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Resumen

Sean K un campo y X (resp. X∗) un subconjunto del espacio proyectivo Ps−1 (resp.
espacio af́ın As) sobre el campo K, parametrizado por funciones racionales. Sea I(X)
(resp. I(X∗)) el ideal anulador de X (resp. X∗). Una de las principales contribuciones
de esta tesis consiste en determinar fórmulas para I(X) (resp. I(X∗)), con el fin de cal-
cular sus invariantes algebraicos usando teoŕıa de eliminación y bases de Gröbner. Las
fórmulas para los ideales anuladores sobre campos finitos que proporcionamos en este tra-
bajo, fueron descubiertas haciendo experimentos con Macaulay2; estamos especialmente
interesados en este caso debido a su relación con la teoŕıa algebraica de códigos. También
consideramos a los conjuntos X y X∗ en Ps−1 y As, respectivamente, parametrizados
por funciones racionales sujetas a ciertas restricciones. Posteriormente usamos nuestros
resultados para estudiar: el grado y la estructura de los ideales anuladores, la cerradura
proyectiva de X∗ y los parámetros básicos de códigos tipo Reed-Muller afines y proyec-
tivos. Cabe destacar que recuperamos algunos resultados para ideales anuladores con
parametrizaciones monomiales.

Sea K = Fq un campo finito. Introducimos una familia de códigos tipo Reed-Muller,
llamados códigos proyectivos de Segre. Usando métodos de álgebra conmutativa y álgebra
lineal, estudiamos sus parámetros básicos y demostramos que dichos códigos son productos
directos de códigos tipo Reed-Muller. Como una consecuencia inmediata recuperamos
algunos resultados acerca de códigos proyectivos tipo Reed-Muller sobre la variedad de
Segre y sobre el toro proyectivo.

Caracterizamos, en términos algebraicos y geométricos, cuándo un ideal anulador gra-
duado es generado por binomios sobre cualquier campo K. Después damos una clasifi-
cación de los ideales anuladores de intersección completa en conjuntos parametrizados de
tipo clutter sobre campos finitos.
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Abstract

Let K be a field and let X (resp. X∗) be a subset of a projective space Ps−1 (resp. affine
space As), over the field K, parameterized by rational functions. Let I(X) (resp. I(X∗))
be the vanishing ideal of X (resp. X∗). Some of the main contributions of this thesis are in
determining formulas for I(X) (resp. I(X∗)) to compute their algebraic invariants using
elimination theory and Gröbner bases. The formulas for vanishing ideals over finite fields
that we give in this work were discovered by making experiments with Macaulay2, we are
specially interested in this case because of its relation to algebraic coding theory. We also
consider sets X and X∗ in Ps−1 and As, respectively, parameterized by rational functions
which are subject to some restrictions. Then we use our results to study: the degree
and structure of vanishing ideals, the projective closure of X∗, and the basic parameters
of affine and projective Reed-Muller-type codes. We recover some results for vanishing
ideals over monomial parameterizations.

Let K = Fq be a finite field. We introduce a family of projective Reed-Muller-type
codes called projective Segre codes. Using commutative algebra and linear algebra meth-
ods, we study their basic parameters and show that they are direct products of projective
Reed-Muller-type codes. As a consequence we recover some results on projective Reed-
Muller-type codes over the Segre variety and over projective tori.

We characterize, in algebraic and geometric terms, when a graded vanishing ideal
is generated by binomials over any field K. Then we give a classification of complete
intersection vanishing ideals on parameterized sets of clutter type over finite fields.
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Introduction

This dissertation studies the structure of vanishing ideals over rational parameterizations
over arbitrary fields, and their algebraic invariants (degree, regularity, Hilbert function)
and algebraic properties (complete intersection). The structure of binomial vanishing
ideals and complete intersection vanishing ideals is studied in this thesis. We are specially
interested in the case that the field is finite because of its relation to algebraic coding
theory. We are also interested in studying the corresponding Reed-Muller-type codes
associated to vanishing ideals over finite fields and in examining their basic parameters
(length, dimension, minimum distance, generalized Hamming weights). Special attention
is given to examine the family of projective Segre codes and the role that Segre products
and direct product codes play in this setting.

Contents of Chapter 1 In this chapter, we present some of the results that will be
needed throughout this work and introduce some notation. All results of this chapter are
well-known.

We recall some necessary preliminaries on algebraic geometry and commutative al-
gebra. Some of the main topics are graded modules, Gröbner bases, projective closure,
vanishing ideals, and Hilbert functions. We introduce the algebraic invariants of affine
and graded algebras (regularity, degree, Hilbert polynomial), and examine some of their
properties.

Then we introduce the family of projective Reed-Muller-type codes, examine their
basic parameters (length, dimension, minimum distance), and explain how the basic pa-
rameters relate to Hilbert functions and vanishing ideals (see Proposition 1.5.3). Finally
we study the vanishing ideal of the projective closure of an affine set and its connection to
Gröbner bases. This will allows us to link affine and projective Reed-Muller-type codes,
and affine and graded algebras (see Propositions 1.5.3, 1.4.21, and 1.5.4).

Contents of Chapter 2 In this chapter we extend the scope of [49, 52] to include
vanishing ideals of sets in affine and projective spaces parameterized by rational functions
over finite fields. We also include the case of rational parameterizations over infinite fields
which is treated in a slightly different way than that of [9, Chapter 3] because here we
emphasize the role of vanishing ideals in the implicitization problem when the field is
infinite.
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Let R = K[y] = K[y1, . . . , yn] be a polynomial ring over an arbitrary field K and
let F be a finite set {f1/g1, . . . , fs/gs} of rational functions in K(y), the quotient field
of R, where fi (resp. gi) is in R (resp. R \ {0}) for all i. As usual we denote the
affine and projective spaces over the field K by As and Ps−1, respectively. Points of the
projective space Ps−1 are denoted by [α], where 0 6= α ∈ Ks. We consider the following
sets parameterized by these rational functions:

(i) X is the set of all points [(f1(x)/g1(x), . . . , fs(x)/gs(x))] in Ps−1 that are well defined,
i.e., x ∈ Kn, fi(x) 6= 0 for some i, and gi(x) 6= 0 for all i. We call X the projective
set parameterized by F .

(ii) X is the set of all points [(f1(x)/g1(x), . . . , fs(x)/gs(x))] in Ps−1 such that x ∈ Kn

and fi(x)gi(x) 6= 0 for all i. We call X the projective algebraic set parameterized by
F .

(iii) X∗ is the set of all points (f1(x)/g1(x), . . . , fs(x)/gs(x)) in As such that x ∈ Kn and
gi(x) 6= 0 for all i. We call X∗ the affine set parameterized by F .

(iv) X∗ is the set of all points (f1(x)/g1(x), . . . , fs(x)/gs(x)) in As such that x ∈ Kn and
fi(x)gi(x) 6= 0 for all i. We call X∗ the affine algebraic set parameterized by F .

(v) φ(X∗) (resp. φ(X∗)), is the projective closure of X∗ (resp. X∗), where φ : As → Ps
is the map given by α 7→ [(α, 1)].

The reason we are calling X and X∗ the projective algebraic set and affine algebraic
set, respectively, is to remind us that in certain cases X and X∗ are algebraic groups
acting on X and X∗, respectively (e.g., when K = C and fi, gi are monomials for all i).

Let S = K[t1, . . . , ts] = ⊕∞d=0Sd be a polynomial ring over the field K with the standard
grading. The graded ideal I(X) (resp. I(X)) generated by the homogeneous polynomials
of S that vanish at all points of X (resp. X) is called the vanishing ideal of X (resp. X).
The vanishing ideal I(X∗) (resp. I(X∗)) is the ideal of S of all polynomials that vanish at
all points of X∗ (resp. X∗). Thus S/I(X) is a graded ring and S/I(X∗) is an affine ring.

There are good reasons to study vanishing ideals and their algebraic invariants (degree,
Hilbert polynomial, regularity) over infinite and finite fields. They are used in algebraic
geometry [34] and algebraic coding theory [29]. They are also used in polynomial interpo-
lation problems as we briefly explain. Let d ≥ 1 be an integer and let Y = {P1, . . . , Pm}
be a set of m points in the affine space As.

Interpolation problem Given scalars b1, . . . , bm in K, i.e., given (b1, . . . , bm) in Am, can we
find a polynomial f ∈ S of degree at most d such that f(Pi) = bi for all i ?

The answer to this problem can be given in terms of the regularity of S/I(Y ). The
answer is positive if and only if d ≥ rega S/I(Y ) (see Section 1.5). Since the regularity
of the affine ring S/I(Y ) is at most m − 1 the answer is positive if d = m − 1. The
construction of an interpolating polynomial f is a difficult task except when s = 1. For
information about algebraic and computational aspects of polynomial interpolation in
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several variables see the survey article [19, Section 6] and [57]. For the interpolation
problem over finite fields see [36].

The parameterized sets X and X∗, and their vanishing ideals, were studied in [52] and
[44], respectively, when fi and gi are monomials of K[y] for all i and K is a finite field,
i.e., when X and X∗ are parameterized by Laurent monomials over a finite field.

The contents of this chapter are as follows. In Section 2.1 we give a formula for
the presentation ideal of the subring K[F ] ⊂ K(y), which is related to the rational
implicitization problem [9, Theorem 2, p. 131] (see Proposition 2.1.2). It is known that
the degree of a monomial subring K[F ] is independent of the field K [51]. When F is
a set of polynomials this is no longer true, we show an example where the degree of the
subring K[F ] depends on K (see Example 2.1.4).

Some of the main contributions of this chapter are in determining formulas for the
vanishing ideals of the parameterized sets X, X, X∗, X∗ introduced above (see Theo-
rems 2.2.5, 2.2.10, 2.2.11, and 2.2.13 for the case of infinite fields, and Theorems 2.3.7,
2.3.10, 2.3.12, and 2.3.14 for the case of finite fields). For finite fields the first formulas
for I(X) and I(X∗) were given in [52, Theorems 2.1] and [44, Theorem 3.4], respectively,
when X and X∗ are parameterized by monomials. We show the following relations among
vanishing ideals

(I(X) : t1 · · · ts) = I(X) and (I(X∗) : t1 · · · ts) = I(X∗),

that is I(X) (resp. I(X∗)) is the colon ideal of I(X) (resp. I(X∗)) with respect to t1 · · · ts
(see Definition 1.3.20, and Propositions 2.3.9 and 2.3.13).

Using the computer algebra system Macaulay2 [30], our results can be used to compute
the degree, regularity, Hilbert polynomial, and a Gröbner basis of a vanishing ideal over a
rational parameterization over a field K (see Example 2.3.17). By the algebraic methods
introduced in [52] (see Chapter 1), our results can also be used to compute the length and
the dimension of a Reed-Muller-type code over a rational parameterization over a finite
field K (see Example 2.3.18). The formulas for vanishing ideal over finite fields that we
give in this chapter were discovered by making experiments with Macaulay2.

Our main results are also useful from a theoretical point of view as we now explain.
We are able to show the following results about the structure of vanishing ideals:

(a) Let K be an infinite field and let I ⊂ S be a graded ideal. Then I is the vanishing
ideal of a projective set in Ps−1 parameterized by Laurent monomials if and only if I is a
prime ideal of S generated by binomials (see Corollary 2.2.8), i.e., I is a vanishing ideal
if and only if I is a toric ideal in the sense of [61, p. 31].

(b) If K is an algebraically closed field and X∗ is parameterized by Laurent monomials,
using a result of Katsabekis and Thoma [39, 40], we show that the Zariski closure X∗ is
parameterized by Laurent monomials (see Corollary 2.2.15).

(c) If K is an infinite field, we give a method to compute the degree of S/I(φ(X∗)),
without using Gröbner bases, for any affine set X∗ in As parameterized by Laurent mono-
mials (see Corollary 2.2.21 and Remark 2.2.22). As an application we use this method
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to give a formula for the degree of the projective closure of a monomial curve (see Corol-
lary 2.2.23).

(d) Let K = Fq be a finite field. If X, X, X∗, X∗ are parameterized by Laurent
monomials, then I(X), I(X), I(X∗), I(X∗) are binomial ideals (see Corollary 2.3.20).

(e) Let K = Fq be a finite field. If X is a projective set parameterized by Laurent
monomials, then I(X) is a radical Cohen-Macaulay binomial ideal of dimension 1 (see
Corollary 2.3.21).

As another application we recover the following result:

(f) [52, Theorem 2.1] Let K = Fq be a finite field. If X is a projective algebraic
set parameterized by Laurent monomials, then I(X) is a radical Cohen-Macaulay lattice
ideal of dimension 1 (see Corollary 2.3.22). The converse is true by [49, Proposition 6.7].

We give a family of ideals where the converse of (e) is true; see Proposition 2.3.25.
This leads us to pose the following conjecture.

Conjecture Let K = Fq be a finite field and let Y be a subset of Ps−1. If I(Y) is a
binomial ideal, then Y is a projective set parameterized by Laurent monomials (see Con-
jecture 2.3.26).

This conjecture fails for infinite fields (see Example 2.2.9).

For a finite field K = Fq there are some rational parameterizations where the algebraic
invariants and explicit sets of generators for I(X), I(X), I(X∗), and I(X∗) are known.
The simplest and more natural parameterization by rational functions occurs when fi = yi
and gi = 1 for all i. In this case one has the following well-known descriptions [29, 37, 52,
55, 59]:

(i) X = Ps−1, deg S/I(X) = (qs − 1)/(q − 1), regS/I(X) = (s− 1)(q − 1) + 1, and

I(X) = (tqi tj − tit
q
j | 1 ≤ i < j ≤ s),

(ii) X = T , deg S/I(X) = (q − 1)s−1, regS/I(X) = (s− 1)(q − 2), and

I(X) = (tq−1i − tq−1j | 1 ≤ i < j ≤ s),

(iii) X∗ = As = Ks, deg S/I(X∗) = qs, rega S/I(X∗) = s(q − 1), and

I(X∗) = (tqi − ti| i = 1, . . . , s),

(iv) X∗ = T ∗ = (K∗)s, deg S/I(X∗) = (q − 1)s, rega S/I(X∗) = s(q − 2),

I(X∗) = (tq−1i − 1| i = 1, . . . , s),

where T and T ∗ are the affine and projective torus respectively, that is, T ∗ = (K∗)s,
K∗ = K \{0}, and T is the image of T ∗ under the map As → Ps−1, α 7→ [α]. In these four
cases the minimum distance and the dimension of the corresponding Reed-Muller-type
codes are also known (see [29, 52, 55, 59] and the references therein).
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This suggests the following:

Problem If K = Fq and fi/gi = yvi is a Laurent monomial for all i, find formulas for the
algebraic invariants of a vanishing ideal and for the basic parameters of a Reed-Muller-
type code of degree d, over the corresponding parameterization, in terms of s, q, d, and
the combinatorics of v1, . . . , vs.

This is an open problem where our results can be used to try to find formulas for the
degree and the regularity of vanishing ideals (see Problem 2.3.29 and the discussion that
follows), and for the dimension and length of Reed-Muller-type codes over finite fields.
The degree is the easiest invariant to compute. Formulas for the degree of S/I(X) are
known when yv1 , . . . , yvs are square-free monomials of degree 2 [50]. The regularity is
harder to compute. Some formulas for the regularity of S/I(X) are known when X is
parameterized by the edges of a graph (see [28, 49, 50] and the references therein).

If fi, gi are monomials for all i, the sets X and X are related as follows (a similar
relation holds for X∗ and X∗). Notice that in this situation X is a multiplicative group
under componentwise multiplication. The group X acts on X by multiplication:

X × X→ X, ([α], [γ]) 7→ [α] · [γ],

where [α] = [(α1 . . . , αs)], [γ] = [(γ1, . . . , γs)] and [α] · [γ] = [(α1γ1, . . . , αsγs)]. If K = Fq
is a finite field one can use this action to find a formula for the degree of I(X) when X is
parameterized by the edges of a complete graph or by the edges of a complete bipartite
graph (see Propositions 2.3.27 and 2.3.28).

Contents of Chapter 3 Reed-Muller-type evaluation codes have been extensively stud-
ied using commutative algebra methods (e.g., Hilbert functions, resolutions, Gröbner
bases); see [7, 20, 52] and the references therein. In this work we use these methods—
together with linear algebra techniques—to study projective Segre codes over finite fields.
There are other works that have studied evaluation codes from the commutative algebra
perspective [3, 33, 65].

Let K be an arbitrary field, let a1, a2 be two positive integers, let Pa1−1, Pa2−1 be
projective spaces over K, and let K[x] = K[x1, . . . , xa1 ], K[y] = K[y1, . . . , ya2 ], K[t] =
K[t1,1, . . . , ta1,a2 ] be polynomial rings with the standard grading. If d ∈ N, let K[t]d
denote the set of homogeneous polynomials of total degree d in K[t], together with the
zero polynomial. Thus K[t]d is a K-linear space and K[t] = ⊕∞d=0K[t]d. In this grading
each ti,j is homogeneous of degree one.

Given Xi ⊂ Pai−1, i = 1, 2, denote by I(X1) (resp. I(X2)) the vanishing ideal of X1

(resp. X2) generated by the homogeneous polynomials of K[x] (resp. K[y]) that vanish
at all points of X1 (resp. X2). The Segre embedding is given by

ψ : Pa1−1 × Pa2−1 → Pa1a2−1

([α1, . . . , αa1 ], [β1, . . . , βa2 ]) → [(αiβj)],

where [(αiβj)] := [(α1β1, α1β2, . . . , α1βa2 , . . . , αa1β1, αa1β2, . . . , αa1βa2)]. The map ψ is
well-defined and injective [35, p. 13]. The image of X1 × X2 under the map ψ, denoted
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by X, is called the Segre product of X1 and X2. The vanishing ideal I(X) of X is a graded
ideal of K[t], where the ti,j variables are ordered as t1,1, . . . , t1,a2 , . . . , ta1,1, . . . , ta1,a2 . The
Segre embedding is used in algebraic geometry to show that the product of projective
varieties is again a projective variety, see [34, Lecture 2]. If Xi = Pai−1 for i = 1, 2, the set
X is a projective variety and is called a Segre variety [34, p. 25]. The Segre embedding is
used in coding theory to study the generalized Hamming weights of some product codes;
see [58] and the references therein.

The contents of Chapter 3 are as follows. Let K = Fq be a finite field. In Section 3.1
we introduce linear codes and recall two results about the basic parameters and the second
generalized Hamming weight of direct product codes (see Theorems 3.1.1 and 3.1.2). Then
for an arbitrary field K we show that K[t]/I(X) is the Segre product of K[x]/I(X1) and
K[y]/I(X2) (see Definition 3.2.1 and Theorem 3.2.3). The Segre product of these two
graded algebras is a subalgebra of

(K[x]/I(X1))⊗K (K[y]/I(X2)),

the tensor product algebra. Segre products have been studied by many authors; see
[13, 29, 38] and the references therein. We give full proofs of two results for which we could
not find a reference with the corresponding proof (see Lemma 3.1.4 and Theorem 3.2.3).
Apart from this all results of this section are well known.

If K = Fq is a finite field, we introduce a family {CX(d)}d∈N of projective Reed-
Muller-type codes that we call projective Segre codes (see Definition 3.3.1). It turns
out that CX(d) is isomorphic to K[t]d/I(X)d, as K-vector spaces, where I(X)d is equal
to I(X) ∩ K[t]d. Accordingly CX1(d) ' K[x]d/I(X1)d and CX2(d) ' K[y]d/I(X2)d. In
Section 3.3 we study the basic parameters (length, dimension, minimum distance) and the
second generalized Hamming weight of projective Segre codes. Our main result expresses
the basic parameters of CX(d) in terms of those of CX1(d) and CX2(d), and shows that
CX(d) is the direct product of CX1(d) and CX2(d) (see Theorem 3.3.2); this means that the
direct product of two projective Reed-Muller-type codes of degree d is again a projective
Reed-Muller-type code of degree d.

Formulas for the basic parameters of affine and projective Reed-Muller-type codes are
known for a number of families [8, 10, 11, 12, 21, 23, 24, 27, 29, 43, 55, 59]. Since affine
Reed-Muller-type codes can be regarded as projective Reed-Muller-type codes [44], our
results can be applied to obtain explicit formulas for the basic parameters of CX(d) if
CX1(d) is in one of these families and CX2(d) is in another of these families or both are in
the same family.

As an application we recover some results on Reed-Muller-type codes over projective
tori and over the Segre variety [24, 25, 26, 29]. If K∗ = K \ {0} and Xi is the image of
(K∗)ai , under the map (K∗)ai → Pai−1, x→ [x], we call Xi a projective torus in Pai−1. In
particular: If X1 = Pa1−1 and X2 = Pa2−1, using Theorem 3.3.2 we recover the formula
for the minimum distance of CX(d) given in [29, Theorem 5.1], and if Xi is a projective
torus for i = 1, 2, using Theorem 3.3.2 we recover the formula for the minimum distance
of CX(d) given in [24, Theorem 5.5]. In these two cases formulas for the basic parameters
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of CXi(d), i = 1, 2, are given in [59, Theorem 1] and [55, Theorem 3.5], respectively.
We also recover the formulas for the second generalized Hamming weight given in [25,
Theorem 5.1] and [26, Theorem 3] (see Corollary 3.3.6).

Contents of Chapter 4 Let S = K[t1, . . . , ts] be a polynomial ring over a field K with
the standard grading induced by setting deg(ti) = 1 for all i. By the dimension of an
ideal I ⊂ S we mean the Krull dimension of S/I. The affine and projective spaces over
the field K of dimensions s and s− 1 are denoted by As and Ps−1, respectively. Points of
Ps−1 are denoted by [α], where 0 6= α ∈ As.

Given a set Y ⊂ Ps−1 define I(Y), the vanishing ideal of Y, as the graded ideal
generated by the homogeneous polynomials in S that vanish at all points of Y. Conversely,
given a homogeneous ideal I ⊂ S define V (I), the zero set of I, as the set of all [α] ∈ Ps−1
such that f(α) = 0 for all homogeneous polynomial f ∈ I. The zero sets are the closed
sets of the Zariski topology of Ps−1. The Zariski closure of Y is denoted by Y.

We will use the following multi-index notation: for a = (a1, . . . , as) ∈ Zs, set ta =
ta11 · · · tass . We call ta a Laurent monomial . If ai ≥ 0 for all i, ta is called a monomial of
S. A binomial of S is an element of the form f = ta − tb, for some a, b in Ns. An ideal
I ⊂ S generated by binomials is called a binomial ideal . A binomial ideal I ⊂ S with the
property that ti is not a zero-divisor of S/I for all i is called a lattice ideal .

In this chapter we classify binomial vanishing ideals in algebraic and geometric terms.
There are some reasons to study vanishing ideals. They are used in algebraic geometry
[34] and algebraic coding theory [29, 43]. They are also used in polynomial interpolation
problems [19, 36, 63].

The set S = Ps−1 ∪ {[0]} is a monoid under componentwise multiplication, that is,
given [α] = [(α1, . . . , αs)] and [β] = [(β1, . . . , βs)] in S, the product operation is given by

[α] · [β] = [α · β] = [(α1β1, . . . , αsβs)],

where [1] = [(1, . . . , 1)] is the identity element. Accordingly the affine space As is also a
monoid under componentwise multiplication.

The contents of this chapter are as follows. Let Y be a subset of Ps−1. If Y ∪ {[0]}
is a submonoid of Ps−1 ∪ {[0]}, we show that I(Y) is a binomial ideal (Theorem 4.2.1).
The same type of result holds if Y is a subset of As (Remark 4.2.3). Then we show that
I(Y) is a binomial ideal if and only if V (I(Y)) ∪ {[0]} is a monoid under componentwise
multiplication (Theorem 4.2.4). As a result if Y is finite, then I(Y) is a binomial ideal
if and only if Y ∪ {0} is a monoid (Corollary 4.2.5). This essentially classifies all graded
binomial vanishing ideals of dimension 1 (Corollary 4.2.6)

If Y is a submonoid of an affine torus (see Definition 4.2.7), then I(Y ) is a non-graded
lattice ideal [16, Proposition 2.3]. We give a graded version of this result, namely, if Y is
a submonoid of a projective torus, then I(Y) is a lattice ideal (Corollary 4.2.8).

Let I(Y) be a vanishing ideal of dimension 1. According to [49, Proposition 6.7(a)] I(Y)
is a lattice ideal if and only if Y is a finite subgroup of a projective torus. We complement
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this result by showing that—over an algebraically closed field—Y is a finite subgroup of
a projective torus if and only if there is a finite subgroup H of K∗ = K \{0} and Laurent
monomials yv1 , . . . , yvs that parameterize Y relative to H (Proposition 4.2.10). For finite
fields, this result was shown in [49, Proposition 6.7(b)].

Finally, we classify the graded lattice ideals of dimension 1 over an algebraically closed
field of characteristic zero. It turns out that they are the vanishing ideals of finite sub-
groups of projective tori (Proposition 4.2.13).

Contents of Chapter 5 Let R = K[y] = K[y1, . . . , yn] be a polynomial ring over a
finite field K = Fq and let yv1 , . . . , yvs be a finite set of monomials in K[y]. As usual
we denote the affine and projective spaces over the field K of dimensions s and s− 1 by
As and Ps−1, respectively. Points of the projective space Ps−1 are denoted by [α], where
0 6= α ∈ As.

We consider a set X, in the projective space Ps−1, parameterized by yv1 , . . . , yvs . The
set X consists of all points [(xv1 , . . . , xvs)] in Ps−1 that are well defined, i.e., x ∈ Kn and
xvi 6= 0 for some i. The set X is called of clutter type if supp(yvi) 6⊂ supp(yvj) for i 6= j,
where supp(yvi) is the support of the monomial yvi consisting of the variables that occur
in yvi . In this case we say that the set of monomials yv1 , . . . , yvs is of clutter type. This
terminology comes from the fact that the condition supp(yvi) 6⊂ supp(yvj) for i 6= j means
that there is a clutter C, in the sense of [55], with vertex set V (C) = {y1, . . . , yn} and edge
set

E(C) = {supp(yv1), . . . , supp(yvs)}.

A clutter is also called a simple hypergraph, see Definition 5.2.7.

