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Abstract

This thesis consists basically of two chapters, the first chapter is devoted to the higher topological complexity
of real projective spaces RPm. We give a thorough analysis of the gap between the upper and lower bounds of
the inequality zcls(RPm) ≤ TCs(RPm) ≤ sm, which allows us to give an estimation for TCs(RPm). Further,
we explain how such estimation seems to be closely related to the determination of the Euclidean immersion
dimension of RPm. The second chapter is devoted to the effective topological complexity of the orientable
surfaces of genus Σg, g ≥ 2. There, by finding effective-zero-divisors of dimension 1 (in the 256 systems
of local coefficients having as group Z) we present some indirect evidence that suggests that the effective
topological complexity of Σg, g ≥ 2, would be 3 instead of 4.
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Resumen

Esta tesis consiste básicamente de dos capı́tulos, el primer capı́tulo está dedicado a la complejidad topológica
superior de los espacios proyectivos reales RPm. Hacemos un análisis exhaustivo de la diferencia entre
los lı́mites superior e inferior de la desigualdad zcls(RPm) ≤ TCs(RPm) ≤ sm, el cual nos permite dar
una estimación para TCs(RPm). Además explicamos cómo tal estimación parece estar relacionada con la
determinación de la dimensión de inmersión euclideana de RPm. El segundo capı́tulo está dedicado a la
complejidad topológica efectiva de las superficies orientables de género g ≥ 2, Σg. Encontramos divisores
del cero efectivos de dimensión 1 (en los 256 sistemas de coeficientes locales que tienen como grupo a Z) que
dan cierta evidencia indirecta que sugiere que la complejidad efectiva de Σg, g ≥ 2, es 3 en lugar de 4.

3
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1

Introduction

The concept of topological complexity of a topological space X, TC(X), was introduced in [13] by M.
Farber, and it can be thought of as one less than the minimal number of rules, motion planning rules,
required to tell how to move between any two points of X. Later this notion was generalized to higher
topological complexity of a topological space X, TCs(X), by Y. Rudyak in [25]. The latter can be interpreted
as one less than the number of rules required to tell how to move consecutively between any s specified
points of the space X. Both notions are homotopic invariants and TC2(X) = TC(X). In [14], M. Farber,
S. Tabachnikov and S. Yuzvinsky showed that TC(RPm) = Imm(RPm) provided m 6= 1, 3, 7. Research
on the immersion problem for projective spaces has yielded evidence that suggests a relation of the form
TC(RPm) = 2m − δ(m), where δ(m) = O(α(m)) and α(m) denotes the number of ones in the binary
expansion of m. Since TCs(RPm) = sm − δs(m) for some non-negative integer δs(m) and TC2(RPm) is
usually equal to the immersion dimension of RPm, the first part of this thesis is intended to be an initial step
to understand the smallest dimension of Euclidean spaces where RPm can be immersed, at least for m 6≡ 3
mod 4, through the study of δs.

Standard techniques in algebraic topology can be used to estimate the topological complexity of interesting
spaces such as the closed orientable surface of genus g. However, the case of the closed non-orientable
surface of genus g ∈ {2, 3} turned out to be a particularly challenging task, a partial solution, case g = 2, was
indicated by D. Davis in [10], and a complete solution was accomplished by D. Cohen and L. Vandembroucq
in [7]. The second part of this thesis arose from a desire to recover and generalize these results from Błaszczyk-
Kaluba’s version of Farber’s topological complexity for mechanical systems whose configuration spaces
exhibit symmetries, namely effective topological complexity, see [3]. Our main result says that there is a
monotonic sequence of effective topological complexities for orientable surfaces as follows

3 ≤ TCσ(Σ2) ≤ TCσ(Σ3) ≤ TCσ(Σ4) ≤ · · · ≤ 4,

for more details see section 2.4 and chapter 4.
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2

Preliminaries

2.1 Higher topological complexity

In this chapter we review some of the concepts and fundamental results from topological complexity and
cohomology of groups that will be needed in the sequel.

Definition 2.1. The reduced topological complexity of X, TC(X), is defined as the smallest integer k such that
there exists an open cover {U0, . . . , Uk} of X× X such that the restriction of the end points evaluation map
e0,1 : PX → X× X to each Ui admits a continuous section.

Definition 2.2. The reduced sth topological complexity TCs(X) of a space X is the smallest integer k such that
there exists an open cover {U0, . . . , Uk} of Xs such that the restriction of the path fibration

f : PX −→ Xs

γ 7→
(

γ(0), γ
(

1
s−1

)
, . . . , γ

( s−2
s−1
)

, γ
(

s−1
s−1

))
to each Ui admits a continuous section.

Remark 2.1. Notice that TC2(X) = TC(X).

Definition 2.3. Given a commutative ring R, the s-th zero-divisor cup-length of X, zcls(X), is the maximal
number of elements in ker(∆∗s : H∗(Xs; R)→ H∗(X; R)) having a non-trivial product, where ∆s : X → Xs is
the s-fold iterated diagonal.

Proposition 2.1. For a c-connected space X having the homotopy type of a CW complex,

zcls(X) ≤ TCs(X) ≤ s hdim(X)/(c + 1).

The notation hdim(X) stands for the (cellular) homotopy dimension of X, i.e. the minimal dimension of
CW complexes having the homotopy type of X. The lower bound in proposition 2.1 comes from noticing
that TCs(X) is equal to the Schwarz genus of the diagonal map ds : X → Xs and the upper bound comes
from obstruction theory, for details see [1, theorem 3.9].

Lemma 2.2 (Lucas’s theorem 1878). Let m and n non-negative integers, and p a prime, the following congruence
relation holds (

m
n

)
≡

k

∏
i=0

(
mi
ni

)
(mod p)

where
m = mk pk + mk−1 pk−1 + · · ·+ m1 p + m0

7
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and
n = nk pk + nk−1 pk−1 + · · ·+ n1 p + n0

are the base p expansions of m and n respectively.

The following result is a particular case of Kummer’s theorem.

Corollary 2.2.1. (m
n) is divisible by a prime p if and only if at least one of the base p digits of n is greater than the

corresponding digit of m.

2.2 Diagonal approximation and rewriting systems

For a detailed treatment of the following topics, we refer the reader to [4], [19], [15], and [20]. We must also
clarify that in this thesis we only consider left ZG-modules (and their corresponding morphisms).

Definition 2.4. Let G be a group. The group ring ZG is a ring associated to G. Additively it is the free abelian
group on G, i.e., an element of ZG is a finite linear combination of the group elements

n1g1 + · · ·+ nkgk, ni ∈ Z, gi ∈ G.

The sum and product of ZG are defined by

∑
i

migi + ∑
i

nigi = ∑
i
(mi + ni)gi,

and (
∑

i
migi

)(
∑

j
mjgj

)
= ∑

i,j
minjgigj.

Definition 2.5. For any group G the augmentation map is the ring homomorphism ε : ZG → Z such that
ε(g) = 1 for all g ∈ G. The kernel of ε is called the augmentation ideal of ZG and is denoted I(G).

Remark 2.2. A basis for I(G) as Z-module consists of the elements g− 1 ∈ ZG, g ∈ G \ {1}.

Definition 2.6. For a group G and a left ZG-module M, we define its nth cohomology group with coefficients
in M to be

Hn(G, M) := Extn
ZG(Z, M),

for n ≥ 0, where Z is the trivial ZG-module, i.e. Hn(G, M) is the nth right derived functor of the left exact
functor HomZG(Z,−).

The above definition provides us with a method of calculating Hn(G, M). Namely, we first find a
projective resolution F of the trivial ZG-module Z over ZG, then we consider the complex HomZG(F, M),
and the cohomology groups Hn(G, M) are the cohomology groups of this last complex.

Among many possible topics within techniques from group cohomology we are interested in the cup
product.

Theorem 2.3. Let F, F′ be two free (or projective) resolutions of a module M, then there is a chain map F→ F′ over
the identity on M. Further, any two such maps are chain homotopy equivalent. In particular, any such chain map
F→ F′ over the identity on M is a chain homotopy equivalence.

Proposition 2.4. Let G, G′ be groups. If F and F′ are projective resolutions of Z over ZG and ZG, respectively, then
F⊗ F′ is a projective resolution of Z over Z[G× G′], and G× G′ acts diagonally over F⊗ F′.
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Recall that (
F⊗ F′

)
n =

n⊕
i=0

Fi ⊗ Fn−i,

and
∂n
(

fi ⊗ f ′n−i
)
= di( fi)⊗ f ′n−i + (−1)i fi ⊗ d′n−i( f ′n−i).

Remark 2.3. If F is a projective resolutions of Z over ZG, then F ⊗ F is a projective resolution of Z

over Z[G × G]. By theorem 2.3 there is a ZG-linear map Ψ, called a diagonal approximation, that extends
idZ : Z→ Z.

Definition 2.7. Let F be a projective resolution of Z over ZG, and let M and N be ZG-modules. Given the
cocyles u ∈ HomZG(Fp, M) and v ∈ HomZG(Fq, M), representatives of [u] and [v], we define the cup product
of [u] and [v] to be the cohomology class

[(u⊗ v) ◦Ψpq] ∈ Hp+q(G, M⊗ N),

where Ψpq : Fp+q → Fp ⊗ Fq is the composition of Ψp+q : Fp+q → (F ⊗ F)p+q with the projection
πpq : (F⊗ F)p+q → Fp ⊗ Fq.

Definition 2.8. Let G be a group and F a free resolution of the trivial ZG-module Z over ZG. A con-
tracting homotopy T for F consists of a sequence of Z-homomorphism Tq : Xq → Xq+1, q ≥ −1, such that
dq+1Tq + Tq−1dq = idXq for each q ≥ 0. Here we write X−1 = Z and d0 = ε.

Since in order to calculate the cup product of two cohomology classes it is necessary a diagonal approxi-
mation, the propositions below will allow us to achive such task in our cases of interest.

Proposition 2.5. Let G be a group, X a free resolution of Z over ZG, and T a contracting homotopy for X. Extend
T−1ε : X0 → X0 to a chain map T−1ε : X → X over Z by defining (T−1ε)i = 0 if i 6= 0. Let
Uq : (X⊗X)q → (X⊗X)q+1 for q ≥ −1 be the Z-homomorphisms given by U−1 = T−1⊗ T−1 : Z⊗Z→ X0⊗X0,
and Uq(u⊗ v) = Ti(u)⊗ v + (T−1ε)i(u)⊗ Tq−i(v) for u ∈ Xi, v ∈ Xq−i, 0 ≤ i ≤ q. Then the Uq constitute a
contracting homotopy for X⊗ X.

Proposition 2.6. Let G be a group, X a free resolution of Z over ZG, and U a contracting homotopy for X ⊗ X.
Suppose that for each q ≥ 0, Bq is a ZG-basis for Xq such that ε(b) = 1 for each b ∈ B0. Let ψ0 : X0 → X0 ⊗ X0
be the left ZG-module homomorphism determined by ψ0(b) = b⊗ b for b ∈ B0. For q > 0 let ψq : Xq → (X⊗ X)q
be the left ZG-module homomorphism determined inductively by ψq(b) = Uq−1ψq−1∂q(b) for b ∈ Bq. Then ψ is a
diagonal approximation for X.

Basically, the previous propositions state that given a finitely generated free resolution F of the trivial
ZG-module Z over ZG, we can calculate a diagonal approximation ψ : F → F⊗ F whenever we have a
contracting homotopy for F. Furthermore, the next lemma and its proof are quite useful, essentially it says that
if you have defined sk : Fk → Fk+1 such that dk+1sk + sk−1dk = idFk then you can construct sk+1 : Fk+1 → Fk+2
satisfying dk+2sk+1 + skdk+1 = idFk+1 by defining sk+1(u) = v provided dk+2(v) + skdk+1(u) = u, where u is
an element of a basis of Fk+1.

Lemma 2.7. Let G be a group and F a projective resolution of Z over ZG. Suppose that, for a given n ≥ 0, there are
Z-homomorphisms sk : Fk → Fk+1 such that dk+1sk + sk−1dk = idFk for −1 ≤ k ≤ n (F−1 = Z). Then there is a
map of abelian groups sn+1 : Fn+1 → Fn+2 such that dn+2sn+1 + sndn+1 = idFn+1 .

Next we introduce concepts and results that we need to construct contracting homotopies in chapter 4.

Definition 2.9. Let S be a set (alphabet) and let S∗ be the free monoid on S. A rewriting system on S∗ is a
subset R ⊆ S∗ × S∗. An element (u, v) ∈ R, also written u→ v, is called a rule of R.

Given a rewriting system R, we write:
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• x → y for x, y ∈ S∗ if x = uv1w, y = uv2w and (v1, v2) ∈ R,

• x ∗−→ y if x = y or x → x1 → x2 → · · · → y for some finite chain of arrows.

Definition 2.10. x ∈ S∗ is called irreducible with respect to R if there is no possible reduction x → y, otherwise
x is called reducible.

Definition 2.11. A rewriting system for a monoid M is a tuple (S, R) such that 〈S|v1 = v2 if (v1, v2) ∈ R〉 is a
presentation for M. A rewriting system for a group G is a rewriting system for G as monoid.

Definition 2.12. Given a rewriting system, we say that

1. (R, S) is noetherian if there is no infinite chain x → x1 → x2 → · · · for any x ∈ S∗.

2. (R, S) is confluent if wherever x ∗−→ y1 and x ∗−→ y2, there is a z such that y1
∗−→ z and y2

∗−→ z.

3. (R, S) is complete if it is Noetherian and confluent.

4. (R, S) is finite if both R and S are finite.

A group with a complete rewriting system has the property that there is exactly one irreducible word
representing each of the group elements. So a finite complete rewriting system gives a solution to the word
problem for the group.

Proposition 2.8. There is a finite complete rewriting system for the fundamental group of a closed orientable surface of
genus g, using the alphabet S of the usual generators and their inverses.

In fact, the rewriting system we use here for the fundamental group of the genus 2 orientable surface Σ2,
π1(Σ2, x0), with generators a, b, c and d as shown in the figure (see lemma 4.5) has the following twelve rules:

a d

b
c

x0

xx → 1 for x ∈ {a, b, c, d, a, b, c, d}, cd→ babadc, cd→ dababc, cd→ dcbaba, cbabad→ dc.

2.3 Local coefficient systems

In this section we provide the main definitions and properties of cohomology with local systems of coefficients.
This kind of cohomology is use widely here, our main reference is [27, chapter 6].

Definition 2.13. Let R be a ring. A local system of R-modules L over a topological space X is defined as a
function which makes the assignations x 7→ L(x), and γ 7→ L(γ), where x ∈ X, L(x) is a left R-module,
γ : [0, 1] → X is a continuous path, L(γ) : L(γ(1)) → L(γ(0)) is an R-homomorphism, and the following
conditions are satisfied:
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• If two paths γ1, γ2 : [0, 1] → X have the same end points, and are homotopic with respect to the end
points, then L(γ1) = L(γ2).

• If γ is the constant path at x ∈ X, then L(γ) : L(x)→ L(x) is the identity map.

• If γ1, γ2 : [0, 1]→ X are two paths such that γ1(1) = γ2(0), we have L(γ1γ2) = L(γ1) ◦ L(γ2).

Thus for any two points x, y ∈ X in the same path connected component of X, L(x) and L(y) are
isomorphic R-modules, since any path γ connecting x to y defines an isomorphism L(γ) : L(y)→ L(x). In
particular, any loop γ : [0, 1]→ X at x ∈ X, defines an automorphism that depens only on the homotopy class
of the loop. An action of the fundamental group π = π1(X, x) on L(x) can be defined by the correspondence
[γ] 7→ L(γ), with this action L(x) is a left module over the group ring Rπ.

If X is path connected, then L(x) viewed as left Rπ-module, determines the local system L. In fact, given
an arbitrary left R-module M with an action of π1(X, x) by R-automorphisms, there is a local coefficient
system L over X such that L(x) ∼= M as Rπ-modules. Furthermore, L is unique up to functorial isomorphism.

An important result on cohomology with local coefficients that we will use in this work states that for a
path connected space X,

H1(X; L) ∼= Q (π, L(x)) /P (π, L(x)) ,

where the last quotient denotes crossed homomorphisms over principal homomorphisms, see [27, theorem 3.3
on p. 276].

2.3.1 The setting for cohomology with local coefficients
For a more detailed treatment of what follows we recommend to see [27, chapter 6, section 2].

Definition 2.14. Let G and H local coefficient systems over X and Y respectively. A map
Θ = (θ1, θ2) : (X; G)→ (Y; H) consists of a continuous map θ1 : X → Y and a homomorphism θ2 : θ∗1 H → G
of systems of local coefficients over X.
Two maps Θ, Ψ : (X; G)→ (Y; B) are homotopic if there is a map Λ = (λ1, λ2) : (X× I, p∗G)→ (Y; H) such
that

λ1i0 = θ1, and i∗0λ2 = θ2,
λ1i1 = ψ1, i∗1λ2 = ψ2,

where
it : X −→ X× I and p : X× I −→ X

x 7→ (x, t), t ∈ {0, 1} (x, t) 7→ x.

Lemma 2.9. Let K : X× I → Y be a homotopy from f := K(−, 0) to g := K(−, 1) and H a system of local coefficients
in Y. Then f ∗H and g∗H are isomorphic.

Proof. Let us write G = g∗H and R = f ∗H. We define Φ : G → R such that Φ(b) : G(b)→ R(b) is given by
H(K(b,−)) for each b ∈ X. If α is a path in X from b1 to b2, then

Φ(b1) ◦ G(α) = H(K(b1,−) ∗(g ◦ α))

R(α) ◦Φ(b2) = H(( f ◦ α) ∗K(b2,−)).

Now Φ(b1) ◦ G(α) = R(α) ◦Φ(b2) provided ( f ◦ α) ∗K(b2,−) ∼= K(b1,−) ∗(g ◦ α), to see the last homotopy,
it is enough to show the existence of a map L′ : I × I → Y, such that

L′(s, 0) = ( f ◦ α)(s),

L′(s, 1) = (g ◦ α)(s),

L′(0, t) = K(b1, t),

L′(1, t) = K(b2, t).

Take L′ = K ◦ (α× idI).
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Remark 2.4. Suppose that f , g : X → Y are homotopic through K and H is a system of local coefficients
in Y. Consider the maps Θ, Ψ : (X, f ∗H) → (Y, H) given by Θ = ( f , id) and Ψ = (g, g′), where g′ is the

isomorphism given by lemma 2.9. Define Λ = (K, λ′) where λ′ = H(K(x,s)|[0,t]). Then Θ
Λ' Ψ and therefore

they induce the same map in cohomology, which means there is the commutative diagram

H∗(X, f ∗H) H∗(Y, H)

H∗(X, g∗H),

f ∗

∼=
g∗

where the vertical isomorphism is induced by g′. In particular ker f ∗ = ker g∗.

2.4 Effective topological complexity

Definition 2.15. The Schwarz genus or sectional category of a fibration p : E → B, secat(p), is the smallest
k ∈ N such that B can be covered by open sets U0, . . . , Uk in such a way that for every i = 0, . . . , k, there
exists a map si : Ui → E such that p ◦ si is the inclusion map Ui ↪→ B.

Remark 2.5. Notice that TC(X) and TCs(X) are particular cases of the Schwarz genus of a fibration.

Let X be a space with a left principal action of a topological group G. For i ∈ {0, 1} let ei : PX → X be

the fibration defined by ei(γ) = γ(i). Consider the pullback of the morphisms ε0 : PX
e0−→ X

q−→ X/G and

ε1 : PX
e1−→ X

q−→ X/G, where q denotes the canonical quotient map,

PX×X/G PX PX

X

PX X X/G.

e0

q

e1 q

For brevity let us write P2(X) for the fibered product

PX×X/G PX = {(α, β) ∈ PX× PX | α(1) ≡ β(0) mod G}.

The next definition is due to Z. Błaszczyk and M. Kaluba, and arises from the idea that in the problem of
motion planning, the symmetries present in configuration spaces can be used, see [3].

Definition 2.16. The reduced effective topological complexity TCG,2(X) is the sectional category of the fibration
p2 : P2(X)→ X× X given by p2(α, β) = (α(0), β(1)).

For a topological group G acting on a space X, higher versions TCG,k(X), k ≥ 1, are central in [3], however
if G acts freely on X, TCG,k(X) = TCG,2(X) for all k ≥ 2. Since we are interested in the case of a free action,
we will only deal with the case k = 2.

Whenever we want to study in detail a fibration, an important ingredient is knowing the monodromy,
that is, the action of the fundamental group of the base space on the fiber. In order to do this, as first step we
give a reformulation of the fibration p2, and as second, and final step, we describe such action in terms of the
previous step. From now on we will assume that G is a discrete and finite group.

First, for g ∈ G let us define

P2,g(X) := {(α, β) ∈ P(X)× P(X) | α(1) = g · β(0)},
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1 The homomorphisms are given
by the maps

fg : P2,g(X) −→ P2,e(X)
(α, β) 7→ (α, g · β),

hg : P2,e(X) −→ P2,g(X)
(α, β) 7→ (α, g · β),

f : P2,e(X) −→ P(X)
(α, β) 7→ α ∗ β,

and

h : P(X) −→ P2,e(X)
γ 7→ (αγ, βγ),

where

αγ(s) = γ
( s

2

)
and βγ(s) =

(
1 + s

2

)
.

then for the fibration p2, since G is discrete, finite and acts freely on X, P2(X)
is the topological disjoint union

P2(X) = ä
g∈G

P2,g(X).

Furthermore, notice that P2,g(X) ∼= P2,e(X) ∼= P(X), g ∈ G \ {e} 1.
In these terms, the fibration p2 takes the form

p2(γ) = (γ(0), g · γ(1)),

for γ in the copy of P2(X) corresponding to P2,g(X), and

p−1
2 (x0, x0) = ä

g∈G
Maps(I, 0, 1; X, x0, g · x0)

' G×ΩX.

The last homotopy equivalence is given as follows. For each g ∈ G, fix
φg ∈ Maps(I, 0, 1; X, x0, g · x0), we choose φe as the constant curve at x0,
constx0 . For a continuous curve c from x0 to g · x0, c ∗ φg is a loop at x0, and
for a loop `x0 at x0, `x0 ∗ φg is a continuous curve from x0 to g · x0. Then

f ′g : Maps(I, 0, 1; X, x0, g · x0) −→ {g} ×ΩX
c 7→

(
g, c ∗ φg

)
and

h′g : {g} ×ΩX −→ Maps(I, 0, 1; X, x0, g · x0)
(g, `x0) 7→ `x0 ∗ φg

are homotopy equivalences, one inverse of the other.
Second, we describe the action of π1(X× X, (x0, x0)) on p−1

2 (x0, x0) in
terms of the homotopy equivalence p−1

2 (x0, x0) ' G ×ΩX noted above.
Given a loop

σ : I −→ X× X
τ 7→ (σ1(τ), σ2(τ))

at (x0, x0), the HLP for p2 says that the following diagram has (a non-unique)
solution Hσ

(G×ΩX)× {1} P2(X)

(G×ΩX)× I X× X.

p2

σ ◦proj2

Hσ

Under the above considerations the top map in the diagram is given by

(G×ΩX)× {1} −→ P2(X)
((g, `x0), 1) 7→ (`x0 , g · φg),
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and an explicit solution Hσ : (G×ΩX)× I −→ P2(X) is given by

Hσ((g, `x0), τ) =

(
αg,`x0 ,τ , g · βg,`x0 ,τ

)
,

where αg,`x0 ,τ(s) = γg,`x0 ,τ

(
1
2 s
)

and βg,`x0 ,τ(s) = γg,`x0 ,τ

(
1
2 + 1

2 s
)

for

γg,`x0 ,τ : I −→ X

s 7→


σ1(3s + τ), 0 ≤ s ≤ 1−τ

3 ,

(`x0 ∗ φg)
(

3s+τ−1
1+2τ

)
, 1−τ

3 ≤ s ≤ 2+τ
3 ,

g · σ2(τ + 3− 3s), 2+τ
3 ≤ s ≤ 1.

In these terms, the monodromy action of [σ] ∈ π1 (X× X, (x0, x0)) on the homotopy fiber of p2 corresponds
to the (homotopy class of the) map

G×ΩX −→ p−1
2 (x0, x0)

(g, `x0) 7→ Hσ(g , `x0 , 0).

In terms of the discussion in the first step, the latter map takes the form

fσ : G×ΩX −→ G×ΩX
( g , `x0) 7→

(
g , σ1 ∗ `x0 ∗ φg ∗ g · σ2 ∗ φg

)
.

Where a bar on top of a path stands for the path transversed in the opposite direction. Graphically,

x0

g · x0

φg

σ1

`x0

σ2

g · σ2

To close this section, we interpret the action of π1(X × X, (x0, x0)) on G × ΩX in the setting for
1-dimensional obstruction theory when the fiber is not path connected i.e., on reduced 0-dimensional
homology. This is, of course, the “effective” analogue of the interpretations done in [8] for regular TC.
On the one hand, the induced map

( fσ)∗ : H0(G×ΩX) −→ H0(G×ΩX)

is an isomorphism and the above construction gives a monodromy on H0(G×ΩX). On the other hand, as
abelian group, H0(G×ΩX) is free on the elements of π0(G×ΩX). Since there is a canonical bijection of
pointed sets: π1(Y, y0) ∼= π0(Ω(Y, y0)), it follows that H0(G×ΩX) is free on the elements of G× π1(X, x0)
and H0(G×ΩX) coincides with the augmentation ideal

I(G× π1(X, x0)) = ker(Z[G× π1(X, x0)]→ Z).
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From the considerations in the second step above, we see that π1(X× X, (x0, x0)) acts on a basis element of
I(G× π1(X, x0)) by

([σ1] , [σ2]) · [(g, [`x0 ])− (e, 1)] =
(

g, [σ1] [`x0 ]
[
φg
] [

ψg ◦ σ2
] [

φg
])
− (e, [σ1] [σ2])

=
(

g, [σ1] [`x0 ]
[
φg
]

ψg∗(σ2)
[

φg
])
− (e, [σ1] [σ2]) ,

with
ψg : (X, x0) −→ (X, g · x0)

x 7→ g · x.

An important property of the effective topological complexity is given by the inequality

TCG,2(X) ≤ TC(X/G),

if X is a free G-space. This inequality is not elementary, it follows from two facts. First, easily from
the definitions one can see that TCG,2(X) ≤ TCG(X), where TCG(X) denotes the invariant topological
complexity of the space X, see [23]. Second, from the properties of the invariant topological complexity for
free actions, TCG(X) = TC(X/G).

Remark 2.6. In unpublished work, Z. Błaszczyk, J. González and M. Kaluba showed that if G is a group
acting principally on X, the map

h : X× G → P2(X) = P(X)×X/G P(X)
(x, g) 7→ (constx, constg·x)

is a homotopy equivalence. Furthermore, the “fattened diagonal”

j : G× X ↪→ X× X
(g, x) 7→ (x, g · x)

has p2 : P2(X)→ X× X as fibrational replacement.

2.5 The obstruction theory setting

2.5.1 Sectioning a fibration over the 1-skeleton
In this subsection we review some of the fine (and not so standard) points in the obstruction-theory viewpoint
for the problem of constructing a section of a fibration.

Let p : E→ B be a fibration with B a path connected CW complex and whose fiber F is (k− 1)-connected,
k ≥ 1 (if k = 1, it is also assumed that π1(F) is abelian, so that F is 1-simple). The primary obstruction to
the existence of a section of p is a cohomology class o(p) ∈ Hk+1(B; πk(F)). Here the coefficients may be
twisted by π1(B). The definition involves choosing a section on the k-skeleton and analyzing, withing a
cohomological setting, the obvious homotopy obstructions to extend the chosen fibration on each (k + 1)-cell.
The resulting primary obstruction o(p) is canonical, as it does not depend on the chosen section on the
k-skeleton. A clarification has to be made here about finding a section over the 1-skeleton of B. A section over
the 0-skeleton always can be extended to the 1-skeleton if F is path connected, the interesting case occurs
when F is not. It turns out that in this case, the primary obstruction to the existence of a section of p over the
1-skeleton of B is defined as well, it is a cohomology class o(p) ∈ H1(B; H0(F)), and can be defined directly
in terms of the monodromy action of the fundamental group of the base space on the reduced 0-dimensional
homology of the fiber space. We review below the technical details in the latter situation (see for instance [8]).

Let p : E → B be a fibration with fiber F and 0-connected base space B. Denote for K(0) and K(1) the
skeletons of dimension 0 and 1 of B respectively. Let φ : K(1) ↪→ B be the inclusion map and g0 : K(0) → E
such that p ◦ g0 = φ|K(0). We want to study the problem of extending the section g0 of p on K(0) to a section
of p on K(1):
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kα : ∂∆1 → Xα

0 7→ (0, g0hα(0))
1 7→ (1, g0hα(1)).

