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Dr. Onésimo Hernández-Lerma,

Dr. Fernando Luque-Vásquez,

por orientar mi vida profesional.





Agradecimientos
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Abstract

This thesis concerns noncooperative open-loop differential games with both
finite and infinite horizon payoffs. Our main objective is to introduce the notion
of a potential differential game (PDG) that, roughly put, is a differential game
to which we can associate an optimal control problem (OCP) whose solutions
are Nash equilibria for the original game.

A PDG has, therefore, two relevant features. Firstly, finding Nash equilibria
for the game is greatly simplified, because it is easier to deal with a single-player
problem, that is, an OCP, than with the original game itself. Secondly, the
Nash equilibria obtained from the associated OCP are automatically “pure”
(or deterministic) rather than “mixed” (or randomized).

The question then is how do we know when a given differential game is a
PDG? Moreover, assuming that we have a PDG, how do we construct an asso-
ciated OCP? And, what additional advantages can we obtain from associating
an OCP to a PDG? Our main goal is to provide answers to these questions.
Our approach is largely motivated by known results for static games [32], [39].
Finally, we extend to stochastic differential games some of our results on PDGs.





Resumen

En esta tesis estudiamos una clase de juegos diferenciales no cooperativos con
horizonte finito e infinito. Nuestro objetivo principal es introducir la noción
de un juego diferencial potencial que, en términos generales, es un juego difer-
encial al que podemos asociar un problema de control óptimo cuyas soluciones
son equilibrios de Nash para el juego original. De aqúı se sigue que un juego
diferencial potencial tiene dos caracteŕısticas relevantes. En primer lugar, en-
contrar equilibrios de Nash para el juego se simplifica enormemente, porque es
más fácil tratar con un problema de control óptimo que con el juego original
en śı mismo. En segundo lugar, los equilibrios de Nash obtenidos a partir
del problema de control óptimo asociado son automáticamente “puros” (o de-
terministas) en lugar de “mixtos” (o aleatorizados). La pregunta obvia es,
por supuesto, ¿cómo sabemos cuándo un juego diferencial dado es un juego
diferencial potencial? Además, suponiendo que tenemos un juego diferencial
potencial, ¿cómo construimos un problema de control óptimo asociado? ¿Qué
más ventajas podemos obtener al encontrar un problema de control óptimo
asociado a un juego diferencial potencial? Nuestro objetivo principal es pro-
porcionar respuestas a estas preguntas. Nuestra investigación sigue una ĺınea
sugerida por algunos resultados sobre juegos estáticos [32], [39]. Por último, ex-
tendemos a juegos diferenciales estocásticos algunos de los resultados obtenidos
para juegos diferenciales (deterministas).
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Abbreviations

OCP Optimal control problem,
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a.e Almost everywhere,
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1 Introduction

This introduction consists of two sections. Section 1.1, is a brief introduction
to the literature on potential games. We also explain the thesis’ structure. Our
presentation on potential differential games is based on papers by A. Fonseca-
Morales and O. Hernández-Lerma [17, 18]. In Section 1.2, on static potential
games we summarize the work of Monderer and Shapley [32] and Slade [39] to
motivate some results on the differential case.

1.1 Potential games

Most known results on potential games are concentrated on static (or one-shot)
games. These results come from two main lines of research. One of them can
be traced back to the 1973 paper by Rosenthal [36], who identified a class of
games with Nash equilibria in the family of pure strategies. A little over 20
years later, Monderer and Shapley [32] took Rosenthal’s paper and extended it
in several directions; they also coined the name “potential games” in analogy
to the potential functions used in physics. The other line of research comes
from Slade [39], who introduced the optimization approach to games. We will
comment more of [32] and [39] in the next section.

For potential dynamic games there is just a handful of publications. For
instance, for discrete-time games, see González-Sánchez and Hernández-Lerma
[20, 22] and their references. For applications in communications engineering,
see Zazo et al. [45, 46, 47].

For differential games, to the best of our knowledge, there are only the pub-
lications by Dragone et al. [13, 14, 15]. The relation between these last papers
and our results here is not very close—for details, see Chapter 3, Remark 3.18,
below.

The topic we are interested in is the notion of a potential differential game
(PDG), that is, a differential game for which we can associate an optimal
control problem whose solutions are Nash equilibria for this differential game.
PDGs are introduced in Section 2.3.

Our main results are based on two approaches to identify PDGs: The exact-
potential approach and the fictitious-potential approach. The first approach
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1 Introduction

is based directly on particular features of the game’s primitive data, namely,
the payoff functions and the game dynamics. The second approach, on the
other hand, depends on a given smooth auxiliary function, and it also imposes
smoothness conditions on the game’s primitive data. See Sections 3.1 and 3.2,
below.

The names we use for our two approaches: “the exact-potential approach”
and “the fictitious-potential approach” are analogous to the Monderer-Shapley’s
“exact potential games” [32] and Slade’s “fictitious-objective function” [39], re-
spectively.

We study numerous examples to illustrate our methods and results. A nat-
ural example of a PDG is a so-called team game in which all the players want
to optimize the same payoff function. This naturally defines an associated
optimal control problem. Other examples of PDGs are presented in Section
3.3, below.

For some PDGs, we can study the asymptotic behavior of Nash equilibria.
Indeed, under suitable hypotheses, we apply a result by Trèlat and Zuazua
[42] to the associated optimal control problem to obtain a turnpike property
for Nash equilibria. See Section 4.1.

In Section 4.2, several classes of differential games that have Pareto-optimal
Nash equilibria are identified. The results consist of two approaches, the di-
rect case and the potential case. The former approach is based on particular
features of the game’s primitive data. In contrast, in the potential case, a key
assumption is that we are dealing with potential games.

We also study PDGs in the stochastic case. On the one hand, in Section
5.4, we extend to stochastic games the fictitious-potential approach introduced
in Section 3.2. We do not include the exact-potential approach proposed in
Section 3.1 because it is quite similar. On the other hand, in Section 5.5,
we establish some classes of stochastic PDGs that have Pareto-optimal Nash
equilibria.

Summarizing, in Chapter 2, we introduce the differential games we are inter-
ested in. We include the definition of PDGs, and give some relevant remarks.
In Chapter 3, we present two approaches to identify PDGs and illustrate the
obtained results with numerous examples. In Chapter 4, we adapt a turn-
pike property to PDGs and, moreover, find several classes of PDGs that have
Pareto-optimal Nash equilibria. In Chapter 5, we extend some results in pre-
vious sections to identify stochastic PDGs. Finally, in Chapter 6, we present
some conclusions and open problems.
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1.2 Potential games: The static case

1.2 Potential games: The static case

To motivate our results we next present some of the pioneering concepts in-
troduced by Monderer and Shapley [32] and Slade [39].

Consider a noncooperative N -player static game in normal (or strategic)
form

Γ = (N̄ , A1, . . . , AN , π
1, . . . , πN) (1.1)

where N̄ := {1, . . . , N} is the set of players, and for every i ∈ N̄ ,

• Ai denotes the action set for player i, and

• πi : A→ R denotes the player i’s payoff function, where

A := A1 × · · · × AN

is the set of multistrategies, also known as strategy profiles.

A multistrategy u∗ = (u∗1, . . . , u
∗
N) ∈ A is said to be a Nash equilibrium for

the game Γ, assuming that the players want to maximize their payoff functions,
if

πi(u∗) ≥ πi(ui, u
∗
−i) ∀i ∈ N̄ , (1.2)

where
(ui, u

∗
−i) := (u∗1, . . . , u

∗
i−1, ui, u

∗
i+1, . . . , u

∗
N)

and u∗−i := (u∗1, . . . , u
∗
i−1, u

∗
i+1, . . . , u

∗
N) is a point in A−i := A1 × · · · × Ai−1 ×

Ai+1 × · · · × AN .
Note from (1.2) that finding a Nash equilibrium is equivalent to solving N

coupled maximization problems. A key feature of potential games, defined
below, is that they yield Nash equilibria by means of a single optimization
problem.

There are several classes of potential games, such as weighted, ordinal, best-
reply, etc. (See González-Sánchez and Hernández-Lerma [23] or Monderer and
Shapley [32].) The most basic class, however, is the following.

Definition 1.1. (Monderer and Shapley [32].) The game Γ in (1.1) is called
an exact potential game or simply a potential game if there is a function P :
A→ R such that, for every i ∈ N̄ , and every ai, bi ∈ Ai, u−i ∈ A−i,

πi(ai, u−i)− πi(bi, u−i) = P (ai, u−i)− P (bi, u−i).

In this case, P is called an exact potential function, or simply a potential
function, for Γ.
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1 Introduction

From Definition 1.1 it is evident and easy to prove that if a multistrategy
u∗ ∈ A maximizes P , then u∗ is a Nash equibrium for Γ. In other words,
solving a single optimization problem (rather than N , as in (1.2)) we obtain
Nash equilibria for Γ. Hence, the simplest example of a potential game is the
following.

Example 1.2. The game Γ is called a team game (also known as a coor-
dination game) if there is a function P : A → R such that πi = P for all
i = 1, . . . , N . (In optimal control theory, a team game is known as a decen-
tralized control problem. See [5].) Clearly, a team game is a potential game.
♦

The following example is also well known.

Example 1.3. The prisoner’s dilemma is a well-known game in which the
payoff functions are given as follows:

NC C
NC (-1, -1) (-9, 0)
C (0, -9) (-6, -6).

We have a potential game in which, for every k ∈ R, the following defines a
potential function for the game

NC C
NC -4+k -3+k
C -3+k k.

This function attains its maximum value at (C,C), with value k; hence, (C,C)
is a Nash equilibrium for the prisoner’s dilemma game. ♦

The following theorem characterizes a potential game under smoothness
conditions.

Theorem 1.4. (Monderer and Shapley [32].) Let Γ be a static game for
which the strategy sets are intervals of real numbers, and the payoff functions
πi : A → R, i ∈ N̄ , are continuously differentiable. A function P : A → R is
a potential for Γ if and only if P is continuously differentiable and

∂πi

∂ui
=
∂P

∂ui
∀i ∈ N̄ . (1.3)

Slade [39] introduced another line of research, the so-called optimization
approach, which identifies games that can be solved by optimizing a function
so-named fictitious-objective function that is the same as the potential function
of Monderer and Shapley. One of Slade’s main results is the following.

4



1.2 Potential games: The static case

Proposition 1.5. (Slade [39].) Let Γ be a static game in which the strategy
sets Ai are compact intervals, and the functions πi are in C2. The following
statements are equivalent.

(a) The function P : A→ R is a potential function for the game Γ.
(b) For every i = 1, . . . , N, there exists a function ci(u−i), such that

πi(u) = P (u) + ci(u−i). (1.4)

The following examples illustrate Proposition 1.5.

Example 1.6. A team game, as in Example 1.2, satisfies (1.4) with ci(·) = 0
for every i = 1, . . . , N. ♦

Example 1.7. Consider a market where N firms produce differentiated prod-
ucts. The payoff function of player i is, for q = (q1, . . . , qN),

πi(q) = R(q) + ri(q−i)− ci(qi), i = 1, . . . , N.

By Proposition 1.5, a potential function for the game is

P (q) = R(q)−
N∑
i=1

ci(qi). ♦

The following example explains a relation between the potential function
and the payoff functions’ structure in a two-player zero-sum game.

Example 1.8. Consider a two-player zero-sum game with payoff functions
satisfying (1.4), i.e., π1 = −π2 and πi = P (u) + ci(u−i). Then

P = −1

2

2∑
k=1

ck(u−k)

is a potential function for the game if and only if the game is separable, that
is,

π1(·) =
1

2
(c1(u2)− c2(u1)).♦

To conclude, note that Monderer and Shapley [32] and Slade [39] began from
different viewpoints what we now call potential games.

For potential static games, there is a large number of related publications.
See, for instance, González-Sánchez and Hernández-Lerma [23] for a small
sample. In particular, for applications in engineering see Gopalakrishnan et
al. [24], and La et al. [27].
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2 Potential differential games
(PDGs)

We introduce potential differential games (PDGs), which are the main subject
of our study. To this end, the chapter is divided into three parts. In Section
2.1, we present the noncooperative differential games we are concerned with. In
Section 2.2, we define some related optimal control problems (OCPs). Finally,
in Section 2.3, we include the PDGs as well as some illustrative examples and
remarks.

2.1 Differential games

Let N̄ := {1, . . . , N} , N ≥ 2, be the set of players, and [0, T ], T ≤ ∞, where
T is the game’s time horizon. Let X ⊂ Rl, l ≥ 1, be the set of feasible states.
And, for each i ∈ N̄ the set of feasible controls Ui ⊆ Rmi . Define

U := U1 × · · · × UN ⊆ Rm,

with m := m1 + · · ·+mN .
For each i ∈ N̄ , we introduce the open-loop strategy space for player i as

Ui := {ui : [0, T ]→ Ui| ui is Borel-measurable}, (2.1)

and U := U1 × · · · ×UN the space of open-loop multistrategies.
Given a multistrategy u ∈ U, a function x : [0, T ] → X is called the

admissible state path for the game, corresponding to the multistrategy u, if x
is the unique solution to the system of ordinary differential equations

ẋ(s) = f(s,x(s),u(s)), (2.2)

x(0) = x0,

where f is a given Rl-valued function defined on [0, T ] × X × U, and x0 :=
(x10, . . . , xN0) ∈ X is a given initial condition. Sufficient conditions for exis-
tence and uniqueness of solutions to the system (2.2) are well known; see, for
instance, [19] Chapter 1; [44], Chapter 3.

7



2 Potential differential games (PDGs)

For each i ∈ N̄ , let Li : [0, T ]×X×U → R be an instantaneous (or current)
payoff function for player i, and Si : X → R a terminal (or final) payoff
function, which is also known as a salvage or bequest function. The functions
Si vanish when T =∞.

The payoff function for player i is defined for each u ∈ U by

J iT (u) :=


∫ T

0
Li(s,x(s),u(s))ds+ Si(x(T )) when T <∞,∫∞

0
e−β·sLi(s,x(s),u(s))ds when T =∞,

(2.3)

where x is the admissible state path to the multistrategy u, and β > 0 is
the intertemporal discount rate, which is considered to be the same for every
player.

For each i ∈ N̄ , consider the set of multistrategies

U−i := U1 × · · · ×Ui−1 ×Ui+1 × · · · ×UN .

