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ABSTRACT

Combinatorial Designs, Ideals and Quasi-Steiner Triple Systems

by

M. Sc. Javier Muñoz Bernabe

In this work, we study the generation of Steiner triple systems, which are an

important family of combinatorial designs. Combinatorial designs in general and

Steiner triple systems, in particular, are useful in science and technology. A Steiner

triple system (STS) of order v, briefly STS(v), is a set of 3-element subsets called

triples of a v-set of points such that every pair of points occurs in exactly one triple.

The work consists of two parts.

In the first part, we propose a method to generate combinatorial designs based

on algebraic geometry techniques, and we consider particular combinatorial designs

as points in the geometrical variety associated to a polynomial ideal. With this tech-

nique, we could construct ideals whose geometrical varieties are Steiner triple systems

and also we were successful in producing Steiner triple systems satisfying additional

restrictions, such as being anti-Pasch or Kirkman triple systems. Unfortunately, the

computation of the geometric variety was only possible for systems with very small

orders. First, we tried to construct a Gröbner basis and then to generate the points

in the varieties by using genetic algorithms, but in all cases, our methods only worked

for small orders.

The chromosomes of the genetic algorithms that we developed were precisely the

points in the domain of the geometric varieties used, and the fitness function was



the number of polynomials in the ideal that a chromosome satisfied. The method

worked fine when the fitness function was far from zero, but as it approached zero,

it was increasingly difficult to find better chromosomes. After some adjustments, we

found that by using only mutations (not crossovers) the behavior of the method was

improved, and in particular, we found an appropriate mutation. Our operation was

close to another reported by Hartley-Konstam [25] and then we found a hill-climbing

algorithm by Stinson [40] that worked very similar to Hartley-Konstam’s and our

method but with a more efficient behavior. This fact discards the use of genetic

algorithms to generate STSs; however, Hartley-Konstam’s method was published in

1993 and Stinson’s method in 1985. Eight years before!

We found that a formal analysis of Stinson’s method is extremely difficult. The

method is based on the extension of partial Steiner triple systems, and we found that

by making a refinement of these designs that we called quasi-Steiner triple systems it

was possible to produce a method with more operations than Stinson’s method. On

the other hand, the analysis on the correctness of this method is easier compared to

Stinson’s method.

In consequence, the second part of the work is devoted to study quasi-Steiner triple

systems. We discovered a very rich structure in quasi-Steiner triple systems and some

properties about them that we considered relevant. The study of quasi-Steiner triple

systems are significant for either the theoretical and the practical points of view.

Indeed finding STSs with additional properties may be simplified substantially by

first finding a QSTS with the desired properties and then transforming it into an

STS. For this purpose, we develop a method to transform a QSTS into an STS. We

consider that another of the main contributions of this thesis is a method to transform

a particular STS into non-isomorphic STSs.
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Chapter 1

Introduction

Combinatorial designs are important for several reasons. Probably this is due to

the fact that the design of experiments [43], which is formally part of statistics, is

essential to perform experiments requiring balance among all the parameters involved.

However, the applications of combinatorial designs go well beyond statistics. They

are very important in the pharmaceutical industry [37], bio-statistics studies [21], the

design of parallel RAID disk systems [28], the planning of sports tournaments [1], the

design of failure resilient codes [23] and fiber-optic networks [16], and so on. In [11]

appears a comprehensive survey of applications of combinatorial designs. Here we

work with Steiner triple systems, which are a specific type of combinatorial design,

but our ideas could be extended to other similar structures.

A Steiner triple system (STS) of order v, briefly STS(v), is a set of 3-element

subsets called triples of a v-set of points such that every pair of points occurs in

exactly one triple. Given an STS(v), standard counting arguments prove that each

point must occur in exactly r = v−1
2

triples, and that the triple system consists

of exactly b = v(v−1)
6

elements. Since both r and b are integers, we get necessary

conditions for the existence of an STS(v), which in fact turn out to be sufficient.

Theorem 1.1 For v ≥ 3, an STS(v) exists if and only if either v ≡ 1 mod 6 or

v ≡ 3 mod 6.

For a survey of basic results on Steiner triple systems see [10].
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A partial Steiner triple system (PSTS) of order v, briefly PSTS(v), is a set of

3-element subsets of a v-set of points such that every pair of points is contained into

at most one triple. The size of a PSTS(v) is the number of triples it contains. It is

easy to see that any PSTS(v) has size at most v(v−1)
6

; and a PSTS(v) of size v(v−1)
6

is

in fact an STS(v).

Several techniques have been used to generate Steiner triple systems. Among

them, constructions based on groups and quasi-grous [29] are common, also exhaustive

searches by computer and other heuristic searches [17]. Here we introduce a different

method to generate combinatorial designs in general and to construct Steiner triple

systems in particular. Our methods are based on algebraic geometry concepts and

hill-climbing techniques.

Our first objective is to establish links between design theory and algebraic geom-

etry through the use of ideals and Gröbner bases. We concentrate on Steiner triple

systems because they are simple designs with well known properties. However, we

consider that algebraic geometry techniques that we use can be translated to other

designs.

Our method to generate combinatorial designs by algebraic geometry techniques

starts by encoding the restrictions of a particular combinatorial design class into a

polynomial ideal I over an appropriate polynomial ring. By combinatorial design class

we mean a whole family of combinatorial designs such as Steiner triple systems or

Kirkman triple systems (see Chapter 4). The second step is to compute the Gröbner

basis of I [2]. At this point, every particular combinatorial design in the class will be

a point in the geometric variety of I and can be found from the Gröbner basis. When

this basis is different from {1}, at least one instance of the combinatorial design

class exist; otherwise, no instance exists and a formal proof of such fact could be
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derived from the Gröbner basis. With this method we produced instances of several

combinatorial design classes by placing the polynomials modeling the restrictions of

each class. Among them were STSs, STSs anti-Pasch and Kirkman triple systems.

Computing the Gröbner basis of ideals generating a particular combinatorial de-

sign class is very important since it represents a synthetic form to encode every

combinatorial design belonging to the class. So, to recover each one of this designs

we only need to solve the polynomials in the Gröbner basis.

The ideals produced by our methods contain a huge number of polynomials and

variables, and it represents a difficult problem because the software available to com-

pute Gröbner basis only works with ideals involving at most 999 variables, see [5].

It only allowed us to generate Gröber basis for combinatorial designs of very small

orders. For instance, to generate STSs of order 21 the polynomial ideal has 1330

variables, and no available software can manage this amount. To generate STSs of

order 19 the polynomial ideal has 969 variables and contains 24226 polynomials; all

the available software exhausted the computer memory after a few execution hours.

So, we looked for alternatives where our ideals would be useful.

We found that genetic algorithms (GAs) could be used to look for points in the

geometric variety. A set of triples (to be completed to an STS) could be codified

as a chromosome represented by one characteristic vector and the fitness function

could be the number of polynomials not satisfied by the chromosome. In this way,

the objective was to find the best chromosome. That is, to find the chromosome

minimizing the fitness function. For the basic nomenclature and definitions related

to GAs we follow [24].

GAs are powerful tools. However, they proved to be inappropriate to generate

STSs. There is a strong deficiency with the crossover operation because after applying
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it the fitness of the resulting organism is sometimes significantly increased with respect

to the parents’ fitness; mainly when these are close to zero. Our genetic algorithm

worked fast and fine when the fitness function of the population members was far

from zero, but it became slow as the fitness approached to zero. Then we eliminated

the crossover operation and thus a pure-mutative genetic algorithm [19] was used.

Our mutation operation looks randomly for two positions, one containing a zero

and other containing a one and switch their values with a probability inversely pro-

portional to the degree of unbalance of the resulting set. By unbalance of a set of

triples we mean the standard deviation of the number of repetitions of the pairs in

the triples.

With this mutation operation, we could construct combinatorial designs for several

classes, but our polynomial ideals were non essential. For instance, to generate STSs it

is possible to define a fitness function counting the missing pairs in each chromosome.

The organisms themselves could be constructed without reference to any polynomial

ideal. So, we finally developed our algorithms without using any polynomial ideal.

Looking into the literature for the construction of STSs by genetic algorithms we

found a work by Hartley-Konstam [25]. The method in this paper is not purely-

mutative, in fact it has two mutation operations described as follows.

Each chromosome is a bit string of length equal to the total number of triples over

the set S of v elements. Each bit encodes whether or not the corresponding triple

is in the potential Steiner triple system represented by the chromosome. Since the

number of bits set to 1 in each chromosome corresponds to the number of triples in a

solution the program keeps constant the number of bits set to 1 in each chromosome.

The first mutation operator consists of choosing at random a bit to be flipped then

some other bit set oppositely would be chosen at random to be flipped. Thus the



5

number of bits set to 1 in the chromosome is kept constant.

The second mutation operation by Hartley-Konstam is quite similar to ours. The

idea is to remove from the chromosome a redundant triple. We mean, a triple con-

taining a pair which is contained in another triple. And to add to the chromosome a

triple that would contain pairs not contained in any other triple in the chromosome.

From a performance point of view, Hartley-Konstam’s method was equivalent to ours.

Then, trying to find similar methods not necessarily based on GAs we found an-

other approach by D. Stinson [40]. This method was based on a hill-climbing heuristic

which in each step used an operation that was very close to the second mutation op-

eration used by Hartley-Konstam’s. Stinson’s called this operation SWITCH and it

is described in Chapter 6.

Hill-climbing heuristics do not use big populations as it occurs in GAs. In fact,

in hill-climbing heuristics only one organism is considered in each step and in conse-

quence Stinson’s method is much more efficient than both Hartley-Konstam’s method

and ours. From this, it immediately follows that hill-climbing heuristics are a bet-

ter option to construct STSs than genetic algorithms, and it seems unfeasible that a

genetic algorithm could improve Stinson’s method.

We wondered why Stinson’s method had such good performance. Stinson’s only

gave the brief algorithmic description of his method that we reproduced in Chapter 6,

a justification in terms of intuitive ideas, the experimental results he obtained, and

no more. We programed the method and in every run it always found an STS. We

tried to construct a formal proof of the correctness of Stinson’s method, but we found

that it was difficult by using the elements in which Stinson based his development.

He worked on partial Steiner triple systems (PSTSs), see Chapter 6, and we consider

this as the source of the difficulties.
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We then introduced a refinement of PSTSs that we called quasi-Steiner triple

systems (QSTSs) and by using it we were able to understand better the behavior

of Stinson’s method. We also wondered whether a similar process was possible on

triple systems with missing and repeated pairs, but with the same number of triples

as an STS. We observed that with the introduction of this change several operations

to increase or reduce the number of missing pairs were possible, and finally there

appeared transformation methods and results applicable in a general context.

So, our second objective in this thesis is to study QSTSs. QSTSs of a specific

order v contain the same number of triples than an STS of the same order v, but

repeated and missing pairs are allowed. The number of missing pairs in a QSTS Q

is named the level of Q. We focus our study on basic operations to transform QSTSs

from one level to another being the most interesting the transformation from level

two to level zero. This corresponds to the conversion of a QSTS into an Steiner triple

system. In addition to the rich combinatorial structure of QSTSs, several properties

of STSs can be derived from it. We remark that non-isomorphic QSTSs could be

obtained from a single QSTS and this property is immediately valid in STSs.

We substitute PSTSs by quasi-Steiner triple systems. In a PSTS only information

about missing pairs is provided, but in QSTSs information about repeated pairs is

also given. This information allows us to identify patterns of triples to be changed

in order to increase or reduce the level of the QSTS. In PSTSs these patterns are

not visible just because they are at a coarser level than QSTSs. Probably that is the

reason why Stinson did not present a formal proof on the correctness of his method

in [40]. Our original purpose was to establish some operations similar to SWITCH

to construct STSs from QSTSs, but we finally found combinatorial structures that

we considered relevant and decided to study them in detail. The results of this study
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are reported in Chapter 6.

Among these combinatorial structures are the decomposition graphs, see Chap-

ter 7. The patterns referred in the previous paragraph are analyzed in Theorem 7.3.

Decomposition graphs are also in STSs, but in this case their structure is just a family

of cycles. For instance, a Pasch [33] inside an STS is a cycle of length four within a

decomposition graph. By applying an operation named swapping on the connected

components of decomposition graphs it is possible to eliminate or generate Pasches.

Rather than studying the effect on Pasches, we focused our attention on the use of

the swapping operation to convert an STS into non-isomorphic STSs.

Another interest on QSTSs is related to practical computational issues. Suppose,

for instance, that we require some STS with certain hard to satisfy restrictions. How-

ever, there is no problem if we produce a QSTS Q at a small level l > 0 satisfying

those restrictions. Then, finding Q could be less expensive because in general there

are much more QSTSs of a given order v at level l than STSs of the same order.

Finally, the ideas in this work could be generalized to construct other combi-

natorial designs, as well as tools useful in their construction. An example is one-

factorizations. A one-factor of a graph G is a set of edges that partitions the vertex

set of G. A one-factorization of G is a set of one-factors that partitions the set of

edges of G. Several elementary methods for the construction of Steiner triple systems

use one-factorizations extensively, see [29] and [42]. They include Bose’s and Skolem’s

constructions, see [29]. Now, we can define a quasi one-factorization of G as a set of

one-factors {F1, . . . , Fn} with as many elements as a one-factorization of G. The level

of a quasi one-factorization is defined as the number of edges in G, which are not con-

tained in any factor. Then we may look for local transformations to reduce the level.

Strong related to one-factorizations are room squares. In [15] Dinitz and Stinson gave
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the related basic definitions and present several hill-climbing methods for their con-

struction. Furthermore, we can define the concept of “quasi room square” and apply

the ideas in our work to generalize them. Dinitz and Stinson also use strong starters;

these are initial configurations to build square rooms in which good performance for

the hill-climbing heuristics is guarantied. We have evidence that some quasi-Steiner

triple systems play an equivalent role to strong starters in our algorithms and we will

concentrate only on quasi-Steiner triple systems.

The thesis is divided into two parts. The first part consists of Chapters 2, 3, 4,

and 5. The second part consists of Chapters 6, 7, 8, and 9.

In Chapter 2 we introduce an ideal to generate stable or maximal independent

sets based on the Motzkin-Strauss formula [34]. Then we describe a general ideal

introduced by Lovász [32], which has been extensively used for the generation of

stable sets in graphs. Both ideals are examples of 0-1 ideals, a recently introduced

class having combinatorial applications beyond stability (see [38]). These ideals are

shown to be radical, and consequently we establish the equality of the two ideals.

Also in this chapter we introduce basic properties of stability ideals. In Chapter 3

we determinate the stability ideal of the Johnson’s graphs J(n, 3, 2) and we use it to

build MPTs; we explore difficulties to solve the equations involved, and we examinate

potential means to generate MPTs with restrictions. In particular, a modification of

the stability ideal of J(n, 3, 2) is shown to generate anti-Pasch MPTs. Chapter 4

introduces two new ideals to generate MPTs that use colorings instead of stable sets.

we also introduce an ideal to generate Kirkman triple systems that employs a mixture

of techniques based on stable sets and colorings. Chapter 5 explores parametric

generation of MPTs. This chapter ends the first part of the work.

The second part of this work starts in Chapter 6. Here we introduce the concept
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of quasi-Steiner triple system as well as fundamental notation and results. We also

introduce basic operations to either increment or decrement the level of QSTSs, we

introduce a method to compute the change in the level and we develop a concrete

example for one of the operations. Chapter 7 is devoted to decompositions of QSTSs,

which are graphs representing dependence relations between the triples in the sys-

tem; we give some elementary properties of decompositions as well as the concept of

exchangeable path concept. At the middle of this chapter one of the main results, the-

orem 7.3, is stated. Then we present applications of the main theorem to reduce the

level of QSTSs, and we prove general conditions to guaranty level reductions. Chap-

ter 8 deals with combinatorial properties of QSTSs of level two and it introduces

conditions to transform these systems into STSs. This chapter contains a theorem

to transform QSTSs and STSs into non-isomorphic systems at the same level. In

Chapter 9 we develop an algorithm to construct QSTSs pair-wise non-isomorphic.

Finally, in Chapter 10 we present the conclusions of this work.
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Chapter 2

Gröbner basis and combinatorial designs

This chapter contains a survey of some tools needed in the rest of the work.

Let us start defining the fundamental objects and concepts from design theory,

graph theory and algebraic geometry with which we work. A maximum packing by

triples (MPT or MPT(n)) of order n > 0 is maximum cardinality set of triples in

{0, . . . , n − 1} such that every pair i, j ∈ {0, . . . , n − 1} is in at most one triple.

