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coeficientes variables usando operadores de

transmutación”

T E S I S

Que presenta

M. en C. Josafath Alfredo Otero Jiménez
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for all of the funding they were able to provide to me in order to make my doctoral studies

possible as well as Centro de Investigación y Estudios Avanzados del Intituto Politécnico
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Abstract

In the present work a complete system of solutions of the equation

∂2u

∂x2
− q(x)u(x, t) =

∂u

∂t
(x, t), (1)

considered on a closed rectangle over the real plane is constructed. We assume that

the coefficient q is a continuous complex valued function of an independent real variable

x. The solutions represent the images of the heat polynomials under the action of a

transmutation operator. The completeness of the system is with respect to the uniform

norm in the closed rectangle. The system of solutions is shown to be useful for uniform

approximation of solutions of initial boundary value problems for (2.1). The proposed

numerical method is shown to reveal good accuracy.

For the case of a parabolic partial differential equation with time dependent potential

of the form
∂2u

∂x2
− q(x)eiωtu(x, t) =

∂u

∂t
(x, t), (2)

where q is a continuously differentiable complex valued function, ω is a fixed real number

and i is the imaginary unit; an explicit series representation of the images of the heat

polynomials under the action of a transmutation operator is obtained. The construction

of the series representation is based on a series representation of the transmutation kernel

in terms of the positive integer powers of the exponential function involved in the potential

of the equation. The truncated series representation of the transmuted heat polynomials

shown to be useful for uniform approximation of solutions of initial boundary value prob-

lems for equation (2). Using the series representation of the transmutation kernel, a simple

recursive integral procedure for the construction of the transmuted heat polynomials is

presented.

Besides, an extension of the method of fundamental solutions for the equation (1) on a

open rectangle using point sources outside the domain is presented. The method is based
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on the construction of a system of functions being the images of the heat kernel under

the action of a transmutation operator. A completeness result of the system of functions

with respect to the uniform norm over the closed rectangle is obtained. A simple recursive

procedure for calculation of the system is obtained. Then, using the collocation method

an step by step method for approximation of solution of initial boundary value problems

for the equation (1) is presented.

Finally, the use of the mapping property leads to an explicit solution of the noncharac-

teristic Cauchy problem for equation (1) with Cauchy data belonging to a Holmgren class

of functions (see [3]). The solution is presented in terms of the formal powers arising in

the spectral parameter power series (SPPS) method (see [14], [19]). On the other hand,

an explicit formula for solution of the Cauchy problem for equation (1) with initial data

of exponential growth order is presented. The solution is constructed with the aid of a

transmutation operator defined over the whole real line for the space variable for which

an adequate space is introduced. The Fourier-Legendre series representation of the trans-

mutation kernel showed in [17] provide us a simple recursive procedure for constructions

of the formula.
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Resumen
En el trabajo se presenta un sistema completo de soluciones para la ecuación

∂2u

∂x2
− q(x)u(x, t) =

∂u

∂t
(x, t), (3)

considerada sobre un rectángulo del plano. Donde q es un coeficiente continuo complejo

valuado de una variable real x. Las soluciones se construyen como las imágenes de los

polinomios de calor bajo un operador de transmutación. La completes del sistema es con

respecto a la norma uniforme en el rectángulo cerrado. El sistema muestra ser útil para la

aproximación de soluciones a problemas con valores iniciales y de frontera para la ecuación

(3). El método propuesto revela una buena aproximación.

En el caso de una ecuación diferencial parcial parabólica con un potencial dependiente

del tiempo en la forma
∂2u

∂x2
− q(x)eiωtu(x, t) =

∂u

∂t
(x, t), (4)

donde q es una función complejo valuada continuamente diferenciable, ω es un número

real positivo fijo e i es la unidad imaginaria; se muestra una representación expĺıcita de

las imágenes de los polinomios de calor bajo la acción de un operador de transmutación

en forma de una serie. La representación se construye en base a una expresión en serie

del núcleo integral del operador de transmutación en términos de las potencias enteras

positivas de la función exponencial en el potencial. La serie truncada es útil para aproximar

uniformemente los polinomios de calor transmutados y por tanto las soluciones de la

ecuación (4). Usando la representación en series del núcleo de transmutación se presenta

un procedimiento integral recursivo simple para la construcción de los polinomios de calor

transmutados.

Además, se presenta una extensión del método de soluciones fundamentales para la

ecuación (3) en un rectángulo cerrado usando fuentes puntuales en el exterior del dominio

de la ecuación. El método esta basado en la construcción de las imágenes del núcleo de

calor bajo la acción de un operador de transmutación. Un resultado de completes para
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el sistema de funciones con respecto a la norma uniforme sobre el rectángulo cerrado es

obtenido. Se presenta un procedimiento recursivo simple para el cálculo del sistema. En

base a lo anterior se presenta un método para aproximar las soluciones de problemas con

condiciones iniciales y de frontera para la ecuación (3) en un rectangulo del plano usando

el método de colocación.

Finalmente, el uso de la propiedad de mapeo para los operadores de transmutación

(ver [2]) lleva a una solución explicita del problema no caracteristico de Cauchy para

la ecuacion (3) con datos iniciales en una clase de funciones de Holmgren (ver [3]). La

solución es presentada en términos de las potencias formales que surgen en el método de

series de potencias del parámetro espectral (el métod SPPS) (ver [14], [19]). Por otro

lado, se presenta una fórmula expĺıcita para la solución del problema de Cauchy para

la ecuación (3) con datos iniciales de orden de crecimiento exponencial. La solución es

construida con la ayuda de un operador de transmutación definido sobre toda la recta

real para la variable espacial para el cual se introduce un espacio adecuado. El uso de la

representación en series de Fourier-Legendre del núcleo de transmutación mostrado en [17]

nos proporciona un procedimiento recursivo simple para la construcción de los coeficientes

de la fórmula.
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Overview

State of the art

The notion of a transmutation operator relating two linear differential operators was

introduced in 1938 by J. Delsarte [7] and nowadays represents a widely used tool in the

theory of linear differential equations (see, e.g., [1], [5], [26], [29]). For some classes of

differential operators a transmutation operator can be realized in the form of a Volterra

integral operator (see e.g., [6], [28]). The integral kernel of the transmutation operator

can be obtained as a solution of a Goursat problem. In general the integral kernel can

not be obtained explicitly and this restrict the application of the transmutation operator.

There exist very few examples of the transmutation kernels available in a closed form (see

[20]).

For A := − d2

dx2
+ q(x), B := − d2

dx2
a transmutation operator can be realized in the

form of a Volterra integral operator (see [29, Chapter 1]). In [2] the parametrized family

of transmutation operators Tα, α ∈ C, was introduced. These family contains the trans-

mutation operator for A and B introduced in [29]. In [2], [11], [17] and [20] some useful

properties of the family Tα were proved as well as for the inverse transmutation operator.

In [2], [21], [22] a mapping property for transmutation operators in the family (1.14)

was revealed making possible to apply the transmutation technique even when the in-

tegral kernel of the operator is unknown. The mapping property is very useful because

of that fact that it is possible to know the result of application of the transmutation Tα

to the non-negative integer powers of the independent variable, even not knowing the

kernel of the transmutation operator. In particular, it was used to solve the Cauchy

problem for the Klein-Gordon equation with a variable coefficient showing a remarkable

performance in numerical applications (see [11]). Meanwhile, in [17] a Fourier-Legendre

series representation of the integral kernel was obtained. The series representation was

used for construction of a new representation of solutions of one dimensional Schrödinger

equations.
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On the other hand, the existence of a transmutation operator for the linear partial

differential operators D := ∂2
x − q(x, t)− ∂t, C := ∂2

x − ∂t and the possibility to construct

complete systems of solutions by means of transmutation operators was proposed and

explored by D. Colton (see [6]); in there, the approach developed requires the knowledge

of the transmutation operators. In [25] and [10] a method of fundamental solutions for

the heat operator C is proposed based on the completeness of the system of fundamental

solutions restricted onto the parabolic boundary of the problem.

Contributions to the study of parabolic partial differential

equations

In the present thesis, the solution of initial boundary value problem for parabolic

partial differential equations with a variable coefficient of the form

∂2u

∂x2
− q(x)u(x, t) =

∂u

∂t
(x, t), (5)

where q is a continuous complex valued function of an independent real variable x, using

the transmutation operator theory is studied.

First, in Chapter 2, a complete system of solutions of equation (5) considered on an

open rectangle over the plane is obtained. The completeness of the system is with re-

spect to the uniform norm in the closed rectangle. The system of solutions is shown to

be useful for uniform approximation of solutions of initial boundary value problems for

(5). The complete system of solutions is constructed with the aid of the transmutation

operators relating (5) with the heat equation (see e.g.,[6], [11], [29]). The possibility to

construct complete systems of solutions by means of transmutation operators was pro-

posed and explored in [6], however the approach developed in [6] requires the knowledge

of the transmutation operator. In the present work using a mapping property of the trans-

mutation operators discovered in [2] we show that the construction of the complete system

of solutions for equations of the form (5), representing transmuted heat polynomials, can

be realized with no previous construction of the transmutation operator.
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We illustrate the implementation of the complete system of the transmuted heat poly-

nomials by a numerical solution of an initial boundary value problem for (5). The ap-

proximate solution is sought in the form of a linear combination of the transmuted heat

polynomials and the initial and boundary conditions are satisfied by a collocation method.

A remarkable accuracy is achieved in just few seconds using Matlab 2012 on a usual PC.

Following the approach in [6], for the parabolic partial differential equation with a

time dependent coefficient of the form

∂2u

∂x2
− q(x)eiωtu(x, t) =

∂u

∂t
(x, t) (6)

where q is a continuously differentiable complex valued function, ω is a fixed positive real

number and i is the imaginary unit; a system of functions for approximating solutions

of equation (6) is obtained. The system of functions being an approximation of the

transmuted heat polynomials is constructed in an explicit form using a transmutation

operator in form of a second kind Volterra integral operator, relating (6) with the heat

equation. In order to obtain the images of the heat polynomials under the action of the

transmutation operator; a series representation of the transmutation kernel in terms of the

positive integer powers of the complex exponential function involved in the potential of

the equation is obtained. The coefficients of the series representation are time independent

functions and some growth estimates on the uniform norm are obtained. Then, using the

series representation of the transmutation kernel, we show that the construction of the

system of functions can be realized in a recursive form. The system of functions is shown

to be useful for uniform approximation of the transmuted heat polynomials hence it is

useful for uniform approximation of solution of the initial boundary value problems for

equation (6).

Next in Chapter 3, an extension of the method of fundamental solutions for equation

(5) is presented. The method is based on the construction of a system of functions being

the images of a system of fundamental solutions with external point sources for the heat
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equation under the action of a transmutation operator. Using the method of fundamental

solutions for the heat equation with external point sources studied by Kupradze in [25]

and by Johansson and Lesnic in [10], a completeness result of the system for approxi-

mating solutions of the equation (5) over a closed rectangle of the plane is proved. The

completeness of the system is with respect to the uniform norm in the closed rectangle.

The recently discovered Fourier-Legendre series representation for the transmutation ker-

nel presented in [17] leads to a simple recursive procedure for calculating the system of

functions in an explicit form. Then a step by step method for approximation of solution

of initial boundary value problems for equation (5) is presented.

Finally in Chapter 4, explicit formulas for solution of the Cauchy problems are pre-

sented. The use of the mapping property leads to an explicit solution of the nonchar-

acteristic Cauchy problem for equation (5) with Cauchy data belonging to a Holmgren

class of functions [3]. The solution is presented in terms of the formal powers arising in

the spectral parameter power series (SPPS) method (see [14], [19]). The solution of the

Cauchy problem for equation (5) being the image of the solution of a Cauchy problem

for heat equation under the action of a transmutation operator is presented. The use of

the Fourier-Legendre series representation of the transmutation kernel leads to a system

of functions as a convolution of Legendre polynomials with the heat kernel. The system

provide us an explicit formula for the solution. Using the known recursive formulas of

the Legendre polynomials a simple recursive procedure for the calculation of the system

of functions is obtained. In oder to use the transmutation operator on the whole real line

for the space variable an adequate functional space is introduced.
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Chapter 1

Preliminaries

In this chapter some known results for the heat equation and the transmutation operator

theory related to the present work are presented. These results are going to be used in

the subsequent chapters.

The first section is dedicated to present some well known results of the heat equation

about the solution of initial and boundary value problems which are the base of our study.

The heat equation is a particular case of the parabolic partial differential equations with

variable coefficients and this relation suggest us the use of the transmutation operator

theory. In order to solve the initial and boundary value problems for parabolic partial

differential equation with variable coefficients the section 2 present some necessary nota-

tion and definition concerning to the transmutation operator theory as well as a special

system of functions called formal powers.

1.1 Parabolic partial differential equations with vari-

able coefficients

In this section the parabolic partial differential equation in one space variable and one

temporal variable is introduced.

Consider the general linear homogeneous parabolic partial differential equation of the

2
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second order in one space variable x and temporal variable t written in normal form as

follows
∂2u

∂x2
+ a(x, t)

∂u

∂x
+ b(x, t)u(x, t)− c(x, t)∂u

∂t
(x, t) = 0. (1.1)

By making the change of the dependent variable

u(x, t) = v(x, t) exp

(
−1

2

∫ x

0

a(ξ, t)dξ

)

we arrive at an equation for v(x, t) of the same form as (1.1) but with a ≡ 0. On the

other hand, for c(x, t) > 0 the change of variable

y =

∫ x

0

√
c(ξ, t)dξ

transforms equation (1.1) into an equation of the same form but with c ≡ 1. So, we

can consider only parabolic partial differential equation in one space variable x and one

temporal variable t in the canonical form

∂2u

∂x2
+Q(x, t)u(x, t) =

∂u

∂t
. (1.2)

The function Q is called the potential of the equation (1.2). In what follows we shall

assume that the potential Q is a continuous differentiable function with respect to the

space variable x.

We are going to restrict our attention to classical solutions of (1.2) which are functions

u, twice continuously differentiable with respect to x and continuously differentiable with

respect to t and satisfying equation (1.2) in the domain of interest.

A well known particular case of (1.2) is the heat equation; it is obtained when the

potential Q is identically zero. Then (1.2) takes the form

∂2u

∂x2
=
∂u

∂t
. (1.3)

1.1 PARABOLIC PDE WITH VARIABLE COEFFICIENTS
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The heat equation is the base of our study so in the following section we present some

results from the heat theory which are important to the present work (see e.g. [3], [30],

[32] and [37]).

1.2 The heat equation

1.2.1 The fundamental solution

One of the most important solutions of the heat equation (1.3) is the so-called fundamental

solution or heat kernel, defined by

F (x, t) :=
1

2
√
πt

exp

(
−x

2

4t

)
, x ∈ R, t > 0. (1.4)

It satisfies the heat equation (1.3) on the whole plane (x, t) with the exception of the

origin (0, 0). The following theorem establishes some of its properties. These are useful in

the proof of existence and uniqueness of the initial and boundary value problems for the

heat equation.

Theorem 1 ([3]). Properties of the fundamental solution.

1. F (x, t) > 0 for t > 0.

2. For fixed t > 0, F and its derivatives tend to zero exponentially fast as |x| tends to

infinity.

3. For any fixed δ > 0, limt↓0 F (x, t) = 0 uniformly for all |x| ≥ δ.

4. For any fixed δ > 0, limt↓0
∫
|x|≥δ F (x, t)dx = 0.

5. For all t > 0,
∫∞
−∞ F (x, t)dx = 1.

6. limt↑0−
∫ t

0
∂F
∂x

(x, t− η)dη = −1
2
.

7. limt↓0−
∫ t

0
∂F
∂x

(x, t− η)dη = 1
2
.

1.2 THE HEAT EQUATION
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As we see in the following sections, the fundamental solution is used to construct

solutions to some specific problems for the heat equation; namely the Cauchy problems

and the first boundary value problem among others.

1.2.2 The first boundary value problem

The first boundary value problem in the rectangle Ω1 is one in which a solution of the

equation (1.3), namely h, it is sought satisfying

h(−b, t) = f(t), h(b, t) = g(t), h(x, 0) = ϕ(x) (1.5)

for prescribed functions f , g and ϕ. Here Ω1 is a bounded rectangle in R2 given by

Ω1 := (−b, b)× (0, τ). Consider Γ the so-called parabolic boundary of Ω1 defined as

Γ := ({−b} × [0, τ ]) ∪ ([−b, b]× {0}) ∪ ({b} × [0, τ ]) . (1.6)

The following extreme-value theorem plays a crucial role in the uniqueness and in the

continuous dependence of the solution to the first boundary value problem (1.3), (1.5)

(see e.g., [3], [9] [13], [32], [37]) and it will be used in section 3.2.