Let S = K[t1, . . . , ts] = ⊕∞d=0Sd be a polynomial ring over the field K with the standard
grading. The graded ideal I(X) generated by the homogeneous polynomials of S that
vanish at all points of X is called the vanishing ideal of X.

There are good reasons to study vanishing ideals over finite fields. They are used
in algebraic coding theory [29] and in polynomial interpolation problems [19, 63]. The
Reed-Muller-type codes arising from vanishing ideals on monomial parameterizations have
received a lot of attention [7, 10, 21, 29, 43, 52, 55, 59].

The vanishing ideal I(X) is a complete intersection if I(X) is generated by s − 1
homogeneous polynomials. Notice that s−1 is the height of I(X) in the sense of [47]. The
interest in complete intersection vanishing ideals over finite fields comes from information
and communication theory, and algebraic coding theory [12, 23, 33].

Let T be a projective torus in Ps−1 (see Definition 4.2.7) and let X be the set in Ps−1
parameterized by a clutter C (see Definition 5.2.8). Consider the set X = X ∩ T . In [55]
it is shown that I(X) is a complete intersection if and only if X is a projective torus in
Ps−1 . If the clutter C has all its edges of the same cardinality, in [56] a classification of
the complete intersection property of I(X) is given using linear algebra.

The main result of this chapter is a classification of the complete intersection property
of I(X) when X is of clutter type (Theorem 5.2.17). Using the techniques of [52], this
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classification can be used to study the basic parameters [46, 66] of the Reed-Muller-type
codes associated to X.

Contents of Chapter 6 In this chapter we present a number of problems on vanishing
ideals for future works.

Main references For all unexplained terminology and for additional information, we
refer to [13, 15, 41, 62] (for computational commutative algebra), [9, 60] (for Hilbert
functions), [9, 34] (for Gröbner bases, algebraic geometry, and vanishing ideals), [5, 34, 47]
(for commutative algebra), [13, Appendix 2] (for multilinear algebra), [16, 51, 70] (for
binomial and lattice ideals), and [46, 52, 66] (for vanishing ideals and coding theory).
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Chapter 1

Preliminaries

In this chapter, we present some of the results that will be needed throughout this work
and introduce some notation. The main topics are graded modules, Gröbner bases, pro-
jective closure, vanishing ideals, and Hilbert functions. The family of Reed-Muller-type
codes is introduced here, and its relation to Hilbert functions and vanishing ideals is
discussed. All results of this section are well-known.

1.1 Noetherian rings and modules

Let S be a commutative ring with unit and let M be an S-module. Recall that M is called
Noetherian if every submodule N of M is finitely generated, that is, N = Sf1 + · · ·+Sfs,
for some f1, . . . , fs in N .

Theorem 1.1.1. The following conditions are equivalent:

(a) M is Noetherian.

(b) M satisfies the ascending chain condition for submodules; that is, for every ascending
chain of submodules of M

N0 ⊂ N1 ⊂ · · · ⊂ Nn ⊂ Nn+1 ⊂ · · · ⊂M

there exists an integer k such that Ni = Nk for every i ≥ k.

(c) Any family F of submodules of M partially ordered by inclusion has a maximal
element, i.e., there is N ∈ F such that if N ⊂ Ni and Ni ∈ F , then N = Ni.

Proof. (a)⇒(b): Consider the submodule N = ∪i≥0Ni. By hypothesis there are
m1, . . . ,mr such that N = Sm1 + · · · + Smr. Then, there is k such that mi ∈ Nk

for all i. It follows that Ni = Nk for all i ≥ k.

(b)⇒(c): Let N1 ∈ F . If N1 is not maximal, there is N2 ∈ F such that N1 ( N2. If N2

is not maximal, there is N3 ∈ F such that N2 ( N3. Applying this argument repeatedly
we get that F has a maximal element.
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(c)⇒(a): Let N be a submodule of M and let F be the family of submodules of N
that are finitely generated. By hypothesis F has a maximal element N ′. It follows that
N = N ′. 2

In particular a Noetherian ring S is a commutative ring with unit with the property
that every ideal of I is finitely generated; that is, given an ideal I of S there exists a finite
number of generators f1, . . . , fs such that

I = {a1f1 + · · ·+ asfs| ai ∈ S, ∀ i} .

As usual, if I is generated by f1, . . . , fs, we write I = (f1, . . . , fs).

Theorem 1.1.2. (Hilbert’s basis theorem [2, Theorem 7.5]) A polynomial ring S[t] over
a Noetherian ring S is Noetherian.

One of the important examples of a Noetherian ring is a polynomial ring over a field
k. Often we will denote a polynomial ring in several variables by k[t] and a polynomial
ring in one variable by k[t]. The letters k and K will always denote fields.

1.2 Graded modules

Let (H,+) be an abelian semigroup. An H-graded ring is a ring S together with a
decomposition

S =
⊕
a∈H

Sa (as a Z-module),

such that SaSb ⊂ Sa+b for all a, b ∈ H. A graded ring is by definition a Z-graded ring.

If S is an H-graded ring and M is an S-module with a decomposition

M =
⊕
a∈H

Ma,

such that SaMb ⊂Ma+b for all a, b ∈ H, we say that M is an H-graded module.

An element 0 6= f ∈ M is said to be homogeneous of degree a if f ∈ Ma; in this case
we set deg(f) = a. The non-zero elements in Sa are also called forms of degree a.

Any element f ∈M can be written uniquely as f =
∑

a∈H fa with only finitely many
fa 6= 0.

Definition 1.2.1. Let M = ⊕a∈HMa be an H-graded module. A submodule N ⊂ M is
called a graded submodule if N is generated over S by homogeneous elements.

A map ϕ : M → N between H-graded modules is graded if ϕ(Ma) ⊂ Na for all a ∈ H.

Let M = ⊕a∈HMa be an H-graded module and N a graded submodule. Then M/N is
an H-graded S-module with (M/N)a = Ma/N ∩Ma for a ∈ H, S0 ⊂ S is a subring and
Ma is an S0-module for a ∈ H.
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Proposition 1.2.2. Let M = ⊕a∈HMa be an H-graded module and N ⊂M a submodule.
Then the following three conditions are equivalent.

(g1) N is generated over S by homogeneous elements.

(g2) N is graded with the induced grading. N = ⊕a∈HN ∩Ma.

(g3) If f =
∑

a∈H fa is in N , fa ∈Ma for all a, then each fa is in N .

Let S = K[t1, . . . , ts] be a polynomial ring over a field K and let d1, . . . , ds be a
sequence in N+. For a = (ai) in Ns we set ta = ta11 · · · tass and |a| =

∑s
i=1 aidi. The induced

N-grading on S is given by:

S =
∞⊕
i=0

Si, where Si =
⊕
|a|=i

Kta.

Notice that deg(ti) = di for all i. The induced grading extends to a Z-grading by setting
Si = 0 for i < 0. The homogeneous elements of S are called quasi-homogeneous polyno-
mials . Let I be a homogeneous ideal of S generated by a set f1, . . . , fr of homogeneous
polynomials. Setting deg(fi) = δi, I becomes a graded ideal with the grading

Ii = I ∩ Si = f1Si−δ1 + · · ·+ frSi−δr .

Hence S/I is an N-graded S-module graded by (S/I)i = Si/Ii.

Definition 1.2.3. The standard grading or usual grading of a polynomial ringK[t1, . . . , ts]
is the N-grading induced by setting deg(ti) = 1 for all i.

1.3 Gröbner bases

In this section we review some basic facts and definitions on Gröbner bases. Our main
references are [9, 17].

Let K be a field and let S = K[t1, . . . , ts] be a polynomial ring. A monomial of S is
an element of the form:

ta = ta11 · · · tass , a = (a1, . . . , as) ∈ Ns.

The set of monomials of S is denoted by Ms = {ta | a ∈ Ns}.

Definition 1.3.1. A total order � of Ms is called a monomial order if

(a) ta � 1 for all ta ∈Ms, and

(b) for all ta, tb, tc ∈Ms, t
a � tb implies tatc � tbtc.
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Two examples of monomial orders of Ms are the lexicographical order (lex order for
short) defined as tb � ta iff the first non-zero entry of b − a is positive, and the reverse
lexicographical order (revlex order for short) given by tb � ta iff the last non-zero entry of
b− a is negative.

In what follows we assume that a monomial order ≺ for Ms has been fixed. Let f be
a non-zero polynomial in S. Then one can write

f =
r∑
i=1

λit
αi ,

with λi ∈ K∗ = K \ {0}, tαi ∈ Ms and tα1 � · · · � tαr . The leading monomial tα1 of f is
denoted by in≺(f) or lm≺(f), or simply by in(f). The leading coefficient λ1 of f and the
leading term λ1t

α1 of f are denoted by lc(f) and lt(f), respectively.

Definition 1.3.2. Let I be an ideal of S. The initial ideal of I, denoted by in≺(I) or
simply by in(I), is the monomial ideal given by

in≺(I) = ({in≺(f)| f ∈ I}).

Lemma 1.3.3 (Dickson). If {tαi}∞i=1 is a sequence in Ms, then there is an integer k so
that tαi is a multiple of some monomial in the set {tα1 , . . . , tαk} for every i > k.

Proof. Let I ⊂ K[t1, . . . , ts] be the ideal generated by {tαi}∞i=1. By the Hilbert’s basis
theorem I is finitely generated (see Theorem 1.1.2). It is seen that I can be generated by
a finite set of monomials tα1 , . . . , tαk . Hence for each i > k, there is 1 ≤ j ≤ k such that
tαi is a multiple of tαj . 2

Definition 1.3.4. Let f , g be two polynomials in S and let F = {f1, . . . , fs} ⊂ S \ {0}
be a set of polynomials in S. One says that f reduces to g modulo F , denoted f →F g , if

g = f − (λu/ lc(fi))fi

for some fi ∈ F , u ∈Ms, λ ∈ K∗ such that λ · u · in≺(fi) occurs in f with coefficient λ.

Proposition 1.3.5. The reduction relation “−→F” is Noetherian, that is, any sequence
of reductions g1 −→F · · · −→F gi −→F · · · is stationary.

Proof. Notice that at the ith step of the reduction some term of gi is replaced by terms
of lower degree. Therefore if the sequence above is not stationary, then there is a never
ending decreasing sequence of terms in Ms, but this is impossible according to Dickson’s
lemma. 2

Theorem 1.3.6. (Division algorithm [17, Theorem 2.11]) If f, f1, . . . , fs are polynomials
in S, then f can be written as

f = a1f1 + · · ·+ asfs + r,

where ai, r ∈ S and either r = 0 or r 6= 0 and no term of r is divisible by one of
in(f1), . . . , in(fs). Furthermore if aifi 6= 0, then in(f) � in(aifi).
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Definition 1.3.7. The polynomial r in the division algorithm is called a remainder of f
with respect to F = {f1, . . . , fs}.

Definition 1.3.8. Let I 6= (0) be an ideal of S and let G = {g1, . . . , gr} be a subset of I.
The set G is called a Gröbner basis of I if

in≺(I) = (in≺(g1), . . . , in≺(gr)).

Definition 1.3.9. A Gröbner basis G = {g1, . . . , gr} of an ideal I is called a reduced
Gröbner basis for I if:

(i) lc(gi) = 1 ∀i, and

(ii) none of the terms occurring in gi belongs to in≺(G \ {gi}) ∀i.

Theorem 1.3.10. [17, Theorem 2.17] Each ideal I has a unique reduced Gröbner basis.

Definition 1.3.11. Let f, g ∈ S \ {0} and let [ta, tb] = lcm(ta, tb) be the least common
multiple of the monomials ta and tb. The S-polynomial of f and g is given by

S(f, g) =
[in(f), in(g)]

lt(f)
f − [in(f), in(g)]

lt(g)
g,

Given a set of generators of a polynomial ideal one can determine a Gröbner basis
using the next fundamental procedure:

Theorem 1.3.12. (Buchberger [6]) If F = {f1, . . . , fs} is a set of generators of an ideal
I of S, then one can construct a Gröbner basis for I using the following algorithm:

Input: F
Output: a Gröbner basis G for I
Initialization: G := F , B := {{fi, fj}| fi 6= fj ∈ G}
while B 6= ∅ do

pick any {f, g} ∈ B
B := B \ {{f, g}}
r := remainder of S(f, g) with respect to G
if r 6= 0 then
B := B ∪ {{r, h}|h ∈ G}
G := G ∪ {r}

Proposition 1.3.13. Let I be an ideal of S and let F = {f1, . . . , fs} be a Gröbner basis
of I. If

B = {u |u ∈Mn and u 6∈ (in(f1), . . . , in(fs))},

then B is a basis for the K-vector space S/I.
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Proof. First we show that B is a generating set for S/I. Take f ∈ S/I. Since “−→F” is
Noetherian, we can write f =

∑s
i=1 aifi +

∑r
i=1 λiui, where λi ∈ K∗ and such that every

ui is a term which is not a multiple of any of the terms in(fj). Accordingly ui is in B for
all i and f is a linear combination of the ui’s.

To prove that B is linearly independent assume h =
∑s

i=1 λiui ∈ I, where ui ∈ B
and λi ∈ K. We must show λi = 0, for all i. If not, then we can label the ui’s so that
u1 � · · · � us and λ1 6= 0. Hence in(h) = u1 ∈ in(I), but this is a clear contradiction
because in(I) = (in(f1), . . . , in(fs)). Therefore λi = 0, for all i, as required. 2

Definition 1.3.14. A monomial in B is called a standard monomial with respect to
f1, . . . , fs.

Corollary 1.3.15 (Macaulay). If I is a graded ideal of S, then S/I and S/ in≺(I) have
the same Hilbert function.

Lemma 1.3.16. [17, Proposition 2.15] Let f , g be polynomials in S and let F = {f, g}.
If in(f) and in(g) are relatively prime, then S(f, g)→F 0.

Theorem 1.3.17. [6] Let I be an ideal of S and let F = {f1, . . . , fs} be a set of generators
of I, then F is a Gröbner basis for I if and only if

S(fi, fj) −→F 0 for all i 6= j.

Elimination of variables Let K[x1, . . . , xn, t1, . . . , ts] be a polynomial ring over a field
K. A useful monomial order is the elimination order with respect to the variables
x1, . . . , xn. This order is given by

xatc � xbtd

if and only if deg(xa) > deg(xb), or both degrees are equal and the last non-zero en-
try of (a, c) − (b, d) is negative. The elimination order with respect to all variables
x1, . . . , xn, t1, . . . , ts is defined accordingly. This order is called the GRevLex order.

Theorem 1.3.18. Let B = K[x1, . . . , xn, t1, . . . , ts] be a polynomial ring over a field K
with a monomial order ≺ such that monomials in the xi’s are greater than monomials in
the ti’s. If I is an ideal of B with a Gröbner basis G, then G ∩K[t1, . . . , ts] is a Gröbner
basis of I ∩K[t1, . . . , ts].

Proof. Set S = K[t1, . . . , ts] and Ic = I ∩S. If M is a monomial in in(Ic), there is f ∈ Ic
with lm(f) = M . Hence M = m lm(g) for some g ∈ G, because G is a Gröbner basis.
Since M ∈ S and xα � tβ for all α and β we obtain g ∈ G ∩ S, that is, M ∈ (in(G ∩ S)).
Thus in(Ic) = (in(G ∩ S)), as required. 2

Example 1.3.19. Let ≺ be the elimination order with respect to x1, . . . , x4. Using
Macaulay2 [30], we can compute the reduced Gröbner basis of

I = (t1 − x1x2, t2 − x1x3, t3 − x1x4, t4 − x2x3, t5 − x2x4, t6 − x3x4).

By Theorem 1.3.18, it follows that I ∩K[t1, . . . , t6] = (t3t4 − t1t6, t2t5 − t1t6).
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Definition 1.3.20. Let I and J be two ideals of a ring S. The ideal

(I : J) := {f ∈ S | fJ ⊂ I}

is called the colon ideal of I w.r.t J . If f ∈ S, we set (I : (f)) := (I : f) and we call (I : f)
the colon ideal of I with respect to f .

Definition 1.3.21. Let I and J be two ideals of a ring S. The ideal

(I : J∞) =
⋃
i≥1

(I : J i)

is the saturation of I w.r.t J . If f ∈ S, we set (I : (f)∞) := (I : f∞).

The saturation can be computed by elimination of variables using the following result.

Proposition 1.3.22. Let S[t] be a polynomial ring in one variable over a ring S and let
I be an ideal of S. If f ∈ S, then

(I : f∞) =
⋃
i≥1

(I : f i) = (I, 1− tf) ∩ S.

Proof. Let g ∈ (I, 1 − tf) ∩ S. Then g =
∑s

i=1 aifi + as+1(1 − tf), where fi ∈ I and
ai ∈ S[t]. Making t = 1/f in the last equation and multiplying by fm, with m large
enough, one derives an equality

gfm = b1f1 + · · ·+ bsfs,

where bi ∈ S. Hence gfm ∈ I and g ∈ (I : f∞).

Conversely let g ∈ (I : f∞), hence there is m ≥ 1 such that gfm ∈ I. Since one can
write

g = (1− tmfm)g + tmfmg and 1− tmfm = (1− tf)b,

for some b ∈ S[t], one derives g ∈ (I, 1− tf) ∩ S. 2

Definition 1.3.23. A binomial of S is a polynomial of the form ta− tb for some a, b ∈ Ns.
An ideal of S generated by binomials is called a binomial ideal.

Lemma 1.3.24. Let B = K[y1, . . . , yn, t1, . . . , ts] be a polynomial ring over a field K. If
I is a binomial ideal of B, then the reduced Gröbner basis of I with respect to any term
order consists of binomials and I ∩K[t1, . . . , ts] is a binomial ideal.

Proof. Let B be a finite set of generators of I consisting of binomials and let f, g ∈ B.
Since the S-polynomial S(f, g) is again a binomial and the remainder of S(f, g) with
respect to B is also a binomial, it follows that the output of the Buchberger’s algorithm
(see Theorem 1.3.12) is a Gröbner basis of I consisting of binomials. Hence if G is the
reduced Gröbner basis of I, then G consists of binomials.

If ≺ is the lex order y1 � · · · � yn � t1 � · · · � ts and K[t] is the ring K[t1, . . . , ts],
then by elimination theory (see Theorem 1.3.18) G ∩K[t] is a Gröbner basis of I ∩K[t].
Hence I ∩K[t] is a binomial ideal. 2
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1.4 Hilbert functions

Let S = K[t1, . . . , ts] = ⊕∞d=0Sd be a graded polynomial ring, over the field K, with
the standard grading, that is, each ti is homogeneous of degree one and Sd is the set of
homogeneous polynomials of total degree d in S, together with the zero polynomial. The
set Sd is a K-vector space of dimension

(
d+s−1
s−1

)
. Let I be an ideal on S. As usual, m will

denote the maximal ideal of S generated by t1, . . . , ts. The vector space of polynomials
in S (resp. I) of degree at most i is denoted by S≤i (resp. I≤i). The functions

Ha
I (i) = dimK(S≤i/I≤i) and HI(i) = Ha

I (i)−Ha
I (i− 1)

are called the affine Hilbert function and the Hilbert function of the affine algebra S/I,
respectively.

According to [31, Remark 5.3.16, p. 330], there are unique polynomials

haI(t) =
k∑
j=0

ajt
j ∈ Q[t] and hI(t) =

k−1∑
j=0

cjt
j ∈ Q[t]

of degrees k and k − 1, respectively, such that k is the Krull dimension of the affine ring
S/I, haI(i) = Ha

I (i), and hI(i) = HI(i) for i � 0. The polynomials haI and hI are called
the affine Hilbert polynomial and the Hilbert polynomial of S/I. By convention, the zero
polynomial has degree −1. The Krull dimension of the ring S/I is denoted by dim(S/I).
The height of I, denoted ht(I), is dim(S)−dim(S/I). By the dimension of an ideal I ⊂ S
we mean the dimension of S/I.

Definition 1.4.1. The integer ak(k!), denoted by deg(S/I), is called the degree of S/I.

Remark 1.4.2. Notice that ak(k!) = ck−1((k − 1)!) for k ≥ 1. If k = 0, then

Ha
I (i) = dimK(S/I)

for i� 0 and the degree of S/I is just dimK(S/I).

Definition 1.4.3. The regularity index of S/I, denoted by ri(S/I), is the least integer
r ≥ 0 such that hI(d) = HI(d) for d ≥ r. The affine regularity index of S/I, denoted by
ria(S/I), is the least integer r ≥ 0 such that haI(d) = Ha

I (d) for d ≥ r.

If S has the standard grading and I is a graded Cohen-Macaulay ideal of S of dimension
1, then reg(S/I), the Castelnuovo-Mumford regularity of S/I in the sense of [14], is equal
to the regularity index of S/I (see [14]). In this case we call ri(S/I) (resp. ria(S/I))
the regularity (resp. affine regularity) of S/I and denote this number by reg(S/I) (resp.
rega(S/I)). If I is graded its regularity is related to the degrees of the polynomials in a
minimal generating set of I [14].
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Remark 1.4.4. If I is graded, we let Id := I ∩ Sd, denote the set of homogeneous
polynomials in I of total degree d, together with the zero polynomial. Note that Id is a
vector subspace of Sd and

Ha
I (d) =

∑d
i=0 dimK(Sd/Id)

for d ≥ 0. Thus, one has HI(d) = dimK(Sd/Id) for all d.

Definition 1.4.5. Let I ⊂ S be a graded ideal. The Hilbert series of S/I, denoted by
FI(t), is given by

FI(t) :=
∞∑
d=0

HI(d)td =
∞∑
d=0

dimK(S/I)dt
d.

Theorem 1.4.6. (Hilbert-Serre [70, Theorem 5.1.4]) Let I ⊂ S be a graded ideal. Then
there is a unique polynomial h(t) ∈ Z[t] such

FI(t) =
h(t)

(1− t)ρ
and h(1) 6= 0,

where ρ = dim(S/I).

Definition 1.4.7. Let I ⊂ S be a graded ideal. The a-invariant of the graded ring S/I,
denoted by a(S/I), is the degree of FI(t) as a rational function, i.e., a(S/I) = deg(h(t))−ρ.

Lemma 1.4.8. If I ⊂ S is a graded ideal and u is a new variable, then

a(S/I) = a(S[u]/I) + 1.

Proof. Let F1(t) and F2(t) be the Hilbert series of the graded rings S/I and S[u]/I
respectively. Using additivity of Hilbert series, from the exact sequence

0→ (S[u]/I)[−1]
u→ S[u]/I → S[u]/(I, u)→ 0,

we get F2(t) = F1(t)/(1− t), that is, deg(F1) = 1 + deg(F2). 2

Lemma 1.4.9. [70, Corollary 5.1.9] Let I ⊂ S be a graded ideal. Then ri(S/I) = 0 if
a(S/I) < 0, and ri(S/I) = a(S/I) + 1 otherwise.

Lemma 1.4.10. Let I ⊂ S be a graded ideal. If dim(S/I) = 1 and deg(S/I) ≥ 2, then
ri(S/I) = ria(S/I) + 1.

Proof. Let u be a new variable. The affine regularity index of S/I is the regularity index
of S[u]/I because I is graded. Hence, by Lemmas 1.4.8 and 1.4.9 it suffices to show that
a(S/I) ≥ 0. If a(S/I) < 0, the Hilbert series of S/I has the form FI(t) = 1/(1− t), i.e.,
HI(d) = 1 for d ≥ 0 and deg(S/I) = 1, a contradiction. 2

Proposition 1.4.11. ([31, Lemma 5.3.11], [51]) If I is an ideal of S and I = q1∩· · ·∩qm
is a minimal primary decomposition, then

deg(S/I) =
∑

ht(qi)=ht(I)

deg(S/qi).
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Hilbert functions of vanishing ideals

Definition 1.4.12. Let K be a field. We define the projective space of dimension s − 1
over K, denoted by Ps−1K or Ps−1 if K is understood, to be the quotient space

(Ks \ {0})/ ∼

where two points α, β in Ks \ {0} are equivalent under ∼ if α = cβ for some c ∈ K. It is
usual to denote the equivalence class of α by [α].

Definition 1.4.13. An ideal I ⊂ S is graded if I is generated by homogeneous polyno-
mials.

Proposition 1.4.14. [47, p. 92] Let I ⊂ S be an ideal. The following conditions are
equivalent :

(g1) I is a graded ideal.

(g2) If f =
∑r

d=0 fd is in I, fd ∈ Sd for d = 0, . . . , r, then each fd is in I.

For any set Y ⊂ Ps−1 define I(Y), the vanishing ideal of Y, as the graded ideal
generated by the homogeneous polynomials in S that vanish at all points of Y. Conversely,
given a graded ideal I ⊂ S define its zero set as

V (I) =
{

[α] ∈ Ps−1| f(α) = 0, ∀f ∈ I homogeneous
}
.

A projective variety is the zero set of a graded ideal. It is not difficult to see that the
members of the family

τ = {Ps−1 \ V (I)| I is a graded ideal of S}

are the open sets of a topology on Ps−1, called the Zariski topology . In a similar way
we can define affine varieties, vanishing ideals of subsets of the affine space As, and the
corresponding Zariski topology of As. The Zariski closure of Y is denoted by Y.

If Y (resp. Y ) is a subset of Ps−1 (resp. As) it is usual to denote the Hilbert func-
tion and Hilbert polynomial of S/I(Y) (resp. affine Hilbert function and affine Hilbert
polynomial of S/I(Y )) by HY and hY(t) (resp. Ha

Y and haY (t)).

Lemma 1.4.15. (a) [9, pp. 191–192] Let K be a field. If Y ⊂ As and Y ⊂ Ps−1, then
Y = V (I(Y )) and Y = V (I(Y)).

(b) If K is a finite field, then Y = V (I(Y )) and Y = V (I(Y)).

