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Abstract

This thesis consists of three parts. In the first part, motivated by the boundary crossing

problem for Brownian motion, we study the heat equation with a moving boundary.

Making use of the heat polynomials and Fourier analysis, we develop a procedure to

solve the heat equation with a moving boundary for a family of boundaries, including

quadratic, square root, and cubic boundaries. Furthermore, we use the solution to the

heat equation with quadratic moving boundary to finding the density of the hitting time

of the Brownian motion up to a quadratic boundary.

In the second part, we use heat polynomials and tools from stochastic analysis, to intro-

duce a family of Ito processes with Bessel-like properties. We show that these processes

have positive sample paths, we compute their transition probabilities, and their hitting

time densities. Besides, we show that these processes are Schroedinger bridges that, a

fixed time T > 0, behave as a Bessel process of odd dimension. Finally, we propose an

application of these processes to the modelling of stochastic volatility for timer options.

Finally, in the third part, we propose a Stackelberg model corresponding to a resource

allocation problem on an urban region. The problem is solved as a bilevel optimization

problem. The existence of solutions to the problem is obtained by means of optimal

transport techniques.





Resumen

Esta tesis consiste de tres partes. En la primera parte, motivados por el problema de

cruce de fontera para el movimiento browniano, estudiamos el problema de la ecuación

del calor con frontera móvil. Usando los polinomios del calor y elementos básicos de

anális de Fourier, desarrollamos un método para encontrar soluciones a la ecuación del

calor con frontera móvil para una familia de fronteras, incluyendo las fronteras cuadrática,

ráız cuadrada y cúbica. Además, usando la solución a la ecuación del calor con frontera

cuadrática calculamos la densidad del cruce de frontera del movimiento browniano para

una frontera cuadrática.

En la segunda parte, usando los polinomios del calor y herramientas de análisis es-

tocástico, construimos una familia de procesos de Ito con propiedades tipo Bessel. Mostramos

que estos procesos tienen trayectorias positivas, calculamos sus probabilidades de tran-

sición y densidades de cruces de frontera. Además, mostramos que estos procesos resultan

ser puentes de Schrödinger que en un tiempo fijo T > 0 se comportan como un procesos

de Bessel de dimensión impar. Finalmente, proponemos una aplicación de estos procesos

modelando volatilidad estocástica en un problema de opciones “timer”.

Finalmente, en la tercera parte proponemos un modelo de Stackelberg para la asignación

óptima de recursos en una región urbana. El modelo se resuelve como un problema de

optimización de dos niveles. La existencia de soluciones del problema se obtiene por medio

de técnicas de transporte óptimo.
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1 Introduction

The first part of this thesis deals with a classic and challenging problem in stochas-

tic analysis: the hitting time problem for Brownian motion. Consider a standard one-

dimensional Brownian motion starting at zero {Bt,Ft, 0 ≤ t < ∞} and a continuous

function f : [0,∞)→ R such that f(0) 6= 0. The hitting time up to the curve f , called a

moving boundary, is defined as

Tf (t) := inf{t > 0 : Bt = f(t)}.

Finding the distribution of the stopping time Tf is the hitting time problem. Hitting time

problems also are known as boundary crossing problems.

The hitting time problem can be traced back (at least) to Bachelier’s doctoral thesis

[5]. Hitting time problems appear in applications to finance, economics, optimal control,

among others as can be seen in [26] and references therein. They are also related to

important problems in statistics, such as sequential analysis ,and the law of the iterated

logarithm, [30]. Different approaches have been used to study hitting time problems. A

modern survey on some of these techniques is [3].

In the case of the Brownian motion it is known that if f is a C1 function, then the

stopping time Tf admits a density that is continuous [42]. Moreover, the relation between

the boundary crossing problem for Brownian motion and the heat equation has been

studied ([26] p. 262). In particular, in [20] the hitting time problem is studied in the

case in which f is a convex function that satisfies some technical conditions (see Section

2.2 below). In [20] it is shown that the problem of finding a density for the hitting time

is equivalent to finding a solution to the heat equation with some non-standard initial

and boundary conditions. The relation between differential equation and the boundary

crossing problem holds in more general settings [2].
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1 Introduction

For completeness, we begin in Chapter 2 with a brief review of [20]. The main aim of

this chapter is to establish the relationship between hitting time problems for Brownian

motion and the heat equation with a moving boundary as well as a distributional initial

condition. The main result of this chapter is obtained with the initial and boundary

conditions (2.20) and (2.21).

Motivated by hitting time problems, Chapter 3 is devoted to study the heat equation

with a moving boundary. The heat equation with a moving boundary appears in several

theoretical and applied problems in mathematics and physics mentioned in the introduc-

tion of Chapter 3. In the particular case of the boundary crossing problem the relationship

between hitting times and the heat equation with a moving boundary appears in Theorem

1.1. of Lerche [30].

In Chapter 3 we develop a procedure, with minimal tools, for solving the heat equation

with a moving boundary for a family of boundaries. Using heat polynomials and tools from

Fourier analysis, a solution to the heat equation with a moving boundary is obtained as the

convolution between the heat kernel and a function φ that solves an ordinary differential

equation. Using this approach, we find solutions to the heat equation with a moving

boundary for quadratic and cubic cases, among others. Besides, with the solution to the

heat equation with a quadratic moving boundary and the theory developed in Chapter

2, we compute the density of the hitting time for Brownian motion up to a quadratic

boundary.

In Chapter 4 we introduce a family of Ito processes with Bessel-like properties. Us-

ing heat polynomials we make a change of measure on a Brownian motion absorbed at

zero. For these processes we show that they have positive sample paths, we compute their

transition probabilities as well as their hitting time densities. We also show that these

processes solve the stochastic control version of the classical Schroedinger problem for-

mulated by Dai Pra [12]. In particular, these processes can be considered as Schroedinger

bridges given that a fixed (but arbitrary) time T > 0 they behave as Bessel processes of

odd dimension. This bridge property could be useful to model, for instance, a portfolio

which may vary the amount of assets in a fixed time T > 0. Finally, we propose an

application of these processes too model stochastic volatility in timer options.

The study of Schroedinger bridges leads us naturally to the optimal transportation

2



problem [29]. The origins of the optimal transport problem can be traced back up to the

18th century and it was not until the relaxed formulation by Kantorovich in 1942 that the

problem was completely solved [45]. The optimal transport problem is related to several

branch in mathematics such as partial differential equation, Riemannian geometry and

probability [44]. In addition, in the last few years the optimal transport problem has been

widely used in applications to economics, statistics and operations research [39].

Strongly inspired by [32] and [10], in Chapter 5 we propose an Stackelberg model

corresponding to a resource allocation problem on an urban region. The model takes into

account transportation costs, distribution costs ,and utility functions. In this model, a

social planner wishes to minimizing total costs while maximizing the welfare obtained by

the population that receives the resource. The problem is solved as a bilevel optimization

problem (also known as a Stackelberg game in game theory). The existence of the best-

response function is guaranteed thanks to the optimal transportation problem.
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2 On hitting times for Brownian motion

2.1 Introduction

Consider a standard one dimensional Brownian motion {Bt,Ft; 0 ≤ t < ∞} starting at

zero, and a real-valued function f ∈ C([0,∞)). The hitting time problem is to find the

distribution for

Tf := inf{t > 0 : Bt = f(t)}. (2.1)

A hitting time problem is also known as a boundary crossing problem and it is a funda-

mental and challenging problem in stochastic analysis. The study of hitting time problems

may be traced back to Bachelier’s doctoral thesis [5] and nowadays it is a problem with

deep applications in pure and applied mathematics as well as in physics.

This chapter is based on [20] where it is shown a relationship between the hitting time

problem and the heat equation with particular initial and (moving) boundary conditions.

2.2 Hitting time problems

Let {Bt,Ft; 0 ≤ t <∞} be a standard Brownian motion. Consider the hitting time to a

fixed level a

Ta := inf{t > 0 : Bt = a}.

Using the reflection principle (see [26] p. 81) it can be shown that, for a > 0 fixed, Ta has

a density with respect to the Lebesgue measure given by

h(t, a) =
a√
2πt3

e−
a2

2t for t > 0. (2.2)
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2 On hitting times for Brownian motion

Note that if ω(t, a) is the heat kernel (also known as the fundamental solution to the heat

equation), that is,

ω(t, a) =
1√
2πt

e−
a2

2t (2.3)

then ωa(t, a) = −h(t, a) where h is as in (2.2), and ωa denotes partial derivative.

Let C∞c (R) be the set of infinitely differentiable functions with compact support, also

known as test functions.

It is known that ([17] p. 208)

lim
t↓0

ω(t, a) = δ0(a)

where δ0(a) is the Dirac mass at 0 with respect to the variable a and the limit is in the

distributional sense, that is,

lim
t↓0

∫
R
ω(t, a)φ(a)da = φ(0) (2.4)

for all φ ∈ C∞c (R). Then, given that differentiation is continuous respect to the distribu-

tional convergence ([17] p. 315) we have

lim
t↓0

h(t, a) = −1

2
δ′0(a) (2.5)

where the limit is in distributional sense, that is,

lim
t↓0

∫ ∞
0

h(t, a)ϕ(a)da =
1

2
ϕ′(0) (2.6)

for all ϕ in the set of test functions E defined as

E := {ϕ ∈ C∞c ([0,∞)) : ϕ(0) = 0}. (2.7)

We will study the hitting time problem (2.1) for a function f that satisfies the following

conditions.

Assumption 2.1. Let f ∈ C2([0,∞)) be a real-valued function such that, for all t > 0,

f(0) = 0, f ′′(t) ≥ 0, and

∫ t

0

(f ′(s))2ds <∞. (2.8)

We denote as f(t, a) the family of translations of f given by

f(t, a) = a+ f(t) = a+

∫ t

0

f ′(s)ds for a > 0. (2.9)
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2.3 Hitting times problems and the heat equation

Making use of Girsanov’s theorem ([26] p. 190) in [20] it is set a relationship between

the problem of finding the density of hitting times (2.1) and 3-dimensional Bessel bridges.

For completeness thesis, we next recall some of these facts.

A 3-dimensional Bessel process represents the Euclidean norm of a Brownian motion

on R3. On the other hand, a 3-dimensional Bessel bridge Xu starting at a > 0 is a 3-

dimensional Bessel process that is conditioned to hit level zero (for the first time) at a

fixed time t > 0. In [36] p. 463 it is shown that a 3-dimensional Bessel bridge Xu satisfies

the stochastic differential equation

dXu =

(
1

Xu

− Xu

t− u

)
du+ dWu with X0 = a > 0, 0 ≤ u ≤ t, (2.10)

where Wu is a standard Brownian motion.

We denote by Tf (t, a) the density of the hitting time (2.1) when it hits a boundary that

satisfies Assumption 2.1. Theorem 3.1 in [20] states that Tf (t, a) is given as

Tf (t, a) = E
[

exp
{
−
∫ t

0

f ′′(u)Xudu
}]
e−

1
2

∫ t
0

(f ′(u))2du−f ′(0)ah(t, a), (2.11)

where h is as in (2.2) and Xu is a 3-dimensional Bessel bridge that satisfies (2.10).

2.3 Hitting times problems and the heat equation

Note that the most complicated term in (2.11) is

E
[

exp
{
−
∫ t

0

f ′′(u)Xudu
}]
,

which is related to the main contribution of Theorem 4.1 in [20].

