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Summary

The main result of this dissertation is a mathematically rigorous construction of a

large class of interacting Euclidean quantum �eld theories, over a p-adic space time, by

using white noise calculus. In contrast to the classical Euclidean quantum �eld theory, our

basic objects are probability measures on the space H�1(R), which is a non-Archimedean
analog of the distribution space of Schwartz S 0 (Rn).
We introduce p-adic versions of the Kondratiev and Hida spaces and characterize the

Kondratiev-type disrributions via its S�transformation, in order to use the tools provided
by the Wick calculus on the Kondratiev spaces.

We introduce a non-Archimedan free covariance function and the non-Archimedan

free Euclidean Bose �eld. We also de�ne the Schwinger functions corresponding to a

distribution � 2 (H1)�1 and the truncated Schwinger functions. We construct a class
of Euclidean invariant distributions �GH indexed by function H, which is holomorphic at

zero, where �G is a well de�ned Kondratiev-type distributions.

The quantum �elds introduced here ful�ll all the Osterwalder-Schrader axioms, except

the re�ection positivity.
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Resumen

El resultado principal de esta tesis es una construcción matemática rigurosa de una

clase amplia de teorías de campos cuánticos Euclidianos con interacciones, sobre un espa-

cio tiempo p-ádico, usando el cálculo de ruido blanco. En contraste con la teoría clásica

de campos cuánticos Euclidiana, nuestros objetos básicos son medidas de probabilidad

sobre el espacio H�1(R), que es un análogo no arquímediano del espacio de distribucines
de Schwartz S 0 (Rn).
Introducimos las versiones p-ádicas de los espacios de Kondratiev y de Hida, y carac-

terizamos las distribuciones del tipo Kondratiev vía su S�transformación, para utilizar
las herramientas proporcionadas por el cálculo de Wick en los espacios de Kondratiev.

Introducimos una función covarianza libre no arquimediana y un campo bosónico libre

no arquimediano. También de�nimos las funciones de Schwinger correspondientes a una

distribución � 2 (H1)�1 y las funcines truncadas de Schwinger. Construimos una clase
de distribuciones invariantes Euclidianas �GH indizadas por la función H holomorfa en

cero, donde �G es una distribución bien de�nida de tipo Kondratiev.

Los campos cuánticos introducidos aquí satisfacen todos los axiomas de Osterwalder-

Schrader, excepto el de positividad de re�exión.
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Overview
In this thesis, we construct interacting Euclidean quantum �eld theories, over a p-

adic spacetime, in arbitrary dimension, which satisfy all the Osterwalder-Schrader axioms

[46] except for re�ection positivity. More precisely, we present a p-adic analogue of the

interacting �eld theories constructed by Grothaus and Streit in [19]. The basic objects of

an Euclidean quantum �eld theory are probability measures on distributions spaces, in the

classical case, on the space of tempered distributions S 0(Rn). In conventional quantum
�eld theory (QFT) there have been some studies devoted to the optimal choice of the space

of test functions. In [23], Ja¤e discussed this topic (see also [38] and [53]); his conclusion

was that, rather than an optimal choice, there exists a set of conditions that must be

satis�ed by the candidate space, and any class of test functions with these properties

should be considered as valid. The main condition is that the space of test functions

must be a nuclear countable Hilbert one. This fact constitutes the main mathematical

motivation the study of QFT on general nuclear spaces.

A physical motivation for studying QFT in the p�adic setting comes from the con-

jecture of Volovich stating that spacetime has a non-Archimedean nature at the Planck

scale, [63], see also [56]. The existence of the Planck scale implies that below it the very

notion of measurement as well as the idea of �in�nitesimal length�become meaningless,

and this fact translates into the mathematical statement that the Archimedean axiom is

no longer valid, which in turn drives to consider models based on p-adic numbers. In the

p-adic framework, the relevance of constructing quantum �eld theories was stressed in [62]

and [57]. In the last 35 years p-adic QFT has attracted a lot of attention of physicists and

mathematicians, see e.g. [1], [14]-[16], [20], [24]-[25], [31]-[37], [40]-[43], [50]-[51], [56]-[67],

and the references therein.

A p-adic number is a sequence of the form

x = x�kp
�k + x�k+1p

�k+1 + : : :+ x0 + x1p+ : : : ; with x�k 6= 0, (1)

where p denotes a �xed prime number, and the xjs are p-adic digits, i.e. numbers in the set

f0; 1; : : : ; p� 1g. There are natural �eld operations, sum and multiplication, on series of

form (1). The set of all possible p-adic sequences constitutes the �eld of p-adic numbers

Qp. The �eld Qp can not be ordered. There is also a natural norm in Qp de�ned as
jxjp = pk, for a nonzero p-adic number x of the form (1). The �eld of p-adic numbers with

the distance induced by j�jp is a complete ultrametric space. The ultrametric property
refers to the fact that jx� yjp � max

n
jx� zjp ; jz � yjp

o
for any x, y, z in Qp. As a

topological space,
�
Qp; j�jp

�
is completely disconnected, i.e. the connected components
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are points. The �eld of p-adic numbers has a fractal structure, see e.g. [2], [62]. All these

results can be extended easily to QNp , see Appendix A.
In [66], see also [35, Chapter 11], Zúñiga-Galindo introduced a class of non-Archimedean

massive Euclidean �elds, in arbitrary dimension, which are constructed as solutions of cer-

tain covariant p-adic stochastic pseudodi¤erential equations, by using techniques of white

noise calculus. In particular a new non-Archimedean Gel�fand triple was introduced. By

using this new triple, here we introduce non-Archimedean versions of the Kondratiev and

Hida spaces, see Section 2. The non-Archimedean Kondratiev spaces, denoted as (H1)1,
(H1)�1, play a central role in this work.
Formally an interacting �eld theory with interaction V has associated a measure of

the form

d�V =
exp

�
�
R
QNp

V (� (x)) dNx
�
d�R

exp
�
�
R
QNp

V (� (x)) dNx
�
d�
; (2)

where � is the Gaussian white noise measure, � (x) is a random process at the point

x 2 QNp . In general � (x) is not an integrable function rather a distribution, thus

a natural problem is how to de�ne V (� (x)). For a review about the techniques for

regularizing V (� (x)) and the construction of the associated measures, the reader may

consult [18], [19], [49], [53] and the references therein.

Following [19], we consider the following generalized white functional:

�H = exp
�

 
�
Z
QNp

H� (� (x)) dNx

!
; (3)

whereH is analytic function at the origin satisfyingH(0) = 0. The Wick analytic function

H� (� (x)) of process � (x) coincides with the usual Wick ordered function : H (� (x)) :

when H is a polynomial function. It turns out that H� (� (x)) is a distribution from the

Kondratiev space (H1)�1, and consequently, its integral belong to (H1)�1, if it exists.
In general we cannot take the exponential of �

R
H� (� (x)) dNx, however, by using the

Wick calculus in (H1)�1, see Section 2.7.1, we can take the Wick exponential exp� (�).
In certain cases, for instance when H is linear or is a polynomial of even degree, see

[24], and if we integrate only over a compact subset K of QNp (the space cuto¤), the

function �H is integrable, and we have a direct correspondence between (2) and (3), i.e.

�Hd� =

(
exp

�
�
R
K
H� (� (x)) dNx

�R
exp

�
�
R
K
H� (� (x)) dNx

�
d�

)
d�:

In general the distribution �H is not necessarily positive, and for a large class of functions

H, there are no measures representing �H . It turns out that �H can be represented by

2



a measure if and only if �H(it) + 1
2
t2, t 2 R, is a Lévy characteristic, see Theorem 13.

These measures are called generalized white noise measures.

Generalized white measures were considered in [66], in the p-adic framework, and

in the Archimedean case in [3]-[5]. Euclidean random �elds over QNp were constructed

by convolving generalized white noise with the fundamental solutions of certain p-adic

pseudodi¤erential equations. These fundamental solutions are invariant under the action

of a p-adic version of the Euclidean group, see Section 3.7.

For all convoluted generalized white noise measures such that their Lévy characteristics

have an analytic extension at the origin, we can give an explicit formula for the generalized

density with respect to the white noise measure, see Theorem 16. In addition, there exists

a large class of distributions �H of type (3) that do not have an associated measure, see

Remark 25. We also prove that the Schwinger functions corresponding to convoluted

generalized functions satisfy Osterwalder-Schrader axioms (axioms OS1, OS2, OS4, OS5

in the notation used in [19]) except for re�ect positivity, see Lemma 7, Theorems 16, 24,

just like in the Archimedean case presented in [19].

The p-adic spacetime
�
QNp ; q (�)

�
is a Qp-vector space of dimension N with an elliptic

quadratic form q (�), i.e. q (�) = 0 , � = 0. This spacetime di¤ers from the classical

spacetime
�
RN ; �21 + � � �+ �2N

�
in several aspects. The p-adic spacetime is not an �in�nitely

divisible continuum�, because QNp is a completely disconnected topological space, the

connected components (the points) play the role of �spacetime quanta�. Since Qp is not
an ordered �eld, the notions of past and future do not exist, then any p-adic QFT is an

acausal theory. The reader may consult the introduction of [40] for an in-depth discussion

of this matter. Consequently, the re�ection positivity, if it exists in the p-adic framework,

requires a particular formulation, that we do not know at the moment. The study of the

p-adic Wightman functions via the reconstruction theorem is an open problem.

Another important di¤erence between the classical case and the p-adic one comes

from the fact that in the p-adic setting there are no elliptic quadratic forms in dimension

N � 5. We replace q (�) by an elliptic polynomial l (�), which is a homogeneous polynomial
satisfying l (�) = 0, � = 0. For any dimension N there are elliptic polynomials of degree

d � 2. We use jl (�)j
2
d
p as a replacement of jq (�)jp. This approach is particularly useful to

de�ne the p-adic Laplace equation that the (free) covariance function Cp (x� y) satis�es,
this equation has the following form:

�
L� +m2

�
Cp (x� y) = � (x� y) , x, y 2 QNp ;

where � > 0, m > 0 and L�, is the pseudodi¤erential operator

L�' (x) = F�1�!x(jl (�)j
�
p Fx!�');

3



here F denotes the Fourier transform. The QFTs presented here are families depending
on several parameters, among them, p, �, m, l (�).

The p-adic free covariance Cp (x� y) may have singularities at the origin depending
on the parameters �, d, N , and has a �polynomial�decay at in�nity, see Section 3.5.3.

The p-adic cluster property holds under the condition �d > N . Under this hypothesis the

covariance function does not have singularities at the origin. Since � is a �free�parameter,

this condition can be satis�ed in any dimension. We think that the condition �d > N is

completely necessary to have the cluster property due to the fact that our test functions

do not decay exponentially at in�nity, see Remark 21.

Let us brie�y describe the contents of this work. The chapters from one to four

correspond to the article [6] written in collaboration with professor Zúñiga-Galindo. In

Chapter 1, we recall the construction of the spaces H1(QNp ;C) and H1(QNp ;R) were
introduced in [66], see also [35], we also give a description of the corresponding dual

spaces H�1(QNp ;C) and H�1(QNp ;R), see section 1.1.1.
Following the standard literature on white noise analysis, see e.g. [21], [22], [36],[44], we

introduce a probability measure � on
�
H�1(QNp ;R);B

�
see section 1.2. Later we introduce

the Wick-ordered polynomials (see section 1.3 or Appendix D.1) and establish the Wiener-

Itô-Segal isomorphism, see section 1.4 or Theorem 56.

In Chapter 2, we present the construction of non-Archimedean versions of Kondratiev-

type spaces of test functions (H1 (C))1 and distributions (H1 (C))�1, see section 2.1 and
2.2. We also introduce the S�transform which is our main analytical tool in working

with non-Archimedean Kondratiev spaces, see section 2.3.1. The S�transform allow us

to characterize the distribution space (H1)�1, see Theorem 60 . We �nish this Chapter by
giving a brief description of the holomorphic functions on H1(C) (see section 2.4 or ap-
pendix D.2) and de�ning the the Wick product in the spaces of distributions (H1 (C))�1,
see section 2.7 or appendix D.3.1.

In Chapter 3 is devoted to the Euclidean quantum �eld theory in the non-Archimedean

framework. We show that the Schwinger functions satisfy axioms (OS1) and (OS4), see

Lemma 7 . We also present the non-Archimedean free Euclidean Bose �eld, see section

3.6. We also introduce the symmetries exhibit for the quantum �elds introduced hare, see

section 3.7.

In Chapter 4 is dedicated to the study of the truncated Schwinger functions and the

cluster property (axioms (OS5)), see Lemma 23, and Theorem 24.

In order to make this dissertation self contained, we summarize some basic notions and

results on p�adic analysis in Appendix A. The appendix B contains the general concepts
of countably-Hilbert spaces and nuclear spaces. We recall the theorem Bochner-Minlos.

In Appendix C, we give a Wavelet basis for the spaces Hl (C) ; see Theorem 47. This is an

4



unpublished material. Finally, the Appendix D is dedicated to recall the Wiener-Itô-segal

isomorphism. We also to recall the some de�nitions and properties of holomorphic func-

tions in locally convex topological vector spaces. We recall the characterization theorem

of the Kondratiev Distributions, see Theorem 60. We �nish this appendix with the Wick

product in the spaces of distributions in (H1 (C))�1, see appendix D.3.1.

5



1
A class of non-Archimedean nuclear

spaces

1.1 H1, a non-Archimedean analog of the Schwartz
space

We denote the set on non-negative integers by N, and set [�]p := [max(1; k�kp)] for � 2 QNp .
We de�ne for ', � 2 D(QNp ), and l 2 N, the following scalar product:

h'; �il =
Z
QNp
[�]lp b' (�)b� (�) dN�,

where the overbar denotes the complex conjugate. We also set k'kl := h'; 'il. Notice
that k�kl � k�km for l � m. We denote by Hl(C) := Hl(QNp ;C) the complex Hilbert space
obtained by completing D(QNp ) with respect to h�; �il. Then Hm(C) ,! Hl(C) for l � m.

Now we set

H1(C) := H1(QNp ;C) =
\

l2N
Hl(C):

Notice that H1(C) � L2. With the topology induced by the family of seminorms

fk�klgl2N, H1(C) becomes a locally convex space, which is metrizable. Indeed,

d(f; g) := max
l2N

�
2�l

kf � gkl
1 + kf � gkl

�
, with f , g 2 H1(C),

is a metric for the topology of H1(C). The projective topology �P of H1(C) coincides
with the topology induced by the family of seminorms fk�klgl2N. The space H1(C)
endowed with the topology �P is a countably Hilbert space in the sense of Gel�fand-

Vilenkin (Appendix B.1.1) . Furthermore, (H1(C); �P ) is metrizable and complete and
hence a Fréchet space, cf. [35, Lemma 10.3], see also [66].

6



The space (H1(C); d) is the completion of (D(QNp ); d) with respect to d, and since
D(QNp ) is nuclear, then H1(C) is a nuclear space, which is continuously embedded in
C0(QNp ;C), the space of complex-valued bounded functions vanishing at in�nity. In addi-
tion, H1(C) � L1 \ L2, cf. [35, Theorem 10.15].

