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Abstract

This dissertation is divided into two parts. The �rst part is dedicated to the

study of the p-adic string amplitudes and the limit when p approaches to one of

such amplitudes using techniques of local zeta functions. We prove that the p-adic

Koba-Nielsen type string amplitudes are bona �de integrals. We attach to these

amplitudes Igusa-type integrals depending on several complex parameters and show

that these integrals admit meromorphic continuations as rational functions. Then we

use these functions to regularize the Koba-Nielsen amplitudes, which was an open

problem. These results were obtained in collaboration with Prof. Dr. Wilson A.

Zúñiga Galindo and Prof. Dr. Hugo García Compeán, see [8]. In p-adic string theory

the limit when p approaches to one plays an important role. There is an empirical

evidence that the p-adic strings are related to the ordinary strings in the p! 1 limit.

In [8], we established that p-adic Koba-Nielsen string amplitudes are �nite sums of

Igusa�s local zeta functions. Denef and Loeser established that the limit p ! 1 of

Igusa�s local zeta functions give rise to new objects, that they called topological zeta

functions. By using Denef-Loeser�s theory of topological zeta functions, we show that

limit p! 1 of a tree-level p-adic open strings amplitudes give rise to new amplitudes,

which we have called string amplitudes underlying topological zeta functions. We

expect that these amplitudes will be related with the theory derived of one given by

Gerasimov and Shatashvili.

The second part is dedicated to the study of p-adic local zeta functions attached

to certain rational functions. These objects are very alike to Feynman parametric

integrals. These results were obtained in collaboration with Dr. W. A. Zúñiga

Galindo in [7]. In this part, we introduce a new non-degeneracy condition for rational

functions with respect to a certain Newton polyhedra, and study local zeta functions

attached to non-degenerate rational functions. We obtained explicit formulas for

these local zeta functions in terms of some data associated to the corresponding

Newton polyhedra.



xi

Resumen

Este trabajo se divide en dos partes. La primera parte es dedicada al estudio de

las amplitudes de cuerdas p-ádicas y su límite cuando p se aproxima a uno usando téc-

nicas de funciones zeta locales. Demostramos que las amplitudes de cuerdas p-ádicas

del tipo Koba-Nielsen son integrales convergentes. Asociamos a estas amplitudes

integrales de tipo Igusa dependiendo de varios parámetros complejos y mostramos

que estas integrales admiten continuaciones meromorfas como funciones racionales.

Entonces, usamos estas funciones para regularizar las amplitudes Koba-Nielsen, el

cuál era un problema abierto. Estos resultados se obtuvieron en colaboración con

el Dr. Wilson A. Zúñiga Galindo y el Dr. Hugo García Compeán, ver [8]. En la

teoría de cuerdas p-ádicas, el límite cuando p se aproxima a uno juega un rol im-

portante. Existe evidencia empírica de que las cuerdas p-ádicas están relacionadas

con las cuerdas ordinarias en el límite p ! 1. En [8], demostramos que las ampli-

tudes de cuerdas p-ádicas Koba-Nielsen son sumas �nitas de funciones zeta locales de

Igusa. Denef y Loeser establecieron que el límite p! 1 de funciones zeta locales de

Igusa genera nuevos objetos, llamados funciones zeta topológicas. Usando la teoría

de Denef-Loeser de funciones zeta topológicas, mostramos que el límite p ! 1 de

una amplitud p-ádica de cuerdas abiertas a nivel árbol genera nuevas amplitudes, las

cuáles llamamos amplitudes de cuerdas topológicas. Esperamos que estas amplitudes

estén relacionadas con la teoría derivada del trabajo de Gerasimov y Shatashvili.

La segunda parte está dedicada al estudio de funciones zeta locales p-ádicas asoci-

adas a ciertas funciones racionales. Estos objetos son muy semejantes a las integrales

paramétricas de Feynman. Estos resultados se obtuvieron en colaboración con el Dr.

W. A. Zúñiga Galindo en [7]. En esta parte, introducimos una nueva condición de no-

degeneración para funciones racionales con respecto a un cierto poliedro de Newton

y estudiamos funciones zeta locales asociadas a funciones racionales no-degeneradas.

Obtuvimos fórmulas explícitas para estas funciones zeta locales en términos de al-

gunos datos asociados al correspondiente poliedro de Newton.



Contents

Contents xii

Overview of the Dissertation xiii

1 p-adic string amplitudes and multivariate local zeta functions 1

1.1 Essential Ideas of p-Adic Analysis . . . . . . . . . . . . . . . . . . . . 2

1.1.1 The �eld of p-adic numbers . . . . . . . . . . . . . . . . . . . 2

1.1.2 Integration on Qnp . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Analytic change of variables . . . . . . . . . . . . . . . . . . . 4

1.2 The p-adic multivariate Igusa zeta functions . . . . . . . . . . . . . . 5

1.3 p-adic String Zeta Functions . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Some p-adic integrals . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2 Computation of Z(N) (s; I; 1) . . . . . . . . . . . . . . . . . . 25

1.3.3 Computation of Z(N) (s; I; 0) . . . . . . . . . . . . . . . . . . 30

1.3.4 Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 p-adic string amplitudes in the limit p approaches to one 36

2.1 Non-Archimedean local �elds . . . . . . . . . . . . . . . . . . . . . . 37

2.2 p-adic String Zeta Functions . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 p-Adic String Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Igusa zeta functions and topological zeta functions . . . . . . . . . . . 44

2.4.1 Multivariate local zeta functions . . . . . . . . . . . . . . . . . 44



CONTENTS xiii

2.4.2 Embedded resolution of singularities . . . . . . . . . . . . . . 45

2.4.3 Topological zeta functions . . . . . . . . . . . . . . . . . . . . 46

2.5 Topological String Zeta Functions and Topological string amplitudes . 47

2.6 The four and �ve-point topological zeta functions . . . . . . . . . . . 48

2.6.1 Topological string 4-point tree amplitudes . . . . . . . . . . . 49

2.7 Topological string 5-point tree amplitudes . . . . . . . . . . . . . . . 50

3 Local zeta functions for rational functions and Newton polyhedra 52

3.1 Multivariate local zeta functions . . . . . . . . . . . . . . . . . . . . . 53

3.2 Some �-adic integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Polyhedral Subdivisions of Rn+ and

Non-degeneracy conditions . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 Newton polyhedra . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.2 Polyhedral Subdivisions Subordinate to a Polyhedron . . . . . 59

3.3.3 The Newton polyhedron associated to a polynomial mapping . 61

3.3.4 Non-degeneracy Conditions . . . . . . . . . . . . . . . . . . . 61

3.4 Meromorphic continuation of multivariate local zeta functions . . . . 63

3.5 Local zeta function for rational functions . . . . . . . . . . . . . . . . 67

3.6 The largest and smallest real part of the poles of Z(s; f
g
) . . . . . . . 71

4 Final remarks and some open problems 75

References 78



Overview of the Dissertation

This dissertation is dedicated to the study of the connections between local zeta

functions and p-adic string amplitudes. The dissertation is divided into two parts.

The �rst part (Chapters 1, 2) is dedicated to the study of the p-adic string amplitudes

and the limit when p approaches to one of such amplitudes using techniques of local

zeta functions. The second part (Chapter 3) is dedicated to the study of p-adic local

zeta functions attached to certain rational functions.

In Chapter 1, we prove that the p-adic Koba-Nielsen type string amplitudes are

bona �de integrals. We attach to these amplitudes Igusa-type integrals depending

on several complex parameters and show that these integrals admit meromorphic

continuations as rational functions. Then we use these functions to regularize the

Koba-Nielsen amplitudes. The regularization of the Koba-Nielsen string amplitudes

was an open problem in Archimedean and non-Archimedean settings. As far as

we now, there is no a similar result to the one established here in the Archimedean

setting. The results presented in Chapter 1 were obtained in collaboration with Prof.

Dr. Wilson A. Zúñiga Galindo and Prof. Dr. Hugo García Compeán, see [8].

In p-adic string theory the limit when p approaches to one plays an important

role. It seems that in the limit p ! 1 the p-adic strings approximate ordinary

strings, see e.g. [28], [30]. A central motivation for this dissertation is to understand

the above mentioned calculations from a mathematical perspective. In Chapter 2, by

using the topological zeta functions introduced by Denef and Loeser, we introduce

topological string amplitudes. We are writing an article, based in Chapter 2, that
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aims to explain the calculations done by Gerasimov and Shatashvili in [28], see [9].

In Chapter 3, we present some new results about the meromorphic continuation

of local zeta functions attached to rational functions over non-Archimedean local

�elds. These objects are very alike to Feynman parametric integrals. These results

were obtained in collaboration with Dr. W. A. Zúñiga Galindo, in this chapter, we

introduce a new non-degeneracy condition for rational functions with respect to a

certain Newton polyhedra, and study local zeta functions attached to non-degenerate

rational functions. We obtain explicit formulas for these local zeta functions and a

geometric description for the poles in terms of some data associated to the corre-

sponding Newton polyhedra.

In the �60s, the local zeta functions were introduced by Israel Gel�fand and An-

dré Weil. In the Archimedean setting, i.e. in R, C, the local zeta functions were

studied by Gel�fand and Shilov in [27]. A central motivation was that the meromor-

phic continuation of the Archimedean local zeta functions implies the existence of

fundamental solutions for di¤erential operators with constant coe¢ cients. The mero-

morphic continuation of local zeta functions was conjectured by I. Gel�fand, and this

result was proved, independently, by Atiyah [2] and Bernstein [5]. On the other hand,

Weil studied local zeta functions, in the Archimedean and non-Archimedean settings,

in connection with the Poisson-Siegel formula [64]. In the �70s, Igusa developed a

uniform theory for local zeta functions in characteristic zero.

Nowadays, there are several types of local zeta functions, for instance p-adic,

Archimedean, topological, motivic, among others, see e.g. [39], [18], [22], [21] and

references therein. The topological zeta functions were introduced, in the �90s, by

Denef and Loeser, and recently they also introduced the motivic ones, which consti-

tute a vast generalization of the p-adic local zeta functions as well as of the topo-

logical zeta functions. The local zeta functions have deep connections with number

theory, algebraic geometry, singularity theory, and other branches of mathematics.

In the p-adic setting, they are connected with the number of solutions of polynomial

congruences mod pm and with exponential sums mod pm, see e.g. [39].
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This dissertation is focused on the study of non-Archimedean and topological zeta

functions and their relations with p-adic string amplitudes. From a more general

perspective, our work, is motivated by the connections between non-Archimedean

analysis and mathematical physics. There are two main forces behind this inter-

action. First, in the �80s, Volovich posed the conjecture that the space-time has a

non-Archimedean structure at the level of the Planck scale and initiated the p-adic

string theory [62], see also [56, Chapter 6], [63]. Volovich noted that the integral

expression for the Veneziano amplitude of the open bosonic string can be general-

ized to a p-adic integral and to an adelic integral giving rise to non-Archimedean

Veneziano amplitudes. Then Freund and Witten established (formally) that the or-

dinary Veneziano and Virasoro-Shapiro four-particle scattering amplitudes can be

factored in terms of an in�nite product of non-Archimedean string amplitudes [26],

see also [3]. As a consequence of the interest on p-adic models of quantum �eld

theory, which is motivated by the fact that these models are exactly solvable, there

is a large list of p-adic type Feynman and string amplitudes that are related with

local zeta functions of Igusa-type, and it is interesting to mention that seems that

the mathematical community working on local zeta functions is not aware of this

fact, see e.g. [3], [4], [6], [16], [15], [10], [25], [24], [26], [37], [44], [45], [46], [49], [51],

[52], and the references therein.

Second, p-adic strings seems to have many properties in common with the or-

dinary strings. We recall that �limp!1�already appeared in several calculations in

p-adic string theory, see e.g. [28], [29], but the limit p ! 1 does not seem to have

sense for the discrete variable p: As a consequence of the connections between p-

adic string amplitudes and local zeta functions, it is possible to use the theory of

topological zeta functions due to Denef and Loeser [21] to give sense to this limit

by producing topological string amplitudes, which should be string analogues of the

topological zeta functions. We developed this idea in this dissertation.

Another interesting problem is the study of local zeta functions for rational func-

tions. The study of these new local zeta functions is a recent mathematical problem
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and it is motivated by their relations with parametric Feynman integrals. In [61], W.

Veys and W. A. Zúñiga-Galindo extended Igusa�s theory to the case of rational func-

tions, or, more generally, meromorphic functions f=g, with coe¢ cients in a local �eld

of characteristic zero. From a physical perspective, the local zeta functions attached

to meromorphic functions are very alike to parametric Feynman integrals and to p-

adic string amplitudes, see e.g. [4], [10], [15], [49]. For instance in [49, Section 3.15],

M. Marcolli pointed out explicitly that the motivic Igusa zeta function constructed

by J. Denef and F. Loeser may provide the right tool for a motivic formulation of

the dimensionally regularized parametric Feynman integrals. In this dissertation we

studied the local zeta functions attached to certain non-degenerate rational functions

with coe¢ cients in a non-Archimedean local �eld of arbitrary characteristic.

We now describe brie�y our contributions.

Regularizations of p -adic string amplitudes

Take N � 4 and sij 2 C satisfying sij = sji for 1 � i < j � N � 1. In this thesis we
study the following multivariate Igusa-type zeta function:

Z(N) (s) =

Z
QN�3p r�

N�2Y
i=2

jxijs1ip j1� xijs(N�1)ip

Y
2�i<j�N�2

jxi � xjjsijp
N�2Y
i=2

dxi;

where s = (sij) 2 CD,
QN�2
i=2 dxi is the normalized Haar measure of QN�3p , and

� :=

(
(x2; : : : ; xN�2) 2 QN�3p ;

N�2Y
i=2

xi (1� xi)
Y

2�i<j�N�2
(xi � xj) = 0

)
:

We call this type of integrals p-adic open string N-point zeta functions because they

appeared in connection with the p-adic open string N -tachyon tree amplitudes, see

e.g. [15], [16], [25], [26], [37], and the references therein. These amplitudes are de�ned
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as

A(N) (k)

=

Z
QN�3p

N�2Y
i=2

jxijk1kip j1� xijkN�1kip

Y
2�i<j�N�2

jxi � xjjkikjp

N�2Y
i=2

dxi,

where
QN�2
i=2 dxi is the normalized Haar measure of QN�3p ,

k = (k1; : : : ;kN) ;ki = (k0;i; : : : ; k25;i) ; i = 1; : : : ; N;N � 4;

(with Minkowski product kikj = �k0;ik0;j + k1;ik1;j + � � �+ k25;ik25;j) obeying
NX
i=1

ki = 0, kiki = 2 for i = 1; : : : ; N;

In all the published literature about p-adic string amplitudes have been used

without considering the convergence of them, i.e. the problem of the regularization

of p-adic open string N -tachyon amplitudes has not been considered before. In the

light of the theory of local zeta functions, the possible convergence of integrals of

type Z(N) (s) is a new and remarkable aspect. In this thesis, we proved that

Theorem 1.29 The p-adic open string N -point zeta function, Z(N) (s), gives rise to

a holomorphic function on H(C), which contains an open and connected subset of

CD. Furthermore, Z(N) (s) admits an analytic continuation to CD, denoted also as

Z(N) (s), as a rational function in the variables p�sij ; i; j 2 f1; : : : ; N � 1g. The real
parts of the poles of Z(N) (s) belong to a �nite union of hyperplanes, the equations of

these hyperplanes have the form C1-C6 with the symbols �<�, �>�replaced by �=�. (2)

If s = (sij) 2 CD, with Re(sij) � 0 for i; j 2 f1; : : : ; N � 1g, then Z(N) (s) = +1.

Here H(C) is as in De�nition 1.27 and C1-C6 are as in Remarks 1.21, 1.25.

Take � (x2; : : : ; xN�2) a locally constant function with compact support, then

Z
(N)
� (s)

=

Z
QN�3p r�

� (x2; : : : ; xN�2)
N�2Y
i=2

jxijs1ip j1� xijs(N�1)ip

Y
2�i<j�N�2

jxi � xjjsijp
N�2Y
i=2

dxi;
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is a multivariate Igusa local zeta function. A general theory for this type of local

zeta functions was elaborated by Loeser in [47]. In particular, these local zeta func-

tions admit analytic continuations as rational functions of the variables p�sij . If

we take � to be the characteristic function of BN�3r , the ball centered at the origin

with radius pr, the dominated convergence theorem and Theorem 1.29, imply that

limr!1 Z
(N)

BN�3r
(s) = Z(N) (s) for any s in the natural domain of Z(N) (s).

A central problem is to know whether or not integrals of type A(N) (k) converge

for some values kikj 2 C. Our Theorem 1.29 allows us to solve this problem. We

take the p-adic open string N -point tree integrals Z(N)(s) as regularizations of the

amplitudes A(N) (k). More precisely, we de�ne

A(N) (k) = Z(N)(s) jsij=kikj with i 2 f1; : : : ; N � 1g , j 2 T or i; j 2 T;

where T = f2; : : : ; N � 2g. By Theorem 1.29, A(N) (k) are well-de�ned rational

functions of the variables p�kikj , i, j 2 f1; : : : ; N � 1g, which agree with amplitudes
used by the physicists, when they converge. This de�nition allows us to recover

all the calculations made in [15] and other similar publications. At this point, it

is relevant to mention that there is no similar result for the Archimedean string

amplitudes at the three level, as Witten pointed out in [66, p. 4]. We notice that the

string amplitudesA(N) (k) are limits of local zeta functions when they are considered

as distributions, by a slight abuse of notation, this means that

A(N) (k) = lim
r!1

Z
(N)

BN�3r
(k),

for k in the natural domain of Z(N)(k). Another important problem is to determine

the existence of (in the sense of quantum �eld theory) ultraviolet and infrared diver-

gencies forA(N) (k). If we use the Euclidean product instead of the Minkowski prod-

uct to de�ne sij = kikj, then A(N) (k) has infrared divergencies (A(N) (0) = +1)
and ultraviolet divergencies (A(N) (k) = +1 for kikj > 0).

Lerner and Missarov studied a class of p-adic integrals that includes certain type

of Feynman integrals and Koba-Nielsen amplitudes. They showed, see [44, Theorem
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2], that this type of integrals can be computed recursively by using hierarchies, but

they did no investigate the convergence, or more generally the holomorphy, of the

Koba-Nielsen amplitudes, which is a delicate matter.

At this point, it is worth to mention that the typical approach for establishing that

an integral of Igusa-type admits an analytic continuation is via Hironaka�s resolution

of singularities theorem, see e.g. [39, Chapters 3, 5, 8]. Roughly speaking Hironaka�s

resolution theorem provides a �nite sequence of changes of variables (blow-ups) that

allows to express an Igusa-type integral as a linear combination of integrals involv-

ing monomials, for this type of integrals the existence of an analytic continuation is

easy to show. If the initial Igusa-type integral is a holomorphic function in a certain

domain, then by using any suitable sequence of blow-ups the existence of an ana-

lytic continuation can be established. If the convergence of the original integral is

unknown then, in principle, by using Hironaka�s theorem is possible to �nd an ana-

lytic continuation, i.e. a regularization, of the given integral, but this regularization

depends on the sequence of blow-ups used, which is not unique. This method gives

in�nitely many regularizations of the original integral. The problem of choosing a

speci�c de�nition of the problem or the problem of showing uniqueness of the reg-

ularized integral is highly non-trivial. For this reason, our approach is not based

on resolution of singularities, instead of this, we use an approach inspired in the

calculations presented in [15] and in the Igusa�s p-adic stationary phase formula, see

[39, Theorem 10.2.1], [67]-[69]. As a consequence of this approach, all of our results

are still valid if we replace Qp by Fq ((t)), the �eld of formal Laurent series over a

�nite �eld Fq.

Topological string amplitudes

Physicists have related the p-adic string amplitudes with classical string amplitudes

by taking �lim p! 1�in certain calculations in p-adic string theory, see [27], [30], and

references therein. In this dissertation, using Denef-Loeser formalism of topological
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zeta functions, we show the existence of topological string amplitudes at the tree level

that are obtained from the corresponding p-adic amplitudes by taking �lim p! 1�.

We explain here brie�y how the topological string amplitudes are constructed, for

further details, see Chapter 2.

Consider f = (f1; : : : ; fr) where each fi(x) is a non-constant polynomial in

Q [x1; : : : ; xn] ; for i = 1; : : : ; r. Put f =
Qr
i=1 fi(x): Let (Y; ') be an embedded

resolution of singularities for D = Spec Q [x] = (f) with fEigi2T the irreducible com-
ponents of '�1 (f�1 (0))red. Let f(Ni1; : : : ; Nir; vi) ; i 2 Tg the numerical data of '.
There exists a �nite set of primes S � Z such that for p not in S; and any �nite

extension K of Qp; the formula

Z (s;f;K) = q�nK
X
I�T

cI (K)
Y
i2I

(qK � 1) q
�vi�

Pr
j=1Nijsj

K

1� q�vi�
Pr
j=1Nijsj

K

;

where

cI(K) = Card
�
a 2 Y

�
K
�
; a 2 Ei

�
K
�
, i 2 I

	
is valid. Here � denotes the reduction mod PK for which we refer to [17]. This explicit
formula is a simple variation of the one given by Denef in [17].

In [21] Denef and Loeser introduced the topological zeta function

Ztop (s) =
X
I�T

�

�
�
EI

�Y
i2I

1

vi +
Pr

j=1Nijsj
;

where for any scheme V of �nite type over a �eld L � C, � (V ) denotes the Euler

characteristic of the C-analytic space associated with V . We mention that in arbi-

trary dimension there is not a canonical way of picking an embedded resolution of

singularities for a divisor. Then, it is necessary to show that de�nition (2.4.3) is inde-

pendent of the resolution of singularities chosen, this fact was established by Denef

and Loeser in [47]. By using the explicit formula given by Denef for Z (s;f ; K),

Denef and Loeser showed that

Ztop (s) = lim
e!0

Z (s;f ; Ke) ;
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where Ke is the unrami�ed extension of Qp (for almost all prime number p of Z)

of degree e. The limit e ! 0 makes sense because one can l-adically interpolate

Z (s;f ; Ke) as a function of e. Furthermore, they gave a description of the poles of

the local zeta functions in terms of the poles of the topological zeta function:

Theorem If � is a pole of Ztop (s), then for almost all P there exists in�nitely many

unrami�ed extensions L of K for which � is a pole of Z (s;f ; L).

