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Resumen
En este trabajo se desarrolla la aproximación anaĺıtica de operadores de transmutación

(AATO) para operadores Dirac unidimensionales. Se trata de la construcción anaĺıtica
de un sistema completo de soluciones para un sistema diferencial parcial hiperbólico en
las variables reales x y t. Se sabe que un operador de transmutación para operadores de
Dirac unidimensionales puede realizarse en la forma de un operador integral Volterra y
su núcleo integral satisface el sistema hiperbólico que se menciona, condicionado en las
curvas caracteŕısticas x = t y x = −t. El sistema de soluciones que se construye para dicho
sistema, se presenta como un producto de funciones matriciales 2 × 2 en la variable real
x por potencias de t, lo que conduce a una aproximación del núcleo integral del operador
de transmutación en la forma

∑N
n=0 t

nKn(x). Esta forma conveniente proporciona una
manera simple de construir aproximaciones con cotas de error uniforme a las soluciones del
sistema Dirac unidimensional estacionario y resolver problemas espectrales relacionados.
Se presenta una explicación exhaustiva del método anterior indicando su uso desde un
punto de vista práctico. Como puente en la construcción anterior, también se desarrolla
la representación SPPS para el sistema Dirac unidimensional. Esta última representación
también puede ser utilizada para resolver problemas espectrales para el mismo sistema.





Abstract
In this work we develop an analytic approximation of transmutation operators (AATO)

for one-dimensional Dirac operators. It is based on an analytical construction of a com-
plete system of solutions for a hyperbolic partial differential system in the real variables
x and t. It is known that a transmutation operator for one-dimensional Dirac operators
can be realized in the form of a Volterra integral operator and its integral kernel satisfies
the mentioned hyperbolic system with conditions on the characteristics curves x = t and
x = −t. The system of constructed solutions is presented as a product of 2 × 2 matrix
functions in the real variable x by powers of t, which leads to an approximation of the
integral kernel of the transmutation operator in the form

∑N
n=0 t

nKn(x). This convenient
form provides a simple way to construct approximations with uniform error bounds to the
solutions of one-dimensional stationary Dirac system and to solve related spectral prob-
lems. We present an exhaustive explanation of the previous method and discuss its use
from a practical point of view. As a bridge in the previous construction, we also present
the SPPS representation for one-dimensional Dirac system. This last representation also
works to solve spectral problems for the one-dimensional Dirac system.





Notation
1. C ([a, b];C) : space of continuous complex function on [a, b]. Let f ∈ C([a, b];C).

‖f‖ := ‖f(·t)‖ max
t∈[a,b]

= max
t∈[a,b]

|f(t)| .

2. Space of continuously differentiable functions on [a, b].

C1 ([a, b];C) := {f | f ′ ∈ C ([a, b];C)} .

3. AC [a, b]: space of absolutely continuous functions on [a, b].

4. Lp (a, b) space, 1 ≤ p <∞.

Lp(a, b) :=



f : (a, b) → C

∣∣∣ f is measurable and ‖f‖Lp :=

(∫ b

a

|f |p dx
)1/p

<∞



 .

5. W r
p (a, b) Sovolev space, 1 ≤ p <∞.

W r
p (a, b) :=

{
f ∈ Lp

∣∣∣Dkf ∈ Lp, k = 1, . . . , r
}
.

If there is no ambiguity, we may omit the interval (a, b) and write simply Lp and
W r

p .

6. We will write (y1, . . . , yn)
T to denote a vector-valued function on [a, b]. Let Y =

(y1, . . . , yn)
T . If yi ∈ C ([a, b];C) for each i, i = 1, . . . , n, then

‖Y ‖ := max {‖y1‖ , . . . , ‖yn‖} .

7. AC (−b, b)n space.

AC (−b, b)n =
{
Y = (y1, . . . , yn)

T | yi ∈ AC(−b, b), i = 1 . . . n
}
.

8. Lp (−b, b)n space.

Lp (−b, b)n =
{
Y = (y1, . . . , yn)

T | yi ∈ Lp (−b, b) , i = 1 . . . n
}
.

Let f = (f1, f2)
T and g = (g1, g2)

T . The inner product

〈f , g〉 :=
∫ b

a

f(x) · g(x) dx =

∫ b

a

f1(x)g1(x) + f2(x)g2(x) dx

and the norm
‖f‖ := 〈f ,f〉1/2 .

on L2 (−b, b)2.
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9. W (−b, b)n space.

W r
p (a, b)

n =
{
Y = (y1, . . . , yn)

T | yi ∈ W r
p (a, b), i = 1 . . . n

}
.

10. We denote by Mn = Mn(C) the space of n× n matrices with complex entries. Let
A ∈ Mn.

‖A ‖∞ = max

{
n∑

i=1

|ai1|, . . . ,
n∑

i=1

|ain|
}
, A = (aij), i, j = 1, . . . , n.

11. Similar to [30], we will write Mn-valued continuous function to indicate an element
of the space

C([a, b];Mn) :=
{
(fij)

∣∣∣ fij ∈ C [a, b] , i, j = 1, . . . , n
}
.

Let F ∈ C([a, b];Mn). Then

‖F‖ := max

{
n∑

i=1

‖fi1‖ , . . . ,
n∑

i=1

‖fin‖
}
.

12. Lp((a, b) ,Mn): space of Mn-valued functions whose components belong to Lp. Let
F ∈ Lp((a, b) ,Mn). Then

‖F‖Lp := max

{
n∑

i=1

‖fi1‖Lp , . . . ,
n∑

i=1

‖fin‖Lp

}
.

13. The notation g(·x) indicates function of variable x: x 7→ g(x). Similar by, M(·x, ·t)
indicates function of variables x and t: (x, t) 7→M(x, t) and w(·x, t) indicates func-
tion of variable x: x 7→ w(x, t).

iv



Overview

Introduction

This dissertation is oriented to the development of a recently discovered method fo-
cused on the one-dimensional stationary Dirac system. The method was introduced in
[43] and it is called an analytic approximation of transmutation operators (AATO). As
a fundamental part in the development of this method for the treated system, the SPPS
method for the same system is also presented. Both methods are analytic and of easy
numerical implementation that allows one to approximate the solution of initial value
problems as well as the solution of spectral problems for the indicated system, each of
these with its own characteristics.

The document is structured in five chapters. In the preliminary chapter we present
the one-dimensional Dirac system, we also present a brief historical summary of the meth-
ods implemented in the previous papers with the purpose of motivating and showing the
type of results obtained in the following chapters. In the second chapter, we present
the SPPS representation for the solutions and introduce the main ingredient, the formal
powers for the one-dimensional Dirac system. This representation is not only presented
in the context of continuous solutions but also in the context of weak solutions. In ad-
dition, as a particular case of the previous representation, we present a very interesting
example that relates the formal powers constructed in [41] for the Sturm-Liouville equa-
tion. Consequently, our representation extends the result established in [41]. Chapter 3
is devoted to the study of transmutation operators for one-dimensional Dirac operators,
it is a very important chapter since it is the basis of the method used. In Chapter 4 we
present a detailed explanation of the AATO method. It is worth noting that the analytic
approximation method developed here provides a different way of obtaining the results
from [43]. Finally, Chapter 5 presents a practical point of view on the AATO method
and how it is implemented to solve associated problems for the one-dimensional Dirac
system. Of course, the results obtained in this dissertation are in collaboration with
professors Vladislav V. Kravchenko and Sergii Torba, I am very grateful for suggesting
me the beautiful thematic for this dissertation and I deeply appreciate the guidance and
support during this process.

State of the Art

Due to its importance, the one-dimensional stationary Dirac system has been the
object of study in various areas of mathematics and mathematical physics ([2] [14] [29]
[54]) and currently provides applications to graphene [31]. For an introduction to the
Dirac equation see for example [4] [5] [25] [60].

In the recent paper [43] a new method for solving spectral problems for Sturm-Liouville
equations is introduced, see also [37]. The method is called the analytic approximation of
transmutation operators (AATO). Roughly speaking, the analytic approximation method
is based on the notion of transmutation operator introduced by Delsate [16] and on the
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results from [33] where a new complete system of solution for the Klein-Gordon equation
was constructed. This method presents a highly accurate approximation to the solution
of spectral problems because the approximations do not depend on the size of the spectral
parameter, moreover the approximate solutions are obtained in analytical form and offer
an easy numerical implementation. Added to all the above, the approach proposed in
[43] allows one the use of transmutation operators as a practical and easy-to-use tool,
rather than a theoretical tool as is normally used. All these characteristics are the initial
motivation to extend this method to other equations of interest in mathematical physics,
in particular due to its importance to the one-dimensional Dirac system.

In this dissertation we examine the linear differential operators AQ = B d
dx

+ Q(x)
and A0 := B d

dx
, where B2 = −I, BQ ≡ −QB, I being the the identity matrix. Similar

in spirit to [49], a transmutation operator T for the above operators (in the sense of
Definition 1.3.1) is a Volterra integral operator and its integral kernel K(·x, ·t) satisfies
certain boundary conditions on characteristic curves t = x and t = −x attached to the
non-homogeneous matrix transport equation type BKx +KtB = −Q(x)K, see Theorem
3.2.10. One of the main characteristics of these transmutation operators is derived from
the definition, the operator T maps a vector-valued solution y(x) of the simple Dirac
system A0y = λy (with potential Q ≡ 0 ) into a solution T [y](x) of the complicated Dirac
system AQy = λy. The important point to emphasize here is that, the integral kernel K
in general is unknown and only known in closed form for a few particular potentials, see
for example [42].

Based on the ideas of [43], the main result of this dissertation states that
Theorem 4.4.1. Let {an, cn}Nn=0 and {bn, dn}Nn=0 be complex numbers such that

∥∥∥∥∥
1
2

(
−p(x)
−q(x)

)
−

N∑

n=0

Nn(x)

(
an
cn

)∥∥∥∥∥ < ǫ1

and ∥∥∥∥∥
1
2

(
−p(x)
−q(x)

)
−

N∑

n=0

Mn(x)

(
bn
dn

)∥∥∥∥∥ < ǫ2.

for every x ∈ [0, b] . Then the kernel K(x, t) is approximated by the linear combination

KN(x, t) =
N∑

n=0

[
anO1

n(x, t) + bnO2
n(x, t) + cnO3

n(x, t) + dnO4
n(x, t)

]
,

in such a way that for every (x, t) ∈ Ω+ the following inequality holds

∥∥K(x, t)−KN(x, t)
∥∥ < Cǫ1,ǫ2 .

In this theorem, {Oi
m, i = 1, 2, 3, 4}∞m=0 is the matrix system indicated in Definition

4.2.7, p and q are the components of the potential Q and the 2×2 matrix-valued functions
Nn and Mn are restrictions of KN to the characteristic curves t = x and t = −x. The

vi



OVERVIEW vii

result established in Theorem 4.4.1 not only extends the approximation obtained in [43]
but also establishes it in a different way.

The main contribution of this dissertation is oriented to the study of the one-dimensional
stationary Dirac system linked to the theory of transmutation operators.

• A complete system of solutions for the hyperbolic system BKx +KtB = −Q(x)K
is constructed.

• As a result of the convenient approximation KN for the integral kernel, a highly
competitive method for approximate solution of spectral problems for the one-
dimensional Dirac system AQy = λy is proposed.

• Convergence rate estimates depending on the smoothness of the potential are pre-
sented.

Approbation

The results presented in this dissertation are written in two articles in collaboration
with professors Vladislav V. Kravchenko and Sergii Torba [26], [27].

The results contained in this thesis were accepted for presentation in the following
congresses.

• International Conference Waves in Science and Engineering (WIS&E), Querétaro,
México, August 22-26, 2016. Talk: Analytic approximation of a transmutation
operator related to one-dimensional Dirac operators

• XLIX Congreso Nacional de la Sociedad Matemática Mexicana, Aguascalientes,
México, Octubre 23-28, 2016. Talk: Aproximación anaĺıtica de un operador de
transmutación para el operador de Dirac unidimensional.

• Primeras Jornadas Matemáticas del CINVESTAV, D.F. México, Noviembre 22-25,
2016. Talk: Aproximación anaĺıtica de un operador de transmutación entre oper-
adores de Dirac unidimensionales.

Finally, we mention that as a closely related project the result established in Theorem
4.4.1 can be extended to the case when the potential is an n× n matrix-valued function
satisfying certain commutativity relation, under more general conditions these operators
have been considered by Marchenko [51]. In addition, now that we have the new rep-
resentations that have emerged recently for integral kernels of transmutation operators
[45]-[46], we are going to examine this representation in the case of one-dimensional Dirac
operators.

vii





Chapter 1

Preliminaries

The aim of this chapter is to motivate our investigation and establish the terminology
used. We give a brief exposition of the two methods developed here focused on the system
in question. In Section 1.1 we make a brief presentation of the one-dimensional stationary
Dirac system. Section 1.2 contains a brief historical summary of the SPPS representation.
In Section 1.3 we introduce the notion of transmutation operator. Section 1.4 deals with
the AATO (analytic approximation of transmutation operators) method and we briefly
outline its main characteristics.

1.1 The one-dimensional stationary Dirac system

As its name implies, this system is derived from the fascinating equation that Paul Dirac
introduced in 1928 [19] [20] to describe the relativistic motion of spin-1/2 particles. Mainly
in this work the system in question is considered as follows:

(
0 1
−1 0

)
dy

dx
+

(
p(x) q(x)
q(x) −p(x)

)
y = λy, y(x) =

(
y1(x)
y2(x)

)
. (1.1)

From the physical point of view, system (1.1) corresponds to stationary state of a
particle under the action of external forces, whose characteristics are included in the
entries p(x) and q(x) of the potential matrix which we will denote by Q ([4], [5], [25],
[57], [60]). For example, following [60], an argument close to that provided by Dirac is
presented which leads to his famous equation in the form

i~
∂

∂t
ψ(t,x) = H0ψ(t,x), t ∈ R, x ∈ R

3,

where ~ is the Planck constant and H0 is the Dirac Hamiltonian. In the one-dimensional
case, adding to the Hamiltonian H0 the potential matrix Q, the sum can be written as

H0 +Q(x) = −i~cσ2
d

dx
+ σ3mc

2 + p(x)σ3 + q(x)σ1, (1.2)

1



2 CHAPTER 1. PRELIMINARIES

where σ1, σ2, σ3 are known as the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

So that, writing out the expression for H0+Q in (1.2) it is easily seen that the differential
operator on the left-hand side of (1.1) is nothing but the previous sum except by the
constants. It should be noted that currently the system (1.1) is used in particular, in
graphene applications [31].

Due to its importance, the system (1.1) has been widely studied in many articles from
a mathematical point of view and, although at first glance this system seems somewhat
restrictive, in reality it corresponds to a canonical form of a more general system, namely,

(
0 1
−1 0

)
dy

dx
+

(
p11(x) p12(x)
p21(x) p22(x)

)
y = λy, p12(x) ≡ p21(x). (1.3)

Following Levitan and Sargsjan [49], the above system can be transformed into any of the
following systems via an orthogonal transformation in the two-dimensional space,

(
0 1
−1 0

)
dz

dx
+

(
p(x) 0
0 r(x)

)
z = λz, (1.4)

(
0 1
−1 0

)
dz

dx
+

(
p(x) q(x)
q(x) −p(x)

)
z = λz, (1.5)

which are known as canonical forms of the system (1.3), which includes the Dirac radial
equation, see [57].

For simplicity of notation, we shall write the matrix equation (1.1) as

B
dY

dx
+Q(x)Y = λY, Y (x) =

(
y1(x)
y2(x)

)
, (1.6)

where

B =

(
0 1
−1 0

)
, Q(x) =

(
p(x) q(x)
q(x) −p(x)

)
.

This form will be used for convenience in most of the work.
Since the methods developed in Chapters 2 and 4 allow us to solve initial value prob-

lems, as well as boundary value problems associated with the system (1.1), we briefly
mention that the type of boundary conditions associated with the system (1.1) can be
considered in the form

U(y(a), y(b)) =

(
u11 u12
u21 u22

)(
y1(a)
y2(a)

)
+

(
u13 u14
u23 u24

)(
y1(b)
y2(b)

)
=

(
0
0

)
.

To obtain specialized information regarding the one-dimensional Dirac operators we sug-
gest the work [54].

2



1.2. SPECTRAL PARAMETER POWER SERIES 3

1.2 Spectral parameter power series

Based on pseudoanalytic functions theory [7], V.V. Kravchenko [35] introduced a new
representation for solutions of a Sturm-Liouville equation, it has the form of a powers series
with respect to the spectral parameter, whose coefficients are obtained by simple recursive
integration procedure involving a non-trivial solution for the associated homogeneous
equation. Later in [38], V. V. Kravchenko and R. M. Porter extended this representation
to the equation

(pu′)′ + qu = λru, (1.7)

separating it from the theory of pseudo analytic functions and called a spectral parameter
power series (SPPS) repesentation, showing that the SPPS representation provides a
simple and powerful method for numerical solution of initial value, boundary value and
spectral problems.

Under the assumptions, u0 being a non-trivial solution of equation

(pu′0)
′ + qu0 = 0, (1.8)

p, q, r, u0 are complex-valued functions of the real variable x and λ is an arbitrary complex
constant.

Theorem 1.2.1 ([38]). Assume that on a finite interval [a, b], equation (1.8) possesses

a particular solution u0 such that the functions u20r and 1/(u20p) are continuous on [a, b].
Then the general solution of (1.7) on (a, b) has the form

u = c1u1 + c2u2,

where c1 and c2 are arbitrary complex constants,

u1(x) = u0(x)
∞∑

k=0

λkX̃(2k)(x), and u2(x) = u0(x)
∞∑

k=0

λkX(2k+1)(x), (1.9)

with X̃(n) and X(n) being defined by the recursive relations

X̃(n) ≡ 1, X̃(n) ≡ 1,

X̃(n)(x) =





∫ x

x0

X̃(n−1)(s)u20(s)r(s) ds, n odd,

∫ x

x0

X̃(n−1)(s)
1

u20(s)p(s)
ds, n even,

(1.10)

X(n)(x) =





∫ x

x0

X(n−1)(s)
1

u20(s)p(s)
ds, n odd,

∫ x

x0

X(n−1)(s)u20(s)r(s)ds, n even,

(1.11)

where x0 is an arbitrary point in [a, b] such that p is continuous at x0 and p(x0) 6= 0.
Further, both series in (1.9) converge uniformly on [a, b].

3



4 CHAPTER 1. PRELIMINARIES

Subsequently, in joint works of V. V. Kravchenko and his colleague S. M. Torba,
the SPPS method was improved and expanded considerably, in particular in [40] the
condition of being non-vanishing imposed on u0 is removed. Currently, there are already
many works that involve this representation, see [33] and references therein, and within its
main characteristics the SPPS representation allows one to solve approximately spectral
problems by means the roots calculation of a polynomial. The aim of Chapter 2 is to obtain
the analogous of the above theorem for the solutions of the one-dimensional stationary
Dirac system (1.1).

1.3 Transmutation operators

A crucial fact in the theory of linear differential equations is the concept of the transmuta-
tion operator. This idea goes back to Delsarte, Lions, Povzner, Marchenko ([16], [17], [51])
and consists in relating two linear differential operators to examine a more complicated
equation in terms of a simpler one. Very often in the literature this concept is also known
as transformation operators. Mainly of a theoretical nature, it is a tool involved in dozens
of works associated with direct and inverse problems for lineal differential equations. It
should be noted that, as part of the state of the art on the use of transmutation operators,
the approach proposed by the authors Kravchenko and Torba is purely practical.

We give the definition of transmutation operator from [41] which is a modification of
the definition proposed by Levitan [48] adapted to the purposes of the present work. Let
E be a linear topological space and E1 its linear subspace (not necessarily closed). Let
A1,A2 : E1 → E be linear operators.

Definition 1.3.1. A linear invertible operator T defined on the whole E such that E1 is
invariant under the action of T is called a transmutation operator for the pair of operators
A1 and A2 if it fulfills the following two conditions.

1. Both the operator T and its inverse T−1 are continuous in E;

2. The following operator equality is valid

A1T = TA2

or which is the same

A1 = TA2T
−1.

The relation A1T = TA2 is known as transmutation property and perhaps is the most
important property of the previous definition, for example in the finite dimensional case
this property corresponds to the definition of two similar matrices and is well-known that
similar matrices share all desirable properties. The basic idea of transmutation is to relate
two linear differential operators, one simpler than the other, which allows us to transform
a more complicated equation into a simpler one, as later indicated.
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1.4 Analytic approximation of transmutation opera-

tors

The analytic approximation of transmutation operators (AATO) is a recent method in-
troduced in [43] to approximate solution of initial value and spectral problems for Sturm-
Liouville equations, see also [37]. Roughly speaking, this method is based on the concept
of transmutation operator introduced in 1938 by J. Dersarte [16], and on the results
from [33] where a new complete system of solution for the Klein-Gordon equation was
constructed.

Since one of the objectives established in the present dissertation is to introduce this
method oriented to one-dimensional Dirac operators and with the purpose to give briefly
sketch about this method, we have compiled basic information from [43] that motivated
the extension of this attractive method to one-dimensional Dirac operators. In addition,
we shall write one of the main results obtained in [43] since in Section 5.4 it will be
referenced with the purpose of connecting results and drawing some conclusions. In what
follows, we will transcribe only some aspects from [43].

In the sense of Definition 1.3.1, a parametrized family of transmutation operators for
the one-dimensional Schrödinger operators A1 = − d2

dx2 + q1(x) and A2 = − d2

dx2 can be
realized in the form of the Volterra integral operators

Thu(x) = u(x) +

∫ x

−x

Kh(x, t)u(t) dt, (1.12)

where h is a complex parameter, see [9], [39], and the integral kernel Kh(x, t) can be
obtained as a solution of a Klein-Gordon type equation with boundary conditions on the
characteristics curves t = x and t = −x. These last type of problems are called Goursart
problems associated to the integral kernel.

The interest of the operator Th is that v := Thu satisfies −v′′ + q1(x)v = ω2v, as long
as, u being a solution of the equation −u′′ = ω2u. This last property follows from the
transmutation property A1Th = ThA2. Note also that the latter equation is simpler than
the first. We would like to emphasize here that, in practice, this attractive property of the
operator Th is only available under the condition that the integral kernelKh is known, and
we already know that them are only known in exact form for some particular potentials,
see [39]. In addition to the above, the classical approach of successive approximations
can be used to approximate the kernels, however, the numerical implementation requires
large computational resources.

In essence, the AATO method consists of the analytical approximation of the integral
kernelKh, this approximation is obtained by means of approximating the one-dimensional
data on the characteristic curves t = x and t = −x.

Under certain normalization of the constant h, in [43] it is established that

Theorem 1.4.1 ([43]). Let the complex numbers a0, . . . , aN and b1, . . . , bN be such that
∣∣∣∣∣
h

2
+

1

4

∫ x

0

q1(s) ds−
N∑

n=0

ancn(x)

∣∣∣∣∣ < ǫ1

5
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and ∣∣∣∣∣
1

4

∫ x

0

q1(s) ds−
N∑

n=0

bnsn(x)

∣∣∣∣∣ < ǫ2

for every x ∈ [−b, b]. Then the kernel is approximated by the function

Kh,N(x, t) = a0u0(x, t) +
N∑

n=1

anu2n−1(x, t) +
N∑

n=1

bnu2n(x, t)

in such a way that for every (x, t) ∈ [−b, b]× [−b, b] the inequality holds

|Kh(x, t)−Kh,N(x, t)| < Cǫ1,ǫ2 .

