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Resumen

Es una conjetura de Moerdijk que cualquier orbidad compacta no efectiva
es presentable, esto es, puede ser obtenida como el cociente global de una
variedad suave dividida por la acción de un grupo de Lie compacto. El
objetivo central de esta tesis es demostrar la conjetura de Moerdijk mediante
las técnicas del análisis armónico sobre groupoides de Lie.

Abstract

It is a conjecture of Moerdijk that every non-effective compact orbifold is
presentable, that is, can be obtain as the global quotient of a smooth manifold
divided by the action of a compact Lie group. The main goal of this thesis is
to prove Moerdijk’s conjecture through the techniques of Harmonic analysis
over Lie groupoids.
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Chapter 1

Preliminaries

1.1 A Brief Outline

An orbifold X consists of a topological space X together with a local
presentation as a quotient of an open set of euclidean space divided by a
local finite group, Ux/Gx

∼= Vx, for every point x ∈ X (where Vx is some open
neighborhood of x), so that all such local presentations glue nicely (see, for
instance [1]). Given a compact Lie group Γ, and due to Koszul’s slice theorem
[10], every almost free Γ-manifold M (so that for every point m in M the
stabilizer Γm is finite) produces an orbifold X = M // Γ1 with underlying
orbit space X = M/Γ. This motivates the following basic definition: We say
that an orbifold X is presentable if X = M // Γ as above.

Proposition. An orbifold X is called effective iff every one of its charts
Ux //Gx comes from an effective action of Gx on Ux. Every effective orbifold
is presentable.

1We will denote by M // Γ to denote the orbit space M/Γ together with its orbifold or
stack structure where we remember ths stabilizers of Γ at the various points of M .

9



10 CHAPTER 1. PRELIMINARIES

The proof of this proposition is due to Satake, and it’s very simple. Since, for
every chart effectiveness ensures that Gx acts freely on the frame bundle of
the tangent bundle Vn(T (Ux)), then the global frame bundle of the tangent
bundle M := Vn(TX ) is a manifold, and therefore the global presentation

X = M // O(n)

is what we were looking for. It is a conjecture of Moerdijk that every non-
effective compact orbifold is presentable. In [8] Henriques and Metzler have
partially proved this conjecture for the class of orbifolds whose ineffective
groups have trivial center, and reduced the general problem to the case of
a purely ineffective orbifold groupoid with equivariantly trivial abelian sta-
bilizers. The main goal of this thesis is to prove Moerdijk’s conjecture in
full generality2. Let us briefly sketch the contents of the thesis. In Section
1.2 we follow Moerdijk [15] in formally defining an orbifold (or C∞-Deligne-
Mumford stack) as a Morita equivalence class of a proper étale groupoid.
Then in Section 1.3 we recall the basic aspects of the representation theory
of smooth groupoids following Kalivsnik [9]. In [17] Totaro has proved a
special case of an algebraic version of Moerdijk’s conjecture by proving the
equivalence of two fundamental properties of algebraic stacks: being a quo-
tient stack in a strong sense, and the algebraic resolution property, which says
that every coherent sheaf is a quotient of some vector bundle. In Section ??
we rephrase the resolution property for the case of C∞-orbifolds by means of
the theory of universal Hilbert bundles over groupoids developed in [5]. In
Section 2.2 we prove that every compact orbifold has the resolution property
using the classical spectral theorem for self-adjoint compact operators along
with some general facts about Hilbert bundles and C∗-algebras developed by
Dixmier and Douady [4]. Finally, in Section 2.3 we show that to prove the
resolution property in this case is equivalent to prove Moerdijk’s conjecture.

2It should be noted that our method to approach this conjecture is totally independent
of [8].
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1.2 Differentiable Stacks

In this section we briefly recall how the notion of orbifold fits within the
general formalism of differentiable stacks. In order to keep things simple, we
will take a shortcut and describe differentiable stacks as Morita equivalence
classes of Lie groupoids. This will be enough for the purposes we have in
mind. For a detailed review about the theory of smooth stacks we refer
the reader to Metzler [14] and for a discussion about orbifolds within this
formalism we recommend Moerdijk [15] (see also Lerman [13]).

Roughly speaking, a Lie groupoid is a groupoid object inside the category
of smooth manifolds3. More precisely, this amounts to specify the following
data. A smooth groupoidG is of a pair (G0, G1) of smooth manifolds whose
points are called the objects and the arrows of G, respectively, together
with the following structural smooth maps:

• A pair of submersions s, t : G1 → G0 called the source and target
maps, respectively. We will usually represent an arrow f ∈ G1 by
the notation f : s(f) → t(f). Note that the submersivity condition
guarantees that the set of composable arrows defined by

G1 ×s,G0,t G1 := {(f, g) ∈ G1 ×G1|s(f) = t(g)}.

is endowed with a smooth manifold structure induced by the product
manifold G1 ×G1.

• A composition map m : G1 ×s,G0,t G1 → G1 which takes a pair of
composable arrows

z y
foo x

goo

into the composite arrow f ·g := m(f, g). Moreover, this composition of
arrows is supposed to be associative, i.e. whenever one has composable

3For us smooth manifolds will always be Hausdorff and second countable differentiable
manifolds of C∞-class.
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arrows z y
foo x

goo w
hoo the equality f · (g · h) = (f · g) · h is

satisfied.

