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Matemáticas

Director de Tesis:
Dr. Enrique Reyes Espinoza
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RESUMEN

En esta tesis estudiamos complejos simpliciales con las siguientes propiedades:
descomponibilidad por vértices, escalonabilidad y Cohen-Macaulay. Se sabe que
un complejo simplicial que se descompone por vértices es escalonable, un com-
plejo simplicial escalonable puro es Cohen-Macaulay y un complejo Cohen-Macau-
lay es puro. La primera y la última inclusión son estrictas, la segunda es un pro-
blema abierto para grafos. En este trabajo, damos una caracterización de los grafos
Cohen-Macaulay sin 3-ciclos ni 5-ciclos. Además, probamos que esos grafos se
descompone por vértices y son escalonables. Otra familia de grafos estudiada en
esta tesis son los grafos no mezclados que se descomponen por vértices cuyos 5-
ciclos tienen al menos 4 cuerdas. También, caracterizamos la propiedad de ser bien
cubierto para los grafos theta-anillados y los grafos sin 3-ciclos, 5-ciclos ni 7-ciclos.
En particular, probamos que la segunda familia de grafos tiene un apareamiento
perfecto. Por otro lado, mostramos que los complejos simpliciales cuyo ideal de
Stanley-Reisner tiene como conjunto minimal de generadores las bases de un ma-
troide es escalonable si y sólo si el matroide es completo. Concluimos la tesis dando
algunas condiciones para que un hipergrafo simple con un apareamiento perfecto
de tipo König sea escalonable.





ABSTRACT

In this thesis we study simplicial complexes with the following properties: vertex
decomposability, shellability and Cohen-Macaulayness. It is known that a vertex
decomposable simplicial complex is shellable, a pure shellable simplicial complex
is Cohen-Macaulay and a Cohen-Macaulay simplicial complex is pure. The first
and third inclusion are strict, while the second inclusion is an open problem for
graphs. In this work, we give a characterization of Cohen-Macaulay graphs with-
out 3-cycles and 5-cycles. Furthermore, we prove that these graphs are vertex de-
composable and shellable. Another graph family that we study in this thesis are
unmixed vertex decomposable graphs whose 5-cycles have at least 4 chords. Also,
we give a characterization for well-covered theta-ring graphs and well-covered
graphs without 3-cycles, 5-cycles and 7-cycles. In particular, we prove that the se-
cond family of graphs has a perfect matching. On the other hand, we show that a
simplicial complex whose Stanley-Reisner ideal is a monomial ideal such that its
minimal generators are the bases of a matroid is shellable if and only if the matroid
is complete. We conclude the thesis giving some conditions for the shellability of
a clutter with a perfect matching of König type.
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PREFACE

Simplicial complexes play an important role in mathematics and they allow a rich
interaction between combinatorics, algebra, geometry and topology. Characteri-
zing simplicial complexes with properties like vertex decomposability, shellability
and Cohen- Macaulayness is a very active and important research area in combina-
torial commutative algebra. Hochster and Stanley start with this study in [29] and
[43], respectively. Others works are [3], [6], [7], [8],[15], [42], [45] and [48]. Vertex
decomposability was first introduced in [3] by Billeras and Provan in the pure case
and extended to nonpure complexes by Björner and Wachs in [6]. In [42] is proven
that vertex decomposable simplicial complexes are shellable. Also, Stanley intro-
duced the concept of sequentially Cohen-Macaulay simplicial complexes and he
showed that every shellable simplicial complex is sequentially Cohen-Macaulay.
Here we take the non-pure definition of shellability introduced by Björner and
Wachs in [6]. However, the notion of a pure shellable complex was studied earlier
in [33] and [41]. Furthermore, pure shellable implies Cohen-Macaulay (see [24]
and [30]). The edge ideal of graphs was introduced by Villarreal in [47]. Further-
more, in [46] Van Tuyl and Villarreal introduced the notion of a shellable graph. A
set of vertices without edges is a stable set. A graph is called shellable or Cohen-
Macaulay if the simplicial complex of its stables is shellable or Cohen-Macaulay,
respectively. Dochtermann, Engstrom (in [15]) and Woodroofe (in [53]) studied
vertex decomposable graphs.

In general, we have the following implications (see [42], [48], [53])

Pure
vertex decomposable

⇒ Pure
shellable

⇒ Cohen - Macaulay

The equivalence between the Cohen-Macaulay property and pure vertex decompo-
sability has been studied for some families of graphs like: bipartite graphs (in [18]
and [27]); very well-covered graphs (in [13] and [31]); graphs with girth at least
5, block-cactus (in [28]); and graphs without 4-cycles and 5-cycles (in [4]). In this
work, we prove the equivalence for graphs without 3-cycles and 5-cycles. Further-
more, we characterize vertex decomposable graphs whose 5-cycles are chorded.

A graph is well-covered if every maximal stable is maximum. Consequently, a
graph is well-covered if and only if its simplicial complex is pure. The concept
of well-coveredness was introduced by Plummer in [35]. The well-covered pro-
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perty is a necessary condition fof Cohen-Macaulayness (see [8]). The well-covered
property has been studied for some families of graphs like: graphs with girth at
least 5 (in [21]), graphs without 4 and 5-cycles (in [22]), simplicial, chordal and
circular graphs (in [36]), block-cactus graphs (in [37]) and unicyclic graphs (in [44]).
We characterize the well-covered property for graphs without 3-cycles, 5-cycles
and 7-cycles and theta-ring graphs. The first graph were studied and characterized
in [38].

If a bipartite graph is well-covered, pure shellable or Cohen-Macaulay, then it is
König and has a perfect matching. This perfect matching is important for the
characterization of the Cohen-Macaulay bipartite graphs given by Hibi and Her-
zog (see [27]) and for the characterization of well-covered bipartite graphs (see
[39] and [49]). On the other hand, 3-cycles, 4-cycles, 5-cycles and 7-cycles are the
well-covered cycles. Furthermore, only 3-cycles and 5-cycles are vertex decom-
posable, shellable and Cohen-Macaulay. But 3-cycles, 5-cycles and 7-cycles do not
have a perfect matching. Consequently, it is interesting to verify: if well-covered
graphs without 3-cycles, 5-cycles and 7-cycles have a perfect matching, and if a
Cohen-Macaulay graph without 3-cycles and 5-cycles has a perfect matching. In
this thesis, we prove that the answer to this problem is affirmative and we give a
combinatorial characterization of these graphs.

Theta-ring graphs were introduced by Gitler, Reyes and Vega in [25]. In this paper
they proved that theta-ring graphs are equivalent to CIO graphs and equivalent
to universally signable graphs. Furthermore, chordal graphs, cactus, block-cactus
and ring graphs are theta-ring graphs. Some of the families mentioned relate as
depicted in the following diagram.

Ring graphs ⊂ Theta-rings ⊃ Chordal graphs
∪ ∪

Cactus graphs ⊂ Block-cactus
∪

Block

Well-covered chordal graphs have been characterized in [36] and well-covered cac-
tus and block-cactus graphs in [37]. In this thesis, we characterize well-covered
theta-ring graphs.

The study of matroids start in the thirties by Whitney in [51] studying the theory of
dependence. This concept was taken from graph and matrix theory. Matroids can
be defined in different ways, all of them equivalent. Simplicial complex of a circuit
set of a matroid is shellable, since the condition of simplicial vertex in a clutter is
exactly the weak circuit exchange property of a matroid (see [52]). Furthermore,
the simplicial complex of the independent sets of a matroid is pure shellable (see
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in [5]). In this thesis we study the simplicial complex of the base set.

Hypergraphs were introduced by Berge to generalize graphs. A clutter C is a hy-
pergraph such that each edge of C is not included in another. This concept ge-
neralizes the concept of simple graphs. Unmixed clutters play an important role
in this thesis. We have that a clutter is unmixed if and only if its Stanley-Reisner
simplicial complex is pure. The case of clutters has been studied in [9], [19], [20],
[32] and [52]. Simplicial forests were introduced in [19]. These simplicial com-
plexes generalize forest graphs. Facet ideal of Cohen-Macaulay simplicial forests
were studied in [20]. These complexes are equivalent to a totally balanced clutters
with the König property. Faridy showed in [20] that if a simplicial tree is Cohen-
Macaulay, then its Stanley-Reisner complex is shellable. A characterization of un-
mixed clutters with a perfect matching of König type is given in [32]. Furthermore,
Morey, Reyes and Villarreal characterize Cohen-Macaulay König clutters without
3-cycles and 4-cycles (see [32]). In this thesis, we study Cohen-Macaulay and pure
shellable clutters with a perfect matching of König type and not having 4-cycles
with particular properties.

This thesis is organized as follow: in Chapter 1 we include some definitions, pro-
perties and known results that we will use in Chapters 2 and 3, where we show
our original results. Particularly, in Chapter 1 we give the preliminaries on com-
mutative algebra and combinatorics. In section 1.1 we review notation and basic
definitions on commutative algebra as Cohen-Macaulay ring, Krull dimension and
depth. In section 1.2, we review some results and properties of simplicial com-
plexes, in particular, the relation between simplicial complexes, square-free mono-
mial ideals and Stanley-Reisner rings. Section 1.3 offers basic material on clutters
including their monomial ideals and the König property. Section 1.4 is dedicated
to matroid theory. In Section 1.5 we review some definitions and properties about
graphs and their edge ideals. Finally, the definition of theta-ring graphs and some
of their properties are given in Section 1.6.

In Chapter 2, we study vertex decomposable, shellable, Cohen-Macaulay and well-
covered graphs. In particular, we provide conditions for the equivalences of the
first three properties in some graph families. Also, we give necessary and suffi-
cient conditions to characterize some families of well-covered graphs. Chapter 2
is divided as follows: in section 2.2 we give some properties and relations bet-
ween critical, shedding and extendable vertices that we will use in the following
sections. In section 2.3 we prove that a well-covered graph without 3-cycles, 5-
cycles and 7-cycles is König and it has a perfect matching. Using this result, in
Theorem 2.12 we give a characterization of these graphs. Since bipartite graphs
are the graphs without odd cycles, the characterization extends the criterion of
well-covered bipartite graph (given in [39] and [49]). Furthermore, we prove that
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very well-covered graphs and unmixed König graphs are equivalent. In section 2.4
we prove the equivalence between the unmixed vertex decomposable and Cohen-
Macaulay properties for König graphs (Theorem 2.25) and graphs without 3-cycles
and 5-cycles (Theorem 2.28). Furthermore, we prove that theses properties are
equivalent to the following condition: G is an unmixed König graph with a perfect
matching e1, ..., eg and thee are no 4-cycle with two ei’s. Theorem 2.26 extends the
Herzog-Hibi criterion for Cohen-Macaulay bipartite graphs given in [27] and the
characterization for Cohen-Macaulay graphs with girth at least 6 (given in [21]).
In [46] Van Tuyl and Villarreal proved that the vertex decomposable, shellable
(non-pure) and sequentially Cohen-Macaulay properties are equivalent in bipar-
tite graphs. They also gave a criterion that characterizes these graphs. These result
and results obtained in sections 2.2 and 2.3 motivate us to study vertex decom-
posability and shellability (non pure) for graph without 3-cycles and 5-cycles. In
particular, in Section 2.5 we prove that the neighborhood of a 2-connected block of
G has a free vertex if G is a bipartite shellable graph or if G is a vertex decompo-
sable graph without 3-cycles and 5-cycles. Also, we prove that the criterion of Van
Tuyl-Villarreal can be extended for vertex decomposable graphs without 3-cycles
and 5-cycles and shellable graphs with girth at least 11. Cohen-Macaulay trees are
one of the first Cohen-Macaulay graphs studied (see [18] and [47]). These graphs
are bipartite graphs and if we add a new edge, then we obtain the unicyclic graphs.
Some properties of unicyclic graphs were studied in [44]. In section 2.6 we charac-
terize unicyclic graphs for each of the following properties: vertex decomposable,
shellable, Cohen-Macaulay and well-covered. In section 2.7 we study the well-
covered property of a theta-ring graph (see [25]). Chordal, cactus, block-cactus
and ring graphs are particular families of theta-ring graphs. We prove that a theta-
ring graph is well-covered if and only if it is an induced 7-cycle or its vertex set
has a disjoint partition in basic 5-cycles, semi-basic 5-cycles and sun-complete sub-
graphs. In section 2.8 we characterize well-covered vertex decomposable graphs
whose 5-cycles are chorded (have at least 4-chords). Some well-covered graphs
have a partition V1, ..., Vk of their vertex set such that if S and S′ are maximal sta-
ble sets, then |S ∩ Vi| = |S′ ∩ Vi| for i = 1, ..., k. For this reason in section 2.9 we
study when a 5-cycle C or a 7-cycle C′ of a graph G, satisfies that |C ∩ S| = 2 and
|C′ ∩ S| = 3 for each maximal stable set S of G.

In Chapter 3 we study shellable and the Cohen-Macaulay simplicial complexes
associated to clutters. LetM be a matroid, in Section 3.2 we show that a simplicial
complex of the base set of M is shellable if and only if the base set of M is a
complete clutter (see Theorem 3.5). Finally, in Section 3.3 we give some conditions
for shellable clutters with a perfect matching of König type. These result generalize
the result obtained in Section 2 about König graphs.
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The dissertation is essentially self contained. For details on combinatorial theory
or commutative algebra the reader is referred to Chapter 1 and its references.
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CHAPTER 1
PRELIMINARIES

In this chapter we give a review of background material, definitions, known results
and properties on commutative algebra and combinatorial theory that we will use
in the following chapters.

1.1 COHEN-MACAULAY RINGS

The purpose of this section is to review the definitions and properties of commuta-
tive algebra necessary to define Cohen-Macaulay rings. For more details you can
see [1], [8], [42] and [48]. For this thesis ”ring” means a commutative ring with an
identity element. Throughout this section R denotes a ring.

Definition 1.1 R is a Noetherian ring if every ideal I of R is finitely generated, that
is, there exists an integer q and f1, ..., fq ∈ I such that

I =

(
q

∑
i=1

ai fi | ai ∈ R, ∀i

)
.

Definition 1.2 A chain of prime ideals of R is a finite strictly increasing sequence
of prime ideals p0 ⊂ p1 ⊂ · · · ⊂ pn; n is called the length of the chain. Spec(R)
denotes the set of prime ideals of R. The height of p ∈ Spec(R), denoted by ht(p),
is the supremum of the lengths of all chains of prime ideals which end at p.

Definition 1.3 If I is an ideal of R, then the height of I, is defined as:

ht(I) = min{ht(p) | I ⊆ p and p ∈ Spec(R)}.
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Definition 1.4 The Krull dimension of R, denoted by dim(R), is the supremum of
the length of all chains of prime ideals of R.

Proposition 1.5 [48] In general, we have that dim(R/I) + ht(I) ≤ dim(R). Equa-
lity holds if R is a polynomial ring over a field.

Definition 1.6 Let M 6= (0) be an R-module. The dimension of the R-module M is

dim(M) = dim(R/annR(M)),

where annR(M) = {x ∈ R | xM = 0} is the annihilator of M.

Definition 1.7 Given an R-module M, an element r ∈ R is a zero divisor of M if
there is 0 6= m ∈ M such that rm = 0. The set of all zero divisors of M is denoted
byZ(M). If r is not a zero divisor on M, we say that r is a regular element of M.

Definition 1.8 A sequence θ = θ1, ..., θn in R is called a regular sequence of M or an
M-regular sequence if (θ)M 6= M and θi /∈ Z(M/(θ1, ..., θi−1)M) for all i.

Theorem 1.9 (Krull Principal Ideal Theorem) Let I be an ideal of R generated by a
sequence h1, ..., hr. Then

(a) ht(p) ≤ r for any minimal prime p of I.

(b) If h1, ..., hr is a regular sequence, then ht(p) = r for any minimal prime p of I.

Proof. See ([1], Corollary 11.17). �

Definition 1.10 R is called local ring if R has only one maximal ideal m. It will be
denoted by (R, m).

Definition 1.11 Let M 6= (0) be a module over a local ring (R, m), the depth of M,
denoted by depth(M), is the length of any maximal regular sequence on M which
is contained in m.

Proposition 1.12 [48] In general, we have depth(M) ≤ dim(M).

Definition 1.13 An R-module M is called Cohen-Macaulay if M = (0) or if

depth(M) = dim(M).
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Definition 1.14 Let S be a multiplicative closed subset, i.e., x, y ∈ S implies xy ∈ S.
If 1 ∈ S, then the module of fractions of M with respect to S, or the localization of M
with respect to S is S−1(M) = {m/s | m ∈ M, s ∈ S}, where m/s = m1/s1 if
and only if there is t ∈ S such that t(s1m − sm1) = 0. If p is a prime ideal of R
and S = R \ p, then S−1M is written as Mp and it is called the localization of M at
p.

Definition 1.15 A local ring (R, m) is called Cohen-Macaulay if R is Cohen-Macau-
lay as an R-module. If R is non local and Rp is a Cohen-Macaulay local ring for all
p ∈ Spec(R), then we say that R is a Cohen-Macaulay ring.

Definition 1.16 An ideal I of R is Cohen-Macaulay if R/I is a Cohen-Macaulay
R-module.

Definition 1.17 Let (H,+) be an abelian semigroup. An H-graded ring is a ring R
together with a decomposition

R =
⊕
a∈H

Ra

(as a Z-module) such that RaRb ⊂ Ra+b for all a, b ∈ H.

Remark 1.18 A graded ring is by definition a Z-graded ring.

Definition 1.19 If R is an H-graded ring and M is an R-module such that

M =
⊕
a∈H

Ma,

where Ma is an additive subgroup and RaMb ⊂ Ma+b for all a, b ∈ H, then we say
that M is an H-graded module. An element f ∈ M is said to be homogeneous of degree
a if f ∈ Ma.

Let R = k[x1, ..., xn] be a polynomial ring over a field k. We set d = (d1, ..., dn) ∈Nn.
For a = (a1, ..., an) ∈ Nn we take the monomial xa = xa1

1 · · · x
an
n and |a| = a1d1 +

· · · + andn. The induced d-grading of R is: R =
⊕∞

i=0 Ri, where Ri =
⊕
|a|=i kxa.

The standard grading or usual grading of R is the 1-grading, where 1 = (1, ..., 1).
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Remark 1.20 [8] Let I be a monomial ideal in k[x1, ..., xn]. There exists a unique
minimal monomial set of generators of I and it is denoted by G(I).

Definition 1.21 Let R = k[x1, ..., xn] be a polynomial ring. A graded R-module
M is called sequentially Cohen-Macaulay (over k) if there exists a finite filtration of
graded R-modules

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M

such that each Mi/Mi−1 is Cohen-Macaulay, and their Krull dimensions satisfy

dim(M1/M0) < dim(M2/M1) < · · · < dim(Mr/Mr−1).

1.2 SIMPLICIAL COMPLEXES AND STANLEY-REISNER RINGS

In this section we give some properties of simplicial complexes and their Stanley-
Reisner rings.

Definition 1.22 A simplicial complex consists of a finite set V of vertices and a collec-
tion ∆ of subsets of V called faces such that: if F ∈ ∆ and G ⊆ F, then G ∈ ∆.

Definition 1.23 The maximal faces of ∆ are called facets and the set of facets of ∆

is denoted by F (∆). If F ∈ ∆, the dimension of a simplicial complex of F is dim(F) =
|F| − 1. Furthermore, dim(∆) = sup{dim(F) | F ∈ ∆}. We assume that dim(∅) =
−1. A face of dimension q is called a q-face or a q-simplex. 〈F1, ..., Fs〉 denotes the
simplicial complex whose facets are F1, ..., Fs.

Definition 1.24 ∆ is called pure if all its facets have the same cardinality.

Definition 1.25 If F ⊆ V(∆), then the deletion of F in ∆ is the subcomplex

del∆(F) = {G ∈ ∆ | G ∩ F = ∅}.

Furthermore, if F ∈ ∆, then the link of F in ∆ is

lk∆(F) = {G ∈ ∆ | G ∪ F ∈ ∆, G ∩ F = ∅}.
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Definition 1.26 A simplicial complex ∆ is called vertex decomposable if V is the
unique facet, or ∆ contains a vertex x such that

(a) both del∆(x) and lk∆(x) are vertex decomposable, and

(b) no facet of lk∆(x) is a facet of del∆(x).

Definition 1.27 A vertex x which satisfies condiction (b) (in the last definition) is
called a shedding vertex of ∆.

Definition 1.28 If the vertex set of ∆ is V(∆) = {x1, ..., xn}, the Stanley-Reisner ring
or face ring of ∆ over a field k is k[∆] = R/I∆, where R is the polynomial ring
k[x1, ..., xn] and I∆ is the ideal of R generated by

{xi1 · · · xik | 1 ≤ ii < · · · < ik ≤ n, {xi1 , ..., xik} /∈ ∆}.

Proposition 1.29 [48] If ∆ is a simplicial complex with vertices x1, ..., xn, then the
primary decomposition of the Stanley-Reisner ideal of ∆ is:

I∆ =
⋂

F∈F (∆)
pF,

where pF is the ideal generated by all xi such that xi /∈ F.

Proposition 1.30 [48] If dim(∆) = d and V(∆) = {x1, ..., xn}, then

dim k[∆] = d + 1 = max{s | xi1 · · · xis /∈ I∆ and i1 < · · · < is}.

Definition 1.31 [6] ∆ is shellable if the facets of ∆ can be ordered F1, ..., Fs such that
for all 1 ≤ i < j ≤ s, there exist some v ∈ Fj \ Fi and some l ∈ {1, ..., j− 1} with
Fj \ Fl = {v}. In this case, F1, ..., Fs is called a shelling of ∆.

Remark 1.32 [48] If ∆ is pure shellable, then lk∆(F) is pure shellable.

Theorem 1.33 [42], [48] Let ∆ be a simplicial complex.

• If ∆ is vertex decomposable, then ∆ is shellable.

• If ∆ is shellable, then k[∆] is sequentially Cohen-Macaulay.

• If k[∆] is Cohen-Macaulay, then ∆ is pure.
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It is known that the above implications are strict. Furthermore, in general Cohen-
Macaulay property of k[∆] depends of the characteristic of k (see [8],[48]).

Theorem 1.34 [8] Let ∆ be a simplicial complex. If k is a field, then the following
conditions are equivalent:

(a) k[∆] is Cohen-Macaulay over k.

(b) H̃i(lk∆(F); k) = 0 for F ∈ ∆ and i < dim(lk∆(F)).

Where H̃i(lk∆(F); k) is the ith reduced simplicial homology group of lk∆(F) with
coefficients in k.

Proposition 1.35 [48] If k is a field, then a simplicial complex ∆ is Cohen-Macaulay
over k if and only if lk∆(F) is Cohen-Macaulay over k for each F ∈ ∆.

Definition 1.36 The Alexander dual of ∆ is the simplicial complex ∆∗ = {τ ⊆
V | τ /∈ ∆}, where τ = V \ τ.

Remark 1.37 [34] The Alexander dual ∆∗ is a simplicial complex and (∆∗)∗ = ∆.

Definition 1.38 If 0 ≤ q ≤ dim(∆) + 1, the q-skeleton of ∆ is the simplicial complex
∆q consisting of all p-simplices of ∆ with p ≤ q, that is, ∆q = 〈{F ∈ ∆ | |F| ≤ q + 1}〉.

Theorem 1.39 ([16], Theorem 3.3) A simplicial complex ∆ is sequentially Cohen-
Macaulay if and only if ∆q is Cohen-Macaulay for 0 ≤ q ≤ dim(∆)+1.

Definition 1.40 If dim(∆) = d, then the f-vector of ∆ is the (d + 1)-tuple f (∆) =
( f0, ..., fd), where fi is the number of i-faces of ∆. Note f−1 = 1. On the other hand,
the h-vector of ∆ is the (d + 1)-tuple h(∆) = (h0, ..., hd+1) such that

d+1

∑
i=0

fi−1(x− 1)d+1−i =
d+1

∑
i=0

hixd+1−i.

Theorem 1.41 [48] If ∆ is a simplicial complex of dimension d and h(∆) the h-
vector of k[∆], then hr(∆) = 0 for r > d + 1 and

hr(∆) =
r

∑
i=0

(−1)r−i
(

d + 1− i
r− i

)
fi−1 for 0 ≤ r ≤ d + 1.



1.3 CLUTTERS AND MONOMIAL IDEALS 7

Theorem 1.42 [48] Let ∆ be a simplicial complex of dimension d with n vertices. If
k[∆] is Cohen-Macaulay and k is an infinite field, then the h-vector of ∆ satisfies

0 ≤ hi(∆) ≤
(

i + n− d− 2
i

)
for 0 ≤ i ≤ d + 1.

1.3 CLUTTERS AND MONOMIAL IDEALS

Definition 1.43 A clutter consists of a pair C = (V, E), where V is a finite set whose
elements are called vertices and E is a family of subsets of V called edges, none of
which is included in another.

Definition 1.44 The d-complete clutter with n vertices is the d-uniform clutter with
(n

d) edge set. In some cases, it is called only complete clutter.

Definition 1.45 Let x ∈ V(C), the deletion of x is the clutter C \ x whose vertex
set is V(C) \ {x} and edge set {e ∈ C | x /∈ e} and the contraction of x is the
clutter C/x whose vertex set is V(C) \ {x} and the edges are the minimal sets of
{e \ {x} | e ∈ C}.

Definition 1.46 A clutter D obtained from C by deletion and/or contraction of a
family of vertices is called a minor of C. IfD is obtained only by deletions, thenD is
called d-minor and if D is obtained only by contractions, then D is called c-minor.

Definition 1.47 We say that vi is a free vertex of C if vi appears in exactly one edge
of C. C has the free vertex property if all minors of C have a free vertex. C has the
c-free vertex property if all c-minors of C have a free vertex.

Definition 1.48 A subset D ⊆ V(C) is a vertex cover of C if every edge of C contains
at least one vertex of D. D is minimal if each proper subset D is not a vertex cover.
The blocker b(C) of C is the set of minimal vertex covers of C. A subset F ⊆ V(C)
is called independent or stable if e * F for each e ∈ E(C). F is maximal if there is no
stable F′ of C such that F ( F′.

Remark 1.49 [34] If C is a clutter, then b(b(C)) = C.
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Definition 1.50 The cardinality of a maximum stable set is denoted by β(C) and it
is called stability number. The number of vertices in a minimum vertex cover of C
is called the covering number of C and it is denoted by τ(C).

Remark 1.51 A subset D of V(C) is a vertex cover of C if and only if V(C) \ D is a
stable set of C. Consequently, τ(C) = n− β(C).

Definition 1.52 C is called well-covered if all maximal stable sets have the same
cardinality. If the minimal vertex covers have the same cardinality, then C is called
unmixed.

Remark 1.53 C is well-covered if and only if C is unmixed.

Definition 1.54 A collection of edges e1, ..., eg is a matching of C if each two edges
are disjoint. Furthermore, it is a perfect matching if

⋃g
i=1 ei = V(C). The number

of elements in a maximum matching is denoted by ν(C). A clutter C is König if
ν(C) = τ(C). A perfect matching e1, ..., eg is of König type if g = τ(C).

Lemma 1.55 ([32], Lemma 2.3) If C is an unmixed clutter with the König property
and without isolated vertices, then C has a perfect matching of König type.

Proposition 1.56 ([32], Proposition 2.9) Let C be a clutter with a perfect maching
e1, ..., eg of König type. Then the following are equivalent:

(a) C is unmixed.

(b) For any two edges e 6= e′ and for any distinct vertices x ∈ e, y ∈ e′ contained
in some ei, one has that (e \ x) ∪ (e′ \ y) contains an edge.

If V(C) = {x1, ..., xn}, then we identify each vertex xi of C with a variable xi in a
polynomial ring R = k[x1, ..., xn] over a field k.

Definition 1.57 The edge ideal of C, denoted by I(C), is the ideal of R generated by
all monomials ∏xi∈e xi such that e ∈ E(C).

The assignment C → I(C) establishes a natural one to one correspondence between
the family of clutters and the family of square-free monomial ideals. (see [8], [48]).



1.3 CLUTTERS AND MONOMIAL IDEALS 9

Remark 1.58 We have that ht(I(C)) = τ(C). Furthermore, p is a minimal prime of
I(C) if and only if p = (D) for some minimal vertex cover D of C. In particular, if
D1, ..., Dt is a complete list of the minimal vertex covers of C, then

I(C) = (D1) ∩ (D2) ∩ · · · ∩ (Dt).

Proposition 1.59 ([32], Proposition 2.4) Let C be an unmixed clutter with a perfect
matching e1, ..., eg of König type and let C1, ..., Cr be any collection of minimal ver-
tex covers of C. If C ′ is the clutter associated to I =

⋂r
i=1(Ci), then C ′ has a perfect

matching e′1, ..., e′g of König type such that:

(a) e′i ⊆ ei for all i, and

(b) every vertex of ei \ e′i is isolated in C ′.

Remark 1.60 ([32], Remark 2.5) Let C1, .., Cp be the minimal vertex covers of C.
Since I(C) is equal to

⋂p
i=1(Ci), one has (I(C) : xj) =

⋂
xj /∈Ci

(Ci) for any vertex
xj /∈ I(C).

Definition 1.61 The Stanley-Reisner complex of C denoted by ∆C , is the simplicial
complex whose faces are the stable sets of C.

Remark 1.62 F is a facet of ∆C if and only if V(∆C) \ F is a minimal vertex cover
of C. Consequently, ∆C is pure if and only if C is well-covered if and only if C is
unmixed. Furthermore, I∆C = I(C).

Lemma 1.63 ([52], Lemma 2.2) Let C a clutter and v ∈ V(C). We have that lk∆C (v) =
∆C/v.

Definition 1.64 C is shellable or vertex decomposable if ∆C is shellable or ver-
tex decomposable, respectively. Furthermore, C is (sequentially) Cohen-Macaulay
over k if k[∆C ] is (sequentially) Cohen-Macaulay.

Definition 1.65 A family of clutters F is closed under c-minors if C ∈ F and C ′ is
a c-minor of C, implies C ′ ∈ F .

Remark 1.66 ([2], [48]) The following properties: shellable, Cohen-Macaulay, se-
quentially Cohen-Macaulay, vertex decomposable, unmixed and well-covered are
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closed under c-minors.

Lemma 1.67 ([46], Lemma 5.1) Let C be a clutter with minimal vertex covers D1, ...,
Dt. If ∆C is shellable and A ⊂ V(C) is a set of vertices, then the Stanley-Reisner
complex ∆ I′ of the ideal

I′ =
⋂

Di∩A=∅

(Di)

is shellable with respect to the linear ordering of the facets of ∆ I′ induced by the
shelling of the simplicial complex ∆C .