Theorem 2 (Maximum Principle [32]). If the function h, finite and continuous in the

closed region Ω1, satisfies the heat equation (1.3) in Ω1, then the maximum and minimum

values of the function h occur on the parabolic boundary Γ.

Remark 1. It is worth mentioning that the maximum principle for the heat equation in

rectangles is valid using the L2 norm as detailed in [30, Chapter 6].

The existence and uniqueness of the solution of the first boundary value problem are

well known results (see e.g., [3], [33] [37]).

Theorem 3 ([9]). Let f, g ∈ C1([0, τ ]) and ϕ ∈ C2([−b, b]) satisfy f(0) = ϕ(−b), g(0) =

ϕ(b). Then there exists a unique solution to (1.3), (1.5) and this solution depends contin-

uously on the data.

1.2 THE HEAT EQUATION
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If in a certain problem, instead of the solution h of the heat equation (1.3) satisfying

the initial and boundary conditions (1.5) we consider a solution h̃ of the same equation

(1.3) but corresponding to another initial and boundary conditions

h̃(−b, t) = f̃(t), h̃(b, t) = g̃(t), h̃(x, 0) = ϕ̃(x)

such that for all t in [0, τ ] and x in [−b, b]

∣∣∣f(t)− f̃(t)
∣∣∣ ≤ ε, |g(t)− g̃(t)| ≤ ε, |ϕ(x)− ϕ̃(x)| ≤ ε

for some given accuracy ε > 0 then

∣∣∣h(x, t)− h̃(x, t)
∣∣∣ ≤ ε

for all (x, t) in Ω1; i.e. the first boundary value problem (1.3),(1.5) is well posed according

to Theorem 3 and the following theorem.

Theorem 4 ([32]). If two solutions h1 and h2 of the heat equation (1.3) satisfy the in-

equality

|h1(x, t)− h2(x, t)| ≤ ε, (x, t) ∈ Γ

for some ε > 0 then

|h1(x, t)− h2(x, t)| ≤ ε, (x, t) ∈ Ω1.

1.2.3 The Cauchy problem

The Cauchy problem for the heat equation consists in the determination of a solution h

of the equation (1.3) in the semiplane Ωc := R × (0,∞) such that on the line t = 0 it

satisfies the condition

h(x, 0) = ψ(x) (1.7)

for a given function ψ.

1.2 THE HEAT EQUATION
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The existence and uniqueness of the solution to the Cauchy problem (1.3), (1.7) is

presented in terms of the following class of functions given by Mijailov [30].

Definition 1. For σ ≥ 0 let Mσ be the class of functions h for which there are positive

constants C1, C2 such that

|h(x, t)| ≤ C1e
C2|x|σ , (x, t) ∈ Ωc.

Theorem 5 (Uniqueness [30]). The Cauchy problem (1.3), (1.7) in Ωc cannot have more

than one solution belonging to Mσ for any σ in [0, 2].

Theorem 6 (Existence [3]). For all piecewise continuous ψ ∈ Mσ, where 0 ≤ σ < 2, a

solution of the Cauchy problem (1.3)-(1.7) in Ωc is the function

h(x, t) =

∫
R
F (x− ξ, t)ψ(ξ)dξ (1.8)

where F is the fundamental solution given by (1.4).

The convolution (1.8) is called the Poisson transform.

1.2.4 The noncharacteristic Cauchy problem

The noncharacteristic Cauchy problem for the heat equation consists in finding a solution

h of (1.3) in the rectangle of the first quarter plane Ωnc := (0, b) × (0, τ) satisfying the

following conditions

h(0, t) = F (t),
∂h

∂x
(0, t) = G(t) (1.9)

for given functions F , G.

The existence of the solution of the noncharacteristic Cauchy problem (1.3), (1.9) is

presented in terms of the following class of functions.

Definition 2 (Holmgren’s functions [3]). For the positive constants γ1, γ2 and C1, the

Holmgren class H(γ1, γ2, C1, t0) is the set of infinitely differentiable functions v defined on

1.2 THE HEAT EQUATION
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|t− t0| < γ2 that satisfy

∣∣v(j)(t)
∣∣ ≤ C1γ

−2j
1 (2j)!, j = 0, 1, . . .

for all t ∈ |t− t0| < γ2.

Theorem 7 ([3]). If F and G belong to H(b, τ, C, 0), then the power series

h(x, t) =
∞∑
k=0

(
F (k)(t)

x2k

(2k)!
+G(k)(t)

x2k+1

(2k + 1)!

)
(1.10)

converges uniformly and absolutely for |x| ≤ r < b and h is a solution of the noncharac-

teristic Cauchy problem

∂2h

∂x2
(x, t) =

∂h

∂t
(x, t), (x, t) ∈ Ωnc

h(0, t) = F (t),
∂h

∂x
(0, t) = G(t), t < τ.

In order to obtain similar results for the first initial boundary value problem and

Cauchy’s problems for parabolic partial differential equations with variable coefficients in

canonical form (1.2), in the following section the transmutation operator is introduced.

1.3 Transmutation operators

The notion of a transmutation operator relating two linear differential operators was

introduced in 1938 by J. Delsarte [7] and nowadays represents a widely used tool in the

theory of linear differential equations (see, e.g., [1], [5], [26], [29]). Very often in literature

the transmutation operators are called the transformation operators. Here we keep the

original term introduced by Delsarte and Lions [8].

We use a definition of a transmutation operator from [21] which is a modification of

the definition given by Levitan [26], sufficient to the purpose of the present work. Let E

1.3. TRANSMUTATION OPERATORS
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be a linear topological space and E1 its linear subspace (not necessarily closed). Let A

and B be linear operators: E1 → E.

Definition 3. A linear invertible operator T defined on the whole E such that E1 is

invariant under the action of T is called a transmutation operator for the pair of operators

A and B if it fulfills the following two conditions.

1. Both the operator T and its inverse T−1 are continuous in E;

2. The following operator equality is valid

AT = TB

or which is the same

A = TBT−1.

There are some cases of differential operators for which transmutation operators can

be represented in a form of a Volterra integral operator (see e.g., [6], [28]). Whose integral

kernel can be obtained as a solution of a Goursat problem. In general the integral kernel is

unknown explicitly and this restrict the application of the transmutation operator. There

exist very few examples of the transmutation kernels available in a closed form (see [20]).

One such particular case is the pair A := − d2

dx2
+q(x), B := − d2

dx2
for which an operator

of transmutation can be realized in the form of a Volterra integral operator (see e.g. [29,

Chapter 1])

Tv(x) = v(x) +

∫ x

−x
K(x, s)v(s)ds (1.11)

where K(x, s) = H(x+s
2
, x−s

2
) and H is the unique solution of the Goursat problem

∂2H

∂ξ∂η
(ξ, η) = q(ξ + η)H(ξ, η),

H(ξ, 0) =
1

2

∫ ξ

0

q(r)dr, H(0, η) = 0.

1.3. TRANSMUTATION OPERATORS
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If the potential q is continuously differentiable, the kernel K itself is a classical solution

of the Goursat problem

∂2K

∂x2
− q(x)K(x, s) =

∂2K

∂s2
(x, s),

K(x, x) =
1

2

∫ x

0

q(r)dr, K(x,−x) = 0.

The transmutation operator (1.11) maps solutions of the equation

d2v

dx2
+ ω2v = 0

into solutions of the equation

d2u

dx2
− q(x)u+ ω2u = 0 (1.12)

where ω is an arbitrary complex number. Following [29], denote by e0(iω, x) the solution

of (1.12) satisfying the initial conditions

u(iω, 0) = 0,
du

dx
(iω, 0) = iω,

then e0(iω, x) = T [eiωx] (see [29], theorem 1.2.1). Moreover, the integral kernel K satisfies

the following property of boundedness.

Theorem 8 ([28]). If the operator A is defined on the whole axis −∞ < x <∞, and the

function q satisfies the condition

∫ ∞
−∞

(1 + |x|) |q(x)| dx <∞, (1.13)

then the integral kernel K of the transmutation operator (1.11) is uniformly bounded for

−∞ < x < ∞ and the integral kernel of the inverse transmutation operator of (1.11)

belongs to the function class M1 in definition 1.

1.3. TRANSMUTATION OPERATORS
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This theorem is important in the solution of the Cauchy problem for parabolic partial

differential equations with variable coefficients studied in section 4.1.

1.3.1 A parametrized family of transmutation operators

In [2] a parametrized family of operators Tα, α ∈ C, was introduced; it is given by

Tαv(x) = v(x) +

∫ x

−x
K(x, s;α)v(s)ds (1.14)

where

K(x, s;α) =
α

2
+K(x, s) +

α

2

∫ x

s

K(x, r)−K(x,−r)dr. (1.15)

Remark 2. The integral kernel K of the transmutation operator (1.11) belongs to the

family of integral kernels of the transmutation operators {Tα}α∈C, namely K(x, s; 0) =

K(x, s) for any (x, s).

In [2], [11], [17] and [20] some interesting properties of the family (1.14) were proved,

here we write the most relevant of them to the present work.

Proposition 1 ([20]). The operator Tα maps a solution v of an equation

d2v

dx2
+ ω2v = 0,

where ω is a complex number, into the solution u of the equation

d2u

dx2
− q(x)u+ ω2u = 0

with the following correspondence of initial values

u(0) = v(0),
du

dx
(0) =

dv

dx
(0)− αv(0).

Theorem 9 ([20]). In order for the function K to be the kernel of a transmutation operator

1.3. TRANSMUTATION OPERATORS
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acting as described in proposition 1, it is necessary and sufficient that

H(ξ, η;α) := K(ξ + η, ξ − η;α)

be a solution of the Goursat problem

∂2H

∂ξ∂η
(ξ, η;α) = q(ξ + η)H(ξ, η;α),

H(ξ, 0) =
α

2
+

1

2

∫ ξ

0

q(r)dr, H(0, η) =
α

2
.

If the potential q is continuously differentiable, the function K itself should be the solution

of the Goursat problem

∂2K

∂x2
− q(x)K(x, s;α) =

∂2K

∂s2
(x, s;α),

K(x, x;α) =
α

2
+

1

2

∫ x

0

q(r)dr, K(x,−x;α) =
α

2
.

If the potential q is n times continuously differentiable then the kernel K is n+1 times

continuously differentiable with respect to both independent variables.

Indeed {Tα}α∈C is a family of transmutation operators according to the following the-

orem.

Theorem 10 ([24]). Let q ∈ C[−b, b]. Then the operator Tα given by (1.14) satisfies the

equality (
− d2

dxx
+ q(x)

)
Tα[v] = Tα

[
−d

2v

dx2

]
for any v ∈ C2[−b, b].

The inverse operator T−1
α is calculated as a Volterra integral operator

T−1
α u(x) = u(x) +

∫ x

−x
L(x, s;α)u(s)ds.

1.3. TRANSMUTATION OPERATORS
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Here the integral kernel L satisfies the Goursat problem

∂2L

∂x2
− q(x)L(x, s;α) =

∂2L

∂s2
(x, s;α),

L(x, x;α) = C1 −
1

2

∫ x

0

q(r)dr, L(x,−x;α) = C1.

The constant C1 is calculated using Proposition 1 and is equal to −α/2. Thus, L(x, s;α) =

−K(s, x;α) (see [20]).

Proposition 2 ([11]). Let q be a continuous complex valued function of an independent

real variable x ∈ [−b, b]. Then the kernel K in the square |x| ≤ b, |t| ≤ b satisfies the

following estimate

|K(x, s;α)| ≤ |α|
2
I0(
√
c(x2 − t2)) +

1

2

√
c(x2 − t2)I1(

√
c(x2 − t2))

|x− t|

where c = max[−b,b] |q(x)| and I0 and I1 are modified Bessel functions of the first kind.

Since the function I1(x)/x is monotone increasing for x > 0, it is obtained that

√
c(x2 − t2)I1(

√
c(x2 − t2))

|x− t|
≤ 2
√
cI1(b

√
c)

for |x| ≤ b and |t| ≤ b, and the following estimate for the norms of the transmutation

operator and of its inverse immediately follows from Proposition 2.

Corollary 1 ([11]). The following estimate holds

max{‖Tα‖ ,
∥∥T−1

α

∥∥} ≤ 1 + b(|h| I0(b
√
c) + 2

√
cI0(b

√
c))

where c = max[−b,b] |q(x)| and I0 and I1 are modified Bessel functions of the first kind.

In [2] a mapping property for a certain transmutation operator in the class of the family

(1.14) was revealed making possible to apply the transmutation technique even when the

integral kernel of the operator is unknown, expanding the use of transmutations.
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In what follows, such mapping property plays a crucial role; in order to explain it a

system of recursive integrals is presented (see [2]).

1.3.2 System of recursive integrals

Let f ∈ C2(−b, b) ∩ C1[−b, b] be a complex valued function such that f(x) 6= 0 for any

x ∈ [−b, b]. The interval (−b, b) is supposed to be finite. Consider two sequences of

recursive integrals (see [14], [19], [16])

X(0) ≡ 1, X(n)(x) = n

∫ x

x0

X(n−1)(s)(f 2(s))(−1)nds, n ∈ N (1.16)

X̃(0) ≡ 1, X̃(n)(x) = n

∫ x

x0

X̃(n−1)(s)(f 2(s))(−1)n−1

ds, n ∈ N (1.17)

where x0 is an arbitrary fixed point in [−b, b].

Definition 4 ([2]). The family of functions {ϕk}∞k=0 constructed according to the rule

ϕk(x) =

 f(x)X(k)(x), k impar

f(x)X̃(k)(x), k par
(1.18)

is called the system of formal powers associated with f . As was shown in [22],

(1.18) may be defined even when the condition of non-vanishing for f is removed.

In [15] it was shown that the system {ϕk}∞k=0 is complete in L2(−b, b). In [16] its

completeness in the space of continuous and piecewise continuously differentiable functions

with respect to the maximum norm was obtained and the corresponding series expansions

in terms of the functions ϕk were studied.

The formal powers arise in the spectral parameter power series (SPPS) representa-

tion for solutions of the one-dimensional Schrödinger equation ([14], [19]). The following

theorem explains the SPPS method.

1.3. TRANSMUTATION OPERATORS



CHAPTER 1. PRELIMINARIES 15

Theorem 11 (The SPPS representation [14], [19]). Let q be a continuous complex valued

function of an independent real variable x ∈ [−b, b], λ be an arbitrary complex number.

Suppose there exists a solution f of the equation

d2f

dx2
− q(x)f(x) = 0, (1.19)

on [−b, b] such that f ∈ C2[−b, b] and f(x) 6= 0 on [−b, b]. Then the general solution of

the equation
d2u

dx2
− q(x)u = λu

on (−b, b) has the form

u = c1u1 + c2u2

where c1 and c2 are arbitrary complex constants,

u1 =
∞∑
k=0

λk

(2k)!
ϕ2k, u2 =

∞∑
k=0

λk

(2k + 1)!
ϕ2k+1

and both series converge uniformly on [−b, b].

The solutions u1 and u2 satisfy the initial conditions

u1(x0) = f(x0), du1
dx

(x0) = df
dx

(x0)

u2(x0) = 0, du2
dx

(x0) = 1/f(x0).

The following theorem is very useful because due to it, in spite of not knowing the

kernel of the transmutation operator, it becomes possible to know the result of application

of the transmutation Tα to the non-negative integer powers of the independent variable.

Theorem 12 (Mapping property [2]). Let q be a continuous complex valued function of

an independent real variable x ∈ [−b, b] for which there exists a particular solution f of

(1.19) such that f ∈ C2[−b, b] and f(x) 6= 0 on [−b, b] and normalized as f(0) = 1.

Denote α := f ′(0) ∈ C. Suppose Tα is the operator defined by (1.14) where the kernel K

1.3. TRANSMUTATION OPERATORS
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is a solution of the problem (1.16) and ϕk, k ∈ N0 are functions defined by (1.18) with

x0 = 0. Then

Tα[xk] = ϕk(x), k ∈ N0. (1.20)

In particular, it was used to solve the Cauchy problem for the Klein-Gordon equation

with a variable coefficient showing a remarkable performance in numerical applications

[11].

Finally another important theorem for the subsequent results is the following repre-

sentation of the integral kernel K of (1.11) in terms of the Legendre-Fourier series using

the formal powers {ϕk}k∈N0 (1.18).

Let Pn denote the Legendre polynomial of order n, lk,n be the corresponding coefficient

of xk, that is Pn(x) =
∑n

k=0 lk,nx
k.

Theorem 13 ([17]). The transmutation kernel K of (1.14) has the form

K(x, s;α) =
∞∑
n=0

βn(x)

x
Pn

( s
x

)
(1.21)

where for every x ∈ (0, b] the series converges uniformly with respect to t ∈ [−x, x]. Here

βn(x) =
2n+ 1

2

(
n∑
k=0

lk,nϕk(x)

xk
− 1

)
.

In [17] such representation was used to construct the solution of the one-dimensional

Schrödinger equation expanding the use of transmutation even more.

