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Abstract

This dissertation is divided into two parts. The first part is dedicated to the
study of the p-adic string amplitudes and the limit when p approaches to one of
such amplitudes using techniques of local zeta functions. We prove that the p-adic
Koba-Nielsen type string amplitudes are bona fide integrals. We attach to these
amplitudes Igusa-type integrals depending on several complex parameters and show
that these integrals admit meromorphic continuations as rational functions. Then we
use these functions to regularize the Koba-Nielsen amplitudes, which was an open
problem. These results were obtained in collaboration with Prof. Dr. Wilson A.
Zuniga Galindo and Prof. Dr. Hugo Garcia Compeén, see [8]. In p-adic string theory
the limit when p approaches to one plays an important role. There is an empirical
evidence that the p-adic strings are related to the ordinary strings in the p — 1 limit.
In [§], we established that p-adic Koba-Nielsen string amplitudes are finite sums of
Igusa’s local zeta functions. Denef and Loeser established that the limit p — 1 of
Igusa’s local zeta functions give rise to new objects, that they called topological zeta
functions. By using Denef-Loeser’s theory of topological zeta functions, we show that
limit p — 1 of a tree-level p-adic open strings amplitudes give rise to new amplitudes,
which we have called string amplitudes underlying topological zeta functions. We
expect that these amplitudes will be related with the theory derived of one given by
Gerasimov and Shatashvili.

The second part is dedicated to the study of p-adic local zeta functions attached
to certain rational functions. These objects are very alike to Feynman parametric
integrals. These results were obtained in collaboration with Dr. W. A. Zudniga
Galindo in [7]. In this part, we introduce a new non-degeneracy condition for rational
functions with respect to a certain Newton polyhedra, and study local zeta functions
attached to non-degenerate rational functions. We obtained explicit formulas for
these local zeta functions in terms of some data associated to the corresponding

Newton polyhedra.
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Resumen

Este trabajo se divide en dos partes. La primera parte es dedicada al estudio de
las amplitudes de cuerdas p-ddicas y su limite cuando p se aproxima a uno usando téc-
nicas de funciones zeta locales. Demostramos que las amplitudes de cuerdas p-adicas
del tipo Koba-Nielsen son integrales convergentes. Asociamos a estas amplitudes
integrales de tipo Igusa dependiendo de varios pardmetros complejos y mostramos
que estas integrales admiten continuaciones meromorfas como funciones racionales.
Entonces, usamos estas funciones para regularizar las amplitudes Koba-Nielsen, el
cudl era un problema abierto. Estos resultados se obtuvieron en colaboracién con
el Dr. Wilson A. Zuniga Galindo y el Dr. Hugo Garcia Compedn, ver [§]. En la
teorfa de cuerdas p-ddicas, el limite cuando p se aproxima a uno juega un rol im-
portante. Existe evidencia empirica de que las cuerdas p-adicas estdn relacionadas
con las cuerdas ordinarias en el limite p — 1. En [§], demostramos que las ampli-
tudes de cuerdas p-ddicas Koba-Nielsen son sumas finitas de funciones zeta locales de
Igusa. Denef y Loeser establecieron que el limite p — 1 de funciones zeta locales de
Igusa genera nuevos objetos, llamados funciones zeta topolégicas. Usando la teorfa
de Denef-Loeser de funciones zeta topoldgicas, mostramos que el limite p — 1 de
una amplitud p-ddica de cuerdas abiertas a nivel drbol genera nuevas amplitudes, las
cuéles llamamos amplitudes de cuerdas topolégicas. Esperamos que estas amplitudes
estén relacionadas con la teorfa derivada del trabajo de Gerasimov y Shatashvili.

La segunda parte estd dedicada al estudio de funciones zeta locales p-ddicas asoci-
adas a ciertas funciones racionales. Estos objetos son muy semejantes a las integrales
paramétricas de Feynman. Estos resultados se obtuvieron en colaboracién con el Dr.
W. A. Zuniga Galindo en [7]. En esta parte, introducimos una nueva condicién de no-
degeneracion para funciones racionales con respecto a un cierto poliedro de Newton
y estudiamos funciones zeta locales asociadas a funciones racionales no-degeneradas.
Obtuvimos férmulas explicitas para estas funciones zeta locales en términos de al-

gunos datos asociados al correspondiente poliedro de Newton.



Contents

Contents

0 . Fihe D onl

1

p-adic string amplitudes and multivariate local zeta functions|

(1.1 ~Essential Ideas of p-Adic Analysis| . . . . .. ... ... ... .. ...
(1.1.1  The field of p-adic numbers| . . . . ... ... ... ... ...
(.12 Integrationon Q. . . . ... ... ... 0oL

[1.1.3  Analytic change of variables| . . . . . . ... .. ... ... ..

(1.2 The p-adic multivariate Igusa zeta functions| . . . . . . . .. . .. ..

(1.3 p-adic String Zeta Functions| . . . . . . ... ... o000

[1.3.1 Some p-adic integrals| . . . . . . . ... ...
[1.3.2  Computation of Z™N) (s; 1, 1) . . ... ... ... ... .. ..
[1.3.3 Computation of Z™) (s;1,0)] . . ... ... ... ... ... .

xii

xiii

(2R G VN R R

11
25
30
32



CONTENTS xiii

[2.4.2  Embedded resolution of singularities] . . ... ... ... ... 45

[2.4.3 Topological zeta tunctions| . . . . . . . .. ... ... ... .. 46

[2.5 Topological String Zeta Functions and Topological string amplitudes|. 47

[2.6 The four and five-point topological zeta tfunctions| . . . . . ... . .. 48
[2.6.1 Topological string 4-point tree amplitudes| . . . . . . ... .. 49
[2.7  'lTopological string 5-point tree amplitudes . . . . . . ... ... ... 50

[3 Local zeta functions for rational functions and Newton polyhedral 52
3.1 Multivariate local zeta functionsl . . . . . . . ... ... ... ... 53
[3.2  Some m-adic integrals| . . . . . ... o000 54
(3.3 Polyhedral Subdivisions of R’} and |

| Non-degeneracy conditions| . . . . . . . . . . . .. .. ... 58
[3.3.1 Newton polyhedra] . . . .. ... ... ... ... ....... 58

[3.3.2  Polyhedral Subdivisions Subordinate to a Polyhedron| . . . . . 59

[3.3.3  'T'he Newton polyhedron associated to a polynomial mapping| . 61

[3.3.4  Non-degeneracy Conditions| . . . . ... ... ... .. .... 61

[3.4  Meromorphic continuation of multivariate local zeta functions| . . . . 63
(3.5 Local zeta function for rational functions . . . . . ... .. ... ... 67
3.6 The largest and smallest real part of the poles of Z(s, g) ....... 71

[4 Final remarks and some open problems| 75

[References| 78



Overview of the Dissertation

This dissertation is dedicated to the study of the connections between local zeta
functions and p-adic string amplitudes. The dissertation is divided into two parts.
The first part (Chapters[1] [2) is dedicated to the study of the p-adic string amplitudes
and the limit when p approaches to one of such amplitudes using techniques of local
zeta functions. The second part (Chapter |3)) is dedicated to the study of p-adic local
zeta functions attached to certain rational functions.

In Chapter [I} we prove that the p-adic Koba-Nielsen type string amplitudes are
bona fide integrals. We attach to these amplitudes Igusa-type integrals depending
on several complex parameters and show that these integrals admit meromorphic
continuations as rational functions. Then we use these functions to regularize the
Koba-Nielsen amplitudes. The regularization of the Koba-Nielsen string amplitudes
was an open problem in Archimedean and non-Archimedean settings. As far as
we now, there is no a similar result to the one established here in the Archimedean
setting. The results presented in Chapter [1| were obtained in collaboration with Prof.
Dr. Wilson A. Zuiniga Galindo and Prof. Dr. Hugo Garcia Compedn, see [§].

In p-adic string theory the limit when p approaches to one plays an important
role. It seems that in the limit p — 1 the p-adic strings approximate ordinary
strings, see e.g. [28], [30]. A central motivation for this dissertation is to understand
the above mentioned calculations from a mathematical perspective. In Chapter 2] by
using the topological zeta functions introduced by Denef and Loeser, we introduce

topological string amplitudes. We are writing an article, based in Chapter [2] that
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aims to explain the calculations done by Gerasimov and Shatashvili in [28], see [9].

In Chapter [3| we present some new results about the meromorphic continuation
of local zeta functions attached to rational functions over non-Archimedean local
fields. These objects are very alike to Feynman parametric integrals. These results
were obtained in collaboration with Dr. W. A. Zuiniga Galindo, in this chapter, we
introduce a new non-degeneracy condition for rational functions with respect to a
certain Newton polyhedra, and study local zeta functions attached to non-degenerate
rational functions. We obtain explicit formulas for these local zeta functions and a
geometric description for the poles in terms of some data associated to the corre-
sponding Newton polyhedra.

In the ’60s, the local zeta functions were introduced by Israel Gel’fand and An-
dré Weil. In the Archimedean setting, i.e. in R, C, the local zeta functions were
studied by Gel’fand and Shilov in [27]. A central motivation was that the meromor-
phic continuation of the Archimedean local zeta functions implies the existence of
fundamental solutions for differential operators with constant coefficients. The mero-
morphic continuation of local zeta functions was conjectured by I. Gel’fand, and this
result was proved, independently, by Atiyah [2] and Bernstein [5]. On the other hand,
WEeil studied local zeta functions, in the Archimedean and non-Archimedean settings,
in connection with the Poisson-Siegel formula [64]. In the ’70s, Igusa developed a
uniform theory for local zeta functions in characteristic zero.

Nowadays, there are several types of local zeta functions, for instance p-adic,
Archimedean, topological, motivic, among others, see e.g. [39], [18], [22], [21] and
references therein. The topological zeta functions were introduced, in the ’90s, by
Denef and Loeser, and recently they also introduced the motivic ones, which consti-
tute a vast generalization of the p-adic local zeta functions as well as of the topo-
logical zeta functions. The local zeta functions have deep connections with number
theory, algebraic geometry, singularity theory, and other branches of mathematics.
In the p-adic setting, they are connected with the number of solutions of polynomial

congruences mod p™ and with exponential sums mod p™, see e.g. [39)].



xvi Overview of the Dissertation

This dissertation is focused on the study of non-Archimedean and topological zeta
functions and their relations with p-adic string amplitudes. From a more general
perspective, our work, is motivated by the connections between non-Archimedean
analysis and mathematical physics. There are two main forces behind this inter-
action. First, in the ’80s, Volovich posed the conjecture that the space-time has a
non-Archimedean structure at the level of the Planck scale and initiated the p-adic
string theory [62], see also [56, Chapter 6], [63]. Volovich noted that the integral
expression for the Veneziano amplitude of the open bosonic string can be general-
ized to a p-adic integral and to an adelic integral giving rise to non-Archimedean
Veneziano amplitudes. Then Freund and Witten established (formally) that the or-
dinary Veneziano and Virasoro-Shapiro four-particle scattering amplitudes can be
factored in terms of an infinite product of non-Archimedean string amplitudes [26],
see also [3]. As a consequence of the interest on p-adic models of quantum field
theory, which is motivated by the fact that these models are exactly solvable, there
is a large list of p-adic type Feynman and string amplitudes that are related with
local zeta functions of Igusa-type, and it is interesting to mention that seems that
the mathematical community working on local zeta functions is not aware of this
fact, see e.g. [3], [4], [6], [16], [15], [10], [25], [24], [26], [37], [44], [45], [46], [49], [51],
[52], and the references therein.

Second, p-adic strings seems to have many properties in common with the or-

" already appeared in several calculations in

dinary strings. We recall that “lim,_,;’
p-adic string theory, see e.g. [28], [29], but the limit p — 1 does not seem to have
sense for the discrete variable p. As a consequence of the connections between p-
adic string amplitudes and local zeta functions, it is possible to use the theory of
topological zeta functions due to Denef and Loeser [21] to give sense to this limit
by producing topological string amplitudes, which should be string analogues of the
topological zeta functions. We developed this idea in this dissertation.

Another interesting problem is the study of local zeta functions for rational func-

tions. The study of these new local zeta functions is a recent mathematical problem
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and it is motivated by their relations with parametric Feynman integrals. In [61], W.
Veys and W. A. Zuniga-Galindo extended Igusa’s theory to the case of rational func-
tions, or, more generally, meromorphic functions f/g, with coefficients in a local field
of characteristic zero. From a physical perspective, the local zeta functions attached
to meromorphic functions are very alike to parametric Feynman integrals and to p-
adic string amplitudes, see e.g. [4], [10], [15], [49]. For instance in [49, Section 3.15],
M. Marcolli pointed out explicitly that the motivic Igusa zeta function constructed
by J. Denef and F. Loeser may provide the right tool for a motivic formulation of
the dimensionally regularized parametric Feynman integrals. In this dissertation we
studied the local zeta functions attached to certain non-degenerate rational functions
with coefficients in a non-Archimedean local field of arbitrary characteristic.

We now describe briefly our contributions.

Regularizations of p -adic string amplitudes

Take N > 4 and s;; € C satisfying s,; = sj; for 1 <i < j < N — 1. In this thesis we

study the following multivariate Igusa-type zeta function:

N-2 N-2

(N) — | S | S(N—1)i ) | 8is ,

ZV (s) = |; o 1= a:llp ‘ |z; — x; » dx;,
oy 2 2<i<j<N—2 i=2

where s = (s;;) € CP, Hf\;Z dz; is the normalized Haar measure of Q)'~?, and

A= {(ZEQ,...,JIN_2>€Q£]3; ﬂxz(l—ml) H (a:i—xj):()}.

2<i<j<N—2

We call this type of integrals p-adic open string N-point zeta functions because they
appeared in connection with the p-adic open string N-tachyon tree amplitudes, see

e.g. [15], [16], [25], [26], [37], and the references therein. These amplitudes are defined
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as

A™) (k)

1-— $i‘§N71ki H |337, — Xy

2<i<j<N—2

N—-2
= [ Mg
Q- i=2

N—2

kik;

p H d;,
=2

where Hfi;z dz; is the normalized Haar measure of Q'3
E: (k17"'7kN)7ki - (kO,iv"'JkQ&i)vi: ]-7"'7N7NZ47

(Wlth Minkowski pI‘OdUCt klk] = _kO,ikO,j + klviklvj + -+ k25,ik25,j) Obeying
N
> ki=0,kik;=2fori=1,... N,
i=1
In all the published literature about p-adic string amplitudes have been used
without considering the convergence of them, i.e. the problem of the regularization
of p-adic open string N-tachyon amplitudes has not been considered before. In the

light of the theory of local zeta functions, the possible convergence of integrals of

type ZWM) (s) is a new and remarkable aspect. In this thesis, we proved that

Theorem The p-adic open string N-point zeta function, Z™) (8), gives rise to
a holomorphic function on H(C), which contains an open and connected subset of
CP. Furthermore, ZY) (s) admits an analytic continuation to C”, denoted also as
Z™) (s), as a rational function in the variables p~*4 i, j € {1,... N —1}. The real
parts of the poles of Z®) (8) belong to a finite union of hyperplanes, the equations of
these hyperplanes have the form C1-C6 with the symbols ‘<’, ‘>’ replaced by ‘=". (2)
If s = (si;) € CP, with Re(s;;) >0 fori,j € {1,..., N — 1}, then Z™) (s) = +o0.

Here H(C) is as in Definition and C1-C6 are as in Remarks [1.21], [1.25,

Take ¢ (z3,...,2n_2) a locally constant function with compact support, then
N
z{M(s)
N-2 N-2
= / ¢ (IQ, e ,JZN_Q) H |ZL‘Z ;li 1— ZL‘Z‘|;(N71)7L H |.I'Z — Ty ;ij H dlL’i,
=2 2<i<j<N—2 i=2

QY 3\A
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is a multivariate Igusa local zeta function. A general theory for this type of local
zeta functions was elaborated by Loeser in [47]. In particular, these local zeta func-
tions admit analytic continuations as rational functions of the variables p~*i. If
we take ¢ to be the characteristic function of BY73 the ball centered at the origin
with radius p”, the dominated convergence theorem and Theorem [I.29, imply that
lim, o Zg;[v)_s (s) = Z™) (s) for any s in the natural domain of Z™) (s).

A central problem is to know whether or not integrals of type A" (k) converge
for some values k;k; € C. Our Theorem allows us to solve this problem. We

take the p-adic open string N-point tree integrals Z (V) (s) as regularizations of the

amplitudes AW (k). More precisely, we define

AN (k) = 2™ (s)

siy—kie, Withi € {1,..., N—1},jeTori,jeT,

where T = {2,...,N —2}. By Theorem [1.29, A™") (k) are well-defined rational
functions of the variables p~*%i i, j € {1,..., N — 1}, which agree with amplitudes
used by the physicists, when they converge. This definition allows us to recover
all the calculations made in [I5] and other similar publications. At this point, it
is relevant to mention that there is no similar result for the Archimedean string
amplitudes at the three level, as Witten pointed out in [66, p. 4]. We notice that the
string amplitudes A") (k) are limits of local zeta functions when they are considered

as distributions, by a slight abuse of notation, this means that

AM (k) = 1im Z%),(k),

N-3
r—oo Br

for k in the natural domain of Z®) (k). Another important problem is to determine
the existence of (in the sense of quantum field theory) ultraviolet and infrared diver-
gencies for AW (k). If we use the Fuclidean product instead of the Minkowski prod-
uct to define s;; = k;k;, then AW (k) has infrared divergencies (A™Y) (0) = 4-00)
and ultraviolet divergencies (A (k) = 400 for k;k; > 0).

Lerner and Missarov studied a class of p-adic integrals that includes certain type

of Feynman integrals and Koba-Nielsen amplitudes. They showed, see [44, Theorem
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2], that this type of integrals can be computed recursively by using hierarchies, but
they did no investigate the convergence, or more generally the holomorphy, of the
Koba-Nielsen amplitudes, which is a delicate matter.

At this point, it is worth to mention that the typical approach for establishing that
an integral of Igusa-type admits an analytic continuation is via Hironaka’s resolution
of singularities theorem, see e.g. [39, Chapters 3, 5, 8]. Roughly speaking Hironaka’s
resolution theorem provides a finite sequence of changes of variables (blow-ups) that
allows to express an Igusa-type integral as a linear combination of integrals involv-
ing monomials, for this type of integrals the existence of an analytic continuation is
easy to show. If the initial Igusa-type integral is a holomorphic function in a certain
domain, then by using any suitable sequence of blow-ups the existence of an ana-
lytic continuation can be established. If the convergence of the original integral is
unknown then, in principle, by using Hironaka’s theorem is possible to find an ana-
lytic continuation, i.e. a regularization, of the given integral, but this regularization
depends on the sequence of blow-ups used, which is not unique. This method gives
infinitely many regularizations of the original integral. The problem of choosing a
specific definition of the problem or the problem of showing uniqueness of the reg-
ularized integral is highly non-trivial. For this reason, our approach is not based
on resolution of singularities, instead of this, we use an approach inspired in the
calculations presented in [I5] and in the Igusa’s p-adic stationary phase formula, see
[39, Theorem 10.2.1], [67]-[69]. As a consequence of this approach, all of our results
are still valid if we replace Q, by F,((¢)), the field of formal Laurent series over a

finite field F,.

