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ABSTRACT

The aim of this work is to give explicit descriptions of the C*-algebras generated by
Toeplitz operator whose defining symbols are invariant under dilations, rotations and
translations. Therefore, we have divided this thesis in three chapters:

In Chapter 2 we consider Toeplitz operators acting on the weighted Bergman space
df(l’[) (IT denotes the upper half-plane) with defining symbol invariant under dilations,
i.e., functions ¢ € L, (II), such that for every A > 0 the equality ¢(z) = ¢(hz) holds a.e.
z € I1 . This class of defining symbols is called angular, and we give a criterion for a
function to be angular:

¢ is angular, if and only if there exists a € L(0,7) such that ¢(z) = a(argz),a.e.z € Il

The main result states that the uniform closure of the set of all Toeplitz operators
acting on the weighted Bergman space over the upper half-plane whose L,-symbols are
angular coincides with the C*-algebra generated by the above Toeplitz operators and is
isometrically isomorphic to the C*-algebra VSO(R) of bounded functions that are very
slowly oscillating on the real line in the sense that they are uniformly continuous with
respect to the arcsinh-metric p(x,y) = |arcsinhx — arcsinhy| on the real line.

Chapter 3 is devoted to the study of Toeplitz operators acting on the Fock space %2(C)
with defining symbol invariant under rotations, i.e., functions ¢ € L,(C), such that for
every ¢ € [0,27) the equality ¢(z) = (p(e_itz) holds a.e. z € C. This class of defining symbols
is called radial, and we give a criterion for a function to be radial:

@ is radial, if and only if there exists b € Lo(R,) such that ¢(z)=b(|z|),a.e.z€C.

The principal theorem shows that the C*-algebra generated by radial Toeplitz operators
with L,-symbols acting on the Fock space is isometrically isomorphic to the C*-algebra
RO(Z.) of bounded sequences uniformly continuous with respect to the square-root-
metric p(j,k) = I\/T — \/F |. More precisely, we prove that the sequences of eigenvalues of
radial Toeplitz operators form a dense subset of the latter C*-algebra of sequences.

Finally, in Chapter 4 the Toeplitz operators on the Fock space Z#2(C") are taken with
defining symbol invariant under imaginary translations, i.e., functions ¢ € L(C"), such
that for every h € R" the equality ¢(z) = ¢(z —ih) holds a.e. z € C". This class of defining
symbols is called horizontal, and we give a criterion for a function to be horizontal:

@ is horizontal, if and only if there exists ¢ € L(R") such that ¢p(z) = c(Rez),a.e.z€ C".



Let £ be any Lagrangian plane of the symplectic real space (R2",w,). We show that
the C*-algebra 9 (L) generated by Toeplitz operators acting on the Fock space whose
defining L ,— symbols are Z—invariant is isometrically isomorphic to the C*-algebra
Thor(Loo) generated by Toeplitz operators acting on the Fock space with horizontal L —
symbols. Here, a function ¢ € Lo(R??) is said to be £-invariant if for every h € £ one
gets that y(z — h) = w(2) a.e. z € R?", in particular, the horizontal case corresponds to
% ={0}xR"™. The main result of this part states that 9;,,,(L,) is isometrically isomorphic
to the C*-algebra Cj ,(R") of bounded functions that are uniformly continuous with
respect to the usual metric d(x,y) = |x—y| on the n-dimensional real plane. More precisely,
we prove that the corresponding spectral functions form a dense subset in Cy ;,(R").

The results of the Chapter 2 were published in the Journal of Communications in
Mathematical Analysis, Volume 17, Number 2 (2014), 151-162, http://projecteuclid.
org/euclid.cma/1418919761 and online first in the Journal of Integral Equation and
Operator Theory. http://dx.doi.org/10.1007/s00020-015-2243-4 The results of
Chapter 3 have been published online arXiv:1505.07906 and submitted to the Journal
of Complex Analysis and Operator Theory.
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INTRODUCTION

In linear algebra an infinite Toeplitz matrix T is defined by the rule:

ap a-1 a-2
- a1 ay a-1 . ’
az a1 Qo T
where a, € C, n € Z. In 1911 Otto Toeplitz proved that the matrix T' defines a bounded
operator on ¢9(Z,), where Z, = NU {0}, if and only if the numbers a, are the Fourier
coefficients of a function a € L.(S!), where S! is the unit circle.

The classical Hardy space 2 can be viewed as the closed linear span in Lo(S1)
of {z": n = 0}. For g € Lo(S1), the Toeplitz operator T, defined by Tyh = B(gh), where
B denotes the orthogonal projection from Lg(S') onto .#72, is bounded and satisfies
ITg|l < lglloo- The matrix of Ty with respect to the orthonormal basis {z": n > 0} is the
Toeplitz matrix T with a, being the Fourier coefficients of g. Thus, the Toeplitz operators
are a generalization of the Toeplitz matrices 7T'.

Let & be a function space and let B be a projection of & onto some closed subspace
% of Z. Then the Toeplitz operator Ty : & — % with defining symbol g is given by
T.f = B(gf). The most studied cases are when % is either the Bergman space, the Hardy
space, or the Fock space. More recently Toeplitz operators have been also studied on
many other spaces, for example on the harmonic Bergman space [38].

The Toeplitz operators have been extensively studied in several branches of mathe-
matics: complex analysis, theory of normed algebras, operator theory [5, 28, 36, 53],
harmonic analysis [1, 17], and mathematical physics, particularly in connection with
quantum mechanics [9, 11], etc.

Recently, Jingbo Xia [51] showed that the norm closure of the set of Toeplitz operators
acting on Bergman spaces (and Fock spaces) with general L,,-symbols coincides with

the C*-algebra generated by them. It is a depper result but unfortunately it is know very
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INTRODUCTION

little about the properties of Toeplitz operators with general L ,-symbols; though some
general results are collected, for example, in [54] the common strategy here is to study
Toeplitz operators with symbols from certain special subclasses of L.

The most complete results were obtained for the families of symbols that generate
commutative C*-algebras of Toeplitz operators acting on the weighted Bergman space.
They were described in a series of papers summarized in the book [50], see also [26].
These families of defining symbols lead to the following three model cases: radial symbols,
functions on the unit disk depending only on |z|, vertical symbols, functions on the upper
half-plane depending on Imz, and angular symbols defined on the upper half-plane and
depending only on arg z. Unlike the Bergman case, on the Fock space there are only
two model cases that generate commutative C*-algebras of Toeplitz operators: radial
symbols, functions on the complex plane C depending only on |w|, and horizontal symbols,
functions on C depending only on Rew.

In each one of the above models (for the horizontal model is proved in this Ph.D.
thesis), the corresponding Toeplitz operator admit an explicit diagonalization, i.e. there
exists an isometric isomorphism that transforms all Toeplitz operators of the selected
type to the multiplication operators by some specific functions (we call them spectral
functions, in the radial case they are just the sequences of eigenvalues). Of course, such a
diagonalization immediately reveals all the main properties of the corresponding Toeplitz
operators [23-25, 28].

Then the next natural problem emerges: give an explicit and independent description
of the class of spectral functions (and of the algebra generated by them) for each one of
the above cases. First step in this direction was made by Suarez [46, 47]. He proved that
the sequences of eigenvalues of Toeplitz operators acting on the Bergman space with
bounded radial symbols form a dense subset in the ¢.-closure of the class d; of bounded

sequences (0%);2 ; satisfying
sup(k +1)|opi1—0p| < +o0.
k

As a consequence, the C*-algebra generated by Toeplitz operators with bounded radial
symbols is isometrically isomorphic to this ¢,-closure of d;. The results of Suarez have
been complemented and generalized to the weighted Bergman space on the unit ball
in [3, 4, 27, 40]. The above ¢..-closure of d; was characterized in [27]. As it turned out,
this closure coincides with the C*-algebra VSO(N) of bounded functions (sequences)
N — C that are uniformly continuous with respect to the logarithmic metric |In(j) —1In(Z%)|.

Surprisingly this class of sequences was already introduced by Schmidt [43, § 9] in the

2



beginning of the 20th century in connection with Tauberian theory. It is worth mentioning
that the above description shows the room that radial Toeplitz operators occupy amongst
all bounded radial operators (the set of which is isomorphic to £,,(N)).

Herrera Yanez, Hutnik, Maximenko and Vasilevski [30—-32] continue this program
and give a description of the commutative algebra generated by Toeplitz operators acting
on the Bergman space with bounded vertical symbols. The result states that their spectral
functions form a dense subset in the C*-algebra VSO(R..) of very slowly oscillating func-
tions on R, i.e. the bounded functions R, — C that are uniformly continuous with respect
to the metric |In(x) —In(y)|. This, in particular, means that the C*-algebra generated by
Toeplitz operators with bounded vertical symbols is isometrically isomorphic to VSO(R.).

This thesis is devoted to the study of remaining model cases. That is, we give an
explicit description of the commutative C*-algebras generated by Toeplitz operator
acting on the weighted Bergman space whose defining symbols are angular, and of
the commutative C*-algebras generated by Toeplitz operator acting on the Fock space
whose defining symbols are radial and horizontal. With this we complete thus the
intrinsic description of the commutative C*-algebras generated by Toeplitz operators
with bounded symbols for each one of the model classes that appear for the weighted
Bergman space and the Fock space.

The work is divided into three chapters. In Chapter 2 we are interested in the Toeplitz
operator with angular symbols acting on the weighted Bergman space ,ssz(fl) over the

upper half-plane II, which consists of all analytics functions in Lo(Il,dv,), where
dvi(z)= A+ D2 dydx, z=x+iy, Ae(-1,+00).

A function g € L (Il) is said to be homogeneous of order zero or angular if for every
h > 0 the equality g(hz) = g(z) holds for a.e. z € I1, or, equivalently, if there exists a
function a in L (0, ) such that g(z) = a(argz) for a.e. z in II. We denote by </, this class
of functions, and introduce the set T (<) of all Toeplitz operators acting on df(l’[) with
defining symbols in /.

As was shown in [25], the uniraty operator R : df(l’[) — Lo(R), where

1 —ix—[2x2
(1) (Rap)(x) = | f @ =) p2)dume), xeRr
V2HI(A+ Deax) i
with
(2) c,l(x):fﬂe_zxesinlede, xeR.
0

3



INTRODUCTION

diagonalizes each Toeplitz operator T, with angular symbol g(z) = a(argz); that is

R ATgR/’{ = Ya,21, where the spectral function y, 5: R — C is given by

1

3 Ya,a(x) = )

/4
f a@e 2% gin*6do, xeR.
0

In particular, this implies that the algebra generated by T (<) is isometrically isomor-

phic to the C*-algebra generated by
(4) T2 ={Yer: a€Lx(0,m)}.

Chapter 2 describes explicitly this C*-algebra. We denote by VSO(R) the C*-algebra
of very slowly oscillating functions on the real line [18], which consists of all bounded

functions that are uniformly continuous with respect to the arcsinh-metric
(5) p(x,y) = |arcsinhx — arcsinhy|, x,y€R.

The main result here (Theorem 2.4) states that the uniform closure of I'y coincides with
the C*-algebra VSO(R). As a consequence, the C*-algebra 9)(</,) generated by the
set Ty (<) coincides just with the closure of this set of its initial generators, and is
isometrically isomorphic to VSO(R). Note that the result does not depend on a value of
the weight parameter 1 > —1.

As a by-product of the main result, we show that the closure of the set T (<) in the
strong operator topology coincides with the C*-algebra of all angular operators.

With this work we finish the explicit descriptions of the above mentioned commutative
C*-algebras of Toeplitz operators on the unit disk and upper half-plane. In all three cases
the spectral functions oscillate at infinity with the logarithmic speed. The C*-algebras
VSO(R,) and VSO(R) corresponding to the vertical and angular cases, respectively, are
isometrically isomorphic (via the change of variables v — sinh(In(v))), and both of them
are isometrically isomorphic to the C*-algebra Cj , (R) consisting of all bounded functions
on R that are uniformly continuous with respect to the usual metric (via the changes
of variables v — In(v) and v — arcsinh(v), respectively). The sequences from VSO(N) are
nothing but the restrictions to N of the functions from VSO(R,).

Note that the proofin the vertical case was the simplest one because the corresponding
spectral functions y; , admit representations in terms of the Mellin convolutions, and
the result about dens’ity was obtained just by using a convenient Dirac sequence. Unfor-
tunately, in the angular case this simple approach does not work.

The key idea of the proof presented in this work is to approximate functions from

VSO(R) by y,, , near +oo and —oo. After that, the problem is reduced to the approximation
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of Cy(R) functions by appropriate y, 1; the latter problem was solved using the duality
and the analyticity arguments (Theorem 2.3).

This chapter is organized as follows: Section 2.1 contains criteria of angular operator
and of angular Toeplitz operator. In Section 2.2 we introduce formally the class of func-
tions VSO(R) and is showed that the functions of the class I'j are Lipschitz continuous
with respect the arcsinh metric p. That is I'jy € VSO(R). In Section 2.3 we prove the
density of '} in VSO(R), and we finish this chapter showing in Section 2.4 that the
closure of {T'y: g € o/} in the strong operator topology coincides with (¢ f (I1)).

Chapter 3 focuses on the study of the C*-algebra generated by radial Toeplitz
operators acting on Fock spaces. It is well known [53] that the normalized monomi-
als e,(z) = 2"/V/n!, n € Z,, form an orthonormal basis of %#2(C), and that the Toeplitz
operators with bounded radial symbols are diagonal with respect to this basis [28].
Namely, if a € Lo(R;) and ¢(z) = a(|z]) a.e. z € C, then Tye,, = yq4(n)e,, where

(6) Ya(n) = a(vre 'rtdr, neZ..

ik

From this diagonalization we have that the C*-algebra 9,,4 generated by Toeplitz
operators with radial L..-symbols is isometrically isomorphic to the C*-algebra ¥

generated by the set & of all sequences of the eigenvalues:
(7) & ={ya: a€ Loo®+)}.

The main result of this part states that the uniform closure of & coincides with the
C*-algebra RO(Z.) consisting of all bounded sequences o: Z, — C that are uniformly

continuous with respect to the square-root-metric
po(m,n) = |\/ﬁ—\/ﬁ |, m,nez,.
As a consequence, we obtain an explicit description of the C*-algebra ¢ generated by &:
4 =RO(Z,).

Surprisingly for us, the C*-algebra ¢ turns out to be wider than the class of sequences
VSO(N) obtained for the radial case on weighted Bergman spaces. The results obtained
here can be generalized to radial Toeplitz operators on the multi-dimensional Fock space
F2C", (aln)" e‘“'z|2dvn(z)); in this case the eigenvalue associated to the element eg of

the canonical basis depends only on the length of the multi-index S, as in [27].
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INTRODUCTION

This chapter is organized as follows: In Section 3.1 we have compiled some basic
facts about radial Toeplitz operators in Fock space. In Section 3.2 we introduce the class
RO(Z.) and prove that & is contained in RO(Z, ).

The major part of Chapter 3 is occupied by a proof that & is dense in RO(Z ), see a
scheme in Figure 0.1. Given a sequence o € RO(Z,), we extend it to a sqrt-oscillating
function f on R, (Proposition 3.5). After the change of variables A(x) = f(x2) we obtain a
bounded and uniformly continuous function 4 on R. In Section 1.5, using Dirac sequences
and Wiener’s division lemma, we show that functions from Cy ,(R) can be uniformly
approximated by convolutions % * b, where % is a fixed L1(R)-function whose Fourier
transform does not vanish on R. This construction will be applied when % is the heat
kernel H (Section 3.3) and we examine the asymptotic behavior of the sequences of
eigenvalues y,. It is shown there that after change of variables /n = x, the function
x — Yq(x?), for x sufficiently large, is close to the convolution of the symbol a with the
heat kernel H. In Section 3.3 also we show that c¢(Z.) coincides with the uniform closure
of the set {y,: a € Loo(R;), lim,_.a(r) = 0}. After that, gathering together all the pieces,
we obtain the main result of this chapter (Theorem 3.4 ). Finally, in Section 3.4 we
describe a class of generating symbols bigger than L,(R), with eigenvalues’ sequences
still belonging to RO(Z ), and construct an unbounded generating symbol a such that
Ya € €oo(Z)\RO(Z,).

L
heCpu®)|ZHEb (e (R

h(x) = f(2) \(H " ”;.( ) o7

r/ \

o € RO(Z,) T % Yare

Yﬁ (0 = YaX10.M

e ———fecit)

14
U=y,

Figure 0.1: Scheme of the proof of density: the upper chain represents the approximation
of o(j) for large values of j (j > N), and the lower one corresponds to the uniform
approximation of the sequence o -y, multiplied by the characteristic function yo n.



Finally Chapter 4 provides a detailed description of the Toeplitz operators with
horizontal symbols acting on the Fock space Z2(C"), where a function f € L (C"),
is called horizontal if for every h € R" the equality f(z) = f(z —ih) holds a.e. z € C".
Equivalently, f is a horizontal function, if there exists a € L, (R") such that f(z) =
aRez),a.e.ze C".

It is well-known that the Bargmann transform is an isometric isomorphism from
Lo(R?™) onto the Z2(C") [53], and hence plays an important role in the description of
Toeplitz operators. Furthermore, this transformation relates the Toeplitz operators acting
on Z2(C") with pseudo-differential operators acting on Lo(R%"). The Bargmann trans-
form is important in our approach, because the main idea as in the above model cases is
to get spectral functions y{;’ such that the Toeplitz operators are unitary equivalent to
the multiplication operators M v acting on Lo(R™).

First of all, we find a decomposition of the Bargmann transform B* as composition
of two unitary operators which allows us to diagonalize the Toeplitz operators with
horizontal symbols. More precisely, if ¢(z) = a(Rez) is a horizontal function, then the
Toeplitz operator T', is unitary equivalent to the multiplication operator BT, B* = )/g I,

where the spectral function yZ : R® — C is given by the formula

(8) Ygl(x):n_n&fna(%)e_(x_yﬁdy, x€R™.

A consequence of the latter diagonalization is that the C*-algebra 9},,(L ) of Toeplitz
operators whose defining symbols are horizontal is isometrically isomorphic to the C*-

algebra ¢! generated by
9 o = {yll ae L@®).

This result is generalized for functions invariant under translations over certain kind

of subspaces of C". Recall that R?” has the standard symplectic form
woz,w)=y-x' -y - x,

for z = (x,y) and w = («/,y'). It is well-known that a linear subspace £ of the symplectic
space (R?",w,) is a Lagrangian plane if for every pair (z,w) € & x &£, one has that
wo(z,w) = 0. The simplest examples of Lagrangian planes of (R%",w) are both coordinates
planes: Z, =R" x {0} and £, = {0} x R".

If we identify iR" with {0} x R”, then the horizontal functions can be viewed as
functions invariant under translations on the Lagrangian plane £, = {0} x R". Thus, it is

natural to study Toeplitz operators with defining symbols invariant under translation on
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INTRODUCTION

Lagrangian planes .Z of (R?",w,), for brevity we call them Z—invariant symbols. That
is, @ is a L—invariant function if for every h € £ one gets that p(z —h) = ¢(z) a.e. ze C".

Using the symplectic rotations U(2n,R) we give a criterion for a function to be £—
invariant, and thus relate Toeplitz operators with this class of defining symbols with
Toeplitz operators having horizontal symbols. In fact, given any Lagrangian plane £ we
can find a symplectic rotation B € U(2n,R) with B.Z = {0} x R” and a unitary operator Vg
such that for every £—invariant function ¢ € Lo,(R?") there exists a horizontal function

¥R € Loo(R?™) (depending on ¢ and £) such that
V1T VB =Ty,.

Therefore, the C*-algebra 9 (L) generated by Toeplitz operators with Z—invariant
symbols is isometrically isomorphic to 9;,,(Ls). Thus, both C*-algebras 9 (L,) and
Thor(Loo) are isometrically isomorphic to the C*-algebra ¢ generated by &%, see (9).

The main result of this chapter states that the uniform closure of & coincides
with the C*-algebra Cy ,(R") consisting of all bounded functions o: R* — C that are
uniformly continuous with respect to the usual metric on R". As a consequence, we obtain
an explicit description of ¢:

G =y, (R™).

Notice that, unlike the angular and radial case, here we do not need to approximate
functions o € Cy ,(R") at the infinity by spectral function yﬁl . It follows from the structure
of the functions y{l{ , that they can be written directly as convolutions of functions a * H,
where H is the n-dimensional heat kernel H(x) = 7" 204",

This chapter is organized as follows: in Section 4.1 we write the Bargmann transform
as a composition of two unitary operators. In Section 4.2 we introduce the horizontal
operators and horizontal Toeplitz operators, give some basic properties of them, including
a criterion of a operator to be horizontal. Also, we prove that the Toeplitz operators with
horizontal symbols are unitary equivalent to the multiplication operator M v acting on
Lo(R™). In Section 4.3 we introduce the Z—invariant functions, and establish a criterion
of a function to be Z—invariant. We show that the C*-algebra 9 (L) generated by the
Toeplitz operators whose defining symbols are Z-invariant is isometrically isomorphic
to Th0r(Loo). Finally, in Section 4.4 we prove the main result of this chapter. The proof
is based on approximations of bounded uniformly continuous functions by convolutions
used in Chapter 3. That is, using Dirac sequences and Wiener’s division lemma, we show
that the functions from Cy ,(R") can be uniformly approximated by convolutions & * b,
where £ is a fixed L1(R")-function whose Fourier transform does not vanish on R"™. This

construction is applied when £ is the n-dimensional heat kernel H.

8



CHAPTER

PRELIMINARIES

In this chapter we collect several preliminary results, the main purpose here is to fix
notation and to facilitate references later on. All the results are well known [14, 20, 29,
42, 50, 53, 54].