Proof. Part (b) follows from (a) because Y = Y and Y = Y, if K is finite. 2

Let Y = V (I) be a projective variety. The dimension of Y, denoted dim(Y), is the
degree of the Hilbert polynomial of S/I(Y), i.e., dim(Y) = dim(S/I(Y))− 1. If Y = V (I)
is an affine variety, the dimension of Y is the degree of the affine Hilbert polynomial of
S/I(Y ), that is, dim(Y ) = dim(S/I(Y )).
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Theorem 1.4.16. (The Dimension Theorem [9, p. 434]) Let K be an algebraically closed
field. If Y = V (I) is a projective variety in Ps−1 (resp. Y = V (I) is an affine variety in
As), then dim(Y) = dim(S/I)− 1 (resp. dim(Y ) = dim(S/I)).

Corollary 1.4.17. [22] If Y ⊂ Ps−1 is a finite set, then deg(S/I(Y)) = |Y|.

Proof. It follows from the additivity of the degree (see Proposition 1.4.11). 2

Proposition 1.4.18. ([12], [22], [45]) If X is a finite set and r = reg(S/I(X)), then

1 = HX(0) < HX(1) < · · · < HX(r − 1) < HX(d) = |X|

for d ≥ r and deg(S/I(X)) = |X|.

Lemma 1.4.19. If ∅ 6= Y ⊂ Ps−1 and dim(S/I(Y)) = 1, then we have |Y| < ∞ and
deg(S/I(Y)) = |Y|.

Proof. The Hilbert polynomial of S/I(Y) has degree 0. If HY denotes the Hilbert
function of S/I(Y), one has that HY(d) = a0 for d� 0. If |Y| > a0, pick [P1], . . . , [Pa0+1]
distinct points in Y and set I = ∩a0+1

i=1 I[Pi], where I[Pi] is the vanishing ideal of [Pi]. Then
dim(S/I) = 1 and deg(S/I) = a0 +1 (see Proposition 1.4.11). Hence, by Corollary 1.4.17,
HI(d) = a0 + 1 for d� 0. From the exact sequence

0→ I/I(Y)→ S/I(Y)→ S/I → 0

we get that a0 = dimK(I/I(Y))d + (a0 + 1) for d� 0, a contradiction. Thus |Y| ≤ a0 and
by Corollary 1.4.17 one has equality. 2

Projective closure and Gröbner bases. We will use the following multi-index no-
tation: for a = (a1, . . . , as) ∈ Zs, set ta = ta11 · · · tass . We call ta a Laurent monomial . If
ai ≥ 0 for all i, ta is a monomial of S.

Definition 1.4.20. The graded reverse lexicographical order (GRevLex for short) on the
monomials of S is defined as tb � ta if and only if deg(tb) > deg(ta), or deg(tb) = deg(ta)
and the last nonzero entry of b− a is negative.

Let � be the GRevLex order on the monomials of S[u], where u = ts+1 is a new
variable. This order extends the GRevLex on the monomials of S. Given an ideal I ⊂ S
and f ∈ S, we denote the initial ideal of I (resp. leading monomial of f) by in≺(I) (resp.
in≺(f)). We refer to [9] for the theory of Gröbner bases. For f ∈ S of degree e define

fh = uef (t1/u, . . . , ts/u) ;

that is, fh is the homogenization of the polynomial f with respect to u. The homogeniza-
tion of I is the ideal Ih of S[u] given by Ih = (fh| f ∈ I), and S[u] is given the standard
grading.

The Gröbner bases and the degrees of I and Ih are nicely related.
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Proposition 1.4.21. ([51, Lemma 2.4], [69, Proposition 2.4.26]) Let I be an ideal of S
and let � be the GRevLex order on S and S[u], respectively.

(a) If g1, . . . , gr is a Gröbner basis of I, then gh1 , . . . , g
h
r is a Gröbner basis of Ih.

(b) Ha
I (d) = HIh(d) for d ≥ 0.

(c) deg(S/I) = deg(S[u]/Ih).

Definition 1.4.22. Let Y ⊂ As. The projective closure of Y is defined as φ(Y ), where
φ is the map φ : As → Ps, α 7→ [(α, 1)], and φ(Y ) is the closure of φ(Y ) in the Zariski
topology.

Proposition 1.4.23. Let Y ⊂ As be a set, let φ(Y ) ⊂ Ps be its projective closure and let
f1, . . . , fr be a Gröbner basis of I(Y ). The following hold.

(a) [69, Proposition 2.4.30] I(φ(Y )) = I(Y )h = (fh1 , . . . , f
h
r ).

(b) [69, Corollary 2.4.31] The height of I(Y ) in S is equal to the height of I(φ(Y )) in
S[u].

1.5 Reed-Muller-type codes

In this part we introduce the families of projective and affine Reed-Muller-type codes and
its connection to vanishing ideals and Hilbert functions.

Projective Reed-Muller-type codes. Let K = Fq be a finite field as usual and let
Y = {P1, . . . , Pm} 6= ∅ a subset of Ps−1 with m = |Y|. Fix a degree d ≥ 1. For each i
there is fi ∈ Sd such that fi(Pi) 6= 0; we refer to Section 3.3 to see a convenient way to
choose f1, . . . , fm. There is a well-defined K-linear map:

evd : Sd = K[t1, . . . , ts]d → K |Y|, f 7→
(
f(P1)

f1(P1)
, . . . ,

f(Pm)

fm(Pm)

)
. (1.5.1)

The map evd is called an evaluation map. The image of Sd under evd, denoted by
CY(d), is called a projective Reed-Muller-type code of degree d over the set Y [12, 29]. It
is also called an evaluation code associated to Y [23]. The kernel of the evaluation map
evd is I(Y)d. Hence there is an isomorphism of K-vector spaces Sd/I(Y)d ' CY(d). If Y
is a subset of Ps−1 it is usual to denote the Hilbert function S/I(Y) by HY. Thus HY(d)
is equal to dimK CY(d). By a linear code we mean a linear subspace of Km for some m
and for some finite field K.

Definition 1.5.1. Let 0 6= v ∈ CY(d). The Hamming weight of v, denoted by ω(v), is
the number of non-zero entries of v. The minimum distance of CY(d), denoted by δY(d)
or δ(CY(d)), is defined as

δY(d) := min{ω(v) : 0 6= v ∈ C)}.
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Definition 1.5.2. The basic parameters of the linear code CY(d) are: its length |Y|,
dimension dimK CY(d), and minimum distance δY(d).

If Y = Ps−1, CY(d) is the classical projective Reed–Muller code, and formulas for its
basic parameters are given in [59, Theorem 1]. If Y is a projective torus, CY(d) is the
generalized projective Reed–Solomon code, and formulas for its basic parameters are given
in [55, Theorem 3.5].

The following summarizes the well-known relation between projective Reed-Muller-
type codes and the theory of Hilbert functions.

Proposition 1.5.3. ([29], [52]) The following hold.

(i) HY(d) = dimK CY(d) for d ≥ 0.

(ii) deg(S/I(Y)) = |Y|.

(iii) δY(d) = 1 for d ≥ reg(S/I(Y)).

(iv) S/I(Y) is a Cohen–Macaulay graded ring of dimension 1.

(v) CY(d) 6= (0) for d ≥ 1.

Proof. (i): The kernel of the evaluation map evd, defined in Eq. (1.5.1), is precisely
I(Y)d. Hence there is an isomorphism of K-vector spaces Sd/I(Y)d ' CY(d). Thus HY(d)
is equal to dimK CY(d).

(ii): This follows readily from Proposition 1.4.18.

(iii): For d ≥ reg(S/I(Y))), one has that HY(d) = |Y|. Thus, by part (i), we get that
CY(d) is equal to K |Y|. Consequently δY(d) = 1.

(iv): Let [P ] be a point in Y, with P = (α1, . . . , αs) and αk 6= 0 for some k, and let
I[P ] be the ideal generated by the homogeneous polynomials of S that vanish at [P ]. Then
I[P ] is a prime ideal of height s− 1,

I[P ] = ({αkti − αitk| k 6= i ∈ {1, . . . , s}), I(Y) =
⋂

[Q]∈Y

I[Q], (1.5.2)

and the latter is the primary decomposition of I(Y). As I[P ] has height s − 1 for any
[P ] ∈ Y, we get that the height of I(Y) is s− 1 and the dimension of S/I(Y) is 1. Hence
depth(S/I(Y)) ≤ 1. To complete the proof notice that, by Eq. (2.3.5), m = (t1, . . . , ts)
is not an associated prime of I(Y); that is depth(S/I(Y)) > 0 and S/I(Y) is Cohen–
Macaulay.

(v): This follows readily from Proposition 1.4.18. 2
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Affine Reed-Muller-type codes. Let K = Fq be a finite field, let Y be a subset of
As, and let Y be the projective closure of Y . As Y is finite, its projective closure is:

Y = {[(α, 1)] |α ∈ Y } ⊂ Ps.

Let S = K[t1, . . . , ts] be a polynomial ring, let P1, . . . , Pm be the points of Y , and let
S≤d be the K-vector space of all polynomials of S of degree at most d. The evaluation
map

evad : S≤d −→ K |Y |, f 7→ (f(P1), . . . , f(Pm)) ,

defines a linear map of K-vector spaces. The image of evad, denoted by CY (d), defines
a linear code. We call CY (d) the affine Reed-Muller-type code of degree d on Y [66,
p. 37]. The kernel of evad is I(Y )≤d. Thus S≤d/I(Y )≤d ' CY (d). If Y is a subset of As

it is usual to denote the affine Hilbert function S/I(Y ) by Ha
Y . In our situation one has

Ha
Y (d) = dimK CY (d).

The linear code CY (d) has the same basic parameters that CY(d), the projective Reed-
Muller-type code of degree d on Y (see [44, 43]). This means that affine Reed-Muller-type
codes are a particular case of projective Reed-Muller-type codes and are somewhat easier
to understand.

The following result reduces the computation of the algebraic invariants of S/I(Y ) to
the computation of those of S[u]/I(Y).

Proposition 1.5.4. (a) I(Y) = I(Y )h,

(b) |Y | = deg S/I(Y ) = deg S[u]/I(Y) = |Y|,
(c) Ha

Y (d) = HY(d) for d ≥ 0,

(d) rega S/I(Y ) = regS[u]/I(Y).

Proof. This follows from Propositions 1.4.21 and 1.4.23. 2

The computation of the regularity of S[u]/I(Y) is important for applications to coding
theory: for d ≥ regS[u]/I(Y) the linear code CY (d) coincides with the underlying vector
space K |Y | and has, accordingly, minimum distance equal to 1. Thus, potentially good
codes CY (d) can occur only if 1 ≤ d < reg(S[u]/I(Y)).

Interpolation problems. Let K be an arbitrary field, let Y = {P1, . . . , Pm} be a finite
set of points in As, and let Y be the projective closure of Y .

The regularity also plays an important role in interpolation problems.

Interpolation Problem. Given scalars b1, . . . , bm in K, i.e., given (b1, . . . , bm) in Am, can
we find a polynomial f ∈ S of degree at most d such that f(Pi) = bi for all i ?

The answer to this problem is positive if and only if d ≥ regS[u]/I(Y). Indeed the
Hilbert function of S[u]/I(Y) is strictly increasing for i = 1, . . . , r, where r is the regularity
of S[u]/I(Y), and HY(d) = |Y | for d ≥ r (see [12, 22]). Thus CY (d) = Km if and only if
Ha
Y (d) = m, that is, CY (d) = Km if and only if d ≥ r. Since the regularity of S[u]/I(Y)

is at most m− 1 the answer to this problem is positive if d = m− 1.
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Degree and regularity via Hilbert series. The degree and regularity of S[u]/I(Y)
can be read off from its Hilbert series. Indeed, the Hilbert series can be written as

FY(t) :=
∞∑
i=0

HY(i)ti =
∞∑
i=0

dimK(S[u]/I(Y))it
i =

h0 + h1t+ · · ·+ hrt
r

1− t
,

where h0, . . . , hr are positive integers; see [60]. This follows from the fact that I(Y) is a
Cohen-Macaulay ideal of height s [22]. The number r is the regularity of S[u]/I(Y) and
h0 + · · ·+ hr is the degree of S[u]/I(Y); see [69, Corollary 4.1.12].
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Chapter 2

Vanishing Ideals over Rational
Parameterizations

Let K be a field and let X (resp. X∗) be a subset of a projective space Ps−1 (resp. affine
space As), over the field K, parameterized by rational functions. Recall that we consider
the following sets parameterized by rational functions:

(i) X is the set of all points [(f1(x)/g1(x), . . . , fs(x)/gs(x))] in Ps−1 that are well defined,
i.e., x ∈ Kn, fi(x) 6= 0 for some i, and gi(x) 6= 0 for all i. We call X the projective
set parameterized by F .

(ii) X is the set of all points [(f1(x)/g1(x), . . . , fs(x)/gs(x))] in Ps−1 such that x ∈ Kn

and fi(x)gi(x) 6= 0 for all i. We call X the projective algebraic set parameterized by
F .

(iii) X∗ is the set of all points (f1(x)/g1(x), . . . , fs(x)/gs(x)) in As such that x ∈ Kn and
gi(x) 6= 0 for all i. We call X∗ the affine set parameterized by F .

(iv) X∗ is the set of all points (f1(x)/g1(x), . . . , fs(x)/gs(x)) in As such that x ∈ Kn and
fi(x)gi(x) 6= 0 for all i. We call X∗ the affine algebraic set parameterized by F .

(v) φ(X∗) (resp. φ(X∗)), is the projective closure of X∗ (resp. X∗), where φ : As → Ps
is the map given by α 7→ [(α, 1)].

Let I(X) (resp. I(X∗)) be the vanishing ideal of X (resp. X∗). Some of the main
contributions of this thesis are in determining formulas for I(X) (resp. I(X∗)) to compute
their algebraic invariants using elimination theory and Gröbner bases. The formulas for
vanishing ideals over finite fields that we give in this work were discovered by making ex-
periments with Macaulay2; we are especially interested in this case because of its relation
to algebraic coding theory. We also consider sets X and X∗ in Ps−1 and As, respectively,
parameterized by rational functions which are subject to some restrictions. Then we use
our results to study: the degree and structure of vanishing ideals, the projective closure of



18 Vanishing Ideals over Rational Parameterizations

X∗, and the basic parameters of affine and projective Reed-Muller-type codes. We recover
some results for vanishing ideals over monomial parameterizations.

2.1 Presentation ideals of subrings generated by ra-

tional functions

In this section we give a formula for the presentation ideal of a subring generated by
rational functions which is related to the rational implicitization problem [9].

Let R = K[y] = K[y1, . . . , yn] be a polynomial ring over a field K, let K(y) be the
field of fractions of K[y] and let F = {f1/g1, . . . , fs/gs} be a set of rational functions.
If K[F ] is the subring of K(y) generated by F over K, then there is an epimorphism of
K-algebras:

ϕ : S = K[t1, . . . , ts] −→ K[F ] −→ 0, induced by ϕ(ti) = fi/gi,

where S is a polynomial ring over the field K with the standard grading S = ⊕∞d=0Sd.

The kernel PF of ϕ is called the presentation ideal of K[F ] with respect to F . An
interesting case arises when F consists of Laurent monomials , i.e., fi/gi = yvi with vi ∈ Zn
for all i. In this case PF is called the toric ideal of K[F ] with respect to F and K[F ] is
called the monomial subring spanned by F [61, 69].

Lemma 2.1.1. Let f1/g1, . . . , fs/gs be rational functions of K(y) and let f = f(t1, . . . , ts)
be a polynomial in S of degree d. Then

gd+1
1 · · · gd+1

s f =
s∑
i=1

g1 · · · gshi(giti − fi) + gd+1
1 · · · gd+1

s f(f1/g1, . . . , fs/gs)

for some h1, . . . , hs in the polynomial ring K[y1, . . . , yn, t1, . . . , ts]. If f is homogeneous
and z is a new variable, then

gd+1
1 · · · gd+1

s f =
s∑
i=1

g1 · · · gshi(giti − fiz) + gd+1
1 · · · gd+1

s zdf(f1/g1, . . . , fs/gs)

for some h1, . . . , hs in the polynomial ring K[y1, . . . , yn, z, t1, . . . , ts].

Proof. We can write f = λ1t
m1 + · · ·+ λrt

mr with λi ∈ K∗ and mi ∈ Ns for all i. Write
mi = (mi1, . . . ,mis) for 1 ≤ i ≤ r and set I = ({giti − fi}si=1). By the binomial theorem,
for all i, j, we can write

t
mij
j = [(tj − (fj/gj)) + (fj/gj)]

mij = (hij/g
mij
j ) + (fj/gj)

mij ,

for some hij ∈ I. Hence for any i ∈ {1, . . . , r} we can write

tmi = tmi11 · · · tmiss = (Gi/g
mi1
1 · · · gmiss ) + (f1/g1)

mi1 · · · (fs/gs)mis ,
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where Gi ∈ I. Notice that mi1 + · · · + mis ≤ d for all i because f has degree d. Then
substituting these expressions for tm1 , . . . , tms in f = λ1t

m1 + · · ·+ λrt
mr and multiplying

f by gd+1
1 · · · gd+1

s , we obtain the required expression.

If f is homogeneous of degree d, the required expression for gd+1
1 · · · gd+1

s f follows from
the first part by considering the rational functions f1z/g1, . . . , fsz/gs, i.e., by replacing fi
by fiz, and observing that f(f1z, . . . , fsz) = zdf(f1, . . . , fs). 2

The next result is related to rational implicitization in the sense of [9, Theorem 2,
p. 131].

Proposition 2.1.2. If F = {f1/g1, . . . , fs/gs} is a set of rational functions with fi, gi ∈ R
and gi 6= 0 for all i, then the kernel of the homomorphism of K-algebras

ϕ : S = K[t1, . . . , ts] −→ K[F ], induced by ϕ(ti) = fi/gi,

is the ideal (g1t1 − f1, . . . , gsts − fs, y0g1 · · · gs − 1) ∩ S, where y0 is an extra variable.

Proof. We set I = (g1t1− f1, . . . , gsts− fs, y0g1 · · · gs− 1) and hi = fi/gi for i = 1, . . . , s.
We first show the inclusion ker(ϕ) ⊂ I ∩ S. Let f be a polynomial in ker(ϕ) of degree d.
Then, by Lemma 2.1.1, one can write

gd1 · · · gdsf =
s∑
i=1

ai(giti − fi) + gd1 · · · gdsf(f1/g1, . . . , fs/gs) =
s∑
i=1

ai(giti − fi) (2.1.1)

for some a1, . . . , as in B = K[y1, . . . , yn, t1, . . . , ts]. Making W = y0g1 · · · gs−1, we get the
equality g1 · · · gs = (W + 1)/y0. Thus, from Eq. (2.1.1), we obtain that (W + 1)df ∈ I.
Hence f ∈ I ∩ S. Conversely let f ∈ I ∩ S. Then we can write

f = f(t1, . . . , ts) = a1(g1t1 − f1) + · · ·+ as(gsts − fs) + b(g1 · · · gsy0 − 1).

for some a1, . . . , as, b in B[y0]. Hence f(h1, . . . , hs) = h(g1 · · · gsy0−1) for some h in B[y0].
The left-hand side of this equality does not depend on y0. Thus making y0 = 1/g1 · · · gs,
we obtain f(h1, . . . , hs) = 0, i.e., f ∈ ker(ϕ). 2

Corollary 2.1.3. [69, Proposition 7.1.9] If f1, . . . , fs are in R, then the kernel of the
homomorphism of K-algebras

ϕ : S = K[t1, . . . , ts] −→ K[f1, . . . , fs], induced by ϕ(ti) = fi,

is the ideal (t1 − f1, . . . , ts − fs) ∩ S.

Proof. By Proposition 2.1.2 it suffices to notice that any element of

(t1 − f1, . . . , ts − fs, y0 − 1) ∩ S,

being independent of y0, belongs to (t1 − f1, . . . , ts − fs) ∩ S. 2
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Example 2.1.4. If F = {y1 + 4y2 + 3y3, y
2
1 − y22, y1 − y2}, then using Macaulay2 and the

procedure below we get that PF = (0) if K = Q and PF = (t1t3 − t2) if K = F3. Thus
the degree of Q[F ] is 1 and the degree of F3[F ] is 2, i.e., the degree of K[F ] depends on
the field K.

R=K[y1,y2,y3,t1,t2,t3,MonomialOrder=>Eliminate 3];

f1=y1+4*y2+3*y3

f2=y1^2-y2^2

f3=y1-y2

I=ideal(t1-f1,t2-f2,t3-f3)

P=ideal selectInSubring(1,gens gb I)

degree P

Let A = {α1, . . . , αm} be a set of lattice points of Zn and let P = conv(A) be the
convex hull of A. The set P is called a lattice polytope. We denote the relative volume of
P by vol(P). A reference for relative volumes of lattice polytopes is [18].

Definition 2.1.5. If r = dim(P), the integer r!vol(P) is called the normalized volume of
P .

Definition 2.1.6. The torsion subgroup of an abelian group (M,+), denoted by T (M),
is the set of all x in M such that `x = 0 for some ` ∈ N+.

The next result holds for any toric ideal.

Theorem 2.1.7. [51, Theorem 4.5] Let PF be the toric ideal of K[F ] = K[yv1 , . . . , yvs ],
let A be the n×s matrix with column vectors v1, . . . , vs. Then deg(S/PF ) = deg(S[u]/P h

F )
and

|T (Zn/Z{v1, . . . , vs})| deg(S/PF ) = r!vol(conv(v1, . . . , vs, 0)), where r = rank(A).

Remark 2.1.8. The degree of K[F ] is independent of K if F is a set of monomials.
Theorem 2.1.7 will allows us to compute the degree of vanishing ideals of affine sets
parameterized by Laurent monomials over infinite fields without using Gröbner bases (see
Theorem 2.2.11).

2.2 Rational parameterizations over infinite fields

In this section we study vanishing ideals over sets parameterized by rational functions
over infinite fields.

Theorem 2.2.1. (Combinatorial Nullstellensatz [1]) Let S = K[t1, . . . , ts] be a polynomial
ring over a field K, let f ∈ S, and let a = (ai) ∈ Ns. Suppose that the coefficient of ta in
f is non-zero and deg (f) = a1 + · · · + as. If A1, . . . , As are subsets of K, with |Ai| > ai
for all i, then there are x1 ∈ A1, . . . , xs ∈ As such that f (x1, . . . , xs) 6= 0.
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Lemma 2.2.2. Let K be a field and let A1, . . . , As be a collection of non-empty finite
subsets of K. If Y := A1 × · · · × As ⊂ As, g ∈ I(Y ) and degti (g) < |Ai| for i = 1, . . . , s,
then g = 0. In particular if g is a polynomial of S that vanishes at all points of As, then
g = 0.

Proof. We proceed by contradiction. Assume that g is not zero. Then, there is a
monomial ta = ta11 · · · tass of g with deg(g) = a1 + · · · + as and a = (a1, . . . , as) 6= 0.
As degti(g) < |Ai| for all i, then ai < |Ai| for all i. Thus, by Theorem 2.2.1, there
are x1, . . . , xs with xi ∈ Ai for all i such that g (x1, . . . , xs) 6= 0, a contradiction to the
assumption that g vanishes on Y . 2

Example 2.2.3. If K = F2 and g = t1t2 + t1 + t2 + 1, then g vanishes on K2 \ {(0, 0)}
and degti(g) < 1 for i = 1, 2 but g 6= 0.

Lemma 2.2.4. Let K be an infinite field. Then the following hold.

(a) X∗ 6= ∅.

(b) X 6= ∅ and X∗ 6= ∅ (resp. X 6= ∅) if and only if fi 6= 0 for all i (resp. fi 6= 0 for
some i).

Proof. (a) The affine set X∗ is always non-empty because there are no restrictions on
f1, . . . , fs and the non-zero polynomial g1 · · · gs does not vanish at all points of Kn by
Lemma 2.2.2.

(b) Assume that fi 6= 0 for all i. Consider the non-zero polynomial f1 · · · fsg1 · · · gs.
As K is infinite this polynomial does not vanish at all points of Kn by Lemma 2.2.2. Thus
there is x ∈ Kn such that fi(x)gi(x) 6= 0 for all i. Then X 6= ∅ and X∗ 6= ∅. The reverse
implication is clear. 2

Theorem 2.2.5. Let B = K[y0, y1, . . . , yn, z, t1, . . . , ts] be a polynomial ring over an infi-
nite field K. If X is a projective set parameterized by rational functions f1/g1, . . . , fs/gs
in K(y) not all of them zero, then

I(X) = ({giti − fiz}si=1, y0g1 · · · gs − 1) ∩ S

and I(X) is the presentation ideal of K[f1z/g1, . . . , fsz/gs].

Proof. We denote by I = ({giti − fiz}si=1, y0g1 · · · gs − 1). First we show the inclusion
I(X) ⊂ I ∩S. Take a homogeneous polynomial f = f(t1, . . . , ts) of degree d that vanishes
at all points of X. Setting W = y0g1 · · · gs − 1, by Lemma 2.1.1, we can write

(W + 1)d+1f =
s∑
i=1

yd+1
0 g1 · · · gshi(giti − fiz) + zdyd+1

0 gd+1
1 · · · gd+1

s f(f1/g1, . . . , fs/gs),

(2.2.1)
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where h1, . . . , hs are in K[y1, . . . , yn, z, t1, . . . , ts]. We only need to show that

H = gd+1
1 · · · gd+1

s f(f1/g1, . . . , fs/gs)

is equal to zero. It is not hard to see that H is a polynomial in K[y]. Thus we only
need to show that H vanishes at all points of Kn. Take a point x ∈ Kn. If gi(x) = 0
for some i, then clearly H(x) = 0 because g1 · · · gs divides H. Thus we may assume
that gi(x) 6= 0 for all i. If fi(x) 6= 0 for some i, then by definition of X, we get that
f(f1(x)/g1(x), . . . , fs(x)/gs(x)) = 0 and by Eq. (2.2.1) or directly from the definition of
H it is seen that H(x) = 0. If fi(x) = 0 for all i, as f is homogeneous, it follows that
H(x) = 0. Thus H = 0 and f ∈ I ∩ S.

