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ABSTRACT

The aim of this work is to give explicit descriptions of the C*-algebras generated by
Toeplitz operator whose defining symbols are invariant under dilations, rotations and
translations. Therefore, we have divided this thesis in three chapters:

In Chapter 2 we consider Toeplitz operators acting on the weighted Bergman space
A 2
λ

(Π) (Π denotes the upper half-plane) with defining symbol invariant under dilations,
i.e., functions φ ∈ L∞(Π), such that for every h > 0 the equality φ(z) = φ(hz) holds a.e.
z ∈ Π . This class of defining symbols is called angular, and we give a criterion for a
function to be angular:

φ is angular, if and only if there exists a ∈ L∞(0,π) such that φ(z)= a(arg z), a.e. z ∈Π.

The main result states that the uniform closure of the set of all Toeplitz operators
acting on the weighted Bergman space over the upper half-plane whose L∞-symbols are
angular coincides with the C*-algebra generated by the above Toeplitz operators and is
isometrically isomorphic to the C*-algebra VSO(R) of bounded functions that are very
slowly oscillating on the real line in the sense that they are uniformly continuous with
respect to the arcsinh-metric ρ(x, y)= |arcsinhx−arcsinhy| on the real line.

Chapter 3 is devoted to the study of Toeplitz operators acting on the Fock space F 2(C)
with defining symbol invariant under rotations, i.e., functions ϕ ∈ L∞(C), such that for
every t ∈ [0,2π) the equality ϕ(z)=ϕ(e−itz) holds a.e. z ∈C. This class of defining symbols
is called radial, and we give a criterion for a function to be radial:

ϕ is radial, if and only if there exists b ∈ L∞(R+) such that ϕ(z)= b(|z|), a.e. z ∈C.

The principal theorem shows that the C*-algebra generated by radial Toeplitz operators
with L∞-symbols acting on the Fock space is isometrically isomorphic to the C*-algebra
RO(Z+) of bounded sequences uniformly continuous with respect to the square-root-
metric %( j,k)= |√ j −√

k |. More precisely, we prove that the sequences of eigenvalues of
radial Toeplitz operators form a dense subset of the latter C*-algebra of sequences.

Finally, in Chapter 4 the Toeplitz operators on the Fock space F 2(Cn) are taken with
defining symbol invariant under imaginary translations, i.e., functions ϕ ∈ L∞(Cn), such
that for every h ∈Rn the equality ϕ(z)=ϕ(z− ih) holds a.e. z ∈Cn. This class of defining
symbols is called horizontal, and we give a criterion for a function to be horizontal:

ϕ is horizontal, if and only if there exists c ∈ L∞(Rn) such that ϕ(z)= c(Re z), a.e. z ∈ Cn.
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Let L be any Lagrangian plane of the symplectic real space (R2n,ω0). We show that
the C*-algebra TL (L∞) generated by Toeplitz operators acting on the Fock space whose
defining L∞– symbols are L –invariant is isometrically isomorphic to the C*-algebra
Thor(L∞) generated by Toeplitz operators acting on the Fock space with horizontal L∞–
symbols. Here, a function ψ ∈ L∞(R2n) is said to be L –invariant if for every h ∈L one
gets that ψ(z−h) =ψ(z) a.e. z ∈ R2n, in particular, the horizontal case corresponds to
L = {0}×Rn. The main result of this part states that Thor(L∞) is isometrically isomorphic
to the C*-algebra Cb,u(Rn) of bounded functions that are uniformly continuous with
respect to the usual metric d(x, y)= |x−y| on the n-dimensional real plane. More precisely,
we prove that the corresponding spectral functions form a dense subset in Cb,u(Rn).

The results of the Chapter 2 were published in the Journal of Communications in
Mathematical Analysis, Volume 17, Number 2 (2014), 151-162, http://projecteuclid.
org/euclid.cma/1418919761 and online first in the Journal of Integral Equation and
Operator Theory. http://dx.doi.org/10.1007/s00020-015-2243-4 The results of
Chapter 3 have been published online arXiv:1505.07906 and submitted to the Journal
of Complex Analysis and Operator Theory.
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INTRODUCTION

In linear algebra an infinite Toeplitz matrix T is defined by the rule:

T =


a0 a−1 a−2 . . .

a1 a0 a−1
. . .

a2 a1 a0
. . .

... . . . . . . . . .

 ,

where an ∈C, n ∈Z. In 1911 Otto Toeplitz proved that the matrix T defines a bounded

operator on `2(Z+), where Z+ = N∪ {0}, if and only if the numbers an are the Fourier

coefficients of a function a ∈ L∞(S1), where S1 is the unit circle.

The classical Hardy space H 2 can be viewed as the closed linear span in L2(S1)

of {zn : n ≥ 0}. For g ∈ L∞(S1), the Toeplitz operator Tg defined by Tgh = B(gh), where

B denotes the orthogonal projection from L2(S1) onto H 2, is bounded and satisfies

‖Tg‖ ≤ ‖g‖∞. The matrix of Tg with respect to the orthonormal basis {zn : n ≥ 0} is the

Toeplitz matrix T with an being the Fourier coefficients of g. Thus, the Toeplitz operators

are a generalization of the Toeplitz matrices T.

Let X be a function space and let B be a projection of X onto some closed subspace

Y of X . Then the Toeplitz operator Tg : Y −→ Y with defining symbol g is given by

Tg f = B(gf ). The most studied cases are when Y is either the Bergman space, the Hardy

space, or the Fock space. More recently Toeplitz operators have been also studied on

many other spaces, for example on the harmonic Bergman space [38].

The Toeplitz operators have been extensively studied in several branches of mathe-

matics: complex analysis, theory of normed algebras, operator theory [5, 28, 36, 53],

harmonic analysis [1, 17], and mathematical physics, particularly in connection with

quantum mechanics [9, 11], etc.

Recently, Jingbo Xia [51] showed that the norm closure of the set of Toeplitz operators

acting on Bergman spaces (and Fock spaces) with general L∞-symbols coincides with

the C*-algebra generated by them. It is a depper result but unfortunately it is know very
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INTRODUCTION

little about the properties of Toeplitz operators with general L∞-symbols; though some

general results are collected, for example, in [54] the common strategy here is to study

Toeplitz operators with symbols from certain special subclasses of L∞.

The most complete results were obtained for the families of symbols that generate

commutative C*-algebras of Toeplitz operators acting on the weighted Bergman space.

They were described in a series of papers summarized in the book [50], see also [26].

These families of defining symbols lead to the following three model cases: radial symbols,

functions on the unit disk depending only on |z|, vertical symbols, functions on the upper

half-plane depending on Im z, and angular symbols defined on the upper half-plane and

depending only on arg z. Unlike the Bergman case, on the Fock space there are only

two model cases that generate commutative C*-algebras of Toeplitz operators: radial
symbols, functions on the complex plane C depending only on |w|, and horizontal symbols,

functions on C depending only on Rew.

In each one of the above models (for the horizontal model is proved in this Ph.D.

thesis), the corresponding Toeplitz operator admit an explicit diagonalization, i.e. there

exists an isometric isomorphism that transforms all Toeplitz operators of the selected

type to the multiplication operators by some specific functions (we call them spectral
functions, in the radial case they are just the sequences of eigenvalues). Of course, such a

diagonalization immediately reveals all the main properties of the corresponding Toeplitz

operators [23–25, 28].

Then the next natural problem emerges: give an explicit and independent description

of the class of spectral functions (and of the algebra generated by them) for each one of

the above cases. First step in this direction was made by Suárez [46, 47]. He proved that

the sequences of eigenvalues of Toeplitz operators acting on the Bergman space with

bounded radial symbols form a dense subset in the `∞-closure of the class d1 of bounded

sequences (σk)∞k=1 satisfying

sup
k

(k+1)|σk+1 −σk| < +∞.

As a consequence, the C*-algebra generated by Toeplitz operators with bounded radial

symbols is isometrically isomorphic to this `∞-closure of d1. The results of Suárez have

been complemented and generalized to the weighted Bergman space on the unit ball

in [3, 4, 27, 40]. The above `∞-closure of d1 was characterized in [27]. As it turned out,

this closure coincides with the C*-algebra VSO(N) of bounded functions (sequences)

N→C that are uniformly continuous with respect to the logarithmic metric | ln( j)− ln(k)|.
Surprisingly this class of sequences was already introduced by Schmidt [43, § 9] in the
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beginning of the 20th century in connection with Tauberian theory. It is worth mentioning

that the above description shows the room that radial Toeplitz operators occupy amongst

all bounded radial operators (the set of which is isomorphic to `∞(N)).

Herrera Yañez, Hutník, Maximenko and Vasilevski [30–32] continue this program

and give a description of the commutative algebra generated by Toeplitz operators acting

on the Bergman space with bounded vertical symbols. The result states that their spectral

functions form a dense subset in the C*-algebra VSO(R+) of very slowly oscillating func-
tions on R+, i.e. the bounded functions R+ →C that are uniformly continuous with respect

to the metric | ln(x)− ln(y)|. This, in particular, means that the C*-algebra generated by

Toeplitz operators with bounded vertical symbols is isometrically isomorphic to VSO(R+).

This thesis is devoted to the study of remaining model cases. That is, we give an

explicit description of the commutative C*-algebras generated by Toeplitz operator

acting on the weighted Bergman space whose defining symbols are angular, and of

the commutative C*-algebras generated by Toeplitz operator acting on the Fock space

whose defining symbols are radial and horizontal. With this we complete thus the

intrinsic description of the commutative C*-algebras generated by Toeplitz operators

with bounded symbols for each one of the model classes that appear for the weighted

Bergman space and the Fock space.

The work is divided into three chapters. In Chapter 2 we are interested in the Toeplitz

operator with angular symbols acting on the weighted Bergman space A 2
λ

(Π) over the

upper half-plane Π, which consists of all analytics functions in L2(Π,dνλ), where

dνλ(z)= (λ+1)(2y)λd ydx, z = x+ i y, λ ∈ (−1,+∞).

A function g ∈ L∞(Π) is said to be homogeneous of order zero or angular if for every

h > 0 the equality g(hz) = g(z) holds for a.e. z ∈ Π, or, equivalently, if there exists a

function a in L∞(0,π) such that g(z)= a(arg z) for a.e. z in Π. We denote by A∞ this class

of functions, and introduce the set Tλ(A∞) of all Toeplitz operators acting on A 2
λ

(Π) with

defining symbols in A∞.

As was shown in [25], the uniraty operator Rλ : A 2
λ

(Π)→ L2(R), where

(1) (Rλϕ)(x)= 1√
2λ+1(λ+1) cλ(x)

∫
Π

(z)−ix−
(
λ+2

2

)
ϕ(z)dµλ(z), x ∈R,

with

(2) cλ(x)=
∫ π

0
e−2xθ sinλθdθ, x ∈R.

3



INTRODUCTION

diagonalizes each Toeplitz operator Tg with angular symbol g(z) = a(arg z); that is

R
λ
TgR∗

λ
= γa,λI, where the spectral function γa,λ : R→C is given by

(3) γa,λ(x)= 1
cλ(x)

∫ π

0
a(θ) e−2xθ sinλθdθ, x ∈R.

In particular, this implies that the algebra generated by Tλ(A∞) is isometrically isomor-

phic to the C*-algebra generated by

(4) Γλ =
{
γa,λ : a ∈ L∞(0,π)

}
.

Chapter 2 describes explicitly this C*-algebra. We denote by VSO(R) the C*-algebra

of very slowly oscillating functions on the real line [18], which consists of all bounded

functions that are uniformly continuous with respect to the arcsinh-metric

(5) ρ(x, y)= |arcsinh x−arcsinh y|, x, y ∈R.

The main result here (Theorem 2.4) states that the uniform closure of Γλ coincides with

the C*-algebra VSO(R). As a consequence, the C*-algebra Tλ(A∞) generated by the

set Tλ(A∞) coincides just with the closure of this set of its initial generators, and is

isometrically isomorphic to VSO(R). Note that the result does not depend on a value of

the weight parameter λ>−1.

As a by-product of the main result, we show that the closure of the set Tλ(A∞) in the

strong operator topology coincides with the C*-algebra of all angular operators.

With this work we finish the explicit descriptions of the above mentioned commutative

C*-algebras of Toeplitz operators on the unit disk and upper half-plane. In all three cases

the spectral functions oscillate at infinity with the logarithmic speed. The C*-algebras

VSO(R+) and VSO(R) corresponding to the vertical and angular cases, respectively, are

isometrically isomorphic (via the change of variables v 7→ sinh(ln(v))), and both of them

are isometrically isomorphic to the C*-algebra Cb,u(R) consisting of all bounded functions

on R that are uniformly continuous with respect to the usual metric (via the changes

of variables v 7→ ln(v) and v 7→ arcsinh(v), respectively). The sequences from VSO(N) are

nothing but the restrictions to N of the functions from VSO(R+).

Note that the proof in the vertical case was the simplest one because the corresponding

spectral functions γv
a,λ admit representations in terms of the Mellin convolutions, and

the result about density was obtained just by using a convenient Dirac sequence. Unfor-

tunately, in the angular case this simple approach does not work.

The key idea of the proof presented in this work is to approximate functions from

VSO(R) by γv
a,λ near +∞ and −∞. After that, the problem is reduced to the approximation

4



of C0(R) functions by appropriate γa,λ; the latter problem was solved using the duality

and the analyticity arguments (Theorem 2.3).

This chapter is organized as follows: Section 2.1 contains criteria of angular operator

and of angular Toeplitz operator. In Section 2.2 we introduce formally the class of func-

tions VSO(R) and is showed that the functions of the class Γλ are Lipschitz continuous

with respect the arcsinh metric ρ. That is Γλ ( VSO(R). In Section 2.3 we prove the

density of Γλ in VSO(R), and we finish this chapter showing in Section 2.4 that the

closure of {Tg : g ∈A∞} in the strong operator topology coincides with B(A 2
λ (Π)).

Chapter 3 focuses on the study of the C*-algebra generated by radial Toeplitz

operators acting on Fock spaces. It is well known [53] that the normalized monomi-

als en(z) = zn/
p

n! , n ∈ Z+, form an orthonormal basis of F 2(C), and that the Toeplitz

operators with bounded radial symbols are diagonal with respect to this basis [28].

Namely, if a ∈ L∞(R+) and ϕ(z)= a(|z|) a.e. z ∈C, then Tϕen = γa(n)en, where

(6) γa(n)= 1p
n!

∫
R+

a(
p

r )e−rrn dr, n ∈Z+.

From this diagonalization we have that the C*-algebra Trad generated by Toeplitz

operators with radial L∞-symbols is isometrically isomorphic to the C*-algebra G

generated by the set G of all sequences of the eigenvalues:

(7) G= {
γa : a ∈ L∞(R+)

}
.

The main result of this part states that the uniform closure of G coincides with the

C*-algebra RO(Z+) consisting of all bounded sequences σ : Z+ −→C that are uniformly

continuous with respect to the square-root-metric

%(m,n)= ∣∣pm −p
n

∣∣ , m,n ∈Z+.

As a consequence, we obtain an explicit description of the C*-algebra G generated by G:

G =RO(Z+).

Surprisingly for us, the C*-algebra G turns out to be wider than the class of sequences

VSO(N) obtained for the radial case on weighted Bergman spaces. The results obtained

here can be generalized to radial Toeplitz operators on the multi-dimensional Fock space

F 2(Cn, (α/π)n e−α|z|
2
dvn(z)); in this case the eigenvalue associated to the element eβ of

the canonical basis depends only on the length of the multi-index β, as in [27].

5
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This chapter is organized as follows: In Section 3.1 we have compiled some basic

facts about radial Toeplitz operators in Fock space. In Section 3.2 we introduce the class

RO(Z+) and prove that G is contained in RO(Z+).

The major part of Chapter 3 is occupied by a proof that G is dense in RO(Z+), see a

scheme in Figure 0.1. Given a sequence σ ∈ RO(Z+), we extend it to a sqrt-oscillating

function f on R+ (Proposition 3.5). After the change of variables h(x)= f (x2) we obtain a

bounded and uniformly continuous function h on R. In Section 1.5, using Dirac sequences

and Wiener’s division lemma, we show that functions from Cb,u(R) can be uniformly

approximated by convolutions k∗ b, where k is a fixed L1(R)-function whose Fourier

transform does not vanish on R. This construction will be applied when k is the heat

kernel H (Section 3.3) and we examine the asymptotic behavior of the sequences of

eigenvalues γa. It is shown there that after change of variables
p

n = x, the function

x 7→ γa(x2), for x sufficiently large, is close to the convolution of the symbol a with the

heat kernel H. In Section 3.3 also we show that c0(Z+) coincides with the uniform closure

of the set {γa : a ∈ L∞(R+), limr→∞ a(r)= 0}. After that, gathering together all the pieces,

we obtain the main result of this chapter (Theorem 3.4 ). Finally, in Section 3.4 we

describe a class of generating symbols bigger than L∞(R), with eigenvalues’ sequences

still belonging to RO(Z+), and construct an unbounded generating symbol a such that

γa ∈ `∞(Z+)\RO(Z+).

σ ∈ RO(Z+)

f ∈ RO(R+)

h ∈ Cb,u(R) b ∈ L∞(R)

a ∈ L∞(R+)

σ
`∞≈ γa+c

ϑ ∈ c0(Z+) c ∈ L∞(R+)

σ = f |Z+

h(x) = f (x2)

h
L∞≈ H ∗ b

(H ∗ b)(
√

j) ≈ γa( j)
j > N

ϑ = (σ − γa)χ[0,N]

ϑ
`∞≈ γc

Figure 0.1: Scheme of the proof of density: the upper chain represents the approximation
of σ( j) for large values of j ( j > N), and the lower one corresponds to the uniform
approximation of the sequence σ−γa multiplied by the characteristic function χ[0,N].
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Finally Chapter 4 provides a detailed description of the Toeplitz operators with

horizontal symbols acting on the Fock space F 2(Cn), where a function f ∈ L∞(Cn),

is called horizontal if for every h ∈ Rn the equality f (z) = f (z− ih) holds a.e. z ∈ Cn.

Equivalently, f is a horizontal function, if there exists a ∈ L∞(Rn) such that f (z) =
a(Re z), a.e. z ∈Cn.

It is well-known that the Bargmann transform is an isometric isomorphism from

L2(R2n) onto the F 2(Cn) [53], and hence plays an important role in the description of

Toeplitz operators. Furthermore, this transformation relates the Toeplitz operators acting

on F 2(Cn) with pseudo-differential operators acting on L2(R2n). The Bargmann trans-

form is important in our approach, because the main idea as in the above model cases is

to get spectral functions γH
a such that the Toeplitz operators are unitary equivalent to

the multiplication operators MγH
a

acting on L2(Rn).

First of all, we find a decomposition of the Bargmann transform B∗ as composition

of two unitary operators which allows us to diagonalize the Toeplitz operators with

horizontal symbols. More precisely, if ϕ(z) = a(Re z) is a horizontal function, then the

Toeplitz operator Tϕ is unitary equivalent to the multiplication operator BTϕB∗ = γH
a I,

where the spectral function γH
a : Rn →C is given by the formula

(8) γH
a (x)=π−n/2

∫
Rn

a
(

yp
2

)
e−(x−y)2 d y, x ∈Rn.

A consequence of the latter diagonalization is that the C*-algebra Thor(L∞) of Toeplitz

operators whose defining symbols are horizontal is isometrically isomorphic to the C*-

algebra G H generated by

(9) GH =
{
γH

a : a ∈ L∞(Rn)
}

.

This result is generalized for functions invariant under translations over certain kind

of subspaces of Cn. Recall that R2n has the standard symplectic form

ω0(z,w)= y · x′− y′ · x,

for z = (x, y) and w = (x′, y′). It is well-known that a linear subspace L of the symplectic

space (R2n,ω0) is a Lagrangian plane if for every pair (z,w) ∈ L ×L , one has that

ω0(z,w)= 0. The simplest examples of Lagrangian planes of (R2n,ω0) are both coordinates

planes: Lx =Rn × {0} and Ly = {0}×Rn.

If we identify iRn with {0}×Rn, then the horizontal functions can be viewed as

functions invariant under translations on the Lagrangian plane Ly = {0}×Rn. Thus, it is

natural to study Toeplitz operators with defining symbols invariant under translation on

7
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Lagrangian planes L of (R2n,ω0), for brevity we call them L –invariant symbols. That

is, ϕ is a L –invariant function if for every h ∈L one gets that ϕ(z−h)=ϕ(z) a.e. z ∈Cn.

Using the symplectic rotations U(2n,R) we give a criterion for a function to be L –

invariant, and thus relate Toeplitz operators with this class of defining symbols with

Toeplitz operators having horizontal symbols. In fact, given any Lagrangian plane L we

can find a symplectic rotation B ∈U(2n,R) with BL = {0}×Rn and a unitary operator VB

such that for every L –invariant function ϕ ∈ L∞(R2n) there exists a horizontal function

ψB ∈ L∞(R2n) (depending on ϕ and L ) such that

VB−1 TϕVB = TψB .

Therefore, the C*-algebra TL (L∞) generated by Toeplitz operators with L –invariant

symbols is isometrically isomorphic to Thor(L∞). Thus, both C*-algebras TL (L∞) and

Thor(L∞) are isometrically isomorphic to the C*-algebra G H generated by GH , see (9).

The main result of this chapter states that the uniform closure of GH coincides

with the C*-algebra Cb,u(Rn) consisting of all bounded functions σ : Rn −→ C that are

uniformly continuous with respect to the usual metric on Rn. As a consequence, we obtain

an explicit description of G H :
G H = Cb,u(Rn).

Notice that, unlike the angular and radial case, here we do not need to approximate

functions σ ∈ Cb,u(Rn) at the infinity by spectral function γH
a . It follows from the structure

of the functions γH
a , that they can be written directly as convolutions of functions a∗H,

where H is the n-dimensional heat kernel H(x)=π−n/2e−x2
.

This chapter is organized as follows: in Section 4.1 we write the Bargmann transform

as a composition of two unitary operators. In Section 4.2 we introduce the horizontal

operators and horizontal Toeplitz operators, give some basic properties of them, including

a criterion of a operator to be horizontal. Also, we prove that the Toeplitz operators with

horizontal symbols are unitary equivalent to the multiplication operator MγH
a

acting on

L2(Rn). In Section 4.3 we introduce the L –invariant functions, and establish a criterion

of a function to be L –invariant. We show that the C*-algebra TL (L∞) generated by the

Toeplitz operators whose defining symbols are L -invariant is isometrically isomorphic

to Thor(L∞). Finally, in Section 4.4 we prove the main result of this chapter. The proof

is based on approximations of bounded uniformly continuous functions by convolutions

used in Chapter 3. That is, using Dirac sequences and Wiener’s division lemma, we show

that the functions from Cb,u(Rn) can be uniformly approximated by convolutions k∗b,

where k is a fixed L1(Rn)-function whose Fourier transform does not vanish on Rn. This

construction is applied when k is the n-dimensional heat kernel H.
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In this chapter we collect several preliminary results, the main purpose here is to fix

notation and to facilitate references later on. All the results are well known [14, 20, 29,

42, 50, 53, 54].

1.1 Weighted Bergman space

Let Π be the upper half-plane of the complex plane C:

(1.1) Π := {z ∈C : Im z > 0} .

Given the weight parameter λ ∈ (−1,+∞), we introduce the following standard measure

on the upper half-plane Π:

dνλ(z)= (λ+1)(2y)λd ydx, z = x+ i y.

The weighted Bergman space A 2
λ

(Π) consists of all analytic functions belonging to

L2(Π,dνλ). An important property of the Bergman space is contained in the following

lemma.

Lemma 1.1. Let n ∈ {0,1,2, . . .}. Given a compact set K ⊂Π, there is a constant C = Cn,K ,λ,
depending on n, K and λ ∈ (−1,+∞), such that

(1.2) sup
z∈K

| f (n)(z)| ≤ C‖ f ‖A 2
λ

(Π),

for all f ∈A 2
λ

(Π).

9
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Proposition 1.1. The Bergman space A 2
λ

(Π) is a closed subspace of L2(Π,dνλ).

Proof. Let ( fn)n∈N be a fundamental sequence of analytic functions from A 2
λ

(Π) converging

on L2(Π,dνλ) to certain function f ∈ L2(Π,dνλ). By Lemma 1.1 we see that ( fn)n∈N con-

verges uniformly on every compact subset K of Π to certain analytic function g. However,

by (1.2) we have for each compac subset K of Π that

| f (z)− g(z)| ≤ lim
m→∞ | f (z)− fm(z)| ≤ CK ,λ lim

m→∞‖ f − fm‖A 2
λ

(Π) = 0, z ∈ K .

Therefore, f is analytic and belongs to A 2
λ

(Π). �

From Lemma 1.1 is follows as well that for any fixed point z ∈ Π the evaluation

functional ψz( f )= f (z) is linear and bounded. Thus by the Riesz-Fréchet representation

theorem there exists a unique element Kz,λ ∈A 2
λ

(Π) such that ψz = 〈·,Kz,λ〉. The function

Kz,λ is the so-called Bergman kernel at a point z, and it is well known that is given by

the formula

(1.3) Kz,λ(w)=
(

i
w− z

)λ+2
w ∈Π.

Observe that from the above definition it follows that the Bergman kernel func-

tion Kz,λ(w) is analytic in w and anti-analytic in z (analytic in z). On the other hand,

since the Bergman space A 2
λ

(Π) is a closed subspace of L2(Π,dνλ), there exists the

unique orthogonal projection Bλ from L2(Π,dνλ) onto A 2
λ

(Π). This projection is called

the Bergman projection and has the integral representation

(Bλ f )(z)= iλ+2
∫
Π

f (w)
(z−w)λ+2 dνλ(w), f ∈ L2(Π,dνλ).

Representations of the weighted Bergman space

The Bergman space can be characterized as the set of L2(Π,dνλ) functions which satisfy

the Cauchy-Riemann equation

(1.4)
∂

∂z
f (z)= 0.