In the previous theorem, the families of functions cn and sn are the restrictions of the
generalized wave polynomials u2n−1(x, t) and u2n(x, t) on the characteristic curves t = x
and y = −x respectively, see [33]. As a result of combining transmutation operators with
the convenient representation for the approximate kernel Kh,N , the AATO method is a
high performance method to approximate solutions. Within its main characteristics we
point out that the constructed approximations have uniformly bounded error and do not
depend on the size of the spectral parameter and it is also easy to implement numerically.

Our main objective is to establish an analogue of the previous theorem for one-
dimensional Dirac operators. For this purpose, a rigorous justification is required, which
is presented in Chapter 4, based on the results of Chapter 3 of this dissertation.

6



Chapter 2

The SPPS method for the Dirac

system

In this chapter we develop the SPPS method for one-dimensional stationary Dirac systems.
We show how the general solution for the first order system

y′2 + p(x)y1 + q(x)y2 = −λy1, (2.1)

−y′1 + q(x)y1 − p(x)y2 = −λy2, (2.2)

can be represented in the form of Spectral Parameter Power Series. We observe that the
previous system corresponds to the matrix equation indicated in (1.1). In Section 2.1 we
introduce the systems of generalized formal powers and give estimates in terms of the
uniform norm that guarantees the uniform convergence of related series. In Section 2.2
the SPPS representation for the system (2.1)-(2.2) is stated and proved, which is the main
result of the chapter established by Theorem 2.2.4. Section 2.3 presents as an example
a very important particular case of Theorem 2.2.4. This leads to an interesting relation
between the formal powers involved in the SPPS representation for the one-dimensional
Schrödinger equation and our recursive formulas. In Section 2.4 we give a brief exposition
of some of the standard facts on the SPPS representation. Section 2.5 presents the SPPS
representation in a more general setting of L1 coefficients. This idea comes from [8] and
the proof was adapted under our assumptions.

2.1 Systems of generalized formal powers

Let p, q ∈ C[a, b] be complex-valued functions of the real variable x. Henceforth we assume
that (f, g)T is a solution of the homogeneous Dirac system corresponding to equation (1.6),
i.e.

g′ + p(x)f + q(x)g = 0, (2.3)

−f ′ + q(x)f − p(x)g = 0, (2.4)

7



8 CHAPTER 2. THE SPPS METHOD FOR THE DIRAC SYSTEM

such that both functions f and g are non-vanishing on [a, b]. Let x0 be a point from the
segment [a, b] and

κ := (f(x0)g(x0))
−1. (2.5)

Consider the following systems of functions defined by recursive relations:

X(0)(x) = −
∫ x

x0

p(s)

f 2(s)
ds, (2.6)

Y (0)(x) = κ+

∫ x

x0

p(s)

g2(s)
ds, (2.7)

Z(n)(x) =

∫ x

x0

(
f 2(s)X(n−1)(s) + g2(s)Y (n−1)(s)

)
ds, n = 1, 2, . . . (2.8)

X(n)(x) =

∫ x

x0

( p(s)
f 2(s)

Z(n)(s) +
g(s)

f(s)
Y (n−1)(s)

)
ds, n = 1, 2, . . . (2.9)

Y (n)(x) = −
∫ x

x0

( p(s)
g2(s)

Z(n)(s) +
f(s)

g(s)
X(n−1)(s)

)
ds. n = 1, 2, . . . (2.10)

Similarly we use as the initial functions

X̃(0)(x) = κ+

∫ x

x0

p(s)

f 2(s)
ds, (2.11)

Ỹ (0)(x) = −
∫ x

x0

p(s)

g2(s)
ds (2.12)

and define functions Z̃(n), X̃(n) and Ỹ (n), n ≥ 0 by formulas (2.8)–(2.10) replacing X(n),

Y (n) and Z(n) by X̃(n), Ỹ (n) and Z̃(n).
The following lemmas give some estimates in terms of the uniform norm.

Lemma 2.1.1. Under the above conditions for f and g, the following estimates hold for

the functions X(n), Y (n), X̃(n), Ỹ (n), Z(n), Z̃(n), n ≥ 0:

|X(n)(x)|, |Y (n)(x)|, |X̃(n)(x)|, |Ỹ (n)(x)| ≤
n∑

k=0

(
n

k

)(c2
c1

)k(c3
c1

)n−k (|κ|+ c1|x− x0|)n+k+1

(n+ k + 1)!
,

(2.13)

|Z(n)(x)|, |Z̃(n)(x)| ≤
n−1∑

k=0

(
n− 1

k

)(c2
c1

)k+1(c3
c1

)n−k−1 (|κ|+ c1|x− x0|)n+k+1

(n+ k + 1)!
, (2.14)

where the constants ci, i = 1, 2, 3, are given by

c1 = max

{∥∥∥∥
p

f 2

∥∥∥∥ ,
∥∥∥∥
p

g2

∥∥∥∥ , 1
}
, c2 =

∥∥f 2
∥∥+

∥∥g2
∥∥ , c3 = max

{∥∥∥∥
f

g

∥∥∥∥ ,
∥∥∥∥
g

f

∥∥∥∥
}
, (2.15)

and ‖ · ‖ denotes the uniform norm on [a, b].

8



2.1. SYSTEMS OF GENERALIZED FORMAL POWERS 9

Proof. The proof is by induction. Let us suppose x > x0; for x < x0 it is similar. The
estimate (2.13) is trivial when n = 0. It follows that

∣∣Z(1)(x)
∣∣ ≤ c2

∫ x

x0

(
|κ|+ c1(s− x0)

)
ds ≤ c2

c1

1

2

(
|κ|+ c1(s− x0)

)2
. (2.16)

Therefore the base step has been shown. Suppose (2.13) and (2.14) are true for n = m.
Then for n = m+ 1 we have

∣∣Z(m+1)(x)
∣∣ ≤ c2

m∑

k=0

(
m

k

)(c2
c1

)k(c3
c1

)m−k
∫ x

x0

(|κ|+ c1(s− x0))
m+k+1

(m+ k + 1)!
ds

≤ c2
c1

m∑

k=0

(
m

k

)(c2
c1

)k(c3
c1

)m−k (|κ|+ c1(x− x0))
m+k+2

(m+ k + 2)!

≤
m∑

k=0

(
m

k

)(c2
c1

)k+1(c3
c1

)m−k (|κ|+ c1(x− x0))
m+k+2

(m+ k + 2)!
. (2.17)

From (2.9), substituting the estimates (2.13) and (2.17), we obtain

∣∣X(m+1)(x)
∣∣ ≤

∫ x

x0

c1
∣∣Z(m+1)(s)

∣∣+ c3
∣∣Y (m)(s)

∣∣ ds

≤
∫ x

x0

c1

(
m∑

k=0

(
m

k

)(c2
c1

)k+1(c3
c1

)m−k (|κ|+ c1(s− x0))
m+k+2

(m+ k + 2)!

)

+ c3

(
m∑

k=0

(
m

k

)(c2
c1

)k(c3
c1

)m−k (|κ|+ c1(s− x0))
m+k+1

(m+ k + 1)!

)
ds. (2.18)

From (2.18), after separating the terms with indexes k = m and k = 0 for the first sum
and the second sum respectively, and using the well-known relation

(
m

k

)
+

(
m

k − 1

)
=

(
m+ 1

k

)
,

the integrand on the right-hand side of the above inequality can be rewritten as

c1

(c2
c1

)m+1 (|κ|+ c1(s− x0))
2m+2

(2m+ 2)!

+
m∑

k=1

(
m+ 1

k

)(c2
c1

)k(cm−k+1
3

cm−k
1

)(|κ|+ c1(s− x0))
m+k+1

(m+ k + 1)!

+ c3

(c3
c1

)m (|κ|+ c1(s− x0))
m+1

(m+ 1)!
. (2.19)

9



10 CHAPTER 2. THE SPPS METHOD FOR THE DIRAC SYSTEM

Integrating from x0 to x each of the terms in this last expression, we obtain

(c2
c1

)m+1 (|κ|+ c1(s− x0))
2m+3

(2m+ 3)!

+
m∑

k=1

(
m+ 1

k

)(c2
c1

)k(c3
c1

)m−k+1 (|κ|+ c1(s− x0))
m+k+2

(m+ k + 2)!

+
(c3
c1

)m+1 (|κ|+ c1(s− x0))
m+2

(m+ 2)!
. (2.20)

From (2.18), following the chain of inequalities and adding the terms in (2.20), we have

∣∣X(m+1)(x)
∣∣ ≤

m+1∑

k=0

(
m+ 1

k

)(c2
c1

)k(c3
c1

)m−k+1 (|κ|+ c1(s− x0))
m+k+2

(m+ k + 2)!
.

The estimates (2.13) and (2.14) have been shown for the function X(n) and Z(n); the proof

for the functions Y (n), X̃(n), Ỹ (n), Z̃(n) are similar.

Corollary 2.1.2. Under the conditions of Lemma 2.1.1, setting c(x) = |κ| + c1|x − x0|,
the right-hand sides of the estimates (2.13) and (2.14) can be replaced respectively by

An(x) =
(c(x))n+1

(n+ 1)!

(
c3
c1

+
c2
c1
c(x)

)n

, (2.21)

Bn(x) =
(c(x))n+1

(n+ 1)!

c2
c1

(
c3
c1

+
c2
c1
c(x)

)n−1

. (2.22)

Definition 2.1.3. The systems of vector-valued functions {Y (n)
1 }∞n=0 and {Y (n)

2 }∞n=0 in
terms of generalized formal powers (2.6)-(2.12) are defined as follows:

Y
(n)
1 (x) :=

(
f(x)X̃(n)(x)

g(x)Ỹ (n)(x)

)
and Y

(n)
2 (x) :=

(
f(x)X(n)(x)
g(x)Y (n)(x)

)
. (2.23)

The systems in (2.23) play the main role in the SPPS representation for the one-
dimensional Dirac system.

2.2 The SPPS representation

In this section we obtain the SPPS representation for the one-dimensional Dirac system.
It is given in terms of the vector-valued functions presented in Definition 2.1.3. The
proof is based on the following two propositions which show that the infinite sequences in
(2.23) are solutions of certain Dirac systems. The first proposition establishes the general
solution of the homogeneous Dirac system as a linear combination of the functions in
(2.23) with n = 0 while the second one shows that the functions from the infinite system
(2.23) with n ≥ 1 are solutions of non-homogeneous systems where the non-homogeneous
parts are the previous functions of the same infinite sequence.

10
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Proposition 2.2.1. The general solution of the homogeneous Dirac system has the form

c1



f(x)

(
κ+

∫ x

x0

p(s)

f 2(s)
ds

)

−g(x)
∫ x

x0

p(s)

g2(s)
ds


+ c2




−f(x)
∫ x

x0

p2(s)

f 2(s)
ds

g(x)

(
κ+

∫ x

x0

p(s)

g2(s)
ds

)


 , (2.24)

where c1 and c2 are arbitrary complex constants.

Proof. Note that the first vector-valued function in the above linear combination corre-
sponds to the vector-valued function Y

(0)
1 in (2.23) and the second one to Y

(0)
2 . Let us

first consider the vector-valued function Y
(0)
1 , for Y

(0)
2 is similar. Since f and g satisfy the

homogeneous system (2.3) and (2.4), i.e.

g′ = −pf + qg,

−f ′ = −qf + pg,
(2.25)

one can easily check the following equality:

p(x)

f 2(x)
+

p(x)

g2(x)
=

d

dx

( 1

f(x)g(x)

)
. (2.26)

Taking into account equality (2.26) and by direct verification we have that

(
B
d

dx
+Q(x)

)
Y

(0)
1 (x) =



pf

∫ x

x0

d

ds

(
1

f(s)g(s)

)
ds+ κpf − p

g

pg

∫ x

x0

d

ds

(
1

f(s)g(s)

)
ds+ κpg − p

f


 .

After a simple integration, it immediately follows that the right hand side of the last
expression is equal to zero, i.e., the vector-valued function Y

(0)
1 satisfies the homogeneous

Dirac system. Finally note that the values of Y
(0)
1 and Y

(0)
2 at x = x0 are given by

Y
(0)
1 (x0) =

1

g(x0)

(
1
0

)
, and Y

(0)
2 (x0) =

1

f(x0)

(
0
1

)
, (2.27)

therefore W (Y
(0)
1 , Y

(0)
2 )(x0) = κ and linear independence is obtained.

Proposition 2.2.2. The vector-valued functions in (2.23) satisfy the following recursive

nonhomogeneous Dirac systems

B
d

dx
Y

(n)
i +Q(x)Y

(n)
i = −Y (n−1)

i , i = 1, 2, n ≥ 0, (2.28)

where Y
(−1)
i ≡ 0.

11



12 CHAPTER 2. THE SPPS METHOD FOR THE DIRAC SYSTEM

Proof. Let us prove the statement for i = 2; for i = 1 similar reasoning can be applied. By
induction, Proposition 2.2.1 gives the base step. Suppose that (2.28) is valid for n = m−1.
Then for n = m, taking into account the expressions (2.9) and (2.10) we have

B
d

dx
Y

(m)
2 +Q(x)Y

(m)
2 =

(
g′Y (m) − p

g
Z(m) − fX(m−1) + pfX(m) + qgY (m)

−f ′X(m) − p
f
Z(m) − gY (m−1) + qfX(m) − pgX(m)

)
. (2.29)

Now substituting the corresponding terms for f ′ and g′ in the right hand side of (2.29)
respectively we find that

B
d

dx
Y

(m)
2 +Q(x)Y

(m)
2 =

(
pf(X(m) − Y (m))− p

g
Z(m) − fX(m−1)

pg(X(m) − Y (m))− p
f
Z(m) − gX(m−1)

)
. (2.30)

Again from (2.9), (2.10) and (2.26) after integrating by parts the following relationship is
obtained:

X(m)(x)− Y (m)(x) =
1

f(x)g(x)
Z(m)(x),

and substituting this last expression in (2.30) we obtain the validity of the expression
(2.28) for n = m.

Remark 2.2.3. In summary infinite sequences of vector-valued functions associated with
the differential operator LQ = B d

dx
+Q have been constructed which allow us to write the

general solution of the Dirac system. Under a proper normalization of the formal powers
in (2.8)-(2.10), these types of system are known as L-bases related to an operator, see
[23].

Theorem 2.2.4. Assume that the homogeneous Dirac system (2.3)-(2.4) possesses a par-

ticular solution (f, g)T such that both functions f and g are non-vanishing on [a, b]. Then
the general solution of the Dirac system (2.1)-(2.2) has the form

Y = c1Y1 + c2Y2

where c1 and c2 are arbitrary complex constants and

Y1(x) =
∞∑

n=0

λnY
(n)
1 (x), Y2(x) =

∞∑

n=0

λnY
(n)
2 (x). (2.31)

The solutions Y1 and Y2 satisfy the following initial conditions:

Y1(x0) =
1

g(x0)

(
1
0

)
, Y2(x0) =

1

f(x0)

(
0
1

)
.

Proof. Consider the monotone increasing successions (2.21) and (2.22), see Corollary 2.1.2.
Let us also note that the series

∑
λnAn(b),

∑
λnBn(b) are convergent. Since for every

x ∈ [a, b],

|Y (n)
i (x)| ≤

∥∥(f, g)T
∥∥An(b),

∣∣∣ d
dx
Y

(n)
i (x)

∣∣∣ ≤
∥∥(f ′, g′)T

∥∥An(b) +
∥∥(f, g)T

∥∥An−1(b) +
∥∥(f, g)T

∥∥ c1Bn(b),

12
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by the Weierstrass M-test, both series in (2.31) converge absolutely and uniformly in the
interval [a, b], as well as the series of termwise derivatives. Hence applying the Dirac
operator B d

dx
+Q(x) to both series in (2.31), and taking into account Propositions 2.2.1

and 2.2.2 it follows that
(
B
d

dx
+Q(x)

)
Y (x) = −c1

∞∑

n=1

λnY
(n−1)
1 (x)− c2

∞∑

n=1

λnY
(n−1)
2 (x)

= −c1λ
∞∑

n=1

λn−1Y
(n−1)
1 (x)− c2λ

∞∑

n=1

λn−1Y
(n−1)
2 (x)

= −c1λ
∞∑

n=0

λnY
(n)
1 (x)− c2λ

∞∑

n=0

λnY
(n)
2 (x)

= −λY (x).

The linear independence follows from (2.27) and the simple observation that the func-

tions in (2.23) satisfy the initial conditions Y
(n≥1)
i (x0) = (0, 0)T , i = 1, 2. Therefore

W (Y1, Y2)(x0) = κ 6= 0.

2.3 One-dimensional Dirac equations with Lorentz

scalar potential

In this section the most relevant example of the chapter is presented. It deals with the
SPPS representation given by Theorem 2.2.4 when the entry p of the potential Q equals
zero, namely

(
0 1
−1 0

)
dY

dx
+

(
0 q(x)

q(x) 0

)
Y = −λY ; Y =

(
y1(x)
y2(x)

)
. (2.32)

The importance lies not only in the physical context but also in the mathematical context,
since it establishes connections with formal powers involved in the SPPS representation
for the one-dimensional Schrödinger equation and its Darboux-transformed equation, see
[38], [39], [41], [43]. It should be noted that the main relationship obtained in this section,
Proposition 2.3.2, will be referenced later in order to show examples of transmutation
operator kernels in relation to the ATTO method that is developed for the Dirac system
in the following chapters.

Following [41] by setting q(x) = −(m + S(x)), where m (m > 0) is the mass of a
particle and S(x) is a Lorentz scalar, (2.32) is called one-dimensional Dirac system with
Lorentz scalar potential. In this case, formulas for the general solution in terms of infinite
sequences of functions {ϕk}∞k=0 and {ψk}∞k=0 are obtained. We emphasize that the same
formulas are verified by the representation given by Theorem 2.2.4.

According to Theorem 2.2.4, the general solution of the system (2.32) has the form

Y (x) = c1

∞∑

n=0

λk

(
f(x)X̃(n)(x)

g(x)Ỹ (n)(x)

)
+ c2

∞∑

n=0

λk
(
f(x)X(n)(x)
g(x)Y (n)(x)

)
(2.33)

13
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where both functions f and g are non-vanishing solutions of the homogeneous system

g′ + qg = 0, (2.34)

−f ′ + qf = 0, (2.35)

which can always be chosen as

f(x) = exp

(∫ x

x0

q(s) ds

)
and g(x) = exp

(
−
∫ x

x0

q(s) ds

)
. (2.36)

Note that recursive formulas (2.6)-(2.10) are simplified substantially by setting p equal to
zero, moreover the recursive formulas only depend on the square of the function f(x) and
its multiplicative inverse since

f(x)

g(x)
= f 2(x) and

g(x)

f(x)
=

1

f 2(x)
. (2.37)

We present a brief illustration of the previous fact in the following table.

n 0 1 2 3 4 . . .

X̃(n) 1 0 −
∫

1
f2

∫
f 2 0

∫
1
f2

∫
f 2
∫

1
f2

∫
f 2 . . .

Ỹ (n) 0 −
∫
f 2 0

∫
f 2
∫

1
f2

∫
f 2 0 . . .

X(n) 0
∫

1
f2 0 −

∫
1
f2

∫
f 2
∫

1
f2 0 . . .

Y (n) 1 0 −
∫
f 2
∫

1
f2 0

∫
f 2
∫

1
f2

∫
f 2
∫

1
f2 . . .

Given the above, it is possible to rewrite the systems of formal powers X(n), Y (n), X̃(n),
Ỹ (n) in terms of only two systems of recursive integrals which alternate the multiplication
and division by f 2. Consider the systems of recursive integrals

X (0)(x) = 1, X (n)(x) = n

∫ x

x0

X (n−1)(s)(f 2(s))(−1)nds, n = 1, 2, . . . (2.38)

X̃ (0)(x) = 1, X̃ (n)(x) = n

∫ x

x0

X̃ (n−1)(s)(f 2(s))(−1)n−1

ds, n = 1, 2, . . . . (2.39)

Taking into account the signs at each step it is straightforward to obtain the relations

X̃(k) =

{
(−1)

k
2

k!
X̃ (k), k even,

0, k odd.
X(k) =

{
0, k even,

(−1)
k−1
2

k!
X (k), k odd.

(2.40)

Ỹ (k) =

{
0, k even,

(−1)
k+1
2

k!
X̃ (k), k odd.

Y (k) =

{
(−1)

k
2

k!
X (k), k even,

0, k odd.
(2.41)

After writing out the expression (2.33) in odd and even series and using the expressions
(2.40)-(2.41), the general solution of the system (2.32) has the form

Y =c1

∞∑

k=0

(−1)kλ2k

(2k)!
f X̃ (2k)

(
1
0

)
+ c1

∞∑

k=0

(−1)k+1λ2k+1

(2k + 1)!

1

f
X̃ (2k+1)

(
0
1

)

+ c2

∞∑

k=0

(−1)kλ2k

(2k)!

1

f
X (2k)

(
0
1

)
+ c2

∞∑

k=0

(−1)kλ2k+1

(2k + 1)!
fX (2k+1)

(
1
0

)
,

14



2.3. ONE-DIMENSIONAL DIRAC EQUATIONS WITH LORENTZ SCALAR POTENTIAL 15

or which is the same

y1(x) =c1

∞∑

k=0

(−1)kλ2k

(2k)!
ϕ2k(x) + c2

∞∑

k=0

(−1)kλ2k+1

(2k + 1)!
ϕ2k+1(x), (2.42)

y2(x) =c2

∞∑

k=0

(−1)kλ2k

(2k)!
ψ2k(x)− c1

∞∑

k=0

(−1)kλ2k+1

(2k + 1)!
ψ2k+1(x), (2.43)

where the infinite sequences of functions {ϕk}∞k=0 and {ψk}∞k=0 are given by

ϕk(x) =

{
f(x)X̃ (k)(x), k even,

f(x)X (k)(x), k odd,
and ψk(x) =

{
X (k)(x)
f(x)

, k even,
X̃ (k)(x)
f(x)

, k odd,
(2.44)

respectively. The families of functions in (2.44) are known as systems of formal powers
and are related to the one-dimensional Schrödinger equation u′′ − q(x)u = −ωu. These
systems have been used in many articles (see [39], [41], [43] ) and play the main role in
order to approximate solution of spectral problems. The above motivates the following
definition.

Definition 2.3.1. The infinite sequences of vector-valued functions {Φk}∞k=0 and {Ψk}∞k=0

are given respectively by

Φk(x) =





k!

(−1)
k−1
2

1
g(x0)

(
f(x)X(k)(x)

g(x)Y (k)(x)

)
, k odd,

k!

(−1)
k
2

1
f(x0)

(
f(x)X̃(k)(x)

g(x)Ỹ (k)(x)

)
, k even

(2.45)

and

Ψk(x) =





k!

(−1)
k+1
2

1
f(x0)

(
f(x)X̃(k)(x)

g(x)Ỹ (k)(x)

)
, k odd,

k!

(−1)
k
2

1
g(x0)

(
f(x)X(k)(x)

g(x)Y (k)(x)

)
, k even.

(2.46)

As a consequence of Definition 2.3.1 we present the following proposition.

Proposition 2.3.2. Under the conditions stated above, if moreover p(x) = 0 for all x,
the system of vector-valued functions {Φk}∞k=0 and {Ψk}∞k=0 has the form

Φk(x) =

(
ϕk(x)
0

)
, and Ψk(x) =

(
0

ψk(x)

)
, n = 0, 1, 2, . . .

Proof. The proof follows from relations (2.40) and (2.41).

Example 2.3.3. Setting f(x) = 1, g(x) = 1 and p(x) = 0, we find that

Φk(x) =

(
xk

0

)
, and Ψk(x) =

(
0
xk

)
, n = 0, 1, 2, . . .