MPTs exist for every n ≥ 3. When n ≡ 1, 3 (mod 6), an MPT(n) is a Steiner triple

system (STS or STS(n)); in this case, every 2-subset of elements appears in exactly

one triple.

We use extensively graphs as well as basic related concepts. For all these elemen-

tary definitions. See [14], Chapter 1. All graphs considered here are finite and simple.

Let v, `, and i be fixed positive integers, with v ≥ ` ≥ i. Let Ω be a cardinality v

set. Define a graph J(v, `, i) as follows. The vertices of J(v, `, i) are the `-subsets

of Ω, two `-subsets being adjacent if their intersection has cardinality i. Therefore,

J(v, `, i) has
(
v
`

)
vertices and it is a regular graph with valency

(
`
i

)(
v−`
`−i

)
. For v ≥ 2`,

graphs J(v, `, `− 1) are Johnson graphs [22].

One of the main methods that we use to characterize MPT(n)s consists of finding

stable sets (or independent sets) in J(n, 3, 2). A stable set S of a graph G is a subset

of vertices in V (G) containing no pair of adjacent vertices in G. The maximum size

of a stable set in G is the stability number of G, denoted by α(G).

The stability polytope of a n-vertex graph G is the convex hull of {(x0, . . . , xn−1) |



11

xi = 1 or xi = 0 and {i ∈ V (G)|xi = 1} is a stable set of G}.

We also use vertex colorings. A λ vertex coloring (or coloring for short) of a

graph G (where λ is a positive integer) is a function c : V (G)→ {1, . . . , λ} such that

(v, w) ∈ E(G) if c(v) 6= c(w). The minimum value of λ for which a λ coloring of G

exists is the chromatic number of G, denoted by χ(G).

We introduce some algebraic structures. For k a field, k[x] = k[x1, . . . , xn] is the

polynomial ring in n variables. A subset I ⊂ k[x1, . . . , xn] is an ideal of k[x1, . . . , xn]

if it satisfies 0 ∈ I; if f, g ∈ I, then f + g ∈ I; and if f ∈ I and h ∈ k[x1, . . . , xn] then

hf ∈ I. When f1, . . . , fs are polynomials in k[x1, . . . , xn] we set

〈f1, . . . , fs〉 =

{
s∑
i=1

hifi

∣∣∣∣h1, . . . , hs ∈ k[x1, . . . , xn]

}
.

Then 〈f1, . . . , fs〉 is an ideal (see [12]) of k[x1, . . . , xn], the ideal generated by

f1, . . . , fs. One remarkable result, the Hilbert Basis Theorem (see [12]), establishes

that every ideal I ⊂ k[x1, . . . , xn] has a finite generating set.

Let I ⊂ k[x] be an ideal. The radical of I is the set

√
I = {g ∈ k[x] | gm ∈ I for some m ≥ 1}.

An ideal I is said to be a radical ideal if
√
I = I.

The monomials in k[x] are denoted by xa = xa11 x
a2
2 · · ·xann ; they are identified with

lattice points a = (a1, . . . , an) in Nn, where N is the set of nonnegative integers. A

total order ≺ on Nn is a term order if the zero vector is the unique minimal element,

and a ≺ b implies a + c ≺ b + c for all a,b, c ∈ Nn.

Given a term order ≺, every nonzero polynomial f ∈ k[x] has a unique initial

monomial, denoted by in≺(f). If I is an ideal in k[x], then its initial ideal is the

monomial ideal in≺(I) := 〈in≺(f) : f ∈ I〉.
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The monomials that do not lie in in≺(I) are standard monomials. A finite subset

G ⊂ I is a Gröbner basis for I with respect to ≺ if in≺(I) is generated by {in≺(g) :

g ∈ G}. If no monomial in this set is redundant, the Gröbner basis is unique for I

and ≺, provided that the coefficient of in≺(g) in g is 1 for each g ∈ G.

A finite subset U ⊂ I is a universal Gröbner basis if U is a Gröbner basis of I

with respect to all term orders ≺ simultaneously.

A field k is algebraically closed if for every polynomial f ∈ k[x] in one variable,

the equation f(x) = 0 has a solution in k. Every field k is contained in a field k̄ that

is algebraically closed and such that every element of k̄ is the root of a nonzero poly-

nomial in one variable with coefficients in k. This field is unique up to isomorphism,

and is the algebraic closure of k.

Given a subset S ⊆ k[x1, . . . , xn], the variety Vk̄(S) in k̄n is

Vk̄(I) = {(a1, . . . , an) ∈ k̄n | f(a1, . . . , an) = 0 for all f ∈ S}.

If I = 〈f1, . . . , fs〉 ⊆ k[x1, . . . , xn] then

Vk̄(I) = {(a1, . . . , an) ∈ k̄n | fi(a1, . . . , an) = 0, 1 ≤ i ≤ s} = Vk̄(f1, . . . , fs).

One of the most remarkable results in algebraic geometry is the following.

Theorem 2.1 (Weak Hilbert Nullstellensatz (see [27])) Let I be an ideal

contained in k[x1, . . . , xn]. Then Vk̄(I) = ∅ if and only if I = k[x1, . . . , xn]

We may use this theorem to demonstrate that some designs do not exist, by

proving that they correspond to varieties of ideals whose reduced Gröbner basis is

{1}, or equivalently that I = k[x1, . . . , xn] and, by the weak Hilbert Nullstellensatz,

the variety is empty.
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These are the fundamental objects employed, and more specific definitions are

introduced as needed. With the exception of the ideals introduced in Chapter 5,

we use the field of rational numbers. When an algebraic closed field is needed, the

complex numbers are used instead. Computations for Gröbner basis ideals are done

in Macaulay 2 [18].
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Chapter 3

Stable sets, ideals, stability ideal and Gröbner

basis

Combinatorial and algebraic aspects of the stable set problem have been extensively

studied. One of the most interesting connections is given by the Motzkin-Strauss

explicit formula for α(G) (see [34]):

Theorem 3.1 Let G = (V,E) be a graph. Then

1− 1

α(G)
= max

2
∑
i,j /∈E

xixj

∣∣∣∣ ∑
i∈V (G)

xi = 1, xi ≥ 0

 . (3.1)

The Motzkin-Strauss formula enables one to determine part of the structure of

the stability polytope, and consequently to prove several results in extremal graph

theory, including Turán’s Theorem. In (3.1), α(G) is determined by an optimization

problem which at first sight might be solved by Lagrange multipliers. Unfortunately,

the objective function reaches its maximum at the feasible region boundary and out

of this region it is unbounded. We can circumvent this problem by squaring each

variable to get a different version of the Motzkin-Strauss formula that still yields

α(G):

1− 1

α(G)
= max

2
∑
i,j /∈E

y2
i y

2
j

∣∣∣∣ ∑
i∈V (G)

y2
i = 1

 . (3.2)

Lagrange multipliers can be used for (3.2). Make the objective function’s gradient

equal to a multiplier λ times the restriction function’s gradient to obtain the system
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of equations:

4yi
∑

j∈V (G)|i,j /∈E

y2
j = 2λyi for each i ∈ V (G), (3.3)

∑
i∈V (G)

y2
i = 1.

This system has several solutions that do not maximize (3.2). Lovász [32] char-

acterizes the set of maximum solutions for (3.1): Any vector x maximizes the right

hand side if and only if x has a stable set as support and if xi 6= 0 for some i ∈ V (G)

then xi = 1/α(G). Let y be an optimal solution to (3.2) such that yj ≥ 0 for every

j ∈ V (G). From (3.3), if yi 6= 0 then

4
α(G)− 1

α(G)
√
α(G)

= 4
1√
α(G)

α(G)− 1

α(G)
= 4yi

∑
j∈V (G)|i,j /∈E

y2
j

= 2λyi = 2λ
1√
α(G)

So, a solution of (3.3) is a maximum of the objective function in (3.2) if and only

if λ = 2α(G)−1
α(G)

. If we substitute this value in (3.3), substitute zi = y2
i α(G), and

introduce the equations zi(zi − 1) = 0 to restrict the values of zi to 0 or 1, then we

transform (3.3) into

zi(zi − 1) = 0 for each i ∈ V (G),

zi(
∑

j∈V (G)|i,j /∈E

zj − α(G) + 1) = 0 for each i ∈ V (G), (3.4)

∑
i∈V (G)

zi − α(G) = 0.

This yields:
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Proposition 3.2 The graph G has stability number at least e if and only if the fol-

lowing zero-dimensional system of equations

x2
i − xi = 0 for every node i ∈ V (G),

xi(
∑

j∈V (G)|i,j /∈E

xj − e+ 1) = 0 for each i ∈ V (G), (3.5)

n∑
i=1

xi − e = 0,

has a solution. The vector x is a solution of (3.5) if and only if the support of x is a

stable set.

The ideal generated by the polynomials in (3.5) is the Motzkin-Strauss ideal of G,

denoted by MS(G).

A second approach was introduced by Lovász [32].

Proposition 3.3 (Lovász) The graph G has stability number at least e if and only

if the zero-dimensional system of equations

x2
i − xi = 0 for every node i ∈ V (G),

xixj = 0 for every edge {i, j} ∈ E(G), (3.6)
n∑
i=1

xi − e = 0,

has a solution. Vector x is a solution of (3.6) if and only if the support of x is a

stable set.

Proof: If there exists some solution x to these equations, the identities x2
i − xi = 0

ensure that all variables take values only in {0, 1}. The set S = {i|xi = 1} is stable

because equations xixj = 0 guarantee that the end points of any edge in E(G) cannot

belong simultaneously to S. Finally the cardinality of S is e by the last equation. 2
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The ideal generated by the polynomials in (3.6) is the stability ideal of G, denoted

by S(G). As Lovász [32] explains, solving (3.6) appears to be hopeless but he uses

S(G) to write alternative proofs of several known restrictions on the stability polytope.

A quick comparison of S(G) and MS(G) demonstrates that the ideals are close;

actually their generators only differ in the polynomials defined in terms of E(G).

However the generators of both ideals contain the polynomials x2
i − xi for i ∈ V (G).

This condition confers on them a strong structure that we can generalize by intro-

ducing a bigger class of ideals containing them.

Let I be an ideal in k[x1, . . . , xn]. Then I is a 0-1 ideal if {x2
1−x1, x

2
2−x2, . . . , x

2
n−

xn} ⊂ I. Ideals S(G) and MS(G) are 0-1 ideals. Our objective now is to prove that

0-1 ideals are radical, with the consequence that the Motzkin-Strauss and stability

ideals are the same for any graph G.

For a polynomial f ∈ k[x1, . . . , xn] write f = pv11 p
v2
2 · · · pvmm where the polynomials

pv11 p
v2
2 · · · pvmm are irreducible. Polynomial f ∗ = p1p2 · · · pm is the square free part of f .

Polynomial f is square free if and only if f = f ∗.

If M is an additive group, for a natural number n and an element a of M , na

denotes the n-ple sum a+ · · ·+a of a (the addition of a, n times). Under the notation,

we define the characteristic of a ring k, denoted chart(k) as follows. Consider the set

D = {n ∈ N|na = 0 for every a ∈ k}. If D is empty, then the characteristic of k is

defined to be zero, otherwise, the least number in D is defined to be the characteristic

of k. The next result is due to A. Seidenberg.

Lemma 3.4 [4, pages 341-342, 8.2] Let k a field and let I be a zero-dimensional ideal

of k[x1, . . . , xn], and assume that for 1 ≤ i ≤ n, I contains a polynomial fi ∈ k[xi]

with gcd(fi, f
′
i) = 1. Then I is an intersection of finitely many maximal ideals. In

particular, I is then radical.
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Proposition 3.5 [2] Let I be a zero-dimensional ideal and G be the reduced Gröbner

basis for I with respect to the lex term order with x1 < x2 < · · · < xn. Then we

can order g1, . . . , gt such that g1 contains only the variable x1, g2 contains only the

variables x1 and x2 and lp(g2) is a power of x2, g3 contains only the variables x1, x2

and x3 and lp(g3) is a power of x3, and so forth until gn.

Here lp(g) stands for the leader power of the polynomial g.

Theorem 3.6 Let k a field and I a 0-1 ideal in k[x1, . . . , xn] then I is a radical ideal.

Proof: Let G be the reduced Gröbner basis for I. If 1 ∈ G, by Theorem 2.1 I =

k[x1, . . . , xn] and hence I =
√
I. Now we consider the case when I is zero-dimensional,

since for each i = 1, . . . , n, I contains the univariate polynomial x2
i − xi which satisfy

that gcd(x2
i − xi, 2xi − 1)=1, the result follows from Lemma 3.4. 2

Theorem 3.7 (Strong Hilbert Nullstellensatz) I(Vk̄(I)) =
√
I for all ideals I

of k[x1, . . . , xn].

As a consequence, two ideals I and J correspond to the same variety (Vk̄(I) = Vk̄(J))

if and only if
√
I =
√
J .

Proposition 3.8 For G a graph, S(G) = MS(G).

Proof: By Theorem 3.6 S(G) and MS(G) are both radical. By Propositions 3.2 and

3.3 these two ideals correspond to the same variety. Finally by Theorem 3.7, both

ideals coincide. 2

Note that Proposition 3.8 is valid for all field k.

This gives two names and two ways to designate the same ideal, so henceforth the

terminology of stability ideal and S(G) is used. All extremal graph theory results im-

plied from the Motzkin-Strauss formula and those about the stability polytope can be
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established now from S(G). This is one reason why S(G) is important. The relevance

of 0-1 ideals goes beyond stability. They help to solve problems like finding hamil-

tonian cycles in graphs and other combinatorial problems. A detailed presentation

appears in [38].

In this chapter we study basic properties of the stability ideal of a graph G from

the point of view of its Gröbner basis. In an implicit way we use S-polynomials and

Buchberger’s algorithm for the calculation of reduced Gröbner basis; see [2] for details.

The S-polynomial of two polynomials f and g in k[x1, . . . , xn], denoted S(f, g), is the

polynomial S(f, g) = lcm(in≺(f),in≺(g))
in≺(g)

· f − lcm(in≺(f),in≺(g))
in≺(g)

· g. The lcm is the least

common multiple in relation to the monomial order ≺.

We separate the generators of S(G) into sets of polynomials P1(G) and P2(G):

P1(G) = {x2
i − xi|i ∈ V (G)}

⋃
{xixj|i, j ∈ E(G)} (3.7)

P2(G) = {
∑

i∈V (G)

xi − e} (3.8)

Proposition 3.9 Let G be a graph. Then P1(G) is the reduced Gröbner basis of

〈P1(G)〉 with respect to any monomial order.

Proof: Buchberger’s algorithm starts with P1(G) as initial basis.

For every i, j, k, ` ∈ V (G) with i 6= j and k 6= `, S(xixj, x`xk) = 0. If i 6= j then

S(x2
i−xi, xixj) = −xixj. If i, j and k are pairwise different S(x2

i−xi, xjxk) = −xixjxk.

Finally, if i 6= j then S(x2
i − xi, x2

j − xj) = −xi(x2
j − xj). No new polynomial should

be added into the basis because any possible S-polynomial is zero or reduced to zero

with respect to P1(G). We conclude that P1(G) is a reduced Gröbner basis. The

monomial order is irrelevant. 2

Corollary 3.10 For any G the set P1(G) is an universal Gröbner basis of 〈P1(G)〉.
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This fact is a direct consequence of the following result [30].

Lemma 3.11 Let F = {f1, f2, . . . , fk} be a set of polynomials in k[x1, . . . , xn]such

that polynomial fi is a product of linear factors and for any permutation π of {1, . . . , n}

we have π(fi(x1, . . . , xn)) = fi(xπ(1), . . . , xπ(n)) ∈ F . If F is a Gröbner basis for the

ideal 〈F 〉 with respect to the lexicographic monomial order induced by x1 > x2 > · · · >

xn then F is a universal Gröbner basis for the ideal 〈F 〉.

The set of polynomials P1(G) is the reduced Gröbner basis of 〈P1(G)〉 and P2(G)

is the reduced Gröbner basis of 〈P2(G)〉; actually both of them are universal, but

when we try to calculate the Gröbner basis of the S(G) = 〈P1(G)
⋃
P2(G)〉, the num-

ber of S-polynomials calculated by Buchberger’s algorithm increases exponentially.

Proposition 3.12 explains this behavior.

Proposition 3.12 The Gröbner basis of S(G) with respect to the term order e <

x0 < x1 < · · · < x|V |−1 contains the polynomial e(e− 1)(e− 2) . . . (e− α(G)).