Definition 1.68 If V(C) = {x1, ..., xn} and E(C) = {e1, ..., eq}, then the incidence
matrix of C is the matrix n × q, A = (aij) such that aij = 1 if xi ∈ ej and aij = 0
otherwise. The clutter C has an s-cycle if A has a submatrix s× s with exactly two
1’s in each row and each column.

Theorem 1.69 ([32], Theorem 2.13) Let C be a clutter with a perfect matching e1, ...,
eg of König type. If for any two edges f1, f2 of C and for any ei, one has that
f1 ∩ ei ⊂ f2 ∩ ei or f2 ∩ ei ⊂ f1 ∩ ei. Then C is unmixed.

Theorem 1.70 ([32], Theorem 2.16) Let C be a clutter with a perfect matching e1, ...,
eg of König type. If for any two edges f1, f2 of C and for any ei of the perfect
matching, one has that f1∩ ei ⊂ f2∩ ei or f2∩ ei ⊂ f1∩ ei, then ∆C is pure shellable.

Corollary 1.71 ([32], Corollary 2.19) Let C be a clutter with the König property
without 3-cycles and 4-cycles. Then any of the following conditions are equivalent:

(a) C is unmixed.

(b) There is a perfect matching e1, ..., eg with g = ht(I(C)), such that for any two
edges f1, f2 ∈ E(C) and for any edge ei of the perfect matching, one has that
f1 ∩ ei ⊆ f2 ∩ ei or f2 ∩ ei ⊆ f1 ∩ ei.

(c) R/I(C) is Cohen-Macaulay.

(d) ∆C is a pure shellable simplicial complex.
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1.4 MATROIDS

Definition 1.72 A matroidM is an ordered pair (V, I) consisting of a finite set V
and a collection of subsets I of V satisfying the following three conditions:

(I1) ∅ ∈ I .

(I2) If I ∈ I and I′ ⊆ I, then I′ ∈ I .

(I3) If I1, I2 ∈ I with |I1| < |I2|, then there is x ∈ I2 − I1 such that I1 ∪ x ∈ I .

Definition 1.73 The members of I are the independent sets ofM. A subset of V that
is not in I is called dependent. Condition (I3) is called the independence augmentation
axiom. A minimal dependent set in an arbitrary matroidM will be called a circuit
ofM and the set of circuits ofM is denoted by C(M). A maximal element of I is
called base ofM. The set of bases ofM is denoted by B(M).

Proposition 1.74 [34] C(M) has the following properties:

(C1) ∅ /∈ C(M).

(C2) If C1, C2 ∈ C(M) and C1 ⊆ C2, then C1 = C2.

(C3) If C1, C2 ∈ C(M) with C1 6= C2 and x ∈ C1 ∩ C2, then there is C3 ∈ C(M)
such that C3 ⊆ (C1 ∪ C2) \ x.

Condition (C3) is called the weak circuit exchange property.

Theorem 1.75 [34] Let V be a set and C(M) be a collection of subsets of V satis-
fying (C1)-(C3). If I is the collection of subsets of V that contain no member of
C(M), then (V, I) is a matroid whose circuit set is C(M).

Proposition 1.76 B(M) satisfies the following two conditions:

(B1) B(M) is not empty.

(B2) If B1, B2 ∈ B(M) and x ∈ B1 \ B2, then there exists y ∈ B2 \ B1 such that
(B1 \ x) ∪ y ∈ B(M).

The condition (B2) is called basis exchange axiom.

Remark 1.77 [34] (B2) is equivalent to (B2)∗: If B1, B2 ∈ B(M) and x ∈ B2 \ B1,
then there exists y ∈ B1 \ B2 such that (B1 \ y) ∪ x ∈ B(M).
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Lemma 1.78 [34] If B1 and B2 are bases of a matroidM, then |B1| = |B2|.

Proposition 1.79 [34] LetM be a matroid. Then there exists a matroidM′ whose
base set is B(M′) = {β | β ∈ B(M)}, where β = V \ β. M′ is called the dual
matroid ofM.

Remark 1.80 IfM is a matroid, then (M′)′ =M.

Remark 1.81 [34] If M is a matroid, then b(B(M)) = C(M′) and b(C(M′)) =
B(M).

1.5 GRAPHS AND EDGE IDEALS

All graphs considered in this dissertation are finite simple graphs, and for simpli-
city they will be called graphs. A graph is a clutter whose edges have two elements.

Definition 1.82 Let G be a graph. A sequence L = (x1, x2, ..., xl+1) is a walk in G
of length l from x1 to xl+1 if {x1, x2}, {x2, x3}, ..., {xl, xl+1} ∈ E(G). In this case x1
and xl+1 are called the ends of L. If the vertices x1, x2, ..., xl+1 are all distinct, then
L is called path. If the length of L equals zero, then L is called a trivial path.

Definition 1.83 A graph G is connected if there is a path joining each pair of distinct
vertices of G, otherwise G is called disconnected. A maximal connected subgraph
of G is called a connected component of G. If every connected component of G is a
vertex, G is called totally disconnected.

Remark 1.84 A connected component of G is a c-minor of G.

Definition 1.85 A walk L = (x1, ..., xk+1) with k ≥ 3 such that x1, ..., xk are all
distinct and x1 = xk+1 is called a cycle of length k or k-cycle. If G does not contain
cycles, then it is called forest. A connected forest is a tree. The girth of G is the length
of the smallest cycle or infinite if G is a forest.

Definition 1.86 A unicyclic graph is a connected graph with exactly one cycle.
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Definition 1.87 If v ∈ V(G), then the set of neighbors of v (in G) is NG(v) = {w ∈
V(G) | {v, w} ∈ E(G)} and its closed neighborhood is NG[v] = NG(v) ∪ {v}. The
degree of v in G is degG(v) = |NG(v)|. A vertex of degree one is called leaf or free
vertex and a vertex adjacent to a leaf is called a stem. An edge which is incident
with a leaf is called pendant.

Remark 1.88 [48] If Cn is a n-cycle, then Cn is well-covered if and only if n = 3, 4, 5
or 7.

Lemma 1.89 ([21], Lemma 2) Let G be a connected graph of girth ≥ 6, which is
neither a 7-cycle or a vertex. Then G is well-covered if and only if its pendant
edges form a perfect matching.

Definition 1.90 A cut vertex of G is a vertex v such that the number of connected
components of G \ v is greater than the number of connected components of G.
A bridge of a connected graph is an edge whose ends are cut vertices. A maximal
connected subgraph of G without a cut vertex is called a block. A connected graph
without cut vertices with at least three vertices is called 2-connected graph.

Lemma 1.91 ([46], Lemma 2.5) If x ∈ V(G) and G′ = G \ NG[x], then ∆G′ =
lk∆G(x).

Remark 1.92 ∆G is vertex decomposable if G is a totally disconnected graph or there
is a vertex v such that

(a) G \ v and G \ NG[v] are both vertex decomposable, and

(b) each stable set in G \ NG[v] is not a maximal stable set in G \ v.

Definition 1.93 A shedding vertex of G is a vertex with property (b).

Remark 1.94 A vertex v is a shedding vertex of G if and only if v is a shedding
vertex of ∆G. Furthermore, v is a shedding vertex if for every stable set S contained
in G \ NG[v], there is some x ∈ NG(v) such that S ∪ {x} is stable.

Definition 1.95 Let H be a subgraph of G, a chord of H in G is an edge e ∈ E(G) \
E(H) such that its ends belong to V(H). A graph is chordal if each of its cycles of
length at least 4 has a chord.
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Theorem 1.96 ([53], Theorem 1) If the only chordlees cycles of G are 3-cycles and
5-cycles, then G is vertex decomposable.

Corollary 1.97 Chordal graphs and forests are vertex decomposable. Therefore,
they are shellable and sequentially Cohen-Macaulay.

Definition 1.98 A cycle Ck is induced if Ck does not have chords.

Remark 1.99 Let S be a stable set of G. Then G/S = G \ NG[S].

Definition 1.100 Let S be a subset of V(G), the closed neighborhood of S is NG[S] =⋃
x∈S

NG[x].

Definition 1.101 Let S be a stable set of G. If x is of degree zero in G \ NG[S], then
x is called isolated vertex in G \ NG[S], also we say that S isolates to x.

Definition 1.102 A graph G with n vertices is called complete if for all u, v ∈ V(G),
we have that {u, v} ∈ E(G). This graph is denoted by Kn. A clique of a graph G
is a maximal complete subgraph of G. A vertex v is called simplicial if the induced
subgraph G[NG[v]] is a complete graph. Equivalently, a simplicial vertex is a vertex
that appears in exactly one clique. A clique of a graph G containing at least one
simplicial vertex of G is called a simplex of G.

Lemma 1.103 If v, w ∈ V(G) such that NG[v] ⊆ NG[w], then w is a shedding vertex
of G. In particular, if v is a simplicial vertex, then any w ∈ NG(v) is a shedding
vertex.

Proof. By Lemma 6 and Corollary 7 in [53]. �

Definition 1.104 A vertex x is called extendable if G and G \ x are well-covered
graphs and β(G) = β(G \ x).

Lemma 1.105 ([21], Lemma 2) Let G be a well-covered graph. A vertex x ∈ V(G)
is extendable if and only if |NG(x) \ NG(S)| ≥ 1 for every stable set S of G \ NG[x].
Furthermore, every x ∈ V(G) is nonextendable if and only if there is a stable set
S ⊆ V(G) such that x is an isolated vertex in G \ NG[S].
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Proposition 1.106 ([48], [53]) A graph is unmixed, shellable, vertex decomposable
or Cohen-Macaulay if and only if each connected component is unmixed, shellable,
vertex decomposable or Cohen-Macaulay, respectively.

Definition 1.107 A graph G is called very well-covered if it is well-covered without
isolated vertices and |V(G)| = 2ht(I(G)).

Theorem 1.108 ([38], Theorem 5) Let G be well-covered with no isolated vertex
and odd girth ≥ 9 (without 3, 5 and 7-cycles), then G is very well-covered.

Remark 1.109 Let G be a graph. If τ(G) = β(G), then G has a perfect matching.

Proposition 1.110 ([23], Proposition 4.1) If Cn is a n-cycle, then Cn is vertex decom-
posable, shellable or sequentially Cohen-Macaulay if and only if n = 3 or 5.

Lemma 1.111 ([50], Lemma 6) If G has a shedding vertex v where G \ v and G \
NG[v] are shellables with shelling F1, ..., Fk and G1, ..., Gq, respectively, then G is
shellable with shelling F1, ..., Fk, G1 ∪ {v}, ..., Gq ∪ {v}.

Definition 1.112 A graph G is bipartite if its vertex set can be partitioned into two
subsets V1 and V2 such that every edge has one end in V1 and one end in V2. Fur-
thermore, G is called a complete bipartite, denoted by Kr,s, if |V1| = r, |V2| = s and
every vertex in V1 is adjacent to every vertex in V2.

Proposition 1.113 [48] G is bipartite if and only if G does not contain odd cycles.

Lemma 1.114 ([46], Lemma 2.8) Let G be a bipartite with bipartition {x1, ..., xm},
{y1, ..., yn}. If G is shellable and G has non isolated vertices, then there is v ∈ V(G)
with degG(v) = 1.

Theorem 1.115 ([46], Theorem 2.9) Let G be a graph and let x1, y1 be two adjacent
vertices of G with degG(x1) = 1. If G1 = G \ NG[x1] and G2 = G \ NG[y1], then G
is shellable if and only if G1 and G2 are shellable.

Definition 1.116 Let X be a subset of V(G), the induced subgraph by X in G, de-
noted by G[X] is the graph with vertex set X and whose edge set is

{{x, y} ∈ E(G) | x, y ∈ X}.
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Furthermore, G \ X denotes the induced subgraph G[V(G) \ X].

Definition 1.117 G is called whisker if there exists an induced subgraph H of G
such that V(H) = {x1, ..., xs}, V(G) = V(H) ∪ {y1, ..., ys} and E(G) = E(H) ∪
W(H) where W(H) = {{x1, y1}, ..., {xs, ys}}. The edges of W(H) are called whis-
kers and they form a perfect matching.

Theorem 1.118 ([48], Theorem 7.3.17) If G is a tree, then G is a Cohen-Macaulay
graph if and only if G is unmixed if and only if G is a whisker graph.

Corollary 1.119 k[∆G] is Cohen-Macaulay if and only if k[∆G] is sequentially Co-
hen-Macaulay and G is unmixed.

Theorem 1.120 ([46], Theorem 3.3) Let x be a vertex of G and let G′ = G \ NG[x].
If G is sequentially Cohen-Macaulay, then G′ is sequentially Cohen-Macaulay.

Lemma 1.121 ([46], Lemma 3.9) Let G be a bipartite graph. If G is sequentially
Cohen-Macaulay, then there is v ∈ V(G) with deg(v) = 1.

The following criterion classifies the Cohen-Macaulay bipartite graphs.

Theorem 1.122 [27] G is a Cohen-Macaulay bipartite graph if and only if g =
|V1| = |V2| and we can order the vertices such that:

(h0) {xi, yi} ∈ E(G) for i = 1, . . . , g,

(h1) if {xi, yj} ∈ E(G), then i ≤ j, and

(h2) if {xi, yj}, {xj, yk} ∈ E(G) and i < j < k, then {xi, yk} ∈ E(G).

Proposition 1.123 ([37], Proposition 2.3) If G is a well-covered graph, then all its
simplexes are pairwise vertex disjoint.

Definition 1.124 A 5-cycle C of G is called basic 5-cycle if C does not contain two
adjacent vertices of degree three or more in G. A 4-cycle is called basic if it contains
two adjacent vertices of degree two, and the remaining two vertices belong to a
simplex or a basic 5-cycle of G.
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Definition 1.125 A graph G is in the family SQC, if V(G) can be partitioned into
three disjoint subsets SG, QG and CG: the subset SG contains all vertices of the
simplexes of G, and the simplexes of G are disjoint vertex; the subset CG consists
of the vertices of the basic 5-cycles and the basic 5-cycles form a partition of CG;
the remaining set QG contains all vertices of degree two of the basic 4-cycles.

Theorem 1.126 If G ∈ SQC, then G is well-covered vertex decomposable.

Proof. By ([28], Theorem 2.3) and ([37], Theorem 3.1). �

Remark 1.127 By Theorem 1.33, we have the following implications for a graph G:

unmixed
vertex decomposable

⇒ pure
shellable

⇒ Cohen - Macaulay ⇒ well - covered

Recently, in [17] authors show an unmixed shellable graph G such that G is not
vertex decomposable (see Example 1.128). C4 is well-covered but it is not Cohen-
Macaulay and Villarreal in [48] proved that Cohen-Macaulay property depends of
the characteristic of the field k (see Example 1.129).

Example 1.128 [17] The following graph is called circulant graph: G = C16(1, 4, 8).
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Figure 1.1: Shellable but not vertex decomposable

If x ∈ V(G), then the h-vector of G \ x is (1, 11, 31, 18,−1). Consequently, G \ x is
not Cohen-Macaulay. Hence, G \ x is not vertex decomposable, therefore, G is not
vertex decomposable.

A shelling of ∆G is (from left to right):
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{i, k, n, p} {e, k, n, p} {g, i, n, p} {c, i, n, p} {e, g, n, p} {c, e, n, p}
{ f , i, k, p} { f , k, m, p} {b, k, m, p} {b, i, k, p} {b, e, k, p} {e, g, j, p}
{c, e, j, p} {b, g, i, p} {b, g, m, p} {g, j, m, p} {c, j, m, p} {c, f , m, p}
{c, f , i, p} {b, e, g, p} {g, i, l, n} {c, i, l, n} {e, g, l, n} {a, g, l, n}
{c, e, l, n} {a, c, l, n} {d, i, k, n} {e, h, k, n} {d, g, i, n} {c, e, h, n}
{a, c, h, n} {a, h, k, n} {a, d, k, n} {a, d, g, n} {e, g, j, l} {e, j, l, o}
{a, g, j, l} {a, j, l, o} {c, e, j, l} {a, c, j, l} {b, g, i, l} {c, f , i, l}
{b, e, g, l} {b, e, l, o} {b, i, l, o} { f , i, l, o} {a, f , l, o} {a, c, f , l}
{d, f , i, k} {d, f , i, o} {b, d, i, o} {d, f , k, m} {d, f , m, o} {b, d, i, k}
{b, d, k, m} {b, d, m, o} {b, e, h, k} {b, e, h, o} {b, h, m, o} { f , h, m, o}
{e, h, j, o} {b, h, k, m} { f , h, k, m} {c, e, h, j} {a, c, h, j} {a, h, j, o}
{a, f , h, o} {a, f , h, k} {a, d, f , k} {a, d, f , o} {a, d, j, o} {a, d, g, j}
{b, d, g, i} {b, d, g, m} {d, g, j, m} {d, j, m, o} {h, j, m, o} {c, h, j, m}
{c, f , h, m} {a, c, f , h}

Example 1.129 [48] Let G be a graph with edges:

{x1, x3} {x1, x4} {x1, x7} {x1, x10} {x1, x11} {x2, x4} {x2, x5}
{x2, x8} {x2, x10} {x2, x11} {x3, x5} {x3, x6} {x3, x8} {x3, x11}
{x4, x6} {x4, x9} {x4, x11} {x5, x7} {x5, x9} {x5, x11} {x6, x8}
{x6, x9} {x7, x9} {x7, x10} {x8, x10}

∆G is the following triangulation of the real projective plane P2, then the link of any
vertex is a cycle. Furthermore, k[∆G] is Cohen-Macaulay if and only if char(k) 6= 2.
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Figure 1.2: ∆G is a triangulation of P2.
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1.6 THETA-RING GRAPHS

Definition 1.130 Two graphs are disjoint if they have no vertex in common. The
union of the graphs G and H is the graph G ∪ H with vertex set V(G) ∪V(H) and
edge set E(G) ∪ E(H).

Definition 1.131 Let A and B be connected subgraphs of G such that G = A ∪ B
and A ∩ B is a complete graph, then G is called the clique-sum of A and B. In this
case, G is denoted by A⊕ B. Furthermore, if |A ∩ B| = k, then G is called k-clique-
sum of A and B. Let A1, ..., Ar be subgraphs, the graph (((A1⊕ A2)⊕ A3) · · · )⊕ Ar
is denoted by A1 ⊕ A2 ⊕ · · · ⊕ Ar. The 0-clique-sum is equivalent to the union of
two disjoint graphs.

Definition 1.132 [25] A chorded-theta T of G is a subgraph induced by three paths
L1, L2, L3 each between non adjacent vertices x and y such that V(Li) ∩V(Lj) =
{x, y} for 1 ≤ i < j ≤ 3. The edges of T do not belong to E(L1) ∪ E(L2) ∪ E(L3)
are called the chords of T. A chorded-theta without chords is called a theta graph.

Definition 1.133 Let T be a chorded-theta of G with L1(T) = {x, x1, ..., xr1 , y},
L2(T) = {x, y1, ..., yr2 , y} and L3(T) = {x, z1, ..., zr3 , y}. A tranversal triangle H
of T is a triangle in G such that V(H) = {xi, yj, zk} for some i, j, k.

Definition 1.134 [25] A graph G is called a theta-ring graph if every chorded-theta
of G has a transversal triangle. In this case we say that G has the ∀θ∃∆-property.

Remark 1.135 An induced subgraph of a theta-ring graph is a theta-ring graph.

Definition 1.136 A partial wheel W is a graph where V(W) = {z, z1, ..., zk} such
that C = (z1, ..., zk) is a cycle in W and the edges of W are the edges of C and some
edges between z and vertices of C. A partial wheel W is a θ-partial wheel if W is
chorded-theta.

Definition 1.137 A prism is a graph consisting of two disjoint triangles C1 = (x1,
x2, x3) and C2 = (y1, y2, y3), and three paths L1, L2, L3 pairwise disjoint, such that
each Li is a path between xi and yi for i = 1, 2, 3, and the subgraph induced by
V(Li) ∪ V(Lj) is a cycle for 1 ≤ i < j ≤ 3. A pyramid is a graph consisting of a
vertex w, a triangle C = (z1, z2, z3), and three paths P1, P2, P3, such that: Pi is a path
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whose ends are w and zi for i = 1, 2, 3; V(Pi)∩V(Pj) = {w}; the subgraph induced
by V(Pi) ∪ V(Pj) is a cycle for 1 ≤ i < j ≤ 3; and at most one of the P1, P2, P3 has
only one edge.

Definition 1.138 An orientationO of the edges of G is an assignment of a direction
to each edge of G. Let GO denote the oriented graph associated to an orientation
O of the edges of G. To each oriented edge e = (xi, xj) of D = GO, we associate the
vector ve ∈ {0, 1,−1}n defined as follows: the ith entry is -1, the jth entry is 1, and
the remaining entries are zero. If v1, ..., vq are vectors associated to the oriented
edges of D, then the edge subring of D is k[D] := k[xv1 , ..., xvq ] ⊂ k[x±1

1 , ..., x±1
n ],

where vi = (v1
i , ..., vn

i ) and xvi = xv1
i

1 · · · x
vn

i
n . Let E(D) = {t1, ..., tq} be the edge set

of D. There is an epimorphism of k-algebras given by

ϕ : k[t1, ..., tq]→ k[D], where ti → xvi .

The kernel of ϕ, denoted PD, is called the toric ideal of D. If PD can be generated
exactly by q − n + r binomials it is called a binomial complete intersection, where
n = |V(G)|, q = |E(G)| and r is the number of connected components of D.

Definition 1.139 [25] G is CIO if the toric ideal PGO is a binomial complete inter-
section for each orientation O of G.

Theorem 1.140 (∀θ∃∆-Theorem) The following conditions are equivalent:

(i) G is a theta-ring graph.

(ii) G is CIO.

(iii) G can be constructed by 0, 1, 2-clique-sums of chordal graphs and/or cycles.

(iv) G can be constructed by clique-sums of complete graphs and/or cycles.

(v) G does not contain as induced subgraph any graph from the following fami-
lies: θ-partial wheels, prisms, pyramids and thetas.

Proof. See ([25], Theorem 4) and ([25], Theorem 6). �

Definition 1.141 A graph G is a block graph if every block of G is a complete graph.
G is a cactus graph if G is connected and any two cycles have at most one vertex
in common. Finally, G is called block-cactus if every block is a complete graph or a
cycle.
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Definition 1.142 A graph G is a ring graph if and only if each block of G, which is
not a bridge or a vertex, can be constructed by 2-clique-sums of cycles.

We have the following relations between some families of graphs:

Ring ⊂ Theta-ring ⊃ Chordal
∪ ∪

Cactus ⊂ Block-Cactus
∪

Block





CHAPTER 2
WELL-COVERED, VERTEX

DECOMPOSABLE AND

COHEN-MACAULAY GRAPHS

2.1 INTRODUCTION

Let G = (V, E) be a graph with vertex set V(G) = {x1, ..., xn}. Let I = I(G) be the
edge ideal associated to G in a polynomial ring R = k[x1, ..., xn] over a field k, and
let ∆G be the simplicial complex of stable sets of G. In this Chapter we study the
vertex decomposability, shellability, Cohen-Macaulayness and well-coveredness in
some families of graphs. In general, we have the following implications:

Unmixed
vertex decomposable

⇒ Pure
shellable

⇒ Cohen - Macaulay ⇒ Well - covered

In this Chapter, we give a combinatorial description of the Cohen-Macaulay pro-
perty for graphs without 3-cycles and 5-cycles, König and unicyclic graphs. In
these cases, we prove that the following properties are equivalent: G is unmixed
vertex decomposable, ∆G is pure shellable and R/I is Cohen-Macaulay. Further-
more, we give necessary and sufficient conditions that characterizes when theta-
ring graphs is well-covered. We give a characterization for unmixed vertex de-
composable graphs whose 5-cycles have at least four chords. Also, we give a new
proof of the characterization of well-covered graph without 3-cycles, 5-cycles and
7-cycles. Finally, we study some blocks of well-covered graphs.

The structure of this Chapter is as follows: In Section 2.2, we give some properties
and relations between critical, extendable and shedding vertices. In Section 2.3,
we prove that all well-covered graphs without 3-cycles, 5-cycles and 7-cycles are
König. Furthermore, we give the characterization of these graphs (Theorem 2.12).
Through our results we obtain the following contentions:
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well-covered König ⊃ well-covered
(C3, C5, C7)− free

⊃ well-covered
bipartite

q
very well-covered

In section 2.4, inspired by the classification of Cohen-Macaulay bipartite graphs
given by Herzog and Hibi in [27], we study the well-covered König graphs. In
Theorem 2.25 and Theorem 2.28 we prove that if G is König or G does not con-
tain 3-cycles and 5-cycles, then the following condition are equivalent: G is un-
mixed vertex decomposable, ∆G is pure shellable and R/I(G) is Cohen-Macaulay.
Also, we show that these properties are equivalent to the following condition: G
is unmixed with a perfect matching e1, ..., eg of König type and G does not have
4-cycles with two ei’s. Using this result, we obtain that if the girth of G is at least
6, then the following properties are equivalent: unmixed vertex decomposability,
unmixed König property, very well-coveredness, unmixedness with G 6= C7 and G
is a whisker graph. In Section 2.5 we characterize the vertex decomposable (non-
pure) graphs without 3-cycles and 5-cycles and the shellable graphs with girth at
least 11. Furthermore, we show that all 2-connected blocks of a vertex decom-
posable, shellable or (sequentially) Cohen-Macaulay graph without 3-cycles and
5-cycles have a free vertex in its neighborhood. In Section 2.6 we give a structural
description of unicyclic graphs with each one of the following properties: vertex
decomposable, shellable, Cohen-Macaulay and well-covered. In Section 2.7, we
characterize well-covered theta-ring graphs. In Section 2.8, we give a characteri-
zation of unmixed decomposable graphs whose 5-cycles are chorded. Finally, in
Section 2.9 we study when a 5-cycle or a 7-cycle are blocks of a well-covered graph.

2.2 CRITICAL, EXTENDABLE AND SHEDDING VERTICES

In this section we study some properties of extendable and shedding vertices.
These vertices are defined in Chapter 1.

Lemma 2.1 If x is a vertex of G, then x is a shedding vertex if and only if |NG(x) \
NG(S)| ≥ 1 for every stable set S of G \ NG[x].

Proof. ⇒) We take a stable set S of G \ NG[x]. Since x is a shedding vertex, then
there is a vertex z ∈ NG(x) such that S∪ {z} is stable set of G \ x. Thus, z /∈ NG[S].
Therefore, |NG(x) \ NG(S)| ≥ 1.
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⇐) We take a stable set S of G \ NG[x]. Thus, there exists a vertex z ∈ NG(x) \
NG(S). Since z ∈ NG(x), we have that z /∈ S. Furthermore, z /∈ NG(S), then
S ∪ {z} is a stable set of G \ x. Consequently, S is not a maximal stable set of G \ x.
Therefore, x is a shedding vertex. �

Consequently, x is not a shedding vertex if and only if there exists a stable set S of
G \ NG[x] such that NG(x) ⊆ NG(S), i.e. x is an isolated vertex in G \ NG[S].

Corollary 2.2 Let S be a stable set of G. If S isolates x in G, then x is not a shedding
vertex in G \ NG[y] for all y ∈ S.

Proof. Since S isolates x, then degG\NG[S](x) = 0 and in particular x ∈ V(G \
NG[S]). Thus, NG(x) ⊆ NG[S] \ S. Hence, if y ∈ S and G′ = G \ NG[y], then
x ∈ V(G′). Furthermore, since S ∩ NG[x] = ∅, then S′ = S \ y is a stable set in
G′ \ NG′ [x]. Now, since S isolates x, thus if a ∈ NG′(x), then there exists s ∈ S
such that {a, s} ∈ E(G). But a ∈ NG′(x), then a /∈ NG[y], consequently s ∈ S′ and
{a, s} ∈ E(G′). This implies |NG′(x) \ NG′(S′)| = 0. Therefore, by Lemma 2.1, x is
not a shedding vertex in G′. �

Lemma 2.3 If x is a shedding vertex of G, then one of the following conditions
hold:

(a) There is y ∈ NG(x) such that NG[y] ⊆ NG[x].

(b) x is in a 5-cycle with at most one chord.

Proof. We take NG(x) = {y1, y2, ..., yk}. If G does not satisfy (a), then there is
{z1, ..., zk} ⊆ V(G) \ NG[x] such that {yi, zi} ∈ E(G) for i ∈ {1, ..., k}. We denote
by L = {z1, ..., zq} = {z1, ..., zk} and suppose that zi 6= zj for 1 ≤ i < j ≤ q.
By Lemma 2.1, if L is a stable set of G, then |NG(x) \ NG(L)| ≥ 1. But NG(x) =
{y1, ..., yk} ⊆ NG(L), then L is not a stable set. Hence, q ≥ 2 and there exist zi1 , zi2 ∈
L such that {zi1 , zi2} ∈ E(G). Thus, there exist yj1 and yj2 such that yj1 6= yj2
and {yj1 , zi1}, {yj2 , zi2} ∈ E(G). Furthermore, {zi1 , yj2}, {zi2 , yj1}, {zi1 , x}, {zi2 , x} /∈
E(G). Therefore, (x, yj1 , zi1 , zi2 , yj2) is a 5-cycle of G with at most one chord. �

Corollary 2.4 Let G be graph without 4-cycles. If x is a shedding vertex of G, then
x is in a 5-cycle or there exists a simplicial vertex z such that {x, z} ∈ E(G) with
|NG[z]| ≤ 3.
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Proof. By Lemma 2.3, if x is not in a 5-cycle, then there is z ∈ NG(x) such that
NG[z] ⊆ NG[x]. If degG(z) = 1, then z is a simplicial vertex. If degG(z) = 2, then
NG(z) = {x, w}. Consequently, (z, x, w) is a 3-cycle since NG[z] ⊆ NG[x]. Thus, z
is a simplicial vertex. Now, if degG(z) ≥ 3, then there are w1, w2 ∈ NG(z) \ x. Since
NG[z] ⊆ NG[x], we have that (w1, z, w2, x) is a 4-cycle of G. This is a contradiction.
Therefore, |NG[z]| ≤ 3 and z is a simplicial vertex. �

Remark 2.5 If G is a 5-cycle with V(G) = {x1, x2, x3, x4, x5}, then each xi is a shed-
ding vertex.

Proof. We can assume that i = 1, then {x3} and {x4} are the stable sets in G \
NG[x1]. Furthermore, {x3, x5} and {x2, x4} are stable sets in G \ x1. Hence, each
stable set of G \ NG[x1] is not a maximal stable set in G \ x1. Therefore, x1 is a
shedding vertex. �

Definition 2.6 A vertex v of G is critical if τ(G \ v) < τ(G). Furthermore, G is
called a vertex critical graph if each vertex of G is critical.