15



16 CHAPTER 2. THE SPPS METHOD FOR THE DIRAC SYSTEM

2.4 Necessary facts on the SPPS representation

2.4.1 Construction of a non-vanishing particular solution

Simpler recursive formulas than the formulas (2.6)-(2.12) enable us to construct solutions
of the homogeneous Dirac system B dY

dx
+ Q(x)Y = 0. We observe that this system can

be written as

B
dY

dx
+

(
0 q(x)

q(x) 0

)
Y = −

(
p(x) 0
0 −p(x)

)
Y ≡ B

dY

dx
+Q0(x)Y = −P0(x)Y.

In addition, the vector-valued function Y0 = (f0, g0)
T with entries given by

f0(x) = exp

(∫ x

x0

q(s) ds

)
and g0(x) = exp

(
−
∫ x

x0

q(s) ds

)
, (2.47)

is a non-vanishing solution of the homogeneous Dirac system with p(x) ≡ 0, i.e.

g′0 + q(x)g0 = 0,

−f ′
0 + q(x)f0 = 0,

≡ B
dY0
dx

+Q0(x)Y0 = 0. (2.48)

With minor modifications to the recursive formulas (2.6)-(2.12), we present the following
proposition from which solutions of the homogeneous Dirac system are obtained in the
particular case λ = 1.

Proposition 2.4.1. Let λ be an arbitrary complex spectral parameter. Then the general

solution of the system

B
dY

dx
+Q0(x)Y = −λP0(x)Y

has the form

Y (x) = c1

∞∑

n=0

λn
(
f0(x)X

(n)(x)
0

)
+ c2

∞∑

n=0

λn
(

0
g0(x)Y

(n)(x)

)
, c1, c2 ∈ C

where X(n) and Y (n) are defined by recursive relations

X(0)(x) = 1, X(n)(x) = −
∫ x

x0

g0(s)

f0(s)
p(s)Y (n−1)(s)ds, n = 1, 2, . . . (2.49)

Y (0)(x) = 1, Y (n)(x) = −
∫ x

x0

f0(s)

g0(s)
p(s)X(n−1)(s)ds. n = 1, 2, . . . . (2.50)

As shown in the above proposition, the SPPS method allows one to construct solutions
of the homogeneous Dirac system. However, the question is how one can obtain non-
vanishing solutions (including the case of complex-valued potentials). We are not aware
of a general deterministic method for constructing them. The following proposition is
well known and can be used when both functions in the potential are real valued.

16



2.4. NECESSARY FACTS ON THE SPPS REPRESENTATION 17

Proposition 2.4.2 ([26]). Let the coefficients p and q of the system (2.3)-(2.4) are real-

valued functions and (u1, v1)
T and (u2, v2)

T are two linearly independent real-valued solu-

tions of the system (2.3)-(2.4). Then the linear combination

(
u
v

)
=

(
u1
v1

)
+ i

(
u2
v2

)

is a non-vanishing solution of the system (2.3)-(2.4), i.e., both functions u and v do not

have zeros on [a, b].

In the general case, a non-vanishing linear combination of the solutions (u1, v1)
T and

(u2, v2)
T always exists (and, in some sense, almost all linear combinations with complex

coefficients are non-vanishing).

Proposition 2.4.3 ([26]). Let (u1, v1)
T and (u2, v2)

T be two linearly independent solutions

of (2.3)-(2.4). Then there exists a linear combination

(
u
v

)
= c1

(
u1
v1

)
+ c2

(
u2
v2

)

such that both functions u and v are non-vanishing on [a, b].

2.4.2 The spectral shift technique

Based on [38], the spectral shift technique allows one changing the centre of the power se-
ries in the parameter λ indicated in Theorem 2.2.4, to obtain more precise approximations
for larger λ . Note that the series in (2.31) are centered at λ0 = 0. Under the assumption
that for some λ0 6= 0, the vector-valued function Y = (f, g)T is a non-vanishing solution
of

B
dY

dx
+Q(x)Y = −λ0Y, (2.51)

which is known, and let us consider the system

B
dY

dx
+ (Q(x) + λ0I)Y = −(λ− λ0)Y. (2.52)

According to the recursive formulas (2.6)-(2.12) we obtain that the solutions in (2.31)
have the form

Y1(x) =
∞∑

n=0

(λ− λ0)
n Y

(n)
1 (x), Y2(x) =

∞∑

n=0

(λ− λ0)
n Y

(n)
2 (x).

and satisfy (2.52).

17



18 CHAPTER 2. THE SPPS METHOD FOR THE DIRAC SYSTEM

2.5 Discontinuous coefficients

The aim of this section is to extend Theorem 2.2.4 to integrable coefficients. This fact
allows us to consider a wider range of applications than those established by Theorem
2.2.4, for example, certain discontinuous potentials. The results here are generalize from
[8].

Proposition 2.5.1. Let f and g be functions in L2(a, b) such that
p

f 2
,
p

g2
,
f

g
and

g

f
are integrable functions of the independent real variable x ∈ [a, b]. Let us consider the

function

h(x) = max

{∣∣∣ p(x)
f 2(x)

∣∣∣,
∣∣∣ p(x)
g2(x)

∣∣∣,
∣∣∣f(x)
g(x)

∣∣∣,
∣∣∣ g(x)
f(x)

∣∣∣
}

(2.53)

and define

R(x) := |κ|+
∫ x

x0

h(s) ds and P (x) :=

∫ x

x0

|f(s)|2 + |g(s)|2 ds. (2.54)

Then the functions Xn, Y n, Zn, X̃n, Ỹ n, Z̃n are absolutely continuous functions and

satisfy the following estimates

|X(n)(x)|, |Y (n)(x)|, |X̃(n)(x)|, |Ỹ (n)(x)| ≤ (R(x))n+1

(n+ 1)!

n∑

k=0

(
n

k

)
(P (x))n−k

(n− k)!
, (2.55)

|Z(n)(x)|, |Z̃(n)(x)| ≤ (R(x))n

n!

n−1∑

k=0

(
n− 1

k

)
(P (x))n−k

(n− k)!
. (2.56)

Proof. It is well known that the maximum function of a finite number of integrable func-
tions is an integrable function too (see e.g. [10]) therefore the function h defined in (2.53)
is integrable and consequently a well-defined function a.e., moreover all formal powers
involved are absolutely continuous functions since their derivatives belong to the space
L1 . The proof is by induction. For n = 0, the estimates (2.55)-(2.56) follows directly
from (2.54). Suppose that (2.55) and (2.56) are true for some n. Then assuming x ≥ x0
we obtain

∣∣Z(n+1)(x)
∣∣ ≤ (R(x))n+1

(n+ 1)!

n∑

k=0

(
n

k

)∫ x

x0

(|f(s)|2 + |g(s)|2)(P (s))
n−k

(n− k)!
ds

=
(R(x))n+1

(n+ 1)!

n∑

k=0

(
n

k

)
(P (x))n−k+1

(n− k + 1)!
. (2.57)

18



2.5. DISCONTINUOUS COEFFICIENTS 19

Therefore from the last inequality and by the inductive hypothesis it follows that

∣∣X(n+1)(x)
∣∣ ≤

∫ x

x0

[∣∣∣∣
p(s)

f 2(s)

∣∣∣∣
∣∣Z(n+1)(s)

∣∣+
∣∣∣∣
g(s)

f(s)

∣∣∣∣
∣∣Y (n)(s)

∣∣
]
ds (2.58)

≤
n∑

k=0

(
n

k

)
(P (x))n−k+1

(n− k + 1)!

∫ x

x0

h(s)
(R(s))n+1

(n+ 1)!
ds (2.59)

+
n∑

k=0

(
n

k

)
(P (x))n−k

(n− k)!

∫ x

x0

h(s)
(R(s))n+1

(n+ 1)!
ds (2.60)

≤ (R(x))n+2

(n+ 2)!

(
n∑

k=0

(
n

k

)
(P (x))n−k+1

(n− k + 1)!
+

n∑

k=0

(
n

k

)
(P (x))n−k

(n− k)!

)
. (2.61)

Making obvious shifts in the indices of the summations on the right-hand side of the
previous inequality and using the well-known relation

(
n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
,

we obtain that the estimate (2.55) is true for n+ 1, i.e.

∣∣X(n+1)(x)
∣∣ ≤ (R(s))n+2

(n+ 2)!

n+1∑

k=0

(
n+ 1

k

)
(P (x))n−k+1

(n− k + 1)!
. (2.62)

The proof for the functions Y (n), X̃(n), Ỹ (n), Z̃(n) is similar.

Corollary 2.5.2. Under the conditions of Proposition 2.5.1, the spectral parameter power

series
∑∞

n=0 λ
nX(n),

∑∞
n=0 λ

nY (n) and
∑∞

n=0 λ
nZ(n) converge uniformly on [a, b], as well

as the series obtained by replacing X(n), Y (n) and Z(n) by X̃(n), Ỹ (n) and Z̃(n).

Proof. Setting c1 = R(b) and c2 = P (b) + 1, it follows directly that the estimates on
right-hand sides of (2.55) and (2.56) can be replaced respectively by

c1(c1c2)
n

(n+ 1)!
and

(c1c2)
n

n!
. (2.63)

Consequently it follows that

∞∑

n=0

∣∣λnX(n)(x)
∣∣ ,

∞∑

n=0

∣∣λnY (n)(x)
∣∣ < C1 :=

∞∑

n=0

c1(λc1c2)
n

(n+ 1)!
<∞, (2.64)

∞∑

n=0

∣∣λnZ(n)(x)
∣∣ < C2 :=

∞∑

n=0

(λc1c2)
n

n!
<∞. (2.65)

Therefore by the Weierstrass M-test the result is obtained.
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20 CHAPTER 2. THE SPPS METHOD FOR THE DIRAC SYSTEM

Proposition 2.5.3 ([8]). Let {Vn}∞n=0 be a secuence of absolutely continuous functions

on [a, b]. If the series
∑∞

n=0 Vn(x0) converges at some x0 ∈ [a, b] and the series
∑∞

n=0 V
′
n

converges to v ∈ L1[a, b] in the norm of L1[a, b], then
∑∞

n=0 Vn converges uniformly to

V ∈ AC[a, b] and V ′ = v a.e.

Proposition 2.5.4. Under the conditions of Proposition 2.5.1, the spectral parameter

power series
∑∞

n=0 λ
nX(n),

∑∞
n=0 λ

nY (n) and
∑∞

n=0 λ
nZ(n) converge uniformly to functions

u, v, and w which belong to the space AC[a, b], respectively for the series obtained by

replacing X(n), Y (n) and Z(n) by X̃(n), Ỹ (n) and Z̃(n).

Proof. First we consider the series
∑∞

n=0 λ
nX(n). By Corollary 2.5.2 let u, v and w be

functions such that

N∑

n=0

λnX(n) → u,

N∑

n=0

λnY (n) → v,

N∑

n=0

λnZ(n) → w,

uniformly as N goes to infinity. Let us estimate the derivative of the partial sum∑N
n=0 λ

nX(n)

∣∣∣∣∣

N∑

n=0

λn
d

dx
X(n)(x)

∣∣∣∣∣ =
∣∣∣∣∣

N∑

n=0

( p(x)
f 2(x)

λnZ(n)(x) +
g(x)

f(x)
λnY (n−1)(x)

)∣∣∣∣∣ (2.66)

≤ |h(x)|
N∑

n=0

(
|λnZ(n)(x)|+ |λnY (n−1)(x)|

)
(2.67)

≤ |h(x)|
(
max
x∈[a,b]

|v(x)|+ max
x∈[a,b]

|w(x)|
)
. (2.68)

Since h(x) belongs to the space L1(a, b) by the dominated convergence theorem we have
that the series obtained by term-wise differentiation from the series of

∑∞
n=0 λ

nX(n) be-
longs to the space L1(a, b), moreover this series converges to the function u′ = p

f2w + g
f
v.

From the above and bearing in mind Proposition 2.5.3 the result follows for the series∑∞
n=0 λ

nX(n), and similarly for the others.

Theorem 2.5.5. Suppose that both functions f and g are absolutely continuous and non-

vanishing functions on [a, b] that satisfy the homogeneous Dirac system (2.3)-(2.4) a.e. on
[a, b]. Assume that p

f2 ,
p
g2
, f

g
and g

f
are integrable functions and λ be an arbitrary complex

parameter. Then the general solution of the Dirac system B dY
dx

+Q(x)Y = −λY has the

form

Y (x) = c1

∞∑

n=0

λnY
(n)
1 (x) + c2

∞∑

n=0

λnY
(n)
2 (x)

where c1 and c2 are arbitrary complex constants and both series converge uniformly to

vector-valued functions (ui, vi)
T , ui, vi ∈ AC[a, b], i = 1, 2.
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Proof. From Proposition 2.5.4 we conclude that for some vector-valued functions yi, i =

1, 2, belonging to the space W 1
1 ×W 1

1 ,
∑∞

n=0 λ
nY

(n)
i = yi a.e. on [a, b]. Therefore, as in

the proof of Theorem 2.2.4 we obtain that

(
B
d

dx
+Q(x)

)
Y (x) = −c1

∞∑

n=1

λnY
(n−1)
1 (x)− c2

∞∑

n=1

λnY
(n−1)
2 (x)

= −c1λ
∞∑

n=1

λn−1Y
(n−1)
1 (x)− c2λ

∞∑

n=1

λn−1Y
(n−1)
2 (x)

= −c1λ
∞∑

n=0

λnY
(n)
1 (x)− c2λ

∞∑

n=0

λnY
(n)
2 (x)

= −λY (x), a.e. on [a, b]

Finally, since W (y1,y2)(x0) = κ 6= 0, it follows that Y is the general solution.

2.6 General scheme for numerical implementation

Here we present a brief sketch for numerical implementation. Since the main objective of
this work is the analytic approximation of integral kernels we do not present here examples
in this direction. Based on the main results of this chapter, Theorem 2.2.4 and Theorem
2.5.5 we provide the following algorithm.

Consider a one-dimensional Dirac system

(
0 1
−1 0

)
dy

dx
+

(
p(x) q(x)
q(x) −p(x)

)
y = −λy, y(x) =

(
y1(x)
y2(x)

)
, (2.69)

with some initial condition

y(0) =

(
y1(0)
y2(0)

)
=

(
a
b

)
,

or a boundary condition

(
u11 u12
u21 u22

)(
y1(0)
y2(0)

)
+

(
u13 u14
u23 u24

)(
y1(b)
y2(b)

)
=

(
0
0

)
. (2.70)

1. Find a non-vanishing solution y = (f, g)T of the homogeneous Dirac system associ-
ated to equation (2.69), see Proposition 2.4.1.

2. Compute the functions X(k), Y (k), Z(k), X̃(k), Ỹ (k) and Z̃(k), k = 0, . . . , N using (2.6)-
(2.10).

3. According to Definition 2.1.3 compute the vector-valued functions Y
(n)
1 and Y

(n)
2 ,

k = 0, . . . , N using (2.23).
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4. The approximation to the solution of the initial value problem is given by YN(x) =

a · g(0)∑N
n=0 λ

nY
(n)
1 (x) + b · f(0)∑N

n=0 λ
nY

(n)
2 (x).

5. To approximate solutions with boundary conditions given by (2.70). Consider an

approximation in the form YN(x) = c1
∑N

n=0 λ
nY

(n)
1 (x) + c2

∑N
n=0 λ

nY
(n)
2 (x). Sub-

stituting this into (2.70) we obtain the homogeneous system MN(λ)(c1, c2)
T = 0,

where MN(λ) is a 2 × 2 matrix which depends on the spectral parameter λ whose
entries are given by

m11(λ) =
u11
g(0)

+
N∑

n=0

λn
(
u13f(b)X̃

(n)(b) + u14g(b)Ỹ
(n)(b)

)
,

m12(λ) =
u12
f(0)

+
N∑

n=0

λn
(
u13f(b)X

(n)(b) + u14g(b)Y
(n)(b)

)
,

m21(λ) =
u21
g(0)

+
N∑

n=0

λn
(
u23f(b)X̃

(n)(b) + u24g(b)Ỹ
(n)(b)

)
,

m22(λ) =
u22
f(0)

+
N∑

n=0

λn
(
u23f(b)X

(n)(b) + u24g(b)Y
(n)(b)

)
.

Since non-trivial solutions are sought, an approximation to the characteristic equa-
tion of the boundary problem (2.69)-(2.70) has the form

det (MN(λ)) = 0, (2.71)

Observe that equation (2.71) is a polynomial in λ.

6. Find roots of the equation (2.71). These roots are approximations to the spectral
problem.
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Chapter 3

Transmutation operators

We discuss in this Chapter some of the standard facts on transmutation operators for
one-dimensional Dirac operators on a finite interval. The results presented here are of
primary use in the next chapter and can be considered as a bridge between the SPPS
representation and the AATO method.

We shall write the Dirac operators under consideration as differential expressions of
the form

AQ := B
d

dx
+Q(x), (3.1)

where

B =

(
0 1
−1 0

)
, Q(x) =

(
p(x) q(x)
q(x) −p(x)

)
,

and A0 denotes the expression (3.1), having Q as the null matrix-valued function. Al-
though the references are so broad on the subject, in order to compare the results presented
here, the most pertinent references are [49] and [51]. It is known that a transmutation op-
erator for the pair of operators A0 and AQ can be realized as a Volterra integral operator,
where one can obtain its integral kernel from a Goursat problem for a certain hyperbolic
system, similar to [49]. In addition, problems of this type can be solved by the classi-
cal method of successive approximations. We will restrict our attention to guaranteeing
existence and uniqueness of a solution of Goursat problem with values given on the char-
acteristic curves x = t and x = −t. It is worth mentioning that our approach is different
from [2] and [49], it does not require additional assumptions on the potential. Although
similar to [51], it was obtained independently after having thoroughly manipulated the
integral representations given in [49].

In Section 3.1 we will look more closely at notion of transmutation operator between
one-dimensional Dirac operators. In particular, according to Definition 1.3.1, we briefly
review the approach given in [49] and we establish the requirements that we seek to
satisfy in this area. In Section 3.2 the existence of transmutation operators in the form of
Volterra integral operator on a symmetric segment for the one-dimensional Dirac operators
is proved. Finally with the aim to provide analytical tools that we use in the next chapter,
Section 3.3 is devoted to the study of stability for the Goursat problem associated to the

23



24 CHAPTER 3. TRANSMUTATION OPERATORS

integral kernel of the transmutation operator for one-dimensional Dirac operators. In
Section 3.4 an important operator is constructed that allows to establish completeness
properties for a certain type of matrix-valued functions.

3.1 Transmutation operator for the Dirac system

In order to illustrate Definition 1.3.1 for a pair of operators AQ and AR under the as-
sumption that Q and R are continuous matrix-valued functions, we consider the spaces
E = C[−b, b]×C[−b, b] and E1 = C1[−b, b]×C1[−b, b] equipped with the maximum norm.
We begin with a general result on such operators under these last assumptions.

Proposition 3.1.1. Suppose that Q and R are continuous matrix-valued functions on

[−b, b]. Then a transmutation operator for AQ and AR can be realized in the form of a

Volterra integral operator

Ty(x) = y(x) +

∫ x

−x

K(x, t)y(t) dt, (3.2)

where K(x, t) is a 2× 2 matrix-valued function satisfying the partial differential equation

BKx(x, t) +Kt(x, t)B = K(x, t)R(t)−Q(x)K(x, t) (3.3)

with the Goursat conditions

BK(x, x)−K(x, x)B = R(x)−Q(x), (3.4)

BK(x,−x) +K(x,−x)B = 0. (3.5)

Conversely, if K(x, t) is the solution of the problem (3.3), (3.4), (3.5), then the operator

T determined by the formula (3.2) is a transmutation operator for the pair of operators

AQ and AR.

The proof involves looking at ([49], Th. 10.3.1) and can be handled in much the same
way, the only difference being in the form of the Volterra integral operator (3.2). The
results from [49] require boundary condition at x = 0, while we will not use any additional
restriction at x = 0. The absence of any initial condition requires extending the integration
in (3.2) onto the symmetric segment (−x, x) which leads to different conditions for the
Goursat problem (3.4)-(3.5). Another difference of the present work from the results of
[49] is that we consider the potentials Q and R on the finite segment only, while to apply
the proof from [49] one needs the potentials to be defined on the whole semi-axes.

The method of proof given by [49] is based on the construction of the Cauchy problem
for an equivalent non-homogeneous matrix equation. It should be noted that equation
(3.3) corresponds to a second-order hyperbolic system and the resulting equation is a
wave type equation. Although it was possible to completely adapt this scheme, it turned
out that the integral equations obtained were difficult to manipulate for purposes of this
work.
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3.2. EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR GOURSAT PROBLEMS 25

The important point to note here is that we are interested in studying the Goursat
problem (3.3)-(3.5) in the domains

Ω+ = {(x, t) | 0 ≤ x < b, |t| ≤ x} ,
Ω− = {(x, t) | − b < x ≤ 0, |t| ≤ |x|} ,

in order to obtain additional information about the smoothness of the integral kernel
K(x, t) and also obtain results about continuous dependence on the Goursat data mainly
in the case R ≡ 0.

Remark 3.1.2. Note that the Goursat problem (3.3)-(3.5) can be solved independently on
the domains Ω+ and Ω−.

In addition to [49], there are different approaches to prove the existence and uniqueness
of solutions for Goursat problems similar to (3.3)-(3.5), see [15], [61], [30], and in more
general setting in [30]. It should be noted that for the integral kernel K to be the classical
solution of the Goursat problem, Q must be continuously differentiable.

Before moving on to another section where we respond positively to the problems raised
in the last paragraph, we would like to point out that we follow a different approach than
those mentioned.

3.2 Existence and uniqueness of solutions for Gour-

sat problems

In the remainder of this chapter, more generality, we can assume that B is a constant
matrix of order n× n such that B2 = −I, where I is the identity matrix of order n× n,
and the matrix-valued function Q satisfies BQ ≡ −QB.

Let us first outline how the Goursat problem (3.3)-(3.5) is transformed into terms of
new variables

ξ =
x+ t

2
, and η =

x− t

2
. (3.6)

To do this, it is convenient to introduce the auxiliary symbol H to denote the space of all
matrix-valued functions. For simplicity of presentation we omit the independent variable
in the notations. Define

P+ [A] :=
1

2
(A+ BAB) and P− [A] :=

1

2
(A−BAB) , (3.7)

where A ∈ H. Roughly speaking, the proposition below says that P+ and P− are projec-
tors and that H is the direct sum of the subspaces H+ and H−.

Proposition 3.2.1. The following properties are fulfilled

1. I = P+ + P−.

2. (P+)2 = P+, (P−)2 = P−.
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26 CHAPTER 3. TRANSMUTATION OPERATORS

3. H− := KerP− =
{
Φ ∈ H

∣∣ΦB = −BΦ
}
; ImP+ = H−.

4. H+ := KerP+ =
{
Ψ ∈ H

∣∣ΨB = BΨ
}
; ImP− = H+.

5. H− ∩H+ = {0}.

6. P+ [AC] = P+ [A]P− [C] + P− [A]P+ [C].

7. P− [AC] = P+ [A]P+ [C] + P− [A]P− [C].

Proof. The proof follows from (3.7) by direct computation.

The task is now to establish a change of coordinates from the xy-plane into the ξη-
plane. Indeed, choose ξ = 1

2
(x+ t) and η = 1

2
(x− t), and set K(x, t) = H(ξ(x, t), η(x, t)).