The techniques used to prove 1.29 over Qp also work for any extension of Qp, in

particular for Ke the unique unrami�ed extension of Qp of degree e; see Theorem

2.7. We denote this N -point zeta function as Z(N) (s; Ke) ; by replacing the p-adic

norms j�jp by the norm j�jKe
over Ke and Zp by OKe in Z

(N) (s) : Let

M(s) := jT r Ij+
X
i2TrI

(s1i + s(N�1)i) +
X

2�i<j�N�2
i2TrI;j2T

sij +
X

2�i<j�N�2
i2I;j2TrI

sij;

as in the case of Z(N) (s) ; we show that

Z(N) (s; Ke) =
X
I�T

q
M(s)
Ke

Z(N) (s; I; 0; Ke)Z
(N) (s;T r I; 1; Ke) ;

see Section 2.2.

Since Z(N) (s; I; 0; Ke) and Z(N) (s;T r I; 1; Ke) are multivariate local zeta func-

tions of type Z (s;f ; Ke) for suitable f , for any I � T = f2; ::; N � 3g ; we can
de�ne, as above,

Z
(N)
top (s; I; 0) := lim

e!0
Z(N) (s; I; 0; Ke) and

Z
(N)
top (s;T r I; 1) := lim

e!0
Z(N) (s;T r I; 1; Ke) ;

which are elements of Q (sij; i; j 2 f1; : : : ; N � 1g), the �eld of rational functions
in the variables sij, i; j 2 f1; : : : ; N � 1g ; with coe¢ cients in Q.
Then, we de�ne the open string N-point topological zeta functions as

Z
(N)
top (s) =

X
I�T

Z
(N)
top (s; I; 0)Z

(N)
top (s;T r I; 1) 2 Q (sij; i; j 2 f1; : : : ; N � 1g)
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Now, by applying Theorems 2.7, 2.5, we obtain that the possible poles of Z(N)
top (s)

belong to a �nite union of hyperplanes. Formally, we have the following result:

Theorem[Theorem 2.1] The open string N-point topological zeta function Z(N)
top (s)

is a rational function from Q (sij; i; j 2 f1; : : : ; N � 1g) de�ned as (2.5.1). The real
parts of the possible poles of Z(N)

top (s) belong to a �nite union of hyperplanes, the

equations of these hyperplanes have the form C1-C6 with the symbols �<�, �>�replaced

by �=�. (2) If s = (sij) 2 CD, with Re(sij) � 0 for i; j 2 f1; : : : ; N � 1g, then
Z
(N)
top (s) = +1.

where C1-C6 are as in Remarks 2.3, 2.4. And �nally, we de�ne the topological open

string N-point tree amplitudes as

A
(N)
top (k) = Z

(N)
top (s) jsij=kikj with i 2 f1; : : : ; N � 1g , j 2 T or i; j 2 T;

where T = f2; : : : ; N � 2g, which are rational functions of the variables kikj.

Local zeta functions for non-degenerate

rational functions

Let K be a non-Archimedean local �eld of arbitrary characteristic and let OK be the
ring of valuation of K;

OK := fx 2 K : jxjK � 1g ;

and PK the maximal ideal of OK ; this ideal is formed by the non-units of OK : In
terms of the absolute value j � jK , this maximal ideal can be described as

PK = fx 2 K : jxjK < 1g :

Let K = OK= PK the residue �eld of K: Thus K = Fq, the �nite �eld with q

elements. Let � be �xed generator of PK ; � is called a uniformizing parameter of

K, then PK = �OK ; furthermore, we assume that j�jK = q�1. For z 2 K, ord(z)2
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Z [ f+1g denotes the valuation of z, and jzjK = q�ord(z). If z 2 Kn f0g, then
ac(z)=z��ord(z) denotes the angular component of z.

Let h be a polynomial mapping h = (h1; : : : ; hr) : Kn ! Kr such that each hi(x)

is a non-constant polynomial in OK [x1; : : : ; xn]n�OK [x1; : : : ; xn], x = (x1; : : : ; xn) ;

r � n; and let s = (s1; : : : ; sr) 2 Cr. We attach to these data the multivariate local
zeta function

Z(s;h) :=

Z
OnKnDK

rY
i=1

jhi(x)jsiK jdxjK

for Re(si) > 0 for all i, where DK := [i2f1;:::;rg fx 2 Kn;hi(x) = 0g.
If [K : Qp] < 1; i.e. if K is a p-adic �eld; Z(s;h) were �rst studied by Loeser,

see [47]. He showed that Z(s;h) has a meromorphic continuation to whole Cr as

a rational function. In Chapter 3 we introduced a new non-degeneracy condition

for polynomial mappings, see De�nition 3.3, and established an explicit formula for

the meromorphic continuation of Z(s;h) over any non-Archimedean local �eld K of

arbitrary characteristic when h is non-degenerate. In the case K = Qp and r = 1;

this non-degeneracy condition coincides with the one given in [20].

We now introduce some notation. Let �(h) be the Newton polyhedron associated

to h, see section 3.3. Denote by F(h) the simplicial polyhedral subdivision subor-
dinate to �(h). Let � 2 F(h); then, there exist vectors wi 2 Nn; i = 1,.., e� with
relatively prime coordinates such that

� = f
P
�iwi : �i 2 R+; �i > 0g :

Set b(�) :=
Pe�

i=1wi and b(f0g) := 0. For I � f1; : : : ; rg, we put

V �;I :=
�
z 2 (F�q )n; hi;b(�)(z) = 0 , i 2 I

	
:

If � = 0, we set

V I :=
�
z 2 (F�q )n; hi(z) = 0 , i 2 I

	
:

Let a = (a1; : : : ; an) 2 Nn, we put �(a) = a1 + a2 + : : : + an and d(a;�(h)) =

minx2�(h) ha;xi :
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In Chapter 3, we showed that the multivariate local zeta function Z(s;h) has a

meromorphic continuation as a rational function in the variables q�si when h is a

non-degenerated polynomial mapping with respect to the Newton polyhedra �(h);

see De�nition 3.3. More precisely,

Theorem Assume that h = (h1; : : : ; hr) is non-degenerated polynomial mapping

over Fq with respect to �(h), with r � n as before. Fix a simplicial polyhedral

subdivision F(h) subordinate to �(h). Then Z(s;h) has a meromorphic continua-
tion to Cr as a rational function in the variables q�si, i = 1; : : : ; r. In addition, the

following explicit formula holds:

Z(s;h) = Lf0g(s;h) +
X

� 2 F(h)

L�(s;h)S�;

where

Lf0g = q
�n

X
I�f1;:::;rg

Card(V I)
Y
i2I

(q � 1)q�1�si
1� q�1�si ;

L� = q
�n

X
I�f1;:::;rg

Card(V �;I)
Y
i2I

(q � 1)q�1�si
1� q�1�si ;

with the convention that for I = ?,
Q
i2I

(q�1)q�1�si
1�q�1�si := 1, and

S� =
X

k2Nn\�

q��(k)�
Pr
i=1 d(k;�(hi))si :

Let � be the cone strictly positively generated by linearly independent vectors

w1; : : : ; wl 2 Nnn f0g, then

S� =

P
t q
��(t)�

Pr
i=1 d(t;�(hi))si

(1� q��(w1)�
Pr
i=1 d(w1;�(hi))si) � � � (1� q��(wl)�

Pr
i=1 d(wl;�(hi))si)

;

where t runs through the elements of the set

Zn \
(

lX
i=1

�iwi; 0 < �i � 1 for i = 1; : : : ; l
)
:
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This theorem extends some results due to Hoornaert and Denef [20], and Bories

[13]. Also, we applied this theorem to the study of local zeta functions attached to

a rational function f=g with coe¢ cients in a non-Archimedean local �eld of arbi-

trary characteristic, when f=g is non-degenerate with respect to a certain Newton

polyhedron. In [43] E. León-Cardenal and W. A. Zúñiga-Galindo studied similar

matters. In our results, we present a more suitable and general notion of non-

degeneracy which allows us to study the local zeta functions attached to much larger

class of rational functions. In this case, we extend the condition of non-degeneracy

for polynomial mappings to rational functions f=g. Let f , g be relatively prime poly-

nomials. We say that f=g is non-degenerate with respect to the Newton polyhedra

� (f=g) := � ((f; g)) if the polynomial mapping (f; g) is non-degenerate with respect

to � ((f; g)). Thus, by using the meromorphic continuation of Z((s;�s) ; (f; g)), see
Theorem 3.1, we obtain the convergence and the explicit formula for the meromorphic

continuation of the local zeta function attached to the rational function f=g

Z(s; f=g) =

Z
OnKnDK

����f(x)g(x)

����s
K

jdxjK

where DK = f�1(0) [ g�1(0); n � 2; s 2 C, and jdxjK is the normalized Haar

measure on Kn; see Theorem 3.1

In Chapter 3, it is given an explicit list for the possible poles of Z(s; f=g), includ-

ing the smallest and largest one, in terms of the normal vectors to the supporting

hyperplanes of a Newton polyhedra attached to (f; g) : In contrast with the classical

local zeta functions, these objects have poles with positive and negative real parts.

The study of local zeta functions associated to meromorphic functions is moti-

vated by the fact that these objects can be considered �toy versions�of parametric

Feynman integrals.



Chapter 1

Regularization of p-adic string

amplitudes and multivariate local

zeta functions

This chapter aims to discuss some connections between p-adic string amplitudes and

p-adic local zeta functions (also called Igusa�s local zeta functions). We prove that

the p-adic Koba-Nielsen type string amplitudes are bona �de integrals. We attach to

these amplitudes Igusa-type integrals depending on several complex parameters and

show that these integrals admit meromorphic continuations as rational functions.

Then we use these functions to regularize the Koba-Nielsen amplitudes. As far as

we know, there is no a similar result for the Archimedean Koba-Nielsen amplitudes.

We also discuss the existence of divergencies and the connections with multivariate

Igusa�s local zeta functions.

The chapter is organized as follows. In section 1.1 we present the basic aspects

of the p-adic analysis needed in this chapter, and in section 1.3, we prove the main

result, Theorem 1.29.



2 Chapter 1. p-adic string amplitudes and multivariate local zeta functions

1.1 Essential Ideas of p-Adic Analysis

In this section, we review some ideas and results on p-adic analysis that we will use

along this chapter. For an in-depth exposition, the reader may consult [1], [55], [63].

1.1.1 The �eld of p-adic numbers

Along this chapter p will denote a prime number. As we mentioned in Section 2.1,

the �eld of p-adic numbers Qp is a non-Archimedean local �eld, it is de�ned as the

completion of the �eld of rational numbers Q with respect to the p-adic norm j � jp,
which is de�ned as

jxjp =

8>>><>>>:
0 if x = 0

p� if x = p a
b
,

where a and b are integers coprime with p. The integer  := ord(x), with ord(0) :=

+1, is called the p-adic order of x. We extend the p-adic norm to Qnp by taking

jjxjjp := max
1�i�n

jxijp; for x = (x1; : : : ; xn) 2 Qnp :

We de�ne ord(x) = min1�i�nford(xi)g, then jjxjjp = p�ord(x). The metric space�
Qnp ; jj � jjp

�
is a complete ultrametric space. As a topological space

�
Qnp ; jj � jjp

�
is

totally disconnected and locally compact. A subset of Qnp is compact if and only if it

is closed and bounded in Qnp , see e.g. [63, Section 1.3], or [1, Section 1.8]. The balls

and spheres are compact subsets. Any p-adic number x 6= 0 has a unique expansion
of the form

x = pord(x)
1X
i=0

xip
i;

where xi 2 f0; 1; 2; : : : ; p� 1g and x0 6= 0.
For r 2 Z, denote by Bnr (a) = fx 2 Qnp ; jjx � ajjp � prg the ball of radius pr

with center at a = (a1; : : : ; an) 2 Qnp , and take Bnr (0) := Bnr . Note that B
n
r (a) =

Br(a1)�� � ��Br(an), where Br(ai) := fx 2 Qp; jxi�aijp � prg is the one-dimensional
ball of radius pr with center at ai 2 Qp. The ball Bn0 equals the product of n copies
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of B0 = Zp, the ring of p-adic integers. In addition, Bnr (a) = a + (p�rZp)n. We

also denote by Snr (a) = fx 2 Qnp ; jjx�ajjp = prg the sphere of radius pr with center
at a 2 Qnp , and take Snr (0) := Snr . We notice that S10 = Z�p (the group of units of
Zp), but

�
Z�p
�n ( Sn0 =

�
x 2 Qnp ; jjxjj = 1

	
. The balls and spheres are both open

and closed subsets in Qnp . In addition, two balls in Qnp are either disjoint or one is

contained in the other.

Remark 1.1 There is a natural map, called the reduction mod p and denoted as �,
from Zp onto Fp, the �nite �eld with p elements. More precisely, if x =

P1
j=0 xjp

j 2
Zp, then x = x0 2 Fp =

�
0; 1; : : : ; p� 1

	
. If a = (a1; : : : ; an) 2 Znp , then a =

(a1; : : : ; an).

1.1.2 Integration on Qnp

Since (Qp;+) is a locally compact topological group, there exists a Borel measure

dx, called the Haar measure of (Qp;+), unique up to multiplication by a positive

constant, such that
R
U
dx > 0 for every non-empty Borel open set U � Qp, and

satisfying
R
E+z

dx =
R
E
dx for every Borel set E � Qp, see e.g. [35, Chapter XI]. If

we normalize this measure by the condition
R
Zp dx = 1, then dx is unique. From now

on we denote by dx the normalized Haar measure of (Qp;+) and by dnx the product

measure on (Qnp ;+).

A function ' : Qnp ! C is said to be locally constant if for every x 2 Qnp there
exists an open compact subset U , x 2 U , such that '(x) = '(u) for all u 2 U .
Any locally constant function ' : Qnp ! C can be expressed as a linear combination

of characteristic functions of the form ' (x) =
P1

k=1 ck1Uk (x), where ck 2 C and

1Uk (x) is the characteristic function of Uk, an open compact subset of Qnp , for every

k. If ' has compact support, then ' (x) =
PL

k=1 ck1Uk (x) and in this caseZ
Qnp

' (x) dnx = c1

Z
U1

dnx+ : : :+ cL

Z
UL

dnx:
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A locally constant function with compact support is called a Bruhat-Schwartz func-

tion. These functions form a C-vector space denoted as S
�
Qnp
�
. By using the Stone-

Weierstrass theorem, S
�
Qnp
�
is a dense subspace of C0

�
Qnp
�
, the space of continuous

functions with compact support, and consequently the functional '!
R
Qnp
' (x) dnx,

' 2 S
�
Qnp
�
has a unique extension to C0

�
Qnp
�
. For integrating more general func-

tions, say locally integrable functions, the following notion of improper integral will

be used.

De�nition 1.2 A function ' 2 L1loc is said to be integrable in Qnp if

lim
m!+1

Z
Bnm(0)

' (x) dnx = lim
m!+1

mX
j=�1

Z
Snj (0)

' (x) dnx

exists. If the limit exists, it is denoted as
R
Qnp
' (x) dnx, and we say that the (im-

proper) integral exists.

1.1.3 Analytic change of variables

A function h : U ! Qp is said to be analytic on an open subset U � Qnp , if for every
b 2 U there exists an open subset eU � U , with b 2 eU , and a convergent power
series

P
i ai (x� b)i for x 2 eU , such that h (x) =Pi2Nn ai (x� b)i for x 2 eU , with

xi = xi11 � � �xinn , i = (i1; : : : ; in). In this case, @
@xl
h (x) =

P
i2Nn ai

@
@xl
(x� b)i is a

convergent power series. Let U , V be open subsets of Qnp . A mapping h : U ! V ,

h = (h1; : : : ; hn) is called analytic if each hi is analytic.

Let ' : V ! C be a continuous function with compact support, and let h : U ! V

be an analytic mapping. Then

R
V

' (y) dny =
R
U

' (h(x)) jJac(h(x))jp dnx,

where Jac(h(z)) := det
h
@hi
@xj
(z)
i
1�i�n
1�j�n

, see e.g. [14, Section 10.1.2].
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1.2 The p-adic multivariate Igusa zeta functions

Let fi(x) 2 Qp [x1; : : : ; xn] be a non-constant polynomial for i = 1; : : : ; l, and let

� be a Bruhat-Schwartz function. The multivariate local zeta function attached to

(f1; : : : ; fl;�) (also called Igusa local zeta function) is de�ned by the integral

Z� (s1; : : : ; sl; ; f1; : : : ; fl; ) =

Z
Qnpr[li=1f

�1
i (0)

� (x)

lY
i=1

jfi(x)jsip dnx

for (s1; : : : ; sl) 2 Cl with Re(si) > 0, i = 1; : : : ; l. This integral de�nes a holomorphic
function of (s1; : : : ; sl) in the half-space Re(si) > 0, i = 1; : : : ; l. In the case l = 1;

this assertion corresponds to Lemma 5.3.1 in [39]. For the general case, we recall

that a continuous complex-valued function de�ned in an open set A � Cl, which is

holomorphic in each variable separately, is holomorphic in A. The multivariate local

zeta functions admit analytic continuations to the whole Cl as rational functions of

the variables p�si, i = 1; : : : ; l, see [47]. The Igusa local zeta functions are related

with the number of solutions of polynomial congruencesmod pm and with exponential

sums mod pm, there are many intriguing conjectures relating the poles of local zeta

functions with the topology of complex singularities, see e.g. [18], [39].

We want to highlight that the convergence of the local zeta functions depends

crucially on the fact that � has compact support. Consider the following integral:

J(s) =

Z
Qp

jxjsp dx, s 2 C:

Assume that J(s0) exists for some s0 2 R, then necessarily the integrals

J0(s0) =

Z
Zp

jxjs0p dx and J1(s0) =
Z

QprZp

jxjs0p dx

exist. The �rst integral is well-known, J0(s0) =
1�p�1

1�p�1�s0 for s0 > �1. For the second
integral, we use that jxjs0p is locally integrable, and thus

J1(s0) =
1X
j=1

Z
p�jZ�p

jxjs0p dx =
1X
j=1

pj+js0
Z
Z�p

dx =
�
1� p�1

� 1X
j=1

pj(1+s0) <1
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if and only if s0 < �1. Then, integral J(s) does not exist for any s 2 R and

consequently J(s) does not exist for any complex value s.

For an in-depth discussion on local zeta functions the reader may consult [18],

[39] and the references therein.

1.3 p-adic String Zeta Functions

We �x an integer N � 4. To each pair (i; j) with i; j 2 f1; : : : ; N � 1g we attach
a complex number s(i;j) such that s(i;j) = s(j;i). To simplify the notation we will

use ij, respectively sij, instead of (i; j), respectively, instead of s(i;j). We set T :=

f2; : : : ; N � 2g, D = (N�3)(N�4)
2

+ 2 (N � 3) and CD as8>>><>>>:
fsij 2 C; i 2 f1; N � 1g ; j 2 Tg if N = 4

fsij 2 C; i 2 f1; N � 1g ; j 2 T or i; j 2 T with i < jg if N � 5:

We set s = (sij) 2 CD, x = (x2; : : : ; xN�2) 2 QN�3p , and

F (s;x;N) =
N�2Y
i=2

jxijs1ip j1� xijs(N�1)ip

Y
2�i<j�N�2

jxi � xjjsijp :

De�nition 1.1 The p-adic open string N-point zeta function is de�ned as

Z(N) (s) :=

Z
QN�3p r�

F (s;x;N)
N�2Y
i=2

dxi (1.3.1)

for s = (sij) 2 CD, where

� :=

(
(x2; : : : ; xN�2) 2 QN�3p ;

N�2Y
i=2

xi (1� xi)
Y

2�i<j�N�2
(xi � xj) = 0

)

and
QN�2
i=2 dxi is the normalized Haar measure of QN�3p .

Remark 1.2 We notice that the domain of integration in (1.3.1) is taken to be

QN�3p r � in order to use as = es ln a, with a > 0 and s 2 C, as the de�nition
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of the complex power function. The convergence of integral (1.3.1), as well as its

holomorphy, will be discussed later on.

We de�ne for I � T , the sector attached to I as

Sect(I) =
n
(x2; : : : ; xN�2) 2 QN�3p ; jxijp � 1 , i 2 I

o
and

Z(N) (s; I) =

Z
Sect(I)

F (s;x;N)

N�2Y
i=2

dxi.

Hence

Z(N) (s) =
X
I�T

Z(N) (s; I) : (1.3.2)

Notation 1.3 (i) The cardinality of a �nite set A will be denoted as jAj. (ii) We
will use the symbol

F
to denote the union of disjoint sets. (iii) Given a non-empty

subset I of f2; : : : ; N � 2g and B a non-empty subset of Qp, we set

BjIj =
�
(xi)i2I ;xi 2 B

	
:

(iv) By convention, we de�ne
Q
i2? � := 1,

P
i2? � := 0, and if J = ?, then

R
BjJj � :=

1. (v) The indices i, j will run over subsets of T , if we do not specify any subset, we

will assume that is T .