Remark 2.7 If τ(G \ v) < τ(G), then τ(G) = τ(G \ v) + 1. Moreover, v is a critical
vertex if and only if β(G) = β(G \ v).

Proof. If t is a minimal vertex cover such that |t| = τ(G \ v), then t ∪ {v} is
a vertex cover of G. Thus, τ(G) ≤ |t ∪ {v}| = τ(G \ v) + 1. Consequently, if
τ(G) > τ(G \ v), then τ(G) = τ(G \ v) + 1.

Now, we have that τ(G) + β(G) = |V(G)| = |V(G \ v)|+ 1 = τ(G \ v) + β(G \
v) + 1. Hence, β(G) = β(G \ v) if and only if τ(G) = τ(G \ v) + 1. Therefore, v is
a critical vertex if and only if β(G) = β(G \ v). �

Corollary 2.8 Let G be an unmixed graph and x ∈ V(G). The following conditions
are equivalent:

(a) x is an extendable vertex.

(b) |NG(x) \ NG(S)| ≥ 1 for every stable set S of G \ NG[x].
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(c) x is a shedding vertex.

(d) x is a critical vertex and G \ x is unmixed.

Proof. (a)⇔(b) By Lemma 1.105.

(b)⇔(c) By Lemma 2.1.

(a)⇔(d) Since G is unmixed, then by Remark 2.7, x is extendable if and only if x is
a critical vertex and G \ x is unmixed. �

2.3 WELL-COVERED GRAPHS WITHOUT 3-CYCLES, 5-CYCLES

AND 7-CYCLES

The properties presented in section 2.1 have implications for well-covered graphs
without 3-cycles, 5-cycles and 7-cycles. It is known that 3-cycles, 4-cycles, 5-cycles
and 7-cycles are the well-covered cycles, but only the 4-cycles have a perfect mat-
ching. In this section, we study some properties of well-covered graphs and we
give a new proof of Theorem 1.108.

In this thesis we denote by ZG the set of isolated vertices of G, that is,

ZG = {x ∈ V(G) | degG(x) = 0}.

Proposition 2.9 Let G be a König graph and G′ = G \ ZG. Then the following are
equivalent:

(a) G is unmixed.

(b) G′ is unmixed.

(c) If V(G′) 6= ∅, then G′ has a perfect matching e1, ..., eg of König type such
that for any two edges f1 6= f2 and for two distinct vertices x ∈ f1, y ∈ f2
contained in some ei, one has that ( f1 \ x) ∪ ( f2 \ y) is an edge.

Proof. (a)⇔(b) Since V(G) \V(G′) = ZG, then C is a vertex cover of G if and only
if C is a vertex cover of G′. Therefore, G is unmixed if and only if G′ is unmixed.
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(b)⇔(c) By Lemma 1.55 and Proposition 1.56. �

Lemma 2.10 G is an unmixed König graph if and only if G is totally disconnected
or G′ = G \ ZG is very well-covered.

Proof. ⇒) If G is not totally disconnected, then from Proposition 2.9, G′ has a per-
fect matching e1, ..., eg of König type. Hence, |V(G′)| = 2g = 2τ(G′) = 2ht(I(G′)).
Furthermore, G′ is unmixed, therefore G′ is very well-covered.

⇐) If G is totally disconnected, then ν(G) = 0 and τ(G) = 0. Hence, G is an
unmixed König graph. Now, if G is not totally disconnected, then G′ is very well-
covered. Consequently, by Remark 1.109 G′ has a perfect matching. Thus, ν(G′) =
|V(G′)|/2 = ht(I(G′)) = τ(G′). Hence, G′ is König. Furthermore, ν(G) = ν(G′)
and τ(G) = τ(G′), then G is König. Finally, since G′ is unmixed, by Proposition
2.9, G is also unmixed. �

Lemma 2.11 If G is a well-covered graph without 3-cycles, 5-cycles and 7-cycles,
then G is a König graph.

Proof. By induction on |V(G)|. If y ∈ ZG, then by induction hypothesis, G \ y is
König. This implies that G is König. Therefore, we can assume ZG = ∅. Now, we
take x ∈ V(G), then by Remark 1.66, G1 = G \NG[x] is a well-covered graph. Also,
G1 does not contain 3-cycles, 5-cycles and 7-cycles, so by induction hypothesis, G1
is König. If V(G2) = ∅ with G2 = G1 \ ZG1 , then V(G) = NG[x] ∪ ZG1 . Further-
more, {x} ∪ ZG1 and NG(x) are stable sets since G does not have 3-cycles. Thus, G
is bipartite and consequently G is König. Hence, we can assume that V(G2) 6= ∅.
By Proposition 2.9, G2 has a perfect matching e1 = {x1, y1}, ..., eg = {xg, yg} of
König type. We can assume that NG(x) = {z1, ..., zr} and D = {x1, ..., xg} is a mini-
mal vertex cover of G2. This implies that F = {y1, ..., yg} is a maximal stable set of
G2. Now, we take the subsets: A1 = NG(z1, ..., zr) ∩ D, B1 = {yj ∈ F | xj ∈ A1},
B2 = NG(z1, ..., zr) ∩ F and A2 = {xj ∈ D | yj ∈ B2}. If there exists yi ∈ B1 ∩ B2,
then xi ∈ A1 and there exist zk, zp ∈ NG(x) such that {xi, zk}, {yi, zp} ∈ E(G). If
k = p, then (zk, xi, yi) is a 3-cycle and if k 6= p, then (x, zk, xi, yi, zp) is a 5-cycle,
this is a contradiction. Consequently B1 ∩ B2 = ∅. Now, we take the subsets
B3 = (NG(A2) ∩ F) \ B2, A3 = {xj ∈ D | yj ∈ B3}, B4 = (NG(A1) ∩ F) \ B1
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and A4 = {xj ∈ D | yj ∈ B4}. If yi ∈ B1 ∩ B3, then there exist xj ∈ A2 and
zk, zp ∈ NG(x) such that {xi, zk}, {yi, xj} and {yj, zp} ∈ E(G). Hence, if k = p, then
(zk, xi, yi, xj, yj) is a 5-cycle and if k 6= p implies (x, zk, xi, yi, xj, yj, zp) is a 7-cycle,
a contradiction. So B1 ∩ B3 = ∅. Now, if yi ∈ B2 ∩ B4, then there exist xj ∈ A1
and zk, zp ∈ NG(x) such that {xj, zk}, {xj, yi} and {yi, zp} ∈ E(G). Consequently,
if k = p, thus (zk, xj, yi) is a 3-cycle and if k 6= p, then (x, zk, xj, yi, zp) is a 5-cycle,
this is a contradiction. Hence B2 ∩ B4 = ∅. Now, if yi ∈ B3 ∩ B4, then there ex-
ist xj ∈ A1, xq ∈ A2 and zk, zp ∈ NG(x) such that {xj, yi}, {xq, yi}, {xj, zk} and
{yq, zp} ∈ E(G). Thus, if k = p we have that (zk, xj, yi, xq, yq) is a 5-cycle and if
k 6= p, then (x, zk, xj, yi, xq, yq, zp) is a 7-cycle. This implies B3 ∩ B4 = ∅. Therefore,
B1, B2, B3, B4, B5 are pairwise disjoint sets, where B5 = F \ (B1 ∪ B2 ∪ B3 ∪ B4).

Now, we will prove that if A′ = A1 ∪ A4 ∪ A5 and B′ = B1 ∪ B4 ∪ B5 where A5 =
{xj ∈ D | yj ∈ B5}, then NG(B′) ⊆ A′. Since B1 ∩ B3 = B4 ∩ B3 = B5 ∩ B3 = ∅,
we have NG(B1) ∩ A2 = NG(B4) ∩ A2 = NG(B5) ∩ A2 = ∅. This implies NG(B′) ∩
A2 = ∅. Furthermore, if xi ∈ NG(B′) ∩ A3, then there exist yj ∈ B′ and xq ∈ A2
such that {xi, yj}, {xq, yi} ∈ E(G). Since G1 is well-covered and by Proposition 2.9,
{xq, yj} = ({xq, yi} \ yi) ∪ ({xi, yj} \ xi) ∈ E(G). Consequently, yj ∈ B3 ∩ B′, this
is a contradiction. Thus, NG(B′) ∩ A3 = ∅. Moreover, we have that NG(ZG1) ⊆
NG(x). Therefore, NG(B′) = A′.

This implies, G3 = G \ NG[B′] = G \ (A′ ∪ B′). But, B′ is a stable set, then G3
is well-covered without 3-cycles, 5-cycles and 7-cycles. If G 6= G3, then by in-
duction hypothesis, G3 is König implying τ(G3) = ν(G3). Furthermore, since
NG(B′) = A′, if D′ is a minimal vertex cover of G3, then D′ ∪ A′ is a vertex cover
of G. Also, G[A′ ∪ B′] has a perfect matching with |A′| elements. Consequently,
τ(G) ≤ τ(G3) + |A′| = ν(G3) + |A′| ≤ ν(G). Hence, τ(G) = ν(G) and G is König.
Therefore, we can assume G = G3.

Now, if there exist xi, xj ∈ A2 such that {xi, xj} ∈ E(G), then there exist zk, zp ∈
NG(x) such that {yi, zk} and {yj, zp} ∈ E(G). If k = p, then (zk, yi, xi, xj, yj) is
a 5-cycle and if k 6= p, then (x, zk, yi, xi, xj, yj, zp) is a 7-cycle, a contradiction. So
A2 is a stable set. Similarly, if {xi, xj} ∈ E(G) with xi ∈ A2 and xj ∈ A3, then
there exists xq ∈ A2 such that {xq, yj} ∈ E(G). If q = i, then (xi, xj, yj) is a 3-
cycle. Thus, q 6= i. Since G1 is well-covered and by Proposition 2.9, we have
that {xi, xq} = ({xi, xj} \ xj) ∪ ({xq, yj} \ yj) ∈ E(G1). This is a contradiction
since A2 is a stable set of G. Consequently, there are no edges between A2 and
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A3. Finally, if {xi, xj} ∈ E(G) with xi, xj ∈ A3, then there is a vertex xq ∈ A2
such that {xq, yi} ∈ E(G). Since G1 is well-covered, then {xj, xq} = ({xi, xj} \
xi) ∪ ({xq, yi} \ yi) ∈ E(G). But, there are no edges between A2 and A3. Hence,
A3 is a stable set, implying A2 ∪ A3 is also a stable set in G. Furthermore, since
NG(ZG1) ⊆ NG(x), we have that {x} ∪ ZG1 ∪ B2 ∪ B3 and NG(x) ∪ A2 ∪ A3 are
stable sets. Therefore G is bipartite, implying that G is a König graph. �

Theorem 2.12 Let G be a graph without 3-cycles, 5-cycles and 7-cycles. If G′ =
G \ ZG, then the following conditions are equivalent:

(1) G is well-covered.

(2) If V(G′) 6= ∅, then G′ has a perfect matching e1, ..., eg of König type such that
for any two edges f1 6= f2 and for two distinct vertices a ∈ f1, b ∈ f2 with
{a, b} = ei, one has that ( f1 \ a) ∪ ( f2 \ b) ∈ E(G).

Proof. (1) ⇒ (2) By Lemma 2.11, we have that G is König. Furthermore, G is
well-covered. Hence, by Proposition 2.9, G satisfies (2).

(2)⇒ (1) By Proposition 2.9, G is well-covered. �

Example 2.13 Let G be the following graph:
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Figure 2.1: Well-covered graph without a perfect matching.

G is a well-covered graph without 3-cycles and 5-cycles. If G is König, then by
Proposition 2.9, G has a perfect matching. But |V(G)| = 9 and G does not have a
perfect matching, therefore, G is not König

Lemma 2.14 If G is an unmixed graph and x ∈ V(G), then NG(x) does not contain
two free vertices.
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Proof. We suppose that there exists x ∈ V(G) such that y1, ..., ys are free vertices
in NG(x). Hence, G1 = G \ NG[y1, ..., ys] = G \ {x, y1, ..., ys} is unmixed. Now,
we take a maximal stable set S of G1. Thus, |S| = β(G1) since G1 is unmixed.
Consequently, S1 = S ∪ {y1, ..., ys} is a stable set in G. We take S2 a maximal
stable in G such that x ∈ S2. Since G is unmixed, we have that |S2| ≥ |S1| =
|S|+ s. Furthermore, S2 \ x is a stable set in G1, then |S2| ≤ β(G1) + 1. This implies
β(G1)+ ≥ |S|+ s. But |S| = β(G1), therefore s ≤ 1. �

Definition 2.15 If v, w ∈ V(G), then the distance d(u, v) between u and v in G is the
length of the shortest path joining them, otherwise d(u, v) = ∞. Now, if H ⊆ G,
then the distance from a vertex v to H is d(v, H) = min{d(v, u) | u ∈ V(H)}.
Furthermore, if W ⊆ V(G), then we define d(v, W) = d(v, G[W]) and Di(W) =
{v ∈ V(G) | d(v, W) = i}.

Proposition 2.16 Let G be an unmixed connected graph without 3-cycles and 5-
cycles. If C is a 7-cycle and H is a c-minor of G with C ⊆ H such that C has three
non adjacent vertices of degree 2 in H, then C is a c-minor of G.

Proof. We take a minimal c-minor H of G such that C ⊆ H and C has three non
adjacent vertices of degree 2 in H. We can suppose that C = (x, z1, w1, a, b, w2, z2)
with degH(x) = degH(w1) = degH(w2) = 2. If {z1, b} ∈ E(H), then (z1, b, w2, z2, x)
is a 5-cycle of G. Thus, {z1, b} /∈ E(H), similarly {z2, a} /∈ E(H). Furthermore,
since G does not have 3-cycles, then {z1, z2}, {z1, a}, {z2, b} /∈ E(H). Hence, C
is an induced cycle in H. On the other hand, if there exists v ∈ V(H) such that
d(v, C) ≥ 2, then H′ = H \ NG[v] is a c-minor of G and C ⊆ H′ ⊂ H. This is a
contradiction by the minimality of H. Therefore, d(v, C) ≤ 1 for each v ∈ V(H).

Now, if degH(b) ≥ 3, then there exists c ∈ V(H) \ V(C) such that {b, c} ∈ E(H).
If {c, z2} /∈ E(G) implies that NH1(z2) has two free vertices, w2 and x, in H1 =
H \ NH[w1, c], this is a contradiction by Lemma 2.14. Thus {c, z2} ∈ E(H). Fur-
thermore, {a, c}, {z1, c} /∈ E(H) since (a, b, c) and (z1, w1, a, b, c) are not cycles in G.
Hence, if degH(c) ≥ 3, then there exists d ∈ V(H) \V(C) such that {c, d} ∈ E(H).
Also, {d, b}, {d, z2}, {d, z1} /∈ E(H) since (c, b, d), (z2, d, c) and (z1, x, z2, c, d) are
not cycles of G. But d(d, C) ≤ 1, so {a, d} ∈ E(H). Consequently, NH2(z1) has
two free vertices, w1 and x, in H2 = H \ NH[d, w2], a contradiction by Lemma
2.14, then degH(c) = 2. This implies, NH3(z2) has two free vertices, w2 and
c, in H3 = H \ NH[a]. This is not possible, therefore degH(b) = 2. Similarly,
degH(a) = 2.
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Now, if degH(z2) ≥ 3 we have that there exists c′ ∈ V(H) \ V(C) such that
{c′, z2} ∈ E(H). If there exists d′ ∈ V(H) \ V(C) such that {c′, d′} ∈ E(H), then
{d′, z1} or {d′, z2} ∈ E(G), since d(d′, C) ≤ 1. But (c′, d′, z2) and (x, z2, c′, d′, z1)
are not cycles of H, thus, NH(c′) ⊆ {z1, z2}. Consequently, NH4(z2) has two free
vertices, x and c′, in H4 = H \ NH[w1], a contradiction. Hence degH(z2) = 2.
Similarly, degH(z1) = 2. Furthermore, since H is minimal, then it is connected.
Therefore, H = C and C is a c-minor of G. �

2.4 KÖNIG AND COHEN-MACAULAY GRAPHS WITHOUT 3-

CYCLES AND 5-CYCLES

It is known that if each chordless cycle of G has length 3 or 5, then G is vertex
decomposable (see Theorem 1.96). Furthermore, both a 3-cycle and a 5-cycle are
Cohen-Macaulay, but they do not have a perfect matching. In this section we
characterize the Cohen-Macaulay property in König graphs and graphs without
3-cycles and 5-cycles. In particular, we prove that these graphs have a perfect
matching.

Lemma 2.17 Let G be a graph such that {z1, ..., zr} is a stable set. If N =
⋃r

i=1 NG[zi]
and Gi+1 = Gi \ NGi [zi] with G1 = G, then:

(a) {zi+1, ..., zr} ⊆ V(Gi+1) and

(b) Gr+1 = G \ N.

Proof. (a) By induction on i. If i = 1, since {z1, ..., zr} is a stable set, then {z2, ..., zr}
∩NG[z1] = ∅ and {z2, ..., zr} ⊆ V(G \ NG[z1]) = V(G2). Now, by induction hypo-
thesis we have that {zi, zi+1, ..., zr} ⊆ V(Gi). Since {zi, ..., zr} is a stable set, then
{zi+1, ..., zr} ∩ NGi [zi] = ∅. Hence, {zi+1, ..., zr} ⊆ V(Gi \ NGi [zi]) = V(Gi+1).

(b) By induction on r. If r = 1, then N = NG[z1] and G2 = G \ NG[z1] = G \ N.
Now, if r ≥ 2, we take N′ =

⋃r−1
i=1 NG[zi] and by induction hypothesis we have

that Gr = G \ N′. Through (a), we have that {zr} ⊆ V(Gr). We will prove that
N′ ∪ NGr [zr] = N. We have that N′ ⊆ N. Furthermore, if y ∈ NGr [zr], then
y ∈ NG[zr]. Consequently, y ∈ N. Now, if y ∈ N \ N′, then y ∈ NG[zr] and



2.4 KÖNIG AND COHEN-MACAULAY GRAPHS WITHOUT 3-CYCLES AND 5-CYCLES 33

y /∈ NG[zi] for i ∈ {1, ..., r− 1}. This implies that y, zr ∈ V(Gr) and {y, zr} ∈ E(Gr).
Thus, y ∈ NGr [zr]. Hence, N = N

′ ∪ NGr [zr]. Therefore, Gr+1 = Gr \ NGr [zr] =
(G \ N′) \ NGr [zr] = G \ (N′ ∪ NGr [zr]) = G \ N. �

Proposition 2.18 Let G be an unmixed König graph with a perfect matching e1 =
{x1, y1}, . . . , es = {xs, ys}. Hence, β(G) = s. Furthermore, if {xi, z}, {yi, z′} ∈
E(G) for some 1 ≤ i ≤ s, then {z, z′} ∈ E(G)

Proof. Since e1, ..., es is a perfect matching and G is König, then s = ν(G) = τ(G).
Consequently, β(G) = |V(G)| − τ(G) = s. Now, we suppose that {z, z′} /∈ E(G).
Thus, there exists a maximal stable set S such that z, z′ ∈ S. We have that |S∩ ej| ≤
1 for j = 1, ..., s, but |S ∩ ei| = 0 since {xi, yi} ⊆ NG(z, z′) ⊆ NG(S). This implies
|S| ≤ s− 1. This is a contradiction since G is unmixed. Therefore, {z, z′} ∈ E(G).

�

Definition 2.19 Let G be a graph. The neighborhood relation in V(G) is the equiva-
lence relation given by:

z1 ∼ z2 ⇔ NG(z1) = NG(z2).

We denote by [y] the equivalence class of y.

Lemma 2.20 Let G be an unmixed graph with a perfect matching e1 = {x1, y1}, ...,
eg = {xg, yg} of König type. If {x1, ..., xg} is a minimal vertex cover, then:

(a) There is no triangle with vertices in {xi, yi, xj, yj} for 1 ≤ i < j ≤ g.

(b) If e = {yi, xj} ∈ E(G), then NG(yj) ⊆ NG(yi) for 1 ≤ i, j ≤ g.

(c) Let [yk] be an equivalence class such that NG(yk) is minimal. If NG(yk) =
{xi1 , ..., xil}, then [yk] ∩ {y1, ..., yg} = {yi1 , ..., yil} and the induced subgraph
G1 = G[xi1 , ..., xil , yi1 , ..., yil ] is a complete bipartite graph.

(d) Let G1 be the graph in (c). If xs, ys /∈ V(G1), then the only possible edges
between V(G1) and {xs, ys} are {xij , xs} or {xij , ys} for j ∈ {1, ..., l}. Further-
more, if {xik , xs} ∈ E(G), then {xi1 , ..., xil} ⊆ NG(xs).

Proof. Since {x1, ..., xg} is a vertex cover, then A = {y1, ..., yg} is a stable set of G.

(a) We suppose that T is a triangle with V(T) ⊆ {xi, yi, xj, yj}. Since A is stable, we
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can assume e = {xi, xj}, ei = {xi, yi}, e′ = {xj, yi} are the edges of T. But, since G
is unmixed, then (e \ xi)∪ (e′ \ yi) = {xj} contains an edge of G, this is impossible.

(b) If z ∈ NG(yj), then e′ = {z, yj} ∈ E(G). Thus, by Proposition 2.18 {yi, z} ∈
E(G). Hence z ∈ NG(yi).

(c) If NG(yk) = {xk}, then we have that G1 is the complete bipartite graph K1,1.
Now, if there exists xj ∈ NG(yk) with j 6= k, then {yk, xj} ∈ E(G). By (b) we have
NG(yj) ⊆ NG(yk). But, NG(yk) is minimal, then NG(yk) = NG(yj) and yj ∈ [yk].
Consequently, {yi1 , ..., yil} ⊆ [yk]. Furthermore, if yi ∈ [yk], then xi ∈ NG(yi) =
NG(yk). Hence, i ∈ {i1, ..., il} implying [yk] ∩ {y1, ..., yg} = {yi1 , ..., yil}. Now, if
{xij , xik} ∈ E(G), then there exists a triangle whose vertices are in {xij , yij , xik , yik},
a contradiction by (a). Therefore, {xk1 , ..., xkl

} is a stable set and G1 = G[xk1 , ..., xkl
,

yk1 , ..., ykl
] is a complete bipartite graph, since NG[yij ] = NG[yk] = {xi1 , ..., xil}.

(d) Since {y1, ..., yg} is a stable set, then the only possible edges between {xs, ys}
and V(G1) are {yij , xs}, {xij , xs} or {xij , ys}. But, if {yij , xs} ∈ E(G), then by (b)
NG(ys) ⊆ NG(yij). Thus, NG(ys) = NG(yij) by the minimality of NG(yij). Hence,
ys ∈ [yk], a contradiction. Now, assume {xik , xs} ∈ E(G). Since {xik , yik}, {xij , yik} ∈
E(G), then by Proposition 2.18 {xij , xs} ∈ E(G). Therefore, {xi1 , ..., xil} ⊆ NG(xs).

�

The following Proposition generalizes Lemma 1.121.

Proposition 2.21 Let G be a König graph without isolated vertices. If G is Cohen-
Macaulay, then G has at least a free vertex.

Proof. If G is a bipartite graph, then by Lemma 1.121, G has a free vertex. Now, we
can assume that G is not a bipartite graph. Furthermore, we can assume G is con-
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nected, since G has a non bipartite connected component. By Lemma 1.55, there
exists a perfect matching e1 = {x1, y1}, ..., eg = {xg, yg} of König type. Thus, if D is
a minimal vertex cover of G, then |D∩ ei| = 1 for each i ∈ {1, ..., g}. Without loss of
generality, we can suppose that D = {x1, ..., xg}. Consequently, {y1, ..., yg} is a sta-
ble set of G. We take yk such that NG(yk) is a minimal neighborhood. Hence, by the
Lemma 2.20, if [yk] ∩ {y1, ..., yg} = {yk1 , ..., ykl

}, then G1 = G[xk1 , ..., xkl
, yk1 , ..., ykl

]
is a complete bipartite graph and N(yk) = {xk1 , ..., xkl

}. Since G is not a bipartite
graph, then there exists {xs, ys} ∈ E(G) such that xs, ys /∈ A, where A = V(G1).
By Lemma 2.20 the only possible edges in G between {xs, ys} and A are: {xki , xs}
and {xki , ys}.

If {xki , xs} ∈ E(G), then by Lemma 2.20 {xk1 , ..., xkl
} ⊆ NG(xs). Furthermore, since

there are no triangles in G[xkr , ykr , xs, ys], then {xkr , ys} /∈ E(G) for r ∈ {1, ..., l}.
This implies that NG[ys] ∩ A = ∅ since {y1, ..., yg} is a stable set. We take

B1 = {ys ∈ V(G) | xs, ys /∈ A and {xk1 , ..., xkl
} ⊆ NG(xs)}.

B1 is a stable since B1 ⊆ {y1, ..., yg}, then by Remark 1.66, G2 = G \ NG[B1] is
Cohen-Macaulay and G1 ⊆ G2. Furthermore, the only possible edges between A
and V(G2) \ A are {xki , ys}. Now, we take

B2 = {ys ∈ V(G2) | xs, ys /∈ A and NG(ys) ∩ {xk1 , ..., xkl
} 6= ∅}.

Suppose {xs, xs′} ∈ E(G2) with ys, ys′ ∈ B2. Thus, {ys, xki} ∈ E(G) for some
i ∈ {1, ..., l}. By Proposition 2.18, {xs′ , xki} ∈ E(G) implying that ys′ ∈ B1 and xs′ /∈
V(G2), a contradiction. Then {xs, xs′} /∈ E(G2). Consequently, if B2 = {yu1 , ..., yu′l

},
then {xu1 , ..., xu′l

} is a stable set. Hence, by Remark 1.66, G3 = G2 \ NG[xu1 , ..., xu′l
]

is Cohen-Macaulay. Furthermore, G1 is a connected component of G3, then G1 is
a Cohen-Macaulay bipartite subgraph. By Lemma 1.121, G1 has a free vertex. But
G1 is a complete bipartite graph, therefore l = 1 and y1 is a free vertex. �

Corollary 2.22 Let G be an unmixed shellable graph. If G is König, then G has at
least a free vertex.

Proof. If G is unmixed shellable, by Theorem 1.33, G is Cohen-Macaulay. More-
over, by Proposition 2.21, G has at least a free vertex. �

Lemma 2.23 Let G be an unmixed König graph without isolated vertices. If y ∈
V(G) is a free vertex with NG(y) = {x}, then the subgraphs G \ NG[y] and G \
NG[x] have a perfect matching of König type.
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Proof. The contractions G/y and G/x are equivalent to the induced subgraphs
G \ N[y] and G \ N[x], respectively. Since G has a perfect matching e1, ..., eg of
König type and by Proposition 1.59 and Remark 1.60, we have that the subgraphs
G \ N[y] and G \ N[x] have a perfect matching e′1, ..., e′g of König type such that
e′i ⊆ ei for all i. �

Lemma 2.24 Let G be an unmixed König graph with a perfect matching e1 =
{x1, y1}, ..., eg = {xg, yg}. If G does not have a 4-cycle with two ei’s, then G has
at least a free vertex.

Proof. By Proposition 2.18, we have that β(G) = g. Consequently, if S is a maximal
stable set of G, then |S ∩ ei| = 1 for each i ∈ {1, ..., g}. Hence, we can assume that
{y1, ..., yg} is a stable set. If yi1 is not a free vertex, then there exists a vertex xi2
such that {yi1 , xi2} ∈ E(G) with i1 6= i2. If yi2 is not a free vertex, then there
exists a vertex xi3 such that {yi2 , xi3} ∈ E(G) with i2 6= i3. Furthermore, since
G does not have a 4-cycle with two e′is, then i3 6= i1. Also, by Proposition 2.18,
we have that {yi1 , xi3} ∈ E(G). Now, we suppose that we have distint vertices
yi1 , yi2 , ..., yij and xi1 , xi2 , ..., xij+1 such that for each vertex yil we have {xik , yil} ∈
E(G) with k ∈ {l, ..., j + 1}. If yij+1 is not a free vertex, then there exists xij+2 such
that {yij+1 , xij+2} ∈ E(G). Since there are no 4-cycles with two ei’s, then ij+2 /∈
{i1, ..., ij+1}. Furthermore, by Proposition 2.18, {yik , xij+2} for k = 1, ..., i + 1. This
process is finite since |V(G)| = 2g, therefore G has a free vertex. �

Theorem 2.25 Let G be a König graph without isolated vertices, then the following
conditions are equivalent:

(a) G is unmixed with a perfect matching e1 = {x1, y1}, ..., eg = {xg, yg} of König
type and G does not have 4-cycles with two ei’s.

(b) ∆G is pure shellable.

(c) R/I(G) is Cohen-Macaulay.

(d) G is unmixed vertex decomposable.

Proof. (a)⇒ (b) By induction on the number of vertices. Using Lemma 2.24, G has
a free vertex. Without loss of generality, we suppose that y1 is a free vertex, then
NG(y1) = {x1}. Furthermore, by Lemma 2.23 the subgraphs G \ NG[y1] and G \
NG[x1] have a perfect matching of König type and they do not contain 4-cycles with
two ei’s. Moreover, they are unmixed subgraphs, then by induction hypothesis
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G \ NG[y1] and G \ NG[x1] are shellables. Therefore, by the Theorem 1.115 G is
shellable.

(b) ⇒ (a) By induction on the number of vertices. Since ∆G is pure shellable and
G is König, then by Corollary 2.22 we have that G has a free vertex y1. We can
suppose that NG(y1) = {x1}. Since, G1 = G \ NG[y1] is unmixed shellable, by
induction hypothesis G1 has a perfect matching e2, ..., eg of König type and G1 does
not contain 4-cycles with two e′is. Consequently, e1 = {x1, y1}, e2..., eg is a perfect
matching of G. Hence, g = ν(G) = τ(G) since G is König. Because degG(y1) = 1
there are no 4-cycles with two ei’s.

(b)⇒ (c) By Theorem 1.33.

(c) ⇒ (b) Since G is Cohen-Macaulay, then G is unmixed. Now, we will prove
that G is shellable by induction. Since G is a König graph, then G has a perfect
matching e1 = {x1, y1}, ..., eg = {xg, yg} of König type. By Proposition 2.21, there
is a free vertex x. We can assume x = y1. By Theorem 1.120 and Lemma 2.23,
G \ NG[x1] and G \ NG[y1] are König and Cohen-Macaulay. Hence, by induction
hypothesis G \ NG[x1] and G \ NG[y1] are shellables. Therefore, by Theorem 1.115,
G is shellable.