For each ui ∈ Ui and each u∗−i ∈ U−i, we will write (ui,u
∗
−i) to denote the

vector
(u∗1, . . . ,u

∗
i−1,ui,u

∗
i+1, . . . ,u

∗
N) ∈ U.

Definition 2.1. A multistrategy u∗ = (u∗1, . . . ,u
∗
N) ∈ U is called an open-loop

Nash equilibrium for the differential game (2.2)-(2.3) if, for every i = 1, . . . , N,

J iT (ui,u
∗
−i) ≤ J iT (u∗) ∀ui ∈ Ui.

Remark 2.2. In many applications there are feasible states Xi ⊆ Rli for each
player i ∈ N̄ such that

X := X1 × · · · ×XN ⊆ Rl,

with l := l1 + · · ·+ lN . Then we can write the system function f in (2.2) as a
vector (f 1, . . . , fN) where each coordinate f i is an Rli−valued function defined
over [0, T ]×X × U. Hence, the system (2.2) can be rewritten in terms of the
i−th coordinate (xi(s) ∈ Rli ; i = 1, . . . , N) as

ẋi(s) = f i(s,x(s),u(s)), (2.4)

xi(0) = xi0.

As an example, some oligopolies [10] are expressed as in (2.4). If j ∈ N̄ is
such that lj = 0, then we understand that player j has no state variable in the
game. Despite this, the player is still affected by the admissible state path x
for the game.

8



2.2 Optimal control problems

In a compact form, the class of differential games we are interested in can
be described as

ΓTx0 :=
[
N̄ , {Ui}i∈N̄ , {J iT}i∈N̄ , f

]
, T ≤ ∞, (2.5)

where N̄ = {1, . . . , N} is the set of players and, for each i ∈ N̄ ,Ui is the
open-loop strategy space for player i in (2.1), J iT is the payoff function for
player i as in (2.3), and f defines the system dynamics (2.2) (or (2.4)). In the
infinite-horizon case, we write (2.5) as Γ∞x0 .

2.2 Optimal control problems

From Definition 2.1 a Nash equilibrium for the game ΓTx0 , as in (2.5), induces
N coupled OCPs. In contrast, using suitable functions and the spaces U,X,U,
etc, in Section 2.1, we can define an OCP as follows.

Definition 2.3. Consider two functions P : [0, T ]×X×U → R and S : X →
R. These functions define an OCP in which a single player (or controller)
wants to maximize the payoff function defined, for each u ∈ U, by

JT (u) :=


∫ T

0
P (s,x(s),u(s))ds+ S(x(T )) when T <∞,∫∞

0
e−β·sP (s,x(s),u(s))ds when T =∞,

subject to (2.2). A function u∗ ∈ U that solves this OCP is called an open-loop
optimal control or optimal solution.

Note that the controller in the OCP in Definition 2.3 optimizes over the
multistrategy space U for the game (2.5). To avoid confusions in our results,
we clearly specify when we are referring to a control in U for the controller or
to a multistrategy in U for the players.

2.3 PDGs

As we mentioned before, finding an open-loop Nash equilibrium for anN -player
differential game is a difficult task due to the fact that a differential game is the
coupling of N OCPs. In particular, note that all the state variables x1, . . . , xN
are included, in principle, in the constraint (2.4). These facts, among others,
motivate the introduction of potential differential games (PDGs).

9



2 Potential differential games (PDGs)

Definition 2.4. A differential game ΓTx0 , T ≤ ∞, as in (2.5), is called an
open-loop PDG if there exists an OCP such that an open-loop optimal solution
of this OCP is an open-loop Nash equilibrium for ΓTx0 .

A special class of open-loop PDGs is the class of so-called team games. We
introduced the static version of a team game in Examples 1.2 and 1.6. We now
introduce the dynamic version in the next example.

Example 2.5. Team games. The game (2.5), where T is either finite or
infinite, is said to be a team game if there is a (payoff) function JT : U → R
such that

J iT = JT ∀i ∈ N̄ .

In others words, (2.5) is a team game if every player i has the same payoff
function, say JT .

It is easily seen that a team game is an open-loop PDG. Indeed, let u∗ =
(u∗1, . . . ,u

∗
N) ∈ U be a multistrategy that maximizes JT subject to (2.2). Then,

by definition of optimality, for every i ∈ N̄ , we have

JT (u∗) ≥ JT (ui,u
∗
−i) ∀ui ∈ Ui.

Hence, by Definition 2.1, u∗ is an open-loop Nash equilibrium. The converse
is not true, however. That is, a team game can have Nash equilibria that do
not maximize JT . (A similar situation occurs for potential static games. For
an example in which the optimizers of a potential game form a proper subset
of the family of Nash equilibria of the game, see Remark 3.5 in [23].) ♦

Charalambous [5] has recently analyzed a class of stochastic team games
from the viewpoint of decentralized stochastic optimal control. In his termi-
nology, an optimal multistrategy u∗ as above is called a decentralized global op-
timal strategy (GOS), which becomes a decentralized person-by-person (PbP)
optimal strategy when seen as an open-loop Nash equilibrium. He also notes
(as we did in the previous paragraph) that a GOS is necessarily a PbP optimal
strategy, but not conversely.

The following Example 2.6 is a particular game suggested by one of the
reviewers of a previous version of the paper [17]. It is important to mention
that Slade [39] also makes a similar observation to that in Example 2.6 but for
static games.

Example 2.6. To fix ideas we consider the differential game (2.5) in the
infinite horizon case. (The case T < ∞ is similar.) Let us suppose that

10



2.4 Comments

we know in advance that the game has an open-loop Nash equilibrium, û =
(û1, . . . , ûN). Now consider an OCP, as in Definition 2.3, with payoff function
J∞(u) defined by

P (s,x(s),u(s)) := −
N∑
i=1

‖ui(s)− ûi(s)‖2 ∀s ∈ [0,∞).

Clearly, J∞(u) is maximized when u = û and, therefore, the original game is
an open-loop PDG.

In other words, a differential game that has an open-loop Nash equilibrium
can be trivially transformed into an open-loop PDG. This means that the con-
cept of potential differential game is really useful when we wish to show, by
means of an OCP, that a given game has an open-loop Nash equilibrium. ♦

Example 2.6 also illustrates the fact (already noted in Example 2.5) that
an OCP associated to an open-loop PDG might not identify all the Nash
equilibria of the game. For instance, if the game in Example 2.6 has another
Nash equilibrium ū 6= û, then the OCP in that example will not identify ū.

Going back to Definition 2.4, a serious limitation of it is that it does not
specify how one can determine if a given differential game is an open-loop
PDG. Or even if we know in advance that we have an open-loop PDG, the
definition does not say how to find an associated OCP. To this end, we consider
the following remark as a way to identify open-loop PDGs.

Remark 2.7. A differential game Γ∞x0 , as in (2.5) (with T =∞), is an open-
loop PDG if there exists a function P : [0,∞)×X×U → R such that the OCP
given in Definition 2.3 with T = ∞ satisfies Definition 2.4. Analogously, a
differential game ΓTx0 , as in (2.5) (with T <∞), is an open-loop PDG if there
exist functions P : [0, T ] × X × U → R and S : X → R such that the OCP
given in Definition 2.3 with T < ∞ satisfies Definition 2.4. Therefore, if P
and S have these features, we call P a potential function and S a potential
terminal payoff function for (2.5).

2.4 Comments

We introduced some terminology and notation concerning the potential dif-
ferential games we are interested in. In the next chapter, we will study two
approaches to identify PDGs and find a corresponding OCP.
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3 Identifying PDGs

From the definition of a PDG a key question arises: How can we identify PDGs
and an associated OCP? We propose answers to this question by means of two
approaches: The exact-potential approach and the fictitious-potential approach,
which are described in Sections 3.1 and 3.2, respectively. In Section 3.3, we
present several examples that illustrate our results. These results include both
finite- and infinite-horizon (deterministic) differential games.

3.1 Exact-potential approach

The exact-potential approach is based on analyzing the particular features of
a game’s primitive data, namely, the payoff functions and the state dynamics
of a differential game. It is so-named because of its similarity with the exact
potential games for the static case in Section 1.2, above.

3.1.1 PDGs over an infinite horizon.

We begin with Theorem 3.1 on sufficient conditions for a differential game as
in (2.5), with T =∞, to be an open-loop PDG. To illustrate this theorem, see
Examples 3.23 and 3.26 in Section 3.3, as well as Example 4.7 in Chapter 4.

Let us denote by X−i the set X1 × · · · × Xi−1 × Xi+1 × · · · × XN , and for
functions xi : [0,∞)→ Xi and x∗−i : [0,∞)→ X−i, write

(xi,x
∗
−i) := (x∗1, . . . ,x

∗
i−1,xi,x

∗
i+1, . . . ,x

∗
N).

Theorem 3.1. Let Γ∞x0 be a differential game as in (2.5), and p : [0,∞)×X×
U → R a certain function. Assume that one of the following conditions holds
for every i ∈ N̄ :

(a) There exists a function ci : [0,∞)× U−i → R such that

Li(s, x, u) = p(s, x, u) + ci(s, u−i). (3.1)

(b) There exist functions ci : [0,∞)×X×U−i → R and gi : [0,∞)×X → Xi

13



3 Identifying PDGs

such that

Li(s, x, u) = p(s, x, u) + ci(s, x, u−i), and

f i(s, x, u) = gi(s, x).

(c) There exist functions ci : [0,∞)×X−i×U−i → R and gi : [0,∞)×Xi×
Ui → Xi such that

Li(s, x, u) = p(s, x, u) + ci(s, x−i, u−i), and

f i(s, x, u) = gi(s, xi, ui).

Then Γ∞x0 is an open-loop PDG with potential function p.

Proof. We prove the theorem for part (a) only. The proof for (b) or (c) is
similar.

Consider the OCP in Definition 2.3 with P := p and T = ∞. We wish to
prove that this OCP satisfies Definition 2.4 (see Remark 2.7). To this end,
let us assume that u∗ = (u∗1, . . . ,u

∗
N) is an open-loop optimal solution of this

OCP, and x∗ = (x∗1, . . . ,x
∗
N) is the corresponding feasible state path. Fix an

arbitrary i ∈ N̄ , and let ui 6= u∗i be an open-loop strategy for player i. Let
x = (x1, . . . ,xN) be the new state trajectory given by (2.2) corresponding to
(ui,u

∗
−i). As u∗ and x∗ are optimal for the OCP, then∫ ∞
0

e−β·sp(s,x(s), (ui(s),u
∗
−i(s)))ds ≤

∫ ∞
0

e−β·sp(s,x∗(s),u∗(s))ds.

Adding to both sides of this inequality the constant∫ ∞
0

e−β·sci(s,u∗−i(s))ds

we obtain from (3.1) that J i(ui,u
∗
−i) ≤ J i(u∗) for all ui ∈ Ui. Hence, since

i ∈ N̄ was arbitrary, by Definition 2.1, we conclude that u∗ is an open-loop
Nash equilibrium for Γ∞x0 when the condition (a) is satisfied.

From Theorem 3.1, we again obtain that the team games in Example 2.5
are open-loop PDGs (take ci = 0 in (3.1)). For static games, (3.1) becomes
(1.4). Notice also that the particular game in part (b) of Theorem 3.1 satisfies
that the state variable xi for player i is fixed; it does not change when the
players move their strategies. In this case, for discrete-time Markov games,
it is said that the game has action-independent transitions. See, for instance,
[23], Section 5, or [34], Section 4.

As in Theorem 3.1, it is easy to verify that the following special cases are
open-loop PDGs.
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3.1 Exact-potential approach

Corollary 3.2. Let Γ∞x0 be a differential game as in (2.5), and p : [0,∞)×X×
U → R a given function. Let us assume that one of the following conditions
holds for every i ∈ N̄ :

(a) There exists a function ci : [0,∞)× Ui → R such that, instead of (3.1),
we have

Li(s, x, u) = p(s, x, u) + ci(s, ui).

(b) There exist functions ci : [0,∞)×X×Ui → R and gi : [0,∞)×X → Xi

such that

Li(s, x, u) = p(s, x, u) + ci(s, x, ui), and

f i(s, x, u) = gi(s, x).

(c) There exist functions ci : [0,∞)×Xi×Ui → R and gi : [0,∞)×Xi×Ui →
Xi such that

Li(s, x, u) = p(s, x, u) + ci(s, xi, ui), and

f i(s, x, u) = gi(s, xi, ui).

Then Γ∞x0 is an open-loop PDG with potential function p+
∑N

j=1 c
j.

Proof. Part (a) follows from Theorem 3.1(a) because, for any i ∈ N̄ , the
instantaneous payoff function Li can be rewritten as

Li(s, x, u) = p(s, x, u) +

N∑
j=1

cj(s, uj)−
∑
j 6=i

cj(s, uj). (3.2)

Similar arguments give (b) and (c) in this corollary from (b) and (c) in Theorem
3.1, respectively.

Notice that the potential function for the differential game in Theorem 3.1 is
p, whereas the potential function in Corollary 3.2 is p+

∑N
j=1 c

j. Observe also
that in Theorem 3.1 or Corollary 3.2 no assumption of regularity is required
for the functions Li and f i. Dragone et al. [13] addressed the case in Corollary
3.2(c) with the function p being identically zero, and the functions ci and f i

are assumed to be in C2([0,∞)×X × U).
See Example 3.23, below, where using Corollary 3.2(c), it is shown that a

game of extraction of exhaustible resources under common access is an open-
loop PDG.
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3 Identifying PDGs

The following Corollaries 3.3, 3.4, and 3.5 specialize Theorem 3.1 to two-
person zero-sum games (L1 +L2 = 0 which gives J1 +J2 = 0). Related results
are presented by Potters et al. [34] for static games with finite action sets.

Corollary 3.3 establishes a relationship between Theorem 3.1(a) and Corol-
lary 3.2(a) for two-person zero-sum games.

Corollary 3.3. Suppose that N = 2, and let Γ∞x0 be a zero-sum differential
game. Then the following statements are equivalent.

(i) Γ∞x0 is an open-loop PDG that satisfies the features of part (a) in Theorem
3.1.

(ii) (Diagonal property.) For all u1, v1 ∈ U1 and u2, v2 ∈ U2 we have

L1(s, u1, u2) + L1(s, v1, v2) = L1(s, u1, v2) + L1(s, v1, u2).