Lemma 1.4 With the above notation the following formulas hold:

(i) F (s;x;N) jSect(I)= F0 (s;x;N)F1 (s;x;N), where

F0 (s;x;N) :=
Y
i2I
jxijs1ip j1� xijs(N�1)ip

Y
2�i<j�N�2

i;j2I

jxi � xjjsijp

and

F1 (s;x;N) :=
Y
i2TrI

jxij
s1i+s(N�1)i+

P
2�j�N�2
j 6=i; j2I

sij

p

Y
2�i<j�N�2
i;j2TrI

jxi � xjjsijp :
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(ii) If Re (s1i) + Re
�
s(N�1)i

�
+
P

2�j�N�2;j 6=iRe (sij) + 2 < 1 for i 2 T r I, and
Re (sij) > �1 for i; j 2 T r I, thenZ

(QprZp)jTrIj

F1 (s;x;N)
Y
i2TrI

dxi

= pM(s)

Z
ZjTrIjp

Y
2�i<j�N�2
i;j2TrI

jyi � yjjsijp

Y
i2TrI

jyij2+s1i+s(N�1)i+
P
2�j�N�2;j 6=i sij

p

Y
i2TrI

dyi;

where M(s) := jT r Ij+
P

i2TrI(s1i + s(N�1)i) +
P

2�i<j�N�2
i2TrI;j2T

sij +
P

2�i<j�N�2
i2I;j2TrI

sij.

(iii) If Re (s1i) + Re
�
s(N�1)i

�
+
P

2�j�N�2;j 6=iRe (sij) + 2 < 1 for i 2 T r I,

Re (sij) > �1 for i; j 2 T r I, Re (s1i) > �1 for i 2 I and Re
�
s(N�1)i

�
> �1 for

i 2 I, then

Z(N) (s; I) = pM(s)

8>><>>:
Z
ZjIjp

F0 (s;x;N)
Y
i2I
dxi

9>>=>>;

�

8>>>>><>>>>>:
Z

ZjTrIjp

Y
2�i<j�N�2
i;j2TrI

jxi � xjjsijp

Y
i2TrI

jxij2+s1i+s(N�1)i+
P
2�j�N�2;j 6=i sij

p

Y
i2TrI

dxi

9>>>>>=>>>>>;
=: pM(s)Z(N) (s; I; 0)Z(N) (s;T r I; 1) : (1.3.3)

Remark 1.5 Later on we will show that the integrals in the right-hand side in the

formulas given in (ii) and (iii) are convergent and holomorphic functions on a certain

subset of CD for all I � T .

Proof. (i) Notice that F (s;x;N) jSect(I) equalsY
i2I
jxijs1ip j1� xijs(N�1)ip

Y
i2TrI

jxijs1i+s(N�1)ip

Y
2�i<j�N�2

i;j2I

jxi � xjjsijp �

Y
2�i<j�N�2
i;j2TrI

jxi � xjjsijp
Y

2�i<j�N�2
i2TrI;j2I

jxijsijp
Y

2�i<j�N�2
i2I;j2TrI

jxjjsijp : (1.3.4)



1.3. p-adic String Zeta Functions 9

Now, by using that sij = sji,

Y
2�i<j�N�2
i2TrI;j2I

jxijsijp
Y

2�i<j�N�2
i2I;j2TrI

jxjjsijp =
Y

2�i<j�N�2
i2TrI;j2I

jxijsijp
Y

2�j<i�N�2
j2I;i2TrI

jxijsijp

=
Y

2�j;i�N�2
i6=j; i2TrI;j2I

jxijsijp =
Y
i2TrI

jxij

P
2�j�N�2
j 6=i; j2I

sij

p : (1.3.5)

The announced formula follows from (1.3.4)-(1.3.5).

(ii) For jT n Ij � 1, we set

I (s;T n I) :=
Z

(pZp)jTrIj

F1 (s;x;N)
Y
i2TrI

dxi;

and for l 2 Nn f0g,

(pZp)jTrIj�l :=
n
(xi)i2TrI 2 (Qp r Zp)

jTrIj ;�l � ord(xi) � �1 for i 2 T r I
o
;

(pZp)jTrIjl :=
n
(xi)i2TrI 2 (pZp)

jTrIj ; 1 � ord(xi) � l for i 2 T r I
o
;

and

I�l (s;T n I) :=
Z

(QprZp)jTrIj�l

F1 (s;x;N)
Y
i2TrI

dxi:

Notice that (Qp r Zp)jTrIj�l , (pZp)jTrIjl are compact sets and that

(Qp r Zp)jTrIj�l ! (pZp)jTrIjl

(xi)i2TrI ! (� (xi))i2TrI ;

with � (xi) = 1
yi
is an analytic change of variables satisfying

Q
i2TrI dxi =

Q
i2TrI

dyi

jyij2p
;
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then by using this change of variables and the fact that

Y
i2TrI

jyij
s1i+s(N�1)i+

P
2�j�N�2
j 6=i;j2I

sij

p

Y
2�i<j�N�2
i2TrI;j2TrI

jyijsijp
Y

2�i<j�N�2
i2TrI;j2TrI

jyjjsijp

=
Y
i2TrI

jyij
s1i+s(N�1)i+

P
2�j�N�2
j 6=i;j2I

sij

p

Y
i2TrI

jyij

P
2�j�N�2
j 6=i;j2TrI

sij

p

=
Y
i2TrI

jyijs1i+s(N�1)i+
P
2�j�N�2;j 6=i sij

p ;

we have

I�l (s;T n I) =
Z

(pZp)jTrIjl

Y
2�i<j�N�2
i;j2TrI

jyi � yjjsijp
Y
i2TrI

dyi

Y
i2TrI

jyijs1i+s(N�1)i+
P
2�j�N�2;j 6=i sij+2

p

: (1.3.6)

Then liml!1 I�l (s;T n I) = I (s;T n I). Indeed, the formula follows from the dom-
inated convergence theorem, by using that jyi � yjjRe(sij)p < 1 for yi, yj 2 pZp, and
the fact that

R
pZp

1
jyjsp
dy converges for Re (s) < 1. Finally, the announced formula

follows from (1.3.6) by a change of variables.

(iii) It is a consequence of (i)-(ii).

Remark 1.6 From Lemma 1.4, we have

Z(N) (s) =
X
I�T

pM(s)Z(N) (s; I; 0)Z(N) (s;T r I; 1) : (1.3.7)

By convention Z(N) (s;?; 0) = 1, Z(N) (s;?; 1) = 1. A central goal of this article

is to show that Z(N) (s) has an analytic continuation to the whole CD as a rational

function in the variables p�sij . To establish this result, we show that all functions

appearing on the right-hand side of formula (1.3.7) admit analytic continuations to

the whole CD as rational functions in the variables p�sij , and that each of these func-

tions is holomorphic on certain domain, and that the intersection of all these domains

contains an open and connected subset of CD, which allows us to use the principle

of analytic continuation. We will show that each of the integrals Z(N) (s; I; 0) and
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Z(N) (s;T r I; 1) satis�es several recursive formulas, and that by using them, the

problem of �nding analytic continuations is reduced to case of certain simple inte-

grals.

1.3.1 Some p-adic integrals

We compute some p-adic integrals needed for calculating

Z(N) (s; I; 0) and Z(N) (s; I; 1) :

Let J be a subset of T with jJ j � 2. We de�ne

L
(N)
0

 
(sij)

2�i<j�N�2
i;j2J

; J

!
:= L

(N)
0 (s; J) =

Z
(Z�p )jJj

Y
2�i<j�N�2

i;j2J

jxi � xjjsijp
Y
i2J
dxi

(1.3.8)

for Re (sij) > 0 for any ij, and

L
(N)
1

 
(sij)

2�i<j�N�2
i;j2J

; J;K

!
:= L

(N)
1 (s; J;K) =

Z
ZjJjp

Y
(i;j)2K

jxi � xjjsijp
Y
i2J
dxi

(1.3.9)

where K � TJ := f(i; j) 2 T � T ; 2 � i < j � N � 2; i; j 2 Jg and Re (sij) > 0 for

any ij. Notice that if jJ j = 1, then L(N)0 (s; J) = 1� p�1 and K = ? which implies

L
(N)
1 (s; J;K) = 1. A precise de�nition of integrals L(N)0 (s; J) requires to integrate

on

(Z�p )jJ j r

8>><>>:x 2 (Z�p )jJ j;
Y

2�i<j�N�2
i;j2J

(xi � xj) = 0

9>>=>>; :
A similar consideration is required for L(N)1 (s; J;K). However, for the sake of

simplicity we use de�nitions (1.3.8)-(1.3.9). We will use this simpli�ed notation

later on for similar integrals. The integrals L(N)0 (s; J), L(N)1 (s; J;K) are p-adic

multivariate local zeta function, these functions were studied by Loeser in [47]. In

particular, it is known that these functions have an analytic continuation to CD as
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rational functions in the variables p�sij and that they are holomorphic functions on

Re (sij) > 0 for any ij.

Remark 1.7 Let J be subset of T , with jJ j � 2. Set

TJ = f(i; j) 2 T � T ; 2 � i < j � N � 2; i; j 2 Jg

as before. For a = (ai)i2J 2 (F�p )jJ j n�(J), with

�(J) :=
�
a 2 (F�p )jJ j; ai 6= aj for i 6= j, with i; j 2 J

	
;

we set

K(a) := f(i; j) 2 TJ ; ai = ajg :

Now, we introduce on (F�p )jJ j n�(J), the following equivalence relation:

a � b , K(a) = K(b):

We denote by A(a) =
�
b 2 (F�p )jJ j n�(J) ;a � b

	
, the equivalence class de�ned by

a 2 (F�p )jJ jn�(J). For instance, if a = 1 =
�
1
�
i2J , then A

�
1
�
=
F
b2F�p

n
b
�
1
�
i2J

o
.

By taking a unique representative in each equivalence class, we obtain R(J) �
(F�p )jJ j n�(J) such that

(F�p )jJ j =
G

a2R(J)

A(a)
G
�(J) :

Given a subset K � TJ with K = f(i1; j1) ; : : : ; (im; jm)g, we de�ne

Klist = fi1; j1; : : : ; im; jmg � J:

We will use the notation Klist(a) to mean K(a)list, for a 2 (F�p )jJ j. Notice that

K(a) � Klist(a) � Klist(a), jKlist(a)j � 2 for any a 2 (F�p )jJ j n �(J) and that
Klist(1) = J .

Lemma 1.8 If jJ j � 2, then, with the notation of Remark 1.7, the following formula
holds:

L
(N)
0 (s; J) =

X
a2R(J)

��A(a)�� p�jJ j�P(i;j)2K(a)
sij
L
(N)
1 (s;Klist(a); K(a)) +

���(J)�� p�jJ j
for Re(sij) > 0 for all i, j 2 J .
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Proof. For a 2 (F�p )jJ j n �(J), set A(a) :=
�
b+ px; b 2 A (a)

	
, and for �(J),

�(J) :=
�
a+ px;a 2 �(J)

	
. Now

L
(N)
0 (s; J) =

X
a2(F�p )jJj

Z
a+(pZp)jJj

Y
2�i<j�N�2

i;j2J

jxi � xjjsijp
Y
i2J
dxi

=
X

a2R(J)

X
b2A(a)

Z
b+(pZp)jJj

Y
2�i<j�N�2

i;j2J

jxi � xjjsijp
Y
i2J
dxi+

X
a2�(J)

Z
a+(pZp)jJj

Y
2�i<j�N�2

i;j2J

jxi � xjjsijp
Y
i2J
dxi

=
X

a2R(J)

��A (a)�� p�jJ j�P(i;j)2K(a) sij

Z
(Zp)jKlist (a)j

Y
(i;j)2K(a)

jxi � xjjsijp
Y

i2Klist (a)

dxi

+
���(J)�� p�jJ j:

Lemma 1.9 We use all the notation introduced in Remark 1.7. Given a = (ai)i2J 2
(F�p )jJ j n�(J) and (i; j) 2 K(a), we set

K((i; j) ;a) :=
n�ei;ej� 2 K(a); ai = aeio

and use Klist((i; j) ;a) := K((i; j) ;a)list. Then the following assertions hold:

(i)

K((i; j) ;a) = TKlist((i;j);a) = f(r; s) ; 2 � r < s � N � 2; r; s 2 Klist((i; j) ;a)g ;

(ii) the subsets K((i; j) ;a) form a partition of K(a), i.e. there exists a �nite set

R (a) of elements (i; j) 2 K(a); such that K(a) =
F
(i;j)2R(a)K((i; j) ;a):

Proof. (i) By de�nition K((i; j) ;a) � TKlist ((i;j);a): Conversely, let
�eim;ejl� 2

TKlist ((i;j);a); then there exists ejm 2 Klist((i; j) ;a) such that
�eim;ejm� 2 K((i; j) ;a) or�ejm;eim� 2 K((i; j) ;a). In any case, either �eim;ejm� or �ejm;eim� belongs toK(a) and
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ai = aeim = aejm. Similarly, there exists eil 2 Klist((i; j) ;a) such that either
�eil;ejl� or�ejl;eil� belongs to K((i; j) ;a) and ai = aeil = aejl. Therefore aeim = aejl i.e. �eim;ejl� 2

K(a), furthermore
�eim;ejl� 2 K((i; j) ;a): Hence K((i; j) ;a) = TKlist ((i;j);a).

(ii) Let (im; jm) 2 K((i; j) ;a) \ K(
�ei;ej� ;a), then ai = aim = aei and

�ei;ej� 2
K((i; j) ;a), and consequently K(

�ei;ej� ;a) � K((i; j) ;a). Similarly, one veri�es

that K((i; j) ;a) � K(
�ei;ej� ;a).

Remark 1.10 As a consequence of Lemmas 1.8- 1.9, we have

L
(N)
1 (s;Klist(a); K(a)) =

Q
(i;j)2R(a)

L
(N)
1

�
s;Klist((i; j) ;a); TKlist((i;j);a)

�
:

Example 1.11 Take p � 3, a =
�
1; 2; 1; 2; 2

�
2 F5p, and J = f2; 3; 4; 5; 6g. Hence

TJ = f(2; 3) ; (2; 4) ; (2; 5) ; (2; 6) ; (3; 4) ; (3; 5) ; (3; 6) ; (4; 5) ; (4; 6) ; (5; 6)g ;

and by Lemma 1.9,

K (a) = f(2; 4) ; (3; 5) ; (3; 6) ; (5; 6)g = K((2; 4) ;a)
F
K((3; 5) ;a);

where K((2; 4) ;a) = f(2; 4)g ; K((3; 5) ;a) = f(3; 5) ; (3; 6) ; (5; 6)g. Thus

Klist((2; 4) ;a) = f2; 4g and Klist((3; 5) ;a) = f3; 5; 6g :

With this notation, L(N)1 (s;Klist(a); K(a)) equalsZ
Z5p

jx2 � x4js24p jx3 � x5js35p jx3 � x6js36p jx5 � x6js56p dx2dx3dx4dx5dx6

=

8><>:
Z
Z2p

jx2 � x4js24p dx2dx4

9>=>;
8><>:
Z
Z3p

jx3 � x5js35p jx3 � x6js36p jx5 � x6js56p dx3dx5dx6

9>=>;
= L

(N)
1

�
s;Klist((2; 4) ;a); TKlist((2;4);a)

�
L
(N)
1

�
s;Klist((3; 5) ;a); TKlist((3;5);a)

�
:

Lemma 1.12 Set F (s1; s2; s3; x; y) := jxjs1p jyjs2p jx� yjs3p , s1, s2, s3 2 C, and

Z (s1; s2; s3) :=

Z
Z2p
F (s1; s2; s3; x; y)dxdy for Re(si) > 0, i = 1; 2; 3.
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Then Z (s1; s2; s3) is a holomorphic function on�
(s1; s2; s3) 2 C3; Re(si) > �1 for i = 1; 2; 3 and Re(s1) + Re(s2) + Re(s3) > �2

	
:

In addition,

Z (s1; s2; s3) :=
Q (p�s1 ; p�s2 ; p�s3)

(1� p�2�s1�s2�s3)
3Q
i=1

(1� p�1�si)
;

where Q (p�s1 ; p�s2 ; p�s3) denotes a polynomial with rational coe¢ cients in the vari-

ables p�s1, p�s2, p�s3.

Remark 1.13 If s1 = s2 = 0, then the denominator of Z (s1; s2; s3) is 1� p�1�s3.

Proof. By using that Z2p = (pZp)2 t S20 with S20 = pZp �Z�p tZ�p � pZp tZ�p �Z�p ,
and then by changing variables, we get

Z (s1; s2; s3) =

R
S20
F (s1; s2; s3; x; y)dxdy

1� p�2�s1�s2�s3 =:
Z0 (s1; s2; s3)

1� p�2�s1�s2�s3 :

On the other hand,

Z0 (s1; s2; s3) =

Z
pZp�Z�p

F (s1; s2; s3; x; y)dxdy

+

Z
Z�p �pZp

F (s1; s2; s3; x; y)dxdy +

Z
Z�p �Z�p

F (s1; s2; s3; x; y)dxdy

=: Z0;1(s1; s2; s3) +Z0;2(s1; s2; s3) +Z0;3 (s1; s2; s3):

First, we compute Z0;1(s1; s2; s3). By a change of variables, we get

Z0;1(s1; s2; s3) = p
�1�s1(1� p�1)

Z
Zp
jxjs1p dx =

(1� p�1)2 p�1�s1
1� p�1�s1

for Re(s1) > �1. By a similar computation we obtain

Z0;2(s1; s2; s3) =
(1� p�1)2 p�1�s2
1� p�1�s2 for Re(s2) > �1:

In order to compute

Z0;3(s1; s2; s3) =

Z
Z�p �Z�p

jx� yjs3p dxdy;
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we use that (Z�p )2 = ta0;a12F�p a0 + pZp � a1 + pZp, where F
�
p = f1; 2; :::; p� 1g as

sets, to get

Z0;3(s1; s2; s3) =
X

a0;a12F�p

Z
a0+pZp�a1+pZp

jx� yjs3p dxdy

= p�2
X

a0;a12F�p
a0 6=a1

Z
Zp�Zp

ja0 + px� a1 � pyjs3p dxdy + p�2
X

a0;a12F�p
a0=a1

Z
Zp�Zp

jx� yjs3p dxdy

= p�2(p� 1)(p� 2) + p�2�s3 (p� 1) 1� p�1
1� p�1�s3 :

Lemma 1.14 Let I be a subset of T satisfying jIj � 2. Then L(N)1 (s; I; TI) admits

an analytic continuation as a rational function of the form

L
(N)
1 (s; I; TI) =

QI

�
fp�sijgi;j2I

�
Q

J2F(I)

0B@1� p�
0@jJ j�1+P2�i<j�N�2

i;j2J
sij

1A1CA
eJ Q
ij2SI

(1� p�1�sij)eij

;

(1.3.10)

where QI
�
fp�sijgi;j2I

�
is a polynomial with rational coe¢ cients in the variables

fp�sijgi;j2I , F(I) is a family of subsets of I, with I 2 F(I), SI is a non-empty
subset of

f2 � i < j � N � 2; i; j 2 Ig ;

and the eJ ; eij�s are positive integers.

Proof. By using the partition ZjIjp = (pZp)jIj t SjIj0 , where Z
jIj
p =

�
(xi)i2I ;xi 2 Zp

	
,

(pZp)jIj =
�
(xi)i2I ;xi 2 pZp

	
, and SjIj0 =

n
(xi)i2I 2 Z

jIj
p ; maxi2I

n
jxijp

o
= 1
o
. By a
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change of variables, we get

L
(N)
1 (s; I; TI) =

Z
S
jIj
0

Y
2�i<j�N�2

i;j2I

jxi � xjjsijp
Y
i2J
dxi

1� p
�jIj�

P
2�i<j�N�2

i;j2I
sij

= :
A0 (s; I)

1� p
�jIj�

P
2�i<j�N�2

i;j2I
sij
:

For every non-empty subset J � I, we de�ne

S
jIj
J =

n
(xi)i2I 2 ZjIjp ; jxijp = 1, i 2 J

o
;

then SjIj0 = tJ�I;J 6=?SjIjJ and A0 (s; I) =
P

J�I;J 6=?
A0;J (s) where

A0;J (s) :=

Z
S
jIj
J

Y
2�i<j�N�2

i;j2I

jxi � xjjsijp
Y
i2I
dxi;

for this reason

L
(N)
1 (s; I; TI) =

A0;I (s) +
P

J$I;J 6=?
A0;J (s)

1� p
�jIj�

P
2�i<j�N�2

i;j2I
sij

: (1.3.11)

On the other hand,

jxi � xjjsijp j
S
jIj
J
=

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

jx
i
� xjjsijp if i; j 2 J

jx
i
� xjjsijp if i; j 2 I r J

1 if i 2 J; j 2 I r J

1 if j 2 J; i 2 I r J:

(1.3.12)

Then

A0;I (s) = L
(N)
0 (s; I) ;
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and if J $ I,

A0;J (s) =

8>><>>:
Z

(pZp)jIrJj

Y
2�i<j�N�2
i;j2IrJ

jxi � xjjsijp
Y
i2IrJ

dxi

9>>=>>;L(N)0 (s; J) (1.3.13)

= p

�jIrJ j�
P
2�i<j�N�2
i;j2IrJ

sij

L
(N)
1 (s; I r J; TIrJ)L(N)0 (s; J) :

Therefore, from (1.3.11)-(1.3.13), L(N)1 (s; I; TI) equals

L
(N)
0 (s; I) +

P
J$I;J 6=?

p

�jIrJ j�
P
2�i<j�N�2
i;j2IrJ

sij

L
(N)
1 (s; I r J; TIrJ)L(N)0 (s; J)

1� p
�jIj�

P
2�i<j�N�2

i;j2I
sij

:

(1.3.14)

Now, by Lemma 1.8 and the fact that A
�
1
�
=
F
b2F�p

n�
b
�
i2I

o
, Klist(1) = I, see

Remark 1.7,

L
(N)
0 (s; I) =

X
a2R(I)rf1g

��A(a)�� p�jIj�P(i;j)2K(a)
sij
L
(N)
1 (s;Klist(a); K(a)) (1.3.15)

+(p� 1) p
�jIj�

P
2�i<j�N�2

i;j2I
sij

L
(N)
1 (s; I; TI) +

���(I)�� p�jIj;
with jKlist(a)j � 2, hence from (1.3.14)-(1.3.15), 

1� p
1�jIj�

P
2�i<j�N�2

i;j2I
sij
!
L
(N)
1 (s; I; TI)

=
X

a2R(I)rf1g
da (s)L

(N)
1 (s;Klist(a); K(a))

+
X
J$I
J 6=?

cJ(s)L
(N)
1 (s; I r J; TIrJ)L(N)0 (s; J) +

���(I)�� p�jIj:
This formula and Lemmas 1.8-1.12 give a recursive algorithm for computing integrals

L
(N)
1 (s; I; TI), from which we get (1.3.10).