(d)⇒(b) By Theorem 1.33.

(b)⇒(d) By induction on |V(G)|. Using Corollary 2.22, G has a free vertex y, i.e.,
NG(y) = {x}. Hence, x is a shedding vertex by Lemma 1.103. On the other hand,
G \ NG[y] and G \ NG[x] are pure shellables and by Lemma 2.23 they are König.
Thus, by induction hypothesis G \ NG[x] is vertex decomposable. Furthermore,
G \ x = (G \ NG[y]) ∪ {y}. Consequently, if S is a maximal stable set of G \ x, then
S = S′ ∪ {y} where S′ is a maximal stable set of G \ NG[y]. Therefore, G \ x is pure
shellable implying that G \ x is vertex decomposable. �

The next result generalizes the classification of Hibi-Herzog about Cohen-Macaulay
bipartite graphs (see Theorem 1.122).



38 WELL-COVERED, VERTEX DECOMPOSABLE AND COHEN-MACAULAY GRAPHS

Theorem 2.26 G is a Cohen-Macaulay König graph without isolated vertices if and
only if there is a partition of V(G) = V1 ∪ V2 with V1 = {x1, ..., xg} and V2 =
{y1, ..., yg} such that

(a) V2 is a maximal stable set.

(b) {xi, yi} ∈ E(G) for i = 1, ..., g.

(c) If {xi, yj} ∈ E(G), then i ≤ j, and

(d) If {xi, yj}, {xj, yk} ∈ E(G), then {xi, yk} ∈ E(G) and if {xi, xj}, {yj, xk} ∈ E(G),
then {xi, xk} ∈ E(G).

Proof. ⇒) By induction on |V(G)|. By Proposition 2.21 G has a free vertex y,
i.e., NG(y) = {x}. If V(G) = {x, y}, then we have V1 = {x} and V2 = {y}
and G satisfies (a), (b), (c) and (d). Now, we assume V(G) 6= {x, y}. We take
G′ = G \ NG[y], then G′ is Cohen-Macaulay. Furthermore, by Lemma 2.23, G′ is
König. Moreover, g − 1 = τ(G′) = τ(G) − 1. Hence, by induction hypothesis,
V′1 ∪ V′2 is a partition of V(G′) that satisfies (a), (b), (c) and (d). We can assume
V′1 = {x′1, ..., x′g−1} and V′2 = {y′1, ..., y′g−1}. Now, we take x1 = x, y1 = y, xi = x′i−1
and yi = y′i−1 for i = 2, ..., g. We set V1 = {x1, ..., xg} and V2 = {y1, ..., yg}. Since V′2
is stable and NG(y1) = {x1}, then V2 is stable. Also, {x1, y1}, ..., {xg, yg} is a perfect
matching. Consequently, by Proposition 2.18, G satisfies (d). Since degG(y1) = 1,
thus if {xi, y1}, then i = 1. This implies that G satisfies (b) and (c), since G′ also
satisfies (b) and (c).

⇐) Since V1 ∪V2 is a partition of V(G) and from (b) we have that e1 = {x1, y1}, ...,
eg = {xg, yg} is a perfect matching. We take a maximal stable S. We suppose
that there exists i ∈ {1, ..., g} such that |S ∩ ei| = ∅. Hence, there exist z1, z2 ∈ S
such that {z1, xi}, {z2, yi} ∈ E(G). But, from (d) we have that {z1, z2} ∈ E(G), a
contradiction since z1, z2 ∈ S. Consequently, |S ∩ ei| = 1 for each i ∈ {1, ..., g}.
This implies, G is unmixed and τ(G) = g. Thus, G is König and e1, ..., eg is a
perfect matching of König type. Now, if G has a 4-cycle Q with two ei’s and since
V2 is a stable set, we can suppose that the edges of Q are {xi, yi}, {xj, yj}, {xi, yj}
and {xj, yi} with i < j. By (c), j ≤ i since {xi, yi} ∈ E(G), this is a contradiction.
Then G does not contain 4-cycle with two ei’s. Therefore, by Theorem 2.25, G is
Cohen-Macaulay . �

Lemma 2.27 Let G be a connected unmixed graph with a perfect matching e1, ...,
eg of König type without 4-cycles with two ei’s and g ≥ 2. For each z ∈ V(G) we



2.4 KÖNIG AND COHEN-MACAULAY GRAPHS WITHOUT 3-CYCLES AND 5-CYCLES 39

have that:

(a) If degG(z) ≥ 2, then there exist {z, w1}, {w1, w2} ∈ E(G) such that degG(w2)
= 1. Furthermore, ei = {w1, w2} for some i ∈ {1, ..., g}.

(b) If degG(z) = 1, then there exist {z, w1}, {w1, w2}, {w2, w3} ∈ E(G) such that
degG(w3) = 1. Moreover, ei = {z, w1} and ej = {w2, w3} for some i, j ∈
{1, ..., g}.

Proof. Since e1 = {x1, y1}, ..., eg = {xg, yg} is a perfect matching of König type we
can assume D = {x1, ..., xg} is a minimal vertex cover. Thus, F = {y1, ..., yg} is a
maximal stable set. By Theorem 2.25 G is Cohen-Macaulay, and by Theorem 2.26
we can assume that if {xi, yj} ∈ E(G), then i ≤ j. Now, we take a vertex z ∈ V(G).

(a) First, we suppose that z = xk and there is a vertex xj in NG(xk). If yj is a
free vertex, then we take w1 = xj and w2 = yj, and ej = {w1, w2}. Now, we
can assume NG(yj) \ xj = {xp1 , ..., xpr} with p1 < · · · < pr < j. If yp1 is not
a free vertex, then there is a vertex xp with p < p1 such that {xp, yp1} ∈ E(G).
Since G is unmixed, from Proposition 2.9, we obtain that {xp, yj} = ({xp, yp1} \
yp1) ∪ ({yj, xp1} \ xp1) ∈ E(G). But p < p1, a contradiction since p1 is minimal.
Consequently, degG(yp1) = 1. Also, from Proposition 2.9, we have that {xk, xp1} =
({xk, xj} \ xj) ∪ ({xp1 , yj} \ yj) ∈ E(G). Hence, we take w1 = xp1 and w2 = yp1 ,
and we have that ep1 = {w1, w2}. Now, we assume that z = xk and NG(xk) \ yk =
{yj1 , ..., yjt} with k < j1 < · · · < jt. We suppose that degG(xjt) ≥ 2. If there is a
vertex yr such that {xjt , yr} ∈ E(G), then r > jt. Since G is unmixed, {xk, yr} =
({xk, yjt} \ yjt) ∪ ({yr, xjt} \ xjt) ∈ E(G), a contradiction since jt is maximal. Thus,
there exists a vertex xp such that {xjt , xp} ∈ E(G). But, since G is unmixed, then
{xk, xp} = ({xk, yjt} \ yjt) ∪ ({xp, xjt} \ xjt) ∈ E(G). This is a contradiction since
NG(xk) \ yk = {yj1 , ..., yit}. Consequently, degG(xjt) = 1. Therefore, we take w1 =
yjt and w2 = xjt , with ejt = {w1, w2}.

Finally, we assume that z = yk, since yk is not a free vertex, then NG(yk) \ xk =
{xj1 , ..., xjr} with j1 < · · · < jr < k. If yj1 is not a free vertex, then there is a vertex
xq such that {xq, yj1} ∈ E(G) with q < j1. This implies {xq, yk} = ({xq, yj1} \ yj1) ∪
({xj1 , yk} \ xj1) ∈ E(G). But q < j1, a contradiction. Therefore, degG(yj1) = 1 and
we take w1 = xj1 and w2 = yj1 . Hence, ej1 = {w1, w2}.

(b) Since e1, ..., eg is a perfect matching, then there exists i ∈ {1, ..., g} such that
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ei = {z, z′}. Since G is connected, z is a free vertex and g ≥ 2, then degG(z
′) ≥ 2.

Thus, by (a) there exist w′1, w′2 ∈ V(G) such that {z′, w′1}, {w′1, w′2} ∈ E(G) where
degG(w′2) = 1 and {w′1, w′2} = ej for some j ∈ {1, ..., g}. Therefore, we take w1 = z′,
w2 = w′1, w3 = w′2. Consequently, ei = {z, w1} and ej = {w2, w3}. �

Theorem 2.28 Let G be a graph without 3-cycles and 5-cycles. If G1, ..., Gk are the
connected components of G, then the following conditions are equivalent:

(a) G is unmixed vertex decomposable.

(b) G is pure shellable.

(c) G is Cohen-Macaulay

(d) G is unmixed and if Gi is not an isolated vertex, then Gi has a perfect matching
e1, ..., eg of König type without 4-cycles with two e′is.

Proof. (a)⇒ (b)⇒ (c) By Remark 1.127

(d) ⇒ (a) Since each component Gi is König, then G is König. Therefore, from
Therorem 2.25, G is unmixed vertex decomposable.

(c)⇒ (d) Since G is Cohen-Macaulay, then G is unmixed. By induction on |V(G)|.
We take x ∈ V(G) such that degG(x) is minimal and suppose that NG(x) =
{z1, ..., zr}. By Remark 1.66, G′ = G \ NG[x] is a Cohen-Macaulay graph. We take
G′1, ..., G′s, the connected components of G′. We can assume that V(G′i) = {yi}
for i ∈ {1, ..., s′}. Since degG(x) is minimal, this implies {yi, zj} ∈ E(G) for
all i ∈ {1, ..., s′} and j ∈ {1, ..., r}. Since G does not contain 3-cycles, we have
that NG(x) is a stable set. If s′ = s, then the only maximal stable sets of G are
{y1, ..., ys′ , x} and {z1, ..., zr}. Thus, G is a bipartite graph. So, G is König. Hence,
by Theorem 2.25, G satisfies (d). Consequently, we can assume s > s′, implying
that there is a component G′i with an edge e = {w, w′}.

Now, we suppose that r ≥ 2. Since degG(x) is minimal, there exist a, b ∈ V(G) such
that {a, w}, {b, w′} ∈ E(G). If a = b, then (a, w, w′) is a 3-cycle in G. Hence, a 6= b.
If a, b ∈ NG(x), then (x, a, w, w′, b) is a 5-cycle in G. Thus, |{w, w′, a, b} ∩V(G′i)| ≥
3. By induction hypothesis, G′ satisfies (d). So, G′i has a perfect matching and
τ(G′i) ≥ 2. Furthermore, by Proposition 2.21, G′i has a free vertex a′. Then, by
Lemma 2.27 (b), there exist edges {a′, w1}, {w1, w2}, {w2, b′} ∈ E(G′i) such that
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degG′i
(a′) = degG′i

(b′) = 1. By the minimality of degG(x) we have that a′ and b′ are
adjacent with at least r− 1 neighbor vertices of x. If r ≥ 3, then there exists zj such
that zj ∈ NG(a′)∩NG(b′). This implies that (a′, w1, w2, b′, zj) is a 5-cycle of G. But G
does not have 5-cycles, consequently, r = 2. We can assume that {a′, z1}, {b′, z2} ∈
E(G), implying C = (x, z1, a′, w1, w2, b′, z2) is a 7-cycle with degG(a′) = degG(b′) =
degG(x) = 2. Hence, by Proposition 2.16, C is a c-minor of G. Thus, by Remark
1.66, C is Cohen-Macaulay. This is a contradiction by Proposition 1.110. Therefore,
degG(x) = r ≤ 1.

If r = 0, then the result is clear. Now, if r = 1 we can assume that G1, ..., Gk are
the connected components of G and z1 ∈ V(G1). Consequently, the connected
components of G \ NG[x] are F1, ..., Fl, G2, ..., Gk where F1, ..., Fl are the connected
components of G1 \ NG1 [x]. By induction hypothesis G2, ..., Gk satisfy (d). If Fj =
{dj}, then NG(z1) has two free vertice, dj and x, a contradiction by Lemma 2.14.
Hence, |V(Fi)| ≥ 2 for i ∈ {1, ..., l}. By induction hypothesis, we have that Fi has a
perfect matching Mi = {ei

1, ..., ei
gi
} of König type. Thus, {e} ∪ (⋃l

i=1 Mi) is a perfect
matching of G1, where e = {x, z1}. Also, {z1} ∪ (

⋃l
i=1 Xi) is a vertex cover of G1,

where Xi is a minimal vertex cover of Fi. Consequently, ν(G1) ≥ 1 + ∑l
i=1 |Mi| =

1 + ∑l
i=1 gi = 1 + ∑l

i=1 |Xi| ≥ τ(G1). This implies that G1 is König. Furthermore,
by Remark 1.66, we have that G1 is Cohen-Macaulay. Therefore, by Theorem 2.25,
G1 satisfies (d). �

Corollary 2.29 Let G be a connected graph without 3-cycles and 5-cycles. If G
is Cohen-Macaulay, then G has at least an extendable vertex x adjacent to a free
vertex.

Proof. From Theorem 2.28, G is König. Thus, by Proposition 2.21 there exists a
free vertex x. If NG(x) = {y}, then from Lemma 1.103, y is a shedding vertex.
Therefore, from Corollary 2.8 y is an extendable vertex, since G is unmixed. �

Corollary 2.30 Let G be a connected graph of girth 6 or more. If G is not an isolated
vertex, then the following conditions are equivalent:

(i) G is unmixed vertex decomposable.

(ii) ∆G is pure shellable.

(iii) R/I(G) is Cohen-Macaulay.

(iv) G is an unmixed König graph.
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(v) G is very well-covered.

(vi) G is unmixed with G 6= C7.

(vii) G is a whisker graph.

Proof. (i) ⇒ (ii) ⇒ (iii) By Remark 1.127. (iii) ⇒ (iv) G is unmixed and from
Theorem 2.28, G is König. (iv)⇒ (v) From Lemma 2.10. (v)⇒ (vi) It is clear, since
C7 is not very well-covered.

(vi) ⇒ (vii) By Lemma 1.89, the pendant edges {x1, y1}, ..., {xg, yg} of G form a
perfect matching. Since {xi, yi} is a pendant edge, we can assume that degG(yi) =
1 for each 1 ≤ i ≤ g. We take H = G[x1, ..., xn]. Therefore G is a whisker graph
with W(H) = {{x1, y1}, ..., {xg, yg}}.

(vii)⇒ (i) If G is a whisker graph, then there exists a subgraph H such that V(H) =
{x1, ..., xs}, V(G) = V(H) ∪ {y1, ..., ys} and E(G) = E(H) ∪W(H) where W(H) =
{{x1, y1}, ..., {xs, ys}}. Consequently, W(H) is a perfect matching and ν(G) = s.
Furthermore, D = {x1, ..., xs} is a vertex cover, then s = ν(G) ≤ τ(G) ≤ s. Hence,
G is König and W(H) is a perfect matching of König type. Also, there are no
4-cycles with two ei’s since degG(yi) = 1. Therefore, by Proposition 2.9, G is un-
mixed and by Theorem 2.28, G is unmixed vertex decomposable.

�

2.5 SHELLABLE PROPERTIES IN GRAPHS WITHOUT 3-CYCLES

AND 5-CYCLES

In this section we prove that the neighborhood of some 2-connected blocks of a
graph G without 3-cycles and 5-cycles have a free vertex if G is unmixed, Cohen-
Macaulay, vertex decomposable or shellable. Also, we prove that the criterion of
Van Tuyl-Villarreal can be extended for vertex decomposable graphs without 3-
cycles and 5-cycles and shellable graphs with girth at least 11.

Lemma 2.31 If G is a graph, then any vertex of degree at least 3 in a basic 5-cycle
is a shedding vertex.
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Proof. Let C = (x1, x2, x3, x4, x5) be a basic 5-cycle. We suppose that degG(x1) ≥ 3,
since C is a basic 5-cycle, then degG(x2) = degG(x5) = 2. Also, we can assume
that degG(x3) = 2 We take a stable set S of G \ NG[x1]. Since {x3, x4} ∈ E(G), then
|S ∩ {x3, x4}| ≤ 1. Hence, x3 /∈ S or x4 /∈ S. Consequently, S ∪ {x2} or S ∪ {x5} is
a stable set of G \ x1. Therefore, x1 is a shedding vertex. �

Theorem 2.32 Let G be a connected graph with a basic 5-cycle C. G is a shellable
graph if and only if there is a shedding vertex x ∈ V(C) such that G \ x and G \
NG[x] are shellable graphs.

Proof. ⇒) We can suppose that C = (x1, x2, x3, x4, x5). If G = C, then G is shellable.
By Remark 2.5, each vertex is a shedding vertex. Furthermore, G \ x1 is a path with
shelling {x2, x4}, {x2, x5}, {x3, x5} and G \ NG[x1] is an edge. Therefore, G \ x1 and
G \ NG[x1] are shellable graphs. Now, we suppose G 6= C. We can assume that
degG(x1) ≥ 3. Since C is a basic 5-cycle, then degG(x2) = degG(x5) = 2. Also,
we can suppose that degG(x3) = 2 and degG(x4) ≥ 2. By Lemma 2.31, x1 is
a shedding vertex. Furthermore by Remark 1.66, we have that G \ NG[x1] is a
shellable graph. Now, we will prove that G1 = G \ x1 is shellable. Since G is
shellable and since shellability is closed under c-minors, then G2 = G \ NG[x2] is
shellable. We assume that F1, ..., Fr is a shelling of ∆G2 . Also, G3 = G \ NG[x3, x5] is
shellable. We suppose that H1, H2, ..., Hk is a shelling of ∆G3 . We take F ∈ F (∆G1).
If x2 ∈ F, then F \ x2 ∈ F (∆G2) and there exists Fi such that F = Fi ∪{x2}. If x2 /∈ F,
then x3 ∈ F and x4 /∈ F. Thus, x5 ∈ F. Hence, F \ {x3, x5} ∈ F (∆G3), then there
exists Hj such that F = Hj ∪ {x3, x5}. This implies, F (∆G1) = {F1 ∪ {x2}, ..., Fr ∪
{x2}, H1∪{x3, x5}, ..., Hk∪{x3, x5}}. Furthermore, F1∪{x2}, ..., Fr ∪{x2} and H1∪
{x3, x5}, ..., Hk ∪ {x3, x5} are shellings. Now, x3 ∈ (Hj ∪ {x3, x5}) \ (Fi ∪ {x2}) and
Hj is a stable set of G without vertices of C. So, Hj ∪ {x2, x5} is a maximal stable set
of G1 since NG(x2, x5) = V(C) and {x2, x5} /∈ E(G). Consequently, Hj ∪ {x2, x5} =
Fl ∪ {x2} for some l ∈ {1, ..., r} and (Hj ∪ {x3, x5}) \ (Fl ∪ {x2}) = {x3}. Therefore,
G1 is a shellable graph.

⇐) By Lemma 1.111. �

In the following result P is a closed property under c-minors, i.e., if G has property
P, then each c-minor of G has property P. Recall that D1(B) = {v ∈ V(G) | v ∈
NG(B) \ B} for B ⊆ V(G).
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Theorem 2.33 Let G be a graph without 3-cycles and 5-cycles with a 2-connected
block B. If G satisfies the property P and B does not satisfy P, then there exists
x ∈ D1(B) such that degG(x) = 1.

Proof. By contradiction, we assume that if x ∈ D1(B), then |NG(x)| > 1. Thus,
there exist a, b ∈ NG(x) with a 6= b. We can suppose that a ∈ V(B). If b ∈ V(B),
then G[{x} ∪V(B)] is 2-connected. But B ( G[{x} ∪V(B)]. This is a contradiction
since B is a block. Consequently, V(B) ∩ NG(x) = {a}. Now, we suppose that
b ∈ D1(B). Since there is no 3-cycle in G, then a /∈ NG(b). Hence, there exists
c ∈ NG(b) ∩ V(B) such that c 6= a. This implies G[{x, b} ∪ V(B)] is 2-connected.
But B ( G[{x, b} ∪ V(B)], a contradiction. Then D1(B) ∩ NG(x) = ∅. Thus,
NG(x) ∩ (V(B) ∪ D1(B)) = {a} and b ∈ D2(B). Now, if D1(B) = {x1, . . . , xr},
then there exists ai such that V(B) ∩ NG(xi) = {ai}. Also, there exists bi such that
bi ∈ NG(xi) ∩ D2(B). We can suppose that L = {b1, . . . , bs} = {b1, . . . , br} with
bi 6= bj for 1 ≤ i < j ≤ s. We will prove that L is a stable set. Suppose that
{bi, bj} ∈ E(G), if ai = aj, then (ai, xi, bi, bj, xj, ai) is a 5-cycle in G, this is a contra-
diction. Consequently ai 6= aj and the induced subgraph G[{xi, bi, bj, xj} ∪ V(B)]
is 2-connected. But B is a block, then {bi, bj} /∈ E(G). Therefore, L is a stable set.
Furthermore, G′ = G \ NG[L] is a c-minor of G, implying that G′ satisfies the prop-
erty P. Since D1(B) ⊂ NG(L), we have that B is a connected component of G′. But,
B does not satisfy P. This is a contradiction since each connected component of G
is a c-minor. Therefore, there exists a free vertex in D1(B). �

Corollary 2.34 Let G be a graph without 3-cycles and 5-cycles and B a 2-connected
block. If G is shellable (unmixed, Cohen-Macaulay, sequentially Cohen-Macaulay
or vertex decomposable) and B is not shellable (unmixed, Cohen - Macaulay, se-
quentially Cohen-Macaulay or vertex decomposable), then there exists x ∈ D1(B)
such that degG(x) = 1.

Proof. From Remark 1.66 and Theorem 2.33. �

Corollary 2.35 Let G be a bipartite graph and B a 2-connected block. If G is shella-
ble, then there exists x ∈ D1(B) such that degG(x) = 1.

Proof. Since G is bipartite, then B is bipartite. If H is a shellable bipartite graph,
then from Lemma 1.114 we have that H has a free vertex. But H is not 2-connected.
Hence, B is not shellable. Therefore, by Corollary 2.34, there exists x ∈ D1(B) such
that degG(x) = 1. �
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Lemma 2.36 Let G be a graph without 3-cycles and 5-cycles. If G is vertex decom-
posable, then G has a free vertex.

Proof. Since G is vertex decomposable, then there is a shedding vertex x. Further-
more, there are no 5-cycles in G. Hence, by Lemma 2.3, there exists y ∈ NG(x)
such that NG[y] ⊆ NG[x]. If z ∈ NG(y) \ x, then (x, y, z) is a 3-cycle. This is a
contradiction. Therefore, NG(y) = {x}, implying that y is a free vertex. �

Proposition 2.37 Let G be a graph without 3-cycles and 5-cycles. G is vertex de-
composable if and only if there exists a free vertex x with NG(x) = {y} such that
G1 = G \ NG[x] and G2 = G \ NG[y] are vertex decomposable.

Proof. ⇒) By Lemma 2.36, there exists a free vertex x. Furthermore, by Remark
1.66, G1 and G2 are vertex decomposable.

⇐) By Lemma 1.103, y is a shedding vertex. Moreover, G \ y = G1 ∪ {x}. Further-
more, since G1 is vertex decomposable, then G \ y is also it. Therefore, G is vertex
decomposable, since G2 is vertex decomposable. �

Corollary 2.38 If G is a 2-connected graph without 3-cycles and 5-cycles, then G is
not vertex decomposable.

Proof. Since G is 2-connected, then G does not have a free vertex. Therefore, by
Lemma 2.36, G is not vertex decomposable. �

Corollary 2.39 If G is the 2-clique-sum of the cycles C1 and C2 with |V(C1)| = r1 ≤
r2 = |V(C2)|, then G is vertex decomposable if and only if r1 = 3 or r1 = r2 = 5.

Proof. ⇐) First, we suppose that r1 = 3. Consequently, we can assume C1 =
(x1, x2, x3) and x2, x3 ∈ V(C1) ∩ V(C2). Thus, x1 is a simplicial vertex. Hence, by
Lemma 1.103, x2 is a shedding vertex. Furthermore, G \ x2 and G \NG[x2] are trees.
Consequently, by Corollary 1.97, G \ x2 and G \ NG[x2] are vertex decomposable
graphs. Therefore, G is vertex decomposable.

Now, we assume that r1 = r2 = 5 with C1 = (x1, x2, x3, x4, x5) and C2 = (y1, x2, x3,
y4, y5). We take a stable set S in G \NG[x5]. If x2 ∈ S, then S∪ {x4} is a stable set in
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G1 = G \ x5. If x2 /∈ S, then S ∪ {x1} is a stable set in G1. Consequently, by Lemma
2.1, x5 is a shedding vertex. Since x2 is a neighbor of a free vertex in G1, then x2 is
a shedding vertex in G1. Furthermore, since G1 \ x2 and G1 \ NG1 [x2] are forests,
then they are vertex decomposable graphs, by Corollary 1.97. Thus, G1 is vertex
decomposable. Since G \ NG[x5] = C2, it is vertex decomposable by Proposition
1.110. Therefore, G is vertex decomposable.

⇒) By Corollary 2.38, we have that {r1, r2} ∩ {3, 5} 6= ∅. We suppose r1 6= 3. So
r1 = 5 or r2 = 5. Consequently, we can assume that {C1, C2} = {C, C′} where
C = (x1, x2, x3, x4, x5) and x2, x3 ∈ V(C) ∩ V(C′). Thus, G \ NG[x5] = C′ is vertex
decomposable. Hence, from Proposition 1.110, |V(C′)| ∈ {3, 5}. But r1 6= 3, then
|V(C′)| = 5 and r1 = r2 = 5. Therefore, r1 = 3 or r1 = r2 = 5. �

Lemma 2.40 Let G be a 2-connected graph with girth at least 11. Then G is not
shellable.

Proof. Since G is 2-connected, then G is not a forest. Consequently, if r is the girth
of G, then there exists a cycle C = (x1, x2, ..., xr). If G = C, then G is not shellable
Proposition 1.110. Hence G 6= C, implying D1(C) 6= ∅. We take y ∈ D1(C),
without loss of generality we can assume that {x1, y} ∈ E(G). If {xi, y} ∈ E(G)
for some i ∈ {2, ..., r}, then we take the cycles C1 = (y, x1, x2, ..., xi) and C2 =
(y, x1, xr, xr−1, ..., xi). Thus, |V(C1)| = i + 1 and |V(C2)| = r − i + 3. Since r is
the girth of G, then i + 1 ≥ r and r − i + 3 ≥ r. Consequently, 3 ≥ i implies
4 ≥ r. But r ≥ 11, this is a contradiction. This implies that |NG(y) ∩ V(C)| = 1.
Now, we suppose that there exist y1, y2 ∈ D1(C) such that {y1, y2} ∈ E(G). We
can assume that {x1, y1}, {xi, y2} ∈ E(G). Since r ≥ 11, then there are no 3-cycles
in G. In particular, x1 6= xi. Now, we take the cycles C′ = (y1, x1, ..., xi, y2) and
C′′ = (y1, x1, xr, xr−1, ..., xi, y2). So, |V(C′)| = i + 2 and |V(C′′)| = r− i + 4. Since r
is the girth, we have that i + 2 ≥ r and r− i + 4 ≥ r. Hence, 4 ≥ i and 6 ≥ r, this is
a contradiction. Then D1(C) is a stable set. Now, since G is 2-connected, then for
each y ∈ D1(C) there exists z ∈ NG(y) ∩ D2(C). If there exist z1, z2 ∈ D2(C) such
that {z1, z2} ∈ E(G), then there exist y1, yj ∈ D1(C) such that {z1, y1}, {z2, yj} ∈
E(G). Since there are no 3-cycles in G, we have that y1 6= yj. We can assume that
{x1, y1}, {xi, yj} ∈ E(G). Since there are no 5-cycles, then i 6= 1. Consequently,
there exist cycles C′1 = (x1, ..., xi, yj, z2, z1, y1) and C′2 = (xi, ..., xr, x1, y1, z1, z2, yj).
This implies r ≤ |V(C′1)| = i + 4 and r ≤ |V(C′2)| = r − i + 6. Hence, i ≤ 6 and
r ≤ 10, this is a contradiction. Then D2(C) is a stable set. Furthermore, C is a
connected component of G \ NG[D2(C)]. But C is not shellable, therefore G is not
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shellable. �

Theorem 2.41 If G has girth at least 11, then G is shellable if and only if there exists
x ∈ V(G) with NG(x) = {y} such that G \ NG[x] and G \ NG[y] are shellables.

Proof. ⇐) By Theorem 1.115.

⇒) By Remark 1.66, shellability is closed under c-minors. Consequently, it is only
necessary to prove that G has a free vertex. If every block of G is an edge or a
vertex, then G is a forest and there exists x ∈ V(G) with degG(x) = 1. Hence, we
can assume that there exists a 2-connected block B of G. The girth of B is at least
11, since B is an induced subgraph of G. Thus, by Lemma 2.40, B is not shellable.
Therefore, by Theorem 2.33, there exists x ∈ D1(B) such that degG(x) = 1. �

2.6 UNICYCLIC GRAPHS

In this section we characterize the Cohen-Macaulay, shellable and well-covered
unyciclic graphs.

Theorem 2.42 Let G be an unicyclic graph with cycle C. Then the following con-
ditions are equivalent:

(1) G is vertex decomposable.

(2) G is shellable

(3) G is sequentially Cohen-Macaulay.

(4) |V(C)| ∈ {3, 5} or there exists x ∈ D1(C) such that degG(x) = 1

Proof. (1)⇒ (2)⇒ (3) By Remark 1.127.

(3)⇒ (4) If |V(C)| /∈ {3, 5}, then by Proposition 1.110 C is not sequentially Cohen-
Macaulay. Furthermore, C is the only 2-connected block of G. Thus, by Theorem
2.33, there exists x ∈ D1(C) such that degG(x) = 1.
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(4)⇒ (1) If |V(C)| = {3, 5}, then G is vertex decomposable by Theorem 1.96. Now,
if |V(C)| 6= 3, 5, then we can assume that NG(x) = {y} for some x ∈ D1(C).
Hence, by Lemma 1.103, y is a shedding vertex. Since x ∈ D1(C) and degG(x) = 1,
then y ∈ V(C). Consequently, G \ y and G \ NG[y] are forests, so they are vertex
decomposable. Therefore, G is vertex decomposable. �

Remark 2.43 Let G be an unicyclic graph with cycle C. If C is a basic 4-cycle, then
C contains two adjacent vertices of degree two and the remaining two vertices are
joined to a free vertex.

Lemma 2.44 Let x be a free vertex of an unmixed graph G such that G′ = G \NG[x]
is a whisker graph. If there is no cycle C of G such that z ∈ V(C) where {x, z} ∈
E(G), then G is a whisker graph.