We see at once that

Kx =
1

2
(Hξ +Hη) and Kt =

1

2
(Hξ −Hη), (3.8)

which is clear by the chain rule. Substituting (3.8) into (3.3), after multiplying on the
left by −B and keeping in mind (3.7) we get

P− [Hξ(ξ, η)] + P+ [Hη(ξ, η)] = BQ(ξ + η)H(ξ, η)−BH(ξ, η)R(ξ − η).

Also note that the left hand sides in (3.4)-(3.5) have the form

BH(ξ, 0)−H(ξ, 0)B = 2BP+ [H(ξ, 0)] ,

BH(0, η) +H(0, η)B = 2BP− [H(0, η)] .

From the above, one can see that the problem (3.3)-(3.5) becomes

P− [Hξ(ξ, η)] + P+ [Hη(ξ, η)] = BQ(ξ + η)H(ξ, η)−BH(ξ, η)R(ξ − η), (3.9)

P+ [H(ξ, 0)] = −1

2
BE1(ξ), (3.10)

P− [H(0, η)] = −1

2
BE2(η), (3.11)

with the compatibility condition E1 ∈ H− and E2 ∈ H+, in the domains

Ξ+ = {(ξ, η) | 0 ≤ ξ < b, 0 ≤ η < b− ξ} ,
Ξ− = {(ξ, η) | − b < ξ ≤ 0, −b+ ξ < η ≤ 0} .

Remark 3.2.2. Similar to Remark 3.1.2, the problem (3.9)-(3.11) can be solved indepen-
dently on the domains Ξ+ and Ξ−.

Remark 3.2.3. It is clear that in the case of Proposition 3.1.1, E1(ξ) = R(ξ) − Q(ξ) and
E2(η) = 0. Moreover, we do not need additional assumptions on the potential in order to
transform problem (3.3)-(3.5) into (3.9)-(3.11), see [15], [30], [49], [61]. Thus, K(x, t) is a
solution of the problem (3.3)-(3.5) if and only if H(ξ, η) is a solution of (3.9)-(3.11)
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3.2. EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR GOURSAT PROBLEMS 27

Our next goal is to state the existence and uniqueness for solution of the problem
(3.9)-(3.11). We shall get this statement using the standard method, establishing the same
statement for an equivalent integral equation. To obtain an integral equation equivalent
to the problem (3.9)-(3.11), we proceed as follows, applying P− on both sides of (3.9),
and integrating with respect to ξ yields

P− [H(ξ, η)] = P− [H(0, η)] +

∫ ξ

0

P− [BQ(u+ η)H(u, η)− BH(u, η)R(u− η)] du.

In the same manner, applying P+ and integrating respect to η we have

P+ [H(ξ, η)] = P+ [H(ξ, 0)] +

∫ η

0

P− [BQ(ξ + v)H(ξ, v)−BH(ξ, v)R(ξ − v)] dv.

Thus, on account of Proposition 3.2.1, we conclude that

H(ξ, η) = P− [H(0, η)] + P+ [H(ξ, 0)]

+

∫ ξ

0

BQ(u+ η)P+ [H(u, η)] + P+ [H(u, η)]BR(u− η) du

+

∫ η

0

BQ(ξ + v)P− [H(ξ, v)]− P− [H(ξ, v)]BR(ξ − v) dv. (3.12)

The existence of a solution to the integral equation (3.12) is established by the method
of successive approximations.

Remark 3.2.4. For our purposes, and to simplify the formulas here and subsequently we
assume R(x) = 0. This assumption does not represent an essential drawback in the proof
of the theorem below. We would like to mention that our proof does not need to extend
the potential Q onto a ray or whole line, which was necessary for the approach given in
[49]. Although if we need to extend the potential R, without loss of generality it can be
extended by zero to the interval [−b, 0).
Theorem 3.2.5. Let Q be a matrix-valued function belonging to L2(0, b). Then the inte-

gral equation

H(ξ, η) =
1

2
BQ(ξ)+

∫ ξ

0

BQ(u+η)P+ [H(u, η)] du+

∫ η

0

BQ(ξ+v)P− [H(ξ, v)] dv (3.13)

has a unique solution, this solution belongs to L2(Ξ+,Mn). Moreover, if the the matrix-

valued function Q is continuous, then the kernel H(ξ, η) is continuous and satisfies the

inequality

|H(ξ, η)| ≤ 1

2
‖Q‖ exp(b ‖Q‖), (ξ, η) ∈ Ξ+.

Proof. The proof is standard by the method of successive approximations. Let {Hn}∞n=0

be a sequence of matrix-valued functions given by

Hn(ξ, η) =

∫ ξ

0

BQ(u+ η)P+ [Hn−1(u, η)] du+

∫ η

0

BQ(ξ + v)P− [Hn−1(ξ, v)] dv, (3.14)

27



28 CHAPTER 3. TRANSMUTATION OPERATORS

where H0(ξ, η) =
1
2
BQ(ξ). Let us first proceed by induction in order to get the following

estimate

|Hn(ξ, η)| ≤
(
ξ⌊n−1

2 ⌋
⌊
n−1
2

⌋
!

)1/2(
η⌊n

2 ⌋
⌊
n
2

⌋
!

)1/2(‖Q‖n+1
L2(0,ξ+η)

(n+ 1)!

)1/2

, n = 1, 2 . . . (3.15)

Indeed, we have H1(ξ, η) = 1
2

∫ ξ

0
BQ(u + η)BQ(u) du, because H0 belongs to H−. It

follows that

|H1(ξ, η)| ≤
1

2

(∫ ξ

0

|Q(u+ η)|2 du
)1/2(∫ ξ

0

|Q(u)|2 du
)1/2

≤ 1

2

(∫ ξ+η

0

|Q(θ)|2 dθ
)
.

Choose σ(ξ+ η) =
∫ ξ+η

0
|Q(θ)|2 dθ and note that σ′(ξ + η) = |Q(ξ+ η)|2. Similarly, as H1

belongs to H+, we see that H2(ξ, η) =
∫ η

0
BQ(ξ + v)H1(ξ, v) dv. Thus,

|H2(ξ, η)| ≤
1

2

∫ η

0

|Q(ξ + v)|σ(ξ + v)dv ≤ 1

2

(∫ η

0

dv

)1/2(∫ η

0

|Q(ξ + v)|2σ2(ξ + v)dv

)1/2

=
1√
2
√
2
η1/2

(
w3

3

∣∣∣
σ(ξ+η)

σ(ξ)

)1/2

≤ η1/2
σ3/2(ξ + η)√

2
√
3

.

Notice that in the last inequality we have used the Holder’s inequality and neglected
the term σ(ξ). If we continue in this fashion there is no loss of generality in assuming
Hn ∈ H−, and supposing that (3.15) holds for n, we will prove it for n+1. It follows that

|Hn+1(ξ, η)| ≤
(
η⌊n

2 ⌋
⌊
n
2

⌋
!

)1/2 ∫ ξ

0

|Q(u+ η)|
(
u⌊n−1

2 ⌋
⌊
n−1
2

⌋
!

)1/2(
σn+1(u+ η)

(n+ 1)!

)1/2

du,

≤
(
η⌊n

2 ⌋
⌊
n
2

⌋
!

)1/2(∫ ξ

0

u⌊n−1
2 ⌋

⌊
n−1
2

⌋
!
du

)1/2(∫ ξ

0

|Q(u+ η)|2σ
n+1(u+ η)

(n+ 1)!
du

)1/2

,

≤
(
η⌊n

2 ⌋
⌊
n
2

⌋
!

)1/2(
ξ⌊n

2 ⌋
⌊
n
2

⌋
!

)1/2(
σn+2(ξ + η)

(n+ 2)!

)1/2

,

which gives the claim (3.15). Having disposed of this preliminary step, we can now return
to (3.14) and consider the series of these terms. Since the series

∑∞
n=0Hn(ξ, η) is majorized

over Ξ+ by the converging numerical series

|Hn(ξ, η)| ≤
b⌊(n−1)/2⌋

⌊(n− 1)/2⌋!
‖Q‖n+1

L2(0,b)√
(n+ 1)!

,

we conclude that the series
∑∞

n=0Hn(ξ, η) converges for each (ξ, η) ∈ Ξ+. Moreover,
this series converges to a function belonging to the space L2, being a consequence of the

28



3.2. EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR GOURSAT PROBLEMS 29

estimation (3.15). As usual, from (3.14) we obtain that H(ξ, η) :=
∑∞

n=0Hn(ξ, η) satisfies
the integral equation (3.13) as well as the uniqueness of the solution. Finally, a slight
change in the way of obtaining the estimate (3.15) yields the corresponding result under
the assumption of continuity of Q. Namely, (3.15) becomes

|H(ξ + η)| ≤ 1

2

‖Q‖n+1 (ξ + η)n

n!
, n = 1, 2 . . . (3.16)

As Hn is continuous for each n, combining (3.16) with the Weierstrass M-test the state-
ment follows.

The proposition below establishes the relation between the smoothness of the potential
Q and the integral kernel H.

Proposition 3.2.6. Under the assumptions of Theorem 3.2.5, if moreover the matrix-

valud function Q has r ≥ 0 continuous derivatives then H(ξ, η) has continuous derivative
of all orders up to r with respect to both variables.

Proof. The proof is by induction on r. In fact, we need only consider r ≥ 1. If Q is
continuously differentiable we see at once that H(ξ, η) can be derived with respect to
both variables, which is clear from the right hand side of (3.13). Hence, differentiating
and using integration by parts leads to

Hξ(ξ, η) =
1

2
BQ′(ξ) +

1

2
Q2(ξ) +

∫ η

0

(
BQ′(ξ + v) +Q2(ξ + v)

)
H(ξ, v) dv, (3.17)

and

Hη(ξ, η) =

∫ ξ

0

(
BQ′(u+ η) +Q2(u+ η)

)
H(u, η) du. (3.18)

Since the right hand sides of these last two equalities are continuous, (3.17)-(3.18) shows
that H(ξ, η) has continuous derivatives with respect to both variables, which is our as-
sertion for r = 1. Assume the statement holds for degree r; we will prove it for r + 1.
We now apply the previous argument again, with r = 1 replaced by r + 1, and see from
(3.13) that H(ξ, η) has r + 1 derivatives with respect to both variables. Given that

∂r+1
ξ H(ξ, η) = ∂rξHξ(ξ, η) and ∂r+1

η H(ξ, η) = ∂rηHη(ξ, η), (3.19)

on account of (3.17) and (3.18), we obtain the continuity for the above expressions on the
right hand side of (3.19), which is the desired conclusion.

Remark 3.2.7. From the proof of the last proposition we can assert that in order for
K(·x, ·t) to be a classical solution for the Goursat problem (3.3)-(3.5), it is necessary and
sufficient that Q be continuously differentiable. This last result was announced without
proof in [51] (see, Chap.1, Sec.2, Prob. 5).
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The only point remaining concerns to the suitable spaces for considering a transmu-
tation operator of the form (3.2), relating the operators AR and AQ in the sense to hold
the equality

TARY = AQTY, (3.20)

on some vector space. For the sake of simplicity suppose that Q and R are continuously
differentiable. It is sufficient to consider the set AC(−b, b)n.

Proposition 3.2.8. The transmutation operator T satisfies the equality

TARY = AQTY,

for any Y ∈ AC(−b, b)n.

Proof. Let Y ∈ AC(−b, b)n. It follows that

AQTY (x) = B
d

dx

(
Y (x) +

∫ x

−x

K(x, t)Y (t) dt

)
+Q(x)

(
Y (x) +

∫ x

−x

K(x, t)Y (t) dt

)
,

= BY ′(x) +

∫ x

−x

(
B∂xK(x, t) +Q(x)K(x, t)

)
Y (t) dt

+
(
BK(x, x) +Q(x)

)
Y (x) + BK(x,−x)Y (−x), (3.21)

where we have used the formula

∂x

∫ x

−x

K(x, t)Y (t)dt = K(x, x)Y (x) +K(x,−x)Y (−x) +
∫ x

−x

∂xK(x, t)Y (t)dt. (3.22)

On the other hand, we get

TARY (x) = BY ′(x) +R(x)Y (x) +

∫ x

−x

K(x, t)
(
BY ′(t) +R(t)Y (t)

)
dt,

= BY ′(x) +

∫ x

−x

(
K(x, t)R(t)− ∂tK(x, t)B

)
Y (t) dt

+
(
K(x, x)B +R(x)

)
Y (x)−K(x,−x)BY (−x), (3.23)

where we have used the integration by parts, which leads to the formula

∫ x

−x

K(x, t)BY ′(t)dt = K(x, x)BY (x)−K(x,−x)BY (−x)−
∫ x

−x

∂tK(x, t)BY (t)dt.

(3.24)
Note that the right hand sides of the formulas (3.21) and (3.23) are well-defined as vector-
valued functions in L1. Finally, if K satisfies the Goursat problem (3.3)-(3.5), equality
(3.20) is obtained, conversely, if we have the property (3.20) for all Y ∈ AC(−b, b)n,
equating (3.21) and (3.23) leads to the Goursat problem (3.3)-(3.5).
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Remark 3.2.9. Following Hryniv and Pronska [30], the transmutation property can be
established for larger class of potentials Q in the distributions sense, the part of the
differentiability is justified from de fact that the formulas (3.22) and (3.24) are valid in
the same context. Consequently, the differentiability of K should be understood in the
distributional sense and it is only required that K being a mild solution of (3.3)

Summarizing, we can now state an analogue of Proposition 3.1.1 in a more general
setting, for this purpose let us consider the functional space W 1

2 (−b, b)n.
Theorem 3.2.10. Let Q ∈ L2((−b, b),Mn). Then a transmutation operator T , relating
the operators A0 and AQ in the sense that

TA0Y = AQTY, (3.25)

for all Y ∈ W 1
2 (−b, b)n can be realized in the form of a Volterra integral operator

TY (x) = Y (x) +

∫ x

−x

K(x, t)Y (t) dt. (3.26)

Its integral kernel K(x, t) is a mild solution of the Goursat problem

BKx(x, t) +Kt(x, t)B = −Q(x)K(x, t) (3.27)

BK(x, x)−K(x, x)B = −Q(x), (3.28)

BK(x,−x) +K(x,−x)B = 0. (3.29)

Conversely, if K(x, t) is the solution of the problem (3.27), (3.28), (3.29), then the operator

T determined by the formula is a transmutation operator for the pair of operators A0 and

AQ.

3.3 Continuous dependence on the Goursat data

The purpose of this section is to present some estimates for the difference of two solutions
of problems (3.27) having different Goursat data. These estimates serve in implementing
methods to approximate integral kernels of transmutation operators, in particular, for the
AATO method established in the next chapter.

The difference of two solutions satisfies the Goursat problem

BKx(x, t) +Kt(x, t)B = −Q(x)K(x, t), (3.30)

BK(x, x)−K(x, x)B = E1(x), (3.31)

BK(x,−x) +K(x,−x)B = E2(x), (3.32)

where E1 and E2 are differences of the corresponding Goursat data, satisfying compatibility
conditions E1 ∈ H− and E2 ∈ H+. The equivalent integral equation reads

H(ξ, η) = −1

2
BE1(ξ)−

1

2
BE2(η) +

∫ ξ

0

BQ(u+ η)P+ [H(u, η)] du

+

∫ η

0

BQ(ξ + v)P− [H(ξ, v)] dv. (3.33)
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The latter is deduced from (3.12) by taking R ≡ 0.

In order to motivate the results of this section let us explain the main reasons to
treat with the Goursat problem (3.30)-(3.32). Guaranteeing the existence and uniqueness
of solutions for this last problem not only establishes the stability but also allows us to
approximate the solution of the problem (3.27)-(3.29) by solutions of (3.30) such that
their restriction at t = x and t = −x provide an approximation of the Goursat data. This
is one of the most important aspects of the AATO approach, since it reduces a problem of
approximate solution of the Goursat problem into approximation on the characteristics.

Remark 3.3.1. Note that any solution of Eq. (3.30) satisfies the conditions (3.31)-(3.32)
as well as the difference between the solution of (3.27)-(3.29) and an arbitrary solution of
(3.30).

Proposition 3.3.2. Let Q ∈ C([0, b],Mn). Then the Goursat problem (3.30)-(3.32) in

the domain Ω+ is well-posed for E1 and E2 being Mn-valued continuous functions. Its

solution is continuous and satisfies the inequality

|K(x, t)| ≤ 1

2
(‖E1‖+ ‖E2‖) exp

(
2

∫ x

0

|Q(t)| dt
)
. (3.34)

where ‖ · ‖ is the maximum norm.

Proof. The proof is similar to the proof of Theorem 3.2.5. From (3.33) by the successive
approximations method we get the estimate.

Remark 3.3.3. The estimate established in the previous proposition improves the estimate
that would have been obtained using the Levitan [49] approach, namely, using the latter
we get

|K(x, t)| ≤ (‖E1‖+ ‖E2‖) e2b‖Q‖(e2b‖Q‖−1).

In view of this fact our main aim in the next chapter is to approximate the integral
kernel. We would like to point out that Proposition 3.3.2 gives a direct estimate of the
difference between the solution of the Goursat problem (3.27)-(3.29) and any solution of
(3.30)-(3.32) in terms of uniform norm. However, as mentioned previously in Section 3.1,
the use of a transmutation operator in the form (3.26) only involves the values K(x, ·t),
for −x ≤ t ≤ x. Hence the following results are convenient.

Proposition 3.3.4. Let E1, E2 ∈ L1((0, b),Mn), Q ∈ L∞((0, b),Mn). Then the matrix-

valued function K(x, ·) = H(ξ(x, ·), η(x, ·)) belongs to L1(−x, x); moreover, the following

estimate holds

∫ x

−x

|K(x, t)| dt ≤
√
2

(∫ x

0

|E1(t)|+ |E2(t)| dt
)
exp

(
2
√
2

∫ x

0

|Q(t)| dt
)
, (3.35)

for all x ∈ [0, b].
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Proof. To prove the estimate (3.35) it is sufficient to use (3.33) together with the observa-
tion that for fixed x the vertical segment −x ≤ t ≤ x, corresponds to the path η = x− ξ
for ξ ∈ [0, x] in the ξη-plane. Fix x ∈ [0, b]. Let us consider the line integral

∫

γ

|H(ξ, η)| dl, where γ(s) = (x− s, s), 0 ≤ s ≤ x.

From the above, by definition of line integral, we get

‖H(x− ·, ·)‖L1(0,x) ≤
√
2

∫ x

0

(
1

2
|E1(x− s) + E2(s)|+

∫ x−s

0

|Q(u+ s)H(u, s)| du

+

∫ s

0

|Q(x− s+ v)H(x− s, v)| dv
)
ds

=

√
2

2

(
‖E1‖L1(0,x) + ‖E2‖L1(0,x)

)

+
√
2

∫ x

0

∫ x−s

0

|Q(u+ s)|
(
|H(u, s)|+ |H(s, u)|

)
du ds

=

√
2

2

(
‖E1‖L1(0,x) + ‖E2‖L1(0,x)

)

+
√
2

∫ x

0

∫ x

s

|Q(u)|
(
|H(u− s, s)|+ |H(s, u− s)|

)
du ds.

By changing integration order, we obtain the inequality

‖H(x− ·, ·)‖L1(0,x) ≤
√
2

2

(
‖E1‖L1(0,x) + ‖E2‖L1(0,x)

)

+
√
2

∫ x

0

|Q(u)|
(
‖H(u− ·, ·)‖L1(0,u) + ‖H(·, u− ·)‖L1(0,u)

)
du.

(3.36)

Repeating the previous argument and using the opposite parametrization to γ leads to

‖H(·, x− ·)‖L1(0,x) ≤
√
2

2

(
‖E1‖L1(0,x) + ‖E2‖L1(0,x)

)

+
√
2

∫ x

0

|Q(u)|
(
‖H(u− ·, ·)‖L1(0,u) + ‖H(·, u− ·)‖L1(0,u)

)
du.

(3.37)

Summing (3.36) and (3.37), and applying Grönwall’s inequality we conclude that
∫ x

0

|H(x− s, s)|+|H(s, x− s)| ds ≤
√
2
(∫ x

0

|E1(s)|+|E2(s)| ds
)
exp
(
2
√
2

∫ x

0

|Q(s)| ds
)
.

From this and the simple observation that
∫ x

−x
|K(x, t)| dt =

∫ x

0
|H(s, x− s)| ds we obtain

estimate (3.35), and the proposition follows.
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The proposition below is similar to the latter under the assumption that the Goursat
data belongs to L2(Mn), the proof can be handled in much the same way, however we
present the main ideas of the proof.

Proposition 3.3.5. Let E1, E2, Q ∈ L2((0, b),Mn). Then the matrix-valued function

K(x, ·) = H(ξ(x, ·), η(x, ·)) belongs to L2(−x, x); moreover, the following estimate holds

∫ x

−x

|K(x, t)|2 dt ≤ 2
√
2

(∫ x

0

|E1(t)|2 + |E2(t)|2 dt
)
exp

(
8x

∫ x

0

|Q(t)|2 dt
)
, (3.38)

for all x ∈ [0, b].

Proof. Let γ be as before. Using Minkowski’s inequality we find that

‖H(x− ·, ·)‖L2(0,x) ≤
1

2

(
‖E1‖L2(0,x) + ‖E2‖L2(0,x)

)

+

(∫ x

0

(∫ x−s

0

|Q(u+ s)H(u, s)| du

+

∫ s

0

|Q(x− s+ v)H(x− s, v)| dv
)2
ds

)1/2

. (3.39)

By simple changes of variables and using Hölder’s inequality, the sum of the last two
terms on the right-hand side of (3.39), yields

(
2x

∫ x

0

∫ x

s

|Q(θ)|2
(
|H(θ − s, s)|2 + |H(s, θ − s)|2

)
dθ ds

)1/2

,

and by changing integration order we have

(
2x

∫ x

0

|Q(θ)|2
∫ θ

0

(
|H(θ − s, s)|2 + |H(s, θ − s)|2

)
ds
)
dθ

)1/2

.

Taking into account these recent changes in inequality (3.39), it follows that

‖H(x− ·, ·)‖2L2(0,x) ≤ ‖E1‖2L2(0,x) + ‖E2‖2L2(0,x)

+ 4x

∫ x

0

|Q(θ)|2
(
‖H(θ − ·, ·)‖2L2(0,θ) + ‖H(·, θ − ·)‖2L2(0,θ)

)
dθ. (3.40)

Similarly, using the opposite parametrization to γ the same estimate as in (3.40) is ob-
tained for ‖H(·, x− ·)‖2L2(0,x). Hence

‖H(·, x− ·)‖2L2(0,x) ≤ ‖E1‖2L2(0,x) + ‖E2‖2L2(0,x)

+ 4x

∫ x

0

|Q(θ)|2
(
‖H(θ − ·, ·)‖2L2(0,θ) + ‖H(·, θ − ·)‖2L2(0,θ)

)
dθ. (3.41)
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Combining (3.40) with (3.41) and applying the Grönwall’s inequality, we conclude that
∫ x

0

|H(x− θ, θ)|2+|H(θ, x− θ)|2 dθ ≤ 2
(∫ x

0

|E1(θ)|2+|E2(θ)|2 dθ
)
exp
(
8x

∫ x

0

|Q(θ)|2 dθ
)
,

and the proposition follows.

3.4 Goursat-to-Goursat transmutation operator

The aim of this section is to perform a direct analysis of the Goursat problem in the
preceding section via an operator transforming the boundary data of the Goursat problem
for a Matrix Transport Equation into the boundary data of the Goursat problem (3.30)-
(3.32). This idea goes back to [42] and once again indicates the use of transmutation
operators as an analytical tool to examine the Goursat problem (3.30)-(3.32).