Theorem 2.2 (Hernández-del-Valle [20]). Suppose that v : [0, s] × [0,∞) → [0,∞) is

continuous of class C1,2([0, s)× [0,∞)), and satisfies the Cauchy problem

− ∂v

∂t
+ f ′′(t)av =

1

2

∂2v

∂a2
+
(1

a
− a

s− t

)∂v
∂a

with v(s, a) = 1, (2.12)

as well as 0 ≤ v(t, a) ≤ 1 for 0 ≤ t ≤ s. Then v(t, a) admits the representation

v(t, a) = Et,a
[

exp
{
−
∫ s

t

f ′′(u)Xudu
}]

(2.13)

and this representation is unique. Here, Et,x denotes expectation with respect to the 3-

dimensional Bessel bridge with initial conditions Xt = x.

7



2 On hitting times for Brownian motion

The proof to this result lies on the Feynman-Kac formula ([26]p. 366) and it yields

a relationship between the hitting time problem for Brownian motion and some partial

differential equations. The main objective in the rest of this chapter is to find a solution

to (2.12) in terms of the heat equation.

To obtain a solution v to (2.12) consider a function w defined as

v(t, a) =
w(t, a)

h(s− t, a)
, (2.14)

where h is given in (2.2). If w(t, x) satisfies that

− wt(t, a) + f ′′(t)aw(t, a) =
1

2

∂2w

∂a2
on [0, s)× (0,∞), (2.15)

then v(t, a) in (2.14) satisfies (2.12). Furthermore, from the boundary condition (2.5) and

the fact that v(s, a) = 1 we obtain

lim
t↑s

w(t, a) = −1

2
δ′0(a) (2.16)

and, from the function h it follows that

lim
a↓0

w(t, a) = 0. (2.17)

So far, if we have a function w that satisfies the partial differential equation (2.15) on

[0, s) × (0,∞) as well as the conditions (2.16) and (2.17), then the density Tf (s, a) is

w(0, a). Note the important role played by s.

Using Fourier transforms, Theorem 6.1 in [20] establishes that a solution to (2.15) on

[0, s)× (0,∞) is

w(t, a) = e
1
2

∫ s
t

(f ′(u)2du+af ′(t)κ(s− t, a+

∫ s

t

f ′(u)du) (2.18)

where κ(t, x) is given by

κ(t, x) =
1

2π

∫
R
ĝ(y)e

1
2
y2t+iyxdy (2.19)

for every function ĝ(x) for which the integral in (2.19) is defined and where i =
√
−1.

Note that κ is the convolution between a function g with Fourier transform ĝ and the

heat kernel (2.3). Then, if g(x) satisfies some growth condition (see for instance [26] p.

254), then the function κ is a solution to the heat equation.

8



2.3 Hitting times problems and the heat equation

For a solution κ to the heat equation and considering the initial condition (2.16) we

obtain

lim
t↑s

κ
(
s− t, a+

∫ s

t

f ′(u)du
)

= −1

2
δ′0(a) (2.20)

where the limit is in the distributional sense on the set of test functions E defined at (2.7).

The condition (2.17) yields

lim
a↓0

κ
(
s− t, a+

∫ s

t

f ′(u)du
)

= κ(s− t, f(s)− f(t)) = 0. (2.21)

Summarizing, if κ is a solution to the heat equation on [0, s) × (0,∞) that satisfies

(2.20) and (2.21), then the density of the hitting time at time s, Tf (s, a), is

Tf (s, a) = κ
(
s, a+

∫ s

0

f ′(u)du
)

= κ(s, a+ f(s)). (2.22)

The following chapter es devoted to deal with a solution to the heat equation that

satisfies (2.21). Moreover, in Section 3.6 of Chapter 3 we study the hitting time for

the Brownian motion up to a family of quadratic boundaries. To this end, we will use

Sturm-Liouville theory to satisfies condition (2.20).

9





3 Solution to the heat equation with a

moving boundary

3.1 Introduction

Solutions to the heat equation absorbed at a moving boundary f(t), that is, functions

ν(t, x) such that

νt(t, x) =
1

2
νxx(t, x), (3.1)

ν(t, f(t)) = 0, (3.2)

(t, x) ∈ R+ × R, f ∈ C2

appear prominently in applications. For instance, see [8, 20, 38] in the construction of first

hitting time densities of Brownian motion; [9, 22, 28] in the valuation of barrier options;

[13, 11] in the quantification of counterparty risk; [19, 33] for applications of the quadratic

boundary in biology and other fields. In fact, explicit solutions to the problem (3.1)-(3.2)

are well known in some particular cases. For instance:

(a) Linear boundary. For b ∈ R, the function

ν(t, x) =
x√
2πt3

exp

{
−x

2

2t

}
+ b

1√
2πt

exp

{
−x

2

2t

}
. (3.3)

solves (3.1)-(3.2) in the case in which f(t) = −bt. [See, for instance; Karatzas &

Shreve (1991) for an example of this function in the first hitting time of Brownian

motion to a linear boundary.]

(b) Quadratic boundary. Given that Ai denotes an Airy function and ξ ∈ R− := {x ∈

R;x < 0} is any of its roots, then

ν(t, x) = exp

{
t3

12
+
tx

2

}
Ai

(
x+

t2

4

)
(3.4)

11



3 Solution to the heat equation with a moving boundary

is a solution of problem (3.1)-(3.2) when f(t) = ξ− t2/4. (See, for instance, [43] for

the general theory and applications of Airy functions)

(c) Rayleigh type equation. Let

ν(t, x) =
1

2π

∫ ∞
−∞

exp

{
iλx− 1

2
λ2t− λ4

4

}
dλ

be the so-called Pearcey function. This function solves problem (3.1)-(3.2) when f

satisfies

f ′′(t) = 2[f ′(t)]3 − 1

2
tf ′(t)− 1

4
f(t).

See [21].

(d) In general, one could try to find a function f that solves (3.2) whenever ν is a linear

combination of n solutions {νj}j=1,...,n to the heat equation (3.1), that is,

ν(t, x) = a1ν1(t, x) + · · ·+ anνn(t, x).

Such is the case of the density of the first time a Wiener process hits a quadratic

boundary as in [19, 33]. Or the first time it reaches a square root boundary as in

[8, 38]

Let us distinguish the following problems:

(a) Given that ν solves the heat equation (3.1) then, find f that solves (3.2).

(b) For a given moving boundary f , there exists a solution ν to the heat equation (3.1),

such that (3.2) holds.

In this chapter we are mainly concerned with problem (b). That is, to find a solution

to (3.1)-(3.2) in the case in which the moving boundary f(t) is at most cubic, that is,

f(t) = bt3 for b ∈ R and t ≥ 0.

The technique used to achieve our goal is remarkably straightforward, and is based on

analyzing the convolution between the fundamental solution of the heat equation and some

real-valued and sufficiently smooth function φ. In Hernández-del-Valle [21], the author

uses similar arguments, but in that work the problem is of the type (a). In contrast, in

12



3.2 Preliminary results

the present work the problem is as the one posed in (b). We will show that making use

of the technique briefly described above, we may find a function φ which convolved with

the fundamental solution to the heat equation leads to solutions of the type (b) for a

family of boundaries that include quadratic and cubic boundaries. We suspect that this

technique can be generalized to the case of a polynomial boundary. Finally, we apply

the solution to the heat equation with a quadratic moving boundary, together with the

theory developed in Chapter 2, for computing explicitly the density of the hitting time of

a Brownian motion up to a family of quadratic boundaries.

The remainder of this chapter is organized as follows. In Section 3.2 we state some

notation, define heat polynomials, and recall some of their properties. In Section 3.3

the technique used to link solutions ν of the heat equation with moving boundaries f

is introduced in the case in which the linking function φ(x) is C2(R). Furthermore, in

Section 3.4 we study in detail the case of absorption at the linear, quadratic, and square

root boundaries with our approach. Subsequently, in Section 3.5, we derive the solution

of the heat equation with a cubic absorbing boundary. Section 3.6 is devoted to compute

the density of the hitting time up to a family of quadratic boundaries. Finally, we close

the chapter in Section 3.7 with some concluding remarks.

3.2 Preliminary results

In this section we introduce the notation that will be used in the chapter. Furthermore,

we define the so-called heat polynomials and state some of their properties.

Remark 3.1. (a) For the remainder of this chapter, given a function ν(t, x), its n-th

partial derivative with respect to the state variable x will be denoted as ν(n)(t, x).

(b) Recall that the fundamental solution to the heat equation (3.1) (also known as the

heat kernel) is given by

ω(t, x) :=
1√
2πt

exp

{
−x

2

2t

}
=

1

2π

∫ ∞
−∞

eiλx−
1
2
λ2tdλ, i :=

√
−1

where the last identity is expressed in terms of the inverse Fourier transform.

13



3 Solution to the heat equation with a moving boundary

(c) For a function f its Fourier transform is denoted as F [f ]. We recall the following

properties of the Fourier transform

F
[dnf(x)

dxn

]
(λ) = (iλ)nF [f ](λ)

F [xnf(x)](λ) = in
dnF [f ](λ)

dλn
.

For short, the Fourier transform F [f ](λ) will be also denoted as f(λ).

Now we will define the so-called heat polynomials and write some of their properties.

We will make use of heat polynomials in lemma 3.3 and in the proof of proposition 3.4

bellow.

Definition 3.2 (Rosembloom and Widder [37]). We define the heat polynomials as func-

tions vn(t, x) such that

eiλx−λ
2t/2 =

∞∑
n=0

vn(t/2, x)
(iλ)n

n!
.

The heat polynomials satisfy the following properties whose proofs can be seen in [37].

• The recurrence relation

vn+1(t, x) = xvn(t, x) + 2ntvn−1(t, x) (3.5)

holds for n = 1, 2, . . . , with v0(t, x) = 1, v1(t, x) = x.

• For n = 1, 2, . . . ,

v(1)
n (t, x) = nvn−1(t, x). (3.6)

Finally, we prove a technical lemma that will be used in the proof of proposition 3.4.

Lemma 3.3. Let vn(t, x) be the heat polynomials. Then

dn

dλn

[
eiλx−λ

2t/2
]

= vn(−t/2, ix− λt)eiλx−λ2t/2 for n = 0, 1 · · · . (3.7)

Proof. The proof is by induction. For n = 1, from (3.5) direct calculations give the result.

Now, assume that (3.7) holds for n; we will prove that it holds for n + 1. The induction

hypothesis yields

14



3.3 Main results

dn+1

dλn+1

[
eiλx−λ

2t/2
]

=
d

dλ

[ dn
dλn

[
eiλx−λ

2t/2
] ]

=
d

dλ

[
vn(−t/2, ix− λt)eiλx−λ2t/2

]
,

which together with (3.6) gives

dn+1

dλn+1

[
eiλx−λ

2t/2
]

=
[
− tnvn−1(−t/2, x− λt) + vn(−t/2, x− λt)(ix− λt)

]
eiλx−λ

2t/2

= vn+1(−t/2, ix− λt)eiλx−λ2t/2.

The last equality follows from (3.5). The proof is complete.

3.3 Main results

In this section we derive some algebraic properties of the convolution between the funda-

mental solution of the heat equation and a C2(R) function φ .