Topological string amplitudes

Physicists have related the p-adic string amplitudes with classical string amplitudes
by taking “lim p — 1” in certain calculations in p-adic string theory, see [27], [30], and

references therein. In this dissertation, using Denef-Loeser formalism of topological
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zeta functions, we show the existence of topological string amplitudes at the tree level
that are obtained from the corresponding p-adic amplitudes by taking “lim p — 17.
We explain here briefly how the topological string amplitudes are constructed, for
further details, see Chapter

Consider f = (fi,..., f.) where each f;(x) is a non-constant polynomial in
Qlz1,...,xn], for i = 1,...,r. Put f = [[;_, fi(z). Let (Y, ¢) be an embedded
resolution of singularities for D = Spec Q [] / (f) with {E;},., the irreducible com-

ponents of ¢~ (f71(0)) .. Let {(N;1,..., Ni,v;) ;i € T} the numerical data of .

red”

There exists a finite set of primes S C Z such that for p not in S, and any finite

extension K of Q,, the formula

—vi=327_1 Nijs;

Z (5. £,0) = g 3 e (50) [ L= e

IcT el 1 —qg

T . .Q. )
=1 Nijs;

where

ci(K)=Card{acY (K);ac E;(K)&icl}

is valid. Here ~ denotes the reduction mod P for which we refer to [17]. This explicit
formula is a simple variation of the one given by Denef in [17].

In [21] Denef and Loeser introduced the topological zeta function

° 1
ZtOP (S) - ZX (E]> H v; + 22:1 NZJSJJ

IcT iel

where for any scheme V' of finite type over a field L C C, x (V) denotes the Euler
characteristic of the C-analytic space associated with V. We mention that in arbi-
trary dimension there is not a canonical way of picking an embedded resolution of
singularities for a divisor. Then, it is necessary to show that definition ([2.4.3) is inde-
pendent of the resolution of singularities chosen, this fact was established by Denef
and Loeser in [47]. By using the explicit formula given by Denef for Z (s, f, K),
Denef and Loeser showed that

Ztop (S) = hI%Z (s>faKe)a
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where K. is the unramified extension of @, (for almost all prime number p of Z)
of degree e. The limit e — 0 makes sense because one can [-adically interpolate
Z (s, f, K.) as a function of e. Furthermore, they gave a description of the poles of
the local zeta functions in terms of the poles of the topological zeta function:
Theorem If p is a pole of Z,,, (s), then for almost all P there exists infinitely many
unramified extensions L of K for which p is a pole of Z (s, f,L).

The techniques used to prove over Q, also work for any extension of Q,, in
particular for K, the unique unramified extension of Q, of degree e, see Theorem
. We denote this N-point zeta function as Z ™) (s, K.), by replacing the p-adic
norms |-, by the norm |- over K, and Z, by Ok, in Z™) (s). Let

M(s):= TN I+ D (sutsyn)+ Y, sg+ Y, s

1€T\T 2<i<j<N -2 2<i<j<N -2
i€T\1,5€T iel,jeT~\1

as in the case of Z) (s), we show that

ZW (s, K,) ZqK Mi(s:1,0,K.)Z™ (8;T~1,1,K,),

Icr
see Section 2.2

Since Z™) (s;1,0, K.) and AR (s; 7\ I,1, K,) are multivariate local zeta func-
tions of type Z (s, f, K.) for suitable f, for any I C T = {2,..,N — 3}, we can
define, as above,

ZM (s:1,0) :=1limZ™ (s;1,0,K,) and

top e—0

ZM (s T\ 1,1):=1mZ™ (s: T\ 1,1, K,),

top 50
which are elements of Q (s;;,4,5 € {1,..., N — 1}), the field of rational functions
in the variables s;;, 4,5 € {1,..., N — 1}, with coefficients in Q.

Then, we define the open string N-point topological zeta functions as

Z) ()= 2Zi,) (s1,0)Z5)) (T~ 1,1) € Q(s47,3,5 € {1,...,N —1})

ICT
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Now, by applying Theorems we obtain that the possible poles of Z (V) (s)

top

belong to a finite union of hyperplanes. Formally, we have the following result:

Theorem|[Theorem | The open string N -point topological zeta function VA, (s)

top

is a rational function from Q (s;;,i,7 € {1,...,N —1}) defined as . The real

(N)
top

parts of the possible poles of Z,,’ (s) belong to a finite union of hyperplanes, the

equations of these hyperplanes have the form C1-C6 with the symbols ‘<’, ‘>’ replaced

by ‘=". (2) If s = (sij) € CP, with Re(s;;) > 0 for i,j € {1,...,N — 1}, then
zy,) (s) = +oc.

where C1-C6 are as in Remarks [2.3] And finally, we define the topological open

string N-point tree amplitudes as

AN (k) = Z) () |syymkak, With i € {1,...,N =1}, j €T ori,jeT,

top - top

where T' = {2, ..., N — 2}, which are rational functions of the variables k;k;.

Local zeta functions for non-degenerate

rational functions

Let K be a non-Archimedean local field of arbitrary characteristic and let Ok be the
ring of valuation of K,

Ok ={r e K: |z|gx <1},
and Pk the maximal ideal of Ok; this ideal is formed by the non-units of Ok. In
terms of the absolute value | - |, this maximal ideal can be described as

Py ={ze K : |z|]x <1}.

Let K = O/ Py the residue field of K. Thus K = F,, the finite field with ¢
elements. Let 7w be fixed generator of Pk, m is called a uniformizing parameter of

K, then Pg = 1Oy, furthermore, we assume that |7|x = ¢~!. For z € K, ord(z)e
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7 U {400} denotes the valuation of z, and |z|x = ¢~ "¥*). If z € K\ {0}, then

—ord(2) denotes the angular component of z.

ac(z)=zm

Let h be a polynomial mapping h = (hq,...,h,) : K™ — K" such that each h;(x)
is a non-constant polynomial in Oglz1,...,2,\mOk[z1,..., 2], ® = (z1,...,2,),
r <mn,and let s = (s1,...,s,) € C". We attach to these data the multivariate local
zeta function

Z(s, h) = / I117i(=)

op\Dg =1

;é diL’|K

-----

If [K:Q,] < o0, ie. if K is a p-adic field, Z(s, h) were first studied by Loeser,
see [47]. He showed that Z(s, h) has a meromorphic continuation to whole C" as
a rational function. In Chapter [3] we introduced a new non-degeneracy condition
for polynomial mappings, see Definition [3.3 and established an explicit formula for
the meromorphic continuation of Z(s, h) over any non-Archimedean local field K of
arbitrary characteristic when h is non-degenerate. In the case K = Q, and r = 1,
this non-degeneracy condition coincides with the one given in [20].

We now introduce some notation. Let I'(h) be the Newton polyhedron associated
to h, see section Denote by F(h) the simplicial polyhedral subdivision subor-
dinate to I'(h). Let A € F(h), then, there exist vectors w; € N, i = 1,.., ex with

relatively prime coordinates such that
A= w;: N\, Ry, \; >0},
Set b(A) := > 2 w; and b({0}) := 0. For I C {1,...,r}, we put
Var={z € ([F) hipn)(Z) =0 & icl}.

If A =0, we set
Vi={ze )" h(z)=0 & iel}.
Let a = (a1,...,a,) € N" we put o(a) = a; + az + ... + a, and d(a,T'(h)) =

mingcrp) (@, ) .
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In Chapter , we showed that the multivariate local zeta function Z(s, h) has a
meromorphic continuation as a rational function in the variables ¢~* when h is a

non-degenerated polynomial mapping with respect to the Newton polyhedra I'(h),
see Definition More precisely,

Theorem Assume that h = (hq,...,h,) is non-degenerated polynomial mapping
over F, with respect to I'(h), with r < n as before. Fix a simplicial polyhedral
subdivision F(h) subordinate to I'(h). Then Z(s, h) has a meromorphic continua-
tion to C" as a rational function in the variables ¢~ , 1 =1,...,r. In addition, the

following explicit formula holds:

Z(s,h) = Lioy(s,h) + > La(s,h)Sa,

A€ F(h)
where
Y o q— 1 q—l—si
Loy =" Y Card@n[JU=T

IC{1,...,r} iel q

-n 7 (q - 1)q_1_8i

La=q Z C’a?“d(VAJ)Hw,

IC{1,...r} i€l

with the convention that for I = &, [[,.; W—Ii? =1, and

S = Z g o)~ Rz dRT(hi))si
keN"NA
Let A be the cone strictly positively generated by linearly independent vectors
wi, ..., w; € N"\ {0}, then

Zt qfo'(t)fz;‘rzl d(trr(hi))si

Sa = (1 — go()-SimdwiLh))s) . (1 — g—olw)—Sim dwiT(ha)si)’

where t runs through the elements of the set

l
Z”Q{Z)\iwi; O</\,~§1fori:1,...,l}.

=1
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This theorem extends some results due to Hoornaert and Denef [20], and Bories
[13]. Also, we applied this theorem to the study of local zeta functions attached to
a rational function f/g with coefficients in a non-Archimedean local field of arbi-
trary characteristic, when f/g is non-degenerate with respect to a certain Newton
polyhedron. In [43] E. Leén-Cardenal and W. A. Zuniga-Galindo studied similar
matters. In our results, we present a more suitable and general notion of non-
degeneracy which allows us to study the local zeta functions attached to much larger
class of rational functions. In this case, we extend the condition of non-degeneracy
for polynomial mappings to rational functions f/g. Let f, g be relatively prime poly-
nomials. We say that f/g is non-degenerate with respect to the Newton polyhedra
U'(f/g):=T((f,g)) if the polynomial mapping (f, g) is non-degenerate with respect
to I' ((f,g)). Thus, by using the meromorphic continuation of Z((s,—s),(f,g)), see
Theorem [3.1}, we obtain the convergence and the explicit formula for the meromorphic
continuation of the local zeta function attached to the rational function f/g

2.0 [ |12

g9(z)
O%\Dk

|d$|K

K
where Dg = f~10)U ¢ 1(0), n > 2, s € C, and |dz|x is the normalized Haar
measure on K", see Theorem

In Chapter [3] it is given an explicit list for the possible poles of Z(s, f/g), includ-
ing the smallest and largest one, in terms of the normal vectors to the supporting
hyperplanes of a Newton polyhedra attached to (f, g) . In contrast with the classical
local zeta functions, these objects have poles with positive and negative real parts.

The study of local zeta functions associated to meromorphic functions is moti-

vated by the fact that these objects can be considered ‘toy versions’ of parametric

Feynman integrals.



Chapter 1

Regularization of p-adic string
amplitudes and multivariate local

zeta functions

This chapter aims to discuss some connections between p-adic string amplitudes and
p-adic local zeta functions (also called Igusa’s local zeta functions). We prove that
the p-adic Koba-Nielsen type string amplitudes are bona fide integrals. We attach to
these amplitudes Igusa-type integrals depending on several complex parameters and
show that these integrals admit meromorphic continuations as rational functions.
Then we use these functions to regularize the Koba-Nielsen amplitudes. As far as
we know, there is no a similar result for the Archimedean Koba-Nielsen amplitudes.
We also discuss the existence of divergencies and the connections with multivariate
Igusa’s local zeta functions.

The chapter is organized as follows. In section we present the basic aspects
of the p-adic analysis needed in this chapter, and in section [1.3] we prove the main

result, Theorem [I.29]
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1.1 Essential Ideas of p-Adic Analysis

In this section, we review some ideas and results on p-adic analysis that we will use

along this chapter. For an in-depth exposition, the reader may consult [I], [55], [63].

1.1.1 The field of p-adic numbers

Along this chapter p will denote a prime number. As we mentioned in Section [2.1]
the field of p-adic numbers @, is a non-Archimedean local field, it is defined as the
completion of the field of rational numbers Q with respect to the p-adic norm | - |,

which is defined as
0 if z=0
], =
p7 it x=p'g,
where a and b are integers coprime with p. The integer v := ord(x), with ord(0) :=

+00, is called the p-adic order of x. We extend the p-adic norm to Q) by taking

|||, := 112%};|$¢|p7 for & = (21,...,2,) € Q).

—ord(®)  The metric space

We define ord(z) = min;<;<,{ord(z;)}, then ||z|[, = p
(Q2, - |lp) is a complete ultrametric space. As a topological space (QF, || -|[,) is
totally disconnected and locally compact. A subset of Q) is compact if and only if it
is closed and bounded in Q, see e.g. [63, Section 1.3], or [II, Section 1.8]. The balls
and spheres are compact subsets. Any p-adic number x # 0 has a unique expansion

of the form i,
T = pord(:v) Z xipi,
i=0

where x; € {0,1,2,...,p— 1} and xo # 0.

For v € Z, denote by B}'(a) = {z € Qp;||z — al|, < p"} the ball of radius p"
with center at a = (a1,...,a,) € Qp, and take B]'(0) := B;'. Note that B'(a) =
B,(a1)x---xBy(ay), where B,(a;) := {z € Qp; |r;—a;|, < p"} is the one-dimensional

ball of radius p” with center at a; € Q,. The ball Bj equals the product of n copies
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of By = Z,, the ring of p-adic integers. In addition, B*(a) = a+ (p~"Z,)". We
also denote by S)'(a) = {z € Q}; ||z — al|, = p"} the sphere of radius p" with center
at a € Qp, and take S;'(0) := S7'. We notice that Sj = Z (the group of units of
Z,), but (Z;)n CSp={ze Qs llz|| = 1}. The balls and spheres are both open

and closed subsets in Qg. In addition, two balls in Q;‘ are either disjoint or one is

contained in the other.

Remark 1.1 There is a natural map, called the reduction modp and denoted as -,
from Z, onto ), the finite field with p elements. More precisely, if x = Z?io z;p) €
Ly, then w = Ty € F, = {0,1,....,p—1}. If a = (ay,...,a,) € ZI, then @ =

(@1, .., Gp).

1.1.2 Integration on Q)

Since (Qp,+) is a locally compact topological group, there exists a Borel measure
dz, called the Haar measure of (Q,,+), unique up to multiplication by a positive
constant, such that fU dx > 0 for every non-empty Borel open set U C Q,, and
satisfying [, dx = [, dx for every Borel set E C Q,, see e.g. [35, Chapter XI]. Tf
we normalize this measure by the condition fzp dx = 1, then dx is unique. From now
on we denote by dx the normalized Haar measure of (Q,, +) and by d"« the product
measure on (Qy, +).

A function ¢ : Q) — C is said to be locally constant if for every x € Q) there
exists an open compact subset U, & € U, such that p(x) = ¢(u) for all w € U.
Any locally constant function ¢ : Q) — C can be expressed as a linear combination
of characteristic functions of the form ¢ (x) = > ;- ¢;1ly, (x), where ¢, € C and

Ly, () is the characteristic function of Uy, an open compact subset of Q7, for every

k. If  has compact support, then ¢ (z) = 31, cx1p, (z) and in this case

/gp(m)dnm:cl/d”a:—i-...—i-cL/d":z:.

Qp Uy UL
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A locally constant function with compact support is called a Bruhat-Schwartz func-
tion. These functions form a C-vector space denoted as S (Qg). By using the Stone-
Weierstrass theorem, S (QZ) is a dense subspace of C ((@g), the space of continuous
functions with compact support, and consequently the functional ¢ — ng o (x)d"z,
pes (Qg) has a unique extension to C (Q;}). For integrating more general func-
tions, say locally integrable functions, the following notion of improper integral will

be used.

Definition 1.2 A function ¢ € L} is said to be integrable in Qy if

loc

m

lim o (x)d"x = lim Z /@(w)dnm

m—-+4o0 m—+oo
B.(0) RO
exists. If the limit exists, it is denoted as ancp (z)d"x, and we say that the (im-
P

proper) integral exists.

1.1.3 Analytic change of variables

A function h : U — @Q, is said to be analytic on an open subset U C Q7 , if for every
b € U there exists an open subset UcU , with b € U , and a convergent power
series 3, a; (x — b)' for @ € U, such that h (z) = Y ienn @i (& — b)' for & € U, with
xt =2z 4 = (iy,...,0,). In this case, %h(z) = > ienn aia%l (x — b) is a
convergent power series. Let U, V' be open subsets of Q). A mapping h : U — V,
h = (hy,...,hy,) is called analytic if each h; is analytic.

Let ¢ : V' — C be a continuous function with compact support, andlet h : U — V'

be an analytic mapping. Then

Je(y)d'y = [¢(h(z))|Jac(h(z))|,d"z,
\% U

where Jac(h(z)) := det [‘9’” (z)] Leicns See e.g. [14, Section 10.1.2].

Ox;
1<j<n
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1.2 The p-adic multivariate Igusa zeta functions

Let fi(z) € Qpx1,...,2,] be a non-constant polynomial for ¢ = 1,...,l, and let
® be a Bruhat-Schwartz function. The multivariate local zeta function attached to

(f1,..., f1,®) (also called Igusa local zeta function) is defined by the integral

l
Zo (s, S0 fi) = / @ (z)[[1/i=)
i=1

Qp Ui, £ 1(0)

for (sy1,...,s) € C! with Re(s;) > 0,7 = 1,...,l. This integral defines a holomorphic
function of (s1,...,s) in the half-space Re(s;) > 0,7 =1,...,[. In the case | = 1,
this assertion corresponds to Lemma 5.3.1 in [39]. For the general case, we recall
that a continuous complex-valued function defined in an open set A C C!, which is
holomorphic in each variable separately, is holomorphic in A. The multivariate local
zeta functions admit analytic continuations to the whole C! as rational functions of
the variables p=®, i = 1,...,[, see [47]. The Igusa local zeta functions are related
with the number of solutions of polynomial congruences mod p™ and with exponential
sums mod p"™, there are many intriguing conjectures relating the poles of local zeta
functions with the topology of complex singularities, see e.g. [18], [39].

We want to highlight that the convergence of the local zeta functions depends

crucially on the fact that ® has compact support. Consider the following integral:

= / ||, dx, s € C.
Qp

Assume that J(so) exists for some sy € R, then necessarily the integrals

Jo(so):/|x|;° dr and Jq(sg) = / 2| dv
Zyp

Qp~\Zyp

exist. The first integral is well-known, Jo(so) = 1_1;’1__150 for sg > —1. For the second

integral, we use that |z[ " is locally integrable, and thus

80 Z / |ZL‘|SO dr = p]+]80/d$ _ 1 . Zp] 14-50)

Jj=1 p=iZX Z;
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if and only if sy < —1. Then, integral J(s) does not exist for any s € R and
consequently J(s) does not exist for any complex value s.
For an in-depth discussion on local zeta functions the reader may consult [1§],

[39] and the references therein.

