 1\right)+\lambda e_{n+1}$ is a minimal representation of w in $\mathbb{R}_{+} B$, then $H_{(-\lambda, 1)}$ is a support hyperplane of $\mathbb{R}_{+} B$, where
$\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and

$$
\lambda_{i}= \begin{cases}\frac{1}{2} & \text { if } x_{i} \in H_{s_{2}+1} \cup \cdots \cup H_{r} \\ 1 & \text { if } x_{i} \in\left(A_{1} \cup \cdots \cup A_{s_{1}}\right) \cup\left(D_{s_{1}+1}^{2} \cup \cdots \cup D_{s_{2}}^{2}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Proof. By Lemma 3.19 and Proposition 3.20, $\left(A_{1} \cup \cdots \cup A_{s_{1}}\right) \cup\left(D_{s_{1}+1}^{2} \cup \cdots \cup\right.$ $\left.D_{s_{2}}^{2}\right)$ is a stable set. Furthermore, if $e \in E(G)$ with $e \cap\left(A_{1} \cup \cdots \cup A_{s_{1}}\right)$, then $e \cap\left(V\left(H_{s_{1}+1}\right) \cup \cdots \cup V\left(H_{r}\right)\right)=\varnothing$. Hence, $\lambda \cdot v_{j} \leq 1$ so $(-\lambda, 1) \cdot\left(v_{j}, 1\right) \geq 0$ for $j=1, \ldots, q$. Furthermore, $\lambda \cdot e_{i} \leq 1$ implying $(-\lambda, 1) \cdot e_{n+1}=1 \geq 0$. Thus, $\mathbb{R}_{+} B \subseteq H_{(-\lambda, 1)}^{+}$. We take $B_{1}=\left\{e_{i} \mid x_{i} \in\left(A_{1} \cup \cdots \cup A_{s_{1}}\right) \cup\left(D_{s_{1}+1}^{2} \cup \cdots \cup D_{s_{2}}^{2}\right)\right\}$ and $B_{3}=\left\{v_{i} \mid y_{i} \in E\left(H_{1}\right) \cup \cdots \cup E\left(H_{s_{2}}\right)\right.$ such that $x_{j} \in y_{i}$ with $\left.e_{j} \in B_{2}\right\}$. Consequently, $B_{1} \cup B_{2} \cup B_{3} \subseteq H_{(-\lambda, 1)}$. Furthermore, $\operatorname{dim} \mathbb{R}\left(B_{1} \cup B_{2} \cup B_{3}\right)=n$, therefore $H_{(-\lambda, 1)}$ is a support hyperplane.

Proposition 3.23 Let $w=\sum_{i=1}^{q} \alpha_{i}\left(v_{i}, 1\right)+\sum_{i=1}^{n} \beta_{i}\left(e_{i}, 1\right)+\lambda e_{n+1}$ is a minimal representation of $w \in \mathbb{R}_{+} B$. Hence, $w=\left(w_{1}, \ldots, w_{n+1}\right) \in\left(\mathbb{R}_{+} B\right)^{\circ}$ if and only if $w_{i} \geq 0$ for $i=1, \ldots, n$ and $\lambda>0$.

Proof. We have $\mathbb{R}_{+} B=H_{e_{1}}^{+} \cap \cdots \cap H_{e_{n}}^{+} \cap H_{\left(-\ell_{1}, 1\right)}^{+} \cap \cdots \cap H_{\left(-\ell_{m}, 1\right)}$.
$\Rightarrow)$ Since $w \in\left(\mathbb{R}_{+} B\right)^{\circ}, w \in H_{e_{i}}^{+} \backslash H_{e_{i}}$ for $1 \leq i \leq n$, so $w_{i}>0$. By Proposition 3.22 $H_{(-\lambda, 1)}$ is a support hyperplane of $\mathbb{R}_{+} B$. Hence, if $\beta_{j} \neq 0$, then $x_{j} \in A_{1} \cup \cdots \cup A_{s_{1}}$. Consequently, $\lambda_{j}=1$ and $\left(e_{j}, 1\right) \cdot(-\lambda, 1)=0$. Now, we take $\alpha_{j} \neq 0$. If $y_{j} \in$ $E\left(H_{s_{2}+1}\right) \cup \cdots \cup E\left(H_{r}\right)$, then $\left(v_{j}, 1\right) \cdot(-\lambda, 1)=0$, since $\lambda_{j_{1}}=\lambda_{j_{2}}=\frac{1}{2}$ where $y_{j}=$ $\left\{x_{j_{1}}, x_{j_{2}}\right\}$. Now, if $y_{j} \in E\left(H_{1}\right) \cup \cdots \cup E\left(H_{s_{2}}\right)$, then $\mid y_{j} \cap\left(A_{1} \cup \cdots \cup A_{s_{1}}\right) \cup\left(D_{s_{1}+1}^{2} \cup\right.$ $\left.\cdots \cup D_{s_{2}}^{2}\right) \mid=1$, since $H_{1}, \cup \cdots \cup H_{s_{2}}$ are bipartite. Thus, $\left(v_{j}, 1\right) \cdot(-\lambda, 1)=0$. This implies $(-\lambda, 1) \cdot\left(\sum_{i=1}^{q} \alpha_{i}\left(v_{i}, 1\right)+\sum_{i=1}^{n} \beta_{i}\left(e_{i}, 1\right)\right)=0$. Therefore $\lambda>0$, since $w \in\left(\mathbb{R}_{+} B\right)^{\circ}$ and $H_{(-\lambda, 1)}$ is a support hyperplane of $\mathbb{R}_{+} B$.
$\Leftarrow)$ Since $w_{i}>0, w \in H_{e_{i}}^{+} \backslash H_{e_{i}}$ for $1 \leq i \leq n$. Furthermore, $\left(v_{i}, 1\right) \cdot\left(-\ell_{j}, 1\right) \geq 0$ and $\left(e_{j}, 1\right) \cdot\left(-\ell_{1}, 1\right) \geq 0$, since $\left(v_{i}, 1\right),\left(e_{s}, 1\right) \in \mathbb{R}_{+} B$ for $1 \leq i \leq q$ and $1 \leq s \leq n$. Hence $w \cdot\left(-\ell_{j}, 1\right)=1$. Therefore $w \in H_{\left(-\ell_{j}, 1\right)}^{+} \backslash H_{\left(-\ell_{j}, 1\right)}$ so $w \in\left(\mathbb{R}_{+} B\right)^{\circ}$.

We assume G is well-covered graph with a reduction $\left\{H, y_{s_{1}+1}, \ldots, y_{s_{1}+s}\right\}$ where $H \in\left\{C_{3}, C_{5}, C_{7}\right\}$ and $E(H)=\left\{y_{1}, \ldots, y_{s_{1}}\right\}$.

Proposition 3.24 Let $w=\sum_{i=1}^{q} \alpha_{i}\left(v_{i}, 1\right)+\sum_{i=1}^{n} \beta_{i}\left(e_{i}, 1\right)+\lambda e_{n+1}$ be a minimal representation of w in $\mathbb{R}_{+} B$ such that $w_{i}>0, \sum_{i=1}^{s_{1}} \alpha_{i}$ is maximal, $\beta\left(H^{\prime}\right)<\beta(H)$
where $E\left(H^{\prime}\right)=\left\{y_{i} \in E(H) \mid \alpha_{i}>1\right\}$. Furthermore, $y_{i_{1}}, y_{i_{2}} \in E\left(G_{w}\right)$ such that $y_{i_{1}}=\left\{a_{1}, b_{1}\right\}, y_{i_{2}}=\left\{a_{2}, b_{2}\right\}$ with $\left\{b_{j}\right\}=y_{i_{j}} \cap V(H)$ for $j=1,2$. Hence,

1) If $x_{j} \in V(H)$ such that $y_{i_{3}}=\left\{b_{1}, x_{j}\right\} \in E(H)$, then $\beta_{j}=0$.
2) If $\left\{b_{1}, b_{2}\right\}$ or $\left\{b_{1}, c, b_{2}\right\}$ is a path of $E(H)$, then $\left\{a_{1}, a_{2}\right\} \notin E(G)$.

Proof. 1) Suppose $\beta_{j}>0$, then

$$
w=w^{\prime}+\lambda e_{n+1}+\gamma\left(v_{i_{3}}, 1\right)-\gamma\left(v_{i_{1}}, 1\right)+\gamma\left(e_{j^{\prime}}, 1\right)-\gamma\left(e_{j}, 1\right),
$$

where $\delta=\min \left\{\alpha_{i_{1}}, \beta_{j}\right\}, w^{\prime}=\sum_{i=1}^{q} \alpha_{i}\left(v_{i}, 1\right)+\sum_{i=1}^{n} \beta_{i}\left(e_{i}, 1\right)$ and $b_{1}=y_{j^{\prime}}$. A contradiction, therefore $\beta_{j}=0$.
2) By contradiction, assume $y_{i_{4}}=\left\{a_{1}, a_{2}\right\} \in E(G)$. If $y_{i_{5}}=\left\{b_{1}, b_{2}\right\} \in E(G)$, then

$$
w=w^{\prime}+\lambda e_{n+1}+\gamma\left(v_{i_{4}}, 1\right)-\gamma\left(v_{i_{1}}, 1\right)-\gamma\left(v_{i_{2}}, 1\right)+\gamma\left(v_{i_{5}}, 1\right)
$$

where $\gamma=\min =\left\{\alpha_{i_{1}}, \alpha_{i_{2}}\right\}$ and $w^{\prime}=\sum_{i=1}^{q} \alpha_{i}\left(v_{i}, 1\right)+\sum_{i=1}^{n} \beta_{i}\left(e_{i}, 1\right)$. But $\sum_{i=1}^{s_{1}} \alpha_{i}<$ $\sum_{i=1}^{s_{1}} \alpha_{1}+\gamma$. A contradiction, then $\left\{b_{1}, b_{2}\right\} \notin E(G)$. Consequently $H \neq C_{3}$ and there is path $\left\{b_{1}, c, b_{2}\right\}$. We can suppose $y_{i_{1}}=\left\{b_{1}, c\right\}, y_{i_{2}}=\left\{c, b_{2}\right\} \in E(H)$. By Proposition 3.5. $H=C_{5}$. Thus,

$$
w=w^{\prime}+\lambda e_{n+1}+\sum_{i=3}^{5}(-1)^{i+1} \gamma\left(v_{i}, 1\right)-\gamma\left(v_{i_{1}}, 1\right)-\gamma\left(v_{i_{2}}, 1\right)+\gamma\left(v_{i_{4}}, 1\right)
$$

where $\gamma=\min \left\{\alpha_{i_{1}}, \alpha_{i_{2}}, \alpha_{4}\right\}$. Since $\sum_{i=1}^{s} \alpha_{i}$ is maximal, $\alpha_{4}=0$. We can suppose $H=$ $\left(c, b_{2}, x_{2}, x_{1}, b_{1}\right)$. Since $\alpha_{i_{1}}>0$ and $\alpha_{i_{2}}>0$, then by 1) $\beta_{1}=\beta_{2}=0$. By hypothesis, $\alpha_{3}<1$ or $\alpha_{5}<1$. We assume $\alpha_{5}<1$, then there is $y_{j_{1}}=\left\{x_{1}, z_{1}\right\} \in E\left(G_{w}\right)$. By the last argument $\left\{a_{1}, z_{1}\right\} \notin E(G)$. Suppose $\alpha_{3} \geq 1$. Since G is well-covered, $\left\{a_{1}, z_{1}, b_{2}\right\}$ is not a stable set. If $y_{j_{6}}=\left\{z_{1}, b_{2}\right\} \in E(G)$, then

$$
w=w^{\prime}+\lambda e_{n+1}+\gamma\left(v_{4}, 1\right)-\gamma\left(v_{j_{1}}, 1\right)+\gamma\left(v_{j_{6}}, 1\right)-\gamma\left(v_{3}, 1\right)
$$

where $\gamma=\min \left\{\alpha_{3}, \alpha_{j_{1}}\right\}$. A contradiction, since in this representation of w the coefficient of $\left(v_{4}, 1\right)$ is $\gamma>0$. Hence, $y_{j_{7}}=\left\{a_{1}, b_{2}\right\} \in E(G)$. We can assume α_{1} is maximal. We have

$$
w=w^{\prime}+\lambda e_{n+1}+\gamma\left(v_{1}, 1\right)-\gamma\left(v_{j_{1}}, 1\right)+\gamma\left(v_{j_{7}}, 1\right)-\gamma\left(v_{i_{7}}, 1\right)
$$

where $\gamma=\min \left\{\alpha_{2}, \alpha_{i_{1}}\right\}$. Since α_{1} is maximal, $\gamma=\alpha_{2}=0$. This implies there is $\left\{c, c^{\prime}\right\} \in E(G)$. By the last argument $\left\{c^{\prime}, a_{1}\right\} \notin E(G)$. A contradiction since G is well-covered. Therefore $\alpha_{3}<1$ and there is $y_{j_{2}}=\left\{x_{2}, z_{2}\right\} \in E\left(G_{w}\right)$ such that $z_{1}, z_{2} \in V(G) \backslash V(H)$. By the last argument $\left\{z_{1}, z_{2}\right\},\left\{z_{2}, a_{2}\right\} \notin E(G)$. Since
G is well-covered $\left\{a_{1}, z_{1}, z_{2}\right\}$ and $\left\{z_{1}, z_{2}, a_{2}\right\}$ are not stable sets. Hence $y_{k_{1}}=$ $\left\{a_{1}, z_{2}\right\}, y_{k_{2}}=\left\{z_{1}, a_{2}\right\} \in E(G)$. Consequently,

$$
w=w^{\prime}+\lambda e_{n+1}-\gamma \sum_{s=1}^{2}\left(\left(v_{i_{s}}, 1\right)+\left(v_{j_{s}}, 1\right)\right)+\gamma \sum_{s=1}^{2}\left(\left(v_{k_{s}}, 1\right)+\left(v_{q_{s}}, 1\right)\right)
$$

where $\gamma=\min \left\{\alpha_{i_{1}}, \alpha_{i_{2}}, \alpha_{j_{1}}, \alpha_{j_{2}}\right\}$ and $y_{q_{s}}=\left\{x_{s}, b_{s}\right\}$ for $s=1,2$. A contradiction.