From Lemmas 1.8-1.14, we obtain the following result:
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Corollary 1.15 If jIj � 2, then

L
(N)
0 (s; I) =

RI

�
fp�sijgi;j2I

�
Q

J2G(I)

0B@1� p�
0@jJ j�1+P2�i<j�N�2

i;j2J
sij

1A1CA
fJ Q
ij2GI

(1� p�1�sij)fij

;

where RI
�
fp�sijgi;j2I

�
is a polynomial with rational coe¢ cients in the variables

fp�sijgi;j2I , G (I) is a family of non-empty subsets of I, with I 2 G (I), GI is a
non-empty subset of f2 � i < j � N � 2; i; j 2 Ig ; and the fJ , fij �s are positive
integers.

Given I � T , with jIj � 2, and K � I, with jKj � 1, and M � TI , with

jM j � 1, we de�ne

L
(N)
2 (s; I;K;M) =

Z
ZjIjp

Y
i2K

jxijstip
Y

(i;j)2M

jxi � xjjsijp
Y
i2I
dxi

for Re (sij) > 0 for any ij. If jM j = 0, then

L
(N)
2 (s; I;K;M) =

Z
ZjIjp

Q
i2K jxij

sti
p

Q
i2I dxi:

Lemma 1.16 Let t 2 f1; N � 1g. Then

L
(N)
2 (s; I;K; TI) =

Z
ZjIjp

Y
i2K

jxijstip
Y

2�i<j�N�2
i;j2I

jxi � xjjsijp
Y
i2I
dxi

admits an analytic continuation as a rational function of the form

L
(N)
2 (s; I;K; TI) =

QI;K

�
fp�sijgi;j2I ; fp�stigt2f1;N�1g;i2I

�
R0(s; I;K)R1(s; I;K)R2(s; I;K)

; (1.3.16)

where

R0(s; I;K) =
Y

J2G1(I)

0B@1� p�
0@jJ j�1+P2�i<j�N�2

i;j2J
sij

1A1CA
fJ Y
ij2SI

�
1� p�1�sij

�gij ;
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R1(s; I;K) =
Y
i2UK

�
1� p�1�sti

�hi ;
R2(s; I;K) =

Y
(J;R)2G2(I�I)

�
1� p�jJ j�

P
i2R sti�

P
2�i<j�N�2; i;j2J sij

�
;

where QI;K
�
fp�sijgi;j2I ; fp�stigt2f1;N�1g;i2I

�
denotes a polynomial with rational coef-

�cients in the variables fp�sijgi;j2I ; fp�stigt2f1;N�1g;i2I , G1 (I) is a non-empty family
of subsets of I, with I 2 G1 (I), G2 (I � I) is a non-empty family of subsets J �R of
I � I, with R � J and (I;K) 2 G2 (I � I), UK is a non-empty subset of K, SI is

a non-empty subset of f2 � i < j � N � 2; i; j 2 Ig, and the fJ�s, gij�s, and the hi�s
are positive integers.

Remark 1.17 The integral L(N)2 (s; I;K;M) is also a multivariate p-adic local zeta

function. If jIj � 2 and jKj = 0, then L(N)2 (s; I;K;M) = L
(N)
1 (s; I;M).

Proof. We use the partition ZjIjp = (pZp)jIj tSjIj0 as in the proof of Lemma 1.14 and

a change of variables, to get

L
(N)
2 (s; I;K; TI) =

Z
S
jIj
0

Y
i2K

jxijstip
Y

2�i<j�N�2;i;j2I
jxi � xjjsijp

Y
i2I
dxi

1� p�jIj�
P
i2K sti�

P
2�i<j�N�2;i;j2I sij

= :
B0 (s; I;K; TI)

1� p�jIj�
P
i2K sti�

P
2�i<j�N�2; i;j2I sij

:

We now use the partition SjIj0 = tJ�I;J 6=?SjIjJ to obtain

B0 (s; I;K; TI) =
X

J�I;J 6=?

B0;J (s) ;

where

B0;J (s) :=

Z
S
jIj
J

Y
i2K

jxijstip
Y

2�i<j�N�2
i;j2I

jxi � xjjsijp
Y
i2I
dxi:

Consequently

L
(N)
2 (s; I;K; TI) =

B0;I (s) +
P

J$I;J 6=?
B0;J (s)

1� p�jIj�
P
i2K sti�

P
2�i<j�N�2; i;j2I sij

:
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On the other hand, jxi � xjjsijp j
S
jIj
J
is given in (1.3.12) and

Q
i2K jxij

sti
p j

S
jIj
J
=
Q
i2K jxij

sti
p j(pZp)jKnJj :

Then B0;I (s) = L
(N)
0 (s; I), and if J $ I, B0;J (s) equals8>><>>:

Z
(pZp)jIrJj

Y
i2KrJ

jxijstip
Y

2�i<j�N�2
i;j2IrJ

jxi � xjjsijp
Y
i2IrJ

dxi

9>>=>>;L(N)0 (s; J) =

p�jIrJ j�
P
i2KrJ sti�

P
2�i<j�N�2;i;j2IrJ sij�

8>><>>:
Z

ZjIrJjp

Y
i2KrJ

jxijstip
Y

2�i<j�N�2
i;j2IrJ

jxi � xjjsijp
Y
i2IrJ

dxi

9>>=>>;L(N)0 (s; J) =

p�jIrJ j�
P
i2KrJ sti�

P
2�i<j�N�2;i;j2IrJ sijL

(N)
2 (s; I r J;K r J; TIrJ)L(N)0 (s; J) :

Hence
�
1� p�jIj�

P
i2K sti�

P
2�i<j�N�2; i;j2I sij

�
L
(N)
2 (s; I;K; TI) equals

L
(N)
0 (s; I)+ (1.3.17)X

J$I; J 6=?

p�jIrJ j�
P
i2KrJ sti�

P
2�i<j�N�2;i;j2IrJ sijL

(N)
2 (s; I r J;K r J; TIrJ)L(N)0 (s; J) :

By using that jI r J j < jIj if J $ I, J 6= ?, and that integrals L(N)0 (s; I), L(N)0 (s; J)

can be computed e¤ectively, see Corollary 1.15, formula (1.3.17) gives a recursive

algorithm for computing L(N)2 (s; I;K; TI), by using it, we obtain (1.3.16). Notice

the integrals of type L(N)2 (s; I;K; TI), with jIj = 1 and K = fig contribute with
terms of the form 1�p�1

1�p�1�sti .

Lemma 1.18 Given J a non-empty subset of T , with jJ j � 2, we de�ne

MJ(s; 1) =

Z
(Z�p )jJj

Y
i2J
j1� xijs(N�1)ip

Y
2�i<j�N�2

i;j2J

jxi � xjjsijp
Y
i2J
dxi
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for Re
�
s(N�1)i

�
> 0, i 2 J , and Re(sij) > 0, for i; j 2 J . Then, MJ(s; 1) admits

an analytic continuation as a rational function of the form

MJ(s; 1) =
QJ

�
fp�sijgi;j2J ; fp�s(N�1)igi2J

�
3Q
i=1

Ui(s; J)

; (1.3.18)

where

U1(s; J) =
Y

M2F1(J)

0B@1� p�
0@jM j�1+

P
2�i<j�N�2

i;j2M
sij

1A1CA
eM Y

ij2S(1)J

�
1� p�1�sij

�fij ;
U2(s; J) =

Y
(M;S)2F2(J)

�
1� p�jM j�

P
i2S s(N�1)i�

P
2�i<j�N�2; i;j2M sij

�g(M;S)

;

and

U3(s; J) =
Y
i2S(2)J

�
1� p�1�s(N�1)i

�hi ;
where F1 (J) is a non-empty family of subsets of J , with J 2 F1 (J) ; F2 (J) is a non-
empty family of subsets M � S � J � J , with S � M , S(1)J and S

(2)
J are non-empty

subsets of T , and the eM�s, fij�s, g(M;S)�s and the hi�s are positive integers.

Remark 1.19 If jJ j = 1, thenMJ(s; 1) = p
�1
�

1�p�1

1�p�1�s(N�1)i
+ p� 2

�
.

Proof. To computeMJ(s; 1), we proceed as follows. We set

TJ = f(i; j) 2 T � T ; 2 � i < j � N � 2; i; j 2 Jg

as before, and for a = (ai)i2J 2 (F�p )jJ j n �(J), with

�(J) :=
�
a 2 (F�p )jJ j; ai 6= aj if i 6= j, for i, j 2 J and as 6= 1 for any s 2 J

	
;

we de�ne

K(a) = f(i; j) 2 TJ ; ai = ajg , K(1)(a) = f(i; j) 2 TJ ; ai = aj = 1g ;

and

K(2)(a) = fi 2 J ; ai = 1 and ai 6= as for any (i; s) 2 TJg :
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Notice that K(1)(a) � K(a) and K(2)(a) \ Klist(a) = ?: Now, we introduce on

(F�p )jJ j n �(J), the following equivalence relation:

a � b , K(a) = K(b) and K(1)(a) = K(1)(b) and K(2)(a) = K(2)(b):

We denote by A(a) =
�
b 2 (F�p )jJ j n �(J) ;a � b

	
, the equivalence class de�ned by

a 2 (F�p )jJ j n �(J). By taking a unique representative in each equivalence class, we
obtain R(J) � (F�p )jJ j n �(J) such that

(F�p )jJ j =
G

a2R(J)

A(a)
G
�(J) : (1.3.19)

Given a subset K � TJ with K = f(i1; j1) ; : : : ; (im; jm)g, we de�ne

Klist = fi1; j1; : : : ; im; jmg � J

as before. With this notation,MJ(s; 1) equals

X
a2R(J)

X
b2A(a)

Z
b+(pZp)jJj

Y
i2J
j1� xijs(N�1)ip

Y
2�i<j�N�2

i;j2J

jxi � xjjsijp
Y
i2J
dxi(1.3.20)

+
X
b2�(J)

Z
b+(pZp)jJj

Y
i2J
j1� xijs(N�1)ip

Y
2�i<j�N�2

i;j2J

jxi � xjjsijp
Y
i2J
dxi

: =M(s; J; 1) +M(s; J; 2):

We now use that for each a 2 (F�p )jJ j n �(J),

TJ = K(a)
F
f(i; j) 2 TJ ; ai 6= ajg

and

J = K
(1)
list(a)

F
K(2)(a)

F�
i 2 J ; ai 6= 1

	
;

to obtain Y
i2J
j1� xijs(N�1)ip =

Y
i2K(1)

list (a)

j1� xijs(N�1)ip

Y
i2K(2)(a)

j1� xijs(N�1)ip
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on b+ (pZp)jJ j, and

Y
2�i<j�N�2

i;j2J

jxi � xjjsijp =
Y

(i;j)2K(a)

jxi � xjjsijp

on b+ (pZp)jJ j. With J(a) := K(2)(a)
F
Klist(a), we have

M(s; J; 1) =
X

a2R(J)

��A(a)�� p�jJ j�Pi2K(1)list (a)tK
(2)(a)

s(N�1)i�
P
(i;j)2K(a) sij� (1.3.21)

Z
(Zp)jJ(a)j

Y
i2K(1)

list (a)tK(2)(a)

jxijs(N�1)ip

Y
(i;j)2K(a)

jxi � xjjsijp
Y
i2J(a)

dxi

=
X

a2R(J)

��A(a)�� p�jJ j�Pi2K(1)list (a)tK
(2)(a)

s(N�1)i�
P
(i;j)2K(a) sij�8>>><>>>:

Z
(Zp)jK

(2)(a)j

Y
i2K(2)(a)

jxijs(N�1)ip

Y
i2K(2)(a)

dxi

9>>>=>>>;L
(N)
2

�
s;Klist(a); K

(1)
list (a) ; K(a)

�
:

Now, by using the partition of K(a) given in Lemma 1.9, we obtain

L
(N)
2

�
s;Klist(a); K

(1)
list (a) ; K(a)

�
= L

(N)
2

�
s;K

(1)
list(a); K

(1)
list (a) ; TK(1)

list(a)

�
(1.3.22)

�
Q

(i;j)2R(a)nK(1)(a)

L
(N)
1

�
s;Klist((i; j) ;a); TKlist((i;j);a)

�

with the convention that L(N)2 (s;?;?;?) := 1. Finally,

M(s; J; 2) =
X
b2�(J)

Z
b+(pZp)jJj

Y
i2J
dxi = p

�jJ j ���(J)�� : (1.3.23)

Hence, formula (1.3.18) follows from (1.3.20)-(1.3.23) by using Lemma 1.16 and Re-

mark 1.17.
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1.3.2 Computation of Z(N) (s; I; 1)

Proposition 1.20 Let I be a non-empty subset of T . Then, the integral

Z(N) (s; I; 1) =

8>>>>>>>>>>><>>>>>>>>>>>:

Z
ZjIjp

Y
2�i<j�N�2

i;j2I

jxi�xj j
sij
p

Y
i2I

jxij
2+s1i+s(N�1)i+

P
2�j�N�2;j 6=i sij

p

Y
i2I
dxi if jIj � 2

Z
Zp

1

jxij
2+s1i+s(N�1)i+

P
2�j�N�2;j 6=i sij

p

dxi if jIj = 1

converges on the set�
(sij) 2 CD; Re (sij) > �1 for 2 � i < j � N � 2; i; j 2 I

	
\(

(sij) 2 CD; 1 + Re(s1i + s(N�1)i) +
X

2�j�N�2;j 6=i

Re(sij) < 0 for i 2 I
)
;

which is an open and connected subset of CD. In addition, Z(N)
p (s; I; 1) admits an

analytic continuation to CD as a rational function of the form

Z(N) (s; I; 1) =
QI;1(fp�sij ; i; j 2 f1; : : : ; N � 1gg)
S1(s; I)S2(s; I)S3(s; I)S4(s; I)

; (1.3.24)

where QI;1(fp�sij ; i; j 2 f1; : : : ; N � 1gg) denotes a polynomial with rational coe¢ -
cients in the variables p�sij , i, j 2 f1; : : : ; N � 1g,

S1(s; I) =
Y

J2H1(I)

 
1� p

jJ j+
P
i2J (s1i+s(N�1)i)+

P
2�i<j�N�2

i2J
sij+

P
2�i<j�N�2
i2TrJ;j2J

sij
!
;

where H1(I) is a family of non-empty subsets of I, with I 2 H1(I),

S2(s; I) :=
Y
J�I
J 6=?

Y
K2H2(J)

0B@1� p�
0@jKj�1+P2�i<j�N�2

i;j2K
sij

1A1CA
eK

;

where H2 (J) is a family of non-empty subsets of J , with J 2 H2 (J), and the eK�s

are positive integers,

S3(s; I) :=
Y
J�I
J 6=?

Y
ij2G(0)J

�
1� p�1�sij

�
;
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where G(0)J is a non-empty subset f2 � i < j � N � 2; i; j 2 Jg,

S4(s; I) :=
Y
i2G(1)I

�
1� p1+s1i+s(N�1)i+

P
2�j�N�2;j 6=i sij

�
;

where G(1)I is a non-empty subset f2 � i < j � N � 2; i; j 2 Ig.

Proof. By using the partition ZjIjp = (pZp)jIj t SjIj0 as in the proof of Lemma 1.14,

and a change of variables, we get

Z(N) (s; I; 1) =

Z
S
jIj
0

Y
2�i<j�N�2

i;j2I

jxi�xj j
sij
p

Y
i2I

jxij
2+s1i+s(N�1)i+

P
2�j�N�2;j 6=i sij

p

Y
i2I
dxi

1� p
jIj+

P
i2I(s1i+s(N�1)i)+

P
2�i<j�N�2

i2I
sij+

P
2�i<j�N�2
i2TrI;j2I

sij

= :
C0 (s)

1� p
jIj+

P
i2I(s1i+s(N�1)i)+

P
2�i<j�N�2

i2I
sij+

P
2�i<j�N�2
i2TrI;j2I

sij
:

We now use the partition SjIj0 = tJ�I;J 6=?SjIjJ to obtain

C0 (s) =
X

J�I;J 6=?

C0;J (s) ;

where

C0;J (s) :=

Z
S
jIj
J

Y
2�i<j�N�2

i;j2I

jxi � xjjsijp

Y
i2I
jxij2+s1i+s(N�1)i+

P
2�j�N�2;j 6=i sij

p

Y
i2I
dxi;

and consequently,

Z(N) (s; I; 1) =
C0;I (s) +

P
J$I;J 6=?

C0;J (s)

1� p
jIj+

P
i2I(s1i+s(N�1)i)+

P
2�i<j�N�2

i2I
sij+

P
2�i<j�N�2
i2TrI;j2I

sij
:

On the other hand, by using (1.3.12), we have C0;I (s) = L
(N)
0 (s; I), and if J $ I,

C0;J (s) =

8>>>>><>>>>>:
Z

(pZp)jIrJj

Y
2�i<j�N�2
i;j2IrJ

jxi � xjjsijp

Y
i2IrJ

jxij
2+s1i+s(N�1)i+

P
2�j�N�2

j 6=i
sij

p

Y
i2IrJ

dxi

9>>>>>=>>>>>;
L
(N)
0 (s; J)
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= p
jIrJ j+

P
i2IrJ (s1i+s(N�1)i)+

P
2�i<j�N�2
i2IrJ

sij+
P

2�i<j�N�2
i2T�(IrJ);j2IrJ

sij

�8>>>><>>>>:
Z

ZjIrJjp

Y
2�i<j�N�2
i;j2IrJ

jxi�xj j
sij
p

Y
i2IrJ

jxij

2+s1i+s(N�1)i+
P
2�j�N�2

j 6=i
sij

p

Y
i2IrJ

dxi

9>>>>=>>>>;L
(N)
0 (s; J)

= p
jIrJ j+

P
i2IrJ (s1i+s(N�1)i)+

P
2�i<j�N�2

i2IrJ
sij+

P
2�i<j�N�2

i2T�(IrJ);j2IrJ
sij

�
Z(N) (s; I r J; 1)L(N)0 (s; J) :

Therefore

Z(N) (s; I; 1) =

L
(N)
0 (s; I) +

P
J$I;J 6=?

pM(s;J)Z(N) (s; I r J; 1)L(N)0 (s; J)

1� p
jIj+

P
i2I(s1i+s(N�1)i)+

P
2�i<j�N�2

i2I
sij+

P
2�i<j�N�2
i2TrI;j2I

sij
; (1.3.25)

where

M(s; J) : = jI r J j+
X
i2IrJ

(s1i + s(N�1)i) +
X

2�i<j�N�2
i2IrJ

sij

+
X

2�i<j�N�2
i2T�(IrJ);j2IrJ

sji:

Notice that in (1.3.25), Z(N) (s; I r J; 1)may occur with jI r J j = 1, say IrJ = fig,
in this case Z(N) (s; I; 1) becomesZ

Zp

1

jxij2+s1i+s(N�1)i+
P
2�j�N�2;j 6=i sij

p

dxi =
1� p�1

1� p1+s1i+s(N�1)i+
P
2�j�N�2;j 6=i sij

(1.3.26)

for Re(s1i) + Re(s(N�1)i) +
P

2�j�N�2;j 6=iRe(sij) < �1.
Finally, formula (1.3.25) gives a recursive algorithm for computing Z(N) (s; I; 1),

since I r J $ I � T and L(N)0 (s; I), L(N)0 (s; J) can be e¤ectively computed, see

Corollary 1.15, by using this algorithm and (1.3.26), we obtain (1.3.24).

Remark 1.21 Given positive integers Ni, i 2 I � T , v, and complex numbers si for
i 2 I, we notice that the function 1

1�p�v�
P
i2I Nisi

gives rise to a holomorphic function

of the si on the half-plane
P

i2I NiRe (si) + v > 0. As a consequence of Proposition
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1.20 there exist families F1, F2 of non-empty subsets of T , and a non-empty subset

G of fij; 2 � i < j � N � 2; i; j 2 Tg, such that all the integrals Z(N) (s; I; 1) for all

I � T are holomorphic functions of s on the solution set of the conditions:

jJ j+
X
i2J
(Re (s1i) + Re

�
s(N�1)i

�
) +

X
2�i<j�N�2

i2J

Re (sij) (C1)

+
X

2�i<j�N�2
i2TrJ;j2J

Re (sij) < 0 for J 2 F1;

jKj � 1 +
X

2�i<j�N�2
i;j2K

Re(sij) > 0 for K 2 F2; (C2)

1 + Re(sij) > 0 for ij 2 G �fij; 2 � i < j � N � 2g : (C3)

Notice that the condition

1 + Re(s1i) + Re(s(N�1)i) +
X

2�j�N�2;j 6=i

Re(sij) < 0

is included in Condition C1 taking jJ j = 1. This fact follows from the following

identities:

X
2�i<j�N�2
i2J;j2T

sij +
X

2�i<j�N�2
i2TrJ;j2J

sij =
X

2�i<j�N�2
i2J;j2T

sij +
X

2�i<j�N�2
i2T;j2J

sij �
X

2�i<j�N�2
i;j2J

sij =

X
2�i<j�N�2
i2J;j2TrJ

sij +
X

2�i<j�N�2
i2T;j2J

sij =
X

2�i<j�N�2
i2J;j2TrJ

sij +
X

2�i<j�N�2
i;j2J

sij +
X

2�i<j�N�2
i2TrJ;j2J

sij =

X
2�i<j�N�2
i2J;j2TrJ

sij +
X

2�j<i�N�2
i2J;j2TrJ

sij +
X

2�i<j�N�2
i;j2J

sij =
X

2�j�N�2
j 6=i;i2J;j2TrJ

sij +
X

2�i<j�N�2
i;j2J

sij:

Finally, by taking J = fig, the last formula becomes
P

2�j�N�2
j 6=i

sij.