F F

∆1 × F Xα

∆1 ∆1 ∂∆1

ϕ

kα

({1} × F)× {1} ∆1 × F

({1} × F)× [0, 1] ∆1
γ ◦proj2

π1

F

E

K(0) K(1) B.
φ

g0 p

Let eα be a 1-cell of B with characteristic map hα : (∆1, ∂∆1) → (eα, ∂eα).
Consider the fibration qα : Xα → ∆1 induced by the map φ ◦ hα, and consider
the partial cross-section kα of qα determined by the maps g0 ◦ hα|∂∆1 and
∂∆1 ↪→ ∆1.

F

E

K(0) K(1) B

Xα

∂∆1 ∆1

φ

g0 p

hα |∂∆1

kα qα

hα

Clearly, the study of extending g0 form K(0) to K(1) is equivalent to
studying whether or not kα(0) and kα(1) lie in the same path component of
Xα for any α. Note that any extension of kα to ∆1 can be fixed to be a section
for qα due to the HLP of the latter fibration.

Since ∆1 is contractible, the fibration qα : Xα → ∆1 is fiber homotopically
trivial and the space Xα has the same homotopy type as ∆1 × F, and there-
fore as F. Let ϕ : Xα → ∆1 × F be a fiber homotopy equivalence. Deciding
whether or not kα(0) and kα(1) lie in the same path component of Xα can be
posed in terms of ϕ: Are ϕkα(0) and ϕkα(1) in the same path component?
In turn, this last problem can be posed in monodromy terms as follows:

Since ∆1 is 0-connected, the path components of ∆1 × F are in one to one
correspondence (via the projection π2 : ∆1 × F → F onto the second fac-
tor) with the path components of F. Writing ϕkα(i) = (i, fi) ∈ ∆1 × F for
i = 0, 1, we then see that ϕkα(0) and ϕkα(1) lie in the same path component
of ∆1 × F if and only if (0, f0) and (0, f1) lie in the same path component of
{0} × F, which is a fiber of the projection π1 : ∆1 × F → ∆1. The point to
note is that π1 (is a trivial fibration and, as such) has trivial monodromy,
so that (0, f1) is the monodromy action on (1, f1) = ϕkα(1) of the identity
path γ : [0, 1] → ∆1. Summarizing, the obstruction for ϕkα(0) = (0, f0)
and ϕkα(1) = (1, f1) to be in the same path component is given by

[γ] · [ϕkα(1)]− [ϕkα(0)] ∈ H0(F),
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where brackets around γ stand for homotopy (rel 0, 1) class, and brackets around ϕkα(0) and ϕkα(1) stand
for 0-dimensional class.

Since ϕ is a fiber homotopy equivalence, and since monodromy actions are functorial with respect to pull
backs of fibrations, we deduce that the obstruction cochain c = c(g0) ∈ C1 (B; H0(F)

)
for extending g0 to a

section of p over the 1-skeleton assigns to each 1-cell eα with characteristic map hα :
(
∆1, ∂∆1)→ (

K(1), K(0)
)

the element
[hα] · [g0(hα(1))]− [g0(hα(0))] ∈ H0

(
Fhα(0)

)
where Fhα(0)

is the fiber of p over ϕ(hα(0)).

Obstruction theory will be used in conjunction with the fiberwise join product, which we review below.

Definition 2.17. Given two fibrations pi : Ei → B, i = 1, 2, the fiberwise join of p1 and p2 is the fibration
p1 ∗

B
p2 : E1 ∗

B
E2 → B, where E1 ∗B E2 consists of the formal sums

{te1 + (1− t)e2 ∈ E1 ∗ E2 | p1(e1) = p2(e2), t ∈ {0, 1}}

and (
p1 ∗

B
p2

)
(te1 + (1− t)e2) = p1(e1) = p2(e2).

The join construction can be iterated. In particular, given a fibration p : E→ B we can form the (k + 1)-fold
iterated self-join of p, ∗

k
p. Thus

∗
0

p = p and ∗
k+1

p =

(
∗
k

p
)
∗
B

p.

Note that if p has fiber F, then ∗
k

p has fiber F∗(k+1), the (k + 1)-iterated regular join of F with itself.

The following two theorems were proved by Schwarz, who connected the genus of a fibration with the
existence of a section in a certain join of that fibration. See [26, theorem 2 on p. 66] and [26, theorem 4 on
p. 73]. In [26] all the fiber spaces are supposed to be locally-trivial and all topological spaces normal and
paracompact.

Theorem 2.10. For a fibration p : E→ B, secat(p) ≤ k if and only if ∗
k

p admits a global section.

Theorem 2.11 ([26]). Let θ ∈ H1
(

B; H0(F)
)

be the obstruction for sectioning a fibration F ↪→ E
p−→ B over the

1-dimensional skeleton of the CW complex B. Note that
k+1∗ F is (k− 1)-connected, so that ∗

k
p admits a section over the

kth skeleton of B. If k ≥ 2, then the primary obstruction

θk+1 ∈ Hk+1

(
B; πk

(
k+1∗ F

))
for sectioning ∗

k
p on the (k + 1)-skeleton corresponds with the (k + 1)th power

θk+1 ∈ Hk+1
(

B; H0(F)⊗(k+1)
)

under the isomorphism of coefficients given as the composition

H0(F)⊗(k+1) ∼= H0(F)
(

F∧(k+1)
)
∼= Hk

(
k+1∗ F

)
∼= πk

(
k+1∗ F

)
.

Here the first isomorphism comes by the Künneth formula, the second isomorphism is the suspension isomorphism in

homology
(

since
k+1∗ F ∼= Σk∧k+1F

)
and the third isomorphism comes from the Hurewicz theorem (since k ≥ 2).
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Now suppose that X is a path connected CW complex, dim(X) = n ≥ 2, and you are interested in
knowing if the inequalities TC(X) ≤ 2n− 1 and TCG,2(X) ≤ 2n− 1 hold. In terms of theorem 2.10, you are
asking if the fibrations

∗
2n−1

e0,1 and ∗
2n−1

p2

admit a global section. There is an obvious commutative diagram of fibrations

ΩX = {e} ×ΩX G×ΩX

PX = P2,e(X) P2(X)

X× X X× X

e0,1 p2

which yields the fiberwise analogue

(ΩX)∗2n (G×ΩX)∗2n

2n∗
X×X

(PX)
2n∗

X×X
(P2(X))

X× X X× X,

∗
2n−1

e0,1 ∗
2n−1

p2

since both fibers are (2n− 2)-connected, and since dim(X× X) = 2n, there is only one primary obstruction

O ∈ H2n
(

X× X; π2n−1

(
(ΩX)∗2n

))
for the inequality TC(X) ≤ 2n− 1, and only one primary obstruction

OG ∈ H2n
(

X× X; π2n−1

(
(G×ΩX)∗2n

))
for the inequality TCG,2(X) ≤ 2n− 1, where underlined groups indicate twisted coefficients. Furthermore,
the functioriality of primary obstructions implies that O hits OG under the morphism

ρ2n : H2n
(

X× X; π2n−1

(
(ΩX)∗2n

))
→ H2n

(
X× X; π2n−1

(
(G×ΩX)∗2n

))
(2.1)

corresponding to the map of twisted coefficients induced by the inclusion of fibers (ΩX)∗2n ↪→ (G×ΩX)∗2n.
Note that the primary obstructions for sectioning e0,1 and p2 on the 1-dimensional skeleton of X × X
are cohomology classes o ∈ H1

(
X× X; H0 (ΩX)

)
and oG ∈ H1

(
X× X; H0 (G×ΩX)

)
. Using again the
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2 The functoriality asserted here is
easily seen from the fact, (reviewed
in this section) that 1-dimensional
obstructions are given in terms of
monodromy actions.

functoriality 2 of primary obstructions, we see that ρ1(o) = oG, where

ρ1 : H1
(

X× X; H0 (ΩX)
)
→ H1

(
X× X; H0 (G×ΩX)

)
is the 1-dimensional analogue of (2.1). Further, in terms of theorem 2.11,
o2n = O and o2n

G = OG.
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3 [5] was published as part of [6].

3

The stability of the higher topological
complexity of real projective spaces: an
approach to their immersion dimension

This chapter is an exposition of joint work with Jesús González and Aldo
Guzmán-Sáenz [5] 3. Here we describe a number r(m), which depends
on the structure of zeros and ones in the binary expansion of m, and with
the property that TCs(RPm) is given by sm with an error of at most one
provided s ≥ r(m) and m 6≡ 3 mod 4 (the error vanishes for even m).
Recently, D. Davis, based on the results that we describe in this chapter, has
found the best lower bound for TCs(RPm) coming from mod 2 singular
cohomology considerations, see [9].

Throughout this chapter, we will only be concerned with simple coefficients
in R = Z2, and will omit reference of coefficients in writing a cohomology
group H∗(X). In these terms,

∆∗s : H∗(Xs) = H∗(X)⊗ s → H∗(X)

is given by the s-fold iterated cup-multiplication, which explains the nota-
tion “zcl“ (zero-divisors cup-length) for elements in the kernel of ∆∗s .

3.1 Cohomology input

Recall from [1] the inequalities that relate cat(−) and TC(−):

cat(Xs−1) ≤ TCs(X) ≤ cat(Xs).

Since cat((RPm)s) = sm for any s, the monotonic sequence

TC2(RPm) ≤ TC3(RPm) ≤ · · · ≤ TCs(RPm) ≤ · · ·

21
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4 [17] was published as part of [6].

has an average linear growth. This chapter’s goal is to study the actual
deviation of the above growth from the linear function sm.

The inequalities zcls(RPm) ≤ TCs(RPm) ≤ sm, provided by proposi-
ton 2.1, suggest the following definition.

Definition 3.1. For m ≥ 1 and s ≥ 2, set

Gs(m) = sm− zcls(RPm)

and
δs(m) = sm− TCs(RPm).

Remark 3.1. (i) We have the inequalities

0 ≤ δs(m) ≤ Gs(m). (3.1)

(ii) Before stating and proving theorems involving δs and Gs, we inform
the reader that the proofs of such theorems use the following notation.
For s ≥ 2, let xi ∈ H1((RPm)s) be the pull back of the non-trivial class
in H1(RPm) under the i-th projection map (RPm)s → RPm. Note
that we do not stress the dependence of xi on s. This is because, if
s′ > s and πs,s′ : (RPm)s′ → (RPm)s is the projection onto the first
s coordinates, then we think of the map induced in cohomology by
πs,s′ as a honest inclusion. Note that, in these conditions, the standard
(graded) basis of H∗((RPm)s) consists of the monomials xe1

1 xe2
2 · · · x

es
s

where 0 ≤ ei ≤ m —recall that xm+1
i = 0.

To make this chapter self-contained, we include some theorems that are
due to J. González, D. Gutiérrez and A. Lara, see [17] 4.

Theorem 3.1 ([17]). For m ≥ 1, the sequence of non-negative integers {Gs(m)}s
is non-increasing,

G2(m) ≥ G3(m) ≥ · · · ≥ 0. (3.2)

Proof. The statement follows once the inequality

zcls+1(RPm) ≥ zcls(RPm) + m, s ≥ 2

is verified. If z ∈ H∗((RPm)s) is a non-zero product of s-th zero-divisors,
then

z · (x1 + xs+1)
m = z · (xm

s+1 + · · · ) 6= 0.

The non-increasing sequence (3.2) stabilizes to some non-negative inte-
ger G(m) which is bounded from above by 2e(m)− 1, a fact that follows from
theorem 3.2. Here e(m) stands for the length of the block of consecutive
ones ending the binary expansion of m. Theorem 3.3 shows that in fact the
equality G(m) = 2e(m) − 1 holds.
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5 In fact e(m) is defined by the for-
mula

m ≡ 2e(m) − 1 mod 2e(m)+1 (3.3)

6 It was shown in [17] that for a
fix j ∈ {1, . . . , s}, the ideal of s
zero-divisors in H∗(RP2e−1)⊗s is
geneated by the elements xi + xj
with 1 ≤ i ≤ s and i 6= j. A sketch
of the proof is given below. For
j = s, let

z = ∑
(a1 ,...,as)

xa1
1 · · · x

as
s

be the expression, in terms of the
standard basis, of a homogeneous
s-th zero-divisor. Note that the
number of summands must be
even if deg(z) ≤ m. Then, it is suf-
fices to prove that the following el-
ements lie in the ideal Is generated
by the binomials xi + xs:

(i) The sum of any two basis
elements in degree at most
m.

(ii) A basis element in degree
grater than m.

Items (i) and (ii) are dealt with in-
ductive arguments. For j 6= s, the
argument is identical to the previ-
ous one.

7 where `(m) is as in theorem 3.2.

Theorem 3.2 ([17]). The inequalities 0 ≤ δs(m) ≤ 2e(m) − 1 hold provided
s ≥ `(m). Here `(m) = max{(m + 1)/2e(m), 2} and e(m) stands for the length
of the block of consecutive ones ending the binary expansion of m (e.g., e(m) = 0
if m is even 5 ). In particular, if m is even and s ≥ `(m), δs(m) = 0, so that
TCs(RPm) = sm.

Proof. From equation (3.1), it is enough to show that for s ≥ `(m),
Gs(m) ≤ 2e(m) − 1. Set e = e(m).
For e ≥ 1 and s ≥ 2, the inequality Gs(2e − 1) ≤ 2e − 1 holds due to the
non-triviality of the s-th zero-divisor 6

(x1 + x2)
2e−1(x1 + x3)

2e−1 · · · (x1 + xs)
2e−1 ∈ H∗((RP2e−1)s).

If m > 2e − 1 and η stands for (m + 1)/2e (η ≥ 3), then the product of η-th
zero-divisors

(x1 + xη)
m+2e · · · (xη−1 + xη)

m+2e 6= 0 ∈ H∗((RPm)η).

This claim follows from lemma 2.2: the hypothesis on m and e implies that
the binomial coefficient (m+2e

2e ) is odd, so

(xi + xη)
m+2e

= xm
i x2e

η + terms involving powers xj
i with j < m

for 1 ≤ i ≤ η − 1. Thus, ignoring basis elements xa1
1 · · · x

aη
η having

ai < m for some i ∈ {1, . . . , η − 1}, the product of η-th zero-divisors under
consideration becomes

(xm
1 x2e

η )(xm
2 x2e

η ) · · · (xm
η−1x2e

η ) = xm
1 xm

2 · · · xm
η−1x(η−1)2e

η ,

which is a basis element. This yields Gη(m) ≤ 2e − 1.

Definition 3.2. Consider the finite sequence of numbers

{δ`(m)(m), δ`(m)−1(m), . . . , δ2(m)}, 7 (3.4)

we say that an element in this sequence is well controlled if it is less than or
equal to 2e(m) − 1.

Definition 3.3. Let λ : Z+ −→ Z be the function whose value in m,
λ(m), is the smallest integer s such that for t ≥ s, δt(m) is well controlled.
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Remark 3.2.

(i) We refer to the tail elements
{δλ(m)(m), δλ(m)−1(m), . . . , δ2(m)}, (3.5)

as the critical sequence.

(ii) Notice that e(m) = 0 for m ≡ (0, 2) mod 4, and e(m) = 1 for m ≡ 1 mod 4. Thus the above theorem says
that, provided s ≥ `(m),

δs(m) ∈ {0, 1} (3.6)

and
δs(m) = 0, if m is even, (3.7)

where

`(m) =

{
m + 1, if m is even;
m+1

2 , if m ≡ 1 mod 4.

Therefore in our case of interest, m 6≡ 3 mod 4, an element in the sequence (3.4) is well controlled if satisfies
(3.6) and (3.7).

The functions δs are notably difficult to deal with as they reflect the intrinsic homotopy phenomenology
of the multi-sectioning problem for the fibrations in definition 2.2. A more accessible task is to deal with
the functions Gs since, by construction, these objects depend only on the mod 2 cohomology ring of RPm.
However, in a large portion of the cases, we have δs(m) = Gs(m), which justifies a careful analysis of the
functions Gs. Two central tasks in such a direction are (i) the computation of the stabilized G(m), and (ii) the
estimation of the smallest integer s(m) ≥ 2 satisfying

Gs(m) = G(m) for s ≥ s(m). (3.8)

Theorem 3.3 below, addressed task (i) above. Furthermore, its proof serves as preparation for one of the main
results of this chapter, theorem 3.4, which addresses task (ii) above.

Theorem 3.3. G(m) = 2e(m) − 1.

Proof. As before, set e = e(m). The proof of theorem 3.2 gives G(m) ≤ 2e − 1. Since the ideal of s-th
zero-divisors of RPm is generated by the classes x1 + xi with 2 ≤ i ≤ s, it suffices to show that no non-zero
product

(x1 + x2)
m+i2(x1 + x3)

m+i3 · · · (x1 + xs)
m+is , (3.9)

where s ≥ 2 and m + ij ≥ 0, can yield a gap Gs(m) smaller than 2e − 1. In view of (3.3)

m + 1 = 2eq (3.10)

for some positive odd integer q. Assume, for a contradiction, that there is a non-zero product (3.9) with
sm−∑s

j=2(m + ij) < 2e − 1 or, equivalently, with

m < 2e − 1 +
s

∑
j=2

ij. (3.11)

It can be assumed in addition that each ij is positive, for otherwise we just remove the corresponding
factor (x1 + xj)

m+ij from (3.9) without altering (3.11). In this setting, we have that

x(u+1)2e

1 divides (x1 + xj)
m+ij , if ij > 2eu for some u ≥ 0, (3.12)

for in fact (x1 + xj)
m+ij = (x1 + xj)

m+1(x1 + xj)
2eu(x1 + xj)

ij−2eu−1, where (3.10) gives

(x1 + xj)
m+1(x1 + xj)

2eu = (x2e

1 + x2e

j )q+u,
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which is divisible by x(u+1)2e

1 as x2eq
j = xm+1

j = 0.

Now, for c ≥ 1, let pc be the number of integers i2, . . . , is in (3.9) that lie in the interval

{2e(c− 1) + 1, 2e(c− 1) + 2, . . . , 2ec}.

Then (3.10) and (3.11) yield

2eq = m + 1 < 2e + ∑
c≥1

2ec pc i.e. q ≤∑
c

c pc.

The punch line is that (3.12) implies that (3.9) is divisible by xη
1 where

η = ∑
c

2ec pc ≥ 2eq = m + 1

which, in view of the relation xm+1
1 = 0, contradicts the non-triviality of (3.9).

Theorem 3.4 below estimates s(m) by a function whose value in m depends strongly on the number and
distribution on ones in the dyadic expansion of m. The formulation of this theorem requires the following
definition.

Definition 3.4. Let m be a positive integer such that m + 1 is not a 2-power, and set e = e(m). Let k be the
first positive integer with 2k > m (so k > e), and set d0 = 2k −m− 1 (so d0 is a positive integer divisible
by 2e). Consider the non-negative integer t = (d0 − 2e)/2e and, for 1 ≤ ` ≤ t, set d` = d0 − 2e` (so
d0 > d1 > · · · > dt = 2e). Define non-negative integers r` (0 ≤ ` ≤ t) by the recursive equations

r0 =

{⌊
m−(2e−1)

d0

⌋
, if (m+d0

d0
) ≡ 1 mod 2;

0 , otherwise,

r1 =

{⌊
m−(2e−1)−d0r0

d1

⌋
, if (m+d1

d1
) ≡ 1 mod 2;

0 , otherwise,

r2 =

{⌊
m−(2e−1)−d0r0−d1r1

d2

⌋
, if (m+d2

d2
) ≡ 1 mod 2;

0 , otherwise,

· · ·

rt =

{⌊m−(2e−1)−d0r0−d1r1−···−dt−1rt−1
dt

⌋
, if (m+dt

dt
) ≡ 1 mod 2;

0 , otherwise.

Lastly, set r(m) = 1 +
t

∑
`=0

r`.

In definition 3.4, the dyadic expansion of d0 is the “complement” of that for m. So (m+d0
d0

) is odd (and thus

r0 = bm−(2e−1)
d0

c). Further, since dt = 2e, the binomial coefficient (m+dt
dt

) is odd too (recall that m ≡ 2e − 1
(mod 2e+1)). In addition, since 2e divides m− (2e − 1) as well as each d`, we actually have

rt =
m− (2e − 1)− d0r0 − d1r1 − · · · − dt−1rt−1

dt
. (3.13)

Theorem 3.4. With the notation in (3.8) and definition 3.4, s(m) ≤ r(m).
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Proof. Let s = r(m) and s` = 1 + ∑`−1
i=0 ri for 0 ≤ ` ≤ t. Consider the product of s-th zero-divisors

t

∏
`=0

(
r`

∏
i`=1

(x1 + xs`+i`)
m+d`

)
. (3.14)

By Proposition 2.1, it suffices to check that the expansion of (3.14) in terms of the standard basis of H∗((RPm)s)

contains the basis element xm−(2e−1)
1 xm

2 · · · xm
s .

Note that the `-th factor in (3.14) is to be neglected if r` = 0 and, by construction, this happens whenever
(m+d`

d`
) is even. On the other hand, if r` > 0 (so that (m+d`

d`
) is odd), then each of the factors (x1 + xs`+i`)

m+d`

in (3.14) takes the form

(x1 + xs`+i`)
m+d` = xd`

1 xm
s`+i` + monomials involving powers xp

s`+i`
,

with p < m. Therefore, for the purpose of keeping track of basis elements of the form xa1
1 xa2

2 · · · x
as
s with

ai = m for 2 ≤ i ≤ s, equation (3.14) becomes

t

∏
`=0

(
r`

∏
i`=1

(
xd`

1 · x
m
s`+i`

))
= xd0r0+d1r1+···+dtrt

1 xm
2 · · · xm

s .

The result then follows from (3.13).

Remark 3.3. (i) Theorems 3.3 and 3.4 give

λ(m) ≤ s(m) ≤ r(m).

(ii) As mentioned at the beginning of the chapter, D. Davis found the best lower bound for TCs(RPm)
coming from the techniques in this work, in [9] he gives a descriptions (both recursive and direct) of
the function s(m).

3.2 Binary expansions

In this section we illustrate the way in which the values of the function r(m) depend on the number and
distribution of ones in the binary expansion of m. With this in mind, it is convenient to set a suitably flexible
notation.

Definition 3.5. Let m be a positive integer. Write m = ∑
µ
i=0 bi2i with bi ∈ {0, 1} and bµ = 1. The binary

expansion of m, that is, the string of zeros and ones bµ bµ−1 · · · b0, starts (from the left) with a block of ones,
say n1 of them; then it has a block of zeros, say z1 of them; then it has a second block of ones, say n2 of
them, and so forth. The codified binary expansion of m, cbe(m), is the (finite) sequence of positive integers
cbe(m) = (n1, z1, n2, . . .).

Remark 3.4. (i) The length of the sequence cbe(m) agrees mod 2 with m, and µ is the integral part of
log2(n).

(ii) It is standard to set α := ∑ ni (the number of ones in the binary expansion of m) and ν := min{i : bi 6= 0}
(the exponent in the highest 2-power dividing m). For instance, ν = zω when cbe(m) = (n1, z1, . . . , nω , zω).
If we need to stress the dependence of the parameters e, α, µ, ν, bi, ni, or zi on m, we use the notation
e(m), α(m), µ(m), ν(m), bi(m), ni(m), or zi(m), accordingly.

(iii) The relation cbe(m) = (n1, z1, n2, . . .) sets a bijective correspondence from the set of positive integers m
to the set of finite sequences of positive integers (n1, z1, n2, . . .), and we use
p2(n1, z1, n2, · · · ) = m for the inverse function. In fact, it will be convenient to replace the nota-
tion p2(n1, z1, n2, · · · ) by the corresponding binary expansion 1n10z11n2 · · · , where exponents indicate
the number of times that a zero or a one is to be repeated.
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Proposition 3.5. Let m be even with cbe(m) = (n1, z1, . . . , nω, zω) and n1 < n2 < · · · < nω. Assume nu < zu
for 1 ≤ u ≤ ω (this condition can be thought of as saying that the blocks of ones in the binary expansion of m are

“suitably” spaced). Then r(m) = 1 + 2nω . More explicitly, the non-zero numbers r` (0 ≤ ` ≤ t) in definition 3.4 hold
for ` ∈ {κu, `u : 1 ≤ u ≤ ω} where

κu = 1z10n2 1z2 · · · 0nu−11zu−10nu+zu+···+nω+zω ;

`u = 1z10n21z2 · · · 0nu−11zu−10nu 1zu−nu 0nu+nu+1+zu+1+···+nω+zω .

(Just as the sum ∑ω
i=u+1(ni + zi) is ignored for u = ω, the initial segment 1z1 0n2 1z2 · · · 0nu−1 1zu−1 in the two binary

expansions above should be ignored for u = 1. For instance κ1 = 0.) Furthermore

rκ1 = 2n1 − 1 with dκ1 = 1z10n21z2 · · · 0nω 1zω ,
r`1 = 1 with d`1 = 1n1 0n21z2 · · · 0nω 1zω ,

and, for u ≥ 2,

rκu = 2nu − 2nu−1 − 1 with dκu = 1zu 0nu+11zu+1 · · · 0nω 1zω ,
r`u = 1 with d`u = 1nu 0nu+11zu+1 · · · 0nω 1zω .

Proof. The assertion following definition 3.4 obviously generalizes to the observation that, for any u ∈
{1, . . . , ω}, the binary expansions of dκu and d`u are complementary to that of m. In particular all binomial
coefficients (m+dκu

dκu
) and (

m+d`u
d`u

) with u ∈ {1, . . . , ω} are odd.

We start by considering in detail the (slightly special) case u = 1. The equality r0 = 2n1 − 1 follows from
the fact that (2n1 − 1)d0 ≤ m < 2n1 d0, which in turn holds since

m− (2n1 − 1)d0 = 1n10z11n20z2 · · · 1nω 0zω − 1z10n21z2 · · · 0nω 1zω 0n1+

1z10n21z2 · · · 0nω 1zω

= 1n1+z1+n2+z2+···+nω+zω − 1z10n21z2 · · · 0nω 1zω 0n1

= 1n20z2 · · · 1nω 0zω 1n1 ≥ 0

(3.15)

and m− 2n1 d0 = 1n20z2 · · · 1nω 0zω 1n1 − 1z10n21z2 · · · 0nω 1zω < 0, due to the assumption n1 < z1.
Next we show that

r` = 0 for 0 < ` < `1. (3.16)

For such a value of ` we have

0n11z10n21z2 · · · 0nω 1zω = d0 > d` = d0 − ` > d0 − `1 = 0z11n10n21z2 · · · 0nω 1zω , (3.17)

so that the binary expansion of d` must have at least one of the zeros on the right-hand side of (3.17) changed
to a 1. If such a 1 appears in one of the blocks 0ni with 2 ≤ i ≤ ω, then the binomial coefficient (m+d`

d`
) is

obviously even, and so r` = 0. Otherwise, the 1 must appear in the block 0z1 , so that

d` ≥ 2n1+n2+z2+···+nω+zω .

In such a situation the vanishing of r` follows from the easy-to-check fact that

2n1+n2+z2+···+nω+zω > m− d0r0.

For the case ` = `1, note that
d`1 ≤ m− d0r0 < 2d`1 , (3.18)

which yields r`1 = 1. The first inequality in (3.18) holds since

d`1 + 2n1 d0 = 0z11n10n21z2 · · · 0nω 1zω + 1z10n21z2 · · · 0nω 1zω 0n1

≤ 1n1+z1+···+nω+zω = m + d0,
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where the inequality comes from the fact that both

0z11n10n2 · · · and 1z10n2 · · ·

have zeros in their (n1 + z1 + 1)-st position counted from the left, so that any previous carry in the binary
sum disappears at that spot, while no further carries appear from that point on. The second inequality
in (3.18) holds since

m + d0 = 1n1+z1+···+nω+zω

< 0z1−11n10n21z2 · · · 0nω 1zω 0 + 1z10n21z2 · · · 0nω 1zω 0n1

= 2d`1 + 2n1 d0

where the inequality is due to the fact that a carry is forced at the end of the binary sum of

0z1−11n1 · · · and 1z10n2 · · · .

It is convenient to note at this point that the numerator in the quotient defining the next non-trivial r`
(` > `1) is

m− (2n1 − 1)d0 − d`1 = m− 1z10n2 1z2 · · · 0nω 1zω 0n1 + 1z10n2 1z2 · · · 0nω 1zω

− 1n10n21z2 · · · 0nω 1zω

= m− 1z10n21z2 · · · 0nω 1zω 0n1

+ 1z1−n10n1+n2+z2+···+nω+zω

= 1n10z11n20z2 · · · 1nω 0zω

− 1n10z1−n10n21z2 · · · 0nω 1zω 0n1 .