Proposition 3.25 Let G be an unmixed graph with $\tau(G)=\frac{n+1}{2}$. If $w \in\left(\mathbb{R}_{+} B\right)^{\circ}$, then $u=w-\left(\mathbf{1}, \frac{n+1}{2}\right) \in \mathbb{R}_{+} B$.

Proof. By Proposition 3.2, G has a reduction $\left\{H, y_{s+1}, \ldots, y_{n}\right\}$, where $H \in\left\{C_{3}, C_{5}\right.$, $\left.C_{7}\right\}$ and $E(H)=\left\{y_{1}, \ldots, y_{s}\right\}$. First assume G satisfies

1) There is a minimal representation of w such that if $\left\{x_{i_{1}}, x_{j_{1}}\right\},\left\{x_{i_{2}}, x_{j_{2}}\right\} \in E\left(G_{w}\right)$ with $x_{i_{1}}, x_{i_{2}} \in V(H)$ and $x_{j_{1}}, x_{j_{2}} \notin V(H)$, then $\left\{x_{i_{1}}, x_{i_{2}}\right\} \notin E(H)$.
If $H=C_{3}$, we can assume $\operatorname{deg}_{G_{w}}\left(x_{2}\right)=\operatorname{deg}_{G_{w}}\left(x_{3}\right)=2$, then $\alpha_{2}+\alpha_{3}, \alpha_{2}+\alpha_{1} \in \mathbb{N}$ since $w \in \mathbb{N}^{n+1}$. Hence,

$$
u=w^{\prime}-\sum_{i=4}^{m}\left(v_{i}, 1\right)-\sum_{i=1}^{3} \gamma_{i}\left(v_{i}, 1\right)-\gamma_{i_{1}}\left(v_{i_{1}}, 1\right)+\gamma_{i_{1}}\left(e_{i_{1}}, 1\right)+\left(\lambda+\gamma_{1}-1\right) e_{n+1}
$$

where $\gamma_{2}=\alpha_{2}-\left\lceil\alpha_{2}\right\rceil+1, \gamma_{1}=\gamma_{3}=1-\gamma_{2}$, and $\gamma_{i_{1}}=\gamma_{2}$ if $y_{i_{1}}=\left\{x_{1}, x_{k_{1}}\right\} \in E(G)$ or $\gamma_{i_{1}}=0$ in other case. This implies $u \in \mathbb{R}_{+} B$. Now suppose $H=C_{5}$, so we can assume $\operatorname{deg}_{G_{w}}\left(x_{2}\right)=\operatorname{deg}_{G_{w}}\left(x_{3}\right)=\operatorname{deg}_{G_{w}}\left(x_{4}\right)=2$. Consequently $\alpha_{2}+\alpha_{3}, \alpha_{1}+$ $\alpha_{2}, \alpha_{4}+\alpha_{5} \in \mathbb{N}$, since $w \in \mathbb{N}^{n+1}$. Thus,
$u=w^{\prime}-\sum_{i=6}^{m}\left(v_{i_{1}}, 1\right)-\sum_{i=1}^{5} \gamma_{i}\left(v_{i}, 1\right)-\gamma_{i_{1}}\left(v_{i_{1}}-e_{i_{1}}, 0\right)-\gamma_{i_{4}}\left(v_{i_{4}}-e_{i_{4}}, 0\right)+\left(\lambda+\gamma_{1}-1\right) e_{n+1}$ where $\gamma_{2}=\alpha_{2}-\left\lceil\alpha_{2}\right\rceil+1, \gamma_{1}=\gamma_{3}=1-\gamma_{2}, \gamma_{4}=\alpha_{4}-\left\lceil\alpha_{4}\right\rceil+1, \gamma_{5}=1-$ γ_{4}, and $\gamma_{i_{1}}=1-\alpha_{1}-\alpha_{5}$ and $\gamma_{i_{4}}=1-\alpha_{3}-\alpha_{5}$. Finally suppose $H=C_{7}$. By Proposition 3.5, we can suppose $\operatorname{deg}_{G}\left(x_{3}\right)=\operatorname{deg}_{G}\left(x_{5}\right)=\operatorname{deg}_{G}\left(x_{7}\right)=2$. Also, $\operatorname{deg}_{G}\left(x_{2}\right)=2$, since G satisfies 1) of Proposition 3.25 . Now assume $\operatorname{deg}_{G_{w}}\left(x_{6}\right)=2$. This implies
$u=w^{\prime}-\sum_{i=8}^{m}\left(v_{i}, 1\right)-\sum_{i=1}^{7} \gamma_{i}\left(v_{i}, 1\right)-\gamma_{i_{1}}\left(v_{i_{1}}-e_{i_{1}}, 0\right)-\gamma_{i_{4}}\left(v_{i_{4}}-e_{i_{4}}, 0\right)+\left(\lambda-\gamma_{1}-1\right) e_{n+1}$
where $\gamma_{2}=\alpha_{2}-\left\lceil\alpha_{2}\right\rceil+1, \gamma_{1}=\gamma_{3}=1-\gamma_{2}, \gamma_{4}=\alpha_{4}-\left\lceil\alpha_{4}\right\rceil+1=\gamma_{6}, \gamma_{5}=$ $\gamma_{7}=1-\gamma_{4}, \gamma_{i_{1}}=1-\gamma_{1}-\gamma_{7}$, and $\gamma_{i_{4}}=1-\gamma_{3}-\gamma_{4}$. Finally if there is $y_{i_{6}}=$
$\left(x_{6}, x_{i_{6}}\right) \in G_{w}$ with $x_{i_{6}} \notin V(H)$, then by Proposition $3.5\left\{x_{4}, x_{1}\right\} \cap \mathrm{N}_{G}\left(x_{i_{6}}\right) \neq \varnothing$. We can suppose $y_{i_{7}}=\left\{x_{i_{6}}, x_{4}\right\} \in E(G)$. We also assume $\alpha_{i_{6}}$ is minimal in the representation of w. Hence,

$$
w=w^{\prime}-\gamma\left(v_{4}, 1\right)+\gamma\left(v_{5}, 1\right)-\gamma\left(v_{i_{6}}, 1\right)+\gamma\left(v_{i_{7}}, 1\right)+\lambda e_{n+1}
$$

where $\gamma=\min \left\{\alpha_{4}, \alpha_{i_{6}}\right\}$. Since in the representation of $w \alpha_{i_{6}}$ is minimal, $\alpha_{4}=0$. So, $\alpha_{5} \in \mathbb{N}$ and

$$
w^{\prime \prime}=w-\alpha_{i_{6}}\left(v_{i_{6}}, 1\right)+\gamma^{\prime}\left(e_{7}, 1\right)+\left(\lambda-\gamma^{\prime}+\alpha_{i_{6}}\right) e_{n+1}
$$

where $\gamma^{\prime}=\min \left\{0,1-\alpha_{7}\right\}$. Therefore $w^{\prime \prime} \in\left(\mathbb{R}_{+} B\right)^{\circ}, w^{\prime \prime} \cdot e_{i} \geq 1$ and $\alpha_{i_{6}}=0$, we are in the last case.

Now, suppose w does not satisfy 1). We take a minimal representation of $w=$ $\sum_{i=1}^{q} \alpha_{i}\left(v_{i}, 1\right)+\sum_{i=1}^{n} \beta_{i}\left(v_{i}, 1\right)+\lambda e_{n+1}$. By Proposition 3.23 we can assume $\lambda \geq 1$ and $\alpha_{i} \geq 1$ for each $i \in\{s+1, \ldots, m\}$. We take $V(H)=\left\{x_{1}, \ldots, x_{s}\right\}$ and $y_{i}=$ $\left\{x_{i}, x_{i+1}\right\}$ for $i=1, \ldots, s-1$ and $y_{s}=\left\{x_{s}, x_{1}\right\}$. Furthermore $y_{i_{1}}=\left\{x_{1}, x_{k_{1}}\right\}, y_{i_{2}}=$ $\left\{x_{2}, x_{k_{2}}\right\} \in E\left(G_{w}\right)$ with $x_{k_{1}}, x_{k_{2}} \notin V(H)$. Also we can assume that the representation of w satisfies $\alpha_{i_{1}}+\alpha_{i_{2}}$ is minimal. First suppose $H=C_{3}$. By Proposition 3.1 $\operatorname{deg}_{G}\left(x_{3}\right)=2$, since G is unmixed. Hence,

$$
u=w^{\prime}-\sum_{i=4}^{m}\left(v_{i}, 1\right)-\sum_{i=1}^{3} \gamma_{i}\left(v_{i}, 1\right)-\sum_{j=1}^{2} u_{j}\left(v_{i_{j}}, 1\right)+\sum_{j=1}^{2} u_{j}\left(e_{k_{j}}, 1\right)+\left(\lambda-u_{1}-u_{2}\right) e_{n+1}
$$

where $\gamma_{2}+\gamma_{3}=1, \gamma_{1}=\min \left\{\alpha_{1}, 1-\gamma_{2}, 1-\gamma_{3}\right\}, u_{1}+\gamma_{3}=u_{2}+\gamma_{2}=1-\gamma_{1}$. Now assume $H=C_{5}$. By Proposition 3.6 we have that $\operatorname{deg}_{G}\left(x_{3}\right)=\operatorname{deg}_{G}\left(x_{5}\right)=2$. By Proposition $3.1\left\{x_{k_{1}}, x_{k_{2}}\right\} \notin E(G)$. Since G is unmixed $\left\{x_{k_{1}}, x_{k_{2}}, x_{4}\right\}$ is not a stable set, we can suppose $y_{i_{3}}=\left\{x_{i_{1}}, x_{4}\right\} \in E(G)$. Thus,

$$
w=w^{\prime}+\gamma\left(v_{5}, 1\right)-\gamma\left(v_{4}, 1\right)+\gamma\left(v_{i_{3}}, 1\right)-\gamma\left(v_{i_{1}}, 1\right)+\lambda e_{n+1}
$$

where $\gamma=\min \left\{\alpha_{4}, \alpha_{i_{1}}\right\}$. Since $\alpha_{i_{1}}+\alpha_{i_{2}}$ is minimal, $\gamma=0$ and $\alpha_{4}=0$. Hence, $\alpha_{5} \geq 1$ and $w^{\prime \prime}=w-\alpha_{i_{1}}\left(v_{i_{1}}, 1\right) \in\left(\mathbb{R}_{+} B\right)^{\circ}, w^{\prime \prime} \cdot e_{i} \geq 1$ and $w^{\prime \prime}$ satisfies 1). Finally if $H=C_{7}$, by Proposition 3.5 there is $y_{i_{4}}=\left\{x_{i_{1}}, x_{6}\right\}, y_{i_{5}}=\left\{x_{i_{5}}, x_{4}\right\} \in E(G)$ and $\operatorname{deg}_{G}\left(x_{3}\right)=\operatorname{deg}_{G}\left(x_{5}\right)=\operatorname{deg}_{G}\left(x_{7}\right)=2$. We take

$$
w=w^{\prime}+\gamma\left(v_{7}, 1\right)-\gamma\left(v_{6}, 1\right)+\gamma\left(v_{i_{4}}, 1\right)-\gamma\left(v_{i_{1}}, 1\right)+\lambda e_{n+1}
$$

where $\gamma=\min \left\{\alpha_{i_{1}}, \alpha_{6}\right\}$. Since $\alpha_{i_{1}}+\alpha_{i_{2}}$ is minimal, $\gamma=0$ and $\alpha_{6}=0$. Hence $\alpha_{7} \geq 1$ and $w^{\prime \prime}=w-\alpha_{i_{1}}\left(v_{i_{1}}, 1\right) \in\left(\mathbb{R}_{+} B\right)^{\circ}, w^{\prime \prime} \cdot e_{i} \geq 1$ and $w^{\prime \prime}$ satisfies 1$)$.

Theorem 3.26 If S is normal and G is connected not bipartite graph, then S_{G} is Gorenstein if and only if G is unmixed, $\tau(G)=\left\lceil\frac{n}{2}\right\rceil$ and $b_{0}=\left\lfloor\frac{n}{2}\right\rfloor+1$.