Proof: By Proposition 3.5 there exists a polynomial g1 in the reduced Gröbner basis

of S(G) such that g1 is the generator of S(G)∩k[e]. Since e represents the size of the

stable set this variable can be assigned to one of the values 0, 1, . . . , α(G). Note that

g1(i) = 0 when i ∈ {0, 1, . . . , α(G)} and g1(i) 6= 0 when i /∈ {0, 1, . . . , α(G)}. The

polynomial e(e−1)(e−2) . . . (e−α(G)) has minimum degree and roots 0, 1, ... . . . α(G).

Thus g1 = e(e− 1)(e− 2) . . . (e− α(G)). 2

If we calculate a Gröbner basis for S(G), in an implicit way we are calculating

α(G): Look for the polynomial in the basis that only contains the variable e. This

polynomial has degree α(G) + 1. Because the calculation of the stability number of

a graph is NP-hard, unless P = NP , we cannot expect a polynomial time method
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to generate the Gröbner basis of S(G). However we can use this ideal to do direct

deductions related to stability.

Maximum size stable sets in J(n, 3, 2) correspond to MPT(n)s. In this chapter

we construct the generators of S(J(n, 3, 2)) and discuss some properties of this ideal

and its Gröbner basis.

Let n > 3 be an integer, and let A be a 4-set contained in Ω = {0, . . . , n−1}. Any

pair of triples in A is an edge in J(n, 3, 2). In other words, the subgraph of J(n, 3, 2)

induced by the triples contained in A is isomorphic to K4. We denote this subgraph

by KA.

Proposition 3.13 Let n be a positive integer. The family

{E(KA)}A is a 4-set in Ω

is a partition of E(J(n, 3, 2)).

Proof: Let e be an arbitrary edge in E(J(n, 3, 2)), e = ({w0, w1, w2}, {w0, w1, w3})

for some w0, w1, w2 and w3 which are pairwise different elements in Ω. Then e belongs

to E(K{w0,w1,w2,w3}) and E(J(n, 3, 2)) ⊆ ∪A∈{4-sets in Ω}E(KA).

Let A be a 4-set contained in Ω and let e be an edge of KA. There are two

different triples A1 and A2 contained in A such that e = (A1, A2). We have that

4 = |A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2| and thus |A1 ∩ A2| = 2 or equivalently

e ∈ E(J(n, 3, 2)). Thus E(KA) ⊆ E(J(n, 3, 2)).

Finally, let B1 and B2 be different 4-sets contained in Ω, then E(KB1)∩E(KB2) =

∅. Suppose to the contrary that there is an edge e in the intersection of both sets.

Let A1 and A2 be triples in Ω such that e = (A1, A2), then A1 ∪ A2 = B1 given that

e ∈ E(KB1), but A1 ∪ A2 = B2 because e ∈ E(KB2), but that is a contradiction.

Thus {E(KA)}A is a 4-set in Ω is a partition of E(B(n)). 2
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We can use this proposition to construct the generators of S(J(n, 3, 2)).

Corollary 3.14 Let n ≥ 4 be a positive integer. Then

P1(J(n, 3, 2)) = {x2
A − xA|A ⊆ {0, . . . , n− 1} and |A| = 3}

⋃
(3.9)

{xAxB|A,B ⊆ {0, . . . , n− 1}, |A| = |B| = 3 and |A ∪B| = 4}

P2(J(n, 3, 2)) = {
∑

A⊆Triples({0,...,n−1})

xA − e}.

The ideal generated by the polynomials in (3.9) is the stability Steiner ideal of

order n. We have an algorithmic approach for its construction.

Algorithm 3.1 Construction of the generators of S(J(n, 3, 2))

Input: An integer n ≥ 4.

Output: The set P of polynomials generating S(J(n, 3, 2)).

Method:

1. P← ∅

2. f ← 0

3. for i← 1 to
(
n
3

)
4. a ← combination(n, 3, i)

5. P ← P ∪ {x2
{a[0],a[1],a[2]} − x{a[0],a[1],a[2]}}

6. f ← f + x{a[0],a[1],a[2]}

7. for i← 1 to
(
n
4

)
8. a ← combination(n, 4, i)

9. P ← P ∪ {x{a[1],a[2],a[3]}x{a[0],a[2],a[3]}}

10. P ← P ∪ {x{a[1],a[2],a[3]}x{a[0],a[1],a[3]}}
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11. P ← P ∪ {x{a[1],a[2],a[3]}x{a[0],a[1],a[2]}}

12. P ← P ∪ {x{a[0],a[2],a[3]}x{a[0],a[1],a[3]}}

13. P ← P ∪ {x{a[0],a[2],a[3]}x{a[0],a[1],a[2]}}

14. P ← P ∪ {x{a[0],a[1],a[3]}x{a[0],a[1],a[2]}}

15. P ← {f − e}

16. return P

Here “combination(n, k, i)” generates (in some order) the i-th k-set contained in

Ω.

The complexity of Gröbner basis computation depends strongly on the term order-

ing. The best one is reported to be degree-reverse-lexicographical [2]; for this ordering,

the computation of the Gröbner basis of the system of polynomial equations of degree

d in n variables is polynomial in dn
2

if the number of solutions is finite (see [6, 7]).

The time needed to compute an MPT(n) is therefore polynomial in 2n
2
. Indeed this

suffices to find all possible MPT(n)s. However when n is small enough we can hope to

do successful calculations to prove in “an automatic way” (through the Nullstelensatz

Hilbert Theorem) conjectures about MPTs satisfying specific conditions.

We implemented this method in Macaulay 2. We adopted some heuristics, de-

scribed next, that make the program faster, and use less memory, to allow the com-

putation for larger values of n.

1. Substitute the variable e in the generating set of S(J(n, 3, 2) by the constant

value of α(J(n, 3, 2)) in order to simplify computation. See [6, 7].

2. Always make the polynomials homogeneous. Use reverse degree-reverse-lexico-

graphical monomial order [2].
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3. Restrict the MPTs to be generated. There is no lost of generality if we assume

that the MPTs contain the triples {0, 1, 2}, {0, 3, 4}, {0, 5, 6}, . . . , {0, n−2, n−1}

and {1, 3, 5} (assuming that n is odd). Of course, we are not working with

S(J(n, 3, 2)) anymore, but we omit only systems isomorphic to those found. To

enforce the presence of these triples, include in the generators the polynomials

x{0,1,2} − 1, x{0,3,4} − 1, . . . , x{1,3,5} − 1. Some further pruning can be done if

we consider the combined presence of other triples, for example, the pair {2, 3}

could belong without loss of generality only to the triple {2, 3, 6} or to the

triple {2, 3, 7}. To do this, adjoin to the generator set the polynomial x{2,3,6} +

x{2,3,7} − 1. We can continue with this process as desired to make the process

faster and reduce the number of resulting MPTs. Taking this process to the

extreme yields a full enumeration of the nonisomorphic MPTs.

4. Impose further restrictions when possible. For example, to build an anti-Pasch

MPT (one not containing a copy of the MPT(6)), let a be an array containing

a 6-subset of {0, . . . , n− 1}. Including

x{a[3],a[4],a[5]}x{a[1],a[2],a[5]}x{a[0],a[2],a[4]}x{a[0],a[1],a[3]}

with the generators of S(J(n, 3, 2)) prevents the Pasch

{a[3], a[4], a[5]}, {a[1], a[2], a[5]}, {a[0], a[2], a[4]}, {a[0], a[1], a[3]}

from appearing in the MPTs. The other 23 monomials of this form must be

included for the 6-set in a. A total of
(
n
6

)
24 monomials must be included in

order to ensure that the MPTs generated are anti-Pasch.

Despite these heuristics, computation is too time-consuming. With the Sahuaro

supercomputer in the Arizona State University in 2008 we made experiments for n
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equals to 13, 15, and 19 obtaining results in 30 seconds, two minunts and three days,

respectively. Being optimistic we consider that with this supercomputer and these

heuristics, we may reach values of n as big as 21 after three or four weeks. Bigger

values appear to be hopeless at present.

This time consumed by this method is not very different from brute force al-

gorithms. Why we would prefer to use the stability ideal and a program such as

Macaulay 2? The answer is simple: Some conjecture is false when the number one

enters the Gröbner basis. Macaulay 2 can in principle produce the sequence of cal-

culations involved. The reductions and computations of S-polynomials involved is

a formal deduction, while with brute force algorithms additional work is required

to get a mathematical proof. On the other hand, when a conjecture is true, the

Gröbner basis calculation provides a full description of the associated geometric va-

riety. Moreover, the strong structure of the ideals, if understood well, may permit

direct inferences without using the Buchberger algorithm. Sturmfels [41] used a sim-

ilar development on polytopes in combinatorial optimization applications. At the

moment, it is speculative that such structural results can be obtained.



26

Chapter 4

Colorings Steiner triple systems and Kirkman

triple systems

Generation of MPTs from stability ideals is natural and could be extended to other

designs. Now we turn to a different approach. Stability and colorings are closely

related concepts because the vertices in a colour class form a stable set. In this

chapter, we use colorings to construct STSs. First, we introduce a well-known ideal

to find a λ coloring of a graph G provided that λ is known in advance. Then we use

two variations of this ideal to construct STSs. Furthermore, we introduce an ideal

based on a combination of stability and colorings for the generation of Kirkman triple

systems (see [9]).

Let s be a positive integer and let n = 6s + 3. A Kirkman triple system of

order n is a Steiner triple system with parallelism, that is, one in which the set of

b = (2s + 1)(3s + 1) triples is partitioned into 3s + 1 components such that each

component is a subset of triples, and each of the elements appears exactly once in

each component.

Lemma 4.1 (Loera [31]) Let G be a graph on n vertices, and let λ be a nonnega-

tive integer.The graph G is λ-colorable if and only if the zero-dimensional system of

equations in C[x1, . . . , xn]

xλi − 1 = 0, for every vertex i ∈ V (G), (4.1)

xλ−1
i + xλ−2

i xj + · · ·+ xλ−1
j = 0, for every edge {i, j} ∈ E(G), (4.2)



27

has a solution. Moreover, the number of solutions equals the number of distinct λ-

colorings multiplied by λ!. 2

The coloring ideal of λ and G is the ideal Iλ(G) of C[x1 . . . , xn] generated by the

polynomials in (4.1) and (4.2).

Note that the coloring ideal of λ and G is radical.

By (4.1) every vertex can take one of the λ possible colors. Let us examine (4.2)

more thoroughly. Denote by Pλ(x, y) the polynomial xλ−1 + xλ−2y + · · ·+ yλ−1.

Lemma 4.2 Let λ be a positive integer. If r0 and r1 are roots of unity of xλ−1 then

r0 6= r1 if and only if Pλ(r0, r1) = 0.

Proof: We have that

xλ − yλ = (x− y)Pλ(x, y). (4.3)

Since r0 and r1 are roots of unity rλ0 − rλ1 = 1 − 1 = 0. If r0 6= r1 then 0 =

(r0 − r1)Pλ(r0, r1), since r0 − r1 6= 0 we have that Pλ(r0, r1) = 0. On the other hand,

if r0 = r1 then there exists an integer j ∈ {0, . . . , λ − 1} such that r0 = r1 = e
2πj
λ
i,

and so Pλ(r0, r1) = λ(e
2πj
λ
i)λ−1 6= 0. The lemma follows. 2

By (4.2) if i, j ∈ E(G) then xi should be different to xj because otherwise Pλ(xi, xj)

would be nonzero. In other words, the color assigned to xi should be different to the

color assigned to xj.

Proposition 4.3 Let n ≡ 1, 3 (mod 6) be a nonnegative integer. Let λ =
(n2)

3
. The

zero-dimensional system of equations
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xλ{i,j} − 1 = 0, for every pair (i, j) ∈ E(Kn)

Pλ(x{i1,j1}, x{i2,j2}) · Pλ(x{i2,j2}, x{i3,j3})·

Pλ(x{i3,j3}, x{i1,j1}) = 0, for each set {(i1, j1), (i2, j2), (i3, j3)}

not inducing a copy of K3 in Kn

has a solution if and only if {{i, j, k} | x{i,j} = x{j,k} = x{k,i}} is an STS.

Proof: Suppose that the system of equations has a solution. The value of x{i,j} is

the color for the edge (i, j) in Kn. We are using as many colors as there are triples in

a STS(n). If the coloring is not balanced, then some color is assigned to fewer than

three edges and some color is assigned to more than 3 edges. In this way there exist

edges (i1, j1), (i2, j2), (i3, j3) and (i4, j4) for which x{i1,j1} = x{i2,j2} = x{i3,j3} = x{i4,j4}.

Among these four edges, there are three which do not induce a copy of K3 in Kn;

we can assume that these edges are (i1, j1), (i2, j2) and (i3, j3). By the properties of

Pλ, Pλ(x{i1,j1}, x{i2,j2})Pλ(x{i2,j2}, x{i3,j3})Pλ(x{i3,j3}, x{i1,j1}) 6= 0 but this contradicts

the existence of a solution to the system of equations. Thus three edges receiving the

same color induce a copy of K3 in Kn.

In the other direction, ordering the triples of an STS(n) as {i0, j0, k0}, {i1, j1, k1},

. . . , {iλ−1, jλ−1, kλ−1}, and for l = 0, . . . , λ− 1 we assign to x{il,jl}, x{jl,kl} and x{kl,il}

the l-th λ-root of unity then the system of equations is satisfied. 2

The ideal generated by the polynomials in the system of equations in Proposi-

tion 4.3 is the edge coloring Steiner ideal of order n.

The stability Steiner ideal of order n associates the 3-sets in {0, . . . , n− 1} to its

variables; the edge coloring Steiner ideal associates the 2-sets. Does some ideal to

generate STSs associate the variables to 1-sets? The answer is affirmative, but since
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in an STS(n) each vertex is assigned to (n − 1)/2 triples, we need (n − 1)/2 copies

of each vertex. We denote by (i, j) the j-th copy of vertex i, i = 0, . . . , n − 1 and

j = 1, . . . (n− 1)/2.

Proposition 4.4 Let n ≡ 1, 3 (mod 6) be a nonnegative integer. Let λ be equal to

(n2)
3

. The zero-dimensional system of equations

xλ(i,j) − 1 = 0, for every pair (i, j) with

i, j = 1, . . . , (n− 1)/2

Pλ(x(i1,j1), x(i2,j2)) · Pλ(x(i2,j2), x(i3,j3))·

Pλ(x(i3,j3), x(i4,j4)) · Pλ(x(i1,j1), x(i3,j3))·

Pλ(x(i1,j1), x(i4,j4)) · Pλ(x(i2,j2), x(i4,j4)) = 0, for i1, i2, i3, i4 ∈ {0, . . . , n− 1}

distinct and

j1, j2, j3, j4 ∈ {1, . . . , (n− 1)/2}

Pλ(x(i,j1), x(i,j2)) = 0, for i ∈ {0, . . . , n− 1} and

j1, j2 ∈ {1, . . . , (n− 1)/2}, j1 6= j2

has a solution if and only if {{i, j, k} | x(i,l1) = x(j,l2) = x(k,l3) for some l1, l2, l3 ∈

{0, . . . , (n− 1)/2}} is an STS.

Proof: Analogous to the proof of Proposition 4.3. 2

The ideal generated by the polynomials in the system of equations in Proposi-

tion 4.3 is the vertex coloring Steiner ideal of order n.

The earlier comments for the stability Steiner ideal of order n are essentially the

same for the ideals in this chapter. As long as the number of variables decreases
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the complexity of the polynomials involved increases. The final effect is that, as we

expect, the practical limitations of these ideals are similar.

Proposition 4.5 Let s be a positive integer and let n = 6s+3. The zero-dimensional

system of equations

x2
{i,j,k} − x{i,j,k} = 0, when {i, j, k} ⊂ {0, . . . , n− 1},

x{i,j,k}x{j,k,l} = 0, when {i, j, k}, {j, k, l} ⊂ {0, . . . ,

n− 1} and i 6= l,∑
{i,j,k}⊆{0,...,n−1}

x{i,j,k} − (2s+ 1)(3s+ 1) = 0,

y3s+1
{i,j,k} − 1 = 0, when {i, j, k} ⊂ {0, . . . , n− 1},

x{i,j,k}x{k,l,m}P3s+1(y{i,j,k}, y{k,l,m}) = 0, for every unordered couple of

different 3-sets {i, j, k}, and {k, l,m}

contained in {0, . . . , n− 1}.

has a solution if and only if S = {{i, j, k} | x{i,j,k} = 1} is a Kirkman triple system.

