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Resumen

Consideramos el espacio Conf3(R, n) := Rn\{(x1, . . . , xn) |xi = xj = xk para distintos i, j, k}, donde
PPn = π1(Conf3(R, n)) es una versión plana del grupo de trenzas puras. Estudiando la combinatoria
del espacio Conf3(R, n), mostramos que su cubierta universal es un complejo cúbico CAT(0). Para el
grupo PPn obtenemos una presentación en términos de tuplas (m1, . . . ,mn−1), donde cada coorde-
nada mk es una regla a aplicar en el proceso de Reidemeister-Schreier para obtener los generadores
asociados a la tupla. Para casos pequeños, pudimos reescribir la presentación del grupo PPn de
manera más sencilla en términos de posets. Por otro lado, considerando curvas planas sin triples in-
tersecciones y una cerradura de trenzas puras planas, obtenemos un teorema de tipo Birman-Markov.
Por último, describimos los invariantes de Vassiliev de curvas y trenzas planas, y utilizando integrales
iteradas de Chen, definimos el invariante universal de Vassiliev para trenzas puras planas.

Abstract

We consider the space Conf3(R, n) := Rn \ {(x1, . . . , xn) |xi = xj = xk for distinct i, j, k}, where
PPn = π1(Conf3(R, n)) is a planar version of the pure braid group. We study the combinatorics of
the space Conf3(R, n) and show that its universal cover is a CAT(0) cubical complex. For the group
PPn we obtain a presentation in terms of tuples (m1, . . . ,mn−1), where the coordinate mk stands for
the rule applied in the Reidemeister-Schreier process in order to produce the generators associated
with the tuple. For the cases of small n, we rewrite the presentation of the group PPn in a simpler
way in terms of posets. We also consider triple points free plane curves as closures of plane braids
and obtain a Birman-Markov type theorem. Finally, we review Vassiliev invariants of plane curves
and plane braids, and applying Chen’s iterated integrals we define the universal Vassiliev invariant
for plane pure braids.
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me trató como tal; al Dr. Ruy Fabila Monroy por apoyarme en la culminación de este último pro-
ceso; al Dr. Jose Luis Cisneros Molina por su apoyo en la revisión de este trabajo; al Dr. Bruno
Cisneros por su amistad, hospitalidad, y las amplias discusiones acerca de temas relacionados con
este trabajo. Además, quiero agradecer a todos mis profesores del Departamento de Matemáticas
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Introduction

The classical configuration space of n ordered points in C, usually denoted by F(C, n), is, by def-
inition, the complement in Cn of the braid arrangement defined by the diagonals ∆ij. The space
F(C, n) is the Eilenberg-MacLance space K(Pn, 1) whose fundamental group is the pure braid group
Pn. Configurations spaces and braid groups lead to a rich theory and appear in many different con-
texts in topology and other areas of mathematics. We are particularly interested in their connection
with knot theory.

Braids and knots are closely related objects. By the Alexander Theorem, any knot or link can be
represented as a closed braid, and the Markov Theorem gives conditions on when two closed braids
represent the same knot or link. There are other closures of braids, such as the plat closure by
Birman [7] and its modification, the short circuit closure by Mostovoy and Stanford [31]; the latter
has the advantage that the closure of a pure braid is always a knot. The group structure on braids
makes them more manageable than knots; often, one works with braids with the hope that similar
constructions might work for knots: this is how the Jones polynomial and the Kontsevich integral
were discovered.

The Kontsevich integral is one of the most powerful knot invariants; namely, it is as strong as the
set of all rational-valued Vassiliev invariants [27]. The Vassiliev invariants include, among others, the
coefficients of the Alexander-Conway polynomial and, after a certain renormalization, the coefficients
of the Jones, HOMFLY and Kauffman polynomials. The construction of the Kontsevich integral has
as an inspiration Kohno’s construction [23] of an invariant of pure braids via Chen’s iterated integrals;
it has been one of the main motivations for the present work.

In chapter 1, we review the construction of the configurations spaces Conf3(R, n) of n-tuples of
points Rn with multiplicity at most 2 and recall the definition of the planar version PPn of the pure
braid group on n strands. Let An,3 be the collection of subspaces in Rn given by xi = xj = xk
for all 1 ≤ i < j < k ≤ n. Although these subspaces are of real codimension two, they cannot
be viewed as a complex hyperplane arrangement. Set Conf3(R, n) to be the complement Rn \ An,3.
Similarly to the classical case of the configurations spaces of distinct points, the space Conf3(R, n)
is an Eilenberg-MacLane space K(π, 1) with fundamental group the plane pure braid group PPn.
(In figure 1 we have the generator of the first non-trivial case PP3

∼= π1(Conf3(R, 3)).) This fact
was first proved by Khovanov in [22]. Our contribution is an analysis of the combinatorics of the
space Conf3(R, n), based in a work of Barcelo, Severs and White [5] [34], in which we show that the
universal cover of Conf3(R, n) is a cubical CAT(0) space and, hence, is contractible. As a corollary,
we deduce that Conf3(R, n) is an Eilenberg-MacLane space K(π, 1). Furthermore, we observe that
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Figure 1: Generator (σ2σ1)3 of PP3

PPn as the fundamental group of Conf3(R, n) acts properly and cocompactly on its universal cover;
in other words PPn is a cubed group.

Chapter 2 is dedicated to the problem of finding a presentation for the group of plane pure braids
using the Reidemeister-Schreier process and to the problem of representing the group PPn as an
almost-direct product. In our attempt to calculate the presentation explicitly, we translate the gen-
erators into paths of a decision tree (see figure 2.3), represented as a tuple (m1, . . . ,mn−1), where
the coordinate mk stands for the rule applied in k-iteration of the Reidemeister-Schreier process. We
obtain conditions on tuples which allow to avoid some of the redundancy in the resulting presenta-
tion. The presentation we obtain in terms of tuples (m1, . . . ,mn−1) is rather impractical. Despite
that, for the cases of small n we obtain a more compact presentation in terms of so-called basic par-
titioner posets defined in the last section 1.4 of chapter 1. Partitioner posets are in correspondence
with (co)homology classes of the space Conf3(R, n) found by Baryshnikov [6], and for each basic
partitioner poset P = (I)[J ](K) we construct an associated plane pure braid bP .

(46)[13](25) 7−→ b(46)[13](25) =

With this construction of plane pure braids from partitioner posets, we give an alternative pre-
sentation of PPn for n = 3, 4, 5, 6, instead of the long list of generators and relations in tables 2.3.2,
2.3.3 at the end of chapter 2.

Theorem 2.2.7. For n = 1, 2, PPn is the trivial group. For 3 ≤ n < 6, the generators of PPn are
plane pure braids associated (see construction 1) to basic partitioner posets of [n]. The presentation
of PPn for 3 ≤ n ≤ 5 is

generators : {bP |P is a basic partitioner poset of [n]}
relations : { no relations }

i.e., are free groups. For n = 6, the relations are by conjugation on some particular partitioner
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S :

Figure 2: Short-circuit map

posets. Let Prel a basic partitioner poset of [6] of the form (k)[i, j](L) (hence k > i, j and |L| = 3).
The presentation of PP6 is

generators : {bP |P is a basic partitioner poset of [6]}
relations : {(ν̃1(Prel) · bPrel)((ν̃2(Prel) · bPrel))−1 | Prel = (k)[i, j](L)}

where · is the action by conjugation and ν̃i(Prel) is a product of plane pure braids constructed from
L for i = 1, 2.

In the last section of the chapter we prove that although the homomorphism of forgetting one
strand gives a splitting of the group PPn as a semidirect product of two subgroups, this product is
not almost-direct. This stands in contrast to the case of the usual pure braids, where the splitting
as an almost-direct product plays a crucial role in the proof that the pure braid group is residually
nilpotent. (We should note that PPn is residually nilpotent and this can be established by different
methods).

In chapter 3 we trace the connection of plane pure braids with a planar version of knots, that is,
triple points free plane curves. A (long) triple points free plane curve is an immersion C : R → R2

which coincides with the linear embedding x = 0 outside a compact interval and all of whose multiple
points are transversal double points. As in the usual case, every triple points free plane curve can
be represented as the closure of a plane pure braid. We follow the work of Mostovoy and Standford
[31] defining a short circuit map Sn : PP2n+1 → C as in figure 2. The main result of this chapter is
a Birman-Markov-type theorem for this closure. We find subgroups HT , HB, such that the monoid
of triple points free plane curves C is equivalent to the biquotient HT\PP∞/HB.

Going back to our source of inspiration, in chapter 4 we define Vassiliev invariants for plane curves
and plane pure braids in an axiomatic way by skein relations

v
( )

= v
( )

− v
( )

and v
( )

= v
( )

− v
( )

.

Following Kohno’s construction of an iterated integral invariant for braids, we apply the theory of

vii



Chen’s iterated integrals to propose a universal Vassiliev invariant for the plane pure braid group
PPn. For small n, we know Conf3(R, n) is a formal space and we conjecture it is true for any n.
Since H∗(Conf3(R, n)) is generated in degree 1 and assuming the formality of the space, there is a
(co)multiplicative linear map

Z : R[PPn] −→ R〈〈X〉〉/J,
given by

Z(γ) = 1 +

∫

γ

ω +

∫

γ

ωω + · · ·+
∫

γ

ω · · ·ω + · · · with ω =
∑

P∈P

ωPXP .

where ωP is an associated differential form to the corresponding cohmology class of a basic partitioner
poset P , and P is the set of all basic partitioner posets. Despite the fact that we can not make
calculations in absence of explicit differential forms representing the generators of the cohomology of
Conf3(R, n), by a general result of Chen’s theory and the fact that PPn is residually nilpotent and
torsion-free, we would obtain that Vassiliev invariants separate plane pure braids and the universal
Vassiliev invariant is a Taylor expansion in the sense of Bar-Natan [3].
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Chapter 1

Conf3(R, n) space and cubical CAT(0) spaces

In this chapter we study a real counterpart of the braid arrangement and a kind of configuration space
Conf3(R, n). Analogously to the usual case in which the pure braid group is the fundamental group
of a configuration space, we shall see in the first section that the fundamental group of Conf3(R, n)
is a planar version of the pure braid group. Section two is based in [5], we review some properties of
Coxeter groups in order to study the combinatorics and homotopy type of Conf3(R, n). In section
three we have an unkwnon result in which we realize the universal cover of Conf3(R, n) as a cubical
CAT(0) space, and as an immediate consequence Conf3(R, n) is a K(π, 1) space, proved in other
way firstly by Khovanov in [22]. In the last section, we study the cohomology ring of these spaces
calculated by Baryshnikov in [6].

1.1 The space Conf3(R, n)
The classical configuration space of n ordered points in C is by definition the complement of Cn

by a hyperplane arrangement defined by the diagonals ∆ij. This arrangement is a collection of
subspaces of real codimension two. Here, we also study the complement of a subspace arrangement
of real codimension two. However, this arrangement can not be viewed as a complex hyperplane
arrangement.

Definition 1.1.1 (3-Equal Arrangement). A 3-equal arrangement consists of the collection of all
subspaces of Rn of the form xi = xj = xk for 1 ≤ i < j < k ≤ n. We denote the 3-equal arrangement
by An,3.

Definition 1.1.2 (No 3-equal Manifold). The no 3-equal manifold is the complement of the 3-equal
arrangement An,3, i.e.,

Rn\{(x1, . . . , xn) |xi = xj = xk, 1 ≤ i < j < k ≤ n}.
We denote by Conf3(R, n) the no 3-equal manifold by its similarities with usual configuration spaces,
because by definition points in Conf3(R, n) are configurations of n ordered points in R without triple
coincidences.

1



We only work with 3-equal arrangements but the definition make sense for any k leading to
k-equal arrangements An,k and no k-equal manifolds Confk(R, n) as in [6].

Example 1.1.3. For n = 1, 2 the space Conf3(R, n) is contractible.

Example 1.1.4. The first non-trivial but very simple case is Conf3(R, 3), which is R3 minus the
diagonal x1 = x2 = x3. Hence, Conf3(R, 3) is homotopy equivalent to the circle S1. If we take
(1, 0,−1) ∈ Conf3(R, 3) as our base point, it is easy to see that the class of the based loop

γ(t) = (cos 2πt, sin 2πt,− cos 2πt),

is a generator of π1(Conf3(R, 3)). Let b : I1t I2t I3 → R2 the immersion defined by b(ti) = (γi(t), t).
Drawing the image of b (see figure 1.1) we have 3 ascending arcs which intersect with multiplicity
at most 2. These is an example of what we call a planar pure braid. Furthermore, π1(Conf3(R, 3))
is equivalent to a planar version of the pure braid group on 3 strands, denoted by PP3. Therefore,
PP3 is the infinite cyclic group with generator b as in figure 1.1.

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Figure 1.1: The generator of PP3

In general, the fundamental group of Conf3(R, n) gives rise to planar pure braids. Before, we give
the formal definition.

Definition 1.1.5 (Planar Braid). A geometric planar braid on n strands is an immersion b : I1 t
· · · t In → R2 formed by n ascending arcs bi : I → R2 called the strands, such that

(a) the strands join n distinct points in the line y = 0 with n distinct points in the line y = 1.

(b) tangent vectors of the strands are never horizontal.

(c) three strands can not have a common point.

Two geometric planar braids b and b′ are equivalent if there exists a smooth homotopy F : [0, 1]×R2 →
R2 such that F0 = idR2 , F1(b) = b′ and Ft ◦ b is a planar braid for each t ∈ [0, 1]. A planar braid is a
geometric planar braid up to smooth homotopies of this type (see figure 1.2).

2



In chapter 3, we see a planar version of Reidemeister moves (figure 3.2). In this terms, two planar
braids are equivalent if there exists a sequence of diffeomorphisms of the plane and local moves Ω±2 ,
which transform one planar braid into the other.

Figure 1.2: Planar braid

In the set of planar braids on n strands we can define the product b1 · b2 by putting the bottom
of b2 on the top of b1. By the equivalence of planar braids, we can choose b1, b2 in such a way the
n points in the bottom of b2 coincide with the n points in the top of b1. The planar braid with all
vertical strands works as an identity, and the inverses are reflection over horizontal line y = 1. With
this product and identity, the set of planar braids on n strands forms a group and we denote it by
PBn . Every planar braid can be written as a product of σj’s, where σj is the planar braid consisting
of only one double point as in figure 1.3. Furthermore, PBn can be written as an abstract group and
is finitely presented.

Figure 1.3: Generator σj

Proposition 1.1.6 ([22]). PBn has a presentation given by

generators : σ1, . . . , σn−1, (1.1.1)

relations : σ2
j , 1 ≤ j ≤ n− 1 (1.1.2)

(σjσk)
2 , |j − k| > 1 (1.1.3)

Remark 1.1.7. Recall Σn has a presentation with generators the transpositions sj = (j, j + 1) and
relations s2

j = 1, sjsk = sksj when |j−k| > 1 and sj+1sjsj+1 = sjsj+1sj. We recover the presentation
of PBn from the presentation of Σn by omitting the relation sj+1sjsj+1 = sjsj+1sj.

3



b ∩R× {t} = γ(t)

γ : [0, 1] −→ Conf3(R, n)
t �−→ (γ1(t), . . . , γn(t))

1

0

b

=

γ6(t) γ5(t)γ4(t)γ3(t) γ2(t)

γ1(t)

t

Figure 1.4: Correspondence between planar braids and loops on Conf3(R, n)

In the same way as in the classical case, each planar braid on n strands induce a permutation
of a set of n elements. Therefore, there is a natural homomorphism from the planar braid group
to the symmetric group ϕ : PBn → Σn, defined in generators by sending σj to the transposition
sj = (j, j + 1).

Definition 1.1.8 (Planar Pure Braid Group). The planar pure braid group on n strands denoted
by PPn is the kernel of the homomorphism ϕ : PBn → Σn. A geometric planar braid represent
an element in PPn if and only if the ith strand join the point (i, 0) with the point (i, 1), for all
i = 1, . . . , n.

Another names in the literature for the planar braid group and planar pure braid group are twin
group and pure twin group, respectively [22]. In the same way as in the classical case, the planar
pure braid group is the fundamental group of a kind of configuration space.

Proposition 1.1.9. The fundamental group of the space Conf3(R, n) is isomorphic to PPn.

Proof. A based loop γ : I = [0, 1]→ Conf3(R, n), t 7→ (γ1(t), . . . , γn(t)) induces a geometric planar
braid b : I1 t · · · t In → R2, defined by b(ti) = (γi(ti), ti). The condition of based loop, guarantees
the planar braid is pure. Reciprocally, if b represents a planar pure braid, the intersection b∩R×{t}
is a configuration of n points without triple coincidences; scanning along t we obtain the based loop
in Conf3(R, n) (see figure 1.4). The correspondence respects products.

Furthermore, Khovanov proves in [22] that Conf3(R, n) is in fact the classifying space of PPn.
In section 1.3, we reach to the same fact as a consequence of the cubical CAT(0) structure of the
universal cover of Conf3(R, n).

4



1.2 Conf3(R, n) and Coxeter groups

The theory of Coxeter groups allows us to understand the structure of the complement of the 3-equal
arrangement. We give basic definitions and we derive elementary combinatorial facts. The material
in this section is taken primarily from [10] and [5].

Definition 1.2.1 (Coxeter matrix). Let S be a set. A matrix m : S × S → {1, 2, . . . ,∞} is called a
Coxeter matrix if it satisfies

m(s, s′) = m(s′, s) (1.2.1)

m(s, s′) = 1⇔ s = s′ (1.2.2)

Equivalently, m can be represented by a Dynkin diagram whose vertex set is S and whose edges are
the unordered pairs {s, s′} such that m(s, s′) ≥ 3. The edges with m(s, s′) ≥ 4 are labelled by that
number. For instance,




1 2 2 ∞
2 1 2 3
2 2 1 4
∞ 3 4 1


 ⇐⇒ ∞

4s1

s2

s3

s4

Definition 1.2.2 (Coxeter Group). A Coxeter matrix m defines a group W , called Coxeter group,
with presentation:

W = 〈S | (ss′)m(s,s′) for all s, s′ ∈ S and m(s, s′) <∞〉
The pair (W,S) is called a Coxeter system, and |S| is the rank of (W,S).

Remark 1.2.3. The condition m(s, s′) = ∞ means there is no relation between s and s′. The
relation (ss′)m = 1 is equivalent to

ss′ss′s · · ·︸ ︷︷ ︸
m

= s′ss′ss′ · · ·︸ ︷︷ ︸
m

.

In particular, m(s, s′) = 2 means that s and s′ commute, and in the Dynkin diagram there is no edge
between s and s′.

Example 1.2.4. The group of planar braids PBn is a Coxeter group. If we take S = {σ1, . . . , σn−1}
and m : S × S → {1, 2, . . . ,∞} defined by

m(σj, σk) :=





1 for j = k,
2 for |j − k| > 1,
∞ otherwise.

The Dynking diagram of PBn is as in figure 1.5.

5



σ1

∞
σ2

∞
σ3

∞
σ4

∞
σn−2

∞
σn−1

∞

Figure 1.5: Dynkin diagram of PBn

Another examples of Coxeter groups are finite reflection groups. For α ∈ Rn \ {0}, let sα denote
the reflection in the hyperplane Hα orthogonal to α. In particular sα(α) = −α, while fixes point wise
the hyperplane Hα. A finite reflection group W is a finite group generated by a set of reflections.
One way to obtain finite reflection groups is since root systems.

Definition 1.2.5 (Root System). A collection Φ of vectors in Rn is a root system if:

1. Φ ∩ Rα = {α,−α} for all α ∈ Φ.

2. sα(Φ) = Φ for all α ∈ Φ.

A simple system is a collection Π ⊂ Φ if spans Rn and each α ∈ Φ is a linear combination of elements
in Π whose all coefficients are either all non-negative, or all non-positive.

The group W generated by the reflections sα for all α ∈ Φ is a reflection group. Furthermore,
the set S of reflections sα for α ∈ Π called simple reflections, generates W and (W,S) is a Coxeter
system of rank |S| = |Π|.

Example 1.2.6. The symmetric group Σn is a finite reflection group on Rn by permuting the
standard basis e1, . . . , en. The collection of vectors ei − ej for i 6= j form a root system Φ in which a
transposition (ij) acts as the reflection in the hyperplane Hij = {x ∈ Rn|x ⊥ ei− ej}. The collection
of vectors αj = ej − ej+1, for all 1 ≤ j ≤ n− 1 is a simple system. If we take all the reflections sαj ,
corresponds to the transpositions sj = (j, j + 1) of Σn, and produces the known presentation of Σn

by generators s1, . . . , sn−1 and relations:

s2
j = 1, 1 ≤ j ≤ n− 1.

sjsk = sksj, |j − k| > 1, 1 ≤ j < k ≤ n− 1,

sjsj+1sj = sj+1sjsj+1, 1 ≤ j ≤ n− 1.

Therefore, the symmetric group Σn has indeed a presentation as a finite Coxeter group.

When Σn acts on Rn as above, it fixes the line spanned by e1 + · · · + en and leaves stable the
orthogonal complement V = {(x1, . . . , xn) ∈ Rn|x1 + · · · + xn = 0}. Thus Σn acts on an (n − 1)-
dimensional vector space with no fixed points except the origin. An action of a reflection group W
on an euclidean space V with no non-zero fixed points is called essential.

Note 1.2.7. Σn is also referred as the finite Coxeter group of type An−1.
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Definition 1.2.8 (Irreducible). A Coxeter group is irreducible if its Dynkin diagram is a connected
graph.

The essential and irreducible finite Coxeter groups are completely classified in terms of Dynkin
diagrams. All they are reflection groups of some finite-dimensional Euclidean space, then for each
finite Coxeter group W we can associate an arrangement of hyperplanes. Let Φ be a root system of W ,
then the Coxeter arrangement H(W ) is the collection of hyperplanes Hα = {x|x ⊥ α} for all α ∈ Φ.
Obviously H(W ) could change if we change the root system, but the combinatorial information
remains. We can associate a poset to H(W ), consisting in all the intersections of hyperplanes,
ordered by reverse inclusion. In fact, every pair of elements in the poset have a unique upper bound
and lower bound, then this poset is a lattice. Given two root systems Φ,Φ′ of W , the corresponding
lattices are isomorphic. The poset is called the intersection lattice and is denoted by L(H(W )).

Example 1.2.9. For Σn the finite Coxeter group of type An−1, the Coxeter arrangement H(An−1)
is the collection of hyperplanes Hi,j’s defined in example 1.2.6 (figure 1.6). If x = (x1, . . . , xn) ∈
Hi,j ∩ Hj,k for some i < j < k then xi = xj = xk, hence Hi,j ∩ Hj,k ∈ An,3. More generally, we
can also associate a poset to An,3 in the same way, i.e., the intersection poset ordered by reverse
inclusion. This poset denoted by L(An,3) is a subposet of L(H(An−1)). There is already a well-known
combintorial description of both posets. The poset of set partitions of [n] ordered by refinement is
isomorphic to L(H(An−1)), and under this isomorphism, L(An,3) is the subposet of partitions in
which at least one block has size at least 3.

H12

H23

H13

123

12/3 13/2 1/23

1/2/3

Figure 1.6: H(A2) and L(H(A2))

Another description of L(H(An−1)) was given by Barcelo and Ihrig [4] in terms of parabolic
subgroups of An−1, and for our purposes more useful.

Definition 1.2.10 (Parabolic Subgroup). Let W a Coxeter group with set of simple reflections S.
A subgroup G ⊂ W is a parabolic subgroup if there exist a subset I ⊂ S of simple reflections and
an element w ∈ W with G = 〈wIw−1〉. If w is the identity G is a standard parabolic subgroup. The
pair (G,wIw−1) can be viewed as a Coxeter system, and G is irreducible if its Dynkin diagram is
connected.
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The correspondence between L(H(An−1)) and the lattice of parabolic subgroups P(An−1) is given
by sending a parabolic subgroup G to Fix(G) = {x ∈ Rn|wx = x, ∀w ∈ G}, and the inverse is given
by sending an intersection of hyperplanes X to Gal(X) = {w ∈ G|wx = x, ∀x ∈ X}. This corre-
spondence gives rise to a generalization of k-equal arrangements, called k-parabolic arrangements,
defined by Barcelo, Severs and White. In [5] they gave a new description of 3-equal arrangements.

Proposition 1.2.11. The Galois Correspondence gives a bijection between subspaces of An,3 and
irreducible parabolic subgroups of An−1 of rank 2.

Proof. Let X ⊂ Rn the subspace such that x1 = x2 = x3. The Galois correspondence sends X to
Gal(X) = 〈(1, 2), (2, 3)〉 which is irreducible parabolic subgroup of rank 2. Any other subspace X ′

(for instance xi = xj = xk) is in the orbit of X by the action of Σn = An−1, i.e., exists w ∈ Σn such
that wX = X ′, then Gal(X ′) = Gal(wX) = wGal(X)w−1 and hence irreducible parabolic of rank 2.

Conversely, given G an irreducible parabolic subgroup of rank 2, there exists a subset I ⊂ S and
w ∈ Σn such that G = 〈wIw−1〉. Since is irreducible, I = {(j, j + 1), (j + 1, j + 2)} and Fix(〈I〉) is
the subspace such that xj = xj+1 = xj+2. Therefore Fix(G) = Fix(w〈I〉w−1) = wFix(〈I〉) is given
by xw(j) = xw(j+1) = xw(j+2) which is a subspace in the 3-equal arrangement.

In the same direction, topological and combinatorial information of the space Conf3(R, n) can
be described in terms of parabolic subgroups. Before that, we review the definition of the Coxeter
complex and the associated W-permutahedron.

Let (W,S) be a finite Coxeter group with Π a simple system. For a given I ⊂ S, let WI = 〈I〉,
and ΠI = {α ∈ Π|sα ∈ I}. We can associate the set

CI = {x ∈ Rn|(x, α) = 0 for all α ∈ ΠI , and (x, α) > 0 for all α ∈ Π \ ΠI},

which is an intersection of certain hyperplanes Hα and certain open half-spaces. The sets CI ’s
partition a fundamental region in simplicial cones, where CS = {0} and C∅ is the interior of the
fundamental region. The collection C(W ) of all sets wCI (w ∈ W, I ⊂ S), partitions Rn. More
precisely, for each fixed I the sets wCI and w′CI are disjoint unless w and w′ are in the same left
coset in W/WI . If I, J ⊂ S are distinct, all sets wCI , w

′CJ are disjoint. The sets wCI are called
cells, and is q-dimensional if |S \ I| = q. We define an order in C(W ) given by inclusions in closed
sets, i.e,

wCI ≤ w′CJ ⇐⇒ wCI ⊆ w′CJ ,

making C(W ) into the poset of faces of a simplicial complex. For each (q + 1)-dimensional cell wCI ,
corresponds a q-simplex with vertex set all the 1-cells contained in wCI . Note we are considering the
0-dimensional cell as the (−1)-simplex.

Definition 1.2.12 (Coxeter Complex). As the face poset of a simplicial complex, the collection
C(W ) is the Coxeter complex of W . A geometric realization of the Coxeter complex is the simplicial
decomposition of Sn−1 by intersecting the sphere with the arrangement H(W ).
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From the definition of CI it is clear that WI is its isotropy group. In general, parabolic subgroups
of W are the isotropy groups of the cells of C(W ). On the other hand, if we have a standard
parabolic subgroup WI , the set of fixed points of WI in CI is exactly CI . Furthermore, cells CI ≤ CJ
correspond to a standard parabolic subgroups WI ≤ WJ , where parabolic subgroups are ordered by
reverse inclusion, i.e.,

wWI ≤ w′WJ ⇐⇒ w′WJ ⊆ wWI .

Extending this correspondence in both posets by the action of W , this gives a caracterization of cells
of the Coxeter complex in terms of cosets wWI . In particular, the vertex set of C(W ) corresponds
to V = ∪s∈SW/WS\{s}.