(3.19)

The case u = 1 will be complete once we show that r` = 0 for `1 < ` < k2. Such a value of ` has
d0 − `1 > d` = d0 − ` > d0 − κ2, i.e.

0z11n10n21z2 · · · 0nω 1zω = d0 − `1 > d` > d0 − κ2 = 0n1+z10n21z2 · · · 0nω 1zω , (3.20)

so that the binary expansion of d` must have at least one of the zeros on the right-hand side of (3.20)
changed to a 1. As above, if such a 1 appears in one of the blocks 0ni with 2 ≤ i ≤ ω, then the binomial
coefficient (m+d`

d`
) is obviously even, and so r` = 0. Otherwise, the 1 must appear in the block 0n1+z1 , so that

d` ≥ 2n2+z2+···+nω+zω . In such a situation the vanishing of r` follows from the fact that 2n2+z2+···+nω+zω is
strictly larger than (3.19), which in turn is observed from the binary-sum setup below.

z1︷ ︸︸ ︷
1n1 0z1−n1

n2+z2+···+nω+zω︷ ︸︸ ︷
0n21z2 · · · 0nω 1zω

n1︷︸︸︷
0n1

+ ︸︷︷︸
n1

1︸︷︷︸
n1︸ ︷︷ ︸

z1

0n20z2 · · · 0nω 0zω︸ ︷︷ ︸
n2+z2+···+nω+zω

1n10z1 · · · < 1n1000 · · · 0︸ ︷︷ ︸
z1−1

1 · · ·

The cases u ≥ 2 can now be dealt with recursively, using part of the previous analysis. For the start of the
recursion we have to check that rκ2 = 2n2 − 2n1 − 1 or, equivalently, that

(2n2 − 2n1 − 1)dκ2 ≤ m− (2n1 − 1)d0 − d`1 < (2n2 − 2n1)dκ2 .
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Again, both inequalities are verifiable from the corresponding binary expansions. Indeed, (3.19) yields

m−(2n1 − 1)d0 − d`1 − (2n2 − 2n1 − 1)dκ2

= 1n10z11n20z2 · · · 1nω 0zω − 1n10z1−n10n21z2 · · · 0nω 1zω 0n1−
(2n2 − 2n1 − 1)dκ2

= 1n10z11n20z2 · · · 1nω 0zω + 0n21z2 · · · 0nω 1zω−
1n10z1−n10n21z2 · · · 0nω 1zω 0n1 − (2n2 − 2n1)dκ2

= 1n10z11n2+z2+···+nω+zω − 1n10z1−n10n21z2 · · · 0nω 1zω 0n1+

0n21z20n31z3 · · · 0nω 1zω 0n1 − 2n2 dκ2

= 1n10z11n2+z2+···+nω+zω − 1n1 0z1−n10n2+z2+···+nω+zω+n1 − 2n2 dκ2

= 1n10z11n2+z2+···+nω+zω − 1n10z1+n2+z2+···+nω+zω−
1z20n31z3 · · · 0nω 1zω 0n2

= 1n10z11n2+z2+···+nω+zω − 1n10z11z20n31z3 · · · 0nω 1zω 0n2

= 1n30z3 · · · 1nω 0zω 1n2 ≥ 0,

(3.21)

and so

m− (2n1 − 1)d0 − d`1 − (2n2 − 2n1)dκ2 =1n30z3 · · · 1nω 0zω 1n2−
1z20n31n3 · · · 0nω 1zω < 0.

From this point on, the proof enters a recursive loop which starts (for u = 2) with the fact that the two
relations

r` = 0 for κu < ` < `u and r`u = 1

are shown for 2 ≤ u ≤ w following the arguments proving (3.16) and (3.18), respectively. In fact, the situation
is formally identical as the reader will note by comparing (3.21) with (3.15), as well as by comparing the
easily verified fact that (3.19) takes the form

1n20z21n30z3 · · · 1nω 0zω − 0n2−n1 1z20n31z3 · · · 0nω 1zω 0n1

with

m− (2n1 − 1)d0−d`1 − (2n2 − 2n1 − 1)dκ2 − d`2

= 1n30z3 · · · 1nω 0zω 1n2 − d`2 (by (3.21))

= 1n30z3 · · · 1nω 0zω 1n2 − 1n20n31z3 · · · 0nω 1zω

= 1n3−n20z3 · · · 1nω 0zω 1n2 − 0n31z3 · · · 0nω 1zω

= 1n30z3 · · · 1nω 0zω − 0n3−n21z3 · · · 0nω 1zω 0n2 ,

where the last equality is obtained by complementing with respect to 1n3+z3+···+nω+zω .

Remark 3.5. Proposition 3.5 can be generalized slightly. Specifically, the hypothesis nu < zu for 1 ≤ u ≤ ω
can be weakened to requiring only nu ≤ zu for 1 ≤ u ≤ ω without altering the main conclusion r(m) =
1 + 2nω . The explicit description of the non-trivial r`’s changes only slightly since κu = `u (and of course
dκu = d`u ) whenever nu = zu, in which case the two values of rκu and r`u will merge into the single

rκu = r`u = 2nu − 2nu−1

(interpreting 2n0 as zero).
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Remark 3.6. More generally, for m as in proposition 3.5 (and with the hypothesis nu < zu replaced by the
more general requirement nu ≤ zu), assume that the binomial coefficient(

m + j
m + i

)
(3.22)

is odd for some integer i ∈ {0, 1, . . . , 2zω − 1} and j = (i + 1)(2nω + 1)− 2. Then the proof of proposition 3.5
can be adapted to give r(m + i) = 1 + 2nω . Note that the hypothesis i < 2zω implies that the first 2ω − 2
terms in cbe(m + i) agree with those of cbe(m), though the number and form of the subsequent terms in the
two codified binary sequences might bear no relationship to each other. Thus, this example allows us to
identify instances of m′ where the suitable spacing conditions in proposition 3.5 hold only partially, and yet
r(m′) has a simple description (see proposition 3.8).

Remark 3.7. The binomial coefficient (3.22) is odd in a many instances. A simple way to see this is by
observing that the mod 2 value of (3.22) agrees with that of the binomial coefficient (j

i) whenever the
condition i < 2zω is strengthened to j < 2zω . (The latter hypothesis can be thought of as requiring that the
dyadic “tail” i in m + i is “far enough” from the last block of ones in the binary expansion of m). It is then
worth noticing that the mod 2 values of (j

i) (as i varies) have an interesting arithmetical behavior. Consider,
for simplicity, the case ω = 1 = n1, where a nice Fibonacci-type fractal pattern arises for the parity properties
of the resulting binomial coefficient (j

i) = (3i+1
i ). Indeed, if we list the mod 2 values of (3i+1

i ) in the range
2` ≤ i ≤ 2`+1 − 2 with i even, we get the first 2`−2 numbers in the series

13, 0, 12, 02, 13, 05, 13, 0, 12, 010, 13, 0, 12, 02, 13, 021, 13, 0, 12, 02, 13, 05, 13, 0, 12, 042, . . . (3.23)

followed by 2`−2 zeros. Here the notation “ab ” stands for “a, a, . . . , a” where a is repeated b times. The
Fibonacci-type behavior enters as follows: Let fc denote the sequence of the first 2c digits in (3.23). For
instance f0 = (1) and f1 = (1, 1). Then, for c ≥ 2, the sequence fc is the concatenation of fc−1 followed by
fc−2, and followed finally by 2c−2 zeros.

Remark 3.8. The case i = 0 in remark 3.6 specializes to proposition 3.5. In turn, the case n1 = ω = 1 in
proposition 3.5 was obtained in [18, theorem 4.3] as part of a series of sharp results for the higher topological
complexity of certain families of flag manifolds. In fact, it was the stabilization phenomenon “TCs → s hdim”
noted in [18] for flag manifolds that motivated us to take a closer look at the situation for real projective
spaces.

Other instances in the explicit description of the function r(m) are described in the remainder of this
section (for m even), with attention restricted to cases where the binary expansion of m has at most two
blocks of consecutive ones. For instance, proposition 3.5 (as generalized in remark 3.5) and proposition 3.6
below account for a full description of the function r(m) when m is even and has a single block of consecutive
ones. The proofs of propositions 3.6 and 3.7–3.10 below follow the same strategy as that used in the proof of
proposition 3.5; however the actual arguments are much easier and, consequently, will be left as an exercise
for the diligent reader. We will only focus on cases where m is even, in particular e(m) = 0 and d` = d0 − `.
Accordingly, we will specify (the binary expansion of) d`, but will omit explicit reference to `. (Both ` and d`
were described explicitly in the statement of proposition 3.5 for proof-referencing purposes.)

Proposition 3.6. Let m be even with cbe(m) = (n, z) and n > z. Then

r(m) = 1 +
η

∑
i=0

2n−iz,

where η stands for the largest integer which is strictly smaller than n/z. Explicitly, the non-zero numbers r` (0 ≤ ` ≤ t)
in definition 3.4 hold for ` ∈ {`1, `2} with

r`1 =
η

∑
i=0

2n−iz − 1

and r`2 = 1, where d`1 = 1z and d`2 = 1n−ηz.
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Just as in remark 3.5, when n− ηz = z, so that `1 = `2, the two values r`1 and r`2 should be interpreted as
merging into the single

r`1 = r`2 =
η

∑
i=0

2n−iz.

A similar phenomenon applies with propositions 3.7–3.10, but we will make no further comments on such a
direction.

Remark 3.9. The weakest instance in Proposition 3.6 holds with z1 = 1 (that is, when m + 2 is a 2-power), for
then r(m) agrees with the linear function `(m) in section3.1.

When m is even and cbe(m) = (n1, z1, n2, z2), the hypotheses in proposition 3.5 (as generalized in
remark 3.5) become

n1 < n2, n1 ≤ z1, and n2 ≤ z2. (3.24)

The following results describe the value of r(m) when all but one of these inequalities hold. Note that
proposition 3.7 below is analogous to Proposition 3.6, while Proposition 3.8 below fits in the setting of
Remark 3.6 (as simplified in remark 3.7).

Proposition 3.7. Let m be even with cbe(m) = (n1, z1, n2, z2), n1 ≤ z1 and max{n1, z2} < n2. Then

r(m) = 1 +
η

∑
i=0

2n2−iz2

where η stands for the largest integer which is strictly smaller than n2/z2. Explicitly, the non-zero numbers r`
(0 ≤ ` ≤ t) in definition 3.4 hold for ` ∈ {κ1, `1, κ2, `2} with rκ1 = 2n1 − 1, rκ2 = ∑

η
i=0 2n2−iz2 − 2n1 − 1, and

r`1 = r`2 = 1, where dκ1 = 1z10n21z2 , dκ2 = 1z2 , d`1 = 1n10n21z2 , and d`2 = 1n2−ηz2 .

Proposition 3.8. Let m be even with cbe(m) = (n1, z1, n2, z2) and n2 ≤ n1 ≤ min{z1, z2}. Then r(m) = 1 + 2n1 .
Explicitly, the non-zero numbers r` (0 ≤ ` ≤ t) in definition 3.4 hold for ` ∈ {κ1, `1} with rκ1 = 2n1 − 1 and r`1 = 1,
where dκ1 = 1z10n21z2 and d`1 = 1n20z21n1 .

Proposition 3.9. Let m be even with cbe(m) = (n1, z1, n2, z2) and n2 ≤ z2 < n1 ≤ z1. Then

r(m) = 1 + 2n1 + 2min{n2,n1−z2}.

Explicitly, the non-zero numbers r` (0 ≤ ` ≤ t) in definition 3.4 hold for ` ∈ {κ1, `1, κ2, `2} with rκ1 = 2n1 − 1,
rκ2 = 2min{n2,n1−z2} − 1 and r`1 = r`2 = 1, where dκ1 = 1z10n21z2 , dκ2 = 1z2 , and

d`1 = 1n20n11z2 and d`2 = 1n1−z2 , provided n2 ≥ n1 − z2,
d`1 = 1n20z21n1−n2−z20n2 1z2 and d`2 = 1n2 , provided n2 ≤ n1 − z2.

Proposition 3.10. Let m be even with cbe(m) = (n1, z1, n2, z2) and z1 < n1 < n2 ≤ z2. Then r(m) = 1 + 2n2 .
Explicitly, the non-zero numbers r` (0 ≤ ` ≤ t) in definition 3.4 hold for ` ∈ {κ1, `1, κ2, `2} with

rκ1 = 2n2 − rκ2 − 2,

rκ2 = 2n1+1(2n2−n1−1 − 1) + 2ρ(2z1−1 − 1)
q

∑
i=0

2iz1+2 + 2ρ+1 − 1,

r`1 = r`2 = 1,

where dκ1 = 1z1 0n2 1z2 , dκ2 = 1z2 , d`1 = 1ρ+10n2 1z2 , and d`2 = 1n2 . Here q and ρ stand, respectively, for the quotient
and remainder in the division of n1 − z1 − 1 by z1.
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3.3 Immersion dimension via higher TC: An example

The idea behind this section is to exemplify not only that Gs(m) and δs(m) are closely related, but that
the monotonous behavior of the sequence {Gs(m)}s seems to be particularly attractive in the critical se-
quence (3.5).

Let us start by considering small-dimensional examples, and the way they become part of larger families
sharing similar properties.

There are three singular situations: RP1 is a circle, and it certainly fits in the well known description
of the higher topological complexity of spheres, where the dimension of the sphere plays the decisive role:
TCs(S2k) = s, while TCs(S2k+1) = s− 1, for any s ≥ 2, see [1]. Closely related is the case of the H-spaces
RP3 and RP7, so that [24, theorem 1] gives TCs(RPm) = cat((RPm)s−1) = m(s− 1) for any s if m ∈ {1, 3, 7}.

The first truly interesting case is that of the projective plane, which immerses optimally in three-
dimensional Euclidean space as the Boy Surface, so TC2(RP2) = 3. Note that this is just one below
the dimensional bound in Proposition 2.1, which contrasts with the fact (from theorem 3.4) that

TCs(RP2) = 2s for any s ≥ 3. (3.25)

It is worth remarking that (3.25) is part of a more general phenomenon: Any closed (orientable or not) surface
S, other than the sphere, and the torus, has TCs(S) = 2s whenever s ≥ 3 (c.f. [18, theorem 5.1]); this should
also be compared to the fact that TC2(S) = 4 for any (orientable or not) closed surface S other than sphere,
the torus and the projective plane. For our purposes, a much more interesting observation to make at this
point is that (3.25) generalizes (again in view of theorem 3.4) to the fact that, for a ≥ 1,

TCs(RP2a
) = 2as for any s ≥ 3,

while
TC2(RP2a

) = Imm(RP2a
) = 2a+1 − 1

In terms of the δs functions, such a situation translates into the equalities

δ3(2a) = 0 and δ2(2a) = 1. (3.26)

Since r(2a) = 3 (recall that a ≥ 1), this yields a nicely regular increasing behavior for the critical sequence (3.5)
when m = 2a. Admittedly, the length of the sequence (3.26) is ridiculously short but, as discussed next, a
similar regularity phenomenon could actually be holding in the next obvious example, namely m = 2a + 2a+1

with a ≥ 1 (the special case m = 3 has been considered above), which we discuss next.

At first sight, the situation is slightly special for m = 2a + 2a+1 if a = 1, so we consider it first. The
immersion dimension of RP6 is known to be TC2(RP6) = 7, while proposition 3.6 gives r(6) = 7. Thus, the
critical sequence (3.5) now becomes

δ7(6) = 0, δ6(6) = ?, δ5(6) = ?, δ4(6) = ?, δ3(6) = ?, δ2(6) = 5. (3.27)

Furthermore, the proof of theorem 3.4 yields

(x1 + x2)
7(x1 + x3)

7 · · · (x1 + x7)
7 6= 0.

In particular, if we only consider the first j− 1 factors (2 ≤ j ≤ 7), we obtain the last instance in the chain of
inequalities δj(6) ≤ Gj(6) ≤ 7− j. Consequently, (3.27) becomes

δ7(6) = 0, δ6(6) ≤ 1, δ5(6) ≤ 2, δ4(6) ≤ 3, δ3(6) ≤ 4, δ2(6) = 5. (3.28)

It would be interesting to know whether (3.28) really has the nice steady increasing behavior suggested
by (3.26), namely if

δj(6) = 7− j for 2 ≤ j ≤ 7. (3.29)
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8 Note that RP24 is the smallest-
dimensional projective space
whose immersion dimension is
not fully known; yet our purely
homological methods suffice to
get the exact value of TCs(RP24)
for s ≥ 5.

For instance, (3.29) would hold provided one could prove that the in-
equalities in (3.28) held in the stronger form δi(6) ≤ δi+1(6) + 1. At any
rate, the following considerations are intended to give numerical evidence
toward the possibility that the (a ≥ 2)-analogue of (3.29) holds in a suitably
generalized way.

For a ≥ 2, proposition 3.5 gives r(2a + 2a+1) = 5, thus the critical
sequence (3.5) now takes the slightly shorter form

δ5(2a + 2a+1) = 0, δ4(2a + 2a+1) = ?, δ3(2a + 2a+1) = ?,
δ2(2a + 2a+1) = ?

The currently known information about Imm(RP2a+2a+1
) for a ≤ 5 yields

Case a = 2: δ2(12) = 6.

Case a = 3: δ2(24) ∈ {9, 10}.8

Case a = 4: δ2(48) ∈ {9, 10, 11}.

Case a = 5: δ2(96) ∈ {13, 14, . . . , 18}.

The punch line is that the above facts provide some evidence for potentially
extending the estimates in (3.28) by the following:

Conjecture 3.11. For a ≥ 1 and 2 ≤ j ≤ r(2a + 2a+1),

δj(2a + 2a+1) ≤ (r(2a + 2a+1)− j)a. (3.30)

Remark 3.10. Kitchloo-Wilson’s non-immersion result RP48 6⊆ R84 (the
lowest-dimensional new result in [22] giving δ2(48) < 12) implies that we
should not expect equality to hold in (3.30) —which seems to be compatible
with the fact that the potential new non-immersion result in conjecture 3.12
below is still far from the expected optimal Euclidean immersion of RPm,
namely 2m− 2α(m) + o(α(m)).

Our interest in the above discussion comes from the fact that conjec-
ture 3.11 obviously contains (with j = 2) what would be the new (as far as
we are aware of) non-immersion result δ2(2a + 2a+1) ≤ 3a for a ≥ 2, i.e.:

Conjecture 3.12. For a ≥ 2, Imm(RP2a+2a+1
) ≥ 2a+1 + 2a+2 − 3a.

For example, with a = 3, conjecture 3.12 would settle the value of the
currently open immersion dimension of RP24 (one of the iconic cases back
in the decade of the 1970’s) to be TC2(RP24) = 39.

Of course, one could try to apply the TCs approach to Imm(RPm) for
other families of projective spaces RPm. For instance, some of the phenom-
ena described above seem to hold for spaces of the form RP2a+2a+1+2a+2

with
a ≥ 2 and, more generally, for spaces RPm with cbe(m) = (n1, z1) and
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z1 ≥ n1 − 1. One could even try to use the same strategy in order to prove (positive) immersion results. In-
deed, just as (3.30) is a statement about the possibility that the increasing behavior of the critical sequence (3.5)
is bounded from above by some linear function, it is natural to try to prove a general statement asserting
that, for some fixed integer φ(m), δj(m) ≥ δj+1(m) + φ(m) in the range of the critical sequence (3.5). Such a
possibility will most likely need to use stronger homotopy methods (e.g. the Hopf-type obstruction methods
recently developed in [16]), rather than the homological methods in this paper. For instance, the homotopy
obstruction methods in [8, Section 2] seem to lead to a proof of equality in (3.30) for j = r(2a + 2a+1).



4

On the effective topological complexity of Σg, g ≥ 2

Let Σg be embedded in R3 so that Σg is invariant under reflections in the xy- ,yz- , and xz-planes. Let σ
stand for the “antipodal” (orientation-reversing) involution on Σg given by σ(x, y, z) = (−x,−y,−z). If we
consider Σg with a left action of Z2 = {e, σ}, then according with definition 2.16,

TCσ(Σg) := TCZ2,2(Σg) = secat
(

p2 : P2(Σg)→ Σg × Σg
)

.

For the fibration p2 : P2(Σg)→ Σg × Σg, note that P2(Σg) is the topological disjoint union of two copies
of P(Σg), and we write

P2(Σg) = Pe(Σg)ä Pσ(Σg),

with Pe(Σg) corresponding to the condition α(1) = β(0) and Pσ(Σg) to the condition α(1) = σ · β(0). In these
terms,

p2(γ) =

{
e0,1(γ), for γ ∈ Pe(Σg)
ε0,1(γ), for γ ∈ Pσ(Σg),

where e0,1(γ) = (γ(0), γ(1)) and ε0,1(γ) = (γ(0), σ · γ(1)) is the “twisted” evaluation map. In particular, if
x0 ∈ Σg is the base point of Σg, then

F := p−1
2 (x0, x0)

= ΩΣg ä Maps(I, 0, 1; Σg, x0, σ · x0)

' Z2 ×ΩΣg.

As mentioned in the preliminaries, asking if the inequalities TC(Σg) ≤ 3 and TCσ(Σg) ≤ 3 hold is
equivalent to asking if the fibrations

∗
3

e0,1 and ∗
3

p2

admit a global section. There are commutative diagrams of fibrations

ΩΣg Z2 ×ΩΣg

PΣg P2(Σg)

Σg × Σg Σg × Σg

e0,1 p2

(4.1)

35
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and

(ΩΣg)∗4 (Z2 ×ΩΣg)∗4

4∗
Σg×Σg

(PΣg)
4∗

Σg×Σg
(PG(Σg))

Σg × Σg Σg × Σg,

∗
3

e0,1 ∗
3

p2

(4.2)

both fibers in the last diagram are 2-connected, and since dim(Σg × Σg) = 4, there is only one primary
obstruction

Og ∈ H4
(

Σg × Σg; π3

(
(ΩΣg)

∗4
))

for the inequality TC(Σg) ≤ 3, and only one primary obstruction

Og,Z2 ∈ H4
(

Σg × Σg; π3

(
(Z2 ×ΩΣg)

∗4
))

for the inequality TCσ(Σg) ≤ 3. Functoriality of primary obstructions implies that Og hits Og,Z2 under the
morphism

ρ4 : H4
(

Σg × Σg; π3

(
(ΩΣg)

∗4
))
→ H4

(
Σg × Σg; π3

(
(Z2 ×ΩX)∗4

))
(4.3)

corresponding to the map of twisted coefficients induced by the inclusion of fibers (ΩΣg)∗4 ↪→ (Z2×ΩΣg)∗4.
The primary obstructions for sectioning e0,1 and p2 on the 1-dimensional skeleton of Σg × Σg are cohomology
classes

og ∈ H1
(

Σg × Σg; H0
(
ΩΣg

))
and og,Z2 ∈ H1

(
Σg × Σg; H0

(
Z2 ×ΩΣg

))
.

Again the functoriality of primary obstructions yields ρ1(og) = og,Z2 , with

ρ1 : H1
(

Σg × Σg; H0
(
ΩΣg

))
→ H1

(
Σg × Σg; H0

(
Z2 ×ΩΣg

))
.

The structural details in the domains of both ρ1 and ρ4 are well understood from [8]. Write πg for π1(Σg, x0),
then:

•
(

H0(ΩΣg)
)⊗4 ∼= H0

((
ΩΣg

)∧4
)
∼= H3

(
Σ3 (ΩΣg

)∧4
)
∼= H3

((
ΩΣg

)∗ 4
)
∼= π3

((
ΩΣg

)∗4) with

H0(ΩΣg) ∼= I(πg), the kernel of the augmentation morphism Z[πg]→ Z.

• The monodromy in the domain of ρ4 (coming from the fibration on the left of (4.2)) is the fourth tensor-
power of the monodromy in the domain of ρ1, the latter one being the action (by homomorphisms)
(πg × πg)× I(πg)→ I(πg) given by

(x, y) ·∑ nici = ∑ nixciy,

where y denotes the inverse of the element y ∈ πg.
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• Og is the 4-th power of og ∈ H1
(

Σg × Σg; I(πg)
)

, where the latter class corresponds to the crossed
morphism given by

φg : πg × πg −→ I(πg)
(x, y) 7→ xy− 1. (4.4)

The structural details on the range of ρ1 and ρ4 are spelled out next.

Lemma 4.1. 1. π3((Z2 ×ΩΣg)∗4) ∼=
(

H0(Z2 ×ΩΣg)
)⊗4 with H0(Z2 ×ΩΣg) ∼= I(Z2 × πg).

2. The monodromy in the range of ρ4 (coming from the fibration on the right of (4.2)) is the 4-th tensor-power
of the monodromy in the range of ρ1, the latter one being the restriction of the action (by homomorphisms)
(πg × πg)×Z[Z2 × πg]→ Z[Z2 × πg] determined on basis elements by

(x, y) · (e, c) = (e, xcy) and (x, y) · (σ, c) =
(

σ, xcσ̃(y)
)

. (4.5)

Here
σ̃ : πg −→ πg

x 7→ [φ0] · σ∗(x) ·
[

φ0
]

, (4.6)

where σ∗ is the isomorphism πg = π1(Σg, x0) → π1(Σg, σ · x0) induced by the based map
σ : (Σg, x0)→ (Σg, σ · x0), φ0 ∈ Maps(I, 0, 1; Σg, x0, σ · x0) is a fixed path, and φ0 is its inverse path.

3. Og,Z2 is the fourth power of og,Z2 ∈ H1
(

Σg × σg; I(Z2 × πg)
)

, where the latter class corresponds to the
crossed morphism

φg,Z2 : πg × πg −→ I(Z2 × πg)
(x, y) 7→ (e, xy)− (e, 1). (4.7)

Before proceeding with the proof, we would like to note that both φg and φg,Z2 are determined up to
principal homomorphisms, and the expressions given in (4.4) and (4.7) come from taking an explicit and
obvious lifting over the 0-skeleton. For instance, (4.7) comes from taking a lifting over the 0-skeleton into the
component Pe(Σg).

Proof. Regarding the first assertion,

π3

(
(Z2 ×ΩΣg)

∗4
)
∼= H3

(
(Z2 ×ΩΣg)

∗4
)

, by connectivity

∼= H3

(
Σ3(Z2 ×ΩΣg)

∧4
)

∼= H0

(
(Z2 ×ΩΣg)

∧4
)

, by suspension isomorphism

∼=
(

H0(Z2 ×ΩΣg)
)⊗4 ,

and the isomorphism H0(Z2 ×ΩΣg) ∼= I(Z2 × πg) is indicated in the preliminaries.
Regarding the second assertion, the fact that the monodromy in the range of ρ4 is the fourth tensor
power of that in the range of ρ1 follows from [26], and the monodromy in the range of ρ1 is described,
in a general case, in the preliminaries.
In view of (4.1) and as in the observation containing (4.3), the third assertion follows from (4.4) and
the functoriality of primary obstructions, recalling that og (resp. og,Z2) is the primary obstruction for
sectioning e0,1 (resp. p2) on the 1-dimensional skeleton of Σg × Σg. In other words, if the same section
is taken on the 0-skeleton for the fibration in (4.1), then φg,Z2 is forced to be the composition of φg
followed by the obvious inclusion I(πg)→ I(Z2 × πg).
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Lemma 4.2. Let [Σg × Σg] denote the fundamental class of Σg × Σg. The map

ρ :
(

π3

(
(ΩΣg)

∗4
))

πg×πg
→
(

π3

(
(Z2 ×ΩΣg)

∗4
))

πg×πg

induced in coinvariants (i.e. in zero dimensional twisted homology) by the fourth join-power of the inclusion of fibers
ΩΣg ↪→ Z2×ΩΣg in (4.1) sends the Poincaré image obstructionOg ∩ [Σg × Σg] into the Poincaré image obstruction
Og,Z2 ∩ [Σg × Σg], the latter of which vanishes if and only if TCσ(Σg) ≤ 3.