With the aid of this last theorem an extension of the method of fundamental solutions

for the first boundary value problem for parabolic partial differential equation with variable

coefficients is presented in Chapter 3. Moreover Theorem 13 allows us to solve the Cauchy

problem for parabolic partial differential equations with variable coefficients in subsection

4.1.2.
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Transmuted heat polynomials

In this chapter two systems of functions approximating the solutions of parabolic partial

differential equations with variable coefficients are obtained. The variable coefficient can

be a time independent or periodic time dependent potential. These systems of functions

are shown to be useful for uniform approximation of solutions of boundary value problems.

The systems are constructed with the aid of the transmutation operators relating (1.2)

with the heat equation (see e.g., [6], [11], [29]). The possibility to construct such systems

by means of transmutation operators was proposed and explored by D. Colton (see [6]),

however the approach presented in [6] requires the explicit knowledge of the transmutation

operators.

The approach presented in this chapter is based on the mapping property of the trans-

mutation operators exposed in Theorem 12 for the case of a time independent potential

in one space variable (Section 2.1). Meanwhile for a periodic time dependent potential

the construction is based on the knowledge of a series representation of the transmutation

kernel in terms of exponential functions which we present in Theorem 16 (Section 2.2)

17
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2.1 Transmuted heat polynomials for parabolic par-

tial differential operators with time independent

potential

In this section a complete system of solutions for the equation

∂2u

∂x2
− q(x)u(x, t) =

∂u

∂t
(x, t) (2.1)

considered on Ω := (−b, b)× (0, τ) is obtained. We assume that the potential q ∈ C[−b, b]

may be complex valued. The completeness of the system is with respect to the uniform

norm in the closed rectangle Ω̄. The system of solutions may be applied, in particular, for

approximation of solutions of initial boundary value problems for (2.1).

In Section 2.1.3 using the mapping property of the transmutation operators exposed

in Theorem 12 we show that the construction of the complete systems of solutions for

equations of the form (2.1), representing transmuted heat polynomials, can be realized

with no previous construction of the transmutation operator.

We illustrate the implementation of the complete system of the transmuted heat poly-

nomials by a numerical solution of an initial boundary value problem for (2.1). The

approximate solution is sought in the form of a linear combination of the transmuted heat

polynomials and the initial and boundary conditions are satisfied by a collocation method.

A remarkable accuracy is achieved in few seconds using Matlab 2012 on a usual PC.

2.1.1 The heat polynomials

In this section the heat polynomials and some of their main properties are introduced.

Let us consider the heat equation
∂2h

∂x2
=
∂h

∂t
. (2.2)

The heat polynomials were introduced and widely studied in 1959 by Rosenbloom

2.1 THP FOR PARABOLIC PDE WITH TIME INDEPENDENT POTENTIAL
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and Widder [31] and described further by Widder [34, 35, 36]. Heat polynomials are

mainly used to construct an approximate solution of a given problem in a form of linear

combination of the polynomials; it means that they can serve as a basis for expansion of

other solutions of the heat equation.

A heat polynomial hn of degree n is defined as the coefficient of zn/n! in the power

series expansion

ezx+z2t =
∞∑
n=0

hn(x, t)
zn

n!
, −∞ < x <∞, t > 0. (2.3)

They can be obtained from Cauchy’s product of two power series, since ezx+z2t = ezxez
2t.

Setting

ezx =
∞∑
n=0

anz
n, ez

2t =
∞∑
n=0

bnz
n

where

an =
xn

n!
, bn =

 tn/2

(n/2)!
, n even

0, n odd
,

it follows that

ezx+z2t =
∞∑
n=0

cnz
n

where

cn =
n∑
j=0

bjan−j =

[n/2]∑
k=0

tk

k!

xn−2k

(n− 2k)!
,

here [·] denotes the entire part of the number. From (2.3) it follows that

hn(x, t) = n!cn =

[n/2]∑
k=0

cnkx
n−2ktk, cnk =

n!

(n− 2k)!k!
. (2.4)

2.1 THP FOR PARABOLIC PDE WITH TIME INDEPENDENT POTENTIAL
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The first six heat polynomials are

h0(x, t) = 1, h1(x, t) = x, h2(x, t) = x2 + 2t,

h3(x, t) = x3 + 6xt, h4(x, t) = x4 + 12x2t+ 12t2, h5(x, t) = x5 + 20x3t+ 60xt2.

From simple derivation of (2.3) it is obtained that

∂

∂x
hn(x, t) = nhn−1(x, t),

∂

∂t
hn(x, t) = n(n− 1)hn−2(x, t).

Hence the following equality is valid

∂2

∂x2
hn(x, t) =

∂

∂t
hn(x, t), −∞ < x <∞, t > 0,

which means that the set of polynomials (2.4) is a family of solutions of (2.2).

The heat polynomials can be described in terms of Hermite polynomials of degree n,

Hn [31]. Because of the fact that

e2zx−z2 =
∞∑
n=0

zn

n!
Hn(x)

it follows that

hn(x, t) = (−t)n/2Hn

(
x

(−4t)1/2

)
.

The heat polynomials can be used to approximate solutions of boundary value prob-

lems; for example of the first boundary value problem for heat equation. In such case

the approximate solution is sought in the form of a linear combination of the polynomials

(2.4); this solution satisfies the heat equation. In order to satisfy the initial and boundary

conditions a discrepancy functional has to be minimized. In this way the coefficients of the

linear combination of heat polynomials are calculated. The possibility of approximation

is guaranted by the following theorem.

2.1 THP FOR PARABOLIC PDE WITH TIME INDEPENDENT POTENTIAL
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Theorem 14 ([6]). Let h be a solution of the heat equation (2.2) in (−b, b)× (0, τ) which

is continuous in [−b, b] × [0, τ ]. Then, for any given ε > 0 there exists N ∈ N and the

constants a0, a1, . . . , aN such that

max
[−b,b]×[0,τ ]

∣∣∣∣∣h(x, t)−
N∑
n=0

anhn(x, t)

∣∣∣∣∣ < ε.

This statement means that (2.4) is a complete system of solutions of (2.2) with

respect to the uniform norm.

2.1.2 Transmutation operators

Fix α a complex constant and let f be the solution of (1.19) fulfilling the condition of

Theorem 11 on [−b, b] such that f(0) = 1, f ′(0) = α.

As was shown in Section 1.3, for any q ∈ C[−b, b] there exists a function K defined on

the domain 0 ≤ |s| ≤ x ≤ b, continuously differentiable with respect to both arguments,

such that the equality

ATv = TBv (2.5)

is valid for all v ∈ C2[−b, b], where A := ∂2

∂x2
− q, B := ∂2

∂x2
and T has the form of a second

kind Volterra integral operator

Tv(x) := v(x) +

∫ x

−x
K(x, s;α)v(s)ds. (2.6)

The function K is chosen so that T [1] = f (see the mapping property Theorem 12). When

q ∈ C1[−b, b] such function K is the unique solution of the Goursat problem

∂2K

∂x2
− q(x)K(x, s;α) =

∂2K

∂s2
(x, s;α),

K(x, x;α) =
α

2
+

1

2

∫ x

0

q(r)dr, K(x,−x;α) =
α

2

For any q ∈ C[−b, b] the kernel K can be defined as K(x, s;α) = H
(
x+s

2
, x−s

2
;α
)
, |s| ≤
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|x| ≤ b, H being the unique solution of the Goursat problem

∂2H

∂ξ ∂η
(ξ, η;α) = q(ξ + η)H(ξ, η;α),

H(ξ, 0;α) =
α

2
+

1

2

∫ ξ

0

q(s) ds, H(0, η;α) =
α

2
.

The following results play a crucial role in what follows and they are an immediate

consequence of the properties of the transmutation operators in Section 1.3.

Proposition 3. The operator T given by (2.6) is of transmutation for the operators

D := ∂2

∂x2
− q − ∂

∂t
, C := ∂2

∂x2
− ∂

∂t
in the functional space C2[−b, b]× C1[0, τ ].

Proof. Because of the fact that the transmutation kernel K does not depend on the time

variable t it is true that ∂tTw = T∂tw for every w(x, t) ∈ C2[−b, b] × C1[0, τ ]. Hence,

from the equation (2.5) it follows that

DTu = ATu− ∂tTu = TBu− T∂tu = TCu

for any u ∈ C2[−b, b]× C1[0, τ ].

2.1.3 The transmuted heat polynomials

In this section a complete system of solutions of the equation (2.1) is presented.

Consider the heat polynomials {hn}n∈N0 defined in Section 2.1.1 by

hn(x, t) = n!

[n2 ]∑
k=0

tkxn−2k

k!(n− 2k)!
, n ∈ N0. (2.7)

Denote by un = Thn the images of the heat polynomials under the action of the

transmutation operator T (2.6). From the mapping property of T (Theorem 12) we

obtain that

un(x, t) = n!

[n2 ]∑
k=0

tkϕn−2k(x)

k!(n− 2k)!
, n ∈ N0. (2.8)
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Indeed, we have that {un}n∈N0 are solutions of (2.1) for all −b < x < b and t > 0

∂2un
∂x2

− q(x)un(x, t)− ∂un
∂t

(x, t) = T

(
∂2hn
∂x2

− ∂hn
∂t

(x, t)

)
= 0.

The completeness of the heat polynomials in Theorem 14 Section 2.1.1 and the uniform

boundedness of T and T−1 in Corollary 1 imply the completeness of the transmuted heat

polynomials (2.8) in the space of classical solutions of (2.1). Thus, the following statement

is true.

Theorem 15. Let u be continuous function in Ω satsifying (2.1) in Ω. Then, given ε > 0

there exists N ∈ N and constants a0, a1, . . . , aN such that

max
(x,t)∈Ω

∣∣∣∣∣u(x, t)−
N∑
n=0

anun(x, t)

∣∣∣∣∣ < ε.

Proof. Choose ε > 0. Consider h = T−1u. Due to the completeness of the heat

polynomials (2.4) in Theorem 14, for any ε1 > 0 there exists N ∈ N and constants

a0, a1, . . . , aN such that

max
(x,t)∈Ω

∣∣∣∣∣h(x, t)−
N∑
n=0

anhn(x, t)

∣∣∣∣∣ < ε1.

Then

max
(x,t)∈Ω

∣∣∣∣∣u(x, t)−
N∑
n=0

anun(x, t)

∣∣∣∣∣ = max
(x,t)∈Ω

∣∣∣∣∣Th(x, t)−
N∑
n=0

anThn(x, t)

∣∣∣∣∣ < Cε1

where the constant C is the uniform norm of T . The choice of ε1 = ε/C finishes the proof.
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2.1.4 Solution of the first boundary value problem

In this section we proceed to the step by step construction of a method to solve boundary

value problems. The method is explained on the first boundary value problem; nevertheless

other boundary value problems can be solved in analogous way. Thus, we consider the

parabolic partial differential equation (2.1) subject to the Dirichlet boundary conditions

u(−b, t) = ψ1(t), u(b, t) = ψ2(t), t ∈ [0, τ ] (2.9)

and the initial condition

u(x, 0) = ϕ(x), x ∈ [−b, b] (2.10)

where ψ1, ψ2 and ϕ are continuously differentiable functions satisfying the compatibility

conditions

ψ1(0) = ϕ(−b), ψ2(0) = ϕ(b).

It is a well known result that the problem (2.1), (2.9), (2.10) is well posed, see Section

1.2.2.

The completeness of the transmuted heat polynomials given by (2.8) in Theorem 15

suggests the following simple method to approximate the solution of problem (2.1), (2.9),

(2.10). The approximate solution ũ is sought in the form of a linear combination

ũ(x, t) =
N∑
n=0

anun(x, t). (2.11)

Since every un is a solution of (2.1), their linear combination satisfies (2.1) as well.

The coefficients {an}Nn=0 are sought in such way that ũ satisfy the initial and the bound-

ary conditions approximately. For this we used the collocation method where M points

{(xi, ti)}Mi=1 are chosen on the parabolic boundary Γ given by (1.6). Then, imposing the

conditions (2.9) and (2.10) onto the approximate solution (2.11) the following M×(N+1)

2.1 THP FOR PARABOLIC PDE WITH TIME INDEPENDENT POTENTIAL



CHAPTER 2. TRANSMUTED HEAT POLYNOMIALS 25

linear system of equations for the coefficients {an}Nn=0 is obtained

N∑
n=0

anun(xi, ti) =


ψ1(ti), if xi = −b

ϕ(xi), if ti = 0

ψ2(ti), if xi = b

, i = 1, . . . ,M. (2.12)

The solution of the system (2.12) gives the approximate solution (2.11) on Ω.

Numerical illustration

We present a numerical example of the application of the method described in the previous

section. It reveals a remarkable accuracy with very little computational efforts. The

implementation was realized in Matlab 2012. In the appendix, the program is shown.

On the first step a nonvanishing solution f of (1.19) was computed using the SPPS

method (see [19], [22]). The formal powers ϕk were constructed like in [11] using the

spapi and fnint Matlab routines from the spline toolbox. Then the transmuted heat

polynomials (2.8) were calculated. In order to obtain a unique solution of the system

(2.12) N + 1 equally spaced points on the parabolic boundary were chosen. Finally, the

approximate solution (2.11) was computed on a mesh of 200 × 100 points in the interior

of the rectangle Ω and compared with the corresponding exact solution.

Example 1. Consider the initial Dirichlet problem

uxx(x, t)− x2u(x, t) = ut(x, t), (x, t) ∈ (−1, 1)× (0, 1), (2.13)

u(x, 0) = e−0.5x2 , x ∈ [−1, 1], (2.14)

u(−1, t) = u(1, t) = e−0.5−t, t ∈ [0, 1]. (2.15)

The exact solution of this problem has the form

u(x, t) = exp

(
−1

2
x2 − t

)
.
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The distribution of the absolute error of the approximate solution for N = 26 is pre-

sented on Figure 2.1. The maximum absolute error of the approximate solution is of order

10−13.

Figure 2.1: The absolute value of the difference |u(x, t)− u26(x, t)| between the exact and
the approximate solutions for the problem (2.13)–(2.15).

It is often stated that boundary collocation methods (in particular, the heat polynomials

method) lead to ill-conditioned systems of linear equations, see [4], [12], [27]. It is also the

case for the proposed method. As is illustrated in Table 2.1, the condition number of the

matrix in (2.12) grows rather fast. Nevertheless, the straightforward implementation of the

proposed method presented no numerical difficulties. The convergence and the robustness

of the method are illustrated in Table 2.1 where the maximum absolute and the maximum

relative error of the approximate solution for different values of N used for approximation

(2.11) are presented. As one can appreciate, the convergence rate for small values of N is

exponential. And even taking values of N much larger than the optimum one do not lead

to any problem for collocation method nor to significant precision lost. Moreover, a simple

test based on the accuracy of fulfilment of the initial and boundary conditions (2.14)–(2.15)

can be utilized to estimate both the optimal N and the accuracy of the obtained approximate
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solution.

N Max. absolute error Max. relative error Cond. number
5 2.3 · 10−2 6.2 · 10−2 55.7
10 1.4 · 10−4 5.5 · 10−4 1.82 · 105

15 9.6 · 10−8 4.0 · 10−7 3.65 · 109

20 2.0 · 10−10 8.6 · 10−10 1.76 · 1014

23 7.6 · 10−13 3.2 · 10−12 1.67 · 1017

26 1.8 · 10−13 7.8 · 10−13 2.59 · 1023

29 2.5 · 10−12 1.1 · 10−11 1.23 · 1023

34 1.7 · 10−10 7.3 · 10−10 1.37 · 1025

39 2.3 · 10−9 9.8 · 10−9 2.86 · 1029

50 4.7 · 10−10 2.1 · 10−9 1.25 · 1041

75 6.1 · 10−11 2.7 · 10−10 2.89 · 1073

100 2.8 · 10−10 1.2 · 10−9 5.63 · 10105

Table 2.1: Maximal absolute and relative errors of the approximate solution and condition
number of the matrix in (2.12) for the problem (2.13)–(2.15) obtained for different values
of N in (2.11).

2.2 Transmuted heat polynomials for parabolic par-

tial differential operators with time dependent

potential

This section is dedicated to the construction of a system of functions for approximating

solutions of the parabolic partial differential equations with a variable coefficient of the

form
∂2u

∂x2
− q(x)eiωtu(x, t) =

∂u

∂t
(x, t) (2.16)

where ω is a positive real constant and i is the imaginary unit. We assume that q is a

continuously differentiable complex valued function of an independent real variable x ∈

[−b, b]. The system of functions may be used, in particular, for uniform approximation of

solutions of initial and boundary value problems for (2.16).
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The system of functions being the approximate transmuted heat polynomials is con-

structed with the aid of a transmutation operator and a series representation of the trans-

mutation kernel in terms of certain complex exponential functions. Using the successive

approximation method the series representation is obtained as well as some estimates

for the coefficients of the representation. The coefficients satisfying a sequence of Gour-

sat problems does not depend on the temporal variable and define a second system of

functions; being this the key to construct the approximate transmuted heat polynomials.