Remark 1 (i) We denote by Hl(R) := Hl(QNp ;R) the real Hilbert space obtained by com-
pleting DR(QNp ) with respect to h�; �il. We also set H1(QNp ;R) := H1(R) = \l2NHl(R).
In the case in which the ground �eld (R or C) is clear, we shall use the simpli�ed nota-
tion Hl, H1. All the above announced results for the spaces Hl(C), H1(C) are valid
for the spaces Hl(R), H1(R). In particular, H1(R) is a nuclear countably Hilbert space
(Appendix B.1.1).

(ii) The following characterization of the space H1(C) is very useful:

H1(C) =
�
f 2 L2

�
QNp
�
; kfkl <1 for any l 2 N

	
=
�
W 2 D0

�
QNp
�
; kWkl <1 for any l 2 N

	
;

cf. [35, Lemma 10.8]. An analog result is valid for H1(R).
(iii) The spaces Hl(R), Hl(C), for any l 2 N, are nuclear and consequently they are

separable, cf. [17, Chapter I, Section 3.4].

The spaces H1(QNp ;C) and H1(QNp ;R) were introduced in [66], see also [35]. These
spaces are invariant under the action of a large class of pseudodi¤erential operators.

1.1.1 The dual space of H1
For m 2 N, and W 2 D0

�
QNp
�
such that cW is a measurable function, we set

kWk2�m :=
Z
QNp
[�]�mp

���cW (�)
���2 dN�.

Then

H�m(C) := H�m(QNp ;C) =
�
W 2 D0

�
QNp
�
; kWk�m <1

	
(1.1)

is a complex Hilbert space. If X is a locally convex, we denote by X � the dual space
endowed with the strong dual topology or the topology of the bounded convergence. We

denote by H�m(C) the dual of Hm(C) for m 2 N, we identify H�m(C) with H�m(C), by
using the bilinear form:

hW; gi =
Z
QNp

cW (�)bg (�) dN� for W 2 H�m(C) and g 2 Hm(C). (1.2)
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Then

H�1(QNp ;C) := H�1(C) =
[
m2N

H�m(C)

=
�
W 2 D0

�
QNp
�
; kWk�m <1 for some m 2 N

	
:

We consider H�1(C) endowed with the strong topology. We use (1.2) as pairing be-

tween H�1(C) and H1(C). By a similar construction one obtains the space H�1(R) :=
H�1(QNp ;R). The above announced results are also valid for H�1(R). If there is no danger
of confusion we use H�1 instead of H�1(C) or H�1(R).

Remark 2 (i) For complex and real spaces, k�k�l denotes the norm on Hl and H�l. We
denote by h�; �i the dual pairings between H�l and Hl and between H1 and H�1. We
preserve this notation for the norm and pairing on tensor powers of these spaces.

(ii) If fXlgl2A is a family of locally convex spaces, we denote by lim �l2NXl the projective
limit of the family, and by lim�!l2NXl the inductive limit of the family.
(iii) If N is a nuclear space, which is the projective limit of the Hilbert spaces Hl,

l 2 N,the n-th symmetric tensor product of N is de�ned as N b
n = lim �l2NH b
n
l . This is a

nuclear space. The dual space is N �b
n = lim�!l2NH
b
n
�l .

1.2 Non-Archimedean Gaussian measures

The spaces

H1(R) ,! L2R
�
QNp
�
,! H�1(R)

form a Gel�fand triple, that is, H1(R) is a nuclear countably Hilbert space which is
densely and continuously embedded in L2R and kgk

2
0 = hg; gi0 for g 2 H1(R). This triple

was introduced in [66], see also [35, Chapter 10]. The inner product and the norm of�
L2R
�
QNp
��
m ' L2R

�
QNmp

�
are denoted by h�; �i0 and k�k0. From now on, we consider

Hb
n
1 (R) as subspace of H
n

1 (R), then h�; �iHb
n
1 (R)

= n! h�; �i0.
We denote by B := B(H�1(R)) the �-algebra generated by the cylinder subsets of

H�1(R) (Appendix B.2). The mapping

C : H1(R) ! C
f ! e�

1
2
kfk20

(1.3)

de�nes a characteristic functional, i.e. C is continuous, positive de�nite and C (0) =
1. By the Bochner-Minlos theorem, see e.g. [7], [21], (Appendix B.2), there exists a

probability measure �, called the canonical Gaussian measure on (H�1(R);B), given by
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its characteristic functional asZ
H�
1(R)

eihW;fid�(W ) = e�
1
2
kfk20 , f 2 H1(R).

We set (L2C) := L2 (H�1(R); �;C) to denote the complex vector space of measurable
functions 	 : H�1(R)! C satisfying

k	k2(L2C) =
Z
H�
1(R)
j	(W )j2 d�(W ) <1.

The space (L2R) := L2 (H�1(R); �;R) is de�ned in a similar way. The pairing H�1(R) �
H1(R) can be extended to H�1(R) � L2(QNp ) as an (L2C)-function on H�1(R), this fact
follows from Z

H�
1(R)
jhW; gij2 d�(W ) = kgk20 ; (1.4)

see e.g. [44, Lemma 2.1.5]. If g 2 L2R, then W ! hW; gi belongs to (L2R).
Let f 2 H1(R) and Wf (J) := hJ; fi, J 2 H�1(R). Then Wf is a Gaussian random

variable on (H�1(R); �) satisfying

E�(Wf ) = 0, E�(W 2
f ) = kfk

2
0 :

Then the linear map
H1(R) ! (L2R)

f ! Wf

can be extended to a linear isometry from L2(QNp ) to (L2C).

1.3 Wick-ordered polynomials

Let Pn(R), respectively Pn(C), be the vector space of �nite linear combinations of func-
tions of the form

W ! hW; fin =


W
n; f
n

�
, with W 2 H�1(R),

where f runs over H1(R), respectively H1(C). Notice that Pn(C) = Pn(R) + iPn(R).
An element of the direct algebraic sums

P(R) :=
M1

n=0
Pn(R), P(C) :=

M1

n=0
Pn(C) (1.5)
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is called a polynomial on the Gaussian space H�1(R). These functions are not very

useful because they do not satisfy orthogonality relations. This is the main motivation to

introduce and utilize the Wick-ordered polynomials (Appendix D.1).

For W 2 H�1 (R) and f 2 H1, we de�ne the Wick-ordered monomial as



: W
n :; f
n

�
=

[n2 ]X
k=0

n!

k! (n� 2k)!

�
�1
2
hf; fi0

�k
hW; fin�2k

= kfkn0Hn

�
kfk�10 hW; fi

�
;

where Hn denotes the n-th Hermite polynomial. Then : W
n :2 H�b
n1 , in addition, any

polynomial � 2 P(R), respectively P(C), is expressed as

� (W ) =

1X
n=0



: W
n :; �n

�
; (1.6)

where �n belong to the symmetric n-fold algebraic tensor product (H1(R))
b
n of H1(R),

respectively of H1(C), and the sum symbol involves only a �nite number of non-zero

terms. A function of type (1.6) is called aWick-ordered polynomial. For two polynomials

�, 	 2 P(C) given respectively by (1.6) with �n 2 (H1(C))
b
n, and by

	(W ) =
1X
n=0



: W
n :;  n

�
; with  n 2 (H1(C))

b
n , (1.7)

it holds that Z
H�
1(R)

� (W )	 (W ) d�(W ) =
X1

n=0
n! h'n;  ni0 ;

where h�; �i0 denotes the scalar product in
�
L2
�
QNp
��
n

. In particular,

k�k2(L2C) =
X1

n=0
n! k�nk

2
0 ;

where k�k0 denotes the norms of
�
L2
�
QNp
��
n

, see e.g. [44, Proposition 2.2.10]. Conse-

quently, each 	 2 P(C) is uniquely expressed as a Wick-ordered polynomial.

Remark 3 We denote by In(fn) the linear extension to
�
L2
�
QNp
��b
n

of the map fn !
h: W
n :; fni, W 2 H�1 (R), then

In(f

n) = kfkn0Hn(kfk�10 Wf ), f 2 L2;
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and Z
H�
1(R)

In(fn)Im(gm)d� = �nmn! hfn; gmi0 , fn 2 L2b
n, gm 2 L2b
m:
We shall also use h: W
n :; fni to denote In(fn) formally. In this case the symbol h�; �i
should not be confused with the bilinear form on H�1 �H1.

1.4 Wiener-Itô-Segal isomorphism

Let �
�
L2
�
QNp
��
be the space of sequences f = ffngn2N, fn 2

�
L2
�
QNp
��b
n

, such that

kfk2
�(L2(QNp ))

:=
X1

n=0
n! kfnk20 <1:

The Hilbert space �
�
L2
�
QNp
��
is called the Boson Fock Space on L2

�
QNp
�
. The Wiener-

Itô-Segal theorem asserts that for each � 2 (L2C) there exists a sequence � = f�ngn2N
in �

�
L2
�
QNp
��
such that (1.6) holds in the (L2C)-sense, but with �n 2

�
L2
�
QNp
��b
n

, see

Remark 3. Conversely, for any � = f�ngn2N 2 �
�
L2C
�
QNp
��
, (1.6) de�nes a function in

(L2C). In this case

k�k2(L2C) =
1X
n=0

n! k�nk
2
0 = k�k

2
�(L2(QNp ))

;

see e.g. [44, Theorem 2.3.5], [48], (Appendix D.1, Theorem 56)
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2
Non-Archimedean Kondratiev
Spaces of Test Functions and

Distributions

In this section we introduce non-Archimedean versions of Kondratiev-type spaces of test

functions and distributions.

2.1 Kondratiev-type spaces of test functions

We de�ne for l, k 2 N, and � 2 [0; 1] �xed, the following norm on (L2C):

k�k2l;k;� =
1X
n=0

(n!)1+� 2nk k�nk
2
l ;

where � is given in (1.6), and k�kl denotes the norm on Hb
n
l .

We now de�ne

Hl;k;� =
(
� (W ) =

1X
n=0



: W
n :; �n

�
2
�
L2C
�
; k�k2l;k;� <1

)
:

The space Hl;k;� is a Hilbert space with inner product

h�;	il;k;� =
1X
n=0

(n!)1+� 2nk h�n;  nil ;

where �, 	 2 (L2C) are as in (1.6)-(1.7), and h�; �il denotes the inner product on H
b
n
l .

The Kondratiev space of test functions (H1)� is de�ned to be the projective limit of
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the spaces Hl;k;�:
(H1)� = lim �l;k2NHl;k;�:

As a vector space (H1)� = \l;k2NHl;k;�. The space of test functions (H1)� is a nuclear
countable Hilbert space, which is continuously and densely embedded in (L2C). Moreover,

(H1)� and its topology do not depend on the family of Hilbertian norms fk�klgl2N, see
e.g. [26, Theorem 1], [22, Chapter IV, Theorem 1.4].

The construction used to obtain the spaces (H1)� can be carried out starting with an
arbitrary nuclear space N . For 0 � � � 1, the spaces (N )� were studied by Kondratiev,
Leukert and Streit in [29], [27], [26], see also [22, Chapter IV]. In the case � = 0 and

N = S, the Schwartz space in Rn, the space (N )0 is the Hida space of test functions, see
e.g. [21].

2.2 Kondratiev-type spaces of distributions

Let H�l;�k;�� be the dual with respect to (L2C) of Hl;k;� and let (H1)�� be the dual with
respect to (L2C) of (H1)�. We denote by hh�; �ii the corresponding dual pairing which
is given by the extension of the scalar product on (L2C). We de�ne the expectation of a

distribution � 2 (H1)�� as E�(�) = hh�; 1ii.
The dual space of (H1)�� is given by

(H1)�� = [
l;k2N
H�l;�k;��;

see [22, Chapter IV, Theorem 1.5]. We will consider (H1)�� with the inductive limit
topology. In particular, we know that every distribution is of �nite order, i.e. for any � 2
(H1)�� there exist l; k 2 N such that� 2 H�l;�k;��. The chaos decomposition introduces
a natural decomposition of � 2 (H1)�� into generalized kernels �n 2 (H�1(C))

b
n. Let
�n 2 (H�1(C))

b
n be given. Then there is a distribution, denoted as h�n; : W
n :i, in
(H1)�� acting on 	 2 (H1)� (	 =

1P
n=0

h: �
n :;  ni ; with  n 2 (H1(C))
b
n) as





�n; : W


n :
�
;	
��
= n! h�n;  ni :

Any � 2 (H1)�� has a unique decomposition of the form

� =
1X
n=0



�n; : W


n :
�
, �n 2 (H�1(C))

b
n,
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where the series converges in (H1)��, in addition, we have

hh�;	ii =
1X
n=0

n! h�n;  ni , 	 2 (H1)�:

Now, H�l;�k;�� is a Hilbert space, that can be described as follows:

H�l;�k;�� =
n
� 2 (H1)��; k�k�l;�k;�� <1

o
;

where

k�k2�l;�k;�� =
1X
n=0

(n!)1�� 2�nk k�nk2�l ; (2.1)

see [22, Chapter IV, Theorem 1.5].

Remark 4 Notice that

(H1)1 � � � � � (H1)� � � � � � (H1)0 � (L2C)
� (H1)�0 � � � � � (H1)�� � � � � � (H1)�1:

Following Kondratiev, Leukert and Streit, in this article we work with the Gel�fand triple

(H1)1 � (L2C) � (H1)�1.

2.3 The S-transform and the characterization of (H1)�1

2.3.1 The S-transform

We �rst consider the Wick exponential:

: exp hW; gi := exp
�
hW; gi � 1

2
kgk20

�
=

1X
n=0

1

n!



: W
n :; g
n

�
,

for W 2 H�1 (R), g 2 H1 (C). Then : exp hW; gi :2 (L2C) and its l, k, 1-norm is given by

k: exp h�; gi :k2l;k;1 =
1X
n=0

(n!)22nk




 1n!g
n





2
l

=

1X
n=0

�
2k kgk2l

�n
:

This norm is �nite if and only if 2k kgk2l < 1, i.e. : exp hW; gi :2 Hl;k;� if and only if g
belongs to the following neighborhood of zero:

Ul;k =
�
f 2 H1 (C) ; kfkl <

1

2
k
2

�
:
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Therefore the Wick exponential does not belong to (H1)1, i.e. it is not a test function,
in contrast to usual white noise analysis.

Let � 2 (H1)�1; then there exist l; k such that � 2 H�l;�k;�1. For all f 2 Ul;k, we
de�ne the (local) S-transform of � as

S� (f) = hh�; : exp h�; fi :ii =
1X
n=0



�n; f


n� : (2.2)

Hence, for � 2 H�l;�k;�1, (2.2) de�nes the S-transform for all f 2 Ul;k.

2.4 Holomorphic functions on H1(C)
Let Vl;� = ff 2 H1 (C) ; kfkl < �g be a neighborhood of zero in H1 (C). A map F :

Vl;� ! C is called holomorphic in Vl;� (Appendix D.2), if it satis�es the following two
conditions: (i) for each g0 2 Vl;�, g 2 H1 (C) there exists a neighborhood Vg0;g in C
around the origin such that the map z ! F (g0 + zg) is holomorphic in Vg0;g. (ii) For

each g 2 Vl;� there exists an open set U � Vl;� containing g such that F (U) is bounded.
By identifying two maps F1 and F2 coinciding in a neighborhood of zero, we de�ne

Hol0(H1(C)) as the space of germs of holomorphic maps around the origin.