Passing to polar coordinates we have the tensor decomposition

(1.5) L2 (Π,dνλ) := L2

(
R+, rλ+1 dr

)
⊗L2

(
[0,π],

2λ

π
(λ+1) sinλθdθ

)
,

and rewriting (1.4) we have that the Bergman space A 2
λ

(Π) is the set of all functions

satisfying the equation

(1.6)
(
r
∂

∂r
+ i

∂

∂θ

)
ϕ(r,θ)= 0.

10
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Let U1,λ = 1p
π

(M⊗ Id) be the unitary operator from

L2

(
R+, rλ+1 dr

)
⊗L2

(
[0,π],

2λ

π
(λ+1) sinλθdθ

)

onto L2 (R)⊗ L2

(
[0,π], 2λ

π
(λ+1) sinλθdθ

)
, where M : L2

(
R+, rλ+1 dr

) −→ L2 (R) is the

Mellin transform defined by the rule

(1.7)
(
Mψ

)
(x) := 1p

2π

∫
R+

r−ix+λ
2 ψ(r)dr.

Its inverse Mellin transform M−1 : L2 (R)−→ L2
(
R+, rλ+1 dr

)
is given by

(1.8)
(
M−1ψ

)
(r) := 1p

2π

∫
R

riξ−λ
2−1ψ(ξ)dξ.

Observe that

(M⊗ Id)
(
r
∂

∂r
+ i

∂

∂θ

)(
M−1 ⊗ Id

)= (
iξ−

(
λ

2
+1

))
Id+ i

∂

∂θ
= i

((
ξ+

(
λ

2
+1

)
i
)
Id+ ∂

∂θ

)
.

Hence, the image of the weighted Bergman space A 2
λ

(π) under the unitary operator U1,λ

A1,λ =U1,λ
(
A 2
λ (Π)

)
it is the closed subspace of L2 (R)⊗L2

(
[0,π], 2λ

π
(λ+1) sinλθdθ

)
, consisting of all functions

ψ(ξ,θ) satisfying the equation((
ξ+

(
λ

2
+1

)
i
)
Id+ ∂

∂θ

)
ψ(ξ,θ)= 0.

The general L2 (R)⊗L2

(
[0,π], 2λ

π
(λ+1) sinλθdθ

)
-solution of this equation has the form

ψ(ξ,θ)= f (ξ) e−
(
ξ+

(
λ+2

2

)
i
)
θ√

2λ(λ+1) cλ(ξ)
, f ∈ L2(R),

where the function cλ : R−→R+ is of the form

(1.9) cλ(x)=
∫ π

0
e−2xθ sinλθdθ, x ∈R.

and ∥∥ψ(λ,θ)
∥∥

L2(R)⊗L2
(
[0,π],2λ (λ+1) sinλ θdθ

) = ‖ f ‖L2(R)

11
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Lemma 1.2. Let cλ(x) be the function given in (1.9). The following properties hold.
(i) The function cλ can be written as

(1.10) cλ(x)= πΓ(λ+1) e−πx

2λ
∣∣Γ(

λ+2
2 + ix

)∣∣2 , x ∈R.

(ii) The function cλ is infinitely smooth, for every p = 0,1,2, . . . its p-th derivative is given
by the integral

(1.11)
dpcλ(x)

dxp = (−2)p
∫ π

0
θpe−2xθ sinλθdθ,

moreover, it has the following asymptotic behavior at +∞:

(1.12)
dpcλ(x)

dxp ∼ (−2)pΓ(λ+ p+1)
(2x)λ+p+1 , as x →+∞.

Proof. (i) By definition of Beta function and by [22, Eq: 3.892-1] one gets that:

cλ(x)=
∫ π

0
e−2xθ sinλθdθ =

∫ π

0
eiβθ sinv−1θdθ, where β= 2ix, v =λ+1,

= π e
iβπ
2

2v−1 vB
(

v+β+1
2 , v−β+1

2

) = π exπ

2λ (λ+1)B
(
λ+2

2 + ix, λ+2
2 − ix

) = πΓ(λ+2) e−πx

2λ(λ+1)
∣∣Γ(

λ+2
2 + ix

)∣∣2
= πΓ(λ+1) e−πx

2λ
∣∣Γ(

λ+2
2 + ix

)∣∣2 , x ∈R.

(ii) Since cλ(x)= e−2xπcλ(−x) for each x ∈R, we give the proof of the equality for the case

x ≥ 0. Given p ∈ {0,1,2, . . .} note that θpe−2xθ sinλθ ≤ θp sinλθ for each θ ∈ (0,π) and each

x ≥ 0. Thus, by the Leibniz’s rule cλ is infinitely smooth and

dpcλ(x)
dxp = (−2)p

∫ π

0
θpe−2xθ sinλθdθ, x ∈R.

On the other hand, the asymptotic behavior is easily analized using the Watson’s Lemma

(Proposition A.1). Writing θp sinλθ as θλ+p ( sinθ
θ

)λ
, where

( sinθ
θ

)λ
is infinitely smooth

near 0, we obtain: ∫ π

0
θpe−2xθ sinλθ dθ ∼ Γ(λ+ p+1)

(2x)λ+p+1 , as x →+∞,

thus the proof is completed. �

Example 1.1. Let z ∈Π and Kz,λ the Bergman kernel. Consider

Kz,λ(w)=
(

i
reiα− z

)λ+2
, w = reiα,

12
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by [22, Eq: 3.194.3] we have that

(U1,λKz,λ)(x,α)= iλ+2

π
p

2

∫
R+

r−ix+λ
2

(reiα− z)λ+2 dr = iλ+2

π (−z)λ+2
p

2

∫
R+

ru−1

(rβ+1)v dr

= iλ+2

π (−z)λ+2
p

2
β−uB (u,v−u) ,

where u =−ix+ λ+2
2 ,β=− eiα

z = ei(α−π)

z , v =λ+2 and B is the Beta function. Hence

(U1,λKz,λ)(x,α)= iλ+2

π (−z)λ+2
p

2

[
ei(α−π)

z

]ix−
(
λ+2

2

)
B

(
λ+2

2
− ix,

λ+2
2

+ ix
)

= iλ+2

π (−z)λ+2
p

2

[
ei(α−π)

z

]ix−
(
λ+2

2

) ∣∣Γ(
λ+2

2 + ix
)∣∣2

Γ(λ+2)

=
 (−i)λ+2 (eiπ)

(λ+2)
2 e−xα−i−

(
λ+2

2

)
(z)ix+λ+2

2
p

2

  exπ ∣∣Γ(
λ+2

2 + ix
)∣∣2

πΓ(λ+2)

 .

Now, since (eiπ)
(λ+2)

2 = iλ+2, by (1.10) item (i) we have for each α ∈ (0,π) that

(1.13) (U1,λKz,λ)(x,α)= e−xα−i
(
λ+2

2

)
α(z)−ix−

(
λ+2

2

)
2λ+

1
2 (λ+1) cλ(x)

, x ∈R+.

Lemma 1.3. The unitary operator U1,λ is an isometric isomorphism of the space L2
(
Π,dµλ

)
onto L2 (R) ⊗ L2

(
[0,π],2λ (λ+1) sinλθdθ

)
under which the Bergman space A 2

λ (Π) is
mapped onto

(1.14) A1,λ =
 f (ξ) e−(

(
ξ+

(
λ
2+1

)
i
)
θ√

2λ(λ+1) cλ(ξ)
, f ∈ L2(R)

 .

Let R0,λ : L2 (R) −→ A1,λ ⊂ L2 (R)⊗L2
(
[0,π],2λ (λ+1) sinλθdθ

)
be the isometric em-

bedding given by

(1.15)
(
R0,λ f

)
(ξ,θ)= f (ξ) e−

(
ξ+

(
λ+2

2

)
i
)
θ√

2λ(λ+1) cλ(ξ)
.

The adjoint operator R∗
0,λ : A1,λ ⊂ L2 (R)⊗L2

(
[0,π],2λ (λ+1) sinλθdθ

)−→ L2 (R) has the

form

(1.16)
(
R∗

0,λψ
)
(ξ)=

√
2λ(λ+1)

cλ(ξ)

∫ π

0
ψ(ξ,θ) e−

(
ξ−

(
λ+2

2

)
i
)
θ sinλθdθ.
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Note that

R∗
0 R0 = IL2(R) : L2(R)−→ L2(R);

R0R∗
0 = B1,λ : L2 (R)⊗L2

(
[0,π],2λ (λ+1) sinλθdθ

)
−→A1,λ

where B1,λ =U1,λBΠ,λU−1
1,λ is the orthogonal projection from

L2 (R)⊗L2

(
[0,π],2λ (λ+1) sinλθdθ

)
onto A1,λ.

Now the operator R
λ
= R∗

0,λU1,λ maps the space L2(Π,dµλ) onto L2(R), and its restric-

tion

Rλ|A 2
λ

(Π) = R∗
0,λU1,λ : A 2

λ (Π)−→ L2(R)

is an isometric isomorphism. The adjoint operator

R∗
λ =U∗

1,λR0,λ : L2(R)−→A 2
λ (Π)⊂ L2(Π,dµλ)

is an isometric isomorphism from L2(R) onto the Bergman space A 2
λ

(Π).

Remark 1.1.

RλR∗
λ = IdL2(R) : L2(R)−→ L2(R);

R∗
λRλ = Bλ : L2

(
Π,dµλ

)−→A 2
λ (Π);

Theorem 1.2. The isometric isomorphism R∗
λ
= R∗

0,λU1,λ : A 2
λ

(Π)−→ L2(R) is given by

(1.17)
(
R∗
λ f

)
(z)=

∫
R

ziξ−
(
λ+2

2

)
f (ξ)√

2λ+1(λ+1) cλ(ξ)
dξ.

Corollary 1.1. The inverse isomorphism R
λ
= R∗

0,λU1,λ : A 2
λ

(Π)−→ L2(R) is given by

(1.18) (Rλϕ)(x)= 1√
2λ+1(λ+1) cλ(x)

∫
Π

(z)−ix−
(
λ+2

2

)
ϕ(z)dµλ(z), x ∈R,

where the Lebesgue measure µλ is given by

(1.19) dµλ(z)= 2λ

π
rλ+1 sinλθdrdθ, z = reiθ.
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Example 1.2. Let z ∈Π and Kz,λ be the Bergman kernel of A 2
λ

(Π). Since R
λ
= R∗

0,λU1,λ,

by (1.13) and (1.16) we get

(RλKz,λ)(x)= (R∗
0,λU1,λKz,λ)(x)=

√
2λ(λ+1)

cλ(x)

∫ π

0
(U1,λKz,λ)(x,θ) e−

(
x−

(
λ+2

2

)
i
)
θ sinλθdθ

=
√

2λ(λ+1)
cλ(x)

∫ π

0

e−xθ−i
(
λ+2

2

)
θ(z)−ix−

(
λ+2

2

)
2λ+

1
2 (λ+1) cλ(x)

e−
(
x−

(
λ+2

2

)
i
)
θ sinλθdθ

= (z)−ix−
(
λ+2

2

)
c3/2
λ

(x)
√

2λ+1(λ+1)

∫ π

0
e−2xθ sinλθdθ, x ∈R.

Therefore

(1.20) (RλKz,λ)(x)= (z)−ix−
(
λ+2

2

)
√

2λ+1(λ+1) cλ(x)
, x ∈R.

Example 1.3. By (1.18) we have for each h > 0 that(
RλDh,λϕ

)
(x)= 1√

2λ+1(λ+1)π cλ(x)

∫
Π

(z)−ix−
(
λ+2

2

)
h

λ+2
2 ϕ(hz)dµλ(z)

= hix√
2λ+1(λ+1)π cλ(x)

∫
Π

(z)−ix−
(
λ+2

2

)
ϕ(z)dµλ(z)

= hix(Rλϕ)(x)= (ME ih Rλϕ)(x).

This clearly forces

(1.21) RλDh,λR∗
λ = MEh , ∀h ∈R+.

1.2 Fock spaces

In this section we recall some elementary results about Fock spaces. First, we consider

the entire functions on the n-dimensional complex plane and some basic properties of

them. For more detail see for example [41, 53]

Let Cn be the n-dimensional complex plane. The addition, scalar multiplication

and conjugation are defined on Cn componentwise. We will use the following standard

notation: z = x+ i y= (z1, z2, . . . , zn) ∈Cn;

z ·w =
n∑

k=1
zkwk; z2 = z · z =

n∑
k=1

z2
k; |z|2 = z · z =

n∑
k=1

|zk|2.

Consider the following partial differential operators

(1.22)
∂

∂z j
= 1

2

(
∂

∂x j
− i

∂

∂yj

)
;

∂

∂z j
= 1

2

(
∂

∂x j
+ i

∂

∂yj

)
15
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Definition 1.1. Let O ⊂Cn be a open set. A function f : O →C is called holomorphic (on

O ) if f ∈ C1(O ) and satisfies the system of partial differential equations

(1.23)
∂ f
∂z j

(z)= 0, for1≤ j ≤ n and z ∈Cn.

We denote by H (O ) the space of holomorphic functions on O .

The following proposition is a generalization of Theorem 2.2 in [45] and was proved

by Miroslav Engliš, [16, Proposition 1] for O (Cn, and by Folland [21, Proposition 1.69]

for O =Cn.

Proposition 1.2. Let O be a domain in Cn, O = {z ∈ Cn : z ∈ O }, and F be an analytic
function on O ×O such that

F(z, z)= 0, z ∈O .

Then F vanishes identically on O ×O .

A function f is said to be entire when it is analytic on the whole complex plane Cn.

i.e., f ∈H (Cn). For n = 1, it is well known that a function f is entire if and only if f has

a power series expansion

f (z)=
∞∑

n=0
anzn

with infinite radius of convergence. Also, it is well known that every bounded entire

function is a constant function (Liouville’s Theorem) which is a consequence of the most

fundamental result in complex analysis, namely, the identity theorem.

Proposition 1.3 (identity theorem). Suppose that f is an entire function. If there is a
point z ∈C such that f (n)(z)= 0 for all n = 0,1,2, . . ., then f ≡ 0 on C.

A multi-index α= (α1, . . . ,αn) is an element of Zn+. Next, we fix the standard multi-

index notation:

zα = zα1
1 zα2

2 · · · zαn
n ; zα = z1

α1 z2
α2 · · · zn

αn ;(
∂

∂z

)α
=

(
∂

∂z1

)α1

· · ·
(
∂

∂zn

)αn

;
(
∂

∂z

)α
=

(
∂

∂z1

)α1

· · ·
(
∂

∂zn

)αn

;

α!=α1! · · ·αn!; |α| =
n∑

j=1
α j;

∂α f = ∂|α|

∂zα1
1 ∂zα2

2 · · ·∂zαn
n

; ∂
α

f = ∂|α|

∂z1
α1∂z2

α2 · · ·∂zn
αn

.
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The lack of bounded entire functions is one of the key differences between the theory

of Fock spaces and the more classical theories of Hardy and Bergman spaces. Next, we

introduce the Fock spaces and give some their basic properties. For any ς > 0 let us

denote by gn,ς the normed Gaussian measure on Cn with respect to the density

(1.24) dgn,ς(z)=
(ς
π

)n
e−ς|z|

2
dµn(z),

where µn is the usual Lebesgue measure on L2(R2n). Observe that dgn,ς is a probability

measure, in effect

gn,ς(Cn)=
∫
Cn

dgn,ς(z)=
(ς
π

)n n∏
j=1

∫ 2π

0

∫ +∞

0
e−ς r2

j r jdr jdθ j = (2ς)n
n∏

j=1

∫ +∞

0
e−ς r2

j r jdr j = 1.

Definition 1.2. The Fock space (also known as the Segal–Bargmann space, see [2, 8, 19,

44]) F 2
ς (Cn) consists of all entire functions that are square integrable on Cn with respect

to the Gaussian measure (1.24).

Let {eα}α∈Zn+ be the system of functions in F 2
ς (Cn) given by the rule

(1.25) eα(z)=
√
ς|α|

α!
zα, α ∈Zn

+.

By the integral formula of the Gamma function one can easily check that
〈
zα, zβ

〉= δα,β.

Since every function f ∈F 2
ς (Cn) has an expansion in Taylor series

f (z)= ∑
α∈Zn+

∂α f (0)
α!

zα, z ∈Cn,

it is easy to see that span
{
eα : α ∈Zn+

}
is a dense subset of F 2

ς (Cn). Thus the system

{eα}α∈Zn+ form an orthonormal basis for F 2
ς (Cn).

Proposition 1.4. The Fock space F 2
ς (Cn) is a closed subspace of L2(Cn,dgn,ς).

For any fixed z ∈ Cn, the evaluation functional ψz( f ) = f (z) is linear and bounded.

Thus, by the Riesz representation theorem there exists a unique element kz,ς ∈F 2
ς (Cn)

such that ψz = 〈·,kz,α〉; that is

f (z)=
∫
Cn

f (w)kz,ς(w)dgn,ς(w).

The function kz,ς is given by the formula

(1.26) kz,ς(w)= eςzw w ∈Cn.
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Since the Fock space F 2
ς (Cn) is a closed subspace of L2(Cn,dgn,ς), there exists the

unique orthogonal projection Pn,ς from L2(Cn,dgn,ς) onto F 2
ς (Cn). This projection is

called the Bargmann projection and has the integral representation

(1.27) (Pn,ς f )(z)=
∫
Cn

f (w)eςwz dgn,ς(w), f ∈ L2(Cn,dgn,ς).

1.3 Toeplitz operators

Next, we introduce the Toeplitz operators acting on either the Bergman spaces or the

Fock spaces and give some their basic properties.

Let H L2(O ) be the closed subspace of L2(O ) consisting of holomorphic functions on

the non-empty open set O ⊆C, with reproducing kernel K and let P : L2(O )→H L2(O )

be the orthogonal projection from L2(O ) onto H L2(O ) given in terms of the reproducing

kernel K as

(P f )(z)=
∫
O

f (w)K(z,w)dmu(w), f ∈ L2(O ).

Now, suppose that φ ∈ L∞(O ), define a linear operator Tφ : H L2(O )−→H L2(O ) by

Tφ f = P(φ f ), f ∈H L2(O ).

This is called the Toeplitz operator, with defining symbol φ, acting on H L2(O ). So, the

Toeplitz operator is one of the form “multiply then project”, that is, multiply by φ and

then project back into the holomorphic subspace. The following proposition summarizes

some the most important properties of Toeplitz operators.

Proposition 1.5. [50, Theorem 2.81] Let α,β ∈C, and f , g ∈ L∞(O ), then
(a) the operator T f is bounded on H L2(O ) and ‖T f ‖ ≤ ‖ f ‖∞,

(b) Tα f+β g =αT f +βTg,
(c) T∗

f = T f .

If φ is an unbounded function, then we can still define the Toeplitz operator Tφ in

the same way, except that Tφ may be undounded.

Example 1.4. (i). If H L2(O ) =A 2
λ

(Π), then the reproducing kernel K is given in (1.3)

and P is the Bergman projection from L2(Π,dνλ) onto A 2
λ

(Π). Thus the Toeplitz operator

Tϕ with defining symbol ϕ ∈ L∞(Π) acting on A 2
λ

(Π) has the integral form

(Tϕ f )(z)= iλ+2
∫
Π

ϕ(w) f (w)
(w− z)λ+2 dνλ(w), z ∈Π.
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(ii). If H L2(O )=F 2
ς (Cn), then the reproducing kernel K is given in (1.26) and P is the

Bargmann projection from L2(Cn,dgn,ς) onto F 2
ς (Cn). Thus, the Toeplitz operator Tφ

with defining symbol φ ∈ L∞(Cn) acting on F 2
ς (Cn) has the following integral form

(Tφ f )(z)=
∫
Cn
φ(w) f (w)eςwzdgn,ς(w), z ∈Cn.

The next theorem shows that there is a one-to-one-correspondence between the

Toeplitz operators and their bounded defining symbols.

Proposition 1.6. Let φ ∈ L∞(O ). Then Tφ is zero if and only if φ≡ 0 almost everywhere
in O .

The corresponding result for Toeplitz operators acting on Bergman spaces over the

unit disk is well known (see for example [50, Theorem 2.8.2]). To extend it to the upper

half-plane case, we introduce the Caley transform

Ψ : Π−→D, w 7→ w− i
w+ i

,

the corresponding unitary operator U : A 2
λ

(D)−→A 2
λ

(Π) given by the rule

ϕ 7→ (ϕ◦Ψ)Ψ′

and observe that U∗TϕU = Tϕ◦Ψ−1 .

On the other hand, the corresponding result (Proposition 1.6) for Toeplitz operators

acting on Fock spaces was proved by Berger and Coburn in [9, Theorem 4]. There are

other classes of functions such that Proposition 1.6 is true. For example, Folland [20,

P. 140] extended Proposition 1.6 for Toeplitz operators Ta acting on Fock space F 2
ς (Cn)

whose defining symbols a belong to the class of unbounded functions which satisfy the

inequality

(1.28) |a(z)| ≤ const eδ|z|
2
, for some δ< 1.

1.4 Berezin transform

The Berezin transform [7, 8, 52] associates smooth functions with operators on Hilbert

spaces of analytic functions. The Berezin transform plays an important role in the

description of properties of bounded operators, particularly for Toeplitz operators.
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Definition 1.3. H L2(O ) be the closed subspace of L2(O ,dµ) consisting of holomorphic

functions on the non-empty open set O ⊆C (or Cn), with reproducing kernel K . Let S be

a bounded linear operator on H L2(O ), the Berezin transform of S is defined by

(1.29) S̃(z)= 〈SKz,Kz〉
〈Kz,Kz〉

, z ∈O .

In particular, the Berezin transform of a function φ ∈ L∞(O ) (denoted by φ̃) is definded

as the Berezin transform of the Toeplitz operator Tφ. Likewise, φ̃= T̃φ.

For each bounded operator, the Berezin transform is a bounded real-analytic function

on a domain of Cn. Indeed, observe that if S ∈B(H L2(O )), then S̃ ∈ L∞(O ), and by the

Cauchy-Schwarz inequality it satisfies the relation

(1.30) ‖S̃‖∞ ≤ ‖S‖.

Example 1.5. The Berezin transform of an operator V ∈ B(A 2
λ (Π)) is the function

Ṽ : Π→C defined by

(1.31) Ṽ (z) := (2Im z)λ+2iλ+2
∫
Π

(V Kz,λ)(w)
(w− z)λ+2 dνλ(w), z ∈Π,

where Kz,λ is the Bergman kernel (1.3). Thus for V = Tϕ with ϕ ∈ L∞(Π) one gets for

every z ∈Π that

ϕ̃(z)= (2Im z)λ+2
∫
Π

ϕ(w)
|z−w|2(λ+2) dνλ(w).

Example 1.6. The Berezin transform of a bounded operator S on the Fock space F 2
ς (Cn)

is the function S̃ : Cn →C defined by

(1.32) S̃(z)= e−ς|z|
2
∫
Cn

(Skz)(w)eςwzdgn,ς(w), z ∈Cn.

Thus, for S = Tφ with φ ∈ L∞(Cn) one has for every z ∈Cn that

φ̃(z)= e−ς|z|
2
∫
Cn
φ(w)eς(zw+zw)dgn,ς(w)=

∫
Cn
φ(w)e−ς(z−w)·(z−w)dµn(w)

=
∫
Cn
φ(w)e−ς|z−w|2 dµn(w).

Proposition 1.7 (injectivity of the Berezin transform). Let H L2(O ) be the closed
subspace of L2(O ,dµ) consisting of holomorphic functions on the non-empty open set
O ⊆Cn, and let S be a bounded operator on H L2(O ). S = 0 if and only if S̃(w)= 0 for all
w ∈O .
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Proof. If S = 0, then S̃(w) = 0 for all w ∈ O trivially. Conversely, suppose that S̃(w) = 0

for all w ∈ O . Define F : O ×O → C by F(z,w) = 〈SKw,Kz〉 , z,w ∈ O . The function F has

an integral representation as

F(z,w)=
∫
O

(SKw)(ζ)Kz(ζ)dµ(ζ)=
∫
O

(SKw)(ζ)Kζ(z)dµ(ζ), z,w ∈O .

From this observe that F is analytic in the first variable, that is, for fixed w ∈ O the

function z 7→ F(z,w) is analytic on O . Furthermore, using that

F(z,w)= 〈
Kz,S∗Kz

〉= 〈S∗Kz,Kw〉,

we see that F is analytic in the second variable. It follows from the fact for an analytic

function g on O the function w 7→ g(w) is analityc on O . On the other hand, F(z, z)= 0 for

all z ∈O , thus by Lemma 1.2 one gets that F(z,w)= 0 on O ×O . Equivalently, (SKw)(z)=
〈SKw,Kz〉 = 0 for all z,w ∈ O , and hence SKw = 0 for w ∈ O . Now, given an arbitrary

f ∈H (O ) and w ∈O we have

(S∗ f )(w)= 〈
S∗ f ,Kw

〉= 〈 f ,SKw〉 = 0.

Thus S∗ = 0, and therefore S = 0. �

1.5 Approximation of uniformly continuous
functions by convolutions

In this section we recall a technique that permits us to approximate bounded uniformly

continuous functions by convolutions with a fixed kernel satisfying Wiener’s condition.

We could not find Proposition 1.9 in the literature, but it is based on well-known ideas and

can be considered as a variation of the Wiener’s Tauberian theorem. The constructions of

this section can be generalized to abelian locally compact groups.

Let f : Rn →C. Recall that the function Ω f : [0,+∞]−→ [0,+∞] defined by

(1.33) Ω f (δ) := sup
{| f (x)− f (y)| : x, y ∈R, d(x, y)≤ δ}

.

is the modulus of continuity of f with respect to the usual metric d on R (or simply

modulus of continuity). Hence, if f : Rn −→C is a bounded function, then f is said to be

uniformly continuous whenever lim
δ→0

Ω f (δ)= 0. The set of all such functions is denoted by

Cb,u(R). In fact, it is well-known that Cb,u(Rn) is a C*-algebra with pointwise operations.
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The convolution of two complex-valued functions on Rn is itself a complex-valued

function on Rn defined by:

(1.34) ( f ∗ g)(x)=
∫
Rn

f (y)g(x− y)d y, x ∈Rn.