Proof. $\Leftarrow)$ By Theorem 3.15, we can assume that n is odd. Since G is unmixed and $\tau(G)=\frac{n+1}{2}$, then by Proposition 3.2, there exist a τ-reduction $\left\{H_{1}, \ldots, H_{s}\right\}$ of G, where $H_{i} \in E(G)$ for $1 \leq i \leq s-1$ and H_{s} is a j-cycle with $j \in\{3,5,7\}$. We can assume $V\left(H_{i}\right)=\left\{x_{2 i-1}, x_{2 i}\right\}$ for $i=1, \ldots, s-1$ and $V\left(H_{s}\right)=\left\{x_{2 s-1}, \ldots, x_{n}\right\}$. We take $\mathbb{R}_{+} B=H_{e_{1}}^{+} \cap \cdots \cap H_{e_{n}}^{+} \cap H_{\left(-\ell_{1}, 1\right)}^{+} \cap \cdots \cap H_{\left(-\ell_{m}, 1\right)}^{+}$. Consequently, $\ell_{j}^{2 i-1}+\ell_{j}^{2 i} \leq$ 1 for $1 \leq i \leq s-1$, where $\ell_{j}=\left(\ell_{j}^{1}, \ldots, \ell_{J}^{n}\right)$. Hence, by Proposition 3.16, $1 \cdot \ell_{j}=$ $\sum_{i=1}^{n} \ell_{j}^{i} \leq \frac{n}{2}$. Thus, $\left(\mathbf{1}, \frac{n+1}{2}\right) \cdot\left(-\ell_{j}, 1\right)>0$. This implies, $\left(\mathbf{1}, \frac{n+1}{2}\right) \in \mathbb{N} B \cap\left(\mathbb{R}_{+} B\right)^{\circ}$. Now, if $(v, b) \in \mathbb{N} B \cap\left(\mathbb{R}_{+} B\right)^{\circ}$, then $(v, b) \cdot e_{i}>0$ for $1 \leq i \leq n$. This implies $v \geq \mathbf{1}$. Also, by Proposition 3.12, we have that $b \geq \frac{n+1}{2}$. Thus, $u=(v, b)-\left(\mathbf{1}, \frac{n+1}{2}\right) \in$ \mathbb{Z}_{+}^{n+1}. By Proposition $3.25 u \in \mathbb{R}_{+} B$. So, $u \in \mathbb{Z}_{+}^{n+1} \cap \mathbb{R}_{+} B=\mathbb{N} B$, since S_{G} is normal. Therefore $w_{S}=\left(x^{1} t^{\frac{n+1}{2}}\right)$ and S_{G} is Gorenstein.
$\Rightarrow)$ By Theorem 3.13 .

Theorem 3.27 Let G be a graph such that S_{G} is normal then S_{G} is Gorenstein if and only if G is unmixed and $\tau(G)=\left\lceil\frac{n}{2}\right\rceil$.

Proof. By Theorem 3.14 and Theorem 3.26

Chapter

4

MONOMIAL IDEALS OF WEIGHTED ORIENTED GRAPHS

4.1 INTRODUCTION

A weighted oriented graph is a triplet $D=(V(D), E(D), w)$, where $V(D)$ is a finite set, $E(D) \subseteq V(D) \times V(D)$ and w is a function $w: V(D) \rightarrow \mathbb{N}$. The vertex set of D and the edge set of D are $V(D)$ and $E(D)$, respectively. Some times for short we denote these sets by V and E respectively. The weight of $x \in V$ is $w(x)$. If $e=(x, y) \in E$, then x is the tail of e and y is the head of e. The underlying graph of D is the simple graph G whose vertex set is V and whose edge set is $\{\{x, y\} \mid(x, y) \in E\}$. If $V(D)=\left\{x_{1}, \ldots, x_{n}\right\}$, then we consider the polynomial ring $R=K\left[x_{1}, \ldots, x_{n}\right]$ in n variables over a field K. In this paper we introduce and study the edge ideal of D given by $I(D)=\left(x_{i} x_{j}^{w\left(x_{j}\right)}:\left(x_{i}, x_{j}\right) \in E(D)\right)$ in R, (see Definition 4.15).

In Sect. 4.2 we study the vertex covers of D. In particular we introduce the notion of strong vertex cover (Definition 4.6) and we prove that a minimal vertex cover is strong. In Sect. 4.3 we characterize the irredundant irreducible decomposition of $I(D)$. In particular we show that the minimal monomial irreducible ideals of $I(D)$ are associated with the strong vertex covers of D. In Sect. 4.4 we give the following characterization of the unmixed property of $I(D)$.
$I(D)$ is unmixed $\Longleftrightarrow G$ is unmixed and D has the minimal strong propert

All strong vertex covers have the same cardinality

All minimal vertex covers have the
 same cardinality

Furthermore, if D is bipartite, D is a whisker or D is a cycle, we give an effective (combinatorial) characterization of the unmixed property. Finally in Sect. ?? we study the Cohen-Macaulayness of $I(D)$. In particular we characterize the CohenMacaulayness when D is a path or D is complete. Also, we give an example where this property depend of the characteristic of the field K.

4.2 WEIGHTED ORIENTED GRAPHS AND THEIR VERTEX COV-

ERS

In this section we define the weighted oriented graphs and we study their vertex covers. Furthermore, we define the strong vertex covers and we characterize when $V(D)$ is a strong vertex cover of D. In this paper we denote the set $\{x \in V \mid w(x) \neq$ $1\}$ by V^{+}.

Definition 4.1 A vertex cover C of D is a subset of V, such that if $(x, y) \in E$, then $x \in C$ or $y \in C$. A vertex cover C of D is minimal if each proper subset of C is not a vertex cover of D.

Definition 4.2 Let x be a vertex of a weighted oriented graph D, the sets $N_{D}^{+}(x)=$ $\{y \mid(x, y) \in E(D)\}$ and $N_{D}^{-}(x)=\{y \mid(y, x) \in E(D)\}$ are called the outneighbourhood and the in-neighbourhood of x, respectively. Furthermore, the neighbourhood of x is the set $N_{D}(x)=N_{D}^{+}(x) \cup N_{D}^{-}(x)$.

Definition 4.3 Let C be a vertex cover of a weighted oriented graph D, we define

$$
\begin{gathered}
L_{1}(C)=\left\{x \in C \mid N_{D}^{+}(x) \cap C^{c} \neq \varnothing\right\} \\
L_{2}(C)=\left\{x \in C \mid x \notin L_{1}(C) \text { and } N_{D}^{-}(x) \cap C^{c} \neq \varnothing\right\} \text { and } \\
L_{3}(C)=C \backslash\left(L_{1}(C) \cup L_{2}(C)\right),
\end{gathered}
$$

where C^{c} is the complement of C, i.e. $C^{c}=V \backslash C$.

Proposition 4.4 If C is a vertex cover of D, then

$$
L_{3}(C)=\left\{x \in C \mid N_{D}(x) \subset C\right\}
$$

Proof. If $x \in L_{3}(C)$, then $N_{D}^{+}(x) \subseteq C$, since $x \notin L_{1}(C)$. Furthermore $N_{D}^{-}(x) \subseteq C$, since $x \notin L_{2}(C)$. Hence $N_{D}(x) \subset C$, since $x \notin N_{D}(x)$. Now, if $x \in C$ and $N_{D}(x) \subset$ C, then $x \notin L_{1}(C) \cup L_{2}(C)$. Therefore $x \in L_{3}(C)$.

Proposition 4.5 If C is a vertex cover of D, then $L_{3}(C)=\varnothing$ if and only if C is a minimal vertex cover of D.

Proof. $\Rightarrow)$ If $x \in C$, then by Proposition 4.4 we have $N_{D}(x) \not \subset C$, since $L_{3}(C)=\varnothing$. Thus, there is $y \in N_{D}(x) \backslash C$ implying $C \backslash\{x\}$ is not a vertex cover. Therefore, C is a minimal vertex cover.
\Leftarrow If $x \in L_{3}(C)$, then by Proposition 4.4, $N_{D}(x) \subseteq C \backslash\{x\}$. Hence, $C \backslash\{x\}$ is a vertex cover. A contradiction, since C is minimal. Therefore $L_{3}(C)=\varnothing$.

Definition 4.6 A vertex cover C of D is strong if for each $x \in L_{3}(C)$ there is $(y, x) \in$ $E(D)$ such that $y \in L_{2}(C) \cup L_{3}(C)$ with $y \in V^{+}$(i.e. $w(y) \neq 1$).

Remark 4.7 Let C be a vertex cover of D. Hence, by Proposition 4.4 and since $C=L_{1}(C) \cup L_{2}(C) \cup L_{3}(C)$, we have that C is strong if and only if for each $x \in C$ such that $N(x) \subset C$, there exist $y \in N^{-}(x) \cap\left(C \backslash L_{1}(C)\right)$ with $y \in V^{+}$.

Corollary 4.8 If C is a minimal vertex cover of D, then C is strong.
Proof. By Proposition 4.5, we have $L_{3}(C)=\varnothing$, since C. Hence, C is strong.

Remark 4.9 The vertex set V of D is a vertex cover. Also, if $z \in V$, then $N_{D}(z) \subseteq$ $V \backslash z$. Hence, by Proposition 4.4, $L_{3}(V)=V$. Consequently, $L_{1}(V)=L_{2}(V)=$ \varnothing. By Proposition 4.5, V is not a minimal vertex cover of D. Furthermore since $L_{3}(V)=V, V$ is a strong vertex cover if and only if $N_{D}^{-}(x) \cap V^{+} \neq \varnothing$ for each $x \in V$.

Definition 4.10 If G is a cycle with $E(D)=\left\{\left(x_{1}, x_{2}\right), \ldots,\left(x_{n-1}, x_{n}\right),\left(x_{n}, x_{1}\right)\right\}$ and $V(D)=\left\{x_{1}, \ldots, x_{n}\right\}$, then D is called oriented cycle.

Definition 4.11 D is called unicycle oriented graph if it satisfies the following conditions:

1) The underlying graph of D is connected and it has exactly one cycle C.
2) C is an oriented cycle in D. Furthermore for each $y \in V(D) \backslash V(C)$, there is an oriented path from C to y in D.
3) $w(x) \neq 1$ if $\operatorname{deg}_{G}(x) \geq 1$.

Lemma 4.12 If $V(D)$ is a strong vertex cover of D and D_{1} is a maximal unicycle oriented subgraph of D, then $V\left(D^{\prime}\right)$ is a strong vertex cover of $D^{\prime}=D \backslash V\left(D_{1}\right)$.

Proof. We take $x \in V\left(D^{\prime}\right)$. Thus, by Remark 4.9, there is $y \in N_{D}^{-}(x) \cap V^{+}(D)$. If $y \in D_{1}$, then we take $D_{2}=D_{1} \cup\{(y, x)\}$. Hence, if C is the oriented cycle of D_{1}, then C is the unique cycle of D_{2}, since $\operatorname{deg}_{D_{2}}(x)=1$. If $y \in C$, then (y, x) is an oriented path from C to x. Now, if $y \notin C$, then there is an oriented path \mathcal{L} form C to y in D_{1}. Consequently, $\mathcal{L} \cup\{(y, x)\}$ is an oriented path form C to x. Furthermore, $\operatorname{deg}_{D_{2}}(x)=1$ and $w(y) \neq 1$, then D_{2} is an unicycle oriented graph. A contradiction, since D_{1} is maximal. This implies $y \in V\left(D^{\prime}\right)$, so $y \in$ $N_{D^{\prime}}^{-}(x) \cap V^{+}\left(D^{\prime}\right)$. Therefore, by Remark 4.9. $V\left(D^{\prime}\right)$ is a strong vertex cover of D^{\prime}.

Lemma 4.13 If $V(D)$ is a strong vertex cover of D, then there is an unicycle oriented subgraph of D.

Proof. Let y_{1} be a vertex of D. Since $V=V(D)$ is a strong vertex cover, there is $y_{2} \in V$ such that $y_{2} \in N^{-}\left(y_{1}\right) \cap V^{+}$. Similarly, there is $y_{3} \in N^{-}\left(y_{2}\right) \cap V^{+}$. Consequently, $\left(y_{3}, y_{2}, y_{1}\right)$ is an oriented path. Continuing this process, we can assume there exist $y_{2}, y_{3}, \ldots, y_{k} \in V^{+}$where $\left(y_{k}, y_{k-1}, \ldots, y_{2}, y_{1}\right)$ is an oriented path and there is $1 \leq j \leq k-2$ such that $\left(y_{j}, y_{k}\right) \in E(D)$, since V is finite. Hence, $C=\left(y_{k}, y_{k-1}, \ldots, y_{j}, y_{k}\right)$ is an oriented cycle and $\mathcal{L}=\left(y_{j}, \ldots, y_{1}\right)$ is an oriented path form C to y_{1}. Furthermore, if $j=1$, then $w\left(y_{1}\right) \neq 1$. Therefore, $D_{1}=C \cup \mathcal{L}$ is an unicycle oriented subgraph of D.

Proposition 4.14 Let $D=(V, E, w)$ be a weighted oriented graph, hence V is a strong vertex cover of D if and only if there are D_{1}, \ldots, D_{s} unicycle oriented subgraphs of D such that $V\left(D_{1}\right), \ldots, V\left(D_{s}\right)$ is a partition of $V=V(D)$.

Proof. \Rightarrow) By Lemma 4.13, there is a maximal unicycle oriented subgraph D_{1} of D. Hence, by Lemma 4.12, $V\left(D^{\prime}\right)$ is a strong vertex cover of $D^{\prime}=D \backslash V\left(D_{1}\right)$. So, by Lemma 4.13, there is D_{2} a maximal unicycle oriented subgraph of D^{\prime}. Continuing this process we obtain unicycle oriented subgraphs D_{1}, \ldots, D_{s} such that $V\left(D_{1}\right), \ldots, V\left(D_{s}\right)$ is a partition of $V(D)$.
$\Leftrightarrow)$ We take $x \in V(D)$. By hypothesis there is $1 \leq j \leq s$ such that $x \in V\left(D_{j}\right)$. We assume C is the oriented cycle of D_{j}. If $x \in V(C)$, then there is $y \in V(C)$ such that $(y, x) \in E\left(D_{j}\right)$ and $w(y) \neq 1$, since $\operatorname{deg}_{D_{j}}(y) \geq 2$ and D_{j} is a unicycle oriented subgraph. Now, we assume $x \notin V(C)$, then there is an oriented path $\mathcal{L}=$ $\left(z_{1}, \ldots, z_{r}\right)$ such that $z_{1} \in V(C)$ and $z_{r}=x$. Thus, $\left(z_{r-1}, x\right) \in E(D)$. Furthermore,
$w\left(z_{r-1}\right) \neq 1$, since $\operatorname{deg}_{D_{j}}\left(z_{r-1}\right) \geq 2$. Therefore V is a strong vertex cover.