Proof. This is just a reinterpretation, in terms of Poincaré duality. The key point is that the morphism (4.3),
induced by the map of coefficients, fits in the commutative diagram

H4
(

Σg × Σg; π3
(
(ΩΣg)∗4

))
H4
(

Σg × Σg; π3
(
(Z2 ×ΩΣg)∗4

))

H0

(
Σg × Σg; π3

(
(ΩΣg)∗4

))
H0

(
Σg × Σg; π3

(
(Z2 ×ΩΣg)∗4

))
(
π3
(
(ΩΣg)∗4

))
πg×πg

(
π3
(
(Z2 ×ΩΣg)∗4

))
πg×πg

,

ρ4

∼=∼=

ρ

where the top two vertical isomorphisms are given by Poincaré duality, i.e. by capping with the fundamental
class

[
Σg × Σg

]
∈ H4

(
Σg × Σg; Z

)
.

Remark 4.1. In his early work on topological complexity, M. Farber realized (through methods much
simpler than obstruction theory) that TC(Σg) = 4 for g ≥ 2. Thus, Og and its Poincaré-isomorphic image
Og ∩ [Σg × Σg] are non-zero. The problem addressed in the present chapter of the thesis is to decide
whether Og ∩ [Σg × Σg] lies in the kernel of ρ. Although we do not yet know the answer of the latter
question, the following considerations are intented to give a partial answer, namely, that the posibility that
Og ∩ [Σg × Σg] ∈ ker(ρ) actually has a “monotonic” behavior on g. Details follow.

We use the following presentation of the fundamental group of Σg

πg = 〈a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg] = 1〉,

and we consider the map
φ : Σg → Σg−1, g− 1 ≥ 2 (4.8)

whose homotopy class corresponds to the homomorphism

ϕ : πg −→ πg−1
ai 7→ ai, 1 ≤ i ≤ g− 1
bi 7→ bi, 1 ≤ i ≤ g− 1

ag, bg 7→ 1.

(4.9)

Recall that oriented closed surfaces we deal with are Eilenberg-MacLane spaces of type (πg, 1). Specifically,
for an Eilenberg-MacLane spaces of type (G, n) and for any (n− 1)-connected CW complex X there is a
bijection [X, Y]→ Hom(πn(X), πn(Y)).

Lemma 4.3. The map H2(πg; Z)→ H2(πg−1; Z) induced by ϕ (or, equivalently, by φ) is an isomorphism.
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9 See [21], page 86.

10 f is compatible with
ϕ : πg → πg−1.

Proof. A free resolution for the trivial Z[πg]-module Z is given by 9

0 Mg
2 Mg

1 Mg
0 Z 0,

d2 d1 ε

(4.10)

where Mg
0 = Z[πg]

〈
xg
〉
, Mg

1 = Z[πg]
〈
d1,g, e1,g, . . . , dg,g, eg,g

〉
, Mg

2 = Z[πg]
〈
ωg
〉
,

and

ε(xg) = 1,
d1(di,g) = ai − 1,
d1(ei,g) = bi − 1,

d2(ωg ) =

g

∑
i=1

([a1, b1] · · · [ai−1, bi−1]− [a1, b1] · · · [ai, bi]bi) di,g +

g

∑
i=1

([a1, b1] · · · [ai−1, bi−1]ai − [a1, b1] · · · [ai, bi]) ei,g,

=

g

∑
i=1

[(
i−1

∏
k=0

[ak, bk]

)(
di,g − aibia−1

i di,g

)]
+ (4.11)

g

∑
i=1

[(
i−1

∏
k=0

[ak, bk]

)
ai

(
ei,g − bia−1

i b−1
i ei,g

)]

where [a0, b0] is understood as 1.
Equation (4.11) implies that the class ωg ⊗ t ∈ Mg

2 ⊗πg Z generates the
kernel of d2 ⊗ id. Furthermore, the map

cg 7→ cg−1

di,g 7→ di,g−1, 1 ≤ i ≤ g− 1
ei,g 7→ ei,g−1, 1 ≤ i ≤ g− 1

dg, eg 7→ 0
fg 7→ fg−1

induces a chain map f : Mg
∗ → Mg−1

∗
10, which in turns induces an isomor-

phism H2(φ, ϕ) : H2(πg; Z) −→ H2(πg−1; Z).

Corollary 4.3.1. The map H4(πg × πg; Z) → H4(πg−1 × πg−1; Z) induced
by ϕ× ϕ (or, equivalently, by φ× φ is an isomorphism.

Proof. It follows from the general Künneth formula.
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The expression in (4.7) yields a commutative diagram

πg × πg I(Z2 × πg)

πg−1 × πg−1 I(Z2 × πg−1).

φg,Z2

I(idZ2 ×ϕ)

φg−1,Z2

ϕ×ϕ

In cohomological terms, this means that the classes og,Z2 and og−1,Z2 hit a common class

o ∈ H1
(

Σg × Σg; I(Z2 × πg−1)
)

under morphisms

H1
(

Σg × Σg; I(Z2 × πg)
)

→ H1
(

Σg × Σg; I(Z2 × πg−1)
)

H1
(

Σg−1 × Σg−1; I(Z2 × πg−1)
)
→ H1

(
Σg × Σg; I(Z2 × πg−1)

)
.

The former map is induced at coefficient level, by the morphism I(idZ2 ×ϕ), whereas the latter map is
induced, at topological space level, by φ× φ. Take fourth powers to get the corresponding mapping situation
Og−1,Z2 ,Og,Z2 7→ o4 on the two vertical maps on the left of the diagram

H4(Σg × Σg; I(Z2 × πg)⊗4)

H4
(

Σg × Σg; I(Z2 × πg−1)
⊗4
)

H0

(
Σg × Σg; I(Z2 × πg−1)

⊗4
)

H4
(

Σg−1 × Σg−1; I(Z2 × πg−1)
⊗4
)

H0

(
Σg−1 × Σg−1; I(Z2 × πg−1)

⊗4
)

.

I(idZ2 ×ϕ)⊗4

(φ×φ)∗

· ∩ [Σg×Σg ]

(φ×φ)∗

· ∩ [Σg−1×Σg−1]

The commutativity of the previous diagram comes from the usual naturality behavior of cap products and
corollary 4.3.1. Since the bottom horizontal map in the diagram is an isomorphism, a chase of elements
yields that the non-triviality of Og−1,Z2 implies the non-triviality of Og,Z2 . In other words, the inequality
TCσ(Σg−1) ≥ 4 implies the inequality TCσ(Σg) ≥ 4. Since TCσ(Σg) is bounded from above by TC(Σg/Z2),
which is known to be 4, the conclusion above becomes that whenever we have TCσ(Σg−1) = 4, we must
also have TCσ(Σg) = 4. Further, in unpublished work, Z. Błaszczyk, J. González and M. Kaluba proved that
TCσ(Σg) ≥ 3 for g ≥ 2. We thus obtain:

Theorem 4.4. 3 ≤ TCσ(Σ2) ≤ TCσ(Σ3) ≤ · · · ≤ 4.

The monotonic behavior on the previous theorem extends to small genera: Błaszczyk, J. González and M.
Kaluba also showed that TCσ(S2) = 1 and TCσ(S1 × S1) = 2.

In the rest of the chapter we focus attention on the case of Σ2. In particular, we recover, from a purely
group-cohomology viewpoint, Błaszczyk - González-Kaluba’s inequality TCσ(Σ2) ≥ 3. In fact, the results in
the following sections seem to suggest that the latter inequality could actually be a strict equality.

4.1 Orientable surface of genus 2

We change a little bit the notation used before. Consider the following presentation of the fundamental group
of Σ2

π2 = π1(Σ2) = 〈a, b, c, d | [a, b][c, d] = 1〉,
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and the free resolution M for the trivial Z[π2]-module Z given by

0 M2 M1 M0 Z 0,
d2 d1 ε

where M0, M1 and M2 are free Z[π2]-modules with basis {x}, {α, β, γ, δ} and {ω} respectively, and,

ε(x) = 1, d1(α) = ax− x,
d1(β) = bx− x, d1(γ) = cx− x,

d1(δ) = dx− x, d2(ω) = (1− aba)α + (a− abab)β + (abab− d)γ + (ababc− 1)δ.

We proceed to construct contracting homotopies s, U and T for the resolutions M, M⊗2 and M⊗4

respectively.
Since the definitions of U and T are direct once we have s, suppose for the moment that the latter one has

already been defined, then:

• A contracting homotopy U for M⊗2 is given by

U−1(1) = x⊗ x
Uk(u⊗ v) = s(u)⊗ v + s−1ε(u)⊗ s(v), k ≥ 0.

• A contracting homotopy T for M⊗4 is given by

T−1(1) = x⊗ x⊗ x⊗ x
Tk(u⊗ v⊗ w⊗ z) = s(u)⊗ v⊗ w⊗ z + s−1ε(u)⊗ s(v)⊗ w⊗ z

+ s−1ε(u)⊗ s−1ε(v)⊗ s(w)⊗ z
+ s−1ε(u)⊗ s−1ε(v)⊗ s−1ε(w)⊗ s(z), k ≥ 0.

The construction of a contracting homotopy for M is a much more elaborate task, which we now work out. It
should be said that when we refer to normal forms, these will be taken with respect to the rewriting system
for π2 described in section 2.2.

A contracting homotopy s for M is given by Z-homomorphisms s−1 : Z → M0, s0 : M0 → M1, and
s1 : M1 → M2 such that εs−1 = idZ and dk+1sk + sk−1dk = idMk for 0 ≤ k ≤ 2, recall that d0 = ε.

1. Define s−1(1) = x, notice that the condition εs−1 = idZ is satisfied.

2. For s0 we begin by defining

s0(x) = 0,
s0(ax) = α, s0(bx) = β, s0(cx) = γ, s0(dx) = δ,

s0(ax) = −aα, s0(bx) = −bβ, s0(cx) = −cγ, s0(dx) = −dδ.

Now if `1 · · · `k is in normal form, define

s0(`1`2 · · · `kx) = s0(`1x) + `1so(`2x) + · · ·+ `1 · · · `k−1s0(`kx).

Notice that s0(`1 · · · `m+1 · · · `kx) = s0(`1 · · · `mx) + `1 · · · `ms0(`m+1 · · · `kx), since

s0(`1 · · · `m · · · `kx) = s0(`1x) + `1so(`2x) + · · ·+ `1 · · · `ms0(`m+1x) + · · ·+ `1 · · · `k−1s0(`kx)
= s0(`1x) + · · ·+ `1 · · · `m (s0(`m+1x) + · · ·+ `m+1 · · · `m−1s0(`kx))
= s0(`1 · · · `mx) + `1 · · · `ms0(`m+1 · · · `kx).
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Let us check that
d1s0 + s−1ε = idM0 .

Notice that the relation holds when we evaluate on x. Now for (λ, `) ∈ {(α, a), (β, b), (γ, c), (δ, d)}

d1s0(`x) = d1λ = `x− x = `x− s−1ε(`x),

and

d1s0

(
`x
)
= d1

(
−`λ

)
= −`d1(λ) = −`(`x− x) = −x + `x = `x− s−1ε

(
`x
)

.

Thus,

d1s0(`1`2 · · · `kx) = d1s0(`1x) + d1 (`1s0(`2x)) + · · ·+ d1 (`1 · · · `k−1s0(`kx))
= (`1x− x) + `1(`2x− x) + · · ·+ `1 · · · `k−1(`kx− x)
= `1x− x + `1`2x− `1x + · · ·+ `1 · · · `k−1`kx− `1 · · · `k−1x
= `1 · · · `kx− x
= `1 · · · `kx− s−1ε (`1 · · · `kx) .

3. In order to define s1 we begin by putting

Ti = c
(

ababc
)i

, i ≥ 0

Ui =
(

cbaba
)i

, i ≥ 0.

For y = `1`2 · · · `k ∈ π2 in normal form, we define

s1(yλ) = 0, for λ ∈ {α, β, γ},

s1(yδ) =



(
y

n+1

∑
i=1

Ui

)
ω, if y ends as Tn but not in Tn+1, n ≥ 0

−
(

y
n

∑
i=0

Ui

)
ω, if y ends as Un+1 but not in Un+2, n ≥ 0

0, otherwise.

Next the relation d2s1 + s0d1 = idM1 is verified, starting by evaluating it at yα. We have:

s0(d1(yα)) = s0(`1 · · · `kax)− s0(`1 · · · `kx).

(a) If `k 6= a, then `1 · · · `ka is in normal form, then

s0(`1 · · · `kax) = s0(`1 · · · `kx) + `1 · · · `kα,

thus
s0d1(yα) = `1 · · · `kα = yα = yα− d2s1 (yα) ,

since s1(yα) = 0.
(b) If `k = a, then `1 · · · `ka = `1 · · · `k−1, which is in normal form, thus

s0(d1(yα)) = s0(`1 · · · `k−1x)− s0(`1 · · · `k−1x)− `1 · · · `k−1s0(`kx)
= −`1 · · · `k−1s0(ax)
= −`1 · · · `k−1(−aα)

= yα

= yα− d2s1(yα),

since s1(yα) = 0.
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The verification of the relation s0d1 + d2s1 = idM1 at yβ and yγ is similar and omitted. In order to check
the relation at yδ, where there are three cases to consider, we must clarify the terminology: we will
understand by “w1 ends as w2” that the spelling of w1 ends the same as the spelling of the word w2. We
now check the relation at yδ.

Case 1: y ends as Tn but not in Tn+1, n ≥ 0.

We begin with the verification for n = 0. If y = `1 · · · `kc is in normal form, then

s0d1(yδ) = s0(`1 · · · `kbabadcx)− s0(`1 · · · `kcx).

Notice that `k 6= c since x is in normal form. Furthermore, by hypothesis `k−4`k−3`k−2`k−1`kc 6=
cababc = T1.
In order to check the desired relation, we have to consider whether `1 · · · `kbabadc is in normal form or
not.

(a) If `1 · · · `kbabadc is in normal form, then

yδ− s0d1(yδ) = `1 · · · `k

[
(baba− b)α + (bab− 1)β + (1− babad)γ + (c− baba)δ

]
= d2(`1 · · · `kbabaω)

= d2(s1(yδ)).

(b) If `1 · · · `kbabadc is not in normal form:

i. y = `1 · · · `k−1bc, `k = b, `k−1 6= a. In this case

s0d1(yδ) = s0(`1 · · · `k−1abadcx)− s0(`1 · · · `k−1bcx),

notice that `1 · · · `k−1abadc is in normal form since `k−1 6= b, then

yδ− s0d1(yδ) = `1 · · · `k−1

[
(aba− 1)α + (ab− b)β + (b− abad)γ + (bc− aba)δ

]
= d2(`1 · · · `k−1abaω)

= d2s1(yδ),

since
s1(yδ) = `1 · · · `k−1abaω.

ii. y = `1 · · · `k−2abc, `k = b, `k−1 = a, `k−2 6= b. In this case

s0d1(yδ) = s0(`1 · · · `k−2badcx)− s0(`1 · · · `k−2abcx),

notice that `1 · · · `k−2badc is in normal form since `k−2 6= a, then

yδ− s0d1(yδ) = `1 · · · `k−2

[
(ba− a)α + (b− ab)β + (ab− bad)γ + (abc− ba)δ

]
= d2(`1 · · · `k−2baω)

= d2s1(yδ),

since
s1(yδ) = `1 · · · `k−2baω.
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iii. y = `1 · · · `k−3babc, `k = b, `k−1 = a, `k−2 = b, `k−3 6= a. In this case

s0d1(yδ) = s0(`1 · · · `k−3adcx)− s0(`1 · · · `k−3babcx),

notice that `1 · · · `k−3adc is in normal form since `k−3 6= b, then

yδ− s0d1(yδ) = `1 · · · `k−3

[
(a− ba)α + (1− bab)β + (bab− ad)γ + (babc− a)δ

]
= d2(`1 · · · `k−3aω)

= d2s1(yδ),

since
s1(yδ) = `1 · · · `k−3aω.

iv. y = `1 · · · `k−4ababc, `k = b, `k−1 = a, `k−2 = b, `k−3 = a, `k−4 6= d. In this case

s0d1(yδ) = s0(`1 · · · `k−4dcx)− s0(`1 · · · `k−4ababcx),

notice that `1 · · · `k−4dc is in normal form since `k−4 6= a, c, then

yδ− s0d1(yδ) = `1 · · · `k−4

[
(1− aba)α + (a− abab)β + (abab− d)γ + (ababc− 1)δ

]
= d2(`1 · · · `k−4ω)

= d2s1(yδ),

since
s1(yδ) = `1 · · · `k−4ω.

v. y = `1 · · · `k−5dababc, `k = b, `k−1 = a, `k−2 = b, `k−3 = a, `k−4 = d. In this case

s0d1(yδ) = s0(`1 · · · `k−5cx)− s0(`1 · · · `k−5dababcx),

notice that `1 · · · `k−5c is in normal form since `k−5 6= c, then

yδ− s0d1(yδ) = `1 · · · `k−5

[
(d− daba)α + (da− dabab)β + (dabab− 1)γ + (dababc− d)δ

]
= d2(`1 · · · `k−5dω)

= d2s1(yδ),

since
s1(yδ) = `1 · · · `k−5dω.

This completes the verification of case 1 when n = 0, now we proceed with the corresponding
verification for n ≥ 1.
If y = `1 · · · `kc(ababc)n is in normal form, then

s0d1(yδ) = s0(`1 · · · `kbabadcn+1x)− s0(`1 · · · `k(cabab)ncx).

Notice that `k 6= c since x is in normal form, and `k−4`k−3`k−2`k−1`k 6= cabab since y does not end as
Tn+1.
In order to check the desired relation, we have to consider whether `1 · · · `kbabadcn+1 is in normal form
or not.
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(a) If `1 · · · `kbabadcn+1 is in normal form, then

yδ− s0d1(yδ) = `1 · · · `k

{[
n−1

∑
i=0

(
cabab)ic− (cabab)icaba

)
− b + baba

]
α+[

n

∑
i=1

(
(cabab)i−1ca− (cabab)i

)
− 1 + bab

]
β+[

n

∑
i=0

(
(cabab)i − (babadci)

)]
γ +

[
c(ababc)n − baba

]
δ

}

= d2

(
`1 · · · `k

[
n−1

∑
i=0

(cabab)ic + baba

]
ω

)
,

which agrees with d2s1(yδ) since

`1 · · · `k

(
n−1

∑
i=0

(
(cabab)ic

)
+ baba

)
ω = y

(
n−1

∑
i=0

(
(ababc)−n+i

)
+ (cbaba)n+1

)
ω

= y

(
n

∑
i=1

(
(cbaba)i

)
+ (cbaba)n+1

)
ω

= y

(
n+1

∑
i=1

Ui

)
ω

= s1(yδ).

(b) If `1 · · · `kbabadcn+1 is not in normal form:

i. y = `1 · · · `k−1bc(ababc)n, `k = b, `k−1 6= a. In this case

s0d1(yδ) = s0(`1 · · · `k−1abadcn+1x)− s0(`1 · · · `k−1b(cabab)ncx),

notice that `1 · · · `k−1abadcn+1 is in normal form since `k−1 6= b, then

yδ− s0d1(yδ) = `1 · · · `k−1

{[
n−1

∑
i=0

(
(bcaba)ibc− (bcaba)i

)
+ aba− (bcaba)n

]
α+[

n−1

∑
i=0

(
(bcaba)ibca− (bcaba)ib

)
+ ab− (bcaba)nb

]
β+[

n

∑
i=0

(
(bcaba)ib− (abadci)

)]
γ +

[
bc(ababc)n − aba

]
δ

}

= d2

(
`1 · · · `k−1

[
n−1

∑
i=0

bc(ababc)i + aba

]
ω

)
= d2s1(yδ),
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since

`1 · · · `k−1

(
n−1

∑
i=0

(
bc(ababc)i

)
+ aba

)
ω = y

(
n−1

∑
i=0

(
(ababc)i−n

)
+ (ababc)−ncbaba

)
ω

= y

(
n

∑
i=1

(
(cbaba)i

)
+ (cbaba)n+1

)
ω

= y

(
n+1

∑
i=1

Ui

)
ω

= s1(yδ).

ii. y = `1 · · · `k−2abc(ababc)n, `k = b, `k−1 = a, `k−2 6= b. In this case

s0d1(yδ) = s0(`1 · · · `k−2badcn+1x)− s0(`1 · · · `k−2ab(cabab)ncx),

notice that `1 · · · `k−2badcn+1 is in normal form since `k−2 6= a, then

yδ− s0d1(yδ) = `1 · · · `k−2

{[
n−1

∑
i=0

(
(abcab)iabc− (abcab)ia

)
+ ba− (abcab)na

]
α+[

n−1

∑
i=0

(
(abcab)iabca− (abcab)iab

)
+ b− (abcab)nab

]
β+[

n

∑
i=0

(
(abcab)iab− badci

)]
γ +

[
abc(ababc)n − ba

]
δ

}

= d2

(
`1 · · · `k−2

[
n−1

∑
i=0

abc(ababc)i + ba

]
ω

)
= d2s1(yδ),

since

`1 · · · `k−2

(
n−1

∑
i=0

(
abc(ababc)i

)
+ ba

)
ω = y

(
n−1

∑
i=0

(
(ababc)−n(ababc)i

)
+ (ababc)−ncbaba

)
ω

= y

(
n−1

∑
i=0

(
(ababc)−n+i

)
+ (cbaba)n+1

)
ω

= y

(
n+1

∑
i=1

Ui

)
ω

= s1(yδ).

iii. y = `1 · · · `k−3babc(ababc)n, `k = b, `k−1 = a, `k−2 = b, `k−3 6= a. In this case we have

s0d1(yδ) = s0(`1 · · · `k−3adcn+1x)− s0(`1 · · · `k−3bab(cabab)ncx),
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notice that `1 · · · `k−3adcn+1 is in normal form since `k−3 6= b, then

yδ− s0d1(yδ) = `1 · · · `k−3

{[
n−1

∑
i=0

(
(babca)ibabc− (babca)iba

)
+ a− (babca)nba

]
α+[

n

∑
i=0

(
(babca)i − (babca)ibab

)]
β +

[
n

∑
i=0

(
(babca)ibab− (adci)

)]
γ+

[
babc(ababc)n − a

]
δ

}

= d2

(
`1 · · · `k−3

[
n−1

∑
i=0

(
babc(ababc)i

)
+ a

]
ω

)
= d2s1(yδ),

since

`1 · · · `k−3

(
n−1

∑
i=0

(
babc(ababc)i

)
+ a

)
ω = y

(
n−1

∑
i=0

(
(ababc)−n(ababc)i

)
+ (ababc)−ncbaba

)
ω

= y

(
n

∑
i=1

(
(cbaba)i

)
+ (cbaba)n+1

)
ω

= y

(
n+1

∑
i=1

Ui

)
ω

= s1(yδ).

iv. y = `1 · · · `k−4(ababc)n+1, `k = b, `k−1 = a, `k−2 = b, `k−3 = a, `k−4 6= d. In this case we have

s0d1(yδ) = s0(`1 · · · `k−4dcn+1x)− s0(`1 · · · `k−4abab(cabab)ncx),

notice that `1 · · · `k−4dcn+1 is in normal form since `k−4 6= a, c, then

yδ− s0d1(yδ) = `1 · · · `k−4

{[
n

∑
i=0

(
(ababc)i − (ababc)iaba

)]
α+[

n

∑
i=0

(
(ababc)ia− (ababc)iabab

)]
β+[

n

∑
i=0

(
(ababc)iabab− dci

)]
γ +

[
(ababc)n+1 − 1

]
δ

}

= d2

(
`1 · · · `k−4

[
n

∑
i=0

(ababc)i

]
ω

)
= d2s1(yδ),
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since

`1 · · · `k−4

(
n

∑
i=0

(ababc)iω

)
= `1 · · · `k−4(ababc)n+1

(
n

∑
i=0

(ababc)−n−1(ababc)i

)
ω

= y

(
n

∑
i=0

(ababc)−n−1+i

)
ω

= y

(
n+1

∑
i=1

(cbaba)i

)
ω

= y

(
n+1

∑
i=1

Ui

)
ω

= s1(yδ).

v. y = `1 · · · `k−5d(ababc)n+1, `k = b, `k−1 = a, `k−2 = b, `k−3 = a, `k−4 = d. In this case we
have

s0d1(yδ) = s0(`1 · · · `k−5cn+1x)− s0(`1 · · · `k−5dabab(cabab)ncx),

notice that `1 · · · `k−5cn+1 is in normal form since `k−5 6= c, then

yδ− s0d1(yδ) = `1 · · · `k−5

{[
n

∑
i=0

(
d(ababc)i − d(ababc)iaba

)]
α+[

n

∑
i=0

(
d(ababc)ia− d(ababc)iabab

)]
β+[

n

∑
i=0

(
d(ababc)iabab− ci

)]
γ +

[
d(ababc)n+1 − d

]
δ

}

= d2

(
`1 · · · `k−5

[
n

∑
i=0

d(ababc)i

]
ω

)
= d2s1(yδ),

since

`1 · · · `k−5

(
n

∑
i=0

d(ababc)i

)
ω = `1 · · · `k−5d(ababc)n+1

(
n

∑
i=0

(ababc)−n−1(ababc)i

)
ω

= y

(
n

∑
i=0

(ababc)−n−1+i

)
ω

= y

(
n+1

∑
i=1

(cbaba)i

)
ω

= y

(
n+1

∑
i=1

Ui

)
ω

= s1(yδ).

Case 2: y ends as Un+1 but not in Un+2, n ≥ 0. In this case the details are similar but less elaborate than
those in case 1, therefore we just indicate the essential steps to reconstruct the whole argument.

Suppose y = `1 · · · `k(cbaba)n+1 is in normal form and `1 · · · `k does not end as cbaba.
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(a) If `1 · · · `k does not end as d:

yδ− s0d1(yδ) = `1 · · · `k

{[
n

∑
i=0

(
(cbaba)icb− (cbaba)i+1

)]
α+[

n

∑
i=0

(cbaba)ic− (cbaba)icbab

]
β+[

n+1

∑
i=1

dc−i −
n

∑
i=0

(cbaba)ic

]
γ +

[
(cbaba)n+1 − 1

]
δ

}

= d2

(
−`1 · · · `k

n+1

∑
i=1

(cbaba)iω

)
= d2s1(yδ),

since

−`1 · · · `k

(
n+1

∑
i=1

(cbaba)i

)
ω = −`1 · · · `k(cbaba)n+1

(
n+1

∑
i=1

(cbaba)−n−1+i

)
ω

= −y

(
n

∑
i=0

(ababc)i

)
ω

= −y

(
n

∑
i=0

Ui

)
ω

= s1(yδ).

(b) If `1 · · · `k ends as d:

yδ− s0d1(yδ) = `1 · · · `k−1

{[
n

∑
i=0

d(cbaba)icb−
n+1

∑
i=1

d(cbaba)i

]
α+[

n

∑
i=0

(
d(cbaba)ic− d(cbaba)icbab

)]
β+[

n+1

∑
i=1

c−i −
n

∑
i=0

d(cbaba)ic

]
γ +

[
d(cbaba)n+1 − d

]
δ

}

= d2

(
−`1 · · · `k−1d

n+1

∑
i=1

(cbaba)iω

)
= d2s1(yδ),

since

−`1 · · · `k−1d

(
n+1

∑
i=1

(cbaba)i

)
ω = −`1 · · · `k(cbaba)n+1

(
n+1

∑
i=1

(cbaba)−n−1+i

)
ω

= −y

(
n

∑
i=0

(ababc)i

)
ω

= −y

(
n

∑
i=0

Ui

)
ω

= s1(yδ).
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Case 3: y = `1 · · · `k is in normal form and does not end as the words mentioned in the previous cases.
Then

s0d1(yδ) = s0(`1 · · · `kdx)− s0(`1 · · · `kx).

If `1 · · · `kd is in normal form, we have

s0(d1(yδ)) = s0(`1 · · · `kdx)− s0(`1 · · · `kx) = `1 · · · `kδ = yδ = yδ− d2s1(yδ),

since s1(yδ) = 0.

Otherwise, `k = d, and so `1 · · · `kd = `1 · · · `k−1, which is in normal form. We thus have

s0(d1(yδ)) = −`1 · · · `k−1s0(dx)

= `1 · · · `k−1dδ

= yδ

= yδ− d2s1(yδ),

since s1(yδ) = 0.

Finally, notice that for y ∈ π2, s1d2(yω) = ω by the above, i.e. s1d2 = idM2 . In fact,

d2(s1d2 − idM2) = (d2s1)d2 − d2 = (idM2 −s0d1)d2 − d2 = d2 − d2 = 0,

so that s1d2 = idM2 , as d2 is injective.

Next we describe diagonal approximationsψ : M→ M⊗2 andϕ : M⊗2 → M⊗4. The formulas we present
below are obtained by virtue of propositions 2.5 and 2.6, and since ψ and ϕ are meant to be, respectively,
π2 and (π2 × π2)-homomorphisms, it is enough to define them on the corresponding basic elements (all
the formulas were computed by hand and verified on the computer, except for the formula for ϕ4(ω⊗ω),
which was obtained with the help of a computer). In fact,

ψ0(x) = x⊗ x.