1.1 Weighted Bergman space

Let IT be the upper half-plane of the complex plane C:
(1.1 [I:={zeC: Imz > 0}.

Given the weight parameter A € (—1,+00), we introduce the following standard measure

on the upper half-plane IT:
dviz)= A+ D2y dydx, z=x+iy.

The weighted Bergman space df(l’[) consists of all analytic functions belonging to
Lo(I1,dv,). An important property of the Bergman space is contained in the following

lemma.

Lemma 1.1. Let n €{0,1,2,...}. Given a compact set K cIl, there is a constant C = C, k 5,
depending on n, K and A € (—1,+00), such that

(1.2) suplf ™) = CIIf 1l g2y
zeK A

forall f € df(l’[).



CHAPTER 1. PRELIMINARIES

Proposition 1.1. The Bergman space ,df(l'[) is a closed subspace of Lo(I1,dv}y).

Proof. Let (f,)nen be a fundamental sequence of analytic functions from @ff(l'[) converging
on Lo(I1,dv)) to certain function f € Lo(Il,dv;). By Lemma 1.1 we see that (f;,),en con-
verges uniformly on every compact subset K of II to certain analytic function g. However,

by (1.2) we have for each compac subset K of I that
F(2)-g(2)I < lim |f(2)= fm(@)| = Cip im If = 2 =0, z€K.
Therefore, f is analytic and belongs to aff(l'[). [ |

From Lemma 1.1 is follows as well that for any fixed point z € II the evaluation
functional v,(f) = f(2) is linear and bounded. Thus by the Riesz-Fréchet representation
theorem there exists a unique element K, ) € df(l’[) such that v, = (-,K; 5). The function
K, ) is the so-called Bergman kernel at a point z, and it is well known that is given by

the formula

A+2
_) w eIl
w-—z

(1.3) K, (w) = (

Observe that from the above definition it follows that the Bergman kernel func-
tion K, (w) is analytic in w and anti-analytic in z (analytic in z). On the other hand,
since the Bergman space df(l’[) is a closed subspace of Lo(Il1,dv)), there exists the
unique orthogonal projection B) from Lo(I1,dv,) onto ,ssz(l'[). This projection is called

the Bergman projection and has the integral representation

(BAf)(z) = iM? f _fw)

- (z _w)/“_z dv,l(w), f € Lg(H,dV,l).

Representations of the weighted Bergman space

The Bergman space can be characterized as the set of Lo(Il,dv,) functions which satisfy

the Cauchy-Riemann equation
0
(1.4) —f()=0.
0z
Passing to polar coordinates we have the tensor decomposition
2/1
(1.5) Ly(,dvy) =Ly (R, - dr| 8 Ly ([o,n], Z (A+1)sin*0do)|,
/2

and rewriting (1.4) we have that the Bergman space df(l’[) is the set of all functions

satisfying the equation

0o .0
(1.6) (ra+z%) p(r,0)=0.

10



1.1. WEIGHTED BERGMAN SPACE

Let Uy ) = # (M ®1d) be the unitary operator from
A

2
Ly (R*,r“ldr) ® Loy ([O,n], ;(m 1)sin?0do

onto Ly (R)® Lo ([O,n], Z(A+1) sin/lHdH), where M : Ly (R*,r**1dr) — La(R) is the
Mellin transform defined by the rule

1.7 (My) (x):= 5 y(r)dr.

1 f _
S r
Vaor JRr,

Its inverse Mellin transform M1 : Lo (R) — Ly (RY, rA+l dr) is given by

1 A
1.8 Mt ::—f B=2 Ly (&) de.
(1.8) (M~ y)(r) Nor T 2 y(d)de
Observe that
(M ®14) r£+ii)(M‘1®Id):(ié—(&+1) Id+ii:i((f+(&+1)i Id+i).
or 00 2 00 2 00

Hence, the image of the weighted Bergman space df(n) under the unitary operator Uy
sy )= Uy (27 (ID)

it is the closed subspace of Lo (R)® Lo ([0, 7], % (A+1)sin6 de) , consisting of all functions
w(¢,0) satisfying the equation

A 0
+[(=+1]i|Id+ — 0)=0.
e+ (5+ 1)) ras g weeo
The general Lo (R)® Lo ([O,n], % (A+1)sin*0 d@)-solution of this equation has the form

@ )

w(&,0) = , €L,
V2MA+1) (&)
where the function c¢): R — R, is of the form
/4
(1.9 calx) = f e 205in'0do, xeR.
0
and

”1//(/1’9)||L2(R)®L2([o,n],2ﬂ(/l+1) sint0do) ~ I 1L,m

11
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Lemma 1.2. Let c)(x) be the function given in (1.9). The following properties hold.

(1) The function cj can be written as

(1.10) ey = LT De xeR

2| (452 + i)

(i1) The function c is infinitely smooth, for every p =0,1,2,... its p-th derivative is given

by the integral

P b4
(1.11) d d”}f’“)z(—z)la f 0P ¢~20 5int 0 o,
X 0

moreover, it has the following asymptotic behavior at +oo:

dPcy(x) B (-2’TA+p+1)

(1.12) dxP @)t

as x— +oo.
Proof. (i) By definition of Beta function and by [22, Eq: 3.892-1] one gets that:

b1 T
c;L(x):f e‘zxesinAGdH:f eP? sin""10d6H, where pf=2ix,v=A+1,
0 0

neign me™” al(A+2)e ™
gl o (L5, 0t T2 A+ DB (82 +ix, 52 i) 2A(A+1)|r(%+ix)|2
al'(A+1)e ™™

_2A|r(%+ix)|2’

x €R.

(ii) Since c)(x) = e 2" ¢, (—x) for each x € R, we give the proof of the equality for the case
x=0. Given p €{0,1,2,...} note that 872 sin* 9 < OP sin’ O for each 6 € (0,7) and each
x = 0. Thus, by the Leibniz’s rule ¢ is infinitely smooth and

dPcy(x)
dxP

T
:(—2)Pf 022 29s5in*0dO, xeR.
0

On the other hand, the asymptotic behavior is easily analized using the Watson’s Lemma
(Proposition A.1). Writing 67 sin*6 as 4P (%)A, where (Sig(’))L is infinitely smooth

near 0, we obtain:

T ITA+p+1
f 0P e 2*9gin* 0 d6 ~ M, as x — +oo,
0 (zx)ﬂt+p+1

thus the proof is completed. n

Example 1.1. Let z € Il and K, ) the Bergman kernel. Consider

A+2 )
) , w=re'?,

Kz,l(w) = (

rel® —z

12



1.1. WEIGHTED BERGMAN SPACE

by [22, Eq: 3.194.3] we have that

A+2 —ix+4 A+2 u-1

r l r

- dr = dr
V2 Jr, (ret® —z)A+2 (=222 Jr, (rB+ 1)

iA+2

- 7( _E)/l+2 \/g

(U1K () =
BB(u,v—u),

l(oc )

where u = —ix + 245= “2 ,B= —% = ,U=A1+2 and B is the Beta function. Hence

il+2

n(_g)uz\/g
jA+2 x_(%] |1"(M +wc)|2

m(-2)M2V2 T(A+2)

(i) 2 (e e (%))( e | ( Mﬂx)lz)

( (z)lx+u\/§ al'(A+2)

oy — ix
el(a )

_(M]
2 A+2 A+2
(U12K5 )@, @) B(%—ix, - +ix)

z

pila-m i

z

Now, since (™) 52 i**2, by (1.10) item (i) we have for each a € (0, 7) that

—xa— Z(AT) (E)—ix—[%)
(1.13) (U120 K, )(x,a) = S , X€R,.
M2 (A +1) ey (x)

Lemma 1.3. The unitary operator Uy y is an isometric isomorphism of the space Lo (H, du )1)
onto Lo(R)® Loy ([O,n],2’1 1+1) sinAGdG) under which the Bergman space .ssz(l_[) s

mapped onto

~(e+(3+1)i)o
(1.14) A= { f&e : , f€ L2(R)}.

V2 A+ 1) (@)

Let Ro 1 : La(R) — /14 < Lo (R)® Lz ([0,7],2* (A + 1) sin* 0 d) be the isometric em-
bedding given by
F@e )P
VZAA+Der®

The adjoint operator R , : o/, , < La(R)® Ly (10,71,2* (A + 1) sin* 6 d9) — L2 (R) has the

form

[2MA+1) [ —(e=(2£2)i)o .
(1.16) (R&ﬂ/!)(f)z %fo w(,0)e (E (/122) )9 sin?0do.

(1.15) (Roaf)(&,0)=
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Note that

RyR)=1r,m®) :L2(R) — L2(R);
RoR; =By, : La®)® Ly ([0,7,2" A+ 1) sin 0d0) — 11

where Bl, 2 =U 1, ABH’ AUl_, }L is the orthogonal projection from

Lo(R)® Lo ([O,n],2’1 A+1) sin’tede)

onto <1 3.

Now the operator R, =R ,U, , maps the space La(Il,d uy) onto La(R), and its restric-
tion

Ral2an = RoaUys: AR — La(R)
is an isometric isomorphism. The adjoint operator
R;=U;{ R, : La(®R) — (1) < Lo(IT,d uy)
is an isometric isomorphism from Lo(R) onto the Bergman space ,fo(l'[).

Remark 1.1.

R,R) =1dr,m) : L2(R) — La(R);
RiR, =B, :Ly(I,du) — (D)
Theorem 1.2. The isometric isomorphism R} =R U, ;: .ssz(l_[) — Lo(R) is given by

£&)
V2T + 1) cp(6)

(1.17) ®if)= [ )
R

Corollary 1.1. The inverse isomorphism R, =R U, , :df(l’[) — Lo(R) is given by

(1.18) (R1g)(x) = @ (P p@du@), xer,

V2MI(A+ 1) ep(x) fn

where the Lebesgue measure (1) is given by

2* .
(1.19) dua(z) = —r**tsin?0drde, z=re'.
T

14
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Example 1.2. Let z € [T and K, ) be the Bergman kernel of ,ssz(l'[). Since R, =R ,U
by (1.13) and (1.16) we get

A +2);
(RAK )@) = (R Uy 1K, ))(x) = 2 C(j(:)l) f (U1K 2)(x,0)e (x—(¥]1)9 sin*0de
ZA(/1+].) —x0— z ( ) —ix— AT 142) -
_ f e_(x_(T)l] sin*0d6
cax) Jo 203 (A + 1)ca(x)

= —ix—(%) T
= @ e 20 5int0do, xeR.

¢¥2(x) V24 1(1 +1) Jo

1L,A°

Therefore

@ )
(1.20) (RAK; 2 )(x) = ., x€R.
VM4 +1)epx)

Example 1.3. By (1.18) we have for each A > 0 that

_ 1 _\-ix-(%2) , 452
(RADpp9) (x) = N =Ty f(z) 2)hT p(hz)dua(2)

_ e j @ =) p2)du2)
V2MIA+ D)mey(x) J L

=A™ (R 1)(x) = (Mg, R1p)(x).

This clearly forces

(1.21) R,D, ,R;=Mg,, VheR,.

1.2 Fock spaces

In this section we recall some elementary results about Fock spaces. First, we consider
the entire functions on the n-dimensional complex plane and some basic properties of
them. For more detail see for example [41, 53]

Let C" be the n-dimensional complex plane. The addition, scalar multiplication
and conjugation are defined on C"* componentwise. We will use the following standard
notation: z=x+1iy =(21,29,...,2,) € C";

n n n
z-w:szwk; 2222'22222; 1z12=2- leklz.
k=1 k=1 k=1
Consider the following partial differential operators
o 1(0 .o o 1[0 .o
@_2(__ _) E_j:é( )

(1.22)

ox; oy ox; ' Oy;

15
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Definition 1.1. Let © < C" be a open set. A function f: © — C is called holomorphic (on
O) if f € C1(0) and satisfies the system of partial differential equations

0
(1.23) 6_£(2):O’ forl<j<nandzeC".
Zj

We denote by A(0) the space of holomorphic functions on ©.

The following proposition is a generalization of Theorem 2.2 in [45] and was proved
by Miroslav Englis, [16, Proposition 1] for & C C", and by Folland [21, Proposition 1.69]
for 0 =C".

Proposition 1.2. Let © be a domain in C", 6 ={zeC":z€0}, and F be an analytic
function on @ x @ such that
F(z,2)=0, ze0.

Then F vanishes identically on G x 0.

A function f is said to be entire when it is analytic on the whole complex plane C".
i.e., f € A(C"). For n =1, it is well known that a function f is entire if and only if f has

a power series expansion
(0,0)
f@)=) azz"
n=0

with infinite radius of convergence. Also, it is well known that every bounded entire
function is a constant function (Liouville’s Theorem) which is a consequence of the most

fundamental result in complex analysis, namely, the identity theorem.

Proposition 1.3 (identity theorem). Suppose that f is an entire function. If there is a
point z € C such that f™(z)=0 forall n=0,1,2,..., then f =0 on C.

A multi-index a = (ay,...,a,) is an element of Z". Next, we fix the standard multi-
index notation:

ap ag

a _ an. SO _ 501 5=02
20 =z 29 0 2,";

24 =21"2z9

ERC R R A

= n.
‘2n

n
al=aq!l--a,l; lal=) aj;
Jj=1
olal —a o'l
aaf: a1 a9 a ; a f: =1 A9 —an °
621 622 -0z, 0z1"10z9"%---0z,""

16



1.2. FOCK SPACES

The lack of bounded entire functions is one of the key differences between the theory
of Fock spaces and the more classical theories of Hardy and Bergman spaces. Next, we
introduce the Fock spaces and give some their basic properties. For any ¢ > 0 let us

denote by g, - the normed Gaussian measure on C" with respect to the density

(1.24) dgn(2) = (%)ne_dzmd,un(z),

where p,, is the usual Lebesgue measure on Lo(R?"). Observe that dgn ¢ is a probability

measure, in effect

cy\n & 2n p+oo cr? n
(C")=f dg,(2)=|= f f e Tirdr.df;=(2c)"
Sn.c o 8n.c (n) 1'1:[1 o Jo jar;auv; S jl:[l 0

+00 c 9
2
e irjdrj=1.

Definition 1.2. The Fock space (also known as the Segal-Bargmann space, see [2, 8, 19,
44]) 93(@”) consists of all entire functions that are square integrable on C" with respect

to the Gaussian measure (1.24).

Let {ea}aez» be the system of functions in 97?((12”) given by the rule

Clal
(1.25) eq(2) = —Yz“, aeZ”.
al

By the integral formula of the Gamma function one can easily check that (2%,2°) =6, .

Since every function f € gg(@”) has an expansion in Taylor series

0°f (0
f) =) %z“, zeC",

n
aeZ’

it is easy to see that span{e,: a € Z?} is a dense subset of 93(@”). Thus the system

{ea}aez» form an orthonormal basis for 93(@”).
Proposition 1.4. The Fock space 93(0:") is a closed subspace of Lo(C",dgp o).

For any fixed z € C", the evaluation functional y,(f) = f(2) is linear and bounded.
Thus, by the Riesz representation theorem there exists a unique element %, . € 9?(@”)
such that v, = (-, k; 4); that is

f(z) = f(w)kz,g(w)dgn,c(w)
Cn
The function %,  is given by the formula
(1.26) k,(w)=e"" weC".

17
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Since the Fock space 37:2((12”) is a closed subspace of La(C",dg, ), there exists the
unique orthogonal projection P, . from Lo(C",dg, ) onto 9(;2(@"’). This projection is

called the Bargmann projection and has the integral representation

(1.27) (Pncf)2)= fcn fw)e™* dg, (w), fe€ La(C",dgyc).

1.3 Toeplitz operators

Next, we introduce the Toeplitz operators acting on either the Bergman spaces or the
Fock spaces and give some their basic properties.

Let A Lo(0) be the closed subspace of Lo(@) consisting of holomorphic functions on
the non-empty open set & < C, with reproducing kernel K and let P: Lo(0O) — A Lo(0)
be the orthogonal projection from Lo(@) onto AL 2(0) given in terms of the reproducing
kernel K as

(Pf)(z):f@f(w)K(z,w)dmu(w), f € Ly(0).

Now, suppose that ¢ € L.(0), define a linear operator T : #Lo(0) — A L2(0) by
Tof =P(@f), fe€HLsyO).

This is called the Toeplitz operator, with defining symbol ¢, acting on A Lo(0). So, the
Toeplitz operator is one of the form “multiply then project”, that is, multiply by ¢ and
then project back into the holomorphic subspace. The following proposition summarizes

some the most important properties of Toeplitz operators.

Proposition 1.5. [50, Theorem 2.81] Let a,f € C, and f,g € L(0), then
(a) the operator T is bounded on F€L2(0) and |Tr|l < IIf lloo,
(b) Tocf+ﬁg = C{Tf+,3T s

(c) T}’ﬁ = Tf'

If ¢ is an unbounded function, then we can still define the Toeplitz operator Ty in

the same way, except that Ty, may be undounded.

Example 1.4. (i). If #£Ly(0) = ,fo(l'[), then the reproducing kernel K is given in (1.3)
and P is the Bergman projection from Lo(I1,dv)) onto .szif(l’[). Thus the Toeplitz operator
T, with defining symbol ¢ € L(Il) acting on df(l’[) has the integral form

(Tyf)2) = i’“zf Mdvl(w), zell

m(w— E)/l+2

18
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(i1). If #L9(0) = 93(@”), then the reproducing kernel K is given in (1.26) and P is the
Bargmann projection from Ly(C",dg, ) onto 93(@”). Thus, the Toeplitz operator T,
with defining symbol ¢ € L,,(C") acting on 9?(@”) has the following integral form

(T(pf)(Z):j;n dw)f w)e“?dg, (w), zeC".

The next theorem shows that there is a one-to-one-correspondence between the

Toeplitz operators and their bounded defining symbols.

Proposition 1.6. Let ¢ € Lo(0). Then Ty is zero if and only if ¢ =0 almost everywhere
in0O.

The corresponding result for Toeplitz operators acting on Bergman spaces over the
unit disk is well known (see for example [50, Theorem 2.8.2]). To extend it to the upper
half-plane case, we introduce the Caley transform

V. I1—D, w-—»w_l

)
w+1

the corresponding unitary operator U : .ssz(l]])) — .szi/%(l_[) given by the rule
Q= (o V)Y

and observe that U™ TyU =T joyp-1.

On the other hand, the corresponding result (Proposition 1.6) for Toeplitz operators
acting on Fock spaces was proved by Berger and Coburn in [9, Theorem 4]. There are
other classes of functions such that Proposition 1.6 is true. For example, Folland [20,
P. 140] extended Proposition 1.6 for Toeplitz operators T, acting on Fock space gg(@’l)
whose defining symbols a belong to the class of unbounded functions which satisfy the
inequality
(1.28) la(2)| < conste5|2|2, for some 6§ < 1.

1.4 Berezin transform

The Berezin transform [7, 8, 52] associates smooth functions with operators on Hilbert
spaces of analytic functions. The Berezin transform plays an important role in the

description of properties of bounded operators, particularly for Toeplitz operators.
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Definition 1.3. #L2(0) be the closed subspace of Lo(@,d 1) consisting of holomorphic
functions on the non-empty open set & < C (or C"*), with reproducing kernel K. Let S be

a bounded linear operator on #Ly(©0), the Berezin transform of S is defined by

o~ _ (SKZ’KZ>
(1.29) S(Z)_—<K2,Kz> , zZ€O.

In particular, the Berezin transform of a function ¢ € Lo(@) (denoted by ¢) is definded
as the Berezin transform of the Toeplitz operator T,. Likewise, ¢ = TT,)

For each bounded operator, the Berezin transform is a bounded real-analytic function
on a domain of C". Indeed, observe that if S € B(A#L(0)), then Se L (0), and by the

Cauchy-Schwarz inequality it satisfies the relation
(1.30) 1S lloo < IS

Example 1.5. The Berezin transform of an operator V € @(df(l'[)) is the function
V: I1 — C defined by

(1.31) V(2):= (2Imz)M 212 f (VKZ’A)(W)dm(w), z€ell,

n (w_z)/1+2
where K ) is the Bergman kernel (1.3). Thus for V =T, with ¢ € L, (II) one gets for

every z € [1 that
pw)

~ _ A+2
(p(z)—(2Imz) Lm

dv,l(w).

Example 1.6. The Berezin transform of a bounded operator S on the Fock space 9762(6")
is the function S: C" — C defined by

(1.32) §(z) = e~s” L (Sk)w)e T dg, (w), zeC".
Thus, for S = Ty with ¢ € Lo,(C") one has for every z € C" that
B(2) = <P B PTGy (1) = fm Pw)e=CDOEFD g (1)
-1, </>(w)e_‘|z‘w|2d,un(w).

Proposition 1.7 (injectivity of the Berezin transform). Let /Lo(0) be the closed
subspace of Lo(0,d ) consisting of holomorphic functions on the non-empty open set
O < C", and let S be a bounded operator on #AL(0). S =0 if and only ifg(w) =0 for all

weao.
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1.5. APPROXIMATION OF UNIFORMLY CONTINUOUS FUNCTIONS BY
CONVOLUTIONS

Proof. If 8 = 0, then S(w) = 0 for all w € @ trivially. Conversely, suppose that S(w) =0
forallwe@. Define F: 6 xC — C by F(z,w) =(SK#,K,), z,w € 0. The function F has

an integral representation as
Flz,w) = f@ (SKNOKQdp() = f@ (SK)OK(2)du), zwe0.