Next we show the inclusion I(X) ⊃ I ∩ S. By Proposition 2.1.2 we get that I ∩ S
is the presentation ideal of K[f1z/g1, . . . , fsz/gs]. Therefore, using Proposition 1.4.14, it
follows that I ∩ S is graded. Let f be a homogeneous polynomial of I ∩ S. Then we can
write

f = f(t1, . . . , ts) = h1(g1t1 − f1z) + · · ·+ hs(gsts − fsz) + h(g1 · · · gsy0 − 1). (2.2.2)

for some h1, . . . , hs, h in B. Take a point [P ] in X with P = (f1(x)/g1(x), . . . , fs(x)/gs(x)),
and x = (x1, . . . , xn) ∈ Kn. From Eq. (2.2.2), making ti = fi(x)/gi(x), yj = xj, z = 1
and y0 = 1/g1(x) · · · gs(x) for all i, j, it follows that f(P ) = 0. Thus f vanishes on X. 2

Example 2.2.6. If X is the projective set parameterized by F = {y2/y1, y3/y2, y1/y3, 1}
over the field Q of rational numbers. Using Macaulay2 [30] and Theorem 2.2.5 we get

I(X) = (y1t1 − y2z, y2t2 − y3z, y3t3 − y1z, t4 − z, y0y1y2y3 − 1) ∩ S = (t1t2t3 − t34).

Notice that (y1t1 − y2z, y2t2 − y3z, y3t3 − y1z, t4 − z) ∩ S = (0). This means that the
variable y0 is essential to compute I(X).

Definition 2.2.7. Let S = K[t1, . . . , ts] be a polynomial ring over a field K. A binomial
of S is an element of the form f = ta − tb, for some a, b in Ns. An ideal generated by
binomials is called a binomial ideal .

The next lemma is well known, see for instance [69, Corollary 7.1.5] and its proof.

Corollary 2.2.8. Let K be an infinite field and let I ⊂ S be a graded ideal. Then I is
the vanishing ideal of a projective set in Ps−1 parameterized by Laurent monomials if and
only if I is a prime ideal generated by binomials.

Proof. ⇒) By Theorem 2.2.5 and Lemma 1.3.24 we get that I is a prime ideal generated
by binomials.

⇐) By [48, Theorem 7.4] it follows that I is a toric ideal, that is, there are yv1 , . . . , yvs

in K(y) and an epimorphism of K-algebras

ϕ : S = K[t1, . . . , ts] −→ K[yv1 , . . . , yvs ], induced by ϕ(ti) = yvi ,
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such that I = ker(ϕ). Consider the epimorphism of K-algebras

ϕ1 : S = K[t1, . . . , ts] −→ K[yv1z, . . . , yvsz], induced by ϕ(ti) = yviz.

As I and ker(ϕ1) are graded binomial ideals in the standard grading of S it is not hard
to see that I = ker(ϕ1). If X is the projective set parameterized by yv1 , . . . , yvs , using
Theorem 2.2.5 we get that I(X) = ker(ϕ1). Thus I = I(X) as required. 2

Example 2.2.9. Let K be an infinite field. If Y = {[(1, 0)], [(0, 1)], [(1, 1)]} ⊂ P1, then
its vanishing ideal is generated by t1t2(t1 − t2). Notice that Y cannot be parameterized
by Laurent monomials because I(Y) is not a prime ideal (see Corollary 2.2.8).

Theorem 2.2.10. Let B = K[y0, y1, . . . , yn, z, t1, . . . , ts] be a polynomial ring over an
infinite field K. If X is a projective algebraic set parameterized by rational functions
f1/g1, . . . , fs/gs in K(y) with fi 6= 0 for all i, then

I(X) = ({giti − fiz}si=1, y0g1 · · · gs − 1) ∩ S

and I(X) is the presentation ideal of K[f1z/g1, . . . , fsz/gs].

Proof. We set I = ({figiti − f 2
i z}si=1, y0f1 · · · fsg1 · · · gs − 1). As fi 6= 0 for all i, by

Proposition 2.1.2, one has the equality

({giti − fiz}si=1, y0g1 · · · gs − 1) ∩ S = ({figiti − f 2
i z}si=1, y0f1 · · · fsg1 · · · gs − 1) ∩ S

and ({giti − fiz}si=1, y0g1 · · · gs − 1) ∩ S is the presentation ideal of K[f1z/g1, . . . , fsz/gs].
Using Proposition 1.4.14, it follows that I ∩ S is graded.

First we are going to show the inclusion I(X) ⊂ I ∩ S. Take a homogeneous poly-
nomial f = f(t1, . . . , ts) of degree d that vanishes at all points of X. Now setting
W = y0f1 · · · fsg1 · · · gs − 1, by Lemma 2.1.1, we can write

(W + 1)d+1f =
s∑
i=1

yd+1
0 f1 · · · fsg1 · · · gshi(figiti− f 2

i z) + zd(W + 1)d+1f(f1/g1, . . . , fs/gs),

(2.2.3)
where h1, . . . , hs are in B. We only need to show that

H = (f1 · · · fsg1 · · · gs)d+1f(f1/g1, . . . , fs/gs)

is equal to zero. It is not hard to see that H is a polynomial in K[y]. Thus we only
need to show that H vanishes at all points of Kn. Take a point x ∈ Kn. If gi(x) = 0 for
some i or fi(x) = 0 for some i, then clearly H(x) = 0 because f1 · · · fsg1 · · · gs divides H.
Thus we may assume that fi(x)gi(x) 6= 0 for all i and, by definition of X, we get that
f(f1(x)/g1(x), . . . , fs(x)/gs(x)) = 0. Hence by Eq. (2.2.3) or directly from the definition
of H it is seen that H(x) = 0.

Next we show the inclusion I(X) ⊃ I ∩ S. We proceed as in the second part of the
proof of Theorem 2.2.5. Let f be a homogeneous polynomial of I ∩ S. Take a point [P ]
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in X with P = (f1(x)/g1(x), . . . , fs(x)/gs(x)) and fi(x)gi(x) 6= 0 for all i. Then f is a
linear combination of {figiti − f 2

i z}si=1 ∪ {y0f1 · · · fsg1 · · · gs − 1} with coefficients in B.
Making ti = fi(x)/gi(x), z = 1, yj = xj, and y0 = 1/f1(x) · · · fs(x)g1(x) · · · gs(x) for all
i, j, it follows that f(P ) = 0. Thus f vanishes on X. 2

Theorem 2.2.11. Let B = K[y0, y1, . . . , yn, t1, . . . , ts] be a polynomial ring over an infi-
nite field K. If X∗ is the affine set parameterized by rational functions f1/g1, . . . , fs/gs in
K(y), then

I(X∗) = ({giti − fi}si=1, y0g1 · · · gs − 1) ∩ S
and I(X∗) is the presentation ideal of K[f1/g1, . . . , fs/gs].

Proof. We set I = ({giti−fi}si=1, y0g1 · · · gs−1). First we show the inclusion I(X∗) ⊂ I∩S.
Take a polynomial f = f(t1, . . . , ts) of degree d that vanishes at all points of X∗. Setting
W = y0g1 · · · gs − 1, by Lemma 2.1.1, we can write

(W +1)d+1f =
s∑
i=1

yd+1
0 g1 · · · gshi(giti−fi)+yd+1

0 gd+1
1 · · · gd+1

s f(f1/g1, . . . , fs/gs), (2.2.4)

where h1, . . . , hs are in B. We only need to show that H = gd+1
1 · · · gd+1

s f(f1/g1, . . . , fs/gs)
is equal to zero. It is not hard to see that H is a polynomial in K[y]. Thus we need only
show that H vanishes at all points of Kn. Take a point x ∈ Kn. If gi(x) = 0 for some i,
then clearly H(x) = 0 because g1 · · · gs divides H. Thus we may assume that gi(x) 6= 0
for all i. Then, by definition of X∗, we get that f(f1(x)/g1(x), . . . , fs(x)/gs(x)) = 0 and
by Eq. (2.2.4) or directly from the definition of H it is seen that H(x) = 0.

Next we show the inclusion I(X∗) ⊃ I ∩S. Take f in I ∩S. Let P be any point in X∗
with P = (f1(x)/g1(x), . . . , fs(x)/gs(x)). Then f is a linear combination of

{giti − fi}si=1 ∪ {y0g1 · · · gs − 1}

with coefficients in B. Making ti = fi(x)/gi(x), yj = xj, and y0 = 1/g1(x) · · · gs(x) for all
i, j, it follows that f(P ) = 0. Thus f vanishes on X∗. By Proposition 2.1.2 we get that
I ∩ S is the presentation ideal of K[f1/g1, . . . , fs/gs]. 2

Corollary 2.2.12. If K is infinite, fi 6= 0 for all i and Y = φ(X∗), then I(Y) is equal to
the presentation ideal of K[f1z/g1, . . . , fsz/gs, z].

Proof. Notice that Y is the projective algebraic set parameterized by f1/g1, . . . , fs/gs, 1.
Hence the result follows from Theorem 2.2.10. 2

Theorem 2.2.13. Let B = K[y0, y1, . . . , yn, t1, . . . , ts] be a polynomial ring over an
infinite field K. If X∗ is the affine algebraic set parameterized by rational functions
f1/g1, . . . , fs/gs in K(y) and fi 6= 0 for all i, then

I(X∗) = ({giti − fi}si=1, y0g1 · · · gs − 1) ∩ S

and I(X∗) is the presentation ideal of K[f1/g1, . . . , fs/gs].
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Proof. We set I = ({figiti − f 2
i }si=1, y0f1 · · · fsg1 · · · gs − 1). Because fi 6= 0 for all i, by

Proposition 2.1.2, one has

({giti − fi}si=1, y0g1 · · · gs − 1) ∩ S = ({figiti − f 2
i }si=1, y0f1 · · · fsg1 · · · gs − 1) ∩ S

and ({giti − fi}si=1, y0g1 · · · gs − 1) ∩ S is the presentation ideal of K[f1/g1, . . . , fs/gs].

First we show the inclusion I(X∗) ⊂ I ∩ S. Take a polynomial f = f(t1, . . . , ts)
of degree d that vanishes at all points of X∗. Setting W = y0f1 · · · fsg1 · · · gs − 1, by
Lemma 2.1.1, we can write

(W + 1)d+1f =
s∑
i=1

yd+1
0 f1 · · · fsg1 · · · gshi(figiti − f 2

i ) + (W + 1)d+1f(f1/g1, . . . , fs/gs),

(2.2.5)
where h1, . . . , hs are in B. We only need to show that

H = (f1 · · · fsg1 · · · gs)d+1f(f1/g1, . . . , fs/gs)

is equal to zero. It is not hard to see that H is a polynomial in K[y]. Thus we only
need to show that H vanishes at all points of Kn. Take a point x ∈ Kn. If gi(x) = 0 for
some i or fi(x) = 0 for some i, then clearly H(x) = 0 because f1 · · · fsg1 · · · gs divides H.
Thus we may assume that fi(x)gi(x) 6= 0 for all i and, by definition of X, we get that
f(f1(x)/g1(x), . . . , fs(x)/gs(x)) = 0. Hence by Eq. (2.2.5) or directly from the definition
of H it is seen that H(x) = 0.

Next we show the inclusion I(X∗) ⊃ I ∩ S. Let f be a polynomial of I ∩ S. Take a
point P in X∗ with P = (f1(x)/g1(x), . . . , fs(x)/gs(x)) and fi(x)gi(x) 6= 0 for all i. Then
f is a linear combination of {figiti − f 2

i }si=1 ∪ {y0f1 · · · fsg1 · · · gs − 1} with coefficients in
B. Making ti = fi(x)/gi(x), yj = xj, and y0 = 1/f1(x) · · · fs(x)g1(x) · · · gs(x) for all i, j,
it follows that f(P ) = 0. Thus f vanishes on X∗. 2

The Zariski closure of an affine set. Here we examine the Zariski closure of an affine
set X∗ parameterized by Laurent monomials.

Theorem 2.2.14. [39, 40] Let F = {yv1 , . . . , yvs} be a set of Laurent monomials such
that K is algebraically closed or K[F ] is normal. Then there exists an affine set X∗H
parameterized by H = {yu1 , . . . , yus} with ui ∈ Zn such that V (PF ) = X∗H and PF = PH ,
where PF and PH are the toric ideals of K[F ] and K[H], respectively.

Corollary 2.2.15. If F = {yv1 , . . . , yvs} is a set of monomials with v1, . . . , vs in Zn and
K is an algebraically closed field, then there exists a set of monomials H = {yu1 , . . . , yus}
with u1, . . . , us in Zn such that X∗ is the affine set X∗H parameterized by H.

Proof. Let PF be the presentation ideal of K[F ]. By Theorem 2.2.14 the affine variety
V (PF ) is parameterized by a set H = {yu1 , . . . , yus} of monomials with u1, . . . , us in
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Zn, and by Theorem 2.2.11 the vanishing ideal of X∗ is equal to PF . Therefore, by
Lemma 1.4.15, we get

X∗H = V (PF ) = V (I(X∗)) = X∗,

as required. 2

Lemma 2.2.16. Let K be a field. If Y is a subset of As or a subset of Ps and we have
that Z = V (I(Y )), then I(Z) = I(Y ). In particular I(Y ) = I(Y ).

Proof. Since Y ⊂ Z, we get I(Z) ⊂ I(Y ). As I(Z) = I(V (I(Y ))) ⊃ I(Y ), one has
equality. By Lemma 1.4.15 one has Y = V (I(Y )). Thus I(Y ) = I(Y ). 2

Corollary 2.2.17. Let F = {yv1 , . . . , yvs}, H = {yu1 , . . . , yus} be sets of Laurent mono-
mials and let X∗H be the affine set parameterized by H. If K is infinite and V (PF ) = X∗H ,
then PF = PH .

Proof. Let X∗F be the affine set parameterized by F . By Theorem 2.2.11 we have that
PF = I(X∗F ) and PH = I(X∗H). Thus, by Lemma 1.4.15, one has

X∗H = V (PF ) = V (I(X∗F )) = X∗F .

Then, by Lemma 2.2.16, we get I(X∗H) = I(X∗F ) = I(X∗F ). Hence PH = PF . 2

Definition 2.2.18. If F = {y−11 , . . . , y−1n }, the projective algebraic set parameterized
by F , denoted by T , is called a projective torus in Pn−1, and the affine algebraic set
parameterized by F , denoted by T ∗, is called an affine torus in An.

Remark 2.2.19. If T ∗ is an affine torus in An and K is infinite, then T ∗ = An because
T ∗ is equal to the open set An \ V (y1 · · · yn). Thus T ∗ has to be dense in An because K
is an infinite field (see for instance [70, Exercise 3.2.20]).

Example 2.2.20. If F = {y1, y−11 , . . . , yn, y
−1
n } and K is an infinite field, then we have

I(X∗) = PF , PF = (t1t2 − 1, . . . , t2n−1t2n − 1) and V (I(X∗)) = X∗ = X∗.

The degree of the projective closure. In this part we study the projective closure
of an affine set X∗ parameterized by rational functions.

For use below recall that φ is the map φ : As → Ps, α 7→ [(α, 1)].

Corollary 2.2.21. If K is an infinite field and Y = φ(X∗), then I(Y) = I(Y) = I(X∗)h,

deg S[u]/I(Y) = deg S[u]/I(Y) = deg S/I(X∗) = deg S[u]/I(X∗)h,

and I(Y) is equal to the presentation ideal of K[f1z/g1, . . . , fsz/gs, z].
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Proof. By Lemma 1.4.15 and Proposition 1.4.23 one has that V (I(Y)) = Y and that
I(Y) = I(X∗)h, and by Lemma 2.2.16 one has the equality I(Y) = I(Y). Hence, by
Proposition 1.4.21, we get

deg S/I(X∗) = deg S[u]/I(X∗)h = deg S[u]/I(Y) = deg S[u]/I(Y).

The set Y is the projective set parameterized by f1/g1, . . . , fs/gs, 1. As a consequence,
by Theorem 2.2.5, I(Y) is the presentation ideal of K[f1z/g1, . . . , fsz/gs, z]. 2

Remark 2.2.22. This result, together with Theorems 2.1.7 and 2.2.11, can be used
to compute the degree—without using Göbner bases—of the projective closure of any
affine set X∗ parameterized by Laurent monomials, i.e., we can compute the degree of
S/I(φ(X∗)).

As an application we recover the following known description of the projective closure
of a monomial curve (see [69, Proposition 10.1.17]) and compute its degree.

Corollary 2.2.23. Let X∗ = {(xd11 , . . . , xds1 )|x1 ∈ K} be a monomial curve in the affine
space As. If d1 > d2 > · · · > ds and K = C, then the projective closure φ(X∗) of X∗ is a
projective toric variety in Ps of degree ds/ gcd(d1, . . . , ds) and dimension 1 given by

φ(X∗) =
{

[(xd11 , x
d2
1 u

d1−d2
1 , . . . , xds1 u

d1−ds
1 , ud11 )] ∈ Ps

∣∣ u1, x1 ∈ K} ,
and its vanishing ideal is I(φ(X∗)) = I(X∗)h = ({ti − ydi1 z}s+1

i=1 ) ∩ K[t1, . . . , ts+1], where
ds+1 = 0.

Proof. Setting Y = φ(X∗) and F = {yd11 z, . . . , yds1 z, z}, by Corollary 2.2.21, I(Y) is the
toric ideal PF of K[F ]. Consider the 2× (s + 1) matrix A with rows α1 = (d1, . . . , ds, 0)
and α2 = (1, . . . , 1). The matrix A is row equivalent over Q to the 2 × (s + 1) matrix
with rows β1 = (d1, d2, . . . , ds, 0) and β2 = (0, d1 − d2, . . . , d1 − ds, d1). Hence, setting
H = {yd11 , yd21 ud1−d2 , . . . , yds1 ud1−ds , ud1}, it follows that the toric ideal PH of K[H] is the
toric ideal PF of K[F ]. . By Theorem 2.2.5, we get PH = I(XH), where XH is the
projective set parameterized by H. All together one has:

I(XH) = PH = PF = I(Y).

Notice that V (I(XH)) = XH . This equality follows by observing that td1i − t
di
1 t

d1−di
s+1 is

in PH for i = 1, . . . , s+ 1, where ds+1 = 0. Applying Lemma 1.4.15 we obtain

Y = V (I(Y)) = V (I(XH)) = XH .

Thus Y is the projective set parameterized by H, as required. Next we compute the
degree of S[u]/I(Y). By Corollary 2.2.21 one has

deg S[u]/I(Y) = deg S/I(X∗).
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On the other hand by Theorems 2.1.7 and 2.2.11 we get

|T (Z/Z{d1, . . . , ds})| deg(S/I(X∗)) = vol(conv(d1, . . . , ds, 0)).

Since |T (Z/Z{d1, . . . , ds})| = gcd(d1, . . . , ds) and vol(conv(d1, . . . , ds, 0)) = ds, we get
that the degree of S[u]/I(Y) is ds/ gcd(d1, . . . , ds). Finally notice that by Corollary 2.2.21
one has that I(X∗)h is the toric ideal of K[yd11 z, . . . , y

ds
1 z, z]. Thus the formula for I(X∗)h

follows at once from Corollary 2.1.3. 2

Example 2.2.24. Let X∗ = {(x31, x21, x1)|x1 ∈ K} ⊂ A3 be a monomial curve and let
φ(X∗) be its projective closure. If K = Q and Y = φ(X∗), then using Macaulay2 [30],
with the procedure below, and Corollary 2.2.23, we get

Y = {[(x31, x21u1, x1u21, u31)] ∈ P3|u1, x1 ∈ Q},

deg S[u]/I(Y) = 3, and

I(Y) = I(Y) = (t23 − t2u, t2t3 − t1u, t22 − t1t3) = I(X∗)h, where u = t4.

R=QQ[y1,z,t1,t2,t3,t4,MonomialOrder=>Eliminate 2]

I=ideal(t1-y1^3*z,t2-y1^2*z,t3-y1*z,t4-z)

Ixxac= ideal selectInSubring(1,gens gb I)

Polynomial parameterizations over infinite fields. In this part we specialize our
results to polynomial parameterizations over infinite fields.

Let R = K[y1, . . . , yn] be a polynomial ring over a field K and let F = {f1, . . . , fs} be
a finite set of polynomials of R. Consider the following polynomial parameterizations:

(i) X := {[(f1(x), . . . , fs(x))] |x ∈ Kn and fi(x) 6= 0 for some i} ⊂ Ps−1, the projective
set parameterized by F ,

(ii) X := {[(f1(x), . . . , fs(x))] |x ∈ Kn and fi(x) 6= 0 for all i} ⊂ Ps−1, the projective
algebraic set parameterized by F ,

(iii) X∗ := {(f1(x), . . . , fs(x)) |x ∈ Kn} ⊂ As, the affine set parameterized by F ,

(iv) X∗ := {(f1(x), . . . , fs(x)) |x ∈ Kn and fi(x) 6= 0 for all i} ⊂ As, the affine algebraic
set parameterized by F , and

(v) X∗ (resp. X∗), the projective closure of X∗ (resp. X∗).

Theorem 2.2.25. Let K be an infinite field, let F = {f1, . . . , fs} be a set of polynomials
of R and let X, X, X∗ and X∗ be the corresponding sets parameterized by F . Then the
following holds.

(i) If X 6= ∅, then I(X) = ({ti − fiz}si=1) ∩ S.
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(ii) If X 6= ∅, then I(X) = ({ti − fiz}si=1) ∩ S.

(iii) [69, Corollary 7.1.12] I(X∗) = ({ti − fi}si=1) ∩ S.

(iv) If X∗ 6= ∅, then I(X∗) = ({ti − fi}si=1) ∩ S.

Proof. (i): By Theorem 2.2.5, making gi = 1 for all i, we get

I(X) = ({ti − fiz}si=1, y0 − 1) ∩ S

and I(X) is the presentation ideal of K[f1z, . . . , fsz]. Since ti − fiz is independent of y0
it follows readily that ({ti − fiz}si=1, y0 − 1) ∩ S is equal to ({ti − fiz}si=1) ∩ S.

(ii): Making gi = 1 for i = 1, . . . , s in Theorem 2.2.10, we get

I(X) = ({ti − fiz}si=1, y0 − 1) ∩ S

and I(X) is the presentation ideal of K[f1z, . . . , fsz]. Since ti − fiz is independent of y0
it follows readily that ({ti − fiz}si=1, y0 − 1) ∩ S is equal to ({ti − fiz}si=1) ∩ S.

(iii) and (iv): The two assertions follow by the arguments above and by a direct
application of Theorems 2.2.11 and 2.2.13 respectively. 2

Corollary 2.2.26. Let K be an infinite field. The following hold for polynomial param-
eterizations.

(a) [9, Theorem 1, p. 128] X∗ = V (({ti − fi}si=1) ∩ S).

(b) If X 6= ∅ and X∗ 6= ∅, then I(X) = I(X) and I(X∗) = I(X∗).

(c) If X 6= ∅ and X∗ 6= ∅, then X = X and X∗ = X∗.

Proof. Notice that X∗ = V (I(X∗)) and X∗ = V (I(X∗)) (see Lemma 1.4.15) and that
similar formulas hold for X and X. Thus the result follows from Theorem 2.2.25. 2

Next we recover a result of [49].

Corollary 2.2.27. [49, Theorem 6.9] If K is an infinite field and X is a projective
algebraic set parameterized by monomials yv1 , . . . , yvs in R, then I(X) = ({ti−yviz}si=1)∩S
and I(X) is the presentation ideal of K[yv1z, . . . , yvsz].

Proof. It follows at once from Theorem 2.2.25(ii). 2

2.3 Rational parameterizations over finite fields

Throughout this section K = Fq is a finite field and X, X∗, X and X∗, are the sets
parameterized by rational functions F = {f1/g1, . . . , fs/gs} in K(y).
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Proposition 2.3.1. [37, pp. 136–137] Let K = Fq be a finite field and let As be the affine
space of dimension s over K. Then I(As) = ({tqi − ti}si=1).

Proof. The inclusion “⊃” is clear. To show the inclusion “⊂” take f ∈ I(As). Consider
the GRevLex order ≺ on S. By the division algorithm [9, Theorem 3, p. 63] the residue
of dividing f by {tqi − ti}si=1, denoted by g, satisfies that degti(g) < q for all i. Thus, by
Lemma 2.2.2, g = 0. Hence f ∈ ({tqi − ti}si=1). 2

Lemma 2.3.2. Let K = Fq be a finite field. The following conditions are equivalent:

(a) g1 · · · gs vanishes at all points of Kn.

(b) g1 · · · gs ∈ ({yqi − yi}ni=1).

(c) ({giti − fiz}si=1, {y
q
i − yi}ni=1, y0g1 · · · gs − 1) ∩ S = S.

(d) X∗ = ∅.

Proof. (a) ⇔ (b)): This follows at once from Proposition 2.3.1.

(a) ⇔ (d)): This follows from the definition of X∗.
(c)⇒ (a)): We can write 1 =

∑s
i=1 ai(giti−fiz)+

∑n
j=1 bj(y

q
j −yj)+h(y0g1 · · · gs−1),

where the ai’s, bj’s and h are polynomials in the variables yj’s, ti’s, y0 and z. Take an
arbitrary point x = (xi) in Kn. In the equality above, making yi = xi for all i, z = 0 and
ti = 0 for all i, we get that 1 = h1(y0g1(x) · · · gs(x)− 1) for some h1. If (g1 · · · gs)(x) 6= 0,
then h1(y0g1(x) · · · gs(x) − 1) is a polynomial in y0 of positive degree, a contradiction.
Thus (g1 · · · gs)(x) = 0.

(b) ⇒ (c)): Writing g1 · · · gs =
∑n

j=1 bj(y
q
j − yj), we get

y0g1 · · · gs − 1 = −1 +
n∑
j=1

y0bj(y
q
j − yj)

Thus 1 is in the ideal ({giti − fiz}si=1, {y
q
i − yi}ni=1, y0g1 · · · gs − 1). 2

Example 2.3.3. If K = F3, f1 = y2y3, f2 = y1y3, g1 = y31 − y1 and g2 = 1, then clearly
X∗ = ∅. Thus (g1t1 − f1z, g2t2 − f2z, y31 − y1, y32 − y2, y33 − y3, g1g2y0 − 1) ∩ S = S.

Lemma 2.3.4. Let K = Fq be a finite field. The following conditions are equivalent:

(a) ({giti − fiz}si=1, {y
q
i − yi}ni=1, y0g1 · · · gs − 1) ∩ S = (t1, . . . , ts).