2.5 Characterization of (H1)�1

A key result is the following: the mapping

S : (H1)�1 ! Hol0(H1(C))
� ! S�

is a well-de�ned bijection, see [26, Theorem 3], [22, Chapter IV, Theorem 2.13].

2.6 Integration of distributions

Let (L;A; �) be a measure space, and

L ! (H1)�1

l ! �l
:

Assume that there exists an open neighborhood V � H1(C) of zero such that (i) S�l ,

l 2 L, is holomorphic in V; (ii) the mapping l ! S�l (g) is measurable for every g 2 V;

15



and (iii) there exists a function C(l) 2 L1 (L;A; �) such that jS�l (g)j � C(l) for all

g 2 V and for �-almost l 2 L. Then there exist l0, k0 2 N such that
R

L �ld� (l) exists as

a Bochner integral in H�l0;�k0;�1, in particular,

S

�Z
L
�ld� (l)

�
(g) =

Z
L
S�l (g) d� (l) , for any g 2 V, (2.3)

cf. [26, Theorem 6], [22, Chapter IV, Theorem 2.15], (Appendix D.3, Theorem 63).

2.7 The Wick product

Given �, 	 2 (H1)�1, we de�ne the Wick product of them as

��	 = S�1 (S�S	) :

This product is well-de�ned because Hol0(H1(C)) is an algebra. The map

(H1)�1 � (H1)�1 ! (H1)�1

(�;	) ! ��	

is well-de�ned and continuous. Furthermore, if � 2 H�l1;�k1;�1, 	 2 H�l2;�k2;�1, and
l := max fl1; l2g, k := k1 + k2 + 1, then

k��	k�l;�k;�1 � k�k�l1;�k1;�1 k	k�l2;�k2;�1 ;

cf. [26, Proposition 11]. The Wick product leaves (H1) invariant. By induction on n, we
can de�ne the Wick powers:

��n = S�1((S�)n) 2 (H1)�1:

Consequently
Pm

n=0 an�
�n 2 (H1)�1, see Appendix D.3.1.

2.7.1 Wick analytic functions in (H1)�1

Assume that F is an analytic function in a neighborhood of the point z0 = E� (�) in
C, with � 2 (H1)�1. Then F�(�) = S�1(F (S�)) exists in (H1)�1, cf. [26, The-
orem 12]. In addition, if F is analytic in z0 = E� (�), with power series F (z) =P1

n=0 cn (z � z0)
n, then the Wick series

P1
n=0 cn (�� z0)

�n converges in (H1)�1 and
F�(�) =

P1
n=0 cn (�� z0)

�n.
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3
Schwinger Functions and Euclidean

Quantum Field Theory

3.1 Schwinger functions

De�nition 5 Let f1; : : : ; fn 2 H1 (R), n 2 N. The n-th Schwinger function correspond-
ing to � 2 (H1)�1, with E� (�) = 1, is de�ned as

S�n (f1 
 � � � 
 fn) (W ) =

8><>:
1 if n = 0

hh�; hW; f1i � � � hW; fniii if n � 1;
(3.1)

for W 2 H�1 (R).

The pairing in (3.1) is well-de�ned because the Wick polynomials P (H�1 (R)) are
dense in (H1)1.
The T -transform of a distribution is de�ned as

T� (g) = exp

�
�1
2
kgk20

�
S� (ig) (3.2)

for � 2 (H1)�1 and g 2 U , where U is neighborhood of zero in H1 (C). The Schwinger
functions can be computed by using the T -transform:

Lemma 6 ([19, Proposition III.3]) Let f1; : : : ; fn 2 H1 (R), n 2 N. The n-th Schwinger
function corresponding to � 2 (H1)�1 is given by

S�n (f1 
 � � � 
 fn) = (�i)n
@n

@t1 � � � @tn
T� (t1f1 + � � �+ tnfn) jt1=���=tn=0:
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Lemma 7 For each distribution � 2 (H1)�1, with E� (�) = 1, the Schwinger functions�
S�n
	
n2N satisfy the following conditions:

(OS1) the sequence
�
S�n
	
n2N, with S

�
n 2 (H�1 (C))


n, satis�es

��S�n (f1 
 � � � 
 fn)�� � KCnn!
Qn
i=1 kfikl ;

for some l, k 2 N, where K =
p
I0(2�k) k�k�l:�k�1, here I0 is the modi�ed Bessel

function of order zero, which satis�es I0(2�k) < 1:3, C = e2
k
2 , and for any f1; � � � ; fn 2

H1 (R);

(OS4) for n � 2 and all � 2 Sn, the permutation group of order n, it holds that

S�n (f1 
 � � � 
 fn) = S�n
�
f�(1) 
 � � � 
 f�(n)

�
;

for any f1; � � � ; fn 2 H1 (R).

Proof. Estimation (OS1) is given in the proof of Theorem 2 in [28]. The Schwinger

functions
�
S�n
�
are symmetric by de�nition.

3.2 A white-noise process

For t 2 Qp, �!x 2 QN�1p , we set x = (t;�!x ). We denote by �x := �(t;�!x ), the Dirac

distribution at (t;�!x ).

Lemma 8 �(t;�!x ) 2 (H1)
�1.

Proof. We �rst notice that


�(t;�!x )


2�l =
Z
QNp

dN�

[�]lp
<1 for l > N ,

which implies that �(t;�!x ) 2 H�l(C) for all l > N , see (1.1). Now, we de�ne f�ngn2N, with

�n 2 (H�1 (C))
b
n, as �n = 0 if n 6= 1 and �1 = �(t;�!x ). ThenX

n



�n; : W


n :
�
=
D
�(t;�!x ); : W :

E
2 (H1)�1 :

18



In addition, for  2 H1 (C), we haveDDD
�(t;�!x ); : W :

E
;  
EE
=
D
�(t;�!x );  

E
=

Z
QNp

�p (�� � x) b (x) dN�
=  (t;�!x ) ;

where we used that  is a continuous function in L1\L2, see Section 1.1 and [35, Theorem
10.15].

We now set

� (t;�!x ) :=
D
�(t;�!x ); : W :

E
2 (H1)�1 :

Then � (t;�!x ) is a white-noise process with E� (� (t;�!x )) = 0.
Assume that

H(z) =
X1

k=0

1

k!
Hkz

k, z 2 U � C,

is a holomorphic function in U , an open neighborhood of 0 = E� (� (t;�!x )). By [26,
Theorem 12], see also Section 2.7.1, we can de�ne

H�(� (t;�!x )) =
X1

k=0

1

k!
Hk� (t;

�!x )�k

=
X1

k=0

1

k!
Hk

�
�
k
(t;�!x )

; : W
k :

�
2 (H1)�1 :

Our next goal is the construction of the potentialZ
QNp

H�(� (x))dNx (3.3)

as a white-noise distribution. This goal is accomplished through the following result:

Theorem 9 (i) Let H be a holomorphic function at zero such that H(0) = 0. Then (3.3)

exists as a Bochner integral in a suitable subspace of (H1)�1.
(ii) The distribution

�H := exp
�

 
�
Z
QNp

H�(� (x))dNx

!
is an element of (H1)�1.
(iii) The T -transform of �H is given by

T�H (g) = exp

 
�
Z
QNp

H(ig (x)) +
1

2
(g (x))2 dNx

!

for all g in a neighborhood U � H1(C) of the zero. In particular, E�(�H) = 1.
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Proof. (i) The result follows from the discussion presented in Section 2.5, see also [26,

Theorem 6], as follows. Let r > 0 be the radius of convergence of the Taylor series of H

at the origin. We set C(N) :=
rR

QNp
dN �

[�]lp
, for a �xed l > N , and

U0 :=
�
g 2 H1 (C) ; kgkl <

r

C(N)

�
:

Then, for g 2 U0 we have

SH�(� (x)) (g) =

1X
k=1

1

k!
Hk



�
kx ; g
k

�
=

1X
k=1

1

k!
Hkg(x)

k (3.4)

=
1X
k=1

1

k!
Hk

�
g(x)

r

�k
rk:

By Claim A,
���g(x)r ��� < 1, and from (3.4) we obtain that

��SH�(� (x)) (g)
�� � jg(x)j 1X

k=1

1

k!
jHkj rk�1 2 L1

�
QNp
�
; (3.5)

because H1 (C) � L1
�
QNp
�
, cf. [35, Theorem 10.15]. Estimation (3.5) implies the holo-

morphy of SH�(� (x)) (g) for any g 2 U0. Since SH�(� (x)) (g) is measurable by [26,

Theorem 6], we conclude that (3.3) is an element of (H1)�1.
Claim A. U0 � U := fg 2 H1 (C) ; kgkL1 < rg :
The Claim follows from the fact that

kgkL1 � C(N) kgkl , for g 2 H1 (C) :

This last fact is veri�ed as follows: by using that g 2 L1
�
QNp
�
\ L2

�
QNp
�
, and the

Cauchy-Schwarz inequality, we have

jg (x)j =
�����
Z
QNp

�p (�� � x) bg (�) dN�
����� �

Z
QNp
jbg (�)j dN�

=

Z
QNp

1

[�]
l
2
p

n
[�]

l
2
p jbg (�)jo dN� � C(N) kgkl :

(ii) Since exp is analytic in a neighborhood of 0 = E� (� (t;�!x )), then

exp�

 
�
Z
QNp

H�(� (x))dNx

!
= S�1

 
exp

 
S

 
�
Z
QNp

H�(� (x))dNx

!!!
;
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and by (i), �
R
QNp

H�(� (x))dNx 2 (H1)�1, and then its S-transform is analytic at the

origin, and its composition with exp gives again an analytic function at the origin, whose

inverse S-transform gives an element of (H1)�1, cf. [26, Theorem 12].

(iii) The calculation of the T -transform uses (3.2), exp� (�) = S�1 (exp (S (�))), and
(3.4) as follows:

(T�H) (g) = exp

�
�1
2
kgk20

�
exp

 
S

 
�
Z
QNp

H� (� (x)) dNx

!
(ig)

!

= exp

�
�1
2
kgk20

�
exp

 
�
Z
QNp




H� (� (x)) ; : exp h�; igi :

��
dNx

!

= exp

�
�1
2
kgk20

�
exp

 
�
Z
QNp

SH� (� (x)) (ig) dNx

!

= exp

 
�
Z
QNp

H (ig (x)) +
1

2
g (x)2 dNx

!
:

In particular E�(�H) = T�H (0) = 1.

3.3 Pseudodi¤erential Operators and Green Functions

A non-constant homogeneous polynomial l (�) 2 Zp [�1; � � � ; �N ] of degree d is called elliptic
if it satis�es l (�) = 0 , � = 0. There are in�nitely many elliptic polynomials, cf. [67,

Lemma 24]. A such polynomial satis�es

C0 (�) k�k�dp � jl (�)j
�
p � C1 (�) k�k�dp ; (3.6)

for some positive constants C0 (�), C1 (�), cf. [67, Lemma 25]. We de�ne an elliptic

pseudodi¤erential operator with symbol jl (�)j�p , with � > 0, as

(L�h) (x) = F�1�!x
�
jl (�)j�p Fx!�h

�
; (3.7)

for h 2 D(QNp ). We de�ne G := G (x;m;�) 2 D0(QNp ), with � > 0, m > 0, to be the

solution of �
L� +m2

�
G = � in D0(QNp ):

We will say that the Green function G (x;m;�) is a fundamental solution of the equation

�
L� +m2

�
u = h; with h 2 D(QNp ); m > 0: (3.8)

21



As a distribution from D0(QNp ), the Green function G (x;m;�) is given by

G (x;�;m) = F�1�!x

 
1

jl (�)j�p +m2

!
: (3.9)

Notice that by (3.6), we have

1

jl (�)j�p +m2
2 L1

�
QNp ; dN�

�
for �d > N;

and in this case, G (x;�;m) is an L1-function.

There exists a Green functionG (x;�;m) for the operator L�+m2, which is continuous

and non-negative on Qnp r f0g, and tends to zero at in�nity. The equation�
L� +m2

�
u = g, (3.10)

with g 2 H1 (R), has a unique solution u(x) = G (x;�;m) � g(x) 2 H1 (R), cf. [35,
Theorem 11.2].

As a consequence one obtains that the mapping

G�;m : H1 (R) ! H1 (R)
g (x) ! G (x;�;m) � g(x);

(3.11)

is continuous, cf. [35, Corollary 11.3].

Remark 10 For � > 0, � > 0, m > 0, we set

(L�;�;mh) (x) = F�1�!x
��
jl (�)j�p +m2

��
Fx!�h

�
;

for h 2 D(QNp ). We denote by G (x;�; �;m) the associated Green function. By using the
fact that

C0 (�; �;m) [�]
��d
p �

�
jl (�)j�p +m2

��
� C1 (�; �;m) [�]

��d
p ;

all the results presented in this section for operators L�+m2 can be extended to operators

L�;�;m. In particular,

G�;�;m : H1 (R) ! H1 (R)
g (x) ! G (x;�; �;m) � g(x);

(3.12)

gives rise to a continuous mapping. As operators on H1 (R), we can identify G�;�;m with
the operator (L� +m2)

��, which is a pseudodi¤erential operator with symbol
�
jl (�)j�p +m2

���
.
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Remark 11 The mapping

G
2�;m � 1 : H
21 ! H
21
f 
 g ! G�;m (f)
 G�;m (g)� f 
 g

is well-de�ned and continuous. By using [44, Proposition 1.3.6], any element h of H
21 can

be represented as an absolutely convergent series of the form h =
P

i fi
gi, consequently,P
i G�;m (fi)
G�;m (gi) is an element of H
21 , which implies that G
2�;m�1 is a well-de�ned

mapping. On the other hand, the space H
21 is locally convex, the topology is de�ned by

the seminorms

khkl;k = inf
X
i

kfikl 
 kgikk , h 2 H1 
alg H1;

where the in�mum is taken over all the pairs (fi; gj) satisfying h =
P

j fj 
 gj. The

continuity of G
2�;m � 1 is equivalent to

�G
2�;m � 1�h

l;k � C khkl0;k0 ;

where the indices l0, k0 depend on l, k. This condition can be veri�ed easily using the

continuity of G�;m.

Remark 12 We denote by Tr (the trace), which is the unique element of H�b
21 deter-

mined by the formula

hTr; f 
 gi = hf; gi0 , for f; g 2 H1.

We de�ne
�
G
2�;m � 1

�
Tr 2 H�b
21 as


�
G
2�;m � 1

�
Tr; f 
 g

�
=


Tr;
�
G
2�;m � 1

�
(f 
 g)

�
;

where h�; �i is the pairing between H�b
21 and Hb
2
1 . For a general construction of this type

of operators the reader may consult [36, Theorem 9.11].

3.4 Lévy characteristics

We recall that an in�nitely divisible probability distribution P is a probability distribution

having the property that for each n 2 Nr f0g there exists a probability distribution Pn
such that P = Pn � � � � �Pn (n-times). By the Lévy-Khinchine Theorem, see e.g. [39], the
characteristic function CP of P satis�es

CP (t) =

Z
R
eistdP (s) = ez(t), t 2 R, (3.13)
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where z : R ! C is a continuous function, called the Lévy characteristic of P , which is
uniquely represented as follows:

z (t) = iat� �2t2

2
+

Z
Rrf0g

�
eist � 1� ist

1 + s2

�
dM(s), t 2 R,

where a, � 2 R, with � � 0, and the measure dM(s) satis�esZ
Rrf0g

min
�
1; s2

�
dM(s) <1: (3.14)

On the other hand, given a triple (a; �; dM) with a 2 R, � � 0, and dM a measure on

Rr f0g satisfying (3.14), there exists a unique in�nitely divisible probability distribution
P such that its Lévy characteristic is given by (3.13).