From this observe that F is analytic in the first variable, that is, for fixed w € @ the

function z — F(z,w) is analytic on 0. Furthermore, using that
F(z,w) = <K§,S*KZ> = (S*KZ,KE>,

we see that F' is analytic in the second variable. It follows from the fact for an analytic
function g on @ the function w — ﬁ is analityc on @. On the other hand, F(z,z) = 0 for
all z € 0, thus by Lemma 1.2 one gets that F(z,w) =0 on @ x 0. Equivalently, (SK,,)(z) =
(SK,,,K,) =0 for all z,w € 0, and hence SK,, = 0 for w € ©. Now, given an arbitrary
f € #(0) and w € O we have

(S*w)=(S"f,Kw)=(f,SKy) =0.

Thus S* =0, and therefore S = 0. |

1.5 Approximation of uniformly continuous

functions by convolutions

In this section we recall a technique that permits us to approximate bounded uniformly
continuous functions by convolutions with a fixed kernel satisfying Wiener’s condition.
We could not find Proposition 1.9 in the literature, but it is based on well-known ideas and
can be considered as a variation of the Wiener’s Tauberian theorem. The constructions of
this section can be generalized to abelian locally compact groups.

Let f: R" — C. Recall that the function Qf : [0, +oo] — [0, +oc] defined by

(1.33) Qr(8) :=sup{lf(x)— f(YI: x,y€R, d(x,y) <6}

is the modulus of continuity of f with respect to the usual metric d on R (or simply
modulus of continuity). Hence, if f: R® — C is a bounded function, then f is said to be
uniformly continuous whenever lim Q¢(5) = 0. The set of all such functions is denoted by

Cpu(R). In fact, it is well-known that Cj ,(R") is a C*-algebra with pointwise operations.
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The convolution of two complex-valued functions on R” is itself a complex-valued

function on R” defined by:

(1.30) ()@= [ fOee-ydy, wer.

It is well known that the convolution of /" and g exists if f € L1(R") and g € L,(R") where
1<p < +oo. In this case f * g € L,(R") and

If=gllp<Iflilglp.
Proposition 1.8. L1(R") * Lo(R") < Cp ,(R™).
Proof. Let f € L1(R") and g € L,(R"). Then for A € R" one obtains
I(f * g)x+h)—(f * g)x)| < - [flx—h-t)-fx-0)l|g®)ldt

<ligleo | | 1f(x=h =)= f(x=0) dt

" gl [ 17~ = £l d
= lglolLaf ~fl1, xR

Here 7;, denotes the translation operator by A,(see (A.18)) . Thus, since for each f € L(R")
the mapping 2 — 75 f from R” into L1(R") is uniformly continuous (Corollary A.1), we
have that f * g belongs to Cy ,,(R"). H

In Proposition 1.8 we can change by an equality. i.e., L1(R") * Lo(R") = Cp ,(R") (see
[33, p. 283, 32-45]). Therefore, any function in {& * f : f € Lo(R")} belongs to Cy ,,(R").

Proposition 1.9. If k € L1(R") and E@t)#0 foreach teR", then {k+f:feL(R")}isa
dense subset of Cyp, ,(R").

Proof. By Proposition 1.8 every function in {k * f : f € Lo(R)} belongs to Cy ,(R). Next,
the density is proved by means of Wiener’s Division Lemma and Lemma A.1 as follows:
Let (h,,)nen be a Dirac sequence such that the functions h, have compact supports. For
example, (h,),en can be defined by (A.22). Since k(t) # 0 for each ¢ € R, by Wiener’s
Division Lemma (Theorem A.4 ) for every n € N there exists ¢, € L1(R) such that A, =
k * q,. Now, given y € Cy, ,(R), we construct a sequence (wy),en by the rule w, =g, *y.
Then w, € Lo, and the sequence (k * w,),cn takes values in the set {& * f: f € Loo(R)}.

Finally, applying the identities
k*wn:k*Qn*u/:hn*w
and Lemma A.1, we conclude that this sequence converges uniformly to v. [
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1.6. SYMPLECTIC SPACES AND LAGRANGIAN PLANES

1.6 Symplectic spaces and Lagrangian planes

This section contains a brief summary of basic concepts of the theory of the symplectic

group and related topics.

Definition 1.4 (symplectic group). A real 2n x 2n matrix B is said to be symplectic if

it satisfies the conditions:
(1.35) BTJB=BJBT = J,

where J is the “ standard symplectic matrix” given by

0 I,
(1.36) J = )

Here 0 and I,, are the n x n zero and identity matrices. The set of all symplectic matrices
is denoted by Sp(2n,R).

A symplectic matrix is invertible and has determinant 1. In fact, if B € Sp(2n,R) ,
then B~! € Sp(2n,R). It is well-known that Sp(2n,R) form a group, and is called the (real)
symplectic group.

Recall that a skew-symmetric bilinear form w is a bilinear form such that
w(z,w)=-w(w,z)

for all z,w € R?". Notice that if w is a skew-symmetric bilinear form, then all vectors z

are isotropic. i.e., for every z € R%" one gets that
w(z,z)=0.

Definition 1.5. A bilinear form on R?” is called a symplectic form if it is a non-degenerate

skew-symmetric bilinear form.
The special skew-symmetric bilinear form wo on R%" defined by
(1.37) wolz,w)=y-x'—y - x,

for z = (x,) and w = (x/, y') is symplectic; it is called the standard symplectic form of R?".
The standard symplectic form wgy can be re-written in a convenient way using the

symplectic standard matrix J given in (1.36):
(1.38) woz,w)=Jz -w, z,weR>”.
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Let : R?" — R2" be a linear mapping. The condition
wo(Y(2), y(w)) = wo(z,w),

is equivalent to BT JB = J, where B is the matrix of v in the canonical basis of R?", that
is, B € Sp(2n,R). We can thus redefine the symplectic group by saying that it is the group

of all linear automorphism of R?” which preserve the standard symplectic form wo.

Definition 1.6 (Lagrangian plane). A n-dimensional linear subspace £ of R?" is
said to be a Lagrangian plane of the symplectic space (R%?,w,) if wo(z,w) = 0, for every

z,w € £. The set of all Lagrangian planes in (R?",w,) is denoted by Lag(2n,R).

Example 1.7. The simplest examples of Lagrangian planes of (R2",w) are both coordi-
nates planes: £, =R" x {0} and £, = {0} x R", and so is the diagonal A = {(x,x): x € R"}.

Let .4 (n,C) be the algebra of complex matrices of dimension n. Denote by U(n,C) the

unitary subgroup of .#(n,C) consisting of all complex matrices U of n x n such that
U'U=U0U"=1,,

where U* = ﬁT. Define the mapping t: .4 (n,C) — .4 (n,C) by the rule

b

. 1 —
B A

where the matrix C € .4 (n,C) is the form C = A +iB with A and B real matrices. It is

easy to see from the definition of : that it is an injective mapping.
Lemma 1.4. The mapping  given in (1.39) satisfies the following properties:

® Forevery U,V ,e 4 (n,C) and a,p € C the mapping i is lineal. That is, (aU + V) =
auU)+BuV).

e For every U,V e 4 (n,C) the mapping | is multiplicative. That is, (UV) = (U )(V).
e For every U € ((n,C) one gets that (U*) = (U)T.
Define the set U(2n,R) of real matrices n x n by the rule

(1.40) U@2n,R) =1(U(n,C)).

U(2n,R) is called symplectic rotations of (R, w).
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Recall that if C = A +iB € U(n,C), then CC* =1,,. Equivalently

I,=(A+iBXAT - iBT)=AAT + BBT +i(BAT - AB”).
That is, AAT + BBT =1, and BAT = ABT. Thus by (1.39) one can see the symplectic
rotations U(2n,R) as:

_J(A -Bj. T T _ T _paT
(1.41) U@n,R)= B Al AA" +BB* =1, and AB" =BA"', A,Be.#/(n,R)
Proposition 1.10.

U@2n,R) = Sp(2n,R)Nn O(2n,R).

Proof. Let U € U(2n,R). Then by (1.41) there are A,B € .4 (n,R) with AAT + BBT =1,
and ABT = BAT such that

A -B
B A
Therefore
r (A -B\[AT BT\ (AAT+BBT ABT-BAT\ (I, 0
v = T AT|~ T T T T|~ = Ign.
B AJ\-B' A BA' —-AB* AA' +BB 0 I,

Analogously, UTU =1,,. This implies that U € O(2n,R). On the other hand,

AT BT
(_BT AT

B A
-A B

UJUT =

BAT-ABT AAT+BBT)\
—(AAT +BBT) BAT —ABT|

In the same way is showed that UTJU = J. Thus U € Sp(2n,R) and hence
U2n,R) c Sp(2n,R)NnO(2n,R).

Now, if V € Sp(2n,R)n O(2n,R), then VJVT = J and VVT = VTV =1,,. We thus get that
VJ =JV, from this equality it is easy to see that the matrix V belongs to U2~n,R). W

By (1.35) and Proposition 1.10 a 2n x 2n matrix B belongs to U(2n,R) if it commutes
with the standard symplectic matrix o/, that is:

(1.42) BJ =JB.

Proposition 1.11 ([14, Section 4.3]1). The group of symplectic rotations U(2n,R) acts
transitively on Lag(2n,R). That is, for every pair (£,%’) € Lag(2n,R) x Lag(2n,R), there
exists B € U@2n,R) such that £ =B<%'.
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CHAPTER

C*-ALGEBRA OF ANGULAR TOEPLITZ OPERATORS
ON WEIGHTED BERMAN SPACES OVER THE UPPER
HALF-PLANE

In this chapter we show that the uniform closure of the set of all Toeplitz operators
acting on the weighted Bergman space over the upper half-plane whose L.,-symbols are
angular coincides with the C*-algebra generated by the above Toeplitz operators and is
isometrically isomorphic to the C*-algebra VSO(R) of bounded functions that are very
slowly oscillating on the real line in the sense that they are uniformly continuous with

respect to the arcsinh-metric p(x,y) = |arcsinhx — arcsinhy| on the real line.

2.1 Angular Toeplitz operators

In this section we characterize the angular Toeplitz operators acting on weighted
Bergman spaces. The characterization is based on the notion of angular operator. So, we
will first introduce the angular operators and study their basic properties, including a
simple criterion for an operator to be angular.

Let %(df (IT)) be the algebra of all linear bounded operators acting on the Bergman
space df(l’[). Given heR,,let D) 4 € %(.sz{f (IT) be the dilation operator defined by

(2.1) Danf2)=h'% f(hz).

Next, we introduce the angular operators acting on the Bargman space df(l'[).
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CHAPTER 2. C*-ALGEBRA OF ANGULAR TOEPLITZ OPERATORS ON WEIGHTED
BERMAN SPACES OVER THE UPPER HALF-PLANE

Definition 2.1 (angular operators). An operator V € ,%(,ssz (IT)) is said to be angular
or invariant under dilations if it commutes with all dilation operators. That is, for every
heR,

(2.2) VD =Dy4V.
We denote by 2[, the set of all angular operators:

(2.3) Ar:={VeB(AEM): VYheR, DyiV=VD,;}.
Proposition 2.1. 2, is a C*-subalgebra of B(<£} (I1)).

Proof. Let S,V €2 and A >0. Then (S+V)D,, =8SDy,+VDy =DypS+DyV =
D)y n(S +V), we thus have that S +V € 2. On the other hand, TSD,, = TD} ;S =
D) ,TS, hence T'S € 2, this implies that () is a subalgebra of 9/3(&%/12 (IT)). The mapping
V — V*, where V* is the adjoint operator of V, defines an involution on %), furthermore,
for each V € 2[; one has that

V'D,,=(Di3V) =@upV) = (VDym) =D, V"

Thus 2A; =2(3. Now, given V € 2A,, there exists (V,,),en © 2y such that V,, =—> V., but
since D 4V, = V,D, ), and D, is a unitary operator, we get that D, ;V, = V,D,
converges to D, 3 V. Therefore, by uniqueness of the limit we conclude D ,S =V D, ;.
That is V € 2. [ |

The following theorem gives a criterion for an operator to be angular and is analo-
gous to the Zorboska’s result [52] for radial operators and Herrera Yanez, Maximenko,

Vasilevski [31] for vertical operators.

Theorem 2.1 (criterion of angular operators).
LetV € @(df (ID), h € Ry and Mg, be the multiplication operator by the function Ej(x) =
h**. The following conditions are equivalent:
(1) Ve,
(ii) RAVRZME;, = MEhR;LVR;"1 for all h e Ry,
(iii) there exists ¢ € Loo(R) such that V = RZMgbR;{,

(iv) the Berezin transform V depends on arg z only.
Proof. (i)— (ii) Let V € 2, by (1.21) one gets that:
R;LVR;MEh = RAVDMLR; = RADMLVR/’{ = MEhRAVR/’{, h>0.
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2.1. ANGULAR TOEPLITZ OPERATORS

(ii)— (iii) Observe that for every 1 € R we have E.(x) = ©,(x) = e™1_Therefore, by
(ii) one gets that

R,VR;Mg =R,VRiMy =My R,VR}=Mg R,VE;.

Thus, by Proposition A.4, there exists ¢ € Loo(R) such that R, VR = M.
(iii)— (iv). By (1.20) we have for every point w = peiﬁ,
lil%52)-)p
(BAKuw)(x) = ——— , xelR.
p(T)ﬂx V2 LA+ 1ep(x)

Therefore, if the operator V is diagonalized by R, like in (iii), then its Berezin transform

may be written in terms of ¢» and depends only on the angle f of w:

. 1 2sin**2 B p(x)e 2P
Vw)= R,K 2dx = dx.
W)= @) fR"’(x)' MA@ de == e aw
(iv)— (i) Given z,w €1II, and h € R,, by (1.3) and (2.1)
. . A+2 —— —-(A+2) (142
(D s K )@2) = b Ky p(h2) = iM2h'F @ —ha) M2 =1 (% - z) _p (% )K%,;L(z)-
2

Using this formula we calculate the Berezin transform of the operator Dj-1 ;VDp, 3:

(VD rKwp,DapKuwp) _ (VKw 1,Kw 1)
(DrAnKwr,DrnKwa) (Kw 2,Ku 3)

w

h

Dy 1VD,,w) = =V(+)=Vaw).

Since the Berezin transform is injective (Proposition 1.7), we have D ;,-1VD, ;, =V. R

Definition 2.2 (angular functions). A function g € L(Il) is said to be a homogeneous

of order zero or angular if for every h > 0 the equality g(hz) = g(z) holds for a.e. z € I1.

To describe Toeplitz operators with angular symbols we need a simple criterion of
angular functions.

The following lemma gives a criterion for a function on R to be almost everywhere
constant. We use there the Lebesgue measure, which is denoted by ug to indicate on R

and uge to indicate on R2. The proof can be found in [31, Section 3, Lemma 3.2].

Lemma 2.1. Let f: R— C be a measurable function. Then the following conditions are
equivalent:
(i) There exists a constant c € C such that f(x) = ¢ for almost all x € R.
(i) pp2(D) =0; where D := {(x,y) eR2: f(x)# f(y)}.
(iii) ur(Dy) =0 for almost all x € R; where D, :={y e R: f(x) # f(y)}.
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Lemma 2.2 (criterion for a function to be angular). Let g € L, (I). Then the
following two conditions are equivalent:
(i) for every h € Ry, the equality g(hz) = g(z) holds for a.e. z in II,

(i) there exists a in Ly(0, 1) such that g(z) = a(argz) for a.e. z in I1.

Proof. (i) — (ii) Suppose that for all 4 € R, the equality g(z) = g(hz) holds for a. e. z €11,
that is,

(2.4) un(An)=0, where A= {(x,e) eR, x (0,7): g(xe'®) # g(hxew)}.
Define @ : R? x (0,7) — C by

0, if i0y _ i0).
D(x,y,0)= 1 g(xe‘ /=8l . )
1, ifg(xe’e) # g(yele),
and note that for all 2 € R,
(2.5) {(x,0) € I1: ®(x, hx,0) # 0} = {(x,e) eR, x (0,7): g(xe'®) # g(hxeig)} = Ay,

Accordingly, by (2.4) for all A € R, we get ®(x,hx,0) =0 a. e. (x,0) € I1, and by Tonelli’s

theorem

f D(x,y,0)xydOdxdy =~ f ®(x, hx,0)x3hdO dx dh
[RZ% x(0,7) |R2_2+ x(0,1)

= f h ( f <I>(x,hx,9)x2d,un(x,0)) dh =0.
R, \Jo
Therefore, for almost 6 € (0,7)
0=z ({(x, ) € B2 : g(xe®) # gy} = fR | ®©(x,y,0xydxdy
:f D(el,e*,0)e e® dtdu.
R2
It follows that
0 = uge ({2, u) e R% : d(e’,e%,0) #0}) = uge ({(,u) e R?: goexp(t+i0) # goexp(u +i6)})

a.e. 0 €(0,m). Now, by Lemma 2.1 there exists a constant c¢(6) such that goexp(¢+:60) = c(0)

for almost ¢ € R, for this reason the bounded function a : (0,7) — C given by

o {0(9), if gz ({(2,u) €R2 : goexp(t+i0) # goexpl(u +i0)}) = 0;
2(0) =

0, otherwise,
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2.1. ANGULAR TOEPLITZ OPERATORS

satisfies the equality g(z) = a(arg z) for almost all z € I1.

Conversely, let g € Ly (Il), if there exists a € Lo,(0,7) such that g(z) = a(arg z) for
almost every z € I1, then for all A € R, we get g(hz) = a(arg(hz)) = a(arg z) = g(z) for
almost all z e I1. [

Denote by </, the C*-algebra generated by all L,,-functions which are angular on
I1, and introduce the set T) (/) of all Toeplitz operators acting on df(l’[) with defining
symbol in «f,.

Proposition 2.2. [50, Theorem 10.4.16] Given g € <y, with g(z) = a(argz), the Toeplitz
operator T, acting on <f f(H) is unitarily equivalent to the multiplication operator y, 21d =

R ATGRZ acting on La(R). The function y, 1(x) is
1 m
(2.6) Yo%) = —— f a@)e > sin"0dh, xeR,
calx) Jo

and the operators R} and R, are given by (1.17) and (1.18), respectively.

Example 2.1. For 1 =0 and a(0) = ¢?*? we get that

g 2
x x . X
= - = 5Tl 55 xeR.
o l—x 1+x 1+x

e29(i—x)

_ 2 T 20 910 ;4 _ 2%
Va2 | e 0= 1 o S

Therefore, Ycos(2,0(x) = Re(ya,0(x)) = 777, and ¥sin@),0(x) = Im(yq 0(x)) = #12 In particu-

lar, [yqllo = 1.
The following result provides a criterion for a Toeplitz operator to be angular.

Proposition 2.3. Let g € Lo(I1). The Toeplitz operator Ty is angular if and only if g is

angular.
Proof. If Ty is angular, then for every A > 0 one gets that
Tg=D,,TgD,-1=Tg,, wheregy(z)=ghz).

Thus, by Proposition 1.6 we obtain that g(z) = g,(2) = g(hz) almost every z € I1. Therefore
g is an angular function by Lemma 2.2.

Conversely, if g is an angular function on I, then by Lemma 2.2 there is a € L,(0,7)
such that g(z) = a(argz) a. e. z € I1. Hence by Theorem 2.2 and the criterion of angular

operators (Theorem 2.1) we conclude that the Toeplitz operator T'; is angular. |

Denote by I') the set of all “ spectral functions"
(2.7) F,1 = {Ya,/l a ELOO(O,H)}.

31



CHAPTER 2. C*-ALGEBRA OF ANGULAR TOEPLITZ OPERATORS ON WEIGHTED
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Corollary 2.1. The C*-algebra 9)(fy,) generated by all Toeplitz operators T, with sym-
bols a € 9, is commutative and is isometrically isomorphic to the C*-algebra generated
by T').

2.2 Very slowly oscillating property of the spectral

functions

In this section we start with the definition of the class VSO(R), we also introduce a
metric {) on R which is the most “natural” metric for the functions y, j(Proposition 2.5 )
and which is given by formulas (2.10) and (2.11). Unfortunately we could not find any
simple and manageable expression for this metric. Thus, we need to find another metric
which, first, is equivalent to the above one, and, second, admits as simple as possible
expression, preferably in elementary functions. This is the way how the arcsinh metric
appeared. It is uniformly equivalent to the first metric, i.e. they induce the same uniform
structure. In Proposition 2.6 we prove the upper estimate only, as the proof of the lower
estimate is more complicated (and the lower estimate holds only for small values of the
metrics). In consequence, for every a € L,,(0,7) the corresponding spectral functions
Ya, is Lipschitz continuous with respect to the arcsinh metric p, where y, ; is given in
(2.6). We finish this chapter showing that the set of all spectral functions I'y is dense in
VSO(R). As was mentioned in the introduction the key idea of the proof is to approximate
functions from VSO(R) by y, , near +oo and —oo. After that, the problem is reduced to
the approximation of Cy(R) f:unctions by appropriate y, 1; the latter problem is solved
using the duality and the analyticity arguments (Theorem 2.3).

Very slowly oscillating functions on the real line

Definition 2.3. Let f: R — C. The function Q,, ¢ : [0, +0c0] — [0, +oo] defined by
(2.8) Q. r(6):=sup{lf(x) - FNI: x,y€R, px,y) <6}
is called the modulus of continuity of f with respect to the arcsinh-metric p, see (5).

Definition 2.4 (very slowly oscillating functions). Let f: R — C be a bounded
function. We say that f is very slowly oscillating if it is uniformly continuous with respect

to p, i.e. if(lsin(l)Qp,fw) =0.
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In other words, f is very slowly oscillating if and only if the composition f osinh is
uniformly continuous with respect the standard Euclidean metric on R. The set of all
such functions is denoted by VSO(R).

Example 2.2.
The function sin(arcsinh) belongs to VSO(R).
In fact, since the Sine function is Lipschitz con-

tinuous with respect to the usual Euclidean

metric on R, we have for every x,y € R that /\
I I =
|sin(arcsinhx) — sin(arcsinhy)| < p(x, y). \ \/

Also, by the same argument applied above, it

is easy to see that the function cos(arcsinh)

belongs to VSO(R).
Figure 2.1: The graph shows the slow oscillation

of the function sin(arcsinh)
Proposition 2.4. VSO(R) is a closed C*-subalgebra of Cy ,,(R) with pointwise operations.