(iii) (Separation property.) There are functions ḡ1 : [0,∞) × U1 → R and
ḡ2 : [0,∞)× U2 → R such that

L1(s, u1, u2) = ḡ1(s, u1) + ḡ2(s, u2).

(iv) Γ∞x0 has the characteristics of part (a) in Corollary 3.2.

Proof. (i) implies (ii). Given that −L1 = L2, it follows that

p(s, x, u1, u2) = −1

2
[c1(s, u2) + c2(s, u1)].

Then, by (3.1), the diagonal property for L1 is directly verified.
(ii) implies (iii). Consider fixed points b1 ∈ U1 and b2 ∈ U2, and functions

ḡ1(s, u1) := L1(s, u1, b2)− 1

2
L1(s, b1, b2) and

ḡ2(s, u2) := L1(s, b1, u2)− 1

2
L1(s, b1, b2).

Then L1(s, u1, u2) = ḡ1(s, u1) + ḡ2(s, u2).
(iii) implies (iv). Take

p(s, x, u1, u2) = −[ḡ1(s, u1)− ḡ2(s, u2)],

c1(s, u1) = 2ḡ1(s, u1), and

c2(s, u2) = −2ḡ2(s, u2).

(iv) implies (i). Use (3.2) to obtain (3.1).
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3.1 Exact-potential approach

Example 1.8, above, is a particular case of Corollary 3.3(i)-(iii) for a two-
person zero-sum static game.

The following Corollary 3.4 establishes an equivalence between Theorem
3.1(b) and Corollary 3.2(b) for two-person zero-sum games.

Corollary 3.4. Suppose that N = 2. For a zero-sum differential game Γ∞x0 the
following statements are equivalent.

(i) Γ∞x0 is an open-loop PDG that has the features of part (b) in Theorem
3.1. Let x : [0,∞)→ X be the fixed state path, so the i-th coordinate xi is the
solution to

ẋi(s) = gi(s,x(s)) i = 1, . . . , N,

xi(0) = xi0.

(ii) For all u1, v1 ∈ U1 and u2, v2 ∈ U2 we have

L1(s,x(s), u1, u2) + L1(s,x(s), v1, v2) = L1(s,x(s), u1, v2) + L1(s,x(s), v1, u2).

(iii) There are functions ḡ1 : [0,∞)×X×U1 → R and ḡ2 : [0,∞)×X×U2 →
R such that

L1(s,x(s), u1, u2) = ḡ1(s,x(s), u1) + ḡ2(s,x(s), u2).

(iv) Γ∞x0 has the characteristics of part (b) in Corollary 3.2.

We omit the proof of Corollary 3.4 (and also of Corollary 3.5 below) because
it is similar to the proof of Corollary 3.3.

Corollary 3.5 establishes an equivalence between Theorem 3.1(c) and Corol-
lary 3.2(c) for two-person zero-sum games.

Corollary 3.5. Suppose N = 2. A zero-sum differential game satisfies that
the following statements are equivalent.

(i) Γ∞x0 is an open-loop PDG with the features of part (c) in Theorem 3.1.
(ii) For all x1, y1 ∈ X1, x2, y2 ∈ X2 and for all u1, v1 ∈ U1, u2, v2 ∈ U2 we

have

L1(s, x1, x2, u1, u2) + L1(s, y1, y2, v1, v2)

= L1(s, x1, y2, u1, v2) + L1(s, y1, x2, v1, u2).

(iii) There are functions ḡ1 : [0,∞)×X1 × U1 → R and ḡ2 : [0,∞)×X2 ×
U2 → R such that

L1(s, x1, x2, u1, u2) = ḡ1(s, x1, u1) + ḡ2(s, x2, u2).

(iv) Γ∞x0 has the characteristics of part (c) in Corollary 3.2.
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3 Identifying PDGs

3.1.2 PDGs over a finite horizon

In Theorem 3.6 below, we adapt Theorem 3.1 and Corollary 3.2 to games ΓTx0
as in (2.5), with T <∞, to be an open-loop PDG. By Remark 2.7, we need to
show the existence of two functions P : [0, T ] ×X × U → R and S : X → R
such that they define an OCP satisfying Definition 2.4.

Theorem 3.6. Let ΓTx0 be a finite-horizon differential game as in (2.5), and
let s̄ : X → R be a certain function. Let us assume that one of the following
conditions holds for every i ∈ N̄ :

(a’) The functions f i and Li satisfy either part (a) in Theorem 3.1 or part (a)
in Corollary 3.2 and, furthermore, the terminal payoff function is independent
of i, that is,

Si(x) = s̄(x) ∀i ∈ N̄ .

(b’) The functions f i and Li satisfy either (b) in Theorem 3.1 or (b) in
Corollary 3.2. In either case, the final payoff function Si for player i has no
restrictions.

(c’) The functions f i and Li satisfy (c) in Theorem 3.1 and, in addition,
there exists a function ki : X−i → R such that

Si(x) = s̄(x) + ki(x−i).

(d’) The functions f i and Li satisfy (c) in Corollary 3.2, and there exists a
function ki : Xi → R such that

Si(x) = s̄(x) + ki(xi).

Then the differential game ΓTx0 is an open-loop PDG. The potential function is

p or p +
∑N

j=1 c
j when the assumptions considered are those of Theorem 3.1

or those of Corollary 3.2, respectively. Moreover, the potential terminal payoff
function is s̄ for (a’), identically zero for (b’), s̄ for (c’), and s̄ +

∑N
i=1 k

i for
(d’).

The proof of each part of Theorem 3.6 follows directly from the correspond-
ing result in Theorem 3.1 or Corollary 3.2.

3.2 Fictitious-potential approach

We noted in Section 1.2, above, that the concept of a fictitious-objective func-
tion for a static game Γ as in (1.1), is a function P : A→ R that satisfies

∂P

∂ui
=

∂πi

∂ui
∀i ∈ N. (3.3)
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3.2 Fictitious-potential approach

See (1.3) to conclude that when P satisfies (3.3), then P is a potential function.
For a given differential game, the fictitious-potential approach consists of

finding a smooth auxiliary function P (and another function S when T <∞)
such that certain characteristics similar to (3.3) are satisfied. The function
P (and S when T < ∞) define the corresponding OCP. (See Remark 2.7.)
Naturally, we can say that this approach is based on Slade’s results [39].

3.2.1 Technical requirements

In the remainder of this section, we consider an arbitrary function P : [0, T ]×
X × U → R and a differential game ΓTx0 , as in (2.5). We introduce regularity
conditions and some notation to find requirements similar to (3.3). We use the
term “Assumption” to describe certain features about differential games, and
we use “Condition” to impose conditions on components from a “fictitious”
optimal control problem.

Assumption 3.7. Consider (2.5) with T ≤ ∞. For each i ∈ N̄ ,
(a) the sets Ui and Xi are open and convex,
(b) the function Li is in C2(X × U),
(c) the function f i is in C2(X × U).

Denote, for each i ∈ N̄ , the gradient vector of the function Li with respect
to the vector ui by

∇uiL
i :=

(
∂Li

∂ui1
, . . . ,

∂Li

∂uimi

)
.

Besides, for each fixed (s, ū−i) ∈ [0, T ] × U−i, the Hessian matrix of Li with
respect to the vector (x, ui) is denoted by

Hess[Li(s, x, (ui, ū−i))] :=


∂2Li

∂x11∂x
1
1

. . . ∂2Li

∂uimi∂x
1
1

...
. . .

...
∂2Li

∂x11∂u
i
mi

. . . ∂2Li

∂uimi∂u
i
mi

 . (3.4)

Analogously, ∇xkL
i,∇uiP and ∇xkP denote gradient vectors with their re-

spective dimensions. Furthermore, for each fixed (s, ū−i) ∈ [0, T ]× U−i,

Hess[P (s, x, (ui, ū−i))]

denotes the Hessian matrix of the function P with respect to the vector
(x, ui), i ∈ N̄ , assuming that P has second order partial derivatives on X ×U.

Let R ⊆ N̄ be the subset of indices k such that lk > 0 (see Remark 2.2).
Since l ≥ 1 the set R is nonempty.
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3 Identifying PDGs

Assumption 3.8. The functions L1, . . . , LN satisfy that

∇xkL
1 = · · · = ∇xkL

N ∀k ∈ R.

Assumption 3.9. Let r be an index in R.
(a) There is at least another index k ∈ R \ {r}.
(b) For every j ∈ R, lj = lr.

Assumption 3.10. Let r ∈ R be as in Assumption 3.9. For each i ∈ N̄ , the
function Li satisfies that

∇xrL
i = ∇xjL

i ∀j ∈ R.

Condition 3.11. (Sufficient conditions.) The function P : [0, T ]×X×U → R
is in C2(X × U), is concave in (x, u), and for every i ∈ N̄ satisfies

∇uiP = ∇uiL
i (3.5)

∇xiP = ∇xiL
i. (3.6)

Note, first, that the condition (3.5) is similar to (3.3). Second, by (3.6), if
an index j ∈ N̄ is as in Remark 2.2 (so that lj = 0), then the function P in
Condition 3.11 and the functions Li, i ∈ N̄ , depend only on state variables in
a set with index in R. (The condition (3.6) can be modified, as we will see in
Corollary 3.20.)

The following remark is a version of the maximum principle for OCPs with
an infinite horizon. For more details, see [7], Chapter 22; [41]; [33] or [44],
Chapter 3.

Remark 3.12. Consider the OCP as in Definition 2.3 described by P with
T = ∞. If u∗ is an open-loop solution for this OCP, and x∗ is the state path
corresponding to u∗, then there exists a vector of Lagrange multipliers λ∗ :
[0,∞)→ Rl such that, using the notation (∗) := (s,x∗(s),u∗(s)), s ∈ [0,∞):

(i) for k ∈ R, each coordinate λk∗ of λ∗ is defined as the function λk∗ :
[0,∞)→ Rlk that is the solution to the linear adjoint system

λ̇k∗(s) = βλk∗(s)−∇xkP (∗)−∇xk(f(∗) · λ∗(s)) (3.7)

that satisfies the transversality conditions

lim
s→∞

e−β·sλk∗(s) = 0; and (3.8)

(ii) for almost every s ∈ [0,∞), the following maximality condition holds

H(s,x∗(s),u∗(s), λ∗(s)) = max
u∈U

H(s,x∗(s), u, λ∗(s)), (3.9)
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3.2 Fictitious-potential approach

where H : [0,∞)×X×U×Rl → R is the current value Hamiltonian function,
or simply Hamiltonian function, defined by

H(s, x, u, λ) := P (s, x, u) + f(s, x, u) · λ. (3.10)

Recall that, by (2.4), for each k ∈ R the vector λk∗ is of dimension lk, that
is,

(λk∗1 (s), . . . , λk∗lk (s)) ∈ Rlk ∀s ∈ [0,∞). (3.11)

Condition 3.13. (Sufficient conditions.) For each Lagrange multiplier λ∗ as
in Remark 3.12 the function

(x, u) 7→ H(s, x, u, λ∗(s))

is concave in (x, u).

As a special case of Theorem 2 in [30], Chapter 6, Section 3, we present
the following Lemma 3.14, which establishes, under certain assumptions, a
relation between the concavity of the functions P and Li on X × Ui, i ∈ N̄ .
Nevertheless, for completeness, we provide the proof.

Lemma 3.14. Consider a game as in (2.5), T ≤ ∞, under Assumption 3.7
and a function P satisfying (3.5)-(3.6) in Condition 3.11. Suppose that one
of the following condition holds:

(a) Assumption 3.8;
(b) Assumption 3.10 (and Assumption 3.9).

Then, for each i ∈ N̄ , and each point (s, ū−i) ∈ [0, T ] × U−i, P is concave in
(x, ui) if and only if Li is concave in (x, ui).

Proof. For each i ∈ N̄ and each fixed point (s, ū−i) in [0, T ]×U−i we will show
that

Hess[P (s, x, (ui, ū−i))] = Hess[Li(s, x, (ui, ū−i))]. (3.12)

First, note that by (3.5)-(3.6) we have for each i, k ∈ N̄ , and q = 1, . . . , lk;
v, w = 1, . . . ,mi, that:

∂2P

∂xkq∂u
i
v

=
∂2Li

∂xkq∂u
i
v

, (3.13)

∂2P

∂uiv∂u
i
w

=
∂2Li

∂uiv∂u
i
w

(3.14)
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3 Identifying PDGs

On the other hand, if we consider Assumption 3.8 and use equation (3.6),
then for each i, k, j ∈ N̄ , and q = 1, . . . , lk, r = 1, . . . , lj,

∂2P

∂xkq∂x
j
r

=
∂2Lj

∂xkq∂x
j
r

=
∂2Li

∂xkq∂x
j
r

. (3.15)

Similarly, if we consider Assumptions 3.9, 3.10, and use equation (3.6), then
for each i, k, j ∈ N̄ , and q = 1, . . . , lk, r = 1, . . . , lj,

∂2P

∂xkq∂x
j
r

=
∂2Lk

∂xkq∂x
j
r

=
∂2Lk

∂xkq∂x
i
r

=
∂2P

∂xkq∂x
i
r

=
∂2Li

∂xkq∂x
i
r

=
∂2Li

∂xkq∂x
j
r

.(3.16)

Hence, (3.13), (3.14), and (3.15) imply (3.12). And, (3.13), (3.14), and
(3.16) imply (3.12). Therefore, for each i ∈ N̄ , P is concave in (x, ui) if and
only if (3.12) is negative semidefinite on X × Ui if and only if the function Li

is concave in (x, ui). (See [30], Chapter 6, Section 3, Theorem 2.)

3.2.2 PDGs over an infinite horizon

The following Theorems 3.15, 3.16, and 3.17 concern situations in which a
differential game has a potential function P satisfying Conditions 3.11 and
3.13.

Theorem 3.15. Suppose that a differential game Γ∞x0 as in (2.5) satisfies As-
sumptions 3.7 and 3.8. If there exists a function P satisfying Conditions 3.11
and 3.13, then Γ∞x0 is an open-loop PDG with potential function P.