Since the 3-equal arrangement is embedded in H(An−1), we can also define a subcomplex of
C(An−1) by

C0 = {F ∈ C(An−1)|∃A ∈ An,3 such that F ⊂ A}. (1.2.3)

Its geometric realization is given by intersecting An,3 with Sn−1. Defined all these, the following
comes from general results of subspace arrangements having appeared in the literature before, for
instance, see section 5.2 in [32].

Proposition 1.2.13. The space Conf3(R, n) is homotopy equivalent to |C(An−1)| \ |C0|.

Proof. Since the intersection of all the subspaces in the 3-equal arrangement contains the origin,
there is a map from Conf3(R, n) into the sphere, given by r : x 7→ x

‖x‖ , which gives the homotopy

equivalence between Conf3(R, n) and |C(An−1)| \ |C0|. We are assuming here that |C(An−1)| is the
geometric realization as the simplicial decomposition in Sn−1.

Next, we consider a polytope related with the Coxeter complex as its dual, called the Coxeter
permutahedron.

Definition 1.2.14 (Coxeter Permutahedron). Let (W,S) be a finite Coxeter group and C the interior
of a fundamental region (for example C = C∅). Let x ∈ C any element, the Coxeter permutahedron
or W -permutahedron is the convex hull of the orbit Wx = {wx|w ∈ W}. We denote it by Perm(W ).

The face poset of the W -permutahedron is exactly dual of the face poset of the Coxeter complex,
i.e., is defined by cosets wWI for all w ∈ W , I ⊂ S, but ordered by inclusion, instead of the reversed
inclusion as in the Coxeter complex. For example, by definition of the W -permutahedron, the vertex
set is exactly the orbit Wx, so for each w ∈ W corresponds a vertex, but we can see each w as the
coset wW∅ which corresponds to maximal faces of the Coxeter complex. Edges correspond to cosets
wWs for each s ∈ S, dual to boundaries of maximal faces of the Coxeter complex which are parts
of hyperplanes. What we have is a duality in faces between the W -permutahedron and the Coxeter
complex.

There is a much deeper correspondence between the Coxeter complex and the W -permutahedron.
Given any subomplex ∆0 of the Coxeter complex C(W ), there is a subcomplex Perm0(W ) of the
W -permutahedron such that |C(W )| \ |∆0| is homotopy equivalent to Perm0(W ). To prove this, we
need the following specialization of Proposition 3.1 from B̈orner and Ziegler in [12].
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C∅

sC∅

Cs

sW∅

W∅

Ws

Figure 1.7: Coxeter complex and Permutahedron of type A2

Proposition 1.2.15. Let ∆ be a simplicial decomposition of the k-sphere, and let ∆0 be a subcomplex
of ∆. Let P be the face poset of ∆, and let P0 be the lower order ideal generated by ∆0. Then |∆|\|∆0|
is homotopy equivalent to a regular CW -complex X, and moreover, the face poset of X is (P \ P0)∗,
where ∗ denotes taking the dual poset.

In our case, ∆ is the realization of the Coxeter complex C(An−1) as the simplicial decomposition of
Sn−1 by intersecting with H(An−1) and ∆0 is the realization of the subcomplex C0 as the intersection
of Sn−1 with An,3.

Since regular CW -complexes are determined by their face posets [9], we see that X has the
same face poset as a subcomplex of Perm(An−1) and hence, X is homeomorphic to a polyhedral
subcomplex Perm0(An−1) with face poset in terms of face posets of C(An−1) and C0. We already know
the face poset of C(An−1) in terms of parabolic subgroups. For C0 is useful to remember its definition
(see 1.2.3). A cell wCI ∈ C(An−1) is in C0 if and only if exists X ∈ An,3 such that CI ⊂ w−1X. In
terms of parabolic subgroups and w.l.g, we can only consider standard, WI ∈ C(An−1) is in C0 if and
only if exists WJ irreducible parabolic of rank 2 such that J ⊂ I. In conclusion,

Lemma 1.2.16 ([34]). For the finite reflection group W = An−1, the face poset of the complex C0

is the collection of cosets wWI where there exists J ⊂ I such that WJ is an irreducible parabolic
subgroup of rank 2.

By the definition of irreducible parabolic subgroup, a cosets wWI in the poset of C0 is such that I
contains two simple reflections which as vertices in the Dynkin diagram are connected by an edge. In
other words, I contains at least two transpositions (j, j+ 1) and (j+ 1, j+ 2) for some j ∈ [1, n− 2].
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Figure 1.8: Perm0(A3)

The following result is a corollary of proposition 1.2.15 and lemma 1.2.16, but by its importance will
be a theorem.

Theorem 1.2.17 ([34]). There is a subcomplex Perm0(An−1) of Perm(An−1) such that the space
Conf3(R, n) is homotopy equivalent to Perm0(An−1). Moreover, the face poset of Perm0(An−1)
corresponds to cosets wWI ordered by inclusion and such that any s, s′ ∈ I commute.

Proof. By propositions 1.2.13 and 1.2.15 we have that Conf3(R, n) ' |C(An−1)|\|C0| ' Perm0(An−1).
If P denotes the face poset of C(An−1) and P0 the lower ideal generated by C0, when we take duals,
we reversed the order and hence P ∗0 is an upper ideal in P ∗. The face poset P ∗ corresponds to all
cosets wWI of parabolic subgroups ordered by inclusion, and P ∗0 is the upper ideal whose minimal
elements are cosets wWJ where J = {(j, j + 1), (j + 1, j + 2)} for some j ∈ [1, n− 2]. Using the fact
that (P \ P0)∗ = P ∗ \ P ∗0 , we have that the face poset of Perm0(An−1) correspond to cosets wWI

such that I doesn’t contain consecutive transpositions, i.e., any s, s′ ∈ I commute.

Remark 1.2.18. The 0-skeleton of Perm0(An−1) consist of cosets wW∅, equivalently, each permu-
tation is a vertex. The 1-skeleton corresponds to cosets wW{s} with s a simple reflection, and where
wW{s} as a 1-dimensional cell, contains the vertices wW∅ and wsW∅. The 2-skeleton corresponds
to cosets wW{s,s′} where ss′ = s′s, i.e., s = (j, j + 1) and s′ = (k, k + 1) where |j − k| > 1. In
other words, a 2-dimensional cell correspond to a square with vertices wW∅, wsW∅, wss

′W∅, ws
′W∅

and edges wW{s}, wsW{s′}, ws
′W{s}, wW{s′}. In general, cells correspond to cubes, a fact we need for

the next section (see figure 1.8).
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Figure 1.9: A geodesic triangle and a comparison triangle

1.3 Universal Cover of Conf3(R, n) as a CAT(0) cubical com-

plex

Briefly, we turn our attention to cubical complexes and CAT(0) spaces. First, some definitions.

Definition 1.3.1 (Geodesic Metric Space). Let (X, d) be a metric space. A geodesic joining x ∈ X
and y ∈ X is a map γ : [0, d(x, y)] → X such that γ(0) = x, γ(d(x, y)) = y, and d(γ(t1), γ(t2)) =
|t1− t2| for any t1, t2 ∈ [0, d(x, y)]. A metric space X is said to be a (uniquely) geodesic metric space
if any two points can be joined by some (unique) geodesic.

Definition 1.3.2 (Geodesic Triangle). Let (X, d) be a geodesic metric space. A geodesic triangle
consists of three points p, q, r ∈ X and three geodesics γ1, γ2, γ3 in X joining p with q, q with r, and r
with p respectively. We denote it by ∆(p, q, r). Then there exists a (unique up to isometry) geodesic
triangle ∆(p, q, r) with sides γ1, γ2, γ3 such that there exist isometries φi : γi → γi with φi(v) = φj(v)
whenever v is an endpoint of both γi and γj. We call ∆(p, q, r) a comparison triangle for ∆(p, q, r).

Definition 1.3.3 (CAT(0) Space). Let (X, d) be a geodesic space. If ∆(p, q, r) is a geodesic triangle
and ∆(p, q, r) a comparison triangle, then the CAT(0) inequality for such ∆ is the inequality

dX(γi(t), γj(s)) ≤ ‖φi(γi(t))− φj(γj(s))‖ (1.3.1)

for any i, j ∈ {1, 2, 3} and t, s in the domain of γi and γj respectively. We say that a geodesic metric
space is CAT(0) if all geodesic triangles in X satisfy their CAT(0) inequality (see figure 1.9)

Some elementary consequence of the CAT(0) condition but essential for our purposes, is that
CAT(0) spaces are contractible. To prove it, we need the following lemma.
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Lemma 1.3.4. A CAT(0) space is uniquely geodesic.

Proof. Let p, q ∈ X and γ, β : [0, d(x, y)] → X geodesics joining p and q. The geodesic triangle
∆(p, q, p), with sides γ, β and the constant geodesic at p, has a degenerate comparison triangle in
R2. By the CAT(0) inequality, we have dX(γ(t), β(t)) ≤ ‖γ(t)− β(t)‖ = 0, then γ = β.

Proposition 1.3.5. A CAT(0) space is contractible.

Proof. Let p0 ∈ X. For each p ∈ X there is a unique geodesic γp from p0 to p. We define
H : X × [0, 1] → X by H(p, t) = γp(td(p0, p)). Note that for t = 0, H(p, 0) = γp(0) = p0 and for
t = 1, H(p, 1) = γp(d(p0, p)) = p for any p ∈ X, also, H(p0, t) = γp0(td(p0, p0)) = p0 the constant
geodesic at p0. The map H is the required homotopy, we only check the continuity. Let {(pn, tn)}n∈N
in X × [0, 1] such that converges to (p, t). By definition of geodesic and by the CAT(0) inequality
for the triangle ∆(pn, p, p0), we can estimate

d(H(pn, tn), H(p, t)) ≤ d(H(pn, tn), H(pn, t)) + d(H(pn, t), H(p, t))

≤ d(γpn(tn(d(p0, p))), γpn(t(d(p0, p)))) + d(H(pn, t), H(p, t))

≤ |tn − t|d(p0, p) + d(γpn(t(d(p0, pn))), γp(t(d(p0, p))))

≤ |tn − t|d(p0, p) + ‖γpn(t(d(p0, pn)))− γp(t(d(p0, p)))‖
≤ |tn − t|d(p0, p) + t‖pn − p‖ −→ 0

The intuitive picture of the CAT(0) inequality make us think in spaces of non-positive curvature,
and is not wrong. The intuition is justified by a theorem in differential geometry that says that a
Riemannian manifold has sectional curvature κ ≤ 0 if and only if it is a locally CAT(0) space. A
proof can be founded in the appendix of chapter II.1 of [13]. Furthermore, for some metric spaces,
the condition of being a CAT(0) space can be characterized combinatorially. That is the case for
cubical complexes, which are spaces built by gluing unit cubes along their faces by isometries.

The standard n-cube In is the n-fold product [0, 1]n. By convention I0 is a point. A face of I is
either {0}, {1} or I. A face of In is a subset of S of In such that is a product of faces S1 × · · · × Sn
where each Si is a face of I. The dimension of S is the number of factors that are [0, 1].

Definition 1.3.6 (Cubical Complex). A cubical complex K is a regular cell complex which is the
quotient of a disjoint union of cubes X = tΛI

nλ by an equivalence relation ∼. The restrictions
pλ : Inλ → K of the natural projection p : X → K = X/ ∼ are required to satisfy:

1. for every λ ∈ Λ, the map pλ is injective.

2. if pλ(I
nλ) ∩ pλ′(Inλ′ ) 6= ∅, then there is an isometry hλ,λ′ from a face Tλ ⊂ Inλ onto a face

Tλ′ ⊂ Inλ′ such that pλ(x) = pλ′(x
′) if and only if x′ = hλ,λ′(x).
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Figure 1.10: Faces of a 3-cube

One can define a very natural metric in a cubical complex K using the path length metric of each
cube in the complex. Briefly, define a rectifiable path in K as one that can be broken into finitely
many subpaths, each of which is contained in a cube of K and is rectifiable in the classical sense.
Then we can define the length of the original path as the sum of the length of subpaths. Finally, the
metric between two points p, q ∈ K is then defined as the infimum of the lengths of the rectifiable
paths joining p and q.

As we mentioned before, a regular cell complex is determined by its face poset, i.e., from the
abstract poset of cells we can reconstruct a topological space. Furthermore, B̈orner proved that if
we have two isomorphic posets, we obtain isomorphic regular complexes ([9], Proposition 3.1). For
our special case in which the regular complex is a cubical complex is also true. First note who is the
face poset of the standard n-cube.

Example 1.3.7. Let K be the standard n-cube [0, 1]n. The set of vertices or 0-cells is the set
P = {0, 1}n. If we declare 0 < 1 and order P componentwise, we obtain the Boolean lattice of subsets
of {1, 2, . . . , n}. If we orient the cube as in figure 1.10, it’s clear how faces correspond to intervals in
P ordered by inclusion, where an interval for x, y ∈ P is the set [x, y] = {z ∈ P |x ≤ z ≤ y}. Hence,
the complex associated is exactly the standard n-cube, and the face poset of [0, 1]n is exactly the
poset of intervals in P .

Working with cubical complexes we have a specific structure in face posets. By proposition 3.1
in [9], we recover the cubical structure only looking the face poset. [1]

Proposition 1.3.8. A poset P is isomorphic to the face poset of a cubical complex if and only if it
satisfies the following two conditions:

(1) For any x, y ∈ P there is a lower bound, then they have a greatest lower bound.

(1′) For any x, y ∈ P there is an upper bound, then they have a least upper bound.

(2) For any x ∈ P the poset P≤x = {z ∈ P |z ≤ x} is isomorphic to the face poset of a cube.

The condition (1) is to guarantee that a non-empty intersection is a closed cell, while condition
(2) identifies cells of the complex with cubes.
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Figure 1.11: A cubical complex and a link of one vertex

Returning to CAT(0) spaces, we have that a cubical complex has a natural metric by minimizing
lengths of rectifiable paths, and cubical complexes have a purely combinatorial structure. Combining
both properties, Gromov established a necessary and sufficient condition which translates questions
concerning the CAT(0) condition on cubical complexes into questions concerning the structure of
links of vertices.

Definition 1.3.9 (Link of a vertex). Def.1 Let K be a cubical complex. If v is a vertex in K then
the link Lk(v,K) is the complex defined as follows. If K is the standard n-cube and v is the origin,
then Lk(v,K) is the (n− 1)-simplex with vertices {1

3
e1, . . . ,

1
3
en}. More generally, if v is any vertex

of the cube then Lk(v,K) is the (n− 1)-simplex with vertices the points on the edges of the n-cube
that distance 1

3
away from v. For a general cubical complex K and vertex v, we define Lk(v,K) by

gluing the links of each cube that v is a vertex, according to how the cubes are glued in the cubical
complex.
Def.2 Let K be a cubical complex or equivalently its poset of cells. If v is a vertex in K then the
link Lk(v,K) is the simplicial complex K≥v = {e ∈ K|e ≥ v}.

Remark 1.3.10. In the definition of simplicial complex, we are considering the empty set as the
simplex of dimension −1. Then, for K a cubical complex, K≥v is a simplicial complex with vertex
set as all 1-cells which contain v, and v is identified with the empty simplex.

Definition 1.3.11 (Flag Complex). A flag complex is a simplicial complex with no “missing” sim-
plices. This means that for each complete graph in the 1-skeleton of the complex, there is a simplex
in the complex whose 1-skeleton is the given complete graph.
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We are ready to state the fundamental theorem which characterizes CAT(0) cubical complexes
due to Gromov.

Theorem 1.3.12 ([18]). Let K be a cubical complex. Then K is CAT(0) if and only if:

(i) K is simply connected.

(ii) K satisfies the link condition, i.e., the link of each vertex is a flag complex.

Our goal in this chapter is to proof that the universal cover of Conf3(R, n) is a CAT(0) space. As
a corollary, Conf3(R, n) is an Eilenberg-MacLane space because of the contractible universal cover
(proposition 1.3.5).

Theorem 1.3.13. The universal cover of Conf3(R, n) is a cubical CAT(0) complex.

Proof. By theorem 1.2.17 we know that Conf3(R, n) ' Perm0(An−1), and its face poset corresponds
to cosets wWI ordered by inclusion, for all w ∈ An−1 and I ⊂ S such that any s, s′ ∈ I commute. In
remark 1.2 we said that cells of Perm0(An−1) correspond to cubes, we can verify it by proposition
1.3.8. The condition (1) it’s clear. We check condition (2). Let wWI be a coset corresponding to a
cell in Perm0(An−1). The poset P≤wWI

of subcells of wWI corresponds to all uWJ contained in wWI ,
and subcells uWJ correspond to intervals in the poset of vertices of wWI with the weak order, i.e., we
have a Boolean lattice as in example 1.3.7. For instance, vertices uW∅ of wWI correspond to intervals
[u, u] for all u ∈ wWI ; 1-cells uW{s} are intervals [u, us] between two adjacent permutations which
differ by multiplication by s; 2-cells uW{s,s′} correspond to intervals [u, uss′]. Recall any element
commute in I, therefore we can go from u to uss′ multiplying first by s and then by s′, or first s′ and
then s (see the example in figure 1.12). Then P≤wWI

is the poset of faces of a cube and condition
(2) is verified. Hence, Perm0(An−1) is a cubical complex. Denote by X = Perm0(An−1). If we take

the universal cover X̃ of X, the cubical structure of the complex is induced to X̃. To proof that
X̃ is a CAT(0) space, by theorem 1.3.12, we only need to check the link condition. As X̃ is locally
the same as X, it’s enough to check the link condition in X. Vertices corresponds to elements in
An−1. Let w a permutation, by second definition of link we have Lk(w,X) is the regular simplicial
complex which corresponds to the cells that contain w as a vertex. For instance, the permutation w
is contained in all 1-cells wW{si} (si = (i, i+ 1) transpositions which generates An−1); w is contained
in all 2-cells wW{si,sj} for |i − j| > 1; in general w is contained in cells wWI which all s, s′ ∈ I
commute. The vertex set of the link consists of all 1-cells containing w. If we consider a complete
graph of the 1-skeleton of Lk(w,X), is the same as 2-cells containing w which pairwise share common
1-cells, i.e., wW{si1 ,si2}, wW{si2 ,si3}, . . . , wW{sir ,sir+1

} such that all sia , sib commute, then wWT with

T = {si1 , . . . , sir+1} its a cell in X containing w, and whose link is the r-simplex with the complete

graph as its 1-skeleton. Therefore, by proposition 1.3.12, the universal cover X̃ is a cubical CAT(0)
space.

Remark 1.3.14. We know that the fundamental group of any space X acts on its universal cover
X̃. By the above proposition, we have that PPn is acting on a cubical CAT(0) space. Furthermore,
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Figure 1.12: Poset for the coset Ws1,s2,s3

is acting properly and cocompactly on a CAT(0) cubical complex, i.e., PPn is a cubed group. In
usual braids, it is known that Bn acts on a CAT(0) space for small n, namely, for n ≤ 6 [19].

Corollary 1.3.15. The space Conf3(R, n) is an Eilenberg-MacLane space K(π, 1). Therefore, Conf3(R, n)
is the classifying space of the planar pure braid group on n strands PPn.

It is a known result that if we have a finite dimensional CW -complex which is also a K(π, 1)
space, then the group π is torsion-free. A proof can be seen in any introductory book in algebraic
topology, for instance [21].

Proposition 1.3.16. PPn is torsion-free.

Proof. By corollary 1.3.15 and theorem 1.2.17, Conf3(R, n) is a K(PPn, 1) space and homotopy
equivalent to the finite dimensional CW -complex Perm0(An−1). If PPn has torsion, there is a

subgroup T < PPn such that T ∼= Z/Zk for some k > 1. The corresponding covering space X̃

of Conf3(R, n) with π1(X̃) = Z/Zk is also a K(Z/Zk, 1) space and it is a finite dimensional CW -

complex, hence Hk(X̃) = Hk(Z/Zm). On one hand Hk(X̃) is zero for all k > dim(X̃), but on the
other hand contradicts the known fact that Hk(Z/Zm) is non-zero for infinitely many k’s. Therefore
PPn is torsion-free.

1.4 Cohomology of Conf3(R, n)
In this section, we give a brief description of the cohomology ring of Conf3(R, n) in order to use it
in chapter 4.

Björner and Welker in [11] were the first in compute the cohomology groups of no k-equal mani-
folds. As an special case of their results, they obtain that

(i) H i(Conf3(R, n),Z) is free for all i,

(ii) H i(Conf3(R, n)) 6= 0 if and only if 0 ≤ i ≤ n
3
,

(iii) the rank of H1(Conf3(R, n)) is
∑n

i=3

(
n
i

)(
i−1

2

)
.
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Then, Baryshnikov compute the ring structure giving an explicit isomorphism of H∗(Conf3(R, n)) to
a quadratic ring Rn, generated by certain posets on [n] = {1, 2, . . . , n}. This result also was done in
a more general setting. He computes the ring structure on the cohomologies of no k-equal manifolds
Confk(R, n). In our case, k = 3. All the material here is extracted from [6].

Definition 1.4.1 (Partitioner Poset). Let (P,�) be a poset on a set of equivalence classes of [n].
We say that P is a partitioner poset on [n] if exists a height function h : [n]→ R, such that

(a) i � j implies h(i) ≥ h(j),

(b) h(i) > h(j) implies i � j,

(c) each fiber h−1(x) is the empty set, or a subset I = {i1, i2, . . . , is} of all unrelated elements, or
all equivalent elements.

Every partitioner poset P can be written in blocks. Let I = h−1(x) non empty, by condition (c) I
could be written in a ( )- or [ ]-block. If I = {i1, i2, . . . , is}, the block [I] means that all the elements
are equivalent, i.e., i1 ≈ i2 ≈ · · · ≈ is; the block (I) means that all the elements are unrelated.
By condition (b), the blocks are ordered decreasingly, i.e., the elements in a block on the left are
�-greater than the elements in a block on the right.

Example 1.4.2.

(6)[13](245)(9)[78] = {6 � 1 ≈ 3 � 2, 4, 5 � 9 � 7 ≈ 8}.

In this way, if we have a partition of [n] in ( )- or [ ]-blocks, we can induce a partitioner poset in
[n]. By simplicity, we use the notation of partitions and blocks, instead of the height function with
the properties (a)-(c).

Definition 1.4.3 (Elementary Partitioner Poset). A partitioner poset on [n] written as P = (I)[J ](K)
such that |J | = 2 is called elementary. We denote by P the set of all elementary partitioner posets
on [n].

To define the ring Rn, we need some notation. For any posets P1, . . . , Pk on [n], denote the
transitive closure of P1∪· · ·∪Pk by P1◦· · ·◦Pk. Then by definition, ◦ is commutative and associative
on the set of posets of [n]. Any transitive closure of partitioner posets is a partitioner poset, i.e.,
can be written in ( )-blocks and [ ]-blocks. However, note that a transitive closure of elementary
partitioner posets is not always an elementary partitioner poset.

Example 1.4.4. Let be P1 = (56)[24](13) and P2 = (456)[12](3), then

P1 ◦ P2 = {6, 5 � 1 ≈ 2 ≈ 4 � 3} = (65)[124](3),

where P1 ◦ P2 is of the form (I)[J ](K) but |J | 6= 2.
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Definition 1.4.5 (The ring Rn). Let
∧P be the free exterior ring generated by elementary parti-

tioner posets of [n], in which have degree one. Let I1 be the ideal generated by all the elements of
the form

δ(P ) =
∑

i∈I

(−1)|I|−1(I \ {i})[ji](K) +
∑

k∈K

(−1)|I|(I)[jk](K \ {k})

where P = It{j}tK is an ordered partition of [n]. For E =
∧P/I1, consider the ideal I2 generated

by classes of products P1 ∧ P2 with P1, P2 partitioner posets such that the transitive closure P1 ◦ P2

has a [ ]-block of size at least 3. Finally,

Rn = E/I2.

In [6], Baryshnikov constructs a map between Rn and H∗(Conf3(R, n)) and proves that in fact
is an isomorphism. By the importance of some elements in the proof, we describe it briefly.

Definition 1.4.6 (Cells of Posets). For each poset P on [n] corresponds a subspace C(P ) in Rn in
the following way. A point (x1, . . . , xn) is in C(P ) if and only if the coordinates xi’s respect the order
induced by P , i.e., xi ∼ xj with the canonical order in R, if and only if i ∼ j with the order P on
[n]. The subspace C(P ) is called the cell associated with P . If P is an elementary partitioner poset,
we call C(P ) an elementary cell.

Example 1.4.7. Let be P = (2)[14](3), then C(P ) is the set of points (x1, x2, x3, x4) such that

x2 > x1 = x4 > x3

Remark 1.4.8. The transitive closure of two partitioner posets P1 and P2, has a geometric in-
terpretation as the poset defined by the intersection of their cells. In other words, C(P1 ◦ P2) =
C(P1) ∩ C(P2). In this way, the ideal I2 in E generated by P1 ∧ P2 such that P1 ◦ P2 has a [ ]-block
of size at least 3 correspond to cells C(P1) and C(P2) such that the intersection cell C(P1 ◦ P2) has
at least 3 coordinates which coincide, hence, C(P1 ◦ P2) * Conf3(R, n). On the other hand, the
generators of the ideal I1 are boundaries of cells C(P ) with P = I t {j} tK.

Orienting and co-orienting elementary cells C(P ), there is a map

w : P → H1(Conf3(R, n))

via intersection product, which extends to a ring homomorphism

w : Rn → H∗(Conf3(R, n)).

The map w is defined on a product P1 ∧ · · · ∧ Pk ∈
(∧P

)(k)
as the cohomology class induced by

intersection with the cell C(P1 ◦ · · · ◦ Pk). The main result in [6] is the following.

Theorem 1.4.9. The homomorphism w : Rn → H∗(Conf3(R, n)) is an isomorphism.

To prove the theorem 1.4.9, Baryshnikov give a basis of Rn in which checks the injectivity and
surjectivity of the map. Here is where a kind of partitioner posets are included, which are very
important because we found a correspondence with planar pure braids.

19



Definition 1.4.10 (Basic Partitioner Posets). A partitioner poset P = (I0)[J1](I1) · · · [Js](Is) is
called basic of degree s if

(a) all [ ]-blocks are of size 2, i.e., |Jk| = 2 for k = 1, . . . , s,

(b) in the canonical order of [n], max{i ∈ Ik−1 ∪ Jk} ∈ Ik−1 for k = 1, . . . , s.

By condition (b), we have that Ik−1 is non empty for k = 1, . . . , s.

Geometrically, basic partitioner posets of higher degree are nothing else than the product of basic
partitioner posets of degree 1, in which their corresponding cells intersect transversally. This kind of
posets are very relevant because generate the ring Rn, hence H∗(Conf3(R, n)).

Theorem 1.4.11. The set of classes of partitioner posets forms a basis in Rn.

By theorems 1.4.9 and 1.4.11, the cohomology H∗(Conf3(R, n)) is a quadratic ring generated by
the first cohomology group, which is generated by partitioner posets P = (I)[J ](K) with |J | = 2
and max{i ∈ I ∪ J} ∈ J . An immediate corollary is a formula for Betti numbers by counting basic
partitioner posets.

Corollary 1.4.12. The Betti numbers for Conf3(R, n) are

Hs(Conf3(R, n)) =
∑

i1,...,is

(
n

i1 . . . is

)(
i1 − 1

2

)
· · ·
(
is − 1

2

)

Proof. A basic partitioner poset (I0)[J1](I1) · · · [Js](Is) is uniquely defined by (1) a choice of s
subsets Ik−1 ∪ Jk with |Ik−1 ∪ Jk| = ik ≥ 3, i.e., the multi-binomial

(
n

i1...is

)
; and (2) choices of subsets

Jk within maximal elements deleted, i.e., the binomial
(
ik−1

2

)
’s.

Remark 1.4.13. This section is based on an unpublished work of Baryshnikov [6]. However, an
open source to learn more about this, is in a work of Dobrinskaya and Turchin [15], in which they
generalize the work of Baryshnikov, computing the (co)homology of non k-overlapping discs which
are bimodules over the little discs operad.