Proof. Using the following elementary properties of the modulus of continuity one can

see that VSO(R) is closed with respect to the pointwise operations:

Qp5f+g = Qp’f +Qp?g’ Qp,/lf = |/,1’|Qp,f’
Qp e =18l +1flocQpgs 2, 7=,
The inequality Q, £(6) < 2|lf — gllco +2p,5(6) and the usual “%-argument” show that the

space VSO(R) is topologically closed in Cp ,,(R). [ |

VSO-property of the spectral functions

It is useful to write the spectral functions y, 1 given in (2.6) as the values of the integral

operator
/4
Yar(0)= fo W(O)K \(x,0)d0,
where
—-2x0 : A
0

(29) K/l(x,e): ﬂ, (x,H)ERX(O,TL'),

calx)
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Proposition 2.5. Let {): RxR — [0, +00) be given by

(2.10) Calx,y)= sup [yea(x)=ya (W)
a€Ly(0,1)
lallo=1

Then for every x,y € R
/A
(2.11) {Ax, ) = fo K (x,0) ~ Ky, 0)] d6.

Proof. Let x,y € R. Then for every a € L(0,7) such that ||a| . =1 we have

[Ya, 1) = Yar ()| = Uo a(0)[K(x,0) - K)(y,0)1d0

< fo K (x,0)—K)(y,0)|d0.

On the other hand, taking 6((0) = sign (K (x,0) — K)(y,0)) we get that by € Lo.(0,7) with
Ibollcc =1 and

/A
020090 2 () — Yo )] = fo 1K 1(x,0)~ K1 (y,0)] db. n
Let us mention some symmetry properties of K, and (.

Lemma 2.3. For every x € R and every 60 € (0, 1),
(2.12) Kj(—x,0)=K)(x,m—-0).

Proof. First we make the change of variables 1 = 7 —6 in the integral (1.9) defining c;:

T

b/
(2.13) ca(—x) = f e?* 5in0do = 2™ f e 2N sinMr —n)dn = e¥c ) (x).
0 0

Hence, given x € R by (2.13) one gets for every 6 € (0,7) that

e sint g 3 e 2x(n=0) gintg 3 e~ 2xm=0) gind(7 — 0)

Krlo0)= o calx) ca(x) ca(x)

=K;(x,m1—0). |

Lemma 2.4. (i) {a(x,y) = {a(—x,—y) for every x,y €R.
() If x <0<y, then { (x,y) < {a(x,0)+ {200, y).

Proof. (i) Given x,y € R by Lemma 2.3, we have

T T
(a(=x,—y) = fo K (—x,0)— Ka(—y,0)|d6 = fo K, m—0) — Ky, 7 - 0)|dO
=10
P20 i, ).
(i1) follows from the Triangle Inequality. [ |
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Lemma 2.5. Let ay(0) = 0. The function x: [0,+00) — (0,00), given by the formula
(2.14) K(x) = 2745, 2(x)V x2+1 ,
is continuous and bounded.

Proof. The function «, being the product of two continuous functions, is obviously contin-
uous. In [50] it is proved that y, 1(—x) + v, 1(x) = 7 for every a € L,(0,7) and every x € R.
In particular, y4,,1(0) = 7/2 and thus x(0) = 7. Since

¢ (x)V x2+1

x €R,
ca(x)

x(x)=—

the asymptotical behavior of x(x) as x — +oo follows from Lemma 1.2. By (1.12) with

p =0and p =1 we obtain:

) Ira+1) ! () 2I'(A +2) aS % 4
)~ ——, @)~ ————, — 400,
A (2x)A+1 A (2x)A+2
Thus,
, T+ 2) oM IVaZ+1
lim x(x)= lim =A+1,
x—+00 x—+00 T'(A+ 1)(2x)/1+2
and « is bounded. [ |
Lemma 2.6. If ay(0) =06, then
0K (x,0)

dO <4y (x), xER

(2.15) f”
0

Proof. By (1.11) and (2.9) we have that

0x

OK(x,0 ¥ sin’ g
Ax,0) _ e”™sin [2¢4(0)0 + ¢/ (x)] = —K(x,0)
0x ¢ (x)

= 2K(x,0) [Yap1(x) — 6]

20

2y pe sinA,Bd,B]

ca(x)

Therefore

0K (x,0)
0x

[

do < 2(%0,1(@ f K)(x,0)d0 + f HK;L(x,H)dH)
0 0

=2 (Yao,A (%) + Yag,1(x)) = 4 4,1(x). |

Proposition 2.6. There exists C > 0 such that {)(x,y) < Cp(x,y) for every x,y € R.
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Proof. Due to Lemma 2.4, we only have to consider the case y > x = 0. By Cauchy’s

Mean-Value Theorem there exists ¢ € (x,y) such that

Calx,y) _ f” Er,0) = Kay,0) |10 4Yaoa(c)V 2 +1,
plx,y) Jo ,

arcsinh(y) — arcsinh(x)
and the result yields by Lemma 2.5. [ |

Theorem 2.2. ') C VSO(R).

Proof. Let a € Lo(0,7m). The inequality [|y41llco < llallcc shows that the function vy, , is

bounded, and Proposition 2.6 implies that y,  is Lipschitz continuous with respect to p:

1Ya,1(%) = Ya x(D)] = llalloCalx, y) < Cllalleop(x,y), x,y€R.
13
x2+1

Consequently, the composition 7o arcsinh belongs to VSO(R), but it is not Lipschitz

Observe that the function n(x) = is uniformly continuous, but not Lipschitz on R.

continuous with respect to p and therefore does not belong to I'y. |

2.3 Density of '} in VSO(R)

In this section we show the uniform density of the set of all spectral functions I'y in
VSO(R). That is, we will prove that the closure of I'y in the topology genereted by the
uniform metric d(f,g) = ||f — glle coincides with VSO(R). To do that, we need the main
result of the paper [30] and some technical lemmas.

Note that given x,y > 0, by Cauchy’s mean value theorem the arcsinh-metric p given

by (5) satisfies the inequality
(2.16) p(x,y) < |In(x) —In(y)|.

Therefore, if f € VSO(R), then f|g, € VSO(R,), where the class of functions VSO(R. ) was
defined in [31] and mentioned in Introduction. Furthermore, Herrera Yafnez, Hutnik,
and Maximenko [30] have shown that for every o € VSO(R,) and € > 0 there exists
b € Lo (R,) such that

sup ‘a(x)—yz A(x)‘ <eg,
x€R, ’

where

(2x)/1+1 0o

b(t)e 2t dt R, .
T+ )y 20¢ , XERs

(2.17) Yp (%) =

The above considerations lead to the following lemma.
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Lemma 2.7. Let f € VSO(R). Given € > 0 there exists b € L(R,) such that

(2.18) sup ‘ @) -y, A(x)‘ <e.

xeR;
Lemma 2.8 (approximation of y by y’ at +o0). If b € L(R,) and a = y(0,2/2)b, then
(219) x1_1>IPoo ’YZ,A("C) - Ya,]t(x)’ = 0

Proof. Given x =0, we get

(2x)’1+1 9/1 e—2x6
I'(A+1)

[e.0]
YZ,A(-?C)_Ya,/’l(x)‘ < ||b||oof0 ’X(o,n/z)KA(x,H)—

< 1800 (T1(x) + I2(x)),

where

(zx)/l+le—2x9 sinAB
K 0)- do
A(x,0) A+l ;

/2
T, (x) = f
0

(Zx)/1+1 ooe_er
T'(A+1)Jo

Ip(x) = 0" — x(0.1/2)5in* 0| d6.

By (2.9) we have

Ii(x) = f”
0

where c, is given in (1.9). By (1.12) with p =0, we obtain lim,_. ., I1(x) = 0.

e 20gintg  (2x)M*1e20gint g
cy(x) IrA+1)

@M e
ra+1 |’

a0 |1

On the other hand, the integral Is can be written as

QML [ 72 _, o |(sinf)\} T(A+1,x7)
I(x) = 0 ~1|df |+ ——2—,
20 =101 fo ¢ ( 0 ) T(A+1)
where I'(a,x) is the incomplete Gamma function. We see for every 0 € (0,7/2) that the
function
(s20)" 1 ifA=0;
(sin@)’l ‘
~1l =
0 o
1- (829" if-1<1<0
is infinitely smooth near 0 and vanishes in 0. Then by Watson’s Lemma (Proposition A.1)
and by definition of I'(a,x) we get lirp Is(x) =0, which yields (2.19). [ |
X—+00
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The above lemmas permit us to show that each 0 € VSO(R) can be approximated by

functions from the class I') for large values of |x|.

Proposition 2.7. Let 0 € VSO(R) and € > 0. Then there exist a generating symbol a €
L (0,7) and a number L > 0 such that

(2.20) sup |U(x) —ya,g(x)| <e.
|x|=L

Proof. Given o € VSO(R) and € > 0 there exist b € L (R,) such that (2.18) holds. By
Lemma 2.8 there exist ¢ € Lo(0,7) with ¢(8) = 0 for each 0 € [7/2,7), and L1 > 0 such that

(2.21) sup |o(x) = yea(x)| < sup ( U(x)—)/g’;t(x)‘ + )Yz,l(x)—)’c,x(x)“ <e.

x=L1 x=zLy

For large negative values of x, we consider the function x — o(—x) that also belongs to

VSO(R). Applying the previous arguments to this function we find a function g € L,(0, )
and a number L9 > 0 such that g vanishes in [7/2, 1) and

(2.22) sup [o(=x) —ygr(x)| < €.

x=Lo

Now define d € L(0,7) by d(0) = g(m — 0). Then d vanishes on (0,7/2], and the identity
Yd,(x) =yg a1(—x) holds. Hence (2.22) can be rewritten as

(2.23) sup |o(x)—ygr(x)l <e.

x<—-Log

Since ¢ vanishes near 7 and d vanishes near 0, the corresponding spectral functions
fulfill the limit relations vy 1(—o00) = 0 and yg 1(+00) = 0 (see [50, Chapter 14]), and there
are constants L3, L4 > 0 such that

€ €
sup |y ()=, sup |yg (x| < .
x<-Lg 2 x=Ly 2
Taking a =d + c € L(0,7) and L = max{L1,L9o,L3,L4}, we get (2.19). [ |

Now we are going to show that the continuous functions on R vanishing at the infinity

can be approximated by spectral functions. To do that, we need some technical lemmas.

Lemma 2.9. Let (X,</) be a measurable space, u: of — C be a complex measure, D be
a domain in C and K: D x X — C be a function such that for every w € X the function

z— K(z,w) is analytic, and for every compact C in D

(2.24) supf IK(z,w)|d|ul(w) < +oo.
zeC JX
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2.3. DENSITY OF I'y IN VSO(R)

Then the function g: D — C,

g(2)= fXK(Z,w)du(w),
is analytic on D.
Proof. Since the function z — K(z,w) is analytic, we get for any triangle A in D that

(2.25) K(iz,w)dz=0, welX.
aA

Now, by (2.24) we can interchange the integrals by Fubini’s theorem, thus

f g(z)dz:f fK(z,w)d,u(w)dz:ff K(z,w)dzdu(w) = 0.
0A 0AJX X JoA

Therefore by Morera’s theorem g is an analytic function on D. [
From now on, we write K, as
K)(x,0) = [ 5(x,0)sin’ 0,

with

—2x60

(2.26) Fax0)=5— (6 ecRx (0,7
ca(x)

Lemma 2.10. Let p € Z,, and let v be a finite regular Borel complex measure on R. If
0 €(0,7/2), then

(2.27) sup f | P F ax, )| dIvI(x) < +oo.
R

o<asn-06

Proof. By (1.12) the function F ; : R x (0,7) — (0, +00) given in (2.26) has an asymptotic
behavior
(2x)/'l+1e—2x9

(228) F,1(x,0) ~ W, asx — +o0.

Hence, given p €{0,1,2,...,}, a €[d,n— 5] with 6 € (0,7/2) and x € [0, +00), we get

(2x)l+1+pe—2xa (zx)l+1+pe—2x5

P ,a)| ~ < <M — +00.
[ F e, o)) ~ —oor 2PT(A+1) hps  ASTTTOO

However, from Lemma 2.3 we have F j(x,a) = F y(—x, ), where f=n—a €[6,71—-0].
Therefore F )(x,a) is bounded for all a € [6,7 — 6]. |
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Proposition 2.8 (Leibniz integral rule for differentiation under the integral
sign: complex case). Let X be an open subset of R, (2, 2f) be a measurable space and
u: of — C be a complex measure. Suppose [ : X x Q — R satisfies the following conditions:
(i) For every x € X, the function w — f(x,w) is |ul|-integrable.
(i1) For almost all w in €, the derivative f, exists for all x in X.
(iii) There is a |ul-integrable function 0: QO — R such that |f (x,0)| < 0(w) for all x € X.
Then for all x in X

d
—f f(x,w)d,u(w):f fx(x,w)d p(w).
dx Ja Q

Proof. The Leibniz’s rule is well known in the case of a non-negative measure, but
every complex measure u can be written as a linear combination of four non-negative
measures [i1, U2, i3, 4, With pj <|ul. The conditions (i) and (iii) justify the application of

the Leibniz’s rule for each one of the measures p;. |

Lemma 2.11. Let v be a regular complex Borel measure of finite total variation on R.

Define a function y): R— C by

(2.29) walx) = F alx,1/2), x€R.

Denote by A the domain A={w e C: |Imw]| <} and define ®): A — C by
(2.30) D (w) = fR e W) (x) dv(x).

Then ®, is analytic on A and for every p €{0,1,2,...}

(2.31) @(0) = (i) f@ 2Py (x) dv(x).

Proof. By Lemma 2.3, ¥, is an even function: ¥ (—x) = v (x).
Every compact subset of A is contained in a strip of the form R+ i[-L,L], where
0< L <n. For every w € C with |[Imw| <L and every x € R,

|x| L 1

xIm(w) B
Nz — 0 ———
wa(lx)) el¥lm=L) ¢, (|x|)

|e—ixw

yalx)l=e wa(lx))<e

The condition 7 —L >0 and Lemma 1.2 guarantee that the latter expression defines a
bounded function on R.
Since the complex measure v has a finite total variation, Lemma 2.9 assures that ®,

is analytic in A. Thus, by (2.27) and the Leibniz’s rule (Proposition 2.8) we get
dP . .
()= —— (f wlx)e dv(x)) = (—i)pf Py p(x)e™ ™ dv(x). [
dzP \Jr R
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Denote by % the Banach subspace of L,,(0, ) consisting of all bounded functions a

having limits 0 at 0 and 7.
Lemma 2.12. If a € %, then y, ) € Co(R) and
lim y,(x)=1lima(@)=0, and lim y,(x)=1lima(0)=0.

x—+00 6—0 X——00 i g
Proof. The proof of this fact follows easily from Lemma 7.2.3. of [50] [ |
Theorem 2.3. The set of functions
(2.32) Tlom =1{Yanr:a e}
is dense in Cy(R).

Proof. First we note that if a € %, then y, ) € Co(R) by Lemma 2.12. Thus Fflo S Co(R).

By Hahn—Banach theorem, the density of I’ ?0 2 in Cy(0,7) will be shown if we prove
that any continuous linear functional ¢ on Cy(0,7) that vanishes on F?O 2 is the zero

functional. Thus, let ¢ € Co(R)* be a linear functional such that ¢(y, ) = 0 for each
a € Ly(0,m). By Riesz-Markov representation theorem, there is a regular complex Borel

measure v of finite total variation on R such that

0= p(yan) = fR er@dv(x), @€ Lo(0,7).

In particular, if ag = y[5,6 € % with 0 < <0 <7, then by
/2 b/
[ [ taoomionasanicos [ [ Kixorasamic =i,
R R
we can apply Fubini’s theorem and get
0 0
f YaoA(x)dv(x) = f f Ky(x,a)dadv(x) = f fKA(x,a)dv(x)da =0.
R RJB B JR

The function a — [ K)(x,a)dv(x) is continuous (in fact, it is differentiable, see below),

therefore by the first fundamental theorem of calculus we obtain that for every 6 in (0, )
fRK,l(x,H)dv(x) =0.

Since K (x,0) = F 1(x,0)sin? 0 and sin6 > 0, this is equivalent to

(2.33) fRFA(x,H)dv(x):O.
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By Lemma 2.10 and Leibniz’s rule, the function in the left-hand side of (2.33) is differen-
tiable, and the derivation with respect to 6 commutes with the integral sign. Derivating

(2.33) with respect to 6 we obtain for every 6 in (0,7) and every p in {0,1,2,...}
(2.34) fpr,l(x,H)dv(x) =0.

R
Putting 0 = 7/2 in (2.34) we obtain for every p in {0,1,2,...}:

(2.35) f 2P yr(x)dv(x) =0,
R

where ) : R— C is given by v (x) = F (x,7/2). Denote by @, the Fourier transform of

the measure ) dv:

@A(f):fRe_ix‘CWA(x)dv(x).

Lemma 2.11 shows that the function ®, is analytic on a domain containing R, and
(2.35) means that CDE{U)(O) =0 for every p €{0,1,2,...}. Therefore ®, = 0. By the injective
property of the Fourier transform of Borel measures (Proposition A.2), we conclude that

v =0 and hence ¢ = 0. That implies the density of I“(A0 2 in Co(R). [

Proposition 2.7 and Theorem 2.3 imply together the main result on density.
Theorem 2.4. The set I is dense in VSO(R).

Proof. Let f € VSO(R) and € > 0. Our aim is to find a function ¢ in L,(0,7) such that
If —7Yeallo < €. First, using Lemma 2.7 we find a function a € L,(0,7) and a number
L > 0 such that sup, -y, |f(x)—)/a,1(x)| < £. In general, the function f -7y, may not
belong to the class Cy(R), and we will slightly modify it. Let g: R — [0, 1] be a continuous
function such that g(x) =1 for each x € [-2L,2L] and g(x) = 0 for each x e R\[-2L,2L].
Define h € Cy(R) by

f(x) = yar(x), if |x| < L;
h(x) =(f = Yo, )®)g(x) = { (f(x) —ya1(x))g(x), ifL <|x|<2L;
0, if x| > 2L.

Second, applying Theorem 2.3 we choose b € L(0,7) such that |A -y 2llco < €/2. Now
define ¢ € L(0,7) by ¢ =a + b. Then for every x in [-L,L] we obtain

I£ () =ye a0 = 1f(x) = Yar(x) = yp 2 ()] = |A(x) = yp 2 (x)] < €/2,
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and for every x in R\ [-L, L]
|f () = Ye ()] = (£ (%) = Ya 1 ()L = g(x)) + (f (x) — Y, 1(x))8(x) — Vp ()]
<) =Y (1 - g(x) + |h(x) = yp 2 (%) < €.
Therefore ||f —ycaloo <€. [ ]

Corollary 2.2. The C*-algebra generated by I') coincides with VSO(R), and the C*-
algebra 9)(ofy,) generated by angular Toeplitz operators is isometrically isomorphic to
VSO(R).

Recall that the hyperbolic metric in the upper half-plane II is given by

|21 —22| + |21 — 22|

n(z1,22) =In 21,22 €I

— ’
|21 — 22| — |21 — 22|

Now, if we restrict it to the upper half-circle {z = %%, 0 € (0, 7)}, then this is given by the
formula
n(e'%1,¢92) = |Intan(01/2) — Intan(62/2), 61,02 € (0, 7).

The change of variable ¢ = Intan(6/2) = —arcsinh(cot ) inspires the following example.

Example 2.3. We present an example of a function y, ) that has a typical “very slow

oscillation” at +co. Consider the generating symbol
a(0) = cos(In(tan(6/2))).

Then a(7—0) = a(0) and y, 1(—x) = Y4 1(x). Watson’s lemma implies that the asymptotical
behavior of y, 1(x) as x — +oo is determined by the behaviour of a near the point 0, and
tan(6/2) ~ 0/2 as 0 — 0. Using arguments similar to those in the proof of Lemma 2.8 we

see that as x — +oo,

R S Ry R ( Q) _ Re((2x)'T(1-i+A))
Yaa(x) = ca(x)fo 0"e cos ln2 df+o(1)= T+ D) +o(1).