Proof. Consider the OCP in Definition 2.3 described by P, with T = ∞. Let
u∗ be an open-loop optimal solution for this OCP, and x∗ the state path
corresponding to u∗. We will show that u∗ is an open-loop Nash equilibrium.
For notational ease, we will use again the notation (∗) := (s,x∗(s),u∗(s)), s ∈
[0,∞). Then there exists a vector of Lagrange multipliers λ∗ : [0,∞) → Rl

that satisfies the features described in Remark 3.12. Note that the current
hypotheses (3.5)-(3.6) on the functions P and Li, i ∈ N̄ , imply that for each
i ∈ N̄ equation (3.9) holds, and

∇uiL
i(∗) +

∑
k∈R

∇ui(f
k(∗) · λk∗(s)) = 0. (3.17)

Moreover, by Assumption 3.8, equation (3.7) becomes

λ̇k∗(s) = βλk∗(s)−∇xkL
i(∗)−∇xk(f(∗) · λ∗(s)), k ∈ R. (3.18)
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3.2 Fictitious-potential approach

Now, for each i ∈ N̄ , define a Lagrange multiplier pi∗ : [0,∞) → Rl where
each coordinate pi∗k : [0,∞)→ Rlk , k ∈ R, is

pi∗k := λk∗, (3.19)

i.e. pi∗ = λ∗ for every i ∈ N̄ . Note that, by (2.4), (3.11) and (3.19), for each
i ∈ N̄ and each s ∈ [0,∞), the function pi∗k , k ∈ R, takes lk values, that is,

(pi∗k1(s), . . . , pi∗klk(s)) ∈ Rlk ,

and for each i ∈ N̄ , pi∗kj = λk∗j , j = 1, . . . , lk, k ∈ R.
By equation (3.18) we obtain that, for each i ∈ N̄ , the Lagrange multipliers

pi∗k , k ∈ R, solve the linear adjoint system

ṗi∗k (s) = βpi∗k (s)−∇xkL
i(∗)−∇xk(f(∗) · pi∗(s)) (3.20)

under the transversality conditions

lim
s→∞

e−β·spi∗k (s) = 0. (3.21)

Before completing the proof of Theorem 3.15 we note the following.
Remark: To obtain (3.25), below, we will use the following fact from [40],

Chapter 7, Theorem 7.15. Let ḡ : Ui → R be a concave and differentiable
function on Ui, then ui is an maximum of ḡ if and only if ∇ui ḡ(ui) = 0.

Continuing the proof of Theorem 3.15, consider the Hamiltonian function
H i : [0,∞)×X × U × Rl → R for player i, which is defined as

H i(s, x, u, pi) := Li(s, x, u) + f(s, x, u) · pi. (3.22)

Hence, by Assumptions 3.7 and 3.8, Conditions 3.11 and 3.13, Lemma
3.14(a), and (3.19), for each i ∈ N̄ , the function

(x, ui) 7→ H i(s, x, (ui,u
∗
−i(s)), p

i∗(s)) (3.23)

is concave given that

Hess[H(s, x, (ui,u
∗
−i(s)), λ

∗(s))] = Hess[H i(s, x, (ui,u
∗
−i(s)), p

i∗(s))]. (3.24)

Then (3.17) can be rewritten, for every i ∈ N̄ , as

H i(s,x∗(s),u∗(s), pi∗(s)) = max
ui∈Ui

H i(s,x∗(s), (ui,u
∗
−i(s)), p

i∗(s)).(3.25)
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Moreover, since (3.23) is concave in (x, ui) the function

x 7→ max
ui∈Ui

H i(s, x, (ui,u
∗
−i(s)), p

i∗(s)) (3.26)

is also concave.
Summarizing, for u∗ and x∗ we have Lagrange multipliers such that, for

almost every s ∈ [0,∞), equations (3.20)-(3.25) hold. Therefore, by our hy-
potheses on u∗ and x∗, and the concavity of the equation (3.26), the multi-
strategy u∗ is an open-loop Nash equiibrium with state variable x∗ for the
game (2.5) with T =∞ (see [26], Chapter 7; [33] or [44], Chapter 3).

The Example 3.24, below, shows a two-player linear-quadratic differential
game that is an open-loop PDG; that is, there is a function P that satisfies
the hypotheses in Theorem 3.15.

Theorem 3.16. Suppose that the differential game Γ∞x0 in (2.5), the set R,
and the index r ∈ R satisfy Assumptions 3.7 and 3.10. Moreover, suppose
that for j ∈ R, there exist functions gj : [0,∞) × Xj × Uj → R such that
f j(s, x, u) = gj(s, xj, uj) and

∇xrg
r = ∇xjg

j ∀j ∈ R.

If there exists a function P that satisfies the Conditions 3.11 and 3.13, then
Γ∞x0 is an open-loop PDG with potential function P.

Proof. We use arguments similar to those in the proof of Theorem 3.15, but
instead of (3.19) consider, for each i ∈ N̄ , the equality

pi∗j := λi∗ ∀j ∈ R, (3.27)

that is, for each i ∈ N̄ , we have pi∗jk = λi∗k for k = 1, . . . , li and j ∈ R.
To obtain equation (3.25), observe that for each i ∈ N̄ , the function (3.23)

is concave in (x, ui), because (3.24) holds by Assumptions 3.7 and 3.10, Con-
ditions 3.11 and 3.13, Lemma 3.14(b), and (3.27).

Note that in Theorem 3.16, pk∗ is not necessarily equal to pr∗ (in contrast
to Theorem 3.15 where pk∗ = pr∗). Another difference between Theorems 3.15
and 3.16 is that the latter requires that lk = lr, which is not needed in Theorem
3.15.

The following Theorem 3.17 characterizes open-loop PDGs in which we can
remove, for each i ∈ N̄ , the Lagrange multipliers pij for all j 6= i. It is important
to notice that in general pij ≡ 0 is not necessarily true in games satisfying
Theorem 3.15 or 3.16, for instance.
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3.2 Fictitious-potential approach

Theorem 3.17. Let Γ∞x0 be a differential game as in (2.5) where Assumption
3.7 holds. Assume that the set R satisfies only condition (a) in Assumption
3.9. Assume also that there exist functions ci : [0,∞)×Xi×U → R for i ∈ R,
cj : [0,∞)× U → R for j ∈ N̄ \ R, and gi : [0,∞)×Xi × Ui → Xi for i ∈ R
such that

Li(s, x, u) := ci(s, xi, u) i ∈ R,
Li(s, x, u) := ci(s, u) i ∈ N̄ \R, and

f i(s, x, u) := gi(s, xi, ui) i ∈ R.

If, in addition, a function P satisfies the Conditions 3.11 and 3.13, then Γ∞x0
is an open-loop PDG with potential function P.

Proof. The proof uses arguments similar to those in the proof of Theorem 3.15
except that, instead of (3.19), we now consider, for each i ∈ R,

pi∗i := λi∗ (3.28)

and for every j 6= i, j ∈ R,

pi∗j := 0. (3.29)

To justify equation (3.25), we use that P is concave in (xi, ui) if and only if
Li, i ∈ N̄ , is concave in (xi, ui).

The condition (3.29) holds for the game (2.5); see [13], Proposition 3.
Lemma 3.14 and Theorems 3.15, 3.16 and 3.17 establish that for a differential

game to have a smooth concave potential function, as in Conditions 3.11 and
3.13, it is necessary that each instantaneous payoff function Li is concave on
X × Ui.

We mentioned earlier that a differential game satisfying Corollary 3.2(c)
with p ≡ 0 was developed in Dragone et al. [13]. (The same situation was
mentioned in [15].) This case is considered again in Theorem 3.17, above, but
now the instantaneous payoff functions Li can depend on the strategies of all
players. The differentiability conditions in Assumption 3.7 is the price to pay
in order to do this.

Besides the just mentioned, other differences between [17] (also the results
in this thesis) and the works by Dragone et al. [13]-[15] are indicated in the
following remark.

Remark 3.18. The key difference between [17] and [13]-[15] is that we work
directly with the primitive data (2.1)-(2.3) of a differential game to determine
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3 Identifying PDGs

an associated OCP, whereas the approach in [13]-[15] is based on the Hamilto-
nian system of a differential game to determine whether there exists a so-called
Hamiltonian potential function (HPF). It turns out that the Hamiltonians as
in (3.10), when P exists, form a subset of the HPFs in [15]; see also [13], [14].
That is, a Hamiltonian function as in (3.10), associated to a certain OCP, is
a HPF. The converse, however, is not true. Hence one can have a HPF that
is not associated to an OCP. For examples of this situation see, for instance,
Sections 4.3 and 4.6 in [13], and Section 4 in [15].

Theorems 3.16 and 3.17 require l ≥ 2; more specifically, require the existence
of r, k ∈ N̄ , for which lr > 0 and lk > 0. The next Corollary 3.19 considers the
case where there is a unique index r ∈ R such that lr > 0 and lj = 0 for every
j 6= r. Hence, the players only follow the state variable xr, that is, by (2.4),
the state equation is ẋr(s) = f r(s,xr(s),u(s)). Clearly, by (2.2), the case l = 1
is also considered when the state variable x(s) is in R. These particular cases
are included in Theorem 3.15. For a particular game with l = 1, see Example
3.23 below.

Corollary 3.19. Let Γ∞x0 be a differential game as in (2.5) under Assumptions
3.7 and 3.8. Suppose that there is a single state for all players in the game,
that is, the state variable x is independent of indices in N̄ . Suppose also that
there exists a function P that satisfies Conditions 3.11 and 3.13. Then P is a
potential function for Γ∞x0.

Proof. Note that, in the context of Corollary 3.19, the condition (3.6) becomes
∇xP = ∇xL

i for each i ∈ N̄ . Therefore, ∇xL
1 = ∇xL

j for all j ∈ N̄ , which is
as required in Theorem 3.15 for the function P.

The Examples 3.23, 3.27, 3.28, 3.29, and 4.7, below, satisfy Corollary 3.19
(also Theorem 3.15).

The following Corollary 3.20, which is a consequence of Theorem 3.17, shows
that equation (3.6) in Condition 3.11 can be modified.

Corollary 3.20. Let Γ∞x0 be a differential game as in (2.5) where Assump-
tion 3.7 holds. Let k 6= j be two fixed indexes in R. Suppose that there exist
functions

ci : [0,∞)×Xi × U → R if i 6= k, j;

ck : [0,∞)×Xj × U → R;

cj : [0,∞)×Xk × U → R; and

gi : [0,∞)×Xi × Ui → Xi if i 6= k, j;

gk : [0,∞)×Xj × Uk → Xk;

gj : [0,∞)×Xk × Uj → Xj,
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such that

Li(s, x, u) := ci(s, xi, u) if i 6= k, j;

Lk(s, x, u) := ck(s, xj, u);

Lj(s, x, u) := cj(s, xk, u); and

f i(s, x, u) := gi(s, xi, ui) if i 6= k, j;

fk(s, x, u) := gk(s, xj, uk);

f j(s, x, u) := gj(s, xk, uj).

Then a function P : [0,∞)×X × U → R is a potential function for Γ∞x0 if for
each i 6= j, k, P satisfies equations (3.5)-(3.6), while for j and k, P satisfies
the alternative equations

∇xkP = ∇xjL
k, (3.30)

∇xjP = ∇xkL
j. (3.31)

Summarizing, Theorems 3.15, 3.16 and 3.17 describe open-loop PDGs whose
potential functions, which clearly are not unique, satisfy Conditions 3.11 and
3.13. Moreover, the fact that (3.6) can be modified, as in Corollary 3.20,
suggests that there may be other ways, in addition to Condition 3.11, to classify
open-loop PDGs.

3.2.3 PDGs over a finite horizon

Theorem 3.21, below, identifies open-loop PDGs with a finite horizon satisfying
some regularity conditions similar to those in the previous section. We consider
new conditions for the potential terminal payoff function.

Theorem 3.21. Consider a differential game ΓTx0 as in (2.5), with T < ∞.
Assume that one of the following conditions holds:

(a) The set R and the functions Li and f i satisfy the hypotheses in Theorem
3.15. Moreover, the terminal payoff functions Si, i ∈ N̄ , satisfy that

∇xkS
1 = · · · = ∇xkS

N ∀k ∈ R. (3.32)

(b) The set R and the functions Li and f i satisfy the hypotheses of Theorem
3.16, whereas the terminal payoff function Si satisfies that

∇x1S
i = · · · = ∇xNS

i ∀i ∈ N̄ .
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(c) The set R and the functions Li and f i satisfy the hypotheses of Theorem
3.17, and there exists a function ki : Xi → R such that the terminal payoff
function for player i can be written as

Si(x) = ki(xi) ∀i ∈ N̄ .

In addition, suppose that there are functions P : [0, T ] × X × U → R and
S : X → R such that P satisfies Conditions 3.11 and 3.13, and S is concave
in x and satisfies that

∇xiS = ∇xiS
i ∀i ∈ R. (3.33)

Then the differential game ΓTx0 is an open-loop PDG with potential function P
and potential terminal payoff function S.

Proof. Consider the OCP described in Definition 2.3 by P and S, with T <∞.
Let u∗ be an open-loop optimal solution to this OCP and x∗ the correspond-
ing admissible path. By arguments similar to those in the proof of Theorem
3.15, and adapting Remark 3.12 to T < ∞, there exists a vector of Lagrange
multipliers λ∗ : [0, T ] → Rl such that, with β = 0, for each index k ∈ R we
have the equation (3.7) and the final condition

λk∗(T ) = ∇xkS(x∗(T )), (3.34)

that is, the transversality condition (3.8) is replaced by (3.34). Moreover, for
almost every s ∈ [0, T ], the maximality condition (3.9) holds, too.

We only prove part (a). Considering the current hypotheses (3.5)-(3.6) on
the functions P and Li, together with (3.32), (3.33) on the functions Si and S,
we have that for each i and k in R, the Lagrange multiplier pi∗k : [0, T ] → Rlk

defined as in (3.19) satisfies the linear differential equation (3.20) with β = 0
and the final condition

pi∗k (T ) = ∇xkS
i(x∗(T ));

see also (3.34). Since (3.32) and (3.33) hold, S is concave in x if and only if
Si, i ∈ N̄ , is concave in x. Thus, using Lemma 3.14(a) and the concavity of the
function (3.23), the maximality condition (3.25) holds, which combined with
the concavity of the function in (3.26), the multistrategy u∗ is an open-loop
Nash equilibrium with state variable x∗ for the game (2.5) under constraints
of (a).