• A unit map u : G0 → G1 which takes each object x ∈ G0 into the unit
arrow 1x := u(x) : x → x satisfying f · 1s(f) = 1t(f) · f = f for every
other arrow f ∈ G1.

• An inverse map ι : G1 → G1 which takes each arrow f ∈ G1 into the
inverse arrow f−1 := ι(f) : t(f)→ s(f) satisfying the following pair of
equalities f · f−1 = 1t(f) and f−1 · f = 1s(f).

We sometimes use the notation G = [G1 ⇒ G0] to denote a Lie groupoid.
Note that the image of the anchor map

aG := (s, t) : G1 → G0 ×G0

f 7→ (s(f), t(f))

determines an equivalence relation on G0, i.e. a pair of objects x, y ∈ G0

will be related if there is an arrow f : x → y in G1. The corresponding
set of equivalence classes, |G| := G0/G1, can be endowed with the quotient
topology induced by the canonical projection map

πG : G0 → |G|,

and is called the coarse quotient space of G. The core intuition in the theory
of differentiable stacks is that the groupoid G acts as an enhacement for the
above equivalence relation in the sense that it allows to relate a pair of objects
x, y ∈ G0 in more than one way; namely one for each arrow f : x → y. In
particular, any single object x ∈ G0 comes equipped with a stabilizer group

Gx := {f ∈ G1|s(f) = x = t(f)}

controlling the variety of ways in which it can be related to itself. The
following are the simplest examples of Lie groupoids.
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Example 1.2.1. For any smooth manifold M we have its corresponding
unit groupoid [M ⇒M ] which has for objects the points of M and has only
identity arrows. In particular, its coarse quotient is M itself.

Example 1.2.2. For any Lie group G one has a groupoid [G ⇒ •] with a
single object whose composition of arrows is given by the product of G. Note
that the corresponding coarse quotient space is reduced to a singleton.

Example 1.2.3. More generally, let G be a Lie group and suppose that M
is a smooth G-manifold4. Then we define the translation groupoid

M nG := [M ×G⇒M ],

whose arrows have the form (m, g) : m→ m · g and where the composition is
defined by means of (m · g,m · gh) · (m,m · g) := (m,m · gh). Moreover for
each object m ∈M we define the identity 1m := (m, e) and the inverse of an
arrow (m, g) ∈M ×G is defined by (m, g)−1 := (m · g, g−1), where e denotes
the identity of G. Thus the groupoid M n G provides a finer model for the
orbit space M/G = |M nG|.

The natural notion for morphisms between Lie groupoids is that of smooth
functors5, namely a smooth functor F : G→ H consists of a pair of smooth
maps F0 : G0 → H0 and F1 : G1 → H1 such that

F1( x f // y ) = F0(x) F1(f) // F0(y)

for each arrow f ∈ G1 and that F1(1x) = 1F0(x) for each object x ∈ G0 as well

that F1(f ◦ g) = F1(f) ◦ F1(g) for each pair z y
foo x

goo of composable
arrows. One can organize Lie groupoids together with smooth functors into a
category, denoted by Groupoids, which can in turn be enhanced into a strict
bicategory6 by means of smooth natural transformations, namely a smooth

4Than is, a smooth manifold equipped with a smooth (right) action M � G.
5These are sometimes called strict morphisms.
6For a survey about bicategories see Leinster [12].
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natural transformation θ : F → F ′ between a pair of smooth functors
F, F ′ : G → H is a smooth map θ : G0 → H1 such that for each arrow
f : x→ y in G1 the square below commutes:

F (x) F1(f) //

θ(x)
��

F (y)
θ(y)
��

F ′(x)
F ′1(f)

// F ′(y)

It turs out that strict isomorphisms as well as strict equivalences are too re-
strictive notions in the sense that two Lie groupoids could constitute equally
good fine models for the same coarse quotient space but without being nei-
ther strictly isomorphic nor strictly equivalent. The appropriate notion of
equivalence for such matters is that of weak equivalence, namely a smooth
functor F : G→ H is said to be a weak equivalence7 if:

• The square below is cartesian8:

G1
F1 //

aG

��

H1

aH

��
G0 ×G0 F0×F0

// H0 ×H0

• The map t ◦ π2 : G0 ×F0,H0,s H1 → H0 is a surjective submersion.

In other words a weak equivalence F : G ∼−→ H is a categorical equivalence
which takes the relevant smooth structures into account. In particular it
induces a homeomorphism |G| ∼= |H| beween the coarse quotients. We say
that a pair of Lie groupoids G and H are Moerdijk-Morita equivalent if
there is a third Lie groupoids L together with a pair of weak equivalences

G
∼←− L

∼−→ H.

7We denote this by F : G ∼−→ H
8That is, a fiber product of smooth manifolds.
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In fact this is an equivalence relation between Lie groupoids. We could
define a differentiable stack X simply as a Morita equivalence class of Lie
groupoids and any particular Lie groupoid G belonging to that class is said
to be a presentation9, denoted by X = [G]st. In order to define morphism
between differentiable stacks we can proceed as follows. The idea is that to
get the bicategory of differentiable stacks, denoted by Stacks we only need
to formally invert the class W ⊂ Mor(Groupoids) of weak equivalences in
the bicategory of Lie groupoids, of course, in the bicategorical sense of the
term10. Thus we would get a lax localization functor

Groupoids→ Stacks := Groupoids[W−1]

with the property that sends a smooth functor F : G→ H into a equivalence
iff F : G ∼−→ H is a weak equivalence of Lie groupoids. This provides a
complete characterization for the bicategory of differentiable stacks11. There
are various ways to realize such a localization procedure. One of them is
thorugh the notion of Hilsum-Skandalis map (see, e.g. [13]).