Let us start introducing a simpler problem than the main problem of the previous
section, namely, the Goursat problem (3.30), (3.31) and (3.32), by setting Q ≡ 0, K(x, t)
being defined on Ω+ ∪ Ω−. We recall B as being defined on Section 3.2. For convenience
we change the notation of this new problem as follows

Bkx(x, t) + kt(x, t)B = 0, (3.42)

Bk(x, x)− k(x, x)B = Φ(x), (3.43)

Bk(x,−x) + k(x,−x)B = Ψ(x), (3.44)

where x ∈ [−b, b] and Φ and Ψ belong to the spaces H+ and H− respectively.

Lemma 3.4.1. The general solution of the equation

Bkx + ktB = 0, (3.45)

has the following form

k(x, t) = P+[H1]

(
x+ t

2

)
+ P−[H2]

(
x− t

2

)
. (3.46)

where H1 and H2 are arbitrary continuously differentiable Mn-valued functions.

Proof. An easy computation shows that the right hand side of (3.46) satisfy (3.45). On
the other hand, let k be a solution of equation (3.45). Define h(ξ(x, t), η(x, t)) = k(x, t)
via (3.6). Then 2kx = hξ + hη and 2kt = hξ − hη. Substituting these into (3.45) yields
P− [hξ] (ξ, η)+P+ [hη] (ξ, η) = 0. Applying P+ and P− we conclude that P+ [hη] (ξ, η) = 0
and P− [hξ] (ξ, η) = 0. From this, if we now integrate respect to the variables η and ξ
we obtain that P+ [h] (ξ, η) = C1(ξ) and P− [h] (ξ, η) = C2(η) for some C1 ∈ H− and
C2 ∈ H+. Thus,

k(x, t) = P+ [h] (ξ, η) + P− [h] (ξ, η) = C1

(
x+ t

2

)
+ C2

(
x− t

2

)
.

Finally, we have C1 = P+ [H1] and C2 = P− [H2], for some H1, H2 ∈ H, because the
image of P+ is H− and the image of P− is H−, which completes the proof.
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Remark 3.4.2. Actually (3.46) can be put in the form

k(x, t) = P+[H] (x+ t) + P−[H] (x− t) , (3.47)

as well as (3.47) becomes (3.46). We recall that H+ ∩ H− = {0}, therefore if we replace
H(x) = P+H1(x/2) + P−H2(x/2) into (3.47) we recover (3.46).

The proof of the proposition below is based on the result of the preceding lemma, which
establishes the general solution of equation (3.42). Having disposed of this preliminary
step, by an easy computation, the proposition follows.

Proposition 3.4.3. The general solution of the Goursat problem (3.42)-(3.44) is given

by

k(x, t) =
1

2

(
Φ

(
x+ t

2

)
−Ψ

(
x− t

2

))
B. (3.48)

With the purpose to establish the following proposition and to illustrate how the trans-
mutation property works, we consider a transmutation operator T being as in Theorem
3.2.10, and k(x, t) being a solution of equation (3.42). But TA0 = AQT , as was described
in (3.20), and it follows that

AQTk(x, t) = TA0k(x, t) = −T∂tk(x, t)B = −∂tTk(x, t).
In the other words, the image of k under the transmutation operator T satisfies (3.30).
The same holds for K being a solution of equation (3.30). Taking into account that T
induces a transmutation operator acting by columns on the space H, by abuse of notation
we use the same letter T .

Proposition 3.4.4. Under the conditions stated above, there exist a bounded operator TG
mapping the Goursat data corresponding to the Goursat problem (3.42)-(3.44) into the

Goursat data (3.31)-(3.32).

Proof. Let Φ and Ψ be continuously differentiable Mn-valued functions defined on [−b, b].
Setting k by the formula (3.48) and applying the transmutation operator to this expression
we get

U(x, t) = Tk(x, t) =

(
Φ

(
x+ t

2

)
+

∫ x

−x

K(x, τ)Φ

(
τ + t

2

)
dτ

−Ψ

(
x+ t

2

)
+

∫ x

−x

K(x, τ)Ψ

(
τ + t

2

)
dτ

)
B. (3.49)

Considering the values of these expressions when t = x and t = −x, and making some
changes of variables yields

U(x, x) = 1

2

(
Φ (x) + 2

∫ x

0

K(x, 2t− x)Φ (t) dt

− 2

∫ 0

−x

K(x, 2t+ x)Ψ (t) dt−Ψ(0)

)
B (3.50)
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and

U(x,−x) = 1

2

(
−Ψ(x) + 2

∫ 0

−x

K(x, 2t+ x)Φ (t) dt

− 2

∫ x

0

K(x, 2t− x)Ψ (t) dt+ Φ(0)

)
B. (3.51)

Of course the expressions U(x, x) and U(x,−x) may not satisfy the compatibility condi-
tions for Goursat data (3.30)-(3.32), nevertheless applying 2BP+ and 2BP− respectively
to (3.50) and (3.51) we obtain a mapping

(
Φ(x)
Ψ(x)

)
TG7−→
(
E1(x)
E2(x)

)
, x ∈ [−b, b] (3.52)

where E1 ∈ H+ and E2 ∈ H−. Note that 2BP+ and 2BP− lead to the Goursat conditions
(3.31)-(3.32). These last are given by

E1(x) = Φ (x)+

∫ x

0

(K∗ +K) (x, 2t−x)Φ (t) dt+

∫ 0

−x

(K∗ −K) (x, 2t+x)Ψ (t) dt (3.53)

and

E2(x) = Ψ (x)+

∫ x

0

(K∗ +K) (x, 2t−x)Ψ (t) dt+

∫ 0

−x

(K∗ −K) (x, 2t+x)Φ (t) dt (3.54)

where K∗ denotes the term K∗ = −BKB. We consider the operator TG defined by (3.52)
acting on the space

Ĥ =

{(
Φ
Ψ

) ∣∣∣Φ ∈ H+,Ψ ∈ H−

}
⊆ C1((−b, b),Mn)× C1((−b, b),Mn),

equipped by the norm of the sum of two Mn-valued functions. What is left is to show
that TG is a bounded operator. In fact, by definition,

∥∥TG(Φ,Ψ)T (·x)
∥∥
∞

= ‖E1‖∞ + ‖E2‖∞
= max

x∈[−b,b]
|2BP+ [U ] (x, x)|+ max

x∈[−b,b]
|2BP− [U ] (x,−x)|

≤ 4 max
(x,t)∈[−b,b]

|U(x, t)|

= 4 ‖U(·x, ·t)‖∞ .

Since U = Tk(·x, ·t) satisfies (3.30)-(3.32), using the estimate (3.34) of Proposition 3.3.2
it follows that

∥∥TG(Φ,Ψ)T
∥∥
∞

≤ 2
(
‖E1‖∞ + ‖E2‖∞

)
exp

(
2

∫ b

−b

|Q(t)| dt
)
.

37



38 CHAPTER 3. TRANSMUTATION OPERATORS

Finally, an easy computation shows that

|E1(x)|+ |E2(x)| ≤ 2
∥∥(Φ,Ψ)T

∥∥
∞

(
1 + 2b ‖K(x, t)‖∞

)
,

which follows from (3.53) and (3.54). According to these latter inequalities , we can assert
that

‖TG‖ ≤ 4
(
1 + 2b ‖K(x, t)‖∞

)
exp

(
2

∫ b

−b

|Q(t)| dt
)
,

and the proof is complete.

Remark 3.4.5. Actually the Goursat-to-Goursat operator TG is also a bounded operator on
the linear space Ĥ as subspace of W 1,2(Mn)×W 1,2(Mn), which follows from Proposition
3.3.5 and the fact that the transmutation operator T is well defined on the Sobolev space
W 1,2(Mn), see Theorem 3.2.10.

Moreover, TG is a diagonalizable operator. We observe that the Mn-valued functions
Φ and Ψ appear in both (3.53) and (3.54). Similar to [43] the Goursat operator can be
decoupled in a pair of operators acting separately on each Mn-valued function belonging
to H+ and H−.

To do this, we define G to be UTGU , where U is given by the block matrix

U =
1√
2

(
I I
I −I

)
,

and I is the identity matrix of size n. Let (Φ,Ψ)T ∈ Ĥ. Computing UTGU we get a new

mapping from Ĥ into itself in the form

(
E1(x)
E2(x)

)
=

(
Φ(x) +

∫ x

0
(K∗ +K) (x, 2t− x)Φ(t) dt+

∫ 0

−x
(K∗ −K) (x, 2t+ x)Φ(t) dt

Ψ(x) +
∫ x

0
(K∗ +K) (x, 2t− x)Ψ(t) dt−

∫ 0

−x
(K∗ −K) (x, 2t+ x)Ψ(t) dt

)

which can be rewritten as follows

G
(
Φ(x)
Ψ(x)

)
=

(
Φ(x)
Ψ(x)

)
+

∫ x

−x

(
K(1)(x, t) 0

0 K(2)(x, t)

)(
Φ(t)
Ψ(t)

)
dt, (3.55)

where

K(1)(x, t) :=

{
(K∗ +K)(x, 2t− x), 0 < t ≤ x,

(K∗ −K)(x, 2t+ x), −x ≤ t < 0.
(3.56)

K(2)(x, t) :=

{
(K∗ +K)(x, 2t− x), 0 < t ≤ x,

(K −K∗)(x, 2t+ x), −x ≤ t < 0.
(3.57)

or which is the same G = (G1,G2),

G1Φ(x) = Φ(x) +

∫ x

−x

K(1)(x, t)Φ(t) dt (3.58)

and

G2Ψ(x) = Ψ(x) +

∫ x

−x

K(2)(x, t)Ψ(t) dt. (3.59)
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Remark 3.4.6. In general neither K(1)(x, t) nor K(2)(x, t) are continuous integral kernels.
A necessary but not sufficient condition forK(1) andK(2) to be continuous integral kernels
is that the potential Q satisfies the condition Q(0) = 0. For example, using the Goursat
conditions (3.28)-(3.29) one can verify that K(1)(x, t) tends to 0 along the line t = x,
x > 0, whereas K(1)(x, t) tends to −BQ(0) along the line t = −x, x > 0. Nevertheless, it
is known that operators (3.58) and (3.59) are invertible operators.

Taking advantage of the projectors P+ and P− we observe that the operators G1 and
G2 can be written as

G1Φ(x) = Φ(x) + 2

∫ x

0

P−[K](x, 2t− x)Φ(t) dt− 2

∫ 0

−x

P+[K](x, 2t+ x)Φ(t) dt (3.60)

and

G2Ψ(x) = Ψ(x) + 2

∫ x

0

P−[K](x, 2t− x)Ψ(t) dt+ 2

∫ 0

−x

P+[K](x, 2t+ x)Ψ(t) dt. (3.61)

In addition it is worth noting that the linear operators G1 and G2 may be extended from
the spaces H− and H+ respectively to the collection of all Mn-valued functions. They
are quite symmetric and satisfy the following relations

BG1[Φ] = −G2[Φ]B, Φ ∈ H−, (3.62)

BG1[Ψ] = G2[Ψ]B, Ψ ∈ H+, (3.63)

Combining these we can apply the operators G1 and G2 for any Mn-valued function F as
follows by decomposing F = Φ+Ψ, Φ ∈ H−, Ψ ∈ H+,

G1[F ] = G1[Φ + Ψ] = G1[Φ]−BG2[Ψ]B, (3.64)

G2[F ] = G2[Φ + Ψ] = BG1[Φ]B + G2[Ψ]. (3.65)

The natural question arises how a Volterra integral operator with integral kernel K∗

works? The proposition below solve this question.

Corollary 3.4.7. Let K be as in Theorem 3.2.10. Set K∗ = −BKB. Then the Volterra

integral operator

T ∗Y (x) = Y (x) +

∫ x

−x

K∗(x, t)Y (t) dt, (3.66)

is a transmutation operator for the pair of differentiable operators A0 and A−Q, and its

integral kernel satisfies

BK∗
x(x, t) +K∗

t (x, t)B = Q(x)K∗(x, t), (3.67)

BK∗(x, x)−K∗(x, x)B = Q(x), (3.68)

BK∗(x,−x) +K∗(x,−x)B = 0. (3.69)
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Proof. It is sufficient to show the transmutation property for the operator T ∗. We first
recall that B2 = −I, BQ(x) = −Q(x)B. Since T ∗ [Y ] (x) = −BT [BY ] (x), which follows
easily from (3.66), we see that

T ∗ [A0Y ] (x) = −BT [BA0Y ] (x) = −BT [A0BY ] (x). (3.70)

Applying the transmutation property (3.25) of the operator T to BY leads to

T [A0BY ] (x) = AQT [BY ] (x) = B
d

dx
T [BY ] (x) +Q(x)T [BY ] (x).

Combining (3.70) with this latter equality gives

T ∗A0Y (x) = A−QT
∗Y (x),

and the transmutation property for T ∗ is proved.



Chapter 4

The AATO method for the Dirac

system

The aim of this chapter is to present an analytic approximation of the transmutation
operators (AATO) for one-dimensional Dirac operators, which is the main result of this
work. This method allows one to obtain an approximation of the solutions of the one-
dimensional Dirac system by means of transmutation operators.

Unless otherwise stated throughout this chapter we assume that the potential Q be-
longs to C([0, b],M2) and is extended, if needed, onto [−b, 0) as a continuous function.
Therefore in accordance with Theorem 3.2.10 it is sufficient to use the transmutation
property on C1(−b, b)× C1(−b, b).

In the next section we establish the mapping property which is an important property
that connects the solutions in the SPPS representation for the one-dimensional Dirac
system with solutions of the same system through transmutation operators. Section 4.2
is devoted to construction of the complete system of solutions for the integral kernel
equation. In Section 4.3 we develop the approximate construction of the integral kernel
based on the conditions that the integral kernel of transmutation operator satisfies on the
characteristics curves x = t and x = −t. In Section 4.4 we obtain the main result of the
work.

4.1 Mapping property

We begin by recalling the notion of transmutation operators for operators of interest A0

and AQ indicated by Theorem 3.2.10 in the previous chapter. Here and subsequently, B
and Q denote 2× 2 matrix-valued functions in the standard form

B =

(
0 1
−1 0

)
and Q(x) =

(
p(x) q(x)
q(x) −p(x)

)
.

A transmutation operator in the sense of Definition 1.3.1 can be realized in the form
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of a Volterra integral operator

Tu(x) = u(x) +

∫ x

−x

K(x, t)u(t)dt, (4.1)

and its integral kernel satisfies a Goursat problem. Furthermore, the transmutation prop-
erty makes it possible for T to map a solution v = (v1, v2)

T of the equation

B
dv

dx
+ λv = 0, (4.2)

where λ is a complex number, into a solution u = (u1, u2)
T of the equation

B
du

dx
+Q(x)u+ λu = 0, (4.3)

with the correspondence of the initial values u(0) = v(0).
Unfortunately the integral kernel of the operator T can be found in closed form only

for a few particular potentials, in general it is unknown. So there is no way to determine
the result of T acting on an arbitrary vector-valued function. However, it is possible to
determine the result of T acting on an arbitrary vector function of the form (xk, xm)T ,
and, hence, on arbitrary vector-function (p1, p2)

T , where p1 and p2 are polynomials.
For this purpose the following assumptions will be needed throughout the chapter.

We restrict the use of Theorem 2.2.4 to segment (−b, b) and take x0 = 0. In addition, the
non-vanishing solution (f, g)T is normalized according to f(0)g(0) = 1. From these last
assumptions, combining Theorem 2.2.4 and Theorem 3.2.10 we conclude that

Ty(x) = c1

∞∑

k=0

λk

(
fX̃(k)(x)

gỸ (k)(x)

)
+ c2

∞∑

k=0

λk
(
fX(k)(x)
gY (k)(x)

)
, (4.4)

where c1and c2 are arbitrary complex constants and y is a solution of (4.2).

Remark 4.1.1. By Theorem 2.5.5, which is a generalization of Theorem 2.2.4 the equality
(4.4) is valid on the linear space W 1,1(−b, b)×W 1,1(−b, b).

On the other hand it is easy to check that the general solution of equation (4.2) is
given by the linear combination of vector-valued functions

(
cos (λx)
− sin (λx)

)
,

(
sin (λx)
cos (λx)

)
. (4.5)

Thus from (4.4) taking into account the initial conditions it follows that

T

(
cos (λx)
− sin (λx)

)
=

1

f(0)

∞∑

k=0

λk

(
f(x)X̃(k)(x)

g(x)Ỹ (k)(x)

)
, (4.6)

and,

T

(
sin (λx)
cos (λx)

)
=

1

g(0)

∞∑

k=0

λk
(
f(x)X(k)(x)
g(x)Y (k)(x)

)
. (4.7)
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Finally, by representing the functions sin(λx) and cos(λx) in their respective power series,
and since the solutions are analytical with respect to the parameter λ, by comparing
coefficients respectively in (4.6) and (4.7) we obtain

T

(
x2k

0

)
= (2k)!

(−1)k
1

f(0)

(
f(x)X̃(2k)(x)

g(x)Ỹ (2k)(x)

)
, T

(
0

x2k+1

)
= (2k+1)!

(−1)k+1
1

f(0)

(
f(x)X̃(2k+1)(x)

g(x)Ỹ (2k+1)(x)

)
,

T

(
0
x2k

)
= (2k)!

(−1)k
1

g(0)

(
f(x)X(2k)(x)
g(x)Y (2k)(x)

)
, T

(
x2k+1

0

)
= (2k+1)!

(−1)k
1

g(0)

(
f(x)X(2k+1)(x)
g(x)Y (2k+1)(x)

)
.

If we now utilize the infinite sequences of vector-valued functions {Φk}∞k=0 and {Ψk}∞k=0

introduced in Definition 2.3.1, we obtain the following

Theorem 4.1.2 (Mapping theorem). Let p, q ∈ L2[−b, b] be complex valued functions.

Let f and g be as in Theorem 2.2.4 normalized according to the condition f(0)g(0) = 1.
Let T be the transmutation operator for A0 and AQ, and let Φk and Ψk be vector-valued

functions defined by (2.45) and (2.46) respectively. Then

T

(
xk

0

)
= Φk(x) and T

(
0
xk

)
= Ψk(x), k = 0, 1, 2, . . . . (4.8)

Corollary 4.1.3. Under the assumptions of Theorem 4.1.2 with T replaced by T ∗ the

following mapping property holds

T ∗

(
xk

0

)
= BΨk(x) and T ∗

(
0
xk

)
= −BΦk(x), k = 0, 1, 2, . . . . (4.9)

4.2 Construction of complete systems of solutions

Our aim in this section is to introduce a complete system of solutions for the integral
kernel equation. As explained in Section 3.4 this problem is naturally connected with
pre-images of solutions of the integral kernel equation.

4.2.1 Equation Bkx + ktB = 0.

In order to approximate solutions of the above equation we introduce a new system of
matrix-valued functions. It is Lemma 3.4.1 that makes this definition allowable.

Definition 4.2.1 (Wave Matrices). Let us apply the formula (3.47) replacing H by each
of these four M2-valued functions

(
xm 0
0 0

)
,

(
0 xm

0 0

)
,

(
0 0
xm 0

)
,

(
0 0
0 xm

)
, m = 0, 1, 2, . . .
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44 CHAPTER 4. THE AATO METHOD FOR THE DIRAC SYSTEM

which leads to the following four M2-valued functions

P 1
m(x, t) =

(
p2m−1(x, t) 0

0 −p2m(x, t)

)
, P 2

m(x, t) =

(
0 p2m−1(x, t)

p2m(x, t) 0

)
,

P 3
m(x, t) =

(
0 p2m(x, t)

p2m−1(x, t) 0

)
, P 4

m(x, t) =

(
−p2m(x, t) 0

0 p2m−1(x, t)

)
,

where, m ≥ 0, p0(x, t) = 1,

p2m−1(x, t) =
1

2
((x+ t)m + (x− t)m) , (4.10)

p2m(x, t) =
1

2
((x+ t)m − (x− t)m) . (4.11)

In this P 1
m, . . . , P

4
m, are called wave matrices.

Remark 4.2.2. Of course theM2-valued functions P i
m, i = 1, 2, 3, 4 satisfy the wave-matrix

equation ∂2xK(x, t) = ∂2tK(x, t). In addition, the functions in (4.10)-(4.11) are known as
wave polynomials and these can be rewritten as

p0(x, t) = 1, p2m−1(x, t) =
m∑

even k=0

(
m

k

)
xm−ktk, p2m(x, t) =

m∑

odd k=1

(
m

k

)
xm−ktk (4.12)

The fact that they arise here does not cause us any surprise since the wave polynomials
are complete in the linear space of regular solutions of the wave equation with respect to
the maximum norm, see [33] for more details.

In order to motivate our results, let us take a look at the Goursat problem (3.42),
(3.43) and (3.44) in Section 3.4 . We offer a similar version to Proposition 1 of [33].

Proposition 4.2.3. Let ϕ and ψ be M2-valued functions corresponding to the Goursat

problem (3.42)-(3.44), which entries being uniformly convergent series on [−b, b]

ϕ(x) =
∞∑

n=0

(
anx

n bnx
n

bnx
n −anxn

)
, ψ(x) =

∞∑

n=0

(
cnx

n dnx
n

−dnxn cnx
n

)
. (4.13)

Then the unique solution of the Goursat problem (3.42), (3.43), (3.44) is equal to

k(x, t) =
∞∑

n=0

dn − bn
2n+1

P 1
n(x, t) +

an − cn
2n+1

P 2
n(x, t) +

an + cn
2n+1

P 3
n(x, t) +

bn + dn
2n+1

P 4
n(x, t).

(4.14)

Proof. It is sufficient to use (3.48) in Proposition 3.4.3 together with the Goursat data
(4.13), the proposition follows by direct computation.
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4.2. CONSTRUCTION OF COMPLETE SYSTEMS OF SOLUTIONS 45

Proposition 4.2.4. Let k(·x, ·t) be an M2-valued solution of equation (3.45). Given any

ǫ > 0, there exists a linear combination of wave matrices in the form

km(x, t) =
m∑

n=0

(
anP

1
n(x, t) + bnP

2
n(x, t) + cnP

3
n(x, t) + dnP

4
n(x, t)

)
(4.15)

such that for every (x, t) ∈ [−b, b]× [−b, b]

|k(x, t)− km(x, t)| < ǫ. (4.16)

Proof. Let k be given. In accordance with Lemma 3.4.1 and (3.47) there exists H ∈
C([−b, b],M2), so that k(x, t) = P+[H(x+ t)] + P−[H(x− t)]. Let

H(x) =

(
h11(x) h12(x)
h21(x) h22(x)

)
.

Given ǫ > 0, by the Weierstrass Approximation Theorem, there exist polynomials pij,
i, j ∈ {1, 2}, of the same degree such that

|hij(x)− pij(x)| <
ǫ

2
,

for every x ∈ [−b, b]. To construct an approximation in (4.16) let us first consider

P (x) =

(
p11(x) p12(x)
p21(x) p22(x)

)

=
m∑

n=0

[
an

(
xn 0
0 0

)
+ bn

(
0 xn

0 0

)
+ cn

(
0 0
xn 0

)
+ dn

(
0 0
0 xn

)]
. (4.17)

After applying the formula on the right hand side of (3.47) we get

km(x, t) = P+ [P (x+ t)] + P− [P (x− t)]

=
m∑

n=0

anP
1
n(x, t) + bnP

2
n(x, t) + cnP

3
n(x, t) + dnP

4
n(x, t). (4.18)

We conclude that

|k(x, t)− km(x, t)| =
∣∣P+ [H(x+ t)− P (x+ t)] + P− [H(x− t)− P (x− t)]

∣∣
≤ |H(x+ t)− P (x+ t)|+ |H(x− t)− P (x− t)|
< ǫ.