The proof of parts (b) and (c) follows as in the proof of Theorems 3.16 and
3.17, respectively.
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The condition (3.29) holds for the game (2.5) in part (c) of Theorem 3.21;
see [9], Proposition 3.2.

We illustrate Theorem 3.21(a) in Example 3.31, below.
The following remark describes a change done to Theorem 6 in [17].

Remark 3.22. We assumed in Theorem 6 in [17], which corresponds to our
present Theorem 3.21, above, the existence of a function S convex in x instead
of concave in x. We fix the mistake and the corresponding proof in Theorem
3.21.

3.3 PDGs: Examples

In this section, we show numerous examples to illustrate our results in the
previous sections.

The following example on the extraction of exhaustible resources under com-
mon access is an open-loop PDG, by Corollary 3.2.

Example 3.23. (Amir and Nannerup [1], Long [29].) Extraction of exhaustible
resources under common access.

As in (2.5), let N̄ = {1, . . . , N}. Player i decides its quantity qi to extract.
The utility function for each player i ∈ N̄ , is Li(q1, . . . , qN) := qrii , where
0 < ri < 1, and a common stock of exhaustible resource x is considered for the
players.

The payoff function for player i to maximize is∫ ∞
0

e−βt[qrii (t)]dt

subject to

ẋ(t) = −qi(t)−
∑
j 6=i

qj(t), (3.35)

with qi(t) ≥ 0, limt→∞ x(t) ≥ 0, x(0) = x0 > 0, and β is the discount rate.
By Corollary 3.2(a), we have an open-loop PDG with potential function

P (q1, . . . , qN) :=

N∑
i=1

qrii .

To calculate an open-loop Nash equilibrium, we can consider the Hamiltonian
system of the OCP defined by the potential function P and the game dynamics
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(3.35), that is,

H(t, x(t), q(t), λ(t)) :=

N∑
i=1

qrii (t)− λ(t)
∑
i∈N̄

qi(t),

riq
ri−1 − λ = 0 ∀i ∈ N̄ ,

λ̇(t) = βλ(t).

Hence
q∗i (t) = q0

i e
βt
ri−1 , i ∈ N̄ ,

is the i−th coordinate of the open-loop Nash equilibrium and the corresponding
state path is

x∗(t) = x0 −
∑
i

q0
i

ri − 1

β

[
e

βt
ri−1 − 1

]
.

Then player i chooses his/her restriction as

q0
i ≤

βx0

1− ri
−
∑
j 6=i

q0
j

1− rj
1− ri

. ♦

By Theorem 3.15, the following two-player linear-quadratic differential game
is an open-loop PDG.

Example 3.24. Consider, for i = 1, 2, the matrices

Ai :=

(
a ai

q − ai b

)
, Ri :=

(
ri1 0
0 ri2

)
, (3.36)

with constants a, b, q, ri1, ri2 < 0, ai ∈ R, and |q| ≤ 2
√
ab.

Denote by xi the state variable and by ui the strategy of player i. Here x :=
(x1, x2)′, u := (u1, u2)′, and prime (′) denotes the transpose of a vector or a
matrix.

Player i wants to maximize

J i =
1

2

∫ ∞
0

e−βt {x′(t)Aix(t) + u′(t)Riu(t)} dt

where the i-th coordinate of x is subject to

ẋi(t) = ci1x1(t) + ci2x2(t) + ci3u1(t) + ci4u2(t),

with constants cij ∈ R for each i = 1, 2 and j = 1, . . . , 4.
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Calculating, for i = 1, 2, the gradient vectors ∇xiL
i and ∇uiL

i, and using
equations (3.5)-(3.6) in Condition 3.11, we see from Theorem 3.15 that the
function

P :=
1

2
x′Ax+ u′Ru,

with

A :=

(
a q/2
q/2 b

)
and R :=

(
r11 0
0 r22

)
,

is a potential function for the game. Thus, the associated OCP is to maximize

J =
1

2

∫ ∞
0

e−βt {x′Ax+ u′Ru} dt

subject to (
ẋ1

ẋ2

)
=

(
c11 c12

c21 c22

)(
x1

x2

)
+

(
c13 c14

c23 c24

)(
u1

u2

)
.

Now, define the matrices

Q :=

(
a q/4
q/4 b

)
, M :=

(
c11 c21

c12 c22

)
, C :=

(
c13 c23

c14 c24

)
.

The Hamiltonian function for the OCP is therefore given by

H := P + λ1ẋ1 + λ2ẋ2,

where λ1, λ2 satisfy(
λ̇1

λ̇2

)
= β

(
λ1

λ2

)
−Q

(
x1

x2

)
−M

(
λ1

λ2

)
(3.37)

with first order condition

R

(
u1

u2

)
+ C

(
λ1

λ2

)
=

(
0
0

)
. (3.38)

Assuming that C has an inverse matrix C−1, we obtain that (3.37) and
(3.38) can be expressed as 

u̇1

u̇2

ẋ1

ẋ2

 = E


u1

u2

x1

x2

 , (3.39)
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where

E :=

(
βI − C−1RMR−1C C−1RQ

C ′ M ′

)
.

Here, I is the identity matrix.
We can obtain an open-loop Nash equilibrium for the game, if we solve the

linear system (3.39) and obtain an analytical solution according to the signs of
the eigenvalues of E. ♦

The following Example 3.25 illustrates Theorem 3.16.

Example 3.25. (See [9].) We consider N players and [0, T ], T < ∞. For
each i = 1, . . . , N, let M i : [0, T ] × Ui → R and Ri : [0, T ] × U−i → R be
differentiable functions, with M i a concave function on Ui. Player i has the
instantaneous payoff function

Li(t, x, u) = ai

N∑
j=1

xj +M i(t, ui) +Ri(t, u−i).

Consider Si = 0, i ∈ N̄ . The state variable xi satisfies

ẋi = G(t)xi + F i(t, ui), xi(0) = xi0,

with G : [0, T ]→ R, F i : [0, T ]× Ui → R, and F i is concave function in ui.
By Theorem 3.16, computing ∇xiL

i and ∇uiL
i, and considering Condition

3.11, we have that

P (t, x, u) =

N∑
j=1

[
ajxj +M j(t, uj)

]
is a potential function, and S = 0 is the potential terminal payoff function for
the game. Thus the OCP corresponding to this game is to maximize∫ T

0

e−βt
N∑
j=1

[
ajxj(t) +M j(t, uj(t))

]
dt

subject to  ẋ1
...
ẋN

 =

G(t) . . . 0
...

. . .
...

0 . . . G(t)


x1

...
xN

+

 F 1(t, u1)
...

FN(t, uN)

 .
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From (3.10) the Hamiltonian function for this OCP is

H(t, x, u) =

N∑
j=1

[
ajxj +M j(t, uj)

]
+

N∑
j=1

λj
[
G(t)xj + F j(t, uj)

]
.

Therefore, the Hamiltonian system to analyze the Nash equilibrium for the
game is, for i = 1, . . . , N,

λ̇i = βλi −
[
ai +G(t)λi

]
, λi(T ) = 0,

0 =
∂

∂ui
M i(t, ui) + λi

∂

∂ui
F i(t, ui),

ẋi = G(t)xi + F i(t, ui). ♦

We now give a list of open-loop PDGs with applications in economics and
management science that can be found in [10], where it is not mentioned,
of course, that they are PDGs. We assume that the variable x denotes the
common state and ui the strategy of player i.

By Theorem 3.1, the Example 3.26 is an open-loop PDG.

Example 3.26. (See [10], p. 88.) Consider N̄ = {1, 2}.

L1 := −x− α

2
u2

1 + u2, α > 0,

L2 := −x+ u2,

f := −u1

√
x+ u2 + 1. ♦

On the other hand, by Theorem 3.15 (or Corollary 3.19), each one of the
following games is an open-loop PDG.

Example 3.27. (See [10], p. 107.)

Li := −x− 1

2
u2
i , i ∈ N̄ ,

f := −
√
x

(∑
i∈N̄

ui

)
. ♦

Example 3.28. (See [10], p. 108.)

Li :=
√
ui, i ∈ N̄ ,

f := x−
∑
i∈N̄

ui. ♦

33



3 Identifying PDGs

In the following Examples 3.29, 3.30, and 3.31 we have N̄ = {1, 2}.

Example 3.29. (See [10], p. 108.)

Li := x− αui, α > 0,

f := u1u2. ♦

Example 3.30. A two-player affine-quadratic differential game.

Li = −1

2

[
(1− x)2 + (1− ui)2

]
,

The state variable x(t) is the solution of the nonlinear differential equation

ẋ(t) = −
[
x2(t)u1(t) + u2(t)

]
, x(0) = x0. ♦

Finally, the following finite-horizon game is an open-loop PDG by Theorem
3.21.

Example 3.31. (See [10], p. 189.)

Li := x−Ki(ui), S
i = Fi(x),

f := u1 + u2 − αx, α > 0,

where, for each i = 1, 2, Ki is a convex function, and Fi a concave function. ♦

3.4 Comments

In this chapter, we propose two different approaches to identify PDGs and
an associated OCP: The exact-potential approach and the fictitious-potential
approach. They yield several alternative ways to identify PDGs; See for in-
stance, Theorems 3.1, 3.6, and 3.15–3.17, 3.21, and their corresponding corol-
laries. These results are illustrated by the examples in Section 3.3. Chapter
4 presents some applications of PDGs, whereas Chapter 5 considers stochastic
PDGs.
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In this chapter, we present two applications for PDGs. We first apply a turn-
pike theorem to some PDGs. Having a PDG, a turnpike theorem by Trèlat
and Zuazua [42] helps us to study the asymptotic behavior of optimal solutions
of the associated OCPs and, therefore, the behavior of Nash equilibria for the
PDG. A second topic is the clasification of PDGs that have Pareto-optimal
Nash equilibria. These equilibria are strategies that give the best benefit to
the society and, at the same time, the players receive fair payments. Players
do not have incentives to change the accorded strategies to play the game,
obtaining a reduction of risks and costs caused by a state of anarchy among
the players [2].

4.1 A turnpike property for PDGs

In this section we consider time-homogeneous PDGs, which are particular cases
of (2.5) with T = ∞, and satisfy the hypotheses of any of Theorems 3.15 or
3.16 or 3.17. We denote by Γ̄ a game with such a description, and by OCP(Γ̄)
the associated OCP for Γ̄. Therefore, we assume that the OCP(Γ̄) has a payoff
function

J(u) :=

∫ ∞
0

e−βtP (x(t),u(t))dt,

which is to be maximized subject to

ẋ(t) = f(x(t),u(t)) ∀t ≥ 0,

x(0) = x0,

where P is a potential function for Γ̄. We also assume that P satisfies the
Conditions 3.11 and 3.13.

The main objective is to study the asymptotic behavior of Nash equilibria
of these games Γ̄ via a turnpike theorem in Trèlat and Zuazua [42]. To this
end, we require suitable assumptions and some terminology that we introduce
as follows.
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For each 0 < τ <∞, we denote by uτi ∈ Ui the strategy of player i when the
time set is [0, τ ], and by uτ = (uτ1, . . . ,u

τ
N) the corresponding multistrategy in

U. Remember Ui and U defined by (2.1).

Assumption 4.1. For each τ > 0, the open-loop multistrategies uτ are in
L∞([0, τ ]), the space of essentially bounded functions on [0, τ ].

For each τ > 0, the τ -truncated-optimal control problem OCP(Γ̄)τ of OCP(Γ̄)
is defined by the payoff function∫ τ

0

e−βtP (xτ (t),uτ (t))dt

subject to

ẋτ (t) = f(xτ (t),uτ (t)), 0 ≤ t ≤ τ,

xτ (0) = xτ0.

Remark 4.2. Note that, obviously, Theorem 3.21 holds when Si := 0 for
every i ∈ N̄ . Thus the OCP(Γ̄)τ can be associated to the τ -truncated-potential
differential game Γ̄τ : it is the game Γ̄ where, for each i ∈ N̄ , the terminal
payoff function Si for player i is zero and the time horizon is τ instead of
T =∞.

Assumption 4.3. For each finite τ > 0, OCP(Γ̄)τ has at least one optimal
solution (x∗τ ,u

∗
τ ).

For each solution (x∗τ ,u
∗
τ ) of OCP(Γ̄)τ , let λ∗τ be the corresponding Lagrange

multiplier given by the maximum principle. (See Remark 3.12 and the proof
of Theorem 3.21.)

A static optimization problem associated to the OCP(Γ̄) consists in finding
a pair (x̄, ū) ∈ Rl × Rm that solves

max
(x,u)∈X×U

P (x, u),

subject to f(x, u) = 0.

Assumption 4.4. The static optimization problem has at least one optimal
solution (x̄, ū).

For each point (x̄, ū) as in Assumption 4.4, let λ̄ be the corresponding La-
grange multiplier given by the maximum principle in (x̄, ū), that is, λ̄ satisfies

∇xH(∆̄) = 0,

∇uH(∆̄) = 0,

∇λH(∆̄) = 0,
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4.1 A turnpike property for PDGs

where ∆̄ := (x̄, ū, λ̄) and H is the current value Hamiltonian as in (3.10). The
triplet ∆̄ is called an equilibrium point (or steady-state) for OCP(Γ̄).

The matrix Hxx is defined, for each i, j ∈ N̄ , given that xi = (xi1, . . . , x
i
li
)

and xj = (xj1, . . . , x
j
lj

), by

[Hxx]{ij}kr :=
∂

∂xik

∂

∂xjr
H,

for each k = 1, . . . , li and r = 1, . . . , lj. The matrices Hxλ, Huλ, Huu, and Hxu

are similarly defined. Let

A :=
[
Hxλ −HuλH

−1
uuHxu

]
(∆̄),

B := Huλ(∆̄),

F :=
[
−Hxx +HuxH

−1
uuHxu

]
(∆̄).

The matrices A,B, and F are well defined when we assume that Huu is
symmetric negative definite, see Theorem 4.5, below.

We have shown in Chapter 3 that the existence of a potential function P
for the game Γ̄ induces a refinement of the set of Nash equilibria. Therefore,
if the OCP(Γ̄) defined by P satisfies the hypotheses in the following Theorem
4.5, then Γ̄ has at least one Nash equilibrium satisfying the turnpike property
(4.1)-(4.5), below. An explicit statement is given in Corollary 4.6.