Let us recall that a smooth (left) action of a Lie groupoid G on a smooth
manifold M along a smooth map p : M → G0 is a smooth map

θ : G1 ×s,G0,pM →M

(f,m) 7→ f ·m := θ(f,m)

such that 1x ·m = m and (f · h) ·m = f · (h ·m), whenever makes sense.

Remark 1.2.1. Note that for any such smooth action G 	 M one can also
define a corresponding translation groupoid GoM .

9We also say that X is the stacky quotient of G.
10See Pronk-Moerdijk [16].
11Also this provides a more rigorous formulation of the naive idea that a differentiable

stack is a Morita equivalence class of Lie groupoids.
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We conclude this section by saying a few words about orbifolds. Let us
recall that a Lie groupoid G is called an orbifold groupoid if its source
and target maps are étale12 and if the anchor map aG : G1 → G0 × G0 is
proper. It turns out that in such a case, for every point x ∈ G0 we can find
an open neighborhood x ∈ Ux ⊆ G0 such that the restricted groupoid
GUx is is strictly isomorphic to the translation groupoid UxnGx where for a
suitably defined action of the stabilizer group at x on Ux. In particular, this
implies that the coarse quotient |G| has an orbifold structure. An orbifold is
a differentiable stack which admits a presentation X = [G]st by an orbifold
groupoid G.

1.3 Representations of Groupoids

Here we briefly recall the basic definitions from the representation theory
of Lie groupoids (cf. [9]). A unitary representation of a Lie groupoid G

is a (locally trivial) Hilbert bundle πH : H → G0 over its manifold of objects
together with a continuous action θ : G1 ×s,G0,πH H → H on the total space
along the bundle projection which is fiberwise unitary, i.e. for each arrow
f ∈ G1 the corresponding map

H(s(f))
θf //H(t(f))

on the fibers13 given by v 7→ θ(f, v), where (f, v) ∈ G1×s,G0,πHH, is a unitary
isomorphism. Thus, for each point x ∈ G0 we have θ1x = 1H(x), and for each
pair (f, g) ∈ G1 ×s,G0,t G1 of composable arrows the equality θf ·g = θf ◦ θg
holds. In particular, one has defined a unitary representation Gx 	 H(x) of
the stabilizer group at every point x ∈ G0.

Example 1.3.1. For every smooth manifold M , a unitary representation of
the unit groupoid [M ⇒M ] is nothing but a Hilbert bundle H →M .

12i.e. local diffeomorphisms.
13We write H(x) to denote the fiber above x ∈ G0
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Example 1.3.2. For every Lie group G, a unitary representation of the
corresponding groupoid [G⇒ •] with one object is the same thing as a unitary
group representation G 	 H(•) on a single Hilbert space.

Example 1.3.3. Given a Lie group G and a smooth G-manifold, a unitary
representation of the translation groupoid M n G is just a G-equivariant
Hilbert bundle H →M .

Let Let us be a little bit more precise about the notion of Hilbert bundle
used in the above definition. A continuous field of Hilbert spaces over
a topological space X (cf. [4]) consists of a family {H(x)}x∈X of complex
Hilbert spaces together with a linear subspace Γ ⊆ ∏

x∈X H(x)14, satisfying:

• For each point x ∈ X and each vector v0 ∈ Hx there is a v ∈ Γ such
that vx = v0.

• For each pair v, w ∈ Γ15 the braket function 〈v|w〉 : X → C defined
by x 7→ 〈v(x)|w(x)〉x16 is continuous.

• If v ∈ ∏
x∈X Hx verifies that the function ||v − w|| : X → R≥0

17 is
continuous for every w ∈ Γ, then v ∈ Γ.

Whenever the pair ({Hx}x∈X ,Γ) is a continuous field of Hilbert spaces over
the space X, for each point x ∈ X the Hilbert space H(x) is called the fiber
above x, and the elements of the linear space Γ18 are called its continuous
fields of vectors. This terminology is justified since we can define a suitable

14The linear operations on
∏

x∈X H(x) are defined pointwise.
15We usually denote an element v ∈

∏
x∈X H(x) by means of v = {v(x)}x∈X .

16Here we are using Dirac’s bracket notation 〈·|·〉x : H(x) × H(x) → C to denote the
inner product.

17For each v ∈
∏

x∈X H(x) the norm function ||v|| : X → R≥0 is defined by means of
x 7→ ||v(x)||x :=

√
〈v(x)|v(x)〉x.

18It turns out that Γ is, in fact, a module over the algebra of complex valued continuous
functions X → C by means of pointwise scalar product.
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topology on the total space of the field, defined as the disjoint union

H :=
∐
x∈G0

H(x)

of the fibers, such that the obvious projection πH : H → X becomes an
open continuous map establishing an identification Γ ∼= Γ(X,H) between
continuous fields of vectors and continuous sections of πH. Moreover, for
each point x ∈ X the topology induced on the fiber H(x) coincides with the
norm topology. On the other hand, the sum + : H×XH → H and the scalar
product · : C × H → H operations also becomes continuous. In short, the
map πH : H → G0 is a (not necessarily locally trivial) Hilbert bundle19 over
the space X.