Each function in the second system satisfies a recursive non homogeneous initial problem

for the one-dimensional Schrödinger equation and can be calculated by a simple recur-

sive procedure. Then, an analytic expression of the system of functions representing the

approximate transmuted heat polynomials is obtained in terms of the second system of

functions.

Based on the estimates of the coefficients and the completeness of the transmuted heat

polynomials, a uniform approximation of the solutions of the equation (2.16) is proved.

Unlike the complete systems of solutions the new system presented here does not satisfy

the equation. However, it approximates solutions of the equation like a complete system

of solutions.

2.2.1 A transmutation operator

We use the transmutation operator in the form of a second kind Volterra integral operator

Th(x, t) = h(x, t) +

∫ x

−x
K(x, s, t)h(s, t)ds (2.17)
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where the integral kernel K is the twice continuously differentiable solution of the Goursat

problem

∂2K
∂x2
− ∂K

∂t
− q(x)eiωtK(x, s, t) =

∂2K
∂s2

, (2.18)

K(x, x, t) =
eiωt

2

∫ x

0

q(σ)dσ, (2.19)

K(x,−x, t) = 0 (2.20)

for 0 < |s| ≤ |x| < b and 0 < t < 2π/ω. This transmutation operator was studied by

D. Colton in [6]. It maps classical solutions of the heat equation into classical solutions

of equation (2.16). The transmutation operator (2.17) was used to construct a complete

system of solutions of equation (2.16) (see [6, theorem 2.3.2]).

In order to understand the action of T given by (2.17) on the solutions of the heat

equation the following results about the integral kernel K of T are presented.

Set

ξ = (x+ s)/2, η = (x− s)/2

and define K̃(ξ, η, t) = K(ξ + η, ξ − η, t). Then, the map (x, s) 7→ (ξ, η) transforms the

Goursat problem (2.18)-(2.20) into the problem

∂2K̃

∂ξ∂η
− q(ξ + η)eiωtK̃(ξ, η, t) =

∂K̃

∂t
, (2.21)

K̃(ξ, 0, t) =
eiωt

2

∫ ξ

0

q(σ)dσ, (2.22)

K̃(0, η, t) = 0. (2.23)

The solution of the Goursat problem (2.21)-(2.23) by the successive approximation method

is given by

K̃(ξ, η, t) =
∞∑
n=1

K̃n(ξ, η, t), (2.24)
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where

K̃1(ξ, η, t) =
eiωt

2

∫ ξ

0

q(σ)dσ (2.25)

and for n = 2, 3, . . .

K̃n(ξ, η, t) =

∫ η

0

∫ ξ

0

[
∂K̃n−1

∂t
(α, β, t) + q(α + β)eiωtK̃n−1(α, β, t)

]
dαdβ. (2.26)

Proposition 4. For every n ∈ N there exist functions {κnj}nj=1 such that the functions

(2.25), (2.26) admit the form

K̃n(ξ, η, t) =
n∑
j=1

κnj(ξ, η)eijωt (2.27)

for every (ξ, η) ∈ (−b, b)× (−b, b) and t ∈ (0, 2π/ω).

Proof. The proof is by induction. It is obvious for the case n = 1 with κ11(ξ, η) :=

(1/2)
∫ ξ

0
q(σ)dσ. Then, from (2.25) it follows that

K̃1(ξ, η, t) = κ11(ξ, η)eiωt.

Choose n ∈ N and κn1(ξ, η), κn2(ξ, η), . . . , κnn(ξ, η) such that

K̃n(ξ, η, t) =
n∑
j=1

κnj(ξ, η)eijωt.
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Thus, from (2.26) the following equality follows

K̃n+1(ξ, η, t) =

∫ η

0

∫ ξ

0

[
∂K̃n

∂t
(α, β, t) + q(α + β)eiωtK̃n(α, β, t)

]
dαdβ

=

∫ η

0

∫ ξ

0

[
n∑
j=1

ijωκnj(α, β)eijωt + q(α + β)
n+1∑
j=2

κn,j−1(α, β)eijωt

]
dαdβ

=

∫ η

0

∫ ξ

0

[
iωeiωtκn1(α, β) + q(α + β)eiω(n+1)tκnn(α, β)

]
dαdβ

+
n∑
j=2

(
iω

∫ η

0

∫ ξ

0

[κnj(α, β) + q(α + β)κn,j−1(α, β)] dαdβ

)
eijωt

=
n+1∑
j=1

κn+1,j(ξ, η)eijωt,

where

κn+1,1(ξ, η) := iω

∫ η

0

∫ ξ

0

κn1(α, β)dαdβ,

κn+1,j(ξ, η) := iω
n∑
j=2

∫ η

0

∫ ξ

0

[jκnj(α, β) + q(α + β)κn,j−1(α, β)] dαdβ, j = 2, . . . , n

κn+1,n+1(ξ, η) :=

∫ ξ

0

∫ η

0

q(α + β)κnn(α, β)dαdβ.

In what follows we consider additionally κn,j for j > n by setting κn,j = 0.

Proposition 5. For every n ∈ N the functions {κnj}∞j=1 admit the following form

κnj(ξ, η) =
ω

2π

∫ 2π/ω

0

K̃n(ξ, η, t)e−ijωtdt. (2.28)

Proof. This equality is an immediate result of the orthogonality of the set {eijωt}j∈Z in

the functional space L2([0, 2π/ω]) with the usual scalar product.
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Choose n ∈ N, then from (2.27) we have for every j = 1, 2, 3, . . . that

∫ 2π/ω

0

K̃n(ξ, η, t)e−ijωtdt =
n∑
r=1

κnr(ξ, η)

∫ 2π/ω

0

eirωte−ijωtdt.

Due to the fact that
ω

2π

∫ 2π/ω

0

eirωte−ijωtdt = δrj

where δrj is the Kronecker delta the formula (2.28) follows.

The following results for the functions {κnj}n,j∈N play an important role in the con-

struction of a series representation for the integral kernel K. Thus, consider the following

notation. Choose a fixed constant T0 such that T0 > 2π/ω and denote τ0 := 0. We define

τ1 := −T0 ln

∣∣∣∣1− 2π

ωT0

∣∣∣∣ , (2.29)

and for n ≥ 2 set

τn :=

∫ 2π/ω

0

(
1− t

T0

)−n
dt =

T0

n− 1

[(
1− 2π

ωT0

)1−n

− 1

]
. (2.30)

Let C be a positive constant such that

|q(x)| ω
kT k0
k!
≤ C, ∀k ∈ N0. (2.31)

Then, the following estimates are valid.

Proposition 6. For every n ∈ N and j = 1, 2, . . . , n

|κnj(ξ, η)| ≤ ω

2π
(2C)n

|ξ|n−1 |η|n−1

(n− 1)!
τn. (2.32)∣∣∣∣∂2κnj

∂ξ∂η
(ξ, η)

∣∣∣∣ ≤ ω

2π
(jω + |q(ξ + η)|)(2C)n−1 |ξ|

n−2 |η|n−2

(n− 2)!
τn−1, n ≥ 2. (2.33)
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Proof. From (2.26) and (2.31) by induction over n it follows that

∣∣∣K̃n(ξ, η, t)
∣∣∣ ≤ (2C)n

|ξ|n−1 |η|n−1

(n− 1)!

(
1− t

T0

)−n
.

Hence and by the representation of the functions {κnj}nj=1 in formula (2.28) of Propo-

sition 5 we obtain for j = 1, 2 . . . , n that

|κnj(ξ, η)| ≤ ω

2π

∫ 2π/ω

0

∣∣∣K̃n(ξ, η, t)
∣∣∣ ∣∣e−ijωt∣∣ dt

≤ ω

2π

∫ 2π/ω

0

(2C)n
|ξ|n−1 |η|n−1

(n− 1)!

(
1− t

T0

)−n
dt

=
ω

2π
(2C)n

|ξ|n−1 |η|n−1

(n− 1)!
τn.

Thus, the inequality (2.32) is proved.

In an analogous way the second inequality of the proposition can be proved. From the

representation of K̃n (2.26) and the integration by parts, if n ≥ 2 then we have that

∂2κnj
∂ξ∂η

(ξ, η) =
ω

2π

∫ 2π/ω

0

∂2K̃n

∂ξ∂η
(ξ, η, t)e−ijωtdt

=
ω

2π

∫ 2π/ω

0

∂K̃n−1

∂t
(ξ, η, t)e−ijωt + q(ξ + η)eiωtK̃n−1(ξ, η, t)e−ijωtdt

=
ω

2π

[
e−ijωtK̃n−1(ξ, η, t)

∣∣∣2π/ω
0

]
+

ω

2π

∫ 2π/ω

0

ijωK̃n−1(ξ, η, t)e−ijωtdt

+
ω

2π

∫ 2π/ω

0

q(ξ + η)K̃n−1(ξ, η, t)e−i(j−1)ωtdt

Because of the fact that the exponential function in the first term is a 2π/ω periodic

function for every j = 1, 2, . . . , n we have that

∂2κnj
∂ξ∂η

(ξ, η) =
ω

2π

∫ 2π/ω

0

[ijωe−ijωt + q(ξ + η)e−i(j−1)ωt]K̃n−1(ξ, η, t)dt.
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Thus∣∣∣∣∂2κnj
∂ξ∂η

(ξ, η)

∣∣∣∣ ≤ ω

2π
(jω + |q(ξ + η)|)

∫ 2π/ω

0

∣∣∣K̃n−1(ξ, η, t)
∣∣∣ dt

≤ ω

2π
(jω + |q(ξ + η)|)

∫ 2π/ω

0

(2C)n−1 |ξ|
n−2 |η|n−2

(n− 2)!

(
1− t

T0

)−(n−1)

dt

=
ω

2π
(jω + |q(ξ + η)|)(2C)n−1 |ξ|

n−2 |η|n−2

(n− 2)!
τn−1.

Remark 3. Notice that

∣∣∣∣∂2κ11

∂ξ∂η
(ξ, η)

∣∣∣∣ = 0 for every (ξ, η) in (−b, b)× (−b, b).

We note that due to the estimates (2.32) and (2.33) in Proposition 6 and the Weier-

strass theorem we have that the series
∑∞

l=n κln(ξ, η) is uniformly convergent for every

(ξ, η) in (−b, b)× (−b, b). Then, for n ∈ N we define the functions k̃n by

k̃n(ξ, η) :=
∞∑
l=n

κln(ξ, η), (ξ, η) ∈ (−b, b)× (−b, b). (2.34)

Proposition 6 is used for obtaining the following estimates for functions {k̃n}∞n=1.

Corollary 2. If n ∈ N then for every (ξ, η) ∈ (−b, b)× (−b, b)

∣∣∣k̃n(ξ, η)
∣∣∣ ≤ Ã

 exp(C̃) + ln |ωT0| − ln |ωT0 − 2π| , n = 1

C̃n−1 exp(C̃)/(n− 1)!, n ≥ 2∣∣∣∣∣ ∂2k̃n
∂ξ∂η

(ξ, η)

∣∣∣∣∣ ≤ Ã(nω + |q(ξ + η)|)

 C̃ exp(C̃) + ln |ωT0| − ln |ωT0 − 2π| , n ∈ {1, 2}

C̃n−2 exp(C̃)/(n− 2)!, n ≥ 3

where Ã := ωCT0/π and C̃ := 2b2CωT0/(ωT0 − 2π).

Proof. Choose n ∈ N. Then, from definition of the k̃n functions in (2.34) and the

estimates for the κln functions in (2.32) it follows that

∣∣∣k̃n(ξ, η)
∣∣∣ ≤ ∞∑

l=n

|κln(ξ, η)| ≤
∞∑
l=n

ω

2π
(2C)l

|ξ|l−1 |η|l−1

(l − 1)!
τl ≤

ωC

π

∞∑
l=n

(2b2C)l−1

(l − 1)!
τl.
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Hence and from definition of τl in (2.29) and (2.30) it follows that, for n = 1

∣∣∣k̃1(ξ, η)
∣∣∣ ≤ ωC

π

(
τ1 +

∞∑
l=2

(2b2C)l−1

(l − 1)!
τl

)

=
ωC

π

(
−T0 ln

∣∣∣∣1− 2π

ωT0

∣∣∣∣+
∞∑
l=2

(2b2C)l−1

(l − 1)!

T0

l − 1

[(
1− 2π

ωT0

)1−l

− 1

])

≤ Ã

− ln

∣∣∣∣1− 2π

ωT0

∣∣∣∣+
∞∑
l=1

(
2b2C

1− 2π
ωT0

)l
1

l!


≤ Ã

(
− ln

∣∣∣∣1− 2π

ωT0

∣∣∣∣+
∞∑
l=0

C̃ l

l!

)

where Ã := ωCT0/π and C̃ = (2b2C)/
(

1− 2π
ωT0

)
. Meanwhile for n > 1 we have that

∣∣∣k̃n(ξ, η)
∣∣∣ ≤ ωC

π

∞∑
l=n

(2b2C)l−1

(l − 1)!
τl

=
ωC

π

∞∑
l=n

(2b2C)l−1

(l − 1)!

T0

l − 1

[(
1− 2π

ωT0

)1−l

− 1

]

≤ Ã
∞∑
l=n

C̃ l−1

(l − 1)!

= Ã
∞∑
l=0

C̃n+l−1

(n+ l − 1)!

≤ Ã
C̃n−1

(n− 1)!
exp

(
C̃
)
.

In an analogous way from the estimates for the second derivative of κln in (2.33) it

follows, for n ∈ N that∣∣∣∣∣ ∂2k̃n
∂ξ∂η

(ξ, η)

∣∣∣∣∣ ≤
∞∑
l=n

∣∣∣∣∂2κln(ξ, η)

∂ξ∂η

∣∣∣∣ ≤ ω

2π
(nω+ |q(ξ + η)|)

∞∑
l=n

(2C)l−1 |ξ|
l−2 |η|l−2

(l − 2)!
τl−1. (2.35)

The last term in equation (2.35) is calculated as follows. From definition of τl in (2.29)

2.2 THP FOR PARABOLIC PDE WITH TIME DEPENDENT POTENTIAL



CHAPTER 2. TRANSMUTED HEAT POLYNOMIALS 36

and (2.30), for n ∈ {1, 2} the following inequality is valid

∞∑
l=2

(2C)l−1 |ξ|
l−2 |η|l−2

(l − 2)!
τl−1 =

∞∑
l=1

(2C)l
|ξ|l−1 |η|l−1

(l − 1)!
τl

= 2Cτ1 + 2C
∞∑
l=2

(2C |ξ| |η|)l−1

(l − 1)!

T0

l − 1

( 1

1− 2π
ωT0

)l−1

− 1


≤ 2C

(
τ1 + T0

∞∑
l=1

C̃ l−1

(l − 1)!

)

= 2CT0

[
− ln

∣∣∣∣1− 2π

ωT0

∣∣∣∣+ exp C̃

]
. (2.36)

Meanwhile for n > 2 we obtain that

∞∑
l=n

(2C)l−1 |ξ|
l−2 |η|l−2

(l − 2)!
τl−1 ≤ 2C

∞∑
l=n

(2b2C)l−2

(l − 2)!

T0

l − 2

( 1

1− 2π
ωT0

)l−2

− 1


≤ 2CT0

∞∑
l=n

C̃ l−2

(l − 2)!

≤ 2CT0 exp
(
C̃
) C̃ l−2

(l − 2)!
. (2.37)

Thus, substituting (2.36) and (2.37) into (2.35) we obtain the estimates for the second

derivative of k̃n.

Theorem 16. The integral kernel K̃ of the transmutation operator (2.17) admits the

following representation

K̃(ξ, η, t) =
∞∑
n=1

k̃n(ξ, η)einωt (2.38)

for any (ξ, η) ∈ (−b, b)× (−b, b).

Proof. From the representation of the integral kernel K̃ by the succesive approximation

method in (2.24) and the representation of functions k̃n in (2.34) in Proposition 4 we

obtain that

K̃(ξ, η, t) =
∞∑
n=1

K̃n(ξ, η, t) =
∞∑
n=1

(
n∑
j=1

κnj(ξ, η)eijωt

)
.
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Hence and from the estimates of k̃n in Corollary 2, the result is obtained by changing the

order of summation. Thus

K̃(ξ, η, t) =
∞∑
n=1

(
∞∑
l=n

κln(ξ, η)

)
einωt =

∞∑
n=1

k̃n(ξ, η)einωt.

From this theorem we note that the knowledge of the functions {k̃n}n∈N leads to

the construction of the transmutation T given by (2.17). Thus, the following lemma is

important to us.