(b) X∗ = {0}.

Proof. (a) ⇒ (b)): By Lemma 2.3.2, X∗ 6= ∅. Take a point P in X∗, i.e., there is
x = (xi) ∈ As such that gi(x) 6= 0 for all i and P = (f1(x)/g1(x), . . . , fs(x)/gs(x)). By
hypothesis, for each tk, we can write

tk =
s∑
i=1

ai(giti − fiz) +
n∑
j=1

bj(y
q
j − yj) + h(y0g1 · · · gs − 1), (2.3.1)
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where the ai’s, bj’s and h are polynomials in the variables yj’s, ti’s, y0 and z. From
Eq. (2.3.1), making yi = xi for all i, y0 = 1/g1(x) · · · gs(x), ti = fi(x)/gi(x) for all i, and
z = 1, we get that fk(x)/gk(x) = 0. Thus P = 0.

(b)⇒ (a)): Setting I = ({giti−fiz}si=1, {y
q
i−yi}ni=1, y0g1 · · · gs−1), by Lemma 2.3.2 one

has that I∩S ( S. Thus it suffices to show that tk ∈ I∩S for all k. Notice that g1 · · · gsfk
vanishes at all points of An because X∗ = {0}. Hence, thanks to Proposition 2.3.1,
g1 · · · gsfk is in ({yqi − yi}ni=1). Setting W = y0g1 · · · gs − 1, and applying Lemma 2.1.1
with f = tk, we can write

(W + 1)2tk =
s∑
i=1

y20g1 · · · gshi(giti − fiz) + y20g
2
1 · · · g2sz(fk/gk).

Therefore (W + 1)2tk ∈ I. Thus tk ∈ I ∩ S. 2

Example 2.3.5. Using Macaulay2 [30], and the procedure below, we get that

I ∩ S = (t1, . . . , ts),

i.e., X∗ = {0} in concordance with Lemma 2.3.4.

B=GF(3)[y0,y1,y2,y3,y4,y5,z,t1,t2,t3,t4,t5,t6,MonomialOrder=>Eliminate 7];

f1=y1*y3, f2=y1*y4, f3=y1*y5, f4=y2*y3, f5=y2*y4, f6=y2*y5,

g1=y2^2-1, g2=y3^2-1, g3=y1^3-1, g4=y1^3-1, g5=y4^2-1 ,g6=y1^2-1, q=3

I=ideal(g1*t1-f1*z,g2*t2-f2*z,g3*t3-f3*z,g4*t4-f4*z,g5*t5-f5*z,g6*t6-f6*z,

y1^q-y1,y2^q-y2,y3^q-y3,y4^q-y4,y5^q-y5,g1*g2*g3*g4*g5*g6*y0-1)

Ixx=ideal selectInSubring(1,gens gb Ia)

mingens Ixx

Lemma 2.3.6. If I = ({giti− fiz}si=1, {y
q
i − yi}ni=1, y0g1 · · · gs− 1) and m = (t1, . . . , ts) is

the irrelevant maximal ideal of S, then

(a) I ∩ S is graded, and

(b) X 6= ∅ if and only if I ∩ S ( m.

Proof. (a): We set B = K[y0, y1, . . . , yn, z, t1, . . . , ts]. Take 0 6= f ∈ I ∩ S and write it as
f = f1 + · · · + fr, where fi is a homogeneous polynomial of degree di and d1 < · · · < dr.
By induction, using Proposition 1.4.14, it suffices to show that fr ∈ I ∩ S. We can write

f =
s∑
i=1

ai(giti − fiz) +
n∑
i=1

ci(y
q
i − yi) + c(y0g1 · · · gs − 1),

where the ai’s, ci’s, and c are in B. Making the substitution ti → tiv, z → zv, with v an
extra variable, and regarding f(t1v, . . . , tsv) as a polynomial in v it follows readily that
vdrfr is in the ideal generated by B = {gitiv − fizv}si=1 ∪ {y

q
i − yi}ni=1 ∪ {y0g1 · · · gs − 1}.
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Writing vdrfr as a linear combination of B, with coefficients in B, and making v = 1, we
get that fr ∈ I ∩ S.

(b): ⇒) If X 6= ∅, by Lemma 2.3.2, we get that I ∩S 6= S. By part (a) the ideal I ∩S
is graded. Hence I ∩ S ( m.

⇐) If I ∩ S ( m, by Lemmas 2.3.2 and 2.3.4, we get X∗ 6= ∅ and X∗ 6= {0}. Thus
X 6= ∅. 2

Theorem 2.3.7. Let B = K[y0, y1, . . . , yn, z, t1, . . . , ts] be a polynomial ring over a finite
field K = Fq. If X is a projective set parameterized by rational functions f1/g1, . . . , fs/gs
in K(y) and X 6= ∅, then

I(X) = ({giti − fiz}si=1, {y
q
i − yi}ni=1, y0g1 · · · gs − 1) ∩ S.

Proof. We set I = ({giti−fiz}si=1, {y
q
i−yi}ni=1, y0g1 · · · gs−1). First we show the inclusion

I(X) ⊂ I ∩S. Take a homogeneous polynomial f = f(t1, . . . , ts) of degree d that vanishes
at all points of X. Setting W = y0g1 · · · gs − 1, by Lemma 2.1.1, we can write

(W + 1)d+1f =
s∑
i=1

yd+1
0 g1 · · · gsai(giti − fiz) + zdyd+1

0 gd+1
1 · · · gd+1

s f(f1/g1, . . . , fs/gs),

(2.3.2)
where a1, . . . , as are in B. We set H = gd+1

1 · · · gd+1
s f(f1/g1, . . . , fs/gs). This is a polyno-

mial in K[y]. Thus, by the division algorithm in K[y] (see [9, Theorem 3, p. 63]), we can
write

H = H(y1, . . . , yn) =
n∑
i=1

hi(y
q
i − yi) +G(y1, . . . , yn) (2.3.3)

for some h1, . . . , hn in K[y], where the monomials that occur in G = G(y1, . . . , yn) are not
divisible by any of the monomials yq1, . . . , y

q
n, i.e., degyi(G) < q for i = 1, . . . , n. Therefore,

using Eqs. (2.3.2) and (2.3.3), we obtain the equality

(W + 1)d+1f =
s∑
i=1

yd+1
0 g1 · · · gsai(giti−fiz) + zdyd+1

0

n∑
i=1

hi(y
q
i −yi) + zdyd+1

0 G(y1, . . . , yn).

(2.3.4)
Thus to show that f ∈ I ∩S we only need to show that G = 0. We claim that G vanishes
on Kn. Notice that yqi −yi vanishes at all points of Kn because (K∗, · ) is a group of order
q − 1. Take an arbitrary sequence x1, . . . , xn of elements of K, i.e., x = (xi) ∈ Kn.

Case (I): gi(x) = 0 for some i. Making yj = xj for all j in Eq. (2.3.4) we get G(x) = 0.

Case (II): fi(x) = 0 and gi(x) 6= 0 for all i. Making yk = xk and tj = fj(x)/gj(x) for
all k, j in Eq. (2.3.4) and using that f is homogeneous, we obtain that G(x) = 0.

Case (III): fi(x) 6= 0 for some i and g`(x) 6= 0 for all `. In this case, making
yk = xk, tj = fj(x)/gj(x) and z = 1 in Eq. (2.3.4) and using that f vanishes on
[(f1(x)/g1(x), . . . , fs(x)/gs(x))], we get that G(x) = 0. This completes the proof of the
claim.
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Therefore G vanishes at all points of Kn and degyi(G) < q for all i. Hence, by
Lemma 2.2.2, we get that G = 0.

Next we show the inclusion I(X) ⊃ I ∩ S. By Lemma 2.3.6 we have that the ideal
I ∩ S is graded. Let f be a homogeneous polynomial of I ∩ S. Take a point [P ] in
X with P = (f1(x)/g1(x), . . . , fs(x)/gs(x)). Writing f as a linear combination of the
elements {giti − fiz}si=1, {y

q
i − yi}ni=1, y0g1 · · · gs − 1, with coefficients in K, and making

ti = fi(x)/gi(x), yj = xj, z = 1 and y0 = 1/g1(x) · · · gs(x) for all i, j it follows that
f(P ) = 0. Thus f vanishes on X. 2

Lemma 2.3.8. If I := ({giti − fiz}si=1, {y
q
i − yi}ni=1, y0g1 · · · gs − 1, wf1 · · · fs − 1) and

K = Fq is a finite field, then the following conditions are equivalent:

(a) g1 · · · gsf1 · · · fs vanishes at all points of Kn,

(b) g1 · · · gsf1 · · · fs ∈ ({yqi − yi}ni=1),

(c) I ∩ S = S,

(d) X = ∅.

Proof. (a) ⇔ (b)): This follows at once from Proposition 2.3.1.

(a) ⇔ (d)): This follows from the definition of X.

(c) ⇒ (a)): Writing

1 =
s∑
i

ai(giti − fiz) +
n∑
j

bj(y
q
j − yj) + h(y0g1 · · · gs − 1) + h1(f1 · · · fsw − 1),

where the ai’s, bj’s, h and h1 are polynomials in the variables yj’s, ti’s, y0, w and z.
We proceed by contradiction assuming there is a point x = (x1, . . . , xn) in Kn such
that (g1 · · · gsf1 · · · gs)(x) 6= 0. Making yi = xi for all i, z = 0, ti = 0, for all i, y0 =
1/(g1 · · · gs)(x), and w = 1/(f1 · · · fs)(x), in the equation above we get that 1 = 0, a
contradiction.

(b)⇒ (c)): Since wf1 · · · fs(y0g1 · · · gs−1) + (wf1 · · · fs−1) + 1 = wy0f1 · · · fsg1 · · · gs,
we get that 1 ∈ I ∩ S. 2

The ideal I(X) can be computed from I(X) using the colon operation.

Proposition 2.3.9. If X 6= ∅, then (I(X) : t1 · · · ts) = I(X).

Proof. Since X ⊂ X, one has I(X) ⊂ I(X). Consequently (I(X) : t1 · · · ts) ⊂ I(X)
because ti is not a zero-divisor of S/I(X) for all i. To show the reverse inclusion take a
homogeneous polynomial f in I(X). Let [P ] be a point in X, with P = (α1, . . . , αs) and
αk 6= 0 for some k, and let I[P ] be the ideal generated by the homogeneous polynomials
of S that vanish at [P ]. Then I[P ] is a prime ideal of height s− 1,

I[P ] = ({αkti − αitk| k 6= i ∈ {1, . . . , s}), I(X) =
⋂

[Q]∈X

I[Q], (2.3.5)
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and the latter is the primary decomposition of I(X). Noticing that ti ∈ I[P ] if and only if
αi = 0, it follows that t1 · · · tsf ∈ I(X). Indeed if [P ] has at least one entry equal to zero,
then t1 · · · ts ∈ I[P ] and if all entries of P are not zero, then f ∈ I(X) ⊂ I[P ]. In either
case t1 · · · tsf ∈ I(X). Hence f ∈ (I(X) : t1 · · · ts). 2

Next we present some other means to compute the vanishing ideal I(X).

Theorem 2.3.10. Let B = K[y0, w, y1, . . . , yn, z, t1, . . . , ts] be a polynomial ring over a
finite field K = Fq. If X is a projective algebraic set parameterized by rational functions
f1/g1, . . . , fs/gs in K(y) and X 6= ∅, then

I(X) = ({giti − fiz}si=1, {y
q
i − yi}ni=1, y0g1 · · · gs − 1, wf1 · · · fs − 1) ∩ S.

Proof. We set I = ({giti−fiz}si=1, {y
q
i−yi}ni=1, y0g1 · · · gs−1, wf1 · · · fs−1). First we show

the inclusion I(X) ⊂ I ∩ S. Take a homogeneous polynomial f = f(t1, . . . , ts) of degree
d that vanishes at all points of X. Setting W1 = y0g1 · · · gs − 1 and W2 = wf1 · · · fs − 1,
by Lemma 2.1.1, we can write

(W1 + 1)d+1(W2 + 1)f =
s∑
i=1

yd+1
0 g1 · · · gs(W2 + 1)ai(giti − fiz) + wzdyd+1

0 H, (2.3.6)

where a1, . . . , as are in B and H = f1 · · · fsgd+1
1 · · · gd+1

s f(f1/g1, . . . , fs/gs). As H is a
polynomial in K[y], by the division algorithm in K[y] (see [9, Theorem 3, p. 63]), we can
write

H = H(y1, . . . , yn) =
n∑
i=1

hi(y
q
i − yi) +G(y1, . . . , yn) (2.3.7)

for some h1, . . . , hn in K[y], where the monomials that occur in G = G(y1, . . . , yn) are not
divisible by any of the monomials yq1, . . . , y

q
n, i.e., degyi(G) < q for i = 1, . . . , n. Therefore,

setting F = (W1+1)d+1(W2+1)f and using Eqs. (2.3.6) and (2.3.7), we obtain the equality

F =
s∑
i=1

yd+1
0 g1 · · · gs(W2 + 1)ai(giti− fiz) +wzdyd+1

0

n∑
i=1

hi(y
q
i − yi) +wzdyd+1

0 G. (2.3.8)

Thus to show that f ∈ I∩S we only need to show that G = 0. By Lemma 2.2.2 it suffices
to show that G vanishes on all points of Kn because degyi(G) < q for all i. Notice that
yqi − yi vanishes at all points of Kn because (K∗, · ) is a group of order q − 1. Take an
arbitrary sequence x1, . . . , xn of elements of K, i.e., x = (xi) ∈ Kn.

Case (I): Assume that fi(x) = 0 or gi(x) = 0 for some i. Using Eq. (2.3.8), we obtain
that G(x) = 0.

Case (II): Assume that fi(x)gi(x) 6= 0 for all i. Making yi = xi, ti = fi(x)/gi(x) and
z = 1 in Eq. (2.3.8) and using that f vanishes on [(f1(x)/g1(x), . . . , fs(x)/gs(x))], we get
that G(x) = 0.

Next we show the inclusion I(X) ⊃ I ∩ S. One can proceed as in the proof of
Lemma 2.3.6 to show that I ∩ S is graded. Let f be a homogeneous polynomial of I ∩ S.
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Take a point [P ] in the set X with P = (f1(x)/g1(x), . . . , fs(x)/gs(x)). Writing f as a
linear combination of

{giti − fiz}si=1, {y
q
i − yi}ni=1, y0g1 · · · gs − 1, wf1 · · · fs − 1

with coefficients in B, and making ti = fi(x)/gi(x), yj = xj, z = 1, y0 = 1/g1(x) · · · gs(x),
and w = 1/f1(x) · · · fs(x) for all i, j it follows that f(P ) = 0. Thus f vanishes on X. 2

Remark 2.3.11. The vanishing ideal I(X) can also be computed using the following
formula:

I(X) = ({giti − fiz}si=1, {y
q
i − yi}ni=1, {f

q−1
i − 1}si=1, y0g1 · · · gs − 1) ∩ S.

To show this we can proceed essentially as in the proof of Theorem 2.3.10 by considering
the polynomial F = (W0 + 1)d+1(W1 + 1) · · · (Ws + 1), where W0 = g1 · · · gsy0 − 1 and
Wi = f q−1i − 1 for i = 1, . . . , s.

Theorem 2.3.12. Let B = K[y0, y1, . . . , yn, t1, . . . , ts] be a polynomial ring over a finite
field K = Fq. If X∗ is an affine set parameterized by rational functions f1/g1, . . . , fs/gs
in K(y), then

I(X∗) = ({giti − fi}si=1, {y
q
i − yi}ni=1, y0g1 · · · gs − 1) ∩ S.

Proof. We set I = ({giti − fi}si=1, {y
q
i − yi}ni=1, y0g1 · · · gs − 1) ∩ S. First we show the

inclusion I(X∗) ⊂ I ∩ S. Take a polynomial f = f(t1, . . . , ts) of degree d that vanishes
at all points of X∗. Setting W = y0g1 · · · gs − 1, by Lemma 2.1.1 and using the division
algorithm in K[y] (see the proof of Theorem 2.3.7), we obtain the equality

(W + 1)d+1f =
s∑
i=1

yd+1
0 g1 · · · gsai(giti − fi) + yd+1

0

n∑
i=1

hi(y
q
i − yi) + yd+1

0 G(y1, . . . , yn),

(2.3.9)
where a1, . . . , as, h1, . . . , hn are in B, G = G(y1, . . . , yn) is a polynomial in K[y] such that
degyi(G) < q for i = 1, . . . , n. Thus to show that f ∈ I ∩ S we only need to show that
G = 0. By Lemma 2.2.1 it suffices to show that G vanishes on Kn. Take an arbitrary
sequence x1, . . . , xn of elements of K and set x = (x1, . . . , xn).

Case (I): gi(x) = 0 for some i. Making yj = xj for all j in Eq. (2.3.9) we get G(x) = 0.

Case (II): gi(x) 6= 0 for all i. Making yk = xk, tj = fj(x)/gj(x) in Eq. (2.3.9) and
using that f vanishes on (f1(x)/g1(x), . . . , fs(x)/gs(x)), we get that G(x) = 0.

Next we show the inclusion I(X∗) ⊃ I ∩ S. Let f be a polynomial of I ∩ S. Take a
point P in X∗ with P = (f1(x)/g1(x), . . . , fs(x)/gs(x)). Making ti = fi(x)/gi(x), yj = xj,
and y0 = 1/g1(x) · · · gs(x) for all i, j, it follows that f(P ) = 0. Thus f vanishes on X∗. 2

The ideal I(X∗) can be computed from I(X∗) using the colon operation.

Proposition 2.3.13. (I(X∗) : t1 · · · ts) = I(X∗).
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Proof. This follows adapting the proof of Proposition 2.3.9. 2

Next we present some other means to compute the vanishing ideal I(X∗).

Theorem 2.3.14. Let B = K[y0, w, y1, . . . , yn, z, t1, . . . , ts] be a polynomial ring over a
finite field K = Fq. If X∗ is an affine algebraic set parameterized by rational functions
f1/g1, . . . , fs/gs in K(y) with fi 6= 0 for all i, then

I(X∗) = ({giti − fi}si=1, {y
q
i − yi}ni=1, y0g1 · · · gs − 1, wf1 · · · fs − 1) ∩ S.

Proof. This follows adapting the proof of Theorem 2.3.10. 2

Remark 2.3.15. The vanishing ideal I(X∗) can also be computed using the following
formula:

I(X∗) = ({giti − fi}si=1, {y
q
i − yi}ni=1, {f

q−1
i − 1}si=1, y0g1 · · · gs − 1) ∩ S.

To show this we can proceed essentially as in the proof of Theorem 2.3.10 by considering
the polynomial F = (W0 + 1)d+1(W1 + 1) · · · (Ws + 1), where W0 = g1 · · · gsy0 − 1 and
Wi = f q−1i − 1 for i = 1, . . . , s.

Corollary 2.3.16. Let B = K[t1, . . . , ts, y1, . . . , yn, z] be a polynomial ring over the finite
field K = Fq and let f1, . . . , fs be polynomials of R. The following hold:

(a) If X 6= ∅, then I(X) = ({ti − fiz}si=1 ∪ {y
q
i − yi}ni=1) ∩ S.

(b) If X 6= ∅, then I(X) = ({ti − fiz}si=1 ∪ {y
q
i − yi}ni=1 ∪ {f

q−1
i − 1}si=1) ∩ S.

(c) I(X∗) = ({ti − fi}si=1 ∪ {y
q
i − yi}ni=1) ∩ S.

(d) I(X∗) = ({ti − fi}si=1 ∪ {y
q
i − yi}ni=1 ∪ {f

q−1
i − 1}si=1) ∩ S.

Proof. The result follows readily by adapting the proof of Theorem 2.2.25, and using
Theorem 2.3.7, Remark 2.3.11, Theorem 2.3.12, and Remark 2.3.15, respectively. 2

The formula for I(X) given in (b) can be slightly simplified if the fi’s are Laurent
monomials (see [52, Theorems 2.1 and 2.13]).

Example 2.3.17. Let f1 = y1 + 1, f2 = y2 + 1, f3 = y1y2 and let K = F5 be a field with
5 elements. Using Proposition 1.5.4, Corollary 2.3.16, and Macaulay2 [30], we get

degS/I(X) = 19, degS/I(X) = 6, degS/I(X∗) = 25, degS/I(X∗) = 9,
regS/I(X) = 5, regS/I(X) = 2, rega S/I(X∗) = 4, rega S/I(X∗) = 2.

For convenience we present the following procedure for Macaulay2 [30] that we used to
compute the degree and the regularity:
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R=GF(5)[z,y1,y2,t1,t2,t3,MonomialOrder=>Eliminate 3];

f1=y1+1,f2=y2+1,f3=y1*y2,q=5

I=ideal(t1-f1*z,t2-f2*z,t3-f3*z,y1^q-y1,y2^q-y2)

Jxx=ideal selectInSubring(1,gens gb I)

I=ideal(t1-f1*z,t2-f2*z,t3-f3*z,y1^q-y1,y2^q-y2,

f1^(q-1)-1,f2^(q-1)-1,f3^(q-1)-1)

Jx=ideal selectInSubring(1,gens gb I)

I=ideal(t1-f1,t2-f2,t3-f3,y1^q-y1,y2^q-y2)

Jxxa=ideal selectInSubring(1,gens gb I)

I=ideal(t1-f1,t2-f2,t3-f3,y1^q-y1,y2^q-y2,

f1^(q-1)-1,f2^(q-1)-1,f3^(q-1)-1)

Jxa=ideal selectInSubring(1,gens gb I)

S=ZZ/5[t1,t2,t3]

Ixx=sub(Jxx,S),Mxx=coker gens Ixx

degree Ixx, regularity Mxx

Ix=sub(Jx,S),Mx=coker gens Ix

degree Ix, regularity Mx

Su=ZZ/5[t1,t2,t3,u]

Ixxa=sub(Jxxa,Su),K=ideal(gens gb Ixxa),Ixxah=homogenize(K,u)

Mxxah=coker gens Ixxah

degree Mxxah, regularity Mxxah

Ixa=sub(Jxa,Su),K=ideal(gens gb Ixa),Ixah=homogenize(K,u)

Mxah=coker gens Ixah

degree Mxah, regularity Mxah

Example 2.3.18. Let f1 = y1 + 1, f2 = y2 + 1, f3 = y1y2 and let K = F5 be a field with
5 elements. Using Proposition 1.5.3, Corollary 2.3.16 and Macaulay2 [30], we get

d 1 2 3 4 5
|X| 19 19 19 19 19

dimCX(d) 3 6 10 15 19

d 1 2
|X| 6 6

dimCX(d) 3 6

The dth column of these tables represent the length and the dimension of the pro-
jective Reed-Muller-type codes CX(d) and CX(d), respectively (see Chapter 1). Using
Proposition 1.5.4, Corollary 2.3.16 and Macaulay2 [30], we get

d 1 2 3 4
|X∗| 25 25 25 25

dimCX∗(d) 4 9 16 25

d 1 2
|X∗| 9 9

dimCX∗(d) 4 9

Continuing with the Macaulay2 procedure of Example 2.3.17 we can compute these four
tables as follows:

degree Ixx, regularity Mxx
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hilbertFunction(1,Ixx),hilbertFunction(2,Ixx),hilbertFunction(3,Ixx),

hilbertFunction(4,Ixx),hilbertFunction(5,Ixx)

degree Ix, regularity Mx

hilbertFunction(1,Ix),hilbertFunction(2,Ix)

degree Mxxah, regularity Mxxah

hilbertFunction(1,Ixxa),hilbertFunction(2,Ixxa)

hilbertFunction(3,Ixxa), hilbertFunction(4,Ixxa)

degree Mxah, regularity Mxah

hilbertFunction(1,Ixa),hilbertFunction(2,Ixa)

Remark 2.3.19. Let K = Fq be a finite field and let h1, . . . , hm be polynomials that
generate I(X∗). The system of polynomial equations fi(y) = bi for i = 1, . . . , s has a
solution in the affine space An if and only if hi(b) = 0 for all i, where b = (b1, . . . , bs).
This follows from Lemma 1.4.15.

Our results are useful to compute a finite set of generators for vanishing ideals over
finite fields and are interesting from a theoretical point of view. Let us give some appli-
cation to vanishing ideals over monomial parameterizations.

Corollary 2.3.20. Let K = Fq be a finite field. If X, X, X∗, X∗ are parameterized by
Laurent monomials, then I(X), I(X), I(X∗), I(X∗) are binomial ideals.

Proof. The result follows from Lemma 1.3.24 and applying Theorems 2.3.7, 2.3.10, 2.3.12,
and 2.3.14. 2

Corollary 2.3.21. Let K = Fq be a finite field. If X is parameterized by Laurent mono-
mials, then I(X) is a radical Cohen-Macaulay binomial ideal of dimension 1.

Proof. By Corollary 2.3.20, I(X) is a binomial ideal. That I(X) is a radical ideal
of dimension 1 is well known and follows from Eq. (2.3.5) (see the proof of Proposi-
tion 2.3.9). Recall that depthS/I(X) ≤ dimS/I(X) = 1. From Eq. (2.3.5) one has
that m = (t1, . . . , ts) is not an associated prime of I(X). Thus depthS/I(X) > 0 and
depthS/I(X) = dimS/I(X) = 1, i.e., I(X) is Cohen-Macaulay. 2

Corollary 2.3.22. [52, Theorem 2.1] Let K = Fq be a finite field and let X be a projec-
tive algebraic set parameterized by Laurent monomials. Then I(X) is a Cohen-Macaulay
lattice ideal and dimS/I(X) = 1.

Proof. It follows from Proposition 2.3.9, Theorem 2.3.10 and Lemma 1.3.24. 2

Binomial vanishing ideals. Let K be a field. The projective space Ps−1 ∪ {[0]})
together with the zero vector [0] is a monoid under componentwise multiplication, where
[1] = [(1, . . . , 1)] is the identity of Ps−1 ∪ {[0]}. Recall that monoids always have an
identity element.
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Lemma 2.3.23. Let K = Fq be a finite field and let Y be a subset of Ps−1. If Y∪{[0]} is a
submonoid of Ps−1 ∪{[0]} such that each element of Y is of the form [α] with α ∈ {0, 1}s,
then Y is parameterized by Laurent monomials.