Example 1.3.4. We define the constant field over X with fiber given by
the standard separable Hilbert space l2(Z) in the following way20. For each
point x ∈ X take H(x) := l2(Z) and let Γ := C(X, l2(Z)) be the collection of
continuous functions X → l2(Z) in the norm topology of l2(Z). It turns out
that ({H(x)}x∈X ,Γ) defines a continuous field of Hilbert spaces over X and
that there is a canonical bundle homeomorphism H ∼= (l2(Z) × X) with the
trivial bundle.

Example 1.3.5. Suppose that πE : E → X is a locally trivial complex vector
bundle of finite rank over X endowed with a Hermitian metric. Hence, it
follows that ({E(x)}x∈X ,Γ(X, E)), where E(x) := π−1

E (x) and Γ(X, E) is the
space of continuous sections of πE , is a continuous field of finite dimensional
Hilbert spaces over X.

There is the following useful way to construct continuous fields of Hilbert
spaces. Let {H(x)}x∈X be a family of complex Hilbert spaces parametrized

19We will usually denote a continuous field of Hilbert spaces ({Hx}x∈X ,Γ) simply by
means of its total space H.

20The same construction works for any finite dimensional Hilbert space.



1.3. REPRESENTATIONS OF GROUPOIDS 19

by the points of a topological space X. Suppose that Λ ⊆ ∏
x∈X H(x) is a

linear subspace such that for each point x ∈ X the subset

Λ(x) := {v(x)|v ∈ Λ} ⊆ Hx

is dense in H(x) and for each v ∈ Λ the norm function ||v|| : X → C is
continuous. Then there exist a unique linear subspace Γ ⊆ ∏

x∈X H(x) such
that Λ ⊆ Γ for which the pair ({H(x)}x∈X ,Γ) becomes a continuous field of
Hilbert spaces over X. Namely, the linear subspace Γ ⊆ ∏

x∈X H(x) consists
of those elements v ∈ ∏

x∈X H(x) such that ||v−w|| : X → R≥0 is continuous
whenever w ∈ Λ. When this happens, we will say that the continuous field
of Hilbert spaces ({H(x)}x∈X ,Γ) is generated by Λ.

Example 1.3.6. Let p : Y → X be a continuous map between topological
spaces. If ({H(x)}x∈X ,Γ) if a continuous field of Hilbert spaces over X, then
the linear subspace

Λ := {v = {v(p(y))}y∈Y |v ∈ Γ} ⊆
∏
y∈Y
H(f(y))

generates a continuous field of Hilbert spaces over Y , called the pull-back
of H along p and denoted by p∗(H). It turns out that there is a canonically
homeomorphism p∗(H) ∼= H ×πH,X,p Y . Thus, in particular, we can define
the restriction of H over an open subset U ⊆ X as its pull-back along the
inclusion map U ↪→ X, usually denoted by H|U .

Example 1.3.7. Let {Hi}i∈I be a collection of continuous fields of Hilbert
spaces over X indexed by a set I. Consider the family of Hilbert spaces

{H(x) :=
⊕̂

i∈I
Hi(x)}x∈X

obtained by taking orthogonal sums. Then, it turns out that the linear sub-
space Λ ⊂ ∏

x∈X H(x) consisting of those

v =
∑

i∈I0⊂I
vi

such that I0 finite and vi ∈ Γ(X,Hi) for very i ∈ I0 generates a continuous
field of Hilbert spaces over X. This is called the orthogonal sum of the
family {Hi}i∈I and is usually denoted by ⊕̂

i∈IHi.
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Now let’s discuss morphisms between continuous field of Hilbert spaces. A
bounded operator H → H′ between a pair of continuous fields of Hilbert
spaces over X is a family

{Ψ(x) : H(x)→ H′(x)}x∈X

of bounded operators between the fibers (in the usual sense) such that the
induced map Ψ : H → H′ on the total spaces is continuous21. For an arbitrary
bounded operator Ψ : H → H′ the corresponding family of adjoints

{Ψ∗(x) : H′(x)→ H(x)}x∈X

does not necessarily defines a bounded operator Ψ∗ : H′ → H. Whenever it
actually does, we will say that Ψ is adjointable and Ψ∗ will be called its
adjoint. It is easy to see that the composition of two adjointable operators
is again adjointable.

Remark 1.3.1. It can be prove that for any bounded operator Ψ : H → H′

the norm function ||Ψ|| : X → R≥0 defined by means of x 7→ ||Ψ(x)||x22 is
locally bunded.

We will say that an adjointable operator Ψ : H → H′ is unitary if the
identities Ψ∗Ψ = 1H and ΨΨ∗ = 1H′ are satisfied. In such a case we will say
that H and H′ are unitarily isomoprhic, denoted by H ∼= H′.