In following chapters we use basic partitioner posets of degree 1 as indices for planar pure braids
and we use some facts in the cohomology H∗(Conf3(R, n)) to construct an universal invariant in
planar pure braids.
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Chapter 2

Planar Pure Braid Group

In this chapter we study the planar pure braid group as an abstract group. We obtain a description
of the presentation of the planar pure braid group applying iteratively the Reidemeister-Schreier
process. The presentation obtained is in terms of tuples (m1, . . . ,mn−1), where a coordinate mi

means the process to apply from a list of rules. Graphically, the iterative applying of the algorithm
looks like a decision tree, and a tuple corresponds to a path in this rooted tree (see figure 2.3). The
presentation of PPn in terms of tuples is highly impractical, but despite that, for particular cases we
obtain an easier presentation in terms of basic partitioner posets of degree 1 (see definition 1.4.10).

Theorem 2.2.7. For n = 1, 2, PPn is the trivial group. For 3 ≤ n < 6, the generators of PPn are
planar pure braids associated (see construction 1) to basic partitioner posets of [n]. The presentation
of PPn for 3 ≤ n ≤ 5 is

generators : {bP |P is a basic partitioner poset of [n]}
relations : { no relations }

i.e., are free groups. For n = 6, the relations are by conjugation on some particular partitioner
posets. Let Prel a basic partitioner poset of [6] of the form (k)[i, j](L) (hence k > i, j and |L| = 3).
The presentation of PP6 is

generators : {bP |P is a basic partitioner poset of [6]}
relations : {(ν̃1(Prel) · bPrel)((ν̃2(Prel) · bPrel))−1 | Prel = (k)[i, j](L)}

where · is the action by conjugation and ν̃i(Prel) is a product of planar pure braids constructed from
L for i = 1, 2.

In the last section we see PPn as a semidirect product of groups which is not almost-direct. This
is a crucial difference between the classical pure braid group and its planar version.
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Figure 2.1: Example of an element of D
(3)
6

2.1 Presentation of PPn

To find a presentation of PPn, we shall apply the Reidemeister-Schreier process iteratively to a
chain of subgroups of PBn. Essentially, the Reidemeister-Schreier process tell us how to compute
presentations of subgroups. We recall briefly the process, but for a full description or more references
see the appendix A.

Let G = 〈X |R〉 and let H be a subgroup of G. Let λ : F (X)→ G the natural projection given
by the presentation of G. We denote by L = λ−1(H) the subgroup of F (X), and S a Schreier
transversal set of L in F (X) (see definition A.1.1). Let u ∈ S be the representative of u ∈ F (X)
such that Lu = Lu. If we set

Y = {tx(tx)−1 | t ∈ S , x ∈ X, tx 6= tx},

the Nielsen-Schreier theorem states that Y is a free basis of L (see theorem A.1.2). If we set

Q = {trt−1 | t ∈ S , r ∈ R},

and regard the elements of R rewritten in terms of elements of Y , the Reidemeister-Schreier theorem
states that H has a presentation 〈Y |Q〉 (see theorem A.1.3).

To apply the process to our case, we shall define the chain of subgroups of PBn that we mentioned.
Let ϕ : PBn → Σn the homomorphism such that ϕ(σj) = sj. We see Σn−l as the subgroup of Σn

whose permutations map n− i 7→ n− i for i = 0, 1, . . . , l − 1. We set

D(l)
n = ϕ−1(Σn−l) l = 1, . . . , n

Geometrically, D
(l)
n consists of planar braids whose last l strands, do not change the order (see figure

2.1). Note that D
(n−1)
n = D

(n)
n = PPn and by convention D

(0)
n = PBn. The chain of subgroups in Σn

Σn ⊃ Σn−1 ⊃ · · · ⊃ Σ2 ⊃ Σ1 = Σ0 = {1},
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induce the chain of subgroups in PBn

PBn ⊃ D(1)
n ⊃ · · · ⊃ D(n−2)

n ⊃ D(n−1)
n = D(n)

n = PPn. (2.1.1)

Applying the Reidemeister-Schreier process iteratively, we obtain a presentation of D
(l)
n until PPn.

First of all, we need a Schreier transversal set of D
(l)
n in D

(l−1)
n , which coincides with the index

[Σn−l+1 : Σn−l] = n− l + 1. If we set

Sl = {Mn−l+1,il | 0 ≤ i ≤ n− l},

where Mn−l+1,il = σn−lσn−l−1 · · ·σn−l−il for 1 ≤ i ≤ n− l− 1 and Mn−l+1,0 = 1, then Sl is a Schreier

transversal set of D
(l)
n in D

(l−1)
n for l = 1, . . . , n. We include two first examples. The details of the

calulations can be seen in the appendix A.

Proposition 2.1.1. The subgroup D
(1)
n has a presentation with

generators : {σj | j ∈ [1, n− 2]} and {Nn,j · σj+1 | j ∈ [1, n− 2]}
relations : (σj)

2

(Nn,j · σj+1)2

(σjσk)
2 |j − k| > 1

[(Nn,j · σj+1)(Nn,k · σk+1)]2 |j − k| > 1
[σj(Nn,k · σk+1)]2 k > j + 1

In the above proposition we add new notation explained in the appendix A: Nn−l+1,j means
σn−l · · ·σj for l = 1, . . . , n, j = 1, . . . , n − l and Nl,l = 1 for any l; and N · σ means conjugation
NσN−1. In proposition 2.1.1 l = 1, and by relation 1.1.2 we know σj = σ−1

j , hence

Nn,j · σj+1 = σn−1 · · ·σjσj+1σj · · ·σn−1.

Geometrically, Nn,j · σj+1 is the planar braid in which its nth strand tangles in the generator σj.

Going on with the applying of the process to the case D
(2)
n in D

(1)
n we obtain the next presentation.

Proposition 2.1.2. The subgroup D
(2)
n has a presentation with

generators : {σj | j ∈ [1, n− 3]}
{Nn−1,j · σj+1 | j ∈ [1, n− 3]}
{Mn−1,i2Nn,j · σj+1 | j ∈ [1, n− 3], i2 ∈ [0, n− 4], i2 < n− 2− j}
{Nn−1,j+1Nn,j+2 · (σj+1σj)

3 | j ∈ [1, n− 2]} (2.1.2)

{Nn−1,jNn,j+1 · σj+2 | j ∈ [1, n− 3]}

relations : (σj)
2

(Nn−1,j · σj+1)2
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(Nn−1,jNn,j+1 · σj+2)2

(Mn−1,i2Nn,j · σj+1)2

(σjσk)
2 |j − k| > 1

[σj(Nn−1,k · σk+1)]2 k > j + 1
[σj(Nn−1,kNn,k+1 · σk+2)]2 k > j + 1
[σj(Mn−1,iNn,k · σk+1)]2 k > j + 1
[σj, Nn−1,k+1Nn,k+2 · (σk+1σk)

3] k > j + 1
[(Nn−1,j · σj+1)(Nn−1,k · σk+1)]2 |j − k| > 1
[(Nn−1,j · σj+1)(Nn−1,kNn,k+1 · σk+2)]2 k > j + 1
[(Mn−1,i2Nn,j · σj+1)(Mn−1,i2Nn,k · σk+1)]2 |j − k| > 1
[(Mn−1,i2Nn,j · σj+1)(Nn−1,kNn,k+1 · σk+2)]2 k > j + 1
[(Nn−1,jNn,j+1 · σj+2)(Nn−1,kNn,k+1 · σk+2)]2 |j − k| > 1
(Nn−1,k+1Nn,j · σj+1)(Nn−1,k+1Nn,k+2 · (σk+1σk)

3) k > j + 1
= (Nn−1,k+1Nn,k+2 · (σk+1σk)

3)(Nn−1,kNn,j · σj+1)
[Nn−1,j+1Nn,j+2 · (σj+1σj)

3, Nn−1,kNn,k+1 · σk+2] k > j.

Remark 2.1.3. The group D
(2)
3 is by definition the group on 3 strands in which the last 2 strands,

do not change the order, and hence, the first neither does. In other words, D
(2)
3 = PP3. Taking

n = 3 in the above proposition 2.1.2, the unique generator is (σ2σ1)3 (see figure 2.2) and there are no
relations, i.e, PP3 is the free group in one generator as we saw in example 1.1.4 as the fundamental
group of Conf3(R, 3) ' S1. Furthermore, for any n, the family of generators 2.1.2 induced the trivial
permutation under the homomorphism ϕ : PBn → Σn. First note that ϕ((σj+1σj)

3) = (sj+1sj)
3 = 1.

Therefore ϕ(Nn−1,j+1Nn,j+2·(σj+1σj)
3) = ϕ(Nn−1,j+1Nn,j+2)·ϕ((σj+1σj)

3) = ϕ(Nn−1,j+1Nn,j+2)·1 = 1.
In other words, the family of generators 2.1.2 is already in PPn.

Figure 2.2: Generator (σ2σ1)3 of PP3

In PBn we have n−1 generators σj’s. In D
(1)
n we have one less generators, i.e., n−2 generators σj’s.

In D
(2)
n we have again one less the previous, i.e., n− 3 generators σj’s. That happens in general each

time we apply the Reidemeister-Schreier process. In D
(l)
n there are n− 1− l generators σj’s. At the

last, for D
(n−1)
n = D

(n)
n = PPn there are no more generators of type σj. A similar behaviour happens

in all index sets of generators at each applying of the process. It turns out from the conditions on
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indices i’s and j’s at each rewriting, i.e., when we restrict to the conditions i+ j ∼ n− l for some l
and where ∼ could be >,<,=. We describe below how it works.

The Reidemeister-Schreier process is an algorithm to find presentations of subgroups, and as an
algorithm it behaves in a very systematic way. What follows is a description of such systematic
behaviour of the algorithm applied to our chain of subgroups 2.1.1

PBn ⊃ D(1)
n ⊃ · · · ⊃ D(n−2)

n ⊃ D(n−1)
n = D(n)

n = PPn.

For instance, in the appendix A for the cases of D
(1)
n and D

(2)
n , the Reidemeister-Schreier process on

each family of generators produces four families of generators (sometimes families of trivial genera-
tors) depending in conditions on il + j. See for example the case A.2.9 for the family of generators
{Nn,j · σj+1}n−2

j=1

χ

(
Mn−1,i

Nn,j · σj+1

)
=





Mn−1,i2Nn,j · σj+1 if i+ j < n− 2, (1 ≤ j ≤ n− 3)
Nn−1,j+1Nn,j+2 · (σj+1σj)

3 if i+ j = n− 2, (1 ≤ j ≤ n− 2)
Nn−1,j+1Nn,j+2 · (σjσj+1)3 if i+ j = n− 1, (1 ≤ j ≤ n− 2)
Nn−1,j−1Nn,j · σj+1 if i+ j > n− 1. (2 ≤ j ≤ n− 2).

An important point we should notice is that the fourth family is always re-indexed at the last, the
index set instead of starts at 2, starts at 1. Summarizing, we denote by RSl the Reidemeister-Schreier
process applied to obtain a presentation of the group D

(l)
n given the presentation of D

(l−1)
n . At each

process RSl we input a family of generators {xj | j ∈ Jl−1} of D
(l−1)
n with information (1) an index

set Jl−1 and (2) indexed generators xj’s. The process RSl outputs four families of generators, i.e.,
(1) four index sets and (2) their indexed generators. If we denote the shift mentioned above by
Sh-1(Jl−1), the Reidemeister-Schreier process RSl works on index sets as follows

1. If il + j < n− l, it produces the first family of generators where the new index set is
J1
l = Jl−1 ∩ [1, n− l − 1] and to satisfy the condition, il requires 0 ≤ il ≤ n− l − 2.

2. If il + j = n− l, it produces the second family of generators where the new index set is
J2
l = Jl−1 ∩ [1, n− l].

3. When il + j = n− l + 1, it produces the third family of generators where the new index set is
J3
l = Jl−1 ∩ [1, n− l + 1].

4. When il + j > n− l+ 1, it produces the fourth family of generators where the new index set is
J4
l = Sh-1(Jl−1 ∩ [2, n− l + 2]).

Remark 2.1.4. At the last step RSn−1 produces only three families, J1
n−1 = ∅ (see aslo theorem

2.1.11).
The process RSl produces four families of generators (out of the exception above). However, there

are two kinds of four families of generators from where we can choose as the output. The choice
depends on the permutations induced by the family of generators at the input. If the family induces
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trivial permutations, i.e., if the family is already in PPn as in remark 2.1, the new four families are
constructed from conjugations of the input family. Otherwise, the rule is as follows.

RSl({�j}j∈Jl−1
) =





1){Mn−l+1,il �j M−1
n−l+1,il

| j ∈ J1
l }

2){Nn−l+1,j+1 �j N−1
n−l+1,j | j ∈ J2

l }
3){Nn−l+1,j �j N−1

n−l+1,j+1 | j ∈ J3
l }

4){Nn−l+1,j �j+1 N−1
n−l+1,j | j ∈ J4

l }





if �j /∈ PPn

1′){Mn−l+1,il �j M−1
n−l+1,il

| j ∈ J1
l }

2′){Nn−l+1,j+1 �j N−1
n−l+1,j+1 | j ∈ J2

l }
3′){Nn−l+1,j �j N−1

n−l+1,j | j ∈ J3
l }

4′){Nn−l+1,j �j+1 N−1
n−l+1,j | j ∈ J4

l }





if �j ∈ PPn

(2.1.3)

where {�j}j∈Jl−1
means the family of generators at the input of the Reidemeister-Schreier process.

In the input square, a generator xj is written as x j. On the other hand for the output square, we
consider the input xj as the jth generator of type x, then the output square means the kth generator
of type x, i.e.,

x j

RSl
 x k.

For the first three families the index remains equal, but for the fourth family the index is added by
one.

Example 2.1.5. If we take the family of generators 2.1.2 in proposition 2.1.2, we know that are
already in PPn. In this case l = 3, therefore, we have

RS3({Nn−1,j+1Nn,j+2 · (σj+1σj)
3}n−2
j=1 ) =





1′){Mn−2,i3Nn−1,j+1Nn,j+2 · (σj+1σj)
3}n−4
j=1

2′){Nn−2,j+1Nn−1,j+1Nn,j+2 · (σj+1σj)
3}n−3
j=1

3′){Nn−2,jNn−1,j+1Nn,j+2 · (σj+1σj)
3}n−2
j=1

4′){Nn−2,jNn−1,j+2Nn,j+3 · (σj+2σj+1)3}n−3
j=1

Expanding the case 4′). We have as input the generator Nn−1,j+1Nn,j+2 · (σj+1σj)
3. In 4′) the

output square is �j+1, so we have to re-index j by j+1, resulting Nn−1,j+2Nn,j+3 · (σj+2σj+1)3. Next,
we conjugate by Nn−2,j, obtaining

Nn−2,j[Nn−1,j+2Nn,j+3 · (σj+2σj+1)3]N−1
n−2,j = Nn−2,jNn−1,j+2Nn,j+3 · (σj+2σj+1)3

with the · notation for the conjugation action. For the index set, RS3 works in the input J2 = [1, n−2]
by the rules above:

J4
3 = Sh-1(J2 ∩ [2, n− 1])

= Sh-1([2, n− 2])

= [1, n− 3])

Obtaining the family of generators {Nn−2,jNn−1,j+2Nn,j+3 · (σj+2σj+1)3|j ∈ [1, n− 3]}.
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Remark 2.1.6. Sometimes, the generators produced by rules 1) and 1′) depend on il, where
0 ≤ il ≤ n− l − 2. In example 2.1.5, the generators by the rule 1′), require their index i3 be among
0 ≤ i3 ≤ n− 5.

Diagrammatically the iterative Reidemeister-Schreier process in the chain of subgroups 2.1.1 is a
branching rooted tree T . The root of the tree T is the family of generators σ1, . . . , σn−1 of PBn. The
height of T is the number of iterations of the Reidemesiter-Schreier process, and a vertex of height
l is a family of generators of D

(l)
n . In figure 2.3 we have an example of the rooted tree of height 4.

As we said before, at each application of the Reidemesiter-Schreier processs, we obtain four families
of generators at the output for each family of generators at the input. In figure 2.3 at the first
applying, we have only two branches, corresponding to the rules 1) and 4), instead of four branches.
This is because generators by rules 2) and 3) are trivial. For the second application, if we take the
generators {σj}n−2

j=1 produced by the rule 1) in the first process as the family at the input, at the
output we obtain again only two families of generators by rules 1) and 4), the others are trivial. We
can identify these generators at the output for the second process as the generators of type (1, 1) and
(1, 4), meaning the rules we applied at each process. If for the second application now we take the
generators {Nn,j · σj+1}n−2

j=1 produced by the rule 4) in the first process, now at the output we obtain
4 non trivial families of generators in which families produced by rules 2) and 3) are inverses between
them (see proposition 2.1.10). Similarly, these generators of the second process can be identified by
tuples (4, 1), 4, 2), (4, 3) and (4, 4), where (4, 2) (4, 3) are inverses between them. In general, each
vertex in the tree, can be identified by an l-tuple (m1,m2, . . . ,ml) where l is the height of the vertex
and mk ∈ {1, 2, 3, 4, 1′, 2′, 3′, 4′} is the rule applied to produce the family of generators at the output
of the process RSk.

Definition 2.1.7. If {xj}j∈Jl is a family of generator of D
(l)
n defined by the iterative Reidemeister-

Schreier process following the rules (m1,m2, . . . ,ml) where mk ∈ {1, 2, 3, 4, 1′, 2′, 3′, 4′}, we said the
family of generators {xj}j∈Jl is of type (m1,m2, . . . ,ml).

In rules 2.1.3 to apply the Reidemeister-Schreier process, we distinguish if the generators at the
input are already in PPn or not. For that, we will give conditions on the tuple (m1,m2, . . . ,ml),

which corresponds to a family of generators in D
(l)
n , which tell us whether or not they are elements

in PPn.

Proposition 2.1.8. Let l 6 n−2 and {xj}j∈Jl ⊂ D
(l)
n a family of generators of type (m1,m2, . . . ,ml)

where mk ∈ {1, 4} for all k = 1, . . . , l. For the natural map ϕ : PBn → Σn, we have ϕ(xj) = sj for
any j ∈ Jl.

Proof. By induction over l. For l = 1, we have two family of generators, {σj}n−2
j=1 of type (1) and

{Nn,j · σj+1}n−2
j=1 of type (2). For type (1) it’s clear, for type (2) we have:

ϕ(Nn,j · σj+1) = ϕ(Nn,jσj+1N
−1
n,j )

= ϕ(σn−1 · · ·σj+1σj)ϕ(σj+1)ϕ(σjσj+1 · · ·σn−1)
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{σj}n−1
j=1

{σj}n−2
j=1

{σj}n−3
j=1

{σj}n−4
j=1

{σj}n−5
j=1

{Nn−3,j · σj+1}n−5
j=1

{Nn−2,j · σj+1}n−4
j=1

{Mn−3,iNn−2,j · σj+1}n−5
j=1

{Nn−3,j+1Nn−2,j+2 · (σj+1σj)
3}n−4

j=1

{Nn−3,jNn−2,j+1 · σj+2}n−5
j=1

{Nn−1,j · σj+1}n−3
j=1

{Mn−2,i3Nn−1,j · σj+1}n−4
j=1

{Mn−3,i4Mn−2,i3Nn−1,j · σj+1}n−5
j=1

{Nn−3,j+1Mn−2,i3Nn−1,j+2 · (σj+1σj)
3}n−4

j=1

{Nn−3,jMn−2,i3Nn−1,j · σj+1}n−5
j=1

{Nn−2,j+1Nn−1,j+2 · (σj+1σj)
3}n−3

j=1

{Mn−3,i4Nn−2,j+1Nn−1,j+2 · (σj+1σj)
3}n−5

j=1

{Nn−3,j+1Nn−2,j+1Nn−1,j+2 · (σj+1σj)
3}n−4

j=1

{Nn−3,jNn−2,j+1Nn−1,j+2 · (σj+1σj)
3}n−3

j=1

{Nn−3,jNn−2,j+2Nn−1,j+3 · (σj+2σj+1)
3}n−4

j=1

{Nn−2,jNn−1,j+1 · σj+2}n−4
j=1

{Mn−3,i4Nn−2,jNn−1,j+1 · σj+2}n−5
j=1

{Nn−3,j+1(Nn−2,jNn−1,j+1 · σj+2)N
−1
n−3,j}n−4

j=1

{Nn−3,jNn−2,j+1Nn−1,j+2 · σj+3}n−5
j=1

{Nn,j · σj+1}n−2
j=1

{Mn−1,i2Nn,j · σj+1}n−3
j=1

{Mn−2,i3Mn−1,i2Nn,j · σj+1}n−4
j=1

{Mn−3,i4Mn−2,i3Mn−1,i2Nn,j · σj+1}n−5
j=1

{Nn−3,j+1Mn−2,i3Mn−1,i2Nn,j+2 · (σj+1σj)
3}n−4

j=1

{Nn−3,jMn−2,i3Mn−1,i2Nn,j+1 · σj+2}n−5
j=1

{Nn−2,j+1Mn−1,i2Nn,j+2 · (σj+1σj)
3}n−3

j=1

{Mn−3,i4Nn−2,j+1Mn−1,i2Nn,j+2 · (σj+1σj)
3}n−5

j=1

{Nn−3,j+1Nn−2,j+1Mn−1,i2Nn,j+2 · (σj+1σj)
3}n−4

j=1

{Nn−3,jNn−2,j+1Mn−1,i2Nn,j+2 · (σj+1σj)
3}n−3

j=1

{Nn−3,jNn−2,j+2Mn−1,i2Nn,j+3 · (σj+2σj+1)
3}n−4

j=1

{Nn−2,jMn−1,i2Nn,j+1 · σj+2}n−4
j=1

{Mn−3,i4Nn−2,jMn−1,i2Nn,j+1 · σj+2}n−5
j=1

{Nn−3,j+1(Nn−2,jMn−1,i2Nn,j+1 · σj+2)N
−1
n−3,j}n−4

j=1

{Nn−3,jNn−2,j+1Mn−1,i2Nn,j+2 · σj+3}n−5
j=1

{Nn−1,j+1Nn,j+2 · (σj+1σj)
3}n−2

j=1

{Mn−2,i3Nn−1,j+1Nn,j+2 · (σj+1σj)
3}n−4

j=1

{Mn−3,i4Mn−2,i3Nn−1,j+1Nn,j+2 · (σj+1σj)
3}n−5

j=1

{Nn−3,j+1Mn−2,i3Nn−1,j+1Nn,j+2 · (σj+1σj)
3}n−4

j=1

{Nn−3,jMn−2,i3Nn−1,j+1Nn,j+2 · (σj+1σj)
3}n−4

j=1

{Nn−3,jMn−2,i3Nn−1,j+2Nn,j+3 · (σj+2σj+1)
3}n−5

j=1

{Nn−2,j+1Nn−1,j+1Nn,j+2 · (σj+1σj)
3}n−3

j=1

{Mn−3,i4Nn−2,j+1Nn−1,j+1Nn,j+2 · (σj+1σj)
3}n−5

j=1

{Nn−3,j+1Nn−2,j+1Nn−1,j+1Nn,j+2 · (σj+1σj)
3}n−4

j=1

{Nn−3,jNn−2,j+1Nn−1,j+1Nn,j+2 · (σj+1σj)
3}n−3

j=1

{Nn−3,jNn−2,j+2Nn−1,j+2Nn,j+3 · (σj+2σj+1)
3}n−4

j=1

{Nn−2,jNn−1,j+1Nn,j+2 · (σj+1σj)
3}n−2

j=1

{Mn−3,i4Nn−2,jNn−1,j+1Nn,j+2 · (σj+1σj)
3}n−5

j=1

{Nn−3,j+1Nn−2,jNn−1,j+1Nn,j+2 · (σj+1σj)
3}n−4

j=1

{Nn−3,jNn−2,jNn−1,j+1Nn,j+2 · (σj+1σj)
3}n−3

j=1

{Nn−3,jNn−2,j+1Nn−1,j+2Nn,j+3 · (σj+2σj+1)
3}n−3

j=1

{Nn−2,jNn−1,j+2Nn,j+3 · (σj+2σj+1)
3}n−3

j=1

{Mn−3,i4Nn−2,jNn−1,j+2Nn,j+3 · (σj+2σj+1)
3}n−5

j=1

{Nn−3,j+1Nn−2,jNn−1,j+2Nn,j+3 · (σj+2σj+1)
3}n−4

j=1

{Nn−3,jNn−2,jNn−1,j+2Nn,j+3 · (σj+2σj+1)
3}n−3

j=1

{Nn−3,jNn−2,j+1Nn−1,j+3Nn,j+4 · (σj+3σj+2)
3}n−4

j=1

{Nn−1,jNn,j+1 · σj+2}n−3
j=1

{Mn−2,i3Nn−1,jNn,j+1 · σj+2}n−4
j=1

{Mn−3,i4Mn−2,i3Nn−1,jNn,j+1 · σj+2}n−5
j=1

{Nn−3,j+1(Mn−2,i3Nn−1,jNn,j+1 · σj+2)N
−1
n−3,j}n−4

j=1

{Nn−3,jMn−2,i3Nn−1,j+1Nn,j+2 · σj+3}n−5
j=1

{Nn−2,j+1(Nn−1,jNn,j+1 · σj+2)N
−1
n−2,j}n−3

j=1

{Mn−3,i4 · (Nn−2,j+1(Nn−1,jNn,j+1 · σj+2)N
−1
n−2,j+1)}n−5

j=1

{Nn−3,j+1 · (Nn−2,j+1(Nn−1,jNn,j+1 · σj+2)N
−1
n−2,j+1)}n−4

j=1

{Nn−3,j · (Nn−2,j+1(Nn−1,jNn,j+1 · σj+2)N
−1
n−2,j+1)}n−3

j=1

{Nn−3,j · (Nn−2,j+2(Nn−1,j+1Nn,j+2 · σj+3)N
−1
n−2,j+2)}n−4

j=1

{Nn−2,jNn−1,j+1Nn,j+2 · σj+3}n−4
j=1

{Mn−3,i4Nn−2,jNn−1,j+1Nn,j+2 · σj+3}n−5
j=1

{Nn−3,j+1(Nn−2,jNn−1,j+1Nn,j+2 · σj+3)N
−1
n−3,j}n−4

j=1

{Nn−3,jNn−2,j+1Nn−1,j+2Nn,j+3 · σj+4}n−5
j=1

Figure 2.3: Tree of generators from PBn to D
(4)
n .
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= (sn−1 · · · sj+1sj)sj+1(sjsj+1 · · · sn−1)

= (sn−1 · · · sj+1)(sjsj+1sj)(sj+1 · · · sn−1)

= (sn−1 · · · sj+1)(sj+1sjsj+1)(sj+1 · · · sn−1)

= (sn−1 · · · s2
j+1)sj(s

2
j+1 · · · sn−1)

= (sn−1 · · · sj+2)(sj+2 · · · sn−1)sj

= sj

by relations in the presentation of Σn (see remark 1.1). Let {yj}j∈Jl be a family of generators of
type (m1, . . . ,ml−1,ml) where mk ∈ {1, 4} for all k. If we set {xj}j∈Jl−1

as the family of generators

of type (m1, . . . ,ml−1) such that RSl({xj}j∈Jl−1
) = {yj}j∈Jl for some ml ∈ {1, 4}, by the induction

hypothesis, ϕ(xj) = sj for all j ∈ Jl−1. If ml = 1, yj is conjugation of xj by Mn−l+1,il where
0 ≤ il ≤ n− l− 2 and il + j < n− l, or equivalently, 1 < |(n− l+ 1− il)− j|. If il = 0, Mn−l+1,0 = 1
and it’s clear. Otherwise

ϕ(yj) = ϕ(Mn−l+1,ilxjM
−1
n−l+1,il

)

= ϕ(σn−l · · ·σn−l+1−il)ϕ(xj)ϕ(σn−l+1−il · · ·σn−l)
= (sn−l · · · sn−l+1−il)sj(sn−l+1−il · · · sn−l)
= (sn−l · · · sn−l+1−il)(sn−l+1−il · · · sn−l)sj
= (sn−l · · · s2

n−l+1−il · · · sn−l)sj
= sj.