ψ1(λ) = λ⊗ `x + x⊗ λ, for (λ, `) ∈ {(α, a), (β, b), (γ, c), (δ, d)}.

ψ2(ω) = ((−1 + aba)α + (−a + abab)β)⊗ ababβ + α⊗ aβ + ω⊗ dcx

+ ((1− aba)α + (a− abab)β + (ababγ)⊗ ababcδ + x⊗ω

+ ((−1 + aba)α− aβ)⊗ abaα + ((1− aba)α + (a− abab)β)⊗ ababγ

− δ⊗ dγ.

ϕ0(x⊗ x) = x⊗ x⊗ x⊗ x.

ϕ1(λ⊗ x) = λ⊗ x⊗ `x⊗ x + x⊗ x⊗ λ⊗ x, for (λ, `) ∈ {(α, a), (β, b), (γ, c), (δ, d)}.

ϕ1(x⊗ λ) = x⊗ λ⊗ x⊗ `x + x⊗ x⊗ x⊗ λ, for (λ, `) ∈ {(α, a), (β, b), (γ, c), (δ, d)}.



CHAPTER 4. ON THE EFFECTIVE TOPOLOGICAL COMPLEXITY OF ΣG, G ≥ 2 51

ϕ2(ω⊗ x) = ((−1 + aba)α− aβ)⊗ x⊗ abaα⊗ x + α⊗ x⊗ aβ⊗ x

+ ((−1 + aba)α + (−a + abab)β)⊗ x⊗ ababβ⊗ x

+ ((1− aba)α + (a− abab)β)⊗ x⊗ ababγ⊗ x
− δ⊗ x⊗ dγ⊗ x + ω⊗ x⊗ dcx⊗ x

+ ((1− aba)α + (a− abab)β + ababγ)⊗ x⊗ ababcδ⊗ x
+ x⊗ x⊗ω⊗ x.

ϕ2(x⊗ω) = x⊗ ((−1 + aba)α− aβ)⊗ x⊗ abaα + x⊗ α⊗ x⊗ aβ

+ x⊗ ((−1 + aba)α + (−a + abab)β)⊗ x⊗ ababβ

+ x⊗ ((1− aba)α + (a− abab)β)⊗ x⊗ ababγ

− x⊗ δ⊗ x⊗ dγ + x⊗ω⊗ x⊗ dcx

+ x⊗ ((1− aba)α + (a− abab)β + ababγ)⊗ x⊗ ababcδ

+ x⊗ x⊗ x⊗ω.

ϕ2(λ1 ⊗ λ2) = λ1 ⊗ λ2 ⊗ `1x⊗ `2x + λ1 ⊗ x⊗ `1x⊗ λ2

+ x⊗ x⊗ λ1 ⊗ λ2 − x⊗ λ2 ⊗ λ1 ⊗ `2x, for (λi, `i) in {(α, a), (β, b), (γ, c), (δ, d)}, i ∈ {0, 1}.

ϕ3(λ⊗ω) = λ⊗ ((−1 + aba)α− aβ)⊗ `x⊗ abaα + λ⊗ α⊗ `x⊗ aβ

+ λ⊗ ((−1 + aba)α + (−a + abab)β⊗ `x⊗ ababβ

+ λ⊗ ((1− aba)α + (a− abab)β)⊗ `x⊗ ababγ

− λ⊗ δ⊗ `x⊗ dγ + λ⊗ω⊗ `x⊗ dcx

+ λ⊗ ((1− aba)α + (a− abab)β + ababγ)⊗ `x⊗ ababcδ

+ λ⊗ x⊗ `x⊗ω + x⊗ x⊗ λ⊗ω− x⊗ ((−1 + aba)α− aβ)⊗ λ⊗ abaα

− x⊗ α⊗ λ⊗ aβ− x⊗ ((−1 + aba)α + (−a + abab)β)⊗ λ⊗ ababβ

− x⊗ ((1− aba)α + (a− abab)β)⊗ λ⊗ ababγ + x⊗ δ⊗ λ⊗ dγ

− x⊗ ((1− aba)α + (a− abab)β + ababγ)⊗ λ⊗ ababcδ

+ x⊗ω⊗ λ⊗ dcx, for (λ, `) ∈ {(α, a), (β, b), (γ, c), (δ, d)}.

ϕ3(ω⊗ λ) = ((aba− 1)α− aβ)⊗ x⊗ abaα⊗ λ

+ ((1− aba)α + aβ)⊗ λ⊗ abaα⊗ `x
+ α⊗ x⊗ aβ⊗ λ− α⊗ λ⊗ aβ⊗ `x

+ ((aba− 1)α + (abab− a)β)⊗ x⊗ ababβ⊗ λ

+ ((1− aba)α + (a− abab)β)⊗ λ⊗ ababβ⊗ `x

+ ((1− aba)α + (a− abab)β)⊗ x⊗ ababγ⊗ λ

+ ((aba− 1)α + (abab− a)β)⊗ λ⊗ ababγ⊗ `x
− δ⊗ x⊗ dγ⊗ λ + δ⊗ λ⊗ dγ⊗ `x
+ ω⊗ λ⊗ dcx⊗ `x + ω⊗ x⊗ dcx⊗ λ

+ ((1− aba)α + (a− abab)β + ababγ)⊗ x⊗ ababcδ⊗ λ

+ x⊗ x⊗ω⊗ λ + ((aba− 1)α + (abab− a)β− ababγ)⊗ λ⊗ ababcδ⊗ `x
+ x⊗ λ⊗ω⊗ `x, for (λ, `) ∈ {(α, a), (β, b), (γ, c), (δ, d)}.
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ϕ4(ω⊗ω) =((aba− 1)α− aβ)⊗ x⊗ abaα⊗ω + ((1− aba)α + aβ)⊗ ((aba− 1)α− aβ)⊗ abaα⊗ abaα

+ ((1− aba)α + aβ)⊗ α⊗ abaα⊗ aβ

+ ((1− aba)α + aβ)⊗ ((aba− 1)α + (abab− a)β)⊗ abaα⊗ ababβ

+ ((1− aba)α + aβ)⊗ ((1− aba)α + (a− abab)β)⊗ abaα⊗ ababγ

− ((1− aba)α + aβ)⊗ δ⊗ abaα⊗ dγ

+ ((1− aba)α + aβ)⊗ ((1− aba)α + (a− abab)β + ababγ)⊗ abaα⊗ ababcδ

+ ((aba− 1)α− aβ)⊗ω⊗ abaα⊗ dcx
+ α⊗ x⊗ aβ⊗ω− α⊗ ((aba− 1)α− aβ)⊗ aβ⊗ abaα

− α⊗ α⊗ aβ⊗ aβ− α⊗ ((aba− 1)α + (abab− a)β)⊗ aβ⊗ ababβ

− α⊗ ((1− aba)α + (a− abab)β)⊗ aβ⊗ ababγ

+ α⊗ δ⊗ aβ⊗ dγ− α⊗ ((1− aba)α + (a− abab)β + (abab)γ)⊗ aβ⊗ ababcδ

+ α⊗ω⊗ aβ⊗ dcx + ((aba− 1)α + (abab− a)β)⊗ x⊗ ababβ⊗ω

+ ((1− aba)α + (a− abab)β)⊗ ((aba− 1)α− aβ)⊗ ababβ⊗ abaα

+ ((1− aba)α + (a− abab)β)⊗ α⊗ ababβ⊗ aβ

+ ((1− aba)α + (a− abab)β)⊗ ((aba− 1)α + (abab− a)β)⊗ ababβ⊗ ababβ

+ ((1− aba)α + (a− abab)β)⊗ ((1− aba)α + (a− abab)β)⊗ ababβ⊗ ababγ

− ((1− aba)α + (a− abab)β)⊗ δ⊗ ababβ⊗ dγ

+ ((1− aba)α + (a− abab)β)⊗ ((1− aba)α + (a− abab)β + (abab)γ)⊗ ababβ⊗ ababcδ

+ ((aba− 1)α + (abab− a)β)⊗ω⊗ ababβ⊗ dcx

+ ((1− aba)α + (a− abab)β)⊗ x⊗ ababγ⊗ω

+ ((aba− 1)α + (abab− a)β)⊗ (aba− 1)α− aβ)⊗ ababγ⊗ abaα

+ ((aba− 1)α + (abab− a)β)⊗ α⊗ ababγ⊗ aβ

+ ((aba− 1)α + (abab− a)β)⊗ ((aba− 1)α + (abab− a)β)⊗ ababγ⊗ ababβ

+ ((aba− 1)α + (abab− a)β)⊗ ((1− aba)α + (a− abab)β)⊗ ababγ⊗ ababγ

− ((aba− 1)α + (abab− a)β)⊗ δ⊗ ababγ⊗ dγ

+ ((aba− 1)α + (abab− a)β)⊗ ((1− aba)α + (a− abab)β + ababγ)⊗ ababγ⊗ ababcδ

+ ((1− aba)α + (a− abab)β)⊗ω⊗ ababγ⊗ dcx
− δ⊗ x⊗ dγ⊗ω + δ⊗ ((aba− 1)α− aβ)⊗ dγ⊗ abaα

+ δ⊗ α⊗ dγ⊗ aβ + δ⊗ ((aba− 1)α + (abab− a)β)⊗ dγ⊗ ababβ

+ δ⊗ ((1− aba)α + (a− abab)β)⊗ dγ⊗ ababγ− δ⊗ δ⊗ dγ⊗ dγ

+ δ⊗ ((1− aba)α + (a− abab)β + ababγ)⊗ dγ⊗ ababcδ

− δ⊗ω⊗ dγ⊗ dcx + ω⊗ ((aba− 1)α− aβ)⊗ dcx⊗ abaα

+ ω⊗ α⊗ dcx⊗ aβ + ω⊗ ((aba− 1)α + (abab− a)β)⊗ dcx⊗ ababβ

+ ω⊗ ((1− aba)α + (a− abab)β)⊗ dcx⊗ ababγ

−ω⊗ δ⊗ dcx⊗ dγ + ω⊗ω⊗ dcx⊗ dcx
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+ ω⊗ ((1− aba)α + (a− abab)β + ababγ)⊗ dcx⊗ ababcδ

+ ω⊗ x⊗ dcx⊗ω + ((1− aba)α + (a− abab)β + ababγ)⊗ x⊗ ababcδ⊗ω

+ x⊗ x⊗ω⊗ω + ((aba− 1)α + (abab− a)β− ababγ)⊗ α⊗ ababcδ⊗ aβ

+ ((aba− 1)α + (abab− a)β− ababγ)⊗ ((aba− 1)α− aβ)⊗ ababcδ⊗ abaα

+ ((aba− 1)α + (abab− a)β− ababγ)⊗ ((aba− 1)α + (abab− a)β)⊗ ababcδ⊗ ababβ

+ ((aba− 1)α + (abab− a)β− ababγ)⊗ ((1− aba)α + (a− abab)β)⊗ ababcδ⊗ ababγ

− ((aba− 1)α + (abab− a)β− ababγ)⊗ δ⊗ ababcδ⊗ dγ

+ ((aba− 1)α + (abab− a)β− ababγ)⊗ ((1− aba)α + (a− abab)β + ababγ)⊗ ababcδ⊗ ababcδ

+ ((1− aba)α + (a− abab)β + ababγ)⊗ω⊗ ababcδ⊗ dcx
+ x⊗ ((aba− 1)α− aβ)⊗ω⊗ abaα + x⊗ α⊗ω⊗ aβ

+ x⊗ ((aba− 1)α + (abab− a)β)⊗ω⊗ ababβ

+ x⊗ ((1− aba)α + (a− abab)β)⊗ω⊗ ababγ

− x⊗ δ⊗ω⊗ dγ + x⊗ω⊗ω⊗ dcx

+ x⊗ ((1− aba)α + (a− abab)β + ababγ)⊗ω⊗ ababcδ.

4.1.1 The cohomology of Σ2 × Σ2 with coefficients in Z̃

There are 256 systems of local coefficients on Σ2 × Σ2 having Z as underlying group. Let sx and s′x be in
{−1, 1}, for x ∈ {a, b, c, d}. We write Z̃ := Z[sa, sb, sc, sd, s′a, s′b, s′c, s′d] to mean that Z is the (π2 × π2)-module
where (x, 1) (resp. (1, x)) acts non-trivially on Z if and only if sx = −1 (resp. s′x = −1), otherwise it
acts trivially. As evidenced by calculations, if just one generator of the group π2 × π2 acts by change of
sign on Z, then all the groups H∗

(
π2 × π2; Z̃

)
are isomorphic, as well as their multiplicative structure

H∗
(

π2 × π2; Z̃
)
⊗ H∗

(
π2 × π2; Z̃

) ∪−→ H∗ (π2 × π2; Z).

By routine calculations we obtain that the groups H∗ (π2 × π2; Z) and H∗
(

π2 × π2; Z̃
)

are given by

H0(π2 × π2; Z) = Z, H0(π2 × π2; Z̃) = 0,

H1(π2 × π2; Z) = Z8, H1(π2 × π2; Z̃) ∼= Z2 ⊕Z2,

H2(π2 × π2; Z) = Z18 H2(π2 × π2; Z̃) ∼= Z5
2 ⊕Z8,

H3(π2 × π2; Z) = Z8, H3(π2 × π2; Z̃) ∼= Z5
2 ⊕Z2,

H4(π2 × π2; Z) = Z, H4(π2 × π2; Z̃) ∼= Z2.
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In fact, we have

H0(π2 × π2; Z) = Z〈x∗ ⊗ x∗〉,
H1(π2 × π2; Z) = Z〈x∗ ⊗ α∗, x∗ ⊗ β∗, x∗ ⊗ γ∗, x∗ ⊗ δ∗, α∗ ⊗ x∗,

β∗ ⊗ x∗, γ∗ ⊗ x∗, δ∗ ⊗ x∗〉,
H2(π2 × π2; Z) = Z〈x∗ ⊗ω∗, ω∗ ⊗ x∗, α∗ ⊗ α∗, α∗ ⊗ β∗, α∗ ⊗ γ∗,

α∗ ⊗ δ∗, β∗ ⊗ α∗, β∗ ⊗ β∗, β∗ ⊗ γ∗, β∗ ⊗ δ∗,
γ∗ ⊗ α∗, γ∗ ⊗ β∗, γ∗ ⊗ γ∗, γ∗ ⊗ δ∗, δ∗ ⊗ α∗,
δ∗ ⊗ β∗, δ∗ ⊗ γ∗, δ∗ ⊗ δ∗〉,

H3(π2 × π2; Z) = Z〈ω∗ ⊗ α∗, ω∗ ⊗ β∗, ω∗ ⊗ γ∗, ω∗ ⊗ δ∗, α∗ ⊗ω∗,
β∗ ⊗ω∗, γ∗ ⊗ω∗, δ∗ ⊗ω∗〉,

H4(π2 × π2; Z) = Z〈ω∗ ⊗ω∗〉,

notice that these expressions are just a clear manifestation of Künneth formula for cohomology.

As mentioned above, if just one generator of π2 × π2 acts non-trivially on Z, then all the groups
H∗
(

π2 × π2; Z̃
)

are isomorphic. We present below the results when (a, 1) is such a generator.

H0
(

π2 × π2; Z̃
)
= 0,

H1
(

π2 × π2; Z̃
)
= Z2〈(α∗ ⊗ x∗)θ〉 ⊕Z〈(γ∗ ⊗ x∗)θ , (δ∗ ⊗ x∗)θ〉,

H2
(

π2 × π2; Z̃
)
= Z2〈(ω∗ ⊗ x∗)θ , (α∗ ⊗ α∗)θ , (α∗ ⊗ β∗)θ , (α∗ ⊗ γ∗)θ , (α∗ ⊗ δ∗)θ〉 ⊕

Z〈(γ∗ ⊗ α∗)θ , (γ∗ ⊗ β∗)θ , (γ∗ ⊗ γ∗)θ , (γ∗ ⊗ δ∗)θ , (δ∗ ⊗ α∗)θ , (δ∗ ⊗ β∗)θ , (δ∗ ⊗ γ∗)θ , (δ∗ ⊗ δ∗)θ〉,

H3
(

π2 × π2; Z̃
)
= Z2〈(ω∗ ⊗ α∗)θ , (ω∗ ⊗ β∗)θ , (ω∗ ⊗ γ∗)θ , (ω∗ ⊗ δ∗)θ , (α∗ ⊗ω∗)θ〉 ⊕Z〈(γ∗ ⊗ω∗)θ , (δ∗ ⊗ω∗)θ〉,

H4
(

π2 × π2; Z̃
)
= Z2〈(ω∗ ⊗ω∗)θ〉,

where we put the subscript θ to distinguish these generators from those above. Notice that Künneth formula
for cohomology does not make obvious these expressions immediately previous.

Up to anti-commutativity, the only non-trivial products

H∗ (π2 × π2; Z)⊗ H∗ (π2 × π2; Z)
∪−→ H∗ (π2 × π2; Z)

are listed below.
(x∗ ⊗ x∗) ∪ (x∗ ⊗ λ∗) = x∗ ⊗ λ∗, for λ ∈ {α, β, γ, δ},
(x∗ ⊗ x∗) ∪ (λ∗ ⊗ x∗) = λ∗ ⊗ x∗, for λ ∈ {α, β, γ, δ},
(x∗ ⊗ x∗) ∪ (x∗ ⊗ω∗) = x∗ ⊗ω∗,
(x∗ ⊗ x∗) ∪ (ω∗ ⊗ x∗) = ω∗ ⊗ x∗,
(x∗ ⊗ x∗) ∪ (λ∗1 ⊗ λ∗2) = λ∗1 ⊗ λ∗2 , for λ1, λ2 ∈ {α, β, γ, δ},
(x∗ ⊗ x∗) ∪ (ω∗ ⊗ λ∗) = ω∗ ⊗ λ∗, for λ ∈ {α, β, γ, δ},
(x∗ ⊗ x∗) ∪ (λ∗ ⊗ω∗) = λ∗ ⊗ω∗, for λ ∈ {α, β, γ, δ},
(x∗ ⊗ x∗) ∪ (ω∗ ⊗ω∗) = ω∗ ⊗ω∗,

(x∗ ⊗ α∗) ∪ (x∗ ⊗ β∗) = x∗ ⊗ω∗,
(x∗ ⊗ α∗) ∪ (α∗ ⊗ x∗) = −α∗ ⊗ α∗,
(x∗ ⊗ α∗) ∪ (β∗ ⊗ x∗) = −β∗ ⊗ α∗,
(x∗ ⊗ α∗) ∪ (γ∗ ⊗ x∗) = −γ∗ ⊗ α∗,
(x∗ ⊗ α∗) ∪ (δ∗ ⊗ x∗) = −δ∗ ⊗ α∗,
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(x∗ ⊗ β∗) ∪ (α∗ ⊗ x∗) = −α∗ ⊗ β∗,
(x∗ ⊗ β∗) ∪ (β∗ ⊗ x∗) = −β∗ ⊗ β∗,
(x∗ ⊗ β∗) ∪ (γ∗ ⊗ x∗) = −γ∗ ⊗ β∗,
(x∗ ⊗ β∗) ∪ (δ∗ ⊗ x∗) = −δ∗ ⊗ β∗,

(x∗ ⊗ γ∗) ∪ (x∗ ⊗ δ∗) = x∗ ⊗ω∗,
(x∗ ⊗ γ∗) ∪ (α∗ ⊗ x∗) = −α∗ ⊗ γ∗,
(x∗ ⊗ γ∗) ∪ (β∗ ⊗ x∗) = −β∗ ⊗ γ∗,
(x∗ ⊗ γ∗) ∪ (γ∗ ⊗ x∗) = −γ∗ ⊗ γ∗,
(x∗ ⊗ γ∗) ∪ (δ∗ ⊗ x∗) = −δ∗ ⊗ γ∗,

(x∗ ⊗ δ∗) ∪ (α∗ ⊗ x∗) = −α∗ ⊗ δ∗,
(x∗ ⊗ δ∗) ∪ (β∗ ⊗ x∗) = −β∗ ⊗ δ∗,
(x∗ ⊗ δ∗) ∪ (γ∗ ⊗ x∗) = −γ∗ ⊗ δ∗,
(x∗ ⊗ δ∗) ∪ (δ∗ ⊗ x∗) = −δ∗ ⊗ δ∗,

(α∗ ⊗ x∗) ∪ (β∗ ⊗ x∗) = ω∗ ⊗ x∗,
(γ∗ ⊗ x∗) ∪ (δ∗ ⊗ x∗) = ω∗ ⊗ x∗,

(x∗ ⊗ α∗) ∪ (ω∗ ⊗ x∗) = ω∗ ⊗ α∗,
(x∗ ⊗ α∗) ∪ (α∗ ⊗ β∗) = −α∗ ⊗ω∗,
(x∗ ⊗ α∗) ∪ (β∗ ⊗ β∗) = −β∗ ⊗ω∗,
(x∗ ⊗ α∗) ∪ (γ∗ ⊗ β∗) = −γ∗ ⊗ω∗,
(x∗ ⊗ α∗) ∪ (δ∗ ⊗ β∗) = −δ∗ ⊗ω∗,

(α∗ ⊗ x∗) ∪ (x∗ ⊗ω∗) = α∗ ⊗ω∗,
(α∗ ⊗ x∗) ∪ (β∗ ⊗ α∗) = ω∗ ⊗ α∗,
(α∗ ⊗ x∗) ∪ (β∗ ⊗ β∗) = ω∗ ⊗ β∗,
(α∗ ⊗ x∗) ∪ (β∗ ⊗ γ∗) = ω∗ ⊗ γ∗,
(α∗ ⊗ x∗) ∪ (β∗ ⊗ δ∗) = ω∗ ⊗ δ∗,

(x∗ ⊗ β∗) ∪ (ω∗ ⊗ x∗) = ω∗ ⊗ β∗,
(x∗ ⊗ β∗) ∪ (α∗ ⊗ α∗) = α∗ ⊗ω∗,
(x∗ ⊗ β∗) ∪ (β∗ ⊗ α∗) = β∗ ⊗ω∗,
(x∗ ⊗ β∗) ∪ (γ∗ ⊗ α∗) = γ∗ ⊗ω∗,
(x∗ ⊗ β∗) ∪ (δ∗ ⊗ α∗) = δ∗ ⊗ω∗,

(β∗ ⊗ x∗) ∪ (x∗ ⊗ω∗) = β∗ ⊗ω∗,
(β∗ ⊗ x∗) ∪ (α∗ ⊗ α∗) = −ω∗ ⊗ α∗,
(β∗ ⊗ x∗) ∪ (α∗ ⊗ β∗) = −ω∗ ⊗ β∗,
(β∗ ⊗ x∗) ∪ (α∗ ⊗ γ∗) = −ω∗ ⊗ γ∗,
(β∗ ⊗ x∗) ∪ (α∗ ⊗ δ∗) = −ω∗ ⊗ δ∗,

(x∗ ⊗ γ∗) ∪ (ω∗ ⊗ x∗) = ω∗ ⊗ γ∗,
(x∗ ⊗ γ∗) ∪ (α∗ ⊗ δ∗) = −α∗ ⊗ω∗,
(x∗ ⊗ γ∗) ∪ (β∗ ⊗ δ∗) = −β∗ ⊗ω∗,
(x∗ ⊗ γ∗) ∪ (γ∗ ⊗ δ∗) = −γ∗ ⊗ω∗,
(x∗ ⊗ γ∗) ∪ (δ∗ ⊗ δ∗) = −δ∗ ⊗ω∗,

(γ∗ ⊗ x∗) ∪ (x∗ ⊗ω∗) = γ∗ ⊗ω∗,
(γ∗ ⊗ x∗) ∪ (δ∗ ⊗ α∗) = ω∗ ⊗ α∗,
(γ∗ ⊗ x∗) ∪ (δ∗ ⊗ β∗) = ω∗ ⊗ β∗,
(γ∗ ⊗ x∗) ∪ (δ∗ ⊗ γ∗) = ω∗ ⊗ γ∗,
(γ∗ ⊗ x∗) ∪ (δ∗ ⊗ δ∗) = ω∗ ⊗ δ∗,
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(x∗ ⊗ δ∗) ∪ (ω∗ ⊗ x∗) = ω∗ ⊗ δ∗,
(x∗ ⊗ δ∗) ∪ (α∗ ⊗ γ∗) = α∗ ⊗ω∗,
(x∗ ⊗ δ∗) ∪ (β∗ ⊗ γ∗) = β∗ ⊗ω∗,
(x∗ ⊗ δ∗) ∪ (γ∗ ⊗ γ∗) = γ∗ ⊗ω∗,
(x∗ ⊗ δ∗) ∪ (δ∗ ⊗ γ∗) = δ∗ ⊗ω∗,

(δ∗ ⊗ x∗) ∪ (x∗ ⊗ω∗) = δ∗ ⊗ω∗,
(δ∗ ⊗ x∗) ∪ (γ∗ ⊗ α∗) = −ω∗ ⊗ α∗,
(δ∗ ⊗ x∗) ∪ (γ∗ ⊗ β∗) = −ω∗ ⊗ β∗,
(δ∗ ⊗ x∗) ∪ (γ∗ ⊗ γ∗) = −ω∗ ⊗ γ∗,
(δ∗ ⊗ x∗) ∪ (γ∗ ⊗ δ∗) = −ω∗ ⊗ δ∗,

(x∗ ⊗ α∗) ∪ (ω∗ ⊗ β∗) = ω∗ ⊗ω∗,
(x∗ ⊗ β∗) ∪ (ω∗ ⊗ α∗) = −ω∗ ⊗ω∗,
(x∗ ⊗ γ∗) ∪ (ω∗ ⊗ δ∗) = ω∗ ⊗ω∗,
(x∗ ⊗ δ∗) ∪ (ω∗ ⊗ γ∗) = −ω∗ ⊗ω∗,
(α∗ ⊗ x∗) ∪ (β∗ ⊗ω∗) = ω∗ ⊗ω∗,
(β∗ ⊗ x∗) ∪ (α∗ ⊗ω∗) = −ω∗ ⊗ω∗,
(γ∗ ⊗ x∗) ∪ (δ∗ ⊗ω∗) = ω∗ ⊗ω∗,
(δ∗ ⊗ x∗) ∪ (γ∗ ⊗ω∗) = −ω∗ ⊗ω∗,

(x∗ ⊗ω∗) ∪ (ω∗ ⊗ x∗) = ω∗ ⊗ω∗,
(ω∗ ⊗ x∗) ∪ (x∗ ⊗ω∗) = ω∗ ⊗ω∗,

(α∗ ⊗ α∗) ∪ (β∗ ⊗ β∗) = −ω∗ ⊗ω∗,
(α∗ ⊗ β∗) ∪ (β∗ ⊗ α∗) = ω∗ ⊗ω∗,
(α∗ ⊗ γ∗) ∪ (β∗ ⊗ δ∗) = −ω∗ ⊗ω∗,
(α∗ ⊗ δ∗) ∪ (β∗ ⊗ γ∗) = ω∗ ⊗ω∗,

(β∗ ⊗ α∗) ∪ (α∗ ⊗ β∗) = ω∗ ⊗ω∗,
(β∗ ⊗ β∗) ∪ (α∗ ⊗ α∗) = −ω∗ ⊗ω∗,
(β∗ ⊗ γ∗) ∪ (α∗ ⊗ δ∗) = ω∗ ⊗ω∗,
(β∗ ⊗ δ∗) ∪ (α∗ ⊗ γ∗) = −ω∗ ⊗ω∗,

(γ∗ ⊗ α∗) ∪ (δ∗ ⊗ β∗) = −ω∗ ⊗ω∗,
(γ∗ ⊗ β∗) ∪ (δ∗ ⊗ α∗) = ω∗ ⊗ω∗,
(γ∗ ⊗ γ∗) ∪ (δ∗ ⊗ δ∗) = −ω∗ ⊗ω∗,
(γ∗ ⊗ δ∗) ∪ (δ∗ ⊗ γ∗) = ω∗ ⊗ω∗,

(δ∗ ⊗ α∗) ∪ (γ∗ ⊗ β∗) = ω∗ ⊗ω∗,
(δ∗ ⊗ β∗) ∪ (γ∗ ⊗ α∗) = −ω∗ ⊗ω∗,
(δ∗ ⊗ γ∗) ∪ (γ∗ ⊗ δ∗) = ω∗ ⊗ω∗,
(δ∗ ⊗ δ∗) ∪ (γ∗ ⊗ γ∗) = −ω∗ ⊗ω∗.