Lemma 1. The functions k̃n given by (2.34) satisfy the Goursat problems

∂2k̃n
∂ξ∂η

− inωk̃n(ξ, η) = q(ξ + η)k̃n−1(ξ, η), (2.39)

k̃n(ξ, 0) =

 1
2

∫ ξ
0
q(σ)dσ, if n = 1

0, if n > 1,
(2.40)

k̃n(0, η) = 0, n ≥ 1 (2.41)

considered on (−b, b)× (−b, b) and k̃0 := 0.

Proof. It was shown in the proof of Proposition 6 that

∂2κln
∂ξ∂η

(ξ, η) =
ω

2π

∫ 2π/ω

0

[inωe−inωt + q(ξ + η)e−i(n−1)ωt]K̃l−1(ξ, η)dt

= inωκl−1,n(ξ, η) + q(ξ + η)κl−1,n−1(ξ, η).

Hence and from definition of k̃n in (2.34) the following equality follows.
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If n = 1 then k̃1(ξ, η) =
∑∞

l=1 κl1(ξ, η) = κ11(ξ, η) +
∑∞

l=2 κl1(ξ, η). Thus,

∂2k̃1

∂ξ∂η
(ξ, η) =

∞∑
l=2

∂2κl1
∂ξ∂η

(ξ, η)

=
∞∑
l=2

iωκl−1,1 + q(ξ + η)κl−1,0.

The last term in right-hand is zero because of (2.28), then
∂2k̃1

∂ξ∂η
(ξ, η) = iωk̃1

If n ≥ 2 then

∂2k̃n
∂ξ∂η

(ξ, η) =
∞∑
l=n

[inωκl−1,n(ξ, η) + q(ξ + η)κl−1,n−1(ξ, η)]

= inω
∞∑
l=n

κl−1,n(ξ, η) + q(ξ + η)
∞∑
l=n

κl−1,n−1(ξ, η)

= inωκn−1,n(ξ, η) + inω
∞∑
l=n

κl,n(ξ, η) + q(ξ + η)
∞∑

l=n−1

κl,n−1(ξ, η).

The first term in right-hand is zero by (2.28) then
∂2k̃n
∂ξ∂η

(ξ, η) = inωk̃n(ξ, η) + q(ξ +

η)k̃n−1(ξ, η). Thus, (2.39) is proved.

On the other hand, due to the series representation for the integral kernel of Theorem

16

K̃(ξ, η, t) =
∞∑
n=1

k̃n(ξ, η)einωt

and the Goursat conditions of K̃ in (2.22) and (2.23)

K̃(ξ, 0) =
eiωt

2

∫ ξ

0

q(σ)dσ, K̃(0, η) = 0.

Then, we have that

∞∑
n=1

k̃n(ξ, 0)einωt =
eiωt

2

∫ ξ

0

q(σ)dσ,
∞∑
n=1

k̃n(0, η)einωt = 0.
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Thus, it follows that

k̃1(ξ, 0) =

 1
2

∫ ξ
0
q(σ)dσ, if n = 1

0, if n > 1,

k̃n(0, η) = 0, n ≥ 1.

Let us consider the inverse transformation of variables (ξ, η) 7→ (x, s) and define

kn(x, s) = k̃

(
x+ s

2
,
x− s

2

)
.

Note that from (2.40) and (2.41) it follows that

kn(x, x) =

 1
2

∫ x
0
q(σ)dσ, if n = 1

0, if n > 1,
(2.42)

kn(x,−x) = 0, n ≥ 1. (2.43)

Then, consider the following definition.

Definition 5. For m ∈ N0, n ∈ N we define

umn(x) :=

∫ x

−x
kn(x, s)smds, x ∈ [−b, b]. (2.44)

These functions play a crucial role in the following section and the following result is

proved.

Theorem 17. Let q ∈ C1[−b, b]. Then, for n ∈ N and m ∈ N0 the functions umn satisfy

the following Cauchy problems

d2umn
dx2

(x)− inωumn(x) = q(x)um,n−1(x) +m(m− 1)um−2,n(x) + q(x)xmδn1, (2.45)

umn(0) =
dumn
dx

(0) = 0,
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where δn1 = 1 if n = 1 and 0 otherwise.

Proof. Choose m ∈ N0 and n ∈ N. From definition of umn in (2.44) and the Goursat

condition (2.43) it follows that

dumn
dx

(x) =

∫ x

−x

∂kn
∂x

(x, s)smds+ kn(x, x)xm (2.46)

and

d2umn
dx2

(x) =

∫ x

−x

∂2kn
∂x2

(x, s)smds+ xm
∂kn
∂x

(x, x) + (−x)m
∂kn
∂x

(x,−x)

+ xm
d

dx
(kn(x, x)) +mxm−1kn(x, x).

Hence and from the partial differential equation for k̃n (2.39) we obtain that

d2umn
dx2

(x) =

∫ x

−x

(
∂2kn
∂s2

(x, s) + q(x)kn−1(x, s) + inωkn(x, s)

)
smds

+xm
∂kn
∂x

(x, x) + (−x)m
∂kn
∂x

(x,−x) + xm
d

dx
(kn(x, x))

+mxm−1kn(x, x).

Since the first integral in the right hand term can be written as follows (applying integra-

tion by parts twice)

∫ x

−x

∂2kn
∂s2

(x, s)smds = xm
∂kn
∂s

(x, x)− (−x)m
∂kn
∂s

(x,−x)−mxm−1kn(x, x)

+m(m− 1)

∫ x

−x
kn(x, s)sm−2ds
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we obtain that

d2umn
dx2

(x) = xm
∂kn
∂s

(x, x)− (−x)m
∂kn
∂s

(x,−x)−mxm−1kn(x, x)

+m(m− 1)

∫ x

−x
kn(x, s)sm−2ds+ q(x)

∫ x

−x
kn−1(x, s)smds

+

∫ x

−x
inωkn(x, s)smds+ xm

∂kn
∂x

(x, x) + (−x)m
∂kn
∂x

(x,−x)

+xm
d

dx
(kn(x, x)) +mxm−1kn(x, x).

Note that
∂kn
∂s

(x, x) +
∂kn
∂x

(x, x) =
d

dx
(kn(x, x)) =

δn1

2
q(x)

(see (2.42)). Thus, from (2.44) the following equality is derived

d2umn
dx2

(x) = xmq(x)δn1 +m(m− 1)um−2,n(x) + q(x)um,n−1(x) + inωumn(x).

The initial condition umn(0) = 0 follows immediately from definition (2.44). The

second initial condition is a consequence of equation (2.46) and the Goursat conditions

(2.40), (2.41).

2.2.2 Approximate transmuted heat polynomials

In this section a family of functions approximating the solutions of (2.16) is obtained.

Denote by um = Thm, m ∈ N0 the images of the heat polynomials in (2.4) under

the action of the transmutation operator (2.17). Then, due to Theorem 16 the following

statement is true. Denote Ω := (−b, b)× (0, 2π/ω).

Theorem 18. The transmuted heat polynomials {um}m∈N0 have the following form

um(x, t) = hm(x, t) +
∞∑
n=1

[m2 ]∑
k=0

αmkum−2k,n(x)tkeinωt (2.47)
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where the functions {umn : m ∈ N0, n ∈ N} are defined by (2.44) and

αmk :=
m!

(m− 2k)!k!
.

Proof. This representation is an immediate result of the representation for the integral

kernel K in terms of the functions kn (see Theorem 16). Indeed, we have that

Thm(x, t) = hm(x, t) +

∫ x

−x
K(x, s, t)hm(s, t)

= hm(x, t) +

∫ x

−x

∞∑
n=1

kn(x, s)einωt
[m/2]∑
k=0

αmks
m−2ktk

= hm(x, t) +
∞∑
n=1

[m/2]∑
k=0

(∫ x

−x
kn(x, s)sm−2kds

)
αmkt

keinωt.

Let us consider the functions

uNm(x, t) := hm(x, t) +
N∑
n=1

[m2 ]∑
k=0

αmkum−2k,n(x)tkeinωt, m ∈ N0, N ∈ N. (2.48)

Then the following estimate is valid.

Theorem 19. For m ∈ N0 and ε > 0 there exists such N = N(ε) that the following

estimate is valid for any n ≥ N

max
(x,t)∈Ω

|um(x, t)− unm(x, t)| < ε.

Proof. Set m ∈ N0. Choose ε > 0. Then, from the representation of the transmuted heat

polynomial um in formula (2.47) and the truncated series in (2.48) we have the following
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inequality for every n ∈ N

|um(x, t)− unm(x, t)| =

∣∣∣∣∣∣∣
[m2 ]∑
k=0

αmkt
k

∞∑
r=n+1

um−2k,r(x)eirωt

∣∣∣∣∣∣∣
≤

[m2 ]∑
k=0

αmkt
k

∞∑
r=n+1

|um−2k,r(x)| . (2.49)

In order to obtain an estimate for
∑∞

r=n+1 |um−2k,r(x)| an estimate of |um−2k,r(x)| is

obtained. From definition of umr in equation (2.44) and the estimates for kr in Corollary

2, after an integration it follows that

|um−2k,r(x)| ≤
∫ x

−x
|kr(x, s)| |s|m−2k ds

≤ 2
ωCT0

π

∫ x

0

sm−2kds
C̃r−1

(r − 1)!
exp(C̃)

= 2
ωCT0

π

xm−2k+1

m− 2k + 1

C̃r−1

(r − 1)!
exp(C̃).

Thus, we obtain

|um(x, t)− unm(x, t)| ≤ 2ωCT0

π

[m2 ]∑
k=0

αmkt
k xm−2k+1

m− 2k + 1

∞∑
r=n+1

C̃r−1

(r − 1)!
exp(C̃).

Because of the fact that

∞∑
r=n+1

C̃r−1

(r − 1)!
=
∞∑
r=0

C̃r+n

(r + n)!
≤ exp(C̃)

C̃n

n!
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we have

|um(x, t)− unm(x, t)| ≤ 2ωCT0

π

[m2 ]∑
k=0

αmkt
k xm−2k+1

m− 2k + 1
exp(2C̃)

C̃n

n!

=
2ωCT0

π
exp(2C̃)

C̃n

n!

[m2 ]∑
k=0

αmkt
k xm−2k+1

m− 2k + 1
.

Thus, from (2.49) it follows that

max
(x,t)∈Ω

|um(x, t)− unm(x, t)| ≤ max
(x,t)∈Ω

2ωCT0

π
exp(2C̃)

C̃n

n!

[m2 ]∑
k=0

αmkt
k xm−2k+1

m− 2k + 1
.

The choice of N such that

C̃n

n!
<

επ

2ωCT0

 max
(x,t)∈Ω

∣∣∣∣∣∣∣
[m2 ]∑
k=0

αmkt
k xm−2k+1

m− 2k + 1

∣∣∣∣∣∣∣

−1

, ∀n ≥ N

finishes the proof.

Remark 4. The explicit solution of the recursive system of ordinary differential equations

(2.45) is given by

umn(x) =

√
2√

nω(1 + i)

∫ x

0

hmn(s) sinh

(√
nω

2
(x− s)

)
ds

=

√
2√

nω(1 + i)
sinh

(√
nω

2
x

)∫ x

0

hmn(s) cosh

(√
nω

2
s

)
ds

−
√

2√
nω(1 + i)

cosh

(√
nω

2
x

)∫ x

0

hmn(s) sinh

(√
nω

2
s

)
ds

where

hmn(x) := m(m− 1)um−2,n + q(x)um,n−1(x) + xmq(x)δn1

for every m ∈ N0 and n ∈ N.
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Theorem 20. Let u be a continuous function in Ω satisfying the equation

∂2u

∂x2
− q(x)eiωtu(x, t) =

∂u

∂t
(x, t), (x, t) ∈ Ω. (2.50)

Then, for every ε > 0 there exist M,N ∈ N and the coefficients a0, a1, . . . , aM such that

max
(x,t)∈Ω

∣∣∣∣∣u(x, t)−
M∑
m=0

amu
N
m(x, t)

∣∣∣∣∣ < ε.

Proof. Choose ε > 0. Let u be a solution of the equation (2.50). It is a well known

result that {Thm}m∈N0 is a complete system of solutions of (2.50) (see [6, theorem 3.2.3]).

Then, there exist M ∈ N and the coefficients a0, a1, . . . , aM such that

max
(x,t)∈Ω

∣∣∣∣∣u(x, t)−
M∑
m=0

amum(x, t)

∣∣∣∣∣ < ε/2.

From Theorem 19 for every m = 0, 1, . . . ,M there exists N ∈ N such that

max
(x,t)Ω

∣∣um(x, t)− uNm(x, t)
∣∣ < ε

2
∑M

m=0 |am|
.

Hence and due to the triangle inequality the following inequality follows

max
(x,t)∈Ω

∣∣∣∣∣u(x, t)−
M∑
m=0

amu
N
m(x, t)

∣∣∣∣∣ ≤ max
(x,t)∈Ω

∣∣∣∣∣u(x, t)−
M∑
m=0

amum(x, t)

∣∣∣∣∣
+ max

(x,t)∈Ω

∣∣∣∣∣
M∑
m=0

um(x, t)−
M∑
m=0

amu
N
m(x, t)

∣∣∣∣∣
≤ ε

2
+ max

(x,t)∈Ω

M∑
m=0

|am|
∣∣um(x, t)− uNm(x, t)

∣∣ < ε.
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Remark 5. The solution scheme is used to solve coupled systems of equations of the form

fxx − ft + q(x) cos(ωt)f = q(x) sin(ωt)g

gxx − gt + q(x) sin(ωt)g = q(x) cos(ωt)f

for (x, t) ∈ (−b, b) × (0, τ). Indeed, the function u(x, t) = f(x, t) + ig(x, t) is solution of

the equation (2.16).
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Chapter 3

A method of fundamental solutions

for parabolic partial differential

equations with variable coefficients

In this chapter we return to the parabolic partial differential equation with a time in-

dependent potential. A system of functions being the images of the heat kernels under

the action of the transmutation operator is constructed and a completeness result of the

system for approximation of solutions of equation

∂2u

∂x2
− q(x)u(x, t) =

∂u

∂t
(x, t) (3.1)

on a rectangle of the plane (x, t) is proved. The completeness property is shown to be

useful for uniform approximation of the solution of boundary value problems for (3.1),

then an extension of the method of fundamental solutions is presented.

The system of functions is constructed with the aid of the transmutation operators

presented in Section 1.3. Moreover, the use of the Fourier-Legendre series representation

of the transmutation kernel given by Theorem 13 leads to a simple recursive procedure

for computation of the system of functions.
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The completeness property is a consequence of a similar result for the heat equation

and the maximum principle for heat solutions over a rectangle in the plane.

The chapter contains the following sections. In Section 3.1 the known method of

fundamental solutions for the heat equation is presented. Then in Section 3.2 the main

theorem is presented. In Section 3.2.1 a recursive formula to construct the system of

functions is obtained. Finally, a step by step method for approximate the solution of

boundary value problems for (3.1) is proposed.

3.1 A method of fundamental solutions for the heat

equation

Consider the problem of finding the solution h of the first boundary value problem

∂2h

∂x2
(x, t) =

∂h

∂t
(x, t), (3.2)

h(x, 0) = Φ(x), (3.3)

h(−b, t) = Ψ1(t), h(b, t) = Ψ2(t) (3.4)

considered on Ω := (−b, b) × (0, τ). Here Φ, Ψ1 and Ψ2 are continuously differentiable

functions satisfying the compatibility conditions

Ψ1(0) = Φ(−b), Ψ2(0) = Φ(b).

In order to apply the method of fundamental solutions the following notations and

terminology are introduced.

Let {tk 6= 0 : k = 1, 2, . . .} be a countable everywhere dense set of points in (−τ, τ),

x0 < −b and x1 > b. Consider the functions

vm(x, t) :=
H(t− tn)

2
√
π(t− tn)

exp

(
−(x− xr)2

4(t− tn)

)
, m ∈ N (3.5)
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for (x, t) ∈ Ω where n is the integer part of m/2, r ∈ {0, 1} and H is the Heaviside step

function, whose value is zero for negative real numbers and one for positive real numbers.

Note that, vm(x, t) = H(t− tn)F (x− xr, t− tn), where F is the fundamental solution

of the heat operator defined by (1.4).

In order to approximate the solution of (3.2)-(3.4) by the method of fundamental

solutions the following theorem is presented. It is the basis for the method.

Theorem 21 ([10]). The restrictions {vm(y, t) : y = −b, b}m∈N constitute a linearly

independent and complete set in L2((−τ, τ)). The restrictions {vm(x, 0) : tn < 0}m∈N
form a linearly independent and complete set in L2((−b, b)).

The first part of Theorem 21 was proved in 1964 by Kupradze in [25], meanwhile the

second part is the principal result in [10].

Based on the previous Theorem 21 a method of fundamental solutions for approximat-

ing the solution of the problem (3.2)-(3.4) consists in the following.