Proof. The set Y can be written as Y = {[α1], . . . , [αm]}, where αi = (αi1, . . . , αis) and
αij = 0 or αik = 1 for all i, k. Consider variables y1, . . . , ys and z1, . . . , zs. For each αik
define hik = yq−1i if αik = 1 and hik = zq−1i /yq−1i if αik = 0. Setting hi = (hi1, . . . , his) for
i = 1, . . . ,m and Fi = h1i · · ·hmi for i = 1, . . . , s, we get

h1h2 · · ·hm = (h11 · · ·hm1, . . . , h1s · · ·hms) = (F1, . . . , Fs).

It is not hard to see that Y is parameterized by F1, . . . , Fs. 2

Example 2.3.24. Let K be the field F3 and let Y = {[(1, 1, 0)], [0, 1, 1], [0, 1, 0], [1, 1, 1]}.
With the notation above, we get that Y is the projective set parameterized by

F1 = (y1z2z3)
2/(y2y3)

2, F2 = (y1y2y3)
2, F3 = (y2z1z3)

2/(y1y3)
2.

The next result gives a family of ideals where the converse of Corollary 2.3.21 is true.

Proposition 2.3.25. Let K = Fq be a finite field. If Y is a subset of Ps−1 such that each
element of Y is of the form [α] with α ∈ {0, 1}s and I(Y) is a binomial ideal, then Y is a
projective set parameterized by Laurent monomials.

Proof. Since Y is finite, one has that Y = Y = V (I(Y)). Hence, as I(Y) is generated by
binomials, we get that Y ∪ {[0]} is a submonoid of Ps−1 ∪ {[0]}. Thus, by Lemma 2.3.23,
Y is parameterized by Laurent monomials. 2

This leads us to pose the following conjecture.

Conjecture 2.3.26. Let K = Fq be a finite field and let Y be a subset of Ps−1. If I(Y)
is a binomial ideal, then Y is a projective set parameterized by Laurent monomials.

In particular from Proposition 2.3.25 this conjecture is true for q = 2.

Computing degrees using group actions. LetK = Fq be a finite field, let yv1 , . . . , yvs

be Laurent monomials in K(y) and let X and X be the projective sets parameterized by
these monomials. By the exponent laws it is not hard to show that X is a multiplicative
group under componentwise multiplication. The group X acts on X by componentwise
multiplication

X × X→ X, ([α], [γ]) 7→ [α] · [γ], (2.3.10)

where [α] = [(α1 . . . , αs)], [γ] = [(γ1, . . . , γs)] and [α] · [γ] = [(α1γ1, . . . , αsγs)]. One can
use this action to study X as is seen in the next result. Recall that X decomposes as a
disjoint union of the orbits of the action X × X → X, where an orbit of this action is a
subset of X of the form X · [γ] = {[α] · [γ] | [α] ∈ X} for some [γ] in X and where two
orbits are either equal or disjoint.
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Proposition 2.3.27. Let G be a complete graph with vertices y1, . . . , yn, n ≥ 2, and let
XG ⊂ Ps−1 be the projective set parameterized by the set of all monomials yiyj such that
{yi, yj} is an edge of G, where s = n(n− 1)/2. Then

deg(S/I(XG)) = |XG| =
qn − 1

q − 1
+

(
n

2

)
− n−

(
n

2

)
(q − 1).

Proof. Let V ⊂ {y1, . . . , yn} be a set of vertices of G and let GV be its induced subgraph
which is again a complete graph with vertex set V . Consider the algebraic projective set
XGV parameterized by GV . As GV is a subgraph of G, XGV embeds in XG, we denote
the embedding of XGV by XGV . By [52, Corollary 3.8], one has that |XGV | = (q − 1)|V |−1

if |V | ≥ 3 and |XGV | = 1 if |V | = 2. It is not hard to see that the orbits of the action
X × X → X are precisely the sets XGV . For each 2 ≤ k ≤ n there are

(
n
k

)
induced

subgraphs with k vertices. Hence

|XG| =
(
n

2

)
+

n∑
k=3

(
n

k

)
(q − 1)k−1 =

(
n

2

)
+

1

(q − 1)

n∑
k=3

(
n

k

)
(q − 1)k.

Since qn = [(q − 1) + 1]n =
∑n

k=0

(
n
k

)
(q − 1)k, the required equality follows readily. 2

The next result also follows from the results of Chapter 3.

Proposition 2.3.28. Let G be a complete bipartite graph with bipartition (V1, V2), with
mi = |Vi| for i = 1, 2, and let XG be the projective set parameterized by the monomials
corresponding to the edges of G. Then

|XG| =
qm1 − 1

q − 1
· q

m2 − 1

q − 1
.

Proof. It follows adapting the proof of Proposition 2.3.27, and using that the group XG

acts on XG by componentwise multiplication. 2

Problem 2.3.29. Let G be a graph. Find a formula for the degree of S/I(XG) in terms
of the graph invariants of G and the combinatorics of the graph.

If XG is the algebraic projective set parameterized by the edges of G, then a formula
for the degree of S/XG is given in [50, Theorem 3.2].



Chapter 3

Direct Products in Projective Segre
Codes

Let K = Fq be a finite field. We introduce a family of projective Reed-Muller-type codes
called projective Segre codes. Using commutative algebra and linear algebra methods,
we study their basic parameters and show that they are direct products of projective
Reed-Muller-type codes. As a consequence we recover some results on projective Reed-
Muller-type codes over the Segre variety and over projective tori.

3.1 Linear codes and direct products

In this section we study direct product codes, and some of their properties and charac-
terizations.

Generalized Hamming weights. Let K = Fq be a finite field and let C be a [s, k]
linear code of length s and dimension k, that is, C is a linear subspace of Ks with
k = dimK(C).

Given a subcode D of C (that is, D is a linear subspace of C), the support of D,
denoted χ(D), is the set of non-zero positions of D, that is,

χ(D) := {i | ∃ (a1, . . . , as) ∈ D, ai 6= 0}.

The rth generalized Hamming weight of C, denoted δr(C), is the size of the smallest
support of an r-dimensional subcode, that is,

δr(C) := min{|χ(D)| : D is a linear subcode of C with dimK(D) = r}.

Let 0 6= v ∈ C. The Hamming weight of v, denoted by ω(v), is the number of non-zero
entries of v. If δ(C) is the minimum distance of C, that is,

δ(C) := min{ω(v) : 0 6= v ∈ C)},
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then note that δ1(C) = δ(C). The weight hierarchy of C is the sequence (δ1(C), . . . , δk(C)).
According to [71, Theorem 1] the weight hierarchy is an increasing sequence

1 ≤ δ1(C) < δ2(C) < · · · < δr(C) ≤ s,

and δr(C) ≤ s − k + r for r = 1, . . . , k. For r = 1 this is the Singleton bound for the
minimum distance. Generalized Hamming weights have received a lot of attention; see
[7, 20, 58, 71, 72] and the references therein.

Direct product codes and tensor products. Let C1 ⊂ Ks1 and C2 ⊂ Ks2 be two
linear codes over the finite field K = Fq and let Ms1×s2(K) be the K-vector space of all
matrices of size s1 × s2 with entries in K.

The direct product (also called Kronecker product) of C1 and C2, denoted by C1⊗C2,
is defined to be the linear code consisting of all s1× s2 matrices in which the rows belong
to C2 and the columns to C1; see [66, p. 44]. The direct product codes usually have poor
minimum distance but are easy to decode and can be useful in certain applications; see
[46, Chapter 18].

We denote the tensor product of C1 and C2—in the sense of multilinear algebra [13,
p. 573]—by C1⊗K C2. As is shown in Lemma 3.1.4 another way to see the direct product
of C1 and C2 is as a tensor product.

Theorem 3.1.1. [67, Theorems 2.5.2 and 2.5.3] Let Ci ⊂ Ksi be a linear code of length
si, dimension ki, and minimum distance δ(Ci) for i = 1, 2. Then C1⊗C2 has length s1s2,
dimension k1k2, and minimum distance δ(C1)δ(C2).

Theorem 3.1.2. [72, Theorem 3(d)] Let C1 ⊂ Ks1 and C2 ⊂ Ks2 be two linear codes and
let C = C1⊗C2 be their direct product. Then

δ2(C) = min{δ1(C1)δ2(C2), δ2(C1)δ1(C2)}.

Proof. Let V1 and V2 be subcodes of C1 and C2 of dimensions 2 and 1, respectively.
Setting V = V1⊗V2, χ(V1) = {j1, . . . , jr}, and χ(V2) = {i1, . . . , im}, one has

χ(V ) = {(i, j)| ∃α ∈ V whose (i, j)-entry is not 0}
= {(ik, j`)| 1 ≤ k ≤ m, 1 ≤ ` ≤ r}
= χ(V2)× χ(V1).

Therefore, using that dim(V ) = 2 (see Theorem 3.1.1), we get

δ2(C) ≤ |χ(V )| = |χ(V2)||χ(V1)|.

Hence δ2(C) ≤ δ1(C2)δ2(C1). By a similar argument, considering subcodes V1 and V2 of
C1 and C2 of dimensions 1 and 2, respectively, we get that δ2(C) ≤ δ1(C1)δ2(C2). Thus

δ2(C) ≤ min{δ1(C1)δ2(C2), δ2(C1)δ1(C2)}.
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Next we show the reverse inequality. Let V be an arbitrary subcode of C of dimension
2. Consider the subcode W2 of C2 generated by the rows of all matrices in V and the
subcode W1 of C1 generated by the columns of all matrices in V . Since V ⊂ W1⊗W2, by
Theorem 3.1.1, we get that dimK(W1) dimK(W2) ≥ 2. If dimK(W2) ≥ 2, then |χ(W2)| ≥
δ2(C2). We set χ(W2) = {j1, . . . , jr}. For α ∈ C denote the (i, j)-entry of α by αi,j.
Recall that

χ(V ) = {(i, j)| ∃α ∈ V with αi,j 6= 0}.

Let R1, . . . , Rm be the list of all rows of matrices in V , i.e., the Ri’s form a generating
set for W2. For each ji ∈ χ(W2) there exists γ = (γ1, . . . , γs2) with γji 6= 0. We can write

γ = µ1R1 + µ2R2 + · · ·+ µmRm

for some µi’s in K. Clearly there is ` such that the ji-entry of R` is not zero. Hence there
is α ∈ V whose (k, ji)-entry is not zero for some k. Therefore there are at least δ1(C1)
non-zero entries in the column ji of α. Hence, as j1, . . . , jr are distinct, we get

|χ(V )| ≥ |χ(W2)|δ1(C1) ≥ δ2(C2)δ1(C1).

If dim(W1) ≥ 2, a similar argument (with W1 playing the role of W2) shows that

|χ(V )| ≥ δ2(C1)δ1(C2).

Therefore δ2(C) ≥ min{δ1(C1)δ2(C2), δ2(C1)δ1(C2)}. 2

Recall that there is a natural isomorphism vec : Ms1×s2(K)→ Ks1s2 of K-vector spaces
given by vec(A) = (F1, . . . , Fs1), where F1, . . . , Fs1 are the rows of A. Consider the bilinear
map ψ0 given by

ψ0 : Ks1 ×Ks2 −→ Ms1×s2(K)

((a1, . . . , as1), (b1, . . . , bs2)) 7−→


a1b1 a1b2 . . . a1bs2
a2b1 a2b2 . . . a2bs2

...
...

...
as1b1 as1b2 . . . as1bs2

 .
Definition 3.1.3. The Segre embedding is given by

ψ([a], [b]) := [(vec ◦ ψ0)(a, b)].

The map ψ is well-defined and injective [35, p. 13].

The next lemma is not hard to prove and is probably known in some equivalent
formulation; but we could not find a reference with the corresponding proof.

Lemma 3.1.4. There is an isomorphism T : C1 ⊗K C2 → C1⊗C2 of K-vector spaces
such that T (a⊗ b) = ψ0(a, b) for a ∈ C1 and b ∈ C2.
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Proof. We set ki = dimK(Ci) for i = 1, 2. Using the universal property of the tensor
product [13, p. 573], we get that the bilinear map ψ0 induces a linear map

T : C1 ⊗K C2 −→ C1⊗C2, such that,

a⊗ b 7−→ ψ0(a, b)

for a ∈ C1 and b ∈ C2. By [47, Formula 5, p. 267] and Theorem 3.1.1, one has that C1⊗KC2

and C1⊗C2 have dimension k1k2. Thus to prove that T is an isomorphism it suffices to
prove that T is a one-to-one linear map. Fix bases {α1, . . . , αk1} and {β1, . . . , βk2} of C1

and C2, respectively. Take any element γ in the kernel of T . We can write

γ =
∑

λi,jαi ⊗ βj

with λi,j in K for all i, j. Then

T (γ) = λ1,1T (α1 ⊗ β1) + · · ·+ λ1,k2T (α1 ⊗ βk2) +

λ2,1T (α2 ⊗ β1) + · · ·+ λ2,k2T (α2 ⊗ βk2) +
...

λk1,1T (αk1 ⊗ β1) + · · ·+ λk1,k2T (αk1 ⊗ βk2).

Setting αi = (αi,1, . . . , αi,s1), βj = (βj,1, . . . , βj,s2) for i = 1, . . . , k1, j = 1, . . . , k2, we get

T (γ) =


(λ1,1α1,1β1 + · · ·+ λ1,k2α1,1βk2) + · · ·+ (λk1,1αk1,1β1 + · · ·+ λk1,k2αk1,1βk2)
(λ1,1α1,2β1 + · · ·+ λ1,k2α1,2βk2) + · · ·+ (λk1,1αk1,2β1 + · · ·+ λk1,k2αk1,2βk2)

...
(λ1,1α1,s1β1 + · · ·+ λ1,k2α1,s1βk2) + · · ·+ (λk1,1αk1,s1β1 + · · ·+ λk1,k2αk1,s1βk2)

 .
Since T (γ) = (0), using that the βi’s are linearly independent, we get

λ1,jα
>
1 + · · ·+ λk1,jα

>
k1

= 0 for j = 1, . . . , k2.

Thus λi,j = 0 for all i, j and γ = 0. 2

3.2 Segre products of coordinate rings

In this section we study Segre products of standard graded algebras arising from vanishing
ideals.

Let K be an arbitrary field, let a1, a2 be two positive integers, let Pa1−1, Pa2−1 be
projective spaces over the field K, and let K[x] = K[x1, . . . , xa1 ], K[y] = K[y1, . . . , ya2 ],
K[t] = K[t1,1, . . . , ta1,a2 ] be polynomial rings with the standard grading. If d ∈ N, let
K[t]d denote the set of homogeneous polynomials of total degree d in K[t], together with
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the zero polynomial. Thus K[t]d is a K-linear space and K[t] = ⊕∞d=0K[t]d. In this
grading each ti,j is homogeneous of degree one.

Given Xi ⊂ Pai−1, i = 1, 2, denote by I(X1) (resp. I(X2)) the vanishing ideal of X1

(resp. X2) generated by the homogeneous polynomials of K[x] (resp. K[y]) that vanish
at all points of X1 (resp. X2).

The image of X1×X2 under the Segre embedding ψ (see Definition 3.1.3), denoted by
X, is called the Segre product of X1 and X2. The vanishing ideal I(X) of X is a graded
ideal of K[t], where the ti,j variables are ordered as t1,1, . . . , t1,a2 , . . . , ta1,1, . . . , ta1,a2 .

A standard algebra over an arbitrary field K is a finitely generated graded K-algebra
A =

⊕∞
d=0Ad such that A = K[A1] and A0 = K (that is, A is isomorphic to K[x]/I, for

some polynomial ring K[x] with the standard grading and for some graded ideal I).

Definition 3.2.1. [13, p. 304]} Let A = ⊕d≥0Ad, B = ⊕d≥0Bd be two standard algebras
over a field K. The Segre product of A and B, denoted by A⊗S B, is the graded algebra

A⊗S B := (A0 ⊗K B0)⊕ (A1 ⊗K B1)⊕ · · · ⊂ A⊗K B,

with the normalized grading (A ⊗S B)d := Ad ⊗K Bd for d ≥ 0. The tensor product
algebra A⊗K B is graded by

(A⊗K B)p :=
∑
i+j=p

Ai ⊗K Bj.

Example 3.2.2. [4, p. 161] The Segre product (resp. tensor product) of K[x] and K[y]
is

K[x]⊗S K[y] ' K[{xiyj| 1 ≤ i ≤ a1, 1 ≤ j ≤ a2}]

(resp. K[x]⊗K K[y] ' K[x,y]). Notice that the elements xiyj have normalized degree 1
as elements of K[x]⊗S K[y] and total degree 2 as elements of K[x]⊗K K[y].

The next result is well-known assuming that X1 and X2 are projective algebraic sets;
see for instance [13, Excercise 13.14(d)]. However David Eisenbud pointed out to us that
the result is valid in general. We give a proof of the general case.

Theorem 3.2.3. Let K be a field. If X1, X2 are subsets of the projective spaces Pa1−1,
Pa2−1, respectively, and X is the Segre product of X1 and X2, then the following hold:

(a) (K[x]/I(X1))d ⊗K (K[y]/I(X2))d ' (K[t]/I(X))d as K-vector spaces for d ≥ 0.

(b) K[x]/I(X1)⊗S K[y]/I(X2) ' K[t]/I(X) as standard graded algebras.

(c) HX1(d)HX2(d) = HX(d) for d ≥ 0.

(d) reg(K[t]/I(X)) = max{reg(K[x]/I(X1)), reg(K[y]/I(X2))}.
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(e) If ρ1 = dim(K[x]/I(X1)) and ρ2 = dim(K[y]/I(X2)), then

deg(K[t]/I(X)) = deg(K[x]/I(X1)) deg(K[y]/I(X2))

(
ρ1 + ρ2 − 2

ρ1 − 1

)
.

Proof. (a): Let σ be the epimorphism of K-algebras

σ : K[t]→ K[{xiyj| i ∈ [[1, a1]], j ∈ [[1, a2]]}]

induced by tij 7→ xiyj, where [[1, ai]] = {1, . . . , ai}. For each element xbyc with the
property deg(xb) = deg(yc) = d there is a unique ta ∈ K[t]d such that ta = ti1,j1 · · · tid,jd ,
1 ≤ i1 ≤ · · · ≤ id, 1 ≤ j1 ≤ · · · ≤ jd and σ(ta) = xbyc. Notice that if σ(tα) = xbyc for
some other monomial tα ∈ K[t]d, then ta − tα ∈ I(X). This is used below to ensure that
the mapping of Eq. (3.2.1) is surjective. Setting ϕ0(x

b, yc) = ta, gives a K-bilinear map

ϕ0 : K[x]d ×K[y]d → K[t]d

induced by ϕ0(x
b, yc) = ta. Notice that ϕ0(

∑
λkx

bk ,
∑
µ`y

c`) =
∑
λkµ`ϕ0(x

bk , yc`), where
the λk’s and µ`’s are in K. To show that ϕ0 induces a K-bilinear map

ϕ : (K[x]d/I(X1)d)× (K[y]d/I(X2)d)→ K[t]d/I(X)d, (xb, yc) 7→ ϕ0(xb, yc), (3.2.1)

which is a surjection, it suffices to show that for any f ∈ K[x]d that vanish on X1 (resp.
g ∈ K[y]d that vanish on X2) one has that ϕ0(f, g) vanishes at all points of X. Assume
that f = λ1x

b1 + · · · + λmx
bm is a polynomial in K[x]d that vanish on X1 and that

g = µ1y
c1 + · · · + µry

cr is a polynomial in K[y]d with λk, µ` in K for all k, `. For each
xbkyc` there is tak` ∈ K[t] such that σ(tak`) = xbkyc` . Then

ϕ0(f, g) =
∑

λkµ`ϕ0(x
bk , yc`) =

∑
λkµ`t

ak` , and

ϕ0(f, g)(xiyj) = (λ1x
b1 + · · ·+ λmx

bm)(µ1y
c1 + · · ·+ µry

cr),

where we use (xiyj) as a short hand for (x1y1, x1y2, . . . , x1ya2 , . . . , xa1y1, xa1y2, . . . , xa1ya2).
Now if [(α1, . . . , αa1)] is in X1 and [(β1, . . . , βa2)] is in X2, making xi = αi and yj = βj for
all i, j in the last equality, we get ϕ0(f, g)(αiβj) = 0. Therefore, by the universal property
of the tensor product [13, p. 573], there is a surjective map ϕ that makes the following
diagram commutative:

(K[x]d/I(X1)d)× (K[y]d/I(X2)d) (K[x]d/I(X1)d)⊗K (K[y]d/I(X2)d)-
φ

?
ϕ

K[t]d/I(X)d

ϕ
������������9

where φ is the canonical map, given by φ(f, g) = f ⊗ g, and ϕ = ϕφ.
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For each tα ∈ K[t]d there are unique monomials xb ∈ K[x]d and yc ∈ K[y]d such that
σ(tα) = xbyc. We set σ1(t

α) = xb and σ2(t
α) = yc. Thus we have a surjective K-linear

map

σ∗0 : K[t]d → K[x]d/I(X1)d ⊗K K[y]d/I(X2)d

given by σ∗0(
∑
λαt

α) =
∑
λασ1(tα) ⊗ σ2(tα), where the λα’s are in K. Notice that the

K-vector space on the right hand side is generated by all xb⊗yc such that xb ∈ K[x]d and
yc ∈ K[y]d. Take f ∈ I(X)d, then σ(f)(αiβj) = 0 for all α = [(α1, . . . , αa1)] ∈ X1 and all

β = [(β1, . . . , βa2)] ∈ X2. We can write σ(f) =
∑k

`=1 f`g` with f` ∈ K[x]d, g` ∈ K[y]d for

` = 1, . . . , k, and σ∗0(f) =
∑k

`=1 f` ⊗ g`. Next we show that σ∗0(f) = 0, i.e., f ∈ ker(σ∗0).
If k = 1, we may assume that f1 /∈ I(X1) otherwise f1 = 0. Pick α ∈ X1 such that
f1(α) 6= 0. Then, as f1(α)g1(β) = 0 for all β ∈ X2, one has g1 ∈ I(X2) and g1 = 0. We
may now assume that k > 1 and fk 6= 0. Pick α ∈ X1 such that fk(α) 6= 0. By hypothesis
the polynomial

f1(α)g1 + · · ·+ fk(α)gk

is in K[y]d and vanishes at all points of X2. Thus

gk = −(f1(α)/fk(α))g1 − · · · − (fk−1(α)/fk(α))gk−1.

Therefore, setting h` = f` − (f`(α)/fk(α))fk for ` = 1, . . . , k − 1, we get

σ∗0(f) =
k∑
`=1

f` ⊗ g` =
k−1∑
`=1

h` ⊗ g`

and
∑k−1

`=1 h`(γ)g`(β) = 0 for all γ ∈ X1 and β ∈ X2. Repeating the same argument,
with h` playing the role of f` and k− 1 playing the role of k, as many times as necessary
we conclude that σ∗0(f) = 0. Hence I(X)d ⊂ ker(σ∗0). Therefore σ∗0 induces a K-linear
surjection

σ∗ : K[t]d/I(X)d → (K[x]d/I(X1)d)⊗K (K[y]d/I(X2)d).

Altogether we get that the linear maps ϕ and σ∗ are bijective.

Items (b) to (e) follow directly from (a) and its proof. 2

3.3 Projective Segre codes

In this section we study projective Segre codes and their basic parameters; including the
second generalized Hamming weight. It is shown that direct product codes of projective
Reed-Muller-type codes are projective Segre codes. Then some applications are given.
We continue to employ the notations and definitions used in Sections 3.1 and 3.2.

In preparation for our main theorem, let K = Fq be a finite field, let a1, a2 be two
positive integers with a1 ≥ a2, and for i = 1, 2, let Xi be a non-empty subset of the
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projective space Pai−1 over K. We set s = a1a2 and si = |Xi| for i = 1, 2. The Segre
embedding is given by

ψ : Pa1−1 × Pa2−1 → Pa1a2−1 = Ps−1

([α1, . . . , αa1 ], [β1, . . . , βa2 ]) → [(α1β1, α1β2, . . . , α1βa2 ,

α2β1, α2β2, . . . , α2βa2 ,
...

αa1β1, αa1β2, . . . , αa1βa2)].

The image of X1×X2 under the map ψ, denoted by X, is the Segre product of X1 and
X2. As ψ is injective, we get |X| = |X1||X2| = s1s2. Then we can write X, X1, and X2 as:

X = {P1,1, . . . , Ps1,s2} = {P1,1, P1,2, . . . , P1,s2 ,

P2,1, P2,2, . . . , P2,s2 ,
...

Ps1,1, Ps1,2, . . . , Ps1,s2},

X1 = {Q1, . . . , Qs1}, and X2 = {R1, . . . , Rs2}, respectively, where

Qi = [(αi,1, αi,2, . . . , αi,a1)] and Rj = [(βj,1, βj,2, . . . , βj,a2)],

for i = 1, . . . , s1 and j = 1, . . . , s2. Because of the embedding ψ each Pi,j ∈ X is of the
form

Pi,j = ψ(Qi, Rj) = [(αi,1 · βj,1, αi,1 · βj,2, . . . , αi,1 · βj,a2 ,
αi,2 · βj,1, αi,2 · βj,2, . . . , αi,2 · βj,a2 ,

...

αi,a1 · βj,1, αi,a1 · βj,2, . . . , αi,a1 · βj,a2)].

Given a positive integer r, we set [[1, r]] := {1, . . . , r}. For use below notice that for
each i ∈ [[1, s1]] and for each j ∈ [[1, s2]] there are ki ∈ [[1, a1]] and `j ∈ [[1, a2]] such that
αi,ki 6= 0 and βj,`j 6= 0. In fact, choose ki to be the smallest k ∈ [[1, a1]] such that αi,k 6= 0,
and choose `j to be the smallest ` ∈ [[1, a2]] such that βj,` 6= 0. Hence αi,ki · βj,`j 6= 0.