Similarly, up to anti-commutativity, the only non-zero products

H∗
(

π2 × π2; Z̃
)
⊗ H∗

(
π2 × π2; Z̃

) ∪−→ H∗ (π2 × π2; Z)

are the following:
(γ∗ ⊗ x∗)θ ∪ (δ∗ ⊗ x∗)θ = ω∗ ⊗ x∗,

(γ∗ ⊗ x∗)θ ∪ (δ∗ ⊗ α∗)θ = ω∗ ⊗ α∗,
(γ∗ ⊗ x∗)θ ∪ (δ∗ ⊗ β∗)θ = ω∗ ⊗ β∗,
(γ∗ ⊗ x∗)θ ∪ (δ∗ ⊗ γ∗)θ = ω∗ ⊗ γ∗,
(γ∗ ⊗ x∗)θ ∪ (δ∗ ⊗ δ∗)θ = ω∗ ⊗ δ∗,
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(δ∗ ⊗ x∗)θ ∪ (γ∗ ⊗ α∗)θ = −ω∗ ⊗ α∗,
(δ∗ ⊗ x∗)θ ∪ (γ∗ ⊗ β∗)θ = −ω∗ ⊗ β∗,
(δ∗ ⊗ x∗)θ ∪ (γ∗ ⊗ γ∗)θ = −ω∗ ⊗ γ∗,
(δ∗ ⊗ x∗)θ ∪ (γ∗ ⊗ δ∗)θ = −ω∗ ⊗ δ∗,

(γ∗ ⊗ x∗)θ ∪ (δ∗ ⊗ω∗)θ = ω∗ ⊗ω∗,
(δ∗ ⊗ x∗)θ ∪ (γ∗ ⊗ω∗)θ = −ω∗ ⊗ω∗,

(γ∗ ⊗ α∗)θ ∪ (δ∗ ⊗ β∗)θ = −ω∗ ⊗ω∗,
(γ∗ ⊗ β∗)θ ∪ (δ∗ ⊗ α∗)θ = ω∗ ⊗ω∗,
(γ∗ ⊗ γ∗)θ ∪ (δ∗ ⊗ δ∗)θ = −ω∗ ⊗ω∗,
(γ∗ ⊗ δ∗)θ ∪ (δ∗ ⊗ γ∗)θ = ω∗ ⊗ω∗,

(δ∗ ⊗ α∗)θ ∪ (γ∗ ⊗ β∗)θ = ω∗ ⊗ω∗,
(δ∗ ⊗ β∗)θ ∪ (γ∗ ⊗ α∗)θ = −ω∗ ⊗ω∗,
(δ∗ ⊗ γ∗)θ ∪ (γ∗ ⊗ δ∗)θ = ω∗ ⊗ω∗,
(δ∗ ⊗ δ∗)θ ∪ (γ∗ ⊗ γ∗)θ = −ω∗ ⊗ω∗.

Finally, up to anti-commutativity, the only non-zero products

H∗ (π2 × π2; Z)⊗ H∗
(

π2 × π2; Z̃
) ∪−→ H∗

(
π2 × π2; Z̃

)
are given below.

(x∗ ⊗ x∗) ∪ (λ∗ ⊗ x∗)θ = (λ∗ ⊗ x∗)θ , for λ ∈ {α, γ, δ},
(x∗ ⊗ x∗) ∪ (λ∗1 ⊗ λ∗2)θ = (λ∗1 ⊗ λ∗2)θ , for λ1 ∈ {α, γ, δ} and λ2 ∈ {α, β, γ, δ},
(x∗ ⊗ x∗) ∪ (ω∗ ⊗ x∗)θ = (ω∗ ⊗ x∗)θ ,
(x∗ ⊗ x∗) ∪ (ω∗ ⊗ λ∗)θ = (ω∗ ⊗ λ∗)θ , for λ ∈ {α, β, γ, δ},
(x∗ ⊗ x∗) ∪ (λ∗ ⊗ω∗)θ = (λ∗ ⊗ω∗)θ , for λ ∈ {α, γ, δ},
(x∗ ⊗ x∗) ∪ (ω∗ ⊗ω∗)θ = (ω∗ ⊗ω∗)θ ,

(x∗ ⊗ λ∗1) ∪ (λ∗2 ⊗ x∗)θ = −(λ∗2 ⊗ λ∗1)θ , for λ1 ∈ {α, β, γ, δ} and λ2 ∈ {α, γ, δ}
(β∗ ⊗ x∗) ∪ (α∗ ⊗ x∗)θ = −(ω∗ ⊗ x∗)θ ,
(γ∗ ⊗ x∗) ∪ (δ∗ ⊗ x∗)θ = (ω∗ ⊗ x∗)θ ,

(x∗ ⊗ λ∗) ∪ (ω∗ ⊗ x∗)θ = (ω∗ ⊗ λ∗)θ , for λ ∈ {α, β, γ, δ},
(x∗ ⊗ α∗) ∪ (λ∗ ⊗ β∗)θ = −(λ∗ ⊗ω∗)θ , for λ ∈ {α, γ, δ},
(x∗ ⊗ β∗) ∪ (λ∗ ⊗ α∗)θ = (λ∗ ⊗ω∗)θ , for λ ∈ {α, γ, δ},
(x∗ ⊗ γ∗) ∪ (λ∗ ⊗ δ∗)θ = −(λ∗ ⊗ω∗)θ , for λ ∈ {α, γ, δ},
(x∗ ⊗ δ∗) ∪ (λ∗ ⊗ γ∗)θ = (λ∗ ⊗ω∗)θ , for λ ∈ {α, γ, δ},
(λ∗1 ⊗ x∗) ∪ (λ∗2 ⊗ λ∗3)θ = −(ω∗ ⊗ λ∗3)θ , for (λ1, λ2) ∈ {(β, α), (δ, γ)} and λ3 ∈ {α, β, γ, δ},
(γ∗ ⊗ x∗) ∪ (δ∗ ⊗ λ∗)θ = (ω∗ ⊗ λ∗)θ , for λ ∈ {α, β, γ, δ},

(x∗ ⊗ λ∗1) ∪ (ω∗ ⊗ λ∗2)θ = (ω∗ ⊗ω∗)θ , for (λ1, λ2) ∈ {(α, β), (γ, δ)},
(x∗ ⊗ λ∗1) ∪ (ω∗ ⊗ λ∗2)θ = −(ω∗ ⊗ω∗)θ , for (λ1, λ2) ∈ {(β, α), (δ, γ)},
(λ∗1 ⊗ x∗) ∪ (λ∗2 ⊗ω∗)θ = −(ω∗ ⊗ω∗)θ , for (λ1, λ2) ∈ {(β, α), (δ, γ)},
(γ∗ ⊗ x∗) ∪ (δ∗ ⊗ω∗)θ = (ω∗ ⊗ω∗)θ ,

(x∗ ⊗ω∗) ∪ (ω∗ ⊗ x∗)θ = (ω∗ ⊗ω∗)θ ,
(λ∗1 ⊗ λ∗2) ∪ (λ∗2 ⊗ λ∗1)θ = (ω∗ ⊗ω∗)θ , for (λ1, λ2) ∈ {(β, α), (δ, γ), (γ, δ)},
(β∗ ⊗ γ∗) ∪ (α∗ ⊗ δ∗)θ = (ω∗ ⊗ω∗)θ ,
(δ∗ ⊗ α∗) ∪ (γ∗ ⊗ β∗)θ = (ω∗ ⊗ω∗)θ ,
(γ∗ ⊗ β∗) ∪ (δ∗ ⊗ α∗)θ = (ω∗ ⊗ω∗)θ ,
(λ∗1 ⊗ λ∗1) ∪ (λ∗2 ⊗ λ∗2)θ = −(ω∗ ⊗ω∗)θ , for (λ1, λ2) ∈ {(β, α), (δ, γ), (γ, δ)},
(β∗ ⊗ δ∗) ∪ (α∗ ⊗ γ∗)θ = −(ω∗ ⊗ω∗)θ ,
(δ∗ ⊗ β∗) ∪ (γ∗ ⊗ α∗)θ = −(ω∗ ⊗ω∗)θ ,
(γ∗ ⊗ α∗) ∪ (δ∗ ⊗ β∗)θ = −(ω∗ ⊗ω∗)θ .
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4.1.2 Effective-zero–divisors

Definition 4.1. LetM be a local system of coefficients on X× X. A cohomology class u ∈ H∗(X× X;M) is
called a zero-divisor if its restriction to the diagonal is trivial, i.e. 0 = Φ∗(u) ∈ H∗(X;M|X), whereM|X
denotes the local system induced by the diagonal mapΦ : X → X× X.

Remark 4.2. The importance of zero–divisors stems from the following fact: suppose that there are zero–
divisors ui ∈ H∗(X × X;Ai), i = 1, . . . , k, such that their cup-product u1 ∪ · · · ∪ uk 6= 0 in H∗(X × X;A1 ⊗
· · · ⊗ Ak), then k ≤ TC(X). See [12, corollary 4.40].

Definition 4.2. LetM be a local coefficient system on X× X and let j∗(M) be the local coefficient system on
G× X induced by the “fattened diagonal”. A cohomology class f ∈ H1(X × X;M) is called an effective-
zero–divisor if j∗

(
f
)
= 0 in H∗(G× X; j∗ (M)).

Remark 4.3. Notice that for a discrete group G, G× X = ä
g∈G

X, then

H∗ (G× X; j∗(M)) ∼= ∏
g∈G

H∗
(
X; j∗(M)g

)
,

where j∗(M)g denotes the restriction of j∗(M) to the copy of X corresponding to g ∈ G.

Definition 4.3. Let f0, f1 : X → Y and u : I → Y a path. Suppose there is a homotopy F : X× I → Y from f0
to f1 such that F(x0, t) = u(t). Then we say f0 is freely homotopic to f1 along u.

Remark 4.4. If f0, f1 : (X, x0)→ (Y, y0), then u is a loop.

1. The diagram

π1(Y, f0(x0))

π1(X, x0)

π1(Y, f1(x0))

f0∗

f1∗

∼=Cu

commutes, where Cu denotes conjugation by u.

2. idΣ2 : (Σ2, x0)→ (Σ2, x0) is freely homotopic to a map ι : (Σ2, x0)→ (Σ2, σ · x0) throught a homotopy
H : Σ2 × I → Σ2 such that H(x0, t) = φ0. An example of such a homotopy is depicted in the picture
below.

x0

φ0
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Let G := σ ◦ H : Σ2 × I → Σ2, then

G(−, 0) = σ

G(−, 1) = σ ◦ ι, and G(x0, 1) = σ ◦ ι(x0) = x0

G(x0,−) = σ ◦ φ0 : I → Σ2.

x0

φ0

σφ0

σ · x0

Then
L := (proj1, G) : Σ2 × I → Σ2 × Σ2

(s, t) 7→ (s, G(s, t))

satisfies

L(−, 0) = (idΣ2 , σ) =: Φ′,
L(−, 1) = (−, σ ◦ ι) = (idΣ2 , σ ◦ ι),

L(x0,−) = (x0, σ ◦ φ0).

Thus, Φ′′ := (idΣ2 , σ ◦ ι) : (Σ2, x0) → (Σ2 × Σ2, (x0, x0)) is homotopic to Φ′ through L, and they induce,
up to an isomorphism, the same map in cohomology according to remark 2.4. What will be relevant for
us is that the morphism induced by Φ′ and Φ′′ have the same kernel, since we are interested in finding
effective-zero–divisors and these are precisely the elements of ker(Φ′′)∗ ∩ kerΦ∗.

Given a (π2 × π2)-module M, let us denote byM the local system over Σ2 × Σ2 determined by M. In
what follows Q(π2 × π2, M) (resp. P(π2 × π2, M)) stands for the group of all crossed homomorphisms from
π2 × π2 into M (the group of all principal homomorphisms of π2 × π2 into M).

Our goal is to understand the kernel of the map

(Φ′′)∗ : H1(Σ2 × Σ2;M)→ H1(Σ2; (Φ′′)∗(M)),

which can be understood in terms of crossed morphims,

H1 (Σ2 × Σ2;M) H1
(

Σ2; (Φ′′)∗(M)
)

Q (π2 × π2, M) /P (π2 × π2, M) Q (π2, (Φ′′)∗(M)) /P (π2, (Φ′′)∗(M)) ,

(Φ′′)∗

(Φ′′)∗

∼= ∼=

where (Φ′′)∗ is given by composition withΦ′′∗ : π2 → π2×π2 and the latter fits in the following commutative
diagram
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π2 × π2

π2

π2 × π1(Σ2, σ · x0).

Φ′′∗

Φ′∗

id×Cσφ0

Then ker((Φ′)∗) can be calculated in terms of

π2
Φ′∗−→ π2 × π1(Σ2, σ · x0)

id×Cσ◦φ0−−−−−→ π2 × π2
[α] 7−→ ([α], [σα]) 7−→

(
[α], [σφ0 ][σα][σφ0]

)
.

Let σ̂ : π2 → π2 be given by σ̂([α]) = [σφ0][σα][σφ0] and σ̃ as in lemma 4.1. Then

σ̂ (σ̃([α])) =
[
σφ0

] [
σ
(
φ0 · σα · φ0

)]
[σφ0]

=
[
σφ0

] [
σφ0 · α · σφ0

]
[σφ0]

=
[
σφ0

]
[σφ0] [α]

[
σφ0

]
[σφ0]

= [α] ,

i.e., σ̂ = (σ̃)−1.

Lemma 4.5. Loops representing the generators a, b, c and d of π2 can be chosen as depicted in the following picture:

σ · x0

φ0

a d

b
c

x0

Proof. Take the loops chosen in the statement of lemma 4.5 for the homotopy classes a, b, c and d. We get, by
direct inspection, the representative loops shown below of the indicated elements:
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ab

aba

aba
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abab

abab

abab

In a similar fashion, the latter loop can be seen to be a representative for dcdc too. Thus abab = dcdc which
is equivalent to the standard relation ababcdcd = e defining π2.

Just as lemma 4.5, lemma 4.6 below can be proved by making use of explicit pictures.
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Lemma 4.6. The isomorphisms σ̃ and σ̃−1 are determined by the relations

σ̃(a) = dabab, σ̃−1(a) = abab d,

σ̃(b) = baba c, σ̃−1(b) = cbaba, (4.12)

σ̃(c) = babab, σ̃−1(c) = aba,

σ̃(d) = bab, σ̃−1(d) = ababa,

where the expression on the right of each of these equalities is in normal form with respect to the finite complete rewriting
system described right after proposition 2.8.

The above considerations allow us to identify, in the setting of resolutions, the “twisted” and “usual”
diagonals Φ′′ and Φ. Consider the diagram below

· · · M2 M1 M0 Z 0

· · · M20 ⊕ M11 ⊕M02 M10 ⊕M01 M00 Z⊗Z 0

d2 d1 ε

d′2 d′1 ε⊗ε

φ2,φ′′2 φ1,φ′′1 φ0,φ′′0

s1 s2 s−1

U1
U2 U−1

where

1. Mij denotes Mi ⊗Mj, for i, j ∈ {0, 1, 2}.

2. φ′′i is defined on Z[π2]-basis elements by

φ′′0 (x) = x⊗ x,

and
φ′′i (ρ) = Ui−1φ

′′
i−1di(ρ), for i = 1, 2.

Furthermore, if z ∈ π2, then φ′′i (z · ρ) = (z, σ̃−1(z)) ·φ′′i (ρ). This corresponds to the “twisted” diagonal

Φ′′ : π2 → π2 × π2
z 7→

(
z, σ̃−1 (z)

)
.

3. φi is defined on Z[π2]-basis elements by

φ0(x) = x⊗ x,

and
φi(ρ) = Ui−1φi−1di(ρ) for i = 1, 2.

Furthermore, if z ∈ π2, then φi(z · ρ) = (z, z) ·φi(ρ). This corresponds to the “usual” diagonal

Φ : π2 → π2 × π2
z 7→ (z, z) .

If Z̃ = Z[sa, sb, sc, sd, s′a, s′b, s′c, s′d] is a local system over Σ2 × Σ2, then the systems of local coefficients in-
duced byΦ andΦ′′ over Σ2 are, respectively, ZΦ = Z[sas′a, sbs′b, scs′c, sds′d] and ZΦ′′ = Z[sas′d, sbs′c, scs′b, sds′a].
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Sometimes we write Zx to mean the local coefficient system on Σ2 such that only x ∈ {a, b, c, d} acts non-
trivially on Z, Zxy to mean the local coefficient system where only x, y ∈ {a, b, c, d} act non-trivially on Z,
and so on.

Before proceeding to find effective zero–divisors in dimension 1, we begin by writing down, in a much
more explicit way than the one that appears in [15], the additive 1-dimensional cohomology of π2 for any
local system having as underlying group the integers Z.

H1(π2; Z) = Z〈α∗〉 ⊕Z〈β∗〉 ⊕Z〈γ∗〉 ⊕Z〈δ∗〉
H1(π2; Za) = Z2〈α∗〉 ⊕Z〈γ∗〉 ⊕Z〈δ∗〉
H1(π2; Zb) = Z2〈β∗〉 ⊕Z〈γ∗〉 ⊕Z〈δ∗〉
H1(π2; Zc) = Z〈α∗〉 ⊕Z〈β∗〉 ⊕Z2〈γ∗〉
H1(π2; Zd) = Z〈α∗〉 ⊕Z〈β∗〉 ⊕Z2〈δ∗〉

H1(π2; Zab) = Z2〈α∗ + β∗〉 ⊕Z〈γ∗〉 ⊕Z〈δ∗〉
H1(π2; Zac) = (Z〈α∗〉 ⊕Z〈γ∗〉) /2Z〈α∗ + γ∗〉 ⊕Z〈β∗ − δ∗〉
H1(π2; Zad) = (Z〈α∗〉 ⊕Z〈δ∗〉) /2Z〈α∗ + δ∗〉 ⊕Z〈β∗ + γ∗〉
H1(π2; Zbc) = (Z〈β∗〉 ⊕Z〈γ∗〉) /2Z〈β∗ + γ∗〉 ⊕Z〈α∗ + δ∗〉
H1(π2; Zbd) = (Z〈β∗〉 ⊕Z〈δ∗〉) /2Z〈β∗ + δ∗〉 ⊕Z〈α∗ − γ∗〉
H1(π2; Zcd) = Z〈α∗〉 ⊕Z〈β∗〉 ⊕Z2〈γ∗ + δ∗〉

H1(π2; Zabc) = (Z〈α∗ + β∗〉 ⊕Z〈γ∗〉) /2Z〈α∗ + β∗ + γ∗〉 ⊕Z〈α∗ + δ∗〉
H1(π2; Zabd) = (Z〈α∗ + β∗〉 ⊕Z〈δ∗〉) /2Z〈α∗ + β∗ + δ∗〉 ⊕Z〈α∗ − γ∗〉
H1(π2; Zacd) = (Z〈α∗〉 ⊕Z〈γ∗ + δ∗〉) /2Z〈α∗ + γ∗ + δ∗〉 ⊕Z〈β∗ + γ∗〉
H1(π2; Zbcd) = (Z〈β∗〉 ⊕Z〈γ∗ + δ∗〉) /2Z〈β∗ + γ∗ + δ∗〉 ⊕Z〈α∗ − γ∗〉

H1(π2; Zabcd) = (Z〈α∗ + β∗〉 ⊕Z〈γ∗ + δ∗〉) /2Z〈α∗ + β∗ + γ∗ + δ∗〉 ⊕Z〈α∗ − γ∗〉

In order to look for 1-dimensional effective zero–divisors for the 256 systems of local coefficients over
Σ2 × Σ2, we consider sixteen cases. In turn, each of the first fifteen cases has two sub-cases, namely when the
1-cohomology in question is additively Z2 or Z2 ⊕Z⊕Z.

1. For Z̃ = Z[sa, sb, sc, sd,−1,−1,−1,−1], we have

ZΦ = Z[−sa,−sb,−sc,−sd],
ZΦ′′ = Z[−sa,−sb,−sc,−sd].

By direct calculation we obtain that H1(π2 × π2; Z̃) is either Z2 〈r〉 (if at least one of the sx is −1) or
Z2〈r1〉 ⊕Z〈r2〉 ⊕Z〈r3〉 (if all of the sx are 1), where

r =
1− sa

2
α∗⊗ x∗+

1− sb
2

β∗⊗ x∗+
1− sc

2
γ∗⊗ x∗+

1− sd
2

δ∗⊗ x∗+ x∗⊗ α∗+ x∗⊗ β∗+ x∗⊗γ∗+ x∗⊗ δ∗,

and  r1 = x∗ ⊗ α∗ + x∗ ⊗ β∗ + x∗ ⊗ γ∗ + x∗ ⊗ δ∗,
r2 = x∗ ⊗ γ∗ + x∗ ⊗ δ∗,
r3 = x∗ ⊗ α∗ − x∗ ⊗ γ∗.



CHAPTER 4. ON THE EFFECTIVE TOPOLOGICAL COMPLEXITY OF ΣG, G ≥ 2 65

Let us analyze in the first case the “usual” diagonal:

α
Φ7→ x⊗ α− α⊗ x r7→ 1− 1−sa

2 = sa+1
2 ,

β 7→ x⊗ β− β⊗ x 7→ 1− 1−sb
2 = sb+1

2 ,
γ 7→ x⊗ γ− γ⊗ x 7→ 1− 1−sc

2 = sc+1
2 ,

δ 7→ x⊗ δ− δ⊗ x 7→ 1− 1−sd
2 = sd+1

2 ,

thus Φ∗(r) = 0 only for sa = sb = sc = sd = −1. In such a case

r = α∗ ⊗ x∗ + β∗ ⊗ x∗ + γ∗ ⊗ x∗ + δ∗ ⊗ x∗ + x∗ ⊗ α∗ + x∗ ⊗ β∗ + x∗ ⊗ γ∗ + x∗ ⊗ δ∗,
ZΦ = Z[−sa,−sb,−sc,−sd] = Z,
ZΦ′′ = Z[−sa,−sb,−sc,−sd] = Z.

Now analyzing the “twisted” diagonal we obtain

α
Φ′′7→ 2x⊗ α− 2x⊗ β + x⊗ δ− α⊗ x r7→ 0,

β 7→ 2x⊗ α− 2x⊗ β + x⊗ γ− β⊗ x 7→ 0,
γ 7→ 2x⊗ α− x⊗ β− γ⊗ x 7→ 0,
δ 7→ 3x⊗ α− 2x⊗ β− δ⊗ x 7→ 0.

It follows that in this case r is an effective-zero–divisor.

For the second case, it turns out that ZΦ = ZΦ′′ = Zabcd, and if we take a look at the “usual” diagonal
we see that

α
Φ7→ x∗ ⊗ α∗ − α∗ ⊗ x∗

r1,r2,r37→ 1, 0, 1,
β 7→ x∗ ⊗ β∗ − β∗ ⊗ x∗ 7→ 1, 0, 0,
γ 7→ x∗ ⊗ γ∗ − γ∗ ⊗ x∗ 7→ 1, 1,−1,
δ 7→ x∗ ⊗ δ∗ − δ∗ ⊗ x∗ 7→ 1, 1, 0.

From where it follows that there is no linear combination of r1, r2 and r3 that vanishes over Φ, then for
the second case there are not effective-zero–divisors.

2. For Z̃ = Z[sa, sb, sc, sd,−1,−1,−1, 1], we have

ZΦ = Z[−sa,−sb,−sc, sd],
ZΦ′′ = Z[sa,−sb,−sc,−sd].

By direct calculation we obtain that H1(π2 × π2; Z̃) is either Z2 〈r〉 (if at least one of the sx is −1) or
Z2〈r1〉 ⊕Z〈r2〉 ⊕Z〈r3〉 (if all of the sx are 1), where

r =
1− sa

2
α∗⊗ x∗+

1− sb
2

β∗⊗ x∗+
1− sc

2
γ∗⊗ x∗+

1− sd
2

δ∗⊗ x∗+ x∗⊗ α∗+ x∗⊗ β∗+ x∗⊗ γ∗,

and  r1 = x∗ ⊗ α∗ + x∗ ⊗ β∗ + x∗ ⊗ γ∗,
r2 = x∗ ⊗ β∗ + x∗ ⊗ γ∗ − x∗ ⊗ δ∗,
r3 = x∗ ⊗ γ∗.

Let us analyze in the first case the “usual” diagonal:

α
Φ7→ x⊗ α− α⊗ x r7→ 1− 1−sa

2 = sa+1
2 ,

β 7→ x⊗ β− β⊗ x 7→ 1− 1−sb
2 = sb+1

2 ,
γ 7→ x⊗ γ− γ⊗ x 7→ 1− 1−sc

2 = sc+1
2 ,

δ 7→ x⊗ δ + δ⊗ x 7→ 0 + 1−sd
2 = 1−sd

2 ,

thus Φ∗(r) = 0 only for sa = sb = sc = −1 and sd = 1. In such a case
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r = α∗ ⊗ x∗ + β∗ ⊗ x∗ + γ∗ ⊗ x∗ + x∗ ⊗ α∗ + x∗ ⊗ β∗ + x∗ ⊗ γ∗,
ZΦ = Z[−sa,−sb,−sc, sd] = Z,
ZΦ′′ = Z[sa,−sb,−sc,−sd] = Zad.

Now analyzing the “twisted” diagonal we obtain

α
Φ′′7→ 2x⊗ α− 2x⊗ β− x⊗ γ + α⊗ x r7→ 0,

β 7→ 2x⊗ α− 2x⊗ β + x⊗ γ− β⊗ x 7→ 0,
γ 7→ 2x⊗ α− x⊗ β− γ⊗ x 7→ 0,
δ 7→ 3x⊗ α− 2x⊗ β− δ⊗ x 7→ 1.

It follows that in this case there are not effective-zero–divisors.

For the second case, it turns out that ZΦ = Zabc and ZΦ′′ = Zbcd, and if we take a look at the “twisted”
diagonal we see that

α
Φ′′7→ 2x⊗ α− 2x⊗ β− x⊗ γ + α⊗ x

r1,r2,r37→ −1,−3,−1,
β 7→ 2x⊗ α− 2x⊗ β + x⊗ γ− β⊗ x 7→ 1,−1, 1,
γ 7→ 2x⊗ α− x⊗ β− γ⊗ x 7→ 1,−1, 0,
δ 7→ 3x⊗ α− 2x⊗ β− δ⊗ x 7→ 1,−2, 0.

From where it follows that there is no linear combination of r1, r2 and r3 that vanishes over Φ′′, and
therefore there are not effective-zero–divisors in this case.

3. For Z̃ = Z[sa, sb, sc, sd,−1,−1, 1,−1], we have

ZΦ = Z[−sa,−sb, sc,−sd],
ZΦ′′ = Z[−sa, sb,−sc,−sd].

By direct calculation we obtain that H1(π2 × π2; Z̃) is either Z2 〈r〉 (if at least one of the sx is −1) or
Z2〈r1〉 ⊕Z〈r2〉 ⊕Z〈r3〉 (if all of the sx are 1), where

r =
1− sa

2
α∗⊗ x∗+

1− sb
2

β∗⊗ x∗+
1− sc

2
γ∗⊗ x∗+

1− sd
2

δ∗⊗ x∗+ x∗⊗ α∗+ x∗⊗ β∗+ x∗⊗ δ∗,

and  r1 = x∗ ⊗ α∗ + x∗ ⊗ β∗ + x∗ ⊗ δ∗,
r2 = x∗ ⊗ β∗ + x∗ ⊗ γ∗ + x∗ ⊗ δ∗,
r3 = x∗ ⊗ δ∗.

Let us analyze in the first case the “usual” diagonal:

α
Φ7→ x⊗ α− α⊗ x r7→ 1− 1−sa

2 = sa+1
2 ,

β 7→ x⊗ β− β⊗ x 7→ 1− 1−sb
2 = sb+1

2 ,
γ 7→ x⊗ γ + γ⊗ x 7→ 0 + 1−sc

2 = 1−sc
2 ,

δ 7→ x⊗ δ− δ⊗ x 7→ 1− 1−sd
2 = sd+1

2 ,

thus Φ∗(r) = 0 only for sa = sb = sd = −1 and sc = 1. In such a case

r = α∗ ⊗ x∗ + β∗ ⊗ x∗ + δ∗ ⊗ x∗ + x∗ ⊗ α∗ + x∗ ⊗ β∗ + x∗ ⊗ δ∗,
ZΦ = Z[−sa,−sb, sc,−sd] = Z,
ZΦ′′ = Z[−sa, sb,−sc,−sd] = Zbc.
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Now analyzing the “twisted” diagonal we obtain

α
Φ′′7→ 2x⊗ α− 2x⊗ β + x⊗ δ− α⊗ x r7→ 0,

β 7→ −2x⊗ α + 2x⊗ β− x⊗ γ + β⊗ x 7→ 1,
γ 7→ 2x⊗ α− x⊗ β− γ⊗ x 7→ 1,
δ 7→ 3x⊗ α− 2x⊗ β− δ⊗ x 7→ 0.