If ml = 4, yj is conjugation of xj+1 by Nn−l+1,j, then

ϕ(yj) = ϕ(Nn−l+1,jxj+1N
−1
n−l+1,j)

= ϕ(σn−l · · ·σj+1σj)ϕ(xj+1)ϕ(σjσj+1 · · · σn−l)
= (sn−l · · · sj+1sj)sj+1(sjsj+1 · · · sn−l)
...

= sj.

Similarly as in the case l = 1. Therefore, if we have a generator xj of type (m1, . . . ,ml) wihtout 2’s
or 3’s in the tuple, its induced permutation is always sj.

Proposition 2.1.9. Generators of type (m1,m2, . . . ,ml) such that mk ∈ {2, 3} for some k, induce
the trivial permutation, hence they are in PPn.

Proof. Suppose mk = 2 for some k. The case mk = 3 is a consequence of proposition 2.1.10.
Let k0 be the smallest in which mk0 = 2. The proof is by induction over l. If k0 = l = 1, it is
clear because the generators of type (2) in RS1({σj}n−1

j=1 ) are the trivial ones. If k0 < l, by the
induction hypothesis the generators of type (m1, . . . ,ml−1) are already in PPn, then to obtain the
generators of type (m1, . . . ,ml−1,ml) the rules in 2.1.3 say they are conjugation of the generators of
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type (m1, . . . ,ml−1) by some elements. It is clear that if ϕ(x) = 1 then ϕ(NxN−1) = 1, hence the
generators of type (m1, . . . ,ml) induce the trivial permutation. If k0 = l, the tuple (m1, . . . ,ml) is
such thatmi ∈ {1, 4} for all i < l andml = 2. By proposition 2.1.8, the family of generators {xj}j∈Jl−1

of type (m1 . . . ,ml−1) is such that ϕ(xj) = sj. Then the generators of type (m1, . . . ,ml−1, 2) are
written as Nn−l+1,j+1xjN

−1
n−l+1,j+1, hence

ϕ(Nn−l+1,j+1xjN
−1
n−l+1,j) = ϕ(Nn−l+1,j+1)ϕ(xj)ϕ(N−1

n−l+1,j)

= (sn−l · · · sj+1)sj(sjsj+1 · · · sn−l)
= sn−l · · · sj+1s

2
jsj+1 · · · sn−l

...

= 1

Therefore, permutations induced by generators of type (m1, . . . ,ml) with some mk = 2 are trivial,
which by definition are elements in PPn.

An immediate consequence of the last proposition is that if we have (m1, . . . ,mk−1, 2,mk+1, . . . ,ml)
with k = min{i|mi = 2} then mj ∈ {1′, 2′, 3′, 4′} for all j > k. From here, to simplify notation we
write the set of rules {1′, 2′, 3′, 4′} without the prime notation. For instance, generators of type
(4, 2, 1′, 3′, 2′) are the same as generators of type (4, 2, 1, 3, 2).

Proposition 2.1.10. For generators of type (m1, . . . ,mk−1, 2,mk+1, . . . ,ml) such that mi ∈ {1, 4}
for all i < k, the generators of type (m1, . . . ,mk−1, 3,mk+1, . . . ,ml) are the inverses.

Proof. Let {xj}j∈Jk−1
be generators of type (m1, . . . ,mk−1). It is an easy exercise that J2

k = J3
k .

For mk = 2, the generators {yj}j∈J2
k

of type (m1, . . . ,mk−1, 2) are given by

yj = Nn−k+1,j+1xjN
−1
n−k+1,j.

For mk = 3, the generators {y′j}j∈J3
k

of type (m1, . . . ,mk−1, 3) are given by

y′j = Nn−k+1,jxjN
−1
n−k+1,j+1.

In theorem 2.1.14 we will see the generators xj’s as before, satisfy the relation x2
j = 1. It follows that

yjy
′
j = 1 = y′jyj, hence they are inverses at each j ∈ J2

k = J3
k . By proposition 2.1.9, the generators

of type (m1, . . . ,mk−1, 2) and (m1, . . . ,mk−1, 3) are already in PPn. By rules in 2.1.3, the generators
of type (m1, . . . ,mk−1, 2,mk+1, . . . ,ml) and (m1, . . . ,mk−1, 3,mk+1, . . . ,ml) are defined by NjyjN

−1
j

and Njy
′
jN
−1
j for some Nj ∈ PBn, which clearly are also inverses between them at each j.

What we have now are conditions in tuples (m1, . . . ,ml) which allow us to avoid a little bit of
redundancy when we are considering all the generators, omitting their inverses or trivial ones.

Theorem 2.1.11. Non trivial generators of PPn are generators of type (m1, . . . ,mn−1) with mi ∈
{1, 2, 3, 4} for all i = 1, . . . , n− 1, such that
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(1) m1 ∈ {1, 4} and mn−1 ∈ {2, 3, 4}.
(2) mk = 2 for some k > 1.

(3) If k0 = min{k |mk = 2}, then exists l < k0 such that ml = 4.

(4) If mk = 1 for some k < n−1, let k0 = max{k|mk = 1}, then exist l > k0 such that ml ∈ {2, 3}.
Proof. For (1), the condition on m1 is clear by proposition 2.1.1. For mn−1, we know how it works
RSn−1 on index sets, mn−1 6= 1 because of J1

n−1 = ∅. Condition (2) follows by proposition 2.1.9 to be
in PPn. For (3), exists such l with ml = 4, otherwise we have a sequence of 1’s followed by a 2, i.e.,
(1, . . . , 1, 2, . . . ) which generators of this type are the trivial ones. For (4), if we have that mi = 4
for all i > k0, we have generators of type (. . . , 1, 4, . . . , 4). On index sets, J1

k0
⊂ [1, n− k0 − 1], then

J4
k0+1 ⊂ Sh-1([1, n−k0−1]∩ [2, n−k0 +2]) ⊂ [1, n−k0−2], and at the last two steps, J4

n−2 ⊂ [1, 1] and
then J4

n−1 ⊂ Sh-1(Jn−2 ∩ [2, 3]) = ∅. Therefore, exist at least one l > k0 such that ml ∈ {2, 3}.

Remark 2.1.12. Conditions of theorem 2.1.11 are good conditions to consider non trivial genera-
tors of PPn and remove a little of redundancy at the moment we count tuples of generators of PPn.
However, conditions of theorem 2.1.11 are not excluding other tuples to be generators of PPn. For in-
stance, tuple generators (m1, . . . ,mk0−1, 2,mk0+1, . . . ,mn−1) and its inverses (m1, . . . ,mk0−1, 3,mk0+1,
. . . ,mn−1).

Example 2.1.13. For PP4 is easy to find all the tuples (m1,m2,m3) as in theorem 2.1.11. The
generators of type (1, 4, 2), (4, 1, 2), (4, 2, 2), (4, 2, 3), (4, 2, 4), (4, 4, 2), generate PP4. We need to
determine the index sets from the generators {σ1, σ2, σ3} of PB4.

• (1, 4, 2) : Applying the Reidemeister-Schreier process with rules 2.1.3, we have

σj

1
��

M4,i1 [σj]M
−1
4,i1

= σj

4
��

(i1 + j < 3)

N3,j[σj+1]N−1
3,j = N3,j · σj+1

2
��

N2,j+1[N3,j · σj+1]N2,j = N2,j+1N3,j+2 · (σj+1σj)
3

and on index sets, we have

J0 = [1, 3] 1 // J1 = [1, 2] 4 // J2 = {1} 2 // J3 = {1}.

Therefore, the family of generators of type (1, 4, 2) consists of one element and is N2,2N3,3 ·
(σ2σ1)3 = (σ2σ1)3.
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• (4, 2, 3) : Note that (4, 2, 3) = (4, 2, 3′). In the same way, we have

σj

4
��

N4,jσj+1N
−1
4,j = N4,j · σj+1

2
��

N3,j+1[N4,j · σj+1]N−1
3,j = N3,j+1N4,j+2 · (σj+1σj)

3

3
��

N2,j[N3,j+1N4,j+2 · (σj+1σj)
3]N2,j = N2,jN3,j+1N4,j+2 · (σj+1σj)

3

and on index sets,

J0 = [1, 3] 1 // J1 = [1, 2] 4 // J2 = [1, 2] 2 // J3 = [1, 2].

Therefore, the family of generators of type (4, 2, 3) consists of two elements. If j = 1, we have the
generator N2,1N3,2N4,3 · (σ2σ1)3 = σ1σ2σ3(σ2σ1)3σ3σ2σ1 and when j = 2, we have the other generator
N2,2N3,3N4,4 · (σ3σ2)3 = (σ3σ2)3. The other generators are calculated in the same way. The group
PP4 is a free group in 7 generators with presentation:

PP4 =

〈 (σ2σ1)3, σ3(σ2σ1)3σ3, (σ3σ2)3,
σ2σ3(σ2σ1)3σ3σ2, σ1(σ3σ2)3σ1,

σ1σ2σ3(σ2σ1)3σ3σ2σ1, (σ2σ1σ3σ2 · σ3)σ1

〉
(2.1.4)

In 2.3.1 we have another presentation of PP4 with the generator x = (σ2σ1σ3σ2 · σ3)σ1 replaced by
the product xy−1 = σ2σ1(σ3σ2)3σ1σ2 where y = (σ2σ1)2.

We already know the generators of PPn which are associated to (n − 1)-tuples (m1, . . . ,mn−1).
However, we need the relations as in propositions 2.1.1 and 2.1.2. The Reidemeister-Schreier process
tell us how it works on relations. For instance, the relation σ2

j in PBn after apply the process, we

obtain 4 outputs which correspond to apply RS1 to each letter, i.e., σjσj −→ RS1(σj) RS1(σj) (see
figure 2.4).

Theorem 2.1.14. Let (m1
1, . . . ,m

1
l ) and (m2

1, . . . ,m
2
l ) two types of generators. A relation

(m1
1, . . . ,m

1
l )|(m2

1, . . . ,m
2
l ) comes from applying the Reidemeister-Schreier process to the relation σ2

j ,
if we have the following conditions on mi’s:

(1) if m1
i ∈ {1, 4} then m2

i = m1
i .

(2) if m1
i = 2 and mj ∈ {1, 4} for all j < i , then m2

i = 3.

(2’) if m1
i = 3 and mj ∈ {1, 4} for all j < i , then m2

i = 2.
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{σjσj}n−1
j=1

{σjσj}n−2
j=1

1

1

{(Nn,j · σj+1)(Nn,j · σj+1)}n−2
j=1

{(Mn−1,i2Nn,j · σj+1)(Mn−1,i2Nn,j · σj+1)}n−3
j=1

{(Nn−1,j+1Nn,j+2 · (σj+1σj)
3)(Nn−1,j+1Nn,j+2 · (σjσj+1)

3)}n−2
j=1

{(Nn−1,j+1Nn,j+2 · (σjσj+1)
3)(Nn−1,j+1Nn,j+2 · (σj+1σj)

3)}n−2
j=1

{(Nn−1,j−1Nn,j · σj+1)(Nn−1,j−1Nn,j · σj+1)}n−3
j=1

Figure 2.4: Part of the tree of relations of σ2
j

(3) if m1
i ∈ {2, 3} and exists j < i such that m1

j ∈ {2, 3}, then m2
i = m1

i .

Proof. We know abstractly how it works the Reisemeister Schreier process on relations (illustrated
with examples in tables of proposition 2.1.1 and proposition 2.1.2). Primarily, we need to know the
representatives on the Schreier transversal set and it is easy by the permutation induced as in 2.1.8
and 2.1.9. The rules follow by the conditions i+ j ∼ n− l for some l and ∼ could be >,<,=.

Let xj generators of type (m1, . . . ,ml) such that mi ∈ {1, 4} for all i. By theorem 2.1.14 and con-
dition (1), the relation (m1, . . . ,ml)|(m1, . . . ,ml) comes from applying the Reidemeister-Schreier pro-
cess which means the relation xj |xj. Therefore, (xj)

2 = 1 for all j, this is what we need in the proof
of proposition 2.1.10. Furthermore, proposition 2.1.10 is a direct consequence of theorem 2.1.14. By
(2) the relation (m1, . . . ,mk−1, 2,mk+1, . . . ,ml)|(m1, . . . ,mk−1, 3,mk+1, . . . ,ml) comes from applying
the Reidemeister-Schreier process, the corresponding generators to the tuples, are inverses between
them. For instance, in figure 2.5 we have the relation (4, 2)|(4, 3) corresponding to the relation in
generators:

(Nn−1,j+1Nn,j+2 · (σj+1σj)
3)(Nn−1,j+1Nn,j+2 · (σjσj+1)3) = 1

On the other hand, applying the Reidmeister-Schreier process to the relation (σjσk)
2, it’s a bit

more complicated, because we have two indices. The idea is the same, we apply RSl to each letter,
first we fix the index j and we obtain 4 outputs for letters which depend on k. Then, by the initial
condition k > j + 1, k it’s fixed and we obtain 4 outputs which depend on j. In figure 2.6 we have
the relations for the group D

(1)
n as we can see in proposition 2.1.1

Theorem 2.1.15. Let (m1
1, . . . ,m

1
l ), (m2

1, . . . ,m
2
l ), (m3

1, . . . ,m
3
l ) and (m4

1, . . . ,m
4
l ) four types of

generators. We have conditions on mi’s to determine, when a relation

(m1
1, . . . ,m

1
l )|(m2

1, . . . ,m
2
l )|(m3

1, . . . ,m
3
l )|(m4

1, . . . ,m
4
l )

comes from applying the Reidemeister-Schreier process to the relation (σjσk)
2.

(1) if m1
i = 1, then m3

i = m1
i and m2

i ∈ {1, 2, 3, 4}. If m2
i ∈ {1, 4}, then m4

i = m2
i and
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( )|( )

(1)|(1)

(2)|(3)

(3)|(2)

(4)|(4)

(4, 1)|(4, 1)

(4, 2)|(4, 3)

(4, 2, 1)|(4, 3, 1)

(4, 2, 2)|(4, 3, 2)

(4, 2, 3)|(4, 3, 3)

(4, 2, 4)|(4, 3, 4)(4, 3)|(4, 2)

(4, 4)|(4, 4)

Figure 2.5: The tree of 2.4 embedded in a bigger tree but in terms of tuples

{σjσkσjσk}j,k

{σjσkσjσk}j,k

{σjσj}j

{σjσj}j

{σj(Nn,k · σk+1)σj(Nn,k · σk+1)}j,k

{(Nn,k · σk+1)(Nn,k · σk+1)}k

{(Nn,k · σk+1)(Nn,k · σk+1)}k

{(Nn,j · σj+1)(Nn,k · σk+1)(Nn,j · σj+1)(Nn,k · σk+1)}j,k

Figure 2.6: Part of the tree of relations of (σjσk)
2
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( )|( )|( )|( )

(1)|(1)|(1)|(1)

(1)|(2)|(1)|(3)

(1)|(3)|(1)|(2)

(1)|(4)|(1)|(4)

(1, 1)|(4, 1)|(1, 1)|(4, 1)

(1, 1)|(4, 2)|(1, 1)|(4, 3)

(1, 1)|(4, 3)|(1, 1)|(4, 2)

(1, 1)|(4, 4)|(1, 1)|(4, 4)

(1, 2)|(4, 4)|(1, 3)|(4, 4)

(1, 3)|(4, 4)|(1, 2)|(4, 4)

(1, 4)|(4, 4)|(1, 4)|(4, 4)

(2)|(4)|(3)|(4)

(3)|(4)|(2)|(4)

(4)|(4)|(4)|(4)

Figure 2.7: The tree of figure 2.6 embedded in a bigger tree but in terms of tuples

(1a) if m2
i = 2 and m2

j ∈ {1, 4} for all j < i, then m4
i = 3; or viceversa, if m2

i = 3 and
m2
j ∈ {1, 4} for all j < i, then m4

i = 2.

(1b) if m2
i ∈ {2, 3} and exists j < i such that mj ∈ {2, 3}, then m4

i = m2
i .

(2) If m1
i ∈ {2, 3, 4}, then m2

i = m4
i = 4 and

(2a) if m1
i = 2 and m1

j ∈ {1, 4} for all j < i, then m3
i = 3; or viceversa, if m1

i = 3 and
m1
j ∈ {1, 4} for all j < i, then m3

i = 2.

(2b) if m1
i ∈ {2, 3} and exists j < i such that m1

j ∈ {2, 3}, then m3
i = m1

i .

(2c) if m1
i = 4, then m3

i = m1
i .

Proof. The proof is analogous as in theorem 2.1.14 following the algorithm of Reidemeister-Schreier
process with the help of proposition 2.1.8 of induced permutations and proposition 2.1.9 of conditions
to be in PPn.

Remark 2.1.16. When we have a relation of type

(m1
1, . . . ,m

1
l−1, 1)|(m2

1, . . . ,m
2
l−1, 2)|(m3

1, . . . ,m
3
l−1, 1)|(m4

1, . . . ,m
4
l−1, 3)

we need to be careful with some indices. If (m2
1, . . . ,m

2
l−1) is a type of a family of generators which

is not in PPn (see proposition 2.1.9), then

(. . . , 1)|(. . . , 2)|(. . . , 1)|(. . . , 3)
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i j k

. . .

. . .

. . .

s

Figure 2.8: Corresponding planar pure braid for P = (. . . k . . . s . . . )[i, j](. . . )

y

Mn−l+1,il�jM
−1
n−l+1,il

|Nn−l+1,k+1�kN
−1
n−l+1,k|Mn−l+1,il+1�jM

−1
n−l+1,il+1|Nn−l+1,k�kN

−1
n−l+1,k+1

and because of conditions, it means that il + j < n− l and il +k = n− l, then Mn−l+1,il = Nn−l+1,k+1

and Mn−l+1,il+1 = Nn−l+1,k. If (m2
1, . . . ,m

2
l−1) is a type of a family which is already in PPn, then

(. . . , 1)|(. . . , 2)|(. . . , 1)|(. . . , 2)

y

Mn−l+1,il�jM
−1
n−l+1,il

|Nn−l+1,k+1�kN
−1
n−l+1,k+1|Mn−l+1,il�jM

−1
n−l+1,il

|Nn−l+1,k+1�kN
−1
n−l+1,k+1

and also by conditions, we have that Mn−l+1,il = Nn−l+1,k+1. Therefore, the generators of type
(m1

1, . . . ,m
1
l−1, 1) and (m3

1, . . . ,m
3
l−1, 1) which were only indexed by j, now also are indexed by k. All

these also happens if we exchange by 3’s where appear 2’s.

2.2 PPn for n = 3, 4, 5, 6

Now, what we have is a way to obtain a presentation of PPn. By theorem 2.1.11 we know which
tuples to consider for generators. By theorems 2.1.14 and 2.1.15 we know which combinations of
tuples to consider for relations. In particular, theorem 2.1.14 identify tuples of generators which are
inverses between them and are exactly as in proposition 2.1.10, then at the moment we consider
tuples of generators, we can omit their inverses. Even so, the presentation in terms of tuples has
redundancy, there are relations which kill some generators. As an application of all these, we can
calculate the presentation for the case of PP6. The tuples associated to the generators of PP6 are in
table 2.3, and relations are in tables 2.4 and 2.5. Simplifying we can obtain an explicit presentation
of PP6 with generators and relations listed in 2.3.2 and 2.3.3. Unfortunately, it is not written in an
easy way. For that, we resort to basic partitioner posets of degree 1 (see definition 1.4.10). For each
basic partitioner poset P = (K)[ij](K ′), corresponds a planar pure braid as follows.

Construction 1. If P = (K)[i, j](K ′) is a basic partitioner poset, let S := {s ∈ K|s > i, j}, hence
k ∈ S where k := max{i′ ∈ K t {i, j}}. We define the planar pure braid such that the ith and jth
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Figure 2.9: Strands corresponding to K and K ′ of P = (K)[i, j](K ′) by construction 1

strands cross like in the second Reidemeister move (see figure 3.2), and the sth strand is “linked”
with the ith and jth strands as in the figure 2.8, for all s ∈ S. We call it the ijS configuration,
an we identify it in figure 2.9 as the tangle inside the square. The other strands are placed by the
partitioner poset as follows:

(a) if l ∈ K ′, the lth strand goes around the ijS configuration through the right satisfying condition
(c) (strands in blue in figure 2.9);

(b) if l ∈ K \ S, the lth strand goes around the ijS configuration through the left satisfying
condition (c) (strands in red figure 2.9);

(c) we parametrize strands from the bottom to the top. Let s ∈ {i, j} ∪ S. Going along the sth
strand, intersection points with other strands are ordered as follows:

1. points with lth strands for l ∈ K ′ and l < s. An lth strand intersects first than the l′th
strand if l > l′.

2. points with lth strands for l ∈ K \ S and l > s. An lth strand intersects first than the
l′th strand if l < l′.

3. points with lth strands in the ijS configuration.

4. points with lth strands for l ∈ K \ S and l > s. An lth strand intersects first than the
l′th strand if l > l′.

5. points with lth strands for l ∈ K ′ and l < s. An lth strand intersects first than the l′th
strand if l < l′.

We denote this planar pure braid by bP .

For instance, the basic partitioner poset (46)[13](25) corresponds to the generator F84 = σ2 ·
((σ3σ2σ1σ5σ4σ3σ2 · σ3)σ1). See the next planar pure braid of the construction compared with F84 in
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the list of generators in table 2.12.

(46)[13](25) 7−→ b(46)[13](25) = = = σ2 · ((σ3σ2σ1σ5σ4σ3σ2 · σ3)σ1)

With this construction, we can give a 1-1 correspondence by hand with basic partitioner posets
and the generators of PPn for 3 ≤ n ≤ 6. Now, we can express the relations in terms of basic
partitioner posets. For instance, the resulting relation 11 from the Reidemeister-Schreier process in
2.3.3 is a conjugacy relation of F37

F−1
20 F

−1
21 F

−1
4 F37F4F21F20F

−1
35 F

−1
8 F−1

10 F
−1
37 F10F8F35,

and in terms of basic partitioner posets, F37 = b(6)[12](345), then

b−1
(1256)[34]b

−1
(126)[35](4)b

−1
(1236)[45]b(6)[12](345)b(1236)[45]b(126)[35](4)b(1256)[34] · · ·
· · · b−1

(126)[45](3)b
−1
(1246)[35]b

−1
(126)[34](5)b

−1
(6)[12](345)b(126)[34](5)b(1246)[35]b(126)[45](3) (2.2.1)

What we have to realize is that every relation in 2.3.3, is conjugacy relation of planar pure braids
which come from a basic partitioner poset of the form P = (k)[i, j](L). An easy count say that
are

(
6
3

)
= 20 basic partitioner posets of this type, which coincides with the 20 relations we have.

Denote by Prel the set of all posets of this form. If P = (k)[i, j](L) ∈ Prel, the set L consists of
three elements, and we can construct a sequence of partitioner posets from L. Denote by P the set
of partitioner posets P = (K)[i, j](K ′) (not necessarily basic). We define the function

ν1 : Prel −→ P × P × P

(k)[ij](L) 7−→ ((. . . c . . . )[ab] , (. . . )[ac](b) , (. . . a . . . )[bc])
(2.2.2)

where L = {a < b < c}, and the dots are understood as the remaining elements, i.e., i, j, and k are
always in the first ( )-block.

Example 2.2.1.

ν1 : (5)[24](136) 7−→ ((2456)[13] , (245)[16](3) , (1245)[36])

Note 2.2.2. Partitioner posets generated by ν1 are not necessarily basic, in the last example, is clear
that (245)[16](3) and (1245)[36] are not basic.
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Now we can define a product of planar pure braids from an element P ∈ Prel in a very naive way.
Let β : P → PP6 defined by

β(P ) =

{
b−1
P if P is a basic partitioner poset

1 otherwise.

Then we can define ν̃1 as the composition of

Prel ν1−→ P ×P × P (β1,β2,β3)−→ PP6

P 7−→ (P1, P2, P3) 7−→ β(P1)β(P2)β(P3)

Example 2.2.3. Let P = (6)[12](345), the associated basic partitioner poset to the generator F37.

ν̃1 : (6)[12](345) 7−→ ((1256)[34], (126)[35](4), (1236)[45]) 7−→ b−1
(1256)[34]b

−1
(126)[35](4)b

−1
(1236)[45]

Hence, the first line in the 11th conjugacy relation 2.2.1 can be rewrite as

b−1
(1256)[34]b

−1
(126)[35](4)b

−1
(1236)[45]b(6)[12](345)b(1236)[45]b(126)[35](4)b(1256)[34] =

ν̃1((6)[12](345))b(6)[12](345)ν̃1((6)[12](345))−1 = ν̃1((6)[12](345)) · b(6)[12](345) (2.2.3)

where · is the action by conjugation b · a = bab−1.

Remark 2.2.4. In the definition of β : P → PP6, we take inverses b−1
P when P is a basic partitioner

poset, in order to use the same notation · for the action by conjugation that we have used along this
chapter.

In the same way, we can define another function

ν2 : Prel −→ P × P × P

(k)[ij](L) 7−→ ((. . . )[bc](a) , (. . . b . . . )[ac] , (. . . )[ab](c))
(2.2.4)

where L = {a < b < c}, and the dots are understood as the remaining elements, i.e., i, j, and k are
always in the first ( )-block.

Example 2.2.5.

ν2 : (5)[24](136) 7−→ ((245)[36](1) , (2345)[16] , (245)[13](6))

Analogy, we can define a product of planar pure braids for any P ∈ Prel. Let ν̃2 be the composition
of

Prel ν2−→ P ×P × P (β1,β2,β3)−→ PP6

P 7−→ (P1, P2, P3) 7−→ β(P1)β(P2)β(P3)
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Example 2.2.6. Let P = (6)[12](345) as in example 2.2.3.

ν̃2 : (6)[12](345) 7−→ ((126)[45](3), (1246)[35], (126)[34](5)) 7−→ b−1
(126)[45](3)b

−1
(1246)[35]b

−1
(126)[34](5)

Hence, the second line in the 11th conjugacy relation 2.2.1 can be rewrite as

b−1
(126)[45](3)b

−1
(1246)[35]b

−1
(126)[34](5)b

−1
(6)[12](345)b(126)[34](5)b(1246)[35]b(126)[45](3) =

ν̃2((6)[12](345))b−1
(6)[12](345)ν̃2((6)[12](345))−1 = (ν̃2((6)[12](345)) · b(6)[12](345))

−1 (2.2.5)

At last, by 2.2.3 and 2.2.5, we can rewrite all the relation 2.2.1 as

(ν̃1((6)[12](345)) · b(6)[12](345))(ν̃2((6)[12](345)) · b(6)[12](345))
−1

This happens for all the relations 2.3.3 of PP6. As a consequence of this construction, we have a
simplified presentation of some planar pure braid groups.

Theorem 2.2.7. For n = 1, 2, PPn is the trivial group. For 3 ≤ n ≤ 6, the generators of PPn are
planar pure braids associated (by construction 1) to basic partitioner posets of [n]. The presentation
of PPn for 3 ≤ n ≤ 5 is

generators : {bP |P is a basic partitioner poset of [n]}
relations : { no relations }

i.e., are free groups. For n = 6, the relations are by conjugation on some particular partitioner
posets. Let Prel a basic partitioner poset of [n] of the form (k)[i, j](L) (hence k > i, j and |L| = 3).
The presentation of PPn (n = 6) is

generators : {bP |P is a basic partitioner poset of [n]}
relations : {(ν̃1(Prel) · bPrel)((ν̃2(Prel) · bPrel))−1 | Prel = (k)[i, j](L)}

where · is the action by conjugation and ν̃i(Prel) is a product of planar pure braids constructed from
L for i = 1, 2.