Remark 4.2.5. Propositions 4.2.3 and 4.2.4 may be summarized by saying that the wave
matrices provide a complete system of solutions for the matrix equation Bkx + ktB = 0,
in such a way that any solution of the equation (3.45) can be approximated by a linear
combination (4.15), furthermore if the solution’s values at x = t and t = −x admit power
series representation the linear combination (4.15) converge when m tends to ∞.
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46 CHAPTER 4. THE AATO METHOD FOR THE DIRAC SYSTEM

Remark 4.2.6. Under the assumption that k(x, t) ∈ W 1,1([−b, b] × [−b, b] ,M2) the pre-
vious proof does not require any essential modification in the sense that the above result
is also valid in the norm of W 1,1. This follows from the fact that any function belonging
to the space W 1,1 can be approximated by polynomials, see [18, Ch.7],

4.2.2 Equation BKx +KtB = −Q(x)K.
Having disposed of this preliminary step, we are in position to introduce a complete system
of solutions for the integral kernel equation (3.27) via the mapping property (4.8) indicated
by Theorem 4.1.2. According to the expression (4.12) in Remark 4.2.2 we consider the
wave matrices from Definition 4.2.1. As we mention before the transmutation operator
T in (4.1) acts on vector-valued functions of one real variable, however in a natural
way T induces a transmutation operator acting on the space of M2-valued functions, in
particular on the wave matrices.

Definition 4.2.7. The generalized wave matrices Oi
m(x, t) = TP i

m are the images of the
wave matrices P i

m of Definition 4.2.1 under the transmutation operator T of (4.1) with
respect to the variable x for each fixed t. Specifically,

O1
m(x, t) =

[
U2m−1(x, t) −V2m(x, t)

]
, O2

m(x, t) =
[
V2m(x, t) U2m−1(x, t)

]
,

O3
m(x, t) =

[
V2m−1(x, t) U2m(x, t)

]
, O4

m(x, t) =
[
−U2m(x, t) V2m−1(x, t)

]
,

(4.19)

where m ≥ 0 and the vector-valued functions U2m−1, U2m, V2m−1 and V2m are given by

U2m−1(x, t) =
m∑

even k=0

(
m

k

)
Φm−k(x)t

k U2m(x, t) =
m∑

odd k=1

(
m

k

)
Φm−k(x)t

k, (4.20)

V2m−1(x, t) =
m∑

even k=0

(
m

k

)
Ψm−k(x)t

k, V2m(x, t) =
m∑

odd k=1

(
m

k

)
Ψm−k(x)t

k. (4.21)

Remark 4.2.8. In the following theorem, the complete term is similar to that established
in Proposition 4.2.4, see Remark 4.2.5.

Theorem 4.2.9. The system of M2-valued functions {Oi
m, i = 1, 2, 3, 4}∞m=0 is a complete

system of solutions of the equation

BKx(x, t) +Kt(x, t)B = −Q(x)K(x, t) (4.22)

in Ω+.

Proof. LetK be a solution of (4.22). Define k(·x, t) = T−1K(·x, t). Then as a consequence
of the transmutation property (3.25), k satisfies (3.45). Choose ǫ > 0, by Proposition
4.2.4 there exists a linear combination of wave matrices in the form (4.15) such that

|k(x, t)− km(x, t)| <
ǫ

‖T‖ ,
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for every (x, t) ∈ [−b, b]× [−b, b]. We next set Km(·x, t) = Tkm(·x, t). We thus get

Km(x, t) = Tkm(x, t) =
m∑

n=0

[
anO1

n(x, t) + bnO2
n(x, t) + cnO3

n(x, t) + dnO4
n(x, t)

]
, (4.23)

since Oi
m = TP i

m, for each i = 1, . . . , 4. Then due to the boundedness of the operators T
and T−1, we conclude that

|K(x, t)−Km(x, t)| ≤ ‖T‖ |k(x, t)− km(x, t)| < ǫ,

which completes the proof.

Remark 4.2.10. As we can notice the previous proof is based on the properties of opera-
tors T , T−1, and the completeness of the wave matrices. Therefore the completeness in
Theorem 4.2.9 is established in the sense that one can approximate solutions of (4.22)
uniformly by linear combinations (4.23) in the space of classical solutions of equation
(4.22).

Remark 4.2.11. We recall that the systems of vector-valued functions {Φk}∞k=0 and {Ψk}∞k=0

belong to W 1,1([−b, b],M2), see Proposition 2.5.1 and Definition 2.3.1. So that, by
construction the systems of generalized wave matrices {Oi

m, i = 1, 2, 3, 4}∞m=0 belong to
W 1,1(Ω+,M2), see (4.20)-(4.21). Combining these with the fact that k(·x, t) = T−1K(·x, t)
∈ L1, as long as Q(x) belongs to L2, and taking into account Remark 4.2.6 the result of
the completeness is also valid on the space W 1,1(Ω+,M2).

4.3 Approximate construction of integral kernels

Roughly speaking, Theorem 4.2.9 says that any solution of the equation (4.22) satisfied,
in particular, by the integral kernel K can be approximated by linear combinations of
generalized wave matrices. What is really desired is an algorithm to determine approxi-
mate coefficients based on the Goursat data only. This issue needs handling with great
care because it represents one of the most important aspects of the proposed approach
for the approximation of integral kernels of transmutation operators. The importance is
due to the fact that the problem of finding the integral kernel is reduced to solution of a
much easier problem, namely, an approximation problem on a segment.

In allusion to the above, the aim is to perform an approximation of the integral kernel
in the form

KN(x, t) =
N∑

n=0

(
anO1

n(x, t) + bnO2
n(x, t) + cnO3

n(x, t) + dnO4
n(x, t)

)
, (4.24)

where the coefficients {an, bn, cn, dn}Nn=0 ⊆ C are to be obtained from the Goursat condi-
tions

BK(x, x)−K(x, x)B = −Q(x), (4.25)

BK(x,−x) +K(x,−x)B = 0. (4.26)
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48 CHAPTER 4. THE AATO METHOD FOR THE DIRAC SYSTEM

We shall show that having sufficiently good approximation of the data on the character-
istics curves t = x and t = −x, a good approximation of the integral kernel K in form
(4.24) is guaranteed on the whole Ω+.

In order to examine the values of KN(·x, ·t) on the characteristic curves t = x and
t = −x, we start with the following example that shows how the Goursat-to-Goursat
operator TG works on the solutions base of equation Bkx + ktB = 0.

Example 4.3.1. Consider the problem (3.42)-(3.44) with the Goursat data Φ(x) = 2P 1
n(x, x)

and Ψ(x) = 2P 1
n(x,−x). Then, by Proposition 3.4.3 we have that the solution of this prob-

lem is the wave matrix P 3
n(x, t). From this, if we now apply the result of Proposition 3.4.4,

we obtain that

E1(x) = 2BP+
[
O3

n

]
(x, x)

= BO3
n(x, x)−O3

n(x, x)B

= B
[
V2n−1(x, x) U2n(x, x)

]
−
[
V2n−1(x, x) U2n(x, x)

]
B

=
[
U2n(x, x) + BV2n−1(x, x) −V2n−1(x, x) + BU2n(x, x)

]

and

E2(x) = 2BP+
[
O3

n

]
(x,−x)

= BO3
n(x,−x) +O3

n(x,−x)B
= B

[
V2n−1(x,−x) U2n(x,−x)

]
+
[
V2n−1(x,−x) U2n(x,−x)

]
B

=
[
U2n(x, x) + BV2n−1(x, x) V2n−1(x, x)−BU2n(x, x)

]
,

where we have used the relations

U2n(x,−x) = −U2n(x, x) and V2n−1(x,−x) = V2n−1(x, x),

and therefore TG is given by

2n




xn 0
0 −xn
xn 0
0 xn




TG7−→
(
U2n(x, x) + BV2n−1(x, x) −V2n−1(x, x) + BU2n(x, x)
U2n(x, x) + BV2n−1(x, x) V2n−1(x, x)−BU2n(x, x)

)
. (4.27)

Similarly, using the Goursat data Φ(x) = 2P 2
n(x, x) and Ψ(x) = 2P 2

n(x,−x) the solution
of (3.42)-(3.44) is the wave matrix P 4

n(x, t), hence

TG(Φ(x),Ψ(x))T =
(
2BP+

[
O4

n

]
(x, x), 2BP−

[
O4

n

]
(x,−x)

)T
,

which yields

2n




0 xn

xn 0
0 xn

−xn 0




TG7−→
(

V2n−1(x, x)−BU2n(x, x) U2n(x, x) + BV2n−1(x, x)
−V2n−1(x, x) + BU2n(x, x) U2n(x, x) + BV2n−1(x, x)

)
. (4.28)
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If we continue in this fashion with Φ(x) = −2P i
n(x, x) and Ψ(x) = −2P i

n(x,−x) for each
i ∈ {3, 4} the maps

2n




0 −xn
−xn 0
0 xn

−xn 0




TG7−→
(
−V2n(x, x) +BU2n−1(x, x) −U2n−1(x, x)−BV2n(x, x)
−V2n(x, x) +BU2n−1(x, x) U2n−1(x, x) + BV2n(x, x)

)
(4.29)

and

2n




xn 0
0 −xn

−xn 0
0 −xn




TG7−→
(

U2n−1(x, x) + BV2n(x, x) −V2n(x, x) +BU2n−1(x, x)
−U2n−1(x, x)− BV2n(x, x) −V2n(x, x) +BU2n−1(x, x)

)
(4.30)

are similarly obtained from

TG

(
Φ(x)
Ψ(x)

)
=

(
2BP+ [Oj

n] (x, x)
2BP− [Oj

n] (x,−x)

)
,

respectively for each j ∈ {1, 2}.
The Goursat conditions involve all coefficients in the desired approximation. By con-

sidering the half-sum and half-difference of the Goursat conditions we may partially sep-
arate the approximation problems.

Lemma 4.3.2. The half-sum and half-difference of the Goursat data corresponding to

KN have the following form:

BP+ [KN(x, x)] + BP− [KN(x,−x)] =
N∑

n=0

Nn(x)

(
an bn
cn dn

)
, (4.31)

BP+ [KN(x, x)]−BP− [KN(x,−x)] =
N∑

n=0

Mn(x)

(
bn −an
dn −cn

)
, (4.32)

where the matrix valued functions Nn and Mn are given by

Nn(x) =
(
−V2n(x, x) + BU2n−1(x, x) U2n(x, x) + BV2n−1(x, x)

)
, (4.33)

Mn(x) =
(
U2n−1(x, x) +BV2n(x, x) V2n−1(x, x)−BU2n(x, x)

)
. (4.34)

Moreover, the following relations hold:

BNn(x) = −Mn(x) and BMn(x) = Nn(x). (4.35)

Proof. The proof is by direct verification. According to the above example, we see at
once that the difference of 2BP+ [Oi

n] (x, x) and 2BP− [Oi
n] (x,−x) as well as the sum
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produce matrices with at least one null column, which is clear from the right hand side
of (4.27)-(4.30), so that

BP+ [KN ] + BP− [KN ] =
N∑

n=0

(
an
[
−V2n + BU2n−1 0

]
+ bn

[
0 −V2n + BU2n−1

]

+ cn
[
U2n +BV2n−1 0

]
+ dn

[
0 U2n + BV2n−1

])
=

N∑

n=0

[[
−V2n + BU2n−1 U2n + BV2n−1

](an
cn

) [
−V2n + BU2n−1 U2n + BV2n−1

](bn
dn

)]

=
N∑

n=0

[
−V2n + BU2n−1 U2n + BV2n−1

](an bn
cn dn

)
,

which gives (4.34). To obtain (4.33)

BP+ [KN ]− BP− [KN ] =
N∑

n=0

(
an
[
0 −U2n−1 −BV2n

]
+ bn

[
U2n−1 + BV2n 0

]

+ cn
[
0 −V2n−1 + BU2n

]
+ dn

[
V2n−1 −BU2n 0

])
=

N∑

n=0

[[
U2n−1 + BV2n V2n−1 −BU2n

](bn
dn

) [
U2n−1 + BV2n V2n−1 −BU2n

](−an
−cn

)]

=
N∑

n=0

[
U2n−1 + BV2n V2n−1 − BU2n

](bn −an
dn −cn

)
,

and the lemma follows.

Proposition 4.3.3. Let {an, cn}Nn=0 and {bn, dn}Nn=0 be complex numbers such that for

every x ∈ [0, b] , ∥∥∥∥∥
1
2

(
−p(x)
−q(x)

)
−

N∑

n=0

Nn(x)

(
an
cn

)∥∥∥∥∥ < ǫ1

and ∥∥∥∥∥
1
2

(
−p(x)
−q(x)

)
−

N∑

n=0

Mn(x)

(
bn
dn

)∥∥∥∥∥ < ǫ2.

Then for every x ∈ [0, b]
∥∥∥∥∥
1
2

(
−p(x) −q(x)
−q(x) p(x)

)
−

N∑

n=0

Nn(x)

(
an bn
cn dn

)∥∥∥∥∥ < ǫ1 + ǫ2

and ∥∥∥∥∥
1
2

(
−p(x) −q(x)
−q(x) p(x)

)
−

N∑

n=0

Mn(x)

(
bn −an
dn −cn

)∥∥∥∥∥ < ǫ1 + ǫ2.
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Proof. The proof is based on the relations satisfied by the matrix-valued functions Nn

and Mn and Proposition 4.3.8. Using (4.35) it can be easily seen that

1

2

(
−p(x) −q(x)
−q(x) p(x)

)
−

N∑

n=0

Nn(x)

(
an bn
cn dn

)
=

([
1
2

(
−p(x)
−q(x)

)
−

N∑

n=0

Nn(x)

(
an
cn

)] [
1
2

(
−q(x)
p(x)

)
−

N∑

n=0

Nn(x)

(
bn
dn

)])
=

([
1
2

(
−p(x)
−q(x)

)
−

N∑

n=0

Nn(x)

(
an
cn

)]
B

[
1
2

(
−p(x)
−q(x)

)
−

N∑

n=0

Mn(x)

(
bn
dn

)])
(4.36)

and

1

2

(
−p(x) −q(x)
−q(x) p(x)

)
−

N∑

n=0

Mn(x)

(
bn −an
dn −cn

)
=

([
1
2

(
−p(x)
−q(x)

)
−

N∑

n=0

Mn(x)

(
bn
dn

)] [
1
2

(
−q(x)
p(x)

)
−

N∑

n=0

Mn(x)

(
−an
−cn

)])
=

([
1
2

(
−p(x)
−q(x)

)
−

N∑

n=0

Mn(x)

(
bn
dn

)]
B

[
1
2

(
−p(x)
−q(x)

)
−

N∑

n=0

Nn(x)

(
an
cn

)])
. (4.37)

We now take the maximum of the norms by columns. From (4.36)-(4.37) the assertion of
the lemma is obtained.

The principal significance of Proposition 4.3.3 is that it allows one to obtain indepen-
dently the coefficients involved in the desired approximation for the integral kernel in the
form (4.24). Moreover, since the half-sum and half-difference of the Goursat data corre-
sponding to (4.25)-(4.26) are equal to −Q(x)/2 ∈ H− the above lemma also states that
the sum of the linear combinations indicated in (4.36)-(4.37) approaches the matrix-valued
function −Q(x) and the corresponding subtraction approaches zero.

Remark 4.3.4. Both M2-valued functions Nn and Mn (as a consequence of Theorem 4.1.2
and Corollary 4.1.3) can be introduced, also, as the result of applying the operator T +T ∗

to the Mn-valued functions
(

0 (x+ t)n

−(x+ t)n 0

)
and

(
(x+ t)n 0

0 (x+ t)n

)
,

and then restrict to the characteristics. Of course, these last matrices are a linear com-
bination of wave matrices indicated by Definition 4.2.1, and as (4.35) they also differ by
multiplication to the left by B. The point to emphasize here is that the completeness of
Nn(x) and Mn(x) on the characteristics does not follow directly from the completeness
of the generalized wave matrices Oi

n(·x, ·t). The fact that any data on the characteristics
can be approximated is made possible by the operators G1 and G2 introduced in Section
3.4.
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In order to know the pre-image for both matrix-valued functions Nn and Mn under
operators G1 and G2 it is convenient to consider the representations below

G1Φ(x) = Φ(x) +

∫ x

−x

K∗(x, τ)
1

2

(
Φ

(
τ + x

2

)
+ Φ

(
τ − x

2

))
dτ

+

∫ x

−x

K(x, τ)
1

2

(
Φ

(
τ + x

2

)
− Φ

(
τ − x

2

))
dτ (4.38)

and

G2Ψ(x) = Ψ(x) +

∫ x

−x

K∗(x, τ)
1

2

(
Ψ

(
τ + x

2

)
−Ψ

(
τ − x

2

))
dτ

+

∫ x

−x

K(x, τ)
1

2

(
Ψ

(
τ + x

2

)
+Ψ

(
τ − x

2

))
dτ (4.39)

which follows from (3.60)-(3.61) by a simple change of variables. If we now replace Φ and
Ψby the matrix-valued functions

(
0 xn

−xn 0

)
and

(
xn 0
0 xn

)
,

respectively in the expressions (4.38)-(4.39) according to the assignments (4.8) and (4.9)
given by the mapping theorem and its corollary we find that

2nG1

(
0 xn

−xn 0

)
= Nn(x) (4.40)

and

2nG2

(
xn 0
0 xn

)
= Mn(x). (4.41)

Remark 4.3.5. It is possible to find the above assignments directly from (4.27)-(4.30),
since by construction the operator G maps the half-sum and the half-difference of data Φ
and Ψ for the problem (3.42)-(3.44) into the same part for data E1 and E2 for the problem
(3.30)-(3.32). From (4.28) and (4.29) we get

2n

2

(
0 xn

0 0

)
G17−→ 1

2

[
0 U2n(x, x) + BV2n−1(x, x)

]

and
2n

2

(
0 0

−xn 0

)
G17−→ 1

2

[
−V2n(x, x) + BU2n−1(x, x) 0

]

respectively, thus (4.40) is obtained by linearity of the operator G1. For (4.41),

2nG2

(
xn 0
0 xn

)
= 2n

[
G2

(
0 xn

−xn 0

)]
(−B) = −2nBG1

(
0 xn

−xn 0

)

= −BNn(x) = Mn(x),

where we have used the relations (3.63) and (4.35).
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Lemma 4.3.6. Each of the systems of matrix-valued functions {Nn}∞n=0 and {Mn}∞n=0 is

linearly independent on [−b, b].
Proof. Let a0, . . . , aN be a non-trivial sequences of complex numbers such that the linear
combination

a0N0(x) + . . .+ aNNN(x) = 0.

Applying G−1
1 to the latter equality we get

a0

(
0 x0

−x0 0

)
+ . . .+ aN

(
0 xN

−xN 0

)
= 0,

which contradicts the linear independence of the set
{(

0 x0

−x0 0

)
, . . . ,

(
0 xN

−xN 0

)}
.

The proof for {Mn}∞n=0 is similar.

Let us suppose for the moment that g is a 2 × 2 continuous matrix-valued function.
As in the proof of Proposition 4.2.4, the Weierstrass Approximation Theorem yields a
2 × 2 polynomial matrix p which approximates g in the uniform norm with any desired
precision. Consider the part of p belonging to H+ and the part of p belonging to H−,
which can be written in standard form as follows:

p+(x) =
N∑

n=0

(
ãnx

n b̃nx
n

b̃nx
n −ãnxn

)
=

N∑

n=0

(
0 xn

−xn 0

)(
−b̃n ãn
ãn b̃n

)
(4.42)

and

p−(x) =
N∑

n=0

(
c̃nx

n d̃nx
n

−d̃nxn c̃nx
n

)
=

N∑

n=0

(
0 xn

−xn 0

)(
d̃n −c̃n
c̃n d̃n

)
. (4.43)

The operator G1 satisfies an associative property type with respect to multiplication on
the right by a constant matrix, i.e. G1[Φ(x)C] = G1[Φ(x)]C for all constant matrix C.
Using (4.40) we conclude from (4.42)-(4.43) that

G1[p
+] =

N∑

n=0

Nn(x)

(
−b̃n ãn
ãn b̃n

)
and G1[p

−] =
N∑

n=0

Nn(x)

(
d̃n −c̃n
c̃n d̃n

)
, (4.44)

hence that

G1[p] = G1[p
+ + p−] =

N∑

n=0

Nn(x)

(
d̃n − b̃n ãn − c̃n
ãn + c̃n b̃n + d̃n

)
. (4.45)

Setting

an = d̃n − b̃n, bn = ãn − c̃n,

cn = ãn + c̃n, dn = b̃n + d̃n,
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it follows that

G1[p] = G1[p
+ + p−] =

N∑

n=0

Nn(x)

(
an bn
cn dn

)
. (4.46)

Finally, since G1 is a bounded operator on C((−b, b),M2) we can estimate the image of
g − p under the operator G1 by the expression ‖G1‖ ‖g − p‖. In the same manner we
can obtain the preceding statement for Mn instead of Nn which involves the operator G2.

Remark 4.3.7. It should be noted that the product on the right of the matrix Nn by a
constant matrix is actually a linear combination of Nn, NnB, NnBC, NnC with scalar
coefficients, where

B =

(
0 1
−1 0

)
and C =

(
0 1
1 0

)
,

namely,

Nn(x)

(
an bn
cn dn

)
= Nn(x)

[
P−

(
an bn
cn dn

)
+ P+

(
an bn
cn dn

)]

=
an + dn

2
Nn(x)

(
1 0
0 1

)
+
bn − cn

2
Nn(x)

(
0 1
−1 0

)

+
an − dn

2
Nn(x)

(
1 0
0 −1

)
+
bn + cn

2
Nn(x)

(
0 1
1 0

)

= d̃nNn(x)− c̃nNn(x)B − b̃nNn(x)BC + ãnNn(x)C,

= d̃nG1

(
0 xn

−xn 0

)
+ c̃nG1

(
xn 0
0 xn

)

+ b̃nG1

(
0 xn

xn 0

)
+ ãnG1

(
xn 0
0 −xn

)
, (4.47)

and similarly for the product of the matrix-valued function Mn by an arbitrary matrix

Mn(x)

(
en fn
gn hn

)
= −h̃nMn(x) + g̃nMn(x)B + f̃nMn(x)BC − ẽnMn(x)C. (4.48)

In spirit, the effect of multiplying the matrix-valued functions Nn and Mn by the above
matrices is to interchange the columns of the matrices Nn and Mn. Combining this with
the properties of the operators G1 and G2 the matrix-valued functions indicated in the
linear combination (4.47) and (4.48) are linearly independent.

Proposition 4.3.8. Let F be a 2×2 continuous matrix-valued function. Given any ǫ > 0,
there exists a sequence of matrices {Cn}Nn=0 such that

∥∥∥∥∥F (·x)−
N∑

n=0

Nn(·x)Cn

∥∥∥∥∥
∞

< ǫ.

The same is true for Mn in place of Nn.
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Proof. Let F be given. Define f = G−1
1 [F ] and consider f = P+[f ] + P−[f ]. Let

P+[f ] =

(
p(x) q(x)
q(x) −p(x)

)
and P−[f ] =

(
r(x) s(x)
−s(x) r(x)

)
.

Given ǫ > 0, according to (4.42)-(4.43) by Weierstrass Approximation Theorem we can
find matrix polynomials p+ and p− such that
∥∥∥∥
(
p(x) q(x)
q(x) −p(x)

)
− p+(x)

∥∥∥∥ <
ǫ

2 ‖G1‖
and

∥∥∥∥
(
r(x) s(x)
−s(x) r(x)

)
− p−(x)

∥∥∥∥ <
ǫ

2 ‖G1‖
.