It is well known that the convolution of f and g exists if f ∈ L1(Rn) and g ∈ Lp(Rn) where

1≤ p ≤+∞. In this case f ∗ g ∈ Lp(Rn) and

‖ f ∗ g‖p ≤ ‖ f ‖1‖g‖p.

Proposition 1.8. L1(Rn)∗ L∞(Rn)⊂ Cb,u(Rn).

Proof. Let f ∈ L1(Rn) and g ∈ L∞(Rn). Then for h ∈Rn one obtains

|( f ∗ g)(x+h)− ( f ∗ g)(x)| ≤
∫
Rn

| f (x−h− t)− f (x− t)| |g(t)|dt

≤ ‖g‖∞
∫
Rn

| f (x−h− t)− f (x− t)| dt

y=x−t= ‖g‖∞
∫
Rn

| f (y−h)− f (y)| d y

= ‖g‖∞‖Lh f − f ‖1, x ∈Rn.

Here τh denotes the translation operator by h,(see (A.18)) . Thus, since for each f ∈ L1(Rn)

the mapping h 7→ τh f from Rn into L1(Rn) is uniformly continuous (Corollary A.1), we

have that f ∗ g belongs to Cb,u(Rn). �

In Proposition 1.8 we can change by an equality. i.e., L1(Rn)∗ L∞(Rn)= Cb,u(Rn) (see

[33, p. 283, 32-45]). Therefore, any function in {k∗ f : f ∈ L∞(Rn)} belongs to Cb,u(Rn).

Proposition 1.9. If k ∈ L1(Rn) and k̂(t) 6= 0 for each t ∈Rn, then {k∗ f : f ∈ L∞(Rn)} is a
dense subset of Cb,u(Rn).

Proof. By Proposition 1.8 every function in {k∗ f : f ∈ L∞(R)} belongs to Cb,u(R). Next,

the density is proved by means of Wiener’s Division Lemma and Lemma A.1 as follows:

Let (hn)n∈N be a Dirac sequence such that the functions ĥn have compact supports. For

example, (hn)n∈N can be defined by (A.22). Since k̂(t) 6= 0 for each t ∈ R, by Wiener’s

Division Lemma (Theorem A.4 ) for every n ∈N there exists qn ∈ L1(R) such that hn =
k∗ qn. Now, given ψ ∈ Cb,u(R), we construct a sequence (wn)n∈N by the rule wn = qn ∗ψ.

Then wn ∈ L∞ and the sequence (k∗wn)n∈N takes values in the set {k∗ f : f ∈ L∞(R)}.

Finally, applying the identities

k∗wn = k∗ qn ∗ψ= hn ∗ψ

and Lemma A.1, we conclude that this sequence converges uniformly to ψ. �
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1.6 Symplectic spaces and Lagrangian planes

This section contains a brief summary of basic concepts of the theory of the symplectic

group and related topics.

Definition 1.4 (symplectic group). A real 2n×2n matrix B is said to be symplectic if

it satisfies the conditions:

(1.35) BT JB = BJBT = J,

where J is the “ standard symplectic matrix” given by

(1.36) J =
(

0 In

−In 0

)
.

Here 0 and In are the n×n zero and identity matrices. The set of all symplectic matrices

is denoted by Sp(2n,R).

A symplectic matrix is invertible and has determinant 1. In fact, if B ∈ Sp(2n,R) ,

then B−1 ∈Sp(2n,R). It is well-known that Sp(2n,R) form a group, and is called the (real)
symplectic group.

Recall that a skew-symmetric bilinear form ω is a bilinear form such that

ω(z,w)=−ω(w, z)

for all z,w ∈R2n. Notice that if ω is a skew-symmetric bilinear form, then all vectors z
are isotropic. i.e., for every z ∈R2n one gets that

ω(z, z)= 0.

Definition 1.5. A bilinear form on R2n is called a symplectic form if it is a non-degenerate

skew-symmetric bilinear form.

The special skew-symmetric bilinear form ω0 on R2n defined by

(1.37) ω0(z,w)= y · x′− y′ · x,

for z = (x, y) and w = (x′, y′) is symplectic; it is called the standard symplectic form of R2n.

The standard symplectic form ω0 can be re-written in a convenient way using the

symplectic standard matrix J given in (1.36):

(1.38) ω0(z,w)= Jz ·w, z,w ∈R2n.
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Let ψ : R2n →R2n be a linear mapping. The condition

ω0(ψ(z),ψ(w))=ω0(z,w),

is equivalent to BT JB = J, where B is the matrix of ψ in the canonical basis of R2n, that

is, B ∈Sp(2n,R). We can thus redefine the symplectic group by saying that it is the group

of all linear automorphism of R2n which preserve the standard symplectic form ω0.

Definition 1.6 (Lagrangian plane). A n-dimensional linear subspace L of R2n is

said to be a Lagrangian plane of the symplectic space (R2n,ω0) if ω0(z,w)= 0, for every

z,w ∈L . The set of all Lagrangian planes in (R2n,ω0) is denoted by Lag(2n,R).

Example 1.7. The simplest examples of Lagrangian planes of (R2n,ω0) are both coordi-

nates planes: Lx =Rn × {0} and Ly = {0}×Rn, and so is the diagonal ∆= {(x, x) : x ∈Rn}.

Let M (n,C) be the algebra of complex matrices of dimension n. Denote by U(n,C) the

unitary subgroup of M (n,C) consisting of all complex matrices U of n×n such that

U∗U =UU∗ = In,

where U∗ =U
T

. Define the mapping ι : M (n,C)→M (n,C) by the rule

(1.39) ι(C)=
(

A −B
B A

)
,

where the matrix C ∈M (n,C) is the form C = A+ iB with A and B real matrices. It is

easy to see from the definition of ι that it is an injective mapping.

Lemma 1.4. The mapping ι given in (1.39) satisfies the following properties:

• For every U ,V ,∈M (n,C) and α,β ∈C the mapping ι is lineal. That is, ι(αU +βV )=
αι(U)+βι(V ).

• For every U ,V ,∈M (n,C) the mapping ι is multiplicative. That is, ι(UV )= ι(U)ι(V ).

• For every U ∈M (n,C) one gets that ι(U∗)= ι(U)T .

Define the set U(2n,R) of real matrices n×n by the rule

U(2n,R)= ι (U(n,C)) .(1.40)

U(2n,R) is called symplectic rotations of (R2n,ω0).
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Recall that if C = A+ iB ∈U(n,C), then CC∗ = In. Equivalently

In = (A+ iB)(AT − iBT)= AAT +BBT + i(BAT − ABT).

That is, AAT +BBT = In and BAT = ABT . Thus by (1.39) one can see the symplectic

rotations U(2n,R) as:

(1.41) U(2n,R)=
{(

A −B
B A

)
: AAT +BBT = In and ABT = BAT , A,B ∈M (n,R)

}

Proposition 1.10.
U(2n,R)=Sp(2n,R)∩O(2n,R).

Proof. Let U ∈ U(2n,R). Then by (1.41) there are A,B ∈ M (n,R) with AAT +BBT = In

and ABT = BAT such that

U =
(

A −B
B A

)
.

Therefore

UUT =
(

A −B
B A

)(
AT BT

−BT AT

)
=

(
AAT +BBT ABT −BAT

BAT − ABT AAT +BBT

)
=

(
In 0

0 In

)
= I2n.

Analogously, UTU = I2n. This implies that U ∈O(2n,R). On the other hand,

U JUT =
(

B A
−A B

)(
AT BT

−BT AT

)
=

(
BAT − ABT AAT +BBT

−(AAT +BBT) BAT − ABT

)
= J.

In the same way is showed that UT JU = J. Thus U ∈Sp(2n,R) and hence

U(2n,R)⊂Sp(2n,R)∩O(2n,R).

Now, if V ∈Sp(2n,R)∩O(2n,R), then V JV T = J and VV T =V TV = I2n. We thus get that

V J = JV , from this equality it is easy to see that the matrix V belongs to U(2n,R). �

By (1.35) and Proposition 1.10 a 2n×2n matrix B belongs to U(2n,R) if it commutes

with the standard symplectic matrix J, that is:

(1.42) BJ = JB.

Proposition 1.11 ([14, Section 4.3]). The group of symplectic rotations U(2n,R) acts
transitively on Lag(2n,R). That is, for every pair (L ,L ′) ∈Lag(2n,R)×Lag(2n,R), there
exists B ∈U(2n,R) such that L = BL ′.
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C*-ALGEBRA OF ANGULAR TOEPLITZ OPERATORS

ON WEIGHTED BERMAN SPACES OVER THE UPPER

HALF–PLANE

In this chapter we show that the uniform closure of the set of all Toeplitz operators

acting on the weighted Bergman space over the upper half-plane whose L∞-symbols are

angular coincides with the C*-algebra generated by the above Toeplitz operators and is

isometrically isomorphic to the C*-algebra VSO(R) of bounded functions that are very

slowly oscillating on the real line in the sense that they are uniformly continuous with

respect to the arcsinh-metric ρ(x, y)= |arcsinhx−arcsinhy| on the real line.

2.1 Angular Toeplitz operators

In this section we characterize the angular Toeplitz operators acting on weighted

Bergman spaces. The characterization is based on the notion of angular operator. So, we

will first introduce the angular operators and study their basic properties, including a

simple criterion for an operator to be angular.

Let B(A 2
λ (Π)) be the algebra of all linear bounded operators acting on the Bergman

space A 2
λ

(Π). Given h ∈R+, let Dλ,h ∈B(A 2
λ (Π)) be the dilation operator defined by

(2.1) Dλ,h f (z)= h
λ+2

2 f (hz).

Next, we introduce the angular operators acting on the Bargman space A 2
λ

(Π).

27



CHAPTER 2. C*-ALGEBRA OF ANGULAR TOEPLITZ OPERATORS ON WEIGHTED
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Definition 2.1 (angular operators). An operator V ∈B(A 2
λ (Π)) is said to be angular

or invariant under dilations if it commutes with all dilation operators. That is, for every

h ∈R+

(2.2) V Dλ,h = Dλ,hV .

We denote by Aλ the set of all angular operators:

(2.3) Aλ := {
V ∈B(A 2

λ (Π)) : ∀h ∈R+ Dλ,hV =V Dλ,h
}
.

Proposition 2.1. Aλ is a C*-subalgebra of B(A 2
λ (Π)).

Proof. Let S,V ∈ Aλ and h > 0. Then (S +V )Dλ,h = SDλ,h +V Dλ,h = Dλ,hS +Dλ,hV =
Dλ,h(S +V ), we thus have that S +V ∈ Aλ. On the other hand, TSDλ,h = TDλ,hS =
Dλ,hTS, hence TS ∈Aλ, this implies that Aλ is a subalgebra of B(A 2

λ (Π)). The mapping

V 7→V∗, where V∗ is the adjoint operator of V , defines an involution on Aλ, furthermore,

for each V ∈Aλ one has that

V∗Dλ,h =
(
D−1
λ,hV

)∗ = (
Dλ,h−1V

)∗ = (
V Dλ,h−1

)∗ = Dλ,hV∗.

Thus A∗
λ
=Aλ. Now, given V ∈Aλ, there exists (Vn)n∈N ⊂Aλ such that Vn

n→∞−−−−→ V , but

since Dλ,hVn = VnDλ,h and Dλ,h is a unitary operator, we get that Dλ,hVn = VnDλ,h

converges to Dλ,hV . Therefore, by uniqueness of the limit we conclude Dλ,hS = V Dλ,h.

That is V ∈Aλ. �

The following theorem gives a criterion for an operator to be angular and is analo-

gous to the Zorboska’s result [52] for radial operators and Herrera Yañez, Maximenko,

Vasilevski [31] for vertical operators.

Theorem 2.1 (criterion of angular operators).
Let V ∈B(A 2

λ (Π)), h ∈R+ and MEh be the multiplication operator by the function Eh(x)=
hix. The following conditions are equivalent:

(i) V ∈Aλ,
(ii) R

λ
V R∗

λ
MEh

= MEh
R
λ
V R∗

λ
for all h ∈R+,

(iii) there exists φ ∈ L∞(R) such that V = R∗
λ

MφR∗
λ
,

(iv) the Berezin transform Ṽ depends on arg z only.

Proof. (i)−→ (ii) Let V ∈Aλ, by (1.21) one gets that:

RλV R∗
λMEh

= RλV Dλ,hR∗
λ = RλDλ,hV R∗

λ = MEh
RλV R∗

λ, h > 0.
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(ii)−→ (iii) Observe that for every η ∈ R we have Eeη(x) =Θη(x) = eixη. Therefore, by

(ii) one gets that

RλV R∗
λMΘη

= RλV R∗
λMEeη

= MEeη
RλV R∗

λ = MΘη
RλV R∗

λ.

Thus, by Proposition A.4, there exists φ ∈ L∞(R) such that R
λ
V R∗

λ
= Mφ.

(iii)−→ (iv). By (1.20) we have for every point w = ρ eiβ,

(RλKw,λ)(x)= e
(
i
(
λ+2

2

)
−x

)
β

ρ

(
λ+2

2

)
+ix √

2λ+1(λ+1)cλ(x)
, x ∈R.

Therefore, if the operator V is diagonalized by Rλ, like in (iii), then its Berezin transform

may be written in terms of φ and depends only on the angle β of w:

Ṽ (w)= 1
Kw,λ(w)

∫
R
φ(x) |RλKw,λ(x)|2 dx = 2sinλ+2β

λ+1

∫
R

φ(x) e−2xβ

cλ(x)
dx.

(iv)−→ (i) Given z,w ∈Π, and h ∈R+, by (1.3) and (2.1)

(Dλ,hKw,λ)(z)= h
λ+2

2 Kw,λ(hz)= iλ+2h
λ+2

2 (w−hz)−(λ+2) = iλ+2

h
λ+2

2

(
w
h
− z

)−(λ+2)
= h−

(
λ+2

2

)
K w

h ,λ(z).

Using this formula we calculate the Berezin transform of the operator Dh−1,λV Dh,λ:

ãDλ,h−1V Dλ,h(w)= 〈V Dλ,hKw,λ,Dλ,hKw,λ〉
〈Dλ,hKw,λ,Dλ,hKw,λ〉

=
〈V K w

h ,λ,K w
h ,λ〉

〈K w
h ,λ,K w

h ,λ〉
= Ṽ

(w
h

)
= Ṽ (w).

Since the Berezin transform is injective (Proposition 1.7), we have Dλ,h−1V Dλ,h =V . �

Definition 2.2 (angular functions). A function g ∈ L∞(Π) is said to be a homogeneous
of order zero or angular if for every h > 0 the equality g(hz)= g(z) holds for a.e. z ∈Π.

To describe Toeplitz operators with angular symbols we need a simple criterion of

angular functions.

The following lemma gives a criterion for a function on R to be almost everywhere

constant. We use there the Lebesgue measure, which is denoted by µR to indicate on R

and µR2 to indicate on R2. The proof can be found in [31, Section 3, Lemma 3.2].

Lemma 2.1. Let f : R→C be a measurable function. Then the following conditions are
equivalent:

(i) There exists a constant c ∈C such that f (x)= c for almost all x ∈R.
(ii) µR2(D)= 0; where D := {

(x, y) ∈R2 : f (x) 6= f (y)
}
.

(iii) µR(Dx)= 0 for almost all x ∈R; where Dx := {y ∈R : f (x) 6= f (y)}.
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Lemma 2.2 (criterion for a function to be angular). Let g ∈ L∞(Π). Then the
following two conditions are equivalent:
(i) for every h ∈R+, the equality g(hz)= g(z) holds for a.e. z in Π,

(ii) there exists a in L∞(0,π) such that g(z)= a(arg z) for a.e. z in Π.

Proof. (i)→ (ii) Suppose that for all h ∈R+ the equality g(z)= g(hz) holds for a. e. z ∈Π,

that is,

(2.4) µΠ (∆h)= 0, where ∆h =
{
(x,θ) ∈R+× (0,π) : g(xeiθ) 6= g(hxeiθ)

}
.

Define Φ :R2+× (0,π)→C by

Φ (x, y,θ)=
0, if g(xeiθ)= g(yeiθ);

1, if g(xeiθ) 6= g(yeiθ),

and note that for all h ∈R+

(2.5) {(x,θ) ∈Π :Φ (x,hx,θ) 6= 0}=
{
(x,θ) ∈R+× (0,π) : g(xeiθ) 6= g(hxeiθ)

}
=∆h.

Accordingly, by (2.4) for all h ∈ R+ we get Φ(x,hx,θ) = 0 a. e. (x,θ) ∈Π, and by Tonelli’s

theorem ∫
R2+×(0,π)

Φ(x, y,θ)xydθdx dy
y=hx=

∫
R2+×(0,π)

Φ(x,hx,θ)x3hdθdx dh

=
∫
R+

h
(∫
Π
Φ(x,hx,θ)x2dµΠ(x,θ)

)
dh = 0.

Therefore, for almost θ ∈ (0,π)

0=µR2+

({
(x, y) ∈R2

+ : g(xeiθ) 6= g(yeiθ)
})

=
∫
R2+
Φ(x, y,θ)xydx dy

=
∫
R2
Φ(et, eu,θ)e2te2u dt du.

It follows that

0=µR2
({

(t,u) ∈R2 : Φ(et, eu,θ) 6= 0
})=µR2

({
(t,u) ∈R2 : g ◦exp(t+ iθ) 6= g ◦exp(u+ iθ)

})
a. e. θ ∈ (0,π). Now, by Lemma 2.1 there exists a constant c(θ) such that g◦exp(t+iθ)= c(θ)

for almost t ∈R, for this reason the bounded function a : (0,π)→C given by

a(θ)=
c(θ), if µR2

(
{(t,u) ∈R2 : g ◦exp(t+ iθ) 6= g ◦exp(u+ iθ)}

)= 0;

0, otherwise,
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satisfies the equality g(z)= a(arg z) for almost all z ∈Π.

Conversely, let g ∈ L∞(Π), if there exists a ∈ L∞(0,π) such that g(z) = a(arg z) for

almost every z ∈ Π, then for all h ∈ R+ we get g(hz) = a(arg(hz)) = a(arg z) = g(z) for

almost all z ∈Π. �

Denote by A∞ the C*-algebra generated by all L∞-functions which are angular on

Π, and introduce the set Tλ(A∞) of all Toeplitz operators acting on A 2
λ

(Π) with defining

symbol in A∞.

Proposition 2.2. [50, Theorem 10.4.16] Given g ∈A∞, with g(z)= a(arg z), the Toeplitz
operator Ta acting on A 2

λ
(Π) is unitarily equivalent to the multiplication operator γa,λId=

R
λ
TaR∗

λ
acting on L2(R). The function γa,λ(x) is

(2.6) γa,λ(x)= 1
cλ(x)

∫ π

0
a(θ) e−2xθ sinλθdθ, x ∈R,

and the operators R∗
λ

and R
λ

are given by (1.17) and (1.18), respectively.

Example 2.1. For λ= 0 and a(θ)= e2iθ we get that

γa(x)= 2x
1− e−2xπ

∫ π

0
ei2θe−2xθ dθ = 2x

1− e−2xπ
e2θ(i−x)

2(i− x)

∣∣∣∣π
0
= x

i− x
= x

1+ x2 + i
x2

1+ x2 , x ∈R.

Therefore, γcos(2·),0(x)=Re(γa,0(x))= x
1+x2 , and γsin(2·),0(x)= Im(γa,0(x))= x2

1+x2 . In particu-

lar, ‖γa‖∞ ≤ 1.

The following result provides a criterion for a Toeplitz operator to be angular.

Proposition 2.3. Let g ∈ L∞(Π). The Toeplitz operator Tg is angular if and only if g is
angular.

Proof. If Tg is angular, then for every h > 0 one gets that

Tg = Dλ,hTgDλ,h−1 = Tgh , where gh(z)= g(hz) .

Thus, by Proposition 1.6 we obtain that g(z)= gh(z)= g(hz) almost every z ∈Π. Therefore

g is an angular function by Lemma 2.2.

Conversely, if g is an angular function on Π, then by Lemma 2.2 there is a ∈ L∞(0,π)

such that g(z)= a(arg z) a. e. z ∈Π. Hence by Theorem 2.2 and the criterion of angular

operators (Theorem 2.1) we conclude that the Toeplitz operator Tg is angular. �

Denote by Γλ the set of all “ spectral functions"

(2.7) Γλ =
{
γa,λ : a ∈ L∞(0,π)

}
.

31



CHAPTER 2. C*-ALGEBRA OF ANGULAR TOEPLITZ OPERATORS ON WEIGHTED
BERMAN SPACES OVER THE UPPER HALF–PLANE

Corollary 2.1. The C*-algebra Tλ(A∞) generated by all Toeplitz operators Ta with sym-
bols a ∈A∞ is commutative and is isometrically isomorphic to the C*-algebra generated
by Γλ.

2.2 Very slowly oscillating property of the spectral
functions

In this section we start with the definition of the class VSO(R), we also introduce a

metric ζλ on R which is the most “natural” metric for the functions γa,λ(Proposition 2.5 )

and which is given by formulas (2.10) and (2.11). Unfortunately we could not find any

simple and manageable expression for this metric. Thus, we need to find another metric

which, first, is equivalent to the above one, and, second, admits as simple as possible

expression, preferably in elementary functions. This is the way how the arcsinh metric

appeared. It is uniformly equivalent to the first metric, i.e. they induce the same uniform

structure. In Proposition 2.6 we prove the upper estimate only, as the proof of the lower

estimate is more complicated (and the lower estimate holds only for small values of the

metrics). In consequence, for every a ∈ L∞(0,π) the corresponding spectral functions

γa,λ is Lipschitz continuous with respect to the arcsinh metric ρ, where γa,λ is given in

(2.6). We finish this chapter showing that the set of all spectral functions Γλ is dense in

VSO(R). As was mentioned in the introduction the key idea of the proof is to approximate

functions from VSO(R) by γv
a,λ near +∞ and −∞. After that, the problem is reduced to

the approximation of C0(R) functions by appropriate γa,λ; the latter problem is solved

using the duality and the analyticity arguments (Theorem 2.3).

Very slowly oscillating functions on the real line

Definition 2.3. Let f : R→C. The function Ωρ, f : [0,+∞]−→ [0,+∞] defined by

(2.8) Ωρ, f (δ) := sup
{| f (x)− f (y)| : x, y ∈R, ρ(x, y)≤ δ}

.

is called the modulus of continuity of f with respect to the arcsinh-metric ρ, see (5).

Definition 2.4 (very slowly oscillating functions). Let f : R −→ C be a bounded

function. We say that f is very slowly oscillating if it is uniformly continuous with respect

to ρ, i.e. if lim
δ→0

Ωρ, f (δ)= 0.
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In other words, f is very slowly oscillating if and only if the composition f ◦sinh is

uniformly continuous with respect the standard Euclidean metric on R. The set of all

such functions is denoted by VSO(R).

Example 2.2.
The function sin(arcsinh) belongs to VSO(R).

In fact, since the Sine function is Lipschitz con-

tinuous with respect to the usual Euclidean

metric on R, we have for every x, y ∈R that

|sin(arcsinhx)−sin(arcsinhy)| ≤ ρ(x, y).

Also, by the same argument applied above, it

is easy to see that the function cos(arcsinh)

belongs to VSO(R).
Figure 2.1: The graph shows the slow oscillation

of the function sin(arcsinh)

Proposition 2.4. VSO(R) is a closed C*-subalgebra of Cb,u(R) with pointwise operations.

Proof. Using the following elementary properties of the modulus of continuity one can

see that VSO(R) is closed with respect to the pointwise operations:

Ωρ, f+g ≤Ωρ, f +Ωρ,g, Ωρ,λ f = |λ|Ωρ, f ,

Ωρ, f g ≤ ‖g‖∞Ωρ, f +‖ f ‖∞Ωρ,g, Ω
ρ, f =Ωρ, f ,

The inequality Ωρ, f (δ)≤ 2‖ f − g‖∞+Ωρ,g(δ) and the usual “ ε3 -argument” show that the

space VSO(R) is topologically closed in Cb,u(R). �

VSO–property of the spectral functions

It is useful to write the spectral functions γa,λ given in (2.6) as the values of the integral

operator

γa,λ(x)=
∫ π

0
a(θ)Kλ(x,θ)dθ,

where

(2.9) Kλ(x,θ)= e−2xθ sinλθ
cλ(x)

, (x,θ) ∈R× (0,π).

33



CHAPTER 2. C*-ALGEBRA OF ANGULAR TOEPLITZ OPERATORS ON WEIGHTED
BERMAN SPACES OVER THE UPPER HALF–PLANE

Proposition 2.5. Let ζλ : R×R→ [0,+∞) be given by

(2.10) ζλ(x, y)= sup
a∈L∞(0,π)
‖a‖∞=1

|γa,λ(x)−γa,λ(y)|.

Then for every x, y ∈R

(2.11) ζλ(x, y)=
∫ π

0
|Kλ(x,θ)−Kλ(y,θ)| dθ.

Proof. Let x, y ∈R. Then for every a ∈ L∞(0,π) such that ‖a‖∞ = 1 we have

∣∣γa,λ(x)−γa,λ(y)
∣∣= ∣∣∣∣∫ π

0
a(θ) [Kλ(x,θ)−Kλ(y,θ)]dθ

∣∣∣∣≤ ∫ π

0
|Kλ(x,θ)−Kλ(y,θ)|dθ.

On the other hand, taking b0(θ)= sign(Kλ(x,θ)−Kλ(y,θ)) we get that b0 ∈ L∞(0,π) with

‖b0‖∞ = 1 and

ζλ(x, y)≥ ∣∣γb0(x)−γb0(y)
∣∣= ∫ π

0
|Kλ(x,θ)−Kλ(y,θ)|dθ. �

Let us mention some symmetry properties of Kλ and ζλ.

Lemma 2.3. For every x ∈R and every θ ∈ (0,π),

(2.12) Kλ(−x,θ)= Kλ(x,π−θ).

Proof. First we make the change of variables η=π−θ in the integral (1.9) defining cλ:

(2.13) cλ(−x)=
∫ π

0
e2xθ sinλθdθ = e2πx

∫ π

0
e−2xη sinλ(π−η)dη= e2πxcλ(x).