2.3 PPn as a semidirect product

Similarly to the classical pure braid groups, we can define a forgetting homomorphism ρni : PPn →
PPn−1, which omits the ith strand, producing a pure planar braid in n−1 strands. There is a natural
inclusion of PPn into PPn+1 adding a vertical strand. Here, we distinguish where we add a vertical
strand. We denote by ιni : PPn−1 → PPn as the homomorphism which adds a vertical strand in the
middle of the (i − 1)th strand and the ith strand. To simplify notation, we omit the index n in ρni
and ιni . For each n and i we have a splitting S.E.S.
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Figure 2.10: The 7 generators of PP4

1 // Kn,i
� � // PPn

ρi // PPn−1

ιi
ww

// 1

where Kn,i = ker ρi. Therefore PPn = Kn,ioPPn−1 with the action of PPn−1 on Kn,i by conjugation.
If i = n for each n, this can be repeated so that the planar pure braid group PPn is an iterated
semidirect product of groups.

PPn = Kn,n o (Kn−1,n−1 o (· · ·o (K5,5 o (K4,4 o PP3) · · · ).

but it’s hard to identify Kn,n in general, unlike in the usual case for pure braids where Kn,n is a free
group in n− 1 generators. We computed K4,4 with the Reidemeister-Schreier process obtaining also
a free group, but in contrast with the usual case, K4,4 is free on a countable set of generators. Firstly,
we write explicitly the generators of PP4 as in 2.1.4 but replacing the generator x = (σ2σ1σ3σ2 ·σ3)σ1

by the product xy−1 = σ2σ1(σ3σ2)3σ1σ2 where y = (σ2σ1)2.

PP4 =

〈 (σ2σ1)3, σ3(σ2σ1)3σ3, (σ3σ2)3,
σ2σ3(σ2σ1)3σ3σ2, σ1(σ3σ2)3σ1,

σ1σ2σ3(σ2σ1)3σ3σ2σ1, σ2σ1(σ3σ2)3σ1σ2

〉
(2.3.1)

If we forget the last strand in the generators of PP4 (figure 2.10), we note that the only non
trivial image comes from the generator (σ2σ1)3 of PP3 embedded in PP4 adding a vertical strand in
the 4th position. We have the S.E.S

1 // K4,4
� � // PP4

ρ4 // PP3
//

ι4
ww

1

where

ρ4(x) =

{
x if x = (σ2σ1)3,
1 otherwise.

Let X be the set of generators of PP4 and b0 = (σ2σ1)3 ∈ X. Applying the R-S process we obtain
that K4,4 = 〈bk0xb−k0 |k ∈ Z, x ∈ X \ {b0}〉. Recall that the action of PP3 on K4,4 is by conjugation
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and ι4(b0) = b0, i.e., b0 · (bk0xb−k0 ) = bk+1
0 xb−k−1

0 . Therefore PP4 = K4,4 o PP3 but in contrast with
pure braids, it is not an almost-direct product.

Definition 2.3.1 (Almost-Direct). A semi-direct product Ao B is almost-direct if the action of B
on the abelianization of A is trivial.

In general, almost-direct products are well-behaved taking lower central series, dimension series
and augmentation ideals among other things. With the help of this fact, was calculated the Malcev
Lie algebra and Hopf algebra for usual pure braids[23]. We can not do the same with planar braids,
because Kn,n o PPn−1 is not almost direct. For that we analyse the little case K4,4 o PP3. The
abelianization of the group K4,4 is the free abelian group on generators bk0xb

−k
0 , with k ∈ Z, x ∈

X \ {b0}, i.e., is the group K4,4 written with sums instead of products. The action of PP3 on K4,4 is
given by b0 · (bk0xb−k0 ) = bk+1

0 xb−k−1
0 . If it were trivial in the abelianization, it means

bk+1
0 xb−k−1

0 = bk0xb
−k
0 =⇒ b0xb

−1
0 = 1

which clearly b0xb
−1
0 is not trivial. Therefore, K4,4 o PP3 is not almost direct. In general we have

the same.

Proposition 2.3.2. PPn is a semidirect product Kn,noPPn−1, which is not almost-direct for all n.

Proof. Taking the forgetting homomorphism in the first and last strand, and their respective
sections, we have the following commutative diagram with exact rows.

1 // K4,4
� � //
� _

ι1

��

PP4
ρ4 //

� _

ι1

��

PP3
//

ι4
vv

� _

ι1

��

1

1 // K5,5
� � //
� _

ι1��

ρ1

YY

PP5
ρ5 //

� _

ι1��

ρ1

ZZ

PP4
//

ι5
vv

� _

ι1��

ρ1

ZZ

1

... � _

ι1

��

... � _

ι1

��

... � _

ι1

��
1 // Kn−1,n−1

� � //
� _

ι1

��

PPn−1
ρn−1 //

� _

ι1

��

PPn−2
//

ιn−1

vv

� _

ι1

��

1

1 // Kn,n
� � //

ρ1

YY

PPn
ρn //

ρ1

ZZ

PPn−1
//

ιn
vv

ρ1

ZZ

1

The homomorphisms in the left column are understood as the well-restriction of the middle ones to
the kernels. It is an easy exercise to check the commutativity of the diagram. By the left column,
we have the chain

K4,4
� � ι1 // K5,5

� � ι1 //

ρ1
ww

· · · � � ι1 // Kn−1,n−1
� � ι1 // Kn,n

ρ1
vv
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where ρ1 ◦ ι1 = idK∗,∗ . The abelianization functor, not always preserves monomorphisms, but in our
case we have that Ab(ρ1) ◦ Ab(ι1) = idAb(K∗,∗) by naturality; therefore, Ab(ι1) is a monomorphism.
Then

Ab(K4,4) �
� // Ab(K5,5) �

� // · · · � � // Ab(Kn−1,n−1) �
� // Ab(Kn,n).

Then Kn,n o PPn−1 is not almost direct because of Ab(K4,4) ↪→ Ab(Kn,n) and PP3 ↪→ PPn−1.

Remark 2.3.3. Other important property of these groups pointed and proved by Jacob Mostovoy
is that planar pure braid groups are residually nilpotent [30]. This property will be important when
we define Vassiliev invariants and their relation with Chen’s theory of iterated integrals in chapter
4. As a consequence, Vassiliev invariants classify planar pure braids. The idea to prove it is using
chord diagrams of planar pure braids to embeds the group PPn in a residually nilpotent group G
which elements consist of formal power series in chord diagrams with non-zero constant term.
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Table 2.3: All the generators of PP6

Type of generator Size of the family Type of generator Size of the family
(1,1,1,4,2) 1 (4,2,2,2,4) 1
(1,1,4,4,2) 1 (4,2,2,3,2) 1
(1,4,1,4,2) 1 (4,2,2,3,3) 2
(1,4,4,4,2) 1 (4,2,2,3,4) 2
(4,1,1,4,2) 1 (4,2,2,4,2) 1
(4,1,4,4,2) 1 (4,2,2,4,3) 2
(4,4,1,4,2) 1 (4,2,2,4,4) 1
(4,4,4,4,2) 1 (4,2,3,1,2) 1
(1,1,4,2,2) 1 (4,2,3,1,3) 1
(1,1,4,2,3) 2 (4,2,3,2,2) 1
(1,1,4,2,4) 1 (4,2,3,2,3) 2
(1,4,4,2,2) 1 (4,2,3,2,4) 1
(1,4,4,2,3) 2 (4,2,3,3,2) 1
(1,4,4,2,4) 1 (4,2,3,3,3) 2
(4,1,4,2,2) 1 (4,2,3,3,4) 2
(4,1,4,2,3) 2 (4,2,3,4,2) 1
(4,1,4,2,4) 1 (4,2,3,4,3) 2
(4,4,4,2,2) 1 (4,2,3,4,4) 2
(4,4,4,2,3) 2 (4,2,4,1,2) 1
(4,4,4,2,4) 1 (4,2,4,1,3) 1
(1,4,2,1,2) 1 (4,2,4,2,2) 1
(1,4,2,1,3) 1 (4,2,4,2,3) 2
(1,4,2,2,2) 1 (4,2,4,2,4) 1
(1,4,2,2,3) 2 (4,2,4,3,2) 1
(1,4,2,2,4) 1 (4,2,4,3,3) 2
(1,4,2,3,2) 1 (4,2,4,3,4) 2
(1,4,2,3,3) 2 (4,2,4,4,2) 1
(1,4,2,3,4) 2 (4,2,4,4,3) 2
(1,4,2,4,2) 1 (4,2,4,4,4) 1
(1,4,2,4,3) 2 (1,1,4,1,2) 1
(1,4,2,4,4) 1 (1,4,4,1,2) 1
(4,4,2,1,2) 2 (4,1,4,1,2) 1
(4,4,2,1,3) 2 (4,4,4,1,2) 1
(4,4,4,2,2) 1 (1,4,1,2,2) 1
(4,4,4,2,3) 2 (1,4,1,2,3) 2
(4,4,4,2,4) 1 (1,4,1,2,4) 1
(4,4,2,3,2) 1 (4,4,1,2,2) 1
(4,4,2,3,3) 2 (4,4,1,2,3) 2
(4,4,2,3,4) 2 (4,4,1,2,4) 1
(4,4,2,4,2) 1 (4,1,2,1,2) 1
(4,4,2,4,3) 2 (4,1,2,1,3) 1
(4,4,2,4,4) 1 (4,1,2,2,2) 1
(4,2,1,1,2) 1 (4,1,2,2,3) 2
(4,2,1,1,3) 1 (4,1,2,2,4) 1
(4,2,1,2,2) 1 (4,1,2,3,2) 1
(4,2,1,2,3) 2 (4,1,2,3,3) 2
(4,2,1,2,4) 1 (4,1,2,3,4) 2
(4,2,1,3,2) 1 (4,1,2,4,2) 1
(4,2,1,3,3) 2 (4,1,2,4,3) 2
(4,2,1,3,4) 1 (4,1,2,4,4) 1
(4,2,1,4,2) 1 (1,4,1,1,2) 1
4(2,1,4,3,) 1 (4,4,1,1,2) 1
(4,2,2,1,2) 1 (4,1,1,2,2) 1
(4,2,2,1,3) 1 (4,1,1,2,3) 2
(4,2,2,2,2) 1 (4,1,1,2,4) 1
(4,2,2,2,3) 2 (4,1,1,1,2) 1
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Table 2.4: All the relations of PP6 (Part 1)

Relation of type Conditions on indices j, k
(m1

1, . . . ,m
1
5)|(m2

1, . . . ,m
2
5)|(m3

1, . . . ,m
3
5)|(m4

1, . . . ,m
4
5)

(1, 1, 1, 4, 2)|(4, 2, 3, 4, 4)|(1, 1, 1, 4, 3)|(4, 3, 3, 4, 4) k = 2

(4, 1, 1, 4, 2)|(4, 2, 3, 4, 4)|(4, 1, 1, 4, 3)|(4, 3, 3, 4, 4) k = 2

(1, 1, 4, 2, 2)|(4, 2, 4, 4, 4)|(1, 1, 4, 3, 2)|(4, 3, 4, 4, 4) ∅
(1, 1, 4, 2, 3)|(4, 2, 4, 4, 4)|(1, 1, 4, 3, 3)|(4, 3, 4, 4, 4) j = 1

(4, 1, 4, 2, 2)|(4, 2, 4, 4, 4)|(4, 1, 4, 3, 2)|(4, 3, 4, 4, 4) ∅
(4, 1, 4, 2, 3)|(4, 2, 4, 4, 4)|(4, 1, 4, 3, 3)|(4, 3, 4, 4, 4) j = 1

(1, 4, 2, 1, 2)|(1, 4, 4, 2, 4)|(1, 4, 3, 1, 2)|(1, 4, 4, 3, 4) ∅
(1, 4, 2, 1, 2)|(4, 4, 4, 2, 4)|(1, 4, 3, 1, 2)|(4, 4, 4, 3, 4) ∅
(1, 4, 2, 1, 3)|(1, 4, 4, 2, 4)|(1, 4, 3, 1, 3)|(1, 4, 4, 3, 4) ∅
(1, 4, 2, 1, 3)|(4, 4, 4, 2, 4)|(1, 4, 3, 1, 3)|(4, 4, 4, 3, 4) ∅
(4, 4, 2, 1, 2)|(4, 4, 4, 2, 4)|(4, 4, 3, 1, 2)|(4, 4, 4, 3, 4) ∅
(4, 4, 2, 1, 3)|(4, 4, 4, 2, 4)|(4, 4, 3, 1, 3)|(4, 4, 4, 3, 4) ∅
(4, 2, 1, 1, 2)|(4, 4, 1, 2, 4)|(4, 3, 1, 1, 2)|(4, 4, 1, 3, 4) ∅
(4, 2, 1, 1, 2)|(4, 4, 2, 2, 4)|(4, 3, 1, 1, 2)|(4, 4, 3, 2, 4) ∅
(4, 2, 1, 1, 2)|(4, 4, 2, 3, 4)|(4, 3, 1, 1, 2)|(4, 4, 3, 3, 4) ∅
(4, 2, 1, 1, 2)|(4, 4, 2, 4, 4)|(4, 3, 1, 1, 2)|(4, 4, 3, 4, 4) ∅
(4, 2, 1, 1, 2)|(4, 4, 4, 2, 4)|(4, 3, 1, 1, 2)|(4, 4, 4, 3, 4) ∅
(4, 2, 1, 1, 3)|(4, 4, 1, 2, 4)|(4, 3, 1, 1, 3)|(4, 4, 1, 3, 4) ∅
(4, 2, 1, 1, 3)|(4, 4, 2, 2, 4)|(4, 3, 1, 1, 3)|(4, 4, 3, 2, 4) ∅
(4, 2, 1, 1, 3)|(4, 4, 2, 3, 4)|(4, 3, 1, 1, 3)|(4, 4, 3, 3, 4) ∅
(4, 2, 1, 1, 3)|(4, 4, 2, 4, 4)|(4, 3, 1, 1, 3)|(4, 4, 3, 4, 4) ∅
(4, 2, 1, 1, 3)|(4, 4, 4, 2, 4)|(4, 3, 1, 1, 3)|(4, 4, 4, 3, 4) ∅
(4, 2, 1, 2, 2)|(4, 4, 2, 4, 4)|(4, 2, 1, 2, 2)|(4, 4, 2, 4, 4) ∅
(4, 2, 1, 2, 3)|(4, 4, 2, 4, 4)|(4, 3, 1, 2, 3)|(4, 4, 3, 4, 4) ∅
(4, 2, 1, 2, 4)|(4, 4, 2, 4, 4)|(4, 2, 1, 2, 4)|(4, 4, 2, 4, 4) ∅
(4, 2, 1, 3, 2)|(4, 4, 2, 4, 4)|(4, 3, 1, 3, 2)|(4, 4, 3, 4, 4) ∅
(4, 2, 1, 3, 3)|(4, 4, 2, 4, 4)|(4, 3, 1, 3, 3)|(4, 4, 3, 4, 4) ∅
(4, 2, 1, 3, 4)|(4, 4, 2, 4, 4)|(4, 3, 1, 3, 4)|(4, 4, 3, 4, 4) ∅
(4, 2, 1, 4, 2)|(4, 4, 2, 4, 4)|(4, 3, 1, 4, 2)|(4, 4, 3, 4, 4) ∅
(4, 2, 1, 4, 3)|(4, 4, 2, 4, 4)|(4, 3, 1, 4, 3)|(4, 4, 3, 4, 4) ∅
(4, 2, 2, 1, 2)|(4, 4, 4, 2, 4)|(4, 3, 2, 1, 2)|(4, 4, 4, 3, 4) ∅
(4, 2, 2, 1, 3)|(4, 4, 4, 2, 4)|(4, 3, 2, 1, 3)|(4, 4, 4, 3, 4) ∅
(4, 2, 3, 1, 2)|(4, 4, 4, 2, 4)|(4, 3, 3, 1, 2)|(4, 4, 4, 3, 4) ∅
(4, 2, 3, 1, 3)|(4, 4, 4, 2, 4)|(4, 3, 3, 1, 3)|(4, 4, 4, 3, 4) ∅
(4, 2, 4, 1, 2)|(4, 4, 4, 2, 4)|(4, 3, 4, 1, 2)|(4, 4, 4, 3, 4) ∅
(1, 1, 4, 1, 2)|(4, 2, 4, 3, 4)|(1, 1, 4, 1, 3)|(4, 3, 4, 3, 4) k = 2

(4, 1, 4, 1, 2)|(4, 2, 4, 3, 4)|(4, 1, 4, 1, 3)|(4, 3, 4, 3, 4) k = 2

(1, 4, 1, 2, 2)|(1, 4, 2, 4, 4)|(1, 4, 1, 3, 2)|(1, 4, 3, 4, 4) ∅
(1, 4, 1, 2, 2)|(4, 4, 2, 4, 4)|(1, 4, 1, 3, 2)|(4, 4, 3, 4, 4) ∅
(1, 4, 1, 2, 3)|(1, 4, 2, 4, 4)|(1, 4, 1, 3, 3)|(1, 4, 3, 4, 4) j = 1

(1, 4, 1, 2, 3)|(4, 4, 2, 4, 4)|(1, 4, 1, 3, 3)|(4, 4, 3, 4, 4) j = 1

(4, 4, 1, 2, 2)|(4, 4, 2, 4, 4)|(4, 4, 1, 3, 2)|(4, 4, 3, 4, 4) ∅
(4, 4, 1, 2, 3)|(4, 4, 2, 4, 4)|(4, 4, 1, 3, 3)|(4, 4, 3, 4, 4) j = 1
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Table 2.5: All the relations of PP6 (Part 2)

Relation of type Conditions on indices j, k
(m1

1, . . . ,m
1
5)|(m2

1, . . . ,m
2
5)|(m3

1, . . . ,m
3
5)|(m4

1, . . . ,m
4
5)

(4, 1, 2, 1, 2)|(4, 1, 4, 2, 4)|(4, 1, 3, 1, 2)|(4, 1, 4, 3, 4) ∅
(4, 1, 2, 1, 2)|(4, 2, 4, 2, 4)|(4, 1, 3, 1, 2)|(4, 3, 4, 2, 4) ∅
(4, 1, 2, 1, 2)|(4, 2, 4, 3, 4)|(4, 1, 3, 1, 2)|(4, 3, 4, 3, 4) ∅
(4, 1, 2, 1, 2)|(4, 2, 4, 4, 4)|(4, 1, 3, 1, 2)|(4, 3, 4, 4, 4) ∅
(4, 1, 2, 1, 2)|(4, 4, 4, 2, 4)|(4, 1, 3, 1, 2)|(4, 4, 4, 3, 4) ∅
(4, 1, 2, 1, 3)|(4, 1, 4, 2, 4)|(4, 1, 3, 1, 3)|(4, 1, 4, 3, 4) ∅
(4, 1, 2, 1, 3)|(4, 2, 4, 2, 4)|(4, 1, 3, 1, 3)|(4, 3, 4, 2, 4) ∅
(4, 1, 2, 1, 3)|(4, 2, 4, 3, 4)|(4, 1, 3, 1, 3)|(4, 3, 4, 3, 4) ∅
(4, 1, 2, 1, 3)|(4, 2, 4, 4, 4)|(4, 1, 3, 1, 3)|(4, 3, 4, 4, 4) ∅
(4, 1, 2, 1, 3)|(4, 4, 4, 2, 4)|(4, 1, 3, 1, 3)|(4, 4, 4, 3, 4) ∅
(4, 1, 2, 2, 2)|(4, 2, 4, 4, 4)|(4, 1, 3, 2, 2)|(4, 3, 4, 4, 4) ∅
(4, 1, 2, 2, 3)|(4, 2, 4, 4, 4)|(4, 1, 3, 2, 3)|(4, 3, 4, 4, 4) ∅
(4, 1, 2, 2, 4)|(4, 2, 4, 4, 4)|(4, 1, 3, 2, 4)|(4, 3, 4, 4, 4) ∅
(4, 1, 2, 3, 2)|(4, 2, 4, 4, 4)|(4, 1, 3, 3, 2)|(4, 3, 4, 4, 4) ∅
(4, 1, 2, 3, 3)|(4, 2, 4, 4, 4)|(4, 1, 3, 3, 3)|(4, 3, 4, 4, 4) ∅
(4, 1, 2, 3, 4)|(4, 2, 4, 4, 4)|(4, 1, 3, 3, 4)|(4, 3, 4, 4, 4) ∅
(4, 1, 2, 4, 2)|(4, 2, 4, 4, 4)|(4, 1, 3, 4, 2)|(4, 3, 4, 4, 4) ∅
(4, 1, 2, 4, 3)|(4, 2, 4, 4, 4)|(4, 1, 3, 4, 3)|(4, 3, 4, 4, 4) j = 1

(1, 4, 1, 1, 2)|(1, 4, 2, 3, 4)|(1, 4, 1, 1, 3)|(1, 4, 3, 3, 4) k = 2

(1, 4, 1, 1, 2)|(4, 4, 2, 3, 4)|(1, 4, 1, 1, 3)|(4, 4, 3, 3, 4) k = 2

(4, 4, 1, 1, 2)|(4, 4, 2, 3, 4)|(4, 4, 1, 1, 3)|(4, 4, 3, 3, 4) k = 2

(4, 1, 1, 2, 2)|(4, 1, 2, 4, 4)|(4, 1, 1, 3, 2)|(4, 1, 3, 4, 4) ∅
(4, 1, 1, 2, 2)|(4, 2, 2, 4, 4)|(4, 1, 1, 3, 2)|(4, 3, 2, 4, 4) ∅
(4, 1, 1, 2, 2)|(4, 2, 3, 4, 4)|(4, 1, 1, 3, 2)|(4, 3, 3, 4, 4) ∅
(4, 1, 1, 2, 2)|(4, 2, 4, 4, 4)|(4, 1, 1, 3, 2)|(4, 3, 4, 4, 4) ∅
(4, 1, 1, 2, 2)|(4, 4, 2, 4, 4)|(4, 1, 1, 3, 2)|(4, 4, 3, 4, 4) ∅
(4, 1, 1, 2, 3)|(4, 1, 2, 4, 4)|(4, 1, 1, 3, 3)|(4, 1, 3, 4, 4) j = 1

(4, 1, 1, 2, 3)|(4, 2, 2, 4, 4)|(4, 1, 1, 3, 3)|(4, 3, 2, 4, 4) j = 1

(4, 1, 1, 2, 4)|(4, 2, 3, 4, 4)|(4, 1, 1, 3, 4)|(4, 3, 3, 4, 4) j = 1 & k = 1, 2 or j = 2 = k

(4, 1, 1, 2, 4)|(4, 2, 4, 4, 4)|(4, 1, 1, 3, 4)|(4, 3, 4, 4, 4) j = 1

(4, 1, 1, 2, 4)|(4, 4, 2, 4, 4)|(4, 1, 1, 3, 4)|(4, 4, 3, 4, 4) j = 1

(4, 1, 1, 2, 4)|(4, 2, 3, 4, 4)|(4, 1, 1, 3, 4)|(4, 3, 3, 4, 4) k = 2

(4, 1, 1, 1, 2)|(4, 1, 2, 3, 4)|(4, 1, 1, 1, 3)|(4, 1, 3, 3, 4) k = 2

(4, 1, 1, 1, 2)|(4, 2, 2, 3, 4)|(4, 1, 1, 1, 3)|(4, 3, 2, 3, 4) k = 2

(4, 1, 1, 1, 2)|(4, 2, 2, 3, 4)|(4, 1, 1, 1, 3)|(4, 3, 2, 3, 4) k = 2

(4, 1, 1, 1, 2)|(4, 2, 3, 3, 4)|(4, 1, 1, 1, 3)|(4, 3, 3, 3, 4) k = 2

(4, 1, 1, 1, 2)|(4, 2, 3, 4, 4)|(4, 1, 1, 1, 3)|(4, 3, 3, 4, 4) k = 2

(4, 1, 1, 1, 2)|(4, 2, 4, 3, 4)|(4, 1, 1, 1, 3)|(4, 3, 4, 3, 4) k = 2

(4, 1, 1, 1, 2)|(4, 4, 2, 3, 4)|(4, 1, 1, 1, 3)|(4, 4, 3, 3, 4) k = 2
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Generators of PP6 : (2.3.2)

F1 = (σ2σ1)3

F2 = (σ3σ2)3

F3 = (σ4σ3)3

F4 = (σ5σ4)3

F5 = σ1(σ3σ2)3σ1

F6 = σ2(σ4σ3)3σ2

F7 = σ3(σ2σ1)3σ3

F8 = σ3(σ5σ4)3σ3

F9 = σ4(σ3σ2)3σ4

F10 = σ5(σ4σ3)3σ5

F11 = σ1σ2(σ4σ3)3σ2σ1

F12 = σ1σ4(σ3σ2)3σ2σ1

F13 = (σ2σ1σ3σ2 · σ3)σ1

F14 = σ2σ3 · (σ2σ1)3

F15 = σ2σ3 · (σ5σ4)3

F16 = σ2σ5 · (σ4σ3)3

F17 = (σ3σ2σ4σ3 · σ4)σ2

F18 = σ3σ4 · (σ3σ2)3

F19 = σ4σ3 · (σ2σ1)3

F20 = (σ4σ3σ5σ4 · σ5)σ3

F21 = σ4σ5 · (σ4σ3)3

F22 = σ5σ4 · (σ3σ2)3

F23 = σ1σ2σ3 · (σ2σ1)3

F24 = σ1σ2σ3 · (σ5σ4)3

F25 = σ1σ2σ5 · (σ4σ3)3

F26 = σ1 · ((σ3σ2σ4σ3 · σ4)σ2)
F27 = σ1σ3σ4 · (σ3σ2)3

F28 = σ1σ5σ4 · (σ3σ2)3

F29 = (σ2σ1σ4σ3σ2 · σ3)σ1

F30 = σ2σ3 · ((σ4σ3σ2 · σ3)σ2)
F31 = σ2σ4σ3 · (σ2σ1)3

F32 = σ2 · ((σ4σ3σ5σ4 · σ5)σ3)
F33 = σ2σ4σ5 · (σ4σ3)3

F34 = (σ3σ2σ5σ4σ3 · σ4)σ2

F35 = σ3σ4σ5 · (σ4σ3)3

F36 = σ3σ5σ4 · (σ3σ2)3

F37 = σ5σ4σ3 · (σ2σ1)3

F38 = σ1σ2σ3σ4 · (σ3σ2)3

F39 = σ1σ2σ4σ3 · (σ2σ1)3

F40 = σ1σ2 · ((σ4σ3σ5σ4 · σ5)σ3)
F41 = σ1σ2σ4σ5 · (σ4σ3)3

F42 = σ1 · ((σ3σ2σ5σ4σ3 · σ4)σ2)
F43 = σ1σ3σ5σ4 · (σ3σ2)3

F44 = (σ2σ1σ3σ2σ4σ3 · σ4)σ1

F45 = σ2σ1σ3σ4 · (σ3σ2)3

F46 = σ2σ1σ5σ4 · (σ3σ2)3

F47 = σ2σ3σ4σ5 · (σ4σ3)3

F48 = σ2σ3σ5σ4 · (σ3σ2)3

F49 = σ2σ5σ4σ3 · (σ2σ1)3

F50 = (σ3σ2σ1σ4σ3σ2 · σ3)σ1

F51 = σ3σ2σ4σ3 · (σ2σ1)3

F52 = (σ3σ2σ4σ3σ5σ4 · σ5)σ2)
F53 = σ3σ2σ4σ5 · (σ4σ3)3

F54 = (σ4σ3σ2σ5σ4σ3 · σ4)σ2

F55 = σ4σ3σ5σ4 · (σ3σ2)3

F56 = σ1σ2σ1σ3σ4 · (σ3σ2)3

F57 = σ1σ2σ3σ4σ5 · (σ4σ3)3

F58 = σ1σ2σ3σ5σ4 · (σ3σ2)3

F59 = σ1σ2σ5σ4σ3 · (σ2σ1)3

F60 = σ1σ3σ2σ4σ3 · (σ2σ1)3

F61 = σ1 ·((σ3σ2σ4σ3σ5σ4 ·σ5)σ2)
F62 = σ1σ3σ2σ4σ5 · (σ4σ3)3

F63 = σ1 ·((σ4σ3σ2σ5σ4σ3 ·σ4)σ2)
F64 = σ1σ4σ3σ5σ4 · (σ3σ2)3

F65 = (σ2σ1σ3σ2σ5σ4σ3 · σ4)σ1

F66 = σ2σ1σ3σ5σ4 · (σ3σ2)3

F67 = σ2 ·((σ3σ2σ1σ4σ3σ2 ·σ3)σ1)
F68 = σ2σ3σ2σ4σ5 · (σ4σ3)3

F69 = σ2σ4σ3σ5σ4 · (σ3σ2)3

F70 = (σ3σ2σ1σ5σ4σ3σ2 · σ3)σ1

F71 = σ3σ2σ5σ4σ3 · (σ2σ1)3

F72 = σ3 ·((σ4σ3σ2σ5σ4σ3 ·σ4)σ2)
F73 = σ1σ2σ1σ3σ5σ4 · (σ3σ2)3

F74 = σ1σ2 · ((σ3σ2σ1σ4σ3σ2 · σ3)σ1)
F75 = σ1σ2σ3σ2σ4σ5 · (σ4σ3)3

F76 = σ1σ2σ4σ3σ5σ4 · (σ3σ2)3

F77 = σ1σ3σ2σ5σ4σ3 · (σ2σ1)3

F78 = σ1σ3 · ((σ4σ3σ2σ5σ4σ3 · σ4)σ2)
F79 = σ2σ1σ3σ2σ4σ3 · (σ2σ1)3

F80 = (σ2σ1σ3σ2σ4σ3σ5σ4 · σ5)σ1

F81 = σ2σ1σ3σ2σ4σ5(σ4σ3)3

F82 = (σ2σ1σ4σ3σ2σ5σ4σ3 · σ4)σ1

F83 = σ2σ1σ4σ3σ5σ4 · (σ3σ2)3

F84 = σ2 · ((σ3σ2σ1σ5σ4σ3σ2 · σ3)σ1)