It follows that in this case there are not effective-zero–divisors.

For the second case, it turns out that ZΦ = Zabd and ZΦ′′ = Zacd, and if we take a look at the “twisted”
diagonal we see that

α
Φ′′7→ 2x⊗ α− 2x⊗ β− x⊗ γ + α⊗ x

r1,r2,r37→ 0,−3, 0,
β 7→ 2x⊗ α− 2x⊗ β + x⊗ γ− β⊗ x 7→ 0,−1, 0,
γ 7→ 2x⊗ α− x⊗ β− γ⊗ x 7→ 1,−1, 0,
δ 7→ 3x⊗ α− 2x⊗ β− δ⊗ x 7→ 1,−2, 0.

From where it follows that there is no linear combination of r1, r2 and r3 that vanishes over Φ′′, and
therefore there are not effective-zero–divisors in this case.

4. For Z̃ = Z[sa, sb, sc, sd,−1,−1, 1, 1], we have

ZΦ = Z[−sa,−sb, sc, sd],
ZΦ′′ = Z[sa, sb,−sc,−sd].

By direct calculation we obtain that H1(π2 × π2; Z̃) is either Z2 〈r〉 (if at least one of the sx is −1) or
Z2〈r1〉 ⊕Z〈r2〉 ⊕Z〈r3〉 (if all of the sx are 1), where

r =
1− sa

2
α∗ ⊗ x∗ +

1− sb
2

β∗ ⊗ x∗ +
1− sc

2
γ∗ ⊗ x∗ +

1− sd
2

δ∗ ⊗ x∗ + x∗ ⊗ α∗ + x∗ ⊗ β∗,

and  r1 = x∗ ⊗ α∗ + x∗ ⊗ β∗ ,
r2 = x∗ ⊗ γ∗,
r3 = x∗ ⊗ δ∗.

Let us analyze in the first case the “usual” diagonal:

α
Φ7→ x⊗ α− α⊗ x r7→ 1− 1−sa

2 = sa+1
2 ,

β 7→ x⊗ β− β⊗ x 7→ 1− 1−sb
2 = sb+1

2 ,
γ 7→ x⊗ γ + γ⊗ x 7→ 0 + 1−sc

2 = 1−sc
2 ,

δ 7→ x⊗ δ + δ⊗ x 7→ 0 + 1−sd
2 = 1−sd

2 ,

thus Φ∗(r) = 0 only for sa = sb = −1 and sc = sd = 1. In such a case

r = α∗ ⊗ x∗ + β∗ ⊗ x∗ + x∗ ⊗ α∗ + x∗ ⊗ β∗,
ZΦ = Z[−sa,−sb, sc, sd] = Z,
ZΦ′′ = Z[sa, sb,−sc,−sd] = Zabcd.

Now analyzing the “twisted” diagonal we obtain

α
Φ′′7→ 2x⊗ α− 2x⊗ β− x⊗ δ + α⊗ x r7→ 1,

β 7→ −2x⊗ α + 2x⊗ β− x⊗ γ + β⊗ x 7→ 1,
γ 7→ 2x⊗ α− x⊗ β− γ⊗ x 7→ 1,
δ 7→ 3x⊗ α− 2x⊗ β− δ⊗ x 7→ 1.
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It follows that in this case there are not effective-zero–divisors.

For the second case, it turns out that ZΦ = Zab and ZΦ′′ = Zcd, and if we take a look at the “twisted”
diagonal we see that

α
Φ′′7→ 2x⊗ α− 2x⊗ β− x⊗ δ + α⊗ x

r1,r2,r37→ 0, 0,−1,
β 7→ −2x⊗ α + 2x⊗ β− x⊗ γ + β⊗ x 7→ 0,−1, 0,
γ 7→ 2x⊗ α− x⊗ β− γ⊗ x 7→ 1, 0, 0,
δ 7→ 3x⊗ α− 2x⊗ β− δ⊗ x 7→ 1, 0, 0.

From where it follows that there is no linear combination of r1, r2 and r3 that vanishes over Φ′′, and
therefore there are not effective-zero–divisors in this case.

5. For Z̃ = Z[sa, sb, sc, sd,−1, 1,−1,−1], we have

ZΦ = Z[−sa, sb,−sc,−sd],
ZΦ′′ = Z[−sa,−sb, sc,−sd].

By direct calculation we obtain that H1(π2 × π2; Z̃) is either Z2 〈r〉 (if at least one of the sx is −1) or
Z2〈r1〉 ⊕Z〈r2〉 ⊕Z〈r3〉 (if all of the sx are 1), where

r =
1− sa

2
α∗⊗ x∗+

1− sb
2

β∗⊗ x∗+
1− sc

2
γ∗⊗ x∗+

1− sd
2

δ∗⊗ x∗+ x∗⊗ α∗+ x∗⊗ γ∗+ x∗⊗ δ∗,

and  r1 = x∗ ⊗ α∗,
r2 = x∗ ⊗ β∗ − x∗ ⊗ δ∗,
r3 = x∗ ⊗ α∗ + x∗ ⊗ γ∗ + x∗ ⊗ δ∗.

Let us analyze in the first case the “usual” diagonal:

α
Φ7→ x⊗ α− α⊗ x r7→ 1− 1−sa

2 = sa+1
2 ,

β 7→ x⊗ β + β⊗ x 7→ 0 + 1−sb
2 = 1−sb

2 ,
γ 7→ x⊗ γ− γ⊗ x 7→ 1− 1−sc

2 = sc+1
2 ,

δ 7→ x⊗ δ− δ⊗ x 7→ 1− 1−sd
2 = sd+1

2 ,

thus Φ∗(r) = 0 only for sa = sc = sd = −1 and sb = 1. In such a case

r = α∗ ⊗ x∗ + γ∗ ⊗ x∗ + δ∗ ⊗ x∗ + x∗ ⊗ α∗ + x∗ ⊗ γ∗ + x∗ ⊗ δ∗,
ZΦ = Z[−sa, sb,−sc,−sd] = Z,
ZΦ′′ = Z[−sa,−sb, sc,−sd] = Zbc.

Now analyzing the “twisted” diagonal we obtain

α
Φ′′7→ −2x⊗ β + x⊗ δ− α⊗ x r7→ 0,

β 7→ −2x⊗ β + x⊗ γ− β⊗ x 7→ 1,
γ 7→ x⊗ β + γ⊗ x 7→ 1,
δ 7→ x⊗ α− 2x⊗ β− δ⊗ x 7→ 0.

It follows that in this case there are not effective-zero–divisors.

For the second case, it turns out that ZΦ = Zacd and ZΦ′′ = Zabd, and if we take a look at the “twisted”
diagonal we see that

α
Φ′′7→ −2x⊗ β + x⊗ δ− α⊗ x

r1,r2,r37→ 0,−3, 1,
β 7→ −2x⊗ β + x⊗ γ− β⊗ x 7→ 0,−2, 1,
γ 7→ x⊗ β + γ⊗ x 7→ 0, 1, 0,
δ 7→ x⊗ α− 2x⊗ β− δ⊗ x 7→ 1,−2, 1.
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From where it follows that there is no linear combination of r1, r2 and r3 that vanishes over Φ′′, and
therefore there are not effective-zero–divisors in this case.

6. For Z̃ = Z[sa, sb, sc, sd,−1, 1,−1, 1], we have

ZΦ = Z[−sa, sb,−sc, sd],
ZΦ′′ = Z[sa,−sb, sc,−sd].

By direct calculation we obtain that H1(π2 × π2; Z̃) is either Z2 〈r〉 (if at least one of the sx is −1) or
Z2〈r1〉 ⊕Z〈r2〉 ⊕Z〈r3〉 (if all of the sx are 1), where

r =
1− sa

2
α∗ ⊗ x∗ +

1− sb
2

β∗ ⊗ x∗ +
1− sc

2
γ∗ ⊗ x∗ +

1− sd
2

δ∗ ⊗ x∗ + x∗ ⊗ α∗ + x∗ ⊗ γ∗,

and  r1 = x∗ ⊗ α∗,
r2 = x∗ ⊗ β∗ − x∗ ⊗ δ∗,
r3 = x∗ ⊗ α∗ + x∗ ⊗ γ∗.

Let us analyze in the first case the “usual” diagonal:

α
Φ7→ x⊗ α− α⊗ x r7→ 1− 1−sa

2 = sa+1
2 ,

β 7→ x⊗ β + β⊗ x 7→ 0 + 1−sb
2 = 1−sb

2 ,
γ 7→ x⊗ γ− γ⊗ x 7→ 1− 1−sc

2 = sc+1
2 ,

δ 7→ x⊗ δ + δ⊗ x 7→ 0 + 1−sd
2 = 1−sd

2 ,

thus Φ∗(r) = 0 only for sa = sc = −1 and sb = sd = 1. In such a case

r = α∗ ⊗ x∗ + γ∗ ⊗ x∗ + x∗ ⊗ α∗ + x∗ ⊗ γ∗,
ZΦ = Z[−sa, sb,−sc, sd] = Z,
ZΦ′′ = Z[sa,−sb, sc,−sd] = Zabcd.

Now analyzing the “twisted” diagonal we obtain

α
Φ′′7→ −2x⊗ β− x⊗ δ + α⊗ x r7→ 1,

β 7→ −2x⊗ β + x⊗ γ− β⊗ x 7→ 1,
γ 7→ x⊗ β + γ⊗ x 7→ 1,
δ 7→ x⊗ α− 2x⊗ β− δ⊗ x 7→ 1.

It follows that in this case there are not effective-zero–divisors.

For the second case, it turns out that ZΦ = Zac and ZΦ′′ = Zbd, and if we take a look at the “twisted”
diagonal we see that

α
Φ′′7→ −2x⊗ β− x⊗ δ + α⊗ x

r1,r2,r37→ 0,−1, 0,
β 7→ −2x⊗ β + x⊗ γ− β⊗ x 7→ 0,−2, 1,
γ 7→ x⊗ β + γ⊗ x 7→ 0, 1, 0,
δ 7→ x⊗ α− 2x⊗ β− δ⊗ x 7→ 1,−2, 1.

From where it follows that there is no linear combination of r1, r2 and r3 that vanishes over Φ′′, and
therefore there are not effective-zero–divisors in this case.

7. Z̃ = Z[sa, sb, sc, sd,−1, 1, 1,−1], we have
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ZΦ = Z[−sa, sb, sc,−sd],
ZΦ′′ = Z[−sa, sb, sc,−sd].

By direct calculation we obtain that H1(π2 × π2; Z̃) is either Z2 〈r〉 (if at least one of the sx is −1) or
Z〈r1〉 ⊕Z〈r2〉 ⊕Z2〈r3〉 (if all the sx are 1), where

r =
1− sa

2
α∗ ⊗ x∗ +

1− sb
2

β∗ ⊗ x∗ +
1− sc

2
γ∗ ⊗ x∗ +

1− sd
2

δ∗ ⊗ x∗ + x∗ ⊗ α∗ + x∗ ⊗ δ∗,

and  r1 = x∗ ⊗ α∗,
r2 = x∗ ⊗ β∗ + x∗ ⊗ γ∗,
r3 = x∗ ⊗ α∗ + x∗ ⊗ δ∗.

Let us analyze in the first case the “usual” diagonal:

α
Φ7→ x⊗ α− α⊗ x r7→ 1− 1−sa

2 = sa+1
2 ,

β 7→ x⊗ β + β⊗ x 7→ 0 + 1−sb
2 = 1−sb

2 ,
γ 7→ x⊗ γ + γ⊗ x 7→ 0 + 1−sc

2 = 1−sc
2 ,

δ 7→ x⊗ δ− δ⊗ x 7→ 1− 1−sd
2 = sd+1

2 ,

thus Φ∗(r) = 0 only for sa = sd = −1 and sb = sc = 1. In such a case

r = α∗ ⊗ x∗ + δ∗ ⊗ x∗ + x∗ ⊗ α∗ + x∗ ⊗ δ∗,
ZΦ = Z[−sa, sb, sc,−sd] = Z,
ZΦ′′ = Z[−sa, sb, sc,−sd] = Z.

Now analyzing the “twisted” diagonal we obtain

α
Φ′′7→ −2x⊗ β + x⊗ δ− α⊗ x r7→ 0,

β 7→ 2x⊗ β− x⊗ γ + β⊗ x 7→ 0,
γ 7→ x⊗ β + γ⊗ x 7→ 0,
δ 7→ x⊗ α− 2x⊗ β− δ⊗ x 7→ 0.

It follows that in this case r is an effective-zero–divisor.

For the second case, it turns out that ZΦ = Zad and ZΦ′′ = Zad, and if we take a look at the “twisted”
diagonal we see that

α
Φ′′7→ −2x⊗ β + x⊗ δ− α⊗ x

r1,r2,r37→ 0,−2, 1,
β 7→ 2x⊗ β− x⊗ γ + β⊗ x 7→ 0, 1, 0,
γ 7→ x⊗ β + γ⊗ x 7→ 0, 1, 0,
δ 7→ x⊗ α− 2x⊗ β− δ⊗ x 7→ 1,−2, 1.

From where it follows that there is no linear combination of r1, r2 and r3 that vanishes overΦ′′, then for
the second case the are not effective-zero–divisors.

8. Z̃ = Z[sa, sb, sc, sd,−1, 1, 1, 1], we have

ZΦ = Z[−sa, sb, sc, sd],
ZΦ′′ = Z[sa, sb, sc,−sd].
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By direct calculation we obtain that H1(π2 × π2; Z̃) is either Z2 〈r〉 (if at least one of the sx is −1) or
Z2〈r1〉 ⊕Z〈r2〉 ⊕Z〈r3〉 (if all the sx are 1), where

r =
1− sa

2
α∗ ⊗ x∗ +

1− sb
2

β∗ ⊗ x∗ +
1− sc

2
γ∗ ⊗ x∗ +

1− sd
2

δ∗ ⊗ x∗ + x∗ ⊗ α∗,

and  r1 = x∗ ⊗ α∗,
r2 = x∗ ⊗ γ∗,
r3 = x∗ ⊗ δ∗.

Let us analyze in the first case the “usual” diagonal:

α
Φ7→ x⊗ α− α⊗ x r7→ 1− 1−sa

2 = sa+1
2 ,

β 7→ x⊗ β + β⊗ x 7→ 0 + 1−sb
2 = 1−sb

2 ,
γ 7→ x⊗ γ + γ⊗ x 7→ 0 + 1−sc

2 = 1−sc
2 ,

δ 7→ x⊗ δ + δ⊗ x 7→ 0 + 1−sd
2 = 1−sd

2 ,

thus Φ∗(r) = 0 only for sa = −1 and sb = sc = sd = 1. In such a case

r = α∗ ⊗ x∗ + x∗ ⊗ α∗,
ZΦ = Z[−sa, sb, sc, sd] = Z,
ZΦ′′ = Z[sa, sb, sc,−sd] = Zad.

Now analyzing the “twisted” diagonal we obtain

α
Φ′′7→ −2x⊗ β− x⊗ δ + α⊗ x r7→ 1,

β 7→ 2x⊗ β− x⊗ γ + β⊗ x 7→ 0,
γ 7→ x⊗ β + γ⊗ x 7→ 0,
δ 7→ x⊗ α− 2x⊗ β− δ⊗ x 7→ 1.

It follows that in this case there are not effective-zero–divisors.

For the second case, it turns out that ZΦ = Za and ZΦ′′ = Zd, and if we take a look at the “twisted”
diagonal we see that

α
Φ′′7→ −2x⊗ β− x⊗ δ + α⊗ x

r1,r2,r37→ 0, 0, 1,
β 7→ 2x⊗ β− x⊗ γ + β⊗ x 7→ 0,−1, 0,
γ 7→ x⊗ β + γ⊗ x 7→ 0, 0, 0,
δ 7→ x⊗ α− 2x⊗ β− δ⊗ x 7→ 1, 0, 0.

From where it follows that there is no linear combination of r1, r2 and r3 that vanishes overΦ′′, then for
the second case the are not effective-zero–divisors.

9. Z̃ = Z[sa, sb, sc, sd, 1,−1,−1,−1], we have

ZΦ = Z[sa,−sb,−sc,−sd],
ZΦ′′ = Z[−sa,−sb,−sc, sd].

By direct calculation we obtain that H1(π2 × π2; Z̃) is either Z2 〈r〉 (if at least one of the sx is −1) or
Z2〈r1〉 ⊕Z〈r2〉 ⊕Z〈r3〉 (if all the sx are 1), where

r =
1− sa

2
α∗⊗ x∗+

1− sb
2

β∗⊗ x∗+
1− sc

2
γ∗⊗ x∗+

1− sd
2

δ∗⊗ x∗+ x∗⊗ β∗+ x∗⊗ γ∗+ x∗⊗ δ∗,
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and  r1 = x∗ ⊗ β∗ + x∗ ⊗ γ∗ + x∗ ⊗ δ∗,
r2 = x∗ ⊗ γ∗ + x∗ ⊗ δ∗,
r3 = x∗ ⊗ α∗ + x∗ ⊗ δ∗.

Let us analyze in the first case the “usual” diagonal:

α
Φ7→ x⊗ α + α⊗ x r7→ 0 + 1−sa

2 = 1−sa
2 ,

β 7→ x⊗ β− β⊗ x 7→ 1− 1−sb
2 = sb+1

2 ,
γ 7→ x⊗ γ− γ⊗ x 7→ 1− 1−sc

2 = sc+1
2 ,

δ 7→ x⊗ δ− δ⊗ x 7→ 1− 1−sd
2 = sd+1

2 ,

thus Φ∗(r) = 0 only for sa = 1 and sb = sc = sd = −1. In such a case

r = β∗ ⊗ x∗ + γ∗ ⊗ x∗ + δ∗ ⊗ x∗ + x∗ ⊗ β∗ + x∗ ⊗ γ∗ + x∗ ⊗ δ∗,
ZΦ = Z[sa,−sb,−sc,−sd] = Z,
ZΦ′′ = Z[−sa,−sb,−sc, sd] = Zad.

Now analyzing the “twisted” diagonal we obtain

α
Φ′′7→ 2x⊗ α + x⊗ δ− α⊗ x r7→ 1,

β 7→ 2x⊗ α + x⊗ γ− β⊗ x 7→ 0,
γ 7→ 2x⊗ α + x⊗ β− γ⊗ x 7→ 0,
δ 7→ x⊗ α + δ⊗ x 7→ 1.

It follows that in this case there are not effective-zero–divisors.

For the second case, it turns out that ZΦ = Zbcd and ZΦ′′ = Zabc, and if we take a look at the “twisted”
diagonal we see that

α
Φ′′7→ 2x⊗ α + x⊗ δ− α⊗ x

r1,r2,r37→ 1, 1, 3,
β 7→ 2x⊗ α + x⊗ γ− β⊗ x 7→ 1, 1, 2,
γ 7→ 2x⊗ α + x⊗ β− γ⊗ x 7→ 1, 0, 2,
δ 7→ x⊗ α + δ⊗ x 7→ 0, 0, 1.

From where it follows that there is no linear combination of r1, r2 and r3 that vanishes overΦ′′, then for
the second case the are not effective-zero–divisors.

10. Z̃ = Z[sa, sb, sc, sd, 1,−1,−1, 1], we have

ZΦ = Z[sa,−sb,−sc, sd],
ZΦ′′ = Z[sa,−sb,−sc, sd],

By direct calculation we obtain that H1(π2 × π2; Z̃) is either Z2 〈r〉 (if at least one of the sx is −1) or
Z〈r1〉 ⊕Z2〈r2〉 ⊕Z〈r3〉 (if all of the sx are 1), where

r =
1− sa

2
α∗ ⊗ x∗ +

1− sb
2

β∗ ⊗ x∗ +
1− sc

2
γ∗ ⊗ x∗ +

1− sd
2

δ∗ ⊗ x∗ + x∗ ⊗ β∗ + x∗ ⊗ γ∗,

and  r1 = x∗ ⊗ α∗ + x∗ ⊗ δ∗,
r2 = x∗ ⊗ β∗ + x∗ ⊗ γ∗,
r3 = x∗ ⊗ γ∗.
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Let us analyze in the first case the “usual” diagonal:

α
Φ7→ x⊗ α + α⊗ x r7→ 0 + 1−sa

2 = 1−sa
2 ,

β 7→ x⊗ β− β⊗ x 7→ 1− 1−sb
2 = sb+1

2 ,
γ 7→ x⊗ γ− γ⊗ x 7→ 1− 1−sc

2 = sc+1
2 ,

δ 7→ x⊗ δ + δ⊗ x 7→ 0 + 1−sd
2 = 1−sd

2 ,

thus Φ∗(r) = 0 only for sa = sd = 1 and sb = sc = −1. In such a case

r = β∗ ⊗ x∗ + γ∗ ⊗ x∗ + x∗ ⊗ β∗ + x∗ ⊗ γ∗,
ZΦ = Z[sa,−sb,−sc, sd] = Z,
ZΦ′′ = Z[sa,−sb,−sc, sd] = Z.

Now analyzing the “twisted” diagonal we obtain

α
Φ′′7→ 2x⊗ α− x⊗ δ + α⊗ x r7→ 0,

β 7→ 2x⊗ α + x⊗ γ− β⊗ x 7→ 0,
γ 7→ 2x⊗ α + x⊗ β− γ⊗ x 7→ 0,
δ 7→ x⊗ α + δ⊗ x 7→ 0.

It follows that in this case r is an effective-zero–divisor.

For the second case, it turns out that ZΦ = Zbc and ZΦ′′ = Zbc, and if we take a look at the “twisted”
diagonal we see that

α
Φ′′7→ 2x⊗ α− x⊗ δ + α⊗ x

r1,r2,r37→ 1, 0, 0,
β 7→ 2x⊗ α + x⊗ γ− β⊗ x 7→ 2, 1, 1,
γ 7→ 2x⊗ α + x⊗ β− γ⊗ x 7→ 2, 1, 0,
δ 7→ x⊗ α + δ⊗ x 7→ 1, 0, 0.

From where it follows that there is no linear combination of r1, r2 and r3 that vanishes overΦ′′, then for
the second case the are not effective-zero–divisors.

11. Z̃ = Z[sa, sb, sc, sd, 1,−1, 1,−1], we have

ZΦ = Z[sa,−sb, sc,−sd],
ZΦ′′ = Z[−sa, sb,−sc, sd].

By direct calculation we obtain that H1(π2 × π2; Z̃) is either Z2 〈r〉 (if at least one of the sx is −1) or
Z〈r1〉 ⊕Z2〈r2〉 ⊕Z〈r3〉 (if all the sx are 1), where

r =
1− sa

2
α∗ ⊗ x∗ +

1− sb
2

β∗ ⊗ x∗ +
1− sc

2
γ∗ ⊗ x∗ +

1− sd
2

δ∗ ⊗ x∗ + x∗ ⊗ β∗ + x∗ ⊗ δ∗,

and  r1 = x∗ ⊗ α∗ − x∗ ⊗ γ∗,
r2 = x∗ ⊗ β∗ + x∗ ⊗ δ∗,
r3 = x∗ ⊗ δ∗.

Let us analyze in the first case the “usual” diagonal:

α
Φ7→ x⊗ α + α⊗ x r7→ 0 + 1−sa

2 = 1−sa
2 ,

β 7→ x⊗ β− β⊗ x 7→ 1− 1−sb
2 = sb+1

2 ,
γ 7→ x⊗ γ + γ⊗ x 7→ 0 + 1−sc

2 = 1−sc
2 ,

δ 7→ x⊗ δ− δ⊗ x 7→ 1− 1−sd
2 = sd+1

2 ,

thus Φ∗(r) = 0 only for sa = sc = 1 and sb = sd = −1. In such a case
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r = β∗ ⊗ x∗ + δ∗ ⊗ x∗ + x∗ ⊗ β∗ + x∗ ⊗ δ∗,
ZΦ = Z[sa,−sb, sc,−sd] = Z,
ZΦ′′ = Z[−sa, sb,−sc, sd] = Zabcd.

Now analyzing the “twisted” diagonal we obtain

α
Φ′′7→ 2x⊗ α + x⊗ δ− α⊗ x r7→ 1,

β 7→ −2x⊗ α− x⊗ γ + β⊗ x 7→ 1,
γ 7→ 2x⊗ α + x⊗ β− γ⊗ x 7→ 1,
δ 7→ x⊗ α + δ⊗ x 7→ 1.

It follows that in this case there are not effective-zero–divisors.

For the second case, it turns out that ZΦ = Zbd and ZΦ′′ = Zac, and if we take a look at the “twisted”
diagonal we see that

α
Φ′′7→ 2x⊗ α + x⊗ δ− α⊗ x

r1,r2,r37→ 2, 1, 1,
β 7→ −2x⊗ α− x⊗ γ + β⊗ x 7→ −1, 0, 0,
γ 7→ 2x⊗ α + x⊗ β− γ⊗ x 7→ 2, 1, 0,
δ 7→ x⊗ α + δ⊗ x 7→ 1, 0, 0.

From where it follows that there is no linear combination of r1, r2 and r3 that vanishes overΦ′′, then for
the second case the are not effective-zero–divisors.

12. Z̃ = Z[sa, sb, sc, sd, 1,−1, 1, 1], we have

ZΦ = Z[sa,−sb, sc, sd],
ZΦ′′ = Z[sa, sb,−sc, sd].

By direct calculation we obtain that H1(π2 × π2; Z̃) is either Z2 〈r〉 (if at least one of the sx is −1) or
Z2〈r1〉 ⊕Z〈r2〉 ⊕Z〈r3〉 (if all the sx are 1), where

r =
1− sa

2
α∗ ⊗ x∗ +

1− sb
2

β∗ ⊗ x∗ +
1− sc

2
γ∗ ⊗ x∗ +

1− sd
2

δ∗ ⊗ x∗ + x∗ ⊗ β∗,

and  r1 = x∗ ⊗ β∗,
r2 = x∗ ⊗ γ∗,
r3 = x∗ ⊗ δ∗.

Let us analyze in the first case the “usual” diagonal:

α
Φ7→ x⊗ α + α⊗ x r7→ 0 + 1−sa

2 = 1−sa
2 ,

β 7→ x⊗ β− β⊗ x 7→ 1− 1−sb
2 = sb+1

2 ,
γ 7→ x⊗ γ + γ⊗ x 7→ 0 + 1−sc

2 = 1−sc
2 ,

δ 7→ x⊗ δ + δ⊗ x 7→ 0 + 1−sd
2 = 1−sd

2 ,

thus Φ∗(r) = 0 only for sa = sc = sd = 1 and sb = −1. In such a case

r = β∗ ⊗ x∗ + x∗ ⊗ β∗,
ZΦ = Z[sa,−sb, sc, sd] = Z,
ZΦ′′ = Z[sa, sb,−sc, sd] = Zbc.
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Now analyzing the “twisted” diagonal we obtain

α
Φ′′7→ 2x⊗ α− x⊗ δ + α⊗ x r7→ 0,

β 7→ −2x⊗ α− x⊗ γ + β⊗ x 7→ 1,
γ 7→ 2x⊗ α + x⊗ β− γ⊗ x 7→ 1,
δ 7→ x⊗ α + δ⊗ x 7→ 0.

It follows that in this case there are not effective-zero–divisors.

For the second case, it turns out that ZΦ = Zb and ZΦ′′ = Zc, and if we take a look at the “twisted”
diagonal we see that

α
Φ′′7→ 2x⊗ α− x⊗ δ + α⊗ x

r1,r2,r37→ 0, 0,−1,
β 7→ −2x⊗ α− x⊗ γ + β⊗ x 7→ 0,−1, 0,
γ 7→ 2x⊗ α + x⊗ β− γ⊗ x 7→ 1, 0, 0,
δ 7→ x⊗ α + δ⊗ x 7→ 0, 0, 0.

From where it follows that there is no linear combination of r1, r2 and r3 that vanishes overΦ′′, then for
the second case the are not effective-zero–divisors.

13. Z̃ = Z[sa, sb, sc, sd, 1, 1,−1,−1], we have

ZΦ = Z[sa, sb,−sc,−sd],
ZΦ′′ = Z[−sa,−sb, sc, sd].