Setting K[t] = K[t1,1, t1,2 . . . , t1,a1 , . . . , ta1,1, ta1,2, . . . , ta1,a2 ], s = a1a2, and fixing an
integer d ≥ 1, define fi,j(t1,1, . . . , ta1,a2) = (tki,`j)

d. Then fi,j(Pi,j) = (αi,ki · βj,`j)d 6= 0.
The evaluation map evd is defined as:

evd : K[t]d → K |X| = Ks1s2 ,

f →
(
f(P1,1)

f1,1(P1,1)
,
f(P1,2)

f1,2(P1,1)
, . . . ,

f(Ps1,s2)

fs1,s2(Ps1,s2)

)
.

This is a linear map of K-vector spaces.
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Definition 3.3.1. The image of evd, denoted by CX(d), defines a projective Reed-Muller-
type linear code of degree d that we call a projective Segre code of degree d.

For each i ∈ [[1, s1]] and for each j ∈ [[1, s2]], define the following polynomials:

gi(x1, . . . , xa1) = xdki ∈ K[x1, . . . , xa1 ]d and hj(y1, . . . , ya2) = yd`j ∈ K[y1, . . . , ya2 ]d.

Clearly gi(Qi) = αdi,ki 6= 0, hj(Rj) = βdj,`j 6= 0, fi,j(Pi,j) = (αi,ki)
dhj(Rj) = gi(Qi)(βj,`j)

d.
We also define the following two evaluation maps:

ev1
d : K[x1, . . . , xa1 ]d → K |X1| = Ks1 ,

g →
(
g(Q1)

g1(Q1)
,
g(Q2)

g2(Q2)
, . . . ,

g(Qs1)

gs1(Qs1)

)
, and

ev2
d : K[y1, . . . , ya2 ]d → K |X2| = Ks2 ,

h →
(
h(R1)

h1(R1)
,
h(R2)

h2(R2)
, . . . ,

h(Rs2)

hs2(Rs2)

)
,

and their corresponding Reed-Muller-type linear codes CXi(d) := im(evid) for i = 1, 2.

Let C be a linear code. From Section 3.1 recall that δr(C) is the rth generalized
Hamming weight of C and that δ1(C) is the minimum distance δ(C) of C. For 0 6= v ∈ C
its Hamming weight, denoted by ω(v), is the number of non-zero entries of v.

We come to the main result of this section.

Theorem 3.3.2. Let K = Fq be a finite field, let Xi ⊂ Pai−1 for i = 1, 2, and let X be
the Segre product of X1 and X2. The following hold.

(a) |X| = |X1||X2|.

(b) dimK(CX(d)) = dimK(CX1(d)) dimK(CX2(d)) for d ≥ 1.

(c) δ(CX(d)) = δ(CX1(d))δ(CX2(d)) for d ≥ 1.

(d) CX(d) is the direct product CX1(d)⊗CX2(d) of CX1(d) and CX2(d) for d ≥ 1.

(e) δ2(CX(d)) = min{δ1(CX1(d))δ2(CX2(d)), δ2(CX1(d))δ1(CX2(d))} for d ≥ 1.

(f) δ(CX(d)) = 1 for d ≥ max{reg(K[x]/I(X1)), reg(K[y]/I(X2))}.

Proof. (a): This is clear because the Segre embedding is a one-to-one map.

(b): Since K[x]d/I(X1)d ' CX1(d), K[y]d/I(X2)d ' CX2(d), and K[t]d/I(X)d ' CX(d),
the results follows at once from Theorem 3.2.3.
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(c): We set δX(d) = δ(CX(d)) and δXi(d) = δ(CXi(d)) for i = 1, 2. Given f ∈ K[t]d,
the entries of evd(f) can be arranged as:

evd(f) =

(
f(P1,1)

f1,1(P1,1)
,

f(P1,2)

f1,2(P1,2)
, . . . ,

f(P1,s2)

f1,s2(P1,s2)
, → Γ1 (3.3.1)

f(P2,1)

f2,1(P2,1)
,

f(P2,2)

f2,2(P2,2)
, . . . ,

f(P2,s2)

f2,s2(P2,s2)
, → Γ2

...
...

...
...

f(Ps1,1)

fs1,1(Ps1,1)
,
f(Ps1,2)

fs1,2(Ps1,2)
, . . . ,

f(Ps1,s2)

fs1,s2(Ps1,s2)

)
→ Γs1

↓ ↓ ↓
Λ1 Λ2 · · · Λs2

where Γ1, . . . ,Γs1 and Λ1, . . . ,Λs2 are row and column vectors, respectively. Thus evd(f)
can be viewed as a matrix of size s1×s2. Below we show that Γi ∈ CX2(d) and Λ>j ∈ CX1(d)
for all i, j. Define the following polynomials

hQi = f(αi,1 · y1, αi,1 · y2, . . . , αi,1 · ya2 ,
αi,2 · y1, αi,2 · y2, . . . , αi,2 · ya2 ,

...

αi,a1 · y1, αi,a1 · y2, . . . , αi,a1 · ya2) ∈ K[y1, . . . , ya2 ]d, and

gRj = f(x1 · βj,1, x1 · βj,2, . . . , x1 · βj,a2 ,
x2 · βj,1, x2 · βj,2, . . . , x2 · βj,a2 ,

...

xa1 · βj,1, xa1 · βj,2, . . . , xa1 · βj,a2) ∈ K[x1, . . . , xa1 ]d.

Observe that f(Pij) = hQi(Rj) = gRj(Qi).

First we show the inequality δX(d) ≥ δX1(d)δX2(d). Let f ∈ K[t]d such that evd(f) 6= 0.
We want to prove that ω(evd(f)), the Hamming weight of evd(f), satisfies

ω(evd(f)) ≥ δX1(d)δX2(d).

For simplicity, we set τf = evd(f) and denote the Hamming weight of Γi by ω(Γi). One
has

ω(τf ) = ω(Γ1) + ω(Γ2) + · · ·+ ω(Γs1).
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Notice that

Γi =

(
f(Pi1)

fi1(Pi1)
,
f(Pi2)

fi2(Pi2)
, . . . ,

f(Pis2)

fis2(Pis2)

)
=(

hQi(R1)

αdi,ki · h1(R1)
,

hQi(R2)

αdi,ki · h2(R2)
, . . . ,

hQi(Rs2)

αdi,ki · hs2(Rs2)

)
=

1

(αi,ki)
d
· ev2

d(hQi), and

Λ>j =
1

(βj,`j)
d
· ev1

d(gRj),

for i = 1, . . . , s1 and j = 1, . . . , s2. Therefore ω(Γ1), the number of non-zero entries of Γ1,
is the same as the number of non-zero entries of ev2

d(hQ1), and if Γ1 6= 0, then ev2
d(hQ1) 6= 0

and ω(Γ1) ≥ δX2(d). Similarly, for any i ∈ [[1, s1]] such that Γi 6= 0, ω(Γi) ≥ δX2(d). Setting
b = |{i|Γi 6= 0}|, we get that

ω(τf ) ≥ b · δX2(d).

Now we want to prove that b ≥ δX1(d). Suppose b < δX1(d). Choose j ∈ [[1, s2]] such
that Λj 6= 0. If ω(Λj) is the number of non-zero entries of Λj, we have ω(Λj) ≤ b < δX1(d)
and ω(Λj) is equal to the number of non-zero entries of ev1

d(gRj). As ev1
d(gRj) is in CX1(d),

we conclude that ω(Λj) ≥ δX1(d), a contradiction. Thus b ≥ δX1(d) and

ω(evd(f)) ≥ δX1(d)δX2(d).

As this holds for any f ∈ K[t]d such that evd(f) 6= 0, we obtain δX(d) ≥ δX1(d)δX2(d).

Next we prove that δX(d) ≤ δX1(d)δX2(d). It suffices to find a word in CX(d) with
Hamming weight equal to δX1(d)δX2(d). Let g ∈ K[x1, . . . , xa1 ]d be such that ev1

d(g) is
not zero and ω(ev1

d(g)) = δX1(d) and let h ∈ K[y1, . . . , ya2 ]d be such that ev1
d(h) 6= 0 and

ω(ev2
d(h)) = δX2(d). Let δi = δXi(d) for i = 1, 2. There are Qi1 , . . . , Qiδ1

∈ X1 such that

g(Qi1) 6= 0, . . . , g(Qiδ1
) 6= 0 and g(Qi) = 0 for Qi ∈ X1 \ {Qi1 , . . . , Qiδ1

},

and there are Rj1 , . . . , Rjδ2
∈ X2 such that

h(Rj1) 6= 0, . . . , h(Riδ2
) 6= 0 and h(Rj) = 0 for Rj ∈ X2 \ {Rj1 , . . . , Rjδ2

}.

Notice that g (resp. h) is a sum of monomials of degree d in the variables x1, . . . , xa1
(resp. y1, . . . , ya2). Each monomial is a product of d variables; the variables could be
repeated. Therefore, g·h = g(x1, . . . , xa1)·h(y1, . . . , ya2) is a sum of monomials, each one of
these monomials is a product of 2d variables, d variables among x1, . . . , xa1 and d variables
among y1, . . . , ya2 ; and again, variables could be repeated. Let xθ1 · · ·xθdyγ1 · · · yγd be a
monomial of gh with θ1, . . . , θd ∈ [[1, a1]], γ1, . . . , γd ∈ [[1, a2]]. We can write

xθ1 · · ·xθdyγ1 · · · yγd = (xθ1yγ1) · · · (xθdyγd),

this is one possible way to match these d x’s and these d y’s in pairs; there are many
other ways to do it. If, for each monomial of g ·h, we choose a way to match the d x’s and
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the d y’s in pairs, then we can see g · h as a polynomials in (xky`), k ∈ [[1, a1]], ` ∈ [[1, a2]].
Now, if in g · h we substitute xky` by the variable tk,`, we obtain a polynomial

f(t1,1, . . . , ta1,a2) ∈ K[t]d = K[t1,1, . . . , ta1,a2 ]d

such that f(Pi,j) = g(Qi)·h(Rj), where Pi,j = ψ(Qi, Rj) for i = 1, . . . , s1 and j = 1, . . . , s2.
Hence f(Pi,j) 6= 0 if and only if g(Qi) 6= 0 and h(Rj) 6= 0. As a result evd(f) 6= 0, and
ω(evd(f)) = δ1δ2 = δX1(d)δX2(d). Hence δX(d) ≤ δX1(d)δX2(d).

(d): By part (b) and Theorem 3.1.1 the linear codes CX(d) and CX1(d)⊗CX2(d) have
the same dimension. Using Eq. (3.3.1) it follows that CX(d) can be regarded as a linear
subspace of CX1(d)⊗CX2(d). Hence these linear spaces must be equal.

(e): It follows at once from Theorem 3.1.2 and part (d).

(f): This follows from part (c), Proposition 1.5.3(iii), and Theorem 3.2.3(d). 2

Remark 3.3.3. This result tells us that the direct product of projective Reed-Muller-type
codes is again a projective Reed-Muller-type code.

Definition 3.3.4. If K∗ = K\{0} and Xi is the image of (K∗)ai , under the map (K∗)ai →
Pai−1, x→ [x], we call Xi a projective torus in Pai−1.

Our main theorem gives a wide generalization of most of the main results of [24, 25,
26, 29].

Remark 3.3.5. If X1 = Pa1−1 and X2 = Pa2−1, using Theorem 3.3.2 we recover the
formula for the minimum distance of CX(d) given in [29, Theorem 5.1], and if Xi is a
projective torus for i = 1, 2, using Theorem 3.3.2 we recover the formula for the minimum
distance of CX(d) given in [24, Theorem 5.5]. In these two cases formulas for the basic
parameters of CXi(d), i = 1, 2, are given in [59, Theorem 1] and [55, Theorem 3.5],
respectively. We also recover the formulas for the second generalized Hamming weight of
some evaluation codes arising from complete bipartite graphs given in [25, Theorem 5.1]
and [26, Theorem 3] (see Corollary 3.3.6).

It turns out that the formula given in Theorem 3.3.2(d) is a far reaching generalization
of the following result.

Corollary 3.3.6. [25, Theorem 5.1] Let X be the Segre product of two projective torus X1

and X2. Then the second generalized Hamming weight of CX(d) is given by

δ2(CX(d)) = min{δ1(CX1(d))δ2(CX2(d)), δ2(CX1(d))δ1(CX2(d))}.

Remark 3.3.7. The knowledge of the regularity of K[t]/I(X) is important for appli-
cations to coding theory: for d ≥ reg(K[t]/I(X)) the projective Segre code CX(d) has
minimum distance equal to 1 by Theorem 3.3.2(f). Thus, potentially good projective
Segre codes CX(d) can occur only if 1 ≤ d < reg(K[t]/I(X)).
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Definition 3.3.8. If X is parameterized by monomials zv1 , . . . , zvs , we say that CX(d) is
a parameterized projective code of degree d.

Corollary 3.3.9. If CXi(d) is a parameterized projective code of degree d for i = 1, 2,
then so is the corresponding projective Segre code CX(d).

Proof. It suffices to observe that if X1 and X2 are parameterized by zv1 , . . . zvs and
wu1 , . . . wur , respectively, then X is parameterized by zviwuj , i = 1, . . . , s, j = 1, . . . , r. 2
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Chapter 4

Vanishing ideals generated by
binomials

In this chapter we characterize, in algebraic and geometric terms, when a graded vanishing
ideal is generated by binomials over any field K. Then we show some applications.

4.1 Monoids in affine and projective spaces

Let (S, · , 1) be a monoid and let K be a field. As usual we define a character χ of S in
K (or a K-character of S) to be a homomorphism of S into the multiplicative monoid
(K, ·, 1). Thus χ is a map of S into K such that χ(1) = 1 and χ(αβ) = χ(α)χ(β) for all
α, β in S.

Theorem 4.1.1. (Dedekind’s Theorem [37, p. 291]) If χ1, . . . , χm are distinct characters
of a monoid S into a field K, then the only elements λ1, . . . , λm in K such that

λ1χ1(α) + · · ·+ λmχm(α) = 0

for all α ∈ S are λ1 = · · · = λm = 0.

Let Ps−1 be a projective space over K. The set S = Ps−1 ∪ {[0]} is a monoid under
componentwise multiplication, i.e., given [α] = [(α1, . . . , αs)] and [β] = [(β1, . . . , βs)] in S,
the product operation is given by

[α] · [β] = [α · β] = [(α1β1, . . . , αsβs)],

where [1] = [(1, . . . , 1)] is the identity element. Accordingly the affine space As is also a
monoid under componentwise multiplication.

Let S = K[t1, . . . , ts] be a polynomial ring over a field K with the standard grading
induced by setting deg(ti) = 1 for all i. Given a set Y ⊂ Ps−1, recall that the vanishing
ideal of Y is the graded ideal generated by the homogeneous polynomials in S that vanish
at all points of Y.
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Lemma 4.1.2. Let Y and Y be finite subsets of Ps−1 and As respectively, let P and [P ] be
points in Y and Y , respectively, with P = (α1, . . . , αs), and let I[P ] and IP be the vanishing
ideal of [P ] and P , respectively. Then

I[P ] = ({αkti − αitk| k 6= i ∈ {1, . . . , s}}), IP = (t1 − α1, . . . , ts − αs), (4.1.1)

where αk 6= 0 for some k. Furthermore I(Y) =
⋂

[Q]∈Y I[Q], I(Y ) =
⋂
Q∈Y IQ, I[P ] is a

prime ideal of height s− 1 and IP is a prime ideal of height s.

4.2 Binomial vanishing ideals

We continue to employ the notations and definitions used in Section 4.1. In this part we
classify vanishing ideals generated by binomials.

Theorem 4.2.1. If Y is a subset of Ps−1 and Y ∪ {[0]} is a submonoid of Ps−1 ∪ {[0]}
under componentwise multiplication, then I(Y) is a binomial ideal.

Proof. The set S = {x ∈ As | [x] ∈ Y∪{[0]}} is a submonoid of As. Take a homogeneous
polynomial 0 6= f = λ1t

a1 +· · ·+λmtam that vanishes at all points of Y, where λi ∈ K\{0}
for all i and a1, . . . , am are distinct non-zero vectors in Ns. We set ai = (ai1 , . . . , ais) for
all i. For each i consider the K-character of S given by

χi : S → K, (α1, . . . , αs) 7→ αai11 · · ·αaiss .

As f ∈ I(Y), one has that λ1χ1 + · · · + λmχm = 0. Hence, by Theorem 4.1.1, we get
that m > 2 and χi = χj for some i 6= j. Thus tai − taj is in I(Y). For simplicity of
notation we assume that i = 1 and j = 2. Since [1] ∈ Y, we get that λ1 + · · · + λm = 0.
Thus

f = λ2(t
a2 − ta1) + · · ·+ λm(tam − ta1).

Since f − λ2(ta2 − ta1) is a homogeneous polynomial in I(Y), by induction on m, we
obtain that f is a sum of homogeneous binomials in I(Y). 2

This result can be restated as:

Theorem 4.2.2. Let Y be a subset of Ps−1 such that [1] ∈ Y and [α] · [β] ∈ Y for all [α],
[β] in Y with α · β 6= 0. Then I(Y) is a binomial ideal.

Remark 4.2.3. If Y is a submonoid of As, then I(Y ) is a binomial ideal. This follows
by adapting the proof of Theorem 4.2.1

Theorem 4.2.4. Let K be a field and let Y be a subset of Ps−1. Then I(Y) is a binomial
ideal if and only if V (I(Y)) ∪ {[0]} is a monoid under componentwise multiplication.
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Proof. ⇒) Consider an arbitrary non-zero binomial f = ta − tb in I(Y) with a = (ai)
and b = (bi) in Ns. As I(Y) is graded, f is homogeneous. First notice that [1] ∈ V (I(Y))
because f vanishes at [1]. Take [α], [β] in V (I(Y)) with α = (αi), β = (βi). Then

αa11 · · ·αass = αb11 · · ·αbss and βa11 · · · βass = βb11 · · · βbss ,

and consequently we have (α1β1)
a1 · · · (αsβs)as = (α1β1)

b1 · · · (αsβs)bs , i.e., f vanishes at
[α] · [β] = [α · β] if α · β 6= 0. Thus [α] · [β] ∈ V (I(Y)) ∪ {[0]}.
⇐) Thanks to Theorem 4.2.1 one has that I(V (I(Y))) is a binomial ideal. Recall

that V (I(Y)) is equal to Y (see Lemma 1.4.15). On the other hand, by Lemma 2.2.16,
I(Y) = I(Y). Thus I(Y) is a binomial ideal. 2

Corollary 4.2.5. If Y is a subset of Ps−1 which is closed in the Zariski topology, then
I(Y) is a binomial ideal if and only if Y ∪ {[0]} is a submonoid of Ps−1 ∪ {[0]}.

Proof. Thanks to Theorem 4.2.4 it suffices to recall that V (I(Y)) is equal to Y (see
Lemma 1.4.15). 2

Corollary 4.2.6. If Y is a subset of Ps−1 and dim(S/I(Y)) = 1, then I(Y) is a binomial
ideal if and only if Y ∪ {[0]} is a submonoid of Ps−1 ∪ {[0]}.

Proof. This is a direct consequence of Lemma 1.4.19 and Corollary 4.2.5. 2

Definition 4.2.7. The set T = {[(x1, . . . , xs)] ∈ Ps−1|xi ∈ K∗ for all i} is called a
projective torus in Ps−1, and the set T ∗ = (K∗)s is called an affine torus in As, where
K∗ = K \ {0}.

A binomial ideal I ⊂ S with the property that ti is not a zero-divisor of S/I for all i
is called a lattice ideal .

If Y is a submonoid of an affine torus T ∗, then I(Y ) is a non-graded lattice ideal (see
[16, Proposition 2.3]). The following corollary is the graded version of this result.

Corollary 4.2.8. If Y is a submonoid of a projective torus T , then I(Y) is a lattice ideal.

Proof. By Theorem 4.2.1, I(Y) is a binomial ideal. Thus it suffices to show that ti is
not a zero-divisor of S/I(Y) for all i. If f ∈ S and tif vanishes at all points of Y, then so
does f , as required. 2

Corollary 4.2.9. [49, Proposition 6.7(a)] If Y ⊂ Ps−1 and dim(S/I(Y)) = 1, then the
following are equivalent:

(a) I(Y) is a lattice ideal.

(b) Y is a finite subgroup of a projective torus T .
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Proof. (a) ⇒ (b): By Lemma 1.4.19 the set Y is finite. Using Corollary 4.2.6 and
Lemma 4.1.2 it follows that Y is a submonoid of T . As the cancellation laws hold in T
and Y is finite, we get that Y is a group.

(b) ⇒ (a): This is a direct consequence of Corollary 4.2.8. 2

Proposition 4.2.10. Let K be an algebraically closed field. If Y ⊂ Ps−1, then the follow-
ing are equivalent:

(a) Y is a finite subgroup of a projective torus T .

(b) There is a finite subgroup H of K∗ and v1, . . . , vs ∈ Zn such that

Y = {[(xv1 , . . . , xvs)] |x = (x1, . . . , xn)and xi ∈ H for all i} ⊂ Ps−1.

Proof. (b) ⇒ (a): It is not hard to verify that Y is a subgroup of T using the parame-
terization of Y relative to H.

(a) ⇒ (b): By the fundamental theorem of finitely generated abelian groups, Y is a
direct product of cyclic groups. Hence, there are [α1], . . . , [αn] in Y such that

Y =
{

[α1]
i1 · · · [αn]in

∣∣ i1, . . . , in ∈ Z
}
.

We set αi = (αi1, . . . , αis) for i = 1, . . . , n. As [α1], . . . , [αn] have finite order, for each
1 ≤ i ≤ n there is mi = o([αi]) such that [αi]

mi = [1]. Thus

(αmii1 , . . . , α
mi
is ) = (λi, . . . , λi)

for some λi ∈ K∗. Pick µi ∈ K∗ such that µmii = λi. Setting, βij = αij/µi, one has
βmiij = 1 for all i, j, that is all βij’s are in K∗ and have finite order. Consider the subgroup
H of K∗ generated by all βij’s. This group is cyclic because K is a field. If β is a generator
of (H, · ), we can write αij/µi = βvji for some vji in N. Hence

[α1] = [(βv11 , . . . , βvs1)], . . . , [αn] = [(βv1n , . . . , βvsn)].

We set vi = (vi1, . . . , vin) for i = 1, . . . , s. Let YH be the set in Ps−1 parameterized by
the monomials yv1 , . . . , yvs relative to H. If [γ] ∈ Y, then we can write

[γ] = [α1]
i1 · · · [αn]in = [((βi1)v11 · · · (βin)v1n , . . . , (βi1)vs1 · · · (βin)vsn)]

for some i1, . . . , in ∈ Z. Thus [γ] ∈ YH . Conversely if [γ] ∈ YH , then [γ] = [(xv1 , . . . , xvs)]
for some x1, . . . , xn in H. Since any xk is of the form βik for some integer ik, one can
write [γ] = [α1]

i1 · · · [αn]in , that is, [γ] ∈ Y. 2

Remark 4.2.11. The equivalence between (a) and (b) was shown in [49, Proposition 6.7(b)]
under the assumption that K is a finite field.

If I is a binomial ideal of S, then its saturation (I : (t1 · · · ts)∞) is binomial ideal. The
converse is not true in general as the next example shows.
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Example 4.2.12. Let K be any field and let Y = {[(1, 1, 1)], [(1, 1, 0)], [(1, 0, 1)]}. By
Corollary 4.2.5 the vanishing ideal I(Y) is not a binomial ideal because Y ∪ {[0]} is not
a monoid. The vanishing ideal I(Y ) of Y = Y ∩ T = {[(1, 1, 1)]} is a lattice ideal and
(I(Y) : (t1 · · · ts)∞) = I(Y ).

Proposition 4.2.13. Let K be an algebraically closed field of characteristic zero and let
I be a graded ideal of S of dimension 1. Then I is a lattice ideal if and only if I is the
vanishing ideal of a finite subgroup Y of a projective torus T .

Proof. ⇒) Assume that I = I(L) is the lattice ideal of a lattice L in Zs. Since I is
graded and dim(S/I) = 1, for each i ≥ 2, there is ai ∈ N+ such that fi := taii − t

ai
1 ∈ I.

This polynomial has a factorization into linear factors of the form ti − µt1 with µ ∈ K∗.
In characteristic zero a lattice ideal is radical [70, Theorem 8.2.27]. Therefore I is the
intersection of its minimal primes and each minimal prime is generated by s − 1 linear
polynomials of the form ti − µt1. It follows that I is the vanishing ideal of some finite
subset Y of a projective torus T . By Corollary 4.2.5, Y is a submonoid of T . As the
cancellation laws hold in T and Y is finite, we get that Y is a group.

⇐) This implication follows at once from Corollary 4.2.8. 2
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Chapter 5

Complete intersection vanishing
ideals on sets of clutter type

In this chapter we give a classification of complete intersection vanishing ideals on param-
eterized sets of clutter type over finite fields.

5.1 Vanishing ideals of clutter type

Let R = K[y] = K[y1, . . . , yn] be a polynomial ring over a finite field K = Fq and let
yv1 , . . . , yvs be a finite set of monomials in K[y]. As usual we denote the affine and
projective spaces over the field K of dimensions s and s− 1 by As and Ps−1, respectively.
Points of the projective space Ps−1 are denoted by [α], where 0 6= α ∈ As.

We consider a set X, in the projective space Ps−1, parameterized by yv1 , . . . , yvs . The
set X consists of all points [(xv1 , . . . , xvs)] in Ps−1 that are well defined, i.e., x ∈ Kn and
xvi 6= 0 for some i. The set X is called of clutter type if supp(yvi) 6⊂ supp(yvj) for i 6= j,
where supp(yvi) is the support of the monomial yvi consisting of the variables that occur
in yvi . In this case we say that the set of monomials yv1 , . . . , yvs is of clutter type. This
terminology comes from the fact that the condition supp(yvi) 6⊂ supp(yvj) for i 6= j means
that there is a clutter C, in the sense of [55], with vertex set V (C) = {y1, . . . , yn} and edge
set

E(C) = {supp(yv1), . . . , supp(yvs)}.
A clutter is also called a simple hypergraph, see Definition 5.2.7.