1.3 p-adic String Zeta Functions

We fix an integer N > 4. To each pair (i,j) with 4,5 € {1,..., N — 1} we attach
a complex number s(; ;) such that s;j; = s(;. To simplify the notation we will
use ij, respectively s;;, instead of (i, j), respectively, instead of s(; ;). We set T :=

{2,...,N—2},D:(N_3)2ﬂ+2(]\7—3) and CP as

{s;j€eCiiec{l,N—-1},j €T} if N=4
{sijeCiie{l,N—-1},je€Tori,jeT withi<j} if N>5.
We set s = (s;;) € CP, & = (22,...,25-2) EQ}],V_?’, and

Sij
p "

S1i
p

1-— xi];(N‘l)"' H |Z'Z — Xy

2<i<j<N—-2

N—2
F(s,z;N) = H |z

=2
Definition 1.1 The p-adic open string N-point zeta function is defined as

ZWM) (s) = / F(s,z;N) 1__[ dx; (1.3.1)

QY 3\A
for s = (si;) € CP, where
N-2
A:: {(l’z,...,l‘]\]g) EQ;V_B;HJZZ' (1—.’EZ) H (.%‘1—1']):0}
i=2 2<i<j<N-2

N-2 : : _
and [];2,° dx; is the normalized Haar measure of Q) 3.

Remark 1.2 We notice that the domain of integration in 15 taken to be

(@I]JV"3 A in order to use a® = e*"?, with a > 0 and s € C, as the definition
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of the complex power function. The convergence of integral , as well as its

holomorphy, will be discussed later on.
We define for I C T, the sector attached to I as
Sect(I) = {(xQ, e TNog) EQY T <1 wic 1}

and
N-2
ZW) (s;1) = /F(§,:13;N)dei.
Sect(I) =2

Hence

=> zZW (s1). (1.3.2)

IcT

Notation 1.3 (i) The cardinality of a finite set A will be denoted as |A|. (ii) We
will use the symbol | | to denote the union of disjoint sets. (iii) Given a non-empty

subset I of {2,...,N —2} and B a non-empty subset of Q,, we set
B = {(2:),e;;2: € B} .

(i) By convention, we define [],.,- =1, > .., =0, and if J = &, then [y, - =
1. (v) The indices i, j will run over subsets of T, if we do not specify any subset, we

will assume that 1s T

Lemma 1.4 With the above notation the following formulas hold:
(i) F (8,2 N) |seetn= Fo (8, z; N) Iy (8, 2; N), where

(s, z; N) H |xZ o S“V i H |z — x; ;”

il 2<i<j<N—2
ijel

S14

and

$1iHS(N-1)iT22<j<N—2 Sij

Fi (s, z;N) H 4] g7, gel H v — |

i€eT~I 2<i<j<N—2
i, JETNT
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(i) If Re (s1;) + Re (S(N,l)i) + ZszSNﬁ,j# Re(si;) +2 <1 fori e T\ I, and
Re (s;j) > =1 fori,j € T\ I, then

Fy(s,z;N) H dx;

€T\ T

H lyi — Yilp

2<i<j<N—2

_ pM(g) 1,7€T\T1 H dyz
’ .‘2+Sli+S(N*1)i+22<j<N72,j7£i Sij ’
vil, < ;

Sij

| T\ I er~1
P €T\ 1
where M(8) := |T' N I| 4 Y. cp (510 4 S(v=1)i) + D _2<i<j<N—25i; + D _2<i<j<N-2 Sij-
i€T\I1,jeT iel,jeT~\1

(i1i) If Re(s1;) + Re (S(N,l)i) + ZZSJ’SNij;éi Re(sij) +2 < 1 fori e T\ 1,
Re(s;j) > —1 fori,j € T\ I, Re(sy;) > —1 fori € I and Re (S(N_l)i) > —1 for
1€ 1, then

ZW) (s;1) = pM® /Fo(s,:l:;N)Hda:i

Zl‘o” el
( H ’(E — Zjl, . \
2§z’<j§NI—2
1,5E€T~
X H d.fL'Z
2 7 7 7 L.
7l H |z Hl TNt Lag SN2 50 €T~ I
€T\
\ Vs
= pMOZM) (5:7,0)ZMN (8,7 I,1). (1.3.3)

Remark 1.5 Later on we will show that the integrals in the right-hand side in the

formaulas given in (ii) and (iii) are convergent and holomorphic functions on a certain

subset of CP for all I CT.

Proof. (i) Notice that F' (s, x; N) |see(r) equals

S14

H |xz mz S(N 1) H ‘xz 511+S(N s H |xl - .’L'] o X
P
i€l ieT~I 2<i<j<N -2
1,J€1
H |z — IJ|S” H |513z‘81J H |mJ|S” (1.3.4)
2<i<j<N-2 2<i<j<N-2 2<i<j<N-2

3, jETNT ieT<1,jel i€l jJETNT
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Now, by using that s;; = sj;,

|Sid |Sid — |5id (|55
I =l 11 llr= 11 =l IT il
2<i<j<N—2 2<i<j<N—2 2<i<j<N—2 2<j<i<N—2
ieT<I,jel i€l jETI ieT<T,jel JETGET~I
29<j<N—2 Sij
_ 8 | J#, jel
= H 2[5 = H |23, . (1.3.5)
2<ji<N—2 ieT~1I

i#j, i€T~Ijel
The announced formula follows from ([1.3.4))-(/1.3.5]).

(ii) For |T"\ I| > 1, we set

[(sT\ 1) = / Fy (s, N) [ doe

(pr)\T\H €T\ 1

and for [ € N\ {0},

(pZy) "1 = {(@.)im € (Q,~2Z,)™ —1 < ord(z;) < —1forie T~ 1} :

(ZQZIJ)F\I| = {(xi)ieT\I € (pr)‘T\I| 1 <ord(z;)) <lforieT~ I} :

and

I, (s:T\1I):= / Fi(s,z;N) ] dau.

€T\ 1
(QP\ZP)LTL\ 1l

Notice that (Q, ~ Zp)LTl\[‘, (pr)gT\I‘ are compact sets and that

(Qp Zp)l—Tl\]' - (pr)lT\I\

(xi)ieT\I — (o (xi))iET\I’

with o (z;) = yi is an analytic change of variables satisfying

dy;
HieT\I d; = Hz‘eT\I 29

[il,
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then by using this change of variables and the fact that

51FS(N—1)iT22< < N—2 5ij

IT 1wl JPLIEt | s | 7

i€T~I 2<i<j<N—2 2<i<j<N—2
TNV RT=AN | i€T~T JETT
51itS(N—1)i +222<j< N —2 5ij 22 2<j<N—2 Sij
_ el JELGETNT
= H |Yilp H |Yilp
ISIEN €T~ 1
_ ’ SLTS(N—1)i T o< i< N—2,j£i Sij
- yz P - )
€T~ 1
we have
Loy |Sid .
| S )
2<i<j<N—2 ieT~I
€T
I,(,T\I)= i (1.3.6)
H ly; S1iHS(N-1)i+2a< <N -2,ji Sig T2
|T~ 1| tip
1

(PZp) i€~ T

Then lim; .o I ; (8;T\I) =1 (s;T\ I). Indeed, the formula follows from the dom-

Re(sq

v ) <1 for Yi, Yj € pZy, and

inated convergence theorem, by using that |y; — y;|
the fact that pr ﬁdy converges for Re(s) < 1. Finally, the announced formula
P 1Jlp

follows from ([1.3.6)) by a change of variables.

(iii) It is a consequence of (i)-(ii). m
Remark 1.6 From Lemma we have

ZM(s)=> p"DZzW (51,00Z2™ (T~ 1,1). (1.3.7)
ICT

By convention Z™) (s;2,0) =1, ZW™) (s;,1) = 1. A central goal of this article
is to show that Z™ (8) has an analytic continuation to the whole CP as a rational
function in the variables p~®i. To establish this result, we show that all functions
appearing on the right-hand side of formula admit analytic continuations to
the whole CP as rational functions in the variables p~*i, and that each of these func-
tions is holomorphic on certain domain, and that the intersection of all these domains
contains an open and connected subset of CP, which allows us to use the principle

of analytic continuation. We will show that each of the integrals Z™) (s;1,0) and
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AR (8; T~ I,1) satisfies several recursive formulas, and that by using them, the
problem of finding analytic continuations is reduced to case of certain simple inte-

grals.

1.3.1 Some p-adic integrals

We compute some p-adic integrals needed for calculating
Z™ (5;1,0) and Z™ (s;1,1).

Let J be a subset of T" with |.J| > 2. We define

N Sij
L >((S Dycicion o’ J) =L (s;J) = / 11 w20 [ de

i,jeJ (Z 1] 2<i<j<N-2 ieJ
i,J€J

(1.3.8)
for Re (s;;) > 0 for any 4j, and

N .
Lg ) <( ZJ)2<’L<]<N 2’ o, K) L (S J, K) = / H |z — z; » Hdwi

ijes S Gk i€
P

(1.3.9)
where K C T = {(4,j) €e T xT;2<i<j<N—2,4,j5 € J} and Re(s;;) > 0 for
any ij. Notice that if |J| = 1, then L(()N) (s;J)=1—p ! and K = & which implies
LgN) (s;J, K) = 1. A precise definition of integrals L(()N) (s; J) requires to integrate
on

@) re @) T] m-w)=0
2<i<j<N-2
ijed
A similar consideration is requlred for L (s J,K). However, for the sake of
simplicity we use definitions —- We will use this simplified notation
later on for similar integrals. The integrals L (s J), L 1 (§; J, K) are p-adic
multivariate local zeta function, these functions were studied by Loeser in [47]. In

particular, it is known that these functions have an analytic continuation to C” as
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rational functions in the variables p~*% and that they are holomorphic functions on

Re (s;;) > 0 for any ij.
Remark 1.7 Let J be subset of T, with |J| > 2. Set
Ty ={(i,j) ETxT;2<i<j<N-—2ijeJ}
as before. For @ = (a;),c; € (FX)I\ A(J), with
A(J)={ae F)ha #£a; fori+j, withi,jeJ},
we set
K(a):={(,j) € Tya =a;}.

Now, we introduce on (FX)VI\ A (J), the following equivalence relation:
p

a~b < K(a)= K(b).

We denote by A(a) = {be (FX)I\ A(J);@a~ b}, the equivalence class defined by
ac (IF;)'J‘\A( ) For instance, if @ =1= (1), ey then A (1) = |_|5€]F; {l_) (T)iEJ}.
By taking a unique representative in each equivalence class, we obtain R(J) C

(FX)I\ A (J) such that

()M = |_| A(@)| |A(J)

acR(J

Given a subset K C T; with K = {(Zl,jl) yovos (imy Jm) }, we define

Kiist = {01,715+ -+, b, Jm } C J.
We will use the notation Kjg(a) to mean K(@);y, for a € (IF;)'J‘. Notice that
K(a) C Kjgy(a) x Kiq(a), |Kig(a)| > 2 for any @ € (IE‘;)‘J| \ A(J) and that
Kug(1) = J.
Lemma 1.8 If|J| > 2, then, with the notation of Remark: the following formula

holds:

L(()N) (§; J) _ Z |Z(6)‘p—ul—2<i,j)ex<5) Sz‘ngN) (§; Kzzst(a),K((_l)) + ’Z(J)’p—u\

acR(J)

for Re(s;;) > 0 for alli, j € J.
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Proof. For @ € (FX)VI\ A(J), set A(@) := {b+pz;bec A(a)}, and for A (J),
A(J):={a+pz;acA(J)}. Now

en- > [ I

|Sid ,
Lilp H dr;

aCEO o iz, =TI 2 e
-> [ I e-wp Il
(J) bcA(a )b+(pzp)\fl 2Sii<j€§jv_2 icJ
T e ] du
A e
= Y A@pEeees [ [ newl I
acR(J) @ )|K1m(3)\ (i,j)eK(a) i€ Kt (@)
o) K
FEW@)] .

Lemma 1.9 We use all the notation introduced in Remark . Given @ = (;);c; €

(F)INA(J) and (i, j) € K(a), we set
K((0,5).@) = {(1.7) € K(@ya =}
and use Ki((i,7), @) = K((i,7),@)usi. Then the following assertions hold:
()
K((i,7),a) = Tk, (Gj)a = 1(1,8);2<r <s <N =215 € Kiy((i,j),a)};

(i) the subsets K((i,7),a) form a partition of K(a@), i.e. there exists a finite set
R (@) of elements (i, j) € K(a), such that K(@) = | jer@ K((i,7) @)

Proof. (i) By definition K((i,j), @) C Tk, (i,j)a)- Conversely, let (Zm,%> €
Tks.. ((i,j)a)> then there exists Jm € Kis((i, j) , @) such that (im,jm> € K((i,j),a) or
(jm, zm) € K((i,j) ,@a). In any case, either (im,jm) or (}mjm) belongs to K (@) and
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a; =a; =a; . Similarly, there exists i € Kise((i, 7) , @) such that either (Z,E) or
(L,Z) belongs to K((i,7),a) and @; = @; = a;. Therefore @; = a5 ie. (zm,31> €
K (@), furthermore <2’m, jl> (( J),@). Hence K((7,7) @) = Tk, ((i,j)a)-

(i) Let (i, Jm) € K((4, (( ) , then @; = @;,, = @; and (Z,;) €
K((i,7),a), and consequently K ( < ) , ,j),a). Similarly, one verifies

that K((i,).@) € K((7.7) a). =
Remark 1.10 As a consequence of Lemmas [I.& we have

LY (s; Ki(@), K(a)) = I LY (85 Kiia((i.5) ). Ty -

Ty ={(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5), (4,6),,(5,6)},
and by Lemma[L3,
K (a) ={(2,4),(3,5),(3,6),(5,6)} = K((2,4), @) | K((3,5) , @),
where K((2,4),a@) = {(2,4)}, K((3,5),@) = {(3.5).(3,6), (5,6)}. Thus
Kiig((2,4),@) = {2,4} and K;;4((3,5),a) = {3,5,6}.

With this notation, LgN) (s; Kisi(@), K(@)) equals

/ |£U2 — {23'4|IS)24 |$3 — CL’5|;35 |ZL‘3 — $6|;36 |.CL'5 — ZL‘6|IS)56 dl’gdl’gdﬂf4d$5dl‘6

73
/ |zy — :1:4|;24 dzodzy / |zg — x5\;35 |xs — a:6|;36 |zs — xﬁl;’;"’s drsdrsdrg
z; z;

N — N —
= Lg ) <§; Klist(@ﬂ 4) ) a’)> TKu,sz((QA)ﬁ)) Lg ) (§; Klist((?’v 5) ) a)> TKlist((375)7a)> :
Lemma 1.12 Set F(sy, 2,53, 7,y) = |zt y[>2 |z — y|>2, 51, s2, s3 € C, and

Z (s1, 82, 83) := / F(s1, 82, 83, z,y)dxdy for Re(s;) >0,i=1,2,3.
z;
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Then Z (s1, $2, s3) i a holomorphic function on
{(s1,52,53) € C*Re(s;) > —1 fori=1,2,3 and Re(s1) + Re(s2) + Re(ss) > —2} .

In addition,
Q(p~™.,p*2,p™™)
3 )

(]_ _ p—2—51—52—53) H (]_ _ p—l—si)
=1

Z (817 52, 53) =

where Q (p~*', p~%2, p~%) denotes a polynomial with rational coefficients in the vari-

ables p~*1, p=2, p~93,
Remark 1.13 If s; = s = 0, then the denominator of Z (sy, so,83) is 1 — p~ 1753,

Proof. By using that Zz% = (pZ,)* U S§ with SZ = pZ, x Ly ULy X ply ULy X Ly,

and then by changing variables, we get

fsg F(Sl,SQ,Sg,IE,y)d«rdy o ZO (81,82,83>

A (Sl? 52, 33) = 1 — p72fs1732733 = 1— p72751752*s3 ’

On the other hand,

ZO (817$2a83) :/ F(S]_,Sg,Sg,x,y)dwdy

pZp XLy

+/ F(81,32,s3,x,y)dxdy+/ F(81,32,s3,x,y)dxdy
Z) xply Ly XZy
=: Zo1(51, 52, 53) + Zo2a(s1, 52, 53) + Zo,3 (51, 52, 53).

First, we compute Z1(s1, s2, s3). By a change of variables, we get

—1—351

—_1\2
p)p
_p—l—sl

1—
Zoa(s1,52,83) =p (1 —P_l)/ 2]} dr = ( :
ZP

for Re(s;) > —1. By a similar computation we obtain

(L—p ) p
1 _ p—1—52

Z072(81,82783) = for R6<82) > —1.

In order to compute

Z3(51, 52, 53) =/ |z — y|;*dxdy,

Zy XLy
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we use that (Z))* = U wx o + Ly X ar + pLy, where F) = {1,2,....p— 1} as

ap,a1€
sets, to get
Zo3(s1,52,83) = Z / |z — y[} dxdy
aO,GlE]FX ag+pZpXa1+pZy
>y / lag + px — ay — pylPdady +p~° Y / |z — y[5*dady
ao,a1€]FX Lip X Ly ao,ale]FX Lip X Ly
apF#al ap=a
-2 —2-s3 1—p!
=p (p-1D—-2)+p (p—l)m-
[

Lemma 1.14 Let I be a subset of T' satisfying |I| > 2. Then LEN) (s;1,T7) admits

an analytic continuation as a rational function of the form

Qr {pfs”}i ‘
LY (s;1,T) = ( ’JEI)

ey )
- <|J|—1+22<i<j<N2 Sij)
I[I |1-» i€ [I (1—ptmsu)™
JEF(I) ijeS;

(1.3.10)
where Qr <{p‘si1}i7j€1> 18 a polynomial with rational coefficients in the variables
{9}, jers FI) is a family of subsets of I, with I € F(I), St is a non-empty
subset of

and the ey, e;;’s are positive integers.