Denote by DI;1 the natural domain of de�nition of Z(N) (s; I; 1), i.e. DI;1 is an

open and connected subset of CD in which Z(N) (s; I; 1) is holomorphic and there no

exists a larger domain where this property holds.
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Lemma 1.22 Take I to be a non-empty subset of T and set HI;1(C) to be the solution

set in CD of the following conditions:

1 + Re (s1i) + Re
�
s(N�1)i

�
+

X
2�j�N�2;j 6=i

Re (sij) < 0, for i 2 I: (1.3.27)

Then DI;1 is contained in HI;1(C).

Proof. Denote by HI;1(R) the solution set of (1.3.27) in RD. Set

Re (DI;1) =
�
Re(sij) 2 RD; (sij) 2 DI;1

	
:

With this notation, it is su¢ cient to show that Re (DI;1) � HI;1(R). In order to

do this, we show that Z(N) (es; I; 1) diverges to +1 for any es 2 RD rHI;1(R). We
prove this last assertion by contradiction. Assume that Z(N) (es; I; 1) < +1 fores = (esij) 2 RD with esij � 0 for 2 � i < j � N � 2, i, j 2 I and that es =2 HI;1(R).
This last condition implies that at least a condition of the form

1 + es1i0 + es(N�1)i0 + X
2�j�N�2;j 6=i0

esij � 0 (1.3.28)

for some i0 2 I, holds. Then, from Z(N) (es; I; 1) < +1, we have
I(es;A) := Z

A

Y
2�i<j�N�2

i;j2I

jxi � xjjesijp
Y
i2I
jxij2+es1i+es(N�1)i+P2�j�N�2;j 6=i esij

p

Y
i2I
dxi < +1

for any A � ZjIjp . Take

A0 =
n
(xi)i2I 2 ZjIjp ; jxi0jp < 1 and jxijp = 1 for i 2 I r fi0g

o
:

Then, by (1.3.28) and some � � 0,

I(es;A0) = Z
A0

Y
2�i<j�N�2
i;j2Irfi0g

jxi � xjjesijp
jxi0 j

1+�
p

Y
i2I
dxi = +1:

Therefore, if Z(N) (es; I; 1) < +1, necessarily es 2 HI;1(R).
Corollary 1.23 If s = (sij) 2 RD, with sij � 0 for i; j 2 f1; : : : ; N � 1g, then
Z(N) (s; I; 1) = +1, for any non-empty subset I of T .
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1.3.3 Computation of Z(N) (s; I; 0)

Proposition 1.24 Let I be a subset of T satisfying jIj � 2. Then, the integral

Z(N) (s; I; 0) =

Z
ZjIjp

Y
i2I
jxijs1ip j1� xijs(N�1)ip

Y
2�i<j�N�2

i;j2I

jxi � xjjsijp
Y
i2I
dxi

gives rise to a holomorphic function on

HI;0 :=
�
(sij) 2 CD; Re (sij) > 0 for i; j 2 I

	
\
�
(sij) 2 CD; Re(s1i) > 0 for i 2 I

	
\
�
(sij) 2 CD; Re(s(N�1)i) > 0 for i 2 I

	
;

which is an open and connected subset of CD. Furthermore Z(N)
p (s; I; 0) has an

analytic continuation as a rational function of the form

Z(N) (s; I; 0) =
QI;0(fp�s1i ; p�s(N�1)i ; p�sij ; i; j 2 Tg)

2Q
i=0

Ri(s; I; I)
Q3
i=1 Ui(s; I)

;

where QI;0(fp�s1i ; p�s(N�1)i ; p�sij ; i; j 2 Tg) is a polynomial in the variables p�s1i�
p�sij , p�s(N�1)i for i, j 2 T , Ui(s; I), i = 1, 2, 3 are as in Lemma 1.18,

R1(s; I; I) =
�
1� p�1�s1i

�h1 ;
R2(s; I;K) =

Y
(J;R)2G2(I�I)

�
1� p�jJ j�

P
i2R s1i�

P
2�i<j�N�2; i;j2J sij

�l(J;R)
;

R0(s; I; I), G2 (I � I) are as in Lemma 1.16, and the l(J;R)�s are positive integers.

Proof. By using that ZjIjp = (pZp)jIj t SjIj0 , we have

Z(N) (s; I; 0) =M
(N)
1 (s; I) +M

(N)
2 (s; I) ; (1.3.29)

where

M
(N)
1 (s; I) :=

Z
(pZp)jIj

Y
i2I
jxijs1ip

Y
2�i<j�N�2

i;j2I

jxi � xjjsijp
Y
i2I
dx;

M
(N)
2 (s; I) :=

Z
S
jIj
0

Y
i2I
jxijs1ip j1� xijs(N�1)ip

Y
2�i<j�N�2

i;j2I

jxi � xjjsijp
Y
i2I
dx:
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Now, by changing variables and using Lemma 1.16 with t = 1,M (N)
1 (s; I) equals

p
�jIj�

P
i2I s1i�

P
2�i<j�N�2

i;j2I
sij Z
ZjIjp

Y
i2I
jxijs1ip

Y
2�i<j�N�2

i;j2I

jxi � xjjsijp
Y
i2I
dxi (1.3.30)

= p
�jIj�

P
i2I s1i�

P
2�i<j�N�2

i;j2I
sij

L
(N)
2 (s; I; I; TI) :

To computeM (N)
2 (s; I), we use the partition SjIj0 = tJ�I;J 6=?SjIjJ , with

S
jIj
J =

n
(xi)i2I 2 ZjIjp ; jxijp = 1, i 2 J

o
;

thenM (N)
2 (s; I) equals

X
J�I
J 6=?

Z
S
jIj
J

Y
i2I
jxijs1ip j1� xijs(N�1)ip

Y
2�i<j�N�2

i;j2I

jxi � xjjsijp
Y
i2I
dx (1.3.31)

=
X
J�I
J 6=?

MJ (s) ;

where

MJ (s) =

Z
S
jIj
J

Y
i2IrJ

jxijs1ip
Y

2�i<j�N�2
i;j2IrJ

jxi � xjjsijp
Y
i2J
j1� xijs(N�1)ip �

Y
2�i<j�N�2

i;j2J

jxi � xjjsijp
Y
i2I
dx =

Z
(pZp)jIrJj

Y
i2IrJ

jxijs1ip
Y

2�i<j�N�2
i;j2IrJ

jxi � xjjsijp
Y
i2IrJ

dxi

�
Z

(Z�p )jJj

Y
i2J
j1� xijs(N�1)ip

Y
2�i<j�N�2

i;j2J

jxi � xjjsijp
Y
i2J
dxi :=M IrJ (s; 0)MJ (s; 1) :

We notice that if J = I, then, by convention, M IrJ (s; 0) = 1. Now suppose that

J $ I. From Lemma 1.16 with t = 1, we have

M IrJ (s; 0) = p

�jIrJ j�
P
i2IrJ s1i�

P
2�i<j�N�2
i;j2IrJ

sij

L
(N)
2 (s; I r J; I r J; TIrJ) : (1.3.32)

The announced result follows from formulas (1.3.29)-(1.3.32), andMJ (s; 1) by using

Lemmas 1.16-1.18 and Remark 1.19.
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Remark 1.25 As a consequence of Proposition 1.24 all the integrals Z(N) (s; I; 0)

for all I � T are holomorphic functions of s on the solution set in CD of the

following conditions:

jJ j+
X
i2S
Re(sti) +

X
2�i<j�N�2; i;j2J

Re(sij) > 0 for J � S 2 F3, (C4)

with S � J , t 2 f1; N � 1g,and F3 a family of non-empty subsets of I � I;

jKj � 1 +
X

2�i<j�N�2
i;j2K

Re(sij) > 0 for K 2 F4, (C5)

where F4 s a family of non-empty subsets of I;

1 + Re(sij) > 0 for ij 2 H; (C6)

where H is a non-empty subset of f2 � i < j � N � 2; i; j 2 Jg with (N � 1)i, 1i 2
H.

Remark 1.26 If s = (0)ij for i, j 2 f1; : : : ; N � 1g, then Z
(N) (0; I; 0) = 1, for any

non-empty subset I of T .

De�nition 1.27 Denote by H(R), respectively by H(C), the solution set of condi-

tions C1-C6 in RD, respectively in CD.

1.3.4 Main Theorem

To show the holomorphy of the N -point zeta function Z(N) (s), we need to show

that the intersection of all of the domains where all of the functions Z(N) (s; I; 0) ;

Z(N) (s; I; 1) are holomorphic contains a connected open subset of CD. This allows

to use the principle of analytic continuation.

Lemma 1.28 Consider the following conditions:

jJ j+
X
i2J
(Re (s1i) + Re

�
s(N�1)i

�
) +

X
2�i<j�N�2

i2J

Re (sij) (C�1)

+
X

2�i<j�N�2
i2TrJ;j2J

Re (sij) < 0 for J � T , jJ j � 1;
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jJ j � 1 +
X

2�i<j�N�2
i;j2J

Re(sij) > 0 for J � T , jJ j � 2; (C�2)

jJ j+
X
i2S
Re(sti) +

X
2�i<j�N�2; i;j2J

Re(sij) > 0 (C�3)

for t 2 f1; N � 1g , J � S � T � T with jJ j � 2 or jSj � 1; S � J ;

1 + Re(sij) > 0 for ij 2 f(i; j); 1 � i < j � N � 1g : (C�4)

Denote by H0(R), respectively by H0(C), the solution set of conditions C�1-C�4 in

RD, respectively in CD. Then H0(R) is convex and bounded set with non-empty

interior, and H0(C) contains an open and connected subset of CD. Furthermore,

H0(R) � H(R) and H0(C) � H(C).

Proof. We �rst notice that for all N � 4, the solution set H0(R) is an open convex
set because it is a �nite intersection of open half-spaces.

Claim H0(R) is a non-empty bounded subset. We consider the case N > 5

in which jT j > 2. Set N1 =
(N�4)(N�3)

2
. We de�ne, for i; j 2 f2; :::; N � 2g, the

following conditions:

� 2

3N1
< Re(sij) < 0 ; (C�1)

�2
3
< Re(s1i) < �

1

2
, (C�2)

�2
3
< Re(s(N�1)i) < �

1

2
: (C�3)

We notice that the solution set of conditions C�1�C�3 is a non-empty open and

connected subset inRD. We now verify that the conditions C�1�C�2 imply conditions

C�1-C�4. First, consider J � T such that jJ j = 1: We can assume that J = fi0g for
some i0 2 T . By conditions C�1�C�3, we have

1 + Re (s1i0) + Re s(N�1)i0 < 1� 1=2� 1=2 = 0; (1.3.33)X
26i0<j�N�2

Re (si0j) +
X

2�i<i0�N�2;
i2TnJ

Re (sii0) < 0; (1.3.34)
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thus, C�1 follows from (1.3.33) and (1.3.34). Conditions C�2, C�3 and C�4 follow

directly from C�1�C�3.

We now consider J � T such that jJ j � 2. Condition C�1 is obtained with a

similar calculation to (1.3.33) and (1.3.34). Now, by condition C�1, we get

jJ j � 1 +
X

2�i<j�N�2; i;j2J
Re (sij) > jJ j � 1�

2

3
> jJ j � 5

3
> 0;

which implies C�2. We now verify Condition C�3. Let t 2 f1; N � 1g ; by using
conditions C�2 and C�3,

jJ j+
X
i2S
Re (sti) +

X
2�i<j�N�2; i;j2J

Re (sij)

> jJ j � 2
3
jSj � 2 j(i; j) ; 2 � i < j � N � 2; i; j 2 J j

3N1

� jJ j � 2
3
jSj � 2

3
.

There are two cases. First, jSj = 1. In this case jJ j � 2
3
jSj � 2

3
> 0. If jSj � 2, by

using �2
3
jSj � 2

3
� � jSj and jJ j � jSj ; then jJ j � 2

3
jSj � 2

3
� jJ j � jSj � 0.

Finally, conditions C�4 follows from conditions C�1-C�3. Therefore, H0(R) is

convex and bounded set with non-empty interior, and H0(C) contains an open and

connected subset of CD. Finally, since conditions C�1-C�4 imply conditions C1-C6,

we conclude that H0(R) � H(R) and that H0(C) � H(C).
In the case N = 4, jT j = 1, the veri�cation of the claim is straightforward.

Theorem 1.29 (1) The p-adic open string N-point zeta function, Z(N) (s), gives

rise to a holomorphic function on H(C), which contains an open and connected subset

of CD. Furthermore, Z(N) (s) admits an analytic continuation to CD, denoted also as

Z(N) (s), as a rational function in the variables p�sij ; i; j 2 f1; : : : ; N � 1g. The real
parts of the poles of Z(N) (s) belong to a �nite union of hyperplanes, the equations

of these hyperplanes have the form C1-C6 with the symbols �<�, �>�replaced by �=�.

(2) If s = (sij) 2 CD, with Re(sij) � 0 for i; j 2 f1; : : : ; N � 1g, then the integral
p-adic open string N-point zeta function Z(N) (s) = +1.
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Proof. (1) We recall that

Z(N) (s) =
X
I�T

Z(N) (s; I) =
X
I�T

pM(s)Z(N) (s; I; 0)Z(N) (s;T r I; 1) ; (1.3.35)

see Remark 1.6. Now, by Propositions 1.20-1.24 and Lemma 1.28, for any I � T ,

Z(N) (s; I; 0) and Z(N) (s;T r I; 1) are holomorphic functions of s 2 H0(C), which
is an open and connected subset, and consequently the analytic continuations of

the integrals Z(N) (s; I; 0) and Z(N) (s;T r I; 1) and formula (1.3.35) give rise to an

analytic continuation of Z(N) (s) with the announced properties.

(2) It follows from formula (1.3.35) by Corollary 1.23 and Remark 1.26.



Chapter 2

p-adic string amplitudes in the

limit p approaches to one

In this chapter we use the theory of topological zeta functions introduced by Denef

and Loeser in [21], to de�ne topological open string N -point tree amplitudes, which

should be string analogues of the topological zeta functions. This chapter is organized

as follows. In Section 2.1, we introduced some aspects of the non-Archimedean local

�elds. In Sections 2.2, 2.3 we generalized the results obtained in Chapter 1, to

the case of the unrami�ed �nite extensions of any non-Archimedean local �eld of

characteristic zero and we de�ne the p-adic string amplitudes over these extensions.

In 2.4, we summarize some results used to de�ne the topological zeta function in

the multivariate case. In 2.5, we de�ne the topological open string N -point zeta

functions and the topological open string N -point tree amplitudes. Finally, in 2.6

we give the calculation for N = 4; 5 of the topological N -point zeta function and

topological N -point amplitude.
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2.1 Non-Archimedean local �elds

A non-archimedean local �eld K is a locally compact topological �eld with respect

to a non-discrete topology with an absolute value j�jK satisfying

jx+ yjK � max fjxjK ; jyjKg for x; y 2 K;

i.e. j�jK is ultrametric. For an in-depth exposition, the reader may consult [64], [55],
see also [1], [63].

Let K be a non-Archimedean local �eld of arbitrary characteristic and let OK be
the ring of valuation of K;

OK := fx 2 K : jxjK � 1g ;

and PK the maximal ideal of OK ; this ideal is formed by the non-units of OK : In
terms of the absolute value j � jK , this maximal ideal can be described as

PK = fx 2 K : jxjK < 1g :

LetK = OK= PK the residue �eld ofK: ThusK = Fq, the �nite �eld with q elements.

Let � be a �xed generator of PK ; � is called a uniformizing parameter of K; then

PK = �OK . Furthermore, we assume that j�jK = q�1. For z 2 K, ord(z)2 Z[f+1g
denotes the valuation of z, and jzjK = q�ord(z). If z 2 Kn f0g, then ac(z)=z��ord(z)

denotes the angular component of z.

The natural map OK ! OK=PK ' Fq is called the reduction mod PK , and it

will be denoted as . We �x S � OK a set of representatives of Fq in OK , i.e. S is

mapped bijectively into Fq by the reduction mod PK . We assume that 0 2 S. Any
non-zero element x of K can be written as

x = �ord(x)
1X
i=0

xi�
i, x

i
2 S, and x0 6= 0.

This series converges in the norm j�jK .
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Example 2.1 We now �x a prime number p: A basic example of non-Archimedean

local �eld is the �eld of p-adic numbers Qp, which is de�ned as the completion of the

�eld of rational numbers Q with respect to the p-adic norm j � jp, which is de�ned as

jxjp =

8>>><>>>:
0 if x = 0

p� if x = p a
b
,

where a and b are integers coprime with p. The integer  := ord(x), with ord(0) :=

+1, is called the p-adic order of x.

Any non-Archimedean local �eld K of characteristic zero is isomorphic (as topo-

logical �eld) to a �nite extension of Qp, the �eld of p-adic numbers. In this case we

say that K is a p-adic �eld. In case of positive characteristic, K is isomorphic to

a �nite extension of the �eld of formal Laurent series Fq ((T )) with coe¢ cients in a

�nite �eld Fq with q elements.

Remark 2.2 As we mentioned above, any �nite extension of Qp is a non-Archimede-

an local �eld. Let Ke denote the unique unrami�ed extension of Qp of degree e, with

� a local uniformizing parameter of Ke. Then pOKe = �OKe and OKe=PKe ' Fpe.

Notice that j�jKe
= p�e.

We extend the norm j�jK to Kn by taking

jjxjjK := max
1�i�n

jxijK ; for x = (x1; : : : ; xn) 2 Kn:

We de�ne ord(x) = min1�i�nford(xi)g, then jjxjjK = q�ord(x). The metric space

(Kn; jj � jjK) is a complete ultrametric space.
For r 2 Z, denote by Bnr (a) = fx 2 Kn; jjx � ajjK � qrg the ball of radius qr

with center at a = (a1; : : : ; an) 2 Kn, and take Bnr (0) := Bnr . Note that B
n
r (a) =

Br(a1)�� � ��Br(an), where Br(ai) := fx 2 K; jxi�aijK � qrg is the one-dimensional
ball of radius qr with center at ai 2 K. The ball Bn0 equals the product of n

copies of B0 = OK . In addition, Bnr (a) = a + (��rOK)n. We also denote by
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Snr (a) = fx 2 Kn; jjx � ajjK = qrg the sphere of radius qr with center at a 2 Kn,

and take Snr (0) := Snr . We notice that S
1
0 = O�

K (the group of units of OK), but�
O�
K

�n ( Sn0 , for n � 2. The balls and spheres are both open and closed subsets in
Kn. In addition, two balls in Kn are either disjoint or one is contained in the other.

As a topological space (Kn; jj � jjK) is totally disconnected, i.e. the only connected
subsets of Kn are the empty set and the points. A subset of Kn is compact if and

only if it is closed and bounded in Kn. The balls and spheres are compact subsets.

Thus (Kn; jj � jjK) is a locally compact topological space.

2.2 p-adic String Zeta Functions

In this section, we review the main result of our publication [8]. In this article the

results were stated over Qp but they are still valid in Ke, the unique unrami�ed

extension of Qp of degree e: We �x an integer N � 4. To each pair (i; j) with

i; j 2 f1; : : : ; N � 1g we attach a complex number s(i;j) such that s(i;j) = s(j;i). To
simplify the notation we will use ij, respectively sij, instead of (i; j), respectively,

instead of s(i;j). We set T := f2; : : : ; N � 2g, D = (N�3)(N�4)
2

+2 (N � 3) and CD as8>>><>>>:
fsij 2 C; i 2 f1; N � 1g ; j 2 Tg if N = 4

fsij 2 C; i 2 f1; N � 1g ; j 2 T or i; j 2 T with i < jg if N � 5:

We set s = (sij) 2 CD, x = (x2; : : : ; xN�2) 2 KN�3
e , and

F (s;x;N;Ke) =
N�2Y
i=2

jxijs1iKe
j1� xij

s(N�1)i
Ke

Y
2�i<j�N�2

jxi � xjjsijKe
:

De�nition 2.1 The open string N-point zeta function is de�ned as

Z(N) (s; Ke) :=

Z
KN�3
e r�

F (s;x;N;Ke)

N�2Y
i=2

dxi (2.2.1)
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for s = (sij) 2 CD, where

� :=

(
(x2; : : : ; xN�2) 2 KN�3

e ;
N�2Y
i=2

xi (1� xi)
Y

2�i<j�N�2
(xi � xj) = 0

)

and
QN�2
i=2 dxi is the Haar measure of K

N�3
e normalized so that the measure of ON�3

Ke

is 1.

Notation 2.2 (i) The cardinality of a �nite set A will be denoted as jAj. (ii) We
will use the symbol

F
to denote the union of disjoint sets. (iii) Given a non-empty

subset I of f2; : : : ; N � 2g and B a non-empty subset of Ke, we set

BjIj =
�
(xi)i2I ;xi 2 B

	
:

(iv) By convention, we de�ne
Q
i2? � := 1,

P
i2? � := 0, and if J = ?, then

R
BjJj � :=

1. (v) The indices i, j will run over subsets of T , if we do not specify any subset, we

will assume that is T .

Let pe the cardinality of the residue �eldKe; see Section 2.1. We de�ne for I � T ,
the sector attached to I as

Sect(I) =
�
(x2; : : : ; xN�2) 2 KN�3

e ; jxijKe
� 1 , i 2 I

	
and

Z(N) (s; I;Ke) =

Z
Sect(I)

F (s;x;N;Ke)

N�2Y
i=2

dxi.