Letz be a Lévy characteristic de�ned by (3.13). Then there exists a unique probability
measure Pz on

�
H�
1 (R) ;B

�
such that the �Fourier transform�of Pz satis�es

Z
H�
1(R)

eihW;fidPz (W ) = exp

(Z
QNp
z (f (x)) dNx

)
, f 2 H1 (R) ; (3.15)

cf. [66, Theorem 5.2], alternatively [35, Theorem 11.6].

We will say that a distribution � 2 (H1)�1 is represented by a probability measure P
on
�
H�
R (1) ;B

�
if

hh�;	ii =
R
H�
1(R)

	(W ) dP (W ) for any 	 2 (H1)1 : (3.16)

We will denote this fact as dP = �d�. In this case � may be regarded as the generalized

Radon-Nikodym derivative dP
d�
of P with respect to �.

By using this result, Theorem 9-(iii), and assuming that

z (t) = �H(it)� 1
2
t2, t 2 R (3.17)

is a Lévy characteristic, there exists a probability measure PH on
�
H�
R (1) ;B

�
such that

T�H (f) =
R
H�
1(R)

exp (i hW; fi) dPH (W ) , f 2 H1 (R) . (3.18)

Theorem 13 Assume that H is a holomorphic function at the origin satisfying H(0) = 0.

Then dPH = �Hd� if and only if z (t) is a Lévy characteristic.

24



Proof. Assume that z (t) is a Lévy characteristic. By (3.18), we have

T�H (�f) =
R
H�
1(R)

exp (�i hW; fi) dPH (W ) = hh�H ; exp (�i hW; fi)ii ; (3.19)

for any � 2 R.
In order to establish (3.16), it is su¢ cient to show that (3.16) holds for 	 in a dense

subspace of (L2C), we can choose the linear span of the exponential functions of the form

exp� hW; fi for � 2 C, f 2 H1 (R), cf. [21, Proposition 1.9]. On the other hand, since
�H 2 H�l;�k:�1(C) for some l, k 2 N, and (L2C) is dense in H�l;�k:�1(C), it is su¢ cient to
establish (3.16) when �H 2 (L2C). Now the result follows from (3.19) by using the fact

that

�! T�H (�f) =
R
H�
1(R)

exp (�i hW; fi) d� (W ) , � 2 R,

has an entire analytic extension, cf. [21, Proposition 2.2].

Conversely, assume that dPH = �Hd�, then by Theorem 9-(iii), we have

R
H�
1(R)

eihW;fidPH (W ) =
R
H�
1(R)

eihW;fi�H (W ) d� (W ) (3.20)

=



�H ; e

ih�;fi�� = T�H (f) = exp

(Z
QNp
z (f (x)) dNx

)
,

for f 2 H1 (R). We now take f (x) = t1ZNp (x), where t 2 R and 1ZNp is the characteristic
function of ZNp . By using that H(0) = 0, we have

exp

(Z
QNp
z (f (x)) dNx

)
= expz(t): (3.21)

Now, we consider the random variable:D
�; 1ZNp

E
: (H�1 (R) ;B;PH) ! (R;B(R))

W !
D
W; 1ZNp

E
;

with probability distribution ��
�;1ZNp

� (A) = PH
n
W 2 H�1 (R) ;

D
W; 1ZNp

E
2 A

o
, where A

is a Borel subset of R. Then, by (3.20)-(3.21),

R
H�
1(R)

eithW;fidPH (W ) =

Z
R
eitzd��

�;1ZNp

� (z) = expz(t): (3.22)
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We call these measures generalized white noise measures. The moments of the measure

PH are the Schwinger functions
�
S�Hn

	
n2N.

Since (G�;mf) (x) := G (x;�;m)�f (x) gives rise to a continuous mapping fromHR(1)
into itself, then, the conjugate operator eG�;m : H�

R(1)! H
�
R(1) is a measurable mapping

from
�
H�
R (1) ;B

�
into itself. For the sake of simplicity, we use G instead of G�;m and G

instead of G (x;�;m). We set PGH to be the image probability measure of PH under eG,
i.e. PGH is the measure on

�
H�
R (1) ;B

�
de�ned by

PGH (A) = PH

�eG�1 (A)� , for A 2 B. (3.23)

The Fourier transform of PGH is given by

R
H�
1(R)

eihW;fidPGH (W ) = exp

(Z
QNp
z

(Z
QNp

G (x� y;�;m) f (y) dNy
)
dNx

)
, (3.24)

for f 2 HR (1), where z is given as in (3.17), cf. [66, Proposition 6.2], alternatively

[35, Proposition 11.12]. Finally, (3.24) is also valid if we replace G = G (x;�;m) by

G (x;�; �;m).

3.5 The free Euclidean Bose �eld

An important di¤erence between the real and p-adic Euclidean quantum �eld theories

comes from the �ellipticity�of the quadratic form qN (�) = �21 + � � �+ �2N . In the real case
qN (�) is elliptic for any N � 1. In the p-adic case, qN (�) is not elliptic for N � 5. In the
case N = 4, there is a unique elliptic quadratic form, up to linear equivalence, which is

�21 � s�22 � p�23 + s�24, where s 2 Zr f0g is a quadratic non-residue, i.e.
�
s
p

�
= �1.

3.5.1 The Archimedean free covariance function

The free covariance function C(x � y;m) := C(x � y) is the solution of the Laplace

equation �
��+m2

�
C(x� y) = � (x� y) ;

where � =
PN

i=1
@2

@x2i
. As a distribution from S 0(RN), the free covariance is given by

C(x� y) = 1

(2�)N

Z
RN

exp (�ik � (x� y))
k2 +m2

dNk;
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where k, x, y 2 RN , dNk is the Lebesgue measure of RN , k2 = k �k, and k �x =
PN

i=1 kixi.

Notice that the quadratic form used in the de�nition of the Fourier transform k2 is the

same as the one used in the propagator 1
k2+m2 , this situation does not occur in the p-adic

case. In particular the group of symmetries of C(x � y) is the SO(N;R). The function
C(x� y) has the following properties (see [18, Proposition 7.2.1].):
(i) C(x� y) is positive and analytic for x� y 6= 0;
(ii) C(x� y) � exp (�m kx� yk) as kx� yk ! 1;
(iii) for N � 3 and m kx� yk in a neighborhood of zero,

C(x� y) � kx� yk�N+2 ;

(iv) for N = 2 and m kx� yk in a neighborhood of zero,

C(x� y) � � ln (m kx� yk) :

3.5.2 The Archimedean free Euclidean Bose �eld

Take Hm to be the Hilbert space de�ned as the closure of S(RN) with respect to the norm
k�km induced by the scalar product

(f; g)m :=

Z
RN
f (x)

�
��+m2

��1
g (x) dNx =

�
f;
�
��+m2

��1
g
�
L2(RN )

:

Then S(RN) ,! Hm ,! S 0(RN) form a Gel�fand triple. The probability space
�
S 0(RN);B; �

�
,

where � is the centered Gaussian measure on B (the �-algebra of cylinder sets) with co-
variance Z

S0(RN )
hW; fi hW; gi d� (W ) =

�
f;
�
��+m2

��1
g
�
L2(RN )

;

for f , g 2 S(RN), jointly with the coordinate processW ! hW; fi, with �xed f 2 S(RN),
is called the free Euclidean Bose �eld of mass m in N dimensions.

3.5.3 The non-Archimedean free covariance function

The p-adic free covariance Cp(x�y;m) := Cp(x�y) is the solution of the pseudodi¤erential
equation �

L� +m2
�
C(x� y) = � (x� y) ;
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where L� is the pseudodi¤erential operator de�ned in (3.7). As a distribution from

D0(QNp ), the free covariance is given by

Cp(x� y) =
Z
QNp

�p (�� � (x� y))
jl(�)j�p +m2

dN�;

where k, x, y 2 QNp , dN� is the Haar measure of QNp , l(k) is an elliptic polynomial of
degree d, and k � x =

PN
i=1 kixi. In this case l(k) 6= k � k, and then the symmetries of

Cp(x�y) form a subgroup of the p-adic orthogonal group attached to the quadratic form
k � k. There are other possible propagators, for instance

1�
jl(k)jp +m2

�� , � > 0:
For a discussion on the possible scalar propagators, in the p-adic setting, the reader may

consult [50].

The function Cp(x� y) satis�es (see [66, Proposition 4.1], or [35, Proposition 11.1]):
(i) Cp(x� y) is positive and locally constant for x� y 6= 0;
(ii) Cp(x� y) � C kx� yk��d�Np as kx� ykp !1;
(iii) for 0 < �d < N and kx� ykp � 1,

Cp(x� y) � C kx� yk�d�Np ;

(iv) for N = �d and kx� ykp � 1,

Cp(x� y) � C0 � C1 ln kx� ykp :

3.6 The non-Archimedean free Euclidean Bose �eld

Take Hm to be the Hilbert space de�ned as the closure of DR(QNp ) with respect to the
norm k�km induced by the scalar product

(f; g)m :=

Z
QNp

bf (�)bg (�) dN�

jl(�)j�p +m2
=
�
f;
�
L� +m2

��1
g
�
L2R(QNp )

:

By using that

C0 [�]
bd�c
p � jl(�)j�p +m2 � C1 [�]

dd�e
p ;
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where dte = min fm 2 Z;m � xg and btc = max fm 2 Z;m � xg, we have

H�bd�c(R) ,! Hm ,! H�dd�e(R):

Then H1(R) ,! Hm ,! H�1(R) from a Gel�fand triple. The probability space

(H�1(R);B; �d;�), where �d;� is the centered Gaussian measure on B (the �-algebra of
cylinder sets) with covarianceZ

H�
1(R)
hW; fi hW; gi d�d;�(W ) =

�
f;
�
L� +m2

��1
g
�
L2R(QNp )

;

for f , g 2 H1(R), jointly with the coordinate process W ! hW; fi, with �xed f 2
H1(R)), is called the non-Archimedean free Euclidean Bose �eld of mass m in N dimen-

sions.

If N = 4 and d = 2, then there is a unique elliptic quadratic form up to linear

equivalence. If N � 5 and l(�) is an elliptic polynomial of degree d, then jl(�)j
2
d
p is a

homogeneous function of degree 2 that vanishes only at the origin. We can use this

function as the symbol for a pseudodi¤erential operator, such operator is a p-adic analogue

of �� in dimension N .

If we use the propagator 1

(jl(k)jp+m2)
� instead of 1

jl(k)j�p+m2 , similar results are obtained

due to the fact that

and C 00 [k]
bd�c
p �

�
jl(k)jp +m2

��
� C 01 [k]

dd�e
p :

We prefer using propagator 1
jl(k)j�p+m2 because the corresponding �Laplace equation�has

been studied extensively in the literature. On the other hand, @u(x;t)
@t

+ L�u (x; t) = 0,

with x 2 QNp , t > 0, behaves like a �heat equation�, i.e. the semigroup associated to

this equation is a Markov semigroup, see [67, Chapter 2], which means that �L� can be
considered as p-adic version of the Laplacian.

3.7 Symmetries

Given a polynomial a (�) 2 Qp [�1; � � � ; �n] and � 2 GLN (Qp), we say that � preserves
a if a (�) = a (��), for all � 2 QNp . By simplicity, we use �x to mean [�ij]xT , x =
(x1; � � � ; xN) 2 QNp , where we identify � with the matrix [�ij].
Let qN (�) = �21 + � � �+ �2N be the elliptic quadratic form used in the de�nition of the

Fourier transform, and let l (�) be the elliptic polynomial that appears in the symbol of

the operator L�. We de�ne the homogeneous Euclidean group of QNp relative to q (�) and

29



l (�), denoted as E0
�
QNp
�
:= E0

�
QNp ; q; l

�
, as the subgroup of GLN (Qp) whose elements

preserve q (�) and l (�) simultaneously. Notice that if O(qN) is the orthogonal group
of qN , then E0

�
QNp
�
is a subgroup of O(qN). We de�ne the inhomogeneous Euclidean

group, denoted as E
�
QNp
�
:= E

�
QNp ; q; l

�
, to be the group of transformations of the form

(a;�)x = a+ �x, for a; x 2 QNp , � 2 E0
�
QNp
�
.

In the real case qN = l (�) and thus the homogeneous Euclidean group is SO(N;R).
In the p-adic case, E0

�
QNp ; q; l

�
is a subgroup of O(qN), in addition, it is not a straight-

forward matter to decide whether or not E0
�
QNp ; q; l

�
is non trivial. For this reason, we

approach the Green kernels in a di¤erent way than do in [19], which is based on [52].

Notice that (a;�)�1 x = ��1 (x� a). Let (a;�) be a transformation in E
�
QNp
�
, the

action of (a;�) on a function f 2 H1 is de�ned by

((a;�) f) (x) = f
�
(a;�)�1 x

�
, for x 2 QNp ;

and on a functional W 2 H�
1, by

h(a;�)W; fi :=


W; (a;�)�1 f

�
, for f 2 H1 (R) :

These de�nitions can be extended to elements of the spaces H
n1 and H�
n1 , by taking

(a;�) (f1 
 � � � 
 fn) := (a;�)�1 f1 
 � � � 
 (a;�)�1 fn:

In general, if F : H
n1 ! X is linear X -valued functional, where X is a vector space, we

de�ne

((a;�)F ) (f1 
 � � � 
 fn) = F ((a;�) (f1 
 � � � 
 fn)) ;

and we say that F is Euclidean invariant if and only if (a;�)F = F for any (a;�) 2
E
�
QNp
�
.

De�nition 14 We call a distribution � =
P1

n=0 h�n; : �
n :i 2 (H1)
�1, with �n 2 H

�b
n
1 ,

Euclidean invariant if and only if the functional h�n; �i is Euclidean invariant for any
n 2 N.

It follows from this de�nition that � 2 (H1)�1 is Euclidean invariant if and only if
S� and T� are Euclidean invariant.
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4
Schwinger functions and convoluted

white noise

We set G := G (x;m;�) for the Green function (3.9). For � 2 (H1)�1, we de�ne �G as�
T�G

�
(g) = (T�) (G � g) , g 2 U , (4.1)

where U is an open neighborhood of zero. Since G : H1 (R) ! H1 (R), see (3.11), is
linear and continuous, cf. [35, Corollary 11.3], by the characterization theorem, cf. [26,

Theorem 3], or Section 2.5, �G is a well-de�ned and unique element of (H1)�1.

Remark 15 By using that h�x; G � fi = hG � �x; fi for any f 2 H1, we have that the
white-noise process introduced in Section 3.2 satis�es

hhG �� (x) ;	ii = hh� (x) ; G �	ii ;

because hh� (x) ; G �	ii = h�x; G �  1i, where 	 =
P1

n=0 h: �
n :;  ni,  n 2 H
b
n
1 .

We denote by
�
SH;Gn

	
n2N the Schwinger functions attached to �

G
H .