With the change of variables x = sinh(z) and applying the limit relation |sinh(u)| ~
exp(|u|)/2 we obtain that:

o TA-i+ ) N
Ya,(sinh(u)) = A1) cos(lu| +In2+argl’'(1 -7+ 1)) +o(1),

as u — *oo.
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Numerical Proof using Wolfram Mathematica: the following numerical experiment
shows the approximation illustrated in the above example. The first graph represents the
function y4 2(sinhx) with a(¢) = cos(In(tan(¢/2))). The second one represents the function given by
the rule gamSinhApprox(x, 1) = 1

calx)
for A =1 and the last one represents the difference between these functions.
c[x_,1a_]:=Pi * Gammal[la + 1] * Exp[—Pi * x]/(2"1a * Abs[Gamma[1 + I * x +1a/2]]"2)
gamExact[x_,la_]:=
NIntegrate[Exp[—2 * x * t] * (Sin[¢]*1a) * Cos[Log[Tan[#/2]]],{t, 0, Pi}, WorkingPrecision — 60,
MaxRecursion — 40, PrecisionGoal — 6)/c[x,la]
gamSinhTable[xmin_,xmax_,npoints_,la_]:=

f 0*e =20 cos(In(0/2))d 0,
0

Module[{xs,ys, j},xs = Range[0, npoints — 1] * (xmax — xmin)/(npoints — 1);
Monitor[ys = Table[gamExact[Sinh[xs[[j]1]],1a],{j, 1,npoints}], j1;

Transpose[{xs, ys}]]

tab = gamSinhTable[0,25,101,1];

gamSinhInterpol = Interpolation[tab]; . N N N /,r
Plot[gamSinhInterpol[x], {x,0,25}] osf| [\ [ [\ |

- - \
05 ". / \ . /

\/ \/ VARV,

Expand[Integrate[Exp[—-2 * x * v] * v"1a * Cos[Log[v/2]], {v, 0, Infinity}, Assumptions — {x > 0,1a > —1}1]
2(—2+2i)—lax(—1+i)—1aGamma[(1 —i)+lal+ 2(—2—2i)—lax(—l—i)—laGamma[(1 +i)+1a]
(*multiplyby(2x)*(la + 1)andcomposewithExp(u)/2*)
gamSinhApprox[u_,la_l:=Abs[Gammal[1 +1a — I']] * Cos[u + Log{2] + Arg[Gammal[1 + 1a — I']]}/Gammal[la + 1]
Plot[gamSinhApprox[u,1],{u,0,25}] N N N /f

o5 [ ,l" \ f I". [

=05k

I\}"I \J \/ I'\/

Plot[gamSinhApprox[x, 1] - gamSinhInterpol[x], {x, 0,25}, PlotRange — All]

0.04 -

0.0z I—

-0.03 -
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ANGULAR OPERATORS

2.4 Strong density of Toeplitz operators in the

C*-algebra of angular operators

Let # be a Hilbert space. It is well known that the space of all bounded operators
%B(A) has various topologies. For example, the uniform operator topology , the strong
operator topology and the weak operator topology (see Section A.4). In the particular
case of A& = df(l’[) (or S = ZF2(C")) we can characterize @(%f(l'[)) ( B(F2CM))) by
means Toeplitz operators in the strong operator topology. The next proposition states
that the set of all Toeplitz operators with L,,-symbols is dense in ,%(,ssz (IT)) with respect
to the strong operator topology, this result was proved for Toeplitz operators acting on

the Bergman spaces over the unit disk by Miroslav Englis, see [16].

Proposition 2.9. Let #L3(0) = F*(C") or «;(I). Then the closure of {T¢: f € Loo(O)}
in the strong operator topology coincides with B(ALs(0)), where G = C" or 1L

Huang [35] proved that if T' € B(Ly(R)) commutes with the multiplication operator
M, where ¢ is a bounded strictly increasing (or decreasing) function on R, then 7' = M,
for some 1 € L(R). Now, since each angular Toeplitz operator T, is unitarily equivalent
to the multiplication operator M, , the above result of Huang implies that the von
Neumann algebra W* (T (/) generated by T (<) is maximal. In fact, W* (T (/) is
the closure of 9) (/) with respect to the strong operator topology (SOT) in %(df (IT)).

The space L(R) may be identified with the dual space of L(R). We denote by #
the corresponding weak-* topology on L(R). Since by Proposition A.7 the space Co(R)
is dense in (L (R),#') , the main result about density complement the Huang’s result
providing an explicit description of the SOT-closure of T) (/). To be more precise, in
this section we will show that the closure of T (/) coincides with %(ﬁf(ﬂ)) in the

strong operator topology.

Lemma 2.13. The closure of {MYM ta€ Lo(0, JT)} in the weak operator topology coincides
with {My: f € Lo(R)}

Proof. Let M, € {Mpr:f e Loo(R)}. By Lemma A.7 for each A € L1(R) and each € > 0 there
exists ¥ € Co(R) such that

€
(2.36) [Puth) = py(h)] < 5.
On the other hand, by Theorem 2.3, given € > 0 there exists a € % such that
€
2.37 - <—
( ) 1Yar =¥ loo 21hl
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Therefore, by (2.36) and (2.37) one gets for all A € L1(R) that

By 1 (B) = P ()| < |y 1 (B) = by (B)] + | by (B) = ()] < g +1Yar = ¥loo 12111

£ £
<-—+-=¢.
2 2

Now, for any f,g € Lo(R) we have
(M, , - M)f,8)| = ‘ fR Yar — P@f @g@dx| = ¢y, ,(B) - pph)| <e,
where h = fg € L1(R). This implies that
{My : f € Loo(R)} = WOT-closure ({M,,,: a €¥}).
Now, the proof holds by the following relation
My cae¥ci{M,, ,:aeLo(0,m)} c{M;: fe Lo(R)}. W

The next proposition states the density of T (<) in the C*-algebra 2(, with respect
to the strong operator topology in ,98(52{/12 (IT)).

Proposition 2.10. SOT-closure(T (<)) =2,.

Proof. By criterion of angular operators (Theorem 2.1) given V € 2, there exists ¢ €
L(R) such that V =R} M,R,. If T, is an angular Toeplitz operator acting on df(l’[) one
gets for each F,G € df(l'[) that

(2.38) (Tq—V)F,G) = «MYa,A _M(p)R/IF,R/lG>a

Now, due to a net in (L,(R),#’) converges if and only if its respective multiplication
operator in %(L2(R)) converges in the weak operator topology ( Proposition A.5) we
conclude by (2.38) and Lemma 2.13 that WOT-closure (9 (+4y)) = 2. Furthermore, note
that T (=f) is a convex subset of .%’(,fo (IT)), thus the SOT-closure and the WOT-closure
coincide by Theorem A.2. |
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CHAPTER

C*-ALGEBRA OF RADIAL TOEPLITZ OPERATORS ACTING
ON FOCK SPACES

In this chapter we study the radial Toeplitz operators acting on the Fock space Z2(C).
The principal theorem shows that the C*-algebra generated by radial Toeplitz operators
with L,-symbols acting on the Fock space is isometrically isomorphic to the C*-algebra
RO(Z,) of bounded sequences uniformly continuous with respect to the square-root-
metric p(j,k) = I\/f - \/E |. More precisely, we prove that the sequences of eigenvalues of

radial Toeplitz operators form a dense subset of the latter C*-algebra of sequences.

3.1 Radial Toeplitz operators acting on Fock spaces

In this section we compile some basic facts on Toeplitz operators with radial symbols
from Lo(C) acting on the Fock space %2(C). Essentially we repeat for the Fock space the
facts stated by Zorboska [52] for the Bergman space over the unit disk, adding some ideas
from [28]. The results of this chaptert can be generalized to radial Toeplitz operators on
the multi-dimensional Fock space F2(C",(¢/n)" e < *d v,(2)); in this case the eigenvalue
associated to the element ez of the canonical basis depends only on the length of the

multi-index f as in [27].

Let t € R, and U, : F2(C) — Z2(C) be the unitary operator given by the composition of

functions with the rotation by the angle ¢ around the origin in the negative direction:
(3.1) Uf)z)=f(e z), zeC.
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SPACES

For S € B(F?(C)) we denote by Rad(S) the radialization of S defined by
1 2n
3.2) Rad(S)= — U_;SU,dt,
27 Jo

where the integral is understood in the weak sense.

Definition 3.1 (radial operator). Let S € B(%2(C)). The operator S is said to be radial

if it is invariant under rotations, that is, if for every ¢ € [0,27)
(33) SUt:UtS.

Observe that S € B(Z?2(C)) is radial if and only if Rad(S) = S. The set of all radial
operators is denoted by R:

(3.4) R:={Se BF2(C): Vtel0,2n) U,S=SU}.
Proposition 3.1. R is a C*-subalgebra of B(F?(C)).

Proof. Let S,V €R and ¢ €[0,27). Then (S+V)U,;=SU;+VU; =U;S +U;V =U(S +V),
we thus have that S +V € R. On the other hand, TSU; =TU;S =U,;TS, hence TS €R,
this implies that R is a subalgebra of (%2 (C)). The mapping S — S*, where S* is the
adjoint operator of S, defines an involution on ‘R, furthermore, for each S € R one has
that

S*U,=(U_:8)" =(SU_,)" =U,S".

n—.oo

Thus R* =R. Now, given S € ﬁ, there exists (S,,),en € R such that S,
U:S,, = S,U; and U, is a unitary operator, we get that U.S,, = S,,U; converges to U;S
and SU;. Therefore by uniqueness of the limit we conclude U;S = SU;. Thatis SeR. R

S, but since

Example 3.1. Given 0 € R, one gets that
UtUQ :Ut+9 :UgUt, t€[0,27'[].
That is, Uy is a radial operator.

Remark 3.1. Let {e,},en be the monomial basis of #2(C). Therefore, given n € Z, and
zeC

) int n )
(3.5) Use,(z) = e,(e'z)= < —ei™e (2), tER.

V!

This implies that U, is a diagonal operator for each ¢ € R.
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Definition 3.2 (radial function). A function ¢ € L,(C) is called radial if there exists
a € Lo(R;) such that ¢(z) =a(|z]) a.e. z€C.

Definition 3.3 (the radialization of a function). Let ¢ € L, (C). The function rad(¢)
given by

1 2w .
(3.6) rad(g)(z) = —f pe'z)dt
271 Jo
is called the radialization of ¢.

By the periodicity of the mapping ¢ — e’!, the formula (3.6) can rewritten as

1 2m )
3.7 rad(p)(z) = —f p(e'|z]dt.
271 Jo

Lemma 3.1 (criterion for a function to be radial). A function ¢ € L(C) is radial if

and only if ¢(z) =rad(p)(z) a.e. z€C.

Proof. Suppose that ¢ € L, (C) is radial, i.e. there exists a € L, (R;) such that ¢(z) =
a(|z|) a.e. z € C. Therefore, by (3.7) and by Fubini’s theorem one gets that

1 2n 2n 9 . .
frad((p)(w)w”wmdg(w): %f f f P Lo (el %) e P d a drd B
C o Jr.Jo

1 2m 2n 9 . .
=57 )o fuquo rn+m+1e_ra(lemrl)e‘ﬁ(”_m)dadrdﬁ

2m
= (f a(r)r'”m”e_rzdr) (f e‘ﬁ(”_m)dﬁ)
R, 0

:f(p(w)w”wmdg(w), n,meZ,.
C

Now, since rad(¢p) — ¢ belongs to Lo(C,dg) and the span of {w™w": m,n € Z,} is dense in
Ly(C,dg), we obtain that rad(¢)(z) = ¢(z) a.e. z € C.

Conversely, if ¢(z) =rad(¢)(z) a.e z € C, then by (3.7) one gets that ¢(z) = rad(¢)(|z])
a.e. z € C, which means that the condition of Definition 3.2 holds with a(r) =rad(¢p)(r). R

From Lemma 3.1 and (3.7) it is easy to see that a function ¢ € L(C) is radial if and

only if for every ¢ € [0,27) one get that

A ) 1 27 . .
(e "z) =rad(p)(e z) = 2 f p(e’le™"z))d0 = p(2), a.e.zeC.
7 Jo

Lemma 3.2. If S € B(F2(0)) is a diagonal operator with respect to the monomial basis
{en}nen, then S = Rad(S).
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Proof. Let S € B(F2(C)). Then given m,n € Z.. by (3.5) one gets that
1 2m

(Rad(S)e,,en) = — U_;SUe,, e dt

27 Jo

1 2

1 2n . .
=5 5 (SUten,Utem)dtzgfO (Se™e,),e™ e, dt

1
_2710

{0, whenever m # n.

2m
Mt Qe o Vdt

(Se,,e,) whenever m =n.

Thus, if S is a diagonal operator with respect to the monomial basis {e,},cz, , then for
everyn,meZ.,

(S - Rad(S))en; em) =0.
Therefore, S = Rad(S). [ |

The next result provides a criterion for an operator to be radial. It mimics a result
given by Zorboska [52] for operators on the Bergman space over the unit disk.
Theorem 3.2. Let S € B(F2(C)). The following conditions are equivalent.

(i) Sen.
(i) S is a diagonal operator with respect to the monomial basis.
(iii) The Berezin transform S is a radial function.

Proof. (1)—(ii) Let {e,},en be the monomial basis of Z#2(C), and let S be a radial operator.
Thus S =Rad(S) and for every m,ne Z,

(Sen,em) =(Rad(S)e,,en) = an5n,m =anp{en,em),

where a,, = (Se,,e,).

(i1)—(iii) Let S be a diagonal operator. Then

——_  (Rad(S)K.,K.) 1 f%
Rad(S = = U_;SUK,,K,)dt
ad(®)z) (K.,K.) oK, Ky Jo UtV K
1 21 1 21
= SUK, U;,K,)dt = —— SK,_ -it,K, -i)dt
oK, Ky Jo OUHERUKDdt=omg ey Jy SRt Kaet)
1 2n 1 2 _ ”
= SK,,-it,K, -it)ydt=— S(e *2)dt
2n<U_tKZ,U_tKZ>fo OKoprit Kopydt =g | Sle2)

=rad(S)(z), zeC.
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Thus, Rad(S) = rad(g), but by Lemma 3.2 we have S = Rad(S). Hence the Berezin
transform of S is a radial function.

(iii)—(@) If S is a radial function, then S = rad(S) = Rad(S). Since the Berezin
transform is injective, we get that S = Rad(S), hence by (3.7) one has for n,m € Z, that

1 2n
U_aSUgen,em) =(U_gRad(S)Ugyen,enm) = ﬁf SUUgen, UUgen)dt
0

1 27

1 2n+a
=5 [ SUnaenUraemdt=o [ (SUpenUpen)dp

1 2n+a
- % a 27

={(Se,,en), acl0,2x].

. 1 2n
ez(n—m)ﬁ <Sen,em) d'B — _fo el(n—m)ﬁ (Sen,em>d,3

Therefore, since span{e,: n € Z.} is a dense subset of the Fock space #2(C), we have
U_;SU,; =8 for all t€[0,27n]. |

Proposition 3.2. Let ¢ € L(C). The Toeplitz operator T, is radial if and only if ¢ is a

radial function.
Proof. If ¢ is radial, then by Lemma 3.1 we have rad(¢) = ¢. Hence
(Tpen,em) = (rad(@le,,en) = fq:rad((p)(w)w”wmdg(w) =Ya(n)bpm, m,neZ,.

Thus, by Theorem 3.2 the Toeplitz operator T, is a radial operator.

Conversely, if T', is a radial operator, then by Fubini’s theorem for every f,g € & 2(C)

we obtain

1 21 1 2n
(Tyf,g)=(Rad(Ty)f,g)= 27 Jo (U_:TyU,f ,g)dt = %fo (@U:f, U_g)dt

1 2 . R 1 2n . I
= —f f(p(w)f(e_”w)g(e‘”w)dg(w): —f ffp(eltw)f(w)g(w)dg(w)
2n Jo Jc 2nJo Jc

= <rad(<p)f,g> = <Trad((p)f,g> .

Therefore, Ty, = Traq(p) and by Proposition 1.6 and Lemma 3.1 we have ¢ =rad(¢). W

3.2 Square-root-oscillating property of the

eigenvalues’ sequences

In this section we introduce the set of sequences RO(Z, ) and functions RO([0, +00)). We
also show that the sequences of the class RO(Z,) can be extended to functions of the class
RO([0, +00)). We finish this section showing that the sequences of eigenvalues belongs to
RO(Z,).
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square-root-oscillating sequences

Definition 3.4 (square root metric on Z.). Define p: Z, x Z, — [0, +00) by
(3.8) o(m,n)=|vVm - vn'|.
The function p is a metric on Z, because it is obtained from the usual metric
d: Ry xRy —[0,+00), d(t,u):=|t—ul,
via the injective function Z, — R,, m — y/m.

Definition 3.5 (modulus of continuity of a sequence with respect to the square-
root-metric). Let x = (x,),cz, be a complex sequence. The modulus of continuity of x
with respect to the square-root-metric g is the function Q, , : [0, +00) — [0, +oo] given by

the rule
(3.9) Qpx(8) =sup{lxp, —xp|: m,neZ,, p(m,n)<6}.

We denote by RO(Z.) the set of the bounded sequences that are uniformly continuous

with respect to the square-root-metric:
(3.10) RO(Z,) = {x €lo(Z4): (lsirr(l)QQ,x((S) = O} .
Proposition 3.3. RO(Z,) is a closed C*-subalgebra of €-o(Z).

Proof. Using the following elementary properties of the modulus of continuity one can
see that VSO(R) is closed with respect to the pointwise operations:

-QQ,U+(D = QQ,O’ + QQ,LD7 QQ,AU = |A'|QQ,O'7

QQ,O’(D = ”a)”ooQQ,U + ”UHOOQQ,(Da QQ,E = QQ,U,

The inequality Q, ;(6) < 2[l0 — @[ + Q2p,0(8) and the usua “%-argument” show that the
space RO(Z.) is topologically closed in Lo.(Z). [ |

The following simple criterion shows that the Lipschitz-continuity of sequences (with
respect to the metric p) can be described in terms of the differences between the adjacent

elements.

Proposition 3.4. A sequence o: Z — C is Lipschitz continuous with respect to p if and

only if

(3.11) sup (\/n+1 IU(n+1)—U(n)|) < +o00.

nezZ,
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Proof. Suppose that o is Lipschitz continuous with respect to p, that is, there exists
M > 0 such that |o(m) —o(n)| < Mp(m,n) for each m,n € Z,. Applying this inequality in

the particular case m =n + 1, one gets

vn+1 IU(n+1)—0(n)ISM(Vn+1—\/ﬁ)\/n+1 :%SM.

Conversely, suppose that sup, (Vn +1 |o(n+1)—0(n)|) = M < +oco. Hence, if n > m, then
we “join” m with n by the chain of the intermediate elements and estimate the differences

of the adjacent elements using the hypothesis:

n-1 LVE+1+VE
lo(m)—o(n)| < lo(k+1)—o(k)| = lo(k+1)—o(k)]
om)—o(n k;ncf o kz;n\/_ f o
n-1 \/— -1 1

=2 ;n\/ 1+VE - VE+L+VE

nZ (Vk+1—\/?)=2M(W—W):2Mg(n,m).

lo(k+1)—o(k)| < 2M Z

The same upper estimate can be drawn for m = n. Thus, o is Lipschitz continuous with

respect to p. |

Example 3.2.

[_n_
The sequence ( el )n€Z+ belongs to
RO(Z,). In fact, note for each n € Z, that

+ +1
v Haaeoy R
n+1 n+2

<vVn+2-vn
3 2
vn+2+yn "

Thus, by Proposition 3.4 the sequence ” @ R ¥
(\/ n+1 )n€Z+ is Lipschitz with respect to the Figure 3.1: The first 100 values of
metric g, sequence o(n)=/-15.

Vi Ve
n+1 m+1

<2p(m,n), m,neZz,.
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Sqrt-oscillating functions on R,

The square root metric p can be extended to the set [0, +00):

Q(xay): |\/3?_\/7|

We denote by RO([0, +00)) the C*-algebra of all bounded and uniformly continuous

functions on [0, +o0) with respect to the extended square root metric p:
(3.12) RO([0, +o0)) = {f € Cyp ([0, +00)): (1$in(1)Qg,f(6) = 0}.

Here Q, r is the modulus of continuity of the function f with respect to the metric p
(Definition 2.3). In other words, f € RO([0, +00)) if and only if the function A(x) = f(x?)
is uniformly continuous with respect the standard Euclidean metric on R. An simply
example is the function f(x) = cos(v/x).

If f is a function of the class RO([0, +00)), then, obviously, its restriction to Z, is a
sequence of the class RO(Z,). We are going to show that every sequence of the class
RO(Z.) can be obtained in this manner. Our extension of sequences to functions is just

the piecewise-linear interpolation with respect to the parameter 7(x) = \/x.

Lemma 3.3. Let 0: Z, — C. Define f: [0,+00) — C by

3 (x) —1(n) B
(3.13) fx)=0(n)+ —T(n eI T(n)(a(n +1)—0o(n)),

where n = |x]| and 1(x) = y/x. Then flz, =0, |l = |0 lleo and for every 6 € (0,1]
(3.14) Q, £(8) < 3max(Qy 5(5), V5 Qp 5(1).

Proof. Note that f(x) is a convex combination of o(n) and o(n + 1), where n = |x]:

_T(n+1)—r(x) )+ 7(x)—1(NR)
I+ D-1m Y T T+ -1’

(3.15) f(x) (n+1).

The first two assertions of the proposition are obvious. Let us prove (3.14). Fix § € (0,1]
and suppose that x,y =0, o(x,y) <6.

Casel:n<x<y<n+1for some n e Z,. In this case

— Qpoon,n+1
)= Fo) = TDTTE o oy < 28N Deolenn+ 1)

(n+1)-1(n) o(n,n+1)

If o(n,n +1) < V5, then

_ o(x, y)
£ = fOl= =S Qp0(V8) = Qp o (V5).

54
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If p(n,n +1) = V5, then

)
F@=fOI< 7= pa(D)= V5 Qp (1)
In both subcases,
(3.16) ()= F ()] < max(Qy o (VE), V5 Qp 5(1)).

CaseIl: |x] =n<m = |y]. Then p(n+1,m) < p(x,y) <8, and

If @)= fFWI<1f (@)= fn+DI+If(n+1)—f(m)+]|f(m) - fF(¥).

Applying the inequality p(n + 1,m) < p(x,y) < § and the result of Case I, we obtain

1f (%)~ F()] < Qp,0(8) + 2max(Qy o (VE), VS Qp (1))
< Qo (V8)+2max(Q, ,(V5), V8 Q, 5(1)).

In both cases, (3.14) is true. |

Proposition 3.5. Let 0 € RO(Z,) and f: [0,+00) — C be the extension of o defined by
(3.13). Then f € RO([0, +00)).