Proof. Let G1, ..., Gs be the connected components of G′. Thus, there exist induced
subgraphs H1, ..., Hs such that V(Hi) = {xi

1, ..., xi
ri
}, V(Gi) = V(Hi) ∪ {yi

1, ..., yi
ri
}

and E(Gi) = E(Hi) ∪W(Hi), where W(Hi) = {{xi
1, yi

1}, ..., {xi
ri

, yi
ri
}}. If {x, z} is a

connected component of G, then G = {x, z} ∪ G1 ∪ · · · ∪ Gs. Consequently, G is a
whisker graph. Now, suppose there are wi

1, wi
2 ∈ V(Gi) such that {wi

1, z}, {wi
2, z} ∈

E(G). Since Gi is connected, then there exists a path (wi
1, v1, ..., vm, wi

2) between
wi

1 and wi
2 in Gi. Hence, C = (z, wi

1, v1, ..., vm, wi
2) is a cycle, a contradiction.

Then |NG(z) ∩ V(Gi)| ≤ 1 for i ∈ {1, ..., s}. We can suppose that {G1, ..., Gs1} =
{Gi | NG(z) ∩V(Gi) 6= ∅}. Thus, F1, Gs1+1, ..., Gs are the connected components of
G, where F1 = G[{x, z} ∪ ⋃si

i=1 Gi]. Furthermore, we can assume that |V(Gi)| = 2
for 1 ≤ i ≤ s2 and |V(Gi)| ≥ 3 for s2 < i ≤ s1. Hence, degGi

(xi
1) = degGi

(yi
1) = 1

and we can assume that NG(z) ∩ V(Gi) = {xi
1} for 1 ≤ i ≤ s2. We suppose that

{z, yi
j} ∈ E(G) for some s2 < i ≤ s1. Since Gi is connected and |V(Gi)| ≥ 3, then

there is a vertex w ∈ {xi
1, ..., xi

ri
} \ xi

j such that {w, xi
j} ∈ V(Gi). Consequently,

G′′ = G \ NG[w] is unmixed. But NG′′(z) has two free vertices, yi
j and x, a contra-

diction by Lemma 2.14. Then NG(z) ∩V(Gi) ⊆ V(Hi) for 1 ≤ i ≤ s1. We take H =
G[
⋃s1

i=1 Hi ∪{z}], then E(F1) = E(H)∪W(H) where W(H) =
⋃s1

i=1 W(Hi)∪{x, z}.
Hence, F1 is a whisker graph. Therefore, G is a whisker graph. �

Theorem 2.45 Let G be an unicyclic graph with cycle C. Then G is well-covered if
and only if G satisfies one of the following conditions:

(a) G ∈ {C3, C4, C5, C7}.

(b) G is a whisker graph.
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(c) C is a simplex 3-cycle or a basic 5-cycle and G \V(C) is a whisker forest graph.

(d) C is a basic 4-cycle with two adjacent vertices a, b of degree 2 in G such that
G \ {a, b} is a whisker graph.

Proof. ⇒) By induction on l = |V(G) \ V(C)|. If l = 0, then G = C. Since the
well-covered cycles are C3, C4, C5 and C7, then C satisfies (a). Now, we assume
l ≥ 1. Hence, C ( G and G has a free vertex. We take a free vertex x such that
d(x, C) = max{d(a, C) | a ∈ V(G), degG(a) = 1}. We assume that NG(x) = {z}
and C = (y1, ..., yk) with k ≥ 3. By Remark 1.66, we have that G′ = G \ NG[x] is
well-covered.

If d(x, C) ≥ 2, then C ⊆ G′ and by induction hypothesis G′ satisfies (a), (b), (c) or
(d). We take G′1 = G′ \ V(C). If G′ satisfies (a), then G′ = Cr with r ∈ {3, 4, 5, 7}.
Since G is connected, we can assume that {z, y1} ∈ E(G). Furthermore, G is uni-
cyclic, then NG(z) = {y1}. If r = 4 or 7, then NG2(z) has two free vertices, x
and y1, in G2 = G \ NG[y3, yr−1]. A contradiction by Lemma 2.14. Consequently,
r = 3 or 5. We have that G′1 = G[{x, z}], thus G′1 is a whisker forest. Further-
more, C is a simplex 3-cycle or a basic 5-cycle in G. Hence, G satisfies (c). Now,
if G′ satisfies (b), since C ⊆ G′ and G is unicyclic, then z is not in a cycle of G.
Consequently, by Lemma 2.44, G is a whisker graph and G satisfies (b). Now, if
G′ satisfies (c), then C is a simplex 3-cycle or a basic 5-cycle and G′1 is a whisker
forest. If C = C3 and C3 is not a simplex in G, then |NG(z) ∩ V(C)| ≥ 1. Since G
is unicyclic, we can assume that NG(z) ∩V(C) = {y1} and there are z2, z3 ∈ V(G)
such that {y2, z2}, {y3, z3} ∈ E(G). Thus, NG3(z) has two free vertices, x and y1, in
G3 = G \ NG[z2, z3], this is a contradiction. So C3 is a simplex of G. Now, if C = C5
and C is not basic in G, then we can assume degG(y1) ≥ 3 and degG(y2) ≥ 3. Since
C is a basic 5-cycle in G′ and G is unicyclic, we can assume NG(z) ∩V(C) = {y1}.
Also, there exists z2 ∈ V(G′) such that {y2, z2} ∈ E(G). Hence, NG4(z) has two
free vertices, y1 and x, in G4 = G \ NG[z2, y4], a contradiction. Then C is a basic
5-cycle in G. Now, if H = G \V(C), then H = G[G′1 ∪ {x, z}] and H \ NH[x] = G′1.
Consequently, by Lemma 2.44, H is a whisker forest. This implies that G satis-
fies (c). Now, if G′ satisfies (d), then C is a basic 4-cycle. We can assume that
degG′(y1) = degG′(y2) = 2 and G′′ = G′ \ {y1, y2} is a whisker. Since G is uni-
cyclic, we have that |NG(z) ∩ {y1, y2}| = 1. We can suppose {y1, z} ∈ E(G). But
NG5(z) has two free vertices, x and y1, in G5 = G \NG[y3], this is a contradiction. So
degG(y1) =degG(y2) = 2. We take H1 = G \ {y1, y2}, therefore H1 \ NH1 [x] = G′′.
By Lemma 2.44, H1 is a whisker and G satisfies (d).
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Now, we assume d(x, C) = 1. Thus, V(G) = V(C) ∪ D1(C) and G′ is a forest.
Consequently by Theorem 1.118, G′ is a whisker graph. Also z ∈ V(C), then
we can assume that z = y1. Since G is unicyclic, if w ∈ D1(C), then w is a free
vertex. If each yi ∈ V(C) is adjacent to one free vertex, we have that G is a whisker
graph. Hence, G satisfies (b). If there is a vertex yj ∈ V(C) such that degG(yj) =
2. Without loss of generality, we can assume j = 2. If r ≥ 5, then NG6(y1) has
two free vertices, x and y2, in G6 = G \ NG[y4], a contradiction by Lemma 2.14.
So r ≤ 4. If r = 3, then {y1, y3} and {y2, y3, x} are minimal vertex covers of G.
But G is well-covered, implying r = 4. If degG(y4) = 2, then NG′(y3) has two
free vertices, y2 and y4. Consequently, degG(y4) ≥ 3 and there is a free vertex
z4 such that {y4, z4} ∈ E(G). Now, if degG(y3) ≥ 3, then there is a free vertex
z3 such that {y3, z3} ∈ E(G). But, NG7(y3) has two free vertices, y2 and z3, in
G7 = G \ NG[x, z4]. Hence, degG(y3) = 2 and C is a basic 4-cycle. Furthermore,
G \ {y2, y3} is a whisker. Therefore, G satisfies (d).

⇐) Graphs of families (a), (b), (c) and (d) are in SQC ∪ {C4, C7}. Hence, by Theo-
rem 1.126, they are well-covered. �

Corollary 2.46 Let G be an unicyclic graph. Then the following conditions are
equivalent:

(1) G is unmixed vertex decomposable.

(2) G is pure shellable

(3) G is Cohen-Macaulay.

(4) G is unmixed and G 6= C4, C7.

Proof. (1)⇔(2)⇔(3) By Theorem 2.42.

(3)⇒ (4) Since G is Cohen-Macaulay, then G is unmixed. Furthermore, C4 and C7
are not Cohen-Macaulay.

(4)⇒ (1) Let C be the cycle of G. Since G 6= C4, C7, then by Theorem 2.45, we have
that G ∈ SQC. Therefore, by Theorem 1.126, G is vertex decomposable. �

Corollary 2.47 If G is an unmixed unicyclic graph, then G is vertex decomposable
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if and only if G 6= C4, C7.

Proof. By Corollary 2.46. �

2.7 WELL-COVERED THETA-RING GRAPHS

In this Section, we characterize the well-covered property for theta-ring graphs.
These graphs can be constructed by clique-sum of cycles and complete graphs (see
Theorem 1.140). Also, they contain chordal graphs, cactus graphs and ring graphs
(see Section 1.6). We prove that a theta-ring graph is well-covered if and only if it
has a reduction in sun-complete subgraphs, basic 5-cycles and semi-basic 5-cycles.

Lemma 2.48 Let G be a theta-ring graph. If C = (z1, ..., zk) is an induced cycle and
y1 ∈ NG(C) \V(C), then

(1) If there are zi, zj ∈ V(C) ∩ NG(y1) with i 6= j, then {zi, zj} ∈ E(G). Further-
more, |V(C) ∩ NG(y1)| ≤ 2 or |V(C) ∩ NG(y1)| = 3 with C a 3-cycle.

(2) If {y1, zi} ∈ E(G), then there is no path between y1 and zl with l ∈ {1, ..., i−
2, i + 2, ..., k}. Furthermore, there are no two paths P1 between y1 and zi−1
and P2 between y1 and zi+1, except if C is a 3-cycle and {y1, zi−1}, {y1, zi+1} ∈
E(G).

(3) If there is y2 ∈ NG(C) such that {y1, y2} ∈ E(G), then for all zi ∈ V(C) ∩
NG(y1) and zj ∈ V(C) ∩ NG(y2), we have that zi = zj or {zi, zj} ∈ E(G).

Proof. (1) Suppose that {zi, zj} /∈ E(G), then j /∈ {i − 1, i + 1}. Consequently,
k ≥ 4. We can assume i < j. Hence, there exists a chorded-theta H whose prin-
cipal paths are L1 = (zi, zi+1, ..., zj), L2 = (zi, zi−1, ...z1, zk, zk−1, ..., zj) and L3 =
(zi, y1, zj). But C is an induced cycle, then H does not contain transversal triangles.
This is a contradiction, since G is a theta-ring graph. Therefore, {zi, zj} ∈ E(G).
Now, if |V(C)∩NG(y1)| ≥ 3, then there exist different vertices zl1 , zl2 , zl3 ∈ V(C)∩
NG(y1). Hence, by the last argument {zl1 , zl2}, {zl1 , zl3}, {zl2 , zl3} ∈ E(G). There-
fore, C = (zl1 , zl2 , zl3) and |V(C) ∩ NG(y1)| = 3, since C is an induced cycle.

(2) We suppose that there is a path P1 = {y1, c1, ..., cm, zl} with l /∈ {i − 1, i + 1},
then we have a chorded-theta H′ with principal paths L1 = {zi, zi+1, ..., zl}, L2 =
{zi, zi−1, ..., z1, zk, zk−1, ..., zl} and L3 = {zi, y1, c1, ..., cm, zl}. Since C is induced, then
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H′ does not have transversal triangles in G. This is a contradiction. We suppose
that there are minimal paths P1 = {y1, a1, ..., am, zi−1} and P2 = {y1, b1, ..., bn, zi+1}.
Hence, there is a chorded-theta H′′ with principal paths L1 = {zi−1, zi, zi+1}, L2 =
{zi−1, zi−2, ..., z1, zk, zk−1, ..., zi+1} and L3 = {zi−1, am, ..., a1, y1, b1, ..., bn, zi+1}. If |V(C)|
≥ 4, then H′′ does not have transversal triangles since C is induced, this is a con-
tradiction. Thus |V(C)| = 3. If m ≥ 1, we take the cycle C′ = (y1, a1, ..., am,
zi−1, zi), this is a contradiction by the last argument. Thus, m = n = 0. Hence,
{y1, zi−1}, {y1, zi+1} ∈ E(G) and C is a 3-cycle.

(3) By (2), there is no path between y1 and zl with l /∈ {i− 1, i + 1}. Furthermore,
there is no path between y1 and zj, then j ∈ {i + 1, i, i − 1}. Therefore, zi = zj or
{zi, zj} ∈ E(G). �

Definition 2.49 A complete subgraph H of G is called sun-complete if each maximal
stable set S of G satisfies |V(H) ∩ S| = 1.

Remark 2.50 Let K be a complete subgraph of G. K is a sun-complete subgraph if
and only if V(K) * NG(S) for each stable set S of G.

Remark 2.51 If K is a simplex of G, then K is a sun-complete subgraph of G.

Proof. By contradiction, suppose that there is a maximal stable set S of G such that
V(K) ∩ S = ∅, consequently, V(K) ⊆ NG(S). Since K is a simplex there exists a
simplicial vertex x in V(K). Hence, there is y ∈ S such that {x, y} ∈ E(G) and
y /∈ V(K). A contradiction since x is simplicial. �

Lemma 2.52 Let G be a well-covered graph. If K1 is a simplex and K2 is a sun-
complete subgraph of G, then V(K1) ∩V(K2) = ∅ or K1 = K2.

Proof. By contradiction, suppose that K1 6= K2 and w ∈ V(K1) ∩ V(K2), then
there is a maximal stable set S such that w ∈ S. We take a simplicial vertex y
of K1. Hence, S′ = S \ w ∪ {y} is a stable set of G. Furthermore, S′ is maximal
since G is well-covered and |S′| = |S|. Since K1 6= K2, consequently y /∈ V(K2),
then S′ ∩V(K2) = ∅, a contradiction since K2 is sun-complete. Therefore, V(K1) ∩
V(K2) = ∅ or K1 = K2. �

Corollary 2.53 If G is a well-covered graph, then all its simplexes are pairwise
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vertex disjoint. In particular, if x ∈ V(G), then NG(x) does not contain two free
vertices.

Proof. By Remark 2.51 and Lemma 2.52. �

Definition 2.54 A 5-cycle C′ = (a, b, c, d, e) is semi-basic if degG(a) = degG(c) = 2,
degG(d) = degG(e) = 3 and there exists an induced 4-cycle Q′ such that V(Q′) ∩
V(C′) = {d, e}.

Remark 2.55 If C′ is a semi-basic 5-cycle of G, then C′ is an induced cycle.

Lemma 2.56 Let G be a well-covered. If C is a basic 5-cycle and C′ is a semi-basic
5-cycle, then V(C) ∩V(C′) = ∅.
Proof. We suppose that there is x1 ∈ V(C) ∩V(C′) and C = (x1, x2, x3, x4, x5). By
definition C 6= C′, then there is y2 ∈ V(C′) \ V(C) such that {y2, x1} ∈ E(G).
Hence, degG(x2) = degG(x3) = degG(x5) = 2. If |V(C) ∩ V(C′)| ≥ 2, then
{y2, x4} ∈ E(G) or there is y3 ∈ V(C) such that {y2, y3}, {y3, x4} ∈ E(G). If
{y2, x4} ∈ E(G), then: if there is w1 6= x2 and w1 ∈ NG(x1), then there is w2 ∈
NG(x4) with w2 /∈ {x3, x5}. Hence, degG(x1) ≥ 4 and degG(x4) ≥ 4, a con-
tradiction by definition of semi-basic 5-cycle. Then w1 = x2. Therefore, C′ =
(x1, x2, x3, x4, y2), then degG(x1) = 2 or degG(x4) = 2 by definition. A contradic-
tion since degG(x1) ≥ 3 and degG(x4) ≥ 3. Now, if there is y3 ∈ V(C′) such that
{y2, y3}, {y3, x4} ∈ E(G) and C′ = (x1, y2, y3, x4, x5), then: if there is w 6= x5 and
w ∈ NG(x1), then w ∈ NG(x4), hence C′ = (x1, y2, y3, y4, w) and degG(x1) ≥ 4
and degG(x4) ≥ 4, a contradiction. So, w = x5, then C′ = (x1, y2, y3, y4, x5). Since
degG(x1) ≥ 3 and degG(x4) ≥ 3, then there exists an induced 4-cycle Q such that
x1, x2, y2 ∈ V(Q) or x3, x4, y3 ∈ V(Q), but degG(x2) = degG(x3) = 2, a contradic-
tion. Then C′ is not a semi-basic 5-cycle. Therefore, V(C) ∩V(C′) = {x1}. Hence,
C′ = (x1, y2, y3, y4, y5) with degG(y2) = degG(y5) = 2 and degG(y3) = degG(y4) =
3. Furthermore, {x3, y4} ∈ E(G). Therefore, NG(x1) has two free vertices, x5 and
y2, in G \ NG[x3, y4], a contradiction. Thus, V(C) ∩V(C′) = ∅. �

Lemma 2.57 Let G be a well-covered graph. If C = (x1, x2, x3, x4, x5) is a semi-
basic 5-cycle with a 4-cycle C′ = (x1, x5, y2, y1), then degG(y1) = 2 if and only if
degG(y2) = 2.

Proof. Since C is a semi-basic 5-cycle, then degG(x2) = degG(x4) = 2 and degG(x1)
= degG(x5) = 3. Now, we suppose that degG(y1) = 2 and degG(y2) ≥ 3, then
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there is w ∈ NG(y2) \ {y1, x5}. Consequently, NG′(x1) has two free vertices, y1 and
x2, in G′ = G \ NG[w, x4]. This is a contradiction by Corollary 2.53. Therefore,
degG(y2) = 2. Similarly if degG(y2) = 2, then degG(y1) = 2. �

Lemma 2.58 Let C = (x1, x2, x3, x4) be an induced 4-cycle and let C′ = (x4, x5,
x6, x7, x8) be an induced 5-cycle in a graph G.

(a) If G is well-covered, degG(x5) = degG(x7) = 2 and {x1, x6} /∈ E(G), then
{x1, x8} /∈ E(G).

(b) If G is theta-ring, then {x1, x6}, {x1, x7} /∈ E(G).

Proof. (a) We suppose that {x1, x8} ∈ E(G), then NG′(x6) has two free vertices,
x5 and x7, in G′ = G \ NG[x1]. This is a contradiction by Corollary 2.53. Thus,
{x1, x8} /∈ E(G).

(b) Since C′ is an induced cycle, by Lemma 2.48, {x1, x6}, {x1, x7} /∈ E(G). �

Lemma 2.59 Let K be a sun-complete subgraph of a graph G. If x /∈ V(K) and
K′ = K \ NG[x], then K′ is a sun-complete subgraph in G′ = G \ NG[x].

Proof. If x ∈ V(G) \ NG[K], then K′ = K. Indeed, if there is a maximal stable set S′

in G′ such that V(K) ⊆ NG′(S′), then S′ is a stable set in G and V(K) ⊆ NG(S′). A
contradiction since K is sun-complete. Thus, K is a sun-complete subgraph in G′.
Now, if y ∈ V(K) is a simplicial vertex in G, then {y, x} /∈ E(G). Hence, y ∈ V(K′)
is a simplicial vertex in G′. Thus, K′ is a sun-complete subgraph in G, by Remark
2.51. Now, we assume that K does not have simplicial vertices. We suppose that K′

is not sun-complete, then there is a stable set S′ in G′ such that V(K′) ⊆ NG′(S′).
Furthermore, V(K) = V(K′)∪ A with A ⊆ NG(x). Consequently, V(K) = V(K′)∪
A ⊆ NG(S′) ∪ NG(x) = NG(S′ ∪ {x}). A contradiction since S′ ∪ {x} is stable and
K is sun-complete. Therefore, K′ is a sun-complete subgraph in G′. �

Lemma 2.60 Let G be a well-covered graph. If K is a sun-complete subgraph and
C is a basic or semi-basic 5-cycle, then V(K) ∩V(C) = ∅.

Proof. We suppose that exists y ∈ V(K) ∩ V(C) with C = (y, z1, z2, z3, z4). If
V(K) ⊆ V(C), then we can suppose K = {y, z1} since C is an induced cycle. But
there exists a maximal stable set S such that z2, z4 ∈ S. Consequently, S ∩V(K) =
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∅, a contradiction. Then there is y′ ∈ V(K) \V(C) such that {y′, y} ∈ E(G). Hence,
we can assume degG(z1) = 2. We will prove that V(K) ∩ NG[z2] = ∅. Suppose
w ∈ V(K)∩NG[z2], then {y, w} ∈ E(G). Thus, by Lemma 2.48 w = z1 since C is an
induced cycle. So, K = {y, z1} since degG(z1) = 2, a contradiction since V(K) *
V(C). This implies that V(K) ∩ NG[z2] = ∅. Now, we assume that C is a basic
5-cycle, then we can suppose degG(z2) = degG(z4) = 2. Consequently {y, z4} is a
simplex in G1 = G \ NG[z2]. Furthermore, K is a sun-complete subgraph in G1 by
Lemma 2.59. But, y ∈ V(K)∩{y, z4} in G1, a contradiction from Lemma 2.52. Now,
we assume C is a semi-basic 5-cycle. If degG(y) = degG(z4) = 3, then degG(z3) =
2. Furthermore, there exists an induced 4-cycle (y, z4, a, b). Hence, K = {y, b} and
there is a maximal stable S′ such that a, z1 ∈ S′. Thus, V(K) ∩ S′ = ∅, this is a
contradiction. Then, we can suppose degG(z4) = 2 and degG(z2) = degG(z3) = 3.
Consequently, {y, z4} is a simplex in G1. A contradiction since y ∈ V(K) ∩ {y, z4}
in G1. Therefore, V(K) ∩V(C) = ∅. �

Lemma 2.61 Let G be a theta-ring graph and let K be a sun-complete subgraph of
G with V(K) = {y1, ..., ym}, zi ∈ NG(yi) \ NG(yj) and zj ∈ NG(yj) \ NG(yi). If
{zi, zj} ∈ E(G) and k ∈ {1, ..., m} \ {i, j}. Then:

(1) {z, zi} /∈ E(G) for all z ∈ NG(yj) \ {yi, zj}.

(2) zi, zj /∈ NG(yk).

(3) If z ∈ NG(yk) \ {yi, yj}, then {zi, z}, {zj, z} /∈ E(G).

(4) K′ = K \ yi is a sun-complete subgraph in G′ = G \ NG[zi] and degG(yk) =
degG′(yk) + 1 with k 6= i, j. Furthermore, degG(yj) = degG′(yj) + 2.

Proof. Since zi /∈ NG(yj), zj /∈ NG(yi) and {zi, zj} ∈ E(G), then C = (yi, zi, zj, yj)
is an induced 4-cycle.

(1) By Lemma 2.48, {z, zi} /∈ E(G) for all z ∈ NG(yj) \ {yi, zj}.

(2) If zi ∈ NG(yk), then by Lemma 2.48 {yj, zi} ∈ E(G). A contradiction since C is
induced. Thus zi /∈ NG(yk). Similarly, zj /∈ NG(yk).

(3) From (2), z 6= zi, zj. We suppose that {zi, z} ∈ E(G), then there are paths
P1 = {yk, z, zi} and P2 = {yk, yj}. This is not possible by Lemma 2.48.
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(4) From (2), zi /∈ NG(yk) and zi /∈ NG(yj) by hypothesis, then K′ = K \ NG[zi].
Thus, by Lemma 2.59, K′ is a sun-complete subgraph in G′. By (3), for all z ∈
NG(yk) \ {yi, yj}, then {zi, z} /∈ E(G). Hence, NG(yk) \ NG′(yk) = {yi}. Conse-
quently, degG(yk) = degG′(yk) + 1. Furthermore, by (1) we have that NG(yj) \
NG′(yj) = {yi, zj}. Therefore, degG(yj) = degG′(yj) + 2. �

Corollary 2.62 Let G be a theta-ring graph. If K is a sun-complete subgraph of
G and there is an induced 4-cycle C = (a1, a2, a3, a4) such that a1, a4 ∈ V(K) and
a2, a3 /∈ V(K), then degG(a2) = 2 if and only if degG(a3) = 2.

Proof. If degG(a2) = 2 and degG(a3) ≥ 3, then there is c ∈ NG(a3) \ {a2, a4}. By
Lemma 2.61 {c, a} /∈ E(G) for all a ∈ V(K) \ a4. Consequently, K or K \ a4 are sun-
complete subgraphs in G1 = G \ NG[c]. Furthermore, G1[{a1, a2}] is a a simplex
in G1. But a1 ∈ {a1, a2} ∩ V(K) or a1 ∈ {a1, a2} ∩ V(K \ a4). A contradiction by
Lemma 2.52, therefore, degG(a3) = 2. Similarly, if degG(a3) = 2, then degG(a2) =
2. �

Lemma 2.63 Let G be a theta-ring graph and K = {x, y} a subgraph of G. The
following condition are equivalent:

(a) K is a sun-complete subgraph.

(b) NG(x) ∩ NG(y) = ∅ and if z ∈ NG(x) \ y and z′ ∈ NG(y) \ x, then {z, z′} ∈
E(G).

Proof. (a) ⇒ (b) By contradiction, if there exists w ∈ NG(x) ∩ NG(y), then there
is a stable set S such that w ∈ S, hence V(K) ∩ S = ∅. A contradiction. Now, we
suppose that there exist z ∈ NG(x) \ y and z′ ∈ NG(y) \ x such that {z, z′} /∈ E(G).
Consequently, there exists a maximal stable set S of G such that {z, z′} ⊆ S. Hence,
x, y /∈ S. Therefore, V(K) ∩ S = ∅ and K is not a sun-complete subgraph.

(b) ⇒ (a) We take a maximal stable set S of G. If V(K) ∩ S = ∅, then there exist
z ∈ NG(x) \ y and z′ ∈ NG(y) \ x such that z, z′ ∈ S. Furthermore, NG(x) ∩
NG(y) = ∅, hence z 6= z′ Consequently, {z, z′} /∈ E(G), a contradiction. Therefore,
V(K) ∩ S 6= ∅ and K is a sun-complete subgraph. �

Corollary 2.64 Let G be a theta-ring graph and let K = {x, y} be a subgraph of



2.7 WELL-COVERED THETA-RING GRAPHS 57

G. K is a sun-complete subgraph if and only if x or y is a simplicial vertex in G
or there are vertices z, z′ ∈ V(G) such that (x, z, z′, y) is an induced 4-cycle and
degG(x) = degG(y) = 2.

Proof. ⇒) We suppose that K does not have simplicial vertices. Thus, there exist
z ∈ NG(x) \ y, z′ ∈ NG(y) \ x and z 6= z′. By Lemma 2.63, {z, z′} ∈ E(G). Hence,
(x, z, z′, y) is an induced 4-cycle. Now, if there is w ∈ NG(x) \ {y, z}, then w 6= z′

and {w, z′} ∈ E(G), a contradiction by Lemma 2.61. Thus, degG(x) = 2. Similarly,
degG(y) = 2.

⇐) If K has a simplicial vertex, then K is sun-complete by Remark 2.51. Now, if
there is an induced 4-cycle (x, z, z′, y) such that degG(x) = degG(y) = 2. If z ∈ S,
then y ∈ S since degG(y) = 2. Similarly, if z′ ∈ S, then x ∈ S. Furthermore, if
z, z′ /∈ S, then |{x, y} ∩ S| = 1. Therefore, K is a sun-complete subgraph in G. �

Remark 2.65 In G = C4 each edge is a sun-complete subgraph.

Proof. By Corollary 2.64. �

Proposition 2.66 Let G be a theta-ring graph. If K is a sun-complete subgraph of
G, then K is a simplex or there is y ∈ V(K) such that degG(y) = |V(K)|, and
(y, z, z′, y′) is an induced 4-cycle with y′ ∈ V(K).