4.3 EDGE IDEALS AND THEIR PRIMARY DECOMPOSITION

As is usual if I is a monomial ideal of a polynomial ring R, we denote by $\mathcal{G}(I)$ the minimal monomial set of generators of I. Furthermore, there exists a unique decomposition, $I=\mathfrak{q}_{1} \cap \cdots \cap \mathfrak{q}_{r}$, where $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{r}$ are irreducible monomial ideals such that $I \neq \bigcap_{i \neq j} \mathfrak{q}_{i}$ for each $j=1, \ldots, r$. This is called the irredundant irreducible decomposition of I. Furthermore, \mathfrak{q}_{i} is an irreducible monomial ideal if and only if $\mathfrak{q}_{i}=\left(x_{i_{1}}^{a_{1}}, \ldots, x_{i_{s}}^{a_{s}}\right)$ for some variables $x_{i_{j}}$. Irreducible ideals are primary, then a irreducible decomposition is a primary decomposition. For more details of primary decomposition of monomial ideals see [28, Chapter 6]. In this section, we define the edge ideal $I(D)$ of a weighted oriented graph D and we characterize its irredundant irreducible decomposition. In particular we prove that this decomposition is an irreducible primary decomposition, i.e, the radicals of the elements of the irredundant irreducible decomposition of $I(D)$ are different.

Definition 4.15 Let $D=(V, E, w)$ be a weighted oriented graph with $V=\left\{x_{1}, \ldots\right.$, $\left.x_{n}\right\}$. The edge ideal of D, denote by $I(D)$, is the ideal of $R=K\left[x_{1}, \ldots, x_{n}\right]$ generated by $\left\{x_{i} x_{j}^{w\left(x_{j}\right)} \mid\left(x_{i}, x_{j}\right) \in E\right\}$.

Definition 4.16 A source of D is a vertex x, such that $N_{D}(x)=N_{D}^{+}(x)$. A sink of D is a vertex y such that $N_{D}(y)=N_{D}^{-}(y)$.

Remark 4.17 Let $D=(V, E, w)$ be a weighted oriented graph. We take $D^{\prime}=$ $\left(V, E, w^{\prime}\right)$ a weighted oriented graph such that $w^{\prime}(x)=w(x)$ if x is not a source and $w^{\prime}(x)=1$ if x is a source. Hence, $I(D)=I\left(D^{\prime}\right)$. For this reason in this paper, we will always assume that if x is a source, then $w\left(x_{i}\right)=1$.

Definition 4.18 Let C be a vertex cover of D, the irreducible ideal associated to C is the ideal

$$
I_{C}=\left(L_{1}(C) \cup\left\{x_{j}^{w\left(x_{j}\right)} \mid x_{j} \in L_{2}(C) \cup L_{3}(C)\right\}\right)
$$

Lemma 4.19 $I(D) \subseteq I_{C}$ for each vertex cover C of D.
Proof. We take $I=I(D)$ and $m \in \mathcal{G}(I)$, then $m=x y^{w(y)}$, where $(x, y) \in D$. Since
C is a vertex cover, $x \in C$ or $y \in C$. If $y \in C$, then $y \in I_{C}$ or $y^{w(y)} \in I_{C}$. Thus, $m=x y^{w(y)} \in I_{C}$. Now, we assume $y \notin C$, then $x \in C$. Hence, $y \in N_{D}^{+}(x) \cap C^{c}$, so $x \in L_{1}(C)$. Consequently, $x \in I_{C}$ implying $m=x y^{w(y)} \in I_{C}$. Therefore $I \subseteq I_{C}$.

Definition 4.20 Let I be monomial ideal. An irreducible monomial ideal \mathfrak{q} that contains I is called a minimal irreducible monomial ideal of I if for any irreducible monomial ideal \mathfrak{p} such that $I \subseteq \mathfrak{p} \subseteq \mathfrak{q}$ one has that $\mathfrak{p}=\mathfrak{q}$.

Lemma 4.21 Let D be a weighted oriented graph. If $I(D) \subseteq\left(x_{i_{1}}^{a_{1}}, \ldots, x_{i_{s}}^{a_{s}}\right)$, then $\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\}$ is a vertex cover of D.

Proof. We take $J=\left(x_{i_{1}}^{a_{1}}, \ldots, x_{i_{s}}^{a_{s}}\right)$. If $(a, b) \in E(D)$, then $a b^{w(b)} \in I(D) \subseteq J$. Thus, $x_{i_{j}}^{a_{j}} \mid a b^{w(b)}$ for some $1 \leq j \leq s$. Hence, $x_{i_{j}} \in\{a, b\}$ and $\{a, b\} \cap\left\{x_{i_{1}} \ldots x_{i_{s}}\right\} \neq \varnothing$. Therefore $\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\}$ is a vertex cover of D.

Lemma 4.22 Let J be a minimal irreducible monomial ideal of $I(D)$ where $\mathcal{G}(J)=$ $\left\{x_{i_{1}}^{a_{s}}, \ldots, x_{i_{s}}^{a_{s}}\right\}$. If $a_{j} \neq 1$ for some $1 \leq j \leq s$, then there is $\left(x, x_{i_{j}}\right) \in E(D)$ where $x \notin \mathcal{G}(J)$.

Proof. By contradiction suppose there is $a_{j} \neq 1$ such that if $\left(x, x_{i_{j}}\right) \in E(D)$, then $x \in M=\left\{x_{i_{1}}^{a_{1}}, \ldots, x_{i_{s}}^{a_{s}}\right\}$. We take the ideal $J^{\prime}=\left(M \backslash\left\{x_{i_{j}}^{a_{j}}\right\}\right)$. If $(a, b) \in E(D)$, then $a b^{w(b)} \in I(D) \subseteq J$. Consequently, $x_{i_{k}}^{a_{k}} \mid a b^{w(b)}$ for some $1 \leq k \leq s$. If $k \neq j$, then $a b^{w(b)} \in J^{\prime}$. Now, if $k=j$, then by hypothesis $a_{j} \neq 1$. Hence, $x_{i_{j}}^{a_{j}} \mid b^{w(b)}$ implying $x_{i_{j}}=b$. Thus, $\left(a, x_{i_{j}}\right) \in E(D)$, so by hypothesis $a \in M \backslash\left\{x_{i_{j}}^{a_{j}}\right\}$. This implies $a b^{w(b)} \in J^{\prime}$. Therefore $I(D) \subseteq J^{\prime} \subsetneq J$. A contradiction, since J is minimal.

Lemma 4.23 Let J be a minimal irreducible monomial ideal of $I(D)$ where $\mathcal{G}(J)=$ $\left\{x_{i_{1}}^{a_{1}}, \ldots, x_{i_{s}}^{a_{s}}\right\}$. If $a_{j} \neq 1$ for some $1 \leq j \leq s$, then $a_{j}=w\left(x_{i_{j}}\right)$.

Proof. By Lemma 4.22, there is $\left(x, x_{i_{j}}\right) \in E(D)$ with $x \notin M=\left\{x_{i_{1}}^{a_{1}}, \ldots, x_{i_{s}}^{a_{s}}\right\}$. Also, $x x_{i_{j}}^{w\left(x_{i_{j}}\right)} \in I(D) \subseteq J$, so $x_{i_{k}}^{a_{k}} \mid x x_{i_{j}}^{w\left(x_{i_{j}}\right)}$ for some $1 \leq k \leq s$. Hence, $x_{i_{k}}^{a_{k}} \mid x_{i_{j}}^{w\left(x_{i_{j}}\right)}$, since $x \notin M$. This implies, $k=j$ and $a_{j} \leq w\left(x_{i_{j}}\right)$. If $a_{j}<w\left(x_{i_{j}}\right)$, then we take $J^{\prime}=\left(M^{\prime}\right)$ where $M^{\prime}=\left\{M \backslash\left\{x_{i_{j}}^{a_{j}}\right\}\right\} \cup\left\{x_{i_{j}}^{w\left(x_{i_{j}}\right)}\right\}$. So, $J^{\prime} \subsetneq J$. Furthermore, if $(a, b) \in E(D)$, then $m=a b^{w(b)} \in I(D) \subseteq J$. Thus, $x_{i_{k}}^{a_{k}} \mid a b^{w(b)}$ for some $1 \leq k \leq s$. If $k \neq j$, then $x_{i_{k}}^{a_{k}} \in M^{\prime}$
implying $a b^{w(b)} \in J^{\prime}$. Now, if $k=j$ then $x_{i_{j}}^{a_{j}} \mid b^{w(b)}$, since $a_{j}>1$. Consequently, $x_{i_{j}}=b$ and $x_{i_{j}}^{w\left(x_{i_{j}}\right)} \mid m$. Then $m \in J^{\prime}$. Hence $I(D) \subseteq J^{\prime} \subsetneq J$, a contradiction since J is minimal. Therefore $a_{j}=w\left(x_{i_{j}}\right)$.

Theorem 4.24 The following conditions are equivalent:

1) J is a minimal irreducible monomial ideal of $I(D)$.
2) There is a strong vertex cover C of D such that $J=I_{C}$.

Proof. 2) \Rightarrow 1) By definition $J=I_{C}$ is a monomial irreducible ideal. By Lemma 4.19 , $I(D) \subseteq J$. Now, suppose $I(D) \subseteq J^{\prime} \subseteq J$, where J^{\prime} is a monomial irreducible ideal. We can assume $\mathcal{G}\left(J^{\prime}\right)=\left\{x_{j_{1}}^{b_{1}}, \ldots, x_{j_{s}}^{b_{s}}\right\}$. If $x \in L_{1}(C)$, then there is $(x, y) \in E(D)$ with $y \notin C$. Hence, $x y^{w(y)} \in I(D)$ and $y^{r} \notin J$ for each $r \in \mathbb{N}$. Consequently $y^{r} \notin J^{\prime}$ for each r, implyinig $y \notin\left\{x_{j_{1}}, \ldots, x_{j_{s}}\right\}$. Furthermore $x_{j_{i}}^{b_{i}} \mid x y^{w(y)}$ for some $1 \leq i \leq s$, since $x y^{w(y)} \in I(D) \subseteq J^{\prime}$. This implies, $x=x_{j_{i}}^{b_{i}} \in J^{\prime}$. Now, if $x \in L_{2}(C)$, then there is $(y, x) \in E(D)$ with $y \notin C$. Thus $y \notin J$, so $y \notin\left\{x_{j_{1}}^{b_{1}}, \ldots, x_{j_{s}}^{b_{s}}\right\}$. Also, $x^{w(x)} y \in I(D) \subseteq J^{\prime}$, then $x_{j_{i}}^{b_{i}} \mid x^{w(x)} y$ for some $1 \leq i \leq s$. Consequently, $x_{j_{i}}^{b_{i}} \mid x^{w(x)}$ implies $x^{w(x)} \in J^{\prime}$. Finally if $x \in L_{3}(C)$, then there is $(y, x) \in E(D)$ where $y \in L_{2}(C) \cup L_{3}(C)$ and $w(y) \neq 1$, since C is a strong vertex cover. So, $x^{w(x)} y \in I(D) \subseteq J^{\prime}$ implies $x_{j_{i}}^{b_{i}} \mid x^{w(x)} y$ for some i. Furthermore $y \notin J=I_{C}$, since $y \in L_{2}(C) \cup L_{3}(C)$ and $w(y) \neq 1$. This implies $y \notin J^{\prime}$ so, $x_{j_{i}}^{b_{i}} \mid x^{w(x)}$ then $x^{w(x)} \in J^{\prime}$. Hence, $J=I_{C} \subseteq J^{\prime}$. Therefore, J is a minimal monomial irreducible of $I(D)$.
$1) \Rightarrow$ 2) Since J is irreducible, we can suppose $\mathcal{G}(J)=\left\{x_{i_{1}}^{a_{1}}, \ldots, x_{i_{s}}^{a_{s}}\right\}$. By Lemma 4.23. we have $a_{j}=1$ or $a_{j}=w\left(x_{i_{j}}\right)$ for each $1 \leq j \leq s$. Also, by Lemma 4.21. $C=\left\{x_{i_{1}}, \ldots, x_{i_{s}}\right\}$ is a vertex cover of D. We can assume $\mathcal{G}\left(I_{C}\right)=\left\{x_{i_{1}}^{b_{1}}, \ldots, x_{i_{s}}^{b_{s}}\right\}$, then $b_{j} \in\left\{1, w\left(x_{i_{j}}\right)\right\}$ for each $1 \leq j \leq s$. Now, suppose $b_{k}=1$ and $w\left(x_{i_{k}}\right) \neq 1$ for some $1 \leq k \leq s$. Consequently $x_{i_{k}} \in L_{1}(C)$. Thus, there is $\left(x_{i_{k}}, y\right) \in E(D)$ where $y \notin C$. So, $x_{i_{k}} y^{w(y)} \in I(D) \subseteq J$ and $x_{i_{r}}^{a_{r}} \mid x_{i_{k}} y^{w(y)}$ for some $1 \leq r \leq s$. Furthermore $y \notin C$, then $r=k$ and $a_{k}=a_{r}=1$. Hence, $I_{C} \cap V(D) \subseteq J \cap V(D)$. This implies, $I_{C} \subseteq J$, since $a_{j}, b_{j} \in\left\{1, w\left(x_{i_{j}}\right)\right\}$ for each $1 \leq j \leq s$. Therefore $J=I_{C}$, since J is minimal. In particular $a_{i}=b_{i}$ for each $1 \leq i \leq s$.