LetM be a fixed positive integer number and considerM points {tn}Mn=1 in (−τ, τ)\{0}.

Choose x0 < −b and x1 > b and consider the 2M functions {vm}2M
m=1 constructed according

to the rule (3.5). Then, due to Theorem 21 the approximate solution to (3.2), ṽ is sought

in the form of a linear combination of the functions {vm}2M
m=1 and the coefficients are such

that ṽ satisfy approximately the boundary conditions (3.3) and (3.4).

3.2 The transmuted heat kernel

In this section an extension of the method of fundamental solutions onto parabolic partial

differential equation of the form

∂2u

∂x2
− q(x)u(x, t) =

∂u

∂t
(3.6)

considered on the bounded rectangle Ω := (−b, b) × (0, τ) is presented. We assume that

the potential q is a continuous complex valued function of an independent real variable
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−b < x < b. Denote by Γ = Γ1 ∪ Γ2 the parabolic boundary of Ω such that

Γ1 := {(x, t) : x ∈ {−b, b}, t ∈ (−τ, τ)}, Γ2 := {(x, t) : x ∈ (−b, b), t = 0}.

Let us consider the transmutation operator T defined in Section 1.3 as

Tv(x) = v(x) +

∫ x

−x
K(x, s)v(s)ds. (3.7)

Then, consider the following definition.

Definition 6. For every m ∈ N let um be the function

um(x, t) := T [vm](x, t), (x, t) ∈ Ω. (3.8)

where vm is the function defined by (3.5) and the operator T is applied with respect to the

variable x.

Based on Theorem 21 and the maximum principle, a completeness result of the func-

tions (3.8) for approximate solution of the parabolic partial differential equation (3.6) is

proved in the following theorem.

Theorem 22. Let u be a solution of equation (3.6) on Ω which is continuous in Ω̄. Then,

for every ε > 0 there exists M ∈ N and the constants {cm}Mm=1 such that

∥∥∥∥∥u−
M∑
m=1

cmum

∥∥∥∥∥
L2(Ω)

≤ Cε1.

Proof. Choose ε > 0. Consider h = T−1u. Due to Theorem 21 we have that for any

ε1 > 0 there exist M ∈ N and constants {cm}Mm=1 such that

∥∥∥∥∥h(x, t)−
M∑
m=1

cmvm(x, t)

∥∥∥∥∥
L2(Ω̄)

< ε1. (3.9)
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Then, using the boundedness of the transmutation operator and the maximum principle

for the heat equation we obtain that∥∥∥∥∥u−
M∑
m=1

cmum

∥∥∥∥∥
L2(Ω)

=

∥∥∥∥∥Th−
M∑
m=1

cmTvm

∥∥∥∥∥
L2(Ω)

≤ C

∥∥∥∥∥h−
M∑
m=1

cmvm

∥∥∥∥∥
L2(Ω)

≤ C

∥∥∥∥∥h−
M∑
m=1

cmvm

∥∥∥∥∥
L2(Γ)

where the constant C is the uniform norm of T guaranteed to exists in Corollary 1. Then,

from (3.9) we obtain that ∥∥∥∥∥u−
M∑
m=1

cmum

∥∥∥∥∥
L2(Ω)

≤ Cε1.

The choice of ε1 = ε/C finishes the proof.

3.2.1 A recurrent procedure to compute the transmuted heat

kernel

In this section we obtain a simple recursive procedure to compute the functions {um}m∈N
defined by (3.8). This fact is due to the Fourier-Legendre series representation of the

integral kernel K which was mentioned in Theorem 13 given by

K(x, s) =
∞∑
j=0

βj(x)

x
Pj

( s
x

)
(3.10)

where Pj denotes the Legendre polynomial of order j,

βj(x) =
2j + 1

2

(
j∑

k=0

lk,jϕk(x)

xk
− 1

)
(3.11)

and lk,j are the corresponding coefficients of xk in Pj, that is Pj(x) =
∑j

k=0 lk,jx
k.
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We substitute the Fourier-Legendre series (3.10) into equation (3.8). Then,

um(x, t) = vm(x, t) +

∫ x

−x

∞∑
j=0

βj(x)

x
Pj

( s
x

) 1

2
√
π(t− tn)

exp

(
−|s− xr|

2

4(t− tn)

)
ds

= vm(x, t) +
∞∑
j=0

βj(x)

2x
√
π(t− tn)

∫ x

−x
Pj

( s
x

)
exp

(
−|s− xr|

2

4(t− tn)

)
ds

Let us consider the functions

wm,j(x, t) :=

∫ x

−x
Pj

( s
x

)
exp

(
−|s− xr|

2

4(t− tn)

)
ds, j ∈ N0, m = 2n− r. (3.12)

Thus,

um(x, t) = vm(x, t) +
∞∑
j=0

βj(x)wm,j(x, t)

2x
√
π(t− tn)

. (3.13)

In order to obtain another way to compute the functions {um}m∈N the following state-

ment is proved.

Lemma 2. Consider the functions

ψj(x, t, r) :=

∫ x

−x
Pj

( s
x

)
exp

(
− |s− r|2

4t

)
ds, j ∈ N0. (3.14)

Then,

ψ0(x, t, r) =
√
πt

[
Erf

(
x− r
2
√
t

)
+ Erf

(
x+ r

2
√
t

)]
.

ψ1(x, t, r) =
2t

x

[
exp

(
−|x+ r|2

4t

)
− exp

(
−|x− r|

2

4t

)]
+
r

x
ψ0(x, t, r).

ψ2(x, t, r) =
3rt

x2

[
exp

(
−|x− r|

2

4t

)
− exp

(
−|x+ r|2

4t

)]
+

3r

x
ψ1(x, t, r)

− 3t

x

[
exp

(
−|x− r|

2

4t

)
+ exp

(
−|x+ r|2

4t

)]
− 3r2 + x2 − 6t

2x2
ψ0(x, t, r).
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ψ3(x, t, r) =

[(
|x− r|2

4t
+ 1

)
exp

(
−|x− r|

2

4t

)
−

(
|x+ r|2

4t
+ 1

)
exp

(
−|x+ r|2

4t

)]

+
5r

x
ψ2(x, t, r)− 3x2 + 15

2x2
ψ1(x, t, r) +

15rx2 − 5r3

6x3
ψ0(x, t, r).

Meanwhile, for j ≥ 4

ψj(x, t, r) =
[2(2j − 1)(2j − 5)t− x2](2j − 3)

x2j(2j − 5)
ψj−2(x, t, r) +

(j − 3)(2j − 1)

j(2j − 5)
ψj−4(x, t, r)

+
r(2j − 1)

xj
ψj−1(x, t, r)− r(2j − 1)

xj
ψj−3(x, t, r) (3.15)

Proof. Let us consider the change of variable z = (s− r)/2
√
t, then

ψ0(x, t, r) =

∫ x

−x
P0

( s
x

)
exp

(
−|s− r|

2

4t

)
ds

=

∫ x

−x
exp

(
−|s− r|

2

4t

)
ds

= 2
√
t

∫ z2

z1

e−z
2

dz

=
√
πt

[
Erf

(
x− r
2
√
t

)
+ Erf

(
x+ r

2
√
t

)]
.

where z1 := −(x+ r)/2
√
t, z2 := (x− r)/2

√
t.

Note that before integration we have that

ψ0(x, t, r) = 2
√
t

∫ z2

z1

e−z
2

dz. (3.16)
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From here it follows that

ψ1(x, t, r) = 2
√
t

∫ z2

z1

P1

(
2
√
tz + r

x

)
e−z

2

dz

= 2
√
t

∫ z2

z1

(
2
√
tz + r

x

)
e−z

2

dz

=
4t

x

∫ z2

z1

ze−z
2

dz +
2r
√
t

x

∫ z2

z1

e−z
2

dz

= −2t

x

[
e−z

2
]z2
z1

+
r

x
ψ0(x, t, r)

=
2t

x

[
exp

(
−|x+ r|2

4t

)
− exp

(
−|x− r|

2

4t

)]
+
r

x
ψ0(x, t, r).

Again, we note that

4t

x

∫ z2

z1

ze−z
2

dz = ψ1(x, t, r)− r

x
ψ0(x, t, r). (3.17)

Moreover, by simple integration we have that

∫ z2

z1

z2e−z =
1

4
√
t
ψ0(x, t, r)− 1

2

[
ze−z

2
]z2
z1

(3.18)
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then, using (3.16) and (3.17) we obtain that

ψ2(x, t, r) = 2
√
t

∫ z2

z1

P2

(
2
√
tz + r

x

)
e−z

2

dz

= 2
√
t

∫ z2

z1

3

2

(
2
√
tz + r

x

)2

e−z
2

dz − 2
√
t

∫ z2

z1

1

2
e−z

2

dz

= 3
√
t

∫ z2

z1

(
2
√
tz + r

x

)(
2
√
tz + r

x

)
e−z

2

dz − 1

2
ψ0(x, t, r)

=
6t

x

∫ z2

z1

z

(
2
√
tz + r

x

)
e−z

2

dz +
3r

2x
ψ1(x, t, r)− 1

2
ψ0(x, t, r)

=
12t3/2

x2

∫ z2

z1

z2e−z
2

dz +
6rt

x2

∫ z2

z1

ze−z
2

dz +
3r

2x
ψ1(x, t, r)− 1

2
ψ0(x, t, r)

=
3t

x2
ψ0(x, t, r)− 6t3/2

x2

[
ze−z

2
]z2
z1

+
3r

2x

[
ψ1(x, t, r)− r

x
ψ0(x, t, r)

]
+

3r

2x
ψ1(x, t, r)− 1

2
ψ0(x, t, r)

=
3rt

x2

[
exp

(
−|x− r|

2

4t

)
− exp

(
−|x+ r|2

4t

)]
+

3r

x
ψ1(x, t, r)

− 3t

x

[
exp

(
−|x− r|

2

4t

)
+ exp

(
−|x+ r|2

4t

)]
− 3r2 + x2 − 6t

2x2
ψ0(x, t, r).

In the same way, we note that

12t3/2

x2

∫ z2

z1

z2e−z
2

dz = ψ2(x, t, r)− 3r

x
ψ1(x, t, r) +

3r2 + x2

2x2
ψ0(x, t, r).

From here, (3.16), (3.17), (3.18) and due to the fact that

∫ z2

z1

z3e−z = −1

2

[
(z2 + 1)e−z

2
]z2
z1
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we obtain that

ψ3(x, t, r) = 2
√
t

∫ z2

z1

P3

(
2
√
tz + r

x

)
e−z

2

dz

= 2
√
t

∫ z2

z1

5

2

(
2
√
tz + r

x

)3

e−z
2

dz − 2
√
t

∫ z2

z1

3

2

(
2
√
tz + r

x

)
e−z

2

dz

= 5
√
t

∫ z2

z1

(
2
√
tz + r

x

)(
2
√
tz + r

x

)2

e−z
2

dz − 3
√
t

∫ z2

z1

(
2
√
tz + r

x

)
e−z

2

dz

=
10t

x

∫ z2

z1

z

(
2
√
tz + r

x

)2

e−z
2

dz +
5r
√
t

x

∫ z2

z1

(
2
√
tz + r

x

)2

e−z
2

dz − 3

2
ψ1

=
10t

x3

∫ z2

z1

(4tz3 + 4
√
trz2 + r2z)e−z

2

dz +
5r

3x
[ψ2(x, t, r) +

1

2
ψ0(x, t, r)]− 3

2
ψ1

=
40t2

x3

∫ z2

z1

z3e−z
2

dz +
40t3/2r

x3

∫ z2

z1

z2e−z
2

dz +
10tr2

x3

∫ z2

z1

ze−z
2

dz

+
5r

3x
ψ2(x, t, r) +

5r

6x
ψ0(x, t, r)− 3

2
ψ1(x, t, r)

=
40t2

x3

[
−1

2
(z2 + 1)e−z

2

]z2
z1

+
10r

3x
[ψ2 −

3r

x
ψ1 +

3r2 + x2

2x2
ψ0] +

5r2

2x2
[ψ1 −

r

x
ψ0]

+
5r

3x
ψ2(x, t, r) +

5r

6x
ψ0(x, t, r)− 3

2
ψ1(x, t, r)

= −20t

x3

[
(z2 + 1)e−z

2
]z2
z1

+
5r

x
ψ2(x, t, r)− 3x2 + 15

2x2
ψ1(x, t, r) +

15rx2 − 5r3

6x3
ψ0

=

[(
|x− r|2

4t
+ 1

)
exp

(
−|x− r|

2

4t

)
−

(
|x+ r|2

4t
+ 1

)
exp

(
−|x+ r|2

4t

)]

+
5r

x
ψ2(x, t, r)− 3x2 + 15

2x2
ψ1(x, t, r) +

15rx2 − 5r3

6x3
ψ0(x, t, r).

On the other hand, using the known recursive formula for the Legendre polynomials

(2j + 1)Pj(x) = P ′j+1(x)− P ′j−1(x)
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and integrating by parts we have that

ψj(x, t, r) =

∫ x

−x
Pj

( s
x

)
exp

(
− |s− r|2

4t

)
ds

=
1

2j + 1

∫ x

−x

[
P ′j+1

( s
x

)
− P ′j−1

( s
x

)]
exp

(
− |s− r|2

4t

)
ds

=
x

2j + 1

[
Pj+1

( s
x

)
− Pj−1

( s
x

)]
exp

(
− |s− r|2

4t

)∣∣∣∣∣
x

−x

+
x

2(2j + 1)t

∫ x

−x
(s− r)

[
Pj+1

( s
x

)
− Pj−1

( s
x

)]
exp

(
− |s− r|2

4t

)
ds.

Using the fact that Pj(1) = 1 and Pj+1(−1) = Pj−1(−1) for every j we have that

ψj(x, t, r) =
x

2(2j + 1)t

∫ x

−x
s
[
Pj+1

( s
x

)
− Pj−1

( s
x

)]
exp

(
− |s− r|2

4t

)
ds

− xr

2(2j + 1)t
[ψj+1(x, t, r)− ψj−1(x, t, r)] . (3.19)

Then, by the formula

(2j + 1)xPj(x) = (j + 1)Pj+1(x) + jPj−1(x)

we obtain that

∫ x

−x
sPj+1

( s
x

)
exp

(
− |s− r|2

4t

)
ds = x

j + 2

2j + 3

∫ x

−x
Pj+2

( s
x

)
exp

(
− |s− r|2

4t

)
ds

+ x
j + 1

2j + 3

∫ x

−x
Pj

( s
x

)
exp

(
− |s− r|2

4t

)
ds,
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∫ x

−x
sPj−1

( s
x

)
exp

(
− |s− r|2

4t

)
ds = x

j

2j − 1

∫ x

−x
Pj

( s
x

)
exp

(
− |s− r|2

4t

)
ds

+ x
j − 1

2j − 1

∫ x

−x
Pj−1

( s
x

)
exp

(
− |s− r|2

4t

)
ds.

Then, replacing this last two equations in (3.19) we obtain that

ψj(x, t, r) =
x2

2(2j + 1)t

[
j + 2

2j + 3
ψj+2(x, t, r) +

j + 1

2j + 3
ψj(x, t, r)−

j

2j − 1
ψj(x, t, r)

− j − 1

2j − 1
ψj−2(x, t, r)

]
− xr

2(2j + 1)t
ψj+1(x, t, r) +

xr

2(2j + 1)t
ψj−1(x, t, r),

Thus, we obtain that

ψj+2(x, t, r) =
(2j + 1)(2(2j + 3)(2j − 1)t− x2)

x2(j + 2)(2j − 1)
ψj(x, t, r) +

(2j + 3)(j − 1)

(2j − 1)(j + 2)
ψj−2(x, t, r)

+
(2j + 3)r

(j + 2)x
ψj+1(x, t, r)− (2j + 3)r

(j + 2)x
ψj−1(x, t, r).

then formula (3.15) is proved.

From the previous lemma, a simple recurrent procedure for computing (3.12) is ob-

tained.