Hence
∥∥∥∥∥F −

N∑

n=0

Nn(x)

(
an bn
cn dn

)∥∥∥∥∥ ≤ ‖G1‖
∥∥(P+[f ] + P−[f ])− (p+ + p−)

∥∥

≤ ‖G1‖
(∥∥P+[f ]− p+

∥∥+
∥∥P−[f ]− p−

∥∥
)

< ǫ.

Remark 4.3.9. In the following theorem it is convenient recall Definition 4.2.7.

Theorem 4.3.10. Let E1 and E2 be M2-valued continuous functions corresponding to the

Goursat problem (3.30)-(3.32). Suppose that the half-sum and the half-difference of the

Goursat data admit representations in the form

1

2
(E1(x) + E2(x)) =

∞∑

n=0

Nn(x)

(
an bn
cn dn

)
, (4.49)

and,

1

2
(E1(x)− E2(x)) =

∞∑

n=0

Mn(x)

(
bn −an
dn −cn

)
, (4.50)

for every x ∈ [−b, b] where Mn, Nn are given by (4.33)-(4.34). Then the solution of the

equation B∂xK + ∂tKB = −Q(x)K with the data E1, E2 is equal to

K(x, t) =
∞∑

n=0

(
anO1

n(x, t) + bnO2
n(x, t) + cnO3

n(x, t) + dnO4
n(x, t)

)
,

for every (x, t) ∈ [−b, b]× [−b, b].

Proof. We see at once that

E1(x) = BK(x, x)−K(x, x)B =
∞∑

n=0

[
Nn(x)

(
an bn
cn dn

)
+Mn(x)

(
bn −an
dn −cn

)]
,
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and

E2(x) = BK(x,−x) +K(x,−x)B =
∞∑

n=0

[
Nn(x)

(
an bn
cn dn

)
−Mn(x)

(
bn −an
dn −cn

)]
.

which is clear from (4.49) and (4.50). Note that E1(x) and E2(x) belong to spaces H+

and H− respectively. To see this, use the relations (4.35) and recall that B2 = −I2.
Combining the above and applying T−1

G to (E1, E2)T we obtain

ϕ(x) =
∞∑

n=0

(
0 xn

−xn 0

)(
an bn
cn dn

)
+

(
xn 0
0 xn

)(
bn −an
dn −cn

)
,

and

ψ(x) =
∞∑

n=0

(
0 xn

−xn 0

)(
an bn
cn dn

)
−
(
xn 0
0 xn

)(
bn −an
dn −cn

)
,

or which is the same,

ϕ(x) =
∞∑

n=0

2n+1 (dn − an)

(
0 xn

xn 0

)
+ 2n+1 (bn + cn)

(
xn 0
0 −xn

)
, (4.51)

and

ψ(x) =
∞∑

n=0

2n+1 (dn + an)

(
0 xn

−xn 0

)
− 2n+1 (bn − cn)

(
xn 0
0 xn

)
. (4.52)

Since ϕ and ψ are admissible Goursat data for the problem (3.42)-(3.44), we are now in
a position to apply Proposition 4.2.3, which leads to

k(x, t) =
∞∑

n=0

(
anP

1
n(x, t) + bnP

2
n(x, t) + cnP

3
n(x, t) + dnP

4
n(x, t)

)
.

From this, after applying the transformation operator T we obtain the desired conclusion.

It remains to be said that the above lemma conforms to Remark 4.3.7, i.e. in order to
approximate the integral kernel from the Goursart conditions (4.25)-(4.26) it is sufficient to
use the part of (4.47) belonging to H− to approximate −Q(x) and the part corresponding
to H+ to approximate 0 ∈ H+. More precisely, from (4.47) we find that

Sn(x) := P+

[
Nn(x)

(
an bn
cn dn

)]

= d̃nP+ [Nn]− c̃nP+ [NnB]− b̃nP+ [NnBC] + ãnP+ [NnC]

= d̃nP+ [Nn]− c̃nP+ [Nn]B − b̃nP− [Nn]BC + ãnP− [Nn]C

= P+ [Nn]
(
d̃nI − c̃nB

)
+ P− [Nn]

(
ãnC − b̃nBC

)

= P+ [Nn]

(
d̃n −c̃n
c̃n d̃n

)
+ P− [Nn(x)]

(
−b̃n ãn
ãn b̃n

)
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and

Cn(x) := P−

[
Nn(x)

(
an bn
cn dn

)]

= d̃nP− [Nn]− c̃nP− [NnB]− b̃nP− [NnBC] + ãnP− [NnC]

= d̃nP− [Nn]− c̃nP− [Nn]B − b̃nP+ [Nn]BC + ãnP+ [Nn]C

= P− [Nn]
(
d̃nI − c̃nB

)
+ P+ [Nn]

(
ãnC − b̃nBC

)

= P− [Nn]

(
d̃n −c̃n
c̃n d̃n

)
+ P+ [Nn(x)]

(
−b̃n ãn
ãn b̃n

)
.

If we now write out the corresponding projections of the matrix-valued function Nn the
use of relations (4.35) leads to

Sn(x) = Nn(x)

(
an bn
cn dn

)
+Mn(x)

(
bn −an
dn −cn

)
= Nn(x)Cn −Mn(x)CnB, (4.53)

Cn(x) = Nn(x)

(
an bn
cn dn

)
−Mn(x)

(
bn −an
dn −cn

)
= Nn(x)Cn +Mn(x)CnB. (4.54)

where Cn is the coefficient matrix.

4.4 Analytic approximation of the integral kernel

Before presenting and demonstrating the main result of this chapter, it is convenient to
briefly review the relevant ideas on the analytical approximation of the integral kernel of
the transmutation operator that relates the one-dimensional operators

A0 :=

(
0 1
−1 0

)
d

dx
and AQ :=

(
0 1
−1 0

)
d

dx
+

(
p(x) q(x)
q(x) −p(x)

)
. (4.55)

Firstly Theorem 3.2.10 establishes a transmutation operator T for the operators A0

and AQ in the sense that TA0 = AQT as a Volterra integral operator and its integral
kernel satisfies the Goursart problem below,

BKx(x, t) +Kt(x, t)B = −Q(x)K(x, t) (4.56)

BK(x, x)−K(x, x)B = −Q(x), (4.57)

BK(x,−x) +K(x,−x)B = 0, (4.58)

and on account of Theorem 3.2.5 the existence and uniqueness of the solution of the
previous problem is guaranteed. Let us denote this solution by K.

Secondly, since the approximation KN of the integral kernel K is obtained from ap-
proximation of the Goursat data K(x,±x) in (4.57)-(4.58) and the difference of two
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solutions of (4.56) in general satisfy, the conditions

BK(x, x)−K(x, x)B = E1(x), (4.59)

BK(x,−x) +K(x,−x)B = E2(x), (4.60)

it is necessary to examine the Goursat problem (4.56), (4.59)-(4.60), in particular, con-
tinuous dependence of the solution on E1 and E2. The results obtained in Section 3.3 not
only provide the existence of solutions for this problem but also establish the stability,
explicitly Propositions 3.3.4 and 3.3.5.

Thirdly combining the use of the transmutation property TA0 = AQT with the map-
ping property indicated by Theorem 4.1.2 makes it possible to introduce a complete system
of solutions {KN(·x, ·t)} for equation (4.56) via images of the wave matrices involved in
Proposition 4.2.4. See also Definitions 4.2.1 and 4.2.7.

Finally, the task of being able to approximate any Goursat data for Q ∈ C([−b, b],M2)
by the matrix-valued functions that result from restricting KN to the characteristic curves
t = x and t = −x is guaranteed by the operator TG provided in Proposition 3.4.4. We
can now formulate the main result of this chapter.

Theorem 4.4.1. Let {an, cn}Nn=0 and {bn, dn}Nn=0 be complex numbers such that

∥∥∥∥∥
1
2

(
−p(x)
−q(x)

)
−

N∑

n=0

Nn(x)

(
an
cn

)∥∥∥∥∥
∞

< ǫ1 (4.61)

and ∥∥∥∥∥
1
2

(
−p(x)
−q(x)

)
−

N∑

n=0

Mn(x)

(
bn
dn

)∥∥∥∥∥
∞

< ǫ2 (4.62)

for every x ∈ [−b, b] . Then the kernel K(x, t) is approximated by the linear combination

KN(x, t) =
N∑

n=0

(
anO1

n(x, t) + bnO2
n(x, t) + cnO3

n(x, t) + dnO4
n(x, t)

)
, (4.63)

in such a way that for every (x, t) ∈ Ω+ ∪ Ω− the following inequality holds

∥∥K(x, t)−KN(x, t)
∥∥
∞
< Cǫ1,ǫ2,T,T−1 . (4.64)

Proof. Suppose that complex numbers {an, cn}Nn=0 and {bn, dn}Nn=0 are set according to
(4.61) and (4.62) respectively. Setting

E1(x) =
N∑

n=0

Sn(x) and E2(x) =
N∑

n=0

Cn(x),

where Sn and Cn being as in (4.53) and (4.54) respectively, (4.63) is a solution of the
same equation (4.56) that the integral kernel K satisfies, this last being a consequence of
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Theorem 4.3.10. Define K̃N(x, t) = K(x, t)−KN(x, t). Since K̃N satisfies (4.56), (4.59)-

(4.60) due to Proposition 3.4.4 we get a solution k̃N(x, t) of the problem (3.42)-(3.44)
where the Goursat data are given by

(
ΦN(x)
ΨN(x)

)
= T−1

G

(
Q(x)− E1(x)

−E2(x)

)
,

and K(x, t) = T k̃N(x, t). Since T
−1
G is a bounded operator and

Q(x)− E1(x) =
(
1

2
Q(x)−

N∑

n=0

Nn(x)Cn

)
+

(
1

2
Q(x)−

N∑

n=0

−Mn(x)CnB

)
,

−E2(x) =
(
1

2
Q(x)−

N∑

n=0

Nn(x)Cn

)
−
(
1

2
Q(x)−

N∑

n=0

−Mn(x)CnB

)
,

on account of Proposition 4.3.3, it follows that

∥∥(ΦN ,ΨN)
T
∥∥ ≤

∥∥T−1
G

∥∥ ∥∥(Q− E1,−E2)T
∥∥ ≤ 2

∥∥T−1
G

∥∥ (ǫ1 + ǫ2) .

Finally,

‖K(x, t)−KN(x, t)‖ =
∥∥∥T k̃N(x, t)

∥∥∥ ≤ ‖T‖
∥∥∥k̃N(x, t)

∥∥∥ ≤ 1

2
‖T‖ (‖ΦN(x)‖+ ‖ΨN(x)‖)

≤ 2 ‖T‖
∥∥T−1

G

∥∥ (ǫ1 + ǫ2) .

The above theorem is an analogue of [43] in the context of integral kernels for trans-
mutation operators between one-dimensional Dirac operators and corresponds to one of
the main objectives of this work. Although the constant C does not represent any incon-
venience since we have the estimate for the integral kernel K, see Theorem 3.2.5, there
exists a disadvantage from the practical point of view since finding coefficients in a uni-
form norm is not a simple task, even more in the context of vector-valued functions, see
[18]. The remainder of this work will be devoted to establishing a practical and simple
way of solving the approximation problems (4.61) and (4.62) and finding estimates for
resulting approximation error for the integral kernel.

59





Chapter 5

Practical point of view on the AATO

method

This chapter is devoted to show the practical use of the analytic approximation for the
integral kernels developed in the previous chapter in order to approximate solutions of
one-dimensional Dirac system. Here we emphasize that the approximation method uses
the transmutation operators as a practical tool instead of a theoretical tool. In addition,
it is easy to implement and the constructed approximations have uniform error bounds.

Using Jackson type approximation theorems Section 5.1 deals with the convergence
rate estimates for the AATO method in the uniform norm. According to the analytic
approximation theorem which Theorem 4.4.1 establishes in the uniform norm and based
on the preceding results, in Section 5.2 it is shown that if we find coefficients in L2-norm
the convergence rate estimates do not get worse. In Section 5.3 we derive an interesting
formula for the approximate solution of one-dimensional Dirac system. It is an important
section because it corresponds to main motivation of this work. In Section 5.4 we apply
the developed theory to one-dimensional Dirac equations with scalar Lorentz potential,
as a result we obtain a different possibility to approximate integral kernels than the one
offered in [43]. We also provide a brief description of an algorithm for the numerical
implementation and based on a few integral kernels that are known [42] we present an
example which show the validity of constructed formulas.

5.1 Convergence rate estimates for the analytic ap-

proximation of transmutation operators

In what follows we establish relations between the smoothness of the potential Q and
the decrease rate of ǫ1,2 from Theorem 4.4.1 as functions of N . As a result, we establish
convergence rate estimates for the approximations KN of the integral kernel K. In what
follows, K is the integral kernel of the transmutation operator given by (3.2).

Note that we do not need to consider any continuation of the potential Q onto [−b, 0)
in order to establish this result.
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Theorem 5.1.1. Let Q ∈ Cr([0, b],M2). Then for every N > r there exist coefficients

{an, bn, cn, dn}Nn=0 such that

|K(x, t)−KN(x, t)| <
Cr

N r
(5.1)

for every (x, t) in the domain 0 ≤ |t| ≤ x ≤ b, here the constant Cr depends on Q and

does not depend on N .

The proof of Theorem 5.1.1 is based on two lemmas. The first one shows an already
mentioned statement, namely that KN is a M2-valued polynomial function in the variable
t. The second demonstrates that the following Cauchy problem is well posed in the domain
0 ≤ x ≤ b, −b ≤ t ≤ b.

{
BKx(x, t) +Kt(x, t)B = −Q(x)K(x, t),

K(b, t) = F(t).
(5.2)

Note by simple inspection that each generalized wave matrix Oi
n, i = 1 . . . 4, contains

terms with powers of t whose degree is less than or equal to n, and from a long but simple
procedure we obtain

Lemma 5.1.2. For each fixed x ∈ [0, b], the linear combination in (4.63), is a M2-valued

polynomial function in the variable t whose degree is less than or equal to N .

KN(x, t) =

⌊N
2 ⌋∑

n=0

(
N−2n∑

k=0

(
2n+ k

2n

)[
a2n+kΦk + c2n+kΨk b2n+kΦk + d2n+kΨk

]
)
t2n+

⌈N
2 ⌉−1∑

n=0

(
N−2n−1∑

k=0

(
2n+ 1 + k

2n+ 1

)[
b2n+1+kΨk − d2n+1+kΦk c2n+1+kΦk − a2n+1+kΨk

]
)
t2n+1,

(5.3)

where ⌊ · ⌋ and ⌈ · ⌉ denotes the floor and the ceiling functions.

Lemma 5.1.3. The Cauchy problem (5.2) with initial data F that belongs to C1 [−b, b]
is well posed in the domain Ω+, moreover if |F(t)−F1(t)| < δ then

|K(x, t)| < δe
∫ x

0 |Q(τ)| dτ . (5.4)

Proof. The existence and uniqueness as well as the continuous dependence of the initial
data follows from applying in a usual way the method of successive approximations to the
following integral equation.

K(x, t) = P+[F(t+ x)] + P−[F(t− x)]

+

∫ x

0

BQ(τ)
(
P+[K(τ, τ + t− x)] + P−[K(τ, t+ x− τ)]

)
dτ.
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Now we present the proof of Theorem 5.1.1. It uses a Jackson type approximation
theorem, see Theorem 6.2 in ([18], Chap. 7, Sec. 6.)

Definition 5.1.4 ([18]). The r-th modulus of smoothness of f ∈ Lp([a, b]), 1 ≤ p ≤ ∞,
r = 1, . . . , h ∈ R, is defined by

ωr(f, t)p := sup
0≤h≤t

‖∆r
h(f, ·)‖Lp[a,b−rh] , t ≥ 0,

where,

∆r
h(f, x) =

r∑

k=0

(
r

k

)
(−1)r−kf(x+ kh).

In the case r = 1 it is called modulus of continuity and ω0(f, t)p := ‖f‖Lp
. If p = ∞ and

f ∈ C[a, b],
ω(f, t) = ω1(f, t) = sup

|x−y|≤t

x,y∈[a,b]

|f(x)− f(y)| , t ≥ 0.

We also note that in the latter case ω(f, t) ≤ 2 ‖f‖∞.

Theorem 5.1.5 ([18]). For a function f ∈ W r
p [a, b], n > r, r = 0, 1, . . ., 1 ≤ p ≤ ∞, the

error of the best polynomial approximation satisfies

En(f)p ≤
C

nr
ω(f (r), 1/n)p. (5.5)

Here C is a constant which does not depend on f .

Proof of Theorem 5.1.1. According to the hypothesis, let N > r. Proposition 3.2.6 now
shows that K(b, ·t) ∈ Cr([−b, b],M2), and on account of Theorem 5.1.5, without loss of
generality there exist an M2-valued polynomial of degree N in the variable t

PN(t) =
N∑

n=0

(
ãn b̃n
c̃n d̃n

)
tn (5.6)

such that

‖K(b, t)− PN(t)‖∞ <
Cr

N r
. (5.7)

We are now in a position to find an approximation for K(b, ·t) in the form KN(b, ·t)
as follows. Using Lemma 5.1.2 and equating the coefficients in even and odd powers
of variable t from the expressions (5.3) and (5.6), we obtain the following equations
respectively for n =

⌊
N
2

⌋
, . . . , 0 and n =

⌈
N
2

⌉
− 1, . . . , 0.

(
ã2n b̃2n
c̃2n d̃2n

)
=

N−2n∑

k=0

(
2n+ k

2n

)[
a2n+kΦk(b) + c2n+kΨk(b) b2n+kΦk(b) + d2n+kΨk(b)

]
,

(5.8)
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and
(
ã2n+1 b̃2n+1

c̃2n+1 d̃2n+1

)
=

N−2n−1∑

k=0

(
2n+ 1 + k

2n+ 1

)(

[
b2n+1+kΨk(b)− d2n+1+kΦk(b) c2n+1+kΦk(b)− a2n+1+kΨk(b)

])
. (5.9)

Since the vectors Φ0(b), Ψ0(b) are linearly independent, the following recursive formulas
uniquely determine the coefficients {an, bn, cn, dn}Nn=0 as follows.

(
aj
cj

)
=





[
Φ0(b) Ψ0(b)

]−1
((

ãj

c̃j

)
−

N−j∑
k=1

(
j+k
j

)
(aj+kΦk(b) + cj+kΨk(b))

)
, j even,

[
−Ψ0(b) Φ0(b)

]−1
((

b̃j

d̃j

)
−

N−j∑
k=1

(
j+k
j

)
(cj+kΦk(b)− aj+kΨk(b))

)
, j odd.

(5.10)

(
bj
dj

)
=





[
Φ0(b) Ψ0(b)

]−1
((

b̃j

d̃j

)
−

N−j∑
k=1

(
j+k
j

)
(bj+kΦk(b) + dj+kΨk(b))

)
, j even,

[
Ψ0(b) −Φ0(b)

]−1
((

ãj

c̃j

)
−

N−j∑
k=1

(
j+k
j

)
(bj+kΨk(b)− dj+kΦk(b))

)
, j odd.

(5.11)

Consequently the inequality (5.7) is valid for KN(b, t). Now consider the Cauchy problem
with initial data F(t) := K(b, t) − KN(b, t). By Lemma 5.1.3 there exists a unique
continuous extension K(x, t) in the domain Ω+ that satisfies the Cauchy problem.

5.2 To find the approximations of the integral kernel

Since the task of finding the coefficients {an, cn}Nn=0 and {bn, dn}Nn=0 indicated in Theorem
4.4.1 in the uniform norm requires some effort, see for example [18], these coefficients can
be easily found using the least squares method, although this latter does not provide the
best approximation in the uniform norm.

Based on the results of Section 3.3 and Proposition 4.3.3, we present a version of
Theorem 4.4.1, whose proof does not involve the inverse operator T−1 and does not
require any continuation of Q onto [−b, 0).
Proposition 5.2.1. Let {an, cn}Nn=0 and {bn, dn}Nn=0 be complex numbers such that

∥∥∥∥∥
1

2

(
−p(x)
−q(x)

)
−

N∑

n=0

Nn(x)

(
an
cn

)∥∥∥∥∥
L2[0,b]

< ǫ1, (5.12)

64



5.2. TO FIND THE APPROXIMATIONS OF THE INTEGRAL KERNEL 65

and ∥∥∥∥∥
1

2

(
−p(x)
−q(x)

)
−

N∑

n=0

Mn(x)

(
bn
dn

)∥∥∥∥∥
L2[0,b]

< ǫ2. (5.13)

Then the kernel K(x, t) is approximated by the linear combination

KN(x, t) =
N∑

n=0

(
anO1

n(x, t) + bnO2
n(x, t) + cnO3

n(x, t) + dnO4
n(x, t)

)
, (5.14)

in such a way that for every x ∈ [−b, b] the following inequality holds

‖K(x, ·t)−KN(x, ·t)‖L2[−x,x] < Cǫ1,ǫ2,Q. (5.15)

Proof. Let K(x, t) be the solution of the Goursat problem (4.56)-(4.58). Define

E1(x) = −Q(x)−
N∑

n=0

Sn(x) and E2(x) = −
N∑

n=0

Cn(x).

From Proposition 4.3.3 we obtain that

‖E1(·x)‖L2[0,b] < ǫ1 + ǫ2 and ‖E2(·x)‖L2[0,b] < ǫ1 + ǫ2

Since the diference K(x, t)−KN(x, t) satisfy the Goursat problem (3.30)-(3.32) it follows
from Proposition 3.3.5 that

‖K(x, ·t)−KN(x, ·t)‖L2[−x,x] =

(∫ x

−x

|K(x, t)−KN(x, t)|2 dt
)1/2

≤
(
2
√
2
(
‖E1(·)‖2L2[0,x] + ‖E2(·)‖2L2[0,x]

)
exp

(
8x ‖Q‖2L2[0,x]

))1/2

≤ 25/4(ǫ1 + ǫ2) exp
(
8b ‖Q‖2L2[0,b]

)
(5.16)

Let KN denote the approximation of the integral kernel K of the form (5.14) with
the coefficients {an, bn, cn, dn}Nn=0 being obtained by applying the least squares method to
minimize (5.12) and (5.13). Then the following estimate can be proved for fixed x, and
t ∈ [−x, x].

Proposition 5.2.2. For a matrix-valued function Q ∈ Cr([0, b],M2), N > r, the error

of approximation by KN satisfies

‖K(x, ·t)−KN(x, ·t)‖L2[−x,x] ≤
Cr

N r

√
b.
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Proof. According to Theorem 5.1.1, there exists coefficients
{
ãn, b̃n, c̃n, d̃n

}N

n=0
and the

matrix function K̃N such that

|K(x, t)− K̃N(x, t)| <
C̃r

N r
(5.17)

for every (x, t) in the domain 0 ≤ |t| ≤ x ≤ b. In particular, (5.17) holds for t = x and

t = −x, from which one may deduce that for these coefficients
{
ãn, b̃n, c̃n, d̃n

}N

n=0
the

inequalities (5.12) and (5.13) are satisfied with ǫ1,2 =
2C̃r

N r

√
b. Indeed, from (5.17) and

the equality

BP+[K − K̃N ](x, x) + BP−[K − K̃N ](x,−x) =
1

2
Q(x)−

N∑

n=0

Ñn(x)C̃n,

it follows that

∥∥∥∥∥
1

2

(
−p(·x)
−q(·x)

)
−

N∑

n=0

Ñn(·x)
(
ãn
c̃n

)∥∥∥∥∥
L2[0,b]

≤



∫ x

0

∣∣∣∣∣
1

2
Q(x)−

N∑

n=0

Ñn(x)C̃n

∣∣∣∣∣

2

dt




1/2

<



∫ x

0

(
2C̃r

N r

)2

dt




1/2

=
2C̃r

N r

√
b.