Now, assume C is not strong, then there is $x \in L_{3}(C)$ such that if $(y, x) \in E(D)$, then $w(y)=1$ or $y \in L_{1}(C)$. We can assume $x=x_{i_{1}}$, and we take J^{\prime} the monomial ideal with $\mathcal{G}\left(J^{\prime}\right)=\left\{x_{i_{2}}^{a_{2}}, \ldots, x_{i_{s}}^{a_{s}}\right\}$. We take $\left(z_{1}, z_{2}\right) \in E(D)$. If $x_{i_{j}}^{a_{j}} \mid z_{1} z_{2}^{w\left(z_{2}\right)}$ for some
$2 \leq j \leq s$, then $z_{1} z_{2}^{w\left(z_{2}\right)} \in J^{\prime}$. Now, assume $x_{i_{j}}^{a_{j}} \nmid z_{1} z_{2}^{w\left(z_{2}\right)}$ for each $2 \leq j \leq s$. Consequently $z_{2} \notin\left\{x_{i_{2}} \ldots x_{i_{s}}\right\}$, since $a_{j} \in\left\{1, w\left(x_{i_{j}}\right)\right\}$. Also $z_{1} z_{2}^{w\left(z_{2}\right)} \in I(D) \subseteq J$, then $x_{i_{1}}^{a_{1}} \mid z_{1} z_{2}^{w\left(z_{2}\right)}$. But $x_{i_{1}} \in L_{3}(C)$, so $z_{1}, z_{2} \in N_{G}\left[x_{i_{1}}\right] \subseteq C$. If $x_{i_{1}}=z_{1}$, then there is $2 \leq r \leq s$ such that $z_{2}=x_{i_{r}}$. Thus $x_{i_{r}}^{a_{r}} \mid z_{1} z_{2}^{w\left(z_{2}\right)}$. A contradiction, then $x_{i_{1}}=z_{2}, z_{1} \in C$ and $\left(z_{1}, x_{i_{1}}\right) \in E(D)$. Then, $w\left(z_{1}\right)=1$ or $z_{1} \in L_{1}(C)$. In both cases $z_{1} \in \mathcal{G}\left(I_{C}\right)$. Furthermore $z_{1} \neq z_{2}$ since $\left(z_{1}, z_{2}\right) \in E(D)$. This implies $z_{1} \in \mathcal{G}\left(J^{\prime}\right)$. So, $z_{1} z_{2}^{w\left(z_{2}\right)} \in J^{\prime}$. Hence, $I(D) \subseteq J^{\prime}$. This is a contradiction, since J is minimal. Therefore C is strong.

Theorem 4.25 If \mathcal{C}_{s} is the set of strong vertex covers of D, then the irredundant irreducible decomposition of $I(D)$ is given by $I(D)=\bigcap_{C \in \mathcal{C}_{s}} I_{C}$.

Proof. By [12, Theorem 1.3.1], there is a unique irredundant irreducible decomposition $I(D)=\bigcap_{i=1}^{m} I_{i}$. If there is an irreducible ideal I_{j}^{\prime} such that $I(D) \subseteq I_{j}^{\prime} \subseteq I_{j}$ for some $j \in\{1, \ldots, m\}$, then $I(D)=\left(\bigcap_{i \neq j} I_{i}\right) \cap I_{j}^{\prime}$ is an irreducible decomposition. Furthermore this decomposition is irredundant. Thus, $I_{j}^{\prime}=I_{j}$. Hence, I_{1}, \ldots, I_{m} are minimal irreducible ideals of $I(D)$. Now, if there is $C \in \mathcal{C}_{s}$ such that $I_{C} \notin\left\{I_{1}, \ldots, I_{m}\right\}$, then there is $x_{j_{i}}^{\alpha_{i}} \in I_{i} \backslash I_{C}$ for each $i \in\{1, \ldots, m\}$. Consequently, $m=\operatorname{lcm}\left(x_{j_{1}}^{\alpha_{1}}, \ldots, x_{j_{m}}^{\alpha_{m}}\right) \in \bigcap_{i=1}^{m} I_{i}=I(D) \subseteq I_{C}$. Furthermore, if $C=\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\}$, then $I_{C}=\left(x_{i_{1}}^{\beta_{1}}, \ldots, x_{i_{k}}^{\beta_{k}}\right)$ where $\beta_{j} \in\left\{1, w\left(x_{i_{j}}\right)\right\}$. Hence, there is $j \in\{1, \ldots, k\}$ such that $x_{i_{j}}^{\beta_{j}} \mid m$. So, there is $1 \leq u \leq m$ such that $x_{i_{j}}^{\beta_{j}} \mid x_{j_{u}}^{\alpha_{u}}$. A contradiction, since $x_{j_{u}}^{\alpha_{u}} \notin I_{C}$. Therefore $I(D)=\bigcap_{C \in \mathcal{C}_{s}} I_{C}$ is the irredundant irreducible decomposition of $I(D)$.

Remark 4.26 If C_{1}, \ldots, C_{s} are the strong vertex covers of D, then by Theorem 4.25, $I_{C_{1}} \cap \cdots \cap I_{C_{s}}$ is the irredundant irreducible decomposition of $I(D)$. Furthermore, if $P_{i}=\operatorname{rad}\left(I_{C_{i}}\right)$, then $P_{i}=\left(C_{i}\right)$. So, $P_{i} \neq P_{j}$ for $1 \leq i<j \leq s$. Thus, $I_{C_{1}} \cap$ $\cdots \cap I_{C_{s}}$ is an irredundant primary decomposition of $I(D)$. In particular we have $\operatorname{Ass}(I(D))=\left\{P_{1}, \ldots, P_{s}\right\}$.

Example 4.27 Let D be the following oriented weighted graph whose edge ideal is $I(D)=\left(x_{1}^{3} x_{2}, x_{2}^{4} x_{3}, x_{3}^{5} x_{4}, x_{3} x_{5}^{2}, x_{4}^{2} x_{5}\right)$.

From Theorem 4.24 and Theorem 4.25, the irreducible decomposition of $I(D)$ is:

$$
\begin{aligned}
& I(D)=\left(x_{1}^{3}, x_{3}, x_{4}^{2}\right) \cap\left(x_{1}^{3}, x_{3}, x_{5}\right) \cap\left(x_{2}, x_{3}, x_{4}^{2}\right) \cap\left(x_{2}, x_{3}^{5}, x_{5}\right) \cap\left(x_{2}, x_{4}, x_{5}^{2}\right) \cap \\
& \left(x_{1}^{3}, x_{2}^{4}, x_{3}^{5}, x_{5}\right) \cap\left(x_{1}^{3}, x_{2}^{4}, x_{4}, x_{5}^{2}\right) \cap\left(x_{2}, x_{3}^{5}, x_{4}^{2}, x_{5}^{2}\right) \cap\left(x_{1}^{3}, x_{2}^{4}, x_{3}^{5}, x_{4}^{2}, x_{5}^{2}\right) .
\end{aligned}
$$

Example 4.28 Let D be the following oriented weighted graph

Hence, $I(D)=\left(x_{1} x_{2}^{2}, x_{2} x_{3}^{5}, x_{3} x_{4}^{7}\right)$. By Theorem 4.24 and Theorem 4.25, the irreducible decomposition of $I(D)$ is:

$$
I(D)=\left(x_{1}, x_{3}\right) \cap\left(x_{2}^{2}, x_{3}\right) \cap\left(x_{2}, x_{4}^{7}\right) \cap\left(x_{1}, x_{3}^{5}, x_{4}^{7}\right) \cap\left(x_{2}^{2}, x_{3}^{5}, x_{4}^{7}\right)
$$

In Example 4.27 and Example $4.28, I(D)$ has embedding primes. Furthermore the monomial ideal $(V(D))$ is an associated prime of $I(D)$ in Example 4.27. Proposition 4.14 and Remark 4.26 give a combinatorial criterion for to decide when $(V(D)) \in \operatorname{Ass}(I(D))$.

4.4 UNMIXED WEIGHTED ORIENTED GRAPHS

Let $D=(V, E, w)$ be a weighted oriented graph whose underlying graph is $G=$ (V, E). In this section we characterize the unmixed property of $I(D)$ and we prove that this property is closed under c-minors. In particular if G is a bipartite graph or G is a whisker or G is a cycle, we give an effective (combinatorial) characterization of this property.

Definition 4.29 An ideal I is unmixed if each one of its associated primes has the same height.

Theorem 4.30 The following conditions are equivalent:

1) $I(D)$ is unmixed.
2) Each strong vertex cover of D has the same cardinality.
3) $I(G)$ is unmixed and $L_{3}(C)=\varnothing$ for each strong vertex cover C of D.

Proof. Let C_{1}, \ldots, C_{ℓ} be the strong vertex covers of D. By Remark 4.26, the associated primes of $I(D)$ are P_{1}, \ldots, P_{ℓ}, where $P_{i}=\operatorname{rad}\left(I_{C_{i}}\right)=\left(C_{i}\right)$ for $1 \leq i \leq \ell$.
$1) \Rightarrow$ 2) Since $I(D)$ is unmixed, $\left|C_{i}\right|=\operatorname{ht}\left(P_{i}\right)=\operatorname{ht}\left(P_{j}\right)=\left|C_{j}\right|$ for $1 \leq i<j \leq \ell$.
2) $\Rightarrow 3$) If C is a minimal vertex cover, then by Corollary 4.8, $C \in\left\{C_{1}, \ldots, C_{\ell}\right\}$. By hypothesis, $\left|C_{i}\right|=\left|C_{j}\right|$ for each $1 \leq i \leq j \leq \ell$, then C_{i} is a minimal vertex cover of D. Thus, by Lemma 4.5, $L_{3}\left(C_{i}\right)=\varnothing$. Furthermore $I(G)$ is unmixed, since C_{1}, \ldots, C_{ℓ} are the minimal vertex covers of G.
3) $\Rightarrow 1$) By Proposition 4.5, C_{i} is a minimal vertex cover, since $L_{3}\left(C_{i}\right)=\varnothing$ for each $1 \leq i \leq \ell$. This implies C_{1}, \ldots, C_{ℓ} are the minimal vertex covers of G. Since G is unmixed, we have $\left|C_{i}\right|=\left|C_{j}\right|$ for $1 \leq i<j \leq \ell$. Therefore $I(D)$ is unmixed.

Definition 4.31 A weighted oriented graph D has the minimal-strong property if each strong vertex cover is a minimal vertex cover.

Remark 4.32 Using Proposition 4.5, we have that D has the minimal-strong property if and only if $L_{3}(C)=\varnothing$ for each strong vertex cover C of D.

Definition $4.33 D^{\prime}$ is a c-minor of D if there is a stable set S of D, such that $D^{\prime}=$ $D \backslash N_{G}[S]$.

Lemma 4.34 If D has the minimal-strong property, then $D^{\prime}=D \backslash N_{G}[x]$ has the minimal-strong property, for each $x \in V$.

Proof. We take a strong vertex cover C^{\prime} of $D^{\prime}=D \backslash N_{G}[x]$ where $x \in V$. Thus, $C=C^{\prime} \cup N_{D}(x)$ is a vertex cover of D. If $y^{\prime} \in L_{3}\left(C^{\prime}\right)$, then by Proposition 4.4, $N_{D^{\prime}}\left(y^{\prime}\right) \subseteq C^{\prime}$. Consequently, $N_{D}\left(y^{\prime}\right) \subseteq C^{\prime} \cup N_{D}(x)=C$ implying $y^{\prime} \in L_{3}(C)$. Hence, $L_{3}\left(C^{\prime}\right) \subseteq L_{3}(C)$. Now, we take $y \in L_{3}(C)$, then $N_{D}(y) \subseteq C$. This implies $y \notin N_{D}(x)$, since $x \notin C$. Then, $y \in C^{\prime}$ and $N_{D^{\prime}}(y) \cup\left(N_{D}(y) \cap N_{D}(x)\right)=$ $N_{D}(y) \subseteq C=C^{\prime} \cup N_{D}(x)$. So, $N_{D^{\prime}}(y) \subseteq C^{\prime}$ implies $y \in L_{3}\left(C^{\prime}\right)$. Therefore $L_{3}(C)=L_{3}\left(C^{\prime}\right)$.

Now, if $y \in L_{3}(C)=L_{3}\left(C^{\prime}\right)$, then there is $z \in C^{\prime} \backslash L_{1}\left(C^{\prime}\right)$ with $w(z) \neq 1$, such that $(z, y) \in E\left(D^{\prime}\right)$. If $z \in L_{1}(C)$, then there exist $z^{\prime} \notin C$ such that $\left(z, z^{\prime}\right) \in E(D)$. Since $z^{\prime} \notin C$, we have $z^{\prime} \notin C^{\prime}$, then $z \in L_{1}\left(C^{\prime}\right)$. A contradiction, consequently $z \notin L_{1}(C)$. Hence, C is strong. This implies $L_{3}(C)=\varnothing$, since D has the minimalstrong property. Thus, $L_{3}\left(C^{\prime}\right)=L_{3}(C)=\varnothing$. Therefore D^{\prime} has the minimal-strong property.

Proposition 4.35 If D is unmixed and $x \in V$, then $D^{\prime}=D \backslash N_{G}[x]$ is unmixed.
Proof. By Theorem 4.30, G is unmixed and D has the minimal-strong property. Hence, by [28], $G^{\prime}=G \backslash N_{G}[x]$ is unmixed. Also, by Lemma 4.34 we have that D^{\prime} has the minimal-strong property. Therefore, by Theorem 4.30, D^{\prime} is unmixed.

Theorem 4.36 If D is unmixed, then a c-minor of D is unmixed.
Proof. If D^{\prime} is a c-minor of D, then there is a stable set $S=\left\{a_{1}, \ldots, a_{s}\right\}$ such that $D^{\prime}=D \backslash N_{G}[S]$. Since S is a stable set, $D^{\prime}=\left(\cdots\left(\left(D \backslash N_{G}\left[a_{1}\right]\right) \backslash N_{G}\left[a_{2}\right]\right) \backslash \cdots\right) \backslash$ $N_{G}\left[a_{s}\right]$. Hence, by induction and Proposition 4.35, D^{\prime} is unmixed.