Then Z(N) (s; Ke) =
P

I�T Z
(N) (s; I;Ke) : In addition, we have

Z(N) (s; Ke) =
X
I�T

peM(s)Z(N) (s; I; 0; Ke)Z
(N) (s;T r I; 1; Ke) ; (2.2.2)

where

M(s) := jT r Ij+
X
i2TrI

(s1i + s(N�1)i) +
X

2�i<j�N�2
i2TrI;j2T

sij +
X

2�i<j�N�2
i2I;j2TrI

sij;
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and

Z(N) (s; I; 0; Ke) =

Z
OjIjKe

F0 (s;x;N;Ke)
Y
i2I
dxi

where

F0 (s;x;N;Ke) :=
Y
i2I
jxijs1iKe

j1� xij
s(N�1)i
Ke

Y
2�i<j�N�2

i;j2I

jxi � xjjsijKe

and

Z(N) (s;T r I; 1; Ke) =

Z
OjTrIjKe

Y
2�i<j�N�2
i;j2TrI

jxi � xjjsijKe

Y
i2TrI

jxij
2+s1i+s(N�1)i+

P
2�j�N�2;j 6=i sij

Ke

Y
i2TrI

dxi:

By convention Z(N) (s;?; 0; Ke) = 1, Z(N) (s;?; 1; Ke) = 1. In [8] we showed that

Z(N) (s; Ke) has an analytic continuation to the wholeCD as a rational function in the

variables p�esij . More precisely, we showed that all functions appearing on the right-

hand side of formula (2.2.2) admit analytic continuations to the whole CD as rational

functions in the variables p�esij , and that each of these functions is holomorphic on

certain domain, and that the intersection of all of these domains contains an open and

connected subset of CD, which allows to use the principle of analytic continuation. In

Propositions 1.20 and 1.24 in Chapter 1, we gave algorithms for computing recursively

the integrals Z(N) (s; I; 0; Ke), Z(N) (s;T r I; 1; Ke). These algorithms reduced the

calculation of any of these integrals to the calculation of certain integrals in one or

two variables, that can be computed directly. These simple integrals are rational

functions in the variables p�esij with possible poles depending on combinatorial data

but not on the residue �eld of Ke.

Remark 2.3 As a consequence of Proposition 1 in [8] there exist families F1, F2 of

non-empty subsets of T , and a subset G of fij; 2 � i < j � N � 2; i; j 2 Tg such that
all the integrals Z(N) (s; I; 1; Ke) for all I � T are holomorphic functions of s on the
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solution set of the conditions:

jJ j+
X
i2J
(Re (s1i) + Re

�
s(N�1)i

�
) +

X
2�i<j�N�2

i2J

Re (sij) (C1)

+
X

2�i<j�N�2
i2TrJ;j2J

Re (sij) < 0 for J 2 F1;

jM j � 1 +
X

2�i<j�N�2
i;j2M

Re(sij) > 0 for M 2 F2; (C2)

1 + Re(sij) > 0 for ij 2 G �fij; 2 � i < j � N � 2g : (C3)

The sets F1, F2 and G do not depend on Ke.

Remark 2.4 As a consequence of Proposition 2 in [8] all the integrals

Z(N) (s; I; 0; Ke)

for all I � T are holomorphic functions of s on the solution set in CD of the following
conditions:

jJ j+
X
i2S
Re(sti) +

X
2�i<j�N�2; i;j2J

Re(sij) > 0 for J � S 2 F3, (C4)

with S � J , t 2 f1; N � 1g,and F3 a family of non-empty subsets of I � I;

jM j � 1 +
X

2�i<j�N�2
i;j2M

Re(sij) > 0 for M 2 F4, (C5)

where F4 is a family of non-empty subsets of I;

1 + Re(sij) > 0 for ij 2 H; (C6)

where H is a non-empty subset of f2 � i < j � N � 2; i; j 2 Jg with (N � 1)i, 1i 2
H.

The sets F3, F4 and H do not depend on Ke.

Remark 2.5 If s = (0)ij for i, j 2 f1; : : : ; N � 1g, then Z
(N) (0; I; 0; Ke) = 1, for

any non-empty subset I of T .
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De�nition 2.6 Denote by H(R), respectively by H(C), the solution set of conditions

C1-C6 in RD, respectively in CD.

Due to the method used to calculate the main result in [8], we can extend our

results to the non-Archimedean local �elds of characteristic zero. The following

theorem is a generalization of this fact.

Theorem 2.7 ([8, Theorem 1]) (1)The open string N-point zeta function,

Z(N) (s; Ke), gives rise to a holomorphic function on H(C), which contains a non-

empty open and connected subset of CD. Furthermore, Z(N) (s; Ke) admits an an-

alytic continuation to CD, denoted also as Z(N) (s; Ke), as a rational function in

the variables p�esij ; i; j 2 f1; : : : ; N � 1g. The real parts of the poles of Z(N) (s; Ke)

belong to a �nite union of hyperplanes, the equations of these hyperplanes have the

form C1-C6 with the symbols �<�, �>� replaced by �=�. (2) If s = (sij) 2 CD,

with Re(sij) � 0 for i; j 2 f1; : : : ; N � 1g, then the integral open string N-point zeta
function Z(N) (s; Ke) = +1.

2.3 p-Adic String Amplitudes

The open string N�point tree amplitudes over Ke are de�ned as

A(N) (k; Ke) (2.3.1)

=

Z
KN�3
e

N�2Y
i=2

jxijk1kiKe
j1� xijkN�1kiKe

Y
2�i<j�N�2

jxi � xjjkikjKe

N�2Y
i=2

dxi,

where
QN�2
i=2 dxi is the normalized Haar measure of K

N�3
e ,

k = (k1; : : : ;kN) ; ki = (k0;i; : : : ; k25;i) ; i = 1; : : : ; N; N � 4;

(with Minkowski product kikj = �k0;ik0;j + k1;ik1;j + � � �+ k25;ik25;j) obeying

NX
i=1

ki = 0, kiki = 2 for i = 1; : : : ; N:
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In this case, it is a central problem to know whether or not integrals of type (2.3.1)

converge for some values kikj 2 C. Theorem 2.7 allows us to solve this problem.

We take the open string N -point tree integrals Z(N)(s; Ke) as regularizations of

the amplitudes A(N) (k; Ke). More precisely, we de�ne

A(N) (k;Ke) = Z
(N)(s; Ke) jsij=kikj with i 2 f1; : : : ; N � 1g , j 2 T or i; j 2 T;

where T = f2; : : : ; N � 2g. By Theorem 2.7, A(N) (k; Ke) are well-de�ned rational

functions of the variables p�ekikj , i, j 2 f1; : : : ; N � 1g, which agree with integrals
(2.3.1) when they converge. This de�nition allows us to recover all the calculations

made in [15] and other similar publications.

2.4 Igusa zeta functions and topological zeta func-

tions

In this section we present some results, which are variations of well-known results,

that we will use to de�ne the topological string amplitudes.

2.4.1 Multivariate local zeta functions

Let K be a non-Archimedean local �eld and let f be a polynomial mapping f =

(f1; : : : ; fr) : K
n ! Kr such that each fi(x) is a non-constant polynomial in

K[x1; : : : ; xn]; i = 1; ::; r. Let � a Bruhat-Schwartz function and let s = (s1; : : : ; sr) 2
Cr. The multivariate local zeta function associated to � and f is de�ned as

Z�(s;f;K) =

Z
KnnDK

�(x)

rY
i=1

jfi(x)jsiK jdxjK

for Re(si) > 0 for all i, where DK := [i2f1;:::;rg fx 2 Kn; fi(x) = 0g.
This integral de�nes a holomorphic function of (s1; : : : ; sr) in the half-space

Re(si) > 0, i = 1; : : : ; r. In the case of characteristic zero and r = 1; this asser-

tion corresponds to Lemma 5.3.1 in [39]. For r > 1, we recall that a continuous
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complex-valued function de�ned in an open set A � Cr, which is holomorphic in

each variable separately, is holomorphic in A. In the case of the p-adic �elds, the

multivariate local zeta functions admit analytic continuations to the whole Cr as

rational functions in the variables q�si, i = 1; : : : ; r, see Theorem [47].

Notation 2.1 If � is the characteristic function of On
K we denote Z(s;f;K) by

Z�(s;f;K).

2.4.2 Embedded resolution of singularities

In this subsection L is an arbitrary �eld of characteristic zero and fi(x) 2 L [x],
x = (x1; : : : ; xn) be a non-constant polynomial for i = 1; : : : ; r. Put X = Spec

L [x] (the n-dimensional a¢ ne space over L), D = Spec L [x] = (
Qr
i=1 fi(x)) (the

divisor attached to the polynomials f1,. . . ,fr). (the divisor attached to polynomials

f1; :::; fr): An embedded resolution of singularities for D over L consists of a pair

(Y; h) ; where Y is a smooth algebraic variety (an integral smooth closed subscheme

of the projective space over X ), and the morphism h : Y �! X is the natural

map, which satis�es that the restriction h : Y nh�1 (D) �! XnD is an isomorphism,

and the reduced scheme (h�1 (D))red has only normal crossings, i:e: its irreducible

components are smooth and intersect transversally.

Let Ei; i 2 T; be the irreducible components of (h�1 (D))red : For each i 2 T , let
Nij be the multiplicity of Ei in the divisor fj � h on Y , and vi � 1 the multiplicity
of Ei in the divisor h� (dx1 ^ : : : ^ dxn). The (Ni1; : : : ; Nir; vi), i 2 T , are called the
numerical data of the resolution (Y; h). For i 2 T and I � T we de�ne

�
Ei = Ei r

[
j 6=i

Ej, EI =
\
i2I
Ei,

�
EI = EI r

[
j2TrI

Ej:

If I = ;, we put E; = Y .

Theorem 2.2 (Loeser, [47, Theorem 1.1.4]) Let K be a p-adic �eld. The local

zeta function Z� (s;f;K) admits a meromorphic continuation to the whole Cr as a
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rational function of q�s1 ; : : : ; q�sr , more precisely,

Z� (s;f;K) =
P (q�s1 ; : : : ; q�sr)Q

i2T

�
1� q�vi�

Pr
j=1Nijsj

� ;
where P is a polynomial in the variables q�s1 ; : : : ; q�sr and the real parts of the poles

of Z� (s;f;K) belong to a union of hyperplanes of the form

vi +

rX
j=1

Nij Re (sj) = 0, i 2 T:

The following theorem is a variation of Theorem 3.1 in [17].

Theorem 2.3 (Denef) Let fi(x) 2 Z [x], x = (x1; : : : ; xn), be a non-constant

polynomial for i = 1; : : : ; r. We assume that f i(x) 2 Fp [x] n f0g for almost all
prime numbers p: Let (Y; h) be an embedded resolution of singularities for D = Spec

Q [x] = (
Qr
i=1 fi(x)) over Q , with numerical data f(Ni1; : : : ; Nir; vi) ; i 2 Tg. Then,

there exists a �nite set of primes S � Z such that for any non-Archimedean local

�eld K � Q with PK \ Z =2 S, we have

Z (s;f;K) = q�n
X
I�T

cI (K)
Y
i2I

(q � 1) q�vi�
Pr
j=1Nijsj

1� q�vi�
Pr
j=1Nijsj

; (2.4.1)

where q = q (K) denotes the cardinality of the residue �eld K and

cI(K) = Card
�
a 2 Y

�
K
�
; a 2 Ei

�
K
�
, i 2 I

	
: (2.4.2)

Here � denotes the reduction mod PK for which we refer to [17, Sec. 2].

2.4.3 Topological zeta functions

For any scheme V of �nite type over a �eld L � C, we denote by � (V ) the Euler

characteristic of the C-analytic space associated with V . Let fi(x) 2 Q [x], x =
(x1; : : : ; xn), be a non-constant polynomial for i = 1; : : : ; r. To

Qr
i=1 fi(x) Denef and

Loeser associated the topological zeta function

Ztop (s) =
X
I�T

�

�
�
EI

�Y
i2I

1

vi +
Pr

j=1Nijsj
; (2.4.3)
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where the notation is an in Section 2.4.2 for a resolution of D over Q. We mention

that in arbitrary dimension there is not a canonical way of picking an embedded

resolution of singularities for a divisor. Then, it is necessary to show that de�n-

ition (2.4.3) is independent of the resolution of singularities chosen, this fact was

established by Denef and Loeser in [47]. By using the explicit formula (2.4.1)-(2.4.2),

Denef and Loeser showed that

Ztop (s) = lim
e!0

Z (s;f ; Ke) ; (2.4.4)

where Ke is the unrami�ed extension of Qp of degree e. The limit e! 0 makes sense

because one can l-adically interpolate Z (s;f ; Ke) as a function of e. This means

that there exist � 2 Nr f0g and a meromorphic function in the variables e and s,
Z l (s;f ; e) on Zl � Zrl such that for any s 2 Zr and e 2 N holds

Z l (s;f ; e) = Z (s;f ; Ke) :

In particular

lim
e!0

cI(Ke) = �c

�
�
EI 
 Fape ;Ql

�
= �

�
�
EI

�
;

for almost all p, where �c denotes the Euler characteristic with respect to l-adic

cohomology with compact support, and Fape denotes an algebraic closure of Fpe.

Remark 2.4 The uniqueness of the topological zeta function Ztop (s) follows from

the theory established in [58], which is a generalization of the theory of topological

zeta functions given by Denef and Loeser to the multivariate case.

Theorem 2.5 If � is a pole of Ztop (s), then for almost all p there exists in�ntely

many unrami�ed extensions L of Qp for which � is a pole of Z (s;f ; L).

2.5 Topological String Zeta Functions and Topo-

logical string amplitudes

Since Z(N) (s; I; 0; Ke) and Z(N) (s;T r I; 1; Ke) are �both�multivariate local zeta

functions of type Z (s;f ; Ke) for suitable f , for any I � T = f2; ::; N � 3g we can
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apply (2.4.4), to de�ne

Z
(N)
top (s; I; 0) := lim

e!0
Z(N) (s; I; 0; Ke) and

Z
(N)
top (s;T r I; 1) := lim

e!0
Z(N) (s;T r I; 1; Ke) ;

which are elements of Q (sij; i; j 2 f1; : : : ; N � 1g), the �eld of rational functions in
the variables sij, i; j 2 f1; : : : ; N � 1g ; with coe¢ cients in Q. Then by using (2.2.2)
we de�ne the open string N -point topological zeta function as

Z
(N)
top (s) =

X
I�T

Z
(N)
top (s; I; 0)Z

(N)
top (s;T r I; 1) 2 Q (sij; i; j 2 f1; : : : ; N � 1g)

(2.5.1)

Now, by applying Theorems 2.7, 2.5, we obtain that the possible poles of Z(N)
top (s)

belong to a �nite union of hyperplanes. Formally we have the following result:

Theorem 2.1 The open string N-point topological zeta function Z(N)
top (s) is a ra-

tional function from Q (sij; i; j 2 f1; : : : ; N � 1g) de�ned as (2.5.1). The real parts
of the possible poles of Z(N)

top (s) belong to a �nite union of hyperplanes, the equations

of these hyperplanes have the form C1-C6 with the symbols �<�, �>�replaced by �=�.

De�nition 2.2 We de�ne the topological string N -point tree amplitudes as

A
(N)
top (k) = Z

(N)
top (s) jsij=kikj with i 2 f1; : : : ; N � 1g , j 2 T or i; j 2 T;

where T = f2; : : : ; N � 2g, which are rational functions of the variables kikj.

2.6 The four and �ve-point topological zeta func-

tions

For a prime number p, let Ke be the unique unrami�ed extension of Qp of degree e,

let OKe denote the valuation ring of Ke and PKe its unique maximal ideal. Then

Ke
�= Fpe the �nite �eld with pe elements. Thus,

lim
e!0

1� p�e
pe(1+sij) � 1 =

1

1 + sij
:
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Let

k = (k1; : : : ;kN) ; ki = (k0;i; : : : ; k25;i) ; i = 1; : : : ; N; N � 4;

(with Minkowski product kikj = �k0;ik0;j + k1;ik1;j + � � �+ k25;ik25;j) obeying
NX
i=1

ki = 0, kiki = 2 for i = 1; : : : ; N:

With the algorithms introduced in Chapter 1 and the relations between k0is we

compute the open stringN -point topological zeta functions and the topological string

N -point amplitudes for N = 4; 5.

2.6.1 Topological string 4-point tree amplitudes

In this section, we compute the open string 4-point topological zeta function, which

is de�ned as

Z(4)(s;Ke) =

Z
Ke

jx2js12Ke
j1� x2js32Ke

dx2:

By using formulas 1.3.2, 1.3.3, with I � T = f2g ; we have

Z(4)(s;Ke) =

Z
OKe

jx2js12Ke
j1� x2js32Ke

dx2 + p
1+s12+s32

Z
OKe

jx2j�2�s12�s32Ke
dx2

= Z(4)(s; f2g ; 0; Ke)Z
(4)(s; f?g ; 1; Ke) +

pe(1+s12+s32)Z(4)(s; f?g ; 0; Ke)Z
(4)(s; f2g ; 1; Ke):

Recall that Z(4)(s; f?g ; 1; Ke) = 1; Z
(4)(s; f?g ; 0; Ke) = 1:

By using the algorithms given in Propositions 1.20, 1.24, and Theorem 2.7, we

obtain

Z(4)(s; f2g ; 0; Ke) = 1� 2p�e + (1� p
�e) pe(�1�s12)

1� pe(�1�s12) +
(1� p�e) pe(�1�s32)
1� pe(�1�s32)

Z(4)(s; f2g ; 1; Ke) =
(1� p�e) pe(1+s12+s32)
1� pe(1+s12+s32) :
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Applying the limit when p approaches to one,

Z
(4)
top(s; f2g ; 0) = �1 + 1

s12 + 1
+

1

s32 + 1

Z
(4)
top(s; f2g ; 1) = � 1

s12 + s32 + 1
;

and

Z
(4)
top(s) = �1 +

1

s12 + 1
+

1

s32 + 1
+

1

s12 + s32 + 1
:

By using the relation k1 + ::: + k4 = 0 and k
2
i = 2 we get 1 + k1k2 + k3k2 =

�1� k2k4; thus the topological string 4-point tree amplitude

A
(4)
top(k) = Z

(4)
top(k)

= �1 + 1

k1k2 + 1
+

1

k3k2 + 1
+

1

k2k4 + 1
:

2.7 Topological string 5-point tree amplitudes

The open string 5-point topological zeta function is de�ned as

Z(5)(s; Ke) =

Z
K2
e

jx2js12Ke
jx3js13Ke

j1� x2js42Ke
j1� x3js43Ke

jx2 � x3js23Ke
dx2dx3:

The sector attached to I � T = f1; 2g is de�ned as

Sect(I) =
�
(x2; x3) 2 K2

e : jxijp = 1() i 2 I
	
:

I Ic Sect(I)

f2g f3g OKe �KenOKe

f3g f2g KenOKe �OKe

f2; 3g ? OKe �OKe

? f2; 3g KenOKe �KenOKe

Then, the open string 5-point topological zeta function equals

Z
(5)
top (s) =

X
I�T

Z
(5)
top (s; I; 0)Z

(5)
top (s;T r I; 1)
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where

I Z
(5)
top (s; I; 0) Z

(N)
top (s;T r I; 1)

f2g �1 + 1
1+s12

+ 1
1+s42

� 1
1+s13+s43+s23

f3g �1 + 1
1+s13

+ 1
1+s43

� 1
1+s12+s42+s23

f2; 3g

h
1

1+s12
+ 1

1+s13
+ 1

1+s23
� 1
i

1
2+s12+s13+s23

+ 1
1+s12

h
1

1+s43
� 1
i
+ 1

1+s13

h
1

1+s42
� 1
i
+

2� 1
1+s23

� 1
1+s42

� 1
1+s43

+

1
2+s42+s43+s23

h
1

1+s42
+ 1

1+s43
+ 1

1+s23
� 1
i 1

f?g 1

� 1
2+s52+s53+s23

�24 1
1+s12+s42+s23

+ 1
1+s13+s43+s23

+ 1
1+s23

� 1

35
Thus, the topological string 5-point tree amplitude is

A
(5)
top(k) =

h
1

1+k1k2
+ 1

1+k4k2
� 1
i h
� 1
1+k3k5

i
+
h
� 1
1+k2k5

i h
1

1+k1k3
+ 1

1+k4k3
� 1
i
+

h
1

1+k1k2
+ 1

1+k1k3
+ 1

1+k2k3
� 1
i

1
1+k4k5

+ 1
1+k1k2

h
1

1+k4k3
� 1
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Chapter 3

Local zeta functions for rational

functions and Newton polyhedra

In this chapter, we introduce a notion of non-degeneracy with respect to certain

Newton polyhedra for polynomial mappings over non-Archimedean locals �elds of

arbitrary characteristic. Furthermore, we use this non-degeneracy to de�ne non-

degenerate rational functions over the same class of local �elds. This de�nition allows

us to study the local zeta functions attached to non-degenerate rational functions, we

show the existence of a meromorphic continuation for these zeta functions as rational

functions of q�s; and give explicit formulas. In contrast with the classical local zeta

functions, the meromorphic continuation of zeta functions for rational functions have

poles with positive and negative real parts.

In Section 3.2 we compute some integrals that are needed in the chapter. In

Section 3.3 we review some basic aspects about polyhedral subdivisions and Newton

polyhedra, we also introduce a notion of non-degeneracy for polynomials mappings.

It seems that our notion of non-degeneracy is a new one. In Section 3.4 we study

the meromorphic continuation for multivariate local zeta functions attached to non-

degenerate mappings.
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3.1 Multivariate local zeta functions

A non-archimedean local �eld K is a locally compact topological �eld with respect

to a non-discrete topology with an absolute value j�jK satisfying

jx+ yjK � max fjxjK ; jyjKg for x; y 2 K;

i.e. j�jK is ultrametric. For an in-depth exposition, the reader may consult [64], [55],
see also [1], [63].

Let K be a non-Archimedean local �eld of arbitrary characteristic i.e. a �nite

extension of Qp or Fp ((t)) ; and let OK be the ring of valuation of K;

OK := fx 2 K : jxjK � 1g ;

and PK the maximal ideal of OK ; this ideal is formed by the non-units of OK : In
terms of the absolute value j � jK , this maximal ideal can be described as

PK = fx 2 K : jxjK < 1g :

LetK = OK= PK the residue �eld ofK: ThusK = Fq, the �nite �eld with q elements.