F85 = σ2σ3 · ((σ4σ3σ2σ5σ4σ3 · σ4)σ2)
F86 = σ3σ2σ4σ3σ5σ4 · (σ3σ2)3

F87 = (σ4σ3σ2σ1σ5σ4σ3σ2 · σ3)σ1

F88 = σ4σ3σ2σ5σ4σ3 · (σ2σ1)3

F89 = σ1σ2σ1σ3σ2σ4σ5 · (σ4σ3)3

F90 = σ1σ2σ1σ4σ3σ5σ4 · (σ3σ2)3

F91 = σ1σ2 · ((σ3σ2σ1σ5σ4σ3σ2 · σ3)σ1)
F92 = σ1σ2σ3 · ((σ4σ3σ2σ5σ4σ3 · σ4)σ2)
F93 = σ1σ3σ2σ4σ3σ5σ4 · (σ3σ2)3

F94 = σ1σ4σ3σ2σ5σ4σ3(σ2σ1)3

F95 = σ2σ1σ3σ2σ5σ4σ3 · (σ2σ1)3
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F96 = σ2σ1σ3 · ((σ4σ3σ2σ5σ4σ3 · σ4)σ2)
F97 = σ2 · ((σ4σ3σ2σ1σ5σ4σ3σ2 · σ3)σ1)
F98 = (σ3σ2σ1σ4σ3σ2σ5σ4σ3 · σ4)σ1

F99 = σ3σ2σ1σ4σ3σ5σ4 · (σ3σ2)3

F100 = σ1σ2σ1σ3 · ((σ4σ3σ2σ5σ4σ3 · σ4)σ2)
F101 = σ1σ2 · ((σ4σ3σ2σ1σ5σ4σ3σ2 · σ3)σ1)
F102 = σ1σ3σ2σ1σ4σ3σ5σ4 · (σ3σ2)3

F103 = σ2σ1σ3σ2σ4σ3σ5σ4 · (σ3σ2)3

F104 = σ2σ1σ4σ3σ2σ5σ4σ3 · (σ2σ1)3

F105 = σ2 · ((σ3σ2σ1σ4σ3σ2σ5σ4σ3 · σ4)σ1)
F106 = σ3σ2 · ((σ4σ3σ2σ1σ5σ4σ3σ2 · σ3)σ1)
F107 = σ1σ2 · ((σ3σ2σ1σ4σ3σ2σ5σ4σ3 · σ4)σ1)
F108 = σ1σ3σ2 · ((σ4σ3σ2σ1σ5σ4σ3σ2 · σ3)σ1)
F109 = σ2σ1σ3σ2σ1σ4σ3σ5σ4 · (σ3σ2)3

F110 = σ3σ2σ1σ4σ3σ2σ5σ4σ3 · (σ2σ1)3

F111 = σ2σ1σ3σ2 · ((σ4σ3σ2σ1σ5σ4σ3σ2 · σ3)σ1)

Relations of PP6 : (2.3.3)

1. F4F1F
−1
4 F−1

1 ,
2. F8F7F

−1
8 F−1

7 ,
3. F15F14F

−1
15 F

−1
14 ,

4. F24F23F
−1
24 F

−1
23 ,

5. F−1
20 F19F20F

−1
3 F−1

19 F3,

6. F−1
32 F31F32F

−1
6 F−1

31 F6,
7. F−1

40 F39F40F
−1
11 F

−1
39 F11,

8. F−1
26 F60F26F

−1
61 F

−1
60 F61,

9. F−1
52 F51F52F

−1
17 F

−1
51 F17,

10. F−1
80 F79F80F

−1
44 F

−1
79 F44,

11. F−1
20 F

−1
21 F

−1
4 F37F4F21F20F

−1
35 F

−1
8 F−1

10 F
−1
37 F10F8F35,

12. F−1
40 F

−1
41 F

−1
4 F59F4F41F40F

−1
57 F

−1
24 F

−1
25 F

−1
59 F25F24F57,

13. F−1
75 F

−1
24 F

−1
42 F77F42F24F75F

−1
61 F

−1
62 F

−1
8 F−1

77 F8F62F61,
14. F−1

47 F
−1
15 F

−1
16 F49F16F15F47F

−1
32 F

−1
33 F

−1
4 F−1

49 F4F33F32,
15. F−1

85 F
−1
32 F

−1
54 F88F54F32F85F

−1
52 F

−1
72 F

−1
20 F

−1
88 F20F72F52,

16. F−1
61 F

−1
78 F

−1
20 F94F20F78F61F

−1
92 F

−1
40 F

−1
63 F

−1
94 F63F40F92,

17. F−1
80 F

−1
96 F

−1
32 F104F32F96F80F

−1
100F

−1
40 F

−1
82 F

−1
104F82F40F100,

18. F−1
68 F

−1
15 F

−1
34 F71F34F15F68F

−1
52 F

−1
53 F

−1
8 F−1

71 F8F53F52,
19. F−1

80 F
−1
81 F

−1
15 F95F15F81F80F

−1
89 F

−1
24 F

−1
65 F

−1
95 F65F24F89,

20. F−1
107F

−1
61 F

−1
98 F110F98F61F107F

−1
80 F

−1
105F

−1
52 F

−1
110F52F105F80,
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1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

Figure 2.11: List of generators of PP6 (part 1)

49



65 66 67 68 69 70 71 72

73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88

89 90 91 92 93 94 95 96

97 98 99 100 101 102 103 104

105 106 107 108 109 110 111

Figure 2.12: List of generators of PP6 (part 2)
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Chapter 3

Plane Curves

In this chapter we relate planar pure braids with the planar version of knots. Following the work
of Mostovoy and Stanford [31], we give a certain type of closure for planar pure braids in which we
obtain triple points free plane curves. The main result, is a Birman-Markov-type theorem for this
closure. In the proof of the main theorem, we resort to partitioner posets of degree 1 and a modified
construction to obtain planar pure braids.

3.1 Triple Points Free Plane Curves

Definition 3.1.1 (Plane curve). A plane curve is an immersion C : X → S where X is a 1-
dimensional manifold and S is a surface.

Arnold made a remarkable contribution to the theory of plane curves considering the point of
view of singularity theory [2]. He studies the space of immersions of an oriented circle into the
plane, via its discriminant. Considering three different strata of this discriminant, he introduces
three invariants J+, J− and St. Such invariants are defined axiomatically via their values on some
standard curves and their jumps under different deformations. In this work, we also concern the
singularity theory point of view, but the discriminant is smaller, and the invariants we define come
from Vassiliev theory (see chapter 4). We work with a particular type of plane curves.

Definition 3.1.2 (Triple points free plane curve). A triple points free plane curve is an immersion
of R into R2 which coincides with the linear embedding x = 0 outside a compact interval and all of
whose multiple points are transversal double points (see figure 3.1).

Remark 3.1.3. Mainly we consider long triple points free plane curves, but of course exists the
compact case of triple points free plane curves as immersion of S1 into de plane R2 or S2. In the
literature, compact triple points free plane curves are known as doodles [22], and enclose immersions
of any finite union of circles, being the planar version of links.
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Figure 3.1: Triple points free plane curve

Definition 3.1.4 (Equivalent triple points free plane curves). Two triple points free plane curves
are considered to be equivalent if they can be obtained from each other by a finite sequence of

a) commutative squares of diffeomorphisms with compact support

R C //

φ

��

R2

ψ
��

R
C′
// R2 ,

b) local moves of type I or II (figure3.2).

Equivalently, two triple points free plane curves C and C ′ are equivalent if there exists a smooth
homotopy F : [0, 1] × R2 → R2 such that F0 = idR2 , F1(C) = C ′ and Ft ◦ C is a triple points free
plane curve for each t ∈ [0, 1].

Remark 3.1.5. Local moves in figure 3.2 are the planar version of Reidemeister moves in knot
theory. Therefore we name them as the same way, the first, second and third Reidemeister moves
for the local moves of type I, II and III, respectively. If we consider the local move of type III in the
definition of equivalent plane curves, the theory becomes trivial. Moves Ω±3 change the equivalence
class of a curve, and plane curves defined in these jumps are what we call singular triple points free
plane curves, which live in the discriminant (see definition 4.1.1).

Despite the theory of plane curves being parallel to knot theory, the absence of the third Reide-
meister move leads to very different behaviours. For instance, a minimal representative for a triple
points free plane curve is an equivalent curve with the minimum number of double points and each
triple points free plane curve has a unique minimal representative, whereas in the case of knots does
not. In general, plane curves give rise to rich combinatorial structures, although it doesn’t mean that
the theory is easier.

With a triple points free plane curve C with n double points we can associate a word on 2n
letters as follows. Let {a1, . . . , an} be the set of double points of C in R2. Going along the curve, we
encounter each double point twice, so we can assign a word w in the alphabet {a1, . . . , an} in order
of appearance of double points. We can give an order to the set of double points in order of first
appearance. From the beginning we can label double points such that a1 < a2 < · · · < an. Observe
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Ω−
1

Ω+
1

Ω−
2

Ω+
2

Ω±
3

Figure 3.2: Reidemeister move of type I, II and III

that from the word we recover completely the curve up to diffeomporphism of the plane R2. The
next proposition is a well known fact [22], [29], and essentially all the proofs have the same idea, ours
is not the exception.

Proposition 3.1.6. Each equivalence class of a triple points free plane curve has a unique minimal
representative.

Proof. Let C be a representative of the class, a1 < a2 < · · · < an the order in the set of double
points and w = w1 · · ·w2n the word associated with the plane curve that we described above. If
I ⊂ [n] = {1, . . . , n}, we can restrict the canonical order of [n] to I. We say that i, j ∈ I are
neighbours in I if there’s no elements in I between them. We define elementary reductions on words
such that double points are going to be eliminated (as Reidemeister moves do in plane curves). We
get a reduced word in a smaller set of double points {ai|i ∈ I} for a subset I ⊂ [n], and then a
corresponding new plane curve which is equivalent to the first. The elementary reductions are

w1 · · ·wlaiaiwl+3 · · ·w2n 7−→ w1 · · ·wlwl+3 · · ·w2n (3.1.1)

w1 · · ·wlaiajwl+3 · · ·wmaiajwm+3 · · ·w2n 7−→ w1 · · ·wlwl+3 · · ·wmwm+3 · · ·w2n (3.1.2)

w1 · · ·wlaiajwl+3 · · ·wmajaiwm+3 · · ·w2n 7−→ w1 · · ·wlwl+3 · · ·wmwm+3 · · ·w2n (3.1.3)

for i, j neighbours in I, and the corresponding set of double points {ai|i ∈ I}. Geometrically,
elementary reductions are nothing else than Reidemeister moves Ω−1 and Ω−2 expressed in words.
In the process we get a sequence of subsets [n] ⊃ I1 ⊃ · · · ⊃ Ik such that the word in the alphabet
{ai|i ∈ Ik} can not be reduced by elementary reductions. The triple points free plane curve associated
with the last reduced word is the minimal representative.
Suppose there are two different minimal representatives C and C ′. Then, they are connected by a
sequence of triple points free plane curves C = C0, C1, . . . , Ck = C ′ by apply Ω±1 and Ω±2 moves.
These sequence of Reidemeister moves always can be ordered in a sequence of Ω−i moves followed
by Ω+

j moves. Note that Ω−i move delete i points, and the Ω+
j move create j points. We have the

following cases:

(a) Ω+
i ◦ Ω−j such that created points are uncommon the deleted, hence moves commute and we

can reorder to Ω−i ◦ Ω+
j .

The next cases always have common created and deleted points.
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∼

∼

∼
Figure 3.3: Moves in Gauss diagrams

(b) Ω+
1 ◦ Ω−1 is do nothing, hence we can omit them.

(c) Ω+
1 ◦ Ω−2 delete one point, hence is equivalent to an Ω−1 move.

(d) Ω+
2 ◦ Ω−1 create one point, hence is equivalent to an Ω+

1 move.

(e) Ω+
2 ◦ Ω−2 is do nothing, hence we can omit them.

Therefore, the sequence of Reidemeister moves can be reordered in a sequence of Ω−i followed by Ω+
j

moves. By minimality of C, there’s no Ω−i moves in the sequence, only Ω+
j moves which add points

which contradicts the minimality of C ′. Therefore C = C ′.

Another way to visualize these elementary reductions 3.1.1,3.1.2,3.1.3 are in diagrams which by
analogy to knot theory, we called Gauss diagrams (see figure 3.3).

An important fact related with this minimal representative is that if C is a minimal representative
plane curve, the corresponding Gauss diagram produces a Vassiliev invariant via Gauss diagram
formula introduced by Polyak and Viro [33], [29]. In an Arnold’s review for the bulletin of the IMU,
he wrote:

The theory of smooth (possibly selfintersecting) curves in the plane is parallel to knot
theory (the last being a simplified, commutative version of the theory of plane curves).

Putting aside the complexity of each theory, what he might refer in one way is that knots forms a
commutative monoid with the connected sum, while plane curves do not (see figure 3.4). Let C and
C ′ be triple points free plane curves, then we can multiply them by concatenation. This product is
natural if we think triple points free plane curves as a special case of plane tangles, where a plane
tangle is a generalization of a triple points free plane curve, as well a tangle is a generalization of a
knot in the usual case.

3.2 Closure of Planar Pure Braids

Analogously to [31], we study a certain type of closure from planar braids to obtain triple points
free plane curves. We define the short circuit map from planar pure braids on 2n + 1 strands into
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Figure 3.4: Product of triple point free plane curves

the monoid of triple points free plane curves. This map is surjective, i.e., each equivalence class of
triple points free plane curve has a representative coming from a planar braid group. Furthermore,
we prove a Birman-Markov type theorem, which states that the monoid of triple points free plane
curves is equivalent to a biquotient of all planar pure braids. From here to the end of this chapter,
we consider triple points free plane curves in vertical position, i.e., as an immersion of R into R2

which coincides with the linear embedding y = 0 outside a compact interval and all of whose multiple
points are transversal double points.

Definition 3.2.1 (Short Circuit Closure). Let be b ∈ PP2n+1, pi and qi the ends of the ith strand
of b. The short-circuit closure of b is defined as follows: at the top, join by pairs the end p2k with
the end p2k+1; at the bottom, join the end q2k−1 with the end q2k, for all k = 1, . . . , n as pictured
on figure 3.5. If C is the monoid of triple points free plane curves, the short-circuit closure can be
thought as a map Sn : PP2n+1 → C

S :

Figure 3.5: Short-circuit map

Each group PPn can be included into any group PPm for n ≤ m in the natural way adding vertical
strands to complete the missing strands. Let PP∞ be the direct limit of the system of inclusions
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PPi ↪→ PPi+1. Note that maps Sn are compatible with the inclusions PP2n+1 ↪→ PP2n+3 so they
extend to a map S : PP∞ → C .

Lemma 3.2.2. The map S : PP∞ → C is onto.

Proof. To make the proof easier, we use a plane curve that is in a good geometric position. Any
equivalence class has a representative of that form. Let C be a triple points free plane curve. The
height function of C is the composition

R C // R2 π2 // R

where π2 is the projection to the second coordinate. We say that C is a Morse triple points free plane
curve if the height function has only a finite number of critical points, all which are non-degenerate.
Note that the number of critical points is even, one half are maxima and the other one are minima.
Two Morse triple points free plane curves are equivalent if are equivalent as triple points free plane
curves, preserving the number of maxima and minima. Let C be a Morse triple points free plane
curve with n maxima, we say that C is well-positioned if for all a ∈ R such that |a| ≥ 1, the line
y = a intersects C only once. For y = 1 and y = −1, the lines intersects the curve C at (0, 1) and
(2n,−1), respectively. Denote by li the line segment which connects the ith maximum of the curve
C with the point (2i − 1

2
, 1). Similarly l′i the line segment which connects the ith minimum of the

curve C with the point (2i− 3
2
,−1), see figure 3.6.

l1

l′1

l2

l′2

Figure 3.6: Well-positioned C and its corresponding planar pure braid

To a well-positioned triple points free plane curve corresponds a planar pure braid as follows.
Removing the intsersection of the ith maximum of C with the segment li, we connect the ith maxi-
mum and the top line t = 1, with two strands at the points (2i− 1, 1) and (2i, 1) for all i. Similarly,
removing the intersection of the ith minimum of C with the segment l′i, we connect the ith minimum
and the line y = −1, with two strands at the points (2i − 2,−1) and (2i − 1,−1) for all i. If it is
necessary, the strands have to cross in order to produce a planar pure braid (see figure 3.6). As a
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C C′

x
x

Figure 3.7: Inserting a hump

result, if we close by the short-circuit closure, we obtain C.

The main theorem of this chapter is a Markov type theorem, defining an equivalence of the
monoid of triple points free plane curves with a biquotient of PP∞ using the short circuit map and
an alternative construction of planar braids from basic partitioner posets. First, we need to observe
a stability behaviour in Morse triple points free plane curves, i.e., two Morse triple points free plane
curves equivalent as plane curves, become Morse equivalent after insertion of humps.

Let C a Morse triple points free plane curve and x a point in C which is not a critical point in
the height function. A Morse triple points free plane curve C ′ is obtained from C by insertion of a
hump at x if C and C ′ coincide outside a small neighbourhood of x and inside this neighbourhood
they differ as in figure 3.7.

Lemma 3.2.3. Any two triple points free plane curves obtained from the same Morse triple points
free plane curve by insertion of a hump are Morse equivalent.

Proof. If there are no critical points of the height function between the points x1 and x2 where
we insert humps, clearly are Morse equivalent. If there is one critical point between x1 and x2 the
lemma follows from the argument as in figure 3.8. This argument also proves the general case.

Figure 3.8: Passing a hump through a critical point

Let b1 ∈ PP2n+1 and b2 ∈ PP2m+1 and let ι(bj) the image of bj by the standard inclusion into
P2N+1, N ≥ n,m.

Lemma 3.2.4. If Sn(b1) and Sm(b2) are equivalent as plane curves, then there exists N ≥ n,m such
that SN(ι(b1)) and SN(ι(b2)) are Morse equivalent.

Proof.
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T = 0

T = 1

Figure 3.9: Tangential points

Think C = Sn(b1) and C ′ = Sm(b2) as immersions R# R2. By hypothesis are equivalent as plane
curves, then there exists a smooth homotopy F : [0, 1]× R2 → R2 such that F0 = idR2 , F1(C) = C ′

and FT ◦ C is a triple points free plane curve for each T ∈ [0, 1], say

(FT ◦ C)(t) = (xT (t), yT (t)).

To define an equivalence between Morse triple points free plane curves, first we identify the critical
points which appear an disappear in the smooth homotopy between Sn(b1) and Sm(b2). In [0, 1]×R
consider the subset W of pairs (T, t) such that ∂

∂t
yT (t) = 0. Without loss of generality we can

assume W is a union of finite compact 1-dimensional manifolds whose boundary is empty or belongs
to ({0}∪{1})×R, and that there are only a finite number of points of tangency in W with horizontal
lines {T} × R (see figure 3.9). Points of tangency identify insertions or removals of humps.
If there are no points of tangency, Sn(b1) and Sm(b2) are Morse equivalent and N = n = m.
Otherwise, choose the point of tangency in W with the horizontal line {T} × R with the smallest
value of T , which corresponds to an insertion of a hump. We can remove a small neighbourhood of
the point of tangency and connect with two segements with the lower boundary {0} × R and are
disjoint from W as in figure 3.10. We do the same with all points of tangency, such that at the
end there are no more points of tangency. In the process we insert new humps and the result is a
smooth homotopy between SN(ι(b1)) and SN(ι(b2)) as Morse plane curves, where N is the number
of boundary points in the horizontal line {0} × R.

T = 0

T = 1

Figure 3.10: Bifurcation of tangential points

The alternative construction of planar braids from basic partitioner posets is as follows.
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i j k

Figure 3.11: The planar pure braid corresponding to P = (. . . k . . . )[i, j](. . . )

Construction 2. If P = (K)[i, j](K ′) is a basic partitioner poset and k := max{i′ ∈ K t {i, j}},
we define the planar pure braid by taking S = {k} in construction 1. Explicitly, the ith and jth
strands cross as in the second Reidemeister move (see figure 3.2), and the strand k is “linked” with
the upper crossing of the ith and jth strands as in the figure 3.11. We call it the ijk configuration,
an we identify it in figure 3.12 as the tangle inside the square. The other strands are placed by the
partitioner poset as follows:

(a) if l ∈ K ′, the lth strand goes around the ijS configuration through the right satisfying condition
(c) (strands in blue in figure 3.12);

(b) if l ∈ K \ S, the lth strand goes around the ijS configuration through the left satisfying
condition (c) (strands in red figure 3.12);

(c) we parametrize strands from the bottom to the top. Let s ∈ {i, j, k}. Going along the sth
strand, intersection points with other strands are ordered as follows:

1. points with lth strands for l ∈ K ′ and l < s. An lth strand intersects first than the l′th
strand if l > l′.

2. points with lth strands for l ∈ K \ {k} and l > s. An lth strand intersects first than the
l′th strand if l < l′.

3. points with lth strands in the ijk configuration.

4. points with lth strands for l ∈ K \ {k} and l > s. An lth strand intersects first than the
l′th strand if l > l′.

5. points with lth strands for l ∈ K ′ and l < s. An lth strand intersects first than the l′th
strand if l < l′.

We denote by φni the homomorphism PP2n → PP2n+1 which doubles the ith strand. Homomor-
phisms φni respect the standard inclusions of planar pure braid groups, so as n tends to infinity, the
limit φi : PP∞ → PP∞ is well defined.

Theorem 3.2.5. There exist two subgroups HT and HB of PP∞ such that the map S : PP∞ → C
is constant on the double cosets of the form HTxHB. Furthermore, fibres are of this type, hence
the short-circuit map identifies the monoid of triple points free plane curves C with the biquotient
HT \ PP∞/HB.
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Figure 3.12: Strands corresponding to K and K ′ of P = (K)[i, j](K ′) by construction 2

Proof. Let HT
n be the subgroup of PP2n+1 generated by bP ’s with P a partitioner poset (p.p.), such

that:

1. P = (K)[i, i+ 1](K ′) is a p.p. of [2n+ 1] with i even.
2. P = (K)[i, j](K ′) is a p.p of [2n+ 1] such that j + 1 concides with max{i′ ∈ K t {i, j}} and j

even.
3. bP = φk(bP ′), where P ′ = (K)[i, j](K ′) is a p.p. of [2n] and k = max{i′ ∈ K t {i, j}} is even.
4. bP = φi(bP ′), where P ′ = (K)[i, j](K ′) is a p.p. of [2n], j+1 coincides with max{i′ ∈ Kt{i, j}}

and i is even.

Similarly we define the subgroup HB
n with the only difference that all is odd, instead of the even

condition, i.e., HB
n is the subgroup of PP2n+1 generated by bP ’s with P a partitioner poset (p.p.),

such that:

1. P = (K)[i, i+ 1](K ′) is a p.p. of [2n+ 1] with i odd.
2. P = (K)[i, j](K ′) is a p.p of [2n+ 1] such that j + 1 concides with max{i′ ∈ K t {i, j}} and j

odd.
3. bP = φk(bP ′), where P ′ = (K)[i, j](K ′) is a p.p. of [2n] and k = max{i′ ∈ K t {i, j}} is eodd.
4. bP = φi(bP ′), where P ′ = (K)[i, j](K ′) is a p.p. of [2n], j+1 coincides with max{i′ ∈ Kt{i, j}}

and i is odd.

The subgroup HT
n acts on PP2n+1 on the left (top) and HB

n acts on the right (bottom). The
sequence of inclusions PP2n+1 ↪→ PP2n+3 which adds new vertical strands, restrict well to a sequence
of inclusions for the subgroups HT

n ↪→ HT
n+1. Let HT be the direct limit of the system, then HT is a

subgroup on PP∞ which acts on the left. In the same way, let HB be the direct limit of the system
HB
n ↪→ HB

n+1, then HB is a subgroup on PP∞ which acts on the right.
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From the figures of bP ’s generators of HT (see 1-4), the closure in the top of any element in HT

produce a triple points free plane curve equivalent to the closure in the top of a trivial planar braid.
The equivalence follows by retracting some of the maximum of the plane curve in order to unlink
and obtain the closure of a trivial planar braid; the retraction is a sequence of Reidemeister moves I
and II. Then, the map S is constant on the coset HTx. The same holds for HB, so that the map S
is constant on the double cosets HTxHB.

Let b0 ∈ PP2n+1 and b1 ∈ PP2n+1 such that S(b0) = S(b1) as Morse triple points free plane
curves of n maximums. Let f : [0, 1] × R → R2 the homotopy such that for each T ∈ [0, 1], fT is a
Morse triple points free plane curve with f 0 = S(b0) and f 1 = S(b1). We can assume that the family
of Morse triple points free plane curves takes place entirely between two horizontal lines, then are
well-positioned. We’re going to construct a family of planar pure braids g : [0, 1]→ PP2n+1, which is
continuous except in a finite number of T ’s, these jumps are multiplication by some element of HT

or HB.
By lemma 3.2.2, we obtain a family of planar pure braids by the construction of planar braids

from well-positioned Morse triple points free plane curves. Fixing the end points of the rubber line
segments li’s and l′i’s and its corresponding strands, in the homotopy we have a continuous family
of braids, except when a triple points intersection happens. For example, in T = 0 we obtain the
planar braid from the well-positioned triple points free plane curve f 0 = S(b0), and in T = 1 we
obtain the planar braid from the well-positioned triple points free plane curve f 1 = S(b1). The triple
points intersection may happen when in the homotopy a line segment li intersects the plane curve
or another line segment lj, similarly with l′i. Recall that for a line segment li corresponds the (2i)th
and (2i + 1)th strands, and for a line segment l′i corresponds the (2i − 1)th and (2i)th strands. If
it is necessary, strands make a crossing 3.6. We analyse the different events which could happen in
figures 3.13, 3.14, 3.15.