For the coefficients {an, bn, cn, dn}Nn=0 obtained by applying the least squares method the
errors ǫ1,2 in (5.12) and (5.13) can not be larger. Now the statement follows by application
of (5.16), i.e.

‖K(x, ·t)−KN(x, ·t)‖L2(−x,x) ≤ 213/4
C̃r

N r

√
b exp

(
8b ‖Q‖2L2[0,b]

)
.

5.3 Approximate solution of the one-dimensional

Dirac system

An important fact of the approximation found in the form (5.14) is that it provides a
simple manner to construct approximations with uniform error bounds to the solutions
of one-dimensional stationary Dirac system AQy = −λy.

According to Lemma 5.1.2, we will denote by K2n the M2-valued function which is
accompanied by the even powers of t, and by K2n+1 the M2-valued function which is
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accompanied by the odd powers of t respectively.

K2n(x) :=
N−2n∑

k=0

(
2n+ k

2n

)[
a2n+kΦk + c2n+kΨk b2n+kΦk + d2n+kΨk

]

=
N−2n∑

k=0

(
2n+ k

2n

)[
Φk(x) Ψk(x)

]
C2n+k. (5.18)

K2n+1(x) :=
N−2n−1∑

k=0

(
2n+ 1 + k

2n+ 1

)[
b2n+1+kΨk − d2n+1+kΦk c2n+1+kΦk − a2n+1+kΨk

]

=
N−2n−1∑

k=0

(
2n+ 1 + k

2n+ 1

)[
Φk(x) Ψk(x)

]
BC2n+1+kB. (5.19)

Therefore, the approximation KN can be written as

KN(x, t) =

⌊N
2 ⌋∑

n=0

K2n(x)t
2n +

⌈N
2 ⌉−1∑

n=0

K2n+1(x)t
2n+1. (5.20)

Since the general solution of the equation A0y = −λy is given by the linear combination
below

y =

(
y1(x)
y2(x)

)
= c1

(
cos (λx)
− sin (λx)

)
+ c2

(
sin (λx)
cos (λx)

)
, (5.21)

it follows from the transmutation property TA0 = AQT that the general solution of
one-dimensional Dirac system AQv = −λv admits the representation

v = Ty =

(
v1
v2

)
= c1T

(
cos(λx)
− sin(λx)

)
+ c2T

(
sin(λx)
cos(λx)

)
= c1v1 + c2v2.

Let us now consider an approximation of the integral kernel K given by Theorem 4.4.1.
And let us consider the approximations corresponding to the solutions of satisfying the
initial conditions (1, 0)T and (0, 1)T as follows,

ṽ1N =

(
cos(λx)
− sin(λx)

)
+

∫ x

−x

N∑

n=0

Kn(x)t
n

(
cos(λt)
− sin(λt)

)
dt, (5.22)

and

ṽ2N =

(
sin(λx)
cos(λx)

)
+

∫ x

−x

N∑

n=0

Kn(x)t
n

(
sin(λt)
cos(λt)

)
dt, (5.23)

respectively. We have two facts to emphasize here, first we observe that both integrals in
(5.22) and (5.23) can be calculated in a closed form. Thus, the approximations (5.22)-
(5.23) are simple linear combinations which only involves the vector-valued functions
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Φk(x) and Ψk(x) indicated by the mapping theorem. Using the formulas

∫
tk sin(λt) dt = −

k∑

j=0

j!

(
k

j

)
tk−j

λj+1
cos

(
λt+

jπ

2

)
,

∫
tk cos(λt) dt =

k∑

j=0

j!

(
k

j

)
tk−j

λj+1
sin

(
λt+

jπ

2

)
,

see [24], it follows from (5.22) and (5.23) that

ṽ1N =

(
cos(λx)
− sin(λx)

)
+

⌊N
2 ⌋∑

n=0

K2n(x)
2n∑

j=0

j!

(
2n

j

)
t2n−j

λj+1

(
sin
(
λt+ jπ

2

)

cos
(
λt+ jπ

2

)
) ∣∣∣∣∣

x

−x

+

⌈N
2 ⌉−1∑

n=0

K2n+1(x)
2n+1∑

j=0

j!

(
2n+ 1

j

)
t2n+1−j

λj+1

(
sin
(
λt+ jπ

2

)

cos
(
λt+ jπ

2

)
) ∣∣∣∣∣

x

−x

, (5.24)

and

ṽ2N =

(
sin(λx)
cos(λx)

)
+

⌊N
2 ⌋∑

n=0

K2n(x)
2n∑

j=0

j!

(
2n

j

)
t2n−j

λj+1

(
− cos

(
λt+ jπ

2

)

sin
(
λt+ jπ

2

)
) ∣∣∣∣∣

x

−x

+

⌈N
2 ⌉−1∑

n=0

K2n+1(x)
2n+1∑

j=0

j!

(
2n+ 1

j

)
tj+1

λj+1

(
− cos

(
λt+ jπ

2

)

sin
(
λt+ jπ

2

)
) ∣∣∣∣∣

x

−x

, (5.25)

respectively.
Second, the errors of approximations to the solutions of the one-dimensional Dirac

system can be bounded independently on the size of the spectral parameter

Proposition 5.3.1. Let λ be a real parameter. Assume that

‖K(x, ·t)−KN(x, ·t)‖L2[−x,x] ≤ ǫ(x).

Then

|v1(λ, x)− ṽ1N(λ, x)| ≤ ǫ
√
2x, (5.26)

and similarly for v2 − ṽ2N .

Proof. Let us first observe that

v1(λ, x)− ṽ1N(λ, x) =

∫ x

−x

(K −KN) (x, t)(cos(λt),− sin(λt))T dt

=

∫ x

−x

(
(K11, K12) · (cos(λt),− sin(λt))T

(K21, K22) · (cos(λt),− sin(λt))T

)
dt,
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where Kij, i, j = 1, 2 denote the entries for the difference K − KN , and (·) being the
scalar product in R

2, hence

|v1(λ, x)− ṽ1N(λ, x)| ≤ ‖(K −KN) (x, ·t)‖2L2[−x,x]

∥∥(cos(λ(·t)),− sin(λ(·t)))T
∥∥2
L2[−x,x]

≤ ǫ

(∫ x

−x

cos2(λt) + sin2(λt) dt

)1/2

≤ ǫ
√
2x.

5.4 The AATO method applied to Dirac system with

Lorentz scalar potential

As in Section 2.3 here we put into practice the theory developed in Chapter 4 applied to
the Dirac system with Lorentz scalar potential

Consider the one-dimensional Dirac operators A0 and AQ as in (4.55) in the case p ≡ 0
. For convenience we will rewrite the differential expression AQ as

Aq =

(
0 1
−1 0

)
d

dx
+ q(x)

(
0 1
1 0

)
≡ B

d

dx
+ q(x)C.

Recall that B2 = −I, C2 = I and BC = −CB. So that, the integral kernel K for the
transmutation operator T relating the operators A0 and Aq satisfy

BKx(x, t) +Kt(x, t)B = −q(x)CK(x, t) (5.27)

with the Goursat data

BK(x, x)−K(x, x)B = −q(x)C, (5.28)

BK(x,−x) +K(x,−x)B = 0. (5.29)

With the purpose of relating the results obtained in this chapter with respect to
[43]-[44], in the following, we will briefly summarize facts established by the authors V.V.
Kravchenko and S. M. Torba for transmutation operators for one-dimensional Schrödinger
operators, some sentences will be written verbatim and the same notation will be used.

Let f be a solution of the equation f ′′− qf = 0 such that f(x) 6= 0, for any x ∈ [−b, b]
and satisfying the initial conditions f(0) = 1 and h := f ′(0). Then there exists a unique
operator of the form

Tfu(x) = u(x) +

∫ x

−x

Kf (x, t)u(t) dt, (5.30)
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in such a way that Tf [1] = f and

(
− d2

dx2
− q1(x)

)
Tf [u] = Tf

[
− d2

dx2
(u)

]
(5.31)

for any u ∈ C2[−b, b]. The preceding statement states that the operator (5.30) is actually
a transmutation operator in the sense of Definition 1.3.1 for the Schrödinger operators
A1 := − d2

dx2 + q1(x) and B := − d2

dx2 . See [42]. The transmutation operator Tf maps a
solution v of the equation v′′ + ω2v = 0, where ω is a complex number, into a solution u
of the equation

u′′ − q1(x)u+ ω2u = 0 (5.32)

with the following correspondence of the initial values u(0) = v(0), u′(0) = v′(0) +
hv(0). In addition the integral kernel of the transmutation operator in (5.30) satisfies the
following Goursat problem

(
d2

dx2
− q1(x)

)
K(x, t) =

d2

dx2
K(x, t), (5.33)

K(x, x) =
h

2
+

1

2

∫ x

0

q1(s) ds, K(x,−x) = h

2
. (5.34)

Under the assumption stated for the function f , let us suppose that u is a solution of
equation (5.32). Set

v =

(
∂x −

f ′

f

)
u =

(
f∂x

1

f

)
u, (5.35)

then the function v is a solution of the equation v′′ − q2(x)v + ω2v = 0, where

q2(x) = 2

(
f ′

f

)2

− q1(x).

We shall write this last expression as A2v = ωv, where

A2 := − d2

dx2
+ q2(x) and q2(x) = 2

(
f ′

f

)2

− q1(x).

The operator A2 is known as the Darboux transformation of the operator A1. Following
[39] the transmutation operator for the Schrödinger operator with Darboux potential has
been constructed. It has the same form of the operator in (5.30) and since 1/f is a non-
vanishing solution of the equation A2v = 0, the transmutation operator for the operators
A2 and B will be denoted by

T1/fu(x) = u(x) +

∫ x

−x

K1/f (x, t)u(t) dt, (5.36)
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the integral kernel K1/f also satisfy a Goursat problem similar to (5.33)-(5.34), where q1
is replaced by q2, and h is replaced by −h.

To conclude with this brief introduction of the operators Tf and T1/f , recall that as
a particular case of the formal powers introduced in (2.6)-(2.10) we obtain the families
of functions {ϕk}∞k=0 and {ψk}∞k=0 which are involved in the SPPS representation for the
Sturm-Liouville equation (5.32) and its associated Darbox equation, see (2.44). Consider
the following four function systems

u2m−1(x, t) =
m∑

even k=0

(
m

k

)
ϕm−k(x)t

k u2m(x, t) =
m∑

odd k=1

(
m

k

)
ϕm−k(x)t

k, (5.37)

v2m−1(x, t) =
m∑

even k=0

(
m

k

)
ψm−k(x)t

k, v2m(x, t) =
m∑

odd k=1

(
m

k

)
ψm−k(x)t

k. (5.38)

and their respective values on the characteristics x = t and t = −x.

c2m−1(x) = u2m−1(x, x), m = 1, 2, . . . and c0(x) = f(x),

s2m(x) = u2m(x, x), m = 1, 2, . . . and s0(x) ≡ 0.

c̃2m−1(x) = v2m−1(x, x), m = 1, 2, . . . and c̃0(x) = 1/f(x),

s̃2m(x) = v2m(x, x), m = 1, 2, . . . and s̃0(x) ≡ 0.

As shown in [43] the systems of functions {cn}∞n=0 and {sn}∞n=0 are linearly independent
and complete in C1[−b, b] and C1

0 [−b, b] respectively, and are closely related to the analytic
approximation method for the integral kernel Kf .

The first result to be indicated as a direct consequence of Theorem 4.1.2 and due to
Proposition 2.3.2 is presented below.

Proposition 5.4.1. Under the assumptions of Theorem 4.1.2 with p(x) ≡ 0. The integral
kernel K for the transmutation operator related to operators A0 and Aq has the form

K(x, t) =

(
Kf (x, t) 0

0 K1/f (x, t)

)
(5.39)

Proof. To this end, we set the operator T acting on H := L2(−b, b)×L2(−b, b) as follows

T
(
y1(x)
y2(x)

)
=

(
y1(x)
y2(x)

)
+

∫ x

−x

(
Kf (x, t) 0

0 K1/f (x, t)

)(
y1(t)
y2(t)

)
dt,

and to shorten notation, we write T y(x) = y(x)+
∫ x

−x
K(x, t)y(t) dt, y = (y1, y2)

T . There-
fore, according to Theorem 4.1.2 and due to Proposition 2.3.2 it follows that
(
0
0

)
= Φm(x) + Ψn(x)−

(
ϕm(x)
ψn(x)

)
= (T − T )

(
xm

xn

)
=

∫ x

−x

(K(x, t)−K(x, t))

(
xm

xn

)
dt.

Since each row of matrix-valued functionK(x, t)−K(x, t) is orthogonal to all vector-valued
functions in the form (xm, xn)T on the space H, we conclude that K(x, t) ≡ K(x, t). On
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the other hand, it is easy to check that an integral kernel in form (5.27) satisfy the Goursat
data (5.28)-(5.29), i.e.,

BK(x, x)−K(x, x)B = −
(
2h

2
+

1

2

∫ x

0

q1(s)− q2(s) ds

)
C = −q(x)C, (5.40)

BK(x,−x) +K(x,−x)B =

(
h

2
− h

2

)
B = 0, (5.41)

which completes the proof.

Remark 5.4.2. In other words Proposition 5.4.1 asserts that combining the integral kernels
of the operators Tf and T1/f in the form (5.39) satisfy (5.27)-(5.29). It follows immediately
from [43] that it is possible to implement the analytic approximation method for the
integral kernels Kf and K1/f in the particular case discussed here. As a result of the
above a question arises naturally, what is the appearance of the functions Nn and Mn

involved in Theorem 4.4.1. While it is true that the construction of Theorem 4.4.1 is based
on the ideas in [43], it is worth noting that Theorem 4.4.1 does really not match with
Theorem 5.1 from [43]. In fact, Theorem 4.4.1 offers a different possibility to approximate
the integral kernel in (5.30), namely, the approximation of the data at x = t and x = −t
is obtained by generalized derivatives of the systems {cn}∞n=0 and {sn}∞n=0.

For convenience and not lose to sight of this last fact, the proof of the following lemma
is straightforward by induction and using the relations already known.

∂xϕk =
f ′

f
ϕk + kψk−1, k = 0, 1, . . .

f∂x

( 1
f
(xlϕk)

)
= lxl−1ϕk + kxlψk−1, k = 0, 1, . . . and l ≥ 0.

Lemma 5.4.3. Under the assumption stated for the function f , the relations

cn(x) + s̃n(x) =
1

n+ 1
f∂

1

f
sn+1(x) and sn(x) + c̃n(x) =

1

n+ 1
f∂

1

f
cn+1(x) (5.42)

hold for each n = 0, 1 . . .

Consequently, on account of the definitions in (4.20)-(4.21) and Proposition 2.3.2, it
follows easily that

Nn(x) =

(
0 c̃n(x) + sn(x)

−c̃n(x)− sn(x) 0

)
=

1

n+ 1
f∂

1

f

(
0 cn+1

−sn+1 0

)
, (5.43)

Mn(x) =

(
cn(x) + s̃n(x) 0

0 c̃n(x) + sn(x)

)
=

1

n+ 1
f∂

1

f

(
sn+1 0
0 cn+1

)
. (5.44)
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Corollary 5.4.4. Under the assumptions of Theorem 4.1.2 with p(x) ≡ 0. Then the

integral kernel K(x, t) in (5.39) is approximated by the linear combination

KN(x, t) =
N∑

n=0

[
anO1

n(x, t) + dnO4
n(x, t)

]

= I2

(
a0u(x, t)
−d0v(x, t)

)
+ I2

N∑

n=1

(
anu2n−1(x, t)− dnu2n(x, t)
−anv2n−1(x, t) + dnv2n(x, t)

)
, (5.45)

in the domain Ω+. Here f(x) = exp
(∫ x

0
q(s) ds

)
and the complex numbers {an}Nn=0 and

{dn}Nn=0 are taken in such a way that

∥∥∥∥∥
(
−q
2

)
−

N∑

n=0

an
n+ 1

f∂
1

f
sn+1

∥∥∥∥∥ < ǫ1 and

∥∥∥∥∥
(
−q
2

)
−

N∑

n=0

dn
n+ 1

f∂
1

f
cn+1

∥∥∥∥∥ < ǫ2. (5.46)

Proof. Combining (5.43)-(5.44) with Proposition 4.3.3 we can see that the coefficients
cn and bn may really be assumed as zero. Thus, to obtain (5.45) from definition of the
matrix-valued functions O1

n and O4
n, and the proof is complete.

5.4.1 General scheme for numerical implementation

Based on the practical point of view of Theorem 4.4.1 provided in this chapter, we present
a brief sketch for numerical implementation. We provide the following algorithm.

Consider a one-dimensional Dirac system

(
0 1
−1 0

)
dy

dx
+

(
p(x) q(x)
q(x) −p(x)

)
y = −λy, y(x) =

(
y1(x)
y2(x)

)
, (5.47)

with some initial condition

y(0) =

(
y1(0)
y2(0)

)
=

(
a
b

)
,

or a boundary condition

(
u11 u12
u21 u22

)(
y1(0)
y2(0)

)
+

(
u13 u14
u23 u24

)(
y1(b)
y2(b)

)
=

(
0
0

)
. (5.48)

1. Find a non-vanishing solution y = (f, g)T of the equation B dy
dx

+ Q(x)y = 0, see
Proposition 2.4.1. This solution is normalized in such a way that f(0)g(0) = 1.

2. Compute the functions X(k), Y (k), Z(k), X̃(k), Ỹ (k) and Z̃(k), k = 0, . . . , N using (2.6)-
(2.10).

3. Compute the vector functions Φk and Ψk, k = 0, . . . , N using (2.45) and (2.46), see
Definition 2.3.1.
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4. According to (4.20) and (4.21) compute the matrix functions Nk and Mk, k =
0, . . . , N , using (4.33) and (4.34).

5. Find coefficients {an, cn}Nn=0 and {bn, dn}Nn=0 using (5.12) and (5.13) respectively.

6. Compute the matrix functions K2n and K2n+1 using (5.18) and (5.19) respectively.

7. Compute the vector functions ṽ1N and ṽ2N using (5.24) and (5.25). The approxi-
mation to the solution of the initial value problem is given by yN = aṽ1N + bṽ2N .

8. To solve spectral problem the boundary condition (5.48) gives an approximation for
the characteristic function of the problem in terms of YN . Namely, this approxima-
tion has the form

det (MN(λ)) = 0, (5.49)

where

MN(λ) =

(
u11 u12
u21 u22

)
+

(
u13 u14
u23 u24

)[
ṽ1N(b) ṽ2N(b)

]
.

9. Find roots of the equation in the last step.

5.4.2 Examples

The integral kernels K for the problems below are known explicitly [42]. We use for-
mulas (5.18), (5.19) and (5.20) to obtain in a closed form the approximations KN . All
calculations performed with the aid of symbolic tool from Matlab 2013.

Example 5.4.5. Consider the Dirac system with Lorentz scalar potential q(x) = 1
x+1

, i.e.

(
0 1
−1 0

)
dy

dx
+

(
0 1

x+1
1

x+1
0

)
y = −λy, y =

(
y1
y2

)
. (5.50)

The non-vanishing solution of the equation B dy
dx

+ Q(x)y = 0 are given by y = (f, g)T ,
where f(x) = 1 + x, g(x) = 1

1+x
. By Proposition 5.4.1 the integral kernel K for the

transmutation operator related to operators A0 and Aq has the form (5.39). From [42]
we have that

K(x, t) =

(
Kf (x, t) 0

0 K1/f (x, t)

)
=

(1
2

0
0 t−1

2(x+1)

)
.

The graphs in Figure 5.1 correspond to the error of the approximation of the integral
kernel K by KN . In this case the approximation is exact for N = 1. From (5.24) and
(5.25) we obtain the two linear by independent solution of (5.50),

Y1(λ, x) = ṽ12(λ, x) =




cos(λx) +
sin(λx)

λ

− sin(λx) +
λx cos(λx)− sin(λx)

λ2(x+ 1)


 (5.51)
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Figure 5.1: The absolute error e = |K(x, t)−KN(x, t)| on Ω+ for (5.50).
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and

Y2(λ, x) = ṽ22(λ, x) =




sin(λx)

cos(λx) +
− sin(λx)

λ(x+ 1)


 . (5.52)

Example 5.4.6. Consider the Dirac system with Lorentz scalar potential q(x) = tanh(x),
i.e. (

0 1
−1 0

)
dy

dx
+

(
0 tanh(x)

tanh(x) 0

)
y = −λy, y =

(
y1
y2

)
. (5.53)

The non-vanishing solution of the equation B dy
dx

+ Q(x)y = 0 is given by y = (f, g)T ,
where f(x) = cosh(x), g(x) = 1/ cosh(x). Combining (5.39) with [42], the integral kernel
K for this example is known in the following form

K(x, t) =

(
Kf (x, t) 0

0 K1/f (x, t)

)
,

where

Kf (x, t) = −1

2

√
x2 − t2I1

(√
x2 − t2

)

x− t
,

K1/f (x, t) = − 1

2 cosh(x)

∫ x

−t

(
I0
(√

x2 − t2
)
t

x− t
+

√
x2 − t2I1

(√
x2 − t2

)

x− t

)
cosh(s) ds,

and I0, I1 are the modified Bessel functions of the first kind. Even though it is not a
closed form, it can be used for comparison. The graphs in Figure 5.2 show the error of
the approximation of the integral kernel K by KN .
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Figure 5.2: The absolute error e = |K(x, t)−KN(x, t)| on Ω+ for (5.53).
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Conclusions and future work
Two analytical methods SPPS and AATO focused on the solutions of the one-dimensional

Dirac system are developed. Each of these methods admits numerical implementation and
works to approximate the solution of initial value problems as well as solutions of bound-
ary value problems for the indicated system.

In the SPPS method, the solutions of the one-dimensional Dirac system are represented
in the form of a power series in the spectral parameter. This representation is valid for
both continuous potentials and discontinuous potentials. In addition, the representation
obtained generalize the corresponding result in [41].

The AATO method considers representation of the solutions via a transmutation oper-
ator and provides an analytical way to approximate its integral kernel. For the hyperbolic
system of equations associated with the integral kernel: We provide estimates and continu-
ous dependence results on the Goursat data, a complete system of solutions is constructed,
we show how to obtain the coefficients involved in the approximations. As a result, the
AATO method provides analytic approximations to the solutions of the one-dimensional
Dirac system.

Finally, we show how to apply in practice the analytic approximation. Approximations
are obtained for the solutions of the one-dimensional Dirac system, whose approximation
permits estimate independent on the spectral parameter. In addition, the convergence
rate estimates are presented for the method.

These results open the possibility of future research on the following questions:

• Since the results in Chapter 3 do not depend on the size of the matrix-valued
functions, the result established in Theorem 4.4.1 and the AATO method can be
extended to the case when the potential is an n×n matrix-valued function satisfying
certain commutativity relation. Under more general conditions these operators have
been considered by Marchenko [51].

• Due to the results of new emerging representations for solutions associated with the
one-dimensional Schrödinger equation and perturbed Bessel equations [45], [46], it
is appropriate to examine representation of solutions to the one-dimensional Dirac
system in terms of Neumann series of Bessel functions.

• Due to the relevance of symmetric potentials in mathematical physics, we consider
studying the radial Dirac equations and will try to establish analytical methods for
the representation of solutions.
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