Theorem 4.5. (Trèlat and Zuazua [42], Theorem 1) Suppose that the As-
sumptions 4.1, 4.3, 4.4 hold and, moreover, the OCP(Γ̄) satisfies that Huu is
symmetric negative definite, F is symmetric positive definite, and the Kalman
controllability condition

rank(B,AB, . . . , AN−1B) = N

holds. Then we have the following: There exist constants ε > 0, c1 > 0, c2 > 0,
and a time T0 > 0 such that, if

|x̄− x0| < ε, (4.1)

then for every τ > T0, the τ -truncated optimal control problem OCP(Γ̄)τ has at
least one open-loop optimal solution (x∗τ ,u

∗
τ ) that satisfies, for every t ∈ [0, τ ],

‖x∗τ (t)− x̄‖+ ‖u∗τ (t)− ū‖+
∥∥λ∗τ (t)− λ̄∥∥ ≤ c1(e−c2t + e−c2(τ−t)), (4.2)
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4 Some properties of PDGs

where λ∗τ is the Lagrange multiplier corresponding to (x∗τ ,u
∗
τ ). Therefore

lim
τ→∞

1

τ

∫ τ

0

x∗τ (t)dt = x̄, (4.3)

lim
τ→∞

1

τ

∫ τ

0

u∗τ (t)dt = ū, (4.4)

lim
τ→∞

1

τ

∫ τ

0

λ∗τ (t)dt = λ̄. (4.5)

As a direct consequence of Theorem 4.5 we obtain the following.

Corollary 4.6. Let Γ̄ be a time-homogeneous open-loop PDG that satisfies the
hypotheses of any of the Theorems 3.15 or 3.16 or 3.17. Moreover, suppose
that its corresponding OCP(Γ̄) satisfies the assumptions in Theorem 4.5. Then
there exist at least one open-loop Nash equilibrium (x∗,u∗) such that if x0 is as
in (4.1), the pair (x∗τ ,u

∗
τ ) satisfies (4.2) for every t ∈ [0, τ ]. Hence, (4.3)-(4.5)

also hold.

The following example gives an application of Theorem 3.17 and Corollary
4.6.

Example 4.7. Consider an affine-quadratic differential game described as fol-
lows: the instantaneous payoff function for player i is

Li(xi, u) = −1

2

[
(1 + xi)

2 +

N∑
i=1

mi∑
j=1

(1 + uij)
2

]
,

with state variable xi that is the solution of the nonlinear differential equation

ẋi(t) = −
mi∑
j=1

x2
i (t)u

i
j(t), xi(0) = xi0. (4.6)

By Theorem 3.17 (or Theorem 3.1) this differential game is an open-loop
PDG. The potential function is

P (x, u) := −1

2

N∑
i=1

[
(1 + xi)

2 +

mi∑
j=1

(1 + uij)
2

]

and it defines the OCP with payoff function∫ ∞
0

−1

2
e−βt

N∑
i=1

[
(1 + xi(t))

2 +

mi∑
j=1

(1 + uij(t))
2

]

38



4.2 PDGs with Pareto-optimal Nash equilibria

subject to (4.6) considering every index i = 1, . . . , N.
The corresponding Hamiltonian function is

H(x, u, λ) = −1

2

N∑
i=1

[
(1 + xi)

2 +

mi∑
j=1

(1 + uij)
2

]
−

N∑
i=1

mi∑
j=1

λix2
iu

i
j.

Thus, the Hamiltonian system for this OCP is, for every i = 1, . . . , N,

ẋi(t) = −
mi∑
j=1

x2
i (t)u

i
j(t), xi(0) = xi0,

0 = −(1 + uij(t))− λi(t)x2
i (t), j = 1, . . . ,mi,

λ̇i(t) = βλi(t) + 1 + xi(t) + 2λi(t)xi(t)

mi∑
j=1

uij(t),

0 = lim
t→∞

e−βtλi(t).

Corollary 4.6 states that the Nash equilibrium corresponding to the optimal
solution to the τ -truncated control problem is close to the steady-state point

x̄i = −1, ūij = 0, λ̄i = −1,

for every i = 1, . . . , N and j = 1, . . . ,mi, which is the solution to the system

0 = −
mi∑
j=1

x2
iu

i
j,

0 = −(1 + uij)− λix2
i , j = 1, . . . ,mi,

0 = 1 + xi + 2λixi

mi∑
j=1

uij.

Therefore, for each initial condition x0 in a neighborhood of radius ε > 0 of
the point x̄ = (−1, . . . ,−1), the corresponding Nash equilibrium u∗τ and its
admissible path x∗τ are close to the points ū = (0, . . . , 0) and x̄, respectively, in
the sense of (4.2). ♦

4.2 PDGs with Pareto-optimal Nash equilibria

4.2.1 Cooperative differential games

In this section, we consider a game as in (2.5) with T =∞, but in the cooper-
ative case. To this end, we first introduce some notation and terminology.

Notation. For u = (u1, . . . , uN) and v = (v1, . . . , vN) in RN ,
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4 Some properties of PDGs

u ≥ v means: ui ≥ vi ∀i ∈ N̄ ;
u > v means: u ≥ v and u 6= v;
u� v means: ui > vi ∀i ∈ N̄ .

Let r(u) := (J1(u), . . . , JN(u)) be the reward vector for each u ∈ U. A mul-
tistrategy u∗ ∈ U is called Pareto optimal ( or nonsuperior or unimprovable)
for the game (2.5) if there is no u ∈ U such that

r(u) > r(u∗). (4.7)

The corresponding reward vector r(u∗) is said to be a Pareto point. Moreover,
if instead of (4.7), r(u)� r(u∗) holds, then u∗ is called weakly Pareto optimal.

We recall the following known facts for cooperative games; see, for instance,
[16], [35], [38].

Lemma 4.8. (a) Let λ = (λ1, . . . , λN) ∈ RN be such that λi > 0 for all
i ∈ N̄ , and λ1 + · · · + λN = 1. If u∗ ∈ U maximizes the scalar product
λ · r(u) =

∑N
i=1 λiJi(u), that is,

λ · r(u∗) = max
u

λ · r(u),

then u∗ is Pareto optimal.
(b) The converse of (a) is true provided that U is convex and J1, . . . , JN are

all concave.

Remark 4.9. The converse of Lemma 4.8(a) does not hold, in general. See
examples in [16], [35].

Lemma 4.10. [38] A multistrategy u∗ ∈ U is Pareto optimal if and only if,
for every i ∈ N̄ ,u∗ maximizes Ji on the set

Ui := {u ∈ U | Jj(u) ≥ Jj(u
∗) ∀j 6= i}.

In view of Lemmas 4.8 and 4.10, finding a Pareto solution is essentially the
same as solving an OCP. Hence, for the existence of such solutions it suffices
to give conditions for the existence of optimal controls. See [3], [16], [28], [35],
[38], [44], for instance.

4.2.2 The direct case

The simplest example of a PDG with Pareto-optimal Nash equilibria is a team
game. We saw in Example 2.5, above, that if u∗ ∈ U optimizes the correspond-
ing OCP defined by the potential function, then u∗ is a Nash equilibrium. On
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4.2 PDGs with Pareto-optimal Nash equilibria

the other hand, it is obvious that u∗ is also Pareto optimal, by Lemma 4.8.
Therefore, a team game lies in the class of games we are interested in.

The following theorem provides a direct way to identify classes of PDGs that
have Pareto-optimal Nash equilibria.

Theorem 4.11. Consider a differential game as in (2.5) with f = (f1, . . . , fN).

Suppose that there are functions ĝi, f̂i, such that one of the following conditions
holds for every i ∈ N̄ :
(a) Li(t, x, u) = ĝi(t, ui).

(b) Li(t, x, u) = ĝi(t, x, ui), fi(t, x, u) = f̂i(t, x).

(c) Li(t, x, u) = ĝi(t, xi, ui), fi(t, x, u) = f̂i(t, xi, ui).
Then the differential game (2.5) is a PDG and has a potential function

P = ĝ1 + · · ·+ ĝN . (4.8)

Hence, if u∗ = (u1, . . . ,uN) ∈ U maximizes J, then u∗ is an open-loop Nash
equilibrium. In addition, if U is convex and Ji is concave on Ui for every
i ∈ N̄ , then u∗ is also Pareto optimal.

Proof. This result follows from Corollary 3.2 and Lemma 4.8 above.

The Example 3.23 above, about extraction of exhaustible resources under
common access, has a Pareto-optimal Nash equilibrium by Theorem 4.11.

4.2.3 The potential case

In the remainder of this section we use the following condition G to simplify
our presentation.
G: Let (2.5) be a PDG where the associated OCP is as in Definition 2.3.

Recall the notation in Lemma 4.10, above.

Theorem 4.12. Assume G. If u∗ is a multistrategy such that, for every i ∈ N̄ ,
u∗ maximizes Ji on Ui and, in addition, u∗ maximizes the payoff function in
Definition 2.3, then u∗ is a Pareto-optimal Nash equilibrium.

Proof. The theorem follows directly from Lemma 4.10 and the definition of a
PDG.

The following Corollaries 4.13 and 4.14 follow from Theorem 4.12 and Lemma
4.10, respectively.
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4 Some properties of PDGs

Corollary 4.13. Assume G. If a multistrategy u∗ is the unique maximizer of
Jk for some k ∈ N̄ , and if u∗ is also a maximizer for the payoff function in
Definition 2.3; that is, there is an index k ∈ N̄ such that, for every u ∈ U,

Jk(u
∗) ≥ Jk(u) and (4.9)

J(u∗) ≥ J(u), (4.10)

then u∗ is a Pareto-optimal Nash equilibrium. Furthermore, if u∗ is not the
unique multistrategy satisfying (4.9), then u∗ is a Nash equilibrium and it is
also weakly Pareto optimal.

Corollary 4.14. Consider the game (2.5). If a multistrategy u∗ is such that,
for each i ∈ N̄ ,

Ji(u
∗) ≥ Ji(u) ∀u ∈ U, (4.11)

then u∗ is a Nash equilibrium that is also Pareto optimal.

In the following example, the conditions (4.9)-(4.10) in Corollary 4.13 are
satisfied.

Example 4.15. (For a version of this model, see [10], p. 87.) Consider two
players. Let X = [0,∞) be the state space of the game, and fix an initial state
x0 ∈ X. The feasible control set for player 1 is U1 = [0,∞) and for player 2
is U2 = [0, 1].

The payoff function for player 1 is

J1(u) =

∫ ∞
0

e−βt[u2(t)− x(t)− α

2
u2

1(t)]dt,

with α, β > 0, and for player 2 is

J2(u) =

∫ ∞
0

e−βt[u2(t)− x(t)]dt,

which are subject to the system equation

ẋ(t) = 1 + u2(t)− u1(t)
√
x(t), x(0) = x0. (4.12)

This model is a PDG with potential function

P (t, x, u) = u2 − x−
α

2
u2

1.
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4.2 PDGs with Pareto-optimal Nash equilibria

The potential function P and (4.12) define the associated OCP to this game.
To obtain the optimal solution for the associated OCP, we have the following
Hamiltonian system:

H(·) = u2 − x−
α

2
u2

1 + λ[1 + u2 − u1

√
x],

u1 = −λ
α

√
x,

λ(t) + 1 ≥ 0, 0 ≤ u2 ≤ 1,

λ̇ = 1 + βλ− 1

2α
λ2,

ẋ = 1 + u2 − u1

√
x, x(0) = x0.

Solving this Hamiltonian system, we have that the optimal solution u∗ =
(u∗1,u

∗
2) is

u∗1(t) = −λ
∗(t)

α

√
x∗(t),

u∗2(t) =

 0 if λ∗(t) < −1

1 if λ∗(t) ≥ −1,

where

λ∗(t) =
α[(β + C) + k0e

−Ct(β − C)]

1 + k0e−Ct
,

C =

√
β2 +

2

α
, λ0 = αβ +

2αC√
2α + 2

,

k0 =
(
√

2α
2
− 1)C − [β − λ0

α
]

(
√

2α
2

+ 1)C + [β − λ0
α

]
.

The corresponding state path is given by

x∗(t) = exp

(∫ t

0

λ∗(τ)

α
dτ

)[∫ t

0

(1 + u∗2(s)) exp

(∫ s

0

λ∗(τ)

α
dτ

)
ds+ x0

]
.

In addition, (4.9)-(4.10) hold. Therefore, the multistrategy u∗ is a Nash
equilibrium and Pareto optimal for the game. ♦

4.2.4 Remarks

The following remarks relate our results in this Section 4.2 and some known
facts in the literature.
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1. All the cases considered in Theorem 4.11 satisfy (4.11).

2. A game as in Corollary 4.14 is not necessarily a PDG.

3. Remark 1 in [37] presents a particular case of Corollary 4.14 but requiring
differentiability and convexity conditions for (2.5).

4. Example 4.15 has payoff functions depending on the state variable of
the game and, in addition, player 1’s payoff function also depends on
the player 2’s strategy variable. This is in contrast to Theorem 4.11,
where, for each i, the (instantaneous) payoff function ĝi depends only on
the strategies of player i. Thus, Theorem 4.11 and Theorem 4.12 give
different ways to identify differential games with Pareto-optimal Nash
equilibria.

5. A result similar to Theorem 4.11(a) was obtained in [11] for a dynamic
resource management game that considers overtaking multistrategies.

6. Another result similar to Theorem 4.11(a) appears in [1].

7. Using PDGs to obtain Pareto-optimal Nash equilibria, it is possible to
relax concavity and differentiability conditions on the game’s primitive
data. See [17] and [37].

4.3 Comments

In this chapter, we conclude our findings related to deterministic potential
differential games. We have studied some properties of PDGs, such as the
asymptotic behavior of Nash equilibria, and how we can use the potential
function to ensure a Pareto-optimal Nash equilibrium. In the next chapter, we
present some results for a stochastic differential game to be a potential game.
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5 Stochastic PDGs

Our aim in this chapter is to identify potential games within the class of
stochastic differential games. To this end, we follow a procedure similar to
the fictitious-potential approach presented in Section 3.2. We also include a
section about stochastic PDGs that have Pareto-optimal Nash equilibria.

5.1 Stochastic differential games

We next introduce the stochastic differential games (SDGs) we are concerned
with.