Example 1.3.8. Let H be a continuous field of Hilbert spaces over X. A
subfield H′ ⊆ H is another continuous field of Hilbert spaces over X such
that for each point x ∈ X one has that H′(x) ⊆ H(x) is a closed subspace
and Γ(X,H′) ⊆ Γ(X,H) is a linear subspace. It turns out that the canonical
inclusion ιH′ : H′ ↪→ H defines a bounded operator.

21Note that such Ψ : H → H′ induces a linear map Γ → Γ′ between continuous fields
of vectors by v 7→ Ψv := {Ψ(x)v(x)}x∈X . It turns out that this linear map determines Ψ
completely.

22Here ||Ψ(x)||x denotes the operator norm.
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Example 1.3.9. Let H′ and H′′ be a pair of continuous fields of Hilbert
spaces over X. Then we can canonically identify H′ and H′′ with subfields
of the orthogonal sum H := H′⊕H′′. On the other hand, the family of
orthogonal projectors PH′ := {PH′(x) : H(x) → H′(x)}x∈X is an adjointable
bounded operator PH′ : H → H′ whose adjoint is given by the corresponding
inclusion P ∗H′ = ιH′.

Example 1.3.10. It turns out that the inclusion ιH′ : H′ ↪→ H of a subfield is
adjointable iff H′ is complementable, i.e. if the orthogonal complement
of H defines a subfield H′⊥ ⊆ H such that H ∼= H′ ⊕H′⊥.

Example 1.3.11. Let H be a continuous field of Hilbert spaces over X. For
any pair of continuous fields of vectors v, w ∈ Γ(X,H) we define the ketbra
operator |v〉〈w| : H → H by means of u 7→ 〈u|v〉 ·w for u ∈ Γ(X,H). It turs
out that given any family of continuous fields of vectors

{vk, wk ∈ Γ(X,H)}nk=1

the corresponding finite rank operator defined by ∑n
k=1 |vk〉〈wk| is an ad-

jointable bounded operator on H. More generally, we say that an adjointable
bunded operator Ψ : H → H is compact if it can be locally approximated by
finite rank operators, i.e. if for each point x ∈ X and every ε > 0 there is
an open neighborhood x ∈ U ⊆ X together with an operator Φ : H → H of
finite rank such that ||Ψ−Φ|| < ε on U . In such a case, it is not hard to see
that, for each point x ∈ X the operator Ψ(x) : H(x) → H(x) is a compact
operator in the usual sense, and that the norm function ||Ψ|| : X → R≥0 is
continuous. Moreover, whenever H = (l2(Z) × X) is the constant field of
fiber l2(Z), to have a compact operator Ψ : H → H is just the same thing
as to have a continuous function Ψ : X → K where K denotes the spaces of
compact operators on l2(Z) endowed with the operator norm topology.

We say that a continuous field of (separable) Hilbert spaces H over X is a
Hilbert bundle if is locally trivial, i.e. if for every point x ∈ X there is an
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open neighborhood x ∈ U ⊆ X such that the restriction H|U is isomorphic
to a constant field.

Remark 1.3.2. It turns out that every infinite dimensional Hilbert bundle
over a smooth manifold is globally trivial (cf. [4] Théorème 5.). This is a
consequence of Kuiper’s theorem23 On the other hand, if E is a continuous
family of finite dimensional Hilbert spaces over X, then an easy argument us-
ing the continuity of the determinant shows that the function x 7→ dimC(E(x))
is lower semi-continuous. Moreover, it is not hard to see that E is locally triv-
ial iff this function is constant.

Let’s come back to groupoid representations. Suppose that G is a Lie
groupoid and let H and H′ be a pair of unitary G-representations. We will
say that an adjointable bounded operator Ψ : H → H′ between the undelying
Hilbert bundles is G-equivariant if for each arrow f : x→ y in G1 the square
below commutes:

H(x)
θf //

Ψ(x)
��

H(y)
Ψ(y)
��

H′(x)
θ′f

//H′(y)

One can organize unitary representations of G together with G-equivariant
adjointable bounded operators between them into a ∗-category24, which we
will denoted by Rep(G). It turns out that any equivalence G ' H between
Lie groupoids induces an equivalence Rep(G) ' Rep(H) between its cate-
gories of representations.

A representations H of a Lie groupoid G is said to be universal if every
other representation H′ can be G-equivariantly embedded as H′ ↪→ H. By
means of the Eilenberg swindle trick (cf. [5] Lemma A.24) one can show that
a representation H is universal iff for every other H′ we have a G-equivariant

23cf. Kuiper [11].
24That is, a complex linear category with an antilinear involution (see Baez [2]).
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isomorphism H ⊕ H′ ∼= H, when this happens we also say that H has the
absortion property. It follows that universal representations, whenever
exist, are unique up to isomorphism. It turs out that universality is a local
property (cf. [5] Lemma A.28). More precisely, we have that H is universal
iff there is a cover G = ∪i∈IGi by open subgroupoids Gi ⊆ G such that for
each i ∈ I the restricted respresentation H|Ui

is universal.

Remark 1.3.3. Note that whenever H is universal the underlying Hilbert
bundle H → G0 must be infinite dimensional and, therefore, it is globally
trivial (in a non equivariant way).

Example 1.3.12. It is easy to see that for any smooth manifold M the trivial
bundle l2(Z) ×M → M has the absortion property. For instance, if H is a
Hilbert bundle over M one has H ⊕ (l2(Z) ⊗M) ∼= l2(Z) ⊗M , since every
infinite dimensional Hilbert bundle over M is globally trivial.