Proof: The first three equations in the system generate the stability Steiner ideal of

order n, thus the set of triples S is an STS. A new variable y{i,j,k} is introduced for

each vertex {i, j, k} in J(n, 3, 2). These variables are used for coloring the elements of

S; by the fourth equation each triple receives one of 3s+ 1 colors. When x{i,j,k} = 0

the value of y{i,j,k} is immaterial. By the fifth equation, when x{i,j,k} = 1 the color

assigned to y{i,j,k} must be different from the one assigned to every other triple in S

intersecting {i, j, k}.
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Using the technique in the proof of Proposition 4.3, every color is associated to

exactly 2s+ 1 variables yi,j,k. So S is a Kirkman triple system. 2

The ideal generated by the polynomials in the system of equations in Proposi-

tion 4.3 is the Kirkman ideal of order n.

In Proposition 4.5 the fifth equation is equivalent to the conditional statement:

if {i, j, k} and {k, `,m} are in S then

Put {i, j, k} and {k, `,m} in different color classes.

Few elements in the ideal suffice for the construction of ideals related to design the-

ory: stability, colorings, Pλ polynomials and the proper use of conditional polynomial

constructions.
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Chapter 5

Parametric generation of STSs

Let V = V(f1, . . . , fs) ⊂ k` be a variety. Let k(t1, . . . , tm) represent the field of

rational functions, that is, quotients between two polynomials in k[t1, . . . , tm]. The

rational parametric representation of V consists of rational functions r1, . . . , r` ∈

k(t1, . . . , tm) such that the points (x1, x2, . . . , x`) given by

xi = ri(t1, . . . , tm) i = 1, . . . , ` (5.1)

lie in V . When functions r1, . . . , r` are polynomials rather than rational functions this

is a parametric polynomial representation. The original defining equations f1, . . . , fs

form the implicit parametric representation of V .

It is well known that not every affine variety has a rational parametric represen-

tation; however the set of points described by a rational parametric representation

is always an affine variety. In this chapter we consider the triples in a STS(n) as

points in R3 (fixing elements in some particular order for each triple), and then we

try to build a parametric polynomial representation for them. When successful, it is

implicitly proved that the points produced from the triples in the STS form an affine

variety.

For instance, for n = 7 the following parametric polynomial equations generate

an STS(7).
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x = t mod 7 (5.2)

y = 1 + t mod 7

z = 3 + t mod 7

Taking t = 0, . . . , 6 produces the STS

{{0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2}}.

This is a parametric polynomial representation that works exactly as we want.

The polynomials in (5.2) belong to Z/7Z[x, y, z, t]. However, we cannot generalize

this directly because the quotient ring Z/nZ is a field only when n is prime. This is

a technical difficulty, addressed later. First let us generalize the parametric represen-

tation in (5.2).

Let n ≡ 1, 3 (mod 6) be an integer and let `, l1, l2, l3, n1, . . . , n` be nonnegative in-

tegers such that ni ≤ n for i = 1, . . . , ` and
∏`

j=1 ni = n(n−1)/6 (the number of triples

in an STS(n)). A polynomial parametric Steiner representation (PPSR) of order n,

and parameters `, l1, l2, l3, n1, . . . , n` is a triple ({αi}l1i=0, {βi}
l2
i=0, {δi}

l3
i=0), such that the

elements in each succession are pairwise different and belong to (Z+
⋃
{0})`. We de-

note a parametric representation like this as P(n, `, l1, l2, l3, {ni}`i=1, ({αi}
l1
i=0, {βi}

l2
i=0,

{δi}l3i=0)). A PPSR is feasible if the system of equations

x(t) =

l1∑
i=0

aαit
αi y(t) =

l1∑
i=0

bβit
βi z(t) =

l1∑
i=0

cδit
δi

in the variables aα0 , . . . , aαl1 , bβ0 , . . . bβl2 , cδ0 , . . . , cδl3 , (where t = (t1, . . . , tl)) has a

solution such that the set S = {{x(t), y(t), z(t)}|t ∈ {0, . . . , n1−1}×. . .×{0, . . . , n`−

1}} is an STS.
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That ni ≤ n for i = 1, . . . , ` is necessary because the operations are on Z/nZ; but

it imposes restrictions on the PPSRs dealt with. For example, only for n = 7 can we

have a PPSR with ` = 1. For any other value of n it is not possible to find an integer

n1 satisfying n1 < n and
∏1

i=1 ni = n(n − 1)/6. In other words, it is impossible to

generalize (5.2) for n > 7 using only one parameter t.

The important fact concerning PPSRs is that their feasibility is decided by weak

Hilbert Nullstelensatz Theorem.

Proposition 5.1 Let n ≡ 1, 3 (mod 6) be a prime. Let P(n, `, l1, l2, l3, {ni}`i=1, ({

αi}l1i=0, {βi}
l2
i=0, {δi}

l3
i=0)) be a PPSR of order n. Let P and Q be the polynomials in

Z/nZ[aα0 , . . . , aαl1 , bβ0 , . . . , bβl2 , cδ0 , . . . , cδl3 ], P (u) = (u − 1)(u − 2) · · · (u − n + 1),

Q(u) = uP (u), u ∈ {0, . . . , n − 1}. Then P is feasible if and only if the zero-

dimensional system of equations

Q(aαi)

Q(bβj)

Q(cδk)

 = 0,
for i = 0, . . . , l1,

j = 0, . . . , l2 and k = 0, . . . , l3

(5.3)

P (x(t)− y(t))

P (x(t)− z(t))

P (y(t)− z(t))

 = 0,
for t ∈ {0, . . . , n1 − 1}×

. . .× {0, . . . , n` − 1}
(5.4)
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P (x(t1)− x(t2))P (y(t1)− y(t2))

P (x(t1)− y(t2))P (y(t1)− x(t2))

P (x(t1)− x(t2))P (z(t1)− z(t2))

P (x(t1)− z(t2))P (z(t1)− x(t2))

P (z(t1)− z(t2))P (y(t1)− y(t2))

P (z(t1)− y(t2))P (y(t1)− z(t2))



= 0,
for t1, t2 ∈ {0, . . . , n1 − 1}×

. . .× {0, . . . , n` − 1}, t1 6= t2

(5.5)

has a solution.

Proof: Assume that the system of equations is satisfied. Then by (5.3) the values

of these coefficients should be in the set {0, 1, . . . , n − 1} which corresponds to the

roots of the polynomial Q(t). Also (5.4) guarantees that the elements in each of

the triples in S are distinct. (The polynomial P plays a similar role to that of the

polynomials Pλ introduced in Chapter 4.) Finally, by (5.5) every pair of different

vertices in {0, . . . , n− 1} appears in exactly one of the triples and thus it is an STS.

The converse is immediate. 2

The ideal generated by the polynomials in Proposition 5.1 is the parametric Steiner

ideal of P .

Solutions to the polynomials in the parametric Steiner ideal of a PPSR can be

found using Gröbner bases. For example, the Gröbner basis for the unique possible

PPSR of order n = 7 and ` = l1 = l2 = l3 = 1 is

{ c6
1 − 1, b1 − c1, a1 − c1, c

7
0 − c0,

b6
0 + b5

0c0 + b4
0c

2
0 + b3

0c
3
0 + b2

0c
4
0 + b0c

5
0 + c6

0 − 1,

a5
0 + a4

0b0 + a4
0c0 + a3

0b
2
0 + a3

0b0c0 + a3
0c

2
0 + a2

0b
3
0 + a2

0b
2
0c0 + a2

0b0c
2
0 + a2

0c
3
0 + a0b

4
0+

a0b
3
0c0 + a0b

2
0c

2
0 + a0b0c

3
0 + a0c

4
0 + b5

0 + b4
0c0 + b3

0c
2
0 + b2

0c
3
0 + b0c

4
0 + c5

0}
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A solution that makes all these polynomials zero is a0 = 0, b0 = 1, c0 = 3, a1 =

1, b1 = 1, and c1 = 1; it corresponds to the PPSR in (5.2).

Corollary 5.2 A PPSR P is feasible if and only if the Gröbner basis of the para-

metric Steiner ideal of P does not contain 1.

While these provide a relatively simple way to determine the feasibility of a PPSR,

it is limited to prime orders. We can circumvent this limitation by working in the

complex number field. We carry the operations from Z/nZ to C through the trans-

formation φ : Z/nZ → C, φ(k) = e
2πk
n
i. Two well known properties of φ are: For

every a and b in Z/nZ

φ(a+ b) = φ(a)φ(b) (5.6)

φ(a · b) = φ(a)b = φ(b)a

Let n ≡ 1, 3 (mod 6) be a prime. Let P(n, `, l1, l2, l3, {ni}`i=1, ({αi}
l1
i=0, {βi}

l2
i=0,

{δi}l3i=0)) be a PPSR of order n. We extend the domain of φ to the polynomial

x(t) =
∑l

j=1 aαjt
αj as φ(

∑l
j=1 aαjt

αj) =
∏l

j=1 φ(aαj)
tαj =

∏l
j=1 â

tαj
αj

. This extension

is compatible with (5.6); it takes a polynomial on the variables aα0 , . . . , aαl1 and

transforms it into a polynomial on the variables âα0 , . . . , âαl1 (here âαj stands for

φ(aαj)). For each t ∈ {0, . . . , n1 − 1} × . . .× {0, . . . , n` − 1}, φ(x(t)(aα0 , . . . , aαl1 )) =

φ(x(t))(âα0 , . . . , âαl1 ). Similar extensions are made to φ in order to be applied to the

polynomials y(t) and z(t).

Proposition 5.3 Let n ≡ 1, 3 (mod 6) be a prime. Let P(n, `, l1, l2, l3, {ni}`i=1, ({

αi}l1i=0, {βi}
l2
i=0, {δi}

l3
i=0)) be a PPSR of order n. Let Pn and Qn be polynomials in

C[â0, . . . , âl, b̂0, . . ., b̂l, ĉ0, . . . , ĉl], Pn(u, v) = un−1+un−2v+. . .+vwn−2+wn−1, Qn(u) =
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un − 1, u, v ∈ {0, . . . , n − 1}. Then P is feasible if the zero-dimensional system of

equations

Qn(âαi) = Qn(b̂βj ) = Qn(ĉδk) = 0,

for i = 0, . . . , l1,

j = 0, . . . , l2 and

k = 0, . . . , l3

(5.7)

Pn(φ(x(t)), φ(y(t)))

Pn(φ(x(t)), φ(z(t)))

Pn(φ(y(t)), φ(z(t)))

 = 0,
for t ∈ {0, . . . , n1 − 1}×

. . .× {0, . . . , n` − 1}
(5.8)

Pn(φ(x(t1)), φ(x(t2)))Pn(φ(y(t1)), φ(y(t2)))

Pn(φ(x(t1)), φ(y(t2)))Pn(φ(y(t1)), φ(x(t2)))

Pn(φ(x(t1)), φ(x(t2)))Pn(φ(z(t1)), φ(z(t2)))

Pn(φ(x(t1)), φ(z(t2)))Pn(φ(z(t1)), φ(x(t2)))

Pn(φ(z(t1)), φ(z(t2)))Pn(φ(y(t1)), φ(y(t2)))

Pn(φ(z(t1)), φ(y(t2)))Pn(φ(y(t1)), φ(z(t2)))



= 0,
for t1, t2 ∈ {0, . . . , n1 − 1}×

. . .× {0, . . . , n` − 1}, t1 6= t2

(5.9)

has a solution in â0, . . . , âl1 , b̂0, . . . , b̂l2 , ĉ0, . . . , ĉl3 if and only if P is feasible.

Proof: Assume that the system of equations has a solution. From (5.7) â0 . . . , â`,

b̂0, . . . , b̂`, ĉ0, . . . , ĉ` could only be assigned to nth roots of unity. Since φ(x(t)), φ(y(t)),

and φ(z(t)) are expressed as products and integer powers of nth roots of unity, they

evaluate to nth roots of unity too. The polynomial Pn is the polynomial Pλ, with

λ = n, defined in Chapter 4, and so, by Lemma 4.2 the arguments in the proof

of Proposition 5.1 with respect to (5.4) and (5.5) are applicable to (5.8) and (5.9),

respectively. So Ŝ = {{φ(x(t)), φ(y(t)), φ(z(t))}|t ∈ {0, . . . , n1−1}×· · ·×{0, . . . , n`−

1}} contains only triples of nth roots of unity and each pair of nth roots of unity is

contained in exactly one triple. When we apply φ−1 to the elements in every triple

in Ŝ we obtain an STS S. 2



38

From a computational point of view, the Gröbner basis of the ideal in Proposi-

tion 5.1 can be found faster in Macaulay 2 than the corresponding Gröbner basis

for Proposition 5.3. For n = 7 and ` = 1 we required with the former approach 12

seconds, with the last one the system exhausted the memory.

Now we do the same type of transformation done from Proposition 5.1 to Propo-

sition 5.3 in the opposite direction to get an ideal on Z/nZ to obtain a λ-coloring of

a graph G. We transform Lemma 4.1 in the following way.

Lemma 5.4 Let G be a graph on n vertices for some prime n, and let λ be a non-

negative integer. Graph G is λ-colorable if and only if the following zero-dimensional

system of equations in Z/nZ[x1, . . . , xn]

xi(xi − 1) · · · (xi − λ) = 0, for every vertex i ∈ V (G), (5.10)

(xi − xj − 1) · · · (xi − xj − λ) = 0, for every edge {i, j} ∈ E(G), (5.11)

has a solution. 2

This new ideal is useful only for prime values of n but the calculation of its Gröbner

basis is more efficient.
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Chapter 6

Quasi-Steiner triple systems and basic operations

The idea of defining Quasi-Steiner Triple Systems was suggested to us by a hill-

climbing heuristic search proposed in 1985 by Stinson [40]. He transformed PSTSs

by adding successively new triples until an STS was built. We wondered whether a

similar process was possible on triple systems with missing and repeated pairs, but

with the same number of triples as an STS. We observed that with this change, several

operations to increase or reduce the number of missing pairs were possible. Finally,

there appeared transformation methods and results applicable in a general context

which we consider relevant.

The key element in Stinson’s method is a randomized heuristic operation named

SWITCH that will be explained now.

Let (V ,B) be a PSTS(v). A point x ∈ V is live if rx <
v−1

2
, where rx is the number

of blocks in B containing x. A pair of distinct points, {x, y}, is live if there is no

block B ∈ B such that {x, y} ⊂ B.

Now, if (V ,B) has size less than v(v−1)
6

, then there must exist a live point, say x,

and at least two points y, z ∈ V (y 6= z), such that both {x, y} and {x, z} are live

pairs. This is because rx ≤ v−3
2

, and x has occurred in a block with at most v − 3

other points.

Algorithm 6.1 SWITCH()

Input: A PSTS(v) B.
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Output: The PSTS(v) B with a new triple added.

global NumBlocks

let x be any live point

let y, z be points such that both {x, y} and {x, z} are live pairs

if {y, z} is a live pair then

B ← B ∪ {{x, y, z}}

NumBlocks← NumBlocks+ 1

else

let {w, y, z} ∈ B be the block containing the pair {y, z}

B ← B ∪ {{x, y, z}}r {{w, y, z}}

Algorithm 6.2 STINSON’S ALGORITHM(V)

Input: A positive integer v.

Output: An STS(v).

global NumBlocks

NumBlocks← 0

V ← {1, . . . , v}

B ← ∅

while NumBlocks < v(v − 1)/6

do SWITCH

output (V ,B)

The author of this method did not prove it works in general [40], and he accepted

that it is possible to fail in finding an STS. He justifies the method experimentally.
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We have implemented it and in every execution an STS was found in a reasonable

short time.

We substitute PSTSs by Quasi-Steiner Triple Systems. In a PSTS only infor-

mation about missing pairs is provided, but in QSTSs instead, information about

repeated pairs is also given. This information allows to identify patterns of triples

to be changed in order to increase or reduce the level of the QSTS. In PSTSs, these

patterns are not visible just because they are at a coarser level than QSTSs. Probably

that is the reason why Stinson did not present a formal proof of the correctness of

his method in [40]. Our original purpose was to establish some operations similar

to SWITCH to constructing STSs from QSTSs, but we finally found combinatorial

structures we considered relevant and decided to study them in detail.

In this chapter we introduce five operations which are similar to SWITCH. These

and other operations introduced in subsequent chapters are used by a method that

will be referenced to as the reduction method whose purpose is to take as input a

QSTS(v) Q of level greater than zero and produces a new QSTS(v) Q′ with level

lower than l(Q). Due to the complexity of the reduction method we do not present

here all the details, instead we explain the basic reduction transformations. The

computer program implementing the complete algorithm may be requested from the

authors.

In Example 6.1 a QSTS(13) is presented. The triples appear column-wise. There

10, 11 and 12 were replaced by A, B and C, respectively, to left aligned the triples

as columns.