Hence, given x ∈R by (2.13) one gets for every θ ∈ (0,π) that

Kλ(−x,θ)= e2xθ sinλθ
e2xπ cλ(x)

= e−2x(π−θ) sinλθ
cλ(x)

= e−2x(π−θ) sinλ(π−θ)
cλ(x)

= Kλ(x,π−θ). �

Lemma 2.4. (i) ζλ(x, y)= ζλ(−x,−y) for every x, y ∈R.
(ii) If x ≤ 0≤ y, then ζλ(x, y)≤ ζλ(x,0)+ζλ(0, y).

Proof. (i) Given x, y ∈R by Lemma 2.3, we have

ζλ(−x,−y)=
∫ π

0
|Kλ(−x,θ)−Kλ(−y,θ)|dθ =

∫ π

0
|Kλ(x,π−θ)−Kλ(y,π−θ)|dθ

β=π−θ= ζλ(x, y).

(ii) follows from the Triangle Inequality. �
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Lemma 2.5. Let a0(θ)= θ. The function κ : [0,+∞)→ (0,∞), given by the formula

(2.14) κ(x)= 2γa0,λ(x)
√

x2 +1 ,

is continuous and bounded.

Proof. The function κ, being the product of two continuous functions, is obviously contin-

uous. In [50] it is proved that γa,λ(−x)+γa,λ(x)=π for every a ∈ L∞(0,π) and every x ∈R.

In particular, γa0,λ(0)=π/2 and thus κ(0)=π. Since

κ(x)=− c′
λ
(x)

p
x2 +1

cλ(x)
, x ∈R,

the asymptotical behavior of κ(x) as x →+∞ follows from Lemma 1.2. By (1.12) with

p = 0 and p = 1 we obtain:

cλ(x)∼ Γ(λ+1)
(2x)λ+1 , c′λ(x)∼−2Γ(λ+2)

(2x)λ+2 , as x →+∞.

Thus,

lim
x→+∞κ(x)= lim

x→+∞
2Γ(λ+2)(2x)λ+1

p
x2 +1

Γ(λ+1)(2x)λ+2 =λ+1,

and κ is bounded. �

Lemma 2.6. If a0(θ)= θ, then

(2.15)
∫ π

0

∣∣∣∣∂Kλ(x,θ)
∂x

∣∣∣∣ dθ ≤ 4γa0,λ(x), x ∈R.

Proof. By (1.11) and (2.9) we have that

∂Kλ(x,θ)
∂x

=− e−2xθ sinλθ
c2
λ
(x)

[
2 cλ(x)θ+ c′λ(x)

]=−Kλ(x,θ)

[
2θ− 2

∫ π
0 β e−2xβ sinλβdβ

cλ(x)

]
= 2Kλ(x,θ)

[
γa0,λ(x)−θ]

.

Therefore ∫ π

0

∣∣∣∣∂Kλ(x,θ)
∂x

∣∣∣∣ dθ ≤ 2
(
γa0,λ(x)

∫ π

0
Kλ(x,θ)dθ+

∫ π

0
θKλ(x,θ)dθ

)
= 2

(
γa0,λ(x)+γa0,λ(x)

)= 4γa0,λ(x). �

Proposition 2.6. There exists C > 0 such that ζλ(x, y)≤ Cρ(x, y) for every x, y ∈R.
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Proof. Due to Lemma 2.4, we only have to consider the case y > x ≥ 0. By Cauchy’s

Mean-Value Theorem there exists c ∈ (x, y) such that

ζλ(x, y)
ρ(x, y)

=
∫ π

0

∣∣∣∣ Kλ(x,θ)−Kλ(y,θ)
arcsinh(y)−arcsinh(x)

∣∣∣∣dθ ≤ 4γa0,λ(c)
√

c2 +1 ,

and the result yields by Lemma 2.5. �

Theorem 2.2. Γλ(VSO(R).

Proof. Let a ∈ L∞(0,π). The inequality ‖γa,λ‖∞ ≤ ‖a‖∞ shows that the function γa,λ is

bounded, and Proposition 2.6 implies that γa,λ is Lipschitz continuous with respect to ρ:

|γa,λ(x)−γa,λ(y)| ≤ ‖a‖∞ζλ(x, y)≤ C‖a‖∞ρ(x, y), x, y ∈R.

Observe that the function η(x) = x1/3

x2+1 is uniformly continuous, but not Lipschitz on R.

Consequently, the composition η ◦ arcsinh belongs to VSO(R), but it is not Lipschitz

continuous with respect to ρ and therefore does not belong to Γλ. �

2.3 Density of Γλ in VSO(R)

In this section we show the uniform density of the set of all spectral functions Γλ in

VSO(R). That is, we will prove that the closure of Γλ in the topology genereted by the

uniform metric d( f , g)= ‖ f − g‖∞ coincides with VSO(R). To do that, we need the main

result of the paper [30] and some technical lemmas.

Note that given x, y> 0, by Cauchy’s mean value theorem the arcsinh-metric ρ given

by (5) satisfies the inequality

(2.16) ρ(x, y)≤ |ln(x)− ln(y)| .

Therefore, if f ∈ VSO(R), then f |R+ ∈VSO(R+), where the class of functions VSO(R+) was

defined in [31] and mentioned in Introduction. Furthermore, Herrera Yañez, Hutník,

and Maximenko [30] have shown that for every σ ∈ VSO(R+) and ε > 0 there exists

b ∈ L∞(R+) such that

sup
x∈R+

∣∣∣σ(x)−γv
b,λ(x)

∣∣∣< ε,
where

(2.17) γv
b,λ(x)= (2x)λ+1

Γ(λ+1)

∫ ∞

0
b(t)e−2xttλdt, x ∈R+.

The above considerations lead to the following lemma.
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Lemma 2.7. Let f ∈ VSO(R). Given ε> 0 there exists b ∈ L∞(R+) such that

(2.18) sup
x∈R+

∣∣∣ f (x)−γv
b,λ(x)

∣∣∣< ε.
Lemma 2.8 (approximation of γ by γv at +∞). If b ∈ L∞(R+) and a = χ(0,π/2)b, then

(2.19) lim
x→+∞

∣∣∣γv
b,λ(x)−γa,λ(x)

∣∣∣= 0.

Proof. Given x ≥ 0, we get

∣∣∣γv
b,λ(x)−γa,λ(x)

∣∣∣≤ ‖b‖∞
∫ ∞

0

∣∣∣∣χ(0,π/2)Kλ(x,θ)− (2x)λ+1θλ e−2xθ

Γ(λ+1)

∣∣∣∣dθ

≤ ‖b‖∞ (I1(x)+ I2(x)) ,

where

I1(x)=
∫ π/2

0

∣∣∣∣∣Kλ(x,θ)− (2x)λ+1 e−2xθ sinλθ
Γ(λ+1)

∣∣∣∣∣dθ,

I2(x)= (2x)λ+1

Γ(λ+1)

∫ ∞

0
e−2xθ

∣∣∣θλ−χ(0,π/2) sinλθ
∣∣∣dθ.

By (2.9) we have

I1(x)≤
∫ π

0

∣∣∣∣∣ e−2xθ sinλθ
cλ(x)

− (2x)λ+1 e−2xθ sinλθ
Γ(λ+1)

∣∣∣∣∣dθ =
∣∣∣∣1− (2x)λ+1cλ(x)

Γ(λ+1)

∣∣∣∣ ,

where cλ is given in (1.9). By (1.12) with p = 0, we obtain limx→+∞ I1(x)= 0.

On the other hand, the integral I2 can be written as

I2(x)= (2x)λ+1

Γ(λ+1)

(∫ π/2

0
e−2xθθλ

∣∣∣∣∣
(
sinθ
θ

)λ
−1

∣∣∣∣∣dθ

)
+ Γ(λ+1, xπ)

Γ(λ+1)
,

where Γ(α, x) is the incomplete Gamma function. We see for every θ ∈ (0,π/2) that the

function ∣∣∣∣∣
(
sinθ
θ

)λ
−1

∣∣∣∣∣=


( sinθ
θ

)λ−1 if λ≥ 0;

1− ( sinθ
θ

)λ
if −1<λ≤ 0

is infinitely smooth near 0 and vanishes in 0. Then by Watson’s Lemma (Proposition A.1)

and by definition of Γ(α, x) we get lim
x→+∞I2(x)= 0, which yields (2.19). �
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The above lemmas permit us to show that each σ ∈VSO(R) can be approximated by

functions from the class Γλ for large values of |x|.

Proposition 2.7. Let σ ∈ VSO(R) and ε > 0. Then there exist a generating symbol a ∈
L∞(0,π) and a number L > 0 such that

(2.20) sup
|x|≥L

∣∣σ(x)−γa,λ(x)
∣∣≤ ε.

Proof. Given σ ∈ VSO(R) and ε > 0 there exist b ∈ L∞(R+) such that (2.18) holds. By

Lemma 2.8 there exist c ∈ L∞(0,π) with c(θ)= 0 for each θ ∈ [π/2,π), and L1 > 0 such that

(2.21) sup
x≥L1

∣∣σ(x)−γc,λ(x)
∣∣≤ sup

x≥L1

(∣∣∣σ(x)−γv
b,λ(x)

∣∣∣+ ∣∣∣γv
b,λ(x)−γc,λ(x)

∣∣∣)≤ ε.
For large negative values of x, we consider the function x 7→σ(−x) that also belongs to

VSO(R). Applying the previous arguments to this function we find a function g ∈ L∞(0,π)

and a number L2 > 0 such that g vanishes in [π/2,π) and

(2.22) sup
x≥L2

|σ(−x)−γg,λ(x)| ≤ ε.

Now define d ∈ L∞(0,π) by d(θ)= g(π−θ). Then d vanishes on (0,π/2], and the identity

γd,λ(x)= γg,λ(−x) holds. Hence (2.22) can be rewritten as

(2.23) sup
x≤−L2

|σ(x)−γd,λ(x)| ≤ ε.

Since c vanishes near π and d vanishes near 0, the corresponding spectral functions

fulfill the limit relations γc,λ(−∞)= 0 and γd,λ(+∞)= 0 (see [50, Chapter 14]), and there

are constants L3,L4 > 0 such that

sup
x≤−L3

|γc,λ(x)| ≤ ε

2
, sup

x≥L4

|γd,λ(x)| ≤ ε

2
.

Taking a = d+ c ∈ L∞(0,π) and L =max{L1,L2,L3,L4}, we get (2.19). �

Now we are going to show that the continuous functions on R vanishing at the infinity

can be approximated by spectral functions. To do that, we need some technical lemmas.

Lemma 2.9. Let (X ,A ) be a measurable space, µ : A → C be a complex measure, D be
a domain in C and K : D × X → C be a function such that for every ω ∈ X the function
z 7→ K(z,ω) is analytic, and for every compact C in D

(2.24) sup
z∈C

∫
X
|K(z,ω)|d|µ|(ω)<+∞.
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Then the function g : D →C,

g(z)=
∫

X
K(z,ω)dµ(ω),

is analytic on D.

Proof. Since the function z 7→ K(z,w) is analytic, we get for any triangle ∆ in D that

(2.25)
∫
∂∆

K(z,w)dz = 0, w ∈ X .

Now, by (2.24) we can interchange the integrals by Fubini’s theorem, thus∫
∂∆

g(z)dz =
∫
∂∆

∫
X

K(z,w)dµ(w)dz =
∫

X

∫
∂∆

K(z,w)dzdµ(w)= 0.

Therefore by Morera’s theorem g is an analytic function on D. �

From now on, we write Kλ as

Kλ(x,θ)=zλ(x,θ)sinλθ,

with

(2.26) zλ(x,θ)= e−2xθ

cλ(x)
, (x,θ) ∈R× (0,π).

Lemma 2.10. Let p ∈ Z+, and let ν be a finite regular Borel complex measure on R. If
δ ∈ (0,π/2), then

(2.27) sup
δ≤α≤π−δ

∫
R

∣∣xpzλ(x,α)
∣∣d|ν|(x)<+∞.

Proof. By (1.12) the function zλ :R× (0,π)→ (0,+∞) given in (2.26) has an asymptotic

behavior

(2.28) zλ(x,θ)∼ (2x)λ+1e−2xθ

Γ(λ+1)
, as x →+∞.

Hence, given p ∈ {0,1,2, . . . , }, α ∈ [δ,π−δ] with δ ∈ (0,π/2) and x ∈ [0,+∞), we get

∣∣xpzλ(x,α)
∣∣∼ (2x)λ+1+pe−2xα

2pΓ(λ+1)
≤ (2x)λ+1+pe−2xδ

2pΓ(λ+1)
≤ Mλ,p,δ as x →+∞.

However, from Lemma 2.3 we have zλ(x,α)=zλ(−x,β), where β= π−α ∈ [δ,π−δ].

Therefore zλ(x,α) is bounded for all α ∈ [δ,π−δ]. �
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Proposition 2.8 (Leibniz integral rule for differentiation under the integral
sign: complex case). Let X be an open subset of R, (Ω,A ) be a measurable space and
µ : A →C be a complex measure. Suppose f : X ×Ω→R satisfies the following conditions:

(i) For every x ∈ X , the function ω 7→ f (x,ω) is |µ|-integrable.
(ii) For almost all ω in Ω, the derivative fx exists for all x in X .

(iii) There is a |µ|-integrable function θ : Ω→ R such that | fx(x,ω)| ≤ θ(ω) for all x ∈ X .
Then for all x in X

d
dx

∫
Ω

f (x,ω)dµ(ω)=
∫
Ω

fx(x,ω)dµ(ω).

Proof. The Leibniz’s rule is well known in the case of a non-negative measure, but

every complex measure µ can be written as a linear combination of four non-negative

measures µ1,µ2,µ3,µ4, with µ j ≤ |µ|. The conditions (i) and (iii) justify the application of

the Leibniz’s rule for each one of the measures µ j. �

Lemma 2.11. Let ν be a regular complex Borel measure of finite total variation on R.
Define a function ψλ : R→C by

(2.29) ψλ(x)=zλ(x,π/2), x ∈R.

Denote by ∆ the domain ∆= {w ∈C : |Imw| <π} and define Φλ : ∆→C by

(2.30) Φλ(w)=
∫
R

e−ixwψλ(x)dν(x).

Then Φλ is analytic on ∆ and for every p ∈ {0,1,2, . . .}

(2.31) Φ
(p)
λ

(0)= (−i)p
∫
R

xpψλ(x)dν(x).

Proof. By Lemma 2.3, ψλ is an even function: ψλ(−x)=ψλ(x).

Every compact subset of ∆ is contained in a strip of the form R+ i[−L,L], where

0< L <π. For every w ∈C with |Imw| ≤ L and every x ∈R,

|e−ixwψλ(x)| = exIm(w)ψλ(|x|)≤ e|x|Lψλ(|x|)= 1
e|x|(π−L)cλ(|x|) .

The condition π−L > 0 and Lemma 1.2 guarantee that the latter expression defines a

bounded function on R.

Since the complex measure ν has a finite total variation, Lemma 2.9 assures that Φλ

is analytic in ∆. Thus, by (2.27) and the Leibniz’s rule (Proposition 2.8) we get

Φ
p
λ

(z)= dp

dzp

(∫
R
ψλ(x)e−ixz dν(x)

)
= (−i)p

∫
R

xpψλ(x)e−ixz dν(x). �
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Denote by Y the Banach subspace of L∞(0,π) consisting of all bounded functions a
having limits 0 at 0 and π.

Lemma 2.12. If a ∈Y , then γa,λ ∈ C0(R) and

lim
x→+∞γa,λ(x)= lim

θ→0
a(θ)= 0, and lim

x→−∞γa,λ(x)= lim
θ→π

a(θ)= 0.

Proof. The proof of this fact follows easily from Lemma 7.2.3. of [50] �

Theorem 2.3. The set of functions

(2.32) Γλ(0,π) =
{
γa,λ : a ∈Y

}
is dense in C0(R).

Proof. First we note that if a ∈Y , then γa,λ ∈ C0(R) by Lemma 2.12. Thus Γλ(0,π) ⊆ C0(R).

By Hahn–Banach theorem, the density of Γλ(0,π) in C0(0,π) will be shown if we prove

that any continuous linear functional ϕ on C0(0,π) that vanishes on Γλ(0,π) is the zero

functional. Thus, let ϕ ∈ C0(R)∗ be a linear functional such that ϕ(γa,λ) = 0 for each

a ∈ L∞(0,π). By Riesz-Markov representation theorem, there is a regular complex Borel

measure ν of finite total variation on R such that

0=ϕ(γa,λ)=
∫
R
γa,λ(x)dν(x), a ∈ L∞(0,π).

In particular, if a0 = χ[β,θ] ∈Y with 0<β< θ <π, then by∫
R

∫ π

0
|a0(θ)Kλ(x,θ)|dθd|ν|(x)≤

∫
R

∫ π

0
Kλ(x,θ)dθd|ν|(x)= |ν|(R),

we can apply Fubini’s theorem and get∫
R
γa0,λ(x)dν(x)=

∫
R

∫ θ

β
Kλ(x,α)dαdν(x)=

∫ θ

β

∫
R

Kλ(x,α)dν(x)dα= 0.

The function α→ ∫
RKλ(x,α)dν(x) is continuous (in fact, it is differentiable, see below),

therefore by the first fundamental theorem of calculus we obtain that for every θ in (0,π)∫
R

Kλ(x,θ)dν(x)= 0.

Since Kλ(x,θ)=zλ(x,θ)sinλθ and sinθ > 0, this is equivalent to

(2.33)
∫
R
zλ(x,θ)dν(x)= 0.
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By Lemma 2.10 and Leibniz’s rule, the function in the left-hand side of (2.33) is differen-

tiable, and the derivation with respect to θ commutes with the integral sign. Derivating

(2.33) with respect to θ we obtain for every θ in (0,π) and every p in {0,1,2, . . .}

(2.34)
∫
R

xpzλ(x,θ)dν(x)= 0.

Putting θ =π/2 in (2.34) we obtain for every p in {0,1,2, . . .}:

(2.35)
∫
R

xpψλ(x)dν(x)= 0,

where ψλ : R→C is given by ψλ(x)=zλ(x,π/2). Denote by Φλ the Fourier transform of

the measure ψλdν:

Φλ(ξ)=
∫
R

e−ixξψλ(x)dν(x).

Lemma 2.11 shows that the function Φλ is analytic on a domain containing R, and

(2.35) means that Φ(p)
λ

(0)= 0 for every p ∈ {0,1,2, . . .}. Therefore Φλ = 0. By the injective

property of the Fourier transform of Borel measures (Proposition A.2), we conclude that

ν= 0 and hence ϕ= 0. That implies the density of Γλ(0,π) in C0(R). �

Proposition 2.7 and Theorem 2.3 imply together the main result on density.

Theorem 2.4. The set Γλ is dense in VSO(R).

Proof. Let f ∈ VSO(R) and ε > 0. Our aim is to find a function c in L∞(0,π) such that

‖ f −γc,λ‖∞ ≤ ε. First, using Lemma 2.7 we find a function a ∈ L∞(0,π) and a number

L > 0 such that sup|x|≥L
∣∣ f (x)−γa,λ(x)

∣∣ ≤ ε
2 . In general, the function f −γa,λ may not

belong to the class C0(R), and we will slightly modify it. Let g : R→ [0,1] be a continuous

function such that g(x)= 1 for each x ∈ [−2L,2L] and g(x)= 0 for each x ∈R\ [−2L,2L].

Define h ∈ C0(R) by

h(x)= ( f −γa,λ)(x)g(x)=


f (x)−γa,λ(x), if |x| ≤ L;

( f (x)−γa,λ(x))g(x), if L < |x| ≤ 2L;

0, if |x| > 2L.

Second, applying Theorem 2.3 we choose b ∈ L∞(0,π) such that ‖h−γb,λ‖∞ ≤ ε/2. Now

define c ∈ L∞(0,π) by c = a+b. Then for every x in [−L,L] we obtain

| f (x)−γc,λ(x)| = | f (x)−γa,λ(x)−γb,λ(x)| = |h(x)−γb,λ(x)| ≤ ε/2,
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and for every x in R\ [−L,L]

| f (x)−γc,λ(x)| = |( f (x)−γa,λ(x))(1− g(x))+ ( f (x)−γa,λ(x))g(x)−γb,λ(x)|
≤ | f (x)−γa,λ(x)| (1− g(x))+|h(x)−γb,λ(x)| ≤ ε.

Therefore ‖ f −γc,λ‖∞ ≤ ε. �

Corollary 2.2. The C∗-algebra generated by Γλ coincides with VSO(R), and the C∗-
algebra Tλ(A∞) generated by angular Toeplitz operators is isometrically isomorphic to
VSO(R).

Recall that the hyperbolic metric in the upper half-plane Π is given by

η(z1, z2)= ln
|z1 − z2|+ |z1 − z2|
|z1 − z2|− |z1 − z2|

, z1, z2 ∈Π.

Now, if we restrict it to the upper half-circle {z = eiθ, θ ∈ (0,π)}, then this is given by the

formula

η(eiθ1 , eiθ2)= |lntan(θ1/2)− lntan(θ2/2)| , θ1,θ2 ∈ (0,π).

The change of variable q = lntan(θ/2)=−arcsinh(cotθ) inspires the following example.

Example 2.3. We present an example of a function γa,λ that has a typical “very slow

oscillation” at ±∞. Consider the generating symbol

a(θ)= cos(ln(tan(θ/2))).

Then a(π−θ)= a(θ) and γa,λ(−x)= γa,λ(x). Watson’s lemma implies that the asymptotical

behavior of γa,λ(x) as x →+∞ is determined by the behaviour of a near the point 0, and

tan(θ/2)∼ θ/2 as θ→ 0. Using arguments similar to those in the proof of Lemma 2.8 we

see that as x →+∞,

γa,λ(x)= 1
cλ(x)

∫ +∞

0
θλ e−2xθ cos

(
ln
θ

2

)
dθ+ o(1)= Re((2x)iΓ(1− i+λ))

Γ(λ+1)
+ o(1).

With the change of variables x = sinh(u) and applying the limit relation |sinh(u)| ∼
exp(|u|)/2 we obtain that:

γa,λ(sinh(u))= |Γ(1− i+λ)|
Γ(λ+1)

cos(|u|+ ln2+argΓ(1− i+λ))+ o(1),

as u →±∞.
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Numerical Proof using Wolfram Mathematica: the following numerical experiment

shows the approximation illustrated in the above example. The first graph represents the

function γa,λ(sinh x) with a(t)= cos(ln(tan(t/2))). The second one represents the function given by

the rule gamSinhApprox(x,λ)= 1
cλ(x)

∫ ∞

0
θλe−2xθ cos(ln(θ/2))dθ,

for λ= 1 and the last one represents the difference between these functions.
c[x_, la_]:=Pi∗Gamma[la+1]∗Exp[−Pi∗ x]/(2∧la∗Abs[Gamma[1+ I ∗ x+ la/2]]∧2)c[x_, la_]:=Pi∗Gamma[la+1]∗Exp[−Pi∗ x]/(2∧la∗Abs[Gamma[1+ I ∗ x+ la/2]]∧2)c[x_, la_]:=Pi∗Gamma[la+1]∗Exp[−Pi∗ x]/(2∧la∗Abs[Gamma[1+ I ∗ x+ la/2]]∧2)
gamExact[x_, la_]:=gamExact[x_, la_]:=gamExact[x_, la_]:=
NIntegrate[Exp[−2∗ x∗ t]∗ (Sin[t]∧la)∗Cos[Log[Tan[t/2]]], {t,0,Pi},WorkingPrecision→ 60,NIntegrate[Exp[−2∗ x∗ t]∗ (Sin[t]∧la)∗Cos[Log[Tan[t/2]]], {t,0,Pi},WorkingPrecision→ 60,NIntegrate[Exp[−2∗ x∗ t]∗ (Sin[t]∧la)∗Cos[Log[Tan[t/2]]], {t,0,Pi},WorkingPrecision→ 60,
MaxRecursion→ 40,PrecisionGoal→ 6]/c[x, la]MaxRecursion→ 40,PrecisionGoal→ 6]/c[x, la]MaxRecursion→ 40,PrecisionGoal→ 6]/c[x, la]
gamSinhTable[xmin_,xmax_,npoints_, la_]:=gamSinhTable[xmin_,xmax_,npoints_, la_]:=gamSinhTable[xmin_,xmax_,npoints_, la_]:=
Module[{xs,ys, j},xs=Range[0,npoints−1]∗ (xmax−xmin)/(npoints−1);Module[{xs,ys, j},xs=Range[0,npoints−1]∗ (xmax−xmin)/(npoints−1);Module[{xs,ys, j},xs=Range[0,npoints−1]∗ (xmax−xmin)/(npoints−1);
Monitor[ys=Table[gamExact[Sinh[xs[[ j]]], la], { j,1,npoints}], j];Monitor[ys=Table[gamExact[Sinh[xs[[ j]]], la], { j,1,npoints}], j];Monitor[ys=Table[gamExact[Sinh[xs[[ j]]], la], { j,1,npoints}], j];
Transpose[{xs,ys}]]Transpose[{xs,ys}]]Transpose[{xs,ys}]]
tab= gamSinhTable[0,25,101,1];tab= gamSinhTable[0,25,101,1];tab= gamSinhTable[0,25,101,1];
gamSinhInterpol= Interpolation[tab];gamSinhInterpol= Interpolation[tab];gamSinhInterpol= Interpolation[tab];
Plot[gamSinhInterpol[x], {x,0,25}]Plot[gamSinhInterpol[x], {x,0,25}]Plot[gamSinhInterpol[x], {x,0,25}]

Expand[Integrate[Exp[−2∗ x∗v]∗v∧la∗Cos[Log[v/2]], {v,0,Infinity},Assumptions→ {x > 0, la>−1}]]Expand[Integrate[Exp[−2∗ x∗v]∗v∧la∗Cos[Log[v/2]], {v,0,Infinity},Assumptions→ {x > 0, la>−1}]]Expand[Integrate[Exp[−2∗ x∗v]∗v∧la∗Cos[Log[v/2]], {v,0,Infinity},Assumptions→ {x > 0, la>−1}]]
2(−2+2i)−lax(−1+i)−laGamma[(1− i)+ la]+2(−2−2i)−lax(−1−i)−laGamma[(1+ i)+ la]
(*multiplyby(2x)∧(la+1)andcomposewithExp(u)/2*)(*multiplyby(2x)∧(la+1)andcomposewithExp(u)/2*)(*multiplyby(2x)∧(la+1)andcomposewithExp(u)/2*)
gamSinhApprox[u_, la_]:=Abs[Gamma[1+ la− I]]∗Cos[u+Log[2]+Arg[Gamma[1+ la− I]]]/Gamma[la+1]gamSinhApprox[u_, la_]:=Abs[Gamma[1+ la− I]]∗Cos[u+Log[2]+Arg[Gamma[1+ la− I]]]/Gamma[la+1]gamSinhApprox[u_, la_]:=Abs[Gamma[1+ la− I]]∗Cos[u+Log[2]+Arg[Gamma[1+ la− I]]]/Gamma[la+1]
Plot[gamSinhApprox[u,1], {u,0,25}]Plot[gamSinhApprox[u,1], {u,0,25}]Plot[gamSinhApprox[u,1], {u,0,25}]

Plot[gamSinhApprox[x,1]−gamSinhInterpol[x], {x,0,25},PlotRange→All]Plot[gamSinhApprox[x,1]−gamSinhInterpol[x], {x,0,25},PlotRange→All]Plot[gamSinhApprox[x,1]−gamSinhInterpol[x], {x,0,25},PlotRange→All]
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2.4 Strong density of Toeplitz operators in the
C*-algebra of angular operators

Let H be a Hilbert space. It is well known that the space of all bounded operators

B(H ) has various topologies. For example, the uniform operator topology , the strong

operator topology and the weak operator topology (see Section A.4). In the particular

case of H = A 2
λ

(Π) ( or H = F 2(Cn)) we can characterize B(A 2
λ (Π)) ( B(F 2(Cn)) ) by

means Toeplitz operators in the strong operator topology. The next proposition states

that the set of all Toeplitz operators with L∞-symbols is dense in B(A 2
λ (Π)) with respect

to the strong operator topology, this result was proved for Toeplitz operators acting on

the Bergman spaces over the unit disk by Miroslav Engliš, see [16].