Example 1.3.13. By the Peter-Weyl theorem it follows that for any compact
Lie group G the left regular representation L2(G) is a universal.

Example 1.3.14. By combining the above two examples it can be prove that
for any compact Lie group G and any smooth G manifold M the trivial Hilbert
bundle L2(G) ×M → M endowed with the obvious G action is a universal
representation of the translation groupoid M nG (cf. [5] Lemma A.32)

Let us briefly sketch how one can construct a universal representation of
an orbifold groupoid.

Proposition 1.3.1. Every orbifold groupoid has a universal representation.

Proof: Firstly, let us show that every translation groupoid U n Γ where U
is contractible and Γ is a finite group has a universal representation. Let
us denote by C[Γ] the left regular representation of Γ. Note that the trivial
bundle C[Γ] × U → U endowed with the obvious Γ-action defines a finite
rank representation of U n Γ. We claim that the corresponding stabilized
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representation (l2(Z) ⊗ C[Γ]) × U → U is universal. Let us prove that for
any representation H ∈ Rep(U n Γ) of infinite rank there is a Γ-equivariant
emmbeding H ↪→ l2(Z) ⊗ U (the finite rank case is similar). Since the
underlying Hilbert bundle H → U is trivial we can choose an homogeneous
orthogonal frame {en ∈ Γ(U,H)}n∈N, that is 〈ei|ej〉 ≡ δi,j. Note that there
is a linear action Γ 	 Γ(G0,H) defined by g · v := (v(x · g) · g−1)x∈U for any
pair (g, v) ∈ Γ× Γ(G0,H). Hence, it is not hard to see that the map

Γ(U,H)→ Γ(U, l2(Z)⊗ C[Γ])

v 7→
∑
n∈N
〈v|en〉 ⊗

∑
g∈Γ
〈v · g|v〉

induces a unitary Γ-equivariant embedding H ↪→ l2(Z)⊗C[Γ]. Now suppose
that G is an arbitrary orbifold groupoid. Hence, there is a cover

G = ∪n∈N(Un n Γn)

by open subgroupoids (Un n Γn) ⊆ G, where Un is a contractible smooth
manifold and Γn is a finte group. We knows that for each n ∈ N there exist
a universal representation Hn ∈ Rep(Un n Γn), and we will construct from
those a universal representation of G as follows. For each k ∈ N let us define
the open subgroupoid Gk ⊆ G as

Gk := ∪kn=1(Un n Γn).

Now suppose that for some particular k ∈ N we know that there exist a
universal representationH ∈ Rep(UknΓk). Then the restriction ofHk as well
as the restriction of H defines a universal representation of the intersection
groupoid Gk ∩ (Uk+1 n Γk+1). In particular, there exist an isomorphism

H|Gk∩(Uk+1nΓk+1) ∼= Hk|Gk∩(Uk+1nΓk+1)

of representations, and we can glue H and Hk along Gk ∩ (Uk+1 n Γk+1) by
means of this isomorphism to get a universal representation of Gk+1. We
can obtain inductively a universal representation of G through the precedent
construction.�



1.3. REPRESENTATIONS OF GROUPOIDS 25

Remark 1.3.4. More generally, the above proof can be generalized to the case
of locally presentable Lie groupoids (cf. [5] Corollary A.33). In particular it
follows that every proper Lie groupoid admits a universal representation.
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Chapter 2

The Generalized Moerdijk’s
Conjecture

In this second chapter we will prove a generalization of the Moerdijk’s
conjecture about the presentation problem of compact orbifolds. In order
to approach this conjecture we will introduce the resolution property for
differentiable stacks and discuss some basic aspects of the harmonic analysis
on Lie groupoids .

2.1 The Resolution Property

(1) Classically, in the realm of algebraic geometry, the resolution property
for algebraic stacks reads as follows: We say that an algebraic stack X has
the resolution property if any coherent sheaf E ∈ Coh(X ) is the quotient of
a locally free sheaf E ′ ∈ Vect(X ), i.e. there is an epimorphism E ′ � E . In
other words, the algebraic stack X has the resolution property if its category
of coherent sheaves is generated by the full subcategory

Vect(X ) ⊂ Coh(X )

of vector bundles. Roughly, what this means is that there are enough vector
bundles on X . In [17], Totaro shows how the resolution property is related

27
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with the problem of presenting an algebraic stack as a global quotient. On
the other hand, in the topological or the smooth frameworks, one can find
suitable analogues of the above resolution property. For instance in [7] it is
proposed the following definition: We say that an orbispace X has enough
vector bundles if every vector bundle E ′ ∈ Vect(X ′) of finite rank defined
over a sub-orbispace X ′ ⊆X can be extended to the whole X , i.e. one can
find a vector bundle E ∈ Vect(X ) such that E|X ′ ∼= E ′. As in the algebraic
situation, the existence of enough vector bundles over orbispaces turns out
to be closely related to the presentation problem. In this section, we will
introduce a variation of the resolution property for differentiable stacks.