Proof. By using the partition Z‘ = = (pZ,)"' U Sm where Z' = = {(®) ;e ;7 € Ly},
02)" = {(w:) 30 € 92, }, and SY = {(w3),c; € 2 maxies {lai], } = 1}. By a
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change of variables, we get

e |Sid .
[Tl nl TTon
2<i<j<N-2 icJ
ijel
= o<icj<N-25ij
Ao (s;1)
—H=2a<icj<N—28i
1—p ijel

1]

LV (;1,17) = *

For every non-empty subset J C I, we define
SJ]I‘ = {(xi)iel € ZL”; |ZL’i|p =lsic€ J} ,

then SJ)I‘ = LngLJ;ﬁgsyl and Ag(s;1) =D Ay s (s) where

JCI,J#2

A()"] (§> = / H |ZEZ — Ij’;ij deL’Z,

J 29'?32;\/—2 iel
for this reason
Agr(s)+ Ay (s
LY (s:1,Ty) = 01T 2, 1y A0 (8)
I —HI=22<i<j<N—25ij
On the other hand,
( Siq . ..
x, — ;|7 if 7,7€J
v, — a7 i jelNJ
T, — $J|;Z] |S‘JI‘:
1 if ieJjel~J
1 if jedJiel~J

Then

17

(1.3.11)

(1.3.12)
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and if J G I,

Ags(s) = / H |75 — 7 H dx; L(ON) (s;J) (1.3.13)
(PZp)I 17| QSii;éISZY]_Q g

I~ J|— g
N1 Z2§i<j§N72 St

— p i€l L (81~ J, Tr ) LY (s57) .

Therefore, from d1.3.11b—d1.3.13b, LgN) (s;1,Ty) equals

I~ J|— g
INTI=2g i i %

LM (s, 1)+ P weing LMY (s, 1~ J, T ) LY (s:)

JCI,J#%

—H=2o<i<j<N—25ij
1—p ijel
(1.3.14)
Now, by Lemma and the fact that A (1) = |_|5€]F; {(B)Z.GI}, Ki(1) = I, see
Remark [I.7]

LM (D= Y [A@)|p e Y LY (s K (@), K(@)  (1.3.15)
acR()~ {1}

—M=2o<i<j<N—25ij

+(p—1)p wel LY (s;1,Ty) + [A (1) p7 7,

with |Kysc(@)| > 2, hence from ((1.3.14))-(1.3.15)),

1=l=2 2<i<j< N2 8ij )
1—p i€l Ly (s;1,T7)

— Z dg () LﬁN) (s; Kist (@), K(a))

acR()~{1}
+ Z ey ()L (s: 1~ J. Tr ) LY (s,0) + |A ()| p 1.
s}
J#o

This formula and Lemmas[1.841.12| give a recursive algorithm for computing integrals

L™ (s;1,T;), from which we get (1.3.10). m

From Lemmas [1.841.14] we obtain the following result:
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Corollary 1.15 If |I| > 2, then

L(()N) (s8;1) = Ry <{p_8ij}i,j61)

Y

fi
- <J1+Zzgz’<j§N2 Sij) ,
I [1-» [1 (1= p)h

Jeg(I) ij€GT

where R;p ({p‘sij }ijjd) 15 a polynomial with rational coefficients in the variables
{9}, jers GI) is a family of non-empty subsets of I, with I € G(I), Gy is a
non-empty subset of {2 <i1<j<N—2,i,j€l}, and the f;, fi; 's are positive

mtegers.

Given I C T, with |I| > 2, and K C [, with |K| > 1, and M C Tj, with
|M| > 1, we define

LéN)(§5LK’M):/H|%;” H |xz~—xj;”Hda:i

ZLI‘ ieK (i,5)eM el
for Re (s;;) > 0 for any 4j. If |M| =0, then

N
Lé )(ﬁ;la KvM) = I HzeK|xZ

St
p Hie] dml

Lemma 1.16 Lett € {1, N —1}. Then

L (1,810 = [Tlefy T fo-afy [Jdn

) ieK 2<i<j<N—2 icl
Zy i,j€l

admits an analytic continuation as a rational function of the form

Qr.x <{p_sij }i,jel ) {p_sti}te{l,N—l},ieI)
R0(§alaK)Rl(§7[7K>R2(§a[7K) ’

LY (s;1,K,T7) = (1.3.16)

where

fa
RO(§7 I; K) — H ]_ — P ( 74<7§€J ’ H (1 _ p_l_sij)g” 7

Jegi(I) ij€ST
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R1(§,I, K) _ H (1 _p—l—sti)hi :

€Uk

R2(§; I, K) _ H (1 _p—|J|—Z¢eRSti_Zzgiq‘SNﬁ, ijed Sij) ’
(JS,R)EG2(IXI)

where Q1 i <{p’5ij Yijers {pisti}te{l,N—l},ieI) denotes a polynomial with rational coef-
ficients in the variables {p~™*7}, ;c; AP}y N_1yier: 91 (1) s a non-empty family
of subsets of I, with I € Gy (I), Go (I x I) is a non-empty family of subsets J x R of
I'x1I,withRCJand (I,K) € Gy(I x1I), Ug is a non-empty subset of K, Sy is
a non-empty subset of {2 <1i < j < N —24,j €1}, and the f;’s, gi;’s, and the h;’s

are positive integers.

Remark 1.17 The integral LgN) (s;1,K, M) is also a multivariate p-adic local zeta
function. If |I| > 2 and |K| =0, then LY (s; 1, K, M) = L™ (s; I, M).

Proof. We use the partition ZLH = (pZ,)"' U SJJI‘ as in the proof of Lemma and

a change of variables, to get

[Tt T ey Tl

Jnl €K 2<i<j<N—2,j€l iel
0

1— p*|1|*2iek Sti—D n<ici<N-2,i,jcI Sij
BO (§7[7 K7TI)

’ 1 — p—\II—ZieK sti_22§i<j§N—2, i,jer Sij ’

We now use the partition S(|)I‘ = Ujcr,i+0 S!,I‘ to obtain

Bo(s;1,K,Ti)= Y Boy(s),

JCI,J#2
where
Buso)= [Tl [ bl Lo
7 €K 2<i<j<N-2 iel
Sy i,gel
Consequently
Bos(s)+>. By, (s)

JST,J#0

LY (s;1,K,T;) =

1— p_m_zz‘ex Sti_22§i<]’§N72, i,jeI Sij ’
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On the other hand, |z; — z;] i1 is given in ((1.3.12) and
J

Sij ’
p 'S

iex lil,” |SLI‘: [icx il 1z, im0 -

Then By (s) = L{" (s; 1), and if J G I, By (s) equals

H | f,“ H |z, — x; ;” H dx; L(()N) (8;J) =

PCK~J 2<i<j<N—2 icI~J
(pZp)! 1> i jeIJ

p_u\J‘_zieK\ J sti_Z2§i<j§N—2,i,jEI\ J Sij ¢

H |, ;” H |z, — x; ;ij H dz; LgN) (8;J) =

7 iER 2<i<j<N-2 eI
zi7! ijel

p ISk s stimTacician-2ager s 5 LNV (8: T~ J, K~ J, Tr ) L$Y (8: ) .
Hence (1 — pi”‘iZiEK 512 0<icj<N-2, ijel sij) LgN) (§; I, K, TI) equals

LM (s;1) + (1.3.17)

> p e e Nasigensiser s LEY (51N K N T Trg) LY (837
JST, Jo

By using that |~ J| < |I|if J G I, J # @, and that integrals L (s; 1), L™ (55 J)

can be computed effectively, see Corollary , formula (1.3.17) gives a recursive

algorithm for computing LgN) (s;I,K,Ty), by using it, we obtain . Notice

the integrals of type LgN) (s;1,K,Ty), with |[I| = 1 and K = {i} contribute with

1

terms of the form %.

Lemma 1.18 Given J a non-empty subset of T, with |J| > 2, we define

M;(s;1) = / H|1 —:EZ-|;(N71)1' H |z —xj|;ij dei

icJ 2<i<j<N—2 icJ
(zp)! ijed
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for Re (S(N,l)i) > 0,4 € J, and Re(s;;) > 0, fori,j € J. Then, M j(s;1) admits

an analytic continuation as a rational function of the form

M;(s;1) = @ ({p‘si.i}i,jEJ,{p_S(N’”"}z'eJ)

, (1.3.18)

)

3
U, <§3 J )

-1

where

enm
_ |M|_1+22<i<j<N25ij) .
Ui(s; J) = H 1—0p ( i.jEM H (1 _p71fsij)f” 7
MeFi(J) ijeS&l)
Us(s; J) = H (1 - p_‘Ml_Zies S(N—1)i~22<i<j<N-2, i,jeM 5“>g(M7S) )
(M,S)eFa(J)

and

Us(s; J) = [] (1—ptmsv-n)™,

ieSSQ)
where Fy (J) is a non-empty family of subsets of J, with J € Fy (J), Fa (J) is a non-
empty family of subsets M x S C J x J, with S C M, Sgl)and SSQ) are non-empty

subsets of T', and the en’s, fij’s, gu,s)’s and the h;’s are positive integers.
Remark 1.19 If|J| =1, then M s(s;1) = p~! (H),l;—psz;_l)i +p— 2).
Proof. To compute M ;(s;1), we proceed as follows. We set
Ty={(i,j) eTxT;2<i<j<N-—25ijeJ}
as before, and for @ = (@;),, € (F)I \ I (J), with
I(J):={ae (F)'a #a;ifi#j, fori, j € Jand @ # 1 for any s € J},
we define

K(a) = {(i,j) € Tr;a; = a;}, KW(@)={(i,j) € Tp;@ =a,; = 1},

and

K(Z)(a) :{Z c J;di =1 andai#as for any (i,S) ETJ}'
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Notice that K" (@) C K(a) and K® (@) N K. (@) = @. Now, we introduce on
(FX)VI\TI(J), the following equivalence relation:

a~b < K(a@) = K(b) and KV(@) = KV(B) and K (@) = K (B).

We denote by A(@) = {b e (F)I'\TI(J);@ ~ b}, the equivalence class defined by
ac (F;)'J INTI(J ) By taking a unique representative in each equivalence class, we

obtain R(J) C (F))/I\ T (J) such that

E) = || A@]| 7)) (1.3.19)

acR(J)

Given a subset K C T with K = {(i1,j1),.- -, (im, jm)}, we define
Kiist = {i1,J15 -+« s b, Jm} © J

as before. With this notation, M j(s;1) equals

Z Z / Hll — [V H | — a7 Hd@.?,zo)

TER(I) bEA@) .y (7, )01 €7 2<i<j<N—2 ieJ
P

i,5€J
S(N—1)i Sij
> [ Mp-ah T1 ol [T
beIl(J) bt (pZy)1 7] ieJ 2§zi<j€§}\f—2 ieJ

= M(s;J,1) + M(s; J,2).
We now use that for each @ € (F))VI\ T (J),
Ty = K(a) UA{(i,j) € Ty @ # a5}

and

J=KN@UK®@{ie J;a#1},

to obtain

H 11— xi’;(N—l)i = H 11— xi’;(N_l)i H 11— wi’;(N—l)i

e ek @) ieK (3 (a)

list
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on b+ (pZ,)"!, and

H |ZL‘Z — l’j ;ij = H |£L‘Z — l‘j ;ij

2<i<j<N-—-2 (i,j)eK(a)
i,j€J

on b+ (pZ,)’l. With J(@) := K@ (a)| | Kis (@), we have

— —1J1-3 _ L S(N—1)i2o(i,j)eK (@) Si
M(s; J,1) = Z ‘A(a)|p et @ur® @ N per@) % (1.3.21)

acr(J)
S(N—1)i Sii
IR IR |
(2,) @ €K @uK® (a) (i.5)eK (@) icJ(@)
= Z |A(ﬁ)‘p 1 ziEKl(ilZ(E)uK@)(ﬁ) S(N=1)i = 2(i,)eK (@) S“X
acr(J)

H |%|;<N*l)i H dx; LéN) <§;Klist(a>7K](ii2 (E),K(E)).

icK()(a icK()(a
(Z )’K(Z)(E)’ €K () (a) i€ (@)
P

Now, by using the partition of K (@) given in Lemma we obtain

LYY <§; Ky (@), Ky (@), K (a)) =L (g; K@), K @), T, .o @> (1.3.22)

N N —
X H Lg ) (§; Klist((%j) ) a’)? TKlist((ivj)va))
(i,))eR@\K M (@)

with the convention that LéN) (s,9,9,9) := 1. Finally,

M(s; J.2) = ) [[dzi=pTI(0)|. (1.3.23)

Beﬁ(J)bJr(pr)m icJ

Hence, formula (1.3.18) follows from (|1.3.20)-(1.3.23) by using Lemma and Re-
mark 171 =
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1.3.2 Computation of Z") (s;1,1)

Proposition 1.20 Let I be a non-empty subset of T'. Then, the integral

s o s
| | |zi—a;1p"
2<i<j<N-2
i,j5€1 Hd .
x; of |I|>2
/ Hhanits(N-1)iTR2< i SN =25 %ij i =
loilp iel

ZW) (51,1 = &'

1 ; _
/|I_|2+51i+3(N—1)i+Z2§j§N2,j7ﬁi sij d‘r’ Zf |I| =1
1

p
\ Zp

converges on the set

{(sij) € C”;Re(s;j) > -1 for2<i<j<N-2,i,j€I} N

{(Sij) € C”;1+ Re(sy; + sv-1y:) + Z Re(si;) <0 forie I} ,
2<j<N-2,j#i

(N)

» (8 1,1) admits an

which is an open and connected subset of CP. In addition, Z

analytic continuation to CP as a rational function of the form

N . _ Ql,l({p_szj;i?j € {177N_1}}>
2SI =T s DS Doz

where Qr1({p~*;i,j € {1,...,N —1}}) denotes a polynomial with rational coeffi-

cients in the variables p=®i, i, j € {1,...,N — 1},

[T+ 256 s (s1its(v-1)i)+ 2 2<i< i< N—2 Sii+H22<i<j <N -2 Sij
Sl <§; ]) = H 1-— p iceJ €T\ J,jeJ
JeH1(I)

where Hy(1) is a family of non-empty subsets of I, with I € Hq(I),

ex
—| IKI=14+220<i<j<N—2 Sij)
So(s; 1) == H H 1—p ( ijEK ’
JCI KeHa(J)
J#D
where Ha (J) is a family of non-empty subsets of J, with J € Hy (J), and the ex’s
are positive integers,

Ss(s; )= ] (0-p"),

JCI ;.- ~(0)
JZ ijeGYy
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where Gf]()) is a non-empty subset {2 <i<j< N —2i,j€ J},

?

Si(s;1) = H (1 — plrsits(v-nitiog N -2 5ia‘>

iec\V

where G(Il) is a non-empty subset {2 <i < j< N —24,j€l}.

Proof. By using the partition Z' = = (pZ,)"' U S; 7l a5 in the proof of Lemma m

and a change of variables, we get

| | joi—51p
2§i<j§N—2
I I‘x 2+911+9(N 1)it2E2< <N —2,j#i Sij II ¢
'L

SlIl el

0 el

zZW) (s;1,1) =

H1+3 e r(s1its(v—1)i) 2 0<i< j <N =2 Sij T2.2<i<j<N—2 5ij
1—p iel ieT<TI,jel
_ Co (§)
HI+2 e (s1its(v—1)i)+2 0<i<j< N—2 Sij T22<i<j<N—2 Sij
1—p icl ieT~T,jel

We now use the partition Sé” = I_IJQI,#@S]]” to obtain

Z Co,s(8),

JCI,J#>
where
|8
[ teol
2<i<j<N—2
COJ dei;
|x.|2+51i+S(N71>i+22§j§N72,j¢isij ,
tlp el
Sl
J i€l
and consequently,
C
0(8) 4%, Cosl(s)

ZW) (s:1,1) = .
(81,1) \I|+Ziez(81i+S(N—1)i)+Z2gz<gSN—QSz‘j+22§i<j§N—2Sij
1—p i€l ierT<T,jel

On the other hand, by using ([1.3.12)), we have Cy;(s) = L(()N) (5,1), and if J G I,

r sii
— J
Mo
2<i<j<N—2
. 1,J€INJ H (N)
CO’J <§) o / 2+s1iF8(N—1)i T2 2<j< N2 Sij dz; o Lg (§’ J)
®Zp)1" H |3l 7 e
ielNJ /
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INTH20 ser s (Stits(v_1)i) +22<i<j<N-2 81512 2<i<j<N-2  Sij
=p ieINJ ETN(INJ).JeINT  w«

.
| | |z~ |p*

2<i<j<N—2

1,7€INJ H d{L‘Z LéN) (ﬁa J)

2hstits(v 1)t o< i< N—2 %)

j £ eI\ J
o | T us ien

eI\ J
UNTIH30 e s(Stits(v_n)) 2 2<icj< N—2 55120 2<i<j<N-2  Sij
—p i€I~NJ €T\ (INJ) jeINT

ZM (5,1~ J 1) LYY (s,).

Therefore
LY (1) + Y pMENZM (51N J 1) LYY ()
(N) (. _ JCI,J#o
Z (ﬁ’ 1 1) 422 5er (stitsv—1))+20<i<j<N—2 Sii T2 2<i<j<N-25ij (1'3'25)
1—p el ieT<Tjel
where
M(s,J) : =[I~NJ|+ Z (515 + S(v—1y:) + Z Sij
ieINJ 2<i<j<N-2
ielNJ
+ Z Sji-

2<i<j<N-2
ieT\(INJ),jelNJ

Notice that in (1.3.25), Z™) (s; I~ J,1) may occur with |1 ~ J| = 1, say I~.J = {i},

in this case Z™) (s;1,1) becomes

1 1—p!
/| dz; = b (1.3.26)

|2+81¢+5(N71)¢+22§j§1\;_2d# Sij 1— p1+31i+5(1\77l)i+z2§j§N_2,j¢i Sij
p

2
P

for Re(s1;) + Re(s(v-1)i) + D ocjen oz Re(si) < —1.
Finally, formula (1.3.25) gives a recursive algorithm for computing Z™) (s; I, 1),
since I\ J & I CT and LéN) (s;1), LéN) (s;J) can be effectively computed, see

Corollary by using this algorithm and ([1.3.26)), we obtain (1.3.24). =

Remark 1.21 Given positive integers N;, © € I C T, v, and complex numbers s; for

1 € I, we notice that the function

of the s; on the half-plane

m gives rise to a holomorphic function
-p

ier NiRe(s;) +v > 0. As a consequence of Proposition
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there exist families 1, T2 of non-empty subsets of T', and a non-empty subset
G of {ij;2<i<j<N—=2/ije€T}, such that all the integrals Z™) (s;1,1) for all

I CT are holomorphic functions of s on the solution set of the conditions:

|J| + Z(Re (s1:) + Re (sqv_1)i)) + Z Re (si;) (C1)

ieJ 2<i<j<N—2
ieJ
+ Z Re (si;) <0 for J € §i;

2<i<j<N—2

€T JjeJ
|K|—1+ Z Re(si;) > 0 for K € §o; (C2)

2<i<j<N-2
INISIIS

1+ Re(si;) >0 forije G C{ij;2<i<j<N-—2}. (C3)

Notice that the condition

1 4+ Re(s1;) + Re(sv_1)i) + Z Re(si;) <0

2<j<N-2,j#i

is included in Condition C1 taking |J| = 1. This fact follows from the following

identities:

§ st E S = E syt E Sij — § sy =

2<i<j<N—2 2<i<j<N—2 2<i<j<N—2 2<i<j<N—2 2<i<j<N—2
ieJjeT €T J e iedjeT ieljeJ i,jeJ

E Sz‘j + E SZ']‘ = E Sij + E Sij + g Sij =
2<i<j<N—2 2<i<j<N—2 2<i<j<N—2 2<i<j<N -2 2<i<j<N—2
ieJjETJ ieTjeJ ieJjETJ ijeJ €T JjeJ

E Sij + g Sij + E Sij = E Sij + g Sij-
2<i<j<N—2 2<j<i<N—2 2<i<j<N—2 2<j<N—2 2<i<j<N—2
i€ jET~J i€JJETJ i,jeJ jAIAETFETJ i,jeJ

Finally, by taking J = {i}, the last formula becomes ) Ja<j<n-2 Si;.