Proposition 2.9. Let H L2(O )=F 2(Cn) or A 2
λ

(Π). Then the closure of {T f : f ∈ L∞(O )}

in the strong operator topology coincides with B(H L2(O )), where O =Cn or Π.

Huang [35] proved that if T ∈B(L2(R)) commutes with the multiplication operator

Mϕ, where ϕ is a bounded strictly increasing (or decreasing) function on R, then T = Mψ,

for some ψ ∈ L∞(R). Now, since each angular Toeplitz operator Ta is unitarily equivalent

to the multiplication operator Mγa , the above result of Huang implies that the von

Neumann algebra W∗(Tλ(A∞)) generated by Tλ(A∞) is maximal. In fact, W∗(Tλ(A∞)) is

the closure of Tλ(A∞) with respect to the strong operator topology (SOT) in B(A 2
λ (Π)).

The space L∞(R) may be identified with the dual space of L1(R). We denote by W

the corresponding weak-* topology on L∞(R). Since by Proposition A.7 the space C0(R)

is dense in (L∞(R),W ) , the main result about density complement the Huang’s result

providing an explicit description of the SOT-closure of Tλ(A∞). To be more precise, in

this section we will show that the closure of Tλ(A∞) coincides with B(A 2
λ (Π)) in the

strong operator topology.

Lemma 2.13. The closure of
{
Mγa,λ : a ∈ L∞(0,π)

}
in the weak operator topology coincides

with
{
M f : f ∈ L∞(R)

}
Proof. Let Mϕ ∈ {

M f : f ∈ L∞(R)
}
. By Lemma A.7 for each h ∈ L1(R) and each ε> 0 there

exists ψ ∈ C0(R) such that

(2.36)
∣∣φψ(h)−φϕ(h)

∣∣≤ ε

2
.

On the other hand, by Theorem 2.3, given ε> 0 there exists a ∈Y such that

(2.37) ‖γa,λ−ψ‖∞ ≤ ε

2‖h‖1
.
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Therefore, by (2.36) and (2.37) one gets for all h ∈ L1(R) that∣∣φγa,λ(h)−φϕ(h)
∣∣≤ ∣∣φγa,λ(h)−φψ(h)

∣∣+ ∣∣φψ(h)−φϕ(h)
∣∣≤ ε

2
+‖γa,λ−ψ‖∞ ‖h‖1

≤ ε

2
+ ε

2
= ε.

Now, for any f , g ∈ L2(R) we have

∣∣〈(Mγa,λ −Mϕ) f , g〉∣∣= ∣∣∣∣∫
R
(γa,λ−ϕ)(x) f (x)g(x)dx

∣∣∣∣= |φγa,λ(h)−φϕ(h)| ≤ ε,

where h = f g ∈ L1(R). This implies that

{
M f : f ∈ L∞(R)

}=WOT-closure
(
{Mγa,λ : a ∈Y }

)
.

Now, the proof holds by the following relation

{
Mγa,λ : a ∈Y

}⊂ {
Mγa,λ : a ∈ L∞(0,π)

}⊂ {
M f : f ∈ L∞(R)

}
. �

The next proposition states the density of Tλ(A∞) in the C∗-algebra Aλ with respect

to the strong operator topology in B(A 2
λ (Π)).

Proposition 2.10. SOT-closure(Tλ(A∞))=Aλ.

Proof. By criterion of angular operators (Theorem 2.1) given V ∈ Aλ there exists ϕ ∈
L∞(R) such that V = R∗

λ
MϕRλ. If Ta is an angular Toeplitz operator acting on A 2

λ
(Π) one

gets for each F,G ∈A 2
λ

(Π) that

(2.38) 〈(Ta −V )F,G〉 = 〈(Mγa,λ −Mϕ)RλF,RλG〉,

Now, due to a net in (L∞(R),W ) converges if and only if its respective multiplication

operator in B(L2(R)) converges in the weak operator topology ( Proposition A.5) we

conclude by (2.38) and Lemma 2.13 that WOT-closure(Tλ(A∞))=Aλ. Furthermore, note

that Tλ(A∞) is a convex subset of B(A 2
λ (Π)), thus the SOT-closure and the WOT-closure

coincide by Theorem A.2. �
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3
C*-ALGEBRA OF RADIAL TOEPLITZ OPERATORS ACTING

ON FOCK SPACES

In this chapter we study the radial Toeplitz operators acting on the Fock space F 2(C).

The principal theorem shows that the C*-algebra generated by radial Toeplitz operators

with L∞-symbols acting on the Fock space is isometrically isomorphic to the C*-algebra

RO(Z+) of bounded sequences uniformly continuous with respect to the square-root-

metric %( j,k)= |√ j −√
k |. More precisely, we prove that the sequences of eigenvalues of

radial Toeplitz operators form a dense subset of the latter C*-algebra of sequences.

3.1 Radial Toeplitz operators acting on Fock spaces

In this section we compile some basic facts on Toeplitz operators with radial symbols

from L∞(C) acting on the Fock space F 2(C). Essentially we repeat for the Fock space the

facts stated by Zorboska [52] for the Bergman space over the unit disk, adding some ideas

from [28]. The results of this chaptert can be generalized to radial Toeplitz operators on

the multi-dimensional Fock space F 2(Cn, (ς/π)n e−ς|z|
2
dvn(z)); in this case the eigenvalue

associated to the element eβ of the canonical basis depends only on the length of the

multi-index β as in [27].

Let t ∈R, and Ut : F 2(C)→F 2(C) be the unitary operator given by the composition of

functions with the rotation by the angle t around the origin in the negative direction:

(3.1) (Ut f )(z)= f (e−itz), z ∈C.
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For S ∈B(F 2(C)) we denote by Rad(S) the radialization of S defined by

(3.2) Rad(S)= 1
2π

∫ 2π

0
U−tSUt dt,

where the integral is understood in the weak sense.

Definition 3.1 (radial operator). Let S ∈B(F 2(C)). The operator S is said to be radial
if it is invariant under rotations, that is, if for every t ∈ [0,2π)

(3.3) SUt =UtS.

Observe that S ∈ B(F 2(C)) is radial if and only if Rad(S) = S. The set of all radial

operators is denoted by R:

(3.4) R := {
S ∈B(F 2 (C)) : ∀t ∈ [0,2π) UtS = SUt

}
.

Proposition 3.1. R is a C*-subalgebra of B(F 2 (C)).

Proof. Let S,V ∈R and t ∈ [0,2π). Then (S+V )Ut = SUt +VUt =UtS+UtV =Ut(S+V ),

we thus have that S+V ∈R. On the other hand, TSUt = TUtS =UtTS, hence TS ∈R,

this implies that R is a subalgebra of B(F 2 (C)). The mapping S 7→ S∗, where S∗ is the

adjoint operator of S, defines an involution on R, furthermore, for each S ∈R one has

that

S∗Ut =
(
U−tS

)∗ = (
SU−t

)∗ =UtS
∗.

Thus R∗ =R. Now, given S ∈R, there exists (Sn)n∈N ⊂R such that Sn
n→∞−−−−→ S, but since

UtSn = SnUt and Ut is a unitary operator, we get that UtSn = SnUt converges to UtS
and SUt. Therefore by uniqueness of the limit we conclude UtS = SUt. That is S ∈R. �

Example 3.1. Given θ ∈R, one gets that

UtUθ =Ut+θ =UθUt, t ∈ [0,2π].

That is, Uθ is a radial operator.

Remark 3.1. Let {en}n∈N be the monomial basis of F 2(C). Therefore, given n ∈Z+ and

z ∈C

(3.5) Uten(z)= en(eitz)= eintzn
p

n!
= einten(z), t ∈R.

This implies that Ut is a diagonal operator for each t ∈R.
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Definition 3.2 (radial function). A function ϕ ∈ L∞(C) is called radial if there exists

a ∈ L∞(R+) such that ϕ(z)= a(|z|) a.e. z ∈C.

Definition 3.3 (the radialization of a function). Let ϕ ∈ L∞(C). The function rad(ϕ)

given by

(3.6) rad(ϕ)(z)= 1
2π

∫ 2π

0
ϕ(eitz)dt

is called the radialization of ϕ.

By the periodicity of the mapping t 7→ eit, the formula (3.6) can rewritten as

(3.7) rad(ϕ)(z)= 1
2π

∫ 2π

0
ϕ(eit|z|)dt.

Lemma 3.1 (criterion for a function to be radial). A function ϕ ∈ L∞(C) is radial if
and only if ϕ(z)= rad(ϕ)(z) a.e. z ∈C.

Proof. Suppose that ϕ ∈ L∞(C) is radial, i.e. there exists a ∈ L∞(R+) such that ϕ(z) =
a(|z|) a.e. z ∈C. Therefore, by (3.7) and by Fubini’s theorem one gets that∫

C
rad(ϕ)(w)wnwmdg(w)= 1

2π

∫ 2π

0

∫
R+

∫ 2π

0
rn+m+1e−r2

ϕ(eiαr) eiβ(n−m)dαdrdβ

= 1
2π

∫ 2π

0

∫
R+

∫ 2π

0
rn+m+1e−r2

a
(
|eiαr|

)
eiβ(n−m)dαdrdβ

=
(∫
R+

a(r)rn+m+1e−r2
dr

)(∫ 2π

0
eiβ(n−m)dβ

)
=

∫
C
ϕ(w)wnwmdg(w), n,m ∈Z+.

Now, since rad(ϕ)−ϕ belongs to L2(C,dg) and the span of {wmwn : m,n ∈Z+} is dense in

L2(C,dg), we obtain that rad(ϕ)(z)=ϕ(z) a.e. z ∈C.

Conversely, if ϕ(z)= rad(ϕ)(z) a.e z ∈C, then by (3.7) one gets that ϕ(z)= rad(ϕ)(|z|)
a.e. z ∈C, which means that the condition of Definition 3.2 holds with a(r)= rad(ϕ)(r). �

From Lemma 3.1 and (3.7) it is easy to see that a function ϕ ∈ L∞(C) is radial if and

only if for every t ∈ [0,2π) one get that

ϕ(e−itz)= rad(ϕ)(e−itz)= 1
2π

∫ 2π

0
ϕ(eiθ|e−itz|)dθ =ϕ(z), a.e. z ∈C.

Lemma 3.2. If S ∈B(F 2(C)) is a diagonal operator with respect to the monomial basis
{en}n∈N, then S =Rad(S).
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Proof. Let S ∈B(F 2(C)). Then given m,n ∈Z+ by (3.5) one gets that

〈Rad(S)en, em〉 = 1
2π

∫ 2π

0
〈U−tSUten, em〉dt

= 1
2π

∫ 2π

0
〈SUten,Utem〉dt = 1

2π

∫ 2π

0
〈S(eint en), eimt em〉dt

= 1
2π

∫ 2π

0
ei(n−m)t 〈Sen, em〉dt

=
0, whenever m 6= n.

〈Sen, en〉 whenever m = n.

Thus, if S is a diagonal operator with respect to the monomial basis {en}n∈Z+ , then for

every n,m ∈Z+
〈(S−Rad(S))en, em〉 = 0.

Therefore, S =Rad(S). �

The next result provides a criterion for an operator to be radial. It mimics a result

given by Zorboska [52] for operators on the Bergman space over the unit disk.

Theorem 3.2. Let S ∈B(F 2(C)). The following conditions are equivalent.

(i) S ∈R.

(ii) S is a diagonal operator with respect to the monomial basis.

(iii) The Berezin transform S̃ is a radial function.

Proof. (i)−→(ii) Let {en}n∈N be the monomial basis of F 2(C), and let S be a radial operator.

Thus S =Rad(S) and for every m,n ∈Z+

〈Sen, em〉 = 〈Rad(S)en, em〉 = anδn,m = an 〈en, em〉 ,

where an = 〈Sen, en〉.
(ii)−→(iii) Let S be a diagonal operator. Then

ãRad(S)(z)= 〈Rad(S)Kz,Kz〉
〈Kz,Kz〉

= 1
2π〈Kz,Kz〉

∫ 2π

0
〈U−tSUtKz,Kz〉dt

= 1
2π〈Kz,Kz〉

∫ 2π

0
〈SUtKz,UtKz〉dt = 1

2π〈Kz,Kz〉
∫ 2π

0
〈SKze−it ,Kze−it〉dt

= 1
2π〈U−tKz,U−tKz〉

∫ 2π

0
〈SKze−it ,Kze−it〉dt = 1

2π

∫ 2π

0
S̃(e−itz)dt

= rad(S̃)(z), z ∈C.
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Thus, ãRad(S) = rad(S̃), but by Lemma 3.2 we have S = Rad(S). Hence the Berezin

transform of S is a radial function.

(iii)−→(i) If S̃ is a radial function, then S̃ = rad(S̃) = ãRad(S). Since the Berezin

transform is injective, we get that S =Rad(S), hence by (3.7) one has for n,m ∈Z+ that

〈U−αSUαen, em〉 = 〈U−αRad(S)Uαen, em〉 = 1
2π

∫ 2π

0
〈SUtUαen,UtUαem〉dt

= 1
2π

∫ 2π

0
〈SUt+αen,Ut+αem〉dt = 1

2π

∫ 2π+α

α

〈
SUβen,Uβem

〉
dβ

= 1
2π

∫ 2π+α

α
ei(n−m)β 〈Sen, em〉dβ= 1

2π

∫ 2π

0
ei(n−m)β 〈Sen, em〉dβ

= 〈Sen, em〉 , α ∈ [0,2π].

Therefore, since span{en : n ∈ Z+} is a dense subset of the Fock space F 2(C), we have

U−tSUt = S for all t ∈ [0,2π]. �

Proposition 3.2. Let ϕ ∈ L∞(C). The Toeplitz operator Tϕ is radial if and only if ϕ is a
radial function.

Proof. If ϕ is radial, then by Lemma 3.1 we have rad(ϕ)=ϕ. Hence〈
Tϕen, em

〉= 〈
rad(ϕ)en, em

〉= ∫
C

rad(ϕ)(w)wnwmdg(w)= γa(n)δn,m, m,n ∈Z+.

Thus, by Theorem 3.2 the Toeplitz operator Tϕ is a radial operator.

Conversely, if Tϕ is a radial operator, then by Fubini’s theorem for every f , g ∈F 2(C)

we obtain〈
Tϕ f , g

〉= 〈
Rad(Tϕ) f , g

〉= 1
2π

∫ 2π

0

〈
U−tTϕUt f , g

〉
dt = 1

2π

∫ 2π

0

〈
ϕUt f ,U−t g

〉
dt

= 1
2π

∫ 2π

0

∫
C
ϕ(w) f (e−itw)g(e−itw)dg(w)= 1

2π

∫ 2π

0

∫
C
ϕ(eitw) f (w)g(w)dg(w)

= 〈
rad(ϕ) f , g

〉= 〈
Trad(ϕ) f , g

〉
.

Therefore, Tϕ = Trad(ϕ) and by Proposition 1.6 and Lemma 3.1 we have ϕ= rad(ϕ). �

3.2 Square-root-oscillating property of the
eigenvalues’ sequences

In this section we introduce the set of sequences RO(Z+) and functions RO([0,+∞)). We

also show that the sequences of the class RO(Z+) can be extended to functions of the class

RO([0,+∞)). We finish this section showing that the sequences of eigenvalues belongs to

RO(Z+).
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square-root-oscillating sequences

Definition 3.4 (square root metric on Z+). Define % : Z+×Z+ → [0,+∞) by

(3.8) %(m,n)= ∣∣pm −p
n

∣∣ .

The function % is a metric on Z+ because it is obtained from the usual metric

d : R+×R+ → [0,+∞), d(t,u) := |t−u|,

via the injective function Z+ →R+, m 7→p
m .

Definition 3.5 (modulus of continuity of a sequence with respect to the square–
root-metric). Let x = (xn)n∈Z+ be a complex sequence. The modulus of continuity of x
with respect to the square-root-metric % is the function Ω%,x : [0,+∞)→ [0,+∞] given by

the rule

(3.9) Ω%,x(δ)= sup
{|xn − xm| : m,n ∈Z+, %(m,n)≤ δ}

.

We denote by RO(Z+) the set of the bounded sequences that are uniformly continuous

with respect to the square-root-metric:

(3.10) RO(Z+)=
{

x ∈ `∞(Z+) : lim
δ→0

Ω%,x(δ)= 0
}

.

Proposition 3.3. RO(Z+) is a closed C*-subalgebra of `∞(Z+).

Proof. Using the following elementary properties of the modulus of continuity one can

see that VSO(R) is closed with respect to the pointwise operations:

Ω%,σ+$ ≤Ω%,σ+Ω%,$, Ω%,λσ = |λ|Ω%,σ,

Ω%,σ$ ≤ ‖$‖∞Ω%,σ+‖σ‖∞Ω%,$, Ω%,σ =Ω%,σ,

The inequality Ω%,σ(δ)≤ 2‖σ−$‖∞+Ω%,$(δ) and the usual “ ε3 -argument” show that the

space RO(Z+) is topologically closed in L∞(Z+). �

The following simple criterion shows that the Lipschitz-continuity of sequences (with

respect to the metric %) can be described in terms of the differences between the adjacent

elements.

Proposition 3.4. A sequence σ : Z+ →C is Lipschitz continuous with respect to % if and
only if

(3.11) sup
n∈Z+

(p
n+1 |σ(n+1)−σ(n)|

)
<+∞.
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Proof. Suppose that σ is Lipschitz continuous with respect to %, that is, there exists

M > 0 such that |σ(m)−σ(n)| ≤ M%(m,n) for each m,n ∈Z+. Applying this inequality in

the particular case m = n+1, one gets

p
n+1 |σ(n+1)−σ(n)| ≤ M

(p
n+1 −p

n
)p

n+1 = M
p

n+1p
n+1 +p

n
≤ M.

Conversely, suppose that supn
(p

n+1 |σ(n+1)−σ(n)|)= M <+∞. Hence, if n > m, then

we “join” m with n by the chain of the intermediate elements and estimate the differences

of the adjacent elements using the hypothesis:

|σ(m)−σ(n)| ≤
n−1∑
k=m

|σ(k+1)−σ(k)| =
n−1∑
k=m

p
k+1 +p

kp
k+1 +p

k
|σ(k+1)−σ(k)|

≤ 2
n−1∑
k=m

p
k+1p

k+1 +p
k
|σ(k+1)−σ(k)| ≤ 2M

n−1∑
k=m

1p
k+1 +p

k

= 2M
n−1∑
k=m

(p
k+1 −

p
k

)
= 2M

(p
n −p

m
)= 2M%(n,m).

The same upper estimate can be drawn for m ≥ n. Thus, σ is Lipschitz continuous with

respect to %. �

Example 3.2.
The sequence

(√
n

n+1

)
n∈Z+

belongs to

RO(Z+). In fact, note for each n ∈Z+ that∣∣∣∣∣∣pn+1

√
n

n+1
−

√
n+1
n+2

∣∣∣∣∣∣= n+1p
n+2

−p
n

≤
p

n+2 −p
n

= 2p
n+2 +p

n
.

Thus, by Proposition 3.4 the sequence(√
n

n+1

)
n∈Z+

is Lipschitz with respect to the

metric %,∣∣∣∣√ n
n+1

−
√

m
m+1

∣∣∣∣≤ 2%(m,n), m,n ∈Z+.

Figure 3.1: The first 100 values of the

sequence σ(n)=
√

n
n+1 .
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Sqrt-oscillating functions on R+

The square root metric % can be extended to the set [0,+∞):

%(x, y)= ∣∣px −p
y

∣∣ .

We denote by RO([0,+∞)) the C*-algebra of all bounded and uniformly continuous

functions on [0,+∞) with respect to the extended square root metric %:

(3.12) RO([0,+∞))=
{

f ∈ Cb,u([0,+∞)) : lim
δ→0

Ω%, f (δ)= 0
}

.

Here Ω%, f is the modulus of continuity of the function f with respect to the metric %

(Definition 2.3). In other words, f ∈ RO([0,+∞)) if and only if the function h(x) = f (x2)

is uniformly continuous with respect the standard Euclidean metric on R. An simply

example is the function f (x)= cos(
p

x ).

If f is a function of the class RO([0,+∞)), then, obviously, its restriction to Z+ is a

sequence of the class RO(Z+). We are going to show that every sequence of the class

RO(Z+) can be obtained in this manner. Our extension of sequences to functions is just

the piecewise-linear interpolation with respect to the parameter τ(x)=p
x .

Lemma 3.3. Let σ : Z+ →C. Define f : [0,+∞)→C by

(3.13) f (x)=σ(n)+ τ(x)−τ(n)
τ(n+1)−τ(n)

(σ(n+1)−σ(n)),

where n = bxc and τ(x)=p
x . Then f |Z+ =σ, ‖ f ‖∞ = ‖σ‖∞ and for every δ ∈ (0,1]

(3.14) Ω%, f (δ)≤ 3max(Ω%,σ(δ),
p
δΩ%,σ(1)).

Proof. Note that f (x) is a convex combination of σ(n) and σ(n+1), where n = bxc:

(3.15) f (x)= τ(n+1)−τ(x)
τ(n+1)−τ(n)

σ(n)+ τ(x)−τ(n)
τ(n+1)−τ(n)

σ(n+1).

The first two assertions of the proposition are obvious. Let us prove (3.14). Fix δ ∈ (0,1]

and suppose that x, y≥ 0, %(x, y)≤ δ.

Case I: n ≤ x ≤ y≤ n+1 for some n ∈Z+. In this case

| f (x)− f (y)| = τ(y)−τ(x)
τ(n+1)−τ(n)

|σ(n+1)−σ(n)| ≤ %(x, y)Ω%,σ(%(n,n+1))
%(n,n+1)

.

If %(n,n+1)≤p
δ , then

| f (x)− f (y)| ≤ %(x, y)
%(n,n+1)

Ω%,σ(
p
δ )≤Ω%,σ(

p
δ ).
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If %(n,n+1)≥p
δ , then

| f (x)− f (y)| ≤ δp
δ
Ω%,σ(1)=

p
δΩ%,σ(1).

In both subcases,

(3.16) | f (x)− f (y)| ≤max(Ω%,σ(
p
δ ),

p
δΩ%,σ(1)).

Case II: bxc = n < m = byc. Then %(n+1,m)≤ %(x, y)≤ δ, and

| f (x)− f (y)| ≤ | f (x)− f (n+1)|+ | f (n+1)− f (m)|+ | f (m)− f (y)|.

Applying the inequality %(n+1,m)≤ %(x, y)≤ δ and the result of Case I, we obtain

| f (x)− f (y)| ≤Ω%,σ(δ)+2max(Ω%,σ(
p
δ ),

p
δΩ%,σ(1))

≤Ω%,σ(
p
δ )+2max(Ω%,σ(

p
δ ),

p
δΩ%,σ(1)).

In both cases, (3.14) is true. �

Proposition 3.5. Let σ ∈ RO(Z+) and f : [0,+∞) → C be the extension of σ defined by
(3.13). Then f ∈RO([0,+∞)).

Proof. The assumption σ ∈RO(Z+) guarantees that the right-hand side of (3.14) tends

to 0 as δ→ 0. �

Note that Lemma 3.3 and Proposition 3.5 remain true for every metric ρ of the

form ρ(x, y) = |τ(x)−τ(y)|, where τ : [0,+∞) → [0,+∞) is a strictly increasing function

satisfying τ(n+1)−τ(n) ≤ 1 for every n ∈Z+. In particular, applying this construction

with τ(n)= ln(n+1) we obtain another proof of [31, Theorem 2.3] about the class SO(Z+);

the proof in [31] was based on the usual piecewise-linear interpolation.

Square-root-oscillating property of the eigenvalues’ sequences

In what follows we show that γa ∈RO(Z+) for all a ∈ L∞(R+). From now on, we write the

eigenvalues’ sequence γa as follows:

(3.17) γa(n)=
∫
R+

a(
p

r )K(n, r)dr, where K(n, r)= rne−r

n!
, n ∈Z+.