Example 6.1

00000011111222233334445678

1245792456A357957895689A8B
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36CA8BB978C48CA6ABCB7ACB9C

Two triples in a QSTS(v) Q may have the same elements. So, we will consider

that Q = {T0, T1, . . . , T v(v−1)
6
−1
}. The indexes will be used to avoid any confusion.

If several triples in Q contain {i, j} then it is a repeated pair in Q. If no triple in

Q contains {i, j} then it is a missing pair in Q.

We define now three sets which are extensively used.

Ms(Q) = {{i, j} | {i, j} * T for all T ∈ Q}

Re(Q) = {{i, j} | {i, j} is a repeated pair in Q}

Rt
e(Q) = {(k, {a, b}) | Tk ∈ Q, {a, b} ⊂ Tk and {a, b} ∈ Re(Q)}

Let a, b be two different elements in {0, . . . , v− 1} we denote rQ,a,b the number of

triples in Q containing {a, b}. The level of Q denoted l(Q) is

l(Q) = |Ms(Q)|.

For the QSTS(13) Q in Example 6.1 we have

Ms(Q) = {{6, 9}, {6, C}, {7, B}},

Re(Q) = {{7, 8}, {8, B}, {9, C}},

Rt
e(Q) = {(4, {7, 8}), (24, {7, 8}), (17, {8, B}), (25, {8, B}), (18, {9, C}),

(22, {9, C})},

l(Q) = 3.

Lemma 6.2 For all QSTS(v) Q

l(Q) = |Ms(Q)| = |Rt
e(Q)| − |Re(Q)|.
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Proof: The quantity |Rt
e(Q)| − |Re(Q)| is the excess of pairs in Q. The meaning of

“excess of pairs” is explained now. We know that a repeated pair {a, b} in Q is in

rQ,a,b triples in Q. Then, by definition, rQ,a,b − 1 is the excess of the pair {a, b} in Q.

The “excess of pairs in Q” is the sum of the excess for all the repeated pairs in Q.

Since Q has the same number of triples that any STS(v) every pair in excess in Q

should replace a pair which becomes a missing pair in Q. The result follows. 2

The maximum level of a QSTS(v) Q occurs when all the triples in Q are exactly

the same, say {0, 1, 2}. It means that Ms(Q) = {{0, 1}, {1, 2}, {0, 2}} and |Ms(Q)| =
v(v−1)

2
− 3. Thus the level of a QSTS(v) is between zero and v(v−1)

2
− 3. If a QSTS(v)

has level zero then it is an STS(v).

Lemma 6.3 No QSTS(v) has level one.

Proof: Let us proceed by contradiction. Suppose that a QSTS(v) Q has level one.

Then, there exists a pair {a, b} and exactly two triplesB1 = {a, b, c} andB2 = {a, b, d}

in Q. Since no other pair of triples contains a repeated pair we have that for each

element p in A = {0, 1, . . . , v − 1} − {a, b, c, d} there exists a unique element p′ 6= p

such that {a, p, p′} ∈ Q. So, it is possible to establish a perfect matching in KA, the

complete graph on the vertices of A, but that is impossible because both v and |A|

are odd. 2

Each operation is specified as follows. We implicitly assume the existence of a

QSTS(v) Q. Let B1, B2, . . . , Bk be a set of triples in Q for a positive integer k and

let B′1, B
′
2, . . . , B

′
k be a set of new triples which will replace B1, B2, . . . , Bk in Q to

produce a new QSTS(v) Q′. Any possible transformation can be represented in this

way, but we are only interested in those such that l(Q′) ≤ l(Q). In general, we

analyze the possibility that a proposed transformations and a specific QSTS satisfies
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Name Original triples Transformed triples

Switch B1 = {a, b, c} B′1 = {d, e, f}

Repeated B1 = {a, b, c}, B′1 = {a, c, d},

transposition B2 = {a, b, d} B′2 = {b, c, d}

Diagonal B1 = {a, b, c}, B′1 = {a, c, e},

permutation B2 = {a, e, f} B′2 = {b, e, f}

Double B1 = {a, b, c}, B′1 = {a, c, e},

permutation B2 = {a, e, f} B′2 = {a, b, f}

Permutation B1 = {a, b, c}, B′1 = {b, c, f},

with replacement B2 = {c, d, e} B′2 = {a, c, d}

Table 6.1 : Basic transformations.

this condition by using the following.

Lemma 6.4 The above described transformation yields a QSTS(v) Q′ such that

l(Q′) = l(Q)− |Ms(Q′)−Ms(Q)|+ |Ms(Q)−Ms(Q′)|. (6.1)

Proof: The set Ms(Q′)−Ms(Q) contains pairs which were missing in Q but incor-

porated into Q′ after the transformation. In other words, they are missing pairs in Q

gained after the transformation into Q′. Similarly, the set Ms(Q)−Ms(Q′) contains

pairs non-missing in Q but lost after the transformation. 2

In Table 6.1 we introduce the basic operations used by the reduction method. In

each case the original and transformed triples are provided.

In order to apply one of these operations it is necessary match two triples in Q

with the triples in the “original triples” of the transformation. Then, such triples are
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replaced in Q by the “transformed triples”. In Example 6.5 we have a QSTS(13) and

we apply a double permutation assigning (a, b, c, e, f) = (5, 0, 8, B, C) to transform

B1 = {a, b, c} = {5, 0, 8} and B2 = {a, e, f} = {5, B, C} into B′1 = {5, 8, B} and

B′2 = {5, 0, C}, respectively. The original Q has level three and the transformed Q′

has level two. This fact is confirmed by using Equation 6.1 as shown in the following:

Example 6.5 Original QSTS(13) Q

00000001111222233334445567

12256783458569A468A79B6BB9

B3489ACC69A78BC579B8ACACCC

with Ms(Q) = {{1, 2}, {1, 7}, {7, B}, {8, B}}, Re(Q) = {{B,C}, {0, 8}, {0, 2}} and

l(Q) = 4.

Transformed QSTS(13) Q′

00050001111222233334445067

12286783458569A468A79B65B9

B34B9ACC69A78BC579B8ACACCC

with Ms(Q′) = {{1, 2}, {1, 7}, {7, B}}, Re(Q′) = {{0, 2}, {0, C}, {B,C}} and l(Q′) =

3.
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l(Q′) = l(Q)− |Ms(Q′)−Ms(Q)|+ |Ms(Q)−Ms(Q′)|

= l(Q)− |{{1, 2}, {1, 7}, {7, B}} − {{1, 2}, {1, 7}, {7, B}, {8, B}}|

+ |{{1, 2}, {1, 7}, {7, B}, {8, B}} − {{1, 2}, {1, 7}, {7, B}}|

= 4− |{{8, B}}|+ |∅|

= 4− 1 + 0

= 3

The time to evaluate l(Q′) by Equation 6.1 can be reduced by employing an

alternative method. In Table 6.2 there is one row for every pair x, y in which x 6= y

and x, y ∈ B1∪B2. In column “repetitions in Q” the number of repetitions of each pair

are annotated and the analogous information for Q′ appears in column “repetitions

in Q′. As we have explained in the proof of Lemma 6.4 the set Ms(Q′)−Ms(Q) are

the pairs gained after the transformation. A pair gained after the transformation is

just a pair having a zero in column “repetitions in Q” of Table 6.2, and a number

greater than zero in column “repetitions in Q′”. So, |Ms(Q′)−Ms(Q)| is equal to the

number of rows in Table 6.2 having this property. Analogously, |Ms(Q)−Ms(Q′)| is

the number of rows in Table 6.2 having a zero in column “repetitions in Q′”, but a

number greater than zero in column “repetitions in Q”. Obviously, it is not necessary

to consider the pairs not changed by the transformation because for this entries the

table will contain the same values for columns “repetitions in Q” and “repetitions in

Q′”.

In this way we are able to evaluate Expression 6.1. The number of entries in

Table 6.2 with values zero in column “repetitions in Q” and a positive number in

column “repetitions in Q′” is one, and so |Ms(Q′)−Ms(Q)| = 1. Since no entry has
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pair repetitions in Q repetitions in Q′

{a, b} = {5, 0} 1 1

{a, c} = {5, 8} 1 1

{b, c} = {0, 8} 2 1

{a, e} = {5, B} 1 1

{a, f} = {5, C} 1 1

{e, f} = {B,C} 3 2

{b, e} = {0, B} 1 1

{b, f} = {0, C} 1 2

{c, e} = {8, B} 0 1

{c, f} = {8, C} 1 1

Table 6.2 : Double permutation operation.

a zero in column “repetitions in Q′” |Ms(Q)−Ms(Q′)| = 0.

The operations reported in Table 6.1 do not cover all the possibilities. In fact,

we only considered the operations used by the reduction method. So, we exclusively

use operations transforming two triples at most, and with exception of “switching”

at most two modifications are allowed.
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Chapter 7

Graph decompositions of QSTSs and operations to

reduce the level of QSTS

For a QSTS(v) Q and two elements a, b ∈ {0, . . . , v − 1} the a-b-decomposition of Q,

denoted Qa,b, is the graph with V (Qa,b) equal to the subset of triples in Q having

either a or b as members but not a and b together. Two vertices v1 and v2 in this

graph are edges in E(Qa,b) if and only if v1 = {a, x, y} and v2 = {b, x, z}, with

x, y, z ∈ {0, . . . , n − 1} pair-wise different. In other words, two triples form an edge

e in Qa,b if and only if the first one contains a, the second one contains b, and both

triples contain a common element x; The elements a and b are the axis and x is the

pivot of e.
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Figure 7.1 : A component of the decomposition Q7,8 for the QSTS in Example 6.1.

In Figure 7.1(a) there is represented a component of the decomposition Q7,8 of the

QSTS(13) in Example 6.1. It corresponds to the path {B, 8, C}, {C, 7, 2}, {2, 8, 5},

{5, 7, 1}, {1, 8, 6}, {6, 7, 4}, {4, 8, A}, {A, 7, 3},{3, 8, B}. Here, the lines and points

are labeled by symbols in {0, . . . , 9, A,B,C}, but the interpretation of the drawing
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differs from the usual graph representation. For instance, the first vertex 8 in Fig-

ure 7.1(a) from left to right represents the triple {B, 8, C} and the second vertex 7

the triple {C, 7, 2}. According to our definition, these triples form an edge in Q7,8.

In this representation the axis of the edges alternate along the path, and the pivots

correspond to the labels of the lines joining vertices. In this drawing, we also see

that the pair {B, 8} is repeated; in fact, it belong to {B, 8, C} and to {3, 8, B}. In

consequence, Figure 7.1(b) is an alternative representation for our example. A dotted

line in these drawings represents a missing pair. Thus, the dotted line incident to

vertex 7 and line B indicates that the pair {7, B} is missing.

We insist that the drawings in Figure 7.1 are different from the usual representa-

tion of graphs. In fact, in Figure 7.1(c) the same subgraph of Q6,8 has been depicted

in the usual graph representation. We rather use the representations in either Fig-

ure 7.1(a) or (b) because we consider them much more intuitive.

Lemma 7.1 Let Q, a and b be as in the previous paragraphs. Then,

1. Qa,b is bipartite.

2. If Q is an STS then Qa,b is a set of cycles.

Proof: The graph Qa,b is bipartite because each edge joins one triple containing a

and another containing b.

To prove the second part consider that a vertex in Qa,b is a triple, say {c1, a, c2},

which is adjacent in Qa,b to {c3, b, c1} and {c2, b, c4} for some appropriate c3 and c4.

No other possibility exists because every pair is contained into a single triple. It

means that Qa,b is two-regular and in consequence, a cycle decomposition. 2

Another basic result which will be useful in Chapter 8 and 9 is the following.
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Proposition 7.2 Let Q be a QSTS(v) and let a, b be two different elements in {0, . . . ,

v − 1}. Then

1. Each pivot i in {0, . . . , v − 1} belongs to triples in at most one connected com-

ponent of Qa,b.

2. If Q is an STS then Qa,b has at most v − 2 triples.

Proof: For the first part, suppose, on the contrary, that some pivot c belongs to

two different connected components C1 and C2 of Qa,b. It means that there exists an

edge in C1, and another in C2 both with pivot c, say ({p1, b, c}, {c, a, p′1}) ∈ E(C1),

and ({p2, b, c}, {c, a, p′2}) ∈ E(C2). So, ({p1, b, c}, {c, a, p′2}) is an edge in Qa,b and

{c, a, p′2} ∈ C1. Thus, C1 = C2 which is in contradiction to the election of C1 and C2.

For the second part, since Q is an STS the number of triples containing a is v−1
2

and the same amount of triples contain b. So, v − 3 triples contain either a or b, but

not a and b together. This is the number of vertices in Qa,b. 2

A QSTS(v) Q is a-b-c-exchangeable if and only if Q contains a repeated pair {a, b}

and a missing pair {a, c}; here a, b, c are distinct elements in {0, . . . , v − 1}. An

a-b-c-exchangeable path is a path P = {a, b, p1}{p1, c, p2} . . . {pk−1, α, pk} of Qb,c in

which α is either b or c depending upon the parity either even or odd of the length

of P , respectively. If P is an a-b-c-exchangeable path the b-c-swapping of P is the

path swb,c(P ) = {a, c, p1}{p1, b, p2} . . . {pk−1, ᾱ, pk} in which ᾱ is b (resp. c) when

α = c (resp. α = b). I.e., all the triples in P swap the values of b and c. This is

a useful transformation which under appropriate circumstances reduces the level of

Q. In general, if T is a triple in Qb,c the b-c-swapping of T is the triple T∆{b, c}

where ∆ represents the symmetric difference. If C is a subgraph of Qb,c the b-c-

swapping of C denoted swb,c(C) is the subgraph C ′ of Q′b,c induced by the vertices
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O = {swb,c(T ) | T ∈ V (C)} and Q′ = (Q − V (C)) ∪ O. A swapping cycle is a cycle

in a descomposition graph containing less than v − 3 vertices.

Theorem 7.3 Let Q be a QSTS(v), let P = {a, b, p1}{p1, c, p2} . . . {pk−1, α, pk} be an

a-b-c-exchangeable path such that the pairs {b, p1}, {p1, c}, {c, p2}, . . . , {α, pk} are not

repeated and not missing in Q, and pk 6= a. Then, the QSTS Q′ = (Q−P )∪ swb,c(P )

satisfies the following:

1. Normal path. l(Q′) = l(Q), rQ′,a,b = rQ,a,b − 1, rQ′,pk,α = rQ′,pk,α + 1, and

Ms(Q′) = Ms(Q) ∪ {pk, α} − {a, c}.

2. Broken path. If {ᾱ, pk} ∈Ms(Q) then l(Q′) = l(Q)− 1, rQ′,a,b = rQ,a,b− 1, and

Ms(Q′) = Ms(Q) ∪ {pk, α} − {ᾱ, pk} − {a, c}.

3. Left bifurcation. If {α, pk} ∈ Re(Q) then l(Q′) = l(Q) − 1, rQ′,a,b = rQ,a,b − 1,

rQ′,α,pk = rQ,α,pk + 1, rQ′,α,pk = rQ,α,pk − 1, and Ms(Q′) = Ms(Q)− {a, c}.

4. Loop ending. If {α, pk} = {b, c} then l(Q′) = l(Q)− 1, rQ′,a,b = rQ,a,b − 1, and

Ms(Q′) = Ms(Q)− {a, c}.

Proof: All the items in the proof use the following argument.

Since the triples {a, b, p1}, {p1, c, p2}, . . . , {pk−1, α, pk} are transformed, respec-

tively, into {a, c, p1}, {p1, b, p2}, . . . , {pk−1, α, pk} we have the following:

Fact 1. Before and after the transformation the pairs {b, p1}, {p1, c}, {c, p2}, {p2, b},

. . . , {pk−1, α} neither increase nor decrease their number of repetitions.

Fact 2. rQ,a,b = rQ′,a,b + 1, because {a, b} ⊂ {a, b, p1} ∈ Q but {a, b} does not belong

to any triple in swb,c(P ).
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Fact 3. rQ,a,c = rQ′,a,c− 1, because {a, c} ⊂ {a, c, p1} ∈ swb,c(P ), but {a, c} does not

belong a triple in Q.

Fact 4. rQ,α,pk = rQ′,α,pk + 1 because {α, pk} ⊂ {pk−1, α, pk} ∈ Q but {α, pk} does

not belong to a triple in swb,c(P ).

Fact 5. rQ,α,pk = rQ′,α,pk − 1 because {α, pk} ⊂ {pk−1, α, pk} ∈ swb,c(P ), but {α, pk}

does not belong to a triple in Q.

In Figure 7.2 these facts are illustrated.