Proposition 4.37 If $V(D)$ is a strong vertex cover of D, then $I(D)$ is mixed.
Proof. By Proposition $4.4 V(D)$ is not minimal, since $L_{3}(V(D))=V(D)$. Therefore, by Theorem 4.30, $I(D)$ is mixed.

Remark 4.38 If $V^{+}=V$, then $I(D)$ is mixed.
Proof. If $x_{i} \in V$, then by Remark $4.17 N_{D}^{-}\left(x_{i}\right) \neq \varnothing$, since $V=V^{+}$. Thus, there is $x_{j} \in V$ such that $\left(x_{j}, x_{i}\right) \in E(D)$. Also, $w\left(x_{j}\right) \neq 1$ and $x_{j} \in V=L_{3}(V)$. So, V is a strong vertex cover. Hence, by Proposition 4.37, $I(D)$ is mixed.

In the following three results we assume that D_{1}, \ldots, D_{r} are the connected components of D. Furthermore G_{i} is the underlying graph of D_{i}.

Lemma 4.39 Let C be a vertex cover of D, then $L_{1}(C)=\bigcup_{i=1}^{r} L_{1}\left(C_{i}\right)$ and $L_{3}(C)=$ $\bigcup_{i=1}^{r} L_{3}\left(C_{i}\right)$, where $C_{i}=C \cap V\left(D_{i}\right)$.

Proof. We take $x \in C$, then $x \in C_{j}$ for some $1 \leq j \leq r$. Thus, $N_{D}(x)=N_{D_{j}}(x)$. In particular $N_{D}^{+}(x)=N_{D_{j}}^{+}(x)$, so $C \cap N_{D}^{+}(x)=C_{j} \cap N_{D_{j}}^{+}(x)$. Hence, $L_{1}(C)=$ $\bigcup_{i=1}^{r} L_{1}\left(C_{i}\right)$. On the other hand,

$$
x \in L_{3}(C) \Leftrightarrow N_{D}(x) \subseteq C \Leftrightarrow N_{D_{j}}(x) \subseteq C_{j} \Leftrightarrow x \in L_{3}\left(C_{j}\right) .
$$

Therefore, $L_{3}(C)=\bigcup_{i=1}^{r} L_{3}\left(C_{i}\right)$.

Lemma 4.40 Let C be a vertex cover of D, then C is strong if and only if each $C_{i}=C \cap V\left(D_{i}\right)$ is strong with $i \in\{1, \ldots, r\}$.

Proof. \Rightarrow) We take $x \in L_{3}\left(C_{j}\right)$. By Lemma 4.39, $x \in L_{3}(C)$ and there is $z \in$ $N_{D}^{-}(x) \cap V^{+}$with $z \in C \backslash L_{1}(C)$, since C is strong. So, $z \in N_{D_{j}}^{-}(x)$ and $z \in V\left(D_{j}\right)$, since $x \in D_{j}$. Consequently, by Lemma 4.39, $z \in C_{j} \backslash L_{1}\left(C_{j}\right)$. Therefore C_{j} is strong.
$\Leftarrow)$ We take $x \in L_{3}(C)$, then $x \in C_{i}$ for some $1 \leq i \leq r$. Then, by Lemma 4.39, $x \in L_{3}\left(C_{i}\right)$. Thus, there is $a \in N_{D_{i}}^{-}(x)$ such that $w(a) \neq 1$ and $a \in C_{i} \backslash L_{1}\left(C_{i}\right)$, since C_{i} is strong. Hence, by Lemma $4.39, a \in C \backslash L_{1}(C)$. Therefore C is strong.

Corollary 4.41 $I(D)$ is unmixed if and only if $I\left(D_{i}\right)$ is unmixed for each $1 \leq i \leq r$.
Proof. $\Rightarrow)$ By Theorem 4.36, since D_{i} is a c-minor of D.
$\Leftarrow)$ By Theorem 4.30, G_{i} is unmixed thus G is unmixed. Now, if C is a strong vertex cover, then by Lemma 4.39, $C_{i}=C \cap V\left(D_{i}\right)$ is a strong vertex cover. Consequently, $L_{3}\left(C_{i}\right)=\varnothing$, since $\bar{I}\left(D_{i}\right)$ is unmixed. Hence, by Lemma 4.39, $L_{3}(C)=$ $\bigcup_{i=1}^{r} L_{3}\left(C_{i}\right)=\varnothing$. Therefore, by Theorem $4.30, I(D)$ is unmixed.

Definition 4.42 Let G be a simple graph whose vertex set is $V(G)=\left\{x_{1}, \ldots, x_{n}\right\}$ and edge set $E(G)$. A whisker of G is a graph H whose vertex set is $V(H)=$ $V(G) \cup\left\{y_{1}, \ldots, y_{n}\right\}$ and whose edge set is $E(H)=E(G) \cup\left\{\left\{x_{1}, y_{1}\right\}, \ldots,\left\{x_{n}, y_{n}\right\}\right\}$.

Definition 4.43 Let D and H be weighted oriented graphs. H is a weighted oriented whisker of D if $D \subseteq H$ and the underlying graph of H is a whisker of the underlying graph of D.

Theorem 4.44 Let H a weighted oriented whisker of D, where $V(D)=\left\{x_{1}, \ldots, x_{n}\right\}$ and $V(H)=V(D) \cup\left\{y_{1}, \ldots, y_{n}\right\}$, then the following conditions are equivalents:

1) $I(H)$ is unmixed.
2) If $\left(x_{i}, y_{i}\right) \in E(H)$ for some $1 \leq i \leq n$, then $w\left(x_{i}\right)=1$.

Proof. 2) $\Rightarrow 1$) We take a strong vertex cover C of H. Suppose $x_{j}, y_{j} \in C$, then $y_{j} \in L_{3}(C)$, since $N_{D}\left(y_{j}\right)=\left\{x_{j}\right\} \subseteq C$. Consequently, $\left(x_{j}, y_{j}\right) \in E(G)$ and $w\left(x_{j}\right) \neq$ 1 , since C is strong. This is a contradiction by condition 2). This implies, $\mid C \cap$ $\left\{x_{i}, y_{i}\right\} \mid=1$ for each $1 \leq i \leq n$. So, $|C|=n$. Therefore, by Theorem 4.30, $I(H)$ is unmixed.
$1) \Rightarrow 2$) By contradiction suppose $\left(x_{i}, y_{i}\right) \in E(H)$ and $w\left(x_{i}\right) \neq 1$ for some i. Since $w\left(x_{i}\right) \neq 1$ and by Remark 4.17, we have that x_{i} is not a source. Thus, there is $x_{j} \in V(D)$, such that $\left(x_{j}, x_{i}\right) \in E(H)$. We take the vertex cover $C=\left\{V(D) \backslash x_{j}\right\} \cup$ $\left\{y_{j}, y_{i}\right\}$, then by Proposition 4.4. $L_{3}(C)=\left\{y_{i}\right\}$. Furthermore $N_{D}\left(x_{i}\right) \backslash C=\left\{x_{j}\right\}$ and $\left(x_{j}, x_{i}\right) \in E(H)$, then $x_{i} \in L_{2}(C)$. Hence C is strong, since $L_{3}(C)=\left\{y_{i}\right\}$, $\left(x_{i}, y_{i}\right) \in E(G)$ and $w\left(x_{i}\right) \neq 1$. A contradiction by Theorem 4.30. since $I(H)$ is unmixed.

Theorem 4.45 Let D be a bipartite weighted oriented graph, then $I(D)$ is unmixed if and only if

1) G has a perfect matching $\left\{\left\{x_{1}^{1}, x_{1}^{2}\right\}, \ldots,\left\{x_{s}^{1}, x_{s}^{2}\right\}\right\}$ where $\left\{x_{1}^{1}, \ldots, x_{s}^{1}\right\}$ and $\left\{x_{1}^{2}, \ldots\right.$, $\left.x_{s}^{2}\right\}$ are stable sets. Furthermore if $\left\{x_{j}^{1}, x_{i}^{2}\right\},\left\{x_{i}^{1}, x_{k}^{2}\right\} \in E(G)$ then $\left\{x_{j}^{1}, x_{k}^{2}\right\} \in$ $E(G)$.
2) If $w\left(x_{j}^{k}\right) \neq 1$ and $N_{D}^{+}\left(x_{j}^{k}\right)=\left\{x_{i_{1}}^{k^{\prime}}, \ldots, x_{i_{r}}^{k^{\prime}}\right\}$ where $\left\{k, k^{\prime}\right\}=\{1,2\}$, then $N_{D}\left(x_{i_{\ell}}^{k}\right) \subseteq$ $N_{D}^{+}\left(x_{j}^{k}\right)$ and $N_{D}^{-}\left(x_{i_{\ell}}^{k}\right) \cap V^{+}=\varnothing$ for each $1 \leq \ell \leq r$.

Proof. $\Leftarrow)$ By 1) and [10, Theorem 2.5.7], G is unmixed. We take a strong vertex cover C of D. Suppose $L_{3}(C) \neq \varnothing$, thus there exist $x_{i}^{k} \in L_{3}(C)$. Since C is strong, there is $x_{j}^{k^{\prime}} \in V^{+}$such that $\left(x_{j}^{k^{\prime}}, x_{i}^{k}\right) \in E(D), x_{j}^{k^{\prime}} \in C \backslash L_{1}(C)$ and $\left\{k, k^{\prime}\right\}=\{1,2\}$. Furthermore $N_{D}^{+}\left(x_{j}^{k^{\prime}}\right) \subseteq C$, since $x_{j}^{k^{\prime}} \notin L_{1}(C)$. Consequently, by 3$), N_{D}\left(x_{i}^{k^{\prime}}\right) \subseteq$ $N_{D}^{+}\left(x_{j}^{k^{\prime}}\right) \subseteq C$ and $N_{D}^{-}\left(x_{i}^{k^{\prime}}\right) \cap V^{+}=\varnothing$. A contradiction, since $x_{i}^{k^{\prime}} \in L_{3}(C)$ and C is strong. Hence, $L_{3}(C)=\varnothing$ and D has the strong-minimal property. Therefore $I(D)$ is unmixed, by Theorem 4.30 .
$\Rightarrow)$ By Theorem 4.30, G is unmixed. Hence, by [10, Theorem 2.5.7], G satisfies 1). If $w\left(x_{j}^{k}\right) \neq 1$, then we take $C=N_{D}^{+}\left(x_{j}^{k}\right) \cup\left\{x_{i}^{k} \mid N_{D}\left(x_{i}^{k}\right) \nsubseteq N_{D}^{+}\left(x_{j}^{k}\right)\right\}$ and k^{\prime} such that $\left\{k, k^{\prime}\right\}=\{1,2\}$. If $\left\{x_{i}^{k}, x_{i^{\prime}}^{k^{\prime}}\right\} \in E(G)$ and $x_{i}^{k} \notin C$, then $x_{i^{\prime}}^{k^{\prime}} \in N_{D}\left(x_{i}^{k}\right) \subseteq N_{D}^{+}\left(x_{j}^{k}\right) \subseteq C$. This implies, C is a vertex cover of D. Now, if $x_{i_{1}}^{k} \in L_{3}(C)$, then $N_{D}\left(x_{i_{1}}^{k}\right) \subseteq C$. Consequently $N_{D}\left(x_{i_{1}}^{k}\right) \subseteq N_{D}^{+}\left(x_{j}^{k}\right)$ implies $x_{i_{1}}^{k} \notin C$. A contradiction, then $L_{3}(C) \subseteq$ $N_{D}^{+}\left(x_{j}^{k}\right)$. Also, $N_{G}^{-}\left(x_{j}^{k}\right) \neq \varnothing$, since $w\left(x_{j}^{k}\right) \neq 1$. So $x_{j}^{k} \in L_{2}(C)$, since $N_{G}^{-}\left(x_{j}^{k}\right) \cap$ $C=\varnothing$. Hence C is strong, since $L_{3}(C) \subseteq N_{D}^{+}\left(x_{j}^{k}\right)$ and $x_{j}^{k} \in V^{+}$. Furthermore
$\left\{x_{1}^{\prime}, \ldots, x_{s}^{\prime}\right\}$ is a minimal vertex cover, then by Theorem $4.30|C|=s$, since D is unmixed. We assume $N_{D}^{+}\left(x_{j}^{k}\right)=\left\{x_{i_{1}}^{k^{\prime}} \ldots x_{i_{r}}^{k^{\prime}}\right\}$. Since C is minimal, $x_{i_{\ell}}^{k} \notin C$ for each $1 \leq \ell \leq r$. Thus, $N_{D}\left(x_{i_{\ell}}^{k}\right) \subseteq N_{D}^{+}\left(x_{j}^{k}\right)$. Now, suppose $z \in N_{D}^{-}\left(x_{i_{\ell}}^{k}\right) \cap V^{+}$, then $z=x_{i_{\ell^{\prime}}}^{k^{\prime}}$ for some $1 \leq \ell^{\prime} \leq r$, since $N_{D}\left(x_{i_{\ell}}^{k}\right) \subseteq N_{D}^{+}\left(x_{j}^{k}\right)$. We take $C^{\prime}=N_{D}^{+}\left(x_{j}^{k}\right) \cup\left\{x_{i}^{k} \mid i \notin\right.$ $\left.\left\{i_{1}, \ldots, i_{r}\right\}\right\} \cup N_{D}^{+}\left(x_{i_{\ell^{\prime}}}^{k^{\prime}}\right)$. Since $N_{D}\left(x_{i_{u}}^{k}\right) \subseteq N_{D}^{+}\left(x_{j}^{k}\right)$ for each $1 \leq u \leq r$, we have that C^{\prime} is a vertex cover. If $\left\{x_{q}^{k}, x_{q}^{k^{\prime}}\right\} \cap L_{3}(C) \neq \varnothing$, then $\left\{x_{q}^{k}, x_{q}^{k^{\prime}}\right\} \subseteq C^{\prime}$. So, $x_{q}^{k^{\prime}} \in N_{D}^{+}\left(x_{j}^{k}\right)$ implies $q \in\left\{i_{1}, \ldots, i_{r}\right\}$. Consequently, $x_{q}^{k} \in N_{D}^{+}\left(x_{i_{\ell^{\prime}}}^{k^{\prime}}\right)$, since $x_{q}^{k} \in C^{\prime}$. This implies, $\left(x_{j}^{k}, x_{q}^{k^{\prime}}\right),\left(x_{i_{\ell^{\prime}}}^{k^{\prime}}, x_{q}^{k}\right) \in E(D)$. Also, $N_{D}^{+}\left(x_{i_{\ell^{\prime}}}^{k^{\prime}}\right) \cup N_{D}^{+}\left(x_{j}^{k}\right) \subseteq C^{\prime}$, then $x_{i_{\ell^{\prime}}}^{k^{\prime}} \notin L_{1}\left(C^{\prime}\right)$ and $x_{j}^{k} \notin L_{1}\left(C^{\prime}\right)$. Thus, C^{\prime} is strong, since $x_{j}^{k}, x_{i_{\ell^{\prime}}}^{k^{\prime}} \in V^{+}$. Furthermore, by Theorem 4.30, $\left|C^{\prime}\right|=s$. But $x_{i_{\ell}}^{k^{\prime}} \in N_{D}^{+}\left(x_{j}^{k}\right)$ and $x_{i_{\ell}}^{k} \in N_{D}^{+}\left(x_{i_{\ell^{\prime}}}^{k^{\prime}}\right)$, hence $x_{i_{\ell}}^{k^{\prime}} x_{i_{\ell}}^{k} \in C^{\prime}$. A contradiction, so $N_{D}^{-}\left(x_{i_{\ell}}^{k}\right) \cap V^{+}=\varnothing$. Therefore D satisfies 2).