Proposition 3.4. For positive integers p, q, r and constant coefficients a, b ∈ R, consider

the differential equation

xpφ(2)(x) = axqφ(1)(x) + bxrφ(0)(x) for x ∈ R. (3.8)

In addition, let vn be the heat polynomials. If φ denotes the Fourier transform of a solution

φ to (3.8), then the following holds

(−i)p
∫

(iλ)2φ(λ)vp(−t/2, ix− λt)eiλx−λ
2t/2dλ (3.9)

= (−i)qa
∫
iλφ(λ)vq(−t/2, ix− λt)eiλx−λ

2t/2dλ

+(−i)rb
∫
φ(λ)vr(−t/2, ix− λt)eiλx−λ

2t/2dλ.

Proof. Applying the Fourier transform to both sides of (3.8) yields

ip
dp

dλp
[
(iλ)2φ(λ)

]
= aiq

dq

dλq
[
iλφ(λ)

]
+ bir

dr

dλr
[
φ(λ)

]
.

15



3 Solution to the heat equation with a moving boundary

Next, we multiply both sides of the previous expression by eiλx−λ
2t/2, and then integrate

to obtain ∫ +∞

−∞
eiλx−λ

2t/2ip
dp

dλp
[
(iλ)2φ

]
dλ (3.10)

= a

∫ +∞

−∞
eiλx−λ

2t/2iq
dq

dλq
[
iλφ
]
dλ+ b

∫ +∞

−∞
eiλx−λ

2t/2ir
dr

dλr
[
φ
]
dλ.

Note that the function eiλx−λ
2t/2 vanishes as |λ| → ∞. Hence, integration by parts gives

(−i)p
∫

(iλ)2φ
dp

dλp

[
eiλx−λ

2t/2
]
dλ

= (−i)qa
∫

(iλ)1φ
dq

dλq

[
eiλx−λ

2t/2
]
dλ

+(−i)rb
∫

(iλ)0φ
dr

dλr

[
eiλx−λ

2t/2
]
dλ.

Thus, equation (3.9) follows from the latter equality and (3.7).

We will use Proposition 3.4 in combination with the following facts.

Remark 3.5. (a) Suppose there exists a pair of functions ν and f that solve the moving

boundary problem (3.1)-(3.2). Then, direct calculations give the following

f ′(t)ν(1)(t, f(t)) +
1

2
ν(2)(t, f(t)) = 0 (3.11)

and

f ′′(t)ν(1) + f ′(t)
(
f ′(t)ν(2) + ν(3)

)
+

1

4
ν(4) = 0. (3.12)

(b) Consider the function ν(t, x) defined as the convolution between a solution φ to (3.8)

and the fundamental solution to the heat equation, i.e.

ν(t, x) :=
1

2π

∫ ∞
−∞

φ(λ)eiλx−λ
2t/2dλ for (t, x) ∈ R+ × R.

If φ satisfies some growth condition (see [26] p. 254), Then ν(t, x) is a solution to

the heat equation; Furthermore, by properties of Fourier transforms,

ν(n)(t, x) :=
1

2π

∫ ∞
−∞

(iλ)nφ(λ)eiλx−λ
2t/2dλ (3.13)

for (t, x) ∈ R+ × R.
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We are now ready to present the main result of this section which will make use of

Proposition 3.4 and Remark 3.5. Theorem 3.6 links functions ν and f that solve (3.1)-

(3.2), through a specific C2 function φ.

Theorem 3.6. For given fixed coefficients d0, d1, c0, c1, c2 ∈ R, let φ be a real-valued

solution of the following second order ODE

φ(2)(x) =

1∑
j=0

djx
jφ(1)(x) +

2∑
j=0

cjx
jφ(x) (3.14)

for x ∈ R, with Fourier transform φ. Let

ν(t, x) :=
1

2π

∫ ∞
−∞

φ(λ)eiλx−λ
2t/2dλ (3.15)

be the convolution between φ and the fundamental solution of the heat equation. If there

exists f such that ν(t, f(t)) = 0 and ν(1)(t, f(t) 6= 0, it follows that

1. If d1 = c2 = 0 in (3.14), then we have that

f(t) = −d0

2
t− c1

4
t2. (3.16)

2. If at least one of the coefficients d1, c2 are different from zero, then, for an arbitrary

constant C, the function f is of the form

f(t) =
−d0d1 − 2c1 − 2c2d0t+ c1d1t

d2
1 + 4c2

+
√
−1 + d1t+ c2t2 · C. (3.17)

Proof. If the function φ is a solution of (3.14), it follows from Proposition 3.4 and (3.13)

that its convolution with the fundamental solution of the heat equation satisfies that

(1− d1t− c2t
2)ν(2)(t, x) =

(d0 + d1x+ c1t+ c22tx)ν(1)(t, x) (3.18)

+(c0 + c1x+ c2x
2 + c2t)ν

(0)(t, x).

Now, suppose that there exists a function f such that ν(t, f(t)) = 0 for all t ≥ 0. It

follows from (3.18) that

(1− d1t− c2t
2)ν(2)(t, f(t))

= (d0 + c1t+ [d1 + 2c2t]f(t))ν(1)(t, f(t)) (3.19)
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3 Solution to the heat equation with a moving boundary

and, from (3.11),

ν(2)(t, f(t)) = −2f ′(t)ν(1)(t, f(t)). (3.20)

Thus, from (3.19) and (3.20), we have that

−2f ′(t)(1− d1t− c2t
2) = (d0 + c1t+ [d1 + 2c2t]f(t)) . (3.21)

This implies that f , which solves the latter ODE, has the following general solution (by

standard techniques) as long as at least one of the coefficients d1, c2 are different from

zero

f(t) =
−d0d1 − 2c1 − 2c2d0t+ c1d1t

d2
1 + 4c2

+
√
−1 + d1t+ c2t2 · C.

In turn, if d1 = c2 = 0, it follows from (3.21) that

f(t) = −d0

2
t− c1

4
t2,

as claimed.

3.4 Applications of Theorem 3.6

In this section we will show how Theorem 3.6 works to solve (3.1)-(3.2).

3.4.1 The linear boundary

From the proof of Theorem 3.6 we know that if all the coefficients are zero except d0, then

we will recover the linear boundary.

Next we will proceed to construct a solution. To this end recall that, for arbitrary

constants C1 and C2, the equation

φ(2)(x) = d0φ
(1)(x) + c0φ

(0)(x),

has the general solution

φ(x) = e
1/2
(
d0−
√

4c0+d20

)
x
C1 + e

1/2
(
d0+
√

4c0+d20

)
x
C2.

18
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If we take convolution between this solution with the fundamental solution of the heat

equation, we obtain

ν(t, x) = e
1/2
(
d0−
√

4c0+d20

)
x+ 1

2
t
[
1/2
(
d0−
√

4c0+d20

)]2
C1

+e
1/2
(
d0+
√

4c0+d20

)
x+ 1

2
t
[
1/2
(
d0+
√

4c0+d20

)]2
C2. (3.22)

Thus if C1 = −C2 we verify that ν (t, f(t)) = 0 for all t ≥ 0 in the case in which the

boundary is

f(t) = −d0

2
t.

3.4.2 The quadratic boundary

Next we study a quadratic boundary. Taking c0, c1 6= 0 in (3.14) we have that

φ(2)(x) = c1xφ
(0)(x) + c0φ

(0)(x), (3.23)

which is the Airy differential equation. To solve (3.23) first consider the homogeneous

Airy equation

φ′′(x)− xφ(x) = 0. (3.24)

Using Fourier transform we can find a solution φ(x) to (3.24) such that limx→+∞ φ(x) = 0.

It is given by

Ai(x) :=
1

2π

∫ +∞

−∞
ei(xz+z

3/3)dz. (3.25)

Direct calculations show that a solution φ(x) to (3.23) is given by Ac1i (x+ c0
c1

), where

Ac1i (x) :=
1

2π

∫ ∞
−∞

e
i(xz+ z3

3c1
)
dz = c

1/3
1 Ai(c

1/3
1 x). (3.26)

In particular, the convolution of Ac1i (x+ c0
c1

) with the fundamental solution of the heat

equation is

ν(t, x) =
1

2π

∫
R

exp
(
iλx− λ2t

2
+ ic0

λ

c1

+ i
λ3

3c1

)
dλ (3.27)

= exp
(c2

1t
3

12
+
xc1t

2
+
tc0

2

)
Ac1i

(
x+

c0

c1

+
c1t

2

4

)
(3.28)

Hence, if we take c0 = c
2/3
1 cn, where cn is a root of Ai(x) we obtain

ν(t, x) = exp
(c2

1t
3

12
+
xc1t

2
+
tc

2/3
1 cn
2

)
Ac1i

(
x+

cn

c
1/3
1

+
c1t

2

4

)
(3.29)
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3 Solution to the heat equation with a moving boundary

From (3.29) we note that ν(t, f(t)) = 0 for all t ≥ 0 in the case in which

f(t) = −c1

4
t2.

We know that the zeros of Ai(x) are cn ∈ R− := {x ∈ R;x < 0}, and countable; see [43]

p. 15.

3.4.3 The square root boundary

Next we analyze a square root boundary. To this end, from Theorem 3.6 we study the

equation

φ(2)(x) = xd1φ
(1)(x) + c0φ

(0)(x),

whose solution has Fourier transform

φ(λ) = C1λ
c0−d1
d1 e

λ2

2d1 .

In particular, if we let s = −1/d1 > 0 and z0 = c0/d1, then

ν(t, x) =
1

π
2
z0
2
−1(s+ t)−

z0+1

2 I,

where

I =

[
√

2x cos
[
z0π
2

]
Γ
[

1+z0
2

]
1F1

[
1+z0

2
, 3

2
,− x2

2(s+t)

]
+
√
s+ tΓ

[
z0
2

]
1F1

[
z0
2
, 1

2
,− x2

2(s+t)

]
sin
[
z0π
2

] ]
,

where 1F1 is the confluent hypergeometric function (see [1] p. 503) and Γ(·) is the gamma

function ([1] p. 253). To verify that with f(t) =
√
s+ t we obtain ν(t, f(t)) = 0 for all

t ≥ 0, we use the previous expression to obtain

ν(t,
√
s+ t) =

1

π
2
z0
2
−1(s+ t)−

z0
2 I

where

I =

[
√

2 cos
[
z0π
2

]
Γ
[

1+z0
2

]
1F1

[
1+z0

2
, 3

2
,−1

2

]
+Γ
[
z0
2

]
1F1

[
z0
2
, 1

2
,−1

2

]
sin
[
z0π
2

] ]
.
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We conclude by noticing that I is independent of s and t. Furthermore, by properties

of the hypergeometric functions one can check that it has countably many roots as a

function of c0.

3.4.4 Remarks

1. In Theorem 3.6 the coefficient c0 is independent of the boundaries. In section 3.6

below we will use c0 as an eigenvalue in the standard Sturm-Liouville theory to find

densities of hitting times for Brownian motion.

2. We note that the coefficient of ν(2) in equation (3.18) is given by

(1− d1t− c2t
2).

In turn, d0 and c1 corresponded to the linear and quadratic boundaries respectively.

By analogy, we are tempted to study an ODE that leads to a solution of the heat

equation involving a coefficient where t is of cubic order. We will do so in the next

section.

3.5 Derivation of the cubic boundary

In this section we derive the function f which corresponds to a solution of the heat

equation (3.1)-(3.2) with cubic absorbing boundary. We will make use of part 2 in Remark

3.4.4.

Theorem 3.7. Suppose that the moving boundary f in (3.2) is f(t) = − b
8
t3. Furthermore,

take b ∈ R\{0} and let φ be a real-valued function that satisfies

φ′′′(x) = bx2φ(x). (3.30)

Then there exists a real-valued solution of (3.30), that convolved with the heat kernel yields

a function ν that solves problem (3.1)-(3.2).