Theorem 16 With H and �H as in Theorem 9, then distribution �G
H 2 (H1)�1 is

Euclidean invariant and is given by

�GH = exp
�

 
�
Z
QNp

H� (G �� (x)) dNx+ 1
2


�
G
2 � 1

�
Tr; : �
2 :

�!
; (4.2)

where Tr 2
�
H�
1
�
QNp ;C

��b
2
denotes the trace kernel de�ned by hTr; f 
 gi = hf; gi0, f ,

g 2 H1
�
QNp ;R

�
. The Schwinger functions

�
SH;Gn

	
n2N satisfy the conditions (OS1) and

(OS4) given in Lemma 7, and

(Euclidean invariance) SH;Gn ((a;�) f) = SH;Gn (f) , f 2 (H1 (C))
n ; (OS2)
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for any (a;�) 2 E
�
QNp
�
.

Proof. By de�nition (4.1) and Theorem 9-(iii), we have

�
T�GH

�
(g) = exp

 
�
Z
QNp

H(iG � g (x)) + 1
2
(G � g (x))2 dNx

!
: (4.3)

On the other hand, by taking the T -transform in (4.2) and using (3.4) and Remarks 11-15,

we obtain

�
T�GH

�
(g) = exp

�
�1
2
kgk20

�
�

exp

(
�S

 Z
QNp

H� (G �� (x)) dNx
!
(ig)� 1

2
S
�
�
G
2�1

�
Tr; : �
2 :

��
(ig)

)

= exp

�
�1
2
kgk20

�
�

exp

(
�
Z
QNp

H (iG � g (x)) dNx
)
exp

�
1

2
S
�
�
G
2�1

�
Tr; : �
2 :

��
(ig)

�

= exp

�
�1
2
kgk20

�
exp

(
�
Z
QNp

H (iG � g (x)) dNx� 1
2


�
G
2�1

�
Tr; g 
 g

�)

= exp

�
�1
2
kgk20

�
exp

(
�
Z
QNp

H (iG � g (x)) dNx� 1
2
hTr;G � g 
G � g � g 
 gi

)

= exp

(
�
Z
QNp

H (iG � g (x)) dNx� 1
2
hG � g 
G � gi0

)
(4.4)

Formula (4.2) follows from (4.3)-(4.4). Since E�(�G
H) = 1, conditions (OS1) and (OS4)

follow from Lemma 7, and condition (OS2) follows from Lemma 6 by using the Euclidean

invariance of �G
H .

Remark 17 (i) Set G 1
2

:= G�; 1
2
;m = (L� +m2)

� 1
2 , and G 1

2

(f) := G 1
2
� f for f 2 H1(R).

By takingH � 0, we obtain the free Euclidean �eld. Indeed, f ! exp
n
�1
2

D
G 1

2
� f;G 1

2
� f
E
0

o
de�nes a characteristic functional. Let denote by �G 1

2

the probability measure on (H�1(R);B)
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provided by the Bochner-Minlos theorem. Then�
T�

G 1
2

0

�
(g) = exp

�
�1
2

D
G 1

2
� g;G 1

2
� g
E
0

�
=

��
�
G 1
2

0 ; exp i h�; gi
��

=

Z
H�
1(R)

exp i hW; gi d�G 1
2

(W ):

(ii )Assuming that z (t), see (3.17), is a Lévy characteristic, Theorem 16 implies that
the probability measure PGH , see (3.23), admits �

G
H as a generalized density with respect

to to white noise measure �, i.e. PGH = �
G
H�. Indeed, by (3.24) and (4.4), we have

Z
H�
1(R)

eihW;fidPGH (W ) = exp

(Z
QNp
z (G (x;�;m) � f (x)) ydNx

)

= exp

(
�
Z
QNp

H (iG � f (x)) dNx� 1
2
hG � f;G � fi0

)
=
�
T�GH

�
(f)

=



�G
H ; exp i h�; fi

��
:

4.1 Truncated Schwinger functions and the cluster

property

We denote by P (n) the collection of all partitions I of f1; : : : ; ng into disjoint subsets.

De�nition 18 Let
�
SH;Gn

	
n2N be a sequence of Schwinger functions, with S

H;G
0 = 1, and

SH;Gn 2 H�1
�
QNnp ;C

�
for n � 1. The truncated Schwinger functions

n
SH;Gn;T

o
n2N

are

de�ned recursively by the formula

SH;Gn (f1 
 � � � 
 fn) =
X
I2P (n)

Y
fj1;:::;jlg

SH;Gl;T (fj1 
 � � � 
 fjl) ;

for n � 1. Here for fj1; : : : ; jlg 2 I we assume that j1 < : : : < jl.

Remark 19 By the kernel theorem, the sequence
�
SH;Gn

	
n2N uniquely determines the

sequence
n
SH;Gn;T

o
n2N

and vice versa. All the SH;Gn are Euclidean (translation) invariant

if and only if all the SH;Gn;T are Euclidean (translation) invariant. The same equivalence

holds for �temperedness�( i.e. membership to (H1)�1).

De�nition 20 Let a 2 QNp , a 6= 0, and � 2 Qp. Let Ta� denote the representation of the
translation by a� on H1

�
QNnp ;R

�
. Take n, m � 1, f1; � � � ; fn 2 H1

�
QNp ;R

�
.
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(OS5)(Cluster property) A sequence of Schwinger functions
�
SH;Gn

	
n2N has the clus-

ter property if for all n, m � 1, it veri�es that

lim
j�jp!1

n
SH;Gm+n (f1 
 � � � 
 fm 
 Ta� (fm+1 
 � � � 
 fm+n))

o
(4.5)

= SH;Gm (f1 
 � � � 
 fm)SH;Gn (fm+1 
 � � � 
 fm+n) :

(Cluster property of truncated Schwinger functions) A sequence of truncated

Schwinger functions
n
SH;Gn;T

o
n2N

has the cluster property, if for all n, m � 1, it veri�es
that

lim
j�jp!1

SH;Gm+n;T (f1 
 � � � 
 fm 
 Ta� (fm+1 
 � � � 
 fm+n)) = 0: (4.6)

Remark 21 In the Archimedean case, it is possible to replace lim�!1 (�) in (4.5) and
(4.6) by lim�!1 j�jm (�) for arbitrary m, cf. [3, Remark 4.4]. This is possible because
Schwartz functions decay at in�nity faster than any polynomial function. This is not pos-

sible in the p-adic case, because the elements of our �p-adic Schwartz space H1
�
QNp ;R

�
�

only have a polynomial decay at in�nity. For instance, consider the one-dimensional

p-adic heat kernel Z(x; t) = F�1�!x
�
e�tj�j

�
p

�
, for t > 0, and � > 0, which is an element of

H1 (Qp;R). The Fourier transform e�tj�j
�
p of Z(x; t) decays faster that any polynomial

function in j�jp. However, Z(x; t) has only a polynomial decay at in�nity, more precisely,

Z(x; t) � C
t�

t
1
� + jxjp

��+1 , t > 0, x 2 Qp;
cf. [25, Lemma 4.1].

Lemma 22 Let H(z) =
P1

n=0Hnz
n, z 2 U � C, and G as in Theorem 16, and

f1; � � � ; fn 2 H1
�
QNp ;R

�
. Assume that z (t) = �H(it) � 1

2
t2, t 2 R is a Lévy char-

acteristic, then the truncated Schwinger functions are given by

SH;Gn;T (f1 
 � � � 
 fn) =

8>>><>>>:
�Hn

R
QNp

nQ
i=1

G � fi (x) dNx for n � 2

(�H2 + 1)
R
QNp

G � f1 (x)G � f2 (x) dNx for n = 2:

(4.7)

Proof. The result follows from the formula for the Schwinger functions given in Theorem
7.7 in [66], and the uniqueness of the truncated Schwinger functions. The coe¢ cients in

front of the integrals in (4.7) are the n-th derivatives of the Lévy characteristic divided

by in. For the general H as in Theorem 16 these coe¢ cients are the n-th derivatives of

�
�
H(iz) + 1

2
z2
�
, z 2 U .
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Lemma 23 Assume that �d > N . Let �, H, G as in Theorem 16. Then the sequence

of truncated Schwinger functions
n
SH;Gn;T

o
n2N

has the cluster property.

Proof. Fix a 2 QNp and take � 2 Qp, m, n � 1, f1; � � � ; fm+n 2 H1
�
QNp ;R

�
. By Lemma

22, we have ���SH;Gn;T (f1 
 � � � 
 fn)
 Ta� (fm+1 
 � � � 
 fm+n)
���

= j�Hm+nj
�����
Z
QNp

mY
i=1

(G � fi) (x)
m+nY
i=m+1

Ta� (G � fi) (x)
�����

We now use that G � fi 2 H1
�
QNp ;R

�
and that H1

�
QNp ;R

�
� C0

�
QNp ;R

�
to get���SH;Gn;T (f1 
 � � � 
 fn)
 Ta� (fm+1 
 � � � 
 fm+n)

���
� jHm+nj

mY
i=1

kG � fikL1
m+n�1Y
i=m+1

kTa� (G � fi)kL1
Z
QNp
jTa� (G � fm+n) (x)j dNx:

Now, the announced result follows from the following fact:

Claim. If �d > N , for any f 2 H1
�
QNp ;R

�
, it veri�es that

lim
j�jp!1

Z
QNp

G (x� �a� y) jfm+n (y)j dNy = 0:

Since �d > N , by the Riemann-Lebesgue theorem, G 2 C0
�
QNp ;R

�
, and consequently

G (x� �a� y) jfm+n (y)j � kGkL1 jfm+n (y)j 2 L1R
�
QNp
�
. Now the Claim follows by

applying the dominated convergence theorem.

Theorem 24 With H, G and �G
H 2 (H1)

�1as in Theorem 16. If �d > N , then the

sequence of Schwinger functions
�
SH;Gn

	
n2N has the cluster property (OS5).

Proof. In [3, Theorem 4.5] was established that the cluster property and the truncated

cluster property are equivalent. By using this result, the announced result follows from

Lemma 23.

Remark 25 The class of Schwinger functions
�
SH;Gn

	
n2N corresponding to a distribution

�G
H 2 (H1)

�1as in Theorem 16 di¤ers of the class of Schwinger functions corresponding

to the convoluted generalized white noise introduced in [66]. In order to explain the

di¤erences, let us compare the properties of the Levy characteristic used in [66] with the

properties of the function H used in this article, where z (t) = �H(it)� 1
2
t2, t 2 U � R.

We require only that function H be holomorphic at zero and H(0) = 0, as in [19]. This
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only impose a restriction in choosing the coe¢ cients in front of the integrals corresponding

to the n-th truncated Schwinger function, see (4.7). On the other hand in [66], the

author requires the condition that the measure M has �nite moments of all orders. This

implies that z belongs to C1(R), but z does not have to have a holomorphic extension.

Furthermore, since exp sz (t) is positive de�nite for any s > 0, cf. [66, Proposition

5.5], and by using z (0) = 0 and a result due Schoenberg, cf. [8, Theorem 7.8], we have

�z (t) : R ! C is a negative de�nite analytic function. Since j�z (t)j � C jtj2 for any
jtj � 1, [8, Corollary 7.16], we conclude that �z (t) is a polynomial of the degree at most
2, and then Hn = 0 for n � 3.
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A
A brief review of the p�adic analysis

The p-adic numbers were discovered by the German mathematician Kurt Hensel in 1897.

The construction the �eld of p-adic numbers Qp is very similar to the construction of the
�eld of real numbers R (here p is a �xed prime number), both number �elds are comple-
tions of the �eld of rational numbers Q. While the real numbers R, are the completion of
Q with respect to the usual absolute value, denoted by j � j1, the p-adic numbers Qp are
obtained by completing Q with respect to the p-adic absolute value, denoted by j � jp.
The theory of p-adic numbers has received a lot of attention into several areas of math-

ematics, including number theory, algebraic geometry, algebraic topology and analysis.

Recently in the literature, there are many articles where p-adic analysis is applied to other

branches of the science such as physics, mathematical physics, biology and psychology,

among others.

The conventional description of the physical space-time uses the �eld R of real num-
bers, and there are many mathematical models based on R that successfully describe

physical reality. Nevertheless, there are general arguments that suggest that one cannot

make measurements in regions of extent smaller than the Planck length � 10�33 cm, see
e.g.[56] . On the other hand, by Ostrowski theorem, see e.g. [2], it is natural to use he

�eld Qp of p-adic numbers instead of the real �eld R, as a possible alternative to describe
the structure of space-time. In [63]-[64], I. Volovich posed the conjecture of the non-

Archimedean nature of the space-time at the level of the Planck scale. This conjecture

has originated a lot research, for instance, in quantum mechanics, see e.g. [34], [60], [61],

[65], in string theory, see e.g. [10], [17], [58], [59], and in quantum �eld theory, see e.g.

[24],[41]. For a further discussion on non-Archimedean mathematical physics, the reader

may consult [15], [62] and the references therein.

In this section we collect some basic results about p-adic analysis that will be used

along this thesis. For an in-depth review of the p-adic analysis the reader may consult

[2], [54], [62].
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A.1 The �eld of p-adic numbers

Let p a �xed prime number. The �eld of p�adic numbers Qp is de�ned as the completion
of the �eld of rational numbers Q with respect to the p�adic norm j � jp, which is de�ned
as

jxjp =

8><>:
0 if x = 0

p�
 if x = p
 a
b
,

(A.1)

where a and b are integers coprime with p. The integer 
 := ord(x), with ord(0) := +1,
is called the p�adic order of x.
Any p�adic number x 6= 0 has a unique expansion of the form

x = pord(x)
1X
j=0

xjp
j; (A.2)

where xj 2 f0; : : : ; p � 1g and x0 6= 0. By using this expansion, we de�ne the fractional
part of x 2 Qp, denoted fxgp, as the rational number

fxgp =

8><>:
0 if x = 0 or ord(x) � 0

pord(x)
P�ordp(x)�1

j=0 xjp
j if ord(x) < 0:

(A.3)

In addition, any non-zero p�adic number can be represented uniquely as x = pord(x)ac (x)

where ac (x) =
P1

j=0 xjp
j, x0 6= 0, is called the angular component of x. Notice that

jac (x)jp = 1.
We extend the p�adic norm to QNp by taking

jjxjjp := max
1�i�N

jxijp; for x = (x1; : : : ; xN) 2 QNp : (A.4)

We de�ne ord(x) = min1�i�Nford(xi)g, then jjxjjp = p�ord(x). The metric space
�
QNp ; jj � jjp

�
is a complete ultrametric space. For r 2 Z, denote by BN

r (a) = fx 2 QNp ; jjx� ajjp � prg
the ball of radius pr with center at a = (a1; : : : ; aN) 2 QNp , and take BN

r (0) := BN
r .

Note that BN
r (a) = Br(a1) � � � � � Br(aN), where Br(ai) := fx 2 Qp; jxi � aijp � prg

is the one-dimensional ball of radius pr with center at ai 2 Qp. The ball BN
0 equals

the product of N copies of B0 = Zp, the ring of p�adic integers of Qp. We also de-
note by SNr (a) = fx 2 QNp ; jjx � ajjp = prg the sphere of radius pr with center at

a = (a1; : : : ; aN) 2 QNp , and take SNr (0) := SNr . We notice that S
1
0 = Z�p (the group

of units of Zp), but
�
Z�p
�N ( SN0 . The balls and spheres are both open and closed subsets
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in QNp . In addition, two balls in QNp are either disjoint or one is contained in the other.
As a topological space

�
QNp ; jj � jjp

�
is totally disconnected, i.e. the only connected

subsets of QNp are the empty set and the points. A subset of QNp is compact if and only if
it is closed and bounded in QNp , see e.g. [62, Section 1.3], or [2, Section 1.8]. The balls and
spheres are compact subsets. Thus

�
QNp ; jj � jjp

�
is a locally compact topological space.