The following proposition introduces a metric on Z+ which is, in a certain sense, the most

“natural” for the functions γa.
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Proposition 3.6. Let κ : Z+×Z+ → [0,+∞) be the function given by

(3.18) κ(m,n)= sup
a∈L∞(R+)
‖a‖∞=1

∣∣γa(m)−γa(n)
∣∣ .

Then

(3.19) κ(m,n)=
∫
R+

|K(m, r)−K(n, r)|dr.

Proof. For every a ∈ L∞(R+) and m,n ∈Z+ we have

∣∣γa(m)−γa(n)
∣∣≤ ‖a‖∞

∫
R+

|K(m, r)−K(n, r)| dr.

On the other hand, if m and n are fixed and m 6= n, we define a0 : R+ →R by

a0(r)= sign(K(m, r)−K(n, r))

thus a0 ∈ L∞(R+), with ‖a0‖∞ = 1, and

κ(x, y)≥ ∣∣γa0(m)−γa0(n)
∣∣= ∫

R+
|K(m, r)−K(n, r)|dr. �

Lemma 3.4. For every n ∈N we get

(3.20) κ(n−1,n)= 2nne−n

n!

Proof. Given n ∈N, we write κ(n−1,n) using (3.19):

κ(n−1,n)=
∫ +∞

0

∣∣∣∣ rn−1e−r

(n−1)!
− rne−r

n!

∣∣∣∣dr =
∫ +∞

0

rn−1e−r

(n−1)!

∣∣∣1− r
n

∣∣∣dr.

Now the integral falls naturally into two parts:

κ(n−1,n)= 1
(n−1)!

[∫ n

0
rn−1e−r

(
1− r

n

)
dr+

∫ +∞

n
rn−1e−r

( r
n
−1

)
dr

]
= 1

(n−1)!

[∫ +∞

0
e−r

(
rn

n
− rn−1

)
dr+2

∫ n

0
e−r

(
rn−1 − rn

n

)
dr

]
= 2

(n−1)!

∫ n

0
e−r

(
rn−1 − rn

n

)
dr

= 2
(n−1)!

[∫ n

0
e−rrn−1 dr−

∫ n

0
e−r rn

n
dr

]
.

Integrating by parts in the latter integral one gets (3.20). �
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Lemma 3.5. For each n ∈N we have

(3.21) κ(n−1,n)≤
√

2
πn

.

Moreover,

(3.22) lim
n→∞

(
κ(n−1,n)

p
n

)=
√

2
π

.

Proof. The upper bound (3.21) follows from the left part of the well-known estimates

(3.23) nne−np2nπ ≤ n!≤ nne−np2nπ e
1

12n .

The limit relation (3.22) is a consequence of Stirling formula. �

Proposition 3.7. G⊆RO(Z+).

Proof. Let a ∈ L∞(R+). Then for every n ∈Z+

|γa(n)| ≤ ‖a‖∞
∫
R+

K(n, r)dr = ‖a‖∞.

Furthermore, by definition (3.18) of κ and Lemma 3.5, for every n ∈N

∣∣pn
(
γa(n)−γa(n−1)

)∣∣≤ ‖a‖∞κ(n,n−1)
p

n ≤
√

2
π
‖a‖∞.

Thus γa is Lipschitz continuous with respect to % by Proposition 3.4. �

Example 3.3 (square-root-oscillating eigenvalues’ sequence). Consider the Toeplitz

operator generated by the radial symbol a(r)= cos r. The corresponding eigenvalues are

γa(n)= 1F1(1+n,1/2,−1/4),

where 1F1 is the Kummer’s confluent hypergeometric function. Using Proposition 3.8

one can deduce an asymptotic formula for γa(n), as n →∞:

γa(n)= e−1/8 cos
p

n + o(1).

Figure 3.2 shows a plot of γa(n) for n = 0,1, . . . ,300.
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0

e−1/8

−e−1/8

n =100 n =200 n =300

Figure 3.2: The first 301 values of the sequence γa from Example 3.3.

3.3 Density of G in RO(Z+)

In this section we prove the main result. First, we prove that every sequence σ ∈
RO(Z+) can be approximated by some eigenvalues’ sequence γa for large values of n
(Proposition 3.9). After that, we prove that the sequences vanishing at the infinity can be

approximated by eigenvalues’ sequences (Theorem 3.3). Finally, combining these result

we show that the uniform closure of G coincides with RO(Z+) (Theorem 3.4).

Approximation of the eigenvalues’ sequences by convolutions

The idea of this subsection is to approximate γa(n) by a certain convolution for n large

enough. Using the change of variables r = y2 in (3.17) we rewrite γa(n) in the form

(3.24) γa(n)=
∫
R+

K(n, y2)2ya(y)d y.

By Stirling formula, K(n, r) has the following asymptotic behavior as n →+∞:

K(n, r)= rne−r

n!
∼ rnen

p
2π nn+1/2er

.

Using this limit relation and Lebesgue’s dominated convergence theorem it is easy to see

that

(3.25) lim
n→∞

∫
R+

∣∣∣∣ rne−r

n!
− rnen
p

2π nn+1/2er

∣∣∣∣ dr = 0.
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We pass from integer n to real x =p
n and from r ≥ 0 to r = y2. Consider the function F

defined on [0,+∞)× [0,+∞) by

F(x, y)= y2x2+1ex2

x2x2+1ey2 = exp
(
(2x2 +1)(ln y− ln x)+ x2 − y2) .

Then (3.25) can be rewritten in the form

(3.26) lim
n→∞

∫
R+

∣∣∣∣∣K(n, y2)2y−
(

2
π

)1/2
F(

p
n , y)

∣∣∣∣∣ d y= 0.

With the change of variables u = y− x we have

(3.27)
∫
R+

F(x, y)a(y)d y=
∫

[−x,+∞)
F(x, x+u)a(x+u)d y,

where

(3.28) lnF(x, x+u)= (2x2 +1)ln
(
1+ u

x

)
−2xu−u2.

Next, we proceed with some technical lemmas which permit us to analyze the asymptotic

behavior of the eigenvalues’ sequences at the infinity.

Lemma 3.6 (the integral of the kernel far from the diagonal). For every ε> 0 there
exists h > 1 such that the following estimation holds for every x ≥ 1:∫

[−x,+∞)\[−h,h]
F(x, x+u)du ≤ ε.

Proof. Apply the elementary inequality ln(1+ t)≤ t which holds for every t ≥ 0:

(3.29) lnF(x, x+u)≤ (2x2 +1)
u
x
−2xu−u2 = u

x
−u2 ≤ |u|

x
−u2.

Suppose that x ≥ 1, h ≥ 2 and |u| ≥ h. Since |u| ≥ h ≥ 2, we have that |u|
2 ≥ 1. Thus by

(3.29) we get

lnF(x, x+u)≤ |u|
x

−u2 ≤ |u|
( |u|

2

)
−u2 = u2

2
−u2 =−u2

2
.

It follows that∫
[−x,+∞)\[−h,h]

F(x, x+u)du ≤
∫

[−x,+∞)\[−h,h]
e−

u2
2 du ≤

∫
R\[−h,h]

e−
u2
2 du ≤ 2

∫ +∞

h
e−

u2
2 du.

The latter integral tends to zero as h tends to +∞. �
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Lemma 3.7. Let L, x ≥ 0, h ≥ 1 and |u| ≤ h. If h < L < x, then

(3.30)
∣∣∣F(x, x+u)e2u2 −1

∣∣∣≤ e5 h3
L −1.

Proof. Since ln(1+ t)≤ t− t2

2 + t3

3 , t ∈ (−1,1), we obtain for t = ∣∣u
x

∣∣≤ 1 that

lnF(x, x+u)+2u2 = (2x2 +1)ln
(
1+ u

x

)
−2xu+u2

≤ (2x2 +1)
(

u
x
− u2

2x2 + u3

3x3

)
−2xu+u2

= u
x
− u2

2x2 + u3

3x3 + 2u3

3x
≤ u

x
+ u3

x
≤ 5h3

L
.

On the other hand, by t− t2

2 ≤ ln(1+ t) for each t ∈ [0,1), taking t = u
x with u ∈ [0,h]

lnF(x, x+u)+2u2 = (2x2 +1)ln
(
1+ u

x

)
−2xu+u2

≥ (2x2 +1)
(

u
x
− u2

2x2

)
−2xu+u2 = u

x
− u2

2x2 ≥−5h3

L
.

Since ln(1− t)≥−t− t2

2 − t3 for each t ∈ [0,2/3], we take x > 0 sufficiently large such that

t =−u
x ∈ [0,2/3], with u ∈ [−h,0]. Therefore

lnF(x, x+u)+2u2 = (2x2 +1)ln
(
1−

(
−u

x

))
−2xu+u2

≥ (2x2 +1)
(

u
x
− u2

2x2 + u3

x3

)
−2xu+u2

= u
x
− u2

2x2 + u3

x3 + 2u3

x
≥−5h3

L
.

Combining this calculations we get for all |u| ≤ h that

e5 h3
L −1≥ F(x, x+u)eu2 −1≥ e−5 h3

L −1≥−(e5 h3
L −1). �

Lemma 3.8 (“convoluzation” of the integral operator near the diagonal). Given
ε> 0 and h ≥ 1, there exists L ≥ h such that for every x ≥ L∫

[−h,h]
|F(x, x+u)− e−2u2 |du ≤ ε.

Proof. Suppose that x ≥ L and |u| ≤ h. By Lemma 3.7 for h ≥ 1 we get∫
[−h,h]

|F(x, x+u)− e−2u2 |du ≤
∫

[−h,h]
e−2u2 |F(x, x+u)e2u2 −1|du ≤ 2h (e5h3/L −1).

The last expression tends to 0 as L tends to +∞. �
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Lemma 3.9.

(3.31) lim
x→+∞

∫ ∞

0

∣∣∣F(x, y)− e−2(x−y)2
∣∣∣d y= 0,

(3.32) lim
n→∞

∫
R+

∣∣∣∣∣K(n, y2)2y−
(

2
π

)1/2
e−2(

p
n−y)2

∣∣∣∣∣ dr = 0.

Proof. We are going to prove (3.31), then (3.32) will follow by (3.25). Let ε > 0. Using

Lemma 3.6 choose h > 0 such that∫
[−x,+∞)\[−h,h]

F(x, x+u)du ≤ ε

3‖a‖∞
,

∫
[−x,+∞)\[−h,h]

e−2u2
du ≤ ε

3‖a‖∞
.

After that using Lemma 3.8 choose L ≥ h such that for every x ≥ L∫
[−h,h]

|F(x, x+u)− e−2u2 |du ≤ ε

3‖a‖∞
.

Then for every x ≥ L the left-hand side of (3.31) is less or equal to ε. �

The proofs of this subsection have many technical details. To be more confident

in formula (3.32), we tested it numerically in Wolfram Mathematica. The numerical

experiments showed that for every n ∈ {1, . . . ,1000} the integral in the left-hand side of

(3.32) is less than 0.54/
p

n .

Proposition 3.8. Let a ∈ L∞(R+). Then

(3.33) lim
n→+∞

∣∣∣∣∣γa(n)−
(

2
π

)1/2 ∫
R+

a(y) e−2(y−pn )2 d y

∣∣∣∣∣= 0.

Proof. Write γa(n) as in (3.24), factorize a(y) below the sign of the the integral, estimate

|a(y)| by ‖a‖∞ and apply (3.32). �

There is no surprise that the heat kernel appears in the properties of the eigenvalues’

sequences γa, because it plays an important role in the theory of Toeplitz operators acting

on Fock spaces. In [10] Berger and Coburn characterized some properties of Toeplitz

operators Tϕ (boundedness, compactness etc.) by means of its Berezin transform

ϕ̃(z)= 1
π

∫
R
ϕ(w)e−

|z−w|2
2 dν(w), z ∈C,

which is the convolution of the symbol ϕ with the heat kernel H(w, t) = (4tπ)−1e−
|w|2
4t

at time t = 1
2 . This result holds also for Toeplitz operators with more general symbols

(positive Borel measures), see [36].
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Our formula (3.33) relates γa with the heat kernel at time t = 1
8 , we denote it simply

by H:

H(x)= H(x,1/8)= (2/π)1/2e−2x2
.

Lemma 3.10. If b ∈ L∞(R) and a = χR+b, then

(3.34) lim
x→+∞ |H∗a(x)−H∗b(x)| = 0.

Proof. The difference in the left-hand side of (3.34) can be estimated as follows:

|H∗a(x)−H∗b(x)| ≤ ‖b‖∞(2/π)1/2
∫ 0

−∞
e−2(x−y)2 d y

t=x−y= ‖b‖∞(2/π)1/2
∫ +∞

x
e−2t2

dt, x ∈R+. �

Proposition 3.9. Let σ ∈RO(Z+) and ε> 0. Then there exist a ∈ L∞(R+) and N ∈N such
that

(3.35) sup
n>N

∣∣σ(n)−γa(n)
∣∣≤ ε.

Proof. By Proposition 3.5 there is f ∈RO([0,+∞)) such that f |Z+ =σ and ‖ f ‖∞ = ‖σ‖∞.

Define h : R→ C as h(x) = f (x2). Then h ∈ Cb,u(R). Moreover, by Proposition 1.9 there

exists ` ∈ L∞(R) such that

(3.36) ‖H∗`−h‖∞ ≤ ε

3
.

Denote the restriction `|R+ by a. By (3.33) and Lemma 3.10, there are L1,L2 > 0 such

that ∣∣γa(n)−H∗a(
p

n )
∣∣≤ ε

3
, n ≥ L1, |H∗`(x)−H∗a(x)| ≤ ε

3
, x ≥ L2.(3.37)

Thus, taking L =max{L1,L2} by (3.36) and (3.37) one gets for every n ≥ dL2e that∣∣γa(n)−σ(n)
∣∣ x=pn≤ ∣∣γa(x2)−H∗a(x)

∣∣+|H∗a(x)−H∗`(x)|+ |H∗`(x)−h(x)|
≤ ∣∣γa(x2)−H∗a(x)

∣∣+|H∗a(x)−H∗`(x)|+‖H∗`−h‖∞ ≤ ε. �

Density in c0(Z+) of the eigenvalues’ sequences

Next, we finish the proof of our main result. By Proposition 3.9 we already know that

every sequence σ ∈RO(Z+) can be approximated by some eigenvalues’ sequence γa for

large values of n. Thus, it only remains to prove that the sequences vanishing at the

infinity can be approximated by eigenvalues’ sequences.

Denote by X the Banach subspace of L∞(R+) consisting of all bounded functions a
having limit 0 at the infinity.
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Lemma 3.11. If a ∈X , then γa ∈ c0(Z+).

Proof. Given ε> 0, there are L > 0 and N0 ∈Z+ such that

(3.38) |a(t)| ≤ ε

2
, t ≥ L, n−1/2 ≤

√
π

2
ε

‖a‖∞L2 , n ≥ N0.

Thus, by (3.23) and (3.38) we have for every n ≥ N0 that

|γa(n)| ≤ 1
n!

[∫ L2

0
|a(

p
r )| e−rrndr+

∫ +∞

L2
|a(

p
r )| e−rrndr

]

≤ 1
n!

[∫ L2

0
|a(

p
r )| e−rrndr+ ε

2

∫ +∞

L2
e−rrndr

]

≤ 1
n!

∫ L2

0
|a(

p
r )| e−rrndr+ ε

2
≤ ‖a‖∞

n!

∫ L2

0
e−rrndr+ ε

2

≤ ‖a‖∞e−nnnL2

n!
+ ε

2
≤ ‖a‖∞L2

p
2nπ

+ ε

2
= ε

2
+ ε

2
= ε. �

Theorem 3.3. {γa : a ∈X } is a dense subset of c0(Z+).

Proof. The inclusion
{
γa : a ∈X

} ⊆ c0(Z+) was shown in Lemma 3.11. Unfortunately

we were not able to prove the density by constructive tools; the next proof uses non-

constructive duality arguments. By Hahn–Banach theorem, the density of {γa : a ∈ X }

in c0(Z+) will be shown if we prove that any continuous linear functional ϕ on c0(Z+)

that vanishes on {γa : a ∈ X } is the zero functional. Thus, let φ ∈ c0(Z+)∗ be a linear

functional such that φ(γa)= 0 for each a ∈ L∞(R+). Using the well-known description of

the dual space of c0(Z+) we find a sequence p = (pn)n∈Z+ ∈ `1(Z+) such that

φ(y)=
∞∑

n=0
pn yn y ∈ c0(Z+).

Then we have that

0=φ(γa)=
∞∑

n=0
γa(n)pn, a ∈ L∞(R+).

In particular, substituting a = χ[0,x] ∈X with 0≤ x <+∞, we obtain

0=
∞∑

n=0
γa(n)pn =

∫ x

0

∞∑
n=0

pnK(n, r)dr.

The function r 7→ ∑∞
n=0 pnK(n, r), being the sum of a uniformly converging series of

continuous functions, is continuous, and by the first fundamental theorem of calculus,

(3.39)
∞∑

n=0
pnK(n, r)= 0, r ≥ 0.
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Now, replace K(n, r) by rne−r/n! and factorize e−r:

(3.40)
∞∑

n=0

pnrn

n!
= 0 r ≥ 0.

Denote by f the function

f (z)=
∞∑

n=0

pn zn

n!
.

Since pn → 0, we can find M > 0 such that |pn| ≤ M for all n ∈Z+. Hence, by (3.23) one

gets that

0<
( |pn|

n!

)1/n
≤ e M1/n

n1/n(2π)1/n
n→∞−−−−→ 0.

Thus, f has infite radius of convergence. i.e., f is an entire function. The equality (3.40)

says that f (r)= 0 for every r ≥ 0. Therefore f is the zero constant, and all coefficients pn

are zero. �

Now we are ready to prove the main result of this chapter.

Theorem 3.4. G is dense in RO(Z+).

Proof. Let σ ∈ RO(Z+) and ε > 0. By Proposition 3.9 there are b ∈ L∞(R+) and N ∈ Z+
such that

|σ(n)−γb(n)| ≤ ε

2
, n > N.

Define ϑ= (ϑ(n))n∈Z+ by

ϑ(n)=
σ(n)−γb(n), if n ≤ N,

0 otherwise.

Thus ϑ ∈ c0(Z+), and by Theorem 3.3 there exists c ∈ L∞(R+) such that

‖ϑ−γc‖∞ ≤ ε

2
.

Taking a = b+ c ∈ L∞(R+) one gets that

‖σ−γa‖∞ ≤ ‖σ−γb −ϑ‖∞+‖ϑ−γc‖∞ ≤ sup
n>N

|σ(n)−γb(n)|+ ε

2
≤ ε. �
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3.4 Beyond the class of bounded generating symbols

In this section we describe the class of functions wider than L∞(R), with eigenvalues’

sequences belonging to RO(Z+). Furthermore, we give an unbounded generating symbol

a such that γa ∈ `∞(Z+)\RO(Z+).

Following [28] we denote by L∞
1 (R+, e−r2

) the subspace of all measurable functions a
on R+ for which the following integrals are finite for all n ∈Z+:

(3.41)
∫
R+

|a(r)| e−r2
rndr <+∞.

First of all, a Toeplitz operator Tϕ with radial symbol ϕ(z) = a(|z|) a.e. z ∈ C, with

a ∈ L∞
1 (R+, e−r2

) is a well defined linear operator (in general unbounded) and has a dense

domain. In fact, since the set F 2
0 (C) of all polynomials on z form a dense subset on the

Fock space, we have for the monomials p(z)= zn ∈F 2
0 (C) that (Tϕp)(z)= γa(n)p(z). Thus

Ta p ∈F 2
0 (C)⊂F 2(C),

and the set F 2
0 (C) is a domain for each Toeplitz operator Ta with symbol a ∈ L∞

1 (R+, e−r2
).

That is, the operator Ta has a bounded extension to the whole space F 2(C) if and only if

the sequence γa = (γa(n))n∈Z+ is bounded.

Grudsky and Vasilevski in [28] proved that if a ∈ L∞
1 (R+, e−r2

), then the Toeplitz

operator Ta acting on the Fock space F 2(C) is unitary equivalent to the multiplication

operator γaId acting on `2(Z+), where the sequence γa = (γa(n))n∈Z+ is given by (3.17).

From this fact every Toeplitz operator Ta with radial symbol a ∈ L∞
1 (R+, e−r2

) is bounded

if and only if the corresponding eigenvalue sequence γa is bounded. Also they proved

that for each sequence γ ∈ `∞(Z+) there exists a symbol a ∈ L∞
1 (R+, e−r2

) such that the

Toeplitz operator Ta is unitary equivalent to the multiplication operator by this sequence

γ; i.e.,γa = γ. However, in this class of symbols there exists a nontrivial subspace V for

which Ta = 0 for each a ∈ V . Therefore, we only consider subspaces of L∞
1 (R+, e−r2

) where

the linear transformation a 7→ Ta is injective. More details see [28]

For a ∈ L∞
1 (R+, e−r2

), we consider the following averages [28]:

(3.42) B( j)a(r)=
∫ +∞

r
B( j−1)a(u)er−udu, j = 1,2, . . . ,

where B(0)a(r)= a(
p

r ). Integrating by parts j times one can express γa through B( j)a:

(3.43) γa(n)= 1
(n− j)!

∫
R+

B( j)a(r)rn− j e−rdr = γB( j)a◦sq(n− j), n ≥ j,
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where sq(x) = x2, x ∈ R+. It is easily seen that if B( j)a ∈ L∞(R+) for some j ∈ Z+, then

the eigenvalues’ sequence (and the corresponding Toeplitz operator) is bounded. The

definition of the averages B( j)a and the facts mentioned above are taken from [28, Section

4].

Next, we summarize some conditions that guarantee the boundedness of Toeplitz

operators with radial symbols from L∞
1 (R+, e−r2

).

Proposition 3.10. Let a ∈ L∞
1 (R+, e−r2

). The Toeplitz operator Ta is bounded on F 2(C)

(the corresponding eigenvalue sequence γa is bounded) if one of the following conditions
holds:

(a) a ∈ L∞(R+)

(b) B( j)a ∈ L∞(R+) for some j ∈Z+.

(c) γ̃a = (γ̃a(n))n∈Z+ ∈ `∞(Z+), where

(3.44) γ̃a(n)= 1
n!

∫
R+

|a(
p

r )| rne−rdr.

Let us denote by M the class of symbols a ∈ L∞
1 (R+, e−r2

) such that the average (3.42)

is bounded for some j ∈Z+:

(3.45) M :=
{
a ∈ L∞

1 (R+, e−r2
) : B( j)a ∈ L∞(R+) for some j ∈Z+

}
.

Proposition 3.11. If a ∈M , then γa ∈RO(Z+).

Proof. Let j ∈ Z+ and a ∈ L∞
1 (R+, e−r2

) such that B( j)a ∈ L∞(R+). By (3.43) we have

γa(n) = γB( j)a◦sq(n− j), with sq(x) = x2, x ∈ R+, hence by (3.18) and (3.21) one gets for

every n > j that

p
n+1

∣∣γa(n)−γa(n+1)
∣∣=p

n+1
∣∣∣γB( j)a◦sq(n− j+1)−γB( j)a◦sq(n− j)

∣∣∣
≤ ‖B( j)a◦ sq‖∞κ(n− j,n− j+1)

p
n+1

≤ ‖B( j)a◦ sq‖∞
√

2(n+1)
π(n− j+1)

.

Hence supn∈Z+
(p

n+1
∣∣γa(n)−γa(n+1)

∣∣) <∞ and, by Proposition 3.4, the eigenvalue

sequence γa is Lipschitz continuous with respect %. �
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Folland [21, Lemma 2.95] proved that for the class of unbounded measurable symbols

a ∈ L∞
1 (R+, e−r2

) which satisfy the inequality

(3.46) |a(r)| ≤ const eδr2
, for some δ< 1,

the linear mapping a 7→ Ta is injective. However, this class contains defining symbols

which generate eigenvalues’ sequences do not belonging to RO(Z+).

Example 3.4. Let δ= 1− 1p
2

. Then the function a defined by the rule

a(r)= e
(
δ− ip

2

)
r2

satisfies (3.46) and belongs to L∞
1 (R+, e−r2

). Let us calculate the corresponding eigen-

value’s sequence using the change of variables t =p
2 r and the formula [22, Eq. 3.381-5]:

γa(n)= 1
n!

∫
R+

e
(
1− 1p

2
− ip

2

)
r e−rrn dr = 2

n+1
2

n!

∫
R+

e−(1+i)ttn dt = e−i(n+1)π4 .

The sequence of its consecutive differences is given by

γa(n+1)−γa(n)= e−i(n+2)π4
(
1− ei π4

)
and does not converge to 0, though ρ(n+1,n)→ 0. Thus γa ∈ `∞(Z+)\RO(Z+).
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4
C*-ALGEBRA OF HORIZONTAL TOEPLITZ OPERATORS

ACTING ON FOCK SPACES

In this chapter, we characterize the horizontal Toeplitz operators acting on the Fock

spaces. The characterization is based on the decomposition of the Bargmann transform in

two operators and the definition of horizontal operator. First of all, we give such decompo-

sition of the Bargmann transform, after that we introduce the horizontal operators and

study their basic properties, including a simple criterion for an operator to be horizontal.

Also we introduce the L –invariant operators, give some of their basic properties and

using symplectic rotations of the symplectic space (R2n,ω0) we finish this chapter with a

explicit description of the C*-algebra generated by L –invariant Toeplitz operators.

Let ς > 0. Then the Fock F 2
ς (Cn) consists of all entire functions that are square

integrable on Cn with respect to the Gaussian measure (1.24):

dgn,ς(z)=
(ς
π

)n
e−ς|z|

2
dµn(z),

where µn is the usual Lebesgue measure on Cn. In the present chapter for simplicity of

calculations we consider ς= 1 and we will write gn instead of gn,1.