Now these facts are applied to prove the theorem. Only the proof for the first

item is developed; the other proofs are similar.

1. Normal path. We prove first that Ms(Q′) = Ms(Q) ∪ {pk, α} − {a, c}. Let

{x, y} be an element of Ms(Q′). The pair {x, y} 6= {a, c} because from the

definition of a-b-c-exchangeable path {a, c} is a missing pair in Q, and from

Fact three {a, c} is not missing in Q′. The pair {x, y} could be equal to {pk, α}

because from Fact four this pair is missing in Q′. Otherwise, {x, y} must be a

missing pair in Q because Facts one to five covers the changes in the number of

repetitions for all the pairs contained into the original and transformed triples,

and only Facts four and five deal with missing pairs in Q′ but not in Q. In

consequence, Ms(Q′) ⊂ Ms(Q) ∪ {pk, α} − {a, c}. The reciprocal contention

is proved analogously. Since {pk, α} is added and {a, c} is deleted to Ms(Q)

to construct Ms(Q′) the cardinality of both sets is the same and l(Q) = l(Q′).

Finally, rQ′,pk,ᾱ = rQ,pk,ᾱ + 1 follows from Fact 5.

2

The items in this theorem are patterns which will be referred to by the names

normal path, broken path, and so on. Patterns broken path, left bifurcation and loop
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Figure 7.2 : Illustration of the proof of Theorem 7.3.

ending are named reducing patters because swb,c(P ) reduces the level of Q. The

normal path pattern is not useful to reduce the level, but it is important too because

it produces modifications in the sets Re(Q) and Ms(Q) without changing the level.

A useful application of this will be discussed in Chapter 9.

In order to reduce the level of a QSTS Q by using exchangeable paths, we look

for each a-b-c-exchangeable path P in Q and try to match each sub-path with one

pattern in the theorem. If it contains one of the reducing patterns we apply the

swapping operation on that sub-path. Otherwise, the path contains the pivot a twice

and it is impossible to reduce it. It looks similar to the path depicted in Figure 7.1. A

path as this is a non-climbing path. A climbing path is the opposite of a non-climbing

path.

An additional reducing patter that we name right bifurcation is possible and it

occurs when {α, pk−1} ∈ Re(Q). However, this pattern is, in fact, a left bifurcation

when P is a non-climbing path, and we traverse along P in the opposite direction.

When all possible exchangeable paths in Q are non-climbing it is possible to transform

just one triple in it to meet one of the reducing patters. This could be done in several
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ways, but we only use the transformations in Table 6.1. Other transformations are

possible but those in Table 6.1 were enough for the implementation of the reduction

method.

For instance, the path depicted in Figure 7.1 is non-climbing. This path belongs

to the decomposition Q7,8 of a QSTS(v) Q. Now, we assume Q unrelated to the QSTS

in Example 6.1. Suppose additionally that the pairs {0, 8}, {0, 6} and {0, 7} belong

to Ms(Q). The switching operation in Table 6.1 transforming {4, 6, 7} into {0, 6, 7}

will not change the level but broke the path. Because after the transformation no

triple will contain the pair {8, 0}. After this change, the path will meet the broken

path pattern and the transformed path will be climbing.

Each of the transformations in Table 6.1, depending upon the number of rep-

etitions of each pair, will make disappear some pairs, other pairs will increase the

number of repetitions and a subset of triples will change. These simple modifications

are enough to meet the reducing patters as it happened in the previous paragraph

example. Let us analyze this with the double permutation operation.

We have explained how to calculate the change in the level of a QSTS(v) Q after a

double permutation operation in Chapter 6. The pairs {b, c} and {e, f} reduce their

number of repetitions while the same number is increased for {b, f} and {c, e}. Going

back to the decomposition component in Figure 7.1, a double permutation will be

useful to meet the broken path pattern if we can find a couple of triples {a, b, c} and

{a, e, f} such that the following conditions are hold.

1. A double permutation can be performed without changing the level of Q on

{a, b, c} and {a, e, f}.

2. rQ,b,c = 1 (resp. rQ,e,f = 1) and {b, c} (resp. {e, f}) is one of the pairs {C, 7},
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{2, 8}, {5, 7}, {1, 8}, {6, 7}, {4, 8}, {A, 7}, or {3, 8}.

3. The transformation only changes the last triple in the sub-path to be swapped.

These conditions could be exhaustively analyzed by a computer program to find

the right triples to be transformed. Of course, any pair (reduction pattern, basic op-

eration) could be used. The important thing here is to find the right set of conditions

to guaranty a level reduction. We do not include all possible combinations here, but

they can be easily developed.

Another useful transformation is the redirection of a non-climbing path (to be

explained now) to transform it into a climbing one. Again, the decomposition com-

ponent in Figure 7.1 is used in the explanation. Suppose that there exists a transfor-

mation changing the triple {1, 6, 8} into {0, 1, 8} without changing neither the level

nor a triple appearing from left to right before than {1, 6, 8}. After performing the

transformation the final effect is to redirect the path starting at the changed triple.

If the new path is climbing, then it will be possible to reduce the level of Q.

There is a big number of ways to compose the transformations in Table 6.1 to meet

reducing patters in non-climbing paths. The normal path pattern is also useful in the

opposite direction. I.e., it could be used to either reduce or increase the number

of repetitions of pairs in order to perform a level reduction through the use of a

transformation in Table 6.1.

Let us start with an example. From Table 6.1 it follows that repeated transposition

changes two triples {a, b, c} and {a, b, d} into {c, d, a} and {c, d, b} respectively. This

transformation reduces the level of the QSTS when the number of {a, b} repetitions

is greater than two and {c, d} ∈ Ms(Q). Following the notation introduced for

Theorem 7.3 a switching under a normal path P will add {pk, α} to Ms(Q) after
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swapping P . So, if {pk, α} is equal to {c, d} then after the swapping of P , the repeated

transposition of {a, b, c} and {a, b, d} will reduce the level of Q. In conclusion, the

swapping of P by itself does not produce any reduction in the level of Q, but it

prepares a successful reduction by applying a repeated transposition.

In some sense, the swapping operation on a normal path pattern works just as an

additional basic transformation. In fact, a double permutation sometimes is equiva-

lent to the swapping of a normal path pattern with just two triples. The difference

is that the normal path pattern transforms an unspecified number of triples and the

basic operations only work with at most two triples. The normal path pattern could

also be used to either increase the number of repetitions of a pair or to change some

elements in specific triples. Another practical application of the normal path pattern

happens when two non-climbing paths meet at some triple: the swapping of a sub-

path starting in the initial triple of the path and ending in the meeting triple could

be useful to meet one of the reducing patters in the second path.

Now, it should be clear that a basic transformations which does not change the

level of Q could be used to prepare the system to allow a level reducing transfor-

mation. For instance, we have explained in a previous example that the switching

transformation could be used to eliminate pairs in Q. If one of these pairs is {b, c}

then a repeated transposition on {a, b, c} and {a, b, d} will reduce the level provided

that these triples are originally in Q.

For the practical implementation of the reducing method we started programing

a subset of the basic operations and the analysis of a-b-c-decompositions to identify

climbing-paths. Then, we executed the program for values of v as great as 500, in

general it allowed us to reach QSTSs of levels lower bounded by 50. When it was not

able to reduce more QSTSs our program looked for a new applicable transformation
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to meet one of the reducing patters and incorporate it in the computer program.

About 50 cases were found necessary, and we incorporate to our program all of them.

Of course, several possibilities were left out because they were not required by any

QSTS. However, we do not discard the possibility that some new cases be, in fact,

necessary.

The running time complexity to transform a QSTS(v) into other with a lower level

depends upon the way in which a non-climbing path is used, and the basic operation

is applied. However, we consider that in general this is O(v5). The number of triples

in Q is b = v(v−1)
6

. Since at most we employed two triples to be changed in the basic

transformations a O(b2) running time is required. Then, the maximum length of a

non-climbing path is v because a repeated pivot originates either a left bifurcation or

right bifurcation pattern, see Theorem 7.3, and so the final running time complexity

is O(b2 × v) = O(v5).

Unfortunately, we cannot offer a full proof on the completeness of our reduction

method, but we have identified some cases in which the reduction is guarantied.

Proposition 7.4 Let Q be a QSTS(v) such that for a pair {a, b} rQ,a,b is an odd

integer greater than one, and one of the pairs either {a, c} or {b, c} is in Ms(Q) for

some c ∈ {0, . . . , v − 1}. Then, it is possible to reduce the level of Q.

Proof: Without loss of generality, we assume {a, c} ∈ Ms(Q). We start by con-

structing the path P1 = {a, b, p1}, {p1, c, p2}, . . . , {pk−1, α, pk} as the one used in

Theorem 7.3. If either one reducing pattern is met or pk = a, we stop the construc-

tion. In the former case, the proposition is true by Theorem 7.3. In the latter; we

start building a new path P2 from the triple {a, b, q1} with q1 different to both p1 and

pk−1. Such q1 exists because rQ,a,b > 2. If P2 is climbing, then we are done, in other
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ways we proceed to build more paths similarly. Since rQ,a,b is odd, at some point we

will construct a climbing path; otherwise, rQ,a,b would be even because each path has

two ends. The proposition follows. 2

Proposition 7.5 Let Q be a QSTS(v) such that for a pair {a, b} rQ,a,b is an even

integer greater than two. If in addition Q contains a live point y then it is possible to

reduce the level of Q.

Proof: Since y is a live point there exist two elements x and z such that both {x, y}

and {y, z} are in Ms(Q). On the other hand, there exist a triple {a, b, c} ∈ Q because

rQ,a,b > 2. If we change {a, b, c} into {x, y, z} to produce a new QSTS(v) Q′ we have

one of the following:

• rQ,a,c > 1, rQ,b,c > 1 or {x, z} ∈Ms(Q). Then, l(Q′) < l(Q) and the proposition

follows.

• Both rQ,a,c = 0 and rQ,b,c = 0. Then, the transformation preserves the level,

but now we apply Proposition 7.4 because Q, {a, b}, rQ,a,b and {b, c} satisfy the

hypothesis.

The proposition follows. 2
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Figure 7.3 : Blocking structure for the reducing method.
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In Proposition 7.4 a hypothesis is the existence of a pair either {a, c} or {b, c}

in Ms(Q). This pair is essential for the proof of this proposition. In Figure 7.3 a

component of Qb,c is represented for some QSTS(v) in which rQ,b,c = 3, but neither

{a, c} nor {b, c} are missing pairs. Then three paths starting at triples B1 = {a, b, p1},

B2 = {a, b, p2}, and B3 = {a, b, p3} can be build but all of them form cycles but no

climbing path does exit. Instances of this structure appeared recurrently in QSTSs of

level three when we ran our programs. In these structure the pair {a, b} is contained

into triples B1, B2, and B3 but the pairs {a, c} and {b, c} are not missing for any

value of c. In other words, for each element c different from a and b the components

of the decompositions Qa,c and Qb,c containing B1, B2, and B3 have a representation

as the one in Figure 7.3. All these components act together as a blocking structure

making difficult the application of any transformation to lower the level.

We conjecture that if the level of some QSTS Q cannot be reduced by our method

then Q should contain the blocking structure just described. However, the following

strategy has always solved the problem. We use the nomenclature introduced in the

previous paragraph and consider that C is the component of Qb,c containing a as a

pivot. First, we look at a value c /∈ {a, b, p1, p2, p3}, locate inQ the triple B = {a, c, d},

which surely exists because by hypothesis {a, c} /∈ Ms(Q). Then, we locate a value

e /∈ {a, b, c, d, p1, p2, p3} which surely exist when v ≥ 9. We finally replace {a, c, d} by

{a, e, d}. The final effect is to break one cycle in C by eliminating the triple {a, c, d}.

The cost of this operation is that the level of Q is increased by one. In Figure 7.4 is

illustrated this transformation.
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Chapter 8

Quasi-Steiner triple systems of level two

The work in the previous chapter in general can be applied to QSTSs of any level, and

it is possible that even a basic operation in Table 6.1 transforms a QSTS of level two

into an STS. However, QSTSs of level two have a special structure which is studied

here. We start by giving general structural property of QSTSs.

Proposition 8.1 Let Q be a QSTS(v), and let a be in {0, . . . , v − 1}. Then, the

parity of the number no of elements b ∈ {0, . . . , v − 1} − {a} such that rQ,a,b > 0 and

rQ,a,b mod 2 = 0 is equal to the parity of the number n2 of elements d ∈ {0, . . . , v −

1} − {a} such that rQ,a,d = 0.

Proof: Let n1 be the number of elements c such that rQ,a,c mod 2 = 1. Now, N0 and

N1 will represent

N0 =
∑

b such that rQ,a,b>0 and rQ,a,b mod 2=0

rQ,a,b

N1 =
∑

b such that rQ,a,b mod 2=1

rQ,a,b

The value of parity(No) is zero because only even integers are added. Similarly,

parity(N1) = parity(n1) because n1 is the number of terms added to compute N1,

and all these numbers are odd.

Besides, parity(N0 +N1) is zero because N0 +N1 is the number of (not necessarily

different) pairs having a in common, and contained into a triple in Q. On the other
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hand, each block containing a has two of these pairs and so N0 +N1 is even. It implies

that parity(N1) = 0 because parity(No) is zero.

Since v − 1 = n0 + n1 + n2 we have that

0 = parity(v − 1) = parity(no + n1 + n2) = parity(no + n2) (8.1)

The last equality holds because parity(n1) = parity(N1) = 0. We finally have

from expression 8.1

parity(n0) = parity(n2).

And the proposition follows. 2

Proposition 8.2 If Q is a QSTS(v) with level two, then there exist distinct elements

a, b, a′, c ∈ {0, . . . , v − 1} such that one of the following conditions holds:

1. Ms(Q) = {{a, c}, {a′, c}}, Re(Q) = {{a, b}, {a′, b}}, and we call Q non-transfer.

2. Ms(Q) = {{a, c}, {a′, b}}, Re(Q) = {{a, b}, {a′, c}}, and we call Q transfer.

Proof: Since Q has level two there exist two different missing pairs {x1, y1} and

{x2, y2}. In other words, the cardinality of the symmetric difference {x1, y1}∆{x2, y2}

is equal to either two or four. In the former case, we have a non-transfer QSTS, and

in the last a transfer-QSTS. Now, we prove the equalities about Re(Q).

In the case of a non-transfer QSTS, both {a, c} and {a′, c} are missing pairs, and

from Lemma 6.2 it follows that |rte(Q)| = 2. In other words, two pairs {x1, y1} and

{x2, y2}, not necessarily different, must be contained into two triples.

Since a belongs to exactly one missing pair, Proposition 8.1 says that a must

belong to an odd number of repeated pairs, and in fact this number should be one
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because otherwise l(Q) would be greater than two. For the same reason, a′ should

belong to a repeated pair. So, we have two possibilities: either a = x1 and a′ = y1 or

a = x1 and a′ = x2.

The case a = x1 and a′ = y1 is impossible, otherwise x2 would belong to exactly

one repeated pair but not belong to one missing pair contradicting Proposition 8.1. So,

the only possibility is a = x1 and a′ = x2. Now, we have two additional possibilities:

either y1 6= y2 or y1 = y2.

The case y1 6= y2 is impossible because again y1 will belong to a repeated pair but

not to a missing pair. The conclusion is that y1 = y2. In the statement, we use b to

denote this common element.

The proof for transfer QSTSs is analogous. 2

The last proposition establishes possibilities for the sets Ms(Q) and Re(Q) when

l(Q) = 2, but it does not present any evidence that such systems, in fact, exist.

Example 8.3 For order v = 15 the QSTS(15) Q1

00000001111112222233333444455666789

123578b25789A458BD45678567C9C79BAAA

469ACED36BDCEA79CEBEADC8D9EBD8EEEBD

has level two, Ms(Q1) = {{6, C}, {A,C}}, Re(Q1) = {{6, E}, {A,E}}, and thus it

is non-transfer. Analogously, the QSTS(15) Q2

0000000111111222223333444555567789A

123456923469D346B8467867B67A8C8A9CB

7DC8EBACA58BE597EAE9BDADCD9CBECEDED

has also level two, Ms(Q2) = {{8, E}, {C,D}}, Re(Q2) = {{8, D}, {C,E}}, and is

transfer.
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When we talk about either transfer or non-transfer QSTSs, we implicitly assume

they have level two.

We follow the variable names introduced in Proposition 8.2 and the nomenclature

from Chapter 7. If Q is non-transfer then Q is a-b-c- and a′-b-c-exchangeable. How-

ever, if it is transfer then it is a-b-c-, a′-b-c-, b-a-a′ and c-a-a′-exchangeable. So, in

this sense, transfer QSTSs are “more” exchangeable that non transfer QSTSs. The

adjective “transfer” is used here because either some path or cycle of Qb,c meets either

a path or cycle in Qa,a′ .