Theorem 23. The functions {wm,j : m ∈ N, j ∈ N0} given by (3.12) can be calculated by

means of the following recurrent procedure

wm,j(x, t) =
[2(2j − 1)(2j − 5)(t− tn)− x2](2j − 3)

x2j(2j − 5)
wm,j−2(x, t)

+
(j − 3)(2j − 1)

j(2j − 5)
wm,j−4(x, t) +

xr(2j − 1)

xj
wm,j−1(x, t)− xr(2j − 1)

xj
wm,j−3(x, t)

with

wm,0(x, t) =
√
π(t− tn)

[
Erf

(
x− xr

2
√
t− tn

)
+ Erf

(
x+ xr

2
√
t− tn

)]
,

wm,1(x, t) =
2(t− tn)

x

[
exp

(
−(x+ xr)

2

4(t− tn)

)
− exp

(
−(x− xr)2

4(t− tn)

)]
+
xr
x
w0(x, t),
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wm,2(x, t) =
3xr(t− tn)

x2

[
exp

(
−|x− xr|

2

4(t− tn)

)
− exp

(
−|x+ xr|2

4(t− tn)

)]
+

3xr
x
wm,1(x, t)

− 3(t− tn)

x

[
exp

(
−|x− xr|

2

4(t− tn)

)
+ exp

(
−|x+ xr|2

4(t− tn)

)]
− 3x2

r + x2 − 6(t− tn)

2x2
wm,0(x, t),

wm,3(x, t) =

[(
|x− xr|2

4(t− tn)
+ 1

)
exp

(
−|x− xr|

2

4(t− tn)

)
−

(
|x+ xr|2

4(t− tn)
+ 1

)
exp

(
−|x+ xr|2

4(t− tn)

)]

+
5xr
x
wm,2(x, t)− 3x2 + 15

2x2
wm,1(x, t) +

15xrx
2 − 5x3

r

6x3
wm,0(x, t)

where m = 2n− r.

Proof. This equality is an immediate corollary of Lemma 2. Indeed, we have that

wm,j(x, t) = ψj(x, t− tn, xr) where the Lemma 2 is used.

3.3 An extended method of fundamental solutions

for boundary value problems for parabolic partial

differential equations with variable coefficients

In this section a step by step method for approximation of the solution of boundary value

problems for (3.6) is proposed. The basis of this method is Theorem 22 and the recursive

formula in Theorem 23. The method is explained on the first boundary value problem

but other boundary value problems can be solved in analogous way.

Let us consider equation (3.6) subject to the Dirichlet boundary conditions

u(−b, t) = ψ1(t), u(b, t) = ψ2(t), t ∈ [0, τ ], (3.20)

and the initial condition

u(x, 0) = ϕ(x), x ∈ [−b, b]. (3.21)
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We assume that ψ1, ψ2, ϕ are continuously differentiable functions and satisfy the com-

patibility conditions

ψ1(0) = ϕ(−b), ψ2(0) = ϕ(b).

The problem (3.6), (3.20), (3.21) possesses a unique solution which depends continu-

ously on the data (see e.g. [33]). Theorem 22 suggests the following simple method to

approximate the solution of problem (3.6), (3.20), (3.21).

First of all let M be a positive integer and choose M points {tk}Mk=1 in the temporal

interval (−τ, τ)\{0}. After that, choose x0 < −b, x1 > b and consider the 2M × N

functions {wm,j(x, t)}N−1
j=0 defined by (3.12) using the recursive formula given in Theorem

23. Then, consider the functions {βj}N−1
j=0 given by (3.11) and construct the functions

{um}2M
m=1 defined by formula (3.8).

The approximate solution ũ of the equation (3.6) is sought as a linear combination of

the functions (3.8) in the form

ũ(x, t) =
2M∑
m=1

cmum(x, t). (3.22)

The coefficients {cm}2M
m=1 are sought in such way that ũ satisfy the initial and the bound-

ary conditions approximately. For this we use the collocation method where L points

{(xi, ti)}Li=1 are chosen on the parabolic boundary Γ. Then, imposing the boundary con-

ditions (3.20), (3.21) onto the approximate solution (3.22) the following linear system of

equations for the coefficients {cm}2M
m=1 is obtained

2M∑
m=1

cmum(xi, ti) =


ψ1(ti), xi = −b

ϕ(xi), ti = 0

ψ2(ti), xi = b

, i = 1, 2, . . . , L. (3.23)

According to the collocation method described in [10], [12], [27], the solution of the

system (3.23) implies that function (3.22) is approximately equal to ϕ. ψ1, ψ2 on the
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parabolic boundary. By the maximum principle it is also an approximate solution on Ω.
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Chapter 4

Cauchy problems for parabolic

partial differential equations with

variable coefficients in one space

variable

This chapter is dedicated to obtain explicit solutions of the Cauchy and noncharacteristic

Cauchy problems for parabolic partial differential equations with a variable coefficient of

the form
∂2u

∂x2
(x, t) + q(x)u(x, t) =

∂u

∂t
(x, t) (4.1)

where q is a continuous complex valued function of an independent real variable using the

transmutation operators introduced in Section 1.3.

In Section 4.1 a system of functions for the representation of the solution of the Cauchy

problem for (4.1) in terms of the {βn}∞n=0 functions given in Theorem 13 is obtained. The

solution of the Cauchy problem for (4.1) being the image of certain Poisson transform un-

der a transmutation operator is calculated using the Fourier-Legendre series representation

of the transmutation kernel. Then, the system of functions is obtained as a convolution
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of the Legendre polynomials with the fundamental solution of the heat equation. Such

integrals are calculated in a recursive way using the known recursive formula for the Leg-

endre polynomials. In order to use the transmutation operator on the whole real line for

the space variable an adequate functional space is introduced.

In Section 4.2 an explicit solution of the noncharacteristic Cauchy problem for equation

(4.1) with Cauchy data belonging to a Holmgren class (see Section 1.2.4) is obtained. Using

the mapping property the solution is presented in terms of the formal powers {ϕk}k∈N0

arising in the spectral parameter power series (SPPS) method (see the mapping property,

Theorem 12).

4.1 The Cauchy problem for a parabolic partial dif-

ferential equation with variable coefficients

In this section we shall determine the solution u of the Cauchy problem for (4.1) considered

on −∞ < x <∞, t > 0 satisfying the initial condition on the line t = 0 given by

u(x, 0) = ϕ(x) for −∞ < x <∞ (4.2)

where ϕ is a prescribed function. We assume that the potential q satisfies the condition

∫ ∞
−∞

(1 + |x|) |q(x)| dx <∞. (4.3)

In order to use a transmutation operator to solve the Cauchy problem, let us consider

the following class of functions

Definition 7. Let M be the class of functions f for which there are positive constants C1,

C2 and σ ∈ [0, 2) such that

|f(x, t)| ≤ C1e
C2|x|σ , x ∈ R, t > 0.
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It is worth mentioning that the functions of the class M satisfy the following properties.

If f, g ∈M are such that

|f(x, t)| ≤ Aea|x|
α

, |g(x, t)| ≤ Beb|x|
β

,

then

|f(x, t)| ≤ Aea|x|
σ

∀ σ ∈ [α, 2), |(fg)(x, t)| ≤ ABe(a+b)|x|max{α,β}
.

So note that f + g and fg belong to M . As we will see in the following section this class

of functions is the adequate space for the definition of a transmutation operator and the

Cauchy problem (4.1)-(4.2) to be studied.

4.1.1 A transmutation operator for parabolic operators on the

whole real line

We use both transmutation operators T and its inverse T−1 introduced in Section 1.3 by

Th(x, t) = h(x, t) +

∫ x

−x
K(x, s)h(s, t)ds, (4.4)

T−1u(x, t) = u(x, t) +

∫ x

−x
L(x, s)u(s, t)ds. (4.5)

where the integral kernel K is uniformly bounded, according to Theorem 8, for every

x ∈ R and |s| ≤ x because of the condition (4.3). The integral kernel L belongs to the

class of functions M with σ = 1 as we can see from Theorem 8. Thus, both K and L

belongs to the class of functions M .

From the definition and the properties of class of functions M we obtain the following

result for the domain of the transmutation operator T and its inverse T−1.

Proposition 7. The transmutation operator T (4.4) and its inverse T−1 (4.5) map the

class of functions M into itself, i.e., T is a bijection on M .

Proof. Set f ∈ M . Since the kernels K and L belong to M and due to the fact that
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the function Aea|x|
σ

is monotone increasing for x > 0 and for all A, a, σ > 0, we obtain

that the integrals
∫ x
−xK(x, s)f(s, t)ds,

∫ x
−x L(x, s)f(s, t)ds belong to M . Thus, Tf and

T−1f ∈M .

4.1.2 Solution of the Cauchy problem

Let us now turn to the solution of Cauchy’s problem for equation (4.1) with the initial

condition (4.2) in the class of functions M .

Theorem 24. The Cauchy problem

∂2u

∂x2
− q(x)u(x, t) =

∂u

∂t
(x, t) −∞ < x <∞, t > 0 (4.6)

u(x, 0) = ϕ(x), −∞ < x <∞ (4.7)

where ϕ ∈M and q is a continuous complex valued function which satisfies the condition

(4.3), has a unique solution within the class of functions M .

Moreover, the solution has the form

u(x, t) = h(x, t) +
∞∑
n=0

βn(x)

2x
√
πt

∫ ∞
−∞

ψn(x, t, r)ψ(r)dr, x ∈ R, t > 0 (4.8)

where ψ = T−1ϕ, h is the solution of (4.6) with q ≡ 0 and initial condition ψ given by

(1.8) and the functions {ψn}n∈N0 are given by (3.14). The functions {βn}n∈N0 are from

Theorem 13.

Proof. Denote ψ := T−1ϕ. Let h be the unique solution of the Cauchy problem

∂2h

∂x2
(x, t) =

∂h

∂t
(x, t), −∞ < x <∞, t > 0

h(x, 0) = ψ(x), −∞ < x <∞

defined by (1.8). Then, u := Th is a solution of (4.6) because of Proposition 3. Also

Tψ = ϕ. Thus, there exists a solution of the problem (4.6), (4.7). Due to the invertibility
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of T and the uniqueness of the Cauchy problem for the heat equation, u is the unique

solution for (4.6), (4.7).

In order to construct the explicit formula (4.8) consider the integral kernel K in the

form of the Fourier-Legendre series (1.21).

In order to compute u we note that h is given by the Poisson transform (1.8)

h(x, t) =
1

2
√
πt

∫ ∞
−∞

exp

[
−(x− r)2

4t

]
ψ(r)dr. (4.9)

Then, substituting (4.9) and (1.21) into the definition of T in (4.4) we obtain that

u(x, t) = h(x, t) +

∫ x

−x

∞∑
n=0

βn(x)

x
Pn

( s
x

) 1

2
√
πt

∫ ∞
−∞

exp

[
−(s− r)2

4t

]
ψ(r)drds.

By Fubini’s theorem, changing the order of integration the following equality follows

∫ x

−x
K(x, s)h(s, t)ds =

∞∑
n=0

βn(x)

2x
√
πt

∫ ∞
−∞

∫ x

−x
Pn

( s
x

)
exp

(
−|s− r|

2

4t

)
dsψ(r)dr.

Thus,

u(x, t) = h(x, t) +
∞∑
n=0

βn(x)

2x
√
πt

∫ ∞
−∞

ψn(x, t, r)ψ(r)dr

where ψn is defined by (3.14).

Remark 6. Although the efficient construction of the inverse transmutation operator is

a developing topic, the case when q is a compactly supported potential provides us an

example of computation of ψ on [−b, b]. In this case, as was shown in [11], if ϕ admits a

uniformly convergent series expansion in terms of the functions ϕk, then ψ is the uniformly

convergent on [−b, b] power series
∑∞

k=0 akx
k where the coefficients ak are determined by

the values of ϕ and its f -derivatives at 0.

Remark 7. Lemma 2 in Section 3.2.1 provides us with a recurrent procedure for computing

the functions {ψn}n∈N0. Then, a simple recurrent procedure to compute the transmuted

Poisson transform (4.8) is obtained.
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4.2 Solution of the noncharacteristic Cauchy problem

for parabolic partial differential equations with

variable coefficients in one space variable

In this section an explicit solution of the noncharacteristic Cauchy problem for (4.1) in

terms of the formal powers ϕk given by (1.18) is obtained. The boundary conditions on

the line x = 0 are given by

u(0, t) = F (t),
∂u

∂x
(0, t) = G(t) (4.10)

where F and G belong to the Holmgren function class defined in Section 1.2.4

We use the transmutation operator T introduced in Section 2.1.2 by the second kind

Volterra integral operator

Tv(x) := v(x) +

∫ x

−x
K(x, s)v(s)ds. (4.11)

The inverse operator T−1 also has the form of a second kind Volterra integral operator

and satisfies the following correspondence of the initial values, see Section 1.3.1

v(0) = u(0), v′(0) = u′(0)− αu(0), (4.12)

where v := T−1u.

As we have seen in Section 1.3.2, the transmutation operator T satisfies the map-

ping property T [xk] = ϕk(x) for every k ∈ N0, where the formal powers {ϕk}k∈N0 are

given by the rule (1.18). This makes it possible to prove the following theorem for the

noncharacteristic Cauchy problem for equation (4.1) with initial conditions (4.10).

Theorem 25. Let q ∈ C[−b, b] and u be a solution of the noncharacteristic Cauchy
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problem

∂2u

∂x2
− q(x)u(x, t) =

∂u

∂t
(x, t), −b < x < b, |t| < τ (4.13)

u(0, t) = F (t), |t| < τ (4.14)

∂u

∂x
(0, t) = G(t), |t| < τ (4.15)

where F,G ∈ H(b, τ, C, 0), C > 0. Then the series

∞∑
j=0

[
F (j)(t)

(2j)!

(
ϕ2j(x)− α

2j + 1
ϕ2j+1(x)

)
+

G(j)(t)

(2j + 1)!
ϕ2j+1(x)

]

converges uniformly and absolutely for |x| ≤ r < b to the solution u(x, t) where ϕk are the

formal powers (1.18).

Proof. Let u be a solution of (4.13). Consider the function h := T−1u, where the operator

T−1 is applied with respect to the variable x. According to Proposition 3, the function h

is a solution of the heat equation. Due to (4.12) it satisfies the following noncharacteristic

Cauchy problem

∂2h

∂x2
=
∂h

∂t
, −b < x < b, |t| < τ

h(0, t) = F (t), |t| < τ

∂h

∂x
(0, t) = G(t)− αF (t), |t| < τ.

Since G−αF ∈ H(b, τ, (1+α)C, 0), the solution of this problem is given by the absolutely

and uniformly convergent series for |x| ≤ r < b (see, e.g., [3], [37])

h(x, t) =
∞∑
k=0

(
F (k)(t)

(2k)!
x2k +

G(k)(t)− αF (k)(t)

(2k + 1)!
x2k+1

)
.
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Due to the mapping property of T we obtain that

u(x, t) = Th(x, t) =
∞∑
k=0

[
F (k)(t)

(2k)!

(
ϕ2k(x)− α

2k + 1
ϕ2k+1(x)

)
+

G(k)(t)

(2k + 1)!
ϕ2k+1(x)

]
.

This series converges uniformly and absolutely for |x| ≤ r < b due to the uniform bound-

edness of T and T−1 guaranteed by Corollary 1.
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Appendix A

Numerical implementation

In this section, a program for the numerical implementation for approximate solution

of initial boundary value problems for parabolic partial differential equations with time

independent potential from Section 2.1.4 is presented. The program was realized in Matlab

2012.

The main code is presented in Listing A.1. Listings A.2-A.10 are auxiliar functions for

the main code.

I would like to express my gratitude to Dr. R. Michael Porter for the code of the

ninteg function in listing A.7 as well as to Dr. Sergii M. Torba for the code of the

functions ParticularSolution, ConstructFormalPowers and PowersX n in listingsA.8-

A.10 which are very useful to the numerical implementation.

Listing A.1: Main code

% ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% Este codigo c a l c u l a l a so l u c i on numerica de l a ecuacion

% u { xx} − ( x−1)ˆ2 u( x , t ) = u t para x en (0 ,2) y t en (0 ,1)

% con l a s s i g u i e n t e s cond ic iones i n i c i a l e s y de f r on t e r a

% u(x , 0 ) = uot , u (0 , t ) = uot , u( b , t ) = ubt .