4.1 Bargmann transform

As was mentioned in the introduction, the Bargmann transform is an isometric isomor-

phism from L2(Rn) onto the Fock space F 2(Cn) (see for example [53]), and hence plays an

important role in the description of Toeplitz operators. In this section we construct two
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operators B0 and U such that the Bargmann transform is the composition of them. By

the multiplicativity of the Lebesgue and the Gaussian measure on Cn for each m, l ∈N
with n = m+ l we have the following isometries

L2(Cn,dgn)' L2(Cm,dgm)⊗L2(Cl ,dgl),

F 2(Cn)'F 2(Cm)⊗F 2(Cl),

where ⊗ is the usual (completed) tensor product of Hilbert spaces, and Pn =Pm ⊗Pl .

Introduce the unitary operator U1 : L2(Cn,dgn)→ L2(R2n,dxdy) defined by

(4.1) (U1ϕ)(z)=π−n/2e−
z·z
2 ϕ(z).

Let H0 =U1(F 2(Cn)). Then for each f ∈ H0 the function ϕ(z) = πn/2e
z·z
2 f (z) belongs to

F 2(Cn) and thus

0= ∂ϕ

∂z
= ∂

∂z

(
πn/2e

z·z
2 f

)
=πn/2e

z·z
2

(
∂

∂z
+ z

2

)
f .

It is easy to see that the subspace H0 of L2(R2n) can be described as closure of the set of

all smooth functions in L2(R2n) which satisfy to the equation

D0 f = 2
(
∂

∂z
+ z

2

)
f =

(
∂

∂x
+ i

∂

∂y
+ x+ i y

)
f = 0(4.2)

The unitary operator U2 = Id⊗F, where

(F f )(y)= 1
(2π)n/2

∫
Rn

e−iη·y f (η)dη

is the Fourier transformation, maps isometrically the space

L2(R2n,dxdy)= L2(Rn,dx)⊗L2(Rn,d y)

onto it self. The image H ′
0 = (Id⊗F)H0 of the space H0 under the mapping Id⊗F is the

closure of the set of all smooth functions in L2(R2n) which satisfy to the equation

D′
0 f = (Id⊗F)D0(Id⊗F−1) f =

(
∂

∂x
+ x− ∂

∂y
− y

)
f = 0.

Now, introduce the isomorphism U3 =U∗
3 =U−1

3 : L2(R2n)→ L2(R2n) given by the rule

(4.3) (U3 f )(x, y)= f
(

x+ yp
2

,
x− yp

2

)
.
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The isomorphism U3 maps the space H ′
0 onto the space H , which is the closure of the

set of the smooth functions satisfying to the equation

D f =U3D′
0U3 f =

p
2

(
∂

∂y
+ y

)
f = 0.

This last equation can be easily solved. Its general solution has the form

π−n/4e−
y2
2 h(y),

where h is an arbitrary function from L2(Rn). The function l(y) = π−n/4e−
y2
2 belongs

to L2(Rn) and has unit norm. Denote by L0 the one–dimensional subspace of L2(Rn)

generated by the function l. Then, obviously H = L2(Rn)⊗L0, and the operator Q = Id⊗P0

gives the orthonormal projection of the space L2(R2n)= L2(Rn)⊗L2(Rn) onto H . Here

(4.4) (P0 f )(y)=π−n/2
∫
Rn

f (t)e−
1
2 (y2+t2)dt

is the one–dimensional orthogonal projection of L2(Rn) onto L0. The following theorem

summarizes the obtained results.

Theorem 4.1. The unitary operator U =U3U2U1 provides an isometric isomorphism of
the space L2(Cn,dgn) onto the space L2(R2n)= L2(Rn)⊗L2(Rn) under which

(i) the space F 2(Cn) is mapped onto H = L2(Rn)⊗ L0

(ii) for the Bargmann projection (1.27) we have

UPnU−1 = Id⊗ P0,

where P0 is the one–dimensional orthogonal projection (4.4) onto the one–dimensional
subspace L0 in L2(Rn,d y) generate by the function l(y).

Introduce the isometric embedding B0 : L2(Rn,dx)→ L2(Rn,d y)⊗L2(Rn,d y) defined

by

(4.5) (B0 h)(x)= h(x)l(y).

The image of B0 is exactly H . Then the adjoint operator B∗
0 : L2(R2n)→ L2(Rn) is defined

by

(4.6) (B∗
0 f )(x)=π−n/4

∫
Rn

f (x, y)e−
y2
2 d y.
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It is easy to see that

B∗
0 B0 = Id: L2(Rn)→ L2(Rn)

B0 B∗
0 =Q = Id⊗P0 : L2(R2n)→H .

The linear operator B∗ =U∗B0 : L2(Rn)−→F 2(Cn) has the form

(4.7) (B∗ f )(z)=π−n/4
∫
Rn

f (x)e
p

2 x·z− x2
2 − z2

2 dx, z ∈C,

and is an isometric isomorphism from L2(Rn) onto F 2(Cn) known as the Bargmann
transform. Its inverse B: F 2(Cn)−→ L2(Rn) is given by

(4.8) (B f )(x)=π−n/4
∫
Cn

f (z)e
p

2 x·z− x2
2 − z2

2 dgn(z), x ∈R.

The operators B and B∗ provide the following decompositions of the Bargmann projection

Pn and of the identity operator on L2(Rn)

BB∗ = IdL2(Rn) : L2(Rn)−→ L2(Rn)

B∗B=Pn : L2(Cn,dgn)−→F 2(Cn).

Example 4.1. Let z ∈Cn and kz(w)= ez·w, w ∈Cn. By Proposition 6.10 of [53] applied

n times we get

(Bkz)(x)= (π)−n/4
∫
Cn

ez·we
p

2 x·w− x2
2 −w2

2 dgn(w)

=
n∏

j=1
π−1/4

∫
C

ez jw j e
p

2 x jw j−
x2

j
2 −w j

2

2 dg(w j)

=π−n/4e
p

2 x·z− x2
2 − z2

2 , x ∈Rn.(4.9)

4.2 Horizontal Toeplitz operators

In this section we characterize the horizontal Toeplitz operators acting on the Fock space

F 2(Cn). The characterization is based on the notion of horizontal operator and horizontal

functions. So, we will first introduce the horizontal operators, the horizontal functions

and study their basic properties, including a simple criterion for an operator and for a

function to be horizontal. We finish this section showing that every Toeplitz operator

with horizontal symbols is a unitary equivalent to certain multiplication operator.
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Definition 4.1 (Weyl operator). Let h ∈Cn. The Weyl operator Wh on L2(Cn,dgn) is a

weighted translation given by the rule

(4.10) Wh f (z)= ez·h− |h|2
2 f (z−h), z ∈Cn.

Let h ∈Cn, the adjoint operatorof Wh is W ∗
h =W−h. In effect, given f ∈F 2(C) one has

that

〈Wh f ,G〉 =
∫
Cn

ez·h− |h|2
2 f (z−h)G(z)e−|z|

2
dµn(z)

w=z−h=
∫
Cn

eh·(w+h)− |h|2
2 f (w)G(w+h)e−|w+h|2 dµn(w)

=
∫
Cn

ew·h+|h|2− |h|2
2 f (w)G(w+h)e−|w|2−|h|2−h·w−w·hdµn(w)

=
∫
Cn

f (w)
(
e−w·h− |h|2

2 G(w+h)
)
e−|w|2 dµn(w)

= 〈 f ,W−hG〉 , G ∈F 2(Cn).

In fact, the Weyl operator Wh is unitary, with W−h =W −1
h . The following result sum-

marizes some important properties of the Weyl operator.

Proposition 4.1. Let h ∈Cn. The following statements hold:
(a). If Mϕ be the multiplication operator by ϕ ∈ L∞(Cn), then

(4.11) WhMϕW−h f = Mϕ◦τh f , f ∈F 2(Cn).

(b). If z ∈Cn, then

(4.12) Whkz(w)= e−z·h− h2
2 kz+h(w), w ∈Cn,

where kz(w)= ez·w.
(c). If ϕ ∈ L∞(Cn), then

(4.13) WhTϕW−h = Tϕ◦τh .

Proof. (a). Let ϕ ∈ L∞(Cn) and f ∈F 2(Cn),

WhMϕW−h f (z)= ez·h− |h|2
2

(
MϕWh f

)
(z−h)= ez·h− |h|2

2 ϕ(z−h)(W−h f )(z−h)

= ez·h− |h|2
2 ϕ(z−h) f (z) e−h·(z−h)− |h|2

2 =ϕ◦τh(z) f (z)

= (Mϕ◦τh f )(z), z ∈Cn.
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(b). Given z ∈Cn, we have

Whkz(w)= ew·h− |h|2
2 kz(w−h)= ew·h− |h|2

2 +z·(w−h)

= ew·(z+h)− |h|2
2 −h·z = e−h·z− |h|2

2 kz+h(w), w ∈Cn.

(c). Let ϕ ∈ L∞(Cn). Since for every f ∈F 2(Cn), the Toeplitz operator satisfies (Tϕ f )(z)=
〈Mϕ f ,kz〉, where kz(w)= ew·z, one has by (4.11) and (4.12) that

(
TϕW−h f

)
(z)= 〈MϕW−h f ,kz〉 = 〈WhMϕW−h f ,Whkz〉 = 〈Mϕ◦τh f ,kz+h〉 e−h·z− |h|2

2

= e−z·h− |h|2
2 (Tϕ◦τh f )(z+h)= (W−hTϕ◦τh f )(z), z ∈Cn.

This clearly forces WhTϕW−h = Tϕ◦τh . �

Definition 4.2 (horizontal operators). A bounded operator S on the Fock space

F 2(Cn) is said to be invariant under Weyl translations if for every h ∈Rn it commutes

with Wih. That is, for every h ∈Rn

(4.14) WihS = SWih.

For brevity, we use the term horizontal for such operator.

The set of all horizontal operators will be denoted by H:

(4.15) H := {
S ∈B(F 2(Cn)) : ∀h ∈Rn WihS = SWih

}
.

The simplest example of horizontal operator is itself the Weyl operator. In fact, if t ∈Rn,

then for every h ∈Rn one gets that

WitWih =Wi(t+h)(z)=WihWit.

Proposition 4.2. H is a C*-subalgebra of B(F 2(Cn)).

Proof. Let S,V ∈H and h ∈Rn. Then (S+V )Wih = SWih+VWih =WihS+WihV =Wih(S+V ),

we thus have that S+V ∈H. On the other hand, TSWih = TWihS =WihTS, hence TS ∈H,

this implies that H is a subalgebra of B(F 2(Cn)). The mapping S 7→ S∗, where S∗ is the

adjoint operator of S, defines an involution on H, furthermore, for each S ∈H one has

that

S∗Wih = (
W−ihS

)∗ = (
SW−ih

)∗ =WihS∗.

Thus H∗ =H. Now, given S ∈H, there exists (Sn)n∈N ⊂H such that Sn
n→∞−−−−→ S, but since

WihSn = SnWih and Wih is a unitary operator, we get that WihSn = SnWih converges to

WihS and SWih. Therefore by uniqueness of the limit we conclude WihS = SWih. That is

S ∈H. �
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Lemma 4.1. Let h ∈Rn. Then the Weyl operator Wih is unitary equivalent to the multipli-
cation operator BWih B∗ = MEh , acting on L2(Rn), where the function Eh : Rn →C is given
by Eh(x)= e−i

p
2 h·x.

Proof. Given f ∈ L2(R) and h ∈Rn, we calculate

(Wih B∗ f )(z)= eih·z− h2
2 (B∗ f )(z− ih)=π−n/4e−ih·z− h2

2

∫
Rn

f (x) e
p

2 x·(z−ih)− x2
2 − (z−ih)2

2 dx

=π−n/4e−ih·z− h2
2

∫
Rn

f (x) e
p

2 x·z−p2 ix·h− x2
2 −

(
z2
2 − h2

2 −z·ih
)
dx

=π−n/4
∫
Rn

f (x) e
p

2 x·z−p2 ix·h− x2
2 − z2

2 dx

=π−n/4
∫
Rn

(
MEh f

)
(x) e

p
2 x·z− x2

2 − z2
2 dx = (B∗ MEh f )(z), z ∈Cn. �

An important tool in the description of properties of bounded operators on Hilbert

spaces of analytic functions is the Berezin transform (see Section 1.4). The Berezin

transform of S ∈B(F 2(Cn)) is the function S̃ defined by

(4.16) S̃(z)= 〈Skz,kz〉
〈kz,kz〉

,

where the function kz(w)= ew·z is the reproducing kernel of F 2(Cn). By (4.12) and (4.13)

it is easy to see for every z ∈Cn that

ãWihSW−ih = 〈WhSW−hkz,kz〉
〈kz,kz〉

= 〈SW−hkz,W−hkz〉
〈W−hkz,W−hkz〉

= 〈Skz−ih,kz−ih〉
〈kz−ih,kz−ih〉

= (S̃ ◦τh)(z),

where τhz = z− ih. Therefore, the horizontal operators are related with the translation

operators acting on bounded functions.

Definition 4.3 (horizontal function). A function ϕ ∈ L∞(Cn) is said to be horizontal
if for every h ∈Rn

(4.17) ϕ(ζ− ih)=ϕ(ζ), a.e.ζ ∈Cn.

Let us consider the unitary operator Ci : F 2(Cn)→F 2(Cn) given by the rule

(4.18) (Ci f )(ζ)= f (iζ), ζ ∈Cn.

Observe that if f ∈ L∞(Cn) is invariant under imaginary translations, then

(4.19) (Ci f )(ζ−h)= f (iζ− ih)
w=iζ= f (w− ih)= f (iζ)= (Ci f )(ζ), h ∈Rn.
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Herrera Yañez, Maximenko and Vasilevski in the proof of Proposition 3.3 of [31] gave

a criterion for a function to be invariant under translations on the upper half plane Π.

This result can be extended on the whole complex plane C and its proof runs almost

literally as in the Bergman case. Since it is very technical, it will be omitted.

Lemma 4.2. A function ϕ ∈ L∞(Cn) is horizontal if and only if there exists a ∈ L∞(Rn)

such that

ϕ(z)= a(Re z), a. e. z ∈Cn.

Proof. Suppose that there exist a ∈ L∞(Rn) with ϕ(z)= a(Re z) a. e. z ∈Cn. Therefore for

almost every z ∈Cn we have ϕ(z+ ih)= a(Re(z+ ih))= a(Re z)=ϕ(z), h ∈Rn.

Conversely, let ϕ ∈ L∞(Cn) be a horizontal function. Then by (4.19) the function Ciϕ

is invariant under translations. In particular, for z = (z′, zn) ∈Cn−1×C and g =Ciϕ one

gets that

g(z′, zn +hn)= g(z′, zn +hn)= g(z′, zn), hn ∈R,

hence the function g(z′, ·) is invariant under translation by hn ∈R. Thus by Proposition

3.3 of [31] there exists an ∈ L∞(R) such that g(z′, zn)= an(z′,Im zn) a. e. zn ∈C. Making

this procedure n-times we find a function b ∈ L∞(Rn) such that g(z)= b(Im z) a.e. z ∈Cn.

Equivalently, ϕ(z)= b(−Im(iz))= b(−Re z), thus taking a(x)= b(−x) the proof holds. �

Theorem 4.2 (criterion of horizontal operators). Let S ∈ B(F 2(Cn)). Then, the
following statements are equivalent:

(i) S is horizontal.

(ii) BS B∗ MEh = MEh BS B∗, h ∈Rn.

(iii) There exists ϕ ∈ L∞(Rn) such that BS B∗ = Mϕ.

(iv) The Berezin transform S̃ is a horizontal function. i.e., there exists b ∈ L∞(Rn) such
that

S̃(z)= b(Re z), a.e. z ∈Cn.

Proof. (i)−→(ii) Let S ∈B(F 2(Cn)) be a horizontal operator , by Lemma 4.1 one gets that

Wih B∗ =B∗ MEh for each h ∈R. Thus

BS B∗ MEh =BSWih B∗ =BWihS B∗ = MEh BS B∗, h ∈R.

76



4.2. HORIZONTAL TOEPLITZ OPERATORS

(ii)−→(iii) Notice for every h ∈Rn that Eh(x)=Θ
ln

(
hp
2

)(x), where Θη(x)= eixη and ln(h)=
(ln(n1), · · · , ln(hn)) ∈Rn. Therefore, by (ii) one gets that

BS B∗ MΘη = MΘη BS B∗, η ∈Rn.

Thus, by Proposition A.4 n times, there exists ϕ ∈ L∞(R) such that BS B∗ = Mϕ.

(iii)−→(iv) Let ϕ ∈ L∞(Cn) be such that S =B∗ MϕB. Then

S̃(z)=
〈
Mϕ Bkz,Bkz

〉
〈kz,kz〉

= e−|z|
2
∫
R
ϕ(x)|(Bkz)(x)|2dx

= e−|z|
2
∫
Rn
ϕ(x)

∣∣∣∣π−n/4e
p

2 x·z− x2
2 − z2

2

∣∣∣∣2 dx

=π−n/2e−|z|
2
∫
Rn
ϕ(x)e−x2

e
p

2 x·z+p2 x·z− z2+z2
2 dx

=π−n/2e−|z|
2
∫
Rn
ϕ(x)e−x2

e2
p

2 x·Re z− (z+z)·(z+z)−2|z|2
2 dx

=π−n/2
∫
Rn
ϕ(x)e−x2

e2
p

2 x·Re z−2(Re z)2 dx =π−n/2
∫
Rn
ϕ(x)e−(x−p2 Re z)2 dx, z ∈Cn.

(iv)−→(i) Let h ∈Rn, since Wih is a unitary operator, we obtain by (4.12) that

ãWihSW−ih(z)= 〈SW−ihkz,W−ihkz〉
〈kz,kz〉

= 〈SW−ihkz,W−ihkz〉
〈W−ihkz,W−ihkz〉

= 〈Skz−ih,kz−ih〉
〈kz−ih,kz−ih〉

= S̃ ◦τih(z)= S̃(z), z ∈Cn.

Thus by injectivity of Berezin transform (Proposition 1.7) we conclude WihSW−ih = S for

each h ∈Rn. �

Proposition 4.3 (diagonalization of horizontal Toeplitz operators). Let ϕ(z) =
a(Re z) be a horizontal L∞–function. Then the Toeplitz operator Tϕ is unitary equivalent to
multiplication operator B TϕB∗ = γH

a Id acting on L2(Rn), where the function γH
a : Rn −→C

is given by the rule

(4.20) γH
a (x)=π−n/2

∫
Rn

a
(

yp
2

)
e−(x−y)2 d y, x ∈Rn.

Proof. Let ϕ(z)= a(Re z) be a horizontal L∞–function. Then we have that

BTa B∗ = BPnaPnB∗ =B(B∗B)a(B∗B)B∗

= (BB∗)BaB∗(BB∗)=BaB∗

= B∗
0U3(I ⊗F)U1a(x)U−1

1 (I ⊗F−1)U−1
3 B0

= B∗
0U3a(x)U−1

3 B0

= B∗
0a

(
x+ yp

2

)
B0.
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Now

(B∗
0a

(
x+ yp

2

)
B0 f )(x)=

∫
Rn

a
(

x+ yp
2

)
f (x) l2(y)d y= γH

a (x) · f (x),

where

γH
a (x)=

∫
Rn

a
(

x+ yp
2

)
l2(y)d y=π−n/2

∫
Rn

a
(

yp
2

)
e−(x−y)2 d y, x ∈Rn. �

Corollary 4.1. Let ϕ ∈ L∞(R2n). The Toeplitz operator Tϕ is horizontal if and only if ϕ
is horizontal.

Proof. Let ϕ ∈ L∞(Cn). If Tϕ is horizontal, then for every h ∈Rn one gets that

Tϕ =WihTϕW−ih = Tϕ◦τh .

Thus, by Proposition 1.6 we obtain that ϕ(z)=ϕ◦τh(z)=ϕ(z− ih) almost every z ∈R2n.

Therefore ϕ is a horizontal function by Lemma 4.2.

Conversely, if ϕ is a horizontal function on Cn, then by Lemma 4.2 there is a ∈
L∞(Rn) such that ϕ(z)= a(Re z) a. e. z ∈Cn. Hence by Proposition 4.3 and the criterion

of horizontal operators (Theorem 4.2) we conclude that the Toeplitz operator Tϕ is

horizontal. �

Denote by GH the set of all “ horizontal spectral functions”

(4.21) GH = {γH
a : a ∈ L∞(Rn)}.

Corollary 4.2. The C*-algebra Thor(L∞) is isometrically isomorphic to the C*-algebra
G H generated by GH .

4.3 L –invariant Toeplitz operators

From now on we identify Cn with R2n by means of the mapping z = x+ i y 7→ (x, y), where

x = (Re z1, . . . ,Re zn) and y= (Im z1, . . . ,Im zn). Thus {0}×Rn is identified with iRn, hence

we may see the horizontal operators like a bounded operators invariant under Weyl

translation over the Lagrangian plane {0}×Rn.

Let L be any Lagrangian plane of (R2n,ω0). In this section we extend the results about

the horizontal Toeplitz operators to Toeplitz operators with L -invariant symbols acting

on the Fock space F 2(Cn). The characterization is based on the symplectic rotations of

the symplectic space (R2n,ω0). So, we will first introduce the L –invariant functions and

study their basic properties, including a simple criterion for a function to be L –invariant.
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We finish this section showing that the C*-algebra generated by Toeplitz operator with

horizontal symbols is isometrically isomorphic to the C*-algebra generated by Toeplitz

operators whose defining symbols are L –invariant.

Definition 4.4 (L –invariant functions). Let L ∈Lag(2n,R). A function ϕ ∈ L∞(R2n)

is said to be invariant under Lagrangian translations if for every h ∈L it satisfies

ϕ(z−h)=ϕ(z), a.e. z = (x, y) ∈R2n.

For brevity, we use the term L –invariant for such functions. In the particular case

L = {0}×Rn we only say horizontal.

Recall that the group of symplectic rotations U(2n,R) of real matrices n×n of (R2n,ω0)

is isomorphic to the unitary group U(n,C). In fact, by (1.40) one has that U(2n,R) =
ι (U(n,C)) , where the isomorphism ι : U(n,C)→U(2n,R) is given by the rule

ι(U + iV )=
(
U −V
V U

)
,

and U ,V ∈M (n,R) (1.39). Therefore, we may identify every Lagrangian plane L of R2n

with a subspace of Cn(if there is not confusion it is denoted by the same L ).

Let L be any Lagrangian plane of R2n. By the transitive property of U(2n,R) (Proposi-

tion 1.11) and by the isomorphism U(2n,R)'U(n,C), there is a unitary matrix B ∈U(n,C)

such that

BL = iRn.

From now on, by simplicity of calculations we use this fact and re-write the definition

of L –invariant functions: let L ∈ Lag(2n,R). A function ϕ ∈ L∞(Cn) is said to be L –
invariant if for every h ∈L it satisfies

ϕ(z−h)=ϕ(z), a.e. z ∈Cn.

In particular, the horizontal case corresponds to L = iRn. Let B ∈ U(n,C). Define the

linear operator VB : L2(Cn,dgn)→ L2(Cn,dgn) by the rule

(4.22) (VB f )(z)= f (B∗z), z ∈Cn.

Since B∗ = B−1 ∈U(n,C), it is easy to see that VB is a unitary operator, with V∗
B =VB−1 .

Example 4.2. Let B ∈ U(2n,R) and kz be the reproducing kernel of F 2(Cn). Then, for

every z ∈Cn we have that

(4.23) VBkz = kBz.
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Let ϕ ∈ L∞(Cn). By (4.22), and (4.23) one gets for every B ∈U(n,C) and z ∈Cn that

(VB−1 TϕVB f )(z)= 〈
TϕVB f ,VBkz

〉= 〈
TϕVB f ,kBz

〉= 〈
MϕVB f ,kBz

〉
= 〈

VB−1 MϕVB f ,kz
〉= 〈

MψB f ,kz
〉= (TψB f )(z), f ∈F 2(Cn).

Therefore

(4.24) VB−1 TϕVB = TψB ,

where ψB : Cn →C is the L∞-function given by the rule

(4.25) ψB(z)=ϕ(Bz), z ∈Cn.

Lemma 4.3 (criterion for a function to be L –invariant). Let L be a Lagrangian
plane and B ∈U(n,C) be such that B∗L = iRn. The function ϕ ∈ L∞(Cn) is L –invariant
if and only if there exists a ∈ L∞(Rn) such that

ϕ(Bz)= a(Re z1,Re z2, . . . ,Re zn), a.e. z = (z1, z2, . . . , zn) ∈Cn.

Proof. Suppose that ϕ is L –invariant, then for every h ∈ iRn one gets that Bh ∈L and

ϕ(Bz−Bh)=ϕ(Bz), z ∈Cn. That is, the function ψB given in (4.25) is horizontal, and

by Lemma 4.2 the statement holds.

Conversely, if there exists a ∈ L∞(Rn) such that ϕ(Bz) = a(Re z1, . . . ,Re zn), a.e. z =
(z1, . . . , zn) ∈Cn, then for every h ∈L we have B∗h ∈ iRn and

ϕ(z−h)=ϕ(B(B∗z−B∗h))= a(Re(B∗z−B∗h))

= a(ReB∗z)=ϕ(z), a.e. z ∈Cn. �

Proposition 4.4. Let L ∈Lag(2n,R). The C*-algebra TL (L∞) generated by all Toeplitz
operators whose L∞–symbols are L –invariant is isometrically isomophic to Thor(L∞),
and hence is isometrically isomorphic to G H .

Proof. Let ϕ ∈ L∞(Cn) and B ∈ U(n,C) be such that B∗L = iRn. Then by (4.24) and

Lemma 4.3 one gets that Tϕ belongs to TL (L∞) if and only if TψB ∈Thor(L∞). Thus, the

mapping Tϕ 7→ TψB generates an isometric isomorphism from TL (L∞) onto Thor(L∞).

�

Example 4.3. Let L =Rn × {0} and ϕ be a L –invariant function. Then observe that the

standard symplectic matrix J rotates from the Lagrangian plane {0}×Rn to Rn × {0}. i.e.,(
0 In

−In 0

)(
0

x

)
=

(
x
0

)
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Therefore, if B = −iIn ∈ U(n,C), then by Lemma 4.3 we have that the corresponding

spectral function is

ϕ(z)=ϕ(BB∗z)=ϕ(B(iz))= a(Re(iz1), . . . ,Re(izn))= a(−Im z1, . . . ,−Im zn), a.e.z ∈Cn.