Before proving the theorem, we provide an example.
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3 Solution to the heat equation with a moving boundary

Example 3.8. For b = −1, the function

φ(x) :=
x

53/5
·0F2

[{}
,
{4

5
,
6

5

}
,− x5

125

]
,

defined in terms of the generalized hypergeometric function ·0F2 (see [41]), solves (3.30).

Then the convolution of the heat kernel ω and φ,

ν(t, y) =

∫ ∞
−∞

ω(t, x)φ(y − x)dx,

is a solution to the problem (3.1)-(3.2) when f(t) = t3/8. That is,

ν(t, t3/8) = 0 ∀t ≥ 0.

The proof of Theorem 3.7 is in the spirit of the proof of Theorem 3.6. The only difference

is that the function φ that links ν and the boundary f in problem (3.1)-(3.2) is now C3

instead of C2.

Proof of Theorem 3.7. If φ is a solution to (3.30) and ν(t, x) denotes the convolution of φ

and the fundamental solution to the heat equation, then a direct application of Proposition

3.4 to the ODE (3.30) yields

ν(3)(t, x) = bt2ν(2)(t, x) + 2btxν(1)(t, x) + (bx2 + bt)ν(t, x). (3.31)

Now, if f is such that ν(t, f(t)) = 0, then from (3.11) we obtain

ν(3)(t, f(t)) = (−2bt2f ′(t) + 2btf(t))ν(1)(t, f(t)). (3.32)

Moreover, differentiating (3.31) with respect to x we have

ν(4)(t, x) = bt2ν(3)(t, x) + 2btxν(2)(t, x)

+ (2bt+ bx2 + bt)ν(1)(t, x) + 2bxν(t, x)

and again, if ν(t, f(t)) = 0, from this last expression and (3.32) it follows that

ν(4) = (−2b2t4f ′(t) + 2b2t3f(t)− 4btf(t)f ′(t) + 3bt+ bf2(t))ν(1). (3.33)

On the other hand, (3.12) reads

ν(4) = −4f ′′(t)ν(1) − 4f ′(t)(f ′(t)ν(2) + ν(3)).
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From this latter equation, if ν(t, f(t)) = 0, then (3.32) yields

ν(4) = (−4f ′′ + 8(f ′)3 + 8bt2(f ′)2 − 8btff ′)ν(1). (3.34)

Thus equating (3.33) and (3.34) we obtain

− 4f ′′(t) + 2f ′(t)[4(f ′(t))2 + 4b2t
2f ′(t)− 2b2tf(t) + b2

2t
4]

− b2f(t)[2b2t
3 + f(t)]− 3b2t = 0. (3.35)

Finally, to verify the statement of the theorem, let f(t) = δt3, so f ′(t) = 3δt2 and

f ′′(t) = 6δt. Then substitute the values of f , f ′ and f ′′ in (3.35) to obtain

−24δt− 3b2t+ 2(3δt2)(4 · 9δ2t4 + 4b2t
2 · 3δt2 − 2b2tδt

3 + b2
2t

4)

−b2δt
3(2b2t

3 + δt3) = 0,

or equivalently

−3t(8δ + b2) + 6δt2(36δ2t4 + 12b2δt
4 − 2b2δt

4 + b2
2t

4)

−b2δt
3(2b2t

3 + δt3) = 0.

Factorizing in terms of t and t6 we have

−3t(8δ + b2)

+δt6(216δ2 + 72b2δ − 12b2δ + 6b2
2 − 2b2

2 − b2δ) = 0.

Thus, for the latter equality to hold for all t ≥ 0 we should have

δ = −b2/8.

But this also yields

216b2
2/64− 59b2

2/8 + 4b2
2 = 0,

and thus the proof is complete.
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3.6 Hitting time of a Brownian motion to a quadratic

boundary

The use of the heat equation with a moving boundary for finding the density of a hitting

time appeared for the first time in the method of images developed by Lerche, [30] The-

orem 1.1. A concise statement of this theorem appears in Proposition 3.3 in [2]. Among

the type of boundaries ψ for which Lerche’s approach holds are:

1. ψ is a concave function,

2. ψ(t)/t is monotone decreasing.

In this section we will compute explicitly the density of the hitting time of a standard

Brownian motion up to a quadratic boundary f(t) = a + k
4
t2 for a > 0, k > 0. We will

use the solution to the heat equation with quadratic moving boundary computed above,

in (3.29). An interesting fact is that a quadratic boundary does not fit to the setting of

Lerche’s image method. However, the heat equation with moving boundary is still useful

to compute this density making use of our tools developed in Chapter 2.

Recall that we are looking for a solution κ(t, x) to the heat equation on [0, s)× [0,∞)

that satisfies the initial condition (2.20), that is,

lim
t↑s

κ
(
s− t, a+

∫ s

t

f ′(u)du
)

= −1

2
δ′0(a) (3.36)

where the limit is in the distributional sense on the set of test functions E defined at (2.7).

Besides, κ also has to holds boundary condition (2.21)

lim
a↓0

κ
(
s− t, a+

∫ s

t

f ′(u)du
)

= κ(s− t, f(s)− f(t)) = 0, (3.37)

where f(t) = k
4
t2. We will use the solution ν(t, x) to the heat equation with quadratic

moving boundary computed above (see (3.29)),

ν(t, x) = exp

{
k2t3

12
+
ktx

2
+
k2/3cnt

2

}
Aki

(
x+

cn
k1/3

+
kt2

4

)
(3.38)

where cn is a zero of the Airy function Ai(x). To fulfill the condition (3.36) we will use

cn as an eigenvalue in the Sturm-Liouville theory as was pointed out in Remark 3.4.4. To

this end recall that the Airy function
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Ai(x) :=
1

2π

∫ +∞

−∞
ei(xz+z

3/3)dz (3.39)

has countably many zeros (see [43] p. 20) on the negative real axis.

Figure 3.1: Functions Ai(x) (solid line), and A′i(x) (dashed line).

Let

A := A−1
i ({0}) = {cn ∈ R− : n = 0, 1, · · · , Ai(cn) = 0, cn+1 < cn} (3.40)

be the set of zeros of Ai(x); see Figure 3.1. It is known ([43] p. 88) that∫ ∞
0

A2
i (x+ cn)dx = A′2i (cn). (3.41)

Consider the regular Sturm-Liouville problem

φ′′(x)− kxφ(x) = λφ(x), with φ(0) = 0, lim
x→∞

φ(x) = 0, (3.42)

for x ∈ [0,∞), defined on the ideal domain of C2 functions that satisfy the boundaries

conditions. From (3.42), letting h(x) = φ(x− λ
k
) we obtain

h′′(x)− kxh(x) = 0, with h
(λ
k

)
= 0, for x ∈ [0,∞). (3.43)

Hence, given that we know the solution to the ODE in (3.43) and its zeros, it follows that

eigenvalues and eigenfunctions to the Sturm-Liouville problem are

λ = k2/3cn, Aki

(
x+

cn
k1/3

)
(3.44)

respectively, where cn ∈ A and Aki (x) := k1/3Ai(k
1/3x) was defined at (3.26).
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3 Solution to the heat equation with a moving boundary

From classical Sturm-Liouville theory (see [17], chapter 3) it follows that the eigenvalues

(3.44) form a discrete unbounded set and that the eigenfunctions in (3.44) form a complete

orthogonal set in L2[0,∞).

To compute the norm in L2[0,∞) of Aki (x+ cn
k1/3

), note that∫ ∞
0

(Aki (x+
cn
k1/3

))2dx = |k|1/3
∫ ∞

0

A2
i (y + cn)dy = |k|1/3A′2i (cn)

where the last integral follows from (3.41). From these facts we have that{Aki (x+ cn
k1/3

)

|k|1/6|A′i(cn)|

}∞
n=0

(3.45)

is a complete orthonormal set on L2[0,∞).

The so-called closure representation to Dirac’s delta in term of a complete orthonormal

family {ϕn} in L2(R) is give by

δ0(x− t) =

∞∑
i=0

ϕn(t)ϕn(x), (3.46)

where this equality is in the distributional sense; see [4], p. 89.

The Fourier coefficients associated to (3.45) for the derivative of Dirac’s delta are

〈−δ′0(x),
Aki (x− cn/k1/3)

k1/6A′i(cn)
〉 = (−1)n|k|1/2

Therefore, in the distributional sense we have that

− δ′0(x)

2
=

∞∑
n=0

|k|1/3A
k
i (x+ cn/k

1/3)

2A′i(cn)
. (3.47)

Taking convolution with respect to the heat kernel we obtain

η(t, x) =

∞∑
n=0

|k|1/3

2A′i(cn)
e
k2t3

12
+ ktx

2
+ k2/3cnt

2 Aki

(
x+

cn
k1/3

+
kt2

4

)
. (3.48)

Note that η(t, x) is a solution to the heat equation that satisfies

lim
t↓0

η(t, x) = −1

2
δ′0(x),

hence, using η we can find a solution to (3.36). On the other hand, to satisfies the

boundary condition (3.37) we use the following well known transformation

κ(t, x) = exp
(
µx+

1

2
µ2t
)
η(t, x+ µt) (3.49)
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where µ is a constant given by µ = −f ′(s) = −ks
2

. Note that κ is a solution to the heat

equation and furthermore

κ(s− t, a+

∫ s

t

f ′(u)du) =

∞∑
n=0

|k|1/3

2A′i(cn)
In (3.50)

where In is given by

In = exp
(k2

12
(s− t)3 − kta

2
− k2s3

8
+
k2t3

8
+
k2s2t

4
− k2st2

4

)
Aki

(
a+

cn
k1/3

)
. (3.51)

Direct calculations show that κ satisfy initial and boundary conditions (3.37)-(3.36).

Hence, the density of the hitting time up to the quadratic boundary a+ k
4
t2 is

T (t, a) = κ(t, a+
k

4
t2) =

∞∑
n=0

k1/3

2A′i(cn)
e−

k2t3

24
+ k2/3tcn

2 Aki

(
a+

cn
k1/3

)
. (3.52)

This formula coincides with that obtained in Pierre Patie’s thesis [34], Lemma 2.3.3.

3.7 Concluding Remarks

In this chapter we present a general framework to study the problem of the heat equation

with absorbing moving boundaries. We first analyze the case of some known boundaries

and then we show that the procedure extends at least to the cubic case. As an application,

we used the problem of the heat equation with a quadratic moving boundary to compute

the density of the hitting time up to a quadratic boundary. A more general description

of our procedure, as well as applications, is work in progress.
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4 Heat polynomials and Bessel-like

processes

4.1 Introduction

In this chapter we consider again the heat polynomials in Definition 3.2, above. These

polynomials were introduced by Rosembloom and Widder [37] as a way to express solu-

tions to the heat equation in terms of series. They are related to Hermite polynomials and

satisfy certain orthogonal properties. In this chapter it will be shown that they can be

used, together with some space-time transformation, to construct a family of Ito processes

with Bessel-like properties. This family of processes can be seen as Bessel processes with

varying dimension, as in [40].

Let us recall that if d is a positive integer, a Bessel process of dimension d is the

dynamics of the Euclidean norm of a Brownian motion in Rd.