By direct calculation we obtain that H1(π2 × π2; Z̃) is either Z2 〈r〉 (if at least one of the sx is −1) or
Z〈r1〉 ⊕Z〈r2〉 ⊕Z2〈r3〉 (if all the sx are 1), where

r =
1− sa

2
α∗ ⊗ x∗ +

1− sb
2

β∗ ⊗ x∗ +
1− sc

2
γ∗ ⊗ x∗ +

1− sd
2

δ∗ ⊗ x∗ + x∗ ⊗ γ∗ + x∗ ⊗ δ∗,

and  r1 = x∗ ⊗ α∗,
r2 = x∗ ⊗ β∗,
r3 = x∗ ⊗ γ∗ + x∗ ⊗ δ∗.

Let us analyze in the first case the “usual” diagonal:

α
Φ7→ x⊗ α + α⊗ x r7→ 0 + 1−sa

2 = 1−sa
2 ,

β 7→ x⊗ β + β⊗ x 7→ 0 + 1−sb
2 = 1−sb

2 ,
γ 7→ x⊗ γ− γ⊗ x 7→ 1− 1−sc

2 = sc+1
2 ,

δ 7→ x⊗ δ− δ⊗ x 7→ 1− 1−sd
2 = sd+1

2 ,

thus Φ∗(r) = 0 only for sa = sb = 1 and sc = sd = −1. In such a case

r = γ∗ ⊗ x∗ + δ∗ ⊗ x∗ + x∗ ⊗ γ∗ + x∗ ⊗ δ∗,
ZΦ = Z[sa, sb,−sc,−sd] = Z,
ZΦ′′ = Z[−sa,−sb, sc, sd] = Zabcd.

Now analyzing the “twisted” diagonal we obtain

α
Φ′′7→ x⊗ δ− α⊗ x r7→ 1,

β 7→ x⊗ γ− β⊗ x 7→ 1,
γ 7→ −x⊗ β + γ⊗ x 7→ 1,
δ 7→ −x⊗ α + δ⊗ x 7→ 1.
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It follows that in this case there are not effective-zero–divisors.

For the second case, it turns out that ZΦ = Zcd and ZΦ′′ = Zab, and if we take a look at the “twisted”
diagonal we see that

α
Φ′′7→ x⊗ δ− α⊗ x

r1,r2,r37→ 0, 0, 1,
β 7→ x⊗ γ− β⊗ x 7→ 0, 0, 1,
γ 7→ −x⊗ β + γ⊗ x 7→ 0,−1, 0,
δ 7→ −x⊗ α + δ⊗ x 7→ 1, 0, 0.

From where it follows that there is no linear combination of r1, r2 and r3 that vanishes overΦ′′, then for
the second case the are not effective-zero–divisors.

14. Z̃ = Z[sa, sb, sc, sd, 1, 1,−1, 1], we have

ZΦ = Z[sa, sb,−sc, sd],
ZΦ′′ = Z[sa,−sb, sc, sd].

By direct calculation we obtain that H1(π2 × π2; Z̃) is either Z2 〈r〉 (if at least one of the sx is −1) or
Z〈r1〉 ⊕Z〈r2〉 ⊕Z2〈r3〉 (if all the sx are 1), where

r =
1− sa

2
α∗ ⊗ x∗ +

1− sb
2

β∗ ⊗ x∗ +
1− sc

2
γ∗ ⊗ x∗ +

1− sd
2

δ∗ ⊗ x∗ + x∗ ⊗ γ∗,

and  r1 = x∗ ⊗ α∗,
r2 = x∗ ⊗ β∗,
r3 = x∗ ⊗ γ∗.

Let us analyze in the first case the “usual” diagonal:

α
Φ7→ x⊗ α + α⊗ x r7→ 0 + 1−sa

2 = 1−sa
2 ,

β 7→ x⊗ β + β⊗ x 7→ 0 + 1−sb
2 = 1−sb

2 ,
γ 7→ x⊗ γ− γ⊗ x 7→ 1− 1−sc

2 = sc+1
2 ,

δ 7→ x⊗ δ + δ⊗ x 7→ 0 + 1−sd
2 = 1−sd

2 ,

thus Φ∗(r) = 0 only for sa = sb = sd = 1 and sc = −1. In such a case

r = γ∗ ⊗ x∗ + x∗ ⊗ γ∗,
ZΦ = Z[sa, sb,−sc, sd] = Z,
ZΦ′′ = Z[sa,−sb, sc, sd] = Zbc.

Now analyzing the “twisted” diagonal we obtain

α
Φ′′7→ −x⊗ δ + α⊗ x r7→ 1,

β 7→ x⊗ γ− β⊗ x 7→ 0,
γ 7→ −x⊗ β + γ⊗ x 7→ 0,
δ 7→ −x⊗ α + δ⊗ x 7→ 1.

It follows that in this case there are not effective-zero–divisors.

For the second case, it turns out that ZΦ = Zc and ZΦ′′ = Zb, and if we take a look at the “twisted”
diagonal we see that

α
Φ′′7→ −x⊗ δ + α⊗ x

r1,r2,r37→ 0, 0, 0,
β 7→ x⊗ γ− β⊗ x 7→ 0, 0, 1,
γ 7→ −x⊗ β + γ⊗ x 7→ 0,−1, 0,
δ 7→ −x⊗ α + δ⊗ x 7→ −1, 0, 0.



CHAPTER 4. ON THE EFFECTIVE TOPOLOGICAL COMPLEXITY OF ΣG, G ≥ 2 77

From where it follows that there is no linear combination of r1, r2 and r3 that vanishes overΦ′′, then for
the second case the are not effective-zero–divisors.

15. Z̃ = Z[sa, sb, sc, sd, 1, 1, 1,−1], we have

ZΦ = Z[sa, sb, sc,−sd],
ZΦ′′ = Z[−sa, sb, sc, sd].

By direct calculation we obtain that H1(π2 × π2; Z̃) is either Z2 〈r〉 (if at least one of the sx is −1) or
Z〈r1〉 ⊕Z〈r2〉 ⊕Z2〈r3〉 (if all the sx are 1), where

r =
1− sa

2
α∗ ⊗ x∗ +

1− sb
2

β∗ ⊗ x∗ +
1− sc

2
γ∗ ⊗ x∗ +

1− sd
2

δ∗ ⊗ x∗ + x∗ ⊗ δ∗,

and  r1 = x∗ ⊗ α∗,
r2 = x∗ ⊗ β∗,
r3 = x∗ ⊗ δ∗.

Let us analyze in the first case the “usual” diagonal:

α
Φ7→ x⊗ α + α⊗ x r7→ 0 + 1−sa

2 = 1−sa
2 ,

β 7→ x⊗ β + β⊗ x 7→ 0 + 1−sb
2 = 1−sb

2 ,
γ 7→ x⊗ γ + γ⊗ x 7→ 0 + 1−sc

2 = 1−sc
2 ,

δ 7→ x⊗ δ− δ⊗ x 7→ 1− 1−sd
2 = sd+1

2 ,

thus Φ∗(r) = 0 only for sa = sb = sc = 1 and sd = −1. In such a case

r = δ∗ ⊗ x∗ + x∗ ⊗ δ∗,
ZΦ = Z[sa, sb, sc,−sd] = Z,
ZΦ′′ = Z[−sa, sb, sc, sd] = Zad.

Now analyzing the “twisted” diagonal we obtain

α
Φ′′7→ x⊗ δ− α⊗ x r7→ 1,

β 7→ −x⊗ γ + β⊗ x 7→ 0,
γ 7→ −x⊗ β + γ⊗ x 7→ 0,
δ 7→ −x⊗ α + δ⊗ x 7→ 1.

It follows that in this case there are not effective-zero–divisors.

For the second case, it turns out that ZΦ = Zd and ZΦ′′ = Za, and if we take a look at the “twisted”
diagonal we see that

α
Φ′′7→ x⊗ δ− α⊗ x

r1,r2,r37→ 0, 0, 1,
β 7→ −x⊗ γ + β⊗ x 7→ 0, 0, 0,
γ 7→ −x⊗ β + γ⊗ x 7→ 0,−1, 0,
δ 7→ −x⊗ α + δ⊗ x 7→ −1, 0, 0.

From where it follows that there is no linear combination of r1, r2 and r3 that vanishes overΦ′′, then for
the second case the are not effective-zero–divisors.

16. For Z̃ = Z[sa, sb, sc, sd, 1, 1, 1, 1], we have sixteen cases.
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• For Z̃ = Z[−1,−1,−1,−1, 1, 1, 1, 1],

H1(π2 × π2; Z̃) = Z〈α∗⊗x∗+β∗⊗x∗〉⊕Z〈γ∗⊗x∗+δ∗⊗x∗〉
2Z〈α∗⊗x∗+β∗⊗x∗+γ∗⊗x∗+δ∗⊗x∗〉 ⊕Z〈α∗ ⊗ x∗ − γ∗ ⊗ x∗〉

Φ∗∼= H1(π2; Zabcd).

• For Z̃ = Z[−1,−1,−1, 1, 1, 1, 1, 1],

H1(π2 × π2; Z̃) = Z〈α∗⊗x∗+β∗⊗x∗〉⊕Z〈γ∗⊗x∗〉
2Z〈α∗⊗x∗+β∗⊗x∗+γ∗⊗x∗〉 ⊕Z〈α∗ ⊗ x∗ + δ∗ ⊗ x∗〉

Φ∗∼= H1(π2; Zabc).

• For Z̃ = Z[−1,−1, 1,−1, 1, 1, 1, 1],

H1(π2 × π2; Z̃) = Z〈α∗⊗x∗+β∗⊗x∗〉⊕Z〈δ∗⊗x∗〉
2Z〈α∗⊗x∗+β∗⊗x∗+δ∗⊗x∗〉 ⊕Z〈α∗ ⊗ x∗ − γ∗ ⊗ x∗〉

Φ∗∼= H1(π2; Zabd).

• For Z̃ = Z[−1,−1, 1, 1, 1, 1, 1, 1],

H1(π2 × π2; Z̃) = Z〈α∗⊗x∗+β∗⊗x∗〉
2Z〈α∗⊗x∗+β∗⊗x∗〉 ⊕Z〈γ∗ ⊗ x∗〉 ⊕Z〈δ∗ ⊗ x∗〉

Φ∗∼= H1(π2; Zab).

• For Z̃ = Z[−1, 1,−1,−1, 1, 1, 1, 1],

H1(π2 × π2; Z̃) = Z〈α∗⊗x∗〉⊕Z〈γ∗⊗x∗+δ∗⊗x∗〉
2Z〈α∗⊗x∗+γ∗⊗x∗+δ∗⊗x∗〉 ⊕Z〈β∗ ⊗ x∗ + γ∗ ⊗ x∗〉

Φ∗∼= H1(π2; Zacd).

• For Z̃ = Z[−1, 1,−1, 1, 1, 1, 1, 1],

H1(π2 × π2; Z̃) = Z〈α∗⊗x∗〉⊕Z〈γ∗⊗x∗〉
2Z〈α∗⊗x∗+γ∗⊗x∗〉 ⊕Z〈β∗ ⊗ x∗ − δ∗ ⊗ x∗〉

Φ∗∼= H1(π2; Zac).

• For Z̃ = Z[−1, 1, 1,−1, 1, 1, 1, 1],

H1(π2 × π2; Z̃) = Z〈α∗⊗x∗〉⊕Z〈δ∗⊗x∗〉
2Z〈α∗⊗x∗+δ∗⊗x∗〉 ⊕Z〈β∗ ⊗ x∗ + γ∗ ⊗ x∗〉

Φ∗∼= H1(π2; Zad).

• For Z̃ = Z[−1, 1, 1, 1, 1, 1, 1, 1],

H1(π2 × π2; Z̃) = Z〈α∗⊗x∗〉
2Z〈α∗⊗x∗〉 ⊕Z〈γ∗ ⊗ x∗〉 ⊕Z〈δ∗ ⊗ x∗〉

Φ∗∼= H1(π2; Za).

• For Z̃ = Z[1,−1,−1,−1, 1, 1, 1, 1],

H1(π2 × π2; Z̃) = Z〈β∗⊗x∗〉⊕Z〈γ∗⊗x∗+δ∗⊗x∗〉
2Z〈β∗⊗x∗+γ∗⊗x∗+δ∗⊗x∗〉 ⊕Z〈α∗ ⊗ x∗ − γ∗ ⊗ x∗〉

Φ∗∼= H1(π2; Zbcd).

• For Z̃ = Z[1,−1,−1, 1, 1, 1, 1, 1],

H1(π2 × π2; Z̃) = Z〈β∗⊗x∗〉⊕Z〈γ∗⊗x∗〉
2Z〈β∗⊗x∗+γ∗⊗x∗〉 ⊕Z〈α∗ ⊗ x∗ + δ∗ ⊗ x∗〉

Φ∗∼= H1(π2; Zbc).

• For Z̃ = Z[1,−1, 1,−1, 1, 1, 1, 1],

H1(π2 × π2; Z̃) = Z〈β∗⊗x∗〉⊕Z〈δ∗⊗x∗〉
2Z〈β∗⊗x∗+δ∗⊗x∗〉 ⊕Z〈α∗ ⊗ x∗ − γ∗ ⊗ x∗〉

Φ∗∼= H1(π2; Zbd).

• For Z̃ = Z[1,−1, 1, 1, 1, 1, 1, 1],

H1(π2 × π2; Z̃) = Z〈β∗⊗x∗〉
2Z〈β∗⊗x∗〉 ⊕Z〈γ∗ ⊗ x∗〉 ⊕Z〈δ∗ ⊗ x∗〉

Φ∗∼= H1(π2; Zb).

• For Z̃ = Z[1, 1,−1,−1, 1, 1, 1, 1],

H1(π2 × π2; Z̃) = Z〈α∗ ⊗ x∗〉 ⊕Z〈β∗ ⊗ x∗〉 ⊕ Z〈γ∗⊗x∗+δ∗⊗x∗〉
2Z〈γ∗⊗x∗+δ∗⊗x∗〉

Φ∗∼= H1(π2; Zcd).
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• For Z̃ = Z[1, 1,−1, 1, 1, 1, 1, 1],

H1(π2 × π2; Z̃) = Z〈α∗ ⊗ x∗〉 ⊕Z〈β∗ ⊗ x∗〉 ⊕ Z〈γ∗⊗x∗〉
2Z〈γ∗⊗x∗〉

Φ∗∼= H1(π2; Zc).

• For Z̃ = Z[1, 1, 1,−1, 1, 1, 1, 1],

H1(π2 × π2; Z̃) = Z〈α∗ ⊗ x∗〉 ⊕Z〈β∗ ⊗ x∗〉 ⊕ Z〈δ∗⊗x∗〉
2Z〈δ∗⊗x∗〉

Φ∗∼= H1(π2; Zd).

• For Z̃ = Z[1, 1, 1, 1, 1, 1, 1, 1],
H1(π2 × π2; Z̃) = Z〈x∗ ⊗ α∗, x∗ ⊗ β∗, x∗ ⊗ γ∗, x∗ ⊗ δ∗, α∗ ⊗ x∗, β∗ ⊗ x∗, γ∗ ⊗ x∗, δ∗ ⊗ x∗〉.
The “usual” diagonal takes the following values

α
Φ7→ x⊗ α + α⊗ x,

β 7→ x⊗ β + β⊗ x,
γ 7→ x⊗ γ + γ⊗ x,
δ 7→ x⊗ δ + δ⊗ x,

and the “twisted” diagonal takes the following values

α
Φ′′7→ −x⊗ δ + α⊗ x,

β 7→ −x⊗ γ + β⊗ x,
γ 7→ −x⊗ β + γ⊗ x,
δ 7→ −x⊗ α + δ⊗ x.

It follows that in this case that

α∗ ⊗ x∗ − δ∗ ⊗ x∗ − x∗ ⊗ α∗ + x∗ ⊗ δ∗

and
β∗ ⊗ x∗ − γ∗ ⊗ x∗ − x∗ ⊗ β∗ + x∗ ⊗ γ∗

are effective-zero–divisors.

Summarizing, we have found five 1-dimensional effective zero–divisors, namely

1. For Z̃ = Z[−1,−1,−1,−1,−1,−1,−1,−1]

d1 = α∗ ⊗ x∗ + β∗ ⊗ x∗ + γ∗ ⊗ x∗ + δ∗ ⊗ x∗ + x∗ ⊗ α∗ + x∗ ⊗ β∗ + x∗ ⊗ γ∗ + x∗ ⊗ δ∗.

2. For Z̃ = Z[−1, 1, 1,−1,−1, 1, 1,−1]

d2 = α∗ ⊗ x∗ + δ∗ ⊗ x∗ + x∗ ⊗ α∗ + x∗ ⊗ δ∗.

3. For Z̃ = Z[1,−1,−1, 1, 1,−1,−1, 1]

d3 = β∗ ⊗ x∗ + γ∗ ⊗ x∗ + x∗ ⊗ β∗ + x∗ ⊗ γ∗.

4. For Z,
d4 = α∗ ⊗ x∗ − δ∗ ⊗ x∗ − x∗ ⊗ α∗ + x∗ ⊗ δ∗.

and
d5 = β∗ ⊗ x∗ − γ⊗ x∗ − x∗ ⊗ β∗ + x∗ ⊗ γ∗.
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Now if we look for products of length four of these zero–divisors, we will find that all of them are zero.
Nevertheless, with coefficients Z trivial,

d4 ∪ d5 = −α∗ ⊗ β∗ + α∗ ⊗ γ∗ + δ∗ ⊗ β∗ − δ∗ ⊗ γ∗ + β∗ ⊗ α∗ − γ∗ ⊗ α∗ − β∗ ⊗ δ∗ + γ∗ ⊗ δ∗.

Furthermore, with coefficients Z trivial there are sixteen effective zero–divisors in dimension 2, of which

α∗ ⊗ α∗, α∗ ⊗ δ∗, β∗ ⊗ β∗, β∗ ⊗ γ∗, γ∗ ⊗ β∗, γ∗ ⊗ γ∗, δ∗ ⊗ α∗, δ∗ ⊗ δ∗,

have trivial product with d4 ∪ d5, and the remaining,

w∗ ⊗ x∗ + 2δ∗ ⊗ γ∗ + x∗ ⊗ w∗, α∗ ⊗ β∗ + δ∗ ⊗ γ∗,
α∗ ⊗ γ∗ − δ∗ ⊗ γ∗ − x∗ ⊗ w∗, β∗ ⊗ α∗ − δ∗ ⊗ γ∗,
β∗ ⊗ δ∗ + δ∗ ⊗ γ∗ + x∗ ⊗ w∗, γ∗ ⊗ α∗ − δ∗ ⊗ γ∗ − x∗ ⊗ w∗,
γ∗ ⊗ δ∗ + δ∗ ⊗ γ∗, δ∗ ⊗ β∗ + δ∗ ⊗ γ∗ + x∗ ⊗ w∗,

each multiply with d4 ∪ d5 to give ±2ω∗ ⊗ω∗. We have therefore established:

Proposition 4.7. 3 ≤ TCσ(Σ2) ≤ 4.

4.2 The Bernstein-Costa-Farber class

In [8] A. Costa and M. Farber explicitly described, for a connected CW complex X, a crossed homomorphism
representing the primary obstruction to the existence of a continuous section of e0,1. Here we discuss
the universality of such a class and its analogous class og,Z2 . This universal property is suggested by the
corresponding property for the Bernstein class in the Lusternik–Schnirelmann category, see [2], [26], and [11].

Let x0 ∈ X the base point, π = π1(X, x0) a discrete group, I(π) = ker(ε : Z[π]→ Z), and M an abelian
group on which π × π operates. I(π) is a Z[π × π]-module via the restriction of the action of Z[π × π] over
Z[π],

(x, y) ·∑ nici = ∑ nixciy, x, y, ci ∈ π and ni ∈ Z.

Fix the crossed homomorphism (introduced by A. Costa and M. Farber)

ν : π × π −→ I(π)
(x, y) 7→ xy− 1 (4.13)

and denote the corresponding one-dimensional cohomology class by ν ∈ H1
(

X× X; I(π)
)

.

Remark 4.5. In fact ν represents a zero-divisor. See [8].

Lemma 4.8. For f ∈ Q(π × π, M) being trivial on the diagonal ∆π×π ⊂ π × π is equivalent to the condition
f (x, 1) = f (1, x) for all x ∈ π.

Proof. Given x ∈ π,

f (x, x) = f ((1, x), (x, 1))
= f (1, x) + (1, x) f (x, 1)

since f is a crossed morphism. Then for all x ∈ π,

(1, x) f (x, x)− f (x, 1) = (1, x) f (1, x).
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Furthermore, f (1, 1) = 0, and for all x ∈ π,

f (1, 1) = f ((1, x)(1, x))
= f (1, x) + (1, x) f (1, x)
= f (1, x) + (1, x) f (x, x)− f (x, 1)

i.e.
f (x, 1) = f (1, x) + (1, x) f (x, x), x ∈ π.

The result follows.

Remark 4.6. If f ∈ Q(π × π, M) is trivial on ∆π×π , then f (x, y) = f (xz, yz) for all x, y, z ∈ π. Since

f (xz, yz) = f ((x, y)(z, z))
= f (x, y) + (x, y) · f (z, z)
= f (x, y) + (x, y) · 0
= f (x, y),

where the last equality is because the action is by homomorphisms.

Lemma 4.9. Let f ∈ Q(π × π, M) such that it is trivial when restricted to the diagonal ∆π×π ⊂ π × π. Then there
exists a (π × π)-morphism f ′ : I(π)→ M making commutative the diagram

π × π M

I(π).

f

ν f ′

Proof. Suppose f as in the statement. Consider the additive morphism f ′ : I(π)→ M determined on basis
elements by setting

f ′(x− 1) = f (x, 1) for x ∈ π,

and extending it by linearity. The diagram commutes since

f ′ ◦ ν(x, y) = f ′(xy− 1)
= f (xy, 1)
= f (x, y), by remark 4.6.

In order to show that f ′ is a (π × π)-morphism notice that

f ′ ((y, 1) · (x− 1))− (y, 1) · f ′(x− 1) = f ′(yx− y)− (y, 1) · f ′(x− 1)
= f (yx, 1)− f (y, 1)− (y, 1) · f (x, 1)
= f (y, 1) + (y, 1) · f (x, 1)− f (y, 1)− (y, 1) · f (x, 1)
=0

and

f ′ ((1, y) · (x− 1))− (1, y) · f ′(x− 1) = f ′(xy− y)− (1, y) · f ′(x− 1)
= f (xy, 1)− f (y, 1)− (1, y) · f (x, 1)
= f (x, 1) + (x, 1) · f (y, 1)− f (y, 1)− (1, y) · f (x, 1)
= f (x, 1) + (x, 1) · f (1, y)− f (1, y)− (1, y) · f (x, 1)
= f ((x, 1)(1, y))− f ((1, y)(x, 1))
=0
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i.e.
f ′ ((y, 1) · (x− 1)) = (y, 1) · f ′(x− 1)

and
f ′ ((1, y) · (x− 1)) = (1, y) · f ′(x− 1).

Then

f ′ ((y, z) · (x− 1)) = f ′ ((y, 1) · [(1, z) · (x− 1)])

=(y, 1) · f ′ ([(1, z) · (x− 1)])

=(y, 1) · (1, z) · f ′(x− 1)

=(y, z) · f ′(x− 1).

Corollary 4.9.1. Let f ∈ Q(π × π, M) such that f (x, x) = (x, x) ·m−m for some m ∈ M. Then there exists a
(π × π)-morphism f ′ : I(π)→ M making commutative the diagram up to a principal morphism

π × π M

I(π).

f

ν f ′

Proof. Let h ∈ P(π × π, M) such that h(x, y) = (x, y) · m− m. Then f − h is a crossed morphism strictly
trivial on the diagonal, therefore there is a (π × π)-morphism f ′ : I(π) → M making commutative the
diagram

π × π M

I(π),

f − h

ν f ′

i.e. the diagram below commutes up to a principal morphism

π × π M

I(π).

f

ν f ′

The theorem 4.10 is an immediate consequence of the discussion above, lemma 4.9 and corollary 4.9.1.

Theorem 4.10. For any zero divisor f ∈ H1(X × X;M) there exists a (π × π)-morphism I(π) → M such that
the induced homomorphism for cohomology takes ν to f (whereM denotes the local coefficient system over X × X
determined by M).

An analogous result holds for 1-dimensional effective-zero–divisors.
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Theorem 4.11. Let M be a Z[π2 × π2]-module and ϕ : π2 × π2 → M a crossed homomorphism which corresponds
to an effective–zero–divisor via the isomorphism H1(Σ2 × Σ2;M) ∼= Q(π2 × π2, M)/P(π2 × π2, M), i.e.

ϕ(x, x) = (x, x) ·m1 −m1,

ϕ(x, σ̃−1(x)) = (x, σ̃−1(x)) ·m2 −m2,

for elements m1, m2 ∈ M. Then there exists a (π2 × π2)-morphism ψ : I(Z2 × π2) → M such that the induced
homomorphism for cohomology takes o2,Z2 to ϕ.

Proof. We define ψ : I(Z2 × π2)→ M by

ψ((e, x)− (e, 1)) = (ϕ− ϕm1)(x, 1), (4.14)

ψ((σ, x)− (e, 1)) = (1− σ̃−1) · (m1 −m2) + (ϕ− ϕm1)(σ̃
−1(x), 1), (4.15)

where ϕm1(x, y) = (x, y) ·m1 −m1.
For (4.15)

ψ((a, 1) · [(σ, x)− (e, 1)]) =(1, σ̃−1(x)σ̃−1(a)) · (m1 −m2)

+ (ϕ− ϕm1)(σ̃
−1(ax), 1)− (ϕ− ϕm1)(a, 1), (4.16)

(a, 1) · ψ((σ, x)− (e, 1)) =(a, σ̃−1(x)) · (m1 −m2)

+ (a, 1) · (ϕ− ϕm1)(σ̃
−1(x), 1). (4.17)

Let us check that (4.16) and (4.17) are equal. In fact, notice that

(ϕ− ϕm1)(a, σ̃−1(a)) = ϕ(a, σ̃−1(a))− ϕm1(a, σ̃−1(a))

= ϕ(a, σ̃−1(a))− [(a, σ̃−1(a)) ·m1 −m1]

= [(a, σ̃−1(a)) ·m2 −m2] · [(a, σ̃−1(a)) ·m1 −m1] (4.18)

= (m1 −m2)− (a, σ̃−1(a)) · (m1 −m2). (4.19)

From (4.19):
(ϕ− ϕm1)(a, σ̃−1(a)) + (a, σ̃−1(a)) · (m1 −m2) = m1 −m2. (4.20)

Substracting (ϕ− ϕm1)(1, σ̃−1(x)) in (4.20) we obtain the equality

(a, σ̃−1(a)) · (m1 −m2) + (ϕ− ϕm1)(aσ̃−1(a), σ̃−1(x))+

(aσ̃−1(a), σ̃−1(x)) · (ϕ− ϕm1)(1, σ̃−1(x))− ((ϕ− ϕm1)(1, σ̃−1(x))

= (m1 −m2) + (1, σ̃−1(x)) · (ϕ− ϕm1)(σ̃
−1(x), 1).

(4.21)

Where the left hand side of (4.21) turns to be equal to

(a, σ̃−1(a)) · (m1 −m2) + (a, σ̃−1(x)) · (ϕ− ϕm1)(σ̃
−1(ax), 1)− (a, σ̃−1(x))(ϕ− ϕm1)(a, 1).

Then we have

(a, σ̃−1(a)) · (m1 −m2) + (a, σ̃−1(x)) · (ϕ− ϕm1)(σ̃
−1(ax), 1)

− (a, σ̃−1(x))(ϕ− ϕm1)(a, 1) = (m1 −m2)

+ (1, σ̃−1(x)) · (ϕ− ϕm1)(σ̃
−1(x), 1).

(4.22)

Acting on both sides of (4.22) by (a, σ̃−1(x)), we get that

ψ((a, 1) · [(σ, x)− (e, 1)]) = (a, 1) · ψ((σ, x)− (e, 1)).
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5

Conclusions and future work

First, we gave a thorough analysis of the gap between the upper and lower bounds of the inequalities
zcls(RPm) ≤ TCs(RPm) ≤ sm, which allowed us to give an estimation for TCs(RPm). Further, we explained
how such estimation seems to be closely related to the determination of the Euclidean immersion dimension
of RPm.

Second, by finding effective-zero–divisors of dimension 1 (in the 256 systems of local coefficients having
as group Z) we presented some indirect evidence suggesting that the effective topological complexity of the
orientable surfaces of genus g ≥ 2 would be 3 instead of 4.

Finally, as an immediate future work we have to try to produce motion planners that prove that in effect
the indirect evidence mentioned above is true.
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