Thus, by (4.20) the corresponding spectral function is:

γH
a (x)=π−n/2

∫
Rn

a
(
− yp

2

)
e−(x−y)2 d y, x ∈Rn.

On the other hand, Let ∆= {
(x, x) ∈R2n : x ∈Rn}

and ϕ be a ∆-horizontal functions. Then

note that (
In In

−In In

)(
0

x

)
=

(
x
x

)

Therefore, if B = In−iIn
2 ∈U(n,C), then by Lemma 4.3 we have that

ϕ (z− iz)=ϕ(
BB∗ (z− iz)

)=ϕ(Bz)= a(Re z1, . . . ,Re zn), a.e. z ∈Cn.

4.4 Density of spectral functions in Cb,u(Rn).

Let a ∈ L∞(Rn). We re-write the spectral functions γH
a given in (4.20) as follows:

(4.26) γH
a (x)=

∫
Rn

a
(

yp
2

)
H(x− y)d y,

where the function H : Rn →R+, is the n-dimensional heat kernel at time t = 1/4

(4.27) H(x)=π−n/2 e−x2
, x ∈Rn.

Theorem 4.3. The set of spectral functions GH is dense in Cb,u(Rn).

Proof. By (4.26) we can write the horizontal spectral functions as convolution of the

symbol a and the heat kernel H as follows:

(4.28) γa = b∗H, b = a◦ mp
2 ∈ L∞(Rn),

where mp
2 (x)= xp

2
, x ∈Rn. Therefore, GH = {a∗H, a ∈ L∞(Rn)}, and by Proposition 1.9

applied to k = H we have that GH is dense in Cb,u(Rn). �

Corollary 4.3. The C*-algebra TL (L∞) is isometrically isomorphic to Cb,u(Rn).
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As was mentioned in Chapter 3 , Folland [21, Lemma 2.95] proved that for the class

of unbounded measurable symbols a which satisfy the inequality

(4.29) |a(x)| ≤ const eδx2
, for some δ< 1,

the linear mapping a 7→ Ta is injective. However, this class contains defining symbols

which generate spectral functions do not belonging to Cb,u(Rn).

Example 4.4 (unidimensional case). Let a(x)= eix2
ex2

, x ∈R. Then by formula 3.323-2

of [22] one gets that

γH
a (y)=π−1/2

∫
R

a
(

xp
2

)
e−(y−x)2 dx =π−1/2

∫
R

ei x2
2 + x2

2 −y2+2xy−x2
dx

=π−1/2e−y2
∫
R

e−
(1−i)

2 x2+2xydx =
√

2
1− i

e−y2
e

2y2
1−i

=
p

1+ i ei y2
, y ∈R.

Thus, the spectral function γH
a (and the corresponding Toeplitz operator) is bounded.

Furthermore, for x, y ∈R one has

|γH
a (x)−γH

a (y)| = 21/4
√(

[cos x2 −cos y2]2 + [sin x2 −sin y2]2
) = 21/4

√
2

(
1−cos(x2 − y2)

)
= 25/4 sin

∣∣∣∣ x2 − y2

2

∣∣∣∣ .

Therefore, if xn = n and yn = n+ (π/2n), then, limn→∞ |xn − yn| = limn→∞ π
2n = 0, but

lim
n→∞

∣∣∣γH
a (xn)−γH

a (yn)
∣∣∣= 25/4 lim

n→∞sin
∣∣∣∣ x2

n − y2
n

2

∣∣∣∣= 25/4 lim
n→∞sin

∣∣∣∣ (xn − yn)(xn + yn)
2

∣∣∣∣
= 25/4 lim

n→∞sin
( π
4n

[
2n+ π

2n

])
= 25/4 lim

n→∞sin
(
π

2
+ π2

8n2

)
= 25/4.

Thus γH
a ∈ L∞(R)\ Cb,u(R).

Figure 4.1: The real part of γH
a (y) =p

1+ i ei y2
.

Figure 4.2: The imaginary part of

γH
a (y)=p

1+ i ei y2
.
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A.1 Watson’s Lemma

The technique of substitution of a partial sum of a known series into the integrand and

integrating term-by-term while controlling the remainder is the basis of the proof of the

following central result in the theory of exponential integrals due to Watson G. More

details see [39, Proposition 2.1].

Proposition A.1. [39, Watson’s Lemma] Suppose L > 0 and ϕ is complex valued,
absolutely integrable function on [0,L]:

∫ L

0

∣∣ϕ(t)
∣∣dt+∞.

Suppose further that ϕ is of the form ϕ(t) = tλ g(t) where λ > −1 and g has an infinite
number of continuous derivatives in some neighborhood of t = 0. Then the exponential
integral

(A.1) F(x) :=
∫ L

0
e−xtϕ(t)dt

is finite for all x > 0, and it has the asymptotic expansion

(A.2) F(x)∼
∞∑

n=0

g(n)(0)Γ(λ+n+1)
n! xλ+n+1 , as x →+∞

83



APPENDIX A. APPENDIX A

A.2 Fourier transform of bounded Borel measures

Next, we consider the Fourier transform of bounded Borel measures on R: one of the

most important tools in analysis. More details see for example, [12, Section 3.8].

Definition A.1. Let ν be a bounded Borel measure on R. The Fourier transform of ν is

the complex function

(A.3) ν̃(y)=
∫
R

ei yx dν(x), y ∈R.

Proposition A.2. [12, Proposition 3.8.6]
If two bounded Borel measures have equal Fourier transforms, then they coincide.

A.3 Topology on a Banach space

Next, we are going to consider (X ,‖ ·‖) a Banach space over the field F, where F=RorC.

We denote by X∗ the dual space of X , which is the linear space of all continuous linear

functional on X . It is a Banach space with norm given by

(A.4) ‖ρ‖ = sup
x∈X\{0}

|ρ(x)|
‖x‖ .

Theorem A.1 (L∞(X ,µ) as dual of L1(X ,dµ)).
Let (X ,Ω,µ) be a measure space, where µ is σ-finite measure on X . For each g ∈ L∞(X ,µ),
the equation

(A.5) ρg( f )=
∫

X
f (x)g(x)dµ(x), f ∈ L1(X ,dµ)

defines a bounded linear functional ρg on the Banach space L1(X ,dµ), and the map-
ping g 7→ ρg is an isometric isomorphism from L∞(X ,µ) onto the Banach dual space(
L1(X ,dµ)

)∗.

Definition A.2 (weak-∗ Topology).
The weak-∗ topology ( denoted by W ) of the space L∞(X ,µ) considered as the dual of

L1(X ,µ), is the weak topology on
(
L1(X ,µ)

)∗ induced by the family F = {
ϕg : g ∈ L∞(X ,µ)

}
,

where for each g ∈ L∞(X ,µ) the function ϕg : (L1(X ,µ))∗ 7→C is given by (A.5). Note that

the finite intersections of the following sets form a local base of a function a ∈ L∞(X ,µ)

in the topology W :

(A.6) V (a,ε,h)= {b ∈ L∞(X ,µ) : |ϕb(h)−ϕa(h)| < ε}, ε> 0, h ∈ L1(X ,µ).
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A.4 Topologies on B(H )

We will consider various topologies on B(H ), the space of all bounded linear operators

on the Hilbert space H .

Definition A.3 (uniform Topology).
Let (B(H ),‖ ·‖) be a normed space, where ‖ ·‖ is the norm given by the formula

(A.7) ‖T‖ = sup
x 6=0∈H

‖Tx‖
‖x‖ , T ∈B(H ).

This norm induces a metric, so B(H ) is a metric space. Thus the uniform topology is just

defined to be the metric topology.

In the uniform topology Tn → T if and only if ‖Tn −T‖→ 0.

Definition A.4 (strong-Operator Topology (SOT)).
The strong-operator topology has as subbase the collection of all sets of the form

(A.8) O (T0, x,ε)= {T ∈B(H ) : ‖(T −T0)x‖ ≤ ε}

We know a base is the collection of all finite intersections of such sets. It follows that a

base is the collection of all sets of the form

(A.9) V (T0, x1, x2, · · · , xn,ε)= {
T ∈B(H ) : ‖(T −T0)x j‖ ≤ ε, j = 1,2, · · · ,n

}
The corresponding concepts of convergence: A net (Tn) converges in the strong-operator

topology to T if and only if ‖(Tn −T)x‖→ 0, for each x ∈H .

Definition A.5 (weak-Operator Topology (WOT)).
The weak-operator topology has as subbase the collection of all the finite intersections of

the following sets:

(A.10) U(T0, x, y,ε)= {T ∈B(H ) : |〈(T −T0)x, y〉| ≤ ε}

The corresponding concepts of convergence: A net (Tn) converges in the weak-operator

topology to T if and only if 〈(Tn −T)x, y〉→ 0, for each x, y ∈H .

By the Cauchy-Schwarz inequality, strong-operator convergence implies weak-operator

convergence. When the dimension of H is infinite, the weak-operator topology is strictly

weaker than the strong-operator topology.

85



APPENDIX A. APPENDIX A

Example A.1. If Tn is the operator on L2(∂D,dt) defined by

Tn f (t)= eint f (t), f ∈ L2(∂D,dt),

then 〈Tn f , g〉 = cn, where cn is n-th coefficient of Fourier of f g ∈ L1(∂D,dt), and by the

Riemman-Lebesgue’s theorem we have that cn → 0. Thus Tn → 0 in the weak-operator

topology, but Tn 9 0 in the strong-operator topology, since each Tn is unitary.

Theorem A.2. Suppose that S is a convex subset of B(H ). Then the closure of S in the
weak-operator topology coincides with the closure of S in the strong-operator topology in
B(H ).

A.5 About multiplication operator

Let (X ,Ω,µ) be a σ-finite measure space. L∞(X ,µ) is the set of measurable functions

which are bounded almost everywhere in X . L2(X ,dµ) is a Hilbert space.

Given ϕ ∈ L∞(X ,µ) there is a corresponding linear transformation ϕ 7→ Mϕ on

B
(
L2(X ,dµ)

)
, where

(A.11) Mϕ f =ϕ f , f ∈ L2(X ,dµ).

Define

(A.12) Aµ =
{
Mϕ :ϕ ∈ L∞(X ,µ)

}
.

It is an abelian subalgebra of B
(
L2(X ,dµ)

)
.

Proposition A.3. Let (X ,Ω,µ) be a σ-finite measure space. If ϕ ∈ L∞(X ,µ) the following
statements hold:

i). The operator Mϕ is normal, and M∗
ϕ = Mϕ.

ii). ϕ 7→ Mϕ is a ∗-homomorphism from L∞(X ,µ) onto Aµ.

iii). ‖Mϕ‖ = ‖ϕ‖∞.

Proof. i). Let ϕ ∈ L∞(X ,µ), then

〈Mϕ f , g〉 =
∫

X

(
Mϕ f

)
(x)g(x)dµ(x)=

∫
X
ϕ(x) f (x)g(x)dµ(x)

=
∫

X
f (x)

(
ϕ(x)g(x)

)
dµ(x)=

∫
X

f (x)
(
Mϕg

)
(x)dµ(x)

= 〈 f , Mϕg〉, ∀ f , g ∈ L2(X ,dµ).
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Thus M∗
ϕ = Mϕ.

ii). Note that ϕ+ψ 7→ Mϕ+ψ = Mϕ + Mψ ∈ Aµ, and ϕψ 7→ Mϕψ = MϕMψ ∈ Aµ, for

every ϕ,ψ ∈ L∞(X ,µ). On the other hand, by i we have that ϕ 7→ Mϕ = M∗
ϕ ∈ Aµ, for all

ϕ ∈ L∞(X ,µ). Hence, ϕ 7→ Mϕ is a ∗-homomorphism from L∞(X ,µ) onto Aµ.

iii). Let g ∈ L2(X ,dµ),

‖Mϕg‖2
2 =

∫
X
|ϕ(x)g(x)|2 dµ(x)≤ ‖ϕ‖2

∞‖g‖2
2.

Thus

(A.13) ‖Mϕ‖ ≤ ‖ϕ‖∞.

To show that equality is obtained, let ε> 0 be given, then the subset

Sε =
{
x ∈ X : |ϕ(x)| ≥ ‖ϕ‖∞−ε} ,

is measurable, and since µ is σ-finite, this subset has a subset S of finite measure. Let

χS be the characteristic function of the set S, then χS ∈ L2(X ,dµ). Moreover

‖Mϕ‖ ≥ ‖MϕχS‖ =
∫

S
|ϕ(x)|2 dµ(x)≥ (‖ϕ‖∞−ε)2

µ(S)

= (‖ϕ‖∞−ε)2 ‖χS‖2
2.

Thus, for all ε> 0 we have ‖Mϕ‖ ≥ ‖ϕ‖∞−ε. Hence

(A.14) ‖Mϕ‖ ≥ ‖ϕ‖∞.

Combining (A.13) and (A.14) the equality is proved. �

Proposition A.4. [34, Theorem 2.5.10] Let S ∈B(L2(R)) and MΘη be the multiplication
operator by the function Θη(t)= eitη, t ∈R. The following conditions are equivalent:
(a) S is invariant under MΘη for all η ∈R:

SMΘη = MΘηS.

(b) S is the multiplication operator by a bounded measurable function:

∃ϕ ∈ L∞(R) such that S = Mϕ.

Proposition A.5. [13, Proposition 10.5] Let (X ,Ω,µ) be a σ-finite measure space. Con-
sider L∞(X ,µ) as the dual of L1(X ,dµ) equipped with the weak-∗ topology. A net (ϕ j) of
functions in L∞(X ,µ) converges in the weak-∗ topology to a function ϕ ∈ L∞(X ,µ), if and
only if (Mϕ j ) is weak-operator convergent to Mϕ in B

(
L2(X ,dµ)

)
.
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Proof. Suppose that ϕ j →ϕ in the weak-∗ topology. Therefore for each h ∈ L1(X ,dµ) one

gets ∫
X
ϕ j(x)h(x)dµ(x)→

∫
X
ϕ(x)h(x)dµ(x).

If f , g ∈ L2(X ,dµ), then taking h = f g ∈ L1(X ,dµ) and by the above remark we have

〈Mϕ j f , g〉 =
∫

X
ϕ j(x) f (x)g(x)dµ→

∫
X
ϕ(x) f (x)g(x)dµ= 〈Mϕ f , g〉.

This implies that Mϕ j → Mϕ in the weak-operator topology.

Conversely, assume that Mϕ j → Mϕ in the weak-operator topology. Given h ∈ L1(X ,dµ)

there exists f , g ∈ L2(X ,dµ) such that h = f g. Therefore∫
X
ϕ j(x)h(x)dµ(x)=

∫
X
ϕ j(x) f (x)g(x)dµ(x)= 〈Mϕ j f , g〉→ 〈Mϕ f , g〉 =

∫
X
ϕ(x)h(x)dµ.

That is, the net (ϕ j) converges to ϕ in the weak-∗ topology. �

Proposition A.6. Let (X ,Ω,µ) be a σ-finite measure space. Then the mapping a 7→ Ma is
a homeomorphic embedding of L∞(X ,µ) into (B

(
L2(X ,dµ)

)
,WOT).

Proof. First we note that if f , g,h are some functions such that h = f g and f , g ∈ L2(X ,µ),

then for every b ∈ L∞(X ,µ) we have

|〈(Mb −Ma) f , g〉| =
∫

X
(b−a) f g dµ=

∫
X

(b−a)h dµ= |φb(h)−φa(h)|.

Given a ∈ L∞(X ,µ), ε> 0 and f , g ∈ L2(X ,µ), we define h as h = f g and obtain

{Mb : b ∈V (a,ε,h)}⊆U(Ma,ε, f , g).

Conversely, given a ∈ L∞(X ,µ), ε> 0 and h ∈ L1(X ,µ), we easily construct two functions

f , g ∈ L2(X ,µ) such that h = f g and obtain

{b ∈ L∞(X ,µ) : Mb ∈U(Ma,ε, f , g)}⊆V (a,ε,h). �

The space L∞(R) may be identified with the dual space of L1(R). We denote by W the

corresponding weak-* topology on L∞(R).

Proposition A.7. C0 (R) is dense in (L∞(R),W ).

Proof. Let f ∈ L∞(R), h1,h2, . . . ,hm ∈ L1(R) and ε > 0. Our goal is to find a function

a ∈ C0(R) such that for every j ∈ {1, . . . ,m}

|φa(h j)−φ f (h j)| ≤ ε.
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If ‖ f ‖∞ = 0, then a = 0 do the work, so we suppose that ‖ f ‖∞ > 0. Using the assumption

that h1, . . . ,hm ∈ L1(R) and the continuity of the Lebesgue integral, we find a δ> 0 with

δ< 1/(4‖ f ‖∞) such that for every measurable subset Y with µ(Y )< δ

(A.15)
∫

Y
|h j|dµ≤ ε

4‖ f ‖∞
, j ∈ {1, . . . ,m}.

We also choose an open interval A with

(A.16)
∫
R\ A

|h j|dµ≤ ε

4‖ f ‖∞
, j ∈ {1, . . . ,m}.

Applying Lusin’s theorem to the function f on the segment clos(A) we find a continuous

function b on clos(A) and compact subset K of A such that f |K = b|K and

(A.17) µ (A \ K)< δ.

Now, by Urysohn’s Lemma, there exists a continuous function u on R with values in [0,1]

such that u(x)= 1 for each x ∈ K and u(x)= 0 for each x ∈R\ A. Define the function a on

R by

a(x)=
b(x)u(x) if x ∈ A;

0 otherwise.

Then a is continuous, a|K = f |K and ‖a‖∞ ≤ ‖ f ‖∞. Applying (A.15) with Y = A \ K and

(A.16) we get ∫
R\K

|h j|dµ=
∫
R\A

|h j|dµ+
∫

A\K
|h j|dµ≤ ε

2‖ f ‖∞
.

Combining this with ‖ f −a‖∞ ≤ ‖ f ‖∞+‖a‖∞ ≤ 2‖ f ‖∞ we finally obtain the following

upper estimate for each j ∈ {1, . . . ,m}:∣∣ϕa(h j)−ϕ f (h j)
∣∣≤ ∫

R
|a(x)− f (x)| |h j(x)|dx ≤ 2‖ f ‖∞

∫
R\K

|h j(x)|dx ≤ ε. �

A.6 Classical harmonic analysis and Wiener’s
theorem

The algebra L1(Rn)

The complex-valued functions on Rn which are Lebesgue integrable over Rn, denoted by

L1(Rn) form a Banach algebra over the Complex numbers C. The norm is given by

‖ f ‖1 =
∫
Rn

| f (x)|dx,
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multiplication is the convolution f ∗ g, defined by

f ∗ g(x)=
∫
Rn

f (y)g(x− y)d y, f , g ∈ L1(Rn),

and the inequality

‖ f ∗ g‖1 ≤ ‖ f ‖1‖g‖1

holds. It is easily seen that convolution is commutative; thus L1(Rn) is a commutative

Banach algebra.

In L1(Rn) we have two important operators: The translation operator Lx given by

(A.18) τx f (y)= f (y− x), x ∈Rn,

an the dilation operator Dh given by

Dh f (x)= hf (hx), h ∈R+.

These operators are both isometric:

(A.19) ‖τx f ‖1 = ‖ f ‖1, ‖Dh f ‖1 = ‖ f ‖1.

The following result due to Lebesgue has many applications.

Proposition A.8. Let f ∈ L1(Rn). Then for any ε> 0 there is a neighbourhood Vε of 0 in
Rn such that

‖τx f − f ‖1 ≤ ε, x ∈ Vε.

Next, we give an immediate consequence of Proposition A.8 and (A.19).

Corollary A.1. For each f ∈ L1(Rn) the mapping x 7→ τx f from Rn into L1(Rn) is uni-
formly continuous. Likewise, x 7→ ‖τx f − f ‖1 is uniformly continuous.

Wiener’s Theorem

Wiener’s theorem expresses a fundamental fact concerning Fourier transforms, and has

been the starting poitn of many contemporary developments in harmonic analysis. More

details see for example [42, Lemma 1.4.2].

Theorem A.3 (Wiener–Lévy). Let f ∈ L1(Rn) and K ⊂ Rn be a compact set. If V is an
open neighborhood of f̂ (K) and A : V →C is an analytic function, then there is a function
u ∈ L1(Rn) such that ĝ(t)= A( f̂ (t)) for all t ∈ K .

Theorem A.4 (Wiener’s Division Lemma). Let f , g ∈ L1(Rn) such that supp( f̂ ) is a
compact set, and ĝ(t) 6= 0 for every t ∈Rn. Then there exists h ∈ L1(Rn) such that f = g∗h.
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Approximate identity

Definition A.6. An approximate identity in a normed algebra A is a net (e j) j∈J in A

such that for every x in A it holds

(A.20) lim
j∈J

e jx = lim
j∈J

xe j = x.

If there is a finite constant M > 0 such that ‖e j‖ ≤ M for every j ∈ J, then the approximate

identity is said to be bounded.

In fact, in this definition it is sufficient to consider only non-zero elements x ∈A . In a

similar way left and right approximate identity is defined. Note that unbounded approxi-

mate identities are not particularly useful, see [15] for some pathological examples in

incomplete normed algebras.

An approximately unital algebra shares some of the properties of a unital algebra.

Obviously, if A is a unital algebra with unit e and J is an arbitrary directed set, then

we can define an approximate identity (e j) j∈J in A easily by the rule e j = e for all j ∈ J.

Also, from Definition A.6 it follows that if an approximate identity is a divergent net,

then the normed algebra is non-unital.

Proposition A.9. L1(Rn) contains an approximate identity (e j) j∈J such that ê j ∈ Cc(Rn)

for each j ∈ J.

Dirac sequences

It is known that any Dirac sequence (hm)m∈N behaves like an identity for convolution in

the limit as n →∞. Some people call Dirac sequences “approximate identities” for this

reason. Next, we introduce the Dirac sequences and give an example of them.

Definition A.7 (Dirac sequences). A sequence (hm)m∈N of functions belonging to

L1(Rn) is called a Dirac sequence if it satisfies the following conditions:

(a) For each m ∈N and x ∈Rn , one gets hm(x)≥ 0.

(b) For each m ∈N, ∫
Rn

hm(t)dt = 1.

(c) For every open neighborhood U of 0 in Rn it holds

lim
m→+∞

∫
Rn\U

hm(t)dt = 0.
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Example A.2. The sequence (hn)n∈N given by

(A.21) hn(x)= 2sin2(nx)
πnx2 , x ∈R,

is a Dirac sequence.

Proof. Note that hn(−x)= hn(x)≥ 0 for each x ∈R, and∫ +∞

−∞
hn(t)dt = 1, n ∈N.

On the other hand, let δ> 0, and n ∈N, hence∫
|t|>δ

hn(t)dt = 2
∫

t>δ
hn(t)dt = 4n

π

∫
t>δ

sin2(nt)
(nt)2 dt x=nt= 4

π

∫ +∞

nδ

sin2 x
x2 dx.

Thus limn→+∞
∫
|t|>δhn(t)dt = 0 for each δ> 0. �

For x = (x1, . . . , xn) ∈ Rn, set f (x) = ∏n
k=1 fk(xk) where f1, . . . , fn ∈ L1(R). Then f ∈

L1(Rn) and its Fourier transform is such that

f̂ (t)=
n∏

k=1
f̂k(tk), t = (t1, . . . , tn) ∈Rn.

In this way we can use functions in L1(R) with certain properties to obtain function in

L1(Rn) with analogous properties, especially concerning Fourier transforms.

Example A.3. The sequence (hm)m∈Z+ given by

(A.22) hm(x)=
(

2
π

)n n∏
k=1

sin2(mxk)
mnx2

k

, x = (x1, . . . , xn) ∈Rn,

is a Dirac sequence. In effect, note that hn(−x)= hn(x)≥ 0 for each x ∈Rn, and∫
Rn

hn(t)dt = 1, n ∈Z+.

On the other hand, let δ> 0, and n ∈Z+, hence by Example A.2 one has that∫
Rn\

∏n
j=1(−δ,δ)

hm(t)dt = 2n
n∏

j=1

∫
t j>δ

hm(t j)dt j
m→+∞−−−−−→ 0

Thus, since for every open neighborhood U of 0 in Rn, we can choose a δ> 0 such that∏n
j=1(−δ,δ)⊂ U one has that

lim
m→+∞

∫
Rn\U

hm(t)dt ≤ lim
n→+∞

∫
Rn\

∏n
j=1(−δ,δ)

hm(t)dt = 0.

On the other hand, the Fourier transform of hm is

ĥm(ξ)=
(

2
mπ

)n n∏
k=1

ásin2(mξk)
ξ2

k

=
(

2
π

)n/2 n∏
k=1


(
1− |ξk|

m

)
if |ξk| ≤ m

0 if |ξk| > m.
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Since the Dirac sequences can be viewed as approximate identities, they provide

a powerful tool to approximate functions. The next lemma is a well-known result for

uniformly continuous functions, see for example [20, Proposition 2.42].

Lemma A.1. Let f ∈ Cb,u(Rn). If (hm)m∈Z+ is a Dirac sequence, then

(A.23) lim
m→∞‖ f ∗hm − f ‖∞ = 0.

Proof. Due to f ∈ Cb,u(Rn), given x ∈ Rn and ε > 0 there exists a open neighborhood V

of 0 ∈ Rn such that | f (x− t)− f (x)| ≤ ε
2 for all t ∈ V . On the other hand, for any open

neighborhood O there exists N0 ∈Z+ such that∫
Rn\O

hn(t)dt ≤ ε

2‖ f ‖∞
, ∀n ≥ N0.

From this remarks we have for every n ≥ N0 that

| f ∗hn(x)− f (x)| ≤
∫
Rn

| f (x− t)− f (x)|hn(t)dt

=
∫
V
| f (x− t)− f (x)|hn(t)dt+

∫
Rn\V

| f (x− t)− f (x)|hn(t)dt

≤ ε

2

∫
V

hn(t)dt+2‖ f ‖∞
∫
Rn\V

hn(t)dt ≤ ε

2
+ ε

2
= ε. �
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