We will use 
 (p�rjjx� ajjp) to denote the characteristic function of the ball BN
r (a).

We will use the notation 1A for the characteristic function of a set A. Along the article

dNx will denote a Haar measure on
�
QNp ;+

�
normalized so that

R
ZNp
dNx = 1:

A.2 The Bruhat-Schwartz space

A complex-valued function ' de�ned on QNp is called locally constant if for any x 2 QNp
there exist an integer l(x) 2 Z such that

'(x+ x0) = '(x) for x0 2 BN
l(x): (A.5)

Denote by E
�
QNp
�
the linear space of locally constant C-value functions on QNp . A

function ' : QNp ! C is called a Bruhat-Schwartz function (or a test function) if it is

locally constant with compact support. The C-vector space of Bruhat-Schwartz functions
is denoted by D := DC(QNp ) := D(QNp ). Note that one cannot de�ne di¤erential operators
acting on complex-functions over QNp :

Remark 26 Any test function can be represented as a linear combination, with complex
coe¢ cients, of characteristic functions of balls.

De�nition 27 For ' 2 D(QNp ), the largest number l = l(') satisfying (A.5) is called the

parameter of constancy of the function '. Let us denote by DlM(QNp ) the �nite-dimensional
space of test functions having supports in the ball BN

M and with parameters of constancy

� l .

Remark 28 The following embedding holds: DlL(Q) � Dl
0

M(Q); M � L; l � l
0
: These

representations give us the inductive limit topology on the corresponding spaces:

DM(QN) = lim�!
�l; l2N

DlM(QN); D(QNp ) = lim�!
M2N
DM(QN):

The convergence in D(QNp ) is de�ned in the following way: 'j ! 0 in D(QNp ) as j !1
if and only if there are M; l that such that 'j 2 DlM(QNp ), where M; l are two numbers,

not depending on j, and 'j ! 0 uniformly in DlM(QN).
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A.2.1 The Fourier transform of test functions

Set �p(y) := exp(2�ifygp) for y 2 Qp. The map �p(�) is an additive character on Qp, i.e.
a continuous map from (Qp;+) into S (the unit circle considered as multiplicative group)
satisfying �p(x0+x1) = �p(x0)�p(x1), x0; x1 2 Qp. The additive characters of Qp form an
Abelian group which is isomorphic to (Qp;+), the isomorphism is given by � ! �p(�x),

see e.g. [2, Section 2.3].

Given � = (�1; : : : ; �N) and y = (x1; : : : ; xN) 2 QNp , we set � � x :=
PN

j=1 �jxj. The

Fourier transform of ' 2 D(QNp ) is de�ned as

(F')(�) =
Z
QNp

�p(� � x)'(x)dNx for � 2 QNp ; (A.6)

where dNx is the normalized Haar measure on QNp . The Fourier transform is a linear

isomorphism from D(QNp ) onto itself satisfying (F(F'))(�) = '(��), see e.g. [2], [62].

Moreover,

' 2 DlM(QN), F ['] 2 D�M�l (QN): (A.7)

We will also use the notation Fx!�' and b' for the Fourier transform of '.

If f 2 L1 its Fourier transform is de�ned by

(Ff)(�) =
Z
QNp

�p(� � x)f(x)dNx; for � 2 QNp : (A.8)

If f 2 L2; its Fourier transform is de�ned as

(Ff)(�) = lim
k!1

Z
jjxjjp�pk

�p(� � x)f(x)dNx; for � 2 QNp ; (A.9)

where the limit is taken in L2: We recall that the Fourier transform is unitary on L2; i.e.

jjf jjL2 = jjFf jjL2 for f 2 L2 and (F(F'))(�) = '(��) is also valid in L2, see e.g. [54,
Chapter III, Section 2].

For a more details on p-adic analysis we invite the reader to consult [2], [62]

A.3 The Bruhat�Schwartz distributions

Let D0 := D0(QNp ) denote the set of all continuous functional (distributions) on D. D0(QNp )
is a complete topological space. The natural pairing D0(QNp ) � D(QNp ) ! C is denoted
as ( ; ') for  2 D0(QNp ) and ' 2 D(QNp ). The convergence in D0(QNp ) is de�ned in the
following way:  j ! 0 in D0(QNp ) as j !1 if and only if ( j; ')! 0 for any ' 2 D see
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e.g. [2], [62].

We will denote by DR := DR(QNp ), the R-vector space of test functions, and by D0R :=
D0R(QNp ), the R-vector space of distributions.
Every f 2 E

�
QNp
�
, or more generally in L1loc, de�nes a distribution f 2 D0

�
QNp
�
by

the formula

(f; ') =

Z
QNp

f (x)' (x) dmx: (A.10)

Such distributions are called regular distributions.

A.3.1 The Fourier transform of a distribution

The Fourier transform F [W ] of a distribution W 2 D0
�
QNp
�
is de�ned by

(F [W ] ; ') = (W;F [']) for all ' 2 D(QNp ). (A.11)

The Fourier transform W ! F [W ] is a linear isomorphism from D0
�
QNp
�
onto itself.

Furthermore, W (�) = F [F [W ] (��)]. We also use the notation Fx!�W and cW for the

Fourier transform of W:

A.4 Some function Spaces

Given � 2 [0;1), we denote by L� := L�
�
QNp
�
:= L�

�
QNp ; dNx

�
; the C�vector space of

all the complex valued functions g satisfying
R
QNp
jg (x)j� dNx <1, and L1 := L1

�
QNp
�
=

L1
�
QNp ; dNx

�
denotes the C�vector space of all the complex valued functions g such that

the essential supremum of jgj is bounded. The corresponding R-vector spaces are denoted
as L�R := L�R

�
QNp
�
= L�R

�
QNp ; dNx

�
, 1 � � � 1.

Set

C0(QNp ;C) :=
�
f : QNp ! C; f is continuous and lim

jjxjjp!1
f(x) = 0

�
; (A.12)

where limjjxjjp!1 f(x) = 0 means that for every � > 0 there exists a compact subset B(�)

such that jf(x)j < � for x 2 QNp nB(�): We recall that (C0(QNp ;C); jj � jjL1) is a Banach
space. The corresponding R-vector space will be denoted as C0(QNp ;R).
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B
A brief review of the white noise

analysis

The Lebesgue measure plays a fundamental role in the integration theory in RN . Re-
call that this measure is uniquely determined (up to some constant) by the following

conditions:

1. it assigns �nite values to bounded Borel sets and positive numbers to non-empty open
sets;

2. it is translation invariant.

It is well-known that these is no a Lebesgue measure on in�nite dimensional vector

spaces. For instance, if we consider a separable Hilbert space H and � be a Borel measure

in H. Assume that � satis�es the above conditions 1 ; 2. Let f�1; �2; � � � g be orthonormal
basis of H. Let Bn be ball of radius 1=2 centered at �n, and B the ball of radius 2

centered at the origin. Then 0 < �(B1) = �(B2) = �(B3) = � � � <1. Note that the Bns
are disjoint and contained in B. Therefore, we must have �(B) �

P
n �(Bn) = 1. This

contradicts 1.

The study of Gaussian white noise as a mathematically rigorous object was initiated by

T. Hida in 1975: This can be considered an in�nite-dimensional analogue of the Schwartz

distribution theory, where the role of the Lebesgue measure on RN is played by the

Gaussian measure � on the dual of certain nuclear space N :
The starting point of white noise analysis [21], [44] and [26] is a real separable Hilbert

space H with inner product (�; �) and the corresponding norm k�k, and a Gel�fand triple
N � H � N � , where N is a nuclear space densely and continuously embedded in H.

By the Bochner-Minlos theorem, there exists a unique probability measure � on B (N �)

(��algebra on N � generated by the cylinder sets) with the following property:
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E
�
eihW;'i

�
=

Z
N �
eihW;'id�(W ) = e(�

1
2
k'k2) . (B.1)

The probability space (N �;B (N �) ; �) is called Gaussian space associated with N and

H:

In recent years Gaussian white noise analysis has become into a useful tool in applied

mathematics and mathematical physics. For a detailed exposition of the theory and for

many examples of applications we refer the reader to the monograph [21].

In this section we give a brief introduction into the concepts and results of white noise

analysis used throughout this work, for an in-depth exposition the reader may consult

[21], [22], [29] and [36].

B.1 Locally convex spaces

In this section, we review some of the basic properties of the locally convex spaces and

the countably Hilbert spaces, for an in-depth exposition the reader may consult [45], [47],

[55]. Let K denote R or C.

De�nition 29 A topological vector space, V, is a K�vector space equipped with a topology
for which addition + : V � V ! V and scalar multiplication � : K�V ! V are continuous.

Let V (0) be a neighborhood system of the origin. By using the continuity of the

addition operation on V, a neighborhood system a point a is obtained by translating V

(0) to a, i.e. V (a) = a+ V (0).

De�nition 30 A locally convex space, V, is a topological vector space V whose topology
is generated by translations of balanced, absorbent, convex sets. Equivalently they can be

de�ned as a topological vector space whose topology is de�ned by a family of seminorms

fk � k�g�2A.

We recall a set G is said to be balanced if for all g 2 G and all scalars �, with j�j � 1
we have �g 2 G. The set G is said to be absorbent if to every v 2 V, there is a number
� > 0 such that v 2 �G for all scalars � such that j�j < �: Assuming that G is balanced,

in order that G be absorbent it su¢ ces that to every v 2 V there is � > 0 such that

v 2 �G.
Without changing the topology we may choose a directed family of seminorms for

V, which means that for any �; � 2 A, there exists 
 2 A such that kvk� � kvk
 and
kvk� � kvk
 for all v 2 V.
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Theorem 31 ([45, Theorem V.2]) Let V and W be locally convex spaces with families

of semi-norms fk � k�g�2A and fk � k�g�2B. Then a linear map T : V ! W, is continuous
if and only if for all � 2 B, there are �1; �2; � � �; �n 2 A and C > 0 with

kTvk� � C
�
kvk�1 + kvk�2 + � � �+ kvk�2

	
:

If the fk � k�g�2A are directed, then T is continuous if and only if for all � 2 B

kTvk� � C kvk� ,

for some � 2 A, and C > 0.

Remark 32

1. A locally convex space is metrizable if and only if it admits a countable set of semi-

norms, see [45, Theorem V.5].

2. A locally convex space is called Fréchet if it is metrizable and complete.

Remark 33 For any topological linear space V on R, we denote by VC its complexi�cation,
i.e., VC = V + iV. By de�nition every element � 2 VC can be decomposed into � = � + i�

; �; � 2 V. The canonical bilinear form on V� � V, which is an R-bilinear form, can be
naturally extended to a C-bilinear form on V�C�VC, which is denoted by the same symbol.
Namely,

hx+ iy; � + i�i = hx; �i � hy; �i+ i(hx; �i+ hy; �i); x; y 2 V�; �; � 2 V : (B.2)

If H is a real Hilbert space, then the inner product on HC = H + iH of f1 + ig1 and

f2 + ig2 with f1; g1f2; g2 2 H is

( f1 + ig1; f2 + ig2) = (f1; f2) + (g1; g2) + i [(f2; g1)� (f1; g2)] :

The canonical bilinear form on HC �HC is

hf1 + ig1; f2 + ig2i = (f1; f2)� (g1; g2) + i [(f2; g1) + (f1; g2)] ;

it is related to the inner product on HC as follows:

hF;Gi = (F;G); F; g 2 HC:
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B.1.1 Countably-Hilbert spaces and Nuclear spaces

For an in-depth discussion about countably-Hilbert space may consult [17], [44].

De�nition 34 A seminorm k�k on a vector space V over R (resp. C) is called Hilbertian
if it is induced by some non-negative, symmetric bilinear (resp. Hermitian sesquilinear)

form (�; �) on V � V, namely if kvk2 = (v; v) for all v 2 V.

De�nition 35 Two norms k � k1 and k � k2, de�ned in vector space V are said to be
compatible if every sequence fvngn2N with vn 2 V, which is Cauchy with respect to both
norms and converges to the zero element with respect one of them, also converges to zero

elements with respect to the second.

De�nition 36 A locally convex space V is called a countably Hilbert space or a CH-space
for brevity, if it admits a countable set of compatible Hilbertian norms.

Let V be a countably Hilbert space associated with an increasing sequence fk�kngn2N ;
k�kn =

p
(�; �)n of Hilbertian norms. Denote Vn the completion of V with respect to the

norm k�kn : In each of these spaces the set V is dense. By hypothesis, if m � n then

(v; v)m � (v; v)n 8v 2 V. From this it follows that the function maps en element v 2 V
from Vn to Vm (i.e. the same element v considered in two di¤erent spaces) is a continuous
function of an everywhere dense set in Vn onto an everywhere dense set in Vm, so it can be
extended to a continuous linear operator T nm which maps the space Vn onto an everywhere
dense set of Vm (T nm : Vn ! Vm). Note that T pm = T nmT

p
n if m � n � p.

De�nition 37 A linear operator T which maps a Hilbert space V into a Hilbert space W
is called Hilbert-Schmidt, if T admits a representation of the form

Tv =
1X
k=1

�k (v; vk)wk; v 2 V, (B.3)

where fvkg and fwkg are orthonormal systems of vectors in the spaces V and W respec-

tively, �k > 0 and
P1

k=1 �
2
k <1, see [17, Chapter I, section 2.2, Theorem 3].

Remark 38 Every series of the form (B.3), in which vk; wk; �k have the aforementioned

properties, de�nes a completely continuous linear operator (see [17, Chapter I, section

2.1]). This means that carries any bounded set in a set whose closure is compact.

We can equivalently say that the operator T be of Hilbert-Schmidt type, if the seriesP1
k=1 kTvkk

2 converge for at least one orthonormal basis fvkg of V, see [17, Chapter I,
section 2.2, Theorem 2.].
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De�nition 39 A countably Hilbert space N is called nuclear, if for any m there is an

n � m such that the operator T nm is nuclear, i.e. has the form

T nmv =

1X
k=1

�k (v; vk)nwk; v 2 N ,

wherefvkg and fwkg are orthonormal systems of vectors in the spaces Nn and Nm respec-
tively, �k > 0 and

P1
k=1 �k < 1. Where Nn;Nm denotes the completion of N with

respect to the norm k�kn and k�km, respectively.

Remark 40 The product ST any two Hilbert-Schmidt operator is a nuclear operator.

Conversely, every nuclear operator is a product of two Hilbert-Schmidt operators see [17,

Chapter I, section 2.3 Theorem 4]. Besides like the convergence of series
P1

k=1 �
2
k follows

from the convergence of
P1

k=1 �k, then every nuclear operator is of Hilbert-Schmidt type.