Lemma 4.46 If the vertices of V^{+}are sinks, then D has the minimal-strong property.

Proof. We take a strong vertex cover C of D. Hence, if $y \in L_{3}(C)$, then there is $(z, y) \in E(D)$ with $z \in V^{+}$. Consequently, by hypothesis, z is a sink. A contradiction, since $(z, y) \in E(D)$. Therefore, $L_{3}(C)=\varnothing$ and C is a minimal vertex cover.

Lemma 4.47 Let D be a weighted oriented graph, where $G \simeq C_{n}$ with $n \geq 6$. Hence, D has the minimal-strong property if and only if the vertices of V^{+}are sinks.

Proof. $\Leftarrow)$ By Lemma 4.46 .
$\Rightarrow)$ By contradiction, suppose there is $(z, y) \in E(D)$, with $z \in V^{+}$. We can assume $G=\left(x_{1}, x_{2}, \ldots, x_{n}, x_{1}\right) \simeq C_{n}$, with $x_{2}=y$ and $x_{3}=z$. We take a strong vertex cover C in the following form: $C=\left\{x_{1}, x_{3}, \ldots, x_{n-1}\right\} \cup\left\{x_{2}\right\}$ if n is even or $C=$ $\left\{x_{1}, x_{3}, \ldots, x_{n-2}\right\} \cup\left\{x_{2}, x_{n-1}\right\}$ if n is odd. Consequently, if $x \in C$ and $N_{D}(x) \subseteq C$, then $x=x_{2}$. Hence, $L_{3}(C)=\left\{x_{2}\right\}$. Furthermore $\left(x_{3}, x_{2}\right) \in E(D)$ with $x_{3} \in V^{+}$. Thus, x_{3} is not a source, so, $\left(x_{4}, x_{3}\right) \in E(D)$. Then, $x_{3} \in L_{2}(C)$. This implies C is a strong vertex cover. But $L_{3}(C) \neq \varnothing$. A contradiction, since D has the minimalstrong property.

Theorem 4.48 If $G \simeq C_{n}$, then $I(D)$ is unmixed if and only if one of the following conditions hold:

1) $n=3$ and there is $x \in V(D)$ such that $w(x)=1$.
2) $n \in\{4,5,7\}$ and the vertices of V^{+}are sinks.
3) $n=5$, there is $(x, y) \in E(D)$ with $w(x)=w(y)=1$ and $D \not \approx D_{1}, D \not 千 D_{2}, D \not 千 D_{3}$.
4) $D \simeq D_{4}$.

Proof. \Rightarrow) By Theorem 4.30, D has the minimal- strong property and G is unmixed. Then, by [10, Exercise 2.4.22], $n \in\{3,4,5,7\}$. If $n=3$, then by Remark 4.38, D satisfies 1). If $n=7$, then by Lemma 4.47, D satisfies 2). Now suppose $n=4$ and D does not satisfies 2), then we can assume $x_{1} \in V^{+}$and $\left(x_{1}, x_{2}\right) \in E(D)$. Consequently, $\left(x_{4}, x_{1}\right) \in E(G)$, since $w\left(x_{1}\right) \neq 1$. Furthermore, $\mathcal{C}=\left\{x_{1}, x_{2}, x_{3}\right\}$ is a vertex cover with $L_{3}(\mathcal{C})=\left\{x_{2}\right\}$. Thus, $x_{1} \in L_{2}(\mathcal{C})$ and $\left(x_{1}, x_{2}\right) \in E(D)$ so \mathcal{C} is strong. A contradiction, since \mathcal{C} is not minimal. This implies D satisfies 2). Finally suppose $n=5$. If $D \simeq D_{1}$, then $\mathcal{C}_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\}$ is a vertex cover with $L_{3}\left(\mathcal{C}_{1}\right)=\left\{x_{1}, x_{2}\right\}$. Also $\left(x_{5}, x_{1}\right),\left(x_{3}, x_{2}\right) \in E(D)$ with $x_{5}, x_{3} \in V^{+}$. Consequently, \mathcal{C}_{1} is strong, since $x_{5}, x_{3} \in L_{2}\left(\mathcal{C}_{1}\right)$. A contradiction, since \mathcal{C}_{1} is not minimal. If $D \simeq D_{2}$, then $\mathcal{C}_{2}=\left\{x_{1}, x_{2}, x_{4}, x_{5}\right\}$ is a vertex cover where $L_{3}\left(\mathcal{C}_{2}\right)=\left\{x_{1}, x_{5}\right\}$ and $\left(x_{2}, x_{1}\right),\left(x_{1}, x_{5}\right) \in E(D)$ with $x_{2}, x_{1} \in V^{+}$. Hence, \mathcal{C}_{2} is strong, since $x_{2}, x_{1} \notin$ $L_{1}\left(\mathcal{C}_{2}\right)$. A contradiction, since \mathcal{C}_{2} is not minimal. If $D \simeq D_{3}, \mathcal{C}_{3}=\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$ is a vertex cover where $L_{3}\left(\mathcal{C}_{3}\right)=\left\{x_{3}, x_{4}\right\}$ and $\left(x_{4}, x_{3}\right),\left(x_{5}, x_{4}\right) \in E(D)$ with $x_{4}, x_{5} \in$ V^{+}. Thus, \mathcal{C}_{3} is strong, since $x_{4}, x_{5} \notin L_{1}\left(\mathcal{C}_{3}\right)$. A contradiction, since \mathcal{C}_{3} is not minimal. Now, since $n=5$ and by 3) we can assume $\left(x_{2}, x_{3}\right) \in E(D), x_{2}, x_{3} \in V^{+}$ and there are not two adjacent vertices with weight 1 . Since $x_{2} \in V^{+},\left(x_{1}, x_{2}\right) \in$ $E(D)$. Suppose there are not 3 vertices z_{1}, z_{2}, z_{3} in V^{+}such that $\left(z_{1}, z_{2}, z_{3}\right)$ is a path in G, then $w\left(x_{4}\right)=w\left(x_{1}\right)=1$. Furthermore, $w\left(x_{5}\right) \neq 1$, since there are not adjacent vertices with weight 1 . So, $\mathcal{C}_{4}=\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$ is a vertex cover of D, where $L_{3}\left(\mathcal{C}_{4}\right)=\left\{x_{3}, x_{4}\right\}$. Also $\left(x_{2}, x_{3}\right) \in E(G)$ with $w\left(x_{2}\right) \neq 1$. Hence, if $\left(x_{3}, x_{4}\right) \in E(D)$ or $\left(x_{5}, x_{4}\right) \in E(D)$, then \mathcal{C}_{4} is strong, since $x_{3}, x_{5} \in V^{+}$. But \mathcal{C}_{4} is not minimal. Consequently, $\left(x_{4}, x_{3}\right),\left(x_{4}, x_{5}\right) \in E(D)$ and $D \simeq D_{4}$. Now, we can
assume there is a path $\left(z_{1}, z_{2}, z_{3}\right)$ in D such that $z_{1}, z_{2}, z_{3} \in V^{+}$. Since there are not adjacent vertices with weight 1 , we can suppose there is $z_{4} \in V^{+}$such that $\mathcal{L}=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is a path. We take $\left\{z_{5}\right\}=V(D) \backslash V((L))$ and we can assume $\left(z_{2}, z_{3}\right) \in E(D)$. This implies, $\left(z_{1}, z_{2}\right),\left(z_{5}, z_{1}\right) \in E(D)$, since $z_{1}, z_{2} \in V^{+}$. Thus, $\mathcal{C}_{5}=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$ is a vertex cover with $L_{3}\left(\mathcal{C}_{5}\right)=\left\{z_{2}, z_{3}\right\}$. Then \mathcal{C}_{5} is strong, since $\left(z_{1}, z_{2}\right),\left(z_{2}, z_{3}\right) \in E(D)$ with $z_{2} \in L_{3}\left(\mathcal{C}_{5}\right)$ and $z_{1} \in L_{2}\left(\mathcal{C}_{5}\right)$. A contradiction, since \mathcal{C}_{5} is not minimal.
$\Leftarrow)$ If $n \in\{3,4,5,7\}$, then by [10, Exercise 2.4.22] G is unmixed. By Theorem 4.30 , we will only prove that D has the minimal-strong property. If D satisfies 2), then by Lemma 4.46, D has the minimal-strong property. If D satisfies 1) and \mathcal{C} is a strong vertex cover, then by Proposition $4.14,|\mathcal{C}| \leq 2$. This implies \mathcal{C} is minimal. Now, suppose $n=5$ and \mathcal{C}^{\prime} is a strong vertex cover of D with $\left|\mathcal{C}^{\prime}\right| \geq 4$. If $D \simeq D_{4}$, then $x_{2}, x_{5} \notin L_{3}\left(\mathcal{C}^{\prime}\right)$, since $\left(N_{D}^{-}\left(x_{2}\right) \cup N_{D}^{-}\left(x_{5}\right)\right) \cap V^{+}=\varnothing$. So $N_{D}\left(x_{2}\right) \nsubseteq \mathcal{C}^{\prime}$ and $N_{D}\left(x_{5}\right) \nsubseteq \mathcal{C}^{\prime}$. Consequently, $x_{1} \notin \mathcal{C}^{\prime}$ implies $\mathcal{C}^{\prime}=\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$. But $x_{4} \in L_{3}\left(\mathcal{C}^{\prime}\right)$ and $N_{D}^{-}\left(x_{4}\right)=\varnothing$. A contradiction, since \mathcal{C}^{\prime} is strong. Now assume D satisfies 3). Suppose there is a path $\mathcal{L}=\left(x_{1}, x_{2}, x_{3}\right)$ in G such that $w\left(x_{1}\right)=w\left(x_{2}\right)=w\left(x_{3}\right)=1$. We can suppose $\left(x_{4}, x_{5}\right) \in E(D)$ where $V(D) \backslash V(\mathcal{L})=\left\{x_{4}, x_{5}\right\}$. Since $w\left(x_{1}\right)=$ $w\left(x_{3}\right)=1, x_{2} \notin L_{3}\left(\mathcal{C}^{\prime}\right)$. If $x_{2} \notin \mathcal{C}^{\prime}$, then $\mathcal{C}^{\prime}=\left\{x_{1}, x_{3}, x_{4}, x_{5}\right\}$ and $x_{4} \in L_{3}\left(\mathcal{C}^{\prime}\right)$. But $N_{D}^{-}\left(x_{4}\right)=\left\{x_{3}\right\}$ and $w\left(x_{3}\right)=1$. A contradiction, hence $x_{2} \in \mathcal{C}^{\prime}$. We can assume $x_{3} \notin \mathcal{C}^{\prime}$, since $x_{2} \notin L_{3}\left(\mathcal{C}^{\prime}\right)$. This implies $\mathcal{C}^{\prime}=\left\{x_{1}, x_{2}, x_{4}, x_{5}\right\}$ and $L_{3}\left(\mathcal{C}^{\prime}\right)=\left\{x_{1}, x_{5}\right\}$. Thus, $\left(x_{5}, x_{1}\right) \in E(D)$ and $x_{5}, x_{4} \in V^{+}$. Consequently $\left(x_{3}, x_{4}\right) \in E(D)$, since $x_{4} \in$ V^{+}. A contradiction, since $D \nsim D_{2}$. Hence, there are not three consecutive vertices whose weights are 1 . Consequently, since D satisfies 3), we can assume $w\left(x_{1}\right)=$ $w\left(x_{2}\right)=1, w\left(x_{3}\right) \neq 1$ and $w\left(x_{5}\right) \neq 1$. If $w\left(x_{4}\right)=1$, then $x_{3}, x_{5} \notin L_{3}\left(\mathcal{C}^{\prime}\right)$ since $N_{D}\left(x_{3}, x_{5}\right) \cap V^{+}=\varnothing$. This implies $N_{D}\left(x_{3}\right) \nsubseteq \mathcal{C}^{\prime}$ and $N_{D}\left(x_{5}\right) \nsubseteq \mathcal{C}^{\prime}$. Then, $x_{4} \notin \mathcal{C}^{\prime}$ and $\mathcal{C}^{\prime}=\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\}$. Thus, $\left(x_{5}, x_{1}\right),\left(x_{3}, x_{2}\right) \in E(D)$, since $L_{3}\left(\mathcal{C}^{\prime}\right)=\left\{x_{1}, x_{2}\right\}$. Consequently, $\left(x_{4}, x_{5}\right),\left(x_{4}, x_{3}\right) \in E(D)$, since $x_{5}, x_{3} \in V^{+}$. A contradiction, since $D \nsucceq D_{1}$. So, $w\left(x_{4}\right) \neq 1$ and we can assume $\left(x_{5}, x_{4}\right) \in E(D)$, since $x_{4} \in V^{+}$. Furthermore $\left(x_{1}, x_{5}\right) \in E(D)$, since $x_{5} \in V^{+}$. Hence, $\left(x_{3}, x_{4}\right) \in E(D)$, since $D \nsucceq$ D_{3}. Then $\left(x_{2}, x_{3}\right) \in E(D)$, since $x_{3} \in V^{+}$. This implies $x_{1}, x_{2}, x_{3}, x_{5} \notin L_{3}\left(\mathcal{C}^{\prime}\right)$, since $N_{D}^{-}\left(x_{i}\right) \cap V^{+}=\varnothing$ for $i \in\{1,2,3,5\}$. A contradiction, since $\left|\mathcal{C}^{\prime}\right| \geq 4$. Therefore D has the minimal-strong property.