For the event of the figure 3.15, the top and bottom case, are a particular case of our generators of
type 3 and 4. The middle case is not in our list of generators, but it’s a product of the other cases.
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bP of type 1. bP of type 2.

bP of type 3. bP of type 4.
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Figure 3.13: type 1

Figure 3.14: type 2
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Figure 3.15: type 3 and 4
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Chapter 4

Vassiliev Invariants of Triple Points Free
Plane Curves and Planar Pure Braids

In this chapter we define finite type invariants, also called Vassiliev invariants, for triple points free
plane curves and planar braids. In analogue to Kohno’s construction [24], we sketch the construction
of a universal Vassiliev invariant for planar pure braids following [25] and [26] . For that purpose, we
review some of the theory of Chen’s iterated integrals. In spite of differential forms are missing, we
know the cohomology of Conf3(R, n) and the universal invariant can be expressed with some direct
results by the general theory developed by Chen.

4.1 Finite type invariants

In 1990, Vassiliev introduced the notion of finite type invariant just as an application of his general
machinery on the study of discriminants in spaces of maps [35]. Briefly, he consider the space of
smooth maps

M = {f : S1 → R3},
and an element f ∈ M is a knot if it is an embedding. The complement of the set of all knots
is the discriminant Σ ⊂ M and consists of all maps with singularities. Two knots are equivalent
if they are connected by a path in M which does not intersect Σ. Therefore, a knot type is a
connected component of the space M \ Σ. Setting K = M \ Σ, the zero dimensional cohomology
H0(K;R) corresponds to R-valued knot invariants. Beyond a doubt, the cohomology of the space of
knots is of importance. Vassiliev in his attempt to compute it, build a general machinery to study
complements of discriminant. His contruction involves three techical tools: the Alexander duality,
simplicial resolutions and stabilization. His method produces a spectral sequence, which contains in
particular the finite type invariants. At the moment, there are (among others) three main equivalent
definitions of finite type invariants, the “geometrical” and initial definition in terms of discriminants
[35], the “axiomatic”, in terms of differences of knot diagrams [8], and the “combinatorial”, in terms
of homomorphisms of chord diagrams [17].
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Figure 4.1: A triple point

In our case, we can apply the Vassiliev’s machinery to the space of smooth mapsM = {f : R→
R2} and discriminant Σ ⊂M as the complement of the set of all the triple points free plane curves.
We will define Vassiliev invariants in the axiomatic way, but is equivalent to the geometrical and
combinatorial [36].

Definition 4.1.1 (Singular Triple Points Free Plane Curve). Let f be a map of a one-dimensional
manifold to R2. A point p ∈ im(f) ⊂ R2 is a triple point of f if f−1(p) consists of three points
t1, t2 and t3 in the domain, and the tangent vectors f ′(t1), f ′(t1) and f ′(t1) are pairwise linearly
independent. A singular triple points free plane curve is an immersion of R into R2 which coincides
with some fixed linear embedding outside a compact interval, and all of whose multiple points are
transversal double points and triple points. Triple points are also referred as singular points, because
is where the map fails to be a triple points free plane curve. Locally, a triple point looks like in figure
4.1.

We can degenerate a singular point to obtain only double points by perturbing the curve in a
small neighbourhood of the triple point. Set the natural orientation as a parametrized curve by R
and signs (+) and (−) for perturbing in a small neighbourhood as follows

(+) (−)
and (+) (−) .

Remark 4.1.2. The signs are determined by something called vanishing triangles. Such triangles are
formed by three branches of the curve after and before perturbing the curve in a small neighbourhood
of a singular point. The coorientation of the discriminant is determined by vanishing triangles [2].

Any invariant v of triple points free plane curves with values in an algebraic structure with at
least of abelian group, can be extended to singular triple points free plane curves by the planar
version of the Vassiliev skein relation:

v
( )

= v
( )

− v
( )

and v
( )

= v
( )

− v
( )

. (4.1.1)
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Figure 4.2: Singular planar pure braid

The process of applying the skein relations to each triple point is also referred to as resolving a
singular point. Using the Vassiliev skein relation recursively, we can extend the invariant to singular
triple points free plane curves with an arbitrary number of triple points. There are many ways to
do it, only by changing the order in which we resolve triple points. However, it doesn’t depend,
the complete resolution of a singular triple points free plane curve C with n triple points yields an
alternating sum

v(C) =
∑

ε1,...,εn

(−1)|ε|v(Cε1,...,εn),

where |ε| is the number of −1’s in the sequence ε1, . . . , εn, and Cε1,...,εn is the triple points free plane
curve obtained by resolving triple points of C with the positive or negative resolution, according to
the sign of εi for the singular point i.

Definition 4.1.3 (Vassiliev Invariant). An invariant v of triple points free plane curve is a Vassiliev
invariant (or finite type invariant) of order ≤ k if its extension vanishes on all singular triple points
free plane curves with more than k triple points. A Vassiliev invariant is of order k if it is of order
≤ k but not of order ≤ k − 1.

In general, Vassiliev invariants can take values in an arbitrary abelian group. For our purpose all
invariants will take values in real numbers R.

For the case of planar pure braids, we can consider Rn as a space of functions, and the 3-equal
arrangement An,3 as the discriminant. A singular planar pure braid can be thought as a based loop
γ : I = [0, 1] → Conf3(R, n) t An,3 such that γ(t) ∈ An,3 for a finite number of t’s such that γ(t)
has at most three equal coordinates. Representing the singular planar pure braid as a plane tangle,
looks like a planar pure braid with some triple points in the same sense like before.

By the orientation of the strands of planar braids, the branches in a triple point never point
down, then we obtain only one Vassiliev skein relation for planar braids:

v
( )

= v
( )

− v
( )

. (4.1.2)
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Using the Vassiliev skein relation, we can extend an invariant of planar pure braids to singular
planar pure braids.

Definition 4.1.4 (Vassiliev Invariant of Planar Pure Braids). An invariant of planar pure braids
v : PPn → R is a Vassiliev invariant of order ≤ k if its extension vanishes on singular planar pure
braids with more than k triple points. A Vassiliev invariant is of order k if it is of order ≤ k but not
of order ≤ k − 1.

Let us denote by Vnk the vector space of Vassiliev invariants of order ≤ k of PPn with values in
R. It follows from the definition that Vnk ⊂ Vnk , so we have an increasing filtration

Vn0 ⊂ Vn1 ⊂ · · · ⊂ Vnk ⊂ · · · ⊂ Vn :=
∞⋃

k=0

Vnk .

We have Vn0 = R is the set of constant invariants. If v ∈ Vn0 , then v vanishes in every singular
planar pure braid, and every planar pure braid becomes trivial after a finite sequence of the third
Reidemeister moves which imply triple points, then it suffices to know v(1) with 1 the trivial planar
pure braid in n strands.

Singular planar pure braids can be identified as elements of the group algebra R[PPn] via the
relation

= − ∈ R[PPn]. (4.1.3)

Let I ⊂ R[PPn] the augmentation ideal, that is, the kernel of the homomorphism R[PPn]→ R that
sends each b ∈ PPn to 1. Elements of I are linear combinations

∑
aibi with

∑
ai = 0. The power

Ik of the augmentation ideal forms a descending filtration

R[PPn] ⊃ I ⊃ I2 ⊃ · · · ⊃ Ik ⊃ . . . .

Every planar pure braid can be transformed to the trivial planar braid by a sequence of deformations
in which appear and disappear triple points., i.e., we allow the third Reidemeister move Ω±3 . Using
4.1.3 we have

I = 〈(b1 − b2) + (b2 − b3) + · · ·+ (bm − 1)|bi, bi+1 ∈ PPn differ by an Ω±3 move〉
= 〈(b− b′)|b, b′ differ by an Ω±3 move〉
= 〈 singular planar pure braids 〉.

It is easy to see that any singular planar pure braid with k triple points can be written as the product
of k singular planar pure braids, each with one singular point. For instance,
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∼ .

Therefore, each power of the augmentation ideal can be described in a very simple form

Ik = 〈planar pure braids with k singular points〉.

This gives a new identification of Vassiliev invariants as follows.

Proposition 4.1.5. There is a canonical isomorphism

Vnk ∼= Hom(R[PPn]/Ik+1,R).

Another approach to describe Vassiliev invariants for planar pure braids uses a general theory
known as Chen’s iterated integral [14]. We shall briefly review it.

4.2 Bar Complex and Chen’s Iterated Integrals

Chen’s method of iterated integrals generalizes the notion of integrating forms over cycles, and by
generalizing the de Rham theorem provides homotopy information than just the abelianization of
the fundamental group.

Let X be a smooth manifold, and let ΩX be the space of smooth based loops on X. For a 1-form
ω ∈ A1

DR(X), by integration we have a map

∫
ω : ΩX → R, γ 7→

∫

γ

ω :=

∫ 1

0

α(t)dt.

where γ : [0, 1]→ X and α = γ∗ω is the pull-back. By the de Rham theorem,
∫
γ
ω only depends on

the homotopy of the loop γ if and only if ω is closed. Then
∫
ω defines an homomorphism

∫
ω : π1(X)→ R

hence, with the composition of the Hurewicz homomorphism we obtain the de Rham isomorphism
Hom(π1(X)/(π1(X))ab,R) ∼= H1(X,R) ∼= H1

DR(X). Chen generalized the integration map.
For 1-forms ω1, . . . , ωk ∈ A1

DR(X), Chen defined a functional on the loop space

∫
ω1 · · ·ωk : ΩX → R, γ 7→

∫

γ

ω1 · · ·ωk.
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The iterated integration for this particular case is defined by
∫

γ

ω1 · · ·ωk :=

∫
· · ·
∫

0≤t1<···<tk≤1

α1(t1)α2(t2) · · ·αk(tk)dt1 · · · dtk

=

∫ 1

0

(∫ tk−1

0

· · ·
(∫ t3

0

(∫ t2

0

α1(t1)dt1

)
α2(t2)dt2

)
· · ·
)
αk(tk)dtk

where αi = γ∗ωi is the pull-back. Such functional is called a basic iterated integral of length k. An
iterated integral will mean an R-linear combination of basic iterated integrals and constant func-
tionals on ΩX. The length of an iterated integral is the largest length of its summands (constant
functionals have zero length). Chen’s generalization of the integration map states that if 1-forms
are “closed” in some sense, the integration map

∫
ω1 . . . ωk is a homotopy functional or a 0-form of

ΩX. Chen generalized the notion of manifolds to the infinite dimensional case with something called
differentiable spaces. Chen defined the de Rham complex on differentiable spaces. In this setting,
iterated integrals are differential forms of ΩX and with their exterior derivative we determine when
are closed forms. In this sense the integration map as above

∫
ω1 . . . ωk is a homotopy functional on

ΩX. In order to define the exterior derivative, we recall the bar complex and iterated integrals for
arbitrary differential forms.

We denote by πi : Xk → X the projection on the ith factor. For differential forms ω1, . . . , ωk on
X, we write

ω1 × · · · × ωk := π∗1ω1 ∧ · · · ∧ π∗kωk.
Let

Bn =
⊕

p−k=n

Cp,−k

where Cp,−k is the vector space spanned by the symbols

[ω1| · · · |ωk] := ω1 × · · · × ωk,

with differential forms of positive degrees ω1, . . . , ωk on X such that

degω1 + · · ·+ degωk = p.

Let d1 and d2 be differentials as follows

d1[ω1| · · · |ωk] =
k∑

i=1

(−1)i[Jω1| · · · |Jωi−1|dωi|ωi+1| · · · |ωk],

d2[ω1| · · · |ωk] =
k∑

i=1

(−1)i−1[Jω1| · · · |Jωi−1|Jωi ∧ ωi+1|ωi+2| · · · |ωk],

where Jω = (−1)degωω. With these two differentials, define d = d1 +d2 and B(A∗DR(X)) =
⊕∞

n=0 B
n.

The associated complex (B∗, d) is called the bar complex.
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Definition 4.2.1 (Iterated Integral). Let ∆k = {(t1, . . . , tk) ∈ [0, 1]k|0 ≤ t1 ≤ · · · ≤ tk ≤ 1} the
standard k-simplex, and consider ev : ΩX×∆k → Xk the natural map defined by ev(γ, (t1, . . . , tk)) =
(γ(t1), . . . , γ(tk)). Chen’s iterated integral of the differential forms ω1, . . . , ωk along the path γ is by
definition ∫

γ

ω1 · · ·ωk :=

∮

∆k

ev∗(ω1 × · · · × ωk)

where
∮

is the integral along the fiber in the trivial bundle ρ : ΩX ×∆k → ΩX.

The iterated integral is considered to be a differential form of degree p − k on the based loop
space ΩX. Let A∗DR(ΩX) the de Rham complex of differential forms on ΩX. The integration map
in the above construction, defines a map

∫
: B(A∗DR(X)) −→ A∗DR(ΩX). (4.2.1)

Chen showed that the integration map 4.2.1 determines a morphism of complexes. Furthermore, if
the manifold X is simply connected, the bar complex computes the cohomology of the loop space
ΩX, i.e.,

H i(ΩX) ∼= H i(B(A∗DR(X))).

In the case X is non-simply connected, the 0-dimensional cohomology of the bar complex extracts
information on the fundamental group of X in the following sense.

Theorem 4.2.2 ([14]). The integration map 4.2.1 defines a pairing

H0(B(A∗DR(X)))⊗ R[π1(X)] −→ R.

Furthermore, for the increasing filtration on the bar complex Fk(B(A∗DR(X))) =
⊕

q≤k C
p,−q, which

induces an increasing filtration on the cohomology, the above pairing gives an isomorphism

Fk(H
0(B(A∗DR(X)))) ∼= Hom(R[π1(X)]/Ik+1,R),

which induces an isomorphism by taking projective limits

H0(B(A∗DR(X))) ∼= Hom( ̂R[π1(X)],R),

where ̂R[π1(X)] is the completion of the group algebra with respect to the powers of the augmentation
ideal.

Remark 4.2.3. In [14], Chen proves that the map 4.2.1 [ω1| · · · |ωk] 7→
∫
ω1 · · ·ωk induces an

isomorphism of Hopf algebras between B(A∗DR(X)) and a differential graded subalgebra of ADR(ΩX)
which consists of Chen’s iterated integrals and denoted by Ch∗(ΩX). Furthermore, if A ⊂ A∗DR(X)
is a differential graded subalgebra such that the inclusion A → A∗DR(X) induces isomorphisms in
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cohomology in all dimensions, then all elements in Ch∗(ΩX) can be written as iterated integrals in
differential forms of A. That is the case when the space X is formal in the sense of rational homotopy.

For the last in this section, we recall the Chen’s formal connection. Let X1, . . . , Xm be a basis
for H1(X,R) and ω1, . . . , ωm be a set of real closed 1-forms on X representing the basis of H1(X,R)
and dual to the basis {Xi}. We denote by R〈〈X1, . . . , Xm〉〉 the algebra of non-commutative formal
power series with indeterminates Xi. Consider the expression

α =
∑

i

αiXi +
∑

i,j

αi,jXiXj +
∑

i,j,k

αi,j,kXiXjXk + . . .

where all coefficients are 1-forms on X. We shall say that α is an R〈〈X1, . . . , Xm〉〉-valued 1-form on
X. We refer to

∑
i αiXi as the linear part of α. Chen proves the following.

Theorem 4.2.4 ([14]). There exists an R〈〈X〉〉-valued 1-form ω on X whose linear part is
∑

i ωiXi

and an ideal J ⊂ R〈〈X〉〉 such that there is a ring homomorphism

Z : R[π1(X)] −→ R〈〈X〉〉/J
given by

Z(γ) = 1 +

∫

γ

ω +

∫

γ

ωω + · · ·+
∫

γ

ω · · ·ω + · · · .

If I ⊂ R〈〈X〉〉 the augmentation ideal which consists of formal series with zero constant term, the
kernel of the composite map

Z : R[π1(X)] −→ R〈〈X〉〉/J −→ R〈〈X〉〉/(J + In)

is precisely In ⊗ R where In is the nth power of the augmentation ideal of R[π1(X)].

Corollary 4.2.5. The map Z : R[π1(X)] −→ R〈〈X〉〉/J is injective if π1(X) is torsion free and
residually nilpotent.

Definition 4.2.6 (Formal Homology Connection). The map Z : R[π1(X)] −→ R〈〈X〉〉/J is called
the formal homology connection or Chen’s expansion.

Remark 4.2.7. If there exist the differential graded subalgebra as in remark 4.2, Chen shows that
J is an homogeneous ideal. Consequently, R〈〈X〉〉/J is a graded algebra. Furthermore, the formal
connection Z induces an injective map

A(π1(X))⊗ R −→ R〈〈X〉〉/J
where A(π1(X)) =

⊕
k≥0 I

k/Ik+1, and the image of the formal homology connection is contained in
the graded completion of the image of this map. This means that the 1-form

ω =
∑

i

ωiXi +
∑

i,j

ωi,jXi, Xj +
∑

i,j,k

ωi,j,kXiXjXk + . . .

is actually, ̂A(π1(X))⊗ R-valued and we can think of Xi as the generators of A(π1(X)).
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4.3 The case of Conf3(R, n)
Let us apply the construction of the last section to our configurations space Conf3(R, n). First of
all, by proposition 4.1.5 and theorem 4.2.2 we have

Vnk ∼= Hom(R[PPn]/Ik+1,R) ∼= Fk(H
0(B(A∗DR(Conf3(R, n))))),

for each k, and taking projective limits we have

Vn ∼= Hom(R̂[PPn],R) ∼= H0(B(A∗DR(Conf3(R, n)))).

Now, we have an equivalence between Vassiliev invariants and the zero dimensional cohomology of
B(A∗DR(Conf3(R, n))).

One good feature of the space Conf3(R, n) which allow us to give a better description of
H0(B(A∗DR(Conf3(R, n)))) is that Conf3(R, n) is a formal space in the sense of rational homotopy. In
[34], Severs and White use discrete Morse theory to find a minimal Morse complex for Conf3(R, n),
and by the discrete version of Witten deformation of Forman [16], this minimal Morse complex is a
model of Conf3(R, n), hence, is formal. As a consequence, instead of take A∗DR(Conf3(R, n)) which
is quite huge, we can use the cohomology H∗DR(Conf3(R, n)) to compute H0(B(A∗DR(Conf3(R, n)))).
In chapter 1, we review the cohomology ring H∗(Conf3(R, n)), which is generated by classes of basic
partitioner posets in the first cohomology group. By the De Rham theorem, both cohomologies are
isomorphic. If we denote by ωP a differential form corresponding to the basic partitioner poset P , the
cohomology H∗DR(Conf3(R, n)) is generated by the set of 1-forms ωP for P basic partitioner posets
of degree 1. We know by Björner and Welker in [11] that the cohomology groups are free, hence,
dual to homology groups. In the same way, let be XP ∈ H1(Conf3(R, n)) dual to the 1-form ωP .
Then the set of XP ’s for all P basic partitioner poset of degree 1, forms a basis in H1(Conf3(R, n)).
Let be R〈〈XP〉〉 be the algebra of non-commutative formal power series with indeterminates XP .
By theorem 4.2.4, by the formality of the space Conf3(R, n), and the fact that the cohomology
H∗(Conf3(R, n)) is generated in degree 1, exists an R〈〈XP〉〉-valued 1-form and is given by only the
linear part, i.e.,

ω =
∑

P∈P

ωPXP . (4.3.1)

Additionally, exists an ideal J ⊂ R〈〈XP〉〉 and a ring homomorphism

Z : R[PPn] −→ R〈〈X〉〉/J,

given by

Z(γ) = 1 +

∫

γ

ω +

∫

γ

ωω + · · ·+
∫

γ

ω · · ·ω + · · · . (4.3.2)

By proposition 1.3.16, remark 2.3 and corollary 4.2.5, this ring homomorphism is injective. In
consequence we have the following direct results.
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Theorem 4.3.1. The formal homology connection 4.3.2 with R〈〈XP〉〉-valued 1-form given by 4.3.1,
separates planar pure braids.

Applying proposition 4.1.5, theorem 4.2.2 and by the formality of Conf3(R, n), we have isomor-
phisms

Fk(H
0(B(H∗DR(Conf3(R, n))))) ∼= Hom(R[PPn]/Ik+1,R) ∼= Vnk

An the summands of the formal homology connection, contains all the homotopy iterated integrals
of all lengths k. Hence,

Theorem 4.3.2. The formal homology connection 4.3.2 contain all the Vassiliev invariants. Then,
Z is the universal Vassiliev invariant.

As an immediate consequence of theorems 4.3.1 and 4.3.2 we have the next corollary.

Corollary 4.3.3. Vassiliev invariants classify planar pure braids.

This last corollary was known by Merkov in [29], but his point of view is combinatorial. He
represents Vassiliev invariants via Gauss diagram formulas, as Goussarov, Polyak and Viro do it
for Vassiliev invariants for classical and virtual knots [17]. In this chapter, we obtain an universal
Vassiliev invariant of planar pure braids as the Kontsevich integral is the universal Vassiliev invariant
for knots and braids [27]. The big difference from the Kontsevich integral for planar braids and our
universal Vassiliev invariant for planar pure braids is that we can not make computations in absence
of differential forms. However, theoretically has a lot of consequences by the general theory of iterated
integrals developed by Chen.

Remark 4.3.4. Bar-Natan in [3] has an expository note about Taylor expansions on groups. In that
sense, the group PPn we study, has a Taylor and faithful expansion given by the universal Vassiliev
invariant 4.3.2.

74



Conclusions and Future Directions

The spaces Conf3(R, n) and groups PPn are very similar to the usual configurations spaces F(C, n)
and the pure braid groups Pn in many aspects. In particular,

• Conf3(R, n) is an Eilenberg-MacLane space K(π, 1) (a new proof of this is given in the present
thesis);

• its fundamental group has a geometric representation as planar braids;

• it is a formal space;

• PPn is iterated semidirect products of subgroups;

• PPn is torsion free;

• PPn is residually nilpotent;

• the cohomology ring of Conf3(R, n) is quadratic;

• PPn has a universal Vassiliev invariant por small cases given by a Chen-Kohno integral;

• Vassiliev invariants separate planar pure braids;

• closures of elements in PPn represent plane curves;

• PPn acts on a CAT(0) space; same is known for the usual braids Bn for small values of n.

Things that we know are different:

• the forgetful map Conf3(R, n)→ Conf3(R, n− 1) is not a fibration;

• the semidirect product decomposition of PPn is not almost-direct (as shown in the present
thesis).

Things that work for braids and knots which we wish to know for planar braids and plane curves:

• whether there are connections with operator algebras;

• whether there is a normalization of the universal Vassiliev invariant of PPn that works for plane
curves;

• whether there exist polynomial invariants, categorifications, and homologies;

75



• explicit descriptions of the group presentation, Malcev completion and the corresponding Hopf
algebra;

• whether there are versions of quantum groups and associators;

• what plays the role of the Chern-Simons theory;

• what plays the role of the weight systems coming from Lie algebras.
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Appendix A

Reidemeister-Schreier Process

Given a presentation of a group G and a subgroup H < G, the Reidemeister-Schreier process shows
how to compute a presentation for H in terms of certain knowledge of its right (or left) cosets. For
more details about the process, see [28] and [20].

A.1 The Algorithm

We give a full description of the Reidemeister-Schreier process following the appendix of Gæde in
[20].

Let us first consider the case when G = F (X) is a free group generated by a set X. Let L be a
subgroup of F (X).

Definition A.1.1 (Schreier transversal). A (right) Schreier transversal of L is a subset S ⊂ F (X),
consisting of exactly one representative from each (right) coset of L, and having the property that
if t ∈ S can be written as a reduced word xε11 . . . x

εn
n , then any subword of t is also in S , i.e.,

1, xε11 , x
ε1
1 x

ε2
2 , . . . , x

ε1
1 . . . x

εn−1

n−1 ∈ S . It is not hard to show that a Schreier transversal can always be
found.

For any u ∈ F (X), let u ∈ S such that Lu = Lu. Define the set Y = {(t, x) ∈ S ×X | tx 6= tx},
and the homomorphism φ : F (Y ) → L given by φ(t, x) = tx(tx)−1. In fact φ maps into L ⊂ F (X),
since

Lφ(t, x) = L(tx(tx)−1) = L(tx)L(tx)−1 = L((tx)(tx)−1) = L.

Given u = xε11 . . . x
εn
n ∈ L written as a reduced word, we set up the following table

t1 t2 · · · tn tn+1

xε11 xε22 · · · xεnn
v1 v2 · · · vn

The entries in the top row are computed in the following way:

t1 = 1, ti+1 = tix
εi
i , 1 ≤ i ≤ n.
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Since Lti+1 = L(tix
εi
i ) = L(tix

εi
i ) = (Lti)x

εi
i = · · · = L(t1)xε11 · · ·xεii = L(xε11 · · ·xεii ), We have that

ti+1 = xε11 · · ·xεii , and in particular tn+1 = xε11 · · ·xεnn = u = 1, because of u ∈ L.
The bottom row is computed as follows:

(
t

x

)
=

{
(t, x) if tx 6= tx
1 otherwise,

and for 1 ≤ i ≤ n,

vi =

{ (
ti
xi

)
if εi = +1

(
ti+1

xi

)−1
if εi = −1.

Note that vi ∈ F (Y ). Now, if εi = +1, we have

φ(vi) = tix
εi
i (tix

εi
i )−1 = tix

εi
i t
−1
i+1,

and if εi = −1 we again have

φ(vi) = ti+1x
−εi
i x−εii t−1

i+1 = tix
εi
i t
−1
i+1,

Therefore, if we let v = v1 · · · vn, we have

φ(v) = φ(v1)φ(v2) · · ·φ(vn)

= (t1x
εi
1 t
−1
2 )(t2x

εi
2 t
−1
3 ) · · · (tnxεin t−1

n+1)

= t1x
ε1
1 · · ·xεnn t−1

n+1

= 1xε11 · · ·xεnn 1

= u.

So we define the rewriting map ψ : L→ F (Y ) by ψ(u) = v, and we have just seen that φ ◦ ψ = idL.
In the definition of ψ we assumed that xε11 · · ·xεnn was a reduced word. It is easy to check that is not
necessary.

Now, we want to show that ψ ◦φ = idF (Y ). By construction, it’s clear that ψ is a homomorphism,
therefore it suffices to consider a generator y = (t, x). Then φ(y) = tx(tx)−1, suppose t = xε11 · · ·xεnn
and tx = x̃ω1

1 · · · x̃ωmm as reduced words. Then because of the Schreier property of S we get the
following table for φ(y)

1 xε11 xε11 x
ε2
2 · · · xε11 · · ·xεn−1

n−1 t x̃ω1
1 · · · x̃ωmm x̃ω1

1 · · · x̃ωm−1

m−1 · · · x̃ω1
1 1

xε11 xε22 xε33 · · · xεnn x x̃ωmm x̃
ωm−1

m−1 · · · x̃ω1
1

1 1 1 · · · 1 y 1 1 · · · 1

whereby ψ(φ(y)) = y, which proves the following theorem.

Theorem A.1.2 (Nielsen-Schreier theorem). There is an isomorphism of groups L ∼= F (Y ).
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We now turn to the general case of a subgroup H of a group G with presentations 〈X |R〉. This
means that we have a short exact sequence

1 // 〈R〉 � � // F (X) λ // // G // 1.