Let � be a �xed generator of PK ; � is called a uniformizing parameter of K, then

PK = �OK : Furthermore, we assume that j�jK = q�1. For z 2 K, ord(z)2 Z[f+1g
denotes the valuation of z, and jzjK = q�ord(z). If z 2 Kn f0g, then ac(z)=z��ord(z)

denotes the angular component of z.

With the above notation, let h = (h1; : : : ; hr) : K
n ! Kr be a polynomial

mapping such that each hi(x) is a non-constant polynomial in OK [x]n�OK [x], x =
(x1; : : : ; xn) and r � n. Let s = (s1; : : : ; sr) 2 Cr. We de�ne the multivariate local
zeta function attached to (s;h) as

Z(s;h) =

Z
OnKnDK

rY
i=1

jhi(x)jsiK jdxjK

for Re(si) > 0 for all i, where DK := [i2f1;:::;rg fx 2 Kn;hi(x) = 0g. The mul-

tivariate local zeta functions were studied by Loeser in the case of local �elds of

characteristic zero. He showed that they admit analytic continuations to the whole

Cr as rational functions of the variables q�si, i = 1; : : : ; r, see Theorem [47].
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Notation

Along this chapter, vectors will be written in boldface, so for instance we will write

b := (b1; : : : ; bl) where l is a positive integer. For polynomials we will use x =

(x1; : : : ; xn), thus h (x) = h(x1; : : : ; xn). For each n-tuple of natural numbers k =

(k1; : : : ; kn) 2 Nn, we will denote by �(k) the sum of all its components i.e. �(k) =

k1+k2+ : : :+kn. Furthermore, we will use the notation jdxjK for the Haar measure
on (Kn;+) normalized so that the measure of On

K is equal to one. In dimension one,

we will use the notation jdxjK .
By x we mean the image of an element of On

K under the canonical homomorphism

On
K ! On

K=(�OK)n �= Fnq , we call x the reduction modulo � of x. Given h(x) 2
OK [x1; : : : ; xn], we denote by h(x) the polynomial obtained by reducing modulo �
the coe¢ cients of h(x). Furthermore if h = (h1; : : : ; hr) is a polynomial mapping

with hi 2 OK [x1; : : : ; xn] for all i, then h := (h1; : : : ; hr) denotes the polynomial

mapping obtained by reducing modulo � all the components of h.

3.2 Some �-adic integrals

Let K be a non-Archimedean local �eld of arbitrary characteristic. Before we

prove the meromorphic continuation of Z(s;h) as a rational function we present

here some result that will be used later on. With the notation in Section 3.1, let

h = (h1; h2; : : : ; hr) be a polynomial mapping as above. For a 2 (O�
K)

n, we set

Ja(s;h) :=

Z
a+(�OK)nrDK

rY
i=1

jhi(x)jsiK jdxjK ; (3.2.1)

where DK := [i2f1;:::;rg fx 2 Kn;hi(x) = 0g ; s = (s1; : : : sr) 2 Cr with Re(si) > 0,
i = 1; : : : ; r.

The Jacobian matrix of h at a is Jac (h;a) =
h
@hi
@xj
(a)
i
1�i�r
1�j�n

with r � n. In a

similar way we de�ne the Jacobian matrix of h at a. For every non-empty subset I

of f1; : : : ; rg we set Jac
�
hI ;a

�
:=
h
@�hi
@xj
(a)
i

i2I
1�j�n

.
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Lemma 3.1 Let I be the subset of f1; : : : ; rg such that hi(a) = 0, i 2 I. Assume
that a =2 DK and that Jac

�
hI ;a

�
has rank m = Card(I) for I 6= ?. Then Ja(s;h)

equals 8>>><>>>:
q�n if I = ?

q�n
Q
i2I

(q�1)q�1�si
1�q�1�si if I 6= ?:

Proof. By change of variables we get

Ja(s;h) = q
�n

Z
OnKr[i2f1;:::;rgfx2Kn;hi(�x+a)=0g

rY
i=1

jhi(�x+ a)jsiK jdxjK :

We �rst consider the case I = ?. Then hi(a) 6� 0mod �, thus jhi(�x + a)jK = 1,
and Ja(s;h) = q�n. In the case I 6= ?, by reordering I (if necessary) we can suppose
that I = f1; : : : ;mg withm � r. Integral Ja(s;h) is computed by changing variables
as y = �(x) with

yi = �i(x) :=

8>>><>>>:
hi(a+�x)�hi(a)

�
if i = 1; : : : ;m

xi if i � m+ 1:

By using that rank of Jac(hI ;a) ism we get that det
h
@�i
@xj
(0)
i
1�i�n
1�j�n

6� 0mod �, which

implies that y = �(x) gives a measure-preserving map from On
K to itself (see e.g.

[39, Lemma 7.4.3]), hence

Ja(s;h) = q
�n

mY
i=1

Z
OKnf�yi+hi(a)=0g

j�yi + hi(a)jsiK jdyijK =: q�n
mY
i=1

J 0a(yi):

To prove the announced formula we compute integrals J 0a(yi). Now, since hi(a) �
0mod �, by taking zi = �yi + hi(a) in J 0a(yi), we obtain

J 0a(yi) = q
�si

Z
OKnf0g

jzijsiK jdzijK =
(q � 1)q�1�si
1� q�1�si :
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Therefore

Ja(s;h) =

8><>:q
�n I = ?

q�n
Q
i2I

(q�1)q�1�si
1�q�1�si I 6= ?:

(3.2.2)

Remark 3.2 If in integral (3.2.1), we replace hi(x) by hi(x) + �gi (x), where each

gi (x) is a polynomial with coe¢ cients in OK, then the formulas given in Lemma 3.1
are valid.

For every subset I � f1; : : : ; rg we set

V I :=
�
z 2 (F�q )n; hi(z) = 0, i 2 I

	
: (3.2.3)

To simplify the notation we will denote V f1;:::;rg as V .

Lemma 3.3 Let h = (h1; : : : ; hr) with r � n, be as before. Assume that for all

I 6= ? if V I 6= ?, then

rankFq

�
@hi
@xj

(a)

�
i2I; j2f1;:::;ng

= Card(I), for any a 2 V I .

Set

L(s;h) :=

Z
(O�K)nnDK

rY
i=1

jhi(x)jsiK jdxjK ; s = (s1; : : : sr) 2 Cr;

for Re (si) > 0 for all i. Then, with the convention that
Q
i2I

(q�1)q�1�si
1�q�1�si = 1 when

I = ?, we have

L(s;h) = q�n
X

I�f1;:::;rg

Card(V I)
Y
i2I

(q � 1)q�1�si
1� q�1�si :

Proof. Note that L(s;h) can be expressed as a �nite sum of integrals

Ja(s;h) =

Z
a+(�OK)nnDK

rY
i=1

jhi(x)jsiK jdxjK ;
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where a runs through a �xed set of representatives R in
�
O�
K

�n
of (F�q )n. Then

L(s;h) is equals

X
a2V ?

Z
a+(�OK)nnDK

rY
i=1

jhi(x)jsiK jdxjK

+
X

I$f1;:::;rg
I 6=?

X
a2V I

Z
a+(�OK)nnDK

rY
i=1

jhi(x)jsiK jdxjK

+
X
a2V

Z
a+(�OK)nnDK

rY
i=1

jhi(x)jsiK jdxjK

=: J(s; V ?) +
X

I$f1;:::;rg
I 6=?

J(s; V I) + J(s; V );

with the convention that if V I = ?, then
P

a2V I

R
a+(�OK)nnDK � = 0. Notice that

J(s; V ?) = q
�nCard(V ?): (3.2.4)

Thus we may assume that I 6= ?. In the calculation of J(s; V I) we use the following
result:

Claim.X
a2V I

Z
a+(�OK)nnDK

rY
i=1

jhi(x)jsiK jdxjK =
X
a2V I

Z
a+(�OK)nnDK

a=2DK

rY
i=1

jhi(x)jsiK jdxjK :

The Claim follows from the following reasoning. The analytic mapping h1 � � �hr : a+
(�OK)n ! K is not identically zero, otherwise by [39, Lemma 2.1.3], the polynomial

(h1 � � �hr)(x) would be the constant polynomial zero contradicting the hypothesis
that all the hi�s are non-constant polynomials. Hence there exists an element b 2
a+ (�OK)n such that (h1 � � �hr)(b) 6= 0. Finally, we use the fact that every point of
a ball is its center, which implies that a+ (�OK)n = b+ (�OK)n.
By using Lemma 3.1,

J(s; V I) = q
�nCard(V I)

Y
i2I

(q � 1)q�1�si
1� q�1�si : (3.2.5)
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The formula for J(s; V ) is a special case of formula (3.2.5):

J(s; V ) = q�nCard(V )
Y

i2f1;:::;rg

(q � 1)q�1�si
1� q�1�si : (3.2.6)

Remark 3.4 In integral L(s;h) we can replace h by h+�g, where g is a polynomial

mapping over OK, and the formulas given in Lemma 3.3 remain valid.

3.3 Polyhedral Subdivisions of Rn+ and

Non-degeneracy conditions

In this section we review, without proofs, some well-known results about Newton

polyhedra and non-degeneracy conditions that we will use along this chapter. Our

presentation follows closely [70], [57].

3.3.1 Newton polyhedra

We set R+ := fx 2 R;x > 0g. Let G be a non-empty subset of Nn. The Newton poly-
hedron � = � (G) associated toG is the convex hull inRn+ of the set [m2G

�
m+ Rn+

�
.

For instance classically one associates a Newton polyhedron � (h) (at the origin) to

a polynomial function h(x) =
P

m cmx
m (x = (x1; : : : ; xn), h(0) = 0), where

G =supp(h) := fm 2 Nn; cm 6= 0g. Further we will associate more generally a New-
ton polyhedron to a polynomial mapping.

We �x a Newton polyhedron � as above. We �rst collect some notions and results

about Newton polyhedra that will be used in the next sections. Let h�; �i denote
the usual inner product of Rn, and identify the dual space of Rn with Rn itself by

means of it.

Let H be the hyperplane H = fx 2 Rn; hx;bi = cg, H determines two closed

half-spaces

H+ = fx 2 Rn; hx;bi � cg and H� = fx 2 Rn; hx;bi � cg :
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We say that H is a supporting hyperplane of �(h) if �(h) \ H 6= ? and �(h) is

contained in one of the two closed half-spaces determined by H. By a proper face �

of �(h), we mean a non-empty convex set � obtained by intersecting �(h) with one

of its supporting hyperplanes. By the faces of �(h) we will mean the proper faces of

�(h) and the whole the polyhedron �(h). By dimension of a face � of �(h) we mean

the dimension of the a¢ ne hull of � , and its codimension is cod(�) = n � dim(�),
where dim(�) denotes the dimension of � . A face of codimension one is called a facet.

For a 2 Rn+, we de�ne
d(a;�) = min

x2�
ha;xi ;

and the �rst meet locus F (a;�) of a as

F (a;�) := fx 2 �; ha;xi = d(a;�)g:

The �rst meet locus is a face of �. Moreover, if a 6= 0, F (a;�) is a proper face of �.
If � = � (h), we de�ne the face function ha (x) of h(x) with respect to a as

ha (x) = hF (a;�) (x) =
X

m2F (a;�)

cmx
m:

In the case of functions having subindices, say hi(x), we will use the notation

hi;a(x) for the face function of hi(x) with respect to a. Notice that

h0 (x) = hF (0;�) (x) =
P
m

cmx
m:

3.3.2 Polyhedral Subdivisions Subordinate to a Polyhedron

We de�ne an equivalence relation in Rn+ by taking a � a0 , F (a;�) = F (a0;�).

The equivalence classes of � are sets of the form

�� = fa 2 Rn+;F (a;�) = �g;

where � is a face of �.

We recall that the cone strictly spanned by the vectors a1; : : : ;al 2 Rn+nf0g is the
set � = f�1a1 + :::+ �lal;�i 2 R+, �i > 0g. If a1; : : : ;al are linearly independent
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over R, � is called a simplicial cone. If a1; : : : ;al 2 Zn, we say � is a rational

cone. If fa1; : : : ;alg is a subset of a basis of the Z-modulo Zn, we call � a simple

cone.

A precise description of the geometry of the equivalence classes modulo � is as

follows. Each facet  of � has a unique vector a() = (a;1; : : : ; a;n) 2 Nnn f0g,
whose nonzero coordinates are relatively prime, which is perpendicular to ; it is

called primitive vector associated to . We denote by D(�) the set of such vectors.

The equivalence classes are rational cones of the form

�� = f
rX
i=1

�ia(i);�i 2 R+, �i > 0g;

where � runs through the set of faces of �, and i, i = 1; : : : ; r are the facets

containing � . We note that �� = f0g if and only if � = �. The family f��g� , with
� running over the proper faces of �, is a partition of Rn+nf0g; we call this partition
a polyhedral subdivision of Rn+ subordinate to �. We call

�
��

	
�
, the family formed

by the topological closures of the �� , a fan subordinate to �.

Each cone �� can be partitioned into a �nite number of simplicial cones ��;i.

In addition, the subdivision can be chosen such that each ��;i is spanned by part

of D(�). Thus from the above considerations we have the following partition of

Rn+nf0g:

Rn+nf0g =
[
�

 
l�[
i=1

��;i

!
;

where � runs over the proper faces of �, and each ��;i is a simplicial cone contained

in�� . We will say that f��;ig is a simplicial polyhedral subdivision of Rn+ subordinate
to �, and that

�
��;i

	
is a simplicial fan subordinate to �.

By adding new rays , each simplicial cone can be partitioned further into a �nite

number of simple cones. In this way we obtain a simple polyhedral subdivision of Rn+
subordinate to �, and a simple fan subordinate to � (or a complete regular fan) (see

e.g. [40]).
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3.3.3 The Newton polyhedron associated to a polynomial

mapping

Let h = (h1; : : : ; hr), h (0) = 0, be a non-constant polynomial mapping. In this

section we associate to h a Newton polyhedron � (h) := � (
Qr
i=1 hi (x)). From a

geometrical point of view, � (h) is the Minkowski sum of the � (hi), for i = 1; � � � ; r,
(see e.g. [57], [59]). By using the results previously presented, we can associate to

� (h) a simplicial polyhedral subdivision F (h) of Rn+ subordinate to � (h).

Remark 3.1 A basic fact about the Minkowski sum operation is the additivity of

the faces. From this fact follows:

(1) F (a;� (h)) =
Pr

j=1 F (a;� (hj)), for a 2 Rn+ ;
(2) d (a;� (h)) =

Pr
j=1 d (a;� (hj)), for a 2 Rn+ ;

(3) let � be a proper face of � (h), and let � j be proper face of � (hj), for i = 1; � � � ; r.
If � =

Pr
j=1 � j, then �� � ��j , for i = 1; � � � ; r.

Remark 3.2 Note that the equivalence relation,

a � a0 , F (a;� (h)) = F (a0;� (h)),

used in the construction of a polyhedral subdivision of Rn+ subordinate to � (h) can

be equivalently de�ned in the following form:

a � a0 , F (a;� (hj)) = F (a
0;� (hj)), for each j = 1; : : : ; r:

This last de�nition is used in Oka�s book [57].

3.3.4 Non-degeneracy Conditions

For K = Qp; Denef and Hoornaert in [20, Theorem 4.2] gave an explicit formula for

Z(s;h), in the case r = 1 with h a non-degenerate polynomial with respect to its

Newton polyhedron �(h). This explicit formula can be generalized to the case r � 1
by using the condition of non-degeneracy for polynomial mappings introduced here.
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De�nition 3.3 Let h = (h1; : : : ; hr), h (0) = 0, be a polynomial mapping with

r � n as in Section 3.1 and let � (h) be the Newton polyhedron of h at the origin.

The mapping h is called non-degenerate over Fq with respect to � (h), if for every

vector k 2 Rn+ and for any non-empty subset I � f1; : : : ; rg, it veri�es that

rankFq

�
@hi;k
@xj

(z)

�
i2I; j2f1;:::;ng

= Card(I) (3.3.1)

for any

z 2
�
z 2

�
F�q
�n
;hi;k(z) = 0, i 2 I

	
: (3.3.2)

We notice that above notion is di¤erent to the those introduced in [60], [70]. The

notion introduced here is similar to the usual notion given by Khovansky, see [42],

[57]. For a discussion about the relation between Khovansky�s non-degeneracy notion

and other similar notions we refer the reader to [60].

Let � be a rational simplicial cone spanned by wi, i = 1; : : : ; e�. We de�ne the

barycenter of � as b(�) =
Pe�

i=1wi. Set b(f0g) := 0.

Remark 3.4 (i)Let F(h) be a simplicial polyhedral subdivision of Rn+ subordinate
to � (h). Then, it is su¢ cient to verify the condition given in De�nition 3.3 for

k = b(�) with � 2 F(h) [ f0g.
(ii) Notice that our notion of non-degeneracy agrees, in the case K = Qp; r = 1,

with the corresponding notion in [20].

Example 3.5 Set h = (h1; h2) with h1(x; y) = x2 � y, h2(x; y) = x2y polynomials
in OK [x; y]. Then a simplicial polyhedral subdivision subordinate to �(h) is given by

Cone h1;b(�) h2;b(�)

�1 := (1; 0)R>0 y x2y

�2 := (1; 0)R>0 + (1; 2)R>0 y x2y

�3 := (1; 2)R>0 x2 � y x2y

�4 := (1; 2)R>0 + (0; 1)R>0 x2 x2y

�5 := (0; 1)R>0 x2 x2y;
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where R>0 := R+ r f0g. Notice that for every k 2 Rn+ r (f0g [ �3) and every

non-empty subset I � f1; 2g, the subset de�ned in (3.3.2) is empty, thus (3.3.1) is
always satis�ed. In the case k = 0 and k 2 �3, h1;k = x2 � y, h2;k = x2y, the

conditions (3.3.2)-(3.3.1) are also veri�ed. Hence h is non-degenerate over Fq with

respect to � (h).

Example 3.6 Let h = (h1(x); : : : ; hr(x)) be a monomial mapping. In this case,

� (h) =m0+Rn+ for some nonzero vector m0 in Nn. Then for every vector k 2 Rn+
hi;k(x) = hi(x) for i = 1; : : : ; r, and thus the subset in (3.3.2) is always empty, which

implies that condition (3.3.1) is always satis�ed. Therefore any monomial mapping

(with r � n) is non-degenerate over Fq with respect to its Newton polyhedron.

Example 3.7 f(x); g(x) 2 OK [x1; :::; xn]n�OK [x1; :::; xn] such that g(x) = xm0,

with m0 6= 0, is a monomial. Suppose that f is non-degenerate with respect to � (f)
over Fq. In this case, � ((f; g)) = m0 + � (f). Then the subset in (3.3.2) can take

three di¤erent forms:

(i)
�
z 2

�
F�q
�n
; fk(z) = g (z) = 0

	
= ?, (ii)

�
z 2

�
F�q
�n
; fk(z) = 0

	
,

(iii)
�
z 2

�
F�q
�n
; g (z) = 0; fk(z) 6= 0

	
= ?:

In the second case, conditions (3.3.2)-(3.3.1) are veri�ed due to the hypothesis that

f is non-degenerate with respect � (f) over Fq. Hence, (f; g) is a non-degenerate

mapping over Fq with respect to � ((f; g)) over Fq.

3.4 Meromorphic continuation of multivariate lo-

cal zeta functions

Along this section, we work with a �x simplicial polyhedral subdivision F(h) subor-
dinate to �(h). Let � 2 F(h) [ f0g and I � f1; : : : ; rg, we put

V �;I :=
�
z 2 (F�q )n; hi;b(�)(z) = 0 , i 2 I

	
:



64 Chapter 3. Local zeta functions for rational functions and Newton polyhedra

We use the convention V �;f1;:::;rg = V �. If � = 0, then

V 0;I =
�
z 2 (F�q )n; hi(z) = 0 , i 2 I

	
= V I ;

where V I is the set de�ned in (3.2.3). In particular, V 0;f1;:::;rg = V and

V 0;? =
�
z 2 (F�q )n; hi(z) 6= 0; i = 1; : : : ; r

	
= V ?:

If h = (h1; : : : ; hr) is non-degenerated polynomial mapping over Fq with respect to

�(h), then Lemma 3.3 is true for hb(�) = (h1;b(�); : : : ; hr;b(�)).