Consider a complete filtered probability space (Ω,F , {Ft}t≥0,P) on which a
d-dimensional standard Brownian motion W (·) is defined. Let us assume that
{Ft}t≥0 is its natural filtration and F0 includes all P-null sets of F .

Let N̄ := {1, . . . , N} be the set of players, with N ≥ 2. For each i ∈ N̄ ,
define the space of the open-loop control processes for player i as

Ūi := {ui : Ω× [0, T ]→ Ui| ui is {Ft}t≥0 − adapted, ‖ui‖2 <∞}, (5.1)

where 0 < T < ∞ is the game’s time horizon, Ui ⊂ Rmi is a nonempty Borel
set, and ‖ui‖2 := (E

∫ T
0
|ui(s)|2ds)1/2.

The space of multistrategy processes for the players is

Ū :=

N∏
i=1

Ūi. (5.2)

A multistrategy u = (u1, . . . ,uN) in Ū takes values in the set U = U1 × · · · ×
UN ⊂ Rm, with m = m1 + · · ·+mN .

Now, for each u ∈ Ū, we consider the controlled stochastic differential equa-
tion (SDE) given by

dx(s) = f(s,x(s),u(s))ds+ σ(s,x(s),u(s))dW (s), (5.3)

x(0) = x0,

where f : [0, T ] × Rl × U → Rl and σ : [0, T ] × Rl × U → Rl×d are given
functions, and x0 ∈ Rl is a given deterministic initial condition. We call
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5 Stochastic PDGs

x : Ω× [0, T ]→ Rl the admissible state process of the game corresponding to
the multistrategy u.

As in Remark 2.2, we can note the following. The SDE (5.3) can be rewritten
as the coupled system

dxi(s) = f i(s,x(s),u(s))ds+

d∑
k=1

σik(s,x(s),u(s))dWk(s), (5.4)

xi(0) = xi0,

for each i ∈ N̄ , with f = (f 1, . . . , fN)′, and σik is the ik-entry of the matrix
σ. The apostrophe (′) represents the transpose of a vector or a matrix.

We will assume that xi ∈ Rli is the state process for the i-th player and that
it solves the equation (5.4). Furthermore, for j ∈ N̄ , we understand that player
j has no state variable in the game if lj = 0. (Remember that l = l1 + · · ·+ lN .)
Let R ⊆ N̄ be the subset of indices k, such that lk > 0. Clearly, since l ≥ 1,
the set R is nonempty.

Sufficient conditions for the existence and uniqueness of solutions to the
system (5.3) (or (5.4)) are well known; see, for instance, [44], Chapters 2 and
3.

For each i ∈ N̄ and u ∈ Ū, we define the payoff functional for player i by

J̄ i(u) := E[

∫ T

0

Li(s,x(s),u(s))ds+ hi(x(T ))], (5.5)

where x is the admissible state process to the multistrategy process u, and Li :
[0, T ]×Rl×U → R and hi : Rl → R are the instantaneous (or current) payoff
function and the terminal (or final) payoff function for player i, respectively.

Notation. For each i ∈ N̄ , we define the set of multistrategies Ū−i :=
Ū1× · · · × Ūi−1× Ūi+1× · · · × ŪN . For each ui ∈ Ūi and each u∗−i ∈ Ū−i, we
write (ui,u

∗
−i) to denote the vector

(u∗1, . . . ,u
∗
i−1,ui,u

∗
i+1, . . . ,u

∗
N) ∈ Ū.

Definition 5.1. A multistrategy process u∗ = (u∗1, . . . ,u
∗
N) ∈ Ū is called an

open-loop Nash equilibrium for the SDG (5.3)-(5.5) if, for every i ∈ N̄ ,

J̄ i(ui,u
∗
−i) ≤ J̄ i(u∗) ∀ui ∈ Ūi.

In a compact form, the class of SDGs we are interested in is described as

Γ̄x0 :=
[
N̄ , Ū, {J̄ i}i∈N̄ , f, σ

]
, T <∞, (5.6)

where N̄ = {1, . . . , N} is the set of players, Ū is the open-loop multistrategy
process space defined in (5.2), J̄ i, i ∈ N̄ , is the payoff functional for player i,
as in (5.5), and f, σ define the system dynamics (5.3) (or (5.4)).
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5.2 Stochastic optimal control problems

We define some stochastic OCPs using suitable functions and the same spaces
U, Ū, etc, described in the previous Section 5.1. This is similar to what we did
for the deterministic case in Section 2.2.

Definition 5.2. Consider two functions P : [0, T ] × Rl × U → R and h :
Rl → R. The stochastic OCP defined by P and h consists of a single player
(or controller) who wants to maximize the payoff functional

J̄(u) := E[

∫ T

0

P (s,x(s),u(s))ds+ h(x(T ))] (5.7)

subject to (5.3) (or (5.4)). A function u∗ ∈ Ū that solves a stochastic OCP is
called an open-loop optimal control or optimal solution.

By simplifying, an stochastic OCP can be expressed in compact form as

Λ̄x0 = [Ū, J̄ , f, σ] (5.8)

where Ū is given by (5.2), J̄ is described in (5.7) as the payoff function of a
controller, and f, σ define (5.3) (or (5.4)).

As in Section 2.2, to avoid confusions in our following results, we clearly
specify when a point in Ū is a control or a multistrategy.

5.3 Technical requirements

As a direct extension of Definition 2.4 on PDGs, we say that a stochastic
differential game Γ̄x0 , as in (5.6), is called an open-loop stochastic PDG if
there exists a stochastic OCP such that an open-loop optimal solution of this
stochastic OCP is an open-loop Nash equilibrium for Γ̄x0 .

Clearly, stochastic team games are open-loop stochastic PDGs. (See Exam-
ple 2.5.)

We specifically give in Remarks 5.4 and 5.5, below, two versions of the
maximum principle: the necessary conditions for an optimal solution of Λ̄x0 ,
an stochastic OCP, as in (5.8), and sufficient conditions for a Nash equilibrium
of an SDG Γ̄x0 , as in (5.6). In both cases, we consider the following assumption.
(See [33] and [44], Chapter 3, for more details.)

Assumption 5.3. Let Γx0 be an SDG, as in (5.6), and Λ̄x0 a stochastic OCP,
as in (5.8). For each i ∈ N̄ ,
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(a) The sets Ui are open and convex.
(b) The functions Li, P, f, and σ are in C2(Rl × U).
(c) The functions h, hi are in C2(Rl).

Remark 5.4. (Necessary conditions for optimal solutions. See Theorem 3.2
in [44], p. 118.) Consider a stochastic OCP Λ̄x0 as in (5.8). We define the
associated Hamiltonian as

H(s, x, u, p, q) := P (s, x, u) + p · f(s, x, u) + tr[q′σ(s, x, u)], (5.9)

for (s, x, u, p, q) ∈ [0, T ]×Rl×U×Rl×Rl×d. If u∗ ∈ Ū is an open-loop optimal
solution for this stochastic OCP, and x∗ is the state process corresponding to
u∗, then there exist processes (p̄, q̄) and (P̄ , Q̄) such that, using the notation
(∗) := (s,x∗(s),u∗(s)), s ∈ [0, T ]:

dp̄(s) = −Hx((∗), p̄(s), q̄(s))ds+ q̄(s)dW (s),

p̄(T ) = hx(x
∗(T )),

dP̄ (s) = −[Hxx((∗), p̄(s), q̄(s)) + P̄ (s)fx(∗) + fx(∗)′P̄ (s)]ds

+

d∑
k=1

[σkx(∗)′P̄ (s)σkx(∗) + Q̄k(∗)σkx(∗) + σkx(∗)′Q̄k(s)]ds

+

d∑
k=1

Q̄k(s)dWk(s),

P̄ (T ) = hxx(x
∗(T )),

where σk := (σ1k, . . . , σNk)′, 1 ≤ k ≤ d, is the k-th column of σ. Moreover, we
have that

Hui((∗), p̄(s), q̄(s)) = 0 ∀ i ∈ N̄ , a.e. s ∈ [0, T ], P− a.s. (5.10)

Remark 5.5. (Sufficient conditions for Nash equilibria. See Theorem 6.2 in
[33], p. 564.) Consider an SDG Γ̄x0 as in (5.6). We define the associated
Hamiltonian for player i as follows:

H i(s, x, u, pi, qi) := Li(s, x, u) + pi · f(s, x, u) + tr[qi′σ(s, x, u)], (5.11)

for (s, x, u, pi, qi) ∈ [0, T ] × Rl × U × Rl × Rl×d. Let u∗ ∈ Ū be an open-loop
multistrategy for the players, and x∗ be the state process corresponding to u∗.
Suppose for each i ∈ N̄ , there exist processes (p̄i, q̄i) and (P̄ i, Q̄i) such that,
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5.4 Fictitious-potential approach: The stochastic version

using the notation (∗) := (s,x∗(s),u∗(s)), s ∈ [0, T ]:

dp̄i(s) = −H i
x((∗), p̄i(s), q̄i(s))ds+ qi(s)dW (s) (5.12)

p̄i(T ) = hix(x
∗(T )) (5.13)

dP̄ i(s) = −[H i
xx((∗), p̄i(s), q̄i(s)) + P̄ i(s)fx(∗) + fx(∗)′P̄ i(s)]ds (5.14)

+

d∑
k=1

[σkx(∗)′P̄ i(s)σkx(∗) + Q̄i
k(∗)σkx(∗) + σkx(∗)′Q̄i

k(s)]ds

+

d∑
k=1

Q̄i
k(s)dWk(s),

P̄ i(T ) = hixx(x
∗(T )) (5.15)

are satisfied. Moreover, suppose that, for each i ∈ N̄ ,
(a) hi(x) is concave in x,
(b) H i(s, x, ui,u

∗
−i(s), p̄

i(s), q̄i(s)) is concave in (x, ui) for s ∈ [0, T ], and
(c) H i

ui
((∗), p̄i(s), q̄i(s)) = 0, a.e. s ∈ [0, T ], P-a.s.

Then u∗ is Nash equilibrium of the game Γ̄x0.

We denote the Hamiltonian function for the controller of a stochastic OCP
by H in (5.9), and for the player i ∈ N̄ of an SDG by H i in (5.11). (This is
in fact a slight abuse of notation, because we use the same letters H and H i

that we used in the deterministic context.)

5.4 Fictitious-potential approach: The stochastic
version

We next extend to stochastic PDGs some results in Section 3.2. In particular,
we use the terms “Assumption” and “Condition” with the same meaning as
in Section 3.2.1.

Consider a stochastic differential games, as in (5.6), under Assumption 5.3.
To identify stochastic PDGs we require the next condition, which is as Condi-
tion 3.11 to differential games.

Condition 5.6. There are functions P : [0, T ]×Rl × U → R and h : Rl → R
that satisfy for each (·) = (s, x, u) ∈ [0, T ]× Rl × U,

Pui(·) = Liui(·), i ∈ N̄ , (5.16)

Pxi(·) = Lixi(·), i ∈ R, (5.17)

hxi(x) = hixi(x), i ∈ R. (5.18)
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5 Stochastic PDGs

Note that if an index j ∈ N̄ is such that lj = 0, i.e., j /∈ R, then in Condition
5.6, the functions P and Li, i ∈ N̄ , depend only on state variables with index
in R.

The next condition is a stochastic version of Condition 3.13.

Condition 5.7. (a) For each (x∗,u∗) an optimal solution with their respective
Lagrange multiplier (p̄, q̄) and (P̄ , Q̄), the function

(x, ui) 7→ H(s, x, ui,u
∗
−i(s), p̄(s), q̄(s))

is concave in (x, ui) for each i ∈ N̄ .
(b) The function h is concave in x.

The following Assumption 5.8 is an analogue of Assumption 3.8.

Assumption 5.8. Let Γ̄x0 be as in (5.6). The functions L1, . . . , LN satisfy
that for each (·) = (s, x, u) ∈ [0, T ]× Rl × U, and k ∈ R,

L1
xk

(·) = . . . = LNxk(·), (5.19)

h1
xk

(·) = . . . = hNxk(·). (5.20)

Following similar arguments to those in the proofs of Lemma 3.14 and The-
orem 3.15 yield the next lemma.

Lemma 5.9. Under Condition 5.6 and Assumption 5.8:
(a) The pairs (p̄, q̄), (P̄ , Q̄) satisfy (5.12)-(5.15) in Remark 5.5 with (p̄i, q̄i) =

(p̄, q̄) and (P̄ i, Q̄i) = (P̄ , Q̄) for every i ∈ N̄ , and a.e. s ∈ [0, T ], P-a.s.
(b) For each i ∈ N̄ , and a.e. s ∈ [0, T ], P-a.s.,

Hui(s,x
∗(s),u∗(s), p̄(s), q̄(s)) = H i

ui
(s,x∗(s),u∗(s), p̄(s), q̄(s)) = 0.

The stochastic version of Theorem 3.15 is the following.

Theorem 5.10. Let Γ̄x0 be as in (5.6). If Conditions 5.6 and 5.7, and As-
sumption 5.8 hold, then Γ̄x0 is an open-loop stochastic PDG with potential
function P and potential final function h.

Proof. Each open-loop optimal solution u∗ of the stochastic OCP defined by P
and h is a Nash equilibrium for the SDG because for each i ∈ N̄ , (5.16), (5.17),
and (5.19) imply that the functions H(s, ·, ·,u∗−i, p̄, q̄) and H i(s, ·, ·,u∗−i, p̄, q̄)
have the same Hessian matrix. (See Lemma 3.14, above.) Thus, under Condi-
tion 5.7(a), a relation of concavity in (x, ui) between them is established. Note
also that combining (5.18) and (5.20), the function hi, i ∈ N̄ has the same
Hessian matrix that the function h. Thus, if Condition 5.7(b) holds, a relation
of concavity in x between them is obtained. Moreover, in view of Lemma 5.9,
we have sufficient conditions that satisfy Remark 5.5.
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Note that Theorem 5.10 does not require conditions on the dynamics (5.3).