Let L = λ−1(H) be the subgroup of F (X), and the preceding theorem gives us an isomorphism
φ : F (Y )→ L. Setting µ = λ ◦ φ : F (Y )→ H, we then have the short exact sequence

1 // kerµ �
� // F (Y ) λ // // H // 1,

and all that remains is to find a set of relators Q ⊂ F (Y ), such that kerµ = 〈Q〉. So, let v ∈ kerµ,
then φ(v) ∈ kerλ = 〈R〉, and hence

φ(v) = (u1r
ε1
1 u
−1
1 ) · · · (unrεnn u−1

n ),

for some ui ∈ F (X), ri ∈ R, and εi = ±1. In order to be able to use φ−1, we write ui as ũiti with
ũi ∈ L, ti ∈ S , so that

φ(v) = ũ1(t1r1t
−1
1 )ε1ũ−1

1 · · · ũn(tnrnt
−1
n )εnũ−1

n , (A.1.1)

and since now both ũi ∈ L and tirit
−1
i ∈ kerλ ⊂ L, applying φ−1 to A.1.1 and denoting by vi =

φ−1(ũi), we get
v = v1φ

−1(t1r1t
−1
1 )ε1v−1

1 · · · vnφ−1(tnrnt
−1
n )εnv−1

n .

This shows that if we put Q = {φ−1(trt−1) | t ∈ S , r ∈ R}, we have kerµ ⊂ 〈Q〉. And the reverse
inclusion is obvious, for q ∈ Q we have Q = φ−1(trt) for some t ∈ S , r ∈ R, and then

µ(q) = λ(trt−1) = 1.

So kerµ is a normal subgroup of F (Y ) containing the set Q, and 〈Q〉 is the smallest subgroup. This
proves the following theorem.

Theorem A.1.3 (Reidemeister-Schreier). The subgroup H can be presented as 〈Y |Q〉.

Sometimes it is possible to simplify this presentations by making use of the relators in R. We
therefore imagine ourselves given a set Z, an epimorphism χ : F (Y )→ F (Z), and a homomorphism
ν : F (Z)→ H, such that the following diagram commutes,

F (Y )

χ

��

µ

""
H

F (Z)

ν

<<

,
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i.e., ν ◦ χ = µ = λ ◦ φ. We see that ν is surjective, so that we have a short exact sequence

1 // ker ν �
� // F (Z) ν // // H // 1.

Let w ∈ ker ν, since χ is an epimorphism, w = χ(v) for some v ∈ F (Y ). As 1 = ν(w) = ν(χ(v)) =
µ(v), we have v ∈ kerµ = 〈Q〉, so

v = (v1q
ε1
1 v
−1
1 ) · · · (vnqεnn v−1

n ),

with vi ∈ F (Y ), qi ∈ Q, ε = ±1. If we denote by wi = χ(vi), we get

w = χ(v) = w1(χ(q1))ε1w−1
1 · · ·wn(χ(qn))εnw−1

n ,

so if we put P = χ(Q) \ {1}, we have ker ν ⊂ 〈P 〉, and the reverse inculsion follows as before. We
then have the next proposition.

Proposition A.1.4. H can be presented as 〈Z |P 〉.

A.2 Presentation of D
(1)
n y D

(2)
n

First recall that PBn is given by the presentation 〈σ1, . . . , σn−1|R1∪R2〉, where σi is the planar braid
with only one double point like in figure 1.3, and relations

R1 = {(σj)2 | 1 ≤ j ≤ n− 1} (A.2.1)

R2 = {(σjσk)2 | if |j − k| > 1, for all 1 ≤ j, k ≤ n− 1}. (A.2.2)

Let ϕ : PBn → Σn the homomorphism such that ϕ(σj) = sj. We see Σn−l as the subgroup of Σn

whose permutations map n− i 7→ n− i for i = 0, 1, . . . , l − 1. We set

D(l)
n = ϕ−1(Σn−l) l = 1, . . . , n

Geometrically, D
(l)
n consists of planar braids whose last l strands, do not change the order (see figure

2.1). We have that D
(n−1)
n = D

(n)
n = PPn and by convention D

(0)
n = PBn. The chain of subgroups in

Σn

Σn ⊃ Σn−1 ⊃ · · · ⊃ Σ2 ⊃ Σ1 = Σ0 = {1},
induce the chain of subgroups in PBn

PBn ⊃ D(1)
n ⊃ · · · ⊃ D(n−2)

n ⊃ D(n−1)
n = D(n)

n = PPn.

A Schreier transversal set of D
(l)
n in D

(l−1)
n is

Sl = {Mn−l+1,il | 0 ≤ i ≤ n− l},
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where Mn−l+1,il = σn−lσn−l−1 · · ·σn−l−il for 1 ≤ i ≤ n− l − 1 and Mn−l+1,0 = 1.

Case D
(1)
n in PBn. Taking l = 1,

S1 = {Mn,i | 0 ≤ i ≤ n− 1},

where Mn,i = σn−1σn−2 · · ·σn−i for 1 ≤ i ≤ n − 1 and Mn,0 = 1. We must now calculate Mn.iσj for
all 0 ≤ i ≤ n− 1 and 1 ≤ j ≤ n− 1. It suffices to understand how the induced permutation acts on
n. As

ϕ(Mn,i) = (n− 1, n)(n− 2, n− 1) · · · (n− i, n− i+ 1)

= (n− i, n− i+ 1, . . . , n− 1, n),

and

n
ϕ(Mn,i)7−→ n− i ϕ(Mn,i)7−→





n− i if j 6= n− i− 1, n− i,
n− i− 1 if j = n− i− 1,
n− i+ 1 if j = n− i.

We must have

Mn,iσj =





Mn,i if i+ j 6= n− 1, n,
Mn,i+1 if i+ j = n− 1,
Mn,i−1 if i+ j = n.

Now we can calculate Mn,iσj(Mn,iσj)
−1 for all 0 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1. It will be by cases.

• if i+ j 6= n− 1, n

Mn,iσj(Mn,iσj)
−1 = Mn,iσj(Mn,i)

−1

= (σn−1 · · ·σn−i)σj(σ−1
n−i · · ·σ−1

n−1) (A.2.3)

• if i+ j = n− 1

Mn,iσj(Mn,iσj)
−1 = Mn,iσj(Mn,i+1)−1

= (σn−1 · · ·σj+1)σj(σ
−1
j · · ·σ−1

n−1)

= 1

• if i+ j = n

Mn,iσj(Mn,iσj)
−1 = Mn,iσj(Mn,i−1)−1

= (σn−1 · · ·σj)σj(σ−1
j+1 · · ·σ−1

n−1) (A.2.4)
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Following the procedure described previously, we should therefore put Y = {(Mn,i, σj)|0 ≤ i ≤
n− 1, 1 ≤ j ≤ n− 1, i+ j 6= n− 1}, and define the homomorphism φ : F (Y )→ D

(1)
n by

φ(Mn,i, σj) =

{
σn−1 · · ·σn−iσjσ−1

n−i · · ·σ−1
n−1 if i+ j 6= n,

σn−1 · · ·σj+1σ
2
jσ
−1
j+1 · · ·σ−1

n−1 if i+ j = n,

However, as we mentioned, sometimes it is possible to reduce the generators using the relations of
the bigger group, in this case PBn. In this particular case, by the relation R1 (see A.2.1) in the
equation A.2.4, we have

φ(Mn,i, σj) = 1 if i+ j = n

and in equation A.2.3, when j + i < n− 1 we can use repeatedly times the relation R2 (see A.2.2) to
get

φ(Mn,i, σj) = σn−1 · · ·σn−iσjσ−1
n−i · · ·σ−1

n−1

= σn−1 · · ·σn−i+1σjσn−iσ
−1
n−i · · ·σ−1

n−1

...

= σj,

on the other hand, if i+ j > n and using also relation R1

φ(Mn,i, σj) = σn−1 · · ·σn−iσjσ−1
n−i · · ·σ−1

n−1

= σn−1 · · ·σn−i+1σjσn−iσ
−1
n−i · · ·σ−1

n−1

...

= σn−1 · · ·σj−1σjσ
−1
j−1 · · ·σ−1

n−1

= σn−1 · · ·σj−1σjσj−1 · · · σn−1

In conclusion we have that the generators can be reduced to

σj for all 1 ≤ j ≤ n− 2

σn−1 · · ·σj−1σjσj−1 · · ·σn−1 for all 2 ≤ j ≤ n− 1 (A.2.5)

Recalling that σj = σ−1
j , the generators (A.2.5) are conjugation by Nn,j−1 = σn−1 · · ·σj−1. Then, if

we write N · σ = NσN−1, the generators (A.2.5) are rewritten as Nn,j−1 · σj for all 2 ≤ j ≤ n − 1.
We will therefore use the proposition A.1.4 to simplify the presentation. Let

Z = {σ1, . . . , σn−2, Nn,1 · σ2, . . . , Nn,n−2 · σn−1}

and define the homomorphism χ : F (Z)→ D
(1)
n by
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χ(Mn,i, σj) =





σj if i+ j < n− 1
1 if i+ j = n,
Nn,j−1 · σj if i+ j > n.

The final step is to compute the relators

P = {χ ◦ φ−1(trt−1)|t ∈ S1, r ∈ R = R1 ∪R2} \ {1}.
φ−1 is computed by means of tables as below. Note that

χ

(
Mn,i

σj

)
=





σj if i+ j < n− 1 (1 ≤ j ≤ n− 2)
1 if i+ j = n− 1,
1 if i+ j = n,
Nn,j−1 · σj if i+ j > n. (2 ≤ j ≤ n− 1)

(A.2.6)

For the relations, we compute Mn,i(σ
2
j )M

−1
n,i for all 0 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1 by cases as well as

we did in the generators.

• If i+ j < n− 1

Mn,0 Mn,1 . . . Mn,i−1 Mn,i Mn,i Mn,i . . . Mn,1 Mn,0

σn−1 σn−2 . . . σn−i σj σj σn−i . . . σn−1(
Mn,0

σn−1

) (
Mn,1

σn−2

)
. . .

(
Mn,i−1

σn−i

) (
Mn,i

σj

) (
Mn,i

σj

) (
Mn,i

σn−i

)
. . .

(
Mn,1

σn−1

)

χ
y

1 1 . . . 1 σj σj 1 . . . 1

• If i+ j = n− 1

Mn,0 Mn,1 . . . Mn,i−1 Mn,i Mn,i+1 Mn,i . . . Mn,1 Mn,0

σn−1 σn−2 . . . σn−i σj σj σn−i . . . σn−1(
Mn,0

σn−1

) (
Mn,1

σn−2

)
. . .

(
Mn,i−1

σn−i

) (
Mn,i

σj

) (
Mn,i+1

σj

) (
Mn,i

σn−i

)
. . .

(
Mn,1

σn−1

)

χ
y

1 1 . . . 1 1 1 1 . . . 1

• If i+ j = n

Mn,0 Mn,1 . . . Mn,i−1 Mn,i Mn,i−1 Mn,i . . . Mn,1 Mn,0

σn−1 σn−2 . . . σn−i σj σj σn−i . . . σn−1(
Mn,0

σn−1

) (
Mn,1

σn−2

)
. . .

(
Mn,i−1

σn−i

) (
Mn,i

σj

) (
Mn,i−1

σj

) (
Mn,i

σn−i

)
. . .

(
Mn,1

σn−1

)

χ
y

1 1 . . . 1 1 1 1 . . . 1
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• If i+ j > n

Mn,0 Mn,1 . . . Mn,i−1 Mn,i Mn,i Mn,i . . . Mn,1 Mn,0

σn−1 σn−2 . . . σn−i σj σj σn−i . . . σn−1(
Mn,0

σn−1

) (
Mn,1

σn−2

)
. . .

(
Mn,i−1

σn−i

) (
Mn,i

σj

) (
Mn,i

σj

) (
Mn,i

σn−i

)
. . .

(
Mn,1

σn−1

)

χ
y

1 1 . . . 1 Nn,j−1 · σj Nn,j−1 · σj 1 . . . 1

Now we compute the relations Mn,i(σjσk)M
−1
n,i for all 1 ≤ j, k ≤ n−1 s.t. |j−k| > 1, 0 ≤ i ≤ n−1,

and without lose of generality we can suppose that k > j + 1.

• If i+ j < n− 1

� if i+ k < n− 1

Mn,0 Mn,1 . . . Mn,i−1 Mn,i Mn,i Mn,i Mn,i Mn,i . . . Mn,1 Mn,0

σn−1 σn−2 . . . σn−i σj σk σj σk σn−i . . . σn−1(
Mn,0

σn−1

) (
Mn,1

σn−2

)
. . .

(
Mn,i−1

σn−i

) (
Mn,i

σj

) (
Mn,i

σk

) (
Mn,i

σj

) (
Mn,i

σk

) (
Mn,i

σn−i

)
. . .

(
Mn,1

σn−1

)

χ
y

1 1 . . . 1 σj σk σj σj 1 . . . 1

� if i+ k = n− 1

Mn,0 Mn,1 . . . Mn,i−1 Mn,i Mn,i Mn,i+1 Mn,i+1 Mn,i . . . Mn,1 Mn,0

σn−1 σn−2 . . . σn−i σj σk σj σk σn−i . . . σn−1(
Mn,0

σn−1

) (
Mn,1

σn−2

)
. . .

(
Mn,i−1

σn−i

) (
Mn,i

σj

) (
Mn,i

σk

) (
Mn,i+1

σj

) (
Mn,i+1

σk

) (
Mn,i

σn−i

)
. . .

(
Mn,1

σn−1

)

χ
y

1 1 . . . 1 σj 1 σj 1 1 . . . 1

� if i+ k = n

Mn,0 Mn,1 . . . Mn,i−1 Mn,i Mn,i Mn,i−1 Mn,i−1 Mn,i . . . Mn,1 Mn,0

σn−1 σn−2 . . . σn−i σj σk σj σk σn−i . . . σn−1(
Mn,0

σn−1

) (
Mn,1

σn−2

)
. . .

(
Mn,i−1

σn−i

) (
Mn,i

σj

) (
Mn,i

σk

) (
Mn,i−1

σj

) (
Mn,i−1

σk

) (
Mn,i

σn−i

)
. . .

(
Mn,1

σn−1

)

χ
y

1 1 . . . 1 σj 1 σj 1 1 . . . 1
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� if i+ k > n

Mn,0 Mn,1 . . . Mn,i−1 Mn,i Mn,i Mn,i Mn,i Mn,i . . . Mn,1 Mn,0

σn−1 σn−2 . . . σn−i σj σk σj σk σn−i . . . σn−1(
Mn,0

σn−1

) (
Mn,1

σn−2

)
. . .

(
Mn,i−1

σn−i

) (
Mn,i

σj

) (
Mn,i

σk

) (
Mn,i

σj

) (
Mn,i

σk

) (
Mn,i

σn−i

)
. . .

(
Mn,1

σn−1

)

χ
y

1 1 . . . 1 σj Nn,k−1 · σk σj Nn,k−1 · σk 1 . . . 1

• If i+ j = n− 1

Mn,0 Mn,1 . . . Mn,i−1 Mn,i Mn,i+1 Mn,i+1 Mn,i Mn,i . . . Mn,1 Mn,0

σn−1 σn−2 . . . σn−i σj σk σj σk σn−i . . . σn−1(
Mn,0

σn−1

) (
Mn,1

σn−2

)
. . .

(
Mn,i−1

σn−i

) (
Mn,i

σj

) (
Mn,i+1

σk

) (
Mn,i+1

σj

) (
Mn,i

σk

) (
Mn,i

σn−i

)
. . .

(
Mn,1

σn−1

)

χ
y

1 1 . . . 1 1 Nn,k−1 · σk 1 Nn,k−1 · σk 1 . . . 1

• If i+ j = n

Mn,0 Mn,1 . . . Mn,i−1 Mn,i Mn,i−1 Mn,i−1 Mn,i Mn,i . . . Mn,1 Mn,0

σn−1 σn−2 . . . σn−i σj σk σj σk σn−i . . . σn−1(
Mn,0

σn−1

) (
Mn,1

σn−2

)
. . .

(
Mn,i−1

σn−i

) (
Mn,i

σj

) (
Mn,i−1

σk

) (
Mn,i−1

σj

) (
Mn,i

σk

) (
Mn,i

σn−i

)
. . .

(
Mn,1

σn−1

)

χ
y

1 1 . . . 1 1 Nn,k−1 · σk 1 Nn,k−1 · σk 1 . . . 1

• If i+ j > n

Mn,0 Mn,1 . . . Mn,i−1 Mn,i Mn,i Mn,i Mn,i Mn,i . . . Mn,1 Mn,0

σn−1 σn−2 . . . σn−i σj σk σj σk σn−i . . . σn−1(
Mn,0

σn−1

) (
Mn,1

σn−2

)
. . .

(
Mn,i−1

σn−i

) (
Mn,i

σj

) (
Mn,i

σk

) (
Mn,i

σj

) (
Mn,i

σk

) (
Mn,i

σn−i

)
. . .

(
Mn,1

σn−1

)

χ
y

1 1 . . . 1 Nn,j−1 · σj Nn,k−1 · σk Nn,j−1 · σj Nn,k−1 · σk 1 . . . 1

Collecting the relations in the next tables:
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Mn,i(σ
2
j )M

−1
n,i for all 0 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1

i+ j < n− 1 (σj)
2 1 ≤ j ≤ n− 2

i+ j = n− 1 1
i+ j = n 1
i+ j > n (Nn,j−1 · σj)2 2 ≤ j ≤ n− 1

Mn,i(σjσk)
2M−1

n,i for all 1 ≤ j, k ≤ n− 1 s.t. k > j + 1, 0 ≤ i ≤ n− 1

i+ k < n− 1 (σjσk)
2 1 ≤ j, k ≤ n− 2

i+ j < n− 1 i+ k = n− 1 (σj)
2 1 ≤ j ≤ n− 2

i+ k = n (σj)
2 1 ≤ j ≤ n− 2

i+ k > n [σj(Nn,k−1 · σk)]2 1 ≤ j ≤ n− 2, 2 ≤ k ≤ n− 1, k > j + 2
i+ j = n− 1 (Nn,k−1 · σk)2 2 ≤ k ≤ n− 1
i+ j = n (Nn,k−1 · σk)2 2 ≤ k ≤ n− 1
i+ j > n [(Nn,j−1 · σj)(Nn,k−1 · σk)]2 2 ≤ j, k ≤ n− 1, k > j + 1

Re-indexing, Nn,j · σj+1 for all 1 ≤ j ≤ n− 2, the presentation of D
(1)
n looks like:

Proposition A.2.1. The subgroup D
(1)
n has a presentation with

generators : {σj | j ∈ [1, n− 2]} and {Nn,j · σj+1 | j ∈ [1, n− 2]}
relations : (σj)

2

(Nn,j · σj+1)2

(σjσk)
2 |j − k| > 1

[(Nn,j · σj+1)(Nn,k · σk+1)]2 |j − k| > 1
[σj(Nn,k · σk+1)]2 k > j + 1

Case D
(2)
n in D

(1)
n . The computations are analogue to the laste case. We summarize them in the

tables in the proof.

Proposition A.2.2. The subgroup D
(2)
n has a presentation with

generators : {σj | j ∈ [1, n− 3]}
{Nn−1,j · σj+1 | j ∈ [1, n− 3]}
{Mn−1,i2Nn,j · σj+1 | j ∈ [1, n− 3], i2 ∈ [0, n− 4], i2 < n− 2− j}
{Nn−1,j+1Nn,j+2 · (σj+1σj)

3 | j ∈ [1, n− 2]} (A.2.7)

{Nn−1,jNn,j+1 · σj+2 | j ∈ [1, n− 3]}
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relations : (σj)
2

(Nn−1,j · σj+1)2

(Nn−1,jNn,j+1 · σj+2)2

(Mn−1,i2Nn,j · σj+1)2

(σjσk)
2 |j − k| > 1

[σj(Nn−1,k · σk+1)]2 k > j + 1
[σj(Nn−1,kNn,k+1 · σk+2)]2 k > j + 1
[σj(Mn−1,iNn,k · σk+1)]2 k > j + 1
[σj, Nn−1,k+1Nn,k+2 · (σk+1σk)

3] k > j + 1
[(Nn−1,j · σj+1)(Nn−1,k · σk+1)]2 |j − k| > 1
[(Nn−1,j · σj+1)(Nn−1,kNn,k+1 · σk+2)]2 k > j + 1
[(Mn−1,i2Nn,j · σj+1)(Mn−1,i2Nn,k · σk+1)]2 |j − k| > 1
[(Mn−1,i2Nn,j · σj+1)(Nn−1,kNn,k+1 · σk+2)]2 k > j + 1
[(Nn−1,jNn,j+1 · σj+2)(Nn−1,kNn,k+1 · σk+2)]2 |j − k| > 1
(Nn−1,k+1Nn,j · σj+1)(Nn−1,k+1Nn,k+2 · (σk+1σk)

3) k > j + 1
= (Nn−1,k+1Nn,k+2 · (σk+1σk)

3)(Nn−1,kNn,j · σj+1)
[Nn−1,j+1Nn,j+2 · (σj+1σj)

3, Nn−1,kNn,k+1 · σk+2] k > j.

Proof. It follows by applying the Reidemeister-Schreier process to D
(1)
n with Schreier transversal set

S2 = {Mn−1,i|0 ≤ i ≤ n− 2}, where Mn−1,i = σn−2σn−3 · · · σn−1−i for 1 ≤ i ≤ n− 2 and Mn−1,0 = 1.
We obtain the resulting morphisms:

For the first family of generators {σj}n−2
j=1

χ

(
Mn−1,i

σj

)
=





σj if i+ j < n− 2, (1 ≤ j ≤ n− 3)
1 if i+ j = n− 2,
1 if i+ j = n− 1,
Nn−1,j−1 · σj if i+ j > n− 1. (2 ≤ j ≤ n− 2)

(A.2.8)

For the second family of generators {Nn,j · σj+1}n−2
j=1

χ

(
Mn−1,i

Nn,j · σj+1

)
=





Mn−1,i2Nn,j · σj+1 if i+ j < n− 2, (1 ≤ j ≤ n− 3)
Nn−1,j+1Nn,j+2 · (σj+1σj)

3 if i+ j = n− 2, (1 ≤ j ≤ n− 2)
Nn−1,j+1Nn,j+2 · (σjσj+1)3 if i+ j = n− 1, (1 ≤ j ≤ n− 2)
Nn−1,j−1Nn,j · σj+1 if i+ j > n− 1. (2 ≤ j ≤ n− 2)

(A.2.9)

The relations are collected in the next tables

87



Mn−1,i(σ
2
j )M

−1
n−1,i for all 0 ≤ i ≤ n− 2, 1 ≤ j ≤ n− 2

i+ j < n− 1 (σj)
2 1 ≤ j ≤ n− 3

i+ j = n− 1 1
i+ j = n 1
i+ j > n (Nn−1,j−1 · σj)2 2 ≤ j ≤ n− 2

Mn−1,i(Nn,j · σj+1)2M−1
n−1,i for all 0 ≤ i ≤ n− 2, 1 ≤ j ≤ n− 3

i+ j < n− 1 (Mn−1,i2Nn,j · σj+1)2 1 ≤ j ≤ n− 3
i+ j = n− 1 (Nn−1,j+1Nn,j+2 · (σj+1σj)

3)(Nn−1,j+1Nn,j+2 · (σjσj+1)3) 1 ≤ j ≤ n− 2
i+ j = n (Nn−1,j+1Nn,j+2 · (σjσj+1)3)(Nn−1,j+1Nn,j+2 · (σj+1σj)

3) 1 ≤ j ≤ n− 2
i+ j > n (Nn−1,j−1Nn,j · σj+1)2 2 ≤ j ≤ n− 2

Mn−1,i(σjσk)
2M−1

n−1,i for all 1 ≤ j, k ≤ n− 2 s.t. k > j + 1, 0 ≤ i ≤ n− 2

i+ k < n− 1 (σjσk)
2 1 ≤ j, k ≤ n− 3

i+ j < n− 1 i+ k = n− 1 (σj)
2 1 ≤ j ≤ n− 3

i+ k = n (σj)
2 1 ≤ j ≤ n− 3

i+ k > n [σj(Nn,k−1 · σk)]2 1 ≤ j ≤ n− 3, 2 ≤ k ≤ n− 2, k > j + 2
i+ j = n− 1 (Nn,k−1 · σk)2 2 ≤ k ≤ n− 2
i+ j = n (Nn,k−1 · σk)2 2 ≤ k ≤ n− 2
i+ j > n [(Nn,j−1 · σj)(Nn,k−1 · σk)]2 2 ≤ j, k ≤ n− 2, k > j + 1

Mn−1,i(σj(Nn,k · σk+1))
2M−1

n−1,i for all 1 ≤ j, k ≤ n− 2 s.t. k > j + 1, 0 ≤ i ≤ n− 2

i+ k < n− 1 [σj(Mn−1,i2Nn,k · σk+1)]
2 1 ≤ j, k ≤ n− 3

i+ j < n− 1 i+ k = n− 1 σj(Nn−1,k+1Nn,k+2 · (σk+1σk)
3)σj(Nn−1,k+1Nn,k+2 · (σkσk+1)

3) 1 ≤ j ≤ n− 3
i+ k = n σj(Nn−1,k+1Nn,k+2 · (σkσk+1)

3)σj(Nn−1,k+1Nn,k+2 · (σk+1σk)
3) 1 ≤ j ≤ n− 3

i+ k > n [σj(Nn−1,k−1Nn,k · σk+1)]
2 1 ≤ j ≤ n− 3, 2 ≤ k ≤ n− 2, k > j + 2

i+ j = n− 1 (Nn−1,k−1Nn,k · σk+1)
2 2 ≤ k ≤ n− 2

i+ j = n (Nn−1,k−1Nn,k · σk+1)
2 2 ≤ k ≤ n− 2

i+ j > n [(Nn,j−1 · σj)(Nn−1,k−1Nn,k · σk+1)]
2 2 ≤ j, k ≤ n− 2, k > j + 1

Mn−1,i((Nn,j · σj+1)(Nn,k · σk+1))
2M−1

n−1,i for all 1 ≤ j, k ≤ n− 2 s.t. k > j + 1, 0 ≤ i ≤ n− 2

i+ k < n− 1 [(Mn−1,i2Nn,j · σj+1)(Mn−1,i2Nn,k · σk+1)]
2 1 ≤ j, k ≤ n− 3

i+ j < n− 1 i+ k = n− 1 (Mn−1,i2︸ ︷︷ ︸
Nn−1,k+1

Nn,j · σj+1)(Nn−1,k+1Nn,k+2 · (σk+1σk)
3)(Mn−1,i2+1︸ ︷︷ ︸

Nn−1,k

Nn,j · σj+1)(Nn−1,k+1Nn,k+2 · (σkσk+1)
3) 1 ≤ j ≤ n− 3

i+ k = n (Mn−1,i2︸ ︷︷ ︸
Nn−1,k

Nn,j · σj+1)(Nn−1,k+1Nn,k+2 · (σkσk+1)
3)(Mn−1,i2+1︸ ︷︷ ︸

Nn−1,k+1

Nn,j · σj+1)(Nn−1,k+1Nn,k+2 · (σk+1σk)
3) 1 ≤ j ≤ n− 3

i+ k > n [(Mn−1,i2Nn,j · σj+1)(Nn−1,k−1Nn,k · σk+1)]
2 1 ≤ j ≤ n− 3, 2 ≤ k ≤ n− 2, k > j + 2

i+ j = n− 1 (Nn−1,j+1Nn,j+2 · (σj+1σj)
3)(Nn−1,k−1Nn,k · σk+1)(Nn−1,j+1Nn,j+2 · (σjσj+1)

3)(Nn−1,k−1Nn,k · σk+1) 2 ≤ k ≤ n− 2
i+ j = n (Nn−1,j+1Nn,j+2 · (σjσj+1)

3)(Nn−1,k−1Nn,k · σk+1)(Nn−1,j+1Nn,j+2 · (σj+1σj)
3)(Nn−1,k−1Nn,k · σk+1) 2 ≤ k ≤ n− 2

i+ j > n [(Nn−1,j−1Nn,j · σj+1)(Nn−1,k−1Nn,k · σk+1)]
2 2 ≤ j, k ≤ n− 2, k > j + 1
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