Proposition 8.4 Every non-transfer QSTS Q can be transformed into a transfer

QSTS Q′.

Proof: Let Q be a non-transfer QSTS, then Ms(Q) = {{a, c}, {a′, c}} and Re(Q) =

{{a, b}, {a′, b}}. Since {a, b} is a repeated pair there exists a triple containing it,

say {a, b, d}. If in this triple b is changed by c then {a, b, d} is transformed into

{a, c, d} to produce a new Q′ such that l(Q′) = l(Q), Ms(Q) = {{b, d}, {a′, c}} and

Re(Q) = {{c, d}, {a′, b}} that is a transfer QSTS. 2

So, without loss of generality we can always assume that we are working with

transfer QSTSs.

Proposition 8.5 If Q is an a-b-c-exchangeable QSTS(v) with level two and contain-

ing a climbing path, then Q can be transformed into an STS(v).

Proof: It is immediate from the definition of climbing path, Proposition 6.3 and the

fact that a QSTS(v) of level zero is an STS(v). 2

Proposition 8.6 Let Q be a transfer a-b-c-exchangeable QSTS(v) of level two. Then,

Qb,c consists of a set of cycles and one of the following:
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1. Two climbing paths.

2. Two non-climbing paths.

Proof: SinceQ is both transfer and a-b-c-exchangeable thenMs(Q) = {{a, c}, {a′, b}},

and Re(Q) = {{a, b}, {a′, c}} for some appropriate a′. Since {a, b} is repeated twice

there are two different elements p1 and p2 such that both {a, b, p1} and {a, b, p2} are

in Q.

If Qb,c contains a connected component C not containing neither p1 nor p2 as

pivots, then C must be a cycle. The proof is similar to the second part of Lemma 7.1.

If the connected component contains p1 as a pivot, then we will try to build an

a-b-c-exchangeable path P starting at {a, b, p1} until we are not able to continue.

The next triple to be incorporated is the one containing {p1, c}, say {p1, c, p2} if it

exists. And we continue adding triples {p2, b, p3} and so on. We will stop at some

point after a finite number of steps when some pair {pk, α} ∈ Ms(Q) be reached

with either α = b or α = c depending upon the parity of k. But we only have two

possibilities for {pk, α}: either {a, c} or {a′, b}. For the first case we have a normal

path pattern, which is not climbing and in the second one we have a left bifurcation

which is climbing, see Theorem 7.3.

When P starts at {a, b, p1} and {pk, α} = {a, c} then {pk−1, α, pk} = {pk−1, b, a}

is the ending vertex of P . Then, other path P ′ starting at {a′, c, p′1} and ending at

{p′k′−1, c, a
′} can be built. It means that two non climbing paths are in Qb,c.

Otherwise, P starts at {a, b, p1} and ends at {pk−1, c, a
′}, and other path P ′ start-

ing at {a, b, p2} and ending at {p′k′−1, c, a
′} can be built. So, two climbing paths are

in Qb,c.

The proposition follows. 2
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Figure 8.1 : Two climbing paths are contained into Q2E,D.

In Figure 8.1 we see that two climbing paths are contained into Q2E,D for the

QSTS Q2 introduced after Proposition 8.2.

Of course, if in the last proposition the condition one holds, then we transform

Q into an STS. Otherwise, since Q is transfer, it is also b-a-a′-exchangeable and we

have the decompositions Qb,c and Qa,a′ to look for a climbing path.

The following theorem will be used in practically all the remaining results in the

paper.

Theorem 8.7 Let Q be a QSTS(v) and let a, b be two different elements in {0, . . . , v−

1}. If Ca,b is a connected component in Qa,b then the QSTS Q′ = (Q−Ca,b)∪swa,b(Ca,b)

satisfies the following:

1. l(Q) = l(Q′).

2. If Ca,b is a cycle then Ms(Q) = Ms(Q′).

Proof: Consider the representation of graph decompositions introduced in Chapter 7.

A single line labeled c in this representation joins two vertices a and b and represents

the intersection of a set of triples {p1, a, c}, . . . , {pk1 , a, c} with a set of triples {c, b, q1},

. . ., {c, b, qk2} for appropriate values p1, . . . , pk1 , q1, . . . , qk2 , k1 ≥ 0 and k2 ≥ 0, see

Figure 8.2(a). The swapping operation swa,b(Ca,b) transform all these triples into

{p1, b, c}, . . . , {pk1 , b, c}, {c, a, q1}, . . . , {c, a, qk2}, see Figure 8.2(b).

In consequence, if k1 > 0 and k2 > 0 neither {a, c} nor {c, b} will be missing pairs

in Ms(Q′) and no change in l(Q′) will occur with respect to l(Q). Now, if k1 = 0,
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Figure 8.2 : Illustration of the proof of Theorem 8.7.

then k2 should be greater than zero and so {a, c} is in Ms(Q) but it is not in Ms(Q′);

{b, c} is not in Ms(Q) but it is in Ms(Q′). So, we are only replacing {a, c} in Ms(Q)

by {b, c} in Ms(Q′), but the cardinalities of both Ms(Q) and Ms(Q′) are preserved.

And thus, l(Q) = l(Q′).

Now, if Ca,b is a cycle, then by the first sentence in the previous paragraph Ms(Q)

will be identical to Ms(Q′). 2

We now address the level reduction of QSTSs of level two containing two non-

climbing paths.
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á

p
k2 a

a´
qqqq

+
q

12

2

l l1l2

1

q

p p

q

a
p
1

ap

á
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Figure 8.3 : Fusion of two non-climbing paths to yield two climbing paths.

Proposition 8.8 Let Q be a transfer QSTS(v) of level two such that Ms(Q) =

{{a, c}, {a′, b}}, Re(Q) = {{a, b}, {a′, c}} and Qb,c contains two non climbing paths
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P1 and P2. If P1 and P2 contain pivots p and q, respectively, {p, q} * {a, a′, b, c},

and b, c are in different connected components of Qp,q then Q′ = (Q−Cb)∪ swp,q(Cb)

contains two climbing paths. Here, Cb represents the component of Qp,q containing b

as a pivot.

Proof: From Proposition 8.6 we have that P1 = {a, b, p1}, {p1, c, p2}, . . . , {pk1 , αp, p},

{p, αp, pk1+2}, . . . , {pk2 , b, a} and P2 = {a′, c, q1}, {q1, b, q2}, . . . , {ql1 , αq, q}, {q, αq,

ql1+2}, . . . , {ql2 , c, a′}, see Figure 8.3(a).

Without losing generality, we will assume that αp = αq = b.

From all the triples in P1 and P2 only {pk1 , αp, p} and {pl1 , αq, q} will be changed

into {pk1 , αp, q} and {pl1 , αq, p}, respectively, after performing swp,q(Cb). It is because

all the pivots distinct from both a and a′ in P1 and P2 are pairwise different. It follows

from Proposition 7.2 because P1 and P2 are not connected in Qb,c. Then, Theorem 8.7

guaranties that the swapping does not modify the missing pairs in Q and so the change

maintains the level.

However, swp,q(Cb) modifies P1 and P2 into transformed paths P ′1 and P ′2 as fol-

lows: P ′1 = {a, b, p1}, {p1, c, p2}, . . . , {pk1 , αp, q}, {q, αq, ql1+2}, . . . , {ql2 , c, a′} and P ′2 =

{a′, c, q1}, {q1, b, q2}, . . . , {ql1 , αq, p}, {p, αp, pk1+2}, . . . , {pk2 , b, a}, see Figure 8.3(b).

In other words, we are transforming the paths in such a way that the ends of both

P1 and P2 are now interchanged in P ′1 and P ′2. But now these two paths are climbing.

2

The hypothesis in Proposition 8.8 saying b, c are in different connected components

of Qp,q is too restrictive for the application of Proposition 8.8. However, it is possible

to use Theorem 8.7 in the following way.

Proposition 8.9 Let Q, a, b, c, P1, P2, p, q be as in Proposition 8.8. Now, suppose
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Figure 8.4 : Separation of b and c in C.

both b and c are in the same connected component C of Qp,q. If the distance of a

and b in C is even, then Q′ = (Q − P1) ∪ swb,c(P1) satisfies all the hypothesis in

Proposition 8.8.

Proof: The connected component C is a cycle because no repeated pair is contained

into Qp,q and the proof of the second part of Lemma 7.1 can be directly applied to

C. And thus, the distance between a, b can be taken from the cycle C, and without

risk of confusion it will be either odd or even because C is bipartite by Lemma 7.1.

Assume that C = {x0, p, x1}, . . . , {xkb , αb, b}, {b, αb, xkb+2}, . . . , {xkc , αc, c}, {c,

αc, xkc+2}, . . . {xk, q, x0}, see Figure 8.4(1).

Without losing generality, we assume that αb = p. Now, as the distance in C

between pivots b and c is even αc = p.

Since P1 contains p as a pivot but not q, we have that the only triples in C, which

change after applying swb,c(P1) are {xkb , αb, b} and {xkc , αc, c}. The first one is trans-
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formed into {xkb , αb, c} and the second one into {xkc , αc, b}. But C itself is separated

into two cycles: C1 = {x0, p, x1}, . . . , {xkb , αb, c}, {c, αc, xkc+2}, . . . , {xk, q, x0}, and

C2 = {b, αc, xkc}, {xkc , αc, xkc−1}, . . . , {xkb+2, αb, b}. Then c is only contained into C1

and b in C2. See Figure 8.4(2). 2

After swb,c(P1) the QSTS Q′ in the last proposition has Ms(Q′) = {{a, b}, {a′,

c}}, Re(Q) = {{a, c}, {a′, b}}.

When both b and c are in the same component C of Qp,q, but their distance is

odd we have not found any useful transformation of Q to separate them. In practice,

however, we have always found pivots p and q for which either Proposition 8.8 or

Proposition 8.9 holds.
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Chapter 9

Direct transformations among QSTSs

By using our reducing method it is possible to build random QSTSs just by making

a random selection of the transformations to be applied. A similar method for STSs

was also proposed by Stinson [40]. However, a full construction of a new QSTS is not

necessary. Based on Theorem 8.7 it is possible to transform a QSTS(v) Q into another

QSTS(v) Q′ by changing at most v triples in such a way that Q is not necessarily

isomorphic to Q′.

The transformation is described in the following algorithm.

Algorithm 9.1 QSTSTRANSFORMATION(Q, v)

Input: A QSTS(v) Q.

Output: A new QSTS(v) Q′ such that l(Q) = l(Q′), and in general Q and Q′ are not

necessarily isomorphic.

let b, c be two different elements in {0, . . . , v − 1}.

let C be a connected component of Qb,c containing less than v − 3 triples in Q.

Q′ ← (Q− C) ∪ swb,c(C)

The method works because it is precisely the statement of Theorem 8.7 and it is

appropriate for any QSTS in general, and in particular, for any STS. When Q is an

STS, the number of triples to be changed is at most v−3 because from Proposition 7.2

the maximum number of triples in C is this number. When the equality holds the
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swapping operation on C only produces a permutation of b and c, and an isomorphic

Q′ is produced. When the number of triples in C is less than v − 3 it is possible to

have a non-isomorphic STS Q′ as can be appreciated in the following:

Example 9.1 One of the two canonical STS(13) in the minimum lexicographical iso-

morphic representation is:

00000011111222223334445566

13579B3478A3456A6895797878

2468AC569BC789CBACBBACCAB9

If we name Q this STS then one of the cycles in Q9,A is C = {2, 5, 9}, {2, A,B},

{3, 9, B}, {3, 6, A}, {6, 8, 9}, {5, 8, A}. Since sw9,A(C) = {2, 5, A}, {2, 9, B}, {3, A,B},

{3, 6, 9}, {6, 8, A}, {5, 8, 9} the STS Q′ ← (Q− C) ∪ sw9,A(C) in the minimum lexi-

cographical isomorphic representation is

00000011111222223334445566

13579B3478A3456968A5797878

2468AC569BC78ACB9CBBACC9BA

In fact, Q is isomorphous to the STS(13) number 2: reported in Table 1.27 [33]

and Q′ to the STS(13) number 1: reported in the same table. So, Q and Q′ are not

isomorphic.

We have made experiments for v = 13 and 15 with Algorithm 9.1, and reached all

the non-isomorphic STSs of these orders. So, we believe that the following is true.

Conjecture 9.1 Let Q be a QSTS(v). Then, every non-isomorphic QSTS Q′ can be

reached by a successive application of Algorithm 9.1.
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When Q is not an STS, the number of triples changed by Algorithm 9.1 is at most

the number of triples in Q containing exactly one of b or c.

Given v ≡ 1 mod 6 or v ≡ 3 mod 6, the swapping graph of order v, denoted S(v)

is the digraph having the isomorphism classes of the STSs of order v as set of vertices;

two vertices a, b being joined by a directed edge if and only if the representative Sa

of a can be transformed into one element from the class b by swapping a cycle in

some decomposition graph of Sa. A random walk on S(v) will visit the isomorphism

classes, and several questions arise. For instance:

1. What is the proportion of times that a certain class is visited by the random

walk?

2. What classes can be reached from a starting vertex in S(v)?

3. What is the expected number of steps to visit all the classes?

4. Is S(v) a connected graph?

5. Is there a particular class form which the other classes can be reached by random

paths of a given bounded length?

A random walk on S(v) is, in fact, a Markov Chain [26] where the state space is

the set of isomorphism classes V (S(v)), and where the transition matrix A(v) in the

entry A(v)[a, b] contains the number of different swapping cycles transforming a into

b divided by the total number of swapping cycles. All the questions in the previous

paragraph may be answered from the standard theory of Markov chains, and we

rather prefer to omit the details. However, we have computed A(15) and present it

in Table 9.1. Since there are eighty isomorphism classes for the STSs of order 15 [26]

we have represented each one as an integer number. The class i corresponds to the
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isomorphism class whose representative is the lexicographical minimum element in the

class and occupies the ith place in the representatives lexicographical order. Since

A(v) is a sparse matrix, we only present the non-zero entries.

For instance, the row “7: 6-0.107 51-0.107 59-0.107 61-0.321 69-0.321 73-0.036”

means that in the seventh rowA(15)[7, 6] = 0.107, A(15)[7, 51] = 0.107, A(15)[7, 59] =

0.107, A(15)[7, 61] = 0.321, A(15)[7, 69] = 0.321, and A(15)[7, 73] = 0.036, and all

the other entries in the seventh row of A(15) are zero.

Several interesting facts could be observed from this matrix. For example, the row

18 only contains a non-zero value in column 14. It means that for the 18th isomorphic

class, any cycle swapping produces an STS in the 14th class. The representatives of

these classes are:

Representative for the 14th isomorphism class of STSs of order 15

00000001111112222223333444455556666

13579bd3478bc3478bc789a789a789a789a

2468ace569ade65a9edbcdecbeddecbedbc

Representative for the 18th isomorphism class of STSs of order 15

00000001111112222223333444455556666

13579bd3478bc3478bc789a789a789a789a

2468ace569ade65a9edbcdecbeddebcedcb

The full list of isomorphic classes for orders 15 are available by requesting them

to the authors. A direct analysis of A(15) as an sparse matrices confirms that S(15)

is a connected digraph.