We note further that instead of the nuclearity of the operator T nm one can require

that it be of Hilbert-Schmidt type. Indeed, since the product of any two Hilbert-Schmidt

operators is a nuclear operator. If the operators T pn and T
n
m are of Hilbert-Schmidt type,

then T pm = T nmT
p
n is a nuclear operator.

Remark 41 Every nuclear space N is perfect. In others words, every bounded closed set

in a nuclear space N is compact, see [17, Chapter I, section 3.4]. The basic properties of

nuclear spaces N are the following

1. N is separable (contains an everywhere dense countable set), see [17, Chapter I,

section 3.4].

2. N is complete relative to weak convergence, see [17, Chapter I, section 3.4].

3. Both in N and its dual N �
, strong and weak convergence coincide, see [17, Chapter

I, section 3.4].

4. N is perfect relative to the topology of weak and strong convergence, see [17, Chap-

ter I, section 3.4].

5. A linear subspace of a nuclear space is nuclear, see [55, Part III, Proposition 50.1].

6. The quotient of a nuclear space modulo a closed linear subspace is nuclear, see [55,

Part III, Proposition 50.1].

7. A product of nuclear spaces is nuclear, see [55, Part III, Proposition 50.1].
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8. A countable topological direct sum of nuclear spaces is nuclear, see [55, Part III,

Proposition 50.1].

Remark 42 A Fréchet space V is nuclear if and only if so is V�, see [44, Proposition
1.3.3].

Theorem 43 The nuclear Fréchet space N can be represented as

N =
\
l2N

Nl;

where fNl;l2N g is a family of Hilbert spaces such that for all l1; l2 2 N there exists l 2 N
such that the embeddings Nl ! Nl1 and Nl ! Nl2 are of Hilbert-Schmidt type. The
topology of N is given by the projective limit topology. i.e., the coarsest topology on N
such that the canonical embeddings N ! Nl are continuous for all l 2 N, See [47,

Chapter III, section 7.3], or [9, Corollary 2.9.7].

B.2 Bochner-Minlos theorem

De�nition 44 A C-valued function C on N a nuclear space, is called a characteristic

functional if it satis�es the following conditions :

1. C is continuous;

2. C is positive de�nite, i.e.,

nX
j;k=1

�j�kC(�j � �k) � 0

for any choice of �1; � � �; �n 2 C; �1; � � �; �n 2 N and j = 1; 2; � � �; n;

3. C(0) = 1.

A characteristic functional is a generalization of a characteristic function of a proba-

bility distribution on RN :
Let N be a real nuclear space, N � its dual space and h�; �i the canonical bilinear form

on N � � N . Let B be the so-called cylindrical �-�eld on N �, i.e., the smallest �-�eld

such that the function

x! (hx; �1i; � � � ; hx; �Ni) 2 RN ; x 2 N �;
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is a measurable for choice of �1; � � � ; �N 2 N and N = 1; 2; � � � ; where RN is equipped
whit the Borel �- �eld.

Theorem 45 (Bochner-Minlos) [44, Theorem 1.5.2] Let N be a real nuclear space. If

� is a probability measure on N �, its Fourier transform

b�(�) = Z
N �
eihx;�i�(dx); � 2 N , (B.4)

is a characteristic function. Conversely, for a characteristic function C on a nuclear space
N there exist a unique probability measure � on N � such that C = b�.
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C

A Wavelet basis for the spaces Hl (C)

In this Appendix we extend the Kozyrev basis, originally proved for L2, to the spaces

Hl (C), for l a non-negative integer.
Let us consider the N -dimensional basis f 
�Jg of p-adic wavelets of QN ; introduced

by Albeverio and Kozyrev in [4]:

 
�J(x) = p
�N

2 �(p�1J � (p
x� �))
(kp
x� �kp); x 2 QNp ; 
 2 Z; � 2 QNp =ZNp ; (C.1)

� = (�(1); �(2); : : : ; �(N)); �(l) =
�1X
i=�l

�l(i)p
i; �

(l)
i = 0; 1; : : : ; p� 1; �l 2 Z�;

J = (j1; j2; : : : ; jN); jl = 0; 1; : : : ; p� 1; where at least one of jl is not equal to zero.

Remark 46 We compute the Fourier transform of  
�J for further use:

b 
�J(�) = Z
QNp

�(� � x) 
�J(x)dNx

= p
�N

2

Z
QNp

�(� � x)�(p�1J � (p
x� �))
(kp
x� �kp)dNx

= p
�N

2

Z
QNp

�[� � x+ p
�1J � x� p�1J � �]
(kp
x� �kp)dNx:

Making the change variable z = p
x � �; dNx = pN
dNz, in the previous integral we
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obtain

b 
�J(�)
= p

�N

2

Z
QNp

�[p�
� � (z + �) + p
�1J � (z + �)p�
 � p�1J � �)]
(kzkp)pN
dNz

= p
N

2

Z
QNp

�[p�
� � z + p�
� � � + p�1J � z + p�1J � � � p�1J � �]
(kzkp)dNz

= p
N

2

Z
QNp

�(p�
� � �)�(p�
� � z + p�1J � z)
(kzkp)dNz

= p
N

2 �(p�
� � �)

Z
QNp

�[(p�
� + p�1J) � z]
(kzkp)dNz

= p
N

2 �(p�
� � �)
(kp�
� + p�1Jkp):

Theorem 47 The set of functions

 
�J(x) = p
�N

2 �(p�1J � (p
x� �))
(kp
x� �kp) with 
; J; � as before,

is an orthonormal basis in Hl (C) (see section 1.1) consisting of eigenvectors of the oper-
ator

(A(�))(x) = F�1�!xf�(k�kp)Fx!��g (C.2)

where � is a radial function.

Proof. let us prove that the functions in (C.1) are eigenvectors of the operator (C.2) i.e.
(A( 
�J))(x) = �(p1�
) 
�J :

(A( 
�J))(x) = F�1�!xf�(k�kp)Fx!� 
�Jg = f�(k�kp)b 
�J(�)g_(x)
=

Z
QNp

Z
QNp

�((y � x) � �)�(k�kp) 
�J(y)dN�dNy

=

Z
QNp

�(�� � x)�(k�kp)b 
�J(�)dNx
=

Z
QNp

�(�� � x)�(k�kp)p
N

2 �(p�
� � �)
(kp�
� + p�1Jkp)dNx

= p
N

2

Z
QNp

�((p�
� � x) � �)�(k�kp)
(kp�
� + p�1Jkp)dNx

Suppose that kp�
� + p�1Jkp � 1. Then � 2 �p
�1J + p
ZNp , and k�kp = p1�
.

(A( 
�J))(x) = p
N

2 �(p1�
)

Z
QNp

�((p�
� � x) � �)
(kp�
� + p�1Jkp)dNx
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Making the change variable z = p�
� + p�1J; dN� = p�N
dNz, in the previous integral

we obtain

(A( 
�J))(x) = p
N

2 �(p1�
)

Z
QNp

�[p
(p�
� � x) � (z � p�1J)]
(kzkp)p�N
dNz

= p
�N

2 �(p1�
)

Z
QNp

�[p
(p�
� � x) � z � p
�1(p�
� � x) � J)]
(kzkp)dNz

= p
�N

2 �(p1�
)�[�p
�1(p�
� � x) � J ]

Z
QNp

�[p
(p�
� � x) � z]
(kzkp)dNz

= p
�N

2 �(p1�
)�[�p
�1(p�
� � x) � J ]
(kp
(p�
� � x)kp)

= �(p1�
)p
�N

2 �[p�1J � (p
x� �)]
(kp
x� �kp)

= �(p1�
) 
�J(x):

Let us see now that functions (C.1) are orthogonal:

h 
;�;J ;  
0 ;�0 ;J 0 il =
Z
QNp
[max(1; k�kp)]2lb 
;�;J(�)b 
0 ;�0 ;J 0 ;(�)dN�

= p
N(
+


0
)

2

Z
QNp
[max(1; k�kp)]2l�(p�
� � �)
(kp�
� + p�1Jkp)

� �(�p�

0
� � �0)
(kp�


0
� + p�1J

0kp)dN�:

= p
N(
+


0
)

2

Z
QNp
[max(1; k�kp)]2l�(p�
� � �)�(�p�


0
� � �0)

� 
(kp�
� + p�1Jkp)
(kp�

0
� + p�1J

0kp)dN�:

Suppose that l; k 2 Z with l � k: Then following product of indicators is either an indicator

or zero see e.g. [2] and [62]:


(kplx� akp)
(kpkx� bkp) = 
(kplx� akp)
(kpk�la� bkp); with x; a; b 2 QNp : (C.3)

If 
 � 

0
;by the above

h 
;�;J ;  
0 ;�0 ;J 0 il = p
N(
+


0
)

2

Z
QNp
[max(1; k�kp)]2l�(p�
� � �)�(�p�


0
� � �0)

�
(kp�

0
� + p�1J

0kp)
(k � p

0�
�1J

0
+ p�1Jkp)dN�:

Suppose that 
 < 

0
. Then

kp

0�
�1J

0
+ p�1Jkp = max(kp


0�
�1J
0kp; kp�1Jkp) = p > 1:
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Thus 
(k � p

0�
�1J

0
+ p�1Jkp) = 0 and h 
;�;J ;  
0 ;�0 ;J 0 il;� = 0.

Consequently the scalar product h 
;�;J ;  
0 ;�0 ;J 0 il;�, can be nonzero only is 
 = 

0
. In this

case we obtain

h 
;�;J ;  
0 ;�0 ;J 0 il = �
;
0p
N


Z
QNp
[max(1; k�kp)]2l�(p�
� � �)�(�p�
� � �

0
)

�
(kp�
� + p�1J
0kp)
(k � p�1J

0
+ p�1Jkp)dN�:

Since 
(k � p�1J 0
+ p�1Jkp) = 1 only if J = J

0
, we have 
(k � p�1J 0

+ p�1Jkp) = �J;J 0 :

Hence the scalar product can be non-zero only when 
 = 

0
, and J = J

0
, then the previous

integral is equal to

h 
;�;J ;  
0 ;�0 ;J 0 il = �
;
0�J;J 0p
N


�
Z
QNp
[max(1; k�kp)]2l�(p�
� � (� � �

0
))
(kp�
� + p�1Jkp)dN�:

Suppose that kp�
� + p�1Jkp � 1. Then � 2 �p
�1J + p
ZNp , and k�kp = p1�
.

h 
;�;J ;  
0 ;�0 ;J 0 il = �
;
0�J;J 0p
N
[max(1; p1�
)]2l

�
Z
QNp

�(p�
� � (� � �0))
(kp�
� + p�1Jkp)dN�:

Making the change variable z = p�
� + p�1J; dN� = p�N
dNz, in the previous integral

we obtain

h 
;�;J ;  
0 ;�0 ;J 0 il

= �
;
0�J;J 0p
N
[max(1; p1�
)]2l

Z
QNp

�(p�
(� � �0) � (z � p�1J)p
)
(kzkp)p�N
dNz

= �
;
0�J;J 0 [max(1; p
1�
)]2l�(�p�1(� � �0) � J)

Z
QNp

�[(� � �0) � z]
(kzkp)dNz

= �
;
0�J;J 0 [max(1; p
1�
)]2l�(�p�1(� � �0) � J)
(k� � �0kp): (C.4)

If � 6= �
0
. Then k� � �0kp � p > 1 and the previous integral is zero.

Consequently we have to the product is

h 
;�;J ;  
0 ;�0 ;J 0 il = �
;
0�J;J 0��;�0 [max(1; p
1�
)]2l:

Thus the system of functions (C.1) is orthogonal. Without loss of generality we can
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consider the orthonormal system

 
(l)

;�;J =

p
�N

2 �(p�1J � (p
x� �))
(kp
x� nkp)

[max(1; p1�
)]2l
: (C.5)

To prove the completeness of the system of functions (C.1), remember that the space

DC(QNp ) is dense in Hl(C) and besides the set of functions  
(l)

;j;n is invariant under

dilations and translations, therefore is su¢ cient to verify the Parseval identity for the

characteristic function 
(kxkp):

h
(kxkp);  (l)
;�;Jil =
1

[max(1; p1�
)]2�l

Z
QNp
[max(1; k�kp)]2lb
(k�kp); b 
;�;J(�)dN�

=
1

[max(1; p1�
)]2l

Z
QNp
[max(1; k�kp)]2l
(k�kp)p

N

2 �(p�
� � �)
(kp�
� + p�1Jkp)d�:

(C.6)

Suppose that 0 � �
 (
 � 0), according to (C.3) we obtain that the product of indicators
is zero:


(k�kp)
(kp�
� + p�1Jkp) = 
(k�kp)
(k � p�1Jkp):

Suppose that �
 � 0 (0 � 
), according to (C.3), we obtain that the product of indicators

is non-zero


(kp�
� + p�1Jkp)
(k�kp) = 
(kp�
� + p�1Jkp)
(k � p
�1Jkp); if 
 � 1

h
(kxkp);  (l)
;�;Jil =
p
N

2

[max(1; p1�
)]2l

Z
QNp
[max(1; k�kp)]2l�(p�
� � �)
(k�kp)

� 
(kp�
� + p�1Jkp)dN�

=
p
N

2 [max(1; p1�
)]2l

[max(1; p1�
)]2l

(k � p
�1Jkp)

Z
QNp
[max(1; k�kp)]2l�(p�
� � �)

� 
(kp�
� + p�1Jkp)dN�

= p
N

2 
(k � p
�1Jkp)

Z
QNp

�[p�
(p
(z � p�1J)) � �]
(kzkp)p�N
dN�

= p�
N

2 
(k � p
�1Jkp)�(�p�1J � �)

Z
QNp

�(z � �)
(kzkp)dN�

= p�
N

2 �(�p�1J � �)
(k�kp); (C.7)

for 
 � 1:
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If � 6= 0, then the previous product is zero. Therefore if � = 0, and 
 � 1 then

h
(kxkp);  (l)
;�;Jil = p�
N

2 :

Finally,

pN�1X

2Z; �2QNp =ZNp ; J=1

jh
(kxkp);  (l)
;�;Jil;�j2 =
1X

=1

pN�1X
J=1

(p�
N

2 )2

=
1X

=1

(pN � 1)p�N


= 1 = k
(kxkp)k2l :
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D
Properties of the generalized

stochastic process Wg

By a generalized stochastic process, we mean a mappingW (g) depending linearly on test

functions g such that for g, W (g) is random variable. A white noise is a generalized

stochastic process Wg such that for each test function g 2 H1(R) (see Section 1.1) the
random variableWg = h�; gi is Gaussian with mean 0 and variance

R
QNp

jg (x)j2 dNx = kgk20 :

Remark 48 From the de�nition of the Gaussian measure � given by the formula (1.3), it
follows straightforwardly that for every g 2 H1(R), h�; gi is a normally distributed random
variable with variance kgk20. Thus, for all g 2 H1(R), g 6= 0,

kh�; gik2(L2) =
Z
H�
1(R)
hW; gi2 d� (W ) = kgk20 . (D.1)

Moreover, again by the formula (1.3), the real process W de�ned on H�1(R)�H1(R) by
Wg = hW; gi is centered Gaussian with covarianceZ

H�
1(R)
hW; g1i hW; g2i d� (W ) (D.2)

=
1

2

n
kh�; g1 + g2ik2(L2) � kh�; g1ik

2
(L2) � kh�; g2ik

2
(L2)

o
= hg1; g2i0 :

We recall that if g1; � � � ; gN 2 H1(R) is an orthonormal set in L2R
�
QNp
�
, then the

image of the Gaussian measure under the map

H�1(C) : ! Rn (D.3)

W ! (hW; g1i; � � � hW; gni) ,
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is a product of the standard Gaussian measure on R, namely,�
1p
2�

�n
e(t

2
1+���+t2n)=2dt1 � � � dtn; (D.4)

see e.g. [44, , Chapter 2]. In addition, if f1; � � � fn are integrable functions on R with
respect to the 1�dimensional standard Gaussian measure, we haveZ

H�
1(R)

f1(hW; g1i) � � � fn(hW; gni)d�(W ) =
nY
k=1

Z
H�
1(R)

fk(hW; gki)d�(W ); (D.5)

see e.g. [44, , Chapter 2].