Proof. The assumption o € RO(Z,) guarantees that the right-hand side of (3.14) tends
to0asd— 0. [

Note that Lemma 3.3 and Proposition 3.5 remain true for every metric p of the
form p(x,y) = |7(x) — 7(y)|, where 7: [0, +00) — [0, +00) is a strictly increasing function
satisfying t(n +1)—17(n) < 1 for every n € Z,. In particular, applying this construction
with 7(n) = In(n + 1) we obtain another proof of [31, Theorem 2.3] about the class SO(Z..);

the proofin [31] was based on the usual piecewise-linear interpolation.

Square-root-oscillating property of the eigenvalues’ sequences

In what follows we show that y, € RO(Z.) for all a € L (R;). From now on, we write the

eigenvalues’ sequence y, as follows:

n,—r

(3.17) Yo(n) = f a(VPK(n,r)dr, where K(n,r):r:‘ . nez..
Ry !

The following proposition introduces a metric on Z; which is, in a certain sense, the most

“natural” for the functions vy,.
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Proposition 3.6. Let x: 7, x 7, — [0,+00) be the function given by

(3.18) xk(m,n)= sup |ya(m)—ya(n)|.
Talmet

Then

(3.19) K(m,n):f |[K(m,r)—K(n,r)|dr.
Ry

Proof. For every a € Lo(R;) and m,n € Z, we have
[Yatm)~yo(m)] < lall | 1Km.r)~K(n, 0l dr.
On the other hand, if m and n are fixed and m # n, we define ay: Ry — R by
ao(r)=sign(K(m,r)—K(n,r))
thus ag € Loo(Ry), with [laglleo =1, and

K(,3) 2 [Yao () = Yag ()] = fR K(m,r)~K(n,r)ldr. n

Lemma 3.4. For every n € N we get

2n"e™"

n!

(3.20) x(n—1,n)=

Proof. Given n € N, we write x(n — 1,n) using (3.19):

+00 n—1,-r
K(n—l,n)=f dr:f A 1—£‘dr.
0 0 n

(n—-1)!
Now the integral falls naturally into two parts:

rle T ple

(n-1)! ol

+00 r

_ 1 " n-1_-r r oo n-1_—-r(T
K(n—l,n)—(n_l)! [fo r‘ e (1—;)dr+fn r‘ e (;—1)dr
1 +00 n n n
= f e’ (r——rn_l dr+2f e’ (rn_l—r—)dr
(n—=1! [Jo n 0 n
e
n—1!Jo n
2 n n n
= f e_rrn_ldr—f e drl.
(n - ].)Y 0 0 n
Integrating by parts in the latter integral one gets (3.20). [ |
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Lemma 3.5. For each n € N we have

2
(3.21) xk(n—1,n)<y/—.
n

Moreover,

(3.22) lim (K(n - l,n)\/ﬁ) = \/g

n—oo

Proof. The upper bound (3.21) follows from the left part of the well-known estimates

(3.23) n"e™"\2nw < nl < n"e "\ 2onmwe.
The limit relation (3.22) is a consequence of Stirling formula. [

Proposition 3.7. & cRO(Z,).
Proof. Let a € Loo(R;). Then for every ne Z,

a0 < el fR K(n,r)dr = lal.

Furthermore, by definition (3.18) of x and Lemma 3.5, for every n e N

2
|\/E(Ya(n)_7/a(n_ 1))| < lallook(r,n — 1)\/7 = \/;”a”oo

Thus vy, is Lipschitz continuous with respect to p by Proposition 3.4. |

Example 3.3 (square-root-oscillating eigenvalues’ sequence). Consider the Toeplitz

operator generated by the radial symbol a(r) = cosr. The corresponding eigenvalues are
}/a(n) =1F1(1+n, ]./2, —]./4),

where 1F; is the Kummer’s confluent hypergeometric function. Using Proposition 3.8

one can deduce an asymptotic formula for y,(n), as n — oo:
Ya(n) = e 8cosv/n +o(1).

Figure 3.2 shows a plot of y,(n) for n =0,1,...,300.

57



CHAPTER 3. C*-ALGEBRA OF RADIAL TOEPLITZ OPERATORS ACTING ON FOCK
SPACES

—1/8

e

n=100: 1 =200 n&300

s
s

Figure 3.2: The first 301 values of the sequence y, from Example 3.3.

3.3 Density of & in RO(Z,)

In this section we prove the main result. First, we prove that every sequence o €
RO(Z.,) can be approximated by some eigenvalues’ sequence y, for large values of n
(Proposition 3.9). After that, we prove that the sequences vanishing at the infinity can be
approximated by eigenvalues’ sequences (Theorem 3.3). Finally, combining these result

we show that the uniform closure of & coincides with RO(Z ) (Theorem 3.4).

Approximation of the eigenvalues’ sequences by convolutions

The idea of this subsection is to approximate y,(n) by a certain convolution for n large

enough. Using the change of variables r = y2 in (3.17) we rewrite y,(n) in the form
(3.24) Ya(n) = f K(n,y*)2ya(y)dy.
R+

By Stirling formula, K(n,r) has the following asymptotic behavior as n — +oo:

rne—r rnen
K(n,r)= ~

n! Vo nrtl2pr

Using this limit relation and Lebesgue’s dominated convergence theorem it is easy to see
that

r'te™" r'te™

n! Vo nntl2,r
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We pass from integer n to real x = /n and from r = 0 to r = y2. Consider the function F
defined on [0, +00) x [0, +00) by

2x2+1 %2

Y

F(x,y) = W =exp ((2.%‘2 + 1)(11’1y —lnx) +x2 —yZ) .

Then (3.25) can be rewritten in the form

(3.26) lim

n—0 Jr+

) 1/2
K(n,y2)2y—(;) F(Vn,y)|dy=0.

With the change of variables u = y —x we have

(3.27) f F(x,y)a(y)dy:f Fx,x+u)alx+u)dy,
R* [—x,+00)
where
2 u 2
(3.28) InF(x,x+u)=12x +1)ln(1+—)—2xu—u .
x

Next, we proceed with some technical lemmas which permit us to analyze the asymptotic

behavior of the eigenvalues’ sequences at the infinity.

Lemma 3.6 (the integral of the kernel far from the diagonal). For every € > 0 there

exists h > 1 such that the following estimation holds for every x = 1:

f Fx,x+u)du<e.
[—x,+0co)\[~h,h]

Proof. Apply the elementary inequality In(1 + ¢) < ¢ which holds for every ¢ = 0:

(3.29) InF(x,x+u)< (2x2 + 1)E —2xu-u’= v_ u? < M —u?
X x X

Suppose that x =1, A =2 and |u| = h. Since |u| = h = 2, we have that % > 1. Thus by
(3.29) we get

2 2
Iul) 2 u 9 u

InF(x,x+u) < M—u2 <|ul (—
x 2

It follows that

u2 u2 too 2
f F(x,x+u)dusf e_Tdusf e_TduS2f e zdu.
[—x,+00)\[-h,h] [—x,+00)\[-F,h] R\[-A,A] h

The latter integral tends to zero as A tends to +oco. [ |
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Lemma 3.7. Let L,x=0, h=1and |lu|<h. If h <L <«x, then
2u2 542
(3.30) ’F(x,x+u)e —1) <e’L —1.

Proof. SinceIn(1+#)<t—-5+%, ¢e(-1,1), we obtain for ¢ = |%| <1 that

InF(x,x+ w)+2u? =222 + 1)ln(1 + E) —2xu+u?

X
2 3
9 u u u 9
S(2x +1)(;—ﬁ+@)—2xu+u
u u? ud  2u’ - u+u3 <5h3

bt —
x 2x2 38x3 38x " x «x L

On the other hand, by ¢ — g <In(1+¢) for each ¢ €[0,1), taking ¢ = 3 with u €[0,4]

InF(x,x+ w)+2u? =222 + 1)ln(1 + E) —2%u +u?

X
2 2 3
u u u u 5h
>Q2x2+1)|— - —|-2xu+u?=—-——S=-"—.
(2 )(x 2x2) xuTd x 22 L

Since In(1-¢)= —¢— g —t3 for each ¢ € [0,2/3], we take x > 0 sufficiently large such that
t= —% €[0,2/3], with u € [-A,0]. Therefore

InF(x,x+u)+ 2u? = (2952 + 1)ln(1 - (—z)) —9xu +u?

X
2 3
u u u
>2x2+1)| = - — + — | — 2xu + u?
( )(x 2x2 x3)
u u2+u3+2u3> 5h3
Tx 22 x3 x L

Combining this calculations we get for all |u| < A that

3 3 3
e5hT—12F(x,x+u)e”2—12 e_5hT—12—(e5hT—1). [ |

Lemma 3.8 (“convoluzation” of the integral operator near the diagonal). Given

e>0and h =1, there exists L = h such that for every x =L
f |F(x,x+u)—e_2”2|du <e.
[-h,h]
Proof. Suppose that x =L and |u| <h. By Lemma 3.7 for 2 = 1 we get

f F(x,x+u)—e 2 |du < f e 2% |F(x,x +u)e?™ —1]du < 2h (™ ~ 1),
[=h.h] [~h.h]

The last expression tends to 0 as L tends to +oo. |
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Lemma 3.9.

o0
(3.31) lim )F(x, y)—e_Z(x_y)2‘dy:0,
X—+00 0
92 1/2 5
(3.32) lim K(n,y2)2y—(—) e 2V qr = 0.
n—oo R+ VA

Proof. We are going to prove (3.31), then (3.32) will follow by (3.25). Let € > 0. Using
Lemma 3.6 choose 2 > 0 such that

E 9,2 E
f F(x,x+u)du < , f e 2 du< .
[—x,+00)\[A,A] 3llalloo [—x,+00)\[~A,A] 3llallco

After that using Lemma 3.8 choose L = A such that for every x = L

f |F(x,x+u)—e_2u2|dus £ .
[-h,h] 3llalloo
Then for every x = L the left-hand side of (3.31) is less or equal to €. [

The proofs of this subsection have many technical details. To be more confident
in formula (3.32), we tested it numerically in Wolfram Mathematica. The numerical
experiments showed that for every n € {1,...,1000} the integral in the left-hand side of
(3.32) is less than 0.54/\/n.

Proposition 3.8. Let a € Lo (R™). Then

2 1/2
n—+oo R+

Proof. Write y,(n) as in (3.24), factorize a(y) below the sign of the the integral, estimate
la(y)| by llalle and apply (3.32). m

There is no surprise that the heat kernel appears in the properties of the eigenvalues’
sequences Y,, because it plays an important role in the theory of Toeplitz operators acting
on Fock spaces. In [10] Berger and Coburn characterized some properties of Toeplitz

operators T, (boundedness, compactness etc.) by means of its Berezin transform

—w|?

G =2 f ow)e 3 dvw), zeC,
T JR

wl2
which is the convolution of the symbol ¢ with the heat kernel H(w,t) = (4tn)_1e_%
at time ¢ = % This result holds also for Toeplitz operators with more general symbols

(positive Borel measures), see [36].
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Our formula (3.33) relates y, with the heat kernel at time ¢ = %, we denote it simply
by H:
H(x) = H(x, 1/8) = (2/m)"%e 2%

Lemma 3.10. If b € L(R) and a = yp, b, then
(3.34) liIP |H * a(x)— H * b(x)| = 0.
X—+00

Proof. The difference in the left-hand side of (3.34) can be estimated as follows:

0
|H * a(x) — H  b()| < [|blloo(2/m) "2 f 2’ g

—0o0
v +00
TEY bl 2/m) V2 f e 2 dt, xeR,. ]
X
Proposition 3.9. Let 0 € RO(Z,) and € > 0. Then there exist a € Lo(R;) and N € N such
that
(3.35) sup |o(n)—yq(n)| <e.

n>N
Proof. By Proposition 3.5 there is f € RO([0, +00)) such that f|z, =0 and ||fllco = |0 llco-
Define h: R — C as h(x) = f(x2). Then h € Cp,u(R). Moreover, by Proposition 1.9 there
exists ¢ € L (R) such that

(3.36) IH %€ =Bl < g

Denote the restriction ¢|g, by a. By (3.33) and Lemma 3.10, there are Li,Lo > 0 such
that

(3.37) lYa(n)— H xa(v/n)| < g n=Ly, |H*0()—H*a()|< g x=Lo.
Thus, taking L = max{L1,Ls} by (3.36) and (3.37) one gets for every n = [L?] that

lya(n)—o(n)] x:s‘/ﬁ [Ya(x®) — H * a(x)| + |H * a(x) — H * £(x)| + | H * £(x) - h(x)|
< lyo(x®) — H * a(®)| + |H * a(x) - H * £0)| + | H % £ = h|l o < €. |

Density in c¢(Z,) of the eigenvalues’ sequences

Next, we finish the proof of our main result. By Proposition 3.9 we already know that
every sequence 0 € RO(Z,) can be approximated by some eigenvalues’ sequence y, for
large values of n. Thus, it only remains to prove that the sequences vanishing at the
infinity can be approximated by eigenvalues’ sequences.

Denote by & the Banach subspace of L,,(R.) consisting of all bounded functions a
having limit O at the infinity.
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Lemma 3.11. If a € &, then y, € co(Z4).

Proof. Given € >0, there are L >0 and Ny € Z, such that

£ T &
3.38 <=, t=L, n12<,/Z , n=N,.
(3.38) la(®)l 7 n 2 Jajrz’ "=No

Thus, by (3.23) and (3.38) we have for every n = N that

+

L2 00
f IOL(\/F)Ie_’r”cle2 la(v/r)e " r"dr
0 L

|Ya(n)| = =
n.

S_
n!

L? e [+oo
f |a(\/?)|e_rrndr+§f e "r'dr
0

L2

L2

1 L
S—f Ia(\/F)Ie_rr"dr+£S lalloo
n!Jo 2 !

allooe "n"L2
- lalleo

<——+ ==

€
n! 2 o2nm

n!
2
allooL e € €
_lalol? e _e
2

Theorem 3.3. {y,: a € X} is a dense subset of co(Z-).

Proof. The inclusion {)/a: aeX } C co(Z,) was shown in Lemma 3.11. Unfortunately
we were not able to prove the density by constructive tools; the next proof uses non-
constructive duality arguments. By Hahn—Banach theorem, the density of {y,: a € X}
in co(Z,) will be shown if we prove that any continuous linear functional ¢ on c¢(Z)
that vanishes on {y,: a € &'} is the zero functional. Thus, let ¢ € co(Z;)* be a linear
functional such that ¢(y,) = 0 for each a € L (R;). Using the well-known description of
the dual space of co(Z,) we find a sequence p =(p,)nez, € ¢1(Z+) such that

Ply) = Z DPndn y€co(Zs).
n=0

Then we have that

0= (P(Ya) = Z Ya(n)pn, a € Loo(RS).
n=0

In particular, substituting a = x(0,. € Z with 0 < x < +00, we obtain

(o]

0= Z Yo()py = pnK(n,r)dr.

X
n=0 0 n=0
The function r — }2° ) p,K(n,r), being the sum of a uniformly converging series of
continuous functions, is continuous, and by the first fundamental theorem of calculus,

[e.°]

(3.39) pnK(n,r)=0, r=0.
n=0
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Now, replace K(n,r) by r*e "/n! and factorize e™":

[e.@] n
(3.40) Y20 r2o.
n=0 n!

Denote by f the function

f@)=) Pn2

n=0 n!

Since p, — 0, we can find M > 0 such that |p,| <M for all n € Z,. Hence, by (3.23) one
gets that

nl - nl/n(zn-)l/n

Thus, f has infite radius of convergence. i.e., f is an entire function. The equality (3.40)
says that f(r) = 0 for every r = 0. Therefore f is the zero constant, and all coefficients p,

are zZero. u

Now we are ready to prove the main result of this chapter.
Theorem 3.4. & is dense in RO(Z,).

Proof. Let 0 € RO(Z,) and € > 0. By Proposition 3.9 there are b € L(R;) and Ne Z,
such that

&
lo(n) —yp(n)| < 3 n>N.

Define 9 = (9(n)),ez, by

. {a(n) ~yp(n), ifn<N,

0 otherwise.

Thus 9 € ¢c¢(Z,), and by Theorem 3.3 there exists ¢ € L (R, ) such that

DN ™

[9-Yclloo =
Taking a = b + ¢ € Lo(R,) one gets that
&
lo=Yalloo = llo =75 = Olloo + 10— Y¢lloo < sup lo(n) —yp(n)| + = <e. |
n>N 2
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3.4 Beyond the class of bounded generating symbols

In this section we describe the class of functions wider than L(R), with eigenvalues’
sequences belonging to RO(Z ). Furthermore, we give an unbounded generating symbol
a such that y, € £,(Z:) \RO(Z,).

Following [28] we denote by L°(R,e™" 2) the subspace of all measurable functions a

on R, for which the following integrals are finite for all n e Z..:

(3.41) la(M) e rdr < +oo.
Ry

First of all, a Toeplitz operator T, with radial symbol ¢(z) = a(|z|) a.e. z € C, with
ae LP[R,, e"2) is a well defined linear operator (in general unbounded) and has a dense
domain. In fact, since the set 9(?((13) of all polynomials on z form a dense subset on the

Fock space, we have for the monomials p(z) =2z" € fig(d:) that (Typ)(2) = y4(n)p(z). Thus
T.p € FZ(C)c F%(0),

and the set gg(C) is a domain for each Toeplitz operator T, with symbol a € LP(R;,e™" 2).
That is, the operator T, has a bounded extension to the whole space Z2(C) if and only if

the sequence y, = (Y4(n))yez, is bounded.

Grudsky and Vasilevski in [28] proved that if a € L‘io(IRJr,e_rQ), then the Toeplitz
operator T, acting on the Fock space Z2(C) is unitary equivalent to the multiplication
operator y,Id acting on ¢9(Z.), where the sequence y, = (yq(n)),ez, is given by (3.17).
From this fact every Toeplitz operator 7', with radial symbol a € LCiO(IRJ,,e_rZ) is bounded
if and only if the corresponding eigenvalue sequence v, is bounded. Also they proved
that for each sequence y € £(Z,) there exists a symbol a € LT(Rhe_’Z) such that the
Toeplitz operator T, is unitary equivalent to the multiplication operator by this sequence
Y; i.e.,yo =Y. However, in this class of symbols there exists a nontrivial subspace 7 for
which T, = 0 for each a € 7. Therefore, we only consider subspaces of LT°(R.,e™" 2) where

the linear transformation a — T, is injective. More details see [28]

For a € LY(R,, e_rz), we consider the following averages [28]:
+o00o
(3.42) B ja(r) = f Bi-nawe” “du, j=1,2,...,
r
where B)a(r) = a(y/r). Integrating by parts j times one can express y, through %;a:
1 i - . .
(3.43) Ya(n) = Fj)!fm Bpa(rr* e dr =y g 0sq(n—J), n=]j,
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where sq(x) = x2, x € R,. It is easily seen that if Bja € Lo(Ry) for some j€ Z,, then
the eigenvalues’ sequence (and the corresponding Toeplitz operator) is bounded. The
definition of the averages %8j)a and the facts mentioned above are taken from [28, Section
4].

Next, we summarize some conditions that guarantee the boundedness of Toeplitz

operators with radial symbols from LP(Ry,e™" 2).

Proposition 3.10. Let a € L‘:’l"(IRWL,e_r2 ). The Toeplitz operator T, is bounded on F2(C)
(the corresponding eigenvalue sequence y, is bounded) if one of the following conditions

holds:
(a) a€ Loo(Ry)
(b) %B(j)a € Loo(Ry) for some j€ Z,.
(©) Yo =Ga(mnez, € €o(Z,), where

n!

(3.44) Ya(n) = L la(\/7)|re "dr.
R4

Let us denote by ./ the class of symbols a € L(R,, e~"") such that the average (3.42)

is bounded for some je€ Z,:
(3.45) M :={ae LR, ,e™): Bja€ Loo(Ry) for somejeZ,}.
Proposition 3.11. If a € 4, then y, € RO(Z.,).

Proof. Let je€Z, and a € L‘io(l]%+,e_’2) such that %(jja € Loo(R;). By (3.43) we have
Yao(n) = Ygg(j)aosq(n — j), with sq(x) = x2, x € R, hence by (3.18) and (3.21) one gets for
every n > j that

vn+1 |ya(n)—ya(n+1)| =vn+1
<|%Baosqleokn—jn—-j+1)vn+1

2(n+1)
<% a° Sqlloo\/ JT(n——J-i-l)

Hence sup,,c7, (Vn+1 |ya(n) —Ya(n + 1)|) < oo and, by Proposition 3.4, the eigenvalue

Y %jao Sq(n -Jj+1D- Y%(j)aosq(n -J)

sequence Y, is Lipschitz continuous with respect p. [ |
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Folland [21, Lemma 2.95] proved that for the class of unbounded measurable symbols
a€ LP[R,, e"z) which satisfy the inequality

(3.46) la(r)| < const e6r2, for some 6<1,

the linear mapping a — T, is injective. However, this class contains defining symbols

which generate eigenvalues’ sequences do not belonging to RO(Z ).

Example 3.4. Let6=1- \/l? Then the function a defined by the rule

a(r)= 3[5_ﬁ)r2
satisfies (3.46) and belongs to L‘f’(qu,e"Q). Let us calculate the corresponding eigen-
value’s sequence using the change of variables ¢ = v/2 r and the formula [22, Eq. 3.381-5]:

1 1 _i),
Ya(n)=—'f e(1 vz 2) e 'rdr=
n! Jr,

273
n!

f oI+ gy _ =i+ DE
R+
The sequence of its consecutive differences is given by

Ya(n+1)—y4(n) = e {1 (1 - ei%)

and does not converge to 0, though p(n +1,n) — 0. Thus vy, € £oo(Z+) \RO(Z,,).
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CHAPTER

C*-ALGEBRA OF HORIZONTAL TOEPLITZ OPERATORS
ACTING ON FOCK SPACES

In this chapter, we characterize the horizontal Toeplitz operators acting on the Fock
spaces. The characterization is based on the decomposition of the Bargmann transform in
two operators and the definition of horizontal operator. First of all, we give such decompo-
sition of the Bargmann transform, after that we introduce the horizontal operators and
study their basic properties, including a simple criterion for an operator to be horizontal.
Also we introduce the £—invariant operators, give some of their basic properties and
using symplectic rotations of the symplectic space (R?",wo) we finish this chapter with a
explicit description of the C*-algebra generated by #—invariant Toeplitz operators.