Proof. By induction on |V(K)|. We set V(K) = {y1, ..., ym} and we assume that K is
not a simplex. Hence, there is zi ∈ NG(yi) \V(K) for each i ∈ {1, ..., m}. We take a
minimal subset L ⊆ {z1, ..., zm} such that V(K) ⊆ NG(L). Since K is a sun-complete
subgraph, we have that L is not stable. Consequently, there exist a1, a′1 ∈ L such
that {a1, a′1} ∈ E(G). Furthermore, by the minimality of L there are yi, yj ∈ V(K)
such that yi ∈ NG(a1) \ NG(a′1) and yj ∈ NG(a′1) \ NG(a1). Without loss of gener-
ality, we can take i = 1 and j = 2. This implies that (y1, a1, a′1, y2) is an induced
4-cycle. By Lemma 2.61, we have that K1 = K \ y1 is a sun-complete subgraph in
G1 = G \ NG[a1]. Moreover, G1 is theta-ring since G1 is an induced subgraph of
G. Thus, by induction hypothesis K1 is a simplex or there exists w ∈ V(K1) such
that degG1

(w) = |V(K1)| and (w, x, x′, w′) is an induced 4-cycle with w′ ∈ V(K1).
If yk ∈ V(K) \ {y1, y2}, then by Lemma 2.61 degG(yk) = degG1

(yk) + 1. Hence,
NG1(yk) = NG(yk) \ y1. Similarly, by Lemma 2.61 degG(y2) = degG1

(y2) + 2.
Hence, NG1(y2) = NG(y2) \ {y1, a′1}. Consequently, if K1 is a simplex, then y2
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is the simplicial vertex of K1 since K is not a simplex. This implies, degG(y2) =
degG1

(y2)+ 2 = |V(K1) \ y2|+ |{y1, a′1}| = |V(K)|. Hence, we take y = y2, y′ = y1,
z′ = a1 and z = a′1. Now, we assume there is w with degG1

(w) = |V(K1)|. If
w = yk with k 6= 1, 2, then degG(w) = degG1

(w) + 1 = |V(K1)| + 1 = |V(K)|.
Hence, y = w, y′ = w′, z = x and z′ = x′. If w = y2, we can take a2 = x,
a′2 = x′ and y3 = w′. Furthermore, degG(y2) = |V(K)| + 1 and {a1, a2} is a sta-
ble set by Lemma 2.61. Now, we take the sun-complete subgraph K2 = K \ y2
in G2 = G \ NG[a2] by Lemma 2.61. By induction hypothesis, K2 is a simplex or
there is u ∈ V(K2) such that degG2

(u) = |V(K2)| and (u, q, q′, u′) is an induced
4-cycle with u′ ∈ V(K2). If G is a simplex, then y3 is a simplicial vertex in K2.
Hence, degG(y3) = degG2

(y3) + 2 = |V(K2) \ y3| + |{y2, a′2}| = |V(K)| and we
can take y = y3, z = a′2, z′ = a2 and y′ = y2. Now, we assume there is u with
degG2

(u) = |V(K2)|. If u = yr with r 6= 1, 2, 3, then degG(u) = degG2
(u) + 1 =

|V(K2)|+ 1 = |V(K)|. Hence, y = u, y′ = u′, z = q and z′ = q′. If u = y1, then
degG(y1) = |V(K)|. Consequently, a1 = q and u′ = ys with s 6= 1, 2, but this is not
possible by Lemma 2.61. If u = y3, then we can take a3 = q, a′3 = q′ and y4 = u′.
Consequently, degG(y3) = |V(K)| + 1 and {a1, a2, a3} is a stable set in G. Now,
we take the sun-complete subgraph K3 = K \ y3 in G3 = G \ NG[a3]. By induction
hypothesis, K3 is a simplex or there is v ∈ V(K3) such that degG(v) = |V(K3)| and
(v, p, p′, v′) is an induced 4-cycle with v′ ∈ V(K3). By the last argument, if K3 is a
simplex, then y4 is the simplicial vertex in K3. Hence, degG(y4) = |V(K)|. There-
fore, y = y4, y′ = y3, z = a′3 and z′ = a3. Now, we assume there is v ∈ V(K3) with
degG3

(v) = |V(K3)|. Since degG(yi) = |V(K)|+ 1 with i = 2, 3, then v 6= yi. More-
over, v 6= y1 since degG(y1) ≥ |V(K)|+ 1If v = ys with s 6= 1, 2, 3, 4, degG(v) =
|V(K)|, hence y = v, y′ = v′, z = q and z′ = q′, then degG(v) = |V(K)|+ 1 and
{a1, a2, a3, a4} is a stable set in G. If v = y4, then we can take a4 = p, a′4 = p′ and
y5 = v′. Furthermore, degG(y4) = |V(K)| + 1 and {a1, a2, a3, a4} is a stable set.
With this process, we have vertices y2, y3, ..., yr such that degG(yi) = |V(K)| + 1
for i ∈ {2, ..., r − 1}. If r − 1 = m, then {y1, ..., ym} = V(K) ⊆ NG(S1), a contra-
diction since K is sun-complete. If r = 1, that is, y2, y3, ..., yr−1, y1 or r ≤ m − 1,
we take the stable set S1 = {a1, a2, ..., ar−1}. Hence, {y1, y2, ..., yr−1} ⊆ NG(S′) for
some maximal stable set S′. Therefore, we have the vertices yr, ..., ym. We can use
the last argument, then we have the stable sets S2 = {ar, ..., ak}, ..., Sl = {at, ..., am}
such that S =

⋃l
j=1 Sj = {a1, ..., am} is a stable set in G such that V(K) ⊆ NG(S), a

contradiction. Thus, there is a vertex yn such that y = yn, degG(y) = |V(K)| and
(y, z, z′, y′) is an induced 4-cycle with y′ ∈ V(K). �

Definition 2.67 Let K be a complete subgraph in G with |V(K)| = m. A family
of induced 4-cycles T1 = (y1, z1, z′1, y2), T2 = (y2, z2, z′2, y3) ,...,Tj = (yj, zj, z′j, yj+1)

is called a chain of 4-cycles in K of size j if y1, ..., yj are different vertices in K and



2.7 WELL-COVERED THETA-RING GRAPHS 59

degG(y1) = degG(yj+1) = m. In this case y1 and yj+1 are called end vertices. K has
a complete chain if j = m.

Lemma 2.68 Let K be a complete subgraph of G. If K has a chain of 4-cycles of size
j and degG(yi) = |V(K)|+ 1 for i ∈ {2, ..., j}, then K is a sun-complete subgraph.

Proof. We take the chain of 4-cycles T1 = (y1, z1, z′1, y2), T2 = (y2, z2, z′2, y3) ,...,
Tj = (yj, zj, z′j, yj+1). We suppose that there exists a maximal stable set S in G such
that V(K) ⊆ NG(S). Since NG(y1) \ V(K) = {z1} and NG(yj+1) \ V(K) = {z′j},
then z1, z′j ∈ S. Hence, z′1 /∈ S. Since degG(y2) = |V(K)|+ 1, then NG(y2) \V(K) =
{z′1, z2}, hence z2 ∈ S. Similarly, we have that NG(yi) \ V(K) = {z′i−1, zi} for
i ∈ {3, ..., j}. Hence, z1, ..., zj ∈ S, but {zj, z′j} ∈ E(G), a contradiction. Thus, K is a
sun-complete subgraph of G. �

Theorem 2.69 Let G be a theta-ring graph. If K is a sun-complete subgraph of G,
then K is a simplex or there exists a chain of 4-cycles in K.

Proof. We proceed by induction on |V(K)|. If |V(K)| = 2, by Corollary 2.64, K
is a simplex or there is an induced 4-cycle (y1, z, z′, y2) with y1, y2 ∈ V(K) and
degG(y1) = degG(y2) = 2 = |V(K)|. Now, if |V(K)| ≥ 3, by Proposition 2.66 K is a
simplex or there exists a vertex y1 such that degG(y1) = |V(K)| and (y1, z, z′, y2) is
an induced 4-cycle with y2 ∈ V(K). We suppose that K is not a simplex. By Lemma
2.61, K′ = K \ y1 is a sun-complete subgraph in G′ = G \NG[z]. Thus, by induction
hypothesis, if K′ is a simplex, then y2 is a simplicial vertex in K′, since K is not a
simplex. Consequently, degG(y2) = |V(K)| and (y1, z, z′, y2) is a chain of 4-cycles
in K. Now, if K′ has a chain of 4-cycles, then there exist different vertices y′1, ..., y′s in
K′ such that T1, ..., Ts−1 is a chain of 4-cycles of K′ with Ti = (y′i, zi, z′i, y′i+1) such that
degG(y

′
1) = degG(y

′
s) = |V(K′)|. If y′1, y′s 6= y2, then degG(y

′
1) = degG′′(y

′
1) + 1 =

|V(K′)| + 1 = |V(K)|, of the same way degG(y
′
s) = |V(K)|, then T1, ..., Ts−1 is

a chain of 4-cycles in K. If y2 ∈ {y′1, y′s} without loss of generality, we can take
y′s = y2 and y′s+1 = y1, then degG(y

′
1) = |V(K)| and degG(y

′
s+1) = |V(K)| with

T1, ..., Ts−1, Ts a chain of 4-cycles in K, where Ts = (y′s, z′, z, y′s+1). �

Proposition 2.70 Let G be a well-covered theta-ring graph. If K1 and K2 are diffe-
rent sun-complete subgraphs, then G has an induced 4-cycle as a connected com-
ponent or V(K1) ∩V(K2) = ∅.
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Proof. By Lemma 2.52, we can suppose that K1 and K2 are not simplexes. We
suppose that V(K1) ∩ V(K2) = {w1, ..., wr} with r ≥ 1. We take a connected com-
ponent G′ of G such that K1 and K2 are subgraphs. From Theorem 2.69, K1 has
a chain of 4-cycles T1 = (y1, b1, b′1, y2), ..., Tj = (yj, bj, b′j, yj+1). We suppose that
y1, yj+1 ∈ V(K1) ∩ V(K2). Since NG(y1) \ V(K1) = {b1}, then b1 ∈ V(K2), hence
{b1, yj+1} ∈ E(G). If j = 1, then j + 1 = 2, hence (y1, b1, b′1, y2) is not an in-
duced 4-cycle, a contradiction. Therefore, j ≥ 2, but {b1, yj+1} /∈ E(G) by Lemma
2.61, a contradiction. Now, if y1 ∈ V(K1) ∩ V(K2), then yj+1 /∈ V(K1) ∩ V(K2).
If j ≥ 2, then {y1, bj}, {b1, bj} /∈ E(G) by Lemma 2.61. Hence, K1 \ yj and K2
(or K2 \ yj) are sun-complete subgraphs in G1 = G \ NG[bj] by Lemma 2.59. But,
yj+1 ∈ V(K1 \ yj) is a simplicial vertex in G1. Hence, y1 ∈ V(K1 \ yj) ∩ V(K2) (or
y1 ∈ V(K1 \ yj) ∩V(K2 \ yj)), a contradiction by Lemma 2.52. Hence, K1 \ yj = K2
(or K1 \ yj = K2 \ yj). Therefore, K2 ( K1 (or K1 = K2). This is not possible. Then
j = 1, if there is c ∈ NG(b′1) \ {b1, y}, then {y1, c} /∈ E(G). Hence, c /∈ V(K2).
Therefore, K′1 = K1 \ NG[c] and K′2 = K2 \ NG[c] are sun-complete subgraphs in
G2 = G \ NG[c], but y2 is a simplicial vertex in G2 and y1 ∈ V(K′1) ∩V(K′2), this is
a contradiction by Lemma 2.52. Thus, degG(b

′
1) = 2. Furthermore, degG(b1) = 2

by Corollary 2.62. Hence, |V(K2)| = 2 since degG(y1) = |V(K1)|, consequently
V(K2) = {y1, b1}, by Lemma 2.63 degG(y1) = degG(b1) = 2. Therefore, NG(y1) =
{b1, y2}. Hence, V(K1) = {y1, y2} and degG(y1) = 2 by Lemma 2.63. Thus,
G′ = C4. Of the same way if yj+1 ∈ V(K2). Therefore, G′ = C4. Now, we take
w 6= y1, yj+1. Since {b1, x} /∈ E(G) for all x ∈ V(K1) \ {y1} by Lemma 2.61, then if
b1 ∈ V(K2), then y1 ∈ V(K2) since NG(b1) ∩ V(K1) = {y1}, a contradiction. Then
b1 /∈ V(K2). If there exists c ∈ V(G) such that {b1, c} ∈ E(G), then K1 and K2 are
sun-complete subgraphs in G3 = G \ NG[c] by Lemma 2.59. But, y1 is a simplicial
vertex in K1, hence K1 is a simplex in G3 and y1 ∈ V(K1) ∩V(K2), a contradiction
by Lemma 2.52. Therefore, degG(b1) = 2. By Corollary 2.62 degG(b

′
1) = 2. Hence,

we take a maximal stable set S of G such that w ∈ S. If S1 = S \w∪ {y1} is a stable
set, then S1 is maximal since G is well-covered, then S1 ∩V(K2) = ∅, a contradic-
tion. Then b1 ∈ S, hence S2 = S \ {w, b1} ∪ {y1, b′1} is a maximal stable set and
S2 ∩V(K2) = ∅, a contradiction. Thus, V(K1) ∩V(K2) = ∅. �

Lemma 2.71 Let G = H1 ⊕ H2 be a well-covered theta-ring graph. If H2 is a cycle,
then |V(H2)| ≤ 5. Furthermore:

(a) If H2 is a 5-cycle and ⊕ is a 2-clique-sum, then H2 is a semi-basic 5-cycle.

(b) If H2 is a 4-cycle, then⊕ is a 2-clique-sum. Furthermore, if H2 = (x1, x2, x3, x4)
with degG(x2) = degG(x3) = 2, then x1 is a shedding vertex in G if and only
if x4 is a shedding vertex in G.
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Proof. We assume H2 = (x1, x2, ..., xk) with degG(x1) ≥ 3 and degG(xi) = 2 for
i ∈ {2, ..., k− 1}. Hence, there is y1 ∈ V(G) \ V(H2) such that {x1, y1} ∈ E(G). If
k = 6, then NG1(x4) has two free vertices, x3 and x5, in G1 = G \ NG[x1]. If k = 7,
then NG2(x3) has two free vertices, x2 and x4, in G2 = G \ NG[y1, x6]. If k ≥ 8, then
NG3(x4) has two free vertices, x3 and x5, in G3 = G \ NG[x1, x7]. This is impossible
by Corollary 2.53. Therefore, k ≤ 5. On the other hand:

(a) If k = 5 and ⊕ is a 2-clique-sum, then there is y2 /∈ V(H2) such that {x5, y2} ∈
E(G). If {y1, y2} is a stable set, then NG4(x3) has two free vertices, x2 and x4, in
G4 = G \NG[y1, y2], a contradiction by Corollary 2.53. Thus, y1 6= y2 and {y1, y2} ∈
E(G). Hence, C = (x1, x5, y2, y1) is an induced 4-cycle. Now, if degG(x1) ≥ 4,
then there exists y′ such that y′ 6= y1 and {x1, y′} ∈ E(G). By the last argument
{y′, y2} ∈ E(G). Since C is an induced cycle, then by Lemma 2.48, {x1, y2} ∈ E(G),
a contradiction since C is induced. Thus, degG(x1) = degG(x5) = 3. Therefore, H2
is a semi-basic 5-cycle.

(b) We assume k = 4. If ⊕ is a 1-clique-sum, then degG(x4) = 2 and NG5(x3) has
two free vertices, x2 and x4, in G5 = G \ NG[y1]. This is impossible by Corollary
2.53. Therefore, ⊕ is a 2-clique-sum. Now, we suppose that x1 is not a shedding
vertex, then there is a maximal stable set S in G \NG[x1] such that NG(x1) ⊆ NG(S).
Since x3 is an isolated vertex in G \ NG[x1], then x3 ∈ S. If there is w ∈ NG(x4) \
{x1, x3} such that w ∈ S, then NG6(x2) has two free vertices, x1 and x3, in G6 =
G \ NG[S \ x3], a contradiction. Then, for all w ∈ NG(x4) \ {x1, x3} there exists
z ∈ S such that {z, w} ∈ E(G). Hence, NG(x4) ⊆ NG((S \ x3) ∪ x2). Furthermore,
(S \ x3) ∪ x2 is a stable set in G \ NG[x4]. Therefore, x4 is not a shedding vertex.
Similarly, if x4 is not a shedding vertex in G, then x1 is not a shedding vertex in
G. �

Definition 2.72 A graph G is in the family T if V(G) can be partitioned into three
disjoint subsets SG, CG and C′G such that SG contains the vertices of the sun-comple-
te subgraphs and they are a partition of SG; the subset CG contains the vertices of
the basic 5-cycles and they form a partition of CG; the subset C′G contains the ver-
tices of the semi-basic 5-cycles and the semi-basic 5-cycles form a partition of C′G.

Lemma 2.73 If G ∈ T , then G is well-covered.

Proof. We take a maximal stable set S of G. Let C = (a, b, c, d, e) be a basic or
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semi-basic 5-cycle, then |S ∩ V(C)| ≤ 2. We will prove |S ∩ V(C)| = 2. We can
assume that degG(a) = degG(c) = 2. If a, c ∈ S, then |S ∩ V(C)| = 2. Now, we
suppose |{a, c} ∩ S| ≤ 1. We can assume that a /∈ S. Consequently, if b /∈ S, then
e ∈ S, d /∈ S and c ∈ S. Therefore, |S ∩ V(C)| = 2. If b ∈ S and we suppose
S ∩ V(C) = {b}, then degG(d) ≥ 3 and degG(e) ≥ 3. This implies that C is a
semi-basic 5-cycle. Hence, there exists a 4-cycle Q = (d, e, f , g) with degG(d) =
degG(e) = 3. Consequently, f , g ∈ S, since a, c, d, e /∈ S. This is a contradiction
since { f , g} ∈ E(G), therefore, |S ∩ V(C)| = 2. Also, |V(K) ∩ S| = 1 for each
sun-complete subgraph K of G. By Lemma 2.60, Proposition 2.70 and Lemma 2.56,
SG ∪ CG ∪ C′G is a partition of V(G). Therefore, G is well-covered. �

Proposition 2.74 Let G be a connected well-covered theta-ring graph with a sim-
plicial vertex x. If G′ = G \ y ∈ T for some y ∈ NG(x), then G ∈ T .

Proof. We will prove that SG = SG′ ∪ {y} and CG ∪ C′G = CG′ ∪ C′G′ . We take
G′1 a connected component of G′. We take a sun-complete subgraph K of G′1. If
x ∈ K, then K ∪ {y} is a sun-complete subgraph in G, since x is a simplicial vertex
in G. Now, we assume x /∈ K. If there is a maximal stable set S of G such that
V(K) ∩ S = ∅, then y ∈ S since K is a sun-complete subgraph of G′. This implies,
V(K) ⊆ NG(S). Also, S \ y is a stable set of G′. Thus, there exists a maximal
stable set S′ of G′ such that S \ y ⊆ S′. Consequently, |S′ ∩ V(K)| = 1; we take
w ∈ S′ ∩ V(K). Hence, w /∈ NG(S \ y). Furthermore, if x ∈ NG(S \ y), then there
is a ∈ S \ y such that {a, x} ∈ E(G). Since x is a simplicial vertex, we have that
{y, a} ∈ E(G). This is not possible since S is a stable set, hence x /∈ NG(S \ y).
Consequently, (S \ y) ∪ {x, w} is a stable set of G. This is a contradiction since G is
well-covered. Hence, K is a sun-complete graph in G. Therefore, SG = SG′ ∪ {y}.

Now, let C = (a1, a2, a3, a4, a5) be an induced basic 5-cycle in G′1. If C is not a basic 5-
cycle in G, then we can assume degG(a1) ≥ 3 and degG(a2) ≥ 3. Since degG′1

(a1) =

2, then {y, a1} ∈ E(G). Furthermore, we can suppose that degG′1
(x3) = 2. Lemma

2.48 implies that {y, a3}, {y, a4} /∈ E(G). Consequently, {a4, x} /∈ E(G) and degG
(x3) = 2. If {y, a2} ∈ E(G), then NG′2

[x] and NG′2
[a1] are simplexes in G′2 = G \

NG[a4]. But y ∈ NG′2
[x]∩NG′2

[a1], a contradiction by Corollary 2.53. Thus, {y, a2} /∈
E(G). Similarly, {y, a5} /∈ E(G). Now, we suppose there exists w ∈ NG′1

(a2) such
that {w, y} /∈ E(G), then {x, w} /∈ E(G). By Lemma 2.48, {w, a4} /∈ E(G). Hence,
NG′3

[x] and NG′3
[a1] are simplexes in G′3 = G \ NG[w, a4] with y ∈ NG′3

[x] ∩ NG′3
[a1].

This implies x = a1. This is a contradiction since a1 is not simplicial in G. Conse-
quently, {w, y} ∈ E(G). Hence, if degG(a2) ≥ 4, then there is w′ ∈ NG(a2) such
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that w 6= w′ and {w′, y} ∈ E(G). Lemma 2.48 implies {y, a2} ∈ E(G). A contra-
diction, therefore degG(a2) = 3. Now, if degG(a5) ≥ 3, in the same way as for a2
there exists z ∈ NG(a5) \ {a1, a4} such that (y, a1, a5, z) is an induced 4-cycle in G. If
w = z, by Lemma 2.48 we have that {a2, a5} ∈ E(G), a contradiction. Thus, w 6= z
and the paths P1 = {y, z, a5} and P2 = {y, w, a2} are in G. This is a contradiction
by (2) of Lemma 2.48. Hence, degG(a5) = 2. Therefore, C is a semi-basic 5-cycle in
G.

Now, let C = (a1, a2, a3, a4, a5) be a semi-basic 5-cycle in G′1 with an induced 4-cycle
C′ = (a4, a5, a6, a7). We have that degG′1

(a1) = degG′1
(a3) = 2 and degG′1

(a4) =

degG′1
(a5) = 3. We suppose that C is not a semi-basic 5-cycle in G and that

{y, a1} ∈ E(G). By Lemma 2.48 {y, a3} /∈ E(G). If {y, a6} ∈ E(G), then there
are two paths P1 = {a1, y, a6} and P3 = {a1, a2, a3, a4}. This is a contradiction by
the same Lemma, then {y, a6} /∈ E(G). Consequently, NG′4

[x] and NG′4
[a1] are sim-

plexes in G′4 = G \ NG[a3, a6]. But, y ∈ NG′4
[x] ∩ NG′4

[a1], a contradiction by Corol-
lary 2.53. This implies, {y, a1} /∈ E(G), and in the same way, {y, a3} /∈ E(G). Now,
suppose {y, a5} ∈ E(G), then by Lemma 2.48 {y, a2}, {y, a7} /∈ E(G). Furthermore,
since C′ is an induced cycle, then by this Lemma {a2, a7} /∈ E(G). Consequently,
NG′5

[x] and NG′5
[a5] are simplexes in G′5 = G \ NG[a2, a7]. But y ∈ NG′5

[x] ∩ NG′5
[a5].

So, {y, a5} /∈ E(G). Similarly, {y, a4} /∈ E(G). Therefore, C is a semi-basic 5-cycle
in G. Thus, SG = SG′ ∪ {y} and CG ∪ C′G = CG′ ∪ C′G′ . �

Theorem 2.75 Let G be a connected theta-ring graph. G is well-covered if and only
if G is a 7-cycle or G ∈ T .

Proof. ⇒) Suppose that G is not a 7-cycle. By induction on |V(G)|. Since G is
a theta-ring graph, then G = H1 ⊕1 H2 ⊕2 · · · ⊕s−1 Hs where Hi is a cycle or a
complete graph.

If Hs is complete, then G has a simplicial vertex x ∈ V(Hs). By Lemma 1.103, each
y ∈ NG(x) is a shedding vertex of G. Note that G′ = G \ y is well-covered since G
is well-covered by Corollary 2.8. Furthermore, G′ is a theta-ring graph since G′ is
an induced subgraph of G. We take a connected component G′1 of G′. By induction
hypothesis, G′1 ∈ {C7} ∪ T . If G′1 = C7, then we can take G′1 = (a1, ..., a7) with
{a1, y} ∈ E(G). By Lemma 2.48, a3, a6 /∈ NG(y). Consequently, NG[x] and {y, a1}
are simplexes in G \ NG[a3, a6]. But y ∈ NG[x] ∩ {y, a1}, a contradiction. Hence,
G′1 ∈ T and Proposition 2.74, G ∈ T .
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Now, if Hs is a cycle, then by Lemma 2.71, we have that Hs = (x1, x2, ..., xk) with
k ∈ {4, 5}. We can assume degG(xi) = 2 for i ∈ {2, ..., k − 1} and degG(x1) ≥
3. Thus, there is y1 ∈ V(G) \ V(Hs) such that {x1, y1} ∈ E(G). If k = 5 and
⊕s−1 is a 1-clique-sum, then degG(x5) = 2 and Hs is a basic 5-cycle. Furthermore,
G1 = G \ NG[x3] is a connected well-covered theta-ring graph and degG1

(x5) = 1.
Hence, by induction hypothesis G1 ∈ T and x5 ∈ SG1 . Since degG1

(x5) = 1,
then {x1, x5} ⊆ SG1 . Consequently, SG = SG1 \ {x1, x5}, CG = CG1 ∪ V(Hs) and
C′G = C′G1

. This implies, G ∈ T . Now, we assume k = 5 and ⊕s−1 is a 2-clique-
sum. Hence, by Lemma 2.71, Hs is a semi-basic 5-cycle. Thus, there is an induced
4-cycle (x1, y1, y2, x5). If there is a stable set S in G \ NG[x3] such that NG(x3) ⊆
NG(S), then x1, x5 ∈ S. But {x1, x5} ∈ E(G), this is not possible. Then x3 is
a shedding vertex in G. Thus, G2 = G \ x3 is a connected well-covered theta-
ring graph. Furthermore, degG2

(x2) = degG2
(x4) = 1, then G2 ∈ T and x2, x4 ∈

SG2 . Consequently, {x1, x2} and {x4, x5} are sun-complete subgraphs in G2. This
implies SG = SG2 \ {x1, x2, x4, x5}, CG = CG2 and C′G = C′G2

∪ V(Hs). Therefore,
G ∈ T .

Now, when k = 4 we have that ⊕s−1 is a 2-clique-sum by Lemma 2.71. We take
G3 = G \ {x2, x3}, hence G3 = H1 ⊕1 H2 ⊕2 · · · ⊕s−2 Hs−1, implying that G3 is
a connected theta-ring graph. Now, we take S a maximal stable set of G3. Since
{x1, x4} ∈ E(G3), then x1 /∈ S or x4 /∈ S. Consequently, S ∪ {x2} or S ∪ {x4} are
maximal stable sets of G. This implies that β(G3) = β(G) − 1 and G3 is a well-
covered graph. By induction hypothesis, G3 ∈ {C7} ∪ T . First, we suppose G3 =
C7 = (x1, y1, y2, y3, y4, y5, x4), then NG4(x3) has two free vertices, x2 and x4, in G4 =
G \NG[y1, y4], a contradiction by Corollary 2.53. Hence, G3 ∈ T . Now, {x2, x3} is a
sun-complete subgraph in G by Lemma 2.63. Then, SG = SG3 ∪ {x2, x3}, CG = CG3

and C′G = C′G3
. Therefore, G ∈ T .

⇐) If G ∈ T , then G is well-covered by Lemma 2.73. Furthermore, a 7-cycle is
well-covered by Remark 1.88. �
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2.8 PURE VERTEX DECOMPOSABLE GRAPHS WHOSE 5-CY-

CLES ARE CHORDED

In this section, we characterize the pure vertex decomposable graphs whose 5-
cycles have at least 4 chords.

Definition 2.76 A 5-cycle C is chorded if C has at least 4 chords.

Lemma 2.77 Let G be a well-covered graph such that each 5-cycle of G is chorded.
If G′ = G \ v is a well-covered subgraph with two different simplexes S′1 and S′2
such that S′1 ⊆ NG[v] and |S′2| ≥ 3, then [V(S′1) ∪ v] and S′2 are simplexes in G.

Proof. Let a′j be a simplicial vertex of S′j for j = 1, 2. By Proposition 1.123, ∅ =

S′1 ∩ S′2 = NG′ [a′1] ∩ NG′ [a′2], then {a′1, a′2} /∈ E(G). Since S′1 ⊆ NG[v], then S1 =
[V(S′1) ∪ {v}] is a simplex with a′1 a simplicial vertex in G. We take B = {x ∈
V(S′2) | {x, v} /∈ E(G)}. If B = ∅, then S′2 ⊆ NG(v) and S2 = [V(S′2) ∪ {v}] is a
simplex with a′2 a simplicial vertex in G. But v ∈ V(S′1) ∩ V(S′2), a contradiction
by Proposition 1.123. Hence, we can assume that B = {b1, ..., bl} with l ≥ 1. If
a′2 ∈ B, then {a′2, v} /∈ E(G) and S′2 is a simplex in G. Consequently, we can
assume a′2 /∈ B. If there exists i ∈ {1, ..., l} such that NG(bi) ⊆ V(S′2), then NG[bi] =
S′2 and S′2 is a simplex in G. Thus, we can suppose that for each i ∈ {1, ..., l},
there exists ci /∈ V(S′2) such that {bi, ci} ∈ E(G). We take C a minimal subset of
{c1, ..., cl} such that B ⊆ NG(C). If there exist ci1 , ci2 ∈ C such that {ci1 , ci2} ∈ E(G),
then i1 6= i2 and C1 = (a′2, bi1 , ci1 , ci2 , bi2) is a 5-cycle. By the minimality of C,
{bi1 , ci2}, {bi2 , ci1} /∈ E(C1). Hence, C1 is not chorded, a contradiction. So, C is a
stable set. Now, we will prove that C ∩ V(S′1) = ∅. By contradiction suppose
that z ∈ C ∩ V(S′1), this implies, there exists bi ∈ B such that {z, bi} ∈ E(G). If
z = a′1, then bi ∈ NG(a′1) = V(S′1) ∪ {v}. But bi 6= v, then bi ∈ V(S′1) ∩ V(S′2).
This is a contradiction by Proposition 1.123, it implies z 6= a′1. Consequently, C2 =
(v, a′1, z, bi, a′2) is a 5-cycle. Furthermore, {a′1, a′2}, {a′1, bi} /∈ E(G), then C2 is not
chorded, this is a contradiction. Then C ∩ V(S′1) = ∅. Thus, C ∩ NG[a′1] = ∅,
since NG[a′1] = V(S′1) ∪ {v} and C ⊆ NG(B). So, a′1 /∈ NG(C). If v ∈ NG(C),
then there exists ci ∈ C such that {v, ci} ∈ E(G). Furthermore, since |S′2| ≥ 3,
there exists w ∈ V(S′2) \ {bi, a′2}. Hence, C3 = (v, ci, bi, w, a′2) is a 5-cycle. Since,
ci /∈ V(S′2) and bi ∈ B, then {a′2, ci}, {v, bi} /∈ E(G) implying that C3 is not chorded,
a contradiction. Therefore v /∈ NG(C). This implies that S′′1 = [(S′1 ∪ {v}) \ NG[C]]
and S′′2 = [(S′2 ∪ {v}) \ NG[C]] are simplexes in G \ NG[C] whose simplex vertices
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are a′1 and a′2, respectively. By Remark 1.66, G \ NG[C] is well-covered. But, v ∈
V(S′′1 ) ∩ V(S′′2 ). This is a contradiction by Proposition 1.123. Therefore, S′2 is a
simplex in G. �

Lemma 2.78 Let e1, ..., eg be a perfect matching of G. If e1, ..., eg′ is a perfect match-
ing without 4-cycles with two ei’s in H = G[e1∪ · · · ∪ eg′ ] and each edge in {eg′+1, ...,
eg} has a vertex of degree 1, then e1, ..., eg is a perfect matching of König type with-
out 4-cycles with two ei’s in G.

Proof. We take a minimal vertex cover D′ of H, then D = D′ ∪ {bg′+1, ..., bg} is
a vertex cover where eg′+j = {ag′+j, bg′+j} such that degG(ag′+j) = 1. Since H is
well-covered König graph, then |D′| = g′ and τ(G) ≤ |D| = g ≤ ν(G). Hence
τ(G) = ν(G) and e1, ..., eg is perfect matching of König type. Furthermore, e1, ..., eg
does not contain 4-cycles with two ei’s since deg G(ag′+j) = 1. �

Theorem 2.79 Let G be a graph such that every 5-cycle is chorded. ∆G is pure ver-
tex decomposable with ∆G 6= ∅ if and only if G satisfies the following conditions:

(1) If A = {a1, ..., al} is the set of simplicial vertices of G, then l ≥ 1. Furthermore,
if Si = NG[ai] for i ∈ {1, ..., l}, then Si1 ∩ Si2 = ∅ or Si1 = Si2 for 1 ≤ i1 < i2 ≤
l.

(2) If G \ NG[a1, ..., al] 6= ∅, then it has a perfect matching e1 = {x1, y1}, ..., eg =
{xg, yg} of König type without 4-cycles with two ei’s.

(3) If {z1, ci}, {z2, di} ∈ E(G) with {ci, di} = ei for some i ∈ {1, ..., g} and {z1, z2}∩
ei = ∅, then z1 6= z2 and {z1, z2} ∈ E(G).