JF

Denote by D;; the natural domain of definition of ZW) (s;1,1), ie. Dy is an
open and connected subset of CP in which Z®) (s;1,1) is holomorphic and there no

exists a larger domain where this property holds.
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Lemma 1.22 Take I to be a non-empty subset of T' and set H; 1(C) to be the solution
set in CP of the following conditions:

1+ Re(s1;) +Re (S(N,l)i) + Z Re (si;) <0, forie 1. (1.3.27)

2<jSN—2,jAi
Then Dy, is contained in Hy1(C).

Proof. Denote by Hy(R) the solution set of (1.3.27) in R”. Set
Re (D[,l) = {Re(sij) S RD; (Sij) S D[,l} .

With this notation, it is sufficient to show that Re (D;;) C Hri(R). In order to
do this, we show that Z™) (3;1,1) diverges to +oo for any 3 € R” < H;;(R). We
prove this last assertion by contradiction. Assume that Z™ (3;1,1) < +oo for
5= (5;) e RP with 5;; >0for2<i<j<N-2 i, j€ I and that 3 ¢ H;(R).
This last condition implies that at least a condition of the form

L+ 350, +3v-nio + Y. 5520 (1.3.28)

2<j<N—2,j#io

for some i € I, holds. Then, from Z™) (3;1,1) < +o0, we have

Il lzi-=

S’L]

P
2<i<j<N-2
. ijel
I(s;A):= —— — Hdmi<+oo
]m-|2+51i+3(N71>i+z2sjgw—2,j¢z‘ Sij <
A tip el

i€l

for any A C ZLI‘. Take
Ay = {(wi)iel € Z/1;|wy,), < 1 and |ai], = 1fori € T~ {@'0}} .

Then, by (1.3.28) and some € > 0,
| ]

2<i<j<N—2
~ ’LJGI\{ZO}
I(s;Ap) = / e Hd%’ = +o00.
|xi0|p iel

Ao
Therefore, if Z™) (3;1,1) < +00, necessarily 3 € Hy;(R). m
Corollary 1.23 If s = (s;;) € RP, with s;; > 0 fori,j € {1,...,N —1}, then
VAR (8;1,1) = 400, for any non-empty subset I of T.
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1.3.3 Computation of ZW) (s;I,0)

Proposition 1.24 Let [ be a subset of T' satisfying |I| > 2. Then, the integral
S14

7 (N) (5;1,0) = / H |z; - xi|;(N—1)¢ H |z — ;n Hd%

1] el 2<i<y<N-2 el
ZP 7”.761

gives rise to a holomorphic function on
Hio:= {(sij) € C”;Re(sy;) >0 fori,j € I} N{(si) € C”;Re(sy;) >0 foriel}
N{(si) € C”;Re(sv-1);)) >0 forie I},

which is an open and connected subset of CP. Furthermore Z;N) (8;1,0) has an

analytic continuation as a rational function of the form
TSl T S(N-Di pTSijig 5 €T
Z(N) (§;]70) _ QI,O({S » D D "5, ) })
E)Ri(ﬁ; I.1) H?:l Ui(s; 1)

Y

where Qo({p~°v,p *W-vi p=%i;q j € T}) is a polynomial in the variables p~—*% ,,
p%i, ptw=ni forq, j €T, Uls;I),i=1, 2, 3 are as in Lemma

Rl(ﬁ; [’ I) _ (1 . p—l—sli)hl ,
Ry(s;1,K) = H (1 — p VI Eier s1imecicisn -2, iges 5”>Z(J’R) )
(J,R)EG2(IXI)
Ro(s;1,1), Go (I x I) are as in Lemma and the l(jr)’s are positive integers.
Proof. By using that Z, = (pZ,)/!l US| we have

ZWN (5;,1;0) = MY (s:1) + MY (s:1) (1.3.29)

where

;u H |sz —

I
D )

MY D= [ [l

sl el zgiigg\f—z iel
M(N) (S'I) . /H|x"51i|1_$“5(N1)i H |x4_x,‘3ij Hda:
2 A=) tp tp ! Jip '

i i€l 2<i<j<N-2 i€l
So i,j€l
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Now, by changing variables and using Lemma witht =1, M §N) (s; 1) equals
—H=22er 51— 209<i< j<N—2 5i

p 1,J€1 / H |{L‘Z ;li H |QZ’z — Ty Zij H dCC'Z (1330)

1] icl 2<i<j<N -2 icl
ZP Z7JGI

—M1=325er 1i=22<i< j< N —2 Sij )
=p Ljel L2 (§7[7]7TI)

To compute MgN) (s; 1), we use the partition S[|)I| = Ll(]g[’]?égs(l][', with
sl — {(xl-)iel el —1eic J} ,

then M gN) (s;1) equals

Z/H]a:i|;”|1—x,;|;<”m T lo—al[[de (331)

JCI 7| i€l 2<i<j<N-2 i€l
J#2S] 1,7€1
= E MJ (§) )
JCI
J#

where

M, (s) = / H |zl H v — 7 H 1 — ] (V707 %

gy E€INI 2<i<j<N-2 ieJ

I i jEINJ
Sij S14
M eopTle- [ Tl T s

Sij
p H da;

2<i<j<N -2 iel ieINJ 2<i<j<N -2 ielINJ
i,jE€J ()17 ijEINJ
S(N—1)i Sij — . .
X / |||1—J}Z|p( i || |ZL‘i—l'jp”||de‘i .—M[\J(§,O)MJ(§,]_).
icJ 2<i<j<N -2 iceJ
(Zp)V! ijeJ

We notice that if J = I, then, by convention, M ;_;(s;0) = 1. Now suppose that
J G I. From Lemma with t = 1, we have

*|I\J|*ZieI\J511‘*22§i<j§N_2 Sij

M.y (8;0) =p el L\ (s T~ J T~ J,Tr ). (1.3.32)

The announced result follows from formulas ([1.3.29))-(1.3.32)), and M ; (s;1) by using
Lemmas [.LIGHI.I8 and Remark [.19 m
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Remark 1.25 As a consequence of Proposition all the integrals VAL (s;1,0)
for all I C T are holomorphic functions of s on the solution set in CP of the
following conditions:
]+ ZS Re(su) +D ) oy, Relsy) >0 for Tx S s, (Ch)
1€
with S C J, t € {1, N — 1},and F3 a family of non-empty subsets of I x I;
|K|—1+ Z Re(si;j) > 0 for K € 3y, (C5)
2<i<j<N—2
ijEK

where §4 s a family of non-empty subsets of I;
1+ Re(s;;) > 0 forij € H, (C6)

where H is a non-empty subset of {2<i1<j < N—2,4,j€ J} with (N—1)i, li €
H.

Remark 1.26 [fs = (O)ij fori, je{l,...,N —1}, then Z™ (0;1,0) = 1, for any
non-empty subset I of T.

Definition 1.27 Denote by H(R), respectively by H(C), the solution set of condi-
tions C1-C6 in RP, respectively in CP.

1.3.4 Main Theorem

To show the holomorphy of the N-point zeta function Z®) (s), we need to show
that the intersection of all of the domains where all of the functions Z®) (s;1,0),
zZW) (s;1,1) are holomorphic contains a connected open subset of C”. This allows

to use the principle of analytic continuation.

Lemma 1.28 Consider the following conditions:

|J| + Z(Re (Sli) + Re (S(N—l)i>) + Z Re (Sij) (C’l)
icd 2<i<j<N—2
ieJ
+ Z Re(s;;) <0 for JCT, |J| > 1,

2<i<j<N—2
€T TJje]
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|J| =1+ Z Re(si;) >0 for JC T, |J| > 2; (C'2)
2<i<j<N—2
ijed
|J| + XS: Re<5ti) + Z2§i<j§N*2, e Re<8ij> >0 (C 3)
(S

fort e {I,N -1}, Jx SCT xT with |J| >2or |S|>1,5CJ;

1+ Re(sy;) >0 forij € {(i,j);1<i<j<N-—1}. (C4)

Denote by Hy(R), respectively by Ho(C), the solution set of conditions C’1-C’4 in
RP, respectively in CP. Then Hy(R) is conver and bounded set with non-empty

interior, and Hy(C) contains an open and connected subset of CP. Furthermore,

Ho(R) € H(R) and Hy(C) C H(C).

Proof. We first notice that for all N > 4, the solution set Hy(R) is an open convex
set because it is a finite intersection of open half-spaces.

Claim Hy(R) is a non-empty bounded subset. We consider the case N > 5
in which |T] > 2. Set N, = Y23 We define, for i,j € {2,.., N — 2}, the

following conditions:

2
__c g "1
3N, < Re(s;;) <0, (C’1)
2 1
—g < Re(su) < —5, (C”Q)
_2 < Re(sy_1) < — (C73)
3 E\S(N-1)i 9"

We notice that the solution set of conditions C”1-C”3 is a non-empty open and
connected subset in RP. We now verify that the conditions C”1-C”2 imply conditions
C’1-C’4. First, consider J C T such that |J| = 1. We can assume that J = {io} for

some 7y € T. By conditions C”1-C”3, we have
1+ Re (s13,) + Resy_1yi < 1—1/2—1/2 =0, (1.3.33)

Z Re (s4,5) + Z Re (si,) <0, (1.3.34)
2<ip<j<N-2 2<i<ip<N—2,
i€T\J
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thus, C’1 follows from (|1.3.33]) and (({1.3.34). Conditions C’2, C’3 and C’4 follow
directly from C”1-C”3.
We now consider J C T such that |J| > 2. Condition C’1 is obtained with a

similar calculation to (|1.3.33)) and (1.3.34)). Now, by condition C”1, we get

2 5)
1| — 1+ > Re(sij) > [J] = 1= 2 > |J] = 5 >0,

3
2<i<j<N-2,1,j€J

which implies C’2. We now verify Condition C’3. Let t € {1, N — 1}, by using
conditions C”2 and C”3,

7]+ ) " Re(s) + > Re (s4)

€S 2<i<j<N-2, i,5€J
SR -
2 2
> |7 - 218] - <.
> |- s

There are two cases. First, [S| = 1. In this case |J| — 2|S| — 2 > 0. If |S] > 2, by
using 57 |S| — 3 > —|S| and |J| > |S], then |J| — 5[S| - 2 > |J] — [S| > 0.

Finally, conditions C’4 follows from conditions C”1-C”3. Therefore, Hy(R) is
convex and bounded set with non-empty interior, and Hy(C) contains an open and
connected subset of C”. Finally, since conditions C’1-C’4 imply conditions C1-C6,
we conclude that Hy(R) C H(R) and that Hy(C) C H(C).

In the case N =4, |T'| = 1, the verification of the claim is straightforward. m

Theorem 1.29 (1) The p-adic open string N-point zeta function, Z (N) (8), gives
rise to a holomorphic function on H(C), which contains an open and connected subset
of CP. Furthermore, Z™N) (s) admits an analytic continuation to CP, denoted also as
ZW) (8), as a rational function in the variables p~*i i, 5 € {1,..., N — 1}. The real
parts of the poles of Z™) (8) belong to a finite union of hyperplanes, the equations
of these hyperplanes have the form C1-C6 with the symbols ‘<’, >’ replaced by =".
(2) If s = (si;) € CP, with Re(s;;) > 0 fori,j € {1,...,N — 1}, then the integral

p-adic open string N-point zeta function ZWN) (s) = +oo.
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Proof. (1) We recall that

ZM(8)=> ZM (1) =) pM"9ZM (51,002 (T 1,1),  (1.3.35)

Icr Icr
see Remark [I.6. Now, by Propositions [[.20H1.24] and Lemma [I.28] for any I C T,
ZW) (s:1,0) and Z™) (s;T ~ I,1) are holomorphic functions of s € Hy(C), which
is an open and connected subset, and consequently the analytic continuations of
the integrals Z®™) (s;71,0) and Z®) (s; 7~ I,1) and formula give rise to an

analytic continuation of Z™) (s) with the announced properties.

(2) It follows from formula (1.3.35) by Corollary and Remark (1.26 m



Chapter 2

p-adic string amplitudes in the

limit p approaches to one

In this chapter we use the theory of topological zeta functions introduced by Denef
and Loeser in [21], to define topological open string N-point tree amplitudes, which
should be string analogues of the topological zeta functions. This chapter is organized
as follows. In Section 2.1 we introduced some aspects of the non-Archimedean local
fields. In Sections [2.2] we generalized the results obtained in Chapter [1 to
the case of the unramified finite extensions of any non-Archimedean local field of
characteristic zero and we define the p-adic string amplitudes over these extensions.
In 2.4 we summarize some results used to define the topological zeta function in
the multivariate case. In 2.5 we define the topological open string N-point zeta
functions and the topological open string N-point tree amplitudes. Finally, in
we give the calculation for N = 4,5 of the topological N-point zeta function and

topological N-point amplitude.
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2.1 Non-Archimedean local fields

A non-archimedean local field K is a locally compact topological field with respect

to a non-discrete topology with an absolute value ||, satisfying
|z +y|, < max{|z|,,|y|;} for z,y € K,

i.e. || is ultrametric. For an in-depth exposition, the reader may consult [64], [55],
see also [1], [63].
Let K be a non-Archimedean local field of arbitrary characteristic and let Ok be

the ring of valuation of K,
Ok ={r e K: |z|gx <1},

and Pk the maximal ideal of Ok; this ideal is formed by the non-units of Of. In

terms of the absolute value | - |, this maximal ideal can be described as
Py ={ze K : |z|]x <1}.

Let K = Ok / Pk the residue field of K. Thus K= IF,, the finite field with ¢ elements.
Let m be a fixed generator of Pk, m is called a uniformizing parameter of K, then
Pr = 1O . Furthermore, we assume that |7|x = ¢~!. For z € K, ord(z)€ ZU{+oc}
denotes the valuation of z, and |z|x = ¢~"4®). If z € K\ {0}, then ac(z)=zr ")
denotes the angular component of z.

The natural map Ox — Ok/Pk ~ F, is called the reduction mod Pk, and it
will be denoted as . We fix & C Ok a set of representatives of F, in Ok, i.e. G is
mapped bijectively into F, by the reduction mod Px. We assume that 0 € &. Any

non-zero element x of K can be written as

z = gord@) Zxﬂri, z, € 6, and zy # 0.

=0

This series converges in the norm || .
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Example 2.1 We now fix a prime number p. A basic example of non-Archimedean
local field is the field of p-adic numbers Q,, which is defined as the completion of the

field of rational numbers Q with respect to the p-adic norm |- |,, which is defined as

0 if £=0
|z], =
p7 i x=pY,
where a and b are integers coprime with p. The integer v := ord(zx), with ord(0) :=

+00, s called the p-adic order of x.

Any non-Archimedean local field K of characteristic zero is isomorphic (as topo-
logical field) to a finite extension of Q,, the field of p-adic numbers. In this case we
say that K is a p-adic field. In case of positive characteristic, K is isomorphic to
a finite extension of the field of formal Laurent series F, ((7)) with coefficients in a

finite field F, with ¢ elements.

Remark 2.2 As we mentioned above, any finite extension of Q, is a non-Archimede-
an local field. Let K. denote the unique unramified extension of Q, of degree e, with
7 a local uniformizing parameter of K.. Then pOg, = 7Ok, and Ok, /Pk, ~ Fp.

Notice that |r|, = p~°.
We extend the norm ||, to K™ by taking

|||l = lrgza<}7<1|xi];<, for ¢ = (zq,...,2,) € K".

We define ord(z) = mini<;<,{ord(z;)}, then ||z||x = ¢ °"¥®). The metric space
(K™, || - ||x) is a complete ultrametric space.

For r € Z, denote by B'(a) = {x € K";||x — a||x < ¢"} the ball of radius q"
with center at a = (ay,...,a,) € K", and take B"(0) := B. Note that B!'(a) =
B,(a1)x-+-x B,(ay), where B,.(a;) := {x € K;|x;—a;|x < ¢"} is the one-dimensional
ball of radius ¢" with center at a; € K. The ball B equals the product of n
copies of By = Ok. In addition, B"(a) = a + (7 "Ok)". We also denote by
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Sta) = {x € K" ||z — al|x = q"} the sphere of radius q" with center at a € K",
and take S(0) := S™. We notice that S} = Oy (the group of units of Ok), but
((’)[X()n C Sy, for n > 2. The balls and spheres are both open and closed subsets in
K". In addition, two balls in K™ are either disjoint or one is contained in the other.

As a topological space (K", || - || x) is totally disconnected, i.e. the only connected
subsets of K™ are the empty set and the points. A subset of K™ is compact if and
only if it is closed and bounded in K™. The balls and spheres are compact subsets.

Thus (K™, || - ||x) is a locally compact topological space.

2.2 p-adic String Zeta Functions

In this section, we review the main result of our publication [8]. In this article the
results were stated over @, but they are still valid in K., the unique unramified
extension of Q, of degree e. We fix an integer N > 4. To each pair (7,j) with
i,j € {1,...,N — 1} we attach a complex number s(; ;) such that s; ;) = s(;). To
simplify the notation we will use ij, respectively s;;, instead of (i, j), respectively,

instead of s(; j). Weset T:={2,...,N =2}, D = W—i—Q(N—i%) and CP as
{s;jeCiie{l,N—-1},5€T} if N=4

{sy€Ciice{Il,N—1},jeTorijeT withi<j} if N>5.

We set s = (s;;) € CP, & = (22,...,an-2) € KX 73, and

N-2
F(s, ;N Ko) = [ el 1=l &0 T e —wlil
=2 2<i<j<N—2
Definition 2.1 The open string N-point zeta function is defined as
N-2
ZW (s, K.) = / F (s, 2N, K.) [ da (2.2.1)
=2

K573\A
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for s = (si;) € CP, where

A::{(xg,...,xN_g)GKéV_g‘;Hxi(l—xi) H (xi—mj):O}

i=2 2<i<j<N—2

and HZ]\;Q dz; is the Haar measure of K~ =3 normalized so that the measure of (’)%;3

15 1.