Let ¢ > 0. Then the Fock 37?(@”) consists of all entire functions that are square

integrable on C" with respect to the Gaussian measure (1.24):
n 2
dgnc(2) = (E) e~ dpn(2),
T

where p, is the usual Lebesgue measure on C”. In the present chapter for simplicity of

calculations we consider ¢ = 1 and we will write g, instead of g, 1.

4.1 Bargmann transform

As was mentioned in the introduction, the Bargmann transform is an isometric isomor-
phism from Lo(R") onto the Fock space %2(C") (see for example [53]), and hence plays an

important role in the description of Toeplitz operators. In this section we construct two
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operators By and U such that the Bargmann transform is the composition of them. By
the multiplicativity of the Lebesgue and the Gaussian measure on C" for each m,l €N

with n = m + [ we have the following isometries

Lo(C",dg,) = Lo(C™,dgn) ® La(C!,dgy),
FAUC) = FAUC™) 0 F2C)),

where ® is the usual (completed) tensor product of Hilbert spaces, and P,, = P,,  P;.
Introduce the unitary operator Uy : La(C",dg,) — La(R?",dxdy) defined by

(4.1) Urp)(2) =72 % (2.

Let A, = U1(ZF2(C")). Then for each f € #, the function p(z) = n”/26§f(z) belongs to
Z2(C") and thus

_0p _ 0 ( o zE,\_ npzz(0 2
0—£—£(n e2f)—n e [=+—|f.

It is easy to see that the subspace # of L2(R?") can be described as closure of the set of

all smooth functions in Lo(R?"?) which satisfy to the equation

0 =z o .0 . _
4.2) Dof—2(£+§)f—(&‘Fl@"‘x-l‘k’y)f—o

The unitary operator Uz =Id ® F, where
F = [ e fapan
(zﬂ)n/z R™
is the Fourier transformation, maps isometrically the space
Lo(R?",dxdy) = Ly(R",dx) ® La(R",dy)

onto it self. The image % = (Id ® F).#} of the space .} under the mapping Id ® F is the

closure of the set of all smooth functions in Lo(R?") which satisfy to the equation

Dyf =(deF)Do(Ide F1)f = >

0 9
—+x——-y|f=0.

x oy
Now, introduce the isomorphism Us = U; = U3 : Lo(R?*") — Lo(R*") given by the rule

x+y x—y)

(4.3) Usf)x,y) = f(ﬁ,ﬁ
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The isomorphism Us maps the space .%) onto the space .7, which is the closure of the

set of the smooth functions satisfying to the equation
, 0
Df =U3DyUsf = V2 oy f=0.
This last equation can be easily solved. Its general solution has the form
/4 -2 >
7 e 2 h(y),

where A is an arbitrary function from Lo(R"). The function I(y) = n_”/‘le'é belongs
to Lo(R™) and has unit norm. Denote by Ly the one—dimensional subspace of Lo(R")
generated by the function /. Then, obviously /4 = Lo(R*)®L, and the operator @ = Id®P
gives the orthonormal projection of the space Lo(R%?) = Lo(R") ® Lo(R"?) onto .#. Here

) Bofp=n” [ et s

is the one—dimensional orthogonal projection of Lo(R") onto Lg. The following theorem

summarizes the obtained results.

Theorem 4.1. The unitary operator U = UsUU1 provides an isometric isomorphism of
the space Lo(C",dg,) onto the space Lo(R2") = Lo(R™) ® Lo(R™) under which

(i) the space F2(C") is mapped onto 7 = Lo(R")® Ly
(i) for the Bargmann projection (1.27) we have

UP,U '1=1d® Py,

where Py is the one—dimensional orthogonal projection (4.4) onto the one—dimensional

subspace Lo in Lo(R",dy) generate by the function I(y).

Introduce the isometric embedding By : Lo(R",dx) — Lo(R",dy) ® Lo(R",dy) defined
by

(4.5) (Bo A)(x) = h(x)I(y).

The image of By is exactly #. Then the adjoint operator By : Lo(R?") — Lo(R") is defined
by

y2
(4.6) By f)(x) = n_”/“fw flx,y)e 2 dy.
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It is easy to see that

BB, =1d: La(R") — La(R")
B,B; =Q =1d®Py: Lo(R*") — #

The linear operator B* =U* By : Lo(R?) — Z2(C") has the form

JCZ 22
4.7 B* f)z) =4 f fx)eV2** T T dx, zeC,
Rn

and is an isometric isomorphism from Lo(R"™) onto & 2(C") known as the Bargmann

transform. Its inverse B: Z2(C") — Lo(R™) is given by
JIr i
(4.8) Bf)x)=n"* f f(2)eV?** 277 dg,(2), x€R.
Cn

The operators B and B* provide the following decompositions of the Bargmann projection
P,, and of the identity operator on Lo(R™)

BB* = IdL2([Rn) . Lz(Rn) -_— Lg(Rn)
B*B=P,: Lo(C",dg,) — F2(C").

Example 4.1. Let z € C" and k,(w) = e**, w € C". By Proposition 6.10 of [53] applied

n times we get

(Bk,)x) = (7)™ f VIS 1o (1)
Cn

x2 2

n
l_[ -1/4 szJe\/_xjwj——j— 5 dg(w_])
J:

52

= x2 4
(4.9) - n_n/4e‘/§x'Z_T_T, xeR™.

4.2 Horizontal Toeplitz operators

In this section we characterize the horizontal Toeplitz operators acting on the Fock space
Z2(C"). The characterization is based on the notion of horizontal operator and horizontal
functions. So, we will first introduce the horizontal operators, the horizontal functions
and study their basic properties, including a simple criterion for an operator and for a
function to be horizontal. We finish this section showing that every Toeplitz operator

with horizontal symbols is a unitary equivalent to certain multiplication operator.
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Definition 4.1 (Weyl operator). Let h € C*. The Weyl operator #; on Lo(C",dg,) is a

weighted translation given by the rule
— 2
(4.10) Wif(2) =5 f(z—h), zeCm

Let h € C", the adjoint operatorof #}, is #," = #_;. In effect, given f € & 2(C) one has
that

W f.G) = f I £z - ) G@e d )
Cn
w=z—hf Few+h)- 12 S —lw+hl?
= e 2 f(w)G(w+h)e du,(w)

ew'm'h'z_# F(w)Glw + hye W -P-hw—whg, )

n

=

:f f(w)(e_wlz_@G(WJrh) e P d i, (w)
Hn W
Cn

=(f, WGy, GeZFXCM.

In fact, the Weyl operator #, is unitary, with #_j = Wh_l. The following result sum-

marizes some important properties of the Weyl operator.

Proposition 4.1. Let h € C". The following statements hold:
(a). If M, be the multiplication operator by ¢ € Lo(C"), then

(4.11) WWMWonf =Mpor, f, [ €FAC™.
(b). If z € C", then

_ 2
(4.12) Wik, w)=e 2Tk, (w), wecC,

where k,(w) = e* ™.
(c). If ¢ € Lo(C™), then

(4.13) W ToWop, =T por,.
Proof. (a). Let ¢ € Loo(C") and f € F2(C"),

— 2
2 p—hIZ

— 2
WM W f(2) =5 (MWhf) (2 —h) = e*h "5 gz — YW F)z - )

2R —E'(z—h)—M
=e 2 p(z—h)f(2)e 2 =@ortp(2)f(2)

:(M(po‘rhf)(z), Zeq:n.
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(b). Given z € C", we have

— 9 _ 9
Wiko(w) = "5 kw—h) = @5 W h)

oy W L o 0 A 1 N
—¢ ? =e 2 kyep(w), weC™.

(c). Let ¢ € Lo(C™). Since for every f € & 2(C™), the Toeplitz operator satisfies (Typf)(z)=
(M f,k2), where k. (w) = e? one has by (4.11) and (4.12) that

T n2
(T Wonf) @) = MW f k) = WMy Wonf Waks) = (Mpor, frkasn) e P35

7 |2
= e F " (T yor, [z +h) = (W Tpor, f)(2), z€C™
This clearly forces #,Ty#_p =T por),.- |

Definition 4.2 (horizontal operators). A bounded operator S on the Fock space
Z?2(C") is said to be invariant under Weyl translations if for every & € R" it commutes
with #;j. That is, for every h e R"

(4.14) WS =SW.
For brevity, we use the term horizontal for such operator.
The set of all horizontal operators will be denoted by $:
(4.15) H:={S e BFXC"): VheR" WyS=SWn}.

The simplest example of horizontal operator is itself the Weyl operator. In fact, if t € R”,

then for every 2 € R” one gets that
WitWin = Wi+n)(2) = Win Wit
Proposition 4.2. $) is a C*-subalgebra of B(F2(C")).

Proof. LetS,Ve$HandheR™ Then (S+V )W, =SW;n+VWip =W;nS+W;pV =W;p(S+V),
we thus have that S +V € . On the other hand, TS#;;, = T#;,S = #;, TS, hence TS € 9,
this implies that §) is a subalgebra of (Z2(C")). The mapping S — S*, where S* is the
adjoint operator of S, defines an involution on §), furthermore, for each S € ) one has
that
S* Wy = (WoinS) = (SWoin) =Wy, S™.

Thus $H* = 6. Now, given S € 5, there exists (S,)nen © §) such that S, ——— S, but since
WinSn =S, ¥;n, and #;; is a unitary operator, we get that #;,S, = S, #;, converges to
WS and S#;;. Therefore by uniqueness of the limit we conclude #;,S = S¥#;;. That is

SeNn. [ |
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Lemma 4.1. Let h € R"™. Then the Weyl operator W;, is unitary equivalent to the multipli-
cation operator BW;, B* = Mg, , acting on Lo(R™), where the function Ep,: R* — C is given
by Ep(x) = e~ V2R,

Proof. Given f € L2(R) and h € R*, we calculate

ih : ' 2 ; 22 (z=in)?®
#inB* f)(2)= elh'z_h?(B* fz—ih)= A g—iha=ty f(x)e\/fao(z—zh)—?—( i) dx
Rn

:n__n/4e_ih.z_% f(x)eﬁx-z—ﬁix-h—%—(%—%—z-ih)dx
[Rn
= [ e T T gy
[Rn
— g4 (M NP _(p* n
= B,f)(®)e - 2dx=B"Mg,f)z), zeC" u
Rn

An important tool in the description of properties of bounded operators on Hilbert
spaces of analytic functions is the Berezin transform (see Section 1.4). The Berezin
transform of S € B(F2(C")) is the function S defined by

(4.16) S(z) = Tk

where the function %,(w) = e?? is the reproducing kernel of #2(C"). By (4.12) and (4.13)

it is easy to see for every z € C" that

o, <7//hSW—hk2akz> _ (SW—hka—hkz)

W, SHW_;}, = =
th ih <k2akz> (W—hkz,W—hkz>
(Ske—inkz—in) &
= =(So1y)(2),
(kz—inskz—in) h

where 75,z =z —ih. Therefore, the horizontal operators are related with the translation

operators acting on bounded functions.

Definition 4.3 (horizontal function). A function ¢ € L,,(C") is said to be horizontal

if for every h € R
(4.17) P —ih)=¢@(), a.e.(eC".

Let us consider the unitary operator C;: ZF2(C") — %2(C") given by the rule
(4.18) C:HO=fGED, ¢eC™
Observe that if f € L(C") is invariant under imaginary translations, then
(4.19) (CifXC-h) = FGL—im) "= fw—ih) = FGO = (Cif X)), heR™.
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Herrera Yafiez, Maximenko and Vasilevski in the proof of Proposition 3.3 of [31] gave
a criterion for a function to be invariant under translations on the upper half plane II.
This result can be extended on the whole complex plane C and its proof runs almost

literally as in the Bergman case. Since it is very technical, it will be omitted.

Lemma 4.2. A function ¢ € Lo(C") is horizontal if and only if there exists a € L,(R")
such that
@(z)=a(Rez), a.e zeC".

Proof. Suppose that there exist a € L(R") with ¢(z) =a(Rez) a. e. z € C". Therefore for
almost every z € C" we have ¢(z +ih) =a(Re(z +ih)) =a(Rez) =¢p(z), heR".
Conversely, let ¢ € Lo(C") be a horizontal function. Then by (4.19) the function C;¢
is invariant under translations. In particular, for z = (z/,z,) € C" ! xC and g = Cip one
gets that
g8z zn+hy) =87z, +h,)=g0",2,), h,€eR,

hence the function g(z’,-) is invariant under translation by %, € R. Thus by Proposition
3.3 of [31] there exists a, € Lo(R) such that g(z’,z,) =a,(z’,Imz,) a. e. z, € C. Making
this procedure n-times we find a function b € L,(R"?) such that g(z) =b(Imz) a.e. z € C".
Equivalently, ¢(z) = b(—Im(iz)) = b(—Rez), thus taking a(x) = b(—x) the proof holds. W

Theorem 4.2 (criterion of horizontal operators). Let S € B(F2(C")). Then, the

following statements are equivalent:
(1) S is horizontal.
(i) BSB* Mg, = Mg, BSB*, heR"
(iii) There exists ¢ € Loo(R") such that BSB* = M,

(iv) The Berezin transform S is a horizontal function. i.e., there exists b € L,(R"™) such
that
S(z)=b(Rez), a.e.zeC".

Proof. (i)— (i) Let S € B(Z2(C")) be a horizontal operator , by Lemma 4.1 one gets that
#;, B* =B* Mg, for each h € R. Thus

BSB* Mg, =BS¥;,B* =B¥;,SB* = Mg, BSB*, heR.
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(i1)—(iii) Notice for every A € R" that Ej(x) = @1 ( A ](x), where 0,(x) = e and In(h) =
Ve
(In(nq),:--,In(h,)) € R™. Therefore, by (ii) one gets that

BSB* Mo, = Mo, BSB*, neR".

Thus, by Proposition A.4 n times, there exists ¢ € Lo(R) such that BSB* = M,,.
(iii)—(iv) Let ¢ € Loo(C") be such that S =B* M, B. Then

(M,Bk,,Bk.)
(ko k)

112
—e 'Z'f @(x)
[Rn
_ _1»|2 .2 > ‘—_22+E2
=7 n/2e |2|/ (p(x)e x e\/fxz+\/§xz 7 dx
[Rn

_ 1.2 .2 . _ (z+2)(2+2)-2lzI2
—— n/Qe |z| f (p(x)e x e2\/§x Rez— === dx
[Rn

S(2)= o lel” fR P(0)|(BE,) ) dx

2

_ 22 _22
T n/4e\/§xz 72| dx

2 2 2
— n—n/2‘[ (p(x)e—x 62\/§x~Rez—2(Rez) dx — n-_n/zf (p(x)e_(x_\/gRez) dx, Z € (]:n
R” R

(iv)— (i) Let h € R, since #;;, is a unitary operator, we obtain by (4.12) that
(SH-inkes W-inkz) _ SW-inkz,W-inkz) _ (Ske-in,kz-in)

(kzyk2) W_inkz, W_inkzs)  (ko—inko—in)
=So1;(z)=S(z), zeC".

WinSH-in(2) =

Thus by injectivity of Berezin transform (Proposition 1.7) we conclude #;,S#_;;, =S for
each h e R". |

Proposition 4.3 (diagonalization of horizontal Toeplitz operators). Let ¢(z) =
a(Rez) be a horizontal L—function. Then the Toeplitz operator T', is unitary equivalent to
multiplication operator BT ,B* = )/5{ Id acting on Lo(R™), where the function )/5{ R —C
is given by the rule
- Y —(x—y)? n
(4.20) Hoy=n ”/2f a(—)e NV dy, xeR".
Ya n \/g‘

Proof. Let ¢(z) = a(Rez) be a horizontal L,,—function. Then we have that

BT,B* BP,aP,B* = B(B*B)a(B*B)B*
= (BB*)BaB*(BB*) = BaB*
= BiUs(I @ F)U1a(x)U; "I o FHU; B

= BjUsa(x)U; By
x+y
. B*a(_)B.
0 \/g 0
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Now
(Bja (%) Bof)(x) = fR a (%) F@ P2y dy =vE @) f ),
where
Yf(x) = fu@n a (%) 12(y)dy = n_”/2fn a (\/Lg) e~y dy, xeR". [ |

Corollary 4.1. Let ¢ € Loo(R?"). The Toeplitz operator T, is horizontal if and only if ¢

is horizontal.

Proof. Let ¢ € Loo(C"). If T, is horizontal, then for every A € R"” one gets that
T(p = 71/ihT(p7//—ih = T(porh-

Thus, by Proposition 1.6 we obtain that ¢(z) = ¢ o 7,(2) = (2 — ih) almost every z € R?",
Therefore ¢ is a horizontal function by Lemma 4.2.

Conversely, if ¢ is a horizontal function on C", then by Lemma 4.2 there is a €
L (R™) such that ¢(z) = a(Rez) a. e. z € C". Hence by Proposition 4.3 and the criterion
of horizontal operators (Theorem 4.2) we conclude that the Toeplitz operator T, is

horizontal. u

Denote by & the set of all “ horizontal spectral functions”
(4.21) oo = (yH: g e Lo (R).

Corollary 4.2. The C*-algebra Jj,,,(L) is isometrically isomorphic to the C*-algebra
@ generated by .

4.3 Z—invariant Toeplitz operators

From now on we identify C" with R?” by means of the mapping z = x + iy — (x, y), where
x=(Rez1,...,Rez,) and y =(Imzq,...,Imz,). Thus {0} x R” is identified with iR", hence
we may see the horizontal operators like a bounded operators invariant under Weyl
translation over the Lagrangian plane {0} x R".

Let £ be any Lagrangian plane of (R2”,w). In this section we extend the results about
the horizontal Toeplitz operators to Toeplitz operators with Z-invariant symbols acting
on the Fock space #2(C"). The characterization is based on the symplectic rotations of
the symplectic space (R2",w). So, we will first introduce the £—invariant functions and

study their basic properties, including a simple criterion for a function to be #—invariant.
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We finish this section showing that the C*-algebra generated by Toeplitz operator with
horizontal symbols is isometrically isomorphic to the C*-algebra generated by Toeplitz

operators whose defining symbols are £—invariant.

Definition 4.4 (¥-invariant functions). Let £ € Lag(2n,R). A function ¢ € L (R?")

is said to be invariant under Lagrangian translations if for every h € £ it satisfies
p(z—h)=¢(z), a.e.z=(x,y)eR>™.

For brevity, we use the term Z—invariant for such functions. In the particular case

% ={0} x R" we only say horizontal.

Recall that the group of symplectic rotations U(2n,R) of real matrices n x n of (R%",w)
is isomorphic to the unitary group U(n,C). In fact, by (1.40) one has that U(2n,R) =
t(U(n,C)), where the isomorphism ¢: U(n,C) — U(2n,R) is given by the rule

, U -v
(U +iV) = :

and U,V € 4 (n,R) (1.39). Therefore, we may identify every Lagrangian plane .Z of R?"
with a subspace of C"(if there is not confusion it is denoted by the same £).

Let £ be any Lagrangian plane of R?”. By the transitive property of U(2n,R) (Proposi-
tion 1.11) and by the isomorphism U(2n,R) = U(n,C), there is a unitary matrix B € U(n,C)
such that

B<% =iR".
From now on, by simplicity of calculations we use this fact and re-write the definition

of £—invariant functions: let £ € Lag(2n,R). A function ¢ € L,(C") is said to be £-

invariant if for every h € £ it satisfies
p(z—h)=¢(z), a.e.zeC".

In particular, the horizontal case corresponds to .Z = iR". Let B € U(n,C). Define the
linear operator Vg: Lo(C",dg,) — Lo(C",dg,) by the rule

(4.22) (VBf)z)=f(B*z), zeC".
Since B* =B~ € U(n, (), it is easy to see that V3 is a unitary operator, with Vg =Vg1.

Example 4.2. Let B € U(2n,R) and %, be the reproducing kernel of #2(C"). Then, for

every z € C" we have that
(4.23) VBk,=Fkp,.
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Let ¢ € L(C"). By (4.22), and (4.23) one gets for every B € U(n,C) and z € C" that

(Vg-1TyVBf)2) =(T,Vaf,Vak,) =(T,Vaf,kp.) = (M,Vaf,kB;)
= (V-1 M,Vaf. ko) =(Myyf. ko) =Ty f)2), feFHTM.

Therefore

(4.24) V1TV =Tyy,
where wp: C" — C is the L, -function given by the rule
(4.25) vg(z)=@(Bz), zeC".

Lemma 4.3 (criterion for a function to be Z-invariant). Let £ be a Lagrangian
plane and B € U(n,C) be such that B*£ = iR". The function ¢ € Lo(C") is L—invariant
if and only if there exists a € L(R") such that

¢(Bz) =a(Rez1,Rezq,...,Rez,), a.e.z=(z1,29,...,2,)€C".

Proof. Suppose that ¢ is £—invariant, then for every A € iR" one gets that Bh € £ and
@Bz —-Bh)=@(Bz), zeC". Thatis, the function yp given in (4.25) is horizontal, and
by Lemma 4.2 the statement holds.