Proof. ⇒) By induction on |V(G)|. Since ∆G is pure vertex decomposable, thus
by Remark 1.92 and Corollary 2.8, G has a shedding vertex v such that G′ = G \ v
is a well-covered vertex decomposable graph. If ∆G′ = ∅, then G = {v}. Con-
sequently, we can assume ∆G′ 6= ∅. By induction hypothesis, if {a′1, ..., a′l′} is the
set of simplicial vertices of G′, then l′ ≥ 1. Furthermore, if S′i = NG′ [a′i], then
S′i ∩ S′j = ∅ or S′i = S′j. Also, G1 = G′ \ NG′ [a′1, ..., a′l′ ] has a perfect matching
e1, ..., eg′ of König type satisfying (2) and (3). Without loss of generality we can as-
sume that {S′1, ..., S′l′} = {S

′
1, ..., S′t} where t ≤ l′ and S′1, ..., S′t are disjoint sets. By

Proposition 2.9, G1 is a well-covered König graph, then β(G1) = g′. Furthermore,
if A1 is a maximal stable set of G1, then {a1, ..., at} ∪ A1 is a maximal stable set of
G′. Since G′ is well-covered, then β(G′) = t + g′.
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We will prove that NG(v) contains a simplicial vertex of G. Since G contains only
chorded 5-cycles, hence by Lemma 2.3, there is b ∈ NG(v) such that NG[b] ⊆ NG[v].
We can suppose that degG(b) is minimal. If b is not a simplicial vertex, then there
are d1, d2 ∈ NG(b) \ v such that {d1, d2} /∈ E(G). This implies, degG′(b) = |NG(b) \
v| ≥ 2. Now, we suppose that b ∈ V(G1). Let G′′ be the component of G1 such
that b ∈ V(G′′). Thus, G′′ has a perfect matching of König type. Without loss of
generality, we can assume that this matching is e1, ..., eg′1

. Also, there is no 4-cycle
with two ei’s with i ∈ {1, ..., g′1}. If g′1 = 1, then there exists x ∈ V(G′′) such
that e1 = {b, x}. Furthermore, since degG′(b) ≥ 2, there is a vertex bi ∈ V(S′i)
for some i ∈ {1, ..., t} such that {bi, b} ∈ E(G). If degG′(x) = 1, then NG[x] (
NG[b] ⊆ NG[v], a contradiction by the minimality of degG(b). Consequently, there
is a vertex bj ∈ V(S′j) for some j ∈ {1, ..., t} such that {bj, x} ∈ E(G). Since G′

satisfies (3), we have that bi 6= bj and {bi, bj} ∈ E(G). So, C1 = (b, v, x, bj, bi) is
a 5-cycle. Furthermore, G′ satisfies (3) implying {x, bi}, {bj, b} /∈ E(G). Hence,
C1 is not chorded, a contradiction. Then g′1 ≥ 2. If degG′′(b) = 1, from Lemma
2.27, there exist {b, w1}, {w1, w2}, {w2, w3} ∈ E(G′′) with ej = {b, w1} for some
j ∈ {1, ..., g′1}. Furthermore, since degG′(b) ≥ 2, there is bi ∈ V(S′i) for any i ∈
{1, ..., t} such that {bi, b} ∈ E(G). Thus, {bi, w2} ∈ E(G), since G′ satisfies (3) and
{b, w1} = ej. Also, {w1, v} ∈ E(G) since NG[b] ⊆ NG[v]. This implies that C2 =
(v, w1, w2, bi, b) is a 5-cycle. Since G′ satisfies (3), {b, w2}, {w1, bi} /∈ E(G) implying
C2 is not chorded, a contradiction. Then degG′′(b) ≥ 2. Consequently, by Lemma
2.27, there exist {b, w′1}, {w′1, w′2} ∈ E(G′′) with degG′′(w′2) = 1 and ek = {w′1, w′2}
for some k ∈ {1, ..., g′1}. Since {a′1, ..., a′t} is the set of simplicial vertices of G′ and
w′2 ∈ V(G1) implying w′2 is not a simplicial vertex of G′. Hence, there is c ∈ V(S′q)
with q ∈ {1, ..., t} such that {c, w′2} ∈ E(G). By (3), we have that {b, c} ∈ E(G).
Since NG[b] ⊆ NG[v], thus {v, c} ∈ E(G) and C3 = (v, b, w′1, w′2, c) is a 5-cycle.
But, from (3), {c, w′1}, {w′2, b} /∈ E(G) implying that C3 is not chorded. This is
a contradiction, then b /∈ V(G1). Consequently, b ∈ NG′ [a′1, ..., a′t] and there is
r ∈ {1, ..., t} such that b ∈ V(S′r). This implies, NG′ [a′r] = V(S′r) ⊆ NG[b] ⊆ NG[v].
Thus, G[V(S′r) ∪ {v}] is a simplex and a′r is a simplicial vertex of G contained in
NG(v). Therefore, there exists a simplicial vertex x of G contained in NG(v). Hence,
x is a simplicial vertex of G′. Without loss of generality we can assume that x = a′1.
Consequently, S′1 ⊆ NG[a′1] ⊆ NG[v]. Now, we can assume that S′1, ..., S′t satisfy:

(a) |V(S′i)| ≥ 3 for 2 ≤ i ≤ p;

(b) |V(S′i)| = 2 and S′i has a simplicial vertex in G for p + 1 ≤ i ≤ q;

(c) |V(S′i)| = 2 and S′i does not have simplicial vertices in G for q + 1 ≤ i ≤ t.

By Lemma 2.77, S1 = [V(S′1) ∪ v], S2 = S′2, ..., Sq = S′q are simplexes of G. We
assume that ai is a simplicial vertex of Si. Let M be the set of simplicial vertices in
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G. We take z ∈ M. We will prove that [NG[z]] ∈ {S1, ..., Sq}. If z = v, since V(S1) =
NG[a1] ⊆ NG[v], then [NG[z]] = S1. Now, assume z 6= v, then NG′ [z] = NG[z] \ v.
Furthermore, [NG[z]] is a simplex in G, consequently [NG′ [z]] is a simplex in G′.
This implies, NG[z] \ v = V(S′i). Thus, NG[z] = V(S′i) ∪ {v} or NG[z] = V(S′i).
If NG[z] = V(S′i) ∪ {v}, then v ∈ V(S1) ∩ NG[z]. By Lemma 1.106, we have that
[NG[z]] = S1. Now, if NG[z] = V(S′i), then v /∈ NG[z]. If i = 1, then [NG[z]] =
S′1 ( S1 = [NG[a1]]. But S1 is a simplex, then {z, v} ∈ E(G), a contradiction. Hence
i 6= 1. Consequently, [NG[z]] = Si with 2 ≤ i ≤ q. Therefore, the simplexes of G
are S1, S2, ..., Sq.

Now, since S′i ∩ S′j = ∅, then S1 ∩ Sj = (S′1 ∪{v})∩ S′j = ∅ and Si ∩ Sj = ∅ for i, j ∈
{2, ..., q} with i 6= j. Furthermore, G2 = G \ NG[a1, ..., aq] = G \ (S1 ∪ · · · ∪ Sq) =
G′ \ (S′1 ∪ · · · ∪ S′q) = G′ \ NG′ [a′1 ∪ · · · ∪ a′q]. Hence, G2 has a perfect matching
e1, ..., eg′ , eg′+1, ..., eg where eg′+j = S′q+j for 1 ≤ j ≤ t− q where g = g′+ t− q. Since
a′q+j is a simplicial vertex of G′, implying degG2

(a′q+j) = 1. By Lemma 2.78, e1, ..., eg
is a perfect matching of König type without 4-cycles with two ei’s. Therefore, G
satisfies (1) and (2).

Finally, we take {z1, ci}, {z2, di} ∈ E(G) with {ci, di} = ei for some i ∈ {1, ..., g}
and {z1, z2} ∩ ei = ∅. If v /∈ {z1, z2}, then {z1, ci}, {z2, di} ∈ E(G′). Consequently,
ei is not a simplex in G′. Thus, i ∈ {1, ..., g′} and since G′ satisfies (3), we have
that z1 6= z2 and {z1, z2} ∈ E(G). Now, we can assume z1 = v. We suppose
z2 ∈ Sj. If j = 1, we will prove that v 6= z2. Suppose v = z2, we take a maximal
stable set S of G such that v ∈ S. Consequently, ei ∩ S = ∅, |ej ∩ S| ≤ 1 for j 6= i
and |Si ∩ S| ≤ 1 for i ∈ {1, ..., q}. So, |S| ≤ t + g′ − 1. A contradiction, since G
is well-covered and β(G) = β(G′) = t + g′. Hence, v 6= z2 and {v, z2} ∈ E(G).
Now, we can assume j = 2. We take G4 = G[V(G2) ∪ {a1, a2, v, z2}]. Since ci /∈ S1
and di /∈ S2, then a1 6= v and a2 6= z2. This implies, G4 has a perfect matching
e1, ..., eg, f1 = {a1, v}, f2 = {a2, z2}. Furthermore, degG4

(a1) = degG4
(a2) = 1 since

a1 and a2 are simplicial vertices in G. Hence, by Lemma 2.78 e1, ..., eg, f1, f2 is a
perfect matching of König type of G4. On the other hand, G5 = G \ NG[a3, ..., aq]
is well-covered, by Remark 1.66. Furthermore, by Lemma 1.103, if w ∈ NG(ai),
then w is a shedding vertex. Thus, G6 = G5 \ [(S1 \ {a1, v}) ∪ (S2 \ {a2, z2})] is
a well-covered subgraph by Corollary 2.8. Since V(G4) = V(G6) and G4, G6 are
induced subgraphs of G, then G4 = G6. This implies, G4 is well-covered with a
perfect matching of König type. Consequently, by Proposition 2.9, we have that
{v, z2} ∈ E(G). Similarly, if z2 ∈ ej for some j ∈ {1, ..., g}. Therefore, G satisfies (3).
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⇐) By induction on |V(G)|. We suppose that L = {S1, ..., Sl} = {S1, ..., St} where
Si ∩ Sj = ∅ for 1 ≤ i < j ≤ t with t ≤ l. By (1), we have that t ≥ 1. If |V(Si)| = 1
for some i ∈ {1, ..., t}, then by induction hypothesis and by Proposition 1.106, ∆G
is pure vertex decomposable. So, we can assume that |V(St)| ≥ 2, then there exists
v ∈ NG(at). By Lemma 1.103, v is a shedding vertex.

We will prove that ∆G2 is pure vertex decomposable where G2 = G \ v. Since
St ∩ Si = ∅ for i 6= t, then v ∈ St \

⋃t−1
i=1 Si. Consequently, Si = G2[NG2 [ai]] for

i = 1, ..., t− 1 and St \ v = G2[NG2 [at]]. Hence, a1, ..., at are simplicial vertices in G2.
We take G4 = G2 \ NG2 [a1, ..., at] = G \ NG[a1, ..., at]. Suppose b ∈ B2, where

B2 = {b ∈ V(G2) | b is a simplicial vertex and NG2 [b] /∈ {S1, ..., St−1, St \ v}}.

Thus, {v, b} ∈ E(G). If b /∈ V(G4), then there exists i ∈ {1, ..., t} such that b ∈
NG2 [ai]. Since ai is a simplicial vertex of G2, we have that Si \ v = NG2 [ai] ⊆
NG2 [b]. But, b is a simplicial vertex of G2, then Si \ v = NG2 [b], a contradiction
since b ∈ B2. Hence b ∈ V(G4). Consequently, from (2), there exist b′ ∈ V(G4) and
j ∈ {1, ..., g} such that ej = {b, b′}. Since NG2 [b] is a simplex, if a ∈ NG(b) \ {b′, v},
then {b′, a} ∈ E(G). This is a contradiction since G satisfies (3). Thus, degG2

(b) =
1. Without loss of generality, we can assume that B2 = {b1, ..., bp} such that bj ∈ ej
for j = 1, ..., p. This implies, S1, ..., St, St+1 = e1, ..., St+p = ep are the simplexes
in G2 and G2 satisfies (1). Furthermore, G2 \ NG2 [a1, ..., at, b1, ..., bp] has a perfect
matching ep+1, ..., eg of König type. Hence, G2 satisfies (2) and (3), since G satisfies
them. Therefore, by induction hypothesis, ∆G2 is pure vertex decomposable.

Now, we will prove that ∆G3 is pure vertex decomposable where G3 = G \ NG[v].
We have that S′i = NG3 [ai] = Si \ NG[v]. Now, if {v, ai} ∈ E(G) for some 1 ≤
i ≤ t − 1, then v ∈ V(St) ∩ V(Si), a contradiction by Proposition 1.123. Then
{v, ai} /∈ E(G). Hence, a1, ..., at−1 are simplicial vertices of G3. We take b ∈ B3,
where:

B3 = {b ∈ V(G3) | b is a simplicial vertex and NG3 [b] 6= S′i for 1 ≤ i ≤ t− 1}.

Since b ∈ V(G3) and NG[at] ⊆ NG[v], then {b, at} /∈ E(G). Furthermore, if there
exists 1 ≤ j ≤ t − 1 such that {aj, b} ∈ E(G), then NG3 [aj] = NG3 [b] since aj
and b are simplicial vertices in G3, a contradiction. Thus {aj, b} /∈ E(G) for j ∈
{1, ..., t}. Consequently, b ∈ G \ NG[a1, ..., at] and there exists b′ ∈ V(G) such that
ei = {b, b′} for i ∈ {1, ..., g}. If b′ /∈ V(G3), then {v, b′} ∈ E(G). Furthermore,
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G satisfies (3), then NG(b) ⊆ NG(v) and NG3 [b] = {b}. Now, if b′ ∈ V(G3) and
b′′ ∈ NG3(b) \ b′, implying {b′, b′′} ∈ E(G) since b is a simplicial vertex in G3.
This is a contradiction since G satisfies (3). Then NG3(b) = {b′}. Hence, we can
assume that S1, ..., St−1, NG3 [b1], ..., NG3 [br] are the distinct simplexes of G3 where
NG3 [bi] = {bi} or NG3 [bi] = ei for some i = 1, ..., r with r ≤ g. Assume t− 1+ r = 0,
then t = 1 and r = 0. Furthermore, suppose NG(v) ∩ ei = ∅ with ei = {xi, yi}.
We can assume {v, xi} ∈ E(G). Since G satisfies (2) and (3), then yi /∈ NG(v) and
NG(yi) ⊆ NG(v). Consequently, yi ∈ V(G3) and degG3

(yi) = 0, implying r > 0,
a contradiction. Then NG(v) ∩ ei = ∅ for i = 1, ..., g. Hence, G3 = G[e1, ..., eg],
G3 is a König Cohen-Macaulay graph without isolated vertex. Thus, G3 has a free
vertex and it is a simplicial vertex of G3 and r > 0, a contradiction. Then t −
1 + r > 0 and G3 satisfies (1). Now, we take G′3 = G3 \ NG3 [a1, ..., at−1, b1, ..., br] =
(G \NG[a1, ..., at−1, v]) \∪r

i=1ei. Thus, G′3 has a perfect matching er+1, ..., eg of König
type without 4-cycles with two ei’s. Consequently, G3 satisfies (2). Furthermore,
G3 satisfies (3), since G satisfies it. Therefore, ∆G3 is pure vertex decomposable.

Finally, we will prove that G is well-covered. We take a maximal stable set S
of G. Since Si is a simplex, then |S ∩ Si| = 1 for all i ∈ {1, ..., t}. Now, if G \
NG[a1, ..., at] = ∅, then |S| = t. Thus, G is well-covered. If G \ NG[a1, ..., at] 6= ∅,
then by (2) it has a perfect matching e1 = {x1, y1}, ..., {xg, yg} of König type. If
S ∩ ej = ∅ for some i, then there are w, w′ ∈ S such that {w, xj}, {w′, yj} ∈ E(G).
By (3), {w, w′} ∈ E(G), but S is stable, a contradiction. Hence |S ∩ ej| = 1 for
1 ≤ j ≤ g. Consequently, |S| = t + g. Therefore, G is well-covered. �

2.9 SOME BLOCKS OF WELL-COVERED GRAPHS

Some well-covered graphs as: graphs with girth at least 5 [21], graphs without
4-cycles and 5-cycles [22], simplicial and chordal graphs [36], block-cactus graphs
[37] and unicyclic graphs [44] have a partition V1, ..., Vk of the vertex set V(G) such
that G[Vi] is a special subgraph of G such that if S and S′ are maximal stable sets
of G, then |S ∩ Vi| = |S′ ∩ Vi| for each i ∈ {1, ..., k}. This motivates us to study
subgraphs with the same number of elements in any maximal stable set of G. In
this section we study 5-cycles C and 7-cycles C′ of G such that |C ∩ S| = 2 and
|C′ ∩ S| = 3 for each maximal stable sets of G.

Definition 2.80 A 5-cycle C is quasi-basic of G if |V(C) ∩ S| = 2 for each maximal
stable set S of G.
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Lemma 2.81 Let C = (x1, x2, x3, x4, x5) be an induced quasi-basic 5-cycle of G.
Hence, if z ∈ NG(xi) \ (V(C) ∪ NG(xi−2)) and z′ ∈ NG(xi+1) \ (V(C) ∪ NG(xi−2)),
then {z, z′} ∈ E(G).

Proof. By contradiction, suppose that there exist z ∈ NG(xi) \ (V(C) ∪ NG(xi−2))
and z′ ∈ NG(xi+1) \ (V(C) ∪ NG(xi−2)) such that {z, z′} /∈ E(G). Consequently,
S1 = {xi−2, z, z′} is a stable set. Hence, there exists a maximal stable set S of G such
that S1 ⊆ S. Thus, S ∩V(C) = {xi−2}. A contradiction, therefore {z, z′} ∈ E(G).

�

Proposition 2.82 Let C be a 5-cycle of G such that |V(C) ∩ S| ≥ 1 for every maxi-
mal stable set S of G. C is quasi-basic if and only if for every z ∈ NG(xi) \ (V(C) ∪
NG(xi−2)) and z′ ∈ NG(xi+1) \ (V(C) ∪ NG(xi−2)), we have that {z, z′} ∈ E(G),
for each i ∈ {1, ..., 5}.

Proof. ⇒) By Lemma 2.81.

⇐) We take a maximal stable set S of G. Since |V(C) ∩ S| ≥ 1, there exists xj ∈
V(C) ∩ S. We can assume j = 1. Suppose that V(C) ∩ S = {x1}. Thus, there exist
z ∈ NG(x3) and z′ ∈ NG(x4) such that {z, z′, x1} ⊆ S. This implies z, z′ /∈ NG(x1).
Since C is induced z 6= x1 and z′ 6= x1. Therefore, z ∈ NG(x3) \ (V(C) ∪ NG(x1))
and z′ ∈ NG(x4) \ (V(C)∪NG(x1)). By hypothesis, {z, z′} ∈ E(G), a contradiction
since S is stable. Therefore, |V(C) ∩ S| = 2. �

Proposition 2.83 Let C be an induced 5-cycle. If there exists xi ∈ V(C) such that
degG(xi) = 2, then |V(C) ∩ S| ≥ 1 for every maximal stable set S.

Proof. We take S a maximal stable set of G. If xi ∈ S, then |V(C) ∩ S| ≥ 1. Now,
suppose that xi /∈ S, then NG(xi) ∩ S 6= ∅. But, NG(xi) = {xi−1, xi+1}. Hence,
xi−1 ∈ S or xi+1 ∈ S. Therefore, |V(C) ∩ S| ≥ 1. �

Corollary 2.84 Let C be a 5-cycle of G. If C has three non consecutive vertices of
degree 2, then C is a quasi-basic 5-cycle.

Proof. We can assume that C = (x1, x2, x3, x4, x5) with degG(x1) = degG(x3) =
degG(x4) = 2. By Proposition 2.83, |V(C) ∩ S| ≥ 1 for each maximal stable S of G.
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Furthermore, there are no consecutive vertices of C whose degrees are at least 3.
Therefore, by Proposition 2.82, C is a quasi-basic 5-cycle. �

Example 2.85 We take the following graph G:
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y1

y4 y3

y5 y2

x5 x2

x1

x4 x3

Stable sets
{x1, x3, y2, y4}, {x1, x3, y2, y5}, {x1, x4, y2, y5},
{x1, x4, y3, y5}, {x2, x4, y1, y3}, {x2, x4, y3, y5},
{x2, x5, y1, y3}, {x2, x5, y1, y4}, {x3, x5, y1, y4},

{x3, x5, y2, y4}

(x1, x2, x3, x4, x5) and (y1, y2, y3, y4, y5) are quasi-basic 5-cycles of G. Its f -vector
is ( f0, f1, f2, f3) = (10, 31, 31, 10) and its h-vector is h(G) = (1, 6, 7,−5, 1). Conse-
quently, G is not Cohen-Macaulay.

Definition 2.86 Let C = (x1, x2, ..., x7) be an induced 7-cycle in G. C is called a
basic 7-cycle if for each y ∈ D1(C) there exist xi1 , xi2 , xi3 consecutive vertices in C
such that NG(y) ∩V(C) = {xi1 , xi3} and xi2 is an isolated vertex in G \ NG[y].

Lemma 2.87 If C = (x1, x2, ..., x7) is a basic 7-cycle, then NG(xi) ⊆ NG(xi−2) ∪
NG(xi+2).

Proof. We take z ∈ NG(xi). If z ∈ V(C), then z ∈ {xi−1, xi+1} ⊆ NG(xi−2) ∪
NG(xi+2). If z /∈ V(C), then z ∈ D1(C) and NG(z)∩V(C) is {xi, xi−2} or {xi, xi+2}.
Therefore, z ∈ NG(xi−2) or z ∈ NG(xi+2). �

Lemma 2.88 Let C be a basic 7-cycle of G. If there exist a1, a2 ∈ D1(C) such that
Li = V(C) ∩ NG(ai) = {bi

1, bi
3} where bi

1, bi
2, bi

3 are consecutive vertices in C for
i = 1, 2. Furthermore, we take the 4-cycles Ci = (ai, bi

1, bi
2, bi

3) for i = 1, 2. If
L1 6= L2, then:

(1) b1
2 6= b2

2.

(2) If {a1, a2} /∈ E(G), then |V(C1) ∩V(C2)| ≤ 1.

Proof. (1) We suppose b1
2 = b2

2. Hence, L2 = {b1
1, b1

3} = L1. This is a contradiction,
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therefore b1
2 6= b2

2.

(2) We suppose that b1
2 ∈ V(C1) ∩ V(C2). Since L1 6= L2, by (1) b1

2 6= b2
2. Hence

b1
2 ∈ {b2

1, b2
3}, implies {b1

2, a2} ∈ E(G). Since b1
2 is an isolated vertex in G \ NG[a1],

thus {a1, a2} ∈ E(G). But {a1, a2} /∈ E(G), this is a contradiction. Consequently
if |V(C1) ∩ V(C2)| > 1, then {b1

1, b1
3} = {b2

1, b2
3}. But L1 6= L2, therefore |V(C1) ∩

V(C2)| ≤ 1. �

Theorem 2.89 Let C be an induced 7-cycle in a graph G. If C is a basic 7-cycle, then
|V(C) ∩ S| = 3 for all maximal stable set S in G.

Proof. Let S be a maximal stable set of G. If G = C, then G is well-covered
by Remark 1.88. Thus, |V(C) ∩ S| = |S| = 3. Now, we assume G 6= C, then
there exists y ∈ D1(C). Since C is a basic 7-cycle, then for each yi ∈ D1(C) there
are bi

1, bi
2, bi

3 ∈ V(C) such that Ci = (yi, bi
1, bi

2, bi
3) is an induced 4-cycle in G and

Li = V(C) ∩ NG(yi) = {bi
1, bi

3}. We take

r = max{|A| | A ⊆ D1(C) ∩ S such that if yi, yj ∈ A with yi 6= yj, then Li 6= Lj}.

We will prove that r ≤ 3. Suppose that there are y1, y2, y3, y4 ∈ D1(C) ∩ S with
Li 6= Lj for 1 ≤ i < j ≤ 4. By Lemma 2.88, we have that |V(Ci) ∩V(Cj)| ≤ 1. Since
bi

1, bi
2, bi

3 are consecutive in C, then |V(C1 \ y1) ∪ V(C2 \ y2) ∪ V(C3 \ y3) ∪ V(C4 \
y4)| ≥ 8. This is a contradiction since |V(C)| = 7. Therefore, r ≤ 3. If r = 3, then
b1

2, b2
2, b3

2 are isolated vertices in G \ NG[y1, y2, y3]. Hence b1
2, b2

2, b3
2 ∈ S. Further-

more, |V(C) ∩ S| ≤ 3, then |V(C) ∩ S| = 3. Now, if r = 2, we have two isolated
vertices b1

2 and b2
2 in G \ NG[y1, y2], then b1

2, b2
2 ∈ S. If |V(C1) ∩ V(C2)| = 1, then

without loss of generality, we assume C1 = (y1, x1, x2, x3) and C2 = (y2, x3, x4, x5).
Thus, |{x6, x7} ∩ S| = 1. Hence |V(C) ∩ S| = 3. Now, if |V(C1) ∩ V(C2)| = 0,
then |V(C) \ NG[y1, y2]| = 1. Consequently, |V(C) ∩ S| = 3. Finally, if r = 1,
then b1

2 is an isolated vertex in G \ NG[y1], implies that b1
2 ∈ S. We can assume

{b′1, b′2, b′3} = {x1, x2, x3}. Consequently, P = (x4, x5, x6, x7) is a path in G \ NG[y1],
implying |P ∩ S| = 2. Therefore, |V(C) ∩ S| = 3. �

Example 2.90 In the following graph (x1, x2, x3, x4, x5, x6, x7) is a basic 7-cycle.
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x3

x1

x2 x4

x6

x10

x5x7

x8

x12 x13 x14 x15

x11x9

Stable sets
{x1, x4, x6, x8, x10, x12, x15}, {x2, x4, x6, x8, x10, x12, x15}, {x1, x4, x6, x8, x11, x12, x15},
{x2, x4, x6, x8, x11, x12, x15}, {x3, x5, x7, x9, x11, x12, x14}, {x2, x4, x7, x9, x11, x12, x15},
{x2, x5, x7, x9, x11, x12, x15}, {x3, x5, x7, x9, x11, x12, x15}, {x1, x3, x6, x8, x10, x12, x15},
{x1, x3, x6, x8, x11, x12, x15}, {x1, x3, x6, x8, x11, x12, x14}, {x1, x3, x6, x8, x10, x12, x14},
{x2, x5, x7, x9, x11, x13, x15}, {x2, x4, x7, x9, x11, x13, x15}, {x2, x5, x7, x8, x11, x13, x15},
{x2, x4, x7, x8, x11, x13, x15}, {x2, x4, x6, x8, x11, x13, x15}, {x2, x4, x6, x8, x10, x13, x15},
{x3, x5, x7, x8, x11, x12, x15}, {x2, x5, x7, x8, x11, x12, x15}, {x2, x4, x7, x8, x11, x12, x15},
{x1, x3, x5, x8, x11, x12, x15}, {x3, x5, x7, x8, x11, x12, x14}, {x1, x3, x5, x8, x11, x12, x14}



CHAPTER 3
SHELLABLE AND COHEN-MACAULAY

CLUTTERS

3.1 INTRODUCTION

Let C = (V, E) be a clutter with vertex set V(C) = {x1, ..., xn}. I = I(C) is the
edge ideal of C in the polynomial ring R = k[x1, ..., xn] over a field k and ∆C is the
Stanley-Reisner simplicial complex of C; that is, the simplicial complex of the stable
sets of C. In this Chapter we study matroids and clutters with a perfect matching
of König type with the following properties: vertex decomposable, shellable and
Cohen-Macaulay. The Chapter is divided as follows: in Section 3.2, we show that
given a matroidM, the simplicial complex ∆B(M) is shellable if and only if B(M)
is complete (see Theorem 3.5). In Section 3.3, we study clutters with a perfect
matching of König type.

3.2 MATROIDS

In this section, we denote by M a matroid with vertex set V(M) = {x1, ..., xn}.
We will prove that ∆B(M) is shellable if and only if B(M) is a complete clutter. We
can associate the simplicial complex ∆B(M) to M whose Stanley-Reisner ideal is
I(B(M)). Hence, we have that I∆B(M)

= I(B(M)).

Theorem 3.1 LetM be a matroid with bases set B(M). B(M) satisfies the weak
circuit exchange property if and only if B(M) is a complete clutter.

Proof. ⇒) Let V(M) = {x1, ..., xn} be the vertex set of M. If A ⊆ V(M) we
denoteM∩ A to {B ∈ B(M) | B ⊆ A}. Let B1 and B2 be two bases ofM. We will
prove that the clutter M∩ (B1 ∪ B2) is a k-complete clutter. By induction on the
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number d = |B1 \ B2|. If d = 0, then B1 = B2. Hence,M∩ (B1 ∪ B2) = {B1} and it
is a k-complete clutter.

Now, if d ≥ 1, then we can assume B1 = {x1, ..., xd, zd+1, ..., zk} and B2 = {y1, ..., yd,
zd+1, ..., zk} with yi 6= xj for all i, j ∈ {1, ..., d}. Since xi ∈ B1 \ B2, then there exists
yj ∈ B2 \ B1 such that B′1 = (B1 \ xi) ∪ {yj} ∈ B(M). Hence, B′1 = {x1, ..., xi−1, yj,
xi+1, ..., xl, zl+1, ..., zk}. But |B′1 \ B1| = d− 1. By induction hypothesisM∩ (B1 ∪
B′1) = M∩ (B1 ∪ B2 \ xi) is a k-complete clutter for i = 1, ..., d. Similarly, M∩
(B1 ∪ B2 \ yi) is a k-complete clutter for i = 1, ..., d. In particular, since B3 =
{x1, y2, ..., yl, zl+1, ..., zk} ⊆ (B1 ∪ B2) \ y1, we have that B3 ∈ M∩ (B1 ∪ B2 \ y1) ⊆
B(M). Furthermore, zj ∈ B2 ∩ B3 for all j ∈ {l + 1, ..., k}. Hence, there exist
B2 ∈ B(M) and B4 ⊆ (B2 ∪ B3) \ zj since B(M) satisfies the circuit exchange
property. But |B2 ∪ B3 \ zj| = k, thus B4 = (B2 ∪ B3) \ zj. This implies that
B4 = {x1, y1, ..., yd, zd+1, ..., zj−1, zj+1, ..., zk}. Now, we have that |B1 \ B4| = d
and zj ∈ B1 \ B4, then M∩ (B1 ∪ B4 \ zj) is a k-complete clutter. Furthermore,
(B1 ∪ B4) \ zj = (B1 ∪ B2) \ zj. Consequently, M∩ (B1 ∪ B2 \ w) is k-complete
for w ∈ {x1, ..., xl, y1, ..., yl, zl+1, ..., zk} = B1 ∪ B2. Therefore, M∪ (B1 ∪ B2) is a
k-complete clutter.