Notation 2.2 (i) The cardinality of a finite set A will be denoted as |A|. (ii) We
will use the symbol | | to denote the union of disjoint sets. (iii) Given a non-empty

subset I of {2,...,N — 2} and B a non-empty subset of K., we set
Bl = {(2;);c; ;7 € B} .

(w) By convention, we define [,y - =1, Y e, =0, and if J = @, then [, - =
1. (v) The indices i, j will run over subsets of T', if we do not specify any subset, we

will assume that is T

Let p® the cardinality of the residue field K., see Section . We define for I C T,

the sector attached to I as
Sect(I) = {(za,...,xn_2) € K} 7% |zl <1 ©iel}

and
N—2

2V (si1K) = [ FlsaNK) [] o

Sect(I) =2

Then Z™) (s, K.) = 3,0, Z™) (51, K.) . In addition, we have
ZM (s, K) =) pMIZW (51,0, K) 2N (T 1,1,K.,), (2.2.2)
ICT
where

M(s):= TN+ D (sutsyun)+ Y, si+ Y, sig

i€T~T 2<i<j<N—2 2<i<j<N—2
ieTI,jeT iel,jET~T
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and
N . _ .
Z( )(§71707Ke) - /FO (SamaN7Ke)dei
el
1] 1€
OKe
where
. L S14 S(N—-1)4 Sij
Iy (s, z; N, K.) —H\HIZ k. 11— Tilg, H | — 2k,
el 2<i<j<N -2
i,j€1
and
o0
I -l
2<i<j<N—2
N) 1,jETNI
ZW (s: TN 1,1,K,) = da;.
(—’ » e) 2+s1it8(N—1)i T2 o< j<N—2,j£i Sid ] !
o7~ 11 |:C, K. ieT~1

Ke  jer~I

By convention ZW) (s;2,0,K.) =1, ZW (s; 2,1, K.) = 1. In [§] we showed that
Z™) (s, K.) has an analytic continuation to the whole CP as a rational function in the
variables p~©%i. More precisely, we showed that all functions appearing on the right-
hand side of formula admit analytic continuations to the whole C? as rational
functions in the variables p~¢%7, and that each of these functions is holomorphic on
certain domain, and that the intersection of all of these domains contains an open and
connected subset of C”, which allows to use the principle of analytic continuation. In
Propositions and[1.24]in Chapter[I], we gave algorithms for computing recursively
the integrals ZW) (s;1,0,K.), Z™) (s;7 ~ I,1, K.). These algorithms reduced the
calculation of any of these integrals to the calculation of certain integrals in one or
two variables, that can be computed directly. These simple integrals are rational

functions in the variables p~¢*7 with possible poles depending on combinatorial data

but not on the residue field of K..

Remark 2.3 As a consequence of Proposition 1 in [8] there exist families §1, §2 of
non-empty subsets of T, and a subset G of {1j;2 <i < j < N —2,i,j € T} such that
all the integrals Z™) (s;1,1,K.) for all I CT are holomorphic functions of s on the
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solution set of the conditions:

|J| + Z(Re (s1:) + Re (sqv_1)i)) + Z Re (s45) (C1)

icJ 2<i<j<N—2
icJ
+ Z Re (si;) <0 for J € §i;

2<i<j<N-2

€T\ J,jeJ
M| =1+ > Re(sy) >0 for M €y (C2)

2<i<j<N—2
iJEM

14+ Re(s;) >0 forije G C{ij;2<i<j<N-—2}. (C3)

The sets §1, §2 and G do not depend on K,.
Remark 2.4 As a consequence of Proposition 2 in [§] all the integrals
zZ™M (81,0, K.)

for all I C T are holomorphic functions of 8 on the solution set in CP of the following
conditions:
]+ ZS Re(su) +D ) oy, Relsy) >0 for Tx S s, (Ch)
1€
with S C J, t € {1, N — 1},and F3 a family of non-empty subsets of I x I;
M| =14+ ) Re(sy) >0 for M € 3, (C5)
2<i<j<N—2
ijEM

where §4 s a family of non-empty subsets of I;
1+ Re(s;;) > 0 forij € 9, (C6)

where $) is a non-empty subset of {2 <i<j< N —2, 4,j € J} with (N —1)i, 1li €
9.
The sets §3, §4 and $H do not depend on K.,.

Remark 2.5 If s = (0),; fori, j € {1,...,N — 1}, then Z™ (0;1,0,K.) = 1, for
any non-empty subset I of T.
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Definition 2.6 Denote by H(R), respectively by H(C), the solution set of conditions
C1-C6 in RP, respectively in CP.

Due to the method used to calculate the main result in [8], we can extend our
results to the non-Archimedean local fields of characteristic zero. The following

theorem is a generalization of this fact.

Theorem 2.7 ([8, Theorem 1)) (1)The open string N -point zeta function,

ZW) (s, K.), gives rise to a holomorphic function on H(C), which contains a non-
empty open and connected subset of CP. Furthermore, Z®) (s, K.) admits an an-
alytic continuation to CP, denoted also as Z (V) (s, K.), as a rational function in
the variables p=%9 i, j € {1,...,N — 1}. The real parts of the poles of Z™) (s, K.)
belong to a finite union of hyperplanes, the equations of these hyperplanes have the
form C1-C6 with the symbols ‘<’, >’ replaced by =". (2) If s = (s;;) € CP,
with Re(s;;) > 0 fori,j € {1,...,N — 1}, then the integral open string N-point zeta
function ZWN) (s, K.) = +oc.

2.3 p-Adic String Amplitudes

The open string N —point tree amplitudes over K, are defined as

AN (k, K.) (2.3.1)
N-2 N—2
o kik; 1 kn_1k; kiki d
= | R T e =l I das,
=2 2<i<j<N—2 =2

KN-3

where [[Y,? dz; is the normalized Haar measure of KN=3,
E:(kl,...,k]v), kz: (]{Z07i,...,k25’i), izl,...,N, N24,

(Wlth Minkowski product klkj = _kO,ikO,j + kl,ikl,j + 4 k25,ik25,j) obeying

N
> ki=0,kik;=2fori=1,... N
=1
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In this case, it is a central problem to know whether or not integrals of type (2.3.1))
converge for some values k;k; € C. Theorem allows us to solve this problem.
We take the open string N-point tree integrals Z™) (s, K.) as regularizations of

the amplitudes A (k, K,). More precisely, we define

AN (g K,) =2ZWN (s, K,)

siy—kie, Withi € {1,... ., N—=1},jeTori,jeT,

where T' = {2,..., N — 2}. By Theorem , AW (E, K.) are well-defined rational
functions of the variables p=<*i i j € {1,..., N — 1}, which agree with integrals
(2.3.1) when they converge. This definition allows us to recover all the calculations

made in [I5] and other similar publications.

2.4 Igusa zeta functions and topological zeta func-

tions

In this section we present some results, which are variations of well-known results,

that we will use to define the topological string amplitudes.

2.4.1 Multivariate local zeta functions

Let K be a non-Archimedean local field and let f be a polynomial mapping f =
(fi,--.,fr) + K™ — K" such that each f;(x) is a non-constant polynomial in
Klzy,...,x,),1=1,..,r. Let ® a Bruhat-Schwartz function and let s = (s1,...,s,) €

C". The multivariate local zeta function associated to ® and f is defined as

Za(s, f,K) = / o) [ i@l

Kn\DK
This integral defines a holomorphic function of (si,...,s,) in the half-space
Re(s;) > 0, ¢ = 1,...,r. In the case of characteristic zero and r = 1, this asser-

tion corresponds to Lemma 5.3.1 in [39]. For r > 1, we recall that a continuous
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complex-valued function defined in an open set A C C”, which is holomorphic in
each variable separately, is holomorphic in A. In the case of the p-adic fields, the
multivariate local zeta functions admit analytic continuations to the whole C" as

rational functions in the variables ¢=*, i = 1,...,r, see Theorem [47].

Notation 2.1 If ® is the characteristic function of O} we denote Z(s,f,K) by
ZCIZ'(Svf,K)'

2.4.2 Embedded resolution of singularities

In this subsection L is an arbitrary field of characteristic zero and f;(x) € L [z],
x = (x1,...,2,) be a non-constant polynomial for i = 1,...,r. Put X = Spec
L[] (the n-dimensional affine space over L), D = Spec L[z]/(I]_, fi(x)) (the
divisor attached to the polynomials fi,...,f.). (the divisor attached to polynomials
fi, - fr). An embedded resolution of singularities for D over L consists of a pair
(Y, h), where YV is a smooth algebraic variety (an integral smooth closed subscheme
of the projective space over X ), and the morphism h : ¥ — X is the natural
map, which satisfies that the restriction i : Y\h™! (D) — X\ D is an isomorphism,

and the reduced scheme (h~! (D)), , has only normal crossings, i.e. its irreducible

red
components are smooth and intersect transversally.

Let E;, i € T, be the irreducible components of (h~* (D)), For each i € T, let
N;; be the multiplicity of £; in the divisor f; o h on Y, and v; — 1 the multiplicity
of F; in the divisor h* (dzy A ... Adz,). The (N, ..., Ny, v;), @ € T, are called the
numerical data of the resolution (Y, h). For i € T and I C T we define

E=E~JE, E =B, E=E~ |J E.

j#i iel JET~I

IfI=0,weput By =Y.

Theorem 2.2 (Loeser, [47, Theorem 1.1.4]) Let K be a p-adic field. The local

zeta function Zg (s, f,K) admits a meromorphic continuation to the whole C" as a
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—Sp

, more precisely,
P(g =, ...,q %)
I (1 — g Ei= Niij)

1€l

rational function of ¢~°',... q

Z<1> (37 f?K) = )
where P is a polynomial in the variables ¢~*', ..., g~ and the real parts of the poles
of Zs (s, f,K) belong to a union of hyperplanes of the form
v; + ZNine(Sj> = O, 1€T.
j=1

The following theorem is a variation of Theorem 3.1 in [17].

Theorem 2.3 (Denef) Let fi(x) € Zlz], = (x1,...,2,), be a non-constant
polynomial for i = 1,...,r. We assume that f;,(x) € F,[z]\ {0} for almost all
prime numbers p. Let (Y, h) be an embedded resolution of singularities for D = Spec
Qlz]/ (II—, fi(z)) over Q, with numerical data {(Ny1,. .., Ny, v;);i € T}. Then,
there exists a finite set of primes S C Z such that for any non-Archimedean local

field K D Q with Px NZ ¢ S, we have

(¢—1) g Vi 2= N

O R R D S ] | B (24.1)
IcT i€l
where ¢ = q (K) denotes the cardinality of the residue field K and
ci(K)=Card{a€Y (K);a€E; (K)=icl}. (2.4.2)

Here = denotes the reduction mod Py for which we refer to [17, Sec. 2].

2.4.3 Topological zeta functions

For any scheme V' of finite type over a field L C C, we denote by x (V') the Euler
characteristic of the C-analytic space associated with V. Let f;(z) € Qlz|, z =
(z1,...,x,), be a non-constant polynomial for i = 1,...,r. To [[._, fi(z) Denef and
Loeser associated the topological zeta function

Ziop(s) = 3" x (E1> I~ Z;_l Vo (2.4.3)

IcT i€l
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where the notation is an in Section for a resolution of D over Q. We mention
that in arbitrary dimension there is not a canonical way of picking an embedded
resolution of singularities for a divisor. Then, it is necessary to show that defin-
ition is independent of the resolution of singularities chosen, this fact was
established by Denef and Loeser in [47]. By using the explicit formula (2.4.1)-(2.4.2)),

Denef and Loeser showed that
Ziyy (8) = lin%Z (s,f,K.), (2.4.4)

where K, is the unramified extension of Q,, of degree e. The limit e — 0 makes sense
because one can l-adically interpolate Z (s, f, K.) as a function of e. This means
that there exist k € N\ {0} and a meromorphic function in the variables e and s,

Z,(s,f,e) on Z; x Z] such that for any s € Z" and e € N holds

Z (s,f,e)=Z (s, f,K.).
In particular
lim cr(Ke) = Xe (EOI ® er,Qz) =X <EOI> ;
for almost all p, where x, denotes the Euler characteristic with respect to [-adic

cohomology with compact support, and F. denotes an algebraic closure of ..

Remark 2.4 The uniqueness of the topological zeta function Z,,, (s) follows from
the theory established in [58], which is a generalization of the theory of topological

zeta functions given by Denef and Loeser to the multivariate case.

Theorem 2.5 If p is a pole of Z,,, (s), then for almost all p there exists infintely
many unramified extensions L of Q, for which p is a pole of Z (s,f,L).

2.5 Topological String Zeta Functions and Topo-
logical string amplitudes

Since Z™ (s;1,0,K,) and ZW) (s; T\ I,1,K,) are ‘both’ multivariate local zeta
functions of type Z (s, f, K.) for suitable f, for any I C T = {2,.., N — 3} we can
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apply (244), to define

Z\"M) (s:1,0) := lim Z™) (s;1,0,K.) and

top

ZM (s; T 1,1) —lin%Z(N)(gT\I,l,Ke),

top
which are elements of Q (s;;,4,j € {1,..., N —1}), the field of rational functions in
the variables s;;, 7,7 € {1,..., N — 1}, with coefficients in Q. Then by using (2.2.2)
we define the open string N-point topological zeta function as
Z) (5) =Y Z) (s:1,0)Z4) (8T~ 1,1) € Q545,05 € {1,...,N —1})

ICT
(2.5.1)

Now, by applying Theorems l l we obtain that the possible poles of pr (s)

belong to a finite union of hyperplanes. Formally we have the following result:

Theorem 2.1 The open string N -point topological zeta function Ztop (s) is a ra-
tional function from Q (Si]‘,i,j €{l,...,N —1}) defined as (2.5.1). The real parts
of the possible poles of zW top (_) belong to a finite union of hyperplanes, the equations
of these hyperplanes have the form C1-C6 with the symbols ‘<’, >’ replaced by ‘=

Definition 2.2 We define the topological string N-point tree amplitudes as

Al (k) = Zi3)) (s)

top top

siymkeie; With i € {1,... N —1},j €T ori,jeT,

where T = {2,..., N — 2}, which are rational functions of the variables k;k;.

2.6 The four and five-point topological zeta func-
tions

For a prime number p, let K. be the unique unramified extension of Q, of degree e,
let Ok, denote the valuation ring of K, and Py, its unique maximal ideal. Then

K. 2 F,e the finite field with p® elements. Thus,

i 1—p¢ 1
elgcl)p (si) —1 1 + 8ij
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Let
E:(kl,...,k]\[)7 ki:(k(),iw--;kQB,i)’ izl,...’N, N24,

(Wlth Minkowski product klkj = _kO,ikO,j + kl,ikl,j + 4 k25’ik25’j) obeying

N
> ki=0, kik;j=2fori=1,... N

i=1
With the algorithms introduced in Chapter [1| and the relations between kis we
compute the open string N-point topological zeta functions and the topological string

N-point amplitudes for N =4, 5.

2.6.1 Topological string 4-point tree amplitudes

In this section, we compute the open string 4-point topological zeta function, which

is defined as

Z(4)(§,Ke):/ 2|32 |1 — 22|32 das.

e

By using formulas [1.3.2} [1.3.3] with I C T = {2}, we have

B R el M e
Ok, Ok,

= ZW(s{2},0,K.)Z2"(s;{@},1, K.) +

pettstsn) 7 (s 1o 0, K,)ZW(s;{2},1, K,).

Recall that ZW(s; {@},1,K.) =1, ZW(s;{2},0,K.) = 1.
By using the algorithms given in Propositions [1.20] [1.24] and Theorem [2.7], we

obtain

(1 - p—e) pe(—l—slg) (1 o p—e) pe(—1—332)
1 _ pe(flfslg) + 1 _ pe(717832)
(1 _ p—e) pe(1+812+832)

ZW(s;{2},0,K.) = 1—2p°+

Z(4) <§7 {2} s ]_, K@) = 1 N pe(1+512+832)
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Applying the limit when p approaches to one,

1 1
ZW(s: {2}y .0) = —1
top( {} ) +812+1+832+1
1
ZW (s {21 1) = -
top( { } ) 812+832—|—1
and
1 1 1

Zﬁﬁé(é) =1+

+ + )
s+ 1 sza+1  s;p+832+1
By using the relation k; + ... + k4 = 0 and kf =2 weget 1+ kiks + ksks =

—1 — ksky, thus the topological string 4-point tree amplitude
4) 4
Aig(k) = Zj,)(k)

1 1 1
P ks b1 Kaky+ 1 Fakst 1

2.7 Topological string 5-point tree amplitudes
The open string 5-point topological zeta function is defined as
205, K) = [ loaliloali2 |1 = w21 - aaliles — ol dradzs

The sector attached to I C T = {1,2} is defined as

Sect(I) = {(x2,23) € K2 : |z, =1 <= i€ 1}.

I Ic Sect(I)

{2} | {3} | Ok xK\Og,

{3} | {2} | KOk, x Ok,
{2,3} | @ Ok, x Ok,

o 42,3} | K\Ok, x K\Og,

Then, the open string 5-point topological zeta function equals

Z3) ()= Zi (81,0025 (T~ 1,1)

ICT
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where
() (. (N) ( o
1 Ztop(§a-[70) Ztop <§,T\I,1)
1 1 o 1
{2} 1+ 1+s12 + 14542 1+s13+543+523
1 1 o 1
{3} 1+ 1+s13 + 14543 1+s12+842+523
1 1 1 1
[1+S12 + 1+s13 + 14523 1] 2+s12+513+523
1 1 1 1
+1+812 [14-543 1] + 14513 [1-&-542 1} + 1
{2,3}
o 1 1 1
14523 1+s42 14543
1 1 1 1
2+s42+s43+523 "1+842 - 14543 - 14523 -‘
1
2+s52+553+523
o 1 1 1
{ } 1+s12+542+523 1+s13+s43+523
1
+1+523 1

Thus, the topological string 5-point tree amplitude is

(5) _ 1 1 1 1 1 1
AtOP(l—{) - [1+k1k2 + 1+kaoks 1] [_ 1+k3k5:| + [_ 1+k2k5} |:1+k1k3 + 1+ksks 1} +

1 1 1 1 1 1 _
|:1+k1k2 + 1+k1ks —l— 1+koks 1:| 1+kyks + 1+k1ko |:1+k4k3 :| +

1 1 1

1 1 _ _
1+ki1ks |:1+k:4k:2 1] + 2 1+koks 1+ksko 1+k4k3+

1 1 1 1 o o
1+ki1ks |:1+k4k2 + 1+kqks + 1+koks 1]

1 1 1 1 o
1+k1ky |:1+k5k2 + 1+ksks + 1+koks 1:| :




Chapter 3

Local zeta functions for rational

functions and Newton polyhedra

In this chapter, we introduce a notion of non-degeneracy with respect to certain
Newton polyhedra for polynomial mappings over non-Archimedean locals fields of
arbitrary characteristic. Furthermore, we use this non-degeneracy to define non-
degenerate rational functions over the same class of local fields. This definition allows
us to study the local zeta functions attached to non-degenerate rational functions, we
show the existence of a meromorphic continuation for these zeta functions as rational
functions of ¢~*, and give explicit formulas. In contrast with the classical local zeta
functions, the meromorphic continuation of zeta functions for rational functions have
poles with positive and negative real parts.