One reason why Bessel processes are widely studied is their relationship with well

known models in mathematical finance such as the geometric Brownian motion and the

Cox-Ingersoll-Ross (CIR) processes. A detailed study of Bessel processes can be found

for instance in [18] and [36].

In this chapter we construct a family of Ito processes with a given initial condition and

which at a fixed time T behave as a Bessel process of odd dimension. It is shown that this

family have Bessel-like properties; in particular it has positive sample paths. We compute

explicit formulas for their transition probabilities and the density of their hitting times.

We also show that the method to build this family of processes is optimum in the sense

that it minimizes a Fisher energy functional.

As an example where this family of Ito processes can be used is a closed monopolistic
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4 Heat polynomials and Bessel-like processes

economy that at some future time will be open to more competitors. Or, alternatively, a

portfolio which may vary the amount of assets in a fixed time T > 0.

In terms of applications, doing a space-time transformation and following [31] we pro-

pose an application of this family in the modelling of stochastic volatility. In particular,

these processes are employed to model stochastic variance in timer options. As described

by Li [31]: “ a timer option can be viewed as a call option with random maturity, where

the maturity occurs at the first time a prescribed variance budget is exhausted”. We

can characterize the variance process stopped at a time Sa (where a is the accumulated

variance) by an Ito process, with the advantage that the last one can be simulated nu-

merically

This chapter is organized as follows: In Section 4.2 we review the concepts and main

properties of heat polynomials. In Section 4.3 we construct the family of Ito processes we

are concerned with. Using Girsanov’s theorem and heat polynomials we make a change

of measure on the space of trajectories of the Brownian motion absorbed at zero. Also,

making use of a comparison theorem ([36] chapter IX) we can see that the paths of these

processes are positive. Section 4.4 is devoted to show that this change of measure is

reached with minimum cost, that is, the Kullback distance (or entropy) between these

probability measures is minimized. In Section 4.5 using Radon-Nikodym derivatives (of

the change of measures) and the optimal sampling theorem we can compute hitting-times

densities up to a fixed level. Finally, in section 4.6, after a space-time transformation, we

build a family of CIR-like processes and then, making use of a change of time (with the

cross variation of a martingale), we can characterize the CIR-like processes stopped at a

certain stopping time by Ito processes.

4.2 Heat polynomials

For future reference, in this section we review some properties of the so-called heat poly-

nomials.

Recall that heat polynomial were introduced in Definition 3.2. However, for the propose

of this chapter we define the heat polynomials in the following manner (see [37]). For each
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4.3 Ito processes with heat polynomials

n = 0, 1, . . . we define the heat polynomial

vn(t, x) = n!

[n/2]∑
k=0

xn−2k

(n− 2k)!

( t
2

)k 1

k!
, (4.1)

where [·] denotes the floor function. Note that, as a function of x, vn(t, x) is a monic poly-

nomial of degree n and, moreover, it is even or odd depending on n. An easy calculation

shows that vn solves the heat equation, i.e.

∂

∂t
vn(t, x) =

1

2

∂2

∂x2
vn(t, x) for all n = 0, 1, . . . .

Furthermore, if ω(t, x) denotes the fundamental solution of the heat equation (2.3) ut =

1
2
uxx, i.e.,

ω(t, x) =
exp(−x2

2t
)

√
2πt

,

one can see that vn can be expressed as the following convolution [37]

vn(t, x) = ω(t, x) ∗ xn :=

∫ ∞
−∞

ω(t, x− y)yndy, for n = 0, 1 . . . . (4.2)

From (4.1) one can deduce that, for all n = 0, 1, · · · ,

v2n+1(t, 0) = 0, and v2n(t, 0) =
(2n)!

n!

( t
2

)n
. (4.3)

Also, for any complex number z we have

exp

(
xz +

t

2
z2

)
=

∞∑
n=0

zn

n!
vn(t, x) for −∞ < x <∞, 0 < t <∞. (4.4)

Therefore, from (4.4) one can see that, as in (3.6),

∂

∂x
vn(t, x) = nvn−1(t, x) for n = 1, 2, . . . . (4.5)

4.3 Ito processes with heat polynomials

In this section we construct the processes we are concerned with. First, since the heat

polynomials are solutions to the heat equation, we can use them together with Girsanov’s

theorem to make a change of measure on the space of trajectories of a Brownian motion

absorbed at zero. We show that these processes have positive trajectories and we compute

explicit formulas for their transition probabilities.
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4 Heat polynomials and Bessel-like processes

For notational ease, from now on we will write

v′2n+1(T − t, x) :=
∂

∂x
v2n+1(T − t, x).

We defined in Chapter 1 the hitting time of a Brownian motion up to a moving boundary

f . In this chapter we will work just with the hitting time up to a fixed level a > 0. For

completeness we restate here the definition of hitting time and of Brownian family given

in [26] p. 73.

Definition 4.1. A Brownian family is an adapted, one-dimensional process W = {Wt,Ft; t ≥

0} on a measurable space (Ω,F), and a family of probability measures {P}x∈R, such that

i for each F ∈ F , the mapping x→ P x(F ) is measurable;

ii for each x ∈ Rd, P x[W0 = x] = 1;

iii under each P x, the process W is a one-dimensional Brownian motion starting at x.

The process W under P 0 is known as the standard Brownian motion.

Definition 4.2. For a stochastic process X and a real number a we define the hitting

time of a by

Ta = inf{t > 0 : Xt = a}.

Remark 4.3. Let (Wt,Ft) ,{Px}x∈R be a Brownian family.

1. Let T0 be the hitting time of 0 for a standard Brownian motion. If x, y > 0, it

follows from the reflection principle ([26] p. 79) that

Px(Wt ∈ dy, T0 > t) = pt(x, y)− pt(x,−y), (4.6)

where

pt(x, y) :=
exp

(
− (x−y)2

2t

)
√

2πt
.

See [26] p. 96.

2. Girsanov’s theorem: Consider the stochastic differential equation

Zt(X) = 1 +

∫ t

0

Zs(X)XsdWs (4.7)
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4.3 Ito processes with heat polynomials

where Ws is a standard Brownian motion. Ito’s formula shows that a solution to

(4.7) is given by the Dóleans-Dade exponential (and then Zt is a local martingale)

Zt(X) = exp
(∫ t

0

XsdWs −
1

2

∫ s

0

X2
sds
)

(4.8)

where Z0(X) = 1.

Theorem 4.4. Assume that Zt in (4.7) is a martingale. Consider the measure Q

given by

Q(A) := E[1AZT (X)]; A ∈ FT .

Define a process W̃ = (W̃t,Ft; 0 ≤ t ≤ T ) by

W̃t = Wt −
∫ t

0

Xsds; for 0 ≤ t ≤ T, (4.9)

then, the process {W̃t,Ft; 0 ≤ t ≤ T} is a one-dimensional Brownian motion on

(Ω,FT ,Q).

Now we state the main theorem in this section.

Theorem 4.5. Let T0 be as in Definition 4.2, and T > 0 fixed. For each n = 0, 1, . . . ,

the stochastic differential equation

dXt =
v′2n+1(T − t,Xt)

v2n+1(T − t,Xt)
dt+ dWt, X0 = x > 0, 0 ≤ t < T0

admits a weak solution. Furthermore, if (X,W ), (Ω,F ,Qx) is such a solution (for fixed

n) , then we have

Qx(Xt ∈ dy) =
v2n+1(T − t, y)

v2n+1(T, x)

(exp( (x−y)2

2t
)

√
2πt

−
exp( (x+y)2

2t
)

√
2πt

)
.

Proof. Consider the process Yt := v2n+1(T−t,Wt) where Wt is a Brownian motion started

at x. By Ito’s rule we have

dYt =
( ∂
∂t
v2n+1(T − t,Wt) +

1

2

∂2

∂x2
v2n+1(T − t,Wt)

)
dt+

∂

∂x
v2n+1(T − t,Wt)dWt,

for 0 < t < T . Since the polynomial vn(T − t, x) is a solution to the backward heat

equation, it follows that

dYt =
v′2n+1(T − t,Wt)

v2n+1(T − t,Wt)
v2n+1(T − t,Wt)dWt, 0 < t < T0.
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4 Heat polynomials and Bessel-like processes

This shows that the process

Yt =
v2n+1(T − t,Wt)

v2n+1(T, x)

is a Dóleans-Dade exponential and hence a local martingale. The process Yt∧T0 is a positive

martigale (by proposition 4.6). Taking F the filtration generated by W , if we define

Qx(A) := E
[v2n+1(T − t,Wt)

v2n+1(T, x)
1A1{T0>t}

]
for A ∈ Ft∧T0 ,

then Qx is a probability measure. Thus using Girsanov’s theorem one can see that the

process Wt∧T0 satisfies the stochastic differential equation (under Qx)

dXt =
v′2n+1(T − t,Xt)

v2n+1(T − t,Xt)
dt+ dWt, X0 = x > 0, 0 ≤ t < T0.

The result follows.

Now we show an interesting property of processes generated by heat polynomials. They

have positive sample paths, which is an important property for applications in finance

and economics.

Proposition 4.6. Fix T > 0, and let vn be as in (4.1). The Ito processes given by

dXt =
v′2n+1(T − t,Xt)

v2n+1(T − t,Xt)
dt+ dWt, with X0 = x, 0 ≤ t < T0, (4.10)

for n = 0, 1, · · · , have positive trajectories.

Figure 4.1: Simulation of 3 sample paths corresponding to v3(t, x)
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4.3 Ito processes with heat polynomials

Proof. Using (4.5) and (4.1) we have

v′2n+1(T − t, x)

v2n+1(T − t, x)
=

2n+ 1

x

(2n)!

(2n+ 1)!

∑n
k=0

x2(n−k)

(2(n−k))!

(
T−t

2

)k 1
k!∑n

k=0
x2(n−k)

(2(n−k)+1)!

(
T−t

2

)k 1
k!

. (4.11)

Now note that, for all n,

x2(n−k)

(2(n− k) + 1)!
<

x2(n−k)

(2(n− k))!
, k = 0, 1, . . . , n.

Therefore ∑n
k=0

x2(n−k)

2(n−k)!

(
T−t

2

)k 1
k!∑n

k=0
x2(n−k)

(2(n−k)+1)!

(
T−t

2

)k 1
k!

> 1. (4.12)

Hence, from (4.11) and (4.12), we have

2n+ 1

x

(2n)!

(2n+ 1)!

∑n
k=0

x2(n−k)

2(n−k)!

(
T−t

2

)k 1
k!∑n

k=0
x2(n−k)

(2(n−k)+1)!

(
T−t

2

)k 1
k!

>
1

x
.

The desired result follows from the comparison theorem in [26], p. 293, and the fact that

the Bessel process of dimension 3 has positive trajectories.

Remark 4.7. 1. From Proposition 4.6 it follows that for every T > 0

Qx(T0 < T ) = 0;

hence, we can consider, for every T > 0 and n = 0, 1, · · · , the processes

dXt =
v′2n+1(T − t,Xt)

v2n+1(T − t,Xt)
dt+ dWt, X0 = x > 0, 0 ≤ t < T.

2. From now on we refer to the processes that introduced in Theorem 4.5 as Ito processes

generated by heat polynomials.

Using a technique similar to that in Theorem 4.5, we can build a family of processes

akin to the processes generated by the heat polynomials v2n+1(t, x), but with lineal drift.

Now we illustrate how to do that.