% Entrada : ax − l im i t e e s p a c i a l i n f e r i o r

% bx − l im i t e e s p a c i a l supe r i o r
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% at − l im i t e temporal i n f e r i o r

% b t − l im i t e temporal supe r i o r

% N − Numero de po t enc ia s formales a usar

% q − po t en c i a l de l a ecuacion

% uxo − condic ion i n i c i a l

% uot − condic ion de f r on t e r a i z q u i e r d a

% ubt − condic ion de f r on t e r a derecha

% Funciones ex t e rnas : Este codigo usa l a s s i g u i e n t e s func iones ex t e rnas

% 1) p t sparametr i zados − parametr i zac ion de l a f r on t e ra

% 2) ConstructFormalPowers

% 3) Par t i c u l a r s o l u t i o n

% 4) PowerX n

% 5) n in t eg

% Procesos :

% a) Construccion de l o s po l inomios de ca l o r transmutados

% eva luados en l o s puntos de co locac ion

% b ) Calcu lo de l o s c o e f i c i e n t e s de l a aproximacion usando e l

% metodo de co locac ion

% c ) Construccion de l a so l u c i on aproximada en e l i n t e r i o r d e l

% dominio de l a ecauacion

% Sa l i da : Graf ica e l e r ror a b so l u t o de aproximacion

% ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

clc ; clear ; %l imp iar p an t a l l a y memoria

% I n i c i a l i z a c i o n de l dominio de l a so l u c i on

ax = 0 ; % Limite e s p a c i a l i n f e r i o r

bx = 2 ; % Limite e s p a c i a l supe r i o r

at = 0 ; % Limite temporal i n f e r i o r

bt = 1 ; % Limite temporal supe r i o r
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% I n i c i a l i z a c i o de l a s po t enc ia s formales a usar

N = 27 ; % Cantidad de po t enc ia s formales N > 2

% Di s c r e t i z a c i on de l a f r on t e ra

[ r , xo , to , indxo ] = ptsparametr i zados ( ax , bx , at , bt , 12001) ;

% Calcu lo de una so l u c i on p a r t i c u l a r de f ’ ’−xˆ2 f=0

[ u1 , u2 , du1 , du2 ] = Pa r t i c u l a r So l u t i on ( xo , q ( xo ) , N) ;

f = u1 ;%+i ∗u2 ; % asegurar l a ausencia de ceros de f

% Construccion de l a s po t enc ia s formales phi y p s i

[ phi , p s i ] = ConstructFormalPowers ( f , 1 , 1 , N, xo (end)−xo (1 ) ) ;

% Elecc ion de l a cant idad de puntos para co locac ion

ind = f loor ( linspace (1 ,12001 ,N) ) ;

% Elecc ion de l o s puntos en x

indx = find ( indxo (1 )<ind & ind<indxo (end) | indxo (1 )==ind | ind==indxo (end) )

;

X = r ( ind ( indx ) ,1 ) ;

% Elecc ion de l o s puntos en t sobre l a s f r on t e r a s l a t e r a l e s .

% Frontera l a t e r a l i z q u i e r d a ( x=0)

indt1 = indx (1 )−1;

t1 = r ( ind ( 1 : indt1 ) ,2 ) ;

% Frontera l a t e r a l derecha ( x=b )

indt2 = indx (end)+1;

t2 = r ( ind ( indt2 : end) , 2 ) ;

% Evaluacion de l a s po t enc ia s formales en l o s puntos de co locac ion sobre l a

% f ron t e ra h o r i z on t a l ( t=0)

PHI = phi ( : , ind ( indx )−indxo (1 )+1) ;
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% Construccion de u n ( t , x ) en l o s puntos de co locac ion

for n = 1 :N

%agregar phi (0)

i f rem(n , 2 )==1;

aux1 = ( f a c t o r i a l (n−1)/ f a c t o r i a l ( ( n−1)/2) ) ∗ t1 . ˆ ( ( n−1)/2) ;

else

aux1 = zeros ( length ( t1 ) ,1 ) ;

end

aux2 = PHI(n , : ) ’ ;%agregar ph i n ( x ) ;

%agregar ph i n ( b ) ;

aux3 = 0 ;

for k = 0 : f loor ( ( n−1)/2)

aux3 = aux3 + ( f a c t o r i a l (n−1)/ f a c t o r i a l ( k ) / f a c t o r i a l (n−1−2∗k ) ) ∗phi (n

−2∗k , end) ∗ t2 . ˆ k ;

end

A( : , n ) = [ aux1 ; aux2 ; aux3 ] ;

end

B = [ uot ( t1 ) ; uxo (X) ; ubt ( t2 ) ] ;

a = A\B; % Soluc ion de l s i s tema l i n e a l para l o s c o e f i c i e n t e s

% Construccion de l a mal la in t e rna de l dominio para aproximacion

auxx = linspace ( ax , bx , 102 ) ;

x = auxx ( 2 :end−1) ;

p = spline ( xo , phi , x ) ;

auxt = linspace ( at , bt , 1 02 ) ;

t = auxt ( 2 :end−1) ;

% In i c i a l i z a c i o n de l a so l u c i on aproximada

U = zeros ( length ( t ) , length ( x ) ) ;
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%Construccion de u n ( t , x )

for n = 1 :N

for k = 0 : f loor ( ( n−1)/2)

auxT ( : , k+1) = ( f a c t o r i a l (n−1)/ f a c t o r i a l (n−1−2∗k ) / f a c t o r i a l ( k ) ) ∗ t . ˆ k ;

auxP(k+1 , :) = p(n−2∗k , : ) ; %phi 0 ( x )−>phi ( 1 , : )==> ph i (n−1−2k ) ( x )−>

phi (n−1−2k+1 ,:)=phi (n−2k , : )

end

u(n , : , : ) = auxT∗auxP ;

end

% Construccion de l a so l u c i on aproximada U( t , x ) usando l o s po l inomios de

% ca l o r c a l c u l a do s u(n , t , x ) y l o s c o e f i c i e n t e s a (n)

for k = 1 :N

U( : , : ) = U( : , : ) + squeeze ( a (k ) ∗u(k , : , : ) ) ;

end

% Construccion de l a so l u c i on a n a l i t i c a conocida Ur( x , t )

for j = 1 : length ( t )

Ur ( : , j ) = exp((−0.5) ∗(x−1).ˆ2− t ( j ) ) ;

end

% Calcu lo d e l e r ror a b so l u t o y e l e r ror r e l a t i v o en cada punto de l a

% so l uc i on aproximada

ab s o l u t e e r r o r = abs (U’−Ur) ; % Ea(x , t )

r e l a t i v e e r r o r = abs ( (U’−Ur) . /Ur) ; % Er(x , t )

% Encontrar e l maximo de cada uno de l o s e r ro r e s

ea = max(max( ab s o l u t e e r r o r ) ) ;

e r = max(max( r e l a t i v e e r r o r ) ) ;

% Graf ica d e l e r ror a b so l u t o en e l dominio de l a ecuacion d i s c r e t i z a d o

surf ( ab s o l u t e e r r o r ) ;

colormap jet
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l i g h t i n g phong

shading i n t e rp

axis t i g h t

caml ight l e f t

xlabel t

ylabel x

zlabel ’ Absolute e r r o r ’

t i t l e ’The d i s t r i b u t i o n o f the abso lu t e e r r o r ’

grid on

Listing A.2: Auxiliar function

% ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% Este codigo parametr iza l a f r on t e r a pa rabo l i c a de un rec tangu l o d e l

% plano

% ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% Entrada : ax , bx , at , b t − Limites d e l r e c t angu l o

% p t s − cant idad de puntos deseados en l a f r on t e r a

% Sa l i da : r − Frontera pa rabo l i c a parametr izada

% x − Primera coordenada de r

% t − Segunda coordenada de r

% indx − cant idad de puntos en l a base de l a f r on t e ra pa rabo l i c a

function [ r , x , t , indx ] = ptsparametr i zados ( ax , bx , at , bt , pts )

s = linspace (0 , 3 , pts ) ; % Di s c r e t i z a c i on de l dominio de l a curva

r = zeros ( pts , 2 ) ; % In i c i a l i z a c i o n de l a curva

j = 0 ;

k = 0 ;

for i = 1 : length ( s )

i f 0<=s ( i ) && s ( i )<1
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r ( i , : ) = [ ax , s ( i ) ∗ at+(1−s ( i ) ) ∗bt ] ; % Construccion i z q u i e r d a de r

e l s e i f 1<=s ( i ) && s ( i )<=2

j = j +1;

x ( j ) = (2− s ( i ) ) ∗ax+(s ( i )−1)∗bx ; % Construccion de x

r ( i , : ) = [ x ( j ) , at ] ; % Construccion de r en l a par te i n f e r i o r d e l

r e c t angu l o

indx ( j ) = i ; % Guardar l o s i n d i c e s cor r e spond i en t e s a x

e l s e i f 2<s ( i ) && s ( i )<=3

k = k+1;

t ( k ) = (3− s ( i ) ) ∗ at+(s ( i )−2)∗bt ; % Construccion de t

r ( i , : ) = [ bx , t ( k ) ] ; % Construccion derecha de r

end

end

Listing A.3: Potential

%Potenc ia l de l a ecuacion q

function y = q(x )

y = (x−1) . ˆ 2 ;

end

Listing A.4: Initial condition

%Condicion i n i c i a l t=0

function y = uxo (x )

y = exp((−1/2) ∗(x−1) . ˆ 2 ) ;

end

Listing A.5: Left boundary condition

%Condicion de f r on t e ra en x=0

function y = uot ( t )

y = exp(−0.5− t ) ;

end

Listing A.6: Right boundary condition
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%Condicion de f r on t e ra en x=b

function y = ubt ( t )

y = exp(−0.5− t ) ;

end

Listing A.7: ninteg function

function r e s u l t = ninteg ( dat , bminusa )

% Usage : n in t eg ( dat , i n t e r v a l l e n g t h ) .

% In t e g r a t e s l i s t dat o f n=5k+1 data po in t s . Returns l i s t o f n po in t s .

% Uses 5−po in t i n t e g r a t e d i n t e r p o l a t i n g polynomial ,

% app l i e d to po in t s 1 :6 , 6 :10 , 11:16 , e t c .

% Supposes po in t s e q u a l l y spaced on i n t e r v a l .

%

n = length ( dat ) ; % dat i s to be i n t e g r a t e d

i f n < 6

error ( [ ’ n integ : r e qu i r e s at l e a s t 6 data points , r e c e i v ed ’ num2str(n)

] )

end

n2 = mod(n−1 ,5) ; % number o f po in t s to proces s at the beg inn ing

n1 = n − n2 ; % number o f po in t s to proces s a f t e rwards

intmat = [ [475 ,1427 ,−798 ,482 ,−173 ,27]/1440 % Formula f o r

[ 28 ,129 ,14 ,14 , −6 ,1 ]/90 % numerical

3∗ [ 17 ,73 ,38 ,38 , −7 ,1 ]/160 % in t e g r a t i o n

2∗ [ 7 , 32 , 12 , 32 , 7 , 0 ] /45 % A 6 x 5 matrix

5∗ [ 19 , 75 ,50 , 50 , 75 ,19 ] /288

] ∗ bminusa/ (n−1) ; % Divide by i n t e r v a l l e n g t h

i n va l = 0 ;

i f n2 > 0

mdat = reshape ( dat ( 1 : 5 ) , 5 , 1 ) ;

row n = mdat ( 1 , : ) ; % Create f i n a l row , so each

column
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row n = [ row n ( 2 : length ( row n ) ) , dat (6 ) ] ;% ends wi th s t a r t o f next

column

mdat = [ mdat ’ , row n ’ ] ’ ; % Annex the row

m1 = intmat ∗ mdat ; % numerical i n t e g ra t i on , g i v e s 5 va l u e s

i n c r = m1( 5 , : ) ; % prepare to c a l c u l a t e cumulat ive sums

i n c r = cumsum( [ 0 , i n c r ( 1 : length ( i n c r )−1) ] ) ;

i n c r = [ i n c r ; i n c r ; i n c r ; i n c r ; i n c r ] ;

m1 = m1 + in c r ; % matrix now conta ins the i n t e g r a l s

r e s u l t = reshape (m1, 1 , 5 ) ; % conver t to a s i n g l e l i s t o f l e n g t h n

t r e s u l t = r e s u l t ( 1 : n2 ) ; % take the f i r s t n2 va l u e s

i n va l = t r e s u l t (end) ;

end

% proceed the f i r s t par t o f the l i s t

%i f mod(n , 5 ) == 1 % Ver i fy n i s 5k+1

mdat = reshape ( dat ( n2+1:n−1) , 5 , ( n1−1)/5 ) ; % Break in t o 6 rows : f i r s t

5 here

row n = mdat ( 1 , : ) ; % Create f i n a l row , so each

column

row n = [ row n ( 2 : length ( row n ) ) , dat (n) ] ;% ends wi th s t a r t o f next

column

mdat = [ mdat ’ , row n ’ ] ’ ; % Annex the row

m1 = intmat ∗ mdat ; % numerical i n t e g ra t i on , g i v e s 5 va l u e s

i n c r = m1( 5 , : ) ; % prepare to c a l c u l a t e cumulat ive sums

i n c r = cumsum( [ 0 , i n c r ( 1 : length ( i n c r )−1) ] ) ;

i n c r = [ i n c r ; i n c r ; i n c r ; i n c r ; i n c r ] ;

m1 = m1 + in c r + inva l ; % matrix now conta ins the i n t e g r a l s

i f n2 > 0

r e s u l t = [ 0 , t r e s u l t , reshape (m1, 1 , n1−1) ] ; % conver t to a s i n g l e

l i s t o f l e n g t h n

else

r e s u l t = [ 0 , reshape (m1, n2+1,n−1) ] ; % conver t to a s i n g l e l i s t o f

l e n g t h n

end

% e l s e
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% error ( [ ’ n in t eg : r e qu i r e s 5k+1 data points , r e c e i v ed ’ num2str (n) ] )

% end

end

Listing A.8: ParticularSolution function

% Compute a p a r t i c u l a r s o l u t i o n o f the equat ion

% −y ’ ’+ q y = 0 us ing the SPPS rep r e s en t a t i on

% x − i n t e r v a l o f i n t e r e s t

% q − c o e f f i c i e n t q o f the equat ion

% dq − d e r i v a t i v e o f the p o t e n t i a l

% N − number o f formal powers to use

function [ u1 , u2 , du1 , du2 ] = Pa r t i c u l a r So l u t i on (x , q , N)

f = ones (1 , length ( x ) ) ;

[ phi , p s i ] = ConstructFormalPowers ( f , 1 , q , N, x (end)−x (1 ) ) ;

u1 = ones (1 , length ( x ) ) ;

u2 = zeros (1 , length ( x ) ) ;

du1 = u2 ;

du2 = u2 ;

for i = 2 : 2 :N

u1 = u1 + phi ( i +1 , : ) / f a c t o r i a l ( i ) ;

du1 = du1 + ps i ( i , : ) / f a c t o r i a l ( i −1) ;

u2 = u2 + phi ( i , : ) / f a c t o r i a l ( i −1) ;

du2 = du2 + ps i ( i −1, : ) / f a c t o r i a l ( i −2) ;

end

Listing A.9: ConstructFormalPowers function

% Construct ion o f the formal powers

% Parameters : f − p a r t i c u l a r non−van i sh ing funct ion ,

% p and r − c o e f f i c i e n t s o f the equat ion

% N − number o f formal powers
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% bmina − i n t e g r a t i o n i n t e r v a l l e n g t h

% The formal powers re turned s t a r t i n g from the power 0 ,

% i . e . , ph i ( 1 , : ) c o in s i d e wi th ph i 0 .

function [ phi , p s i ]=ConstructFormalPowers ( f , p , r , N, bmina )

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% I t e r a t i v e i n t e g r a l s

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

q1 = f . ˆ 2 .∗ r ;

q2 = (p .∗ f . ˆ 2) .ˆ(−1) ;

[X, Xt i l ] = PowersX n (q1 , q2 , N, bmina ) ;

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% Construct ion o f the systems ph i k and p s i k

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

phi = zeros (N+1, length ( f ) ) ;

p s i = zeros (N+1, length ( f ) ) ;

% Fi r s t f unc t i on f 1 0 co inc i d e s wi th f

f i n v = 1 . / f ;

phi ( 1 , : ) = f ;

p s i ( 1 , : ) = f i nv ;

for n=1:N

i f rem(n , 2 ) == 0 ;

phi (n+1 , : )=f .∗ Xt i l (n , : ) ;

p s i (n+1 , : )=X(n , : ) .∗ f i n v ;

else

phi (n+1 , : )=f .∗X(n , : ) ;

p s i (n+1 , : )=Xt i l (n , : ) .∗ f i n v ;

end

end

Listing A.10: PowersX n function

function [Xp, Xt i lp ]=PowersX n (q1 , q2 ,N1 , bmina )

Xt i lp = zeros (N1 , length ( q1 ) ) ;

Xp = zeros (N1 , length ( q1 ) ) ;
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Xp( 1 , : ) = ninteg ( q2 , bmina ) ;

Xt i lp ( 1 , : ) = n integ ( q1 , bmina ) ;

for n = 2 :N1 %Cycle f o r

c a l c u l a t i n g powers 2 to N of X and X˜

i f rem(n , 2 ) == 0 %Powers

c a l c u l a t e d f o r the even n

Xti lp (n , : ) = ninteg (n∗Xti lp (n−1 , : ) .∗ q2 , bmina ) ;

Xp(n , : ) = ninteg (n∗Xp(n−1 , : ) .∗ q1 , bmina ) ;

else %Powers

c a l c u l a t e d f o r the odd n

Xti lp (n , : ) = ninteg (n∗Xti lp (n−1 , : ) .∗ q1 , bmina ) ;

Xp(n , : ) = ninteg (n∗Xp(n−1 , : ) .∗ q2 , bmina ) ;

end

end
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linéaires aux dérivées partielles du second ordre, C. R. Acad. Sc. 206 (1938) 178–182.

[8] J. Delsarte, J. L. Lions, Transmutations d’opérateurs différentiels dans le domaine
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