Conversely, if there exists a € Lo(R") such that ¢(Bz) =a(Rez,...,Rez,), a.e. z =
(z1,...,2n) € C", then for every h € £ we have B*h € iR"” and

@(z—h)=@BB*z-B*h))=a(Re(B*z—-B*h))
=a(ReB*z)=¢(z), a.e.zeC". [

Proposition 4.4. Let £ € Lag(2n,R). The C*-algebra I (L) generated by all Toeplitz
operators whose Ls,—symbols are £—invariant is isometrically isomophic to Tpor(Loo),

and hence is isometrically isomorphic to 4*.

Proof. Let ¢ € Loo(C") and B € U(n,C) be such that B*# = iR". Then by (4.24) and
Lemma 4.3 one gets that T, belongs to 9 ¢(L) if and only if Ty, € I3,,(L). Thus, the

mapping Ty — Ty, generates an isometric isomorphism from (L) onto Fp,,(Lo).
[ |

Example 4.3. Let £ =R" x {0} and ¢ be a £—invariant function. Then observe that the

standard symplectic matrix / rotates from the Lagrangian plane {0} x R to R™ x {0}. i.e.,

KRN
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Therefore, if B = —il, € U(n,C), then by Lemma 4.3 we have that the corresponding

spectral function is
¢(z) = (BB*z) = ¢(B(iz)) = a(Re(iz1),...,Re(iz,)) =a(-Imzy,...,—Imz,), a.e.zeC".
Thus, by (4.20) the corresponding spectral function is:

H \_ _—n/2 Y —(x—y)? n
s (X)=m f a(——)e Ydy, xeR".
Y n \/5‘

On the other hand, Let A = {(x,x) ER?: xe [Rn} and ¢ be a A-horizontal functions. Then
note that

L I\ [0} ([«

-1, I,/\x e
Therefore, if B = % € U(n,C), then by Lemma 4.3 we have that

@(z—iz)=@(BB"(z—i2)) = ¢(Bz) =a(Rez1,...,Rez,), a.e.zeC".

4.4 Density of spectral functions in C; ,(R").

Let a € L(R"). We re-write the spectral functions )/51 given in (4.20) as follows:

Yy
(4.26) H(x):f a(—)H(x— )dy,
where the function H: R” — R,, is the n-dimensional heat kernel at time ¢ = 1/4
(4.27) H)=n"2e, xeR".
Theorem 4.3. The set of spectral functions & is dense in Cp,u(R™).

Proof. By (4.26) we can write the horizontal spectral functions as convolution of the

symbol a and the heat kernel H as follows:
(4.28) Ya=b*H, b=aom g€ Ly[R"),

where m\/g(x) = %, x € R". Therefore, & = {a * H, a € L (R")}, and by Proposition 1.9
applied to £ = H we have that &% is dense in Cj ,(R™). [ ]

Corollary 4.3. The C*-algebra T4 (Ly,) is isometrically isomorphic to Cyp ,,(R").
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As was mentioned in Chapter 3 , Folland [21, Lemma 2.95] proved that for the class

of unbounded measurable symbols a which satisfy the inequality
(4.29) la(x)] < conste‘sxz, for some d6<1,

the linear mapping a — T, is injective. However, this class contains defining symbols

which generate spectral functions do not belonging to Cj ,(R").

Example 4.4 (unidimensional case). Let a(x) = ei®” exz, x € R. Then by formula 3.323-2
of [22] one gets that

rd=n sz (%)e“y_x)zdx:n_
R

1/2f
2 (1 )2 2 2y
=g 127y fe Sty gy e Y el
R V

=v1+ieiy2, yeR.

Thus, the spectral function 7’51 (and the corresponding Toeplitz operator) is bounded.

.’)C

i %—y +2xy—x2 dx

Furthermore, for x,y € R one has

Y2 ) - yH(y)| —21/4\/([cosx2—cosy2]2+[s1nx2—s1ny2]2) —gl/4 \/2 1-cos(x? — 2))

22— y?

_ 25/4 sin

Therefore, if x,, = n and y, = n + (w/2n), then, lim, ., |x, — y,| =lim, % =0, but

lim = 9%/4 hm sin yn =254 lim sin (@n = yn)&n + yn)
n—o0 n—o0 2
2
=2%4 lim sin(l [2n+ l]) =254 1im sin ud + L 25/4
n—oo 4n 2n n—o00 2 8n2
Thus Y2 € Loo(R)\ Cp ,(R).
H ﬂ q ﬂ
Figure 4.1: The real part of yX(y) = Figure 4.2: The imaginary part of
a
Vitie’, yH(y) = VI+ie”
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APPENDIX

APPENDIX A

A.1 Watson’s Lemma

The technique of substitution of a partial sum of a known series into the integrand and
integrating term-by-term while controlling the remainder is the basis of the proof of the
following central result in the theory of exponential integrals due to Watson G. More

details see [39, Proposition 2.1].

Proposition A.1. /39, Watson’s Lemma] Suppose L > 0 and ¢ is complex valued,
absolutely integrable function on [0,L]:

L
f |(,0(t)|dt+oo.
0

Suppose further that ¢ is of the form ¢(t) = t g(t) where A > —1 and g has an infinite
number of continuous derivatives in some neighborhood of t = 0. Then the exponential

integral

L
(A.1) F(x) ::f e “o(t)dt
0

is finite for all x > 0, and it has the asymptotic expansion

oo 4(n)
(A.2) Flx) ~ Z g0 IA+n+1)

n=0

nlxAtn+l » ASX—+00
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A.2 Fourier transform of bounded Borel measures

Next, we consider the Fourier transform of bounded Borel measures on R: one of the

most important tools in analysis. More details see for example, [12, Section 3.8].

Definition A.1. Let v be a bounded Borel measure on R. The Fourier transform of v is

the complex function
(A.3) V(y) = f e dv(x), yeR.
R

Proposition A.2. [12, Proposition 3.8.6]

If two bounded Borel measures have equal Fourier transforms, then they coincide.

A.3 Topology on a Banach space

Next, we are going to consider (X, || - ||) a Banach space over the field F, where F = RorC.
We denote by X * the dual space of X, which is the linear space of all continuous linear

functional on X. It is a Banach space with norm given by

lptl

(A.4) ol = .
xex\{oy llxll

Theorem A.1 (L.(X,u) as dual of L1(X,du)).
Let (X,Q, 1) be a measure space, where p is o-finite measure on X. For each g € L (X, ),

the equation

(A5) pa(f)= fX Fg@du), feLiX,dp)

defines a bounded linear functional pg on the Banach space L1(X,du), and the map-
ping g — pg is an isometric isomorphism from Lo (X, u) onto the Banach dual space
(L1(X,dw)".

Definition A.2 (weak-* Topology).

The weak-* topology ( denoted by # ) of the space L,(X,u) considered as the dual of
L1(X,p), is the weak topology on (L1(X,1))" induced by the family & = {p, : g € Loo(X, )},
where for each g € L (X, ) the function ¢, : (L1(X,u))* — C is given by (A.5). Note that
the finite intersections of the following sets form a local base of a function a € L(X, 1)

in the topology # :
(A.6) V(a,e,h)={b € Loo(X,): |lpp(h)—@.(h)|<e}, €>0, heLi(X,uw.
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A.4 Topologies on B(A)

We will consider various topologies on ZB(#°), the space of all bounded linear operators
on the Hilbert space #.

Definition A.3 (uniform Topology).

Let (B(A), |l - ||) be a normed space, where | - | is the norm given by the formula
T
(A7) T = sup 220 e ),
x#0e7 lxll

This norm induces a metric, so 8(#°) is a metric space. Thus the uniform topology is just

defined to be the metric topology.
In the uniform topology 7', — T if and only if |7, — T'|| — O.

Definition A.4 (strong-Operator Topology (SOT)).

The strong-operator topology has as subbase the collection of all sets of the form
(A.8) O(To,x,€) ={T € B(A): (T —To)x| < ¢}

We know a base is the collection of all finite intersections of such sets. It follows that a

base is the collection of all sets of the form
(A9) V(To,x1,X2,* ,%n,€) = {T eB(A): (T -To)xjl<se, j=1,2,-- ,n}

The corresponding concepts of convergence: A net (T,) converges in the strong-operator
topology to T if and only if ||[(T,, — T)x| — 0, for each x € A.

Definition A.5 (weak-Operator Topology (WOT)).
The weak-operator topology has as subbase the collection of all the finite intersections of

the following sets:

The corresponding concepts of convergence: A net (7',) converges in the weak-operator

topology to T if and only if (T, — T)x,y) — 0, for each x,y € .

By the Cauchy-Schwarz inequality, strong-operator convergence implies weak-operator
convergence. When the dimension of ./ is infinite, the weak-operator topology is strictly

weaker than the strong-operator topology.
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Example A.1. If T, is the operator on Lo(0D,dt) defined by
T.f(t)=e™f(t), [ €LydD,dt),

then (T, f,g) = c,, where c,, is n-th coefficient of Fourier of fg € L1(0D,dt), and by the
Riemman-Lebesgue’s theorem we have that ¢,, — 0. Thus T, — 0 in the weak-operator

topology, but T',, - 0 in the strong-operator topology, since each T, is unitary.

Theorem A.2. Suppose that # is a convex subset of B(A). Then the closure of & in the

weak-operator topology coincides with the closure of # in the strong-operator topology in
B(FC).

A.5 About multiplication operator

Let (X,Q,u) be a o-finite measure space. L,.(X, ) is the set of measurable functions
which are bounded almost everywhere in X. Lo(X,d ) is a Hilbert space.

Given ¢ € L(X,u) there is a corresponding linear transformation ¢ — M, on
B (Lo(X,dp)), where

(A.11) Myf=¢f, feLaX,du).
Define
(A.12) Ap:{M(p:(pELOO(X,u)}.

It is an abelian subalgebra of 8 (La(X,dp)).

Proposition A.3. Let (X,Q, ) be a o-finite measure space. If ¢ € L(X, u) the following

statements hold:
i). The operator M, is normal, and M, = M.
ii). ¢ — M, is a *-homomorphism from Loo(X, ) onto A,,.
iii). Myl = ll¢lloo
Proof. i). Let ¢ € Loo(X, 1), then
(Myf,8)= fX (M f) (x)g(@) du(x) = fX P(x)f (x)g(x) d )
= _[X f (x)(@g(x)) dulx) = j;{ ) (Myg) () d ()

=(f,Mgg), Vf,geLaX,dp.
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Thus M:; = M.

ii). Note that o + ¢ — My = My, +My € Ay, and oy — Myy = M,My € A, for
every ¢, € Loo(X, ). On the other hand, by i we have that ¢ — Mg = M(’; €A, for all
¢ € Loo(X, p). Hence, ¢ — M, is a *-homomorphism from L (X, u) onto A,.

ii1). Let g€ Lo(X,dp),

IMygll; = fX ()8 @) dux) < gl gl
Thus
(A.13) IMpll < llplloo-
To show that equality is obtained, let € > 0 be given, then the subset
Se = {x € X : 1p@)] = lplloo — £},

is measurable, and since u is o-finite, this subset has a subset S of finite measure. Let

xs be the characteristic function of the set S, then ys € Lo(X,du). Moreover
IMpll = I Mpxsl = fs lp(0)|? d p(x) = (lollso —8)2#(5)
= (Iplloo — ) x5 3.
Thus, for all £ >0 we have M| = [¢llo — €. Hence
(A.14) 1Myl = llplloco-
Combining (A.13) and (A.14) the equality is proved. [ |

Proposition A.4. [34, Theorem 2.5.10] Let S € B(Ls(R)) and M@n be the multiplication
operator by the function ©,(t) = el teR. The following conditions are equivalent:

(@) S is invariant under Me, for all n€R:
SMe, =Me,S.
(b) S is the multiplication operator by a bounded measurable function:
dp € Loo(R) suchthat S=DM,.

Proposition A.5. [13, Proposition 10.5] Let (X,Q, 1) be a o-finite measure space. Con-
sider Loo(X, u) as the dual of L1(X,du) equipped with the weak-* topology. A net (¢;) of
functions in Lo(X, 1) converges in the weak-* topology to a function ¢ € Loo(X, 1), if and
only if (M) is weak-operator convergent to M, in 9% (L2(X,dw).
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Proof. Suppose that ¢; — ¢ in the weak-* topology. Therefore for each h € L1(X,du) one
gets

| pinwdue— | pehedu.
If f,g € Lo(X,dp), then taking h = fg € L1(X,du) and by the above remark we have
My,f.8)= [ 9, @e@dp— | pwf @ du=M,f 0.

This implies that M, — M, in the weak-operator topology.
Conversely, assume that M, — M, in the weak-operator topology. Given & € L1(X,dp)
there exists f,g € Lo(X,du) such that A = f g. Therefore

fX () dpx) = fX 0, @DE@ dp() = (M, fr8) — My frg) = fX PR d .

That is, the net (¢;) converges to ¢ in the weak-x* topology. |

Proposition A.6. Let (X,Q, u) be a o-finite measure space. Then the mapping a — M, is
a homeomorphic embedding of Loo(X, ) into (8 (Lo(X,dw)),WOT).

Proof. First we note that if f, g, h are some functions such that 2 = fg and f,g € Lo(X, ),
then for every b € L (X, u) we have

(M~ Mo)f &)1 = | (b-a)fFdpu= [ (b-alhdpu=Igs(h) - puh.
Given a € Loo(X, ), e>0 and f,g € Lo(X,u), we define h as h = fg and obtain
{Myp: beV(a,e,h)) cUMy,,¢,f,8).

Conversely, given a € L(X,u), e >0 and h € L1(X, u), we easily construct two functions
f,g € Lao(X, p) such that A = fg and obtain

{beLoo(X,u): MpeUMgy,e,f,80<V(a,e, h). |

The space L,(R) may be identified with the dual space of L1(R). We denote by #  the

corresponding weak-* topology on L (R).
Proposition A.7. Cy(R) is dense in (Loo(R),#).

Proof. Let f € Loo(R), hy,ho,...,h, € L1(R) and € > 0. Our goal is to find a function
a € Cy(R) such that for every je{1,...,m}

lpa(hj)—Ppr(hj) <e.
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If | flloo =0, then a = 0 do the work, so we suppose that | f|o > 0. Using the assumption
that h1,...,h, € L1(R) and the continuity of the Lebesgue integral, we find a § > 0 with
0 < 1/(4|/f lloo) such that for every measurable subset Y with u(Y) <d

£
(A.15) flhvld < , ef{l,...,m}.
v M e
We also choose an open interval A with
€
(A.16) f |hildu< , ef{l,...,m}.
ma e

Applying Lusin’s theorem to the function f on the segment clos(A) we find a continuous

function b on clos(A) and compact subset K of A such that f|x = blg and
(A.17) LA\ K)<S.

Now, by Urysohn’s Lemma, there exists a continuous function z on R with values in [0, 1]
such that u(x) = 1 for each x € K and u(x) =0 for each x € R\ A. Define the function a on
R by

bx)u(x) ifxe A;
alx) =
0 otherwise.

Then a is continuous, alg = flx and ||allco < I llco- Applying (A.15) with Y = A\ K and

(A.16) we get
€

hild :f hild +f hildu< }
fuqe\Kl jldn IR\Al jlen A\Kl jlen 201 f lloo

Combining this with |f —allco < I/ llco + 1@llcc = 2| f leo We finally obtain the following

upper estimate for each je{1,...,m}:

|pa(h;)—pr(hj)| Slea(x)—f(x)lIhj(x)ldxSZIIfIIOOfR\KIhj(x)IdeE. [

A.6 Classical harmonic analysis and Wiener’s

theorem

The algebra L (R")

The complex-valued functions on R"” which are Lebesgue integrable over R”, denoted by

L1(R"*) form a Banach algebra over the Complex numbers C. The norm is given by

1l = f f@)ldx,
Rn
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multiplication is the convolution f * g, defined by

frew=[ foge-dy, f.geli®),

and the inequality
If = glli<Ifllgl

holds. It is easily seen that convolution is commutative; thus L(R") is a commutative

Banach algebra.

In L1(R") we have two important operators: The translation operator L, given by
(A.18) T f)=fy—x), xeR”,
an the dilation operator Dj given by
Dyf(x)=hf(hx), heR,.
These operators are both isometric:
(A.19) ITeflla=1If N1, IDafla=1fl1.
The following result due to Lebesgue has many applications.

Proposition A.8. Let f € L1(R"). Then for any € > 0 there is a neighbourhood V; of 0 in
R”™ such that
ITxf = flli<e, x€V,..

Next, we give an immediate consequence of Proposition A.8 and (A.19).

Corollary A.1. For each f € L1(R") the mapping x — T.f from R" into L1(R") is uni-

formly continuous. Likewise, x — ||t f — [ 1 is uniformly continuous.

Wiener’s Theorem

Wiener’s theorem expresses a fundamental fact concerning Fourier transforms, and has
been the starting poitn of many contemporary developments in harmonic analysis. More

details see for example [42, Lemma 1.4.2].

Theorem A.3 (Wiener—Lévy). Let f € L1(R") and K c R" be a compact set. If V is an
open neighborhood of f (K) and A:V — Cis an analytic function, then there is a function
u € L1(R™) such that 3(t) = A(f(t)) forall t e K.

Theorem A.4 (Wiener’s Division Lemma). Let f,g € L1(R") such that supp(f) is a
compact set, and g(t) # 0 for every t € R"™. Then there exists h € L1(R") such that f = g * h.
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Approximate identity

Definition A.6. An approximate identity in a normed algebra </ is a net (e;)jeg in o
such that for every x in </ it holds
(A.20) lime;x =limxe; = x.

Jjed jed
If there is a finite constant M > 0 such that |le || < M for every j € J, then the approximate
identity is said to be bounded.

In fact, in this definition it is sufficient to consider only non-zero elements x € «/. In a
similar way left and right approximate identity is defined. Note that unbounded approxi-
mate identities are not particularly useful, see [15] for some pathological examples in
incomplete normed algebras.

An approximately unital algebra shares some of the properties of a unital algebra.
Obviously, if </ is a unital algebra with unit e and </ is an arbitrary directed set, then
we can define an approximate identity (e;);es in o/ easily by the rule e; = e for all j € J.
Also, from Definition A.6 it follows that if an approximate identity is a divergent net,

then the normed algebra is non-unital.

Proposition A.9. L{(R") contains an approximate identity (e;);eg such that é; € C.(R")
for each je€ .

Dirac sequences

It is known that any Dirac sequence (% ,,),,en behaves like an identity for convolution in
the limit as n — oco. Some people call Dirac sequences “approximate identities” for this

reason. Next, we introduce the Dirac sequences and give an example of them.

Definition A.7 (Dirac sequences). A sequence (h,,)nmen of functions belonging to
L1(R") is called a Dirac sequence if it satisfies the following conditions:

(a) For each m e N and x € R"” , one gets A,,(x) = 0.

(b) For each m e N,

hm(t)dt=1.
R™

(c) For every open neighborhood U of 0 in R” it holds

lim hm(t)dt =0.

m—+00 Re\U
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Example A.2. The sequence (h,),cn given by

2sin(nx)

(A.21) B (x) = 5

eER,
nmnx

is a Dirac sequence.
Proof. Note that h,(—x)=h,(x) =0 for each x € R, and

+00
f h,()dt=1, neN.

(e.e]

On the other hand, let 6 >0, and n €N, hence

4 in?(nt) = x=nt 4 [ sin?
hadt=2| hydi=—2] =2 (’; ) x:’”—f Sm2x x.
It]>6 t>6 T Jiss (nt) T X
Thus lim, — 40 Ji4j55 2n()dt = 0 for each § > 0. [ |

For x = (x1,...,%,) € R", set f(x) = [I}_; fe(x) where f1,...,f, € L1(R). Then f €

L{(R™) and its Fourier transform is such that
n
F@&)=T] frltr), t=(t1,...,t,) €R™
k=1

In this way we can use functions in L{(R) with certain properties to obtain function in

L,(R™) with analogous properties, especially concerning Fourier transforms.

Example A.3. The sequence (h,)necz, given by
2\" - sin®(maxy)

(A.22) hm(x) = (;) I1 —2k,

x=(x1,...,x,) ER",
k=1 m"x;
is a Dirac sequence. In effect, note that h,(—x) = h,(x) = 0 for each x € R", and
hn(t)dt: 1, n€Z+.
Rﬂ

On the other hand, let 6 >0, and n € Z., hence by Example A.2 one has that

m—+00

0

n
hn(t)dt=2" hp(t)dt;
fR”\H;Ll(—&é) " jl:[l T

Thus, since for every open neighborhood U of 0 in R*, we can choose a § > 0 such that
[1}.,(=6,6) < U one has that

lim hnp()dt< lim hn,()dt=0.
m—+oo RP\U n—+oo [Rn\n;tzl(_é"(s)

On the other hand, the Fourier transform of £, is

€k|) .
- n n c 2 n/2 n 1—— fl |S
hm(€)=(_m2n) [ (mfk)=(2) [ m ) PEET

2
k=1 ék

k=1 if|5k|>m.
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Since the Dirac sequences can be viewed as approximate identities, they provide
a powerful tool to approximate functions. The next lemma is a well-known result for

uniformly continuous functions, see for example [20, Proposition 2.42].
Lemma A.1. Let f € Cp ,(R"). If (hp)mez, is a Dirac sequence, then
(A.23) lim |[f*hy—fle=0.

m—o0

Proof. Due to f € Cp ,(R"), given x € R* and ¢ > 0 there exists a open neighborhood 7
of 0 € R"® such that |f(x—¢t)— f(x)| < % for all ¢t € 7. On the other hand, for any open
neighborhood @ there exists Ny € Z, such that

E
h,(t)dt < , Vn=Npy.
fuw 2017 lloo 0

From this remarks we have for every n = Ny that

I+ ha) =15 [ 1fGe=0- F@IRa O
= [ =0 f@iha@drs [ if-0-f@lhawds
vV R2\V

= Ef hn(t)dt+2||f||oof h,(t)dt < E+ =€. [ |
2Jy RO\ Y 2

DN ™
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