Example 5.11. Consider the game (5.6) and let p : [0, T ] × Rl × U → R,
ci : [0, T ]× U−i → R, and h : Rl → R be functions such that

Li(s, x, u) = p(s, x, u) + ci(s, u−i),

hi(x) = h(x) + ki,

with ki ∈ R. By Theorem 5.10, p is a potential function and h is the potential
final function for the game. ♦

Example 5.12. Consider the game (5.6), and let p : [0, T ] × Rl × U → R,
ci : [0, T ]× Ui → R, and h : Rl → R be functions such that

Li(s, x, u) = p(s, x, u) +
∑
r∈R

xr + ci(s, ui),

hi(x) = h(x) + ki,

with ki ∈ R. By Theorem 5.10, p +
∑

r∈R xr +
∑N

i=1 c
i is a potential function

and h is the potential final function for the game. ♦

The following Assumption 5.13 is almost similar to Assumption 3.9.

Assumption 5.13. (a) N ≤ l.
(b) For every j ∈ R, lj = l1.

Assumption 5.14 means the state process can be rewritten as a uncoupled
system of SDEs, we assumed this in Theorems 3.16, and 3.17.

Assumption 5.14. Suppose that, for each i ∈ R, the functions f i, σik, 1 ≤
k ≤ d, depend only on the variables (s, xi, ui); that is, (5.4) can be written as

dxi(s) = f i(s,xi(s),ui(s))ds+

d∑
k=1

σik(s,xi(s),ui(s))dWk(s),

xi(0) = xi0.

We now consider Assumption 5.15 instead of Assumption 3.10.

Assumption 5.15. Let Γ̄x0 be as in (5.6). The functions Li, hi, i ∈ N̄ , f, and
σ satisfy, for each k ∈ R, and each (·) = (s, x, u) ∈ [0, T ]× Rl × U,

Lix1(·) = Lixk(·), and f 1
x1

(·) = fkxk(·),
hix1(x) = hixk(x), σ1j

x1
(·) = σkjxk(·), 1 ≤ j ≤ d.
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5 Stochastic PDGs

Notation. We write pi to denote the i-th coordinate of a vector p ∈ Rl and
qkj as the kj-th entry of a matrix q ∈ Rl×d.

We get the next lemma, following the same ideas as in Lemma 5.9.

Lemma 5.16. Under Conditions 5.6 and 5.7, and Assumptions 5.13, 5.14,
and 5.15, the Lagrange multipliers (p̄i, q̄i), (P̄ i, Q̄i) defined for each k ∈ R and
1 ≤ j ≤ d by

p̄ik := p̄i P̄ i
k := P̄i, (5.21)

q̄ikj := q̄ij Q̄i
kj := Q̄ij, (5.22)

satisfy that:
(a) The functions H(s, ·, ·,u∗−i, p̄, q̄) and H i(s, ·, ·,u∗−i, p̄i, q̄i), i ∈ N̄ are con-

cave in (x, ui). The functions h and hi, i ∈ N, are concave in x.
(b) The equations (5.12)-(5.15) in Remark 5.5 hold, a.e. s ∈ [0, T ], P-a.s.
(c) For each i ∈ N̄ , and a.e. s ∈ [0, T ], P-a.s.,

Hui(s,x
∗(s),u∗(s), p̄(s), q̄(s)) = H i

ui
(s,x∗(s),u∗(s), p̄i(s), q̄i(s)) = 0.

Therefore, Theorem 5.17 provides a criterion for identifying stochastic PDGs
similar to Theorem 3.16 for deterministic models.

Theorem 5.17. A stochastic differential game Γ̄x0 , as in (5.6), that satisfies
Conditions 5.6 and 5.7, and Assumptions 5.13, 5.14, and 5.15, is an open-loop
stochastic PDG with potential function P and potential final function h.

Proof. Let (x∗,u∗) be an optimal control pair for the stochastic OCP defined
by P and h. By Lemma 5.16, the processes in (5.21) and (5.22) satisfy the
requirements in Remark 5.5. Therefore, u∗ is a Nash equilibrium.

Example 5.18. For each i = 1, . . . , N, let Ki : [0, T ] × Ui → R and Ri :
[0, T ]×U−i → R be differentiable functions, with Ki concave on Ui. Moreover,
player i has the instantaneous payoff function

Li(t, x, u) = ai(

N∑
j=1

xj) +Ki(t, ui) +Ri(t, u−i)

with state variable xi that satisfies

dxi = [G(t)xi +M i(t, ui)]dt+ S(t)(ui + xi)dWi(t), xi(0) = xi0.

where M i : [0, T ] × Ui → R is a concave function in ui. Note that the final
payoff function of each player is zero.
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By Theorem 5.17, we have that

P (t, x, u) =

N∑
j=1

[
ajxj +Kj(t, uj)

]
is a potential function and h = 0 is the potential final function for the game.
♦

A particular case of Example 5.18 is the Example 5.23, bellow.
Note that in Theorem 5.17, pk∗ is not necessarily equal to pr∗ (in contrast

to Theorem 5.10 where pk∗ = pr∗). Another difference between Theorems 5.10
and 5.17 is that Theorem 5.17 requires Condition 5.13, which is not needed in
Theorem 5.10.

Finally, the next assumption and theorem correspond to Theorem 3.17.

Assumption 5.19. Assume Condition 5.13(a). Each function Li depends
only on (t, xi, u), and hi only on xi.

Theorem 5.20. Let Γ̄x0 be a differential game, as in (5.6), where Conditions
5.6 and 5.7, and Assumptions 5.14, and 5.19 hold. Then Γ̄x0 is an open-loop
PDG with potential function P, and potential final function h.

Proof. The proof uses arguments similar to those in the proof of Theorem 5.10
and Theorem 5.17, except that the Lagrange processes are now as follows: for
each i ∈ R and 1 ≤ j ≤ d,

p̄ii := p̄i, p̄ik := 0, k 6= i, (5.23)

q̄iij := q̄ij, q̄ikj := 0, k 6= i, (5.24)

and

P̄ i
i := P̄i, P̄ i

k := 0, k 6= i, (5.25)

Q̄i
ij := Q̄ij, Q̄i

kj := 0, k 6= i. (5.26)

We use Condition 5.7 so that the function H i(s, xi, ui, u−i, p̄
i, q̄i) is concave in

(xi, ui).

Example 5.21. Consider an affine-quadratic differential game described as
follows: the instantaneous payoff function for player i is

gi(xi, u) = −1

2

[
(1 + xi)

2 +

N∑
i=1

mi∑
j=1

(1 + uij)
2

]
,
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with state variable xi that is the solution of the nonlinear SDE

dxi(t) = −
mi∑
j=1

x2
i (t)u

i
j(t) + dW (t), xi(0) = xi0. (5.27)

By Theorem 5.20 this differential game is an open-loop PDG. The potential
function

P (x, u) := −1

2

N∑
i=1

[
(1 + xi)

2 +

mi∑
j=1

(1 + uij)
2

]
defines the associated stochastic OCP.

Theorem 5.20 characterizes open-loop PDGs in which we can remove, for
each i ∈ N, the Lagrange multipliers p̄ik, q̄

i
kj, P̄

i
k, Q̄

i
kj for all k 6= i and 1 ≤ j ≤

d, as an alternative to solve the corresponding equation system described in
Remark 5.5. It is important to notice that in general this assignment is not
necessarily true in games satisfying Theorems 5.10 or 5.17, for instance.

Remark. We comment why we are using the Hamiltonian function H in
(5.9), above, instead of the function H defined in [44], p. 118, equation (3.16).
To this end, consider

• Assumption 5.3, and

• Λ̄x0 , an stochastic OCP, as in (5.8).

Note that by the necessary conditions of optimal solution for Λ̄x0 described
by the maximum principle in Theorem 3.2 of [44], p. 118, we have that, if u∗

is an optimal solution, then the so-called maximality condition (3.20), [44], p.
119, is satisfied in u∗. Therefore, by Lemma 2.3 in [44], p. 106, for each i ∈ N̄ ,

Hui(s,x
∗(s),u∗(s), p̄(s), q̄(s)) = 0.

Moreover, by Lemma 5.1 [44], p. 138, our condition (5.10), above, also holds.
Hence, for the purposes of our present context, it suffices to consider the func-
tion H instead of H.

5.5 Stochastic PDGs with Pareto-optimal Nash
equilibria

We now consider the infinite-horizon stochastic differential game described by

dx(t) = f(t,x(t),u(t))dt+ σ(t,x(t))dW (t), x(0) = x0, t ≥ 0, (5.28)
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and

Ji(u) := E

[∫ ∞
0

e−βtLi(t,x(t),u(t))dt

]
. (5.29)

Let u(·) be an open-loop multistrategy in Ū for which (5.28) and (5.29) are
well-defined; see [44], for instance. Note that σ does not depend on u.

Notation. For each i ∈ N̄ , let σi := (σi1, . . . , σid) be row i of the N × d
matrix σ in (5.28).

In the present stochastic case, Theorem 4.11, above, becomes as follows.

Theorem 5.22. [18]. Consider a stochastic differential game as in (5.28)-

(5.29), with f = (f1, . . . , fN). Suppose that there are functions ĝi, f̂i and σ̂i,
such that one of the following conditions holds for every i ∈ N̄ :
(a) Li(t, x, u) = ĝi(t, ui).

(b) Li(t, x, u) = ĝi(t, x, ui), f
i(t, x, u) = f̂ i(t, x).

(c) Li(t, x, u) = ĝi(t, xi, ui), f
i(t, x, u) = f̂ i(t, xi, ui), σi(t, x) = σ̂i(t, xi).

Then the game (5.28)-(5.29) is a stochastic PDG where the associated OCP
has objective function J as in Definition 5.2 (with T = ∞ and h = 0) and
potential function

P = ĝ1 + · · ·+ ĝN . (5.30)

Hence, if u∗ = (u∗1, . . . ,u
∗
N) ∈ Ū maximizes J, then u∗ is an open-loop Nash

equilibrium. If, in addition, Ū is convex and Ji is concave on Ūi for every
i ∈ N̄ , then the reward vector r(u∗) is a Pareto point.

Proof. The proof follows the arguments in the proof of Theorem 4.11, and
therefore, is omitted

The following example illustrates Theorem 5.22.

Example 5.23. Competition for consumption of a productive asset [25]. As-
sume that there are N players. The control sets are Ui := [0,∞) for all i ∈ N̄ .
The players wish to maximize the expected discounted utility of consumption

Ji(u) := E

[∫ ∞
0

e−βtLi(ui(t))dt

]
with u = (u1, . . . ,uN), subject to the stock dynamics

dx(t) = [F (x(t))−
N∑
i=1

ui(t)]dt+ σ(x(t))dW (t), x(0) = x,
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where F and σ are given functions that usually depend on the resource being
exploited [25]. This game is as in Theorem 5.22(a). Hence it is a potential
stochastic differential game with potential function

P (u) :=

N∑
i=1

Li(ui).

Assuming that the instantaneous utility functions Li are strictly concave, the
optimal solutions of the associated OCP are both Nash equilibria and Pareto
optimal. ♦

5.6 Comments

In this chapter we presented results on stochastic PDGs. These results were
then used to identify SDGs with Pareto-optimal Nash equilibria. All of these
facts are motivated, of course, by our findings in Chapter 3 and 4.

56



6 Conclusions

This work concerns deterministic and stochastic differential games, with finite-
and infinite-horizon objective functions. The main aim is to introduce the con-
cept of a potential differential game (PDG), which, roughly put, is a non- coop-
erative differential game to which we can associate an optimal control problem
(OCP) whose optimal solutions are Nash equilibria for the given differential
game. PDGs have two significant features. 1) It is greatly simplified find-
ing Nash equilibria because it is easier to analyze an OCP than a differential
game. And, 2) the obtained Nash equilibria—being solutions of an OCP—are
necessarily pure or deterministic, rather than mixed or randomized. After an
introduction to static (or one-shot) potential games in Section 1.2, we study
deterministic PDGs in Chapters 3 and 4, and stochastic PDGs in Chapter 5.
Most of the material on PDGs comes from the papers [17, 18], except for some
parts of Chapter 5. We work in the context of open-loop (OL) strategies so
that, in fact, we are dealing with OL-PDGs.

Some of our main findings are in Chapter 3. We propose two approaches to
identify PDGs: The exact-potential approach and the fictitious-potential ap-
proach. The former approach is based on the games primitive data, which are
mainly the game dynamics (2.2) and the payoff functions (2.3). We establish
Theorem 3.1 for infinite-horizon differential games and Theorem 3.6 for the
finite horizon case.

The fictitious-potential approach, on the other hand, assumes the existence
of a smooth concave function that together with the game’s primitive data
and some suitable assumptions (see Condition 3.11, for instance) allow us to
classify potential differential games. We establish Theorems 3.15, 3.16, and
3.17 for infinite-horizon differential games and Theorem 3.21 for finite horizon
models.

We illustrate these approaches with numerous examples. See Section 3.3.
In Chapter 4, as an application of our results obtained in Chapter 3, we show

that some time-homogeneous differential games satisfy a turnpike property; see
Corollary 4.6. Thus, for some PDGs, it is possible to analyze the asymptotic
behavior of Nash equilibria. To this end, we use a result by Trèlat and Zuazua
[42] from control theory, which we state in Theorem 4.5.

Another topic we consider is the classification of PDGs with Pareto-optimal
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Nash equilibria. This is established in Theorem 4.11 and Theorem 4.12. See
also [18].

In Chapter 5, we study stochastic differential games as in (5.6), obtaining
Theorems 5.10, 5.17, and 5.20. We develop the fictitious-potential approach
for the stochastic case. Moreover, we obtain Theorem 5.22, which identifies
classes of stochastic PDGs having Pareto-optimal Nash equilibria.

There are, of course, many open problems such as the following.
1. Slade [39] noted that Nash equilibria determined from the OCP asso-

ciated with a class of discrete-time deterministic potential games have some
(Lyapunov-like) stability properties. For the case of PDGs, it would be in-
teresting to identify classes, if any, whose Nash equilibria are stable in some
sense.

2. Is it possible to study PDGs in the class of closed-loop strategies?
3. By definition of PDG, an optimal solution of the associated OCP is a Nash

equilibrium for the given differential game. Is it possible to provide conditions
under which the converse is true? (Note that the answer is affirmative in
some trivial cases, for instance, under some concavity conditions ensuring the
existence of a unique Nash equilibrium. See also Example 2.6.)

4. For a class of discrete-time stochastic games, [22] uses inverse control
problems (as in [21]) to analyze potential games. Is it possible to use inverse
control problems to study PDGs?
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