Definition 4.8. We define the hitting time of a line l := {(t, x) : x = at+ b, t ∈ R} by

Tl = inf{t > 0 : Wt = at+ b}. (4.13)
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4 Heat polynomials and Bessel-like processes

Let (Wt,Ft), Px, x ∈ R be a Brownian family. One can see in [26] p. 197 that

Px(Tl ∈ dt) =
(x− b)√

2πt3
exp

(
−
((x− b)2

2t
− ab+

1

2
a2t
))

(4.14)

Using (4.14) we can compute the density

Px(Wt ∈ dy, Tl > t) =
exp

(
− (x−y)2

2t

)
√

2πt
−
∫ t

0

exp
(
− (y−b−at)2

2(t−u)

)√
2π(t− u)

Px(Tl ∈ du)du. (4.15)

Proposition 4.9. Let T > 0 be fixed. The processes given by

dYt =

[
α +

v′2n+1(T − t, Yt + α(T − t))
v2n+1(T − t, Yt + α(T − t))

]
dt+ dWt,

for X0 = x > 0, 0 ≤ t < T, n = 0, 1, . . . , have transition probabilities given by

Qx(Yt ∈ dy) = exp(α(y − x)− 1

2
α2t)

v2n+1(T − t, y + α(T − t))
v2n+1(T, x+ αT )

Px(Wt ∈ dy, Tl > t),

where Px(Wt ∈ dy, Tl > t) is given in (4.15) and, in this case,

Tl = inf{t > 0 : Wt = α(t− T )}.

Proof. For α ∈ R, we define

un(t, x) := exp
(
αx+

1

2
α2t
)
vn(t, x+ αt), n = 0, 1, . . . . (4.16)

we can see that un(T − t, x) is a solution to the backward heat equation. Now, doing a

change of measure as in Theorem 4.5, but in this case the initial measure is that which

supports the Brownian motion absorbed the first time that it hits the line y = α(T − t).

In this case the Radon-Nikodym derivative is given by the martingale

Yt =
u2n+1(T − t,Wt)

u2n+1(T, x)

= exp(α(Wt − x) +
1

2
α2t)

v2n+1(T − t,Wt + α(T − t))
v2n+1(T, x+ αT )

.

Note that
u′2n+1(T − t, x)

u2n+1(T − t, x)
= α +

v′2n+1(T − t, x+ α(T − t))
v2n+1(T − t, x+ α(T − t))

.

The result follows.
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4.4 Steering towards a Bessel process of dimension

2(2n + 1) + 1

In this section we will show that Ito process generated by heat polynomial v2n+1 behaves

as a Bessel process of dimension 2(2n+ 1) + 1 at time T > 0 fixed. Furthermore, we show

that the procedure developed to construct the Ito processes in Theorem 4.5 minimizes

the energy functional below, see (4.18). Actually, minimizing the Fisher functional (4.18)

is a stochastic control version of a classical problem proposed by Schroedinger, as can be

seen in [12].

Consider the following stochastic control problem:

dXt = u(t,Xt)dt+ dWt 0 ≤ t ≤ T. (4.17)

Let

F (u) =
1

2
u2

be a cost function. If we set

J(t, x, u) := Et,x
[∫ T

t

F (u(r,Xr))dr + ψ(X(T ))

]
, (4.18)

where ψ(x) = (2n+ 1) log(x), our goal is to find

V (t, x) = inf
u
J(t, x;u)

We can see from [16] that the Hamilton-Jacobi-Bellman equation associated to the control

problem is given by

∂V

∂t
(t, x) + inf

u

[
F (u) +

1

2

∂2V

∂x2
(t, x) + u

∂V

∂x
(t, x)

]
= 0

with boundary condition V (T, x) = (2n+ 1) log(x). Therefore,

u = Vx(t, x) (4.19)

or

∂V

∂t
(t, x) +

1

2

∂2V

∂x2
(t, x) +

1

2

(
∂V

∂x

)2

(t, x) = 0.
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4 Heat polynomials and Bessel-like processes

Differentiating with respect to x the last line and setting h(t, x) = Vx(t, x), we have

∂h

∂t
(t, x) +

1

2

∂2h

∂x2
(t, x) + h(t, x)

∂h

∂x
(t, x) = 0,

which is to be solved with the final boundary condition h(T, x) = Vx(T, x) = 2n+1
x

. From

(4.17), (4.19), and recalling that v2n+1(T−t, x) is a solution to the backward heat equation

we have that

dXt = Vx(t,Xt)dt+ dWt

= h(t,Xt)dt+ dWt

=
v′2n+1(T − t,Xt)

v2n+1(T − t,Xt)
dt+ dWt.

The last equality follows from the Hopf-Cole transform [23] that relates solutions to the

Burgers equation with solutions to the heat equation.

Remark 4.10. 1. Recall that a Bessel process of dimension d follows the dynamics

dXt =
(d− 1)/2

Xt

dt+ dWt

where Wt is a standard Brownian motion.

2. Note that

lim
t↑T

v′2n+1(T − t, x)

v2n+1(T − t, x)
=

2n+ 1

x
=

(2(2n+ 1) + 1− 1)/2

x

therefore, an Ito process generated by the heat polynomial v2n+1 behaves as a Bessel

process of dimension 2(2n+ 1) + 1 at time T .

To give a suitable interpretation of the previous procedure we firs recall the Kullback

distance.

Definition 4.11. Let µ and ν be two σ-finite measures defined on the same measurable

space. If µ� ν we define the Kullback (or Kullback-Leibler) distance [27] between µ and

ν by

K(µ, ν) =

∫
log
(dµ
dν

)
dµ. (4.20)

Although the Kullback distance is not really a metric, it is frequently used as a measure

of loss of information when the measure µ is approximated by the measure ν. The Kullback

distance between µ and ν is also known as the entropy of µ relative to ν.
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4.5 Hitting times for processes generated by heat polynomials

Now we discuss the connection between the solution to the optimal control problem

described above and entropy. To this end, let us start by describing the dynamics of the

following pair:  (Q) dY (t) = hx
h
dt+ dWt, 0 ≤ t ≤ T

(P) dX(t) = dWt, 0 ≤ t ≤ T
(4.21)

where h is a solution to the backward heat equation and YT ∼ µT for some µT fixed.

Furthermore, let

Zt =
dQ
dP

=
h(t,Xt)

h(0, x0)

be the Radon-Nikodym derivative associated to the change of measure from X to Y . From

Ito’s rule we have

d log(Zt) = −1

2

(hx(t,Xt)

h(t,Xt)

)2

dt+
hx(t,Xt)

h(t,Xt)
dWt (4.22)

Taking expectation in (4.22) with respect to Q, we have

EQ
[

log
(dQ
dP

)]
= EQ

[
− 1

2

∫ (hx
h

)2

dt
]

. Note that the left-hand side in the last line is precisely (4.20). Thus, the procedure

developed to building Ito processes with heat polynomials minimizes the energy functional

(4.18) and it reaches the entropy of Q relative to P.

4.5 Hitting times for processes generated by heat

polynomials

By the way we built this family of processes we can compute the density for the hitting

times using known results in the case of Brownian motion.

Remark 4.12. Let (Wt, Ft), Px, x ∈ R be a Brownian family and let T0 and Ta be the

hitting times of 0 and a, respectively. Then

Case I.

Px(Ta ∈ dt) =
(x− a)√

2πt3
exp

(
− (x− a)2

2t

)
. (4.23)

See [26] p. 80.

39



4 Heat polynomials and Bessel-like processes

Case II.

Px[Ta ∧ T0 ∈ dt] = 1√
2πt3

+∞∑
n=−∞

[
(2na+ x) exp

(−(2na+ x)2

2t

)
+ (2na+ a− x) exp

(
−(2na+a−x)2

2t

)]
dt.

(4.24)

See [26] p. 99 exercise 8.11.

Theorem 4.13. Consider the processes given by

dXt =
v′2n+1(T − t,Xt)

v2n+1(T − t,Xt)
dt+ dWt, X0 = x, 0 ≤ t < T

for n = 0, 1, · · · . If Qx is the measure, which supports this process (for fixed n), we have

Case I. If 0 < a < x, then

Qx[Ta ∈ dt] =
v2n+1(T − t, a)

v2n+1(T, x)
Px[Ta ∈ dt]. (4.25)

Case II. If 0 < x < a, then

Qx[Ta ∈ dt] =
v2n+1(T − t, a)

v2n+1(T, x)

[
Px[Ta ∧ T0 ∈ dt]− Px[T0 ∈ dt]

]
. (4.26)

Proof. Case I. As 0 < a < x, by the continuity of the sample paths of Brownian motion

we have Ta < T0. Hence the event {Ta ≤ t} is in FT0 . If Qx denotes the probability

of the process X and Px denotes the probability of Brownian motion started at x,

then we have

Qx[Ta < t] =

∫
{Ta<t}

v2n+1(T − t,Xt)

v2n+1(T, x)
dPx

=

∫ +∞

0

EPx
[v2n+1(T − t,Xt)

v2n+1(T, x)
1{Ta<t}|Ta = s

]
Px(Ta ∈ ds)

=

∫ t

0

v2n+1(T − s, a)

v2n+1(T, x)
Px(Ta ∈ ds).

In the last line we applied the optimal sampling theorem. Differentiating with

respect to t and using (4.23) we have the desired result.
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Case II. We follow the proof of the first case. However, we must take into account that

the process could hit 0 before hitting a. Let Qx and Px be as in the first case. Then

Qx[Ta < t] = EQx
[
1{Ta<t}1{T0>t}

]
= EQx

[
1{Ta<t,T0>t}

]
= EPx

[v2n+1(T − t,Xt)

v2n+1(T, x)
1{Ta<t,T0>t}

]
= EPx

[v2n+1(T − t, a)

v2n+1(T, x)
1{Ta<t,T0>t}

]
,

where in the last line we used again the optimal sampling theorem. Finally note

that 1{Ta<t,T0>t} = 1{Ta∧T0<t} − 1{T0<t}.

4.6 Example. The process with v3(t, x). Stochastic

volatility

The aim now is to put into action the results obtained in the previous sections. Let us

first recall that, in general, Bessel processes are used in a wide range of applications.

In particular, there exists a space-time transformation that transforms Bessel processes

into CIR (or square-root) diffusions. We will follow this analogy and will point out some

possible applications. Take

dXt =
3X2

t + 3(T − t)
X3
t + 3(T − t)Xt

dt+ dBt. (4.27)

Let

Yt := e−t/2Xet , Wt :=

∫ et

0

e−s/2dBs.

Then we have

dXet =
3X2

et + 3(eT − et)
X3
et + 3(eT − et)Xet

etdt+ et/2dBet

=
3etY 2

t + 3(eT − et)
e3/2·tY 3

t + 3(eT − et)e1/2·tYt
etdt+ et/2dBet

= et/2
(

3etY 2
t + 3(eT − et)

etY 3
t + 3(eT − et)Yt

dt+ dBet
)

= et/2
(

3Y 2
t + 3(eT−t − 1)

Y 3
t + 3(eT−t − 1)Yt

dt+ dBet
)
.
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4 Heat polynomials and Bessel-like processes

It follows that

dYt =

(
3Y 2

t + 3(eT−t − 1)

Y 3
t + 3(eT−t − 1)Yt

− Yt
2

)
dt+ dWt.

Thus, if we set U = Y 2, then

dUt =

(
6
Ut + (eT−t − 1)

Ut + 3(eT−t − 1)
− Ut

2
+ 1

)
dt+ 2

√
UtdWt.