(2) Suppose that X = [G]st is a differentiable stack presented by some Lie
groupoid G. Hence, one can thought in the corresponding category Rep(G) of
unitary representations as a replacement of the category of (quasi-)coherent
sheaves on X within the smooth realm. So, we would like to say that X has
the resolution property if the full subcategory Vect(G) ⊂ Rep(G) of finite
dimensional representations generates, in some sense, the whole category of
unitary representations. However, the categorical notion of generation is no
so well suited in this context, and we must rephrase it in another way.

Definition 2.1.1. We say that a Lie groupoid G has the resolution prop-
erty if it admits a universal representation HG and the finite part

Γ(G0,HG)fin ⊂ Γ(G0,HG)

consisting of those sections v ∈ Γ(M,HG) for which there is a sub-representation
E ⊆ H of finite rank with v ∈ Γ(G0, E) is total1

This resolution property can be thought as a sort of Peter-Weyl theorem
for Lie groupoids. It turns that the resolution property is invariant under
Morita equivalence. Thus, in fact, it’s a property for differentiable stacks.

1Recall that a subset of section ΛΓ(M,HG) is called total if for each section w ∈
Γ(G0,HG) and every positive number ε > 0 there is a section v ∈ Λ such that ||w−v|| < ε.
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Roughly speaking, a differentiable stack has the resolution property if there
are enough finite dimensional vector bundles over it (cf. Totaro [17]). It
follows from the proof of Proposition 1.3.1 that locally every orbifold has the
resolution property. However, the resolution property itself is not local in
character. In fact, as we shall see, it is closely related to the presentation
problem.

2.2 Harmonic Analysis on Groupoids

This section is devoted to the proof of the following theorem, which is the
firs main original result of this thesis.

Theorem 2.2.1. Every proper Lie groupoid with compact and connected
coarse quotient space has the resolution property.

We will prove Theorem 2.2.1 by generalizing a classical argument used
for proving the Peter-Weyl theorem (see, e.g. [3]). Let us fix throughout
this section a proper Lie groupoid G with compact and connected coarse
quotient space |G|. We denote by KG the ∗-algebra of G-equivariant compact
operators on its universal representation HG. For any such Ψ ∈ KG the norm
function

||Ψ|| : G0 → R≥0

is continuous and G-invariant and, it therefore, descents to a continuous
function |G| → R≥0 on the coarse quotient space. Hence, it follows that the
supremum norm defined below is finite:

||Ψ||G := supx∈G0{||Ψ(x)||x}

Proposition 2.2.1. The pair (KG, || · ||G) defines a C∗-algebra.

Proof: It is clear that || · ||G is a submultiplicative norm for the composition
product of KG. Moreover, the norm || · ||G satisfy the C∗-identity since for
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each point x ∈ G0 we have

||Ψ(x)∗Ψ(x0)||x = ||Ψ(x)||2x

Now we will prove that the norm || · ||G is complete. Let {Ψn ∈ KG}n∈N be a
Cauchy sequence relative to || · ||G. Then for each point x ∈ G0 one has that

{Ψn(x) : HG(x)→ HG(x)}n∈N

is a Cauchy sequence of compact operators on the Hilbert space HG(x) in
the operator norm. Hence, then the limit

Ψ(x) := lim
n

(Ψ(x))

is a compact operator onHG(x) and x 7→ Ψ(x) defines a G-equivariant family
of compact operators over G0. Since the sequence of norm functions

{||Ψn|| : G0 → R≥0}n∈N

converges uniformly, it follows that ||Ψ|| : G0 → R≥0 is continuous. This
implies that Ψ ∈ KG and limn ||Ψ − Ψn|| = 0, which proves that || · ||G is
complete.�

The following proposition can be thought as a sort of Serre-Swan theorem
for differentiable stacks.

Proposition 2.2.2. If P ∈ KG is a projection2 then Im(P ) ⊂ HG is a finite
dimensional G-subbundle. Conversely, if E ⊆ HG is a finite dimensional
G-subbundle there is a unique projection PE ∈ KG such that E ∼= Im(PE).

Proof: Let P ∈ KG be a projection. For each point x ∈ X choose an open
neighborhood x ∈ U ⊆ X with compact closure. Since the underlying Hilbert
bundle HG → G0 is globally trivial, it follows that the restriction P |U defines
a projection in the stabilized algebra K⊗C0(U). Therefore, by the classical

2Recall that P ∈ KG is called a projection if P 2 = P = P ∗.
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Serre-Swan theorem (see, e.g. [6]) the image Im(P |U) ⊂ HG|U is a finite
dimensional subbundle. Moreover, since P is G-equivariant and the coarse
quotient space |G| is assumed to be connected, the image Im(P ) ⊂ HG is
a subrepresentation of finite rank. On the other hand, let E ⊂ HG be a
subrepresentation of finite rank. Then, by the absortion property, one has
that E ⊕ HG

∼= HG. Let PE : HG → HG be the corresponding orthogonal
projection onto E . Then PE is compact and G-equivariant.�

As an immediate consequence of Proposition 2.2.2 we can reformulate the
resolution property in the following way.

Corollary 2.2.1. One has that G has the resolution property iff KG has an
approximation of the identity by projections.