Now, we will prove that M∩ (B1 ∪ · · · ∪ Bs) is a k-complete clutter with Bi ∈
B(M) for i = 1, ..., s. By induction on s. We have proven the result for s = 2.
We suppose that s ≥ 3 and we take B ⊆ B1 ∪ · · · ∪ Bs such that |B| = k, we
denote by B′i = B ∩ Bi. We will prove that B ∈ B(M). If B′i = ∅ for some i, then
B ⊆ B1 ∪ · · · ∪ Bi−1 ∪ Bi+1 ∪ · · · ∪ Bs = Vi. By induction hypothesis M∩ Vi is a
k-complete clutter, consequently B ∈ B(M). Hence, we can assume that B′i 6= ∅
for all i = 1, ..., s. Since |B| = |Bi| = |Bj| = k, then there exists A ⊆ Bi ∪ Bj such
that |B′i ∪ B′j ∪ A| = k. Thus, H = B′i ∪ B′j ∪ A ∈ B(M) since M∩ (Bi ∪ Bj) is a
k-complete clutter. So, by induction hypothesis if D = B1 ∪ · · · ∪ B′i ∪ Bi+1 ∪ · · · ∪
B′j ∪ · · · ∪ Bs ∪ H, then M∩ D is a k-complete clutter. But, B′i ∪ B′j ⊆ H implies
B ⊆ D. Hence, B ∈ B(M). Finally, we have that B(M) = M∩ (

⋃
Bi∈B(M) Bi).

Therefore, B(M) is a k-complete clutter.

⇐) We take B1, B2 ∈ B(M) such that B1 6= B2 and x ∈ B1 ∩ B2, then |B1 ∪ B2 \ x| ≥
|B1|. Hence, there exists B3 ⊆ (B1 ∪ B2) \ x such that |B3| = |B1|. Since B(M) is a
k-complete clutter, therefore B3 ∈ B(M). �

Lemma 3.2 H is a k-complete clutter if and only if F (∆H) is a (k − 1)-complete
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clutter.

Proof. ⇒) We take any facet F = {xi1 , ..., xis} of ∆H. If s ≥ k, then {xi1 , ..., xik}
∈ E(H) since H is a k-complete clutter, a contradiction since F is a stable set of H.
Thus s ≤ k− 1. Now, we take F′ ⊆ V(H) such that |F′| = k− 1. If e ∈ E(H), then
e * F′ since |e| = k. Consequently, F′ is a maximal stable set. Therefore, F (∆H) is
a (k− 1)-complete clutter.

⇐) Let e be an edge of H. Since F (∆H) is (k − 1)-complete clutter, if F ⊆ V(H)
with |F| = k− 1, then F ∈ F (∆H). Hence, e * F. Consequently, |e| ≥ k. Further-
more, if e′ ⊆ V(H) with |e′| = k, then e′ /∈ ∆H. Also, if F ( e′, then |F| ≤ k− 1;
implying F ∈ ∆H. Thus, e′ ∈ E(H). Therefore,H is a k-complete clutter. �

Lemma 3.3 IfH is a complete clutter, then ∆H is pure shellable.

Proof. By induction on |V(H)|. We take v ∈ V(H), H2 = H \ v and the clutter
H1 where V(H1) = V(H) \ v and E(H1) = {e \ v | v ∈ e and e ∈ E(H)}. Since
H1 and H2 are complete clutters, then by induction hypothesis ∆H1 and ∆H2 are
pure shellables. We assume that F1, ..., Fk and L1, ..., Lr are shellings of H1 and H2,
respectively. We will prove that

E1 = L1, ..., Er = Lr, Er+1 = F1 ∪ {v}, ..., Er+k = Fk ∪ {v},

is a shelling of ∆H. By Lemma 3.2, F (∆H), F (∆H1) and F (∆H2) are complete
clutters. This implies F (∆H) = {E1, ..., Er+k}. We take Ei and Ej with i < j. Since
E1, ..., Er and Er+1, ..., Er+k are shellings, we can assume 1 ≤ i ≤ r < j ≤ r + k, then
Ej = Fp ∪ {v} for some p ∈ {1, ..., k}, hence, v ∈ Ej \ Ei. Since F (∆H) is a complete
clutter, then there exists 1 ≤ l ≤ r such that Fp ⊆ El. Consequently, {v} = Ej \ El
and l ≤ j. Therefore, E1, ..., Er+k is a shelling. �

Lemma 3.4 IfM is a matroid and ∆ = ∆B(M) with v ∈ V(M), then B(M)/v is
the bases set of a matroid and ∆B(M)/v = lk∆(v).

Proof. If v is an isolated vertex, then B(M)/v = B(M). Consequently, we can
assume that v is not isolated. We assume that |B| = k for each B ∈ B(M). First
we will prove that |B′| = k− 1 for each B′ ∈ B(M)/v. By contradiction, suppose
that B1 ∈ B(M)/v with |B1| = k. Thus, B1 ∈ B(M) and v /∈ B1. Since v is not an
isolated vertex, then there exists B2 ∈ B(M) such that v ∈ B2. Hence, v ∈ B2 \ B1
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and there is y ∈ B1 \ B2 such that B3 = (B1 ∪ v) \ y ∈ B(M). Consequently,
B3 \ {v} ∈ B(M)/v. But, B3 \ v = B1 \ y ( B1, a contradiction. Implying |B′| =
k− 1 for each B′ ∈ B(M/v). Now, we take B′1, B′2 ∈ B(M)/v. Thus, there exists
Bi ∈ B(M) such that B′i = Bi \ v for i = 1, 2. If x ∈ B′1 \ B′2, it implies x ∈ B1 \ B2,
then there exists y ∈ B2 \ B1 = B′2 \ B′1 such that B3 = (B1 \ x) ∪ {y} ∈ B(M).
Since x ∈ B′1, then x 6= v and v ∈ B3. Hence, B3 \ v = ((B1 \ x) ∪ {y}) \ v =
(B′1 \ x)∪{y} ∈ B(M)/v. Therefore, there exists a matroidM′ such that B(M′) =
B(M)/v. Finally, by Lemma 1.63, we have that lk∆(v) = ∆B(M)/v. �

Theorem 3.5 If dim(∆B(M)) = k, then ∆B(M) is pure shellable if and only if B(M)
is a (k+2)-complete clutter.

Proof. ⇐) By Lemma 3.3, ∆B(M) is pure shellable.

⇒) Let V be the vertex set of M and we set ∆ = ∆B(M). By induction on |V|.
We have that dim(∆) = k. Now, we take a subset F ⊆ V such that |F| = k + 1
and v ∈ F. Since ∆ is pure shellable, then by Remark 1.32, lk∆(v) is pure shellable.
Furthermore, by Lemma 3.4, lk∆(v) = ∆B(M′) where M′ is a matroid such that
B(M′) = B(M)/v. By induction hypothesis B(M′) is a (k + 1)-complete clutter,
since dim(lk∆(v)) = k− 1. By Lemma 3.2, F (∆B(M′)) is a k-complete clutter. This
implies, F \ v ∈ F (lk∆(v)). Consequently, F ∈ F (∆B(M)). Therefore, F (∆B(M)) is
a (k + 1)-complete clutter and using Lemma 3.2, we obtain that B(M) is a (k + 2)-
complete clutter. �

Lemma 3.6 B(M) is a k-complete clutter if and only if C(M) is a (k+1)-complete
clutter.

Proof. ⇒) We take C ⊆ V such that |C| = k + 1. Thus, C /∈ B(M), then C
is a dependent set of M. Furthermore, if C′ ( C, then |C′| ≤ k implying that
C′ ∈ I(M). Therefore, C ∈ C(M) and C(M) is a (k+1)-complete clutter.

⇐) We take B ⊆ V such that |B| = k. If C ∈ C(M), then |C| = k + 1. This
implies C * B. Hence, B ∈ I(M). Furthermore, if B ( B′, then |B′| ≥ k + 1. So,
there exists B′′ such that B ( B′′ ⊆ B′ with |B′′| = k + 1. Thus, B′′ ∈ C(M) and
B′ /∈ I(M). Consequently, B ∈ B(M) and B(M) is a k-complete clutter. �
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Lemma 3.7 {x1, ..., xk} ∈ ∆∗B(M) if and only if xk+1 · · · xn ∈ I(B(M)).

Proof. We have that {x1, ..., xk} ∈ ∆∗B(M) if and only if {xk+1, ..., xn} /∈ ∆B(M).
Equivalently, there exists b ∈ B(M) such that b ⊆ {xk+1, ..., xn}. This is equivalent
to have m | xk+1 · · · xn, where m = ∏xi∈b xi. Therefore, {x1, ..., xk} ∈ ∆∗B(M) if and
only if xk+1 · · · xn ∈ I(B(M)). �

Proposition 3.8 LetM a matroid. Then F (∆∗B(M′)) = B(M).

Proof. We assume V(M) = {x1, ..., xn}. First, we will prove that: {x1, ..., xk} ∈
F (∆∗) if and only if xk+1 · · · xn ∈ G(I), where I = I(B(M′)) and ∆∗ = ∆∗B(M′).
If {x1, ..., xk} ∈ F (∆∗), then by the previous Lemma there exists m ∈ G(I) such
that m | xk+1 · · · xn. We can assume that m = xk+1 · · · xr with r ≤ n. Hence,
{x1, ..., xk, xr+1, ..., xn} ∈ ∆∗. But {x1, ..., xk} ∈ F (∆∗), therefore r = n and xk+1 · · · xn
∈ G(I). Now, we take xk+1 · · · xn ∈ G(I) and suppose that {x1, ..., xk} /∈ F (∆∗).
Consequently, there exists a facet F in ∆∗ such that {x1, ..., xk} ⊆ F. We can assume
F = {x1, ..., xk, xk+1, ..., xs} with k < s. Thus, xs+1 · · · xn ∈ I, a contradiction since
xk+1 · · · xn ∈ G(I). Therefore, {x1, ..., xk} ∈ F (∆∗)

On the other hand, xk+1 · · · xn ∈ G(I) if and only if {xk+1, ..., xn} ∈ B(M′).
Equivalently, {x1, ..., xk} ∈ B(M). Therefore, {x1, ..., xk} ∈ F (∆∗) if and only if
{x1, ..., xk} ∈ B(M). �

Corollary 3.9 F ∈ F (∆∗B(M′)) if and only if V \ F ∈ F (∆∗B(M)).

Proof. By Proposition 3.8, we have that F ∈ F (∆∗B(M′)) if and only if F ∈ B(M).
In the same way, V \ F ∈ B(M′) if and only if V \ F ∈ F (∆∗B(M′′)). Therefore,
F ∈ F (∆∗B(M′)) if and only if V \ F ∈ F (∆B(M)) sinceM′′ =M, and F ∈ B(M)

if and only if V \ F ∈ B(M′). �

Lemma 3.10 x1 · · · xk ∈ I∆∗B(M)
if and only if {x1, ..., xk} is a vertex cover of B(M).

Proof. We have that x1 · · · xk ∈ I∆∗B(M)
if and only if F = {x1, ..., xk} /∈ ∆∗B(M).

This is equivalent to have V \ F ∈ ∆B(M). That is, V \ F is a stable set of B(M).
Therefore, F = {x1, ..., xk} is a vertex cover of B(M). �
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Proposition 3.11 I∆∗B(M)
= I(b(B(M))) and I∆∗B(M)

= I(C(M′)).

Proof. We take x1 · · · xk ∈ G(I∆∗B(M)
). By Lemma 3.10, {x1, ..., xk} is a vertex cover

of B(M). If {x1, ..., xk} /∈ b(B(M)), then there exists a minimal vertex cover C
such that C ( {x1, ..., xk}. We can assume C = {x1, ..., xr} with r < k. Hence, by
the previous result, x1 · · · xr ∈ I∆∗B(M)

, this is a contradiction. Then {x1, ..., xk} ∈
b(B(M)).

Now, we take that {x1, ..., xk′} ∈ b(B(M)). If x1 · · · xk′ /∈ G(I∆∗B(M)
), then there

exists m ∈ G(I∆∗B(M)
) such that m | x1 · · · xk′ . We can assume m = x1 · · · xr′ with

r′ < k′. Thus, by Lemma 3.10, {x1, ..., xr′} is a vertex cover of B(M). This is a
contradiction implying x1 · · · xk′ ∈ G(I∗B(M)).

Consequently, x1 · · · xk ∈ G(I∆∗B(M)
) if and only if {x1, ..., xk} ∈ b(B(M)). There-

fore, I∆∗B(M)
= I(b(B(M))). Furthermore, by Remark 1.81, we have that I∆∗B(M)

=

I(C(M′)). �

3.3 CLUTTERS WITH A PERFECT MATCHING OF KÖNIG TYPE

The shellable and unmixed clutters with a perfect matching of König type were
studied in [32]. In this section we improve some results given in that paper.

Definition 3.12 Let C be a clutter. We say that e ∈ E(C) satisfies the contention
property if for any two edges f , f ′ ∈ C, we have that f ∩ e ⊆ f ′ ∩ e or f ′ ∩ e ⊆ f ∩ e.
A subset B of E(C) satisfies the contention property if each member of B satisfies
the contention property.

Lemma 3.13 Let C be an unmixed clutter with a perfect matching e1, ..., eg of König
type. If there exists i ∈ {1, ..., g} such that ei does not satisfy the contention pro-
perty, then there is a 4-cycle in C containing ei.

Proof. We assume that there are f1, f2 ∈ E(C) such that f1 ∩ ei 6⊆ f2 ∩ ei and
f2 ∩ ei 6⊆ f1 ∩ ei. Thus, there are a1, b1 ∈ ei such that a1 ∈ ( f1 ∩ ei) \ ( f2 ∩ ei) and
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b1 ∈ ( f2 ∩ ei) \ ( f1 ∩ ei). We take

A = { f ∈ E(C) | f ⊆ ( f1 \ a1) ∪ ( f2 \ b1)}.

Since C is unmixed and by Proposition 1.56 we have that A 6= ∅. Also, we take
A1 = { f ∈ A | ( f \ f1) \ ei 6= ∅}. Suppose that A1 = ∅, then ( f \ f1) ⊆ ei for
all f ∈ A. Now, we take f3 ∈ A such that | f3 \ f1| is minimal. Since f3 ∈ A,
then a1 /∈ f3 and f3 6= f1. Since C is a clutter, then there is b2 ∈ ( f3 \ f1) ⊆ ei.
Furthermore, by Proposition 1.56 there is f4 ∈ E(C) such that f4 ⊆ ( f1 \ a1) ∪ ( f3 \
b2) ⊆ ( f1 \ a1) ∪ ( f2 \ {b1, b2}). Consequently, f4 ∈ A. But f4 \ f1 ⊆ [( f1 \ a1) ∪
( f3 \ b2)] \ f1 = ( f3 \ b2) \ f1 = ( f3 \ f1) \ b2 ( ( f3 \ f1). Hence, | f4 \ f1| < | f3 \ f1|.
This is a contradiction, therefore A1 6= ∅.

Now, we define A2 = { f ∈ A1 | ( f \ f2) \ ei 6= ∅}. We suppose that A2 = ∅,
then ( f \ f2) ⊆ ei for all f ∈ A1. We take f5 ∈ A1, then ( f5 \ f2) ⊆ ei. Since
C is a clutter we have that there is b3 ∈ ( f5 \ f2) ⊆ ei and by Proposition 1.56
there is f6 ⊆ ( f5 \ b3) ∪ ( f2 \ b1). We can assume that | f6 \ f2| is minimal. Since
f5 ∈ A, then b1 /∈ f5. This implies, f6 6= f2. Thus, there exists b4 ∈ ( f6 \ f2) ⊆
[( f5 \ b3) ∪ ( f2 \ b1)] \ f2 = ( f5 \ b3) \ f2 = ( f5 \ f2) \ b3 ⊆ ei. Since C is unmixed
and b4 ∈ ei, then there is f7 ⊆ ( f6 \ b4) ∪ ( f2 \ b1) ⊆ ( f5 \ b3) ∪ ( f2 \ b1). Conse-
quently, ( f7 \ f2) ⊆ [( f6 \ b4) ∪ ( f2 \ b1)] \ f2 = ( f6 \ b4) \ f2 = ( f6 \ f2) \ b4, im-
plying | f7 \ f2| < | f6 \ f2|, this is a contradiction. So A2 6= ∅. We can take f ∈ A2.
Hence, there exist x, y ∈ V(C) such that x ∈ f \ ( f2 ∪ ei) and y ∈ f \ ( f1 ∪ ei). This
implies, x ∈ f1 and y ∈ f2 since f ⊆ ( f1 \ a1) ∪ ( f2 \ b1). Therefore, the incidence
matrix of C has the following submatrix:

ei f1 f2 f
a1 1 1 0 0
b1 1 0 1 0
x 0 1 0 1
y 0 0 1 1

This is a 4-cycle of C containing ei. �

Theorem 3.14 Let C be a clutter with a perfect matching P = {e1, ..., eg} of König
type. P satisfies the contention property if and only if C is an unmixed and does
not have 4-cycles containing ei.

Proof. ⇒) By Theorem 1.69, C is unmixed. Now, we suppose that C has a 4-cycle
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whose edges are f1, f2, f3 and ei. Hence, there exist a, b, c, d ∈ V(C) such that the
incidence matrix of C has the following submatrix:

ei f1 f2 f3
a 1 0 0 1
b 1 1 0 0
c 0 1 1 0
d 0 0 1 1

Hence, b ∈ ( f1 ∩ ei) \ ( f3 ∩ ei) and a ∈ ( f3 ∩ ei) \ ( f1 ∩ ei). This is a contradic-
tion since P satisfies the contention property. Therefore, C does not have 4-cycles
containing ei.

⇐) Now, we assume that there exist f1, f2 ∈ E(C) such that f1 ∩ ei 6⊆ f2 ∩ ei and
f2 ∩ ei 6⊆ f1 ∩ ei for some i ∈ {1, ..., g}. Since C is unmixed, then by Lemma 3.13 we
have that C has at least a 4-cycle containing ei. This is a contradiction. �

Proposition 3.15 Let C be an unmixed clutter with a perfect matching e1, ..., eg of
König type. If C does not have 4-cycles containing ei, then ei has a free vertex.

Proof. Since there is no 4-cycle containing ei, thus by Lemma 3.13, ei satisfies the
contention property. Hence, we can assume that E(C) = { f1, ..., fr, ei} such that
f1 ∩ ei ⊆ f2 ∩ ei ⊆ · · · ⊆ fr ∩ ei ( ei. Therefore, if x ∈ ei \ ( fr ∩ ei), then x is a free
vertex. �

Example 3.16 Let C be a clutter with vertex set V(C) = {a, ..., n} and edges:

e1 = {a, b} e2 = {c, d} e3 = {e, f } e4 = {g, h} e5 = {i, j} e6 = {k, l}
e7 = {m, n} f1 = {a, c} f2 = {b, f } f3 = {c, f } f4 = {c, g, i} f5 = { f , h, j}
f6 = {k, j} f7 = {j, m} f8 = {c, m} f9 = {c, k}

Notice that e1, ..., e7 is a perfect matching. Now, the clutter has the following of
4-cycles:
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f6 f7 f8 f9
c 0 0 1 1
j 1 1 0 0
k 1 0 0 1
m 0 1 1 0

e1 f1 f2 f3
a 1 1 0 0
b 1 0 1 0
c 0 1 0 1
f 0 0 1 1

e4 e5 f4 f5
g 1 0 1 0
h 1 0 0 1
i 0 1 1 0
j 0 1 0 1

First 4-cycle does not contain ei, the second contains one ei and the third 4-cycle
contains two ei’s.

Corollary 3.17 Let C be an unmixed clutter with a perfect matching P = {e1, ..., eg}
of König type. If the 4-cycles of C do not contain ei’s, then P satisfies the contention
property.

Proof. By Theorem 3.14, C satisfies the contention property. �

Theorem 3.18 Let C be a clutter with a perfect matching P = {e1, ..., eg} of König
type. If C is an unmixed clutter without 4-cycles with ei’s, then ∆C is pure shellable.

Proof. By Corollary 3.17, P satisfies the contention property. Hence, by Theorem
1.70 ∆C is pure shellable. �

Example 3.19 The converse of Theorem 3.18 is not true. Let C be a clutter with
vertex set V(C) = {a, b, c, d, e, f , g, h} and edges

e1 = {a, b, c, d}, e2 = {e, f }, e3 = {g, h}, f1 = {e, g}, f2 = {d, e}, f3 = {a, b, g}.

Hence, e1, e2, e3 is a perfect matching of König type. ∆C has the following shelling:

F1 = {b, c, d, f , h} F2 = {b, c, d, f , g} F3 = {a, c, d, f , g} F4 = {a, c, d, f , h}
F5 = {a, b, c, f , h} F6 = {a, b, c, e, h} F7 = {a, b, d, f , h}

Therefore, ∆C is a pure shellable simplicial complex. But C has the following 4-
cycle containing e1.
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e1 f1 f2 f3
a 1 0 0 1
d 1 0 1 0
e 0 1 1 0
g 0 1 0 1

Theorem 3.20 Let C be a König clutter with a maximum matching P = {e1, ..., eg}
such that it does not have 4-cycles with some ei. Then the following conditions are
equivalent:

(a) C is unmixed.

(b) P is a perfect matching of C with ht(I(C)) = g and every ei ∈ P has a free
vertex for all i, and P satisfies the contention property.

(c) ∆C is a pure shellable simplicial complex.

(d) R/I(C) is Cohen-Macaulay.

Proof. (a)⇒(b) Using Lemma 1.55 we have that e1, ..., eg is a perfect matching and
g = ht(I(C)). By Theorem 3.14, C satisfies the contention property. Consequently,
by Proposition 3.15, every ei has a free vertex for all i ∈ {1, ..., g}.

(b)⇒(a) We have that e1, ..., eg is a perfect matching of König type and C satisfies
the contention property. By Theorem 3.14, C is unmixed.

(b)⇒(c) Since (a) and (b) are equivalent, then C is unmixed. By Theorem 3.18, ∆C
is pure shellable.

(c)⇒(d) and (d)⇒(a) By Theorem 1.33. �

Proposition 3.21 Let C be an unmixed clutter with a perfect matching e1, ..., eg of
König type. If A is a stable set of C, then:

(a) If I(C) = ⋂p
i=1(Di), then I(C/A) =

⋂
A∩Di=∅

(Di).

(b) C/A is unmixed with a perfect matching e′1, ..., e′g of König type such that e′i ⊆
ei for all i and every vertex of ei \ e′i is isolated in C/A.
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(c) If C does not have 4-cycles with two ei’s, then C/A does not have 4-cycles with
two ei’s.

(d) If C is shellable, then C/A is shellable.

Proof. (a) We take A = {x1, ...., xk}. By induction on k. If k = 1, then by Remark
1.60 the edge ideal of C/x1 is (I(C) : x1) =

⋂
xi /∈Di

(Di) since x1 /∈ I(C). If k ≥ 2, we
take A′ = {x1, ..., xk−1}, by induction hypothesis

C/A′ = ((· · · (((I : x1) : x2) : x3) · · · ) : xk−1)

and I(C/A) =
⋂

A∩Di=∅(Di) and xi /∈ I(C) for all xi ∈ A′. By Remark 1.60 the
edge ideal of C/A = ((· · · (((C/x1)/x2)/x3) · · · )/xk−1)/xk is

I(C/A) =
⋂

xi /∈Di=∅

(Di) = (((· · · (((I : x1) : x2) : x3) · · · ) : xk−1) : xk)

and A′ ∩ Di = ∅, then A′ ∪ {xk} ∩ Di = ∅. Hence, I(C/A) =
⋂

A∩Di=∅
(Di). Fur-

thermore, for all f ∈ E(C) we have that f /∈ A. Consequently, (A) is not generated
by I(C).

(b) By (a) the minimal vertex covers of C/A are D1, ..., Dp with A ∩ Dk = ∅ for
k ∈ {1, ..., p} and |Dk| = |Dk′ | for k, k′ ∈ {1, ..., p}. Then, C/A is unmixed. By
Proposition 1.59 C/A has a perfect matching e′1, ..., e′g of König type such that e′i ⊆ ei
for all i, and every vertex of ei \ e′i is isolated in C/A.

(c) We assume that C/A has a 4-cycle with e′i and e′j, then there exist a, b, c, d ∈
V(C/A) and f ′1, f ′2 ∈ E(C/A) with the following incidence submatrix:

e′i e′j f ′1 f ′2
a 1 0 1 0
b 1 0 0 1
c 0 1 1 0
d 0 1 0 1

Therefore, C has a 4-cycle with ei and ej with the following incidence matrix:
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ei = e′i or e′i ∪ σ1 ej = e′j or e′j ∪ σ2 f1 = f ′1 or f ′1 ∪ σ3 f2 = f ′2 or f ′2 ∪ σ4

a 1 0 1 0
b 1 0 0 1
c 0 1 1 0
d 0 1 0 1

For σi ⊆ A, i ∈ {1, 2, 3, 4}. This is a contradiction.

(d) The result follow by (a) and Lemma 1.67. �

Definition 3.22 Let C be a clutter with a perfect matching P = {e1, ..., eg}. P has
the quasi contention property if for every pair of edges f1, f2, there exists i ∈ {1, ..., g}
such that f1 ∩ ej ⊆ f2 ∩ ej or f2 ∩ ej ⊆ f1 ∩ ej for each j ∈ {1, ..., g} \ {i}.

Proposition 3.23 Let C be a clutter with a perfect matching P = {e1, ..., eg} of König
type, then C does not have 4-cycles with two ei’s if and only if P has the quasi
contention property.

Proof. P does not have the quasi contention property if and only if there are f1, f2 ∈
E(C) and ei, ej such that ei ∩ f1 * ei ∩ f2 and ei ∩ f2 * ei ∩ f1, ej ∩ f1 * ej ∩ f2 and
ej ∩ f2 * ej ∩ f1. Equivalently, there are x1 ∈ (ei ∩ f1) \ (ei ∩ f2), x2 ∈ (ei ∩ f2) \
(ei ∩ f1), x3 ∈ (ej ∩ f1) \ (ej ∩ f2) and x4 ∈ (ej ∩ f2) \ (ej ∩ f1). This is equivalent to
that ei, ej, f1, f2 form the following 4-cycle.

ei ej f1 f2

x1 1 0 1 0
x2 1 0 0 1
x3 0 1 1 0
x4 0 1 0 1

Furthermore, every 4-cycle with two ei’s has the same form, since P is a matching.
Therefore, P has the quasi contention property if and only if there are no 4-cycles
with two ei’s. �

Definition 3.24 Let C be a clutter with a perfect matching P = {e1, ..., eg} of König
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type and a 4-cycle Q with edges f1, f2, ei and ej. We say that an edge f3 is a diagonal
of Q if f3 /∈ P and there exist k ∈ {1, ..., g} and a, b ∈ ek such that f3 ⊆ ( f1 \ a) ∪
( f2 \ b), a ∈ ( f1 \ f2) and b ∈ ( f2 \ f1).

Definition 3.25 Let C be a clutter with a perfect matching P = {e1, ..., eg} of König
type. A complete 4-cycle of size k is a set of edges e1, ..., ek, f1, f2 where ei1 , ..., eik ∈ P
and ( f1 ∩ ei) ∪ ( f2 ∩ ei) = ei for all i ∈ {1, ..., k}. We say C is a complete 4-cycle if
k = g.

Lemma 3.26 Let C be an unmixed clutter with a perfect matching e1, ..., eg of König
type. If C has a 4-cycle with two e′is without a diagonal, then C has a complete
4-cycle.

Proof. Let f1, f2, ei, ej be edges of a 4-cycle of C, then there are x1 ∈ (ei ∩ f1) \ (ei ∩
f2) and x2 ∈ (ei ∩ f2) \ (ei ∩ f1). Since C is unmixed there exists an edge f such that
f ⊆ ( f1 \ x1) ∪ ( f2 \ x2), since the 4-cycle does not have a diagonal, then f = ek for
any k ∈ {1, ..., g}. Therefore, ( f1 ∩ ek) ∪ ( f2 ∩ ek) = ek. Similarly for ej, there is el
with l ∈ {1, ..., g} such that ( f1 ∩ el) ∪ ( f2 ∩ el) = el. Therefore, C has a complete
4-cycle with edges f1, f2, el, ek. �

Example 3.27 Let C be a clutter with vertex set V(C) = {a, ..., l} and edges e1 =
{a, b, c}, e2 = {d, e, f }, e3 = {g, h, i}, e4 = {j, k, l}, f1 = {a, b, d, e, g}, f2 = {c, f , l},
f3 = {g, i, l}. C has a complete 4-cycle with edges f1, f2, e1, e2. C does not have one
diagonal since i ∈ f3 and i /∈ ( f1 \ x) ∪ ( f2 \ y) for all x ∈ f1 and y ∈ f2.

The stable sets of C are: F1 = {a, c, d, e}, F2 = {b, c, d, e}, F3 = {a, b, d, f }, F4 =
{a, b, e, f }

Hence, C is not shellable.

With this example we can conjecture that if a clutter C has a 4-cycle Q and does not
have a diagonal, then the clutter is not shellable.

Question 3.28 Are there unmixed shellables clutters that have a 4-cycle without a
diagonal?
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Remark 3.29 A pseudoisolated vertex z, f = {z}, does not affect the shellability of
the clutter C since z ∈ D for all minimal vertex covers of C, hence z is not in the
stable sets of C, that is, z /∈ V(C) \ D = F.

Example 3.30 Let C be a clutter whose edges are:

e1 = {a, b} e2 = {c, d} e3 = {e, f }
f1 = {a, c} f2 = {b, d} f3 = {c, e} f4 = {d, f } f5 = {b, e} f6 = {a, f }

C has maximal stable sets F1 = {a, d, e}, F2 = {b, c, f }. Thus, C is not shellable.

Example 3.31 Let C be the clutter:

e1 = {a, b} e2 = {c, d} e3 = {e, f } e4 = {g, h}
f1 = {a, c} f2 = {b, d} f3 = {c, e} f4 = {d, f } f5 = {b, e} f6 = {a, f }
f7 = {c, g} f8 = { f , g} f9 = {b, g} f10 = {a, h} f11 = {e, h} f12 = {d, h}

The maximal stable sets of C are: F1 = {b, c, f , h} and F2 = {a, d, e, g}. Thus, C is
not shellable.
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