Note that this last process is a CIR-like process. If process Ut is used to model stochastic

volatility in timer options, we can get an analogous result to Proposition 4.1 in [31]. We

will next explain what we mean. If we rewrite the process Ut in integral form, then we

have

Ut = U0 +

∫ t

0

(
6
Uv + (eT−v − 1)

Uv + 3(eT−v − 1)
− Uv

2
+ 1
)
dv + 2

∫ t

0

√
UvdWv. (4.28)

Letting Mt :=
∫ t

0

√
UsdWs, then 〈M〉t =

∫ t
0
Usds. Now, we define

Sa := inf{t > 0 :

∫ t

0

Uvdv = a}

Sa is the first time that the total realized variance reaches the level a. We will find the

joint distribution of the random variable (USa , Sa), which is used in the valuation of timer

options. From (4.28) it follows that

USa = U0 +

∫ Sa

0

(
6
Uv + (eT−v − 1)

Uv + 3(eT−v − 1)
− Uv

2
+ 1
)
dv + 2

∫ Sa

0

√
UvdWv.

By Theorem 4.6 in [26] p. 174 we have that B〈M〉Sa :=
∫ Sa

0

√
UvdWv is an standard

Brownian motion. Then

USa = U0 +

∫ Sa

0

(
6
Uv + (eT−v − 1)

Uv + 3(eT−v − 1)
− Uv

2
+ 1
)
dv + 2B〈M〉Sa ,

and application of the inverse function theorem gives us

St =

∫ t

0

1

USv
dv.

Using Exercise 4.5 in [26] p. 174 we have

USa = U0 +

∫ a

0

1

USu

(
6
( USu + (eT−Su − 1)

USu + 3(eT−Su − 1)

)
− USu

2
+ 1
)
du+ 2Ba.
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If Xa :=
USa

2
, then

Xa =
U0

2
+

∫ a

0

1

4Xu

(
6
( 2Xu + (eT−Su − 1

2Xu + 3(eT−Su − 1

)
−Xu + 1

)
du+Ba. (4.29)

Note that

e−Su = exp
(
−
∫ u

0

1

USr
dr
)

= exp
(
−
∫ u

0

1

2Xr

dr
)
.

From (4.29) we have

dXa =
1

4Xa

(
6

2Xa + eT e−
∫ a
0

1
2Xr

dr − 1

2Xa + 3(eT e−
∫ a
0

1
2Xr

dr − 1)
−Xa + 1

)
da+ dBa;

hence, it follows that

(USa , Sa)
D
=
(
Xa,

∫ a

0

ds

2Xs

)
.

Hence, we have found the distribution of the joint random variable (USa , Sa) in terms of

the process (4.27) generated by v3(t, x). In this case Sa represents the random maturity

and Ut is the stochastic volatility. As was pointed out above, the joint distributions of

(USa , Sa), is used in the valuation of timer options.

4.7 Concluding remarks

In this chapter we derive and study some properties of a Bessel-like family of stochastic

processes. Processes generated by the heat polynomial v2n+1 can be interpreted as steering

a 3-D Bessel process into a 2(2n+ 1) + 1 Bessel process by time T . For example, think of

an industry within a given economy which is a monopoly and by some future time T will

have n competitors. This could have effects on the policy makers.
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5 Optimal allocation of resources via

optimal transport

5.1 Introduction

In this chapter we study an optimal resource allocation problem on a urban region Ω ⊂ Rn

which has a population distribution µ ∈ P (Ω). The set Ω ⊂ Rn is assumed to be compact.

The optimization problem comes from the necessity of a social planner to distribute an

infinitely divisible resource on the region Ω in the following setting: we have n fixed

facilities on Ω denoted by y1, · · · , yn from where the resource will be delivered directly to

the people. The social planner has to find the resource distribution, which will be modeled

as a probability measure ν ∈ P (Ω), and the part of the population that will be served

by every facility yi. Therefore, the social planner’s problem is to minimize transportation

costs and distribution costs while maximizing the welfare obtained by the population that

receives the resource.

Following ideas of Carlier and Mallozzi [10] we solve the problem as a bi-level optimiza-

tion problem.

5.2 Preliminaries

For completeness, in this section we recall some basic facts from convex analysis and

optimal transport. A function φ : Rn → R ∪ {+∞} is called a proper convex function if

it is not identically infinity and

φ(tx+ (1− t)y) ≤ tφ(x) + (1− t)φ(y) ∀x, y ∈ Rn, ∀t ∈ [0, 1]. (5.1)
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5 Optimal allocation of resources via optimal transport

For dealing with (possibly) non-differentiable convex functions we define the subdifferen-

tial of a convex function.

Definition 5.1. The subdifferential of a convex function φ, denoted as ∂φ, is a set-valued

application given by

y ∈ ∂φ(x) ⇐⇒
[
∀z ∈ Rn, φ(z) ≥ φ(x) + 〈y, z − x〉

]
(5.2)

where 〈·, ·〉 is the canonical inner product in Rn.

For a convex function φ we define its Legendre transform by

φ∗(y) = sup
x∈Rn
{〈x, y〉 − φ(x)}. (5.3)

In [45] p. 55 it is shown the following characterization of the subdifferential.

Proposition 5.2. Let φ be a proper lower semi-continuous convex function on Rn. Then,

for all x, y ∈ Rn,

〈x, y〉 = φ(x) + φ(y) ⇐⇒ y ∈ ∂φ(x) ⇐⇒ x ∈ ∂φ∗(y). (5.4)

Let X be a complete and separable metric space (also known as Polish space). We

denote by P (X) the set of probability measures on X. Given two probability measures

µ, ν ∈ P (X) and a function c : X ×X → R the Monge-Kantorovich problem is

MKc(µ, ν) := inf
γ∈Π(µ,ν)

{∫
X×X

c(x, y)dγ(x, y)
}

(5.5)

where Π(µ, ν) is the set of probability measures on X × X with marginals given by µ

and ν respectively. In [39] p. 5 it is shown that the set Π(µ, ν) is a compact subset of

P (X ×X) with the weak-* topology. Then, under mild conditions on the cost function

c(x, y), we can guarantee the existence of minimizers for (5.5). A minimizer for (5.5) is

called an optimal plan. If there exists a minimizer of (5.5) that is supported on the graph

of a function T : X → X, then we say that T solves the Monge problem

Mc(µ, ν) = inf
T#µ=ν

{∫
X

c(x, T (x))dµ(x)
}

(5.6)

where T#µ := µ(T−1). In this case T is called an optimal map and it will be denoted

(Id, T )#µ.
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5.3 The model

Consider now the dual problem

DPc(µ, ν) := sup
{∫

X

ϕdµ+

∫
X

ψdν : ϕ, ψ ∈ C(Ω), φ⊕ ψ(x, y) ≤ c(x, y)
}

(5.7)

where φ⊕ψ(x, y) := φ(x)+ψ(y). The duality theorem for the Monge-Kantorovich problem

establishes that, under suitable assumptions,

MKc(µ, ν) = DPc(µ, ν). (5.8)

Given a function c(x, y) we define the c-transform of a function φ(x) by

φc(x) = min
y
{c(x, y)− φ(y)}. (5.9)

The dual problem (5.7) is equivalent to

DPc(µ, ν) = sup
{∫

X

ψcdµ+

∫
X

ψdν : ψ ∈ C(Ω)
}
. (5.10)

Technical details of optimal transportation problems can be read at [45] and [39].

In our case, the set X = Ω, where Ω ⊂ Rn is assumed to be compact. In this chapter it

will be very important the semi-discrete case in which ν =
∑n

i=1 ωiδyi where ωi ≥ 0 and∑n
i=1 ωi = 1. In this case, the duality formula (5.10) takes the form

DPc(µ,

n∑
i=1

ωiδyi) = sup
b∈Rn

{∫
Ω

min
i=1,··· ,n

(c(x, yi)− bi)dµ+

n∑
i=1

ωibi

}
. (5.11)

5.3 The model

In our model, there is a social planner that wishes to distribute a resource (health services,

help for victims of a natural disaster) on a city Ω ⊂ Rn that has a population density

µ ∈ P (Ω). The resource is transported first to n fixed facilities y1, · · · , yn and then every

location yi distributes the resource to a part of the population ωi. The social planner

wants to find a manner to distribute the resource minimizing the distribution costs but

also maximizing the utility (or welfare) obtained by the population that receives the

resource.

With the city Ω ⊂ Rn, population density µ, and fixed locations y1, · · · , yn ∈ Rn the

problem data includes a cost of transportation c(x, y), costs of distribution Fi(x) from

facility yi, and profit functions ui(x) by distribution of the resource from facility yi.
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5 Optimal allocation of resources via optimal transport

Definition 5.3. The unit simplex S in Rn is

S := {ω = (ω1, · · · , ωn) ∈ Rn : ωi ≥ 0,

n∑
i=1

ωi = 1}

The cost incurred by the social planner for delivering the resource at resident x ∈ Ω

from facility yi is c(x, yi) + 2Fi(x), where 2 is just a normalizing constant. On the other

side a resident x ∈ Ω that receives the resource from facility yi obtain a utility ui(x).

The main unknown of this model are the distribution of the resource in the city, which

will be modelled as a probability measure ν ∈ P (Ω) , and a partition of population

ω = (ω1, · · · , ωn) ∈ S. In this case ωi is the proportion of population that will be served

from facility yi. Given a resource distribution ν ∈ P (Ω) and ω ∈ S we define

Ai(ν, ω) :=
⋂
j 6=i

{
x ∈ Ω : c(x, yi) + 2ωi

∫
Ω

Fidν < c(x, yj) + 2ωj

∫
Ω

Fjdν
}
. (5.12)

Note that given ν ∈ P (Ω) and ω ∈ S, the set Ai(ν, ω) is the part of the population for

which it is cheaper to deliver the resource from facility yi. In order to state rigorously the

problem we will assume the following.

• The city Ω ⊂ Rn is compact, connected and c(x, y) : Ω× Ω→ R+ is continuous,

• the population density µ ∈ P (Ω) is absolutely continuously with respect to the

Lebesgue measure L on Ω,

• for i = 1, · · · , n, the distribution costs Fi : Ω→ R+ are continuous,

• for i = 1, · · · , n, the profit functions ui : Ω→ R+ are upper semi-continuous on Ω,

• for technical reasons, we impose the following condition on the population density

and the transportation costs:

µ{x ∈ Ω : c(x, yi) = k} = µ{x ∈ Ω : c(x, yi)− c(x, yj) = k} = 0 (5.13)

holds for all i, j = 1 · · · , n and k ∈ R.

Condition (5.13) ensures that the set of the population for which is indifferent deliver the

resource from two (or more) different facilities is negligible.
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5.3 The model

Now, given a fixed resource distribution ν ∈ P (Ω), the social planner has to find ω ∈ S

such that

ωi = µ(Ai(ν, ω)) for i = 1 · · · , n (5.14)

where Ai(ν, ω) is defined in (5.12). Condition (5.14) ensures that we split the population

in such a way that every facility will deliver exactly to the fraction of people for which the

costs are minimum. On the other hand the profit (or welfare) function by the distribution

of the resources is given by

U(ν, ω) =

n∑
i=1

ωi

∫
Ω

ui(x)dν(x). (5.15)

Summarizing, we have to find ν ∈ P (Ω) and ω ∈ S such that (5.14) holds while (5.15) is

maximized. Strongly inspired by ideas in [32] and [10] we will solve the coupled problem

(5.14)-(5.15) as a bi-level optimization problem. We will describe next briefly the strategy

that will be used to solve this resource-allocation problem.