One can produce a good supply of compact operators on HG by means of
the following standard smearing construction. Fix a normalized right Haar
system µ = {µx : C0

c (G1) → C}x∈G0 on G. Hence, for any a ∈ C0
c (G1) and

every section v ∈ Γ(G0,HG) the formula

Ψav :=
∫∫

G
a(g)(h−1gh) · vs(h)dgdh

provides a well defined C0
c (G0)-linear map Ψa : HG → HG, which is called

the smearing operator associated to a. Note that for each x ∈ G0 the
induced linear operator Ψa(x) : HG(x) → HG(x) on the fiber above x is
compact since it takes the form

vx 7→ Ψa(x)vx =
∫∫

g∈t−1(x),h∈s−1(x)
a(g)(h−1gh)vxdgdh.

Moreover, the inequality ||Ψav|| ≤ ||v||
∫
G |a(g)|dg implies that Ψa actually

defines a compact operator on HG. On the other hand, note that for any
arrow f : x→ y in G1 the equality f ·Ψa(x) = Ψa(y) · f holds since∫∫

g∈t−1(x),h∈s−1(x)
a(g)(fh−1gh)vxdgdh =

∫∫
g∈t−1(y),h∈s−1(y)

a(g)(h−1ghf)vydgdh

which follows from the right invariance of the Haar system µ, i.e. we have
that Ψa ∈ KG. Similarly, it is not hard to see that Ψa∗ = Ψ∗a.
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Poof of Theorem 2.2.1: Let {an ∈ C0
c (G1)}n be a sequence of non negative

functions with
∫
G an(g)dg = 1 such that for any b ∈ C0

c (G1) one has that

lim
n

∫
G
b(g)an(g)dg = b|G0

Note that for any section v ∈ Γ(G0,HG) we have

||Ψanv − v|| = ||
∫∫

G
an(g)(h−1gh) · vs(h)dgdh−

∫∫
G
an(g)vs(h)dgdh|| ≤ bn||v||

where the function bn =
∫∫
G an(g)||h−1gh − 1s(h)||s(h)dgdh is independent of

the section v. By the compactness of |G| it follows that there is a positive
number ε > 0 such that sp(Ψan) ∩ (0, ε) = ∅ for n >> 0, where sp(Ψan) is
the spectrum of Ψan as an element of the C∗-algebra KG. Thus, for n >> 0
the indicator function 1sp(Ψan )−{0} is continuous on the spectrum

sp(Ψan) ⊂ [0, ||Ψan||G] ⊂ R

By using continuous functional calculus, we obtain a sequence of projections
Pn := 1sp(Ψan )−{0}(Ψan) ∈ KG such that Im(Pa) = Im(Ψa). Finally, note
that limn bn = 0 since the norm function ||h−1gh− 1s(g)|| approaches to zero
as the arrows g, h ∈ G1 come closed to the subspace G0 ↪→ G1. Thus, the
sequence {Pn}n is an approximation of the identity in KG, and the theorem
follows from corollary 2.2.1.�

2.3 The Presentation Problem

We conclude this chapter by discussing the presentation problem for proper
differentiable stacks in the light of Theorem 2.2.1. Indeed, our second main
original result reads as follows.

Theorem 2.3.1. Every compact and connected proper differentiable stack
can be presented as the global quotient of a compact smooth manifold divided
by the action of a compact Lie group.
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We will prove Theorem 2.3.1 by means of the following standard frame
bundle trick (cf. [9] Proposition 5.1 and [5] A.37).

Proposition 2.3.1. A proper Lie groupoid G is Morita equivalent to the
translation groupoid of a differentiable manifold divided by a smooth action
of a compact Lie group iff there exist a representation E ∈ Rep(G) of finite
rank such that for every point x ∈ G0 the corresponding linear representation
of the stabilizer group Gx on the fiber E(x) above x is faithful (when this
happens we say that E is effective).

Proof: Suppose that G is Morita equivalent to a translation groupoid M nΓ
where Γ is a compact Lie group and M is a smooth Γ-manifold. By the
Peter-Weyl theorem we know that there exist a finite dimensional faithful
representation V of Γ. Hence, the trivial bundle V × M → M endowed
with the obvious Γ-action defines an effective representation of M n Γ. On
the other hand, suppose that E ∈ Rep(G) is an effective representation of
finite rank n < ∞. We can assume that E is smooth. Hence, the induced
action G 	 Fr(E) on the frame bundle is free, proper, and commutes with
the action Fr(E) � U(n) of the corresponding unitary group. It turns out
that the coarse quotient space M := |Gn Fr(E)| is a smooth U(n)-manifold
such that the translation groupoid M n U(n) is Morita equivalent to G.�

Proposition 2.3.2. Every proper Lie groupoid with compact and connected
coarse quotient space admits an effective representation of finite rank.

Proof: Let G be a proper Lie groupoid with compact and connected coarse
quotient space. Then one can find a finite covering G = ∪nk=1Gk by open
subgroupoid Gk ⊆ G such that Gk is equivalent to a global quotient. Then for
each k there is an effective representation Ek ∈ Rep(Gk) of finite rank. Hence,
since the Lie groupoid G has the resolution property, there is a representation
E ′k ∈ Rep(G) of finite rank such that the restriction E ′k|Gk

approximates Ek
close enough in order to guarantee that E ′k|Gk

is effective. It follows that
E := ⊕n

k=1 E ′k ∈ Rep(G) is an effective representation of finite rank.�
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Finally, the proof of theorem 2.3.1 is a direct consequence of propositions
2.3.1 and 2.3.2.
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