Theorem 3.1 Assume that h = (h1; : : : ; hr) is non-degenerated polynomial mapping

over Fq with respect to �(h), with r � n as before. Fix a simplicial polyhedral

subdivision F(h) subordinate to �(h). Then Z(s;h) has a meromorphic continuation
to Cr as a rational function in the variables q�si, i = 1; : : : ; r. In addition, the

following explicit formula holds:

Z(s;h) = Lf0g(s;h) +
X

� 2 F(h)

L�(s;h)S�;

where

Lf0g = q
�n

X
I�f1;:::;rg

Card(V I)
Y
i2I

(q � 1)q�1�si
1� q�1�si ;

L� = q
�n

X
I�f1;:::;rg

Card(V �;I)
Y
i2I

(q � 1)q�1�si
1� q�1�si ;

with the convention that for I = ?,
Q
i2I

(q�1)q�1�si
1�q�1�si := 1, and

S� =
X

k2Nn\�

q��(k)�
Pr
i=1 d(k;�(hi))si :

Let � be the cone strictly positively generated by linearly independent vectors w1; : : : ;

wl 2 Nnn f0g, then

S� =

P
t q
��(t)�

Pr
i=1 d(t;�(hi))si

(1� q��(w1)�
Pr
i=1 d(w1;�(hi))si) � � � (1� q��(wl)�

Pr
i=1 d(wl;�(hi))si)

;

where t runs through the elements of the set

Zn \
(

lX
i=1

�iwi; 0 < �i � 1 for i = 1; : : : ; l
)
: (3.4.1)
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Proof. By using the simplicial polyhedral subdivision F(h), we have

Rn+ = f0g
FF

�2F(h)�:

We set for k = (k1; : : : ; kn) 2 Nn,

Ek := f(x1; : : : ; xn) 2 On
K ; ord(xi) = ki; i = 1; : : : ; ng :

Hence

Z(s;h) =

Z
(O�K)nnDK

rY
i=1

jhi(x)jsiK jdxjK +
X

� 2 F(h)

X
k2Nn\�

Z
EknDK

rY
i=1

jhi(x)jsiK jdxjK :

For � 2 F(h), k 2 Nn \ �, and x = (x1; : : : ; xn) 2 Ek, we put xj = �kjuj with

uj 2 O�
K . Then

jdxjK = q��(k)jdujK and xm = xm1
1 � � �xmn

n = �hk;mium1
1 � � �umn

n :

Fix i 2 f1; : : : ; rg and k . For m 2 supp(hi), the scalar product hk;mi attains its
minimum d(k;�(hi)) exactly whenm 2 F (k;�(hi)), and thus hk;mi � d(k;�(hi))+
1 for m 2 supp(hi)nsupp(hi) \ F (k;�(hi)). This fact implies that

hi(x) = �
d(k;�(hi))(hi;k(u) + �ehi;k(u))

= �d(k;�(hi))(hi;b(�)(u) + �ehi;k(u));
where ehi;k(u) is a polynomial over OK in the variables u1; : : : ; un. Note that hi;k(u)
does not depend on k 2 �, for this reason we take hi;k(u) = hi;b(�)(u). Therefore

Z(s;h) = Lf0g(s;h) +
X

� 2 F(h)

L�(s;h)
X

k2Nn\�

q��(k)�
Pr
i=1 d(k;�(hi))si

where

Lf0g(s;h) :=

Z
(O�K)nnDK

rY
i=1

jhi(x)jsiK jdxjK ;

L�(s;h) :=

Z
(O�K)nnD�

rY
i=1

jhi;b(�)(u) + �ehi;k(u)jsiK jdujK
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with D� =
Sr
i=1

n
x 2 (O�

K)
n;hi;b(�)(u) + �ehi;k(u) = 0o. By using the non-dege-

neracy condition, integrals Lf0g(s;h), L�(s;h) can be computed using Lemma 3.3

and Remarks 3.2, 3.4.

Let � be the cone strictly positively generated by linearly independent vectors

w1; : : : ;wl 2 Nnn f0g. If � is a simple cone then Nn \ � = (Nn f0g)w1 + � � � +
(Nn f0g)wl. By using that the functions d(�;�(hi) are linear over each cone �, and
that

�(wm) +
rX
i=1

d(wm;�(hi)) Re(si) > 0;m = 1; : : : ; l;

since Re(s1); : : : ;Re(sr) > 0, we obtain

S� =
X

�1;:::;�l2Nnf0g

q��(�1w1+:::+�lwl)�
Pr
i=1 d(�1w1+:::+�lwl;�(hi))si

=
1X
�1=1

(q��(w1)�
Pr
i=1 d(w1;�(hi))si)�1 � � �

1X
�l=1

(q��(wl)�
Pr
i=1 d(wl;�(hi))si)�l

S� =
q��(w1)�

Pr
i=1 d(w1;�(hi))si

1� q��(w1)�
Pr
i=1 d(w1;�(hi))si

� � � q��(wl)�
Pr
i=1 d(wl;�(hi))si

1� q��(wl)�
Pr
i=1 d(wl;�(hi))si

=

P
t q
��(t)�

Pr
i=1 d(t;�(hi))si

(1� q��(w1)�
Pr
i=1 d(w1;�(hi))si) � � � (1� q��(wl)�

Pr
i=1 d(wl;�(hi))si)

;

where t runs through the elements of the set (3.4.1), which consists exactly of one

element: t =
Pl

i=1wi. We now consider the case in which � is a simplicial cone.

Note that Nn \� is the disjoint union of the sets

t+ Nw1 + � � �+ Nwl;

where t runs through the elements of the set

Zn \
(

lX
i=1

�iwi; 0 < �i � 1 for i = 1; : : : ; l
)
:

Hence S� equalsX
t

q��(t)�
Pr
i=1 d(t;�(hi))si

X
�1;:::;�l2N

q��(
Pl
j=1 �jwj)�

Pr
i=1 d(�1w1+:::+�lwl;�(hi))si ;
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and since Re(s1); : : : ;Re(sr) > 0,

S� =

P
t q
��(t)�

Pr
i=1 d(t;�(hi))si

(1� q��(w1)�
Pr
i=1 d(w1;�(hi))si) � � � (1� q��(wl)�

Pr
i=1 d(wl;�(hi))si)

:

Remark 3.2 In the p-adic case, K = Qp; Theorem 3.1 is a generalization of Theo-

rem 4.2 in [20] and Theorem 4.3 in [13].

3.5 Local zeta function for rational functions

From now on, we �x two non-constant relatively prime polynomials f(x), g(x) in n

variables, n � 2, with coe¢ cients in OK [x1; : : : ; xn]n�OK [x1; : : : ; xn] and set

DK := fx 2 Kn; f(x) = 0g [ fx 2 Kn; g(x) = 0g

and
f

g
: Kn rDK ! K:

Furthermore, we de�ne the Newton polyhedron �
�
f
g

�
of f

g
to be �(fg), and assume

that the mapping (f; g) : Kn ! K2 is non-degenerate over Fq with respect to �
�
f
g

�
as before. In this case we will say that f

g
is non-degenerate over Fq with respect

to �
�
f
g

�
. We �x a simplicial polyhedral subdivision F

�
f
g

�
of Rn+ subordinate to

�
�
f
g

�
. For � 2 F

�
f
g

�
[ f0g, we put

N�;ffg := Card
�
a 2 (F�q )n; f b(�)(a) = 0 and gb(�)(a) 6= 0

	
;

N�;fgg := Card
�
a 2 (F�q )n; f b(�)(a) 6= 0 and gb(�)(a) = 0

	
;

N�;ff;gg := Card
�
a 2 (F�q )n; f b(�)(a) = 0 and gb(�)(a) = 0

	
;

with the convention that if b(�) = b (0) = 0, then f b(�) = f and gb(�) = g. We also

de�ne D
�
f
g

�
= D(f; g), which is the set of primitive vectors in Nnn f0g perpendic-
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ular to the facets of �
�
f
g

�
. We set

T+ :=

�
w 2 D

�
f

g

�
; d(w;�(g))� d(w;�(f)) > 0

�
;

T� :=

�
w 2 D

�
f

g

�
; d(w;�(g))� d(w;�(f)) < 0

�
;

� := �

�
f

g

�
=

8>>><>>>:
minw2T+

n
�(w)

d(w;�(g))�d(w;�(f))

o
if T+ 6= ?

+1 if T+ = ?;

� := �

�
f

g

�
=

8>>><>>>:
maxw2T�

n
�(w)

d(w;�(g))�d(w;�(f))

o
if T� 6= ?

�1 if T� = ?;

and e� := e��f
g

�
= min f1; �g , e� := e� �f

g

�
= max f�1; �g :

Notice that � > 0 and � < 0.

We de�ne the local zeta function attached to f
g
as

Z

�
s;
f

g

�
= Z(s;�s; f; g); s 2 C;

where Z(s1; s2; f; g) denotes the meromorphic continuation of the local zeta function

attached to the polynomial mapping (f; g), see Theorem 3.1.

Theorem 3.1 Assume that f
g
is non-degenerate over Fq with respect to �

�
f
g

�
, with

n � 2 as before. We �x a simplicial polyhedral subdivision F
�
f
g

�
of Rn+ subordinate

to �
�
f
g

�
. Then the following assertions hold:

(i) Z
�
s; f

g

�
has a meromorphic continuation to the whole complex plane as a rational

function of q�s and the following explicit formula holds:

Z

�
s;
f

g

�
=

X
� 2 F( f

g
)[f0g

L�

�
s;
f

g

�
S�(s);
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where for � 2 F
�
f
g

�
[f0g,

L�(s;
f

g
) = q�n

�
(q � 1)n �N�;ffg

1� q�s
1� q�1�s �N�;fgg

1� qs
1� q�1+s

�N�;ff;gg
(1� q�s)(1� qs)

q(1� q�1�s)(1� q�1+s)

�
and

S�(s) =

P
t q
��(t)�(d(t;�(f))�d(t;�(g)))sQl

i=1(1� q��(wi)�(d(wi;�(f))�d(wi;�(g)))s)
;

for � 2 F
�
f
g

�
a cone strictly positively generated by linearly independent vectors

w1; : : : ;wl 2 D
�
f
g

�
, and where t runs through the elements of the set

Zn \
(

lX
i=1

�iwi; 0 < �i � 1 for i = 1; : : : ;l
)
:

By convention S0(s) := 1.

(ii) Z
�
s; f

g

�
is a holomorphic function on e� < Re(s) < e�, and on this band it veri�es

that

Z

�
s;
f

g

�
=

Z
OnKnDK

����f(x)g(x)

����s
K

jdxjK ; (3.5.1)

(iii) the poles of the meromorphic continuation of Z
�
s; f

g

�
belong to the set

[
k2Z

�
1 +

2�
p
�1k

ln q

�
[
[
k2Z

�
�1 + 2�

p
�1k

ln q

�
[

[
w2 D( fg )

[
k2Z

�
�(w)

d(w;�(g))� d(w;�(f)) +
2�
p
�1k

fd(w;�(g))� d(w;�(f))g ln q

�
:

Proof. (i) The explicit formula for Z(s; f
g
) follows from Theorem 3.1 as follows: we

take r = 2, s1 = s; s2 = �s; h1 = fb(�) and h2 = gb(�) for � 2 F
�
f
g

�
[f0g, with

the convention that if b (�) = b (0) = 0, then h1 = f and h2 = g. Now

V � =
�
z 2

�
F�q
�n
; f b(�) (z) = gb(�) (z) = 0

	
for � 2 F

�
f

g

�
[ f0g ;
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and thus Card(V �) = N�;ff;gg. Now, with I = f1; 2g, by using (3.2.6), we have

J
�
s;�s; V �

�
=
q�n (1� q�1)2N�;ff;gg
(1� q�1�s) (1� q�1+s) : (3.5.2)

We now consider the case I 6= ?, I $ f1; 2g, thus there are two cases: I = f1g or
I = f2g. Note that

V �;f1g =
�
z 2

�
F�q
�n
; f b(�) (z) = 0 and gb(�) (z) 6= 0

	
for � 2 F

�
f

g

�
[ f0g ;

and that Card
�
V �;f1g

�
= N�;ffg, with the convention that

V 0;f1g =
�
z 2

�
F�q
�n
; f (z) = 0 and g (z) 6= 0

	
.

In this case, by using (3.2.5),

J
�
s;�s; V �;f1g

�
=
q�n�s (1� q�1)N�;ffg

1� q�1�s : (3.5.3)

Analogously,

J
�
s;�s; V �;f2g

�
=
q�n+s (1� q�1)N�;fgg

1� q�1+s : (3.5.4)

We now consider the case I = ?, then

V �;? =
�
z 2

�
F�q
�n
; f b(�) (z) 6= 0 and gb(�) (z) 6= 0

	
for � 2 F

�
f

g

�
[ f0g ;

with the convention that

V 0;? =
�
z 2

�
F�q
�n
; f (z) 6= 0 and g (z) 6= 0

	
:

Notice that Card(V �;?) = (q � 1)n � N�;ffg � N�;fgg � N�;ff;gg. Then, by using
(3.2.4),

J
�
s;�s; V �;?

�
= q�nCard(V �;?): (3.5.5)

Then from Theorem 3.1 and (3.5.2)-(3.5.5), we get

L�(s;
f

g
) =

q�n (1� q�1)2N�;ff;gg
(1� q�1�s) (1� q�1+s) +

q�n�s (1� q�1)N�;ffg
1� q�1�s +

q�n+s (1� q�1)N�;fgg
1� q�1+s + q�n

�
(q � 1)n �N�;ffg �N�;fgg �N�;ff;gg

	
:
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The announced formula for L�(s;
f
g
) is obtained from the above formula after some

simple algebraic manipulations.

(ii) Notice that for w 2 D
�
f
g

�
, 1
1�q��(w)�(d(w;�(f))�d(w;�(g)))s is holomorphic on

�(w) + (d(w;�(f)) � d(w;�(g))) Re(s) > 0, and that 1
1�q�1�s is holomorphic on

Re(s) > �1, and 1
1�q�1+s is holomorphic on Re(s) < 1, then, from the explicit for-

mula for Z(s; f
g
) given in (i) follows that it is holomorphic on the band e� < Re(s) < e�.

Now, since Z(s; f
g
) = Z(s;�s; f; g), Z(s; f

g
) is given by integral (3.5.1) because

Z(s1; s2; f; g) agrees with an integral on its natural domain.

(iii) It is a direct consequence of the explicit formula.

3.6 The largest and smallest real part of the poles

of Z(s; fg )

In this section we use all the notation introduced in Section 3.5. We work with a �x

simplicial polyhedral subdivision F
�
f
g

�
of Rn+ subordinate to �

�
f
g

�
. We recall that

in the case T� 6= ?,

� = max
w2T�

�
�(w)

d(w;�(g))� d(w;�(f))

�
is the largest possible �non-trivial�negative real part of the poles of Z(s; f

g
). We set

P(�) :=
�
w 2 T�;

�(w)

d(w;�(g))� d(w;�(f)) = �
�
;

and for m 2 N with 1 � m � n,

Mm(�) :=

�
� 2 F

�
f

g

�
; � has exactly m generators belonging to P(�)

�
;

and � := max fm;Mm(�) 6= ?g.

Theorem 3.1 Suppose that f
g
is non-degenerated over Fq with respect to �(fg ) and

that T� 6= ?. If � > �1, then � is a pole of Z(s; fg ) of multiplicity �.
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Proof. In order to prove that � is a pole of Z(s; f
g
) of order �, it is su¢ cient to show

that

lim
s!�
(1� q��s)�Z

�
s;
f

g

�
> 0:

This assertion follows from the explicit formula for Z(s; f
g
) given in Theorem 3.1, by

the following claim:

Claim. Res (�; �) := lims!�(1 � qs��)�L�(s; fg )S�(s) � 0 for every cone � 2
F(f

g
). Furthermore, there exists a cone �0 2M�(�) such that Res (�0; �) > 0.

We show that for at least one cone �0 in M�(�), Res (�0; �) > 0, because for

any cone � =2 M�(�), Res (�; �) = 0. This last assertion can be veri�ed by using

the argument that we give for the cones inM�(�). We �rst note that there exists

at least one cone �0 in M�(�). Let w1; : : : ;w�;w�+1; : : : ;wl its generators with

wi 2 P(�), 1 � i � �.
On the other hand,

lim
s!�

L�

�
s;
f

g

�
> 0 (3.6.1)

for all cones � 2 F(f
g
) [ f0g. Inequality (3.6.1) follows from

L�

�
�;
f

g

�
> q�n((q � 1)n �N�;ffg �N�;fgg �N�;ff;gg) � 0

for all cones � 2 F(f
g
) [ f0g. We prove this last inequality in the case N�;ffg > 0,

N�;fgg > 0, N�;ff;gg > 0 since the other cases are treated in similar form. In this

case, the inequality follows from the formula for L�(�;
f
g
) given in Theorem 3.1 , by

using that

N�;ffg
1� q��
1� q�1�� < N�;ffg; N�;fgg

1� q�
1� q�1+� < N�;fgg;

N�;ff;gg
(1� q��)(1� q�)

q(1� q�1��)(1� q�1+�) < N�;ff;gg when � > �1.

We also notice that

lim
s!�

X
t

q��(t)�(d(t;�(f))�d(t;�(g)))s > 0:
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Hence in order to show that Res (�0; �) > 0, it is su¢ cient to show that

lim
s!�

(1� qs��)�Ql
i=1(1� q��(wi)�(d(wi;�(f))�d(wi;�(g)))s)

> 0:

Now, notice that there are positive integer constants ci such that
�Y
i=1

(1� q��(wi)�(d(wi;�(f))�d(wi;�(g)))s) =

�Y
i=1

(1� q(s��)ci)

= (1� qs��)�
�Y
i=1

Y
&ci=1;& 6=1

�
1� &qs��

�
:

In addition, for i = �+ 1; : : : ; l,

1� q��(wi)�(d(wi;�(f))�d(wi;�(g)))� > 0

because ��(wi) � (d(wi;�(f)) � d(wi;�(g)))� � 0 for any wi 2 T+ [ T� with i =
�+ 1; : : : ; l. From these observations, we have

lim
s!�

(1� qs��)�Ql
i=1(1� q��(wi)�(d(wi;�(f))�d(wi;�(g)))s)

=

lim
s!�

(1� qs��)�
(1� qs��)�

Q�
i=1

Q
&ci=1;& 6=1

(1� &qs��)�

lim
s!�

1Ql
i=�+1(1� q��(wi)�(d(wi;�(f))�d(wi;�(g)))s)

> 0:

In the case T+ 6= ?,

� = min
w2T+

�
�(w)

d(w;�(g))� d(w;�(f))

�
:

is the smallest possible �non-trivial�positive real part of the poles of Z(s; f
g
). We set

P(�) :=
�
w 2 T+;

�(w)

d(w;�(g))� d(w;�(f)) = �
�
;

and for m 2 N with 1 � m � n,

Mm(�) :=

�
� 2 F

�
f

g

�
; � has exactly m generators belonging to P(�)

�
;

and � := max fm;Mm(�) 6= ?g
The proof of the following result is similar to the proof of Theorem 3.1.
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Theorem 3.2 Suppose that f
g
is non-degenerated over Fq with respect to �(fg ) and

that T+ 6= ?. If � < 1, then � is a pole of Z(s; fg ) of multiplicity �.

Example 3.3 We compute the local zeta function for the rational function given in

Example 3.5. With the notation of Theorem 3.1, one veri�es that

Cone L� S�

f0g q�2((q � 1)2 � (q � 1) 1�q�s
1�q�1�s ) 1

�1 q�2(q � 1)2 q�1+2s

1�q�1+2s

�2 q�2(q � 1)2 q�2+2s+q�4+4s

(1�q�1+2s)(1�q�3+2s)

�3 q�2((q � 1)2 � (q � 1) 1�q�s
1�q�1�s )

q�3+2s

1�q�3+2s

�4 q�2(q � 1)2 q�4+3s

(1�q�3+2s)(1�q�1+s)

�5 q�2(q � 1)2 q�1+s

(1�q�1+s) :

Therefore

Z(s;
f

g
) =

(q�1)
q2
L(q�s)

(1� qs�1)(1� q�1�s)(1� q2s�1)(1� q2s�3) ;

where

L(q�s) = q � q�1 � 2� q2s�4 + qs�3 � qs�2 + q2s�2 + q3s�3

+ 2q2s�1 � q3s�2 � q3s�1 + q�s�1:

Furthermore, Z(s; f
g
) has poles with real parts belonging to f�1; 1=2; 1; 3=2g.



Chapter 4

Final remarks and some open

problems

From a mathematical perspective, there are several open problems involving string

amplitudes and parametric Feynman integrals. The following are some open prob-

lems that we expect to study in the near future.

1) Determination of the divergencies of p-adic string amplitudes.

In [8], we �nd the divergencies of the p-adic amplitude A(N) (k) using the Euclid-

ean product instead of the Minkowski product to de�ne sij = kikj. We showed that

A(N) (0) = +1 and A(N) (k) = +1 for kikj > 0. The determination of the ultra-

violet and infrared divergencies, in the signature �++ : : :+ for A(N) (k) is an open

problem. This problem requires the determination of the geometry of the natural

domain of function Z(N)(s). This type of problems has been not studied in the case

of multivariate local zeta functions.

2)Motivic amplitudes

A natural problem consists in developing motivic string amplitudes (motivic in

the sense of motivic integration), these objects should specialize to the p-adic and

topological string amplitudes. Some connections between motives and quantum �eld

theory are considered in [48].
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3) Archimedean string amplitudes.

In the real case the string amplitudes at the tree level, are de�ned as

A(N) (k)

=

Z
RN�3

N�2Y
i=2

jxijk1ki1 j1� xijkN�1ki1

Y
2�i<j�N�2

jxi � xjjkikj1

N�2Y
i=2

dxi,

N � 4: Except for A(4) (k), the integrals have not been computed analytically as in

the p-adic case. In the light of the theory of local zeta functions, it is also natural to

conjecture that local zeta functions corresponding to string amplitudes over R and

C have meromorphic continuations of CD.

4)Connections between local zeta functions of rational functions and mon-

odromy conjectures.

S. Gusein-Zade, I. Luengo and A. Melle-Hernández have studied the complex

monodromy (and A�Campo zeta functions attached to it) of meromorphic functions,

see e.g. [34]. Our work [7] drives naturally to ask about the existence of local zeta

functions with poles related with the monodromies studied by the mentioned authors.

5) Local zeta functions for rational functions over K-analytic submanifolds.

Let K be a locally compact local �eld of characteristic zero, i.e. K = R, C or

a �nite extension of Qp. Let XK be a K-analytic closed submanifold of Kn, let

� be a test function in S(Kn), and  be a Gel�fand-Leray di¤erential form along

XK . Consider f; g 2 K [x1; ::; xn]. To study the convergence and meromorphic

continuation of local zeta functions:

Z�(s;XK ; f=g) :=

Z
XKnDK

�(x)
jf(x)j�n+sl=2K

jg(x)j�n+(l+1)s=2K

jjK

whereDK = f
�1(0)[g�1(0), s 2 C, l > 0, and jjK the measure alongXK induced by

. To establish, in the case K = R, a relation with the classical parametric Feynman
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Integrals. In general the study in detail of the Archimedean and non-Archimedean

parametric Feynman integrals as local zeta functions is still an open problem since

these integrals are not completely covered by theory developed in [7], [60].
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