In Section we compute some integrals that are needed in the chapter. In
Section we review some basic aspects about polyhedral subdivisions and Newton
polyhedra, we also introduce a notion of non-degeneracy for polynomials mappings.
It seems that our notion of non-degeneracy is a new one. In Section [3.4] we study
the meromorphic continuation for multivariate local zeta functions attached to non-

degenerate mappings.
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3.1 Multivariate local zeta functions

A non-archimedean local field K is a locally compact topological field with respect

to a non-discrete topology with an absolute value ||, satisfying
|z +y|, < max{|z|,,|y|x} for z,y € K,

i.e. || is ultrametric. For an in-depth exposition, the reader may consult [64], [55],
see also [1], [63].
Let K be a non-Archimedean local field of arbitrary characteristic i.e. a finite

extension of Q, or F, ((¢)), and let Ok be the ring of valuation of K,
O :={reK: |z|g <1},

and Pk the maximal ideal of Ok; this ideal is formed by the non-units of Of. In

terms of the absolute value | - |, this maximal ideal can be described as
Py ={re K: |z|]x <1}.

Let K = Oy / Pk the residue field of K. Thus K= IF,, the finite field with ¢ elements.
Let m be a fixed generator of Pg, 7 is called a uniformizing parameter of K, then
Pr = 1O . Furthermore, we assume that |r|;x = ¢~!. For z € K, ord(z)€ ZU{+oc}
denotes the valuation of z, and |z|x = ¢~"4?). If 2 € K\ {0}, then ac(z)=zr ")
denotes the angular component of z.

With the above notation, let h = (hy,...,h,) : K" — K" be a polynomial
mapping such that each h;(x) is a non-constant polynomial in Ok [x]\7Ok[z], =
(x1,...,2,) and 7 < n. Let s = (s1,...,s,) € C". We define the multivariate local

zeta function attached to (s, h) as

Zs= [ [l
On\Dy =1

for Re(s;) > 0 for all i, where Dg = Ucqi,.p {x € K" hi(z) = 0}. The mul-

,,,,,

diII|K

tivariate local zeta functions were studied by Loeser in the case of local fields of
characteristic zero. He showed that they admit analytic continuations to the whole

C" as rational functions of the variables ¢~%, i =1,...,r, see Theorem [47].
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Notation

Along this chapter, vectors will be written in boldface, so for instance we will write
b := (by,...,b;) where [ is a positive integer. For polynomials we will use =
(1,...,2,), thus h(x) = h(zy,...,z,). For each n-tuple of natural numbers k =
(k1,...,kn) € N, we will denote by o(k) the sum of all its components i.e. o(k) =
ki + ko + ...+ k,. Furthermore, we will use the notation |dx|x for the Haar measure
on (K™, +) normalized so that the measure of O}% is equal to one. In dimension one,
we will use the notation |dx|x.

By  we mean the image of an element of O} under the canonical homomorphism
Ok — Ok /(mOk)" = Fy, we call T the reduction modulo 7 of z. Given h(x) €
Ok|r1,...,2,], we denote by h(z) the polynomial obtained by reducing modulo 7
the coefficients of h(x). Furthermore if h = (hy,...,h,) is a polynomial mapping

with h; € Okl[zy,...,2,] for all 4, then b := (hy,...,h,) denotes the polynomial

mapping obtained by reducing modulo 7 all the components of h.

3.2 Some m-adic integrals

Let K be a non-Archimedean local field of arbitrary characteristic. Before we
prove the meromorphic continuation of Z(s,h) as a rational function we present
here some result that will be used later on. With the notation in Section let

h = (hi, ha, ..., h,) be a polynomial mapping as above. For a € (O )", we set

Ju(s,h) = / [T (e

a+(mOk)"\Dg

where Dk := Ujeqr,.. .y {x € K™ hi(x) =0}, s = (51,...5,) € C" with Re(s;) > 0,

s
K

1=1,...,7.

The Jacobian matrix of h at a is Jac (h, a) = [gﬁj (a,)} L<icy With r < n. In a
_ 1<j<n
similar way we define the Jacobian matrix of h at @. For every non-empty subset [
of {1,...,r} weset Jac (h;, @) := [8—7” (E)] e

8£Ej
1<j<n
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Lemma 3.1 Let I be the subset of {1,...,r} such that h;(@) =0 < i € I. Assume
that a ¢ Dy and that Jac (h;, @) has rank m = Card(I) for I # @. Then Jo(s, h)

equals

q " if =9

—1)g~1—si .
g1 i T4 e

iel
Proof. By change of variables we get

T

Jals k) =g / [ 1hi(ra + o)l

S4
K
=1

d$|K.

O%~\Uiequ,...,rp{z€K™;hi(rx+a)=0}

.....

We first consider the case I = @. Then h;(a) # Omod, thus |h;(7z + a)|x = 1,
and Ju(8,h) = ¢7". In the case I # &, by reordering I (if necessary) we can suppose
that I = {1,...,m} with m < r. Integral J,(s, h) is computed by changing variables
as y = ¢(x) with

hi(a+mx)—h;(a)

if i=1,....m
™

Y, = ¢;(x) =

T if 1>m+1.

By using that rank of Jac(h;, @) is m we get that det [gf? (O)} L<icn Z O0mod 7, which
J 1>
15j<n
implies that y = ¢(x) gives a measure-preserving map from O to itself (see e.g.

[39, Lemma 7.4.3]), hence

Ja(s,h) =q "] / |7y; + hi(a)
=Lo\ {ryi+hi(@)=0}

s
K

dyilie =" ] Ta(w)-
i=1
To prove the announced formula we compute integrals J/ (y;). Now, since h;(a) =

0O mod 7, by taking z; = my; + h;(a) in J.,(y;), we obtain

. . q— 1 qflfsi
Jolyi) =a™™ / |25 |dzil i = %
Or\{0}
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Therefore

Ja(s,h) = (3.2.2)

Remark 3.2 If in integral , we replace h;(x) by hi(x) + wg; (), where each
g; (x) is a polynomial with coefficients in Ok, then the formulas given in Lemma

are valid.

For every subset I C {1,...,r} we set

Vi={ze )" h(z)=0&icl}. (3.2.3)

Lemma 3.3 Let h = (hy,...,h,) with r < n, be as before. Assume that for all
I+ @ ifVi# @, then

ol
5 (@

rank, [ = Card(I), for any @ c V.

Set
L(s,h) = / [T 175l delk, s = (s1,...5,) € C,
=1

(Of)"\Dk
for Re (s;) > 0 for all i. Then, with the convention that [, (ql—_lq)g—i:i = 1 when

1 =@, we have

L(s,h)=q™" Z Card(V;) H w
r}

1 _ q—1—s;
i€l q

Proof. Note that L(s, h) can be expressed as a finite sum of integrals

Ju(s.h) = / TT 1k ¢l

at(xOx)"\Dr =1
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where a runs through a fixed set of representatives R in (O5)" of (Fx)". Then
L(s, h) is equals

T

> [ Il

acVy a+(rOx)"\Dg =1

T

DI SR B | (E T

IS{1...r} @BEVI i (rOx)"\Di =1

T

> [ ke

EGV a—'r(ﬂ'OK)"\DK i=1

with the convention that if V; = @, then > acv; Jus (x0x )\ Dy * = 0- Notice that
J(5,Vg) =q "Card(Vy). (3.2.4)

Thus we may assume that I # &. In the calculation of J(s,V ;) we use the following
result:

Claim.

T T

> / [ 1) 5l da ) = / [T 17i(2) 5] de

EEV} a+(rOr)"\Dg =1 EEVI a+(nOr)"\Dg =1
a¢DK

The Claim follows from the following reasoning. The analytic mapping h; --- h, : a+
(mOk )™ — K is not identically zero, otherwise by [39, Lemma 2.1.3], the polynomial
(hy---h,)(x) would be the constant polynomial zero contradicting the hypothesis
that all the h;’s are non-constant polynomials. Hence there exists an element b €
a+ (rOk)™ such that (hy ---h,)(b) # 0. Finally, we use the fact that every point of
a ball is its center, which implies that a + (7Og)" = b+ (7Ok)".

By using Lemma (3.1},

<q . ]_)qflfsZ

J(S,V}) = qinCCLTd(V[) H m

el

(3.2.5)
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The formula for J(s, V) is a special case of formula ([3.2.5):

= (q—1)g '

J(s,V)=q"Card(V) [] e (3.2.6)

Remark 3.4 In integral L(s, h) we can replace h by h+mg, where g is a polynomial

mapping over Ok, and the formulas given in Lemma remain valid.

3.3 Polyhedral Subdivisions of R" and
Non-degeneracy conditions

In this section we review, without proofs, some well-known results about Newton
polyhedra and non-degeneracy conditions that we will use along this chapter. Our

presentation follows closely [70], [57].

3.3.1 Newton polyhedra

Weset R, := {z € R;x > 0}. Let G be a non-empty subset of N*. The Newton poly-
hedron I' = I' (G) associated to G is the convex hull in R”} of the set Up,eq (m + ]RCLF)
For instance classically one associates a Newton polyhedron T' (h) (at the origin) to
a polynomial function h(xz) = >  cmx™ (x = (z1,...,2,), h(0) = 0), where
G =supp(h) := {m € N";¢,,, # 0}. Further we will associate more generally a New-
ton polyhedron to a polynomial mapping.

We fix a Newton polyhedron I' as above. We first collect some notions and results
about Newton polyhedra that will be used in the next sections. Let (-,-) denote
the usual inner product of R", and identify the dual space of R™ with R" itself by
means of it.

Let H be the hyperplane H = {x € R";(x,b) = ¢}, H determines two closed

half-spaces

H" ={z e R";(x,b) > c} and H™ = {z € R";(z,b) < c}.
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We say that H is a supporting hyperplane of I'(h) if I'(h) N H # & and I'(h) is
contained in one of the two closed half-spaces determined by H. By a proper face T
of T'(h), we mean a non-empty convex set 7 obtained by intersecting I'(h) with one
of its supporting hyperplanes. By the faces of I'(h) we will mean the proper faces of
['(h) and the whole the polyhedron I'(h). By dimension of a face T of I'(h) we mean
the dimension of the affine hull of 7, and its codimension is cod(r) = n — dim(7),
where dim(7) denotes the dimension of 7. A face of codimension one is called a facet.

For a € R"}, we define

d(a,I') = min (a, x),

zel

and the first meet locus F(a,I) of a as
F(a,T):={xz €T;(a,z) =d(a,I')}.

The first meet locus is a face of I'. Moreover, if a # 0, F'(a,T") is a proper face of T

If ' =T (h), we define the face function he (x) of h(x) with respect to a as

ha () = hp@r) (z) = Z Cm@™.

meF(a,l)
In the case of functions having subindices, say h;(x), we will use the notation

hiq(x) for the face function of h;(x) with respect to a. Notice that

ho () = hror) () =Y cmz™.

3.3.2 Polyhedral Subdivisions Subordinate to a Polyhedron

We define an equivalence relation in R’ by taking a ~ o’ & F(a,I') = F(d',T).

The equivalence classes of ~ are sets of the form
A;={acR};F(a,') =1},

where 7 is a face of I
We recall that the cone strictly spanned by the vectors ay, ..., a; € R \{0} is the
set A = {M\ja;+ ...+ Nai N\ € Ry, \; >0} If aq,. .., a; are linearly independent
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over R, A is called a simplicial cone. If aq,...,a; € Z", we say A is a rational
cone. If {ay,...,a;} is a subset of a basis of the Z-modulo Z", we call A a simple
conme.

A precise description of the geometry of the equivalence classes modulo ~ is as
follows. Each facet v of I has a unique vector a(y) = (ay1,...,a,,) € N\ {0},
whose nonzero coordinates are relatively prime, which is perpendicular to =, it is
called primitive vector associated to . We denote by ®(T") the set of such vectors.

The equivalence classes are rational cones of the form

A, = {ZT: Aia(y;); A € Ry, A > 0},
i=1

where 7 runs through the set of faces of I', and ~,, i« = 1,...,r are the facets
containing 7. We note that A, = {0} if and only if 7 = I". The family {A,} , with
7 running over the proper faces of I', is a partition of R} \{0}; we call this partition
a polyhedral subdivision of R subordinate to I'. We call {ZT}T, the family formed
by the topological closures of the A, a fan subordinate to I'.

Each cone A, can be partitioned into a finite number of simplicial cones A, ;.
In addition, the subdivision can be chosen such that each A.; is spanned by part

of ®(I'). Thus from the above considerations we have the following partition of

R7\{0}:

I
RI\{0} = U (U Am') )
T \i=1
where 7 runs over the proper faces of I', and each A ; is a simplicial cone contained
in A;. We will say that {A.;} is a simplicial polyhedral subdivision of R’} subordinate
to I', and that {Zm-} is a simplicial fan subordinate to T'.

By adding new rays , each simplicial cone can be partitioned further into a finite
number of simple cones. In this way we obtain a simple polyhedral subdivision of R’}

subordinate to T', and a simple fan subordinate to T' (or a complete reqular fan) (see

e.g. [0)).
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3.3.3 The Newton polyhedron associated to a polynomial
mapping

Let h = (hy,...,h.), h(0) = 0, be a non-constant polynomial mapping. In this
section we associate to h a Newton polyhedron I' (k) := I'(J]'_, hi (x)). From a
geometrical point of view, I' (h) is the Minkowski sum of the I (h;), fori =1,--- | r,
(see e.g. [57], [59]). By using the results previously presented, we can associate to

I' (h) a simplicial polyhedral subdivision F (h) of R"} subordinate to I' (h).

Remark 3.1 A basic fact about the Minkowski sum operation is the additivity of
the faces. From this fact follows:

(1) F (a,T (h)) = 22:1 F(a,I'(h;)), for a € R} ;

(2) d(a,T'(h)) =377 d(a,T'(hy)), for a e R} ;

(3) let T be a proper face of I (k), and let T; be proper face of I' (h;), fori=1,--- r.
Ifr=%"_,7;, then A, CA,, fori=1,---r.

j=1
Remark 3.2 Note that the equivalence relation,
a~a < F(a,T'(h))=F(a,T(h)),

used in the construction of a polyhedral subdivision of R} subordinate to I' (h) can

be equivalently defined in the following form:
a~a < F(a,I'(hj)=F(d,T(hy)), foreach j=1,...,r.

This last definition is used in Oka’s book [57].

3.3.4 Non-degeneracy Conditions

For K = Q,, Denef and Hoornaert in [20, Theorem 4.2] gave an explicit formula for
Z(s,h), in the case r = 1 with h a non-degenerate polynomial with respect to its
Newton polyhedron I'(h). This explicit formula can be generalized to the case r > 1

by using the condition of non-degeneracy for polynomial mappings introduced here.
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Definition 3.3 Let h = (hy,...,h.), h(0) = 0, be a polynomial mapping with
r < n as in Section and let T' (h) be the Newton polyhedron of h at the origin.
The mapping h is called non-degenerate over F, with respect to I' (k), if for every

vector k € R} and for any non-empty subset I C {1,...,r}, it verifies that

rankp, {ahi’k (_)1 = Card(I) (3.3.1)
Ox; iel, je{1,..n}
for any
ze{ze (F) hix(z2)=0&icl}. (3.3.2)

We notice that above notion is different to the those introduced in [60], [70]. The
notion introduced here is similar to the usual notion given by Khovansky, see [42],
[57]. For a discussion about the relation between Khovansky’s non-degeneracy notion
and other similar notions we refer the reader to [60].

Let A be a rational simplicial cone spanned by w;, i = 1,...,ea. We define the

barycenter of A as b(A) =32 w;. Set b({0}) := 0.

Remark 3.4 (i)Let F(h) be a simplicial polyhedral subdivision of R’} subordinate
to T'(h). Then, it is sufficient to verify the condition given in Definition for
k = b(A) with A € F(h) U {0}.

(it) Notice that our notion of non-degeneracy agrees, in the case K = Q,, r =1,

with the corresponding notion in [20).

Example 3.5 Set h = (hy, hy) with hy(x,y) = 2% — y, hao(x,y) = 2%y polynomials
in Oklz,y]. Then a simplicial polyhedral subdivision subordinate to T'(h) is given by

Cone gy | hapa)
AV (1, O)R>0 Y ~’U23/
Ay = (1,0)Rso + (1,2)R50 | ¥ z?y
Az = (1,2)Rs 22—y | 2%y
Ay = (1,2)Reg + (0, 1)Rsq | 22 2%y
As = (0,1)R+ x? 2%y,
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where R~o := Ry ~ {0}. Notice that for every k € R ~ ({0} U Ag) and every

non-empty subset I C {1,2}, the subset defined in is empty, thus is
always satisfied. In the case k = 0 and k € A3z, hip = 2° — y, haog = 2%y, the

conditions (3.3.9)- are also verified. Hence h is non-degenerate over F, with
respect to T' (h).

Example 3.6 Let h = (hi(x),...,h.(x)) be a monomial mapping. In this case,
I'(h) = mo + R% for some nonzero vector myg in N". Then for every vector k € R,
hig(x) = hi(x) fori=1,...,r, and thus the subset in 1s always empty, which
implies that condition is always satisfied. Therefore any monomial mapping

(with r < n) is non-degenerate over F, with respect to its Newton polyhedron.

Example 3.7 f(z), g(x) € Oklxy,...,x,)\7Ok[x1, ..., 2] such that g(x) = ™,
with mo # 0, is a monomial. Suppose that [ is non-degenerate with respect to I' (f)

over F,. In this case, I' ((f,g)) = mo+ I (f). Then the subset in can take

three different forms:

(i) {ze (F])": fr(2) =9(2) =0} = 2, (i) {z € (F))"; fu(2) = 0},
(iii){z € (F)";9(2) =0, f(z) #0} = @.

In the second case, conditions (3.3.3)- are verified due to the hypothesis that
[ is non-degenerate with respect I (f) over F,. Hence, (f,g) is a non-degenerate

mapping over F, with respect to I' ((f,g)) over F,.

3.4 Meromorphic continuation of multivariate lo-
cal zeta functions

Along this section, we work with a fix simplicial polyhedral subdivision F(h) subor-

dinate to I'(h). Let A € F(h)U{0} and I C {1,...,7}, we put

Var={z € [F)" hipn)(z)=0 & iel}.
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We use the convention VA,{l ,,,,, = Va. If A =0, then

Vor={ze [F)" hi(z)=0 & icl} =V,

Voo ={ze F); hi(z)#0,i=1,....r} =V,.