Proposition 49 The Gaussian measure � is quasi-invariant under the translation by any
g 2 L2R(QNp ) and the Radon-Nikodym derivative is given by

d�(W � g)
d�(W )

= ehW;gi�(g;g)=2; W 2 H�1(R): (D.6)

For more further details the reader may consult [44, Proposition 2.1.6 ].

D.1 Wick-ordered polynomial and Wiener-Itô-segal

Isomorphism

De�nition 50 Let W 2 H�1(R) and n 2 N0 we de�ne the so-called Wick power of order
n denoted by : W
n :2 (H�1(R))

b
n inductively as follows:8><>:
: W
0 : = 1

: W
1 : = W

: W
n : = W b
 : W
(n�1) : � (n� 1)Trb
 : W
(n�2) :; n � 2;

where Tr 2 (H�1(R))
b
2 is the trace, see Remark 12.

Remark 51 Due the canonical correspondence between the bilinear forms B(H1(R) �
H1(R)) and (H1(R)�H1(R))� (see [44, proposition 1.3.9]) the trace operator Tr is
uniquely de�ned via the formula

hTr; f 
 gi = hf; gi0 ; for f; g 2 H1(R):

The trace operator can be represented by
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Tr =

1X
n=0

�n 
 �n,

with respect to the strong dual topology of (H1(R)�H1(R))� ; where (�n) is an arbitrary
orthonormal basis of L2R(QNp ): We recall that the space L2R(QNp ) is is separable since it
is nuclear space. For further details, the reader may consult [44, Proposition 2.2.1 ].

Proposition 52 ([44, proposition 2.2.3]) Let W 2 H�1(R) and g 2 H1(R). Then

h: W
n :; g
ni =
[n=2]X
k=0

n!

k!(n� 2k)!

�
�1
2
hg; gi

�k
hW; gin�2k; (D.7)

hW; gin =
[n=2]X
k=0

n!

k!(n� 2k)!

�
�1
2
hg; gi

�k 

: W
(n�2k) :; g
(n�2k)

�
: (D.8)

Corollary 53 ([44, Corollary 2.2.4]) For W 2 H�1(R) we have

: W
n :=

[n=2]X
k=0

(�1)kn!
(n� 2k)!k!2kTr

b
k b
W
(n�2k); (D.9)

W
n =

[n=2]X
k=0

n!

(n� 2k)!k!2kTr
b
k b
 : W
(n�2k) : : (D.10)

Wiener-Itô-Segal isomorphism and Fock space

Remark 54 The linear space of the so-called polynomial on the Gaussian space H�1(R)
(see the formula 1.5), is denoted by

P(C) :
(
�(W ) =

MX
n=0

hW
n; �ni; �n 2 H
b
n
1 (C);W 2 H�1(R);M 2 N

)
: (D.11)

The linear space of the so-called Wick-ordered polynomials (see formula 1.6) is denoted

by

P(H�1(R)) :=
(
�(W ) =

MX
n=0

h: W
n :; �ni; �n 2 H
b
n
1 (C);W 2 H�1(R);M 2 N

)
:

(D.12)

Proposition 55 ([44, Proposition 2.3.2]) The polynomials P(R) and P(C) are dense
of subspaces of L2(H�1(R); �;R) and L2(H�1(R); �;C), respectively.
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Theorem 56 ([44, Theorem 2.3.5], Wiener-Itô-Segal) For each 	 2 L2(H�1(R); �;C)
there exist a unique  = ( n)

1
n=0 2 �(L2C(QNp )) such that

	(W ) =
1X
n=0

h: W
n :;  ni; (D.13)

in the (L2)-sense. Conversely, for any  = ( n)
1
n=0 2 �(L2C(QNp )), (D.13) de�nes a

function in L2(H�1(R); �;C). In that case,

k k2 =
1X
n=0

n!k nk20 = k k2�(L2C(QNp )): (D.14)

A similar assertion is also true for the real case. In short, we have canonical isomor-

phisms:

L2(H�1(R); �;R) �= �(L2R(QNp )) L2(H�1(R); �;C) �= �(L2C(QNp )): (D.15)

De�nition 57 The canonical isomorphism established in above theorem is called the

Wiener-itô-Segal isomorphism. The expression as in (D.13) is called the Wiener-Itô ex-

pansion of 	 2 L2(H�1(R); �;C):

D.1.1 Bosonic Fock space

Tensor products of Hilbert spaces

Let H1 and H1 be Hilbert spaces with inner products (:; :)1 and (:; :)2 respectively. For

h1 2 H1 and h2 2 H2 , we de�ne their tensor product as a conjugate bilinear form on

H1 �H1 :

h1 
 h2 (�1; �2) = (h1; �1)1 (h2; �2)2 : (D.16)

Denote by E the linear span of fh1 
 h2 : h1 2 H1 , h2 2 H2g. For h1 
 h2; j1 
 j2 2 E ,
we de�ne

b (h1 
 h2; j1 
 j2) = (h1; j1)1 (h2; j2)2 , (D.17)

and linearly extend it to E . The equation D.17 de�nes a strictly positive Hermitian form
on E � E , hence (E ; b) is an inner product space.

De�nition 58 The Hilbert space obtained by completion of (E ; b) is called the Hilbertian
tensor product (tensor product for short) of H1 and H2 and denoted by H1 
H2.
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By induction we can de�ne tensor products of any �nite number of Hilbert spaces i.e.

the n�fold tensor product of n Hilbert spaces fHigni=1 is de�ned recursively as

H1 
H2 
 � � � 
Hn = fH1 
H2 
 � � � 
Hn�1g 
Hn:

Let H be a real or complex Hilbert space with norm k � k0. Let �(H) be the space of
all sequences f = (fn)n2N; fn 2 H b
n with H b
0 = C, such thatP1

n=0 n!kfnk20 <1. With
the norm

kfk2�(H) =
1X
n=0

n!kfnk20;

�(H) becomes Hilbert, which is called the Bosonic Fock space or the symmetric Fock

space over H.

D.2 Holomorphic functions in locally convex topo-

logical vector spaces.

We give brief review of some results of the theory of holomorphic functions in locally

convex topological vector spaces (see [11], [12]). Denote by L(Hn1(C)) be the space of n-
linear mappings fromHn1(C) into C and Ls(Hn1(C)) the subspace of symmetric n�linear
forms from Hn1(C) to C.
For L 2 Ls(Hn1(C)), put

bL(') = L('; � � �; '); ' 2 H1(C):bL is called the n-homogeneous polynomial corresponding to L. Denote by Pn(H1(C))
the set of all n-homogeneous polynomials onH1(C). As a consequence of the polarization
formula (D.20), the mapb: Ls(HnC(1))! Pn(HC(1)) is a linear bijection (see e.g. [12,
Corollary 1:6]).

We consider a function F : U !C de�ned on open set U � H1(C) is said to be
G�holomorphic or Gbateaux-holomorphic if for each �0 2 U and each � 2 H1(C) the
complex-valued function

C 3 �� F (�0 + ��) 2 C,

is holomorphic on some neighborhood of 0 2 C. If F : U !C is G-holomorphic and given
any � 2 U , then there exists a sequence of homogeneous polynomials 1

n!
cdnF (�) such that

F (� + �) =

1X
n=0

1

n!
cdnF (�) (�);
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for all � belongs to some open neighborhood of the origin of H1(C): Let HG (U) denote
the vector space of all G�holomorphic function on U .
A G-holomorphic function F : U !C is said to be holomorphic, if for all � in U there

is an open neighborhood V of zero such that
1P
n=0

1
n!
cdnF (�) (�) converges uniformly on V

to a continuous function. We will denote by H (U) the vector space of all holomorphic
function on U . A G-holomorphic function F : U !C is holomorphic if and only if it is
locally bounded. For more details and proofs (see [12, Chapther 2]).

We say that F is holomorphic at �0 if it is holomorphic on some neighborhood of U �
H1(C) of �0; such that F : U !C is holomorphic.
Let us explicitly consider a function G-holomorphic at zero, then

1. there exist l and " > 0 such that for all �0 2 H1(C) with k�0kl < " and for all � 2
H1(C) the function of one complex variable �� F (�0 + ��) is analytic at 0 2 C,
and

2. there exists c > 0 such that for all � 2 H1(C) with k�kl < " , jF (�)j � ":

Remark 59 The following assumption will be needed to identify the between di¤erent re-
strictions of one holomorphic function, we consider germs of holomorphic functions, i.e.

we identify F and G if there exists an open neighborhood of zero U such that F (�) = G(�)

for all � 2 U . Thus, we de�ne Hol0(HC(1)) as the algebra of germs of functions holo-
morphic at zero. Algebraically, it is clear that Hol0(H1(C)) endowed with the pointwise
multiplication of functions is an algebra.

D.3 The characterization Theorem of the Kondratiev

Distributions.(H1(C))�1

Theorem 60 [26, Theorem 3]

1. If � 2 (H1(C))�1; then the function S� is holomorphic on some open neighborhood
of zero in H1(C) (i.e. S� 2 Hol0 (H1(C))) :

2. Given any F 2 Hol0(H1(C)); there exists a unique � 2 (Hn1(C))�1 such that
S� = F:

Remark 61 The following result about the degree of singularity of a distribution, it is a
consequence of the previous theorem (see e.g. [26, Corollary 4.]). If F 2 Hol0(H1(C))
be holomorphic on Ul;k and jF (�)j � C for some C > 0 and all � 2 Ul;k: Let l

0
> l
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be such that Il0 l : Hl0 (C) ! Hl(C) is a Hilbert-Schmidt operator and k
0
be such that

� = 2
�
�
k
0�2k+2

�
�2 kIl0 lk

2
HS < 1: Then � corresponding to F belongs to H�l;�k;��; and we

have the estimate

k�k�l0 ;�k0 ;�1 � C (1� �)�1=2 : (D.18)

The following two important corollaries are a consequence of Theorem 60. One con-

cerns the convergence of sequences of distributions the second one the Bochner integra-

tion of families of the same type of distributions (or generalized functions).

Corollary 62 [26, Theorem 5] Let (Fn)n2N be a sequence in Hol0(H1(C)): Assume that
the following two conditions are satis�ed:

1. there exists Ul;k and C > 0 such that all Fn are holomorphic on Ul;k, and jFn (�)j � C,

8� Ul;k;

2. (Fn (�))n2N is a Cauchy sequence in C for all � 2 Ul;k:

Then S�1Fn converges strongly in (H1(C))�1:

Theorem 63 [26, Theorem 5] Let (
;F ; �) be a measure space and ! ! �! be a mapping

from 
 to (H1(C))�1: We assume that there is Ul;k; such that

1. S�! (�) : 
! C is measurable for all � 2 Ul;k , and

2. there exists C 2 L1 (
; �) such that jS�! (�)j � C for all � 2 Ul;k and for �-almost
all !.

Then there are l
0
; k

0 2 N, (l0 ; k0 as in remark 61 ), such thatZ



�!d� (!) ,

exists as a Bochner integral in H�l;�k;��. In particularZ



�!d� (!) 2 (H1(C))�1,

and ��Z



�!d� (!) ; '

��
=

Z



hh�!; 'ii d� (!) ; ' 2 (H1(C))1: (D.19)
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D.3.1 Wick products of Distributions

In general, the product of distributions is not well-de�ned, let us recall that Hol0(H1(C))
is the algebra of germs of functions holomorphic at zero (Remark 59), then the S-transform

is a bijection of Hol0(H1(C)) onto (H1(C))�1. By Theorem 60 for each pair �1�2 2
(H1(C))�1 we de�ne the so-called Wick product by

�1 � �2 = S�1 ((S�1) (S�2)) :

It turns out that this multiplication is clearly associative. Furthermore, the above

characterization of test functions leaves (H1(R))1 invariant, i.e.

�1�2 2 (H1(C))1 =) �1 � �2 2 (H1(C))1:

The Wick product can be described in terms of chaos decomposition as well. If �i 2
(H1(C))�1; i = 1; 2; such that �i =

1P
n=0

D
: x
n :; �

(n)
i

E
; then

�1 � �2 =
1X
n=0



: x
n :;�(n)

�
; �(n) =

nX
k=0

�
(k)
1
b
�(n�k)2 :

Proposition 64 ([26, Proposition 11]) The Wick product is continuous on (H1(C))�1,
in particular, for

�1 2 H�l1;�k1;�1; �2 2 H�l2;�k2;�1;

and l = max(l1; l2); k = k1 + k2 + 1; the following estimate holds

k�1 � �2k�l;�k;�1 � k�1k�l1;�k1;�1 k�2k�l2;�k2;�1

For further details see [26].

Clearly, we can also de�ne Wick powers

��n := S�1 ((S�)n) = � � � � �| {z }
n�times

; 	 2 (H1(C))�1:

in (H1(C))�1; and thus �nite linear combinations of the form

MX
n=0

an�
�n ���0 := 1� :
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Remark 65 Given a function F : C ! C analytic on some neighborhood of the point
E (�) = (S�) (0) = z0 2 C, we can de�ne F � (�) 2 (H1(R))�1 by F � (�) := S�1 (F (S�)) :

If F has a power series representation F (z) =
P
n

an (z � z0)n ; z 2 C; then it is easy to

see that the Wick series
P
n

an (�� E (�))�n converges in (H1(C))�1: In particular, we can

de�ne exp�� = S�1 (exp (S�)) =
1P
n=0

1
n!
��n: Furthermore we have the functional equation

exp��1 � exp��2 = exp� (�1 + �2) .

For further details, see [26, Theorem 12, Example 3].

In an analogous way the T�transform of � 2 (H1(C))�1 is the mapping de�ned as

T� (�) := exp

�
�1
2
k�k20

�
� S� (i�) ; �2 H1(C) with 2k k�k2l < 1:

The T�transform has properties similar to the S�transform and Kondratiev distrib-

utions can be characterized through their S�and T�transform.

D.4 Polarization formula

Let 	 and D be vector spaces. Let F be a symmetric n-linear map from 	 � � � � � 	
(n-times) to D and put

A(') = F ('; � � � ; '| {z }
n�times

); ' 2 	;

F ('1; � � � ; 'n) =
1

2nn!

X
�

�1 � � � �nA(�1'1 + � � � �n'n); (D.20)

where
P
�

means the summation over �1 = �1; � � � �n = �1. As an immediate consequence,
we obtain

'1
̂ � � � 
̂'n =
1

2nn!

X
�

�1 � � � �n(�1'1 + � � � �n'n)
n (D.21)

for any '1; � � � ; 'n 2 	:
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