Let ν ∈ P (Ω) be fixed. the so-called lower level problem (LLP) is to find ω ∈ S such

that (5.12)-(5.14) are satisfied. It will be shown that for ν ∈ P (Ω) fixed, there exists a

unique ω ∈ S that satisfies (5.12)-(5.14).

Definition 5.4. Given ν ∈ P (Ω), we denote by Ψ(ν) the unique ω ∈ S that satisfies

(5.12)-(5.14) and it is called the best response function.

We will show in Lemma 5.9 below that the best response function is continuous with

respect to the weak-* topology on P (Ω). This allows us to define the upper level problem

(ULP) by

sup
ν∈P (Ω)

{ n∑
i=1

Ψ(ν)i

∫
Ω

uidν
}
, (5.16)

where Ψ(ν)i is ith coordinate of the vector Ψ(ν). We will show in Theorem 5.10 below

that ULP admits at least one maximizer.
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5 Optimal allocation of resources via optimal transport

5.4 The lower level problem

In this section we show that the LLP is solvable, that is, for fixed ν ∈ P (Ω) there exists

a unique ω ∈ S such that

ωi = µ(Ai(ν, ω)) for i = 1 · · · , n, (5.17)

where

Ai(ν, ω) :=
⋂
i 6=j

{
x ∈ Ω : c(x, yi) + 2ωi

∫
Ω

Fidν < c(x, yj) + 2ωj

∫
Ω

Fjdν
}
. (5.18)

As in [10] this result is obtained by establishing a relationship between (5.17) and optimal

transportation problems.

Theorem 5.5. Let ν ∈ P (Ω) be fixed. Then ω ∈ S solves (5.17)-(5.18) if and only if ω

minimizes

Gν(ω) := MKc(µ,

n∑
i=1

ωiδyi) +

n∑
i=1

ω2
i

∫
Ω

Fi(x)dν(x). (5.19)

Remark 5.6. We note that, by the duality formula (5.8), in the semi-discrete case (5.11)

we have

MKc(µ,

n∑
i=1

ωiδyi) = sup
b∈Rn

{∫
Ω

min
i=1,··· ,n

(c(x, yi)− bi)dµ+

n∑
i=1

ωibi

}
.

Given that MKc is the supremum of affine functionals (linear functionals plus a con-

stant), then it is convex and lower semi-continuous on S. Besides, for ν ∈ P (Ω) fixed,∑n
i=1 ω

2
i

∫
Ω
Fi(x)dν(x) is continuous and strictly convex on S which is compact. It follows

that G(ω) is a strictly convex and lower semi-continuous function on S and so G reaches

the minimun which is unique by strict convexity.

We need some lemmas to prove Theorem 5.5. First, we give the explicit solution to the

Monge-Kantorovich problem in terms of a vector b that solves (5.11) and sets (5.18).

Lemma 5.7. Let b be a vector that solves the dual problem in the left hand side of (5.11).

Then the solution to the optimal transport problem MKc(µ,
∑n

i=1 ωiδyi) is given by

γ(dx, dy) = (Id,1Ai(b)(x)yi)#µ, (5.20)

where Ai(b) = ∩j 6=i{x ∈ Ω; c(x, yi) + bi < c(x, yj) + bj} and 1 denotes the indicator

function.
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Proof. Let γ(dx, dy) ∈ Π(µ, ν) be such that MKc(µ, ν) =
∫

Ω
c(x, y)dγ(x, y) where ν =∑n

i=1 ωiδyi . By disintegration of measures it follows that

γ(dx, dy) = µ(dx)⊗ (

n∑
i=1

ai(x)δyi(dy)) (5.21)

where
∑n

i=1 ai(x) = 1 µ-a.e. Furthermore,

ωi = ν({yi}) = γ({yi} × Ω) =

∫
Ω

ai(x)dµ(x), i = 1, · · · , n. (5.22)

From (5.21) and the duality formula (5.11) it follows that∫
Ω×Ω

c(x, y)dγ(x, y) =

n∑
i=1

∫
Ω

ai(x)c(x, yi)dµ(x)

=

∫
Ω

min
i=1,··· ,n

(c(x, yi)− bi)dµ(x) +

n∑
i=1

biωi.

Equivalently, using (5.22),

n∑
i=1

∫
Ω

(c(x, yi)− bi)ai(x)dµ(x) =

∫
Ω

min
i=1,··· ,n

(c(x, yi)− bi)dµ(x).

By (5.13) it follows that

ai(x) = 1Ai(b)(x) µ-a.e.

Lemma 5.8. Let J : S → R be given by J(ω) = MKc(µ,
∑n

i=1 ωiδyi). Then

p ∈ ∂J(ω) ⇐⇒ p solves sup
b∈Rn

{∫
Ω

min
i=1,··· ,n

(c(x, yi)− bi) + 〈b, ω〉
}
. (5.23)

Proof. By Remark 5.6 we know that J is a convex function and then we can work with

the subdifferential of J . If we define

H(b) := −
∫

Ω

min
i=1,··· ,n

(c(x, yi)− bi)dµ(x) ∀b ∈ Rn,

then the Legendre transform (5.3), H∗(ω), becomes

H∗(ω) =

supb∈Rn
{∫

Ω
mini=1,··· ,n(c(x, yi)− bi) + 〈b, ω〉

}
ω ∈ S,

+∞ ω /∈ S.
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5 Optimal allocation of resources via optimal transport

By the duality formula (5.8) we have

H∗(ω) =

MKc(µ,
∑n

i=1 ωiδyi) ω ∈ S,

+∞ ω /∈ S.

This fact and (5.4) yield

ω ∈ ∂H(b) ⇐⇒ b ∈ ∂H∗(ω) ⇐⇒ 〈ω,b〉 = H∗(ω) +H(b).

Then we have

b ∈ ∂J∗(ω) ⇐⇒ ω ∈ S and J(ω) = 〈ω,b〉 −H(b).

Hence, our result follows.

Now we have enough tools for proving Theorem 5.5.

Proof Theorem 5.5. Note that

0 ∈ ∂Gν(ω) ⇐⇒
(

2ωi

∫
Ω

Fidν
)n
i=1
∈ ∂MKc(µ,

n∑
i=1

ωiδyi).

By Lemma 5.8, this is equivalent to(
− 2ωi

∫
Ω

Fidν
)n
i=1

solves sup
b∈Rn

{∫
Ω

min
i=1,··· ,n

(c(x, yi)− bi) + 〈b, ω〉
}
,

which by (5.20) also is equivalent to

ωi = µ(Ai(ν, ω)), i = 1, · · · , n.

5.5 Best response function and the upper level problem

Recall that S is the unit simplex in Rn defined in (5.3). We define the best response

function as (compare with (5.4))

Ψ : P (Ω) −→ S with Ψ(ν) = arg minGν(ω) (5.24)

where Gν(ω) is given in (5.19). The goal of this section is to show that the best response

function is well defined and continuous. Furthermore, we show that upper level problem

is solvable.
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Lemma 5.9. The best response function (5.24) is well defined and continuous with respect

to weak-∗ topology on P (Ω).

Proof. The best response function is well defined thanks to Theorem 5.5 and Remark

5.6. To show continuity let νn ∈ P (Ω) be such that νn → ν in the weak-∗ topology. Let

ωn = Ψ(νn) and ω = Ψ(ν) be best response values. The unit simplex S is a compact set

and then {ωn}∞n=1 has a accumulation point ω∗. Without loss of generality we can assume

that ωn → ω∗. By definition we have

Gν(ω) ≤ Gν(ω∗). (5.25)

On the other hand

Gνn(ωn) ≤ Gνn(ω).

Now, given that the Fi are continuous functions and νn → ν, we have Gνn(ωn)→ Gν(ω∗)

as n→∞. Hence

Gν(ω∗) ≤ Gν(ω). (5.26)

From (5.25) and (5.26) we have

Gν(ω∗) = Gν(ω),

but then, by strict convexity, ω = ω∗. The result follows.

Making use of Theorem 5.5 we can state the upper level problem as

sup
ν∈P (Ω)

{ n∑
i=1

Ψ(ν)i

∫
Ω

uidν
}
, (5.27)

where Ψ(ν)i is ith coordinate of the vector Ψ(ν). Now we show that the upper level

problem (5.27) is solvable.

Theorem 5.10. The upper level problem (5.27) admits at least one solution.

Proof. We know that ν →
∫

Ω
uidν is upper semi-continuous (usc) in the weak-∗ topology

if ui is usc; see [39] p. 250. Besides, by Lemma 5.9 we know that the best response

function is continuous on P (Ω). Therefore the function

ν → sup
ν∈P (Ω)

{ n∑
i=1

Ψ(ν)i

∫
Ω

uidν
}
,
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is the composition of a continuous and a usc function on P (Ω). Then it is usc functions

on P (Ω) and given that P (Ω) is compact in the weak-* topology ( see [7]), we prove the

desired result.

5.6 Concluding remarks

In this chapter we propose a Stackelberg model corresponding to an optimal allocation of

resources on an urban region Ω ∈ Rn. In the problem we minimize transportation costs

and distribution costs while maximizing the welfare obtained by the population that re-

ceives the resource. The problem is solved as a bilevel optimization problem where the

existence of the best response function is shown by means of the Monge-Kantorovich prob-

lem. Providing examples, as well as the relationship between the model and equilibrium

theory is work in progress.

54



6 Conclusions and future work

We developed a procedure for solving the heat equation with a moving boundary for a

family of boundaries. We showed that the procedure extends up to a cubic boundary. As

immediate future work we have to try to extend this procedure to arbitrary polynomial

boundaries.

In the second part of this thesis we study a class of Ito Processes that are constructed

in terms of the so-called heat polynomials. In particular the elements of this family can

be viewed as processes which are being steered towards Bessel processes of odd dimension

by a fixed, future time T starting from a 3D-Bessel process. An example could be a closed

monopolistic economy that at some future time will be open to more competitors.

Finally, we propose a Stackelberg model in the optimal allocation of resources. The

population as well as the distribution of the resource are modelled as probability measures.

The model takes into account cost of transportation and distribution as well as profit

function getting by population that receives the resource. A solution to the model is

gotten by means of optimal transport techniques. In future work we want to study the

relationship of this model with equilibrium theory.
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[6] Berry, M. V. and Klein, S. (1996). Colored diffraction catastrophes. Proc. Natl.

Acad. Sci. USA 93 2614–2619.

[7] Billingsley P. (1999) Convergence of probability measures, John Wiley & Sons

Inc, New York.

[8] Breiman, L. (1976) First exit times from a square root boundary. Proceedings of

the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 2 9–16.

[9] Björk, T. (2009). Arbitrage Theory in Continuous Time. Oxford Finance Series.

Third edition.

[10] Carlier G. and Mallozzi L. (2018) Optimal monopoly pricing with congestion

and random utility via partial mass transport, J. Math.Anal.Appl., 457 1218-1231

57



Bibliography

[11] Chen, N. and Kou, S. C. (2009). Credit spreads, optimal capital structure, and

implied volatility with endogenous default and jump risk. Math. Finance,19 343–378.

[12] Dai Pra, P. (1991) A stochastic control approach to reciprocal diffusion processes,

Appl. Math. Optim., 23, pp. 313–329.

[13] Davis, M. H. A. and Pistorius, M. R. (2017). Explicit solution of an inverse
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