75

1: 1-0.105 16-0.088 21-0.035 22-0.035 24-0.105 30-0.123 41: 1-0.032 2-0.065 3-0.097 17-0.065 20-0.129 23-0.032
40-0.088 41-0.035 46-0.035 47-0.035 48-0.035 53-0.035 41-0.065 43-0.129 44-0.032 46-0.032 59-0.032 69-0.032
58-0.105 62-0.035 75-0.035 77-0.035 78-0.035 74-0.097 75-0.129 79-0.032
2: 16-0.090 17-0.030 20-0.075 22-0.030 24-0.119 25-0.164 42: 4-0.082 5-0.082 6-0.197 23-0.262 25-0.066 31-0.066
27-0.030 29-0.075 41-0.060 47-0.030 49-0.030 52-0.030 32-0.082 40-0.066 77-0.098
53-0.030 59-0.030 69-0.030 72-0.090 75-0.030 79-0.030
3: 16-0.029 17-0.029 20-0.086 24-0.086 25-0.086 27-0.029 43: 3-0.103 17-0.103 23-0.034 24-0.034 25-0.034 27-0.103
40-0.086 41-0.086 43-0.086 47-0.029 48-0.086 49-0.029 30-0.138 41-0.138 46-0.034 48-0.034 52-0.034 59-0.034
52-0.029 53-0.029 59-0.029 60-0.029 74-0.029 75-0.086 69-0.103 74-0.034 75-0.034
79-0.029
4: 5-0.161 21-0.387 32-0.161 35-0.129 42-0.161 44: 6-0.250 17-0.250 20-0.083 40-0.083 41-0.083 46-0.083

69-0.083 79-0.083
5: 4-0.238 10-0.095 32-0.238 35-0.190 42-0.238 45: 10-0.032 21-0.129 29-0.387 35-0.387 56-0.032 77-0.032
6: 7-0.022 16-0.022 20-0.022 21-0.054 24-0.022 29-0.043 46: 1-0.143 41-0.143 43-0.143 44-0.143 46-0.143 75-0.286
32-0.054 33-0.065 42-0.065 44-0.065 47-0.065 49-0.065
52-0.065 54-0.065 58-0.022 60-0.022 61-0.022 63-0.118
73-0.065 78-0.065
7: 6-0.107 51-0.107 59-0.107 61-0.321 69-0.321 73-0.036 47: 1-0.026 2-0.026 3-0.026 6-0.077 16-0.026 17-0.077

20-0.026 22-0.077 23-0.077 25-0.026 28-0.077 30-0.026
50-0.154 52-0.077 59-0.077 69-0.051 74-0.026 75-0.026
77-0.026

8: 8-0.077 9-0.051 36-0.051 37-0.171 38-0.085 39-0.137 48: 1-0.026 3-0.077 16-0.026 17-0.051 23-0.090 24-0.026
50-0.205 65-0.026 66-0.026 71-0.171 29-0.026 30-0.026 40-0.026 43-0.026 50-0.026 52-0.026

53-0.064 60-0.064 61-0.090 69-0.141 74-0.090 75-0.026
77-0.077

9: 8-0.203 9-0.051 11-0.169 12-0.017 13-0.051 36-0.169 49: 2-0.056 3-0.056 6-0.168 17-0.140 23-0.168 26-0.019
63-0.339 27-0.056 50-0.168 60-0.056 69-0.056 71-0.056
10: 5-0.667 45-0.333 50: 8-0.063 16-0.021 21-0.042 22-0.053 25-0.042 30-0.021

33-0.053 40-0.021 47-0.126 48-0.021 49-0.063 52-0.053
54-0.168 55-0.053 60-0.021 63-0.063 70-0.116

11: 9-0.048 11-0.116 13-0.029 14-0.039 15-0.014 37-0.271 51: 7-0.056 51-0.168 57-0.168 60-0.140 61-0.140 62-0.140
38-0.155 39-0.077 64-0.193 66-0.029 67-0.029 63-0.056 64-0.019 71-0.056 76-0.056
12: 9-0.267 13-0.200 65-0.533 52: 2-0.023 3-0.023 6-0.070 17-0.070 22-0.058 25-0.023

30-0.023 33-0.070 43-0.023 47-0.070 48-0.023 50-0.058
52-0.116 54-0.058 55-0.140 60-0.023 61-0.023 62-0.023
71-0.058 74-0.023

13: 9-0.058 11-0.116 12-0.014 13-0.058 14-0.029 15-0.029 53: 1-0.041 2-0.041 3-0.041 17-0.082 20-0.122 21-0.041
38-0.386 39-0.193 66-0.116 24-0.041 26-0.041 48-0.102 60-0.102 62-0.163 69-0.102

72-0.041 75-0.041
14: 11-0.719 13-0.135 14-0.067 15-0.067 18-0.011 54: 6-0.054 16-0.036 21-0.045 22-0.152 28-0.054 29-0.036

33-0.080 37-0.098 50-0.143 52-0.045 55-0.045 56-0.054
61-0.018 64-0.098 70-0.045

15: 11-0.185 13-0.092 14-0.046 19-0.062 39-0.369 67-0.246 55: 21-0.050 31-0.020 32-0.059 33-0.050 35-0.020 37-0.050
38-0.059 50-0.050 52-0.119 54-0.050 55-0.059 58-0.020
64-0.030 66-0.059 69-0.020 70-0.198 73-0.089

16: 1-0.058 2-0.070 3-0.023 6-0.023 16-0.186 20-0.070 56: 32-0.122 33-0.204 38-0.204 45-0.020 54-0.245 70-0.204
25-0.070 28-0.023 30-0.081 35-0.070 40-0.058 47-0.023
48-0.023 50-0.023 54-0.047 57-0.058 62-0.070 74-0.023
17: 2-0.027 3-0.027 17-0.133 24-0.027 41-0.053 43-0.080 57: 16-0.126 29-0.151 31-0.025 35-0.126 51-0.151 57-0.202
44-0.080 47-0.080 48-0.053 49-0.067 52-0.080 53-0.053 58-0.101 63-0.050 64-0.050 68-0.017
59-0.080 60-0.027 69-0.027 72-0.053 75-0.027 79-0.027
18: 14-1.000 58: 1-0.079 6-0.026 21-0.026 29-0.079 31-0.066 32-0.026

35-0.171 40-0.079 55-0.026 57-0.053 58-0.184 59-0.026
60-0.079 70-0.026 73-0.026 74-0.026

19: 15-0.143 39-0.857 59: 2-0.038 3-0.038 7-0.038 17-0.115 20-0.038 23-0.154
27-0.154 40-0.038 41-0.038 43-0.038 47-0.115 58-0.038
69-0.038 74-0.115

20: 2-0.079 3-0.095 6-0.032 16-0.095 22-0.032 23-0.032 60: 3-0.023 6-0.023 17-0.023 20-0.023 22-0.023 24-0.023
24-0.032 25-0.079 27-0.032 29-0.079 40-0.032 41-0.127 27-0.023 29-0.070 48-0.058 49-0.023 50-0.023 51-0.058
44-0.032 47-0.032 53-0.095 59-0.032 60-0.032 79-0.032 52-0.023 53-0.058 58-0.070 60-0.070 61-0.058 62-0.058

69-0.198 70-0.023 74-0.023 79-0.023
21: 1-0.024 4-0.071 6-0.059 32-0.059 33-0.200 36-0.071 61: 6-0.028 7-0.083 23-0.181 26-0.083 27-0.028 30-0.028
45-0.024 50-0.047 53-0.024 54-0.059 55-0.059 58-0.024 31-0.083 32-0.028 48-0.097 51-0.069 52-0.028 54-0.028
62-0.024 63-0.059 70-0.129 78-0.071 60-0.069 62-0.069 74-0.097
22: 1-0.024 2-0.024 20-0.024 23-0.094 26-0.165 32-0.071 62: 1-0.034 16-0.102 21-0.034 22-0.034 33-0.034 35-0.102
40-0.024 47-0.071 50-0.059 52-0.059 54-0.200 60-0.024 51-0.085 52-0.034 53-0.136 60-0.085 61-0.085 62-0.102
62-0.024 71-0.071 73-0.071 74-0.102 75-0.034
23: 20-0.027 22-0.107 30-0.027 40-0.027 41-0.027 42-0.107 63: 6-0.168 9-0.038 21-0.076 32-0.076 36-0.038 37-0.076
43-0.027 47-0.080 48-0.093 49-0.080 59-0.107 61-0.173 38-0.076 50-0.092 51-0.031 57-0.031 63-0.069 64-0.092
69-0.027 74-0.093 68-0.046 71-0.092
24: 1-0.094 2-0.125 3-0.094 6-0.031 17-0.031 20-0.031 64: 11-0.093 33-0.093 38-0.093 51-0.012 54-0.205 55-0.056
26-0.031 27-0.094 40-0.125 43-0.031 48-0.031 53-0.031 57-0.037 63-0.112 64-0.093 70-0.149 71-0.037 73-0.019
60-0.031 72-0.031 75-0.094 79-0.094
25: 2-0.169 3-0.092 16-0.092 20-0.077 29-0.169 35-0.092 65: 8-0.207 12-0.069 36-0.207 39-0.207 66-0.310
42-0.031 43-0.031 47-0.031 50-0.062 52-0.031 69-0.031
74-0.031 75-0.031 79-0.031
26: 22-0.525 24-0.075 49-0.025 53-0.075 61-0.225 76-0.075 66: 8-0.044 11-0.044 13-0.044 36-0.044 37-0.089 38-0.089

39-0.089 55-0.356 65-0.067 67-0.133
27: 2-0.034 3-0.034 20-0.034 24-0.103 29-0.034 30-0.103 67: 11-0.061 15-0.041 37-0.122 38-0.122 39-0.061 66-0.184
35-0.034 43-0.103 49-0.034 59-0.138 60-0.034 61-0.034 70-0.408
69-0.034 74-0.138 75-0.103
28: 16-0.143 47-0.429 54-0.429 68: 36-0.297 57-0.079 63-0.356 68-0.030 78-0.238
29: 2-0.067 6-0.053 20-0.067 25-0.147 27-0.027 29-0.080 69: 2-0.025 7-0.074 17-0.025 23-0.025 25-0.025 27-0.025
33-0.027 34-0.027 40-0.080 45-0.080 48-0.027 54-0.053 30-0.025 40-0.074 41-0.025 43-0.074 44-0.025 47-0.049
57-0.080 58-0.080 60-0.080 78-0.027 48-0.136 49-0.025 53-0.062 55-0.025 59-0.025 60-0.210

75-0.025 79-0.025
30: 1-0.095 16-0.095 23-0.027 27-0.081 30-0.135 31-0.095 70: 21-0.097 33-0.088 35-0.035 38-0.044 39-0.053 50-0.097
40-0.095 43-0.108 47-0.027 48-0.027 50-0.027 52-0.027 54-0.044 55-0.177 56-0.044 58-0.018 60-0.018 64-0.071
61-0.027 69-0.027 74-0.081 77-0.027 67-0.044 70-0.142 73-0.027
31: 30-0.253 35-0.145 42-0.072 55-0.072 57-0.036 58-0.181 71: 8-0.129 22-0.155 37-0.129 49-0.052 51-0.052 52-0.129
61-0.217 78-0.024 63-0.155 64-0.052 71-0.129 76-0.017
32: 4-0.057 5-0.057 6-0.115 21-0.115 22-0.138 35-0.046 72: 2-0.308 17-0.205 24-0.103 53-0.103 75-0.103 79-0.154
42-0.057 55-0.138 56-0.069 58-0.046 61-0.046 63-0.115 80-0.026
33: 6-0.059 21-0.167 29-0.020 33-0.118 37-0.049 38-0.108 73: 6-0.178 7-0.020 22-0.178 37-0.178 55-0.267 58-0.059
40-0.020 50-0.049 52-0.059 54-0.088 55-0.049 56-0.049 64-0.030 70-0.089
62-0.020 64-0.049 70-0.098
34: 29-0.444 79-0.556 74: 3-0.029 16-0.029 23-0.101 25-0.029 27-0.116 30-0.087

41-0.087 43-0.029 47-0.029 48-0.101 52-0.029 58-0.029
59-0.087 60-0.029 61-0.101 62-0.087

35: 4-0.025 5-0.025 16-0.075 25-0.075 27-0.025 31-0.050 75: 1-0.032 2-0.032 3-0.097 17-0.032 24-0.097 25-0.032
32-0.025 35-0.175 40-0.075 45-0.075 55-0.025 57-0.062 27-0.097 41-0.129 43-0.032 46-0.065 47-0.032 48-0.032
58-0.163 62-0.075 70-0.050 53-0.032 62-0.032 69-0.032 72-0.032 75-0.065 79-0.097
36: 8-0.051 9-0.043 21-0.205 36-0.068 37-0.085 38-0.188 76: 26-0.429 51-0.429 71-0.143
39-0.137 63-0.085 65-0.026 66-0.026 68-0.085
37: 8-0.068 11-0.095 33-0.068 36-0.034 37-0.088 38-0.116 77: 1-0.129 30-0.129 42-0.194 45-0.032 47-0.129 48-0.387
39-0.054 54-0.150 55-0.068 63-0.068 66-0.020 67-0.020
71-0.068 73-0.082
38: 8-0.034 11-0.054 13-0.034 33-0.150 36-0.075 37-0.116 78: 1-0.107 6-0.321 21-0.321 29-0.107 31-0.036 68-0.107
38-0.088 39-0.054 55-0.082 56-0.068 63-0.068 64-0.068
66-0.020 67-0.020 70-0.068
39: 8-0.109 11-0.054 13-0.034 15-0.020 19-0.020 36-0.109 79: 2-0.047 3-0.047 17-0.047 20-0.047 24-0.141 25-0.047
37-0.109 38-0.109 39-0.190 65-0.020 66-0.041 67-0.020 34-0.059 40-0.047 41-0.047 44-0.047 60-0.047 69-0.047
70-0.163 72-0.071 75-0.141 79-0.118
40: 1-0.067 3-0.080 16-0.067 20-0.027 22-0.027 23-0.027 80: 72-1.000
24-0.107 29-0.080 30-0.093 33-0.027 35-0.080 42-0.027
44-0.027 48-0.027 50-0.027 58-0.080 59-0.027 69-0.080
79-0.027

Table 9.1 : Transition matrix A(15).
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Chapter 10

Conclusions

When Hilbert submitted his famous finiteness theorem (see [12]) to the Mathematis-

che Annalen in 1888, Gordan rejected the article. Gordan had earlier established the

finiteness of generators for binary forms using a complex computational approach. He

expected not only a finiteness existence proof, but also a more constructive approach.

Gordan comment about Hilbert’s work was “Das ist nicht Mathematik. Das ist The-

ologie” (This is not Mathematics. This is Theology) [20]. Encouraged by Gordan’s

opinion, Hilbert provided estimates of the maximum degree of the minimum set of

generators. But in 1899 Gordan developed a constructive proof of the finiteness theo-

rem, using what is now called the Gröbner basis to reduce to the more easily treated

monomial case.

Gordan’s tools were made more practical with the advent of modern computers.

Despite this, implicit in the calculation of many Gröbner bases is the solution of NP-

complete problems. Hence we cannot hope to solve every possible problem stated with

Gröbner bases. Nevertheless, important problems in physics, robotics and engineering

have been successfully solved with them.

Characterizations of combinatorial designs test these algebraic tools. We have ex-

amined how to represent the rich structure of designs into algebraic terms. We tested

in Macaulay 2 that every ideal works as described. Unfortunately, the large dimen-

sions of the systems of polynomials involved to make manipulation impractical from

a computational point of view. The development of parallel algorithms to calculate
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Gröbner basis efficiently are remarkable (see [3, 36]). Such advances may permit the

direct calculation for the ideals introduced in this paper for small values of n. On

the other hand, the increasing industrial interest in Gröbner basis will bring in the

near future computer hardware especially designed to making fast the calculations

involved. This progress will be important for design theory.

We opened unexplored connections between algebraic geometry and combinatorial

design theory; this is one of the main contributions of our work. From the algebraic

geometry point of view, the most interesting result from these connections is the

discovery of 0-1 ideals whose structural properties and applications in combinatorics

are explored in [38].

Our interest in applying our polynomial ideals to generate STSs led us to un-

derstand that genetic algorithms are not appropriate tools because the existence of

Stinson’s method makes irrelevant to their use. This is a fact probably unknown in

the context of genetic algorithms because, to the best of our knowledge, no other

author has reported the connection between Stinson’s method and genetic algorithms

and the superiority of the first one.

Another contribution of our study is the introduction of QSTSs which by them-

selves are interesting combinatorial designs. They play an alternative role to STSs,

mainly when looking for structures with restrictions difficult to find. That is, we have

introduced operations to transform a QSTS of a given level into a new QSTS of a

lower or greater level. Finally, all the properties of QSTS are inherited to STSs.

Finally, we developed a method to change an arbitrary STS(v) into non isomorphic

STSs by replacing in each transformation at most v − 3 triples. This transformation

is based on Theorem 7.3 which we consider one of the most important contributions

in the thesis.



78

The study of QSTSs is not exhausted. We have found a set of transformations

to generate STSs from an arbitrary QSTS. This transformations work well in prac-

tice, but a formal proof about their completeness is not given. However, we have

proven here some general results about situations where level reductions of QSTSs

are guarantied.

Another problem left open is the general transformation of a QSTS of level two into

a QSTS, because we were not able not find a proof of a result similar to Proposition 8.9

when b and c are at an odd distance in C.



79

Bibliography

[1] Anderson, I. (1999) Balancing carry over effects in tournaments, in Combina-

torial designs and their applications, Chapman & Hall/CRC Res. Notes Math.,

403, Boca Raton, FL, 1-16.

[2] W. Adams and P. Loustaunau: An Introduction to Gröbner Bases, American
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