4.5 COHEN-MACAULAY WEIGHTED ORIENTED GRAPHS

In this section we study the Cohen-Macaulayness of $I(D)$. In particular we give a combinatorial characterization of this property when D is a path or D is complete. Furthermore, we show the Cohen-Macaulay property depends of the characteristic
of K.

Definition 4.49 The weighted oriented graph D is Cohen-Macaulay over the field K if the ring $R / I(D)$ is Cohen-Macaulay.

Remark 4.50 If G is the underlying graph of D, then $\operatorname{rad}(I(D))=I(G)$.

Proposition 4.51 If $I(D)$ is Cohen-Macaulay, then $I(G)$ is Cohen-Macaulay and D has the minimal-strong property.

Proof. By Remark 4.50, $I(G)=\operatorname{rad}(I(D)$), then by [14, Theorem 2.6], $I(G)$ is Cohen-Macaulay. Furthermore $I(D)$ is unmixed, since $I(D)$ is Cohen-Macaulay. Hence, by Theorem 4.30, D has the minimal-strong property.

Example 4.52 In Example 4.27 and Example $4.28 I(D)$ is mixed. Hence, $I(D)$ is not Cohen-Macaulay, but $I(G)$ is Cohen-Macaulay.

Conjecture $4.53 I(D)$ is Cohen- Macaulay if and only if $I(G)$ is Cohen-Macaulay and D has the minimal-strong property. Equivalently $I(D)$ is Cohen-Macaulay if and only if $I(D)$ is unmixed and $I(G)$ is Cohen-Macaulay.

Proposition 4.54 Let D be a weighted oriented graph such that $V=\left\{x_{1}, \ldots, x_{k}\right\}$ and whose underlying graph is a path $G=\left(x_{1}, \ldots, x_{k}\right)$. Then the following conditions are equivalent.

1) $R / I(D)$ is Cohen-Macaulay.
2) $I(D)$ is unmixed.
3) $k=2$ or $k=4$. In the second case, if $\left(x_{2}, x_{1}\right) \in E(D)$ or $\left(x_{3}, x_{4}\right) \in E(D)$, then $w\left(x_{2}\right)=1$ or $w\left(x_{3}\right)=1$ respectively.

Proof. 1) \Rightarrow 2) By [10, Corollary 1.5.14].
2) \Rightarrow 3) By Theorem 4.45, G has a perfect matching, since D is bipartite. Consequently k is even and $\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}, \ldots,\left\{x_{k-1}, x_{k}\right\}$ is a perfect matching. If $k \geq$ 6 , then by Theorem 4.45, we have $\left\{x_{2}, x_{5}\right\} \in E(G)$, since $\left\{x_{2}, x_{3}\right\}$ and $\left\{x_{4}, x_{5}\right\} \in$ $E(G)$. A contradiction since $\left\{x_{2}, x_{5}\right\} \notin E(G)$. Therefore $k \in\{2,4\}$. Furthermore by Theorem 4.45, $w\left(x_{2}\right)=1$ or $w\left(x_{3}\right)=1$ when $\left(x_{2}, x_{1}\right) \in E(D)$ or $\left(x_{3}, x_{4}\right) \in E(D)$, respectively.
3) $\Rightarrow 1$) We take $I=I(D)$. If $k=2$, then we can assume $\left(x_{1}, x_{2}\right) \in E(D)$. So, $I=\left(x_{1} x_{2}^{w\left(x_{2}\right)}\right)=\left(x_{1}\right) \cap\left(x_{2}^{w\left(x_{2}\right)}\right)$. Thus, by Remark 4.26. Ass $(I)=\left\{\left(x_{1}\right),\left(x_{2}\right)\right\}$. This implies, $\operatorname{ht}(I)=1$ and $\operatorname{dim}(R / I)=k-1=1$. Also, depth $(R / I) \geq 1$, since $\left(x_{1}, x_{2}\right) \notin \operatorname{Ass}(I)$. Hence, R / I is Cohen-Macaulay. Now, if $k=4$, then $\operatorname{ht}(I)=$ $\operatorname{ht}(\operatorname{rad}(I))=\operatorname{ht}(I(G))=2$. Consequently, $\operatorname{dim}(R / I)=k-2=2$. Furthermore one of the following sets $\left\{x_{2}-x_{1}^{w\left(x_{1}\right)}, x_{3}-x_{4}^{w\left(x_{4}\right)}\right\},\left\{x_{2}-x_{1}^{w\left(x_{1}\right)}, x_{4}-x_{3}^{w\left(x_{3}\right)}\right\},\left\{x_{1}-\right.$ $\left.x_{2}^{w\left(x_{2}\right)}, x_{4}-x_{3}^{w\left(x_{3}\right)}\right\}$ is a regular sequence of R / I, then $\operatorname{depth}(R / I) \geq 2$. Therefore, I is Cohen-Macaulay.

Theorem 4.55 If G is a complete graph, then the following conditions are equivalent.

1) $I(D)$ is unmixed.
2) $I(D)$ is Cohen-Macaulay.
3) There are not D_{1}, \ldots, D_{s} unicycles orientes subgraphs of D such that $V\left(D_{1}\right), \ldots$, $V\left(D_{s}\right)$ is a partition of $V(D)$

Proof. We take $I=I(D)$. Since $I(G)=\operatorname{rad}(I)$ and G is complete, $\operatorname{ht}(I)=$ $h t(I(G))=n-1$.

1) \Rightarrow 3) Since $\operatorname{ht}(I)=n-1$ and I is unmixed, $\left(x_{1}, \ldots, x_{n}\right) \notin \operatorname{Ass}(I)$. Thus, by Remark 4.26, $V(D)$ is not a strong vertex cover of D. Therefore, by Proposition 4.14, D satisfies 3).
$3) \Rightarrow$ 2) By Proposition 4.14, $V(D)$ is not a strong vertex cover of D. Consequently, by Remark 4.26, $\left(x_{1}, \ldots, x_{n}\right) \notin \operatorname{Ass}(I)$. This implies, $\operatorname{depth}(R / I) \geq 1$. Furthermore, $\operatorname{dim}(R / I)=1$, since $h t(I)=n-1$. Therefore I is Cohen-Macaulay.
2) \Rightarrow 1) By [10, Corollary 1.5.14].

If D is complete or D is a path, then the Cohen-Macaulay property does not depend of the field K. It is not true in general, see the following example.

Example 4.56 Let D be the following weighted oriented graph:

Hence,

$$
\begin{aligned}
& I(D)=\left(x_{1}^{2} x_{4}, x_{1}^{2} x_{8}, x_{1}^{2} x_{5}, x_{1}^{2} x_{9}, x_{2}^{2} x_{10}, x_{2}^{2} x_{5}, x_{2}^{2} x_{11}, x_{2}^{2} x_{8}, x_{2}^{2} x_{6}, x_{3}^{2} x_{7}, x_{3}^{2} x_{10}, x_{3}^{2} x_{6}\right. \\
& \left.x_{3}^{2} x_{9}, x_{4} x_{8}, x_{4} x_{7}, x_{4} x_{11}, x_{5} x_{10}, x_{5} x_{9}, x_{5} x_{11}, x_{6} x_{8}, x_{6} x_{9}, x_{6} x_{11}, x_{7} x_{10}, x_{7} x_{11}, x_{9} x_{11}\right)
\end{aligned}
$$

By [17, Example 2.3], $I(G)$ is Cohen- Macaulay when the characteristic of the field K is zero but it is not Cohen-Macaulay in characteristic 2 . Consequently, $I(D)$ is not Cohen-Macaulay when the characteristic of K is 2 . Also, $I(G)$ is unmixed. Furthermore, by Lemma 4.46, $I(D)$ has the minimal-strong property, then $I(D)$ is unmixed. Using Macaulay2 [11] we show that $I(D)$ is Cohen-Macaulay when the characteristic of K is zero.

References

[1] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969.
[2] S. Bayati, J. Herzog, and G. Rinaldo, On the stable set of associated prime ideals of a monomial ideal. Preprint, 2011.
[3] J. Brennan, L. A. Dupont, and R. H. Villarreal, Duality, a-invariants and canonical modules of rings arising from linear optimization problems, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 51 (2008) no. 4, 279-305.
[4] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge, Revised Edition, 1998.
[5] J. Chen, S. Morey, A. Sung, and A. Sung, The stable set of associated primes of the ideal of a graph, Rocky Mountain J. Math. 32 (2002) 71-89.
[6] V. I. Danilov, The geometry of toric varieties, Russian Math Surveys 33 (1978) 97-154.
[7] R. Diestel, Graph Theory, Graduate Texts in Mathematics 173, Springer-Verlag, New York, 2nd ed., 2000.
[8] G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg. 38 (1961) 71-76.
[9] L. A. Dupont, C. Rentería-Márquez and R. H. Villarreal, Systems with the integer rounding property in normal monomial subrings, An. Acad. Brasil. Ciênc. 82 (2010) no. 4, 801-811.
[10] I. Gitler and R. H. Villarreal, Graphs, Rings and Polyhedral, Texto Nivel Avanzado 35, Aportaciones Matemáticas, Sociedad Matematica Mexicana, 2011.
[11] D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, 2017. Available at http://www.math.uiuc.edu/Macaulay2/
[12] J. Herzog and T. Hibi, Monomial Ideals, Graduate Texts in Mathematics 260, Springer-Verlag, 2011.
[13] J. Herzog and A. A. Qureshi, Persistence and stability properties of powers of ideals. J. Pure Appl. Algebra 219 (2015) no. 3, 530-542.
[14] J. Herzog, Y. Takayama, and N. Terai, On the radical of a monomial ideal, Arch. Math. 85 (2005) 397-408.
[15] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. 96 (1972) 318-337.
[16] Huy Tai Ha and Mengyao Sun, Squarefree monomial ideals that fail the persistence property and non-increasing depth, Acta Math. Vietnam 40 (2015) no. 1, 125-137.
[17] A. Madadi and R. Zaare-Nahandi, Cohen-Macaulay r-partite graphs with minimal clique cover, Bull. Iranian Math. Soc. 40 (2014) no. 3, 609-617.
[18] S. Morey, J. Martínez-Bernal, and R. H. Villarreal, Associated primes of powers of edges ideals, Collect. Math. 63 (2012) no. 3, 361-374.
[19] S. Morey, E. Reyes, and R. H. Villarreal, Cohen-Macaulay, shellable and unmixed clutters with a perfect matching of Köning type, J. Pure Appl. Algebra 212 (2008) no. 7, 1770-1786.
[20] S. Morey and R. H. Villarreal, Edge ideals: algebraic and combinatorial properties, Progress in Commutative Algebra 1, 85-126, De Gruyter, Berlin, 2012.
[21] Y. Pitones, E. Reyes, and J. Toledo, Monomial ideals of weighted oriented graphs. Preprint, 2017.
[22] B. Randerath and P. D. Vestergaard, Well-covered graphs and factors, Discrete Appl. Math. 154 (2006) 1416-1428.
[23] L. J. Ratliff, On prime divisors of I^{n}, n large, Michigan Math. J. 23 (1976) no. 4, 337-352.
[24] E. Reyes and J. Toledo, On the strong persistence property for monomial ideals, Bull. Math. Soc. Sci. Math. Roumaine 60 (2017) no. 3, 293-305.
[25] E. Reyes, J. Toledo, and L. Zárate, On Gorenstein homogeneous monomial subrings of graphs. Preprint, 2017.
[26] W. V. Vasconcelos, Computational Methods in Commutative Algebra and Algebraic Geometry, Springer-Verlag, 1998.
[27] R. H. Villarreal, Cohen-Macaulay graphs, Manuscripta Math. 66 (1990) 277293.
[28] R. H. Villarreal, Monomial Algebras, Second Edition, Monographs and Research Notes in Mathematics, Chapman and Hall/CRC, 2015.