If h = (hi,...,h,) is non-degenerated polynomial mapping over F, with respect to

F(h), then Lemma is true for hb(A) = (hl,b(A)> ey hr,b(A))-

Theorem 3.1 Assume that h = (hy, ..., h,) is non-degenerated polynomial mapping
over F, with respect to I'(h), with 1 < n as before. Fix a simplicial polyhedral
subdivision F(h) subordinate to I'(h). Then Z(s, h) has a meromorphic continuation
to C" as a rational function in the variables ¢~*, + = 1,...,r. In addition, the

following explicit formula holds:

Z(s,h) = Lioy(s,h) + > La(s,h)Sa,

A € F(h)
where
n = (g—1)g '
Lioy =¢q Z Card(Vy) H 1 _g s
IC{1,...,r} el
(q—1)g '

La=q¢™ Z Card(Var) H

IC{1,..r} iel

Y

1 _ q—l—si

with the convention that for I = @, [],, (ql_}q)f—;_l:i =1, and

SA = Z q R~ iz AR T (hi))si
keN"NA

Let A be the cone strictly positively generated by linearly independent vectors wq, . . .

w; € N"\ {0}, then

Y

Zt qfo'(t)fz;‘rzl d(t7r(hi))5i

Sa = (1 — go()-SidwiLha))s) . (1 — g—olw) =S dwiT(ha)si)’

where t runs through the elements of the set

l

i=1
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Proof. By using the simplicial polyhedral subdivision F(h), we have

= {O}I_lLIAe]-‘(h) A
We set for k = (k1,...,k,) € N,
Ex = {(z1,...,2,) € Ogsord(z;) = kij,i=1,...,n}.

Hence

T

/ [Minetiiads+ = 5 [ TIiniel
O\ A€ F(h) keNrna g Vp sl
For A € F(h), k € N"NA, and ¢ = (21,...,7,) € Eg, we put z; = 7*u; with
uj € Of. Then

k,m)

Mmn
n

mMn

|dm|K:q_U(k)|du|K and C'L'm:x;nlaj :7T< uqlnlun .

Fix 1 € {1,...,7} and k . For m € supp(h;), the scalar product (k, m) attains its
minimum d(k, I'(h;)) exactly when m € F(k,I'(h;)), and thus (k, m) > d(k,T'(h;))+
1 for m € supp(h;)\supp(h;) N F(k,T'(h;)). This fact implies that

hi(z) = ﬂ_d(k,l“(hz‘))(hi’k(u,) + W%i,k(u))
_ ﬂ_d(k,l“(hz‘))(hi’b(A)(u) + ﬂﬁi,k(u))a

where ?L,k(u) is a polynomial over O in the variables uy, ..., u,. Note that h; s (u)

does not depend on k € A, for this reason we take h;(w) = h;pa)(u). Therefore

Z(S, h) = L{O}(S, h) + Z LA(S, h) Z q_U(k)— =1 d(k,T(hi))si
A e F(h) keN"NA

where

51

Loy (s, h) / H |hi(z

(Og y"\Dg '

d$|K,

La(s,h) = / H [y (w) + Thi o (w52

(0F)"\Da
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with DA = UJ._, {:1: € (Ox)"™ hipay(u) + Thig(u) = 0}. By using the non-dege-
neracy condition, integrals Loy(s,h), La(s, h) can be computed using Lemma
and Remarks

Let A be the cone strictly positively generated by linearly independent vectors
wi,...,w;, € N"\{0}. If A is a simple cone then N* N A = (N\{0}) w; + --- +
(N\ {0}) w;. By using that the functions d(-,I'(h;) are linear over each cone A, and

that
o) + Y d(w,, T(hy)) Re(s;) > 0,m =1,... 1,
i=1
since Re(s1),...,Re(s,) > 0, we obtain
SA = Z q*U(/\lle“'JF)‘lwl)*Z::l d(A w14+ \w,T(hy))s;
A N EN\{0}
— Z (qfa(wl)*zzﬂ d(w1,1"(hi))si)>\1 L Z(qfa(wl)fzle d(wz,f‘(hi))si))\l
Ai=1 n=1
q*o(wl)*Zle d(w1,T(hi))s; q*G(wz)*ZLl d(wy,L'(h;))si
SA =

T 1 — o)X dwi Tha))s ] — go(w) =i d(wi T (h)si
Zt q—a(t)— T_1 A&, T(hy))s;
(1— g ow) =i, d(wl»r(hi))si) (1 - g w3 d(wl,f‘(hi))si) ’

where ¢ runs through the elements of the set (3.4.1]), which consists exactly of one
element: t = Zi.:l w;. We now consider the case in which A is a simplicial cone.

Note that N™ N A is the disjoint union of the sets
t+Nw1+---~|—Nwl,

where t runs through the elements of the set

l
Z"Q{Z)\iwi; 0</\i§1forz':1,...,l}.

=1

Hence Sa equals

b

Z q—a(t)—zg‘zl d(t,I'(h;))si Z q—o(zj;:l Ajw;) =T dArwi+..4+XNw,T(hi))s;
t

A1, N EN
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and since Re(sy),...,Re(s,) >0,

Zt q_a(t)_z:::l d(t7r(hi))5i
(1 — golw)- =1 dlwi,T(hi)si) ... (1 — g ow) =i d(wi,T(hi))si )’

Sa =

Remark 3.2 In the p-adic case, K = Q,, Theorem[3.1] is a generalization of Theo-
rem 4.2 in [20] and Theorem 4.3 in [13].

3.5 Local zeta function for rational functions

From now on, we fix two non-constant relatively prime polynomials f(x), g(x) in n

variables, n > 2, with coefficients in Oz, ..., 2,|\mOk[x1,. .., x,] and set
Dy :={w € K"; f(z) =0} U{z € K"; g(x) = 0}

and

i:K”\DK—>K.

g
Furthermore, we define the Newton polyhedron T’ <§> of § to be I'(fg), and assume

that the mapping (f,g) : K" — K? is non-degenerate over [, with respect to T’ <£>
as before. In this case we will say that § is non-degenerate over I, with respect

to I’ (%) We fix a simplicial polyhedral subdivision F <§> of R?} subordinate to
r <§> For A € F <§> U {0}, we put

Na sy := Card {E € (IF;)";?;,(A)(E) = 0 and g,a(@) # O} ,
Na gy := Card {E € (IF;)”;?MA)(E) # 0 and §b(A)(E) = O} ,
Na ity := Card {E € (F;)";TMA)(E) = 0 and gy, (@) = O} ,

with the convention that if b(A) = b(0) = 0, then fya) = f and gya) = g. We also
define © (%) = D(f, g), which is the set of primitive vectors in N™\ {0} perpendic-
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ular to the facets of I (%) We set

g

T - {w e (g) - d(w,T(g)) — d(w, T()) < o} |

7= {we ()5 dw,rig) - dtw. 1) > 0},

(

. o(w) .
Miwer, {d(w,r(g»fi(w,r(f))} if T, #0

+OO 1f T+ = @,

\

(

o(w) .
masver { gy § i L # 9

—00 lf T_ :Q,

and
!
g

a:a(é) — min {1,a}, B:ZE(

Notice that a > 0 and § < 0.

) = max {1, 8} .

We define the local zeta function attached to % as

Z (s, g) =Z(s,—s, f,q9), s€C,

where Z(s1, 9, f, g) denotes the meromorphic continuation of the local zeta function

attached to the polynomial mapping (f, g), see Theorem [3.1]

Theorem 3.1 Assume that 5 is non-degenerate over F, with respect to T’ <§> , with
n > 2 as before. We fix a simplicial polyhedral subdivision F (§> of RY subordinate
to T (g) Then the following assertions hold:

(i) Z <3, 5) has a meromorphic continuation to the whole complex plane as a rational

function of ¢—° and the following explicit formula holds:

G D SN (SAENT]

Ac€ f(g)u{o}
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where for A € F (5) u{0},

1—q¢° 1—4q°

and
—o(t)—(d(t,I(f))—d(t.I'(9)))s
q
SA (8) — : Zt

[T_, (1 — g-otw)—(dwiL(f)~d(wiT(9))s)

for A e F (%) a cone strictly positively generated by linearly independent vectors

wi,..., W €3 (5)7 and where t runs through the elements of the set

l
Z”D{Z)\iwi; 0<Aig1f0m:1,...,z}.

i=1
By convention Sp(s) := 1.

(ii) Z (s, i) is a holomorphic function on 3 < Re(s) < &, and on this band it verifies

that g
- J 118

O \Dg

ldz| (3.5.1)

K
(iii) the poles of the meromorphic continuation of Z <s, §> belong to the set

U{1+M}UU{—1+M}U

et Inq Inq

o(w) 2my/—1k
U U {d(wf(g)) —dw, () " {d(w, T(g)) - d(waF(f))}lnq}'

we (L) hez

Proof. (i) The explicit formula for Z(s, 5) follows from Theorem [3.1| as follows: we
take r = 2, 51 = 5, 55 = —5, h1 = fya) and hy = gya) for A € F <§> U{0}, with
the convention that if b (A) = b(0) = 0, then h; = f and hy = g. Now

Va={z€ (F))" fun) () =Tyn) (2) =0} for A F <§> U {0},
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and thus Card(V a) = Na (43 Now, with I = {1,2}, by using (3.2.6), we have

o (= a7 Nagg)
T V) = gy

We now consider the case I # @, I G {1,2}, thus there are two cases: I = {1} or
I = {2}. Note that

(3.5.2)

VA{l}—{ZE( ) fb(A)( )—Oandﬁb(A) 7&0} forAGf( >U{0}
and that Card (VA{I}) = Na {3, With the convention that
Vouy={z€ (F)";f(z)=0and g (z) #0}.

In this case, by using (3.2.5),

¢ " (1—¢q ) Na, iy

J (s,—s,Vaqy) = I—q 1

(3.5.3)

Analogously,
qfnJrs (1 _ q )NA {g}

J (S, _SavA,{2}) = 1— q—1+$

(3.5.4)

We now consider the case I = &, then
Vao={z€e(F ) fbA)();«éOandgb #O}forAef()U{O}
with the convention that
Voo ={z € (F)":F(2) #0and g(2) £ 0}

Notice that Card(Vagz) = (¢—1)" — Na sy — Naggt — Narg- Then, by using
(3.2.4)),

J(s,=8,Vag)=q "Card(Vagp). (3.5.5)
Then from Theorem (3.1} and (3.5.2)-(3.5.5)), we get
-n(1 — —12N —n=s (1 _ —1N

g (=g o) (1 — g 1—g¢ 1=

—n+s —1
""" (1-q¢)Nager | n
T T @D = Nagy = Nagey — Nagra}
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The announced formula for La (s, g) is obtained from the above formula after some

simple algebraic manipulations.

(ii) Notice that for w € D (5), e =Ty 1S holomorphic on
o(w) + (d(w,T(f)) — d(w,T'(g))) Re(s) > 0, and that ﬁ is holomorphic on
Re(s) > —1, and 5 ,1 + is holomorphic on Re(s) < 1, then, from the explicit for-
mula for Z (s, —) given in (i) follows that it is holomorphic on the band 3 < Re(s) < @.

Now, since Z(s ,5) = Z(s,=s, f,9), Z(s,%) is given by integral (3.5.1) because

Z(s1, 82, f, g) agrees with an integral on its natural domain.

(iii) It is a direct consequence of the explicit formula. m

3.6 The largest and smallest real part of the poles
I
of Z(s,)

In this section we use all the notation introduced in Section 3.5l We work with a fix
simplicial polyhedral subdivision F <§> of R? subordinate to I (5) We recall that
in the case T_ # O,

o= e { g s |

is the largest possible ‘non-trivial’ negative real part of the poles of Z(s, 5) We set

e o(w) )
P8 = { €T Glw, T() — dw, T () " } ’

and for m € N with 1 <m <n,

M. (B) = {A eF (i

); A has exactly m generators belonging to 77(6)} ,
g

and p := max {m; M,,(8) # @}.

Theorem 3.1 Suppose that % is non-degenerated over F, with respect to F(%) and
that T_ # @. If B > —1, then B is a pole of Z(s, 5) of multiplicity p.
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Proof. In order to prove that /3 is a pole of Z(s, %) of order p, it is sufficient to show

that

lim (1 — ¢° )2 (s, g) > 0.

s—p
This assertion follows from the explicit formula for Z(s, 5) given in Theorem , by
the following claim:

Claim. Res (A, ) = lim,_5(1 — ¢* )P La(s, g)SA(s) > 0 for every cone A €
f(g). Furthermore, there exists a cone Ay € M () such that Res (Ag, 3) > 0.

We show that for at least one cone Ay in M ,(3), Res(Ag, ) > 0, because for
any cone A ¢ M,(), Res (A, ) = 0. This last assertion can be verified by using
the argument that we give for the cones in M, (/3). We first note that there exists
at least one cone A in M,(5). Let wq,...,w,, w,i1,..., w; its generators with
w;, € P(B) = 1<i<p.

On the other hand,

. )
limLa (5,2 ) >0 3.6.1
o A(S ” (36.1)

for all cones A € F (%) U {0}. Inequality (3.6.1]) follows from

f . "
La (ﬂ, . >q "((¢=1)" = Naygsy — Naggy — Naygrgy) 20

for all cones A € F (5) U {0}. We prove this last inequality in the case Na (53 > 0,
Nayggr > 0, Na 9 > 0 since the other cases are treated in similar form. In this
case, the inequality follows from the formula for La(/3, 5) given in Theorem , by
using that

1—q¢ " 1—¢°
NA,{f}l_q—,Hg < Nagsy NA,{g}l_q—,HB < Na{g};

N (1-¢")(1—-4%
Vg1 =g 1) (1 = ¢ 1+9)

< NA,{f,g} when 3 > —1.

We also notice that

lim 3~ ¢ 0@~ @EXE=dETNs 5
t

s—f
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Hence in order to show that Res (Ao, #) > 0, it is sufficient to show that

I (1 —¢ ")
1m
=6 T'_, (1 — q-owo)—(dw,.L()—d(w: Da))s)

> 0.

Now, notice that there are positive integer constants ¢; such that

P P

H(l — q*U(wi)f(d(wi,F(f))*d(wi,P(g)))S) — H(1 _ q(S*IB)Ci)

=1-q¢" H H (1—<q™

i=1 ¢%i=1,¢#1

In addition, fort =p+1,...,1,

| — g o) (dw D) -dw.L @) - ()

because —o(w;) — (d(w;, I'(f)) — d(w;,['(g)))8 < 0 for any w; € T UT_ with i =

p+1,..., 0. From these observations, we have
(1—g")
lim _
5B HZ (1 = g=o(wi)=(d(wi,T(f))—d(w;.T(9)))s)
1 — g5 Py
lim 1-a") X
s=6 (L= P)PII, I (=< F)
¢fi=1,6#1
1
lim 50

=B T]L_, 11 (1 — qow)—(dwi (1) —dws.L(g)s)

In the case T’y # &,

a = min .
weTy d(w7 F(g)) - d(wa F(f))
is the smallest possible ‘non-trivial’ positive real part of the poles of Z(s, 5) We set

P R
Pla) = { € Ty; d(w,T'(g)) — d(w,T(f)) } ’

and for m € N with 1 <m <n,

M (a) = {A eF (i>, A has exactly m generators belonging to 77(04)} ,
g

and  := max {m; M,,(a) # &}
The proof of the following result is similar to the proof of Theorem
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Theorem 3.2 Suppose that 5 1s non-degenerated over IF, with respect to F(%) and
that Ty # &. If a« < 1, then « is a pole of Z (s, 5) of multiplicity k.

Example 3.3 We compute the local zeta function for the rational function given in

Example [3.5. With the notation of Theorem[3.1], one verifies that

Cone L SA

{0} | ¢ (-1~ (¢ 1) %) 1

Ay (g 1) e

Ay ¢ (g —1)? e
As | ((a=1)° = (¢ - D)%) T

Ay ¢ (g 1) T
As q (¢ —1)? =t

Therefore
25, L) = 7 Ha)

where

Furthermore, Z (s, 5) has poles with real parts belonging to {—1,1/2,1,3/2}.



Chapter 4

Final remarks and some open

problems

From a mathematical perspective, there are several open problems involving string
amplitudes and parametric Feynman integrals. The following are some open prob-

lems that we expect to study in the near future.

1) Determination of the divergencies of p-adic string amplitudes.

In [8], we find the divergencies of the p-adic amplitude A™Y) (k) using the Euclid-
ean product instead of the Minkowski product to define s;; = k;k;. We showed that
AM (0) = 400 and A®) (k) = 400 for k;k; > 0. The determination of the ultra-
violet and infrared divergencies, in the signature — 4 + ...+ for AW (k) is an open
problem. This problem requires the determination of the geometry of the natural
domain of function Z™)(s). This type of problems has been not studied in the case

of multivariate local zeta functions.

2) Motivic amplitudes

A natural problem consists in developing motivic string amplitudes (motivic in
the sense of motivic integration), these objects should specialize to the p-adic and
topological string amplitudes. Some connections between motives and quantum field

theory are considered in [4§].
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3) Archimedean string amplitudes.

In the real case the string amplitudes at the tree level, are defined as

A™) (k)

N—-2
S B 1 (IR | G
=2

RN-3 2<i<j<N-2

N—-2
kik; H dor:
00 )
1=2

N > 4. Except for A® (k), the integrals have not been computed analytically as in
the p-adic case. In the light of the theory of local zeta functions, it is also natural to
conjecture that local zeta functions corresponding to string amplitudes over R and

C have meromorphic continuations of CP”.

4) Connections between local zeta functions of rational functions and mon-
odromy conjectures.

S. Gusein-Zade, I. Luengo and A. Melle-Herndndez have studied the complex
monodromy (and A’Campo zeta functions attached to it) of meromorphic functions,
see e.g. [34]. Our work [7] drives naturally to ask about the existence of local zeta

functions with poles related with the monodromies studied by the mentioned authors.

5) Local zeta functions for rational functions over K-analytic submanifolds.

Let K be a locally compact local field of characteristic zero, i.e. K = R, C or
a finite extension of Q,. Let Xx be a K-analytic closed submanifold of K", let
® be a test function in S(K™), and v be a Gel'fand-Leray differential form along
Xk. Consider f,g € K zi,..,x,]. To study the convergence and meromorphic

continuation of local zeta functions:

—n+sl/2
Zy(s; Xk, [/ g) = /(I)(m)w‘(J;()wan—(&-(l—&-l)sm‘7|K

K
Xr\Dr

where Di = f~1(0)Ug™1(0), s € C, [ > 0, and || x the measure along X induced by

v. To establish, in the case K = R, a relation with the classical parametric Feynman



7

Integrals. In general the study in detail of the Archimedean and non-Archimedean
parametric Feynman integrals as local zeta functions is still an open problem since

these integrals are not completely covered by theory developed in [7], [60].
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