Let S = K[t1, . . . , ts] = ⊕∞d=0Sd be a polynomial ring over the field K with the standard
grading. The graded ideal I(X) generated by the homogeneous polynomials of S that
vanish at all points of X is called the vanishing ideal of X.

There are good reasons to study vanishing ideals over finite fields. They are used
in algebraic coding theory [29] and in polynomial interpolation problems [19, 63]. The
Reed-Muller-type codes arising from vanishing ideals on monomial parameterizations have
received a lot of attention [7, 10, 21, 29, 43, 52, 55, 59].
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The vanishing ideal I(X) is a complete intersection if I(X) is generated by s − 1
homogeneous polynomials. Notice that s−1 is the height of I(X) in the sense of [47]. The
interest in complete intersection vanishing ideals over finite fields comes from information
and communication theory, and algebraic coding theory [12, 23, 33].

Let T be a projective torus in Ps−1 (see Definition 4.2.7) and let X be the set in Ps−1
parameterized by a clutter C (see Definition 5.2.8). Consider the set X = X ∩ T . In [55]
it is shown that I(X) is a complete intersection if and only if X is a projective torus in
Ps−1 . If the clutter C has all its edges of the same cardinality, in [56] a classification of
the complete intersection property of I(X) is given using linear algebra.

The main result of this chapter is a classification of the complete intersection property
of I(X) when X is of clutter type (Theorem 5.2.17). Using the techniques of [52], this
classification can be used to study the basic parameters [46, 66] of the Reed-Muller-type
codes associated to X.

For all unexplained terminology and additional information, we refer to [47] (for com-
mutative algebra), [9] (for Gröbner bases), and [52, 63, 66] (for vanishing ideals and coding
theory).

5.2 Complete intersections

In this section we give a full classification of the complete intersection property of vanishing
ideals of sets of clutter type over finite fields. We continue to employ the notations and
definitions used in Section 5.1.

Throughout this section K = Fq is a finite field, yv1 , . . . , yvs are distinct monomials
in the polynomial ring R = K[y] = K[y1, . . . , yn], with vi = (vi1, . . . , vin) and yvi =
yvi11 · · · yvinn for i = 1, . . . , s, X is the set in Ps−1 parameterized by these monomials, and
I(X) is the vanishing ideal of X. Recall that I(X) is the graded ideal of the polynomial
ring S = K[t1, . . . , ts] generated by the homogeneous polynomials of S that vanish on X.

Definition 5.2.1. Given a = (a1, . . . , an) ∈ Nn, we set ya := ya11 · · · yann . The support of
ya, denoted supp(ya), is the set of all yi such that ai > 0.

Definition 5.2.2. The set X is of clutter type if supp(yvi) 6⊂ supp(yvj) for i 6= j.

Definition 5.2.3. A binomial of S is an element of the form f = ta− tb, for some a, b in
Ns. An ideal generated by binomials is called a binomial ideal .

The set S = Ps−1 ∪ {[0]} is a monoid under componentwise multiplication, that is,
given [α] = [(α1, . . . , αs)] and [β] = [(β1, . . . , βs)] in S, the operation of this monoid is
given by

[α] · [β] = [α1β1, · · · , αsβs],

where [1] = [(1, . . . , 1)] is the identity element.
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Remark 5.2.4. Since X is parameterized by monomials, the set X ∪ {[0]} is a monoid
under componentwise multiplication. Hence, by Theorem 4.2.5, I(X) is a binomial ideal.

Lemma 5.2.5. Let yv1 , . . . , yvs be a set of monomials such that supp(yvi) 6⊂ supp(yvj)
for any i 6= j and let G be a minimal generating set of I(X) consisting of binomials. The
following hold.

(a) If 0 6= f = t
aj
j − tc for some 1 ≤ j ≤ s and some positive integer aj, then f /∈ I(X).

(b) For each pair 1 ≤ i < j ≤ s, there is gij in G such that gij = ±(t
cij
i tj − tbij), where

cij is a positive integer less than or equal to q and bij ∈ Ns \ {0}.

(c) If I(X) is a complete intersection, then s ≤ 4.

Proof. (a): We proceed by contradiction. Assume that f is in I(X). Since I(X) is a
graded binomial ideal, the binomial f is homogeneous of degree aj, otherwise t

aj
j and tc

would be in I(X) which is impossible. Thus c ∈ Ns \ {0}. Hence, as f 6= 0, we can pick
ti ∈ supp(tc) with i 6= j. By hypothesis there is yk ∈ supp(yvi) \ supp(yvj), i.e., vik > 0
and vjk = 0. Making yk = 0 and y` = 1 for ` 6= k, we get that f(yv1 , . . . , yvs) = 1, a
contradiction.

(b): The binomial h = tqi tj − tit
q
j vanishes at all points of Ps−1, i.e., h is in I(X). Thus

there is gij in G such that tqi tj is a multiple of one of the two terms of the binomial gij.
Hence, by part (a), the assertion follows.

(c): Since I(X) is a complete intersection, there is a set of binomials G = {g1, . . . , gs−1}
that generate I(X). The number of monomials that occur in g1, . . . , gs−1 is at most 2(s−1).
Thanks to part (b) for each pair 1 ≤ i < j ≤ s, there is a monomial t

cij
i tj, with cij ∈ N+,

and a binomial gij in G such that the monomial t
cij
i tj occurs in gij. As there are s(s−1)/2

of these monomials, we get s(s− 1)/2 ≤ 2(s− 1). Thus s ≤ 4. 2

Lemma 5.2.6. Let K be a field and let I be the ideal of S = K[t1, t2, t3, t4] generated by
the binomials g1 = t1t2 − t3t4, g2 = t1t3 − t2t4, g3 = t2t3 − t1t4. The following hold.

(i) G = {t2t3− t1t4, t1t3− t2t4, t1t2− t3t4, t22t4− t23t4, t21t4− t23t4, t33t4− t3t34} is a Gröbner
basis of I with respect to the GRevLex order ≺ on S.

(ii) If char(K) = 2, then rad(I) 6= I.

(iii) If char(K) 6= 2 and ei is the i-th unit vector, then I = I(X), where

X = {[e1], [e2], [e3], [e4], [(1,−1,−1, 1)], [(1, 1, 1, 1)], [(−1,−1, 1, 1)], [(−1, 1,−1, 1)]}.

Proof. (i): Using Buchberger’s criterion [9, p. 84], it is seen that G is a Gröbner basis of
I.

(ii): Setting h = t1t2 − t1t3, we get h2 = (t1t2)
2 − (t1t3)

2 = t1t2g1 + t1t3g2, where
g1 = t1t2− t3t4 and g2 = t1t3− t2t4. Thus h ∈ rad(I). Using part (i) it is seen that h /∈ I.
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(iii): As gi vanishes at all points of X for i = 1, 2, 3, we get the inclusion I ⊂ I(X).
Since X ∪ {0} is a monoid under componentwise multiplication, by Theorem 4.2.5, I(X)
is a binomial ideal. Take a homogeneous binomial f in S that vanishes at all points of X.
Let h = ta − tb, a = (ai), b = (bi), be the residue obtained by dividing f by G. Hence we
can write f = g + h, where g ∈ I and the terms ta and tb are not divisible by any of the
leading terms of G. It suffices to show that h = 0. Assume that h 6= 0. As h ∈ I(X) and
[ei] is in X for all i, we get that |supp(ta)| ≥ 2 and |supp(tb)| ≥ 2. It follows that h has
one of the following forms:

h = t1t
i
4 − t2ti4, h = t1t

i
4 − t3ti4, h = t2t

i
4 − t3ti4,

h = t23t
i−1
4 − t3ti4, h = t23t

i−1
4 − t2ti4, h = t23t

i−1
4 − t1ti4,

where i ≥ 1, a contradiction because none of these binomials vanishes at all points of X.
2

Definition 5.2.7. A hypergraph H is a pair (V (H), E(H)) such that V (H) is a finite set
and E(H) is a subset of the set of all subsets of V (H). The elements of E(H) and V (H)
are called edges and vertices , respectively. A hypergraph is simple if f1 6⊂ f2 for any two
edges f1, f2. A simple hypergraph is called a clutter and will be denoted by C instead of
H.

One example of a clutter is a graph with the vertices and edges defined in the usual
way.

Definition 5.2.8. Let C be a clutter with vertex set V (C) = {y1, . . . , yn}, let f1, . . . , fs
be the edges of C and let vk =

∑
xi∈fk ei be the characteristic vector of fk for 1 ≤ k ≤ s,

where ei is the i-th unit vector. The set in the projective space Ps−1 parameterized by
yv1 , . . . , yvs , denoted by XC, is called the projective set parameterized by C.

Lemma 5.2.9. Let K = Fq be a finite field with q 6= 2 elements, let C be a clutter with
vertices y1, . . . , yn, let v1, . . . , vs be the characteristic vectors of the edges of C and let XC
be the projective set parameterized by C. If f = titj − tkt` ∈ I(XC), with i, j, k, l distinct,
then yviyvj = yvkyv`.

Proof. For simplicity assume that the polynomial f = t1t2 − t3t4. Setting A1 =
supp(yv1yv2), A2 = supp(yv3yv4), S1 = supp(yv1) ∩ supp(yv2) and S2 = supp(yv3) ∩
supp(yv4), it suffices to show the equalities A1 = A2 and S1 = S2. If A1 6⊂ A2, pick
yk ∈ A1 \ A2. Making yk = 0 and y` = 1 for ` 6= k, and using that f vanishes on XC, we
get that f(yv1 , . . . , yv4) = −1 = 0, a contradiction. Thus A1 ⊂ A2. The other inclusion
follows by a similar reasoning. Next we show the equality S1 = S2. If S1 6⊂ S2, pick a
variable yk ∈ S1 \ S2. Let β be a generator of the cyclic group F∗q = Fq \ {0}. Making
yk = β, y` = 1 for ` 6= k, and using that f vanishes on XC and the equality A1 = A2, we
get that f(yv1 , . . . , yv4) = β2 − β = 0. Hence β2 = β and β = 1, a contradiction because
q 6= 2. Thus S1 ⊂ S2. The other inclusion follows by a similar argument. 2
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Remark 5.2.10. Let K = Fq be a finite field with q odd and let X be the set of clutter
type in P3 parameterized by the following monomials:

yv1 = yq−11 yr2y
r
3y

q−1
4 yq−15 yq−16 yq−17 ,

yv2 = yr1y
r
2y

q−1
3 yq−14 yq−15 yq−16 yq−18 ,

yv3 = yq−12 yq−14 yr1y
r
3y

q−1
5 yq−17 yq−18 ,

yv4 = yq−11 yq−12 yq−13 yq−14 yq−16 yq−17 yq−18 ,

where r = (q − 1)/2. Then

X = {[e1], [e2], [e3], [e4], [(1,−1,−1, 1)], [(1, 1, 1, 1)], [(−1,−1, 1, 1)], [(−1, 1,−1, 1)]},

|X| = 8 and I(X) = (t1t2 − t3t4, t1t3 − t2t4, t2t3 − t1t4).

Below we show that the set X of Remark 5.2.10 cannot be parameterized by a clutter.

Remark 5.2.11. Let K = Fq be a field with q 6= 2 elements. Then the ideal

I = (t1t2 − t3t4, t1t3 − t2t4, t2t3 − t1t4)

cannot be the vanishing ideal of a set in P3 parameterized by a clutter. Indeed assume that
there is a clutter C such that I = I(XC) and XC ⊂ P3. If v1, . . . , v4 are the characteristic
vectors of the edges of C. Then, by Lemma 5.2.9, we get v1+v2 = v3+v4, v1+v3 = v2+v4
and v2 + v3 = v1 + v4. It follows that v1 = v2 = v3 = v4, a contradiction.

Lemma 5.2.12. Let K be a field and let I be the ideal of S = K[t1, t2, t3] generated by
the binomials g1 = t1t2 − t2t3, g2 = t1t3 − t2t3. The following hold.

(i) G = {t1t3 − t2t3, t1t2 − t2t3, t22t3 − t2t23} is a Gröbner basis of I with respect to the
GRevLex order ≺ on S.

(ii) I = I(X), where X = {[e1], [e2], [e3], [(1, 1, 1)]}.

Proof. It follows using the arguments given in Lemma 5.2.6. 2

Remark 5.2.13. Let K = Fq be a finite field with q elements and let X be the projective
set in P2 parameterized by the following monomials:

yv1 = yq−11 yq−12 , yv2 = yq−12 yq−13 , yv3 = yq−11 yq−13 .

Then X = {[e1], [e2], [e3], [(1, 1, 1)]} and I(X) = (t1t2 − t2t3, t1t3 − t2t3).

Lemma 5.2.14. Let β be a generator of F∗q and 0 6= r ∈ N. Suppose s = 2. If I =

(tr+1
1 t2 − t1tr+1

2 ) and r divides q − 1, then I = I(X), where X is the set of clutter type in
P1 parameterized by yq−11 , yq−12 yk3 and r = o(βk).
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Proof. We set f = tr+1
1 t2 − t1tr+1

2 . Take a point P = [(xq−11 , xq−12 xk3)] in X. Then

f(P ) = (xq−11 )r+1(xq−12 xk3)− (xq−11 )(xq−12 xk3)r+1.

We may assume x1 6= 0 and x2 6= 0. Then f(P ) = xk3−(xk3)r+1. If x3 6= 0, then x3 = βi for
some i and (xk3)r+1 = xk3, that is, f(P ) = 0. Therefore one has the inclusion (f) ⊂ I(X).

Next we show the inclusion I(X) ⊂ (f). By Theorem 4.2.5, I(X) is a binomial ideal.
Take a non-zero binomial g = ta11 t

a2
2 − tb11 tb22 that vanishes on X. Then a1 + a2 = b1 + b2

because I(X) is graded. We may assume that b1 > a1 and a2 > b2. We may also assume
that a1 > 0 and b2 > 0 because {[e1], [e2]} ⊂ X. Then g = ta11 t

b2
2 (ta2−b22 − tb1−a11 ). As g

vanishes on X, making y3 = β and y1 = y2 = 1, we get (βk)a2−b2 = 1. Hence a2 − b2 = λr
for some λ ∈ N+, where r = o(βk). Thus ta2−b22 − tb1−a11 is equal to tλr2 − tλr1 ∈ (tr1 − tr2).
Therefore g is a multiple of f = t1t2(t

r
1 − tr2) because a1 > 0 and b2 > 0. Thus g ∈ (f). 2

Lemma 5.2.15. Let K = Fq be a finite field. If {[e1], [e2]} ⊂ Y ⊂ P1 and Y ∪ {0}
is a monoid under componentwise multiplication, then there is 0 6= r ∈ N such that
I(Y) = (tr+1

1 t2 − t1tr+1
2 ) and r divides q − 1.

Proof. We set f = tr+1
1 t2 − t1tr+1

2 and X = Y ∩ T , where T is a projective torus in P1.
The set X is a group, under componentwise multiplication, because X is a finite monoid
and the cancellation laws hold. By Theorem 4.2.5, I(Y) is a binomial ideal. Clearly
(f) ⊂ I(Y). To show the other inclusion take a non-zero binomial g = ta11 t

a2
2 − tb11 t

b2
2

that vanish on Y. Then a1 + a2 = b1 + b2 because I(Y) is graded. We may assume that
b1 > a1 and a2 > b2. We may also assume that a1 > 0 and b2 > 0 because {[e1], [e2]} ⊂ X.
Then g = ta11 t

b2
2 (ta2−b22 − tb1−a11 ). The subgroup of F∗q given by H = {ξ ∈ F∗q | [(1, ξ)] ∈ X}

has order r = |X|. Pick a generator β of the cyclic group F∗q. Then H is a cyclic

group generated by βk for some k ≥ 0. As g vanishes on Y, one has that ta2−b22 − tb1−a11

vanishes on X. In particular (βk)a2−b2 = 1. Hence a2 − b2 = λr for some λ ∈ N+, where
r = o(βk) = |X|. Proceeding as in the proof of Lemma 5.2.14 one derives that g ∈ (f).
Noticing that T has order q − 1, we obtain that r divides q − 1. 2

Definition 5.2.16. An ideal I ⊂ S is called a complete intersection if there exists
g1, . . . , gr in S such that I = (g1, . . . , gr), where r is the height of I.

Recall that a graded ideal I is a complete intersection if and only if I is generated
by a homogeneous regular sequence with ht(I) elements (see [70, Proposition 2.3.19,
Lemma 2.3.20]).

Theorem 5.2.17. Let K = Fq be a finite field and let X be a set in Ps−1 parameterized
by a set of monomials yv1 , . . . , yvs such that supp(yvi) 6⊂ supp(yvj) for any i 6= j. Then
I(X) is a complete intersection if and only if s ≤ 4 and, up to permutation of variables,
I(X) has one of the following forms:

(i) s = 4, q is odd and I = (t1t2 − t3t4, t1t3 − t2t4, t2t3 − t1t4).
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(ii) s = 3 and I = (t1t2 − t2t3, t1t3 − t2t3).

(iii) s = 2 and I = (tr+1
1 t2 − t1tr+1

2 ), where 0 6= r ∈ N is a divisor of q − 1.

(iv) s = 1 and I = (0).

Proof. ⇒): Assume that I(X) is a complete intersection. By Lemma 5.2.5(c) one has
s ≤ 4.

Case (i): Assume that s = 4. Setting I = I(X), by hypothesis I is generated by 3
binomials g1, g2, g3. By Lemma 5.2.5(b) for each pair 1 ≤ i < j ≤ 4 there are positive
integers cij and aij such that t

cij
i tj and tit

aij
j occur as terms in g1, g2, g3. Since there are

at most 6 monomials that occur in the gi’s, we get that cij = aij = 1 for 1 ≤ i < j ≤ 4.
Thus, up to permutation of variables, there are 4 subcases to consider:

(a) : g1 = t1(t2 − t3), g2 = t1t4 − t2t3, g3 = t4(t2 − t3).
(b) : g1 = t1(t2 − t3), g2 = t4(t1 − t3), g3 = t2(t3 − t4).
(c) : g1 = t1t2 − t3t4, g2 = t1t3 − t2t4, g3 = t2t3 − t1t4.
(d) : g1 = t3(t1 − t2), g2 = t1(t3 − t4), g3 = t2(t1 − t4).

Subcase (a): This case cannot occur because the ideal (g1, g2, g3) has height 2.

Subcase (b): The reduced Gröbner basis of I = (g1, g2, g3) with respect to the GRevLex
order ≺ is given by

g1 = t1t2 − t1t3, g2 = t1t4 − t3t4, g3 = t2t3 − t2t4,
g4 = t23t4 − t2t24, g5 = t1t

2
3 − t2t24, g6 = t22t

2
4 − t2t34.

Hence the binomial h = t2t4 − t3t4 /∈ I because t2t4 does not belong to in≺(I), the initial
ideal of I. Since h2 = −2t24g3 + t4g4 + g6, we get that h ∈ rad(I). Thus I is not a radical
ideal which is impossible because I = I(X) is a vanishing ideal. Therefore this case cannot
occur.

Subcase (c): In this case one has I = (t1t2 − t3t4, t1t3 − t2t4, t2t3 − t1t4), as required.
From Lemma 5.2.6, we obtain that q is odd.

Subcase (d): The reduced Gröbner basis of I = (g1, g2, g3) with respect to the GRevLex
order ≺ is given by

h1 = t2t3 − t1t4, g2 = t1t3 − t1t4, g3 = t1t2 − t2t4,
g4 = t1t

2
4 − t2t24, g5 = t21t4 − t2t24, g6 = t22t

2
4 − t2t34.

Setting h = t1t4 − t2t4, as in Subcase (b), one can readily verify that h /∈ I and h2 ∈ I.
Hence I is not a radical ideal. Therefore this case cannot occur.

Case (ii): Assume that s = 3. By hypothesis I = I(X) is generated by 2 binomials
g1, g2. By Lemma 5.2.5(b) for each pair 1 ≤ i < j ≤ 3 there are positive integers cij and
aij such that t

cij
i tj and tit

aij
j occur as terms in g1, g2. Since there are at most 4 monomials
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that occur in the gi’s it is seen that, up to permutation of variables, there are 2 subcases
to consider:

(a) : g1 = t1t3 − t2t3, g2 = tc121 t2 − t1ta122 with c12 = a12 ≥ 2.

(b) : g1 = t1t2 − t2t3, g2 = t1t3 − t2t3.

Subcase (a) cannot occur because the ideal I = (g1, g2), being contained in (t1 − t2),
has height 1. Thus we are left with subcase (b), that is, I = (t1t2 − t2t3, t1t3 − t2t3), as
required.

Case (iii): If s = 2, then X is parameterized by yv1 , yv2 . Pick yk ∈ supp(yv1)\supp(yv2).
Making yk = 0 and y` = 1 for ` 6= k, we get that [e2] ∈ X, and by a similar argument
[e1] ∈ X. As X∪{[0]} is a monoid under componentwise multiplication, by Lemma 5.2.15,
I(X) has the required form.

Case (iv): If s = 1, this case is clear.

⇐) The converse is clear because the vanishing ideal I(X) has height s− 1. 2

Proposition 5.2.18. If I is an ideal of S of one of the following forms:

(i) s = 4, q is odd and I = (t1t2 − t3t4, t1t3 − t2t4, t2t3 − t1t4),

(ii) s = 3 and I = (t1t2 − t2t3, t1t3 − t2t3),

(iii) s = 2 and I = (tr+1
1 t2 − t1tr+1

2 ), where 0 6= r ∈ N and r divides q − 1,

then there is a set X in Ps−1 of clutter type such that I is the vanishing ideal I(X).

Proof. The result follows from Lemma 5.2.6 and Remark 5.2.10, Lemma 5.2.12 and
Remark 5.2.13, and Lemma 5.2.14, respectively. 2



Chapter 6

Problems and Related Results

6.1 Degree and regularity of vanishing ideals

The results of this thesis allows us to compute the degree and regularity index of vanishing
ideals parameterized by rational functions over any field.

The following general problem was one of our initial motivations to find computational
tools to compute generating sets of vanishing ideals.

Problem 6.1.1. Find explicit formulas for the degree and regulariy index for families of
vanishing ideals arising from combinatorial structures when the base field is finite.

Problem 6.1.2. Let K = Fq be a finite field and let X and X be the projective and
algebraic sets in Ps−1 parameterized by a set yv1 , . . . , yvs of Laurent monomials. Find
formulas for the algebraic invariants of the vanishing ideals I(X) an I(X), and for the
basic parameters of CX(d) and CX(d), the Reed-Muller-type codes of degree d over X and
X, respectively, in terms of s, q, d, and the combinatorics of v1, . . . , vs.

This is an open problem where our results can be used to find formulas for the degree
and the regularity of I(X) and I(X), and for the dimension and length of the Reed-
Muller-type codes CX(d) and CX(d). The degree is the easiest invariant to compute. The
regularity is harder to compute.

If XG is the algebraic projective set parameterized by the edges of G, then a formula
for the degree of S/XG is given in [50, Theorem 3.2].

Problem 6.1.3. Let G be a graph and let XG be the set in Ps−1 parameterized by the
edges of G. Find a formula for the degree of S/I(XG) in terms of the graph invariants of
G and the combinatorics of the graph.

The following is still a wide open problem.

Problem 6.1.4. Let G be a graph and let XG and XG be the projective and algebraic sets
in Ps−1, respectively, parameterized by the edges of G. Find formulas for the regularity
index of I(XG) and I(XG) in terms of q and the combinatorics of G.
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The regularity index of S/I(XG) has been studied in [28, 50, 68] for certain families
of graphs.

Problem 6.1.5. For a connected graph G characterize when I(X) is a complete intersec-
tion.

For an arbitrary graph G in [55] it is shown that I(X) is a complete intersection if
and only if X is a projective torus.

6.2 Binomial vanishing ideals

Problem 6.2.1. If X is a projective set parameterized by rational functions over a finite
field and I(X) is a binomial ideal, then by Proposition 2.3.9 I(X) is a binomial ideal. Is
the converse true?

Let K = Fq be a finite field. If X is a set in Ps−1 parameterized by Laurent monomials,
then I(X) is a binomial ideal (see Corollary 2.3.21). We give a family of ideals where the
converse is true; see Proposition 2.3.25.

This leads us to pose the following conjecture.

Conjecture 6.2.2. Let K = Fq be a finite field and let Y be a subset of Ps−1. If I(Y)
is a binomial ideal, then Y is a set parameterized by Laurent monomials (see Conjec-
ture 2.3.26).

This conjecture fails for infinite fields (see Example 2.2.9). Notice that this conjecture
can be restated as:

Problem 6.2.3. Let K = Fq be a finite field and Y ⊂ Ps−1. If V (I(Y))∪{[0]} is a monoid
under componentwise multiplication, then Y is parameterized by Laurent monomials.

The next problem seems likely to hold.

Problem 6.2.4. Let K = Fq be a finite field and X ⊂ Ps−1. If X∪{0} is a multiplicative
monoid and X = {[e1], . . . , [es]} ∪ (X ∩ T ), where T is a projective torus in Ps−1, then
X is parameterized by Laurent monomials. For this family when is I(X) a complete
intersection?

Another problem on vanishing ideals is:

Problem 6.2.5. Let K be a field and let X be a subset of Ps−1 parameterized by Laurent
monomials. Give necessary and/or sufficient conditions for the equality V (I(X)) = X.

If K is an infinite field, the affine case of this equality was studied [39, 40, 54]. We
plan to study these three papers to see if all results there hold for the projective case.

Problem 6.2.6. Let X be a set of clutter type such that I(X) is a complete intersection.
Using the techniques of [12, 43, 52, 55] and Theorem 5.2.17 find formulas for the basic
parameters of the Reed-Muller-type codes associated to X.
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Notation

(I : J∞), saturation, 7
(I : f∞), saturation, 7
K, a field, 2
K∗ = K \ {0}, 4
X, projective algebraic set, xii
X∗, affine algebraic set, xii
lcm, least common multiple, 5
Ps−1K or Ps−1, projective space, 10
X, projective set, xii
X∗, affine set, xii
S(f, g), the S-polynomial, 5
f →F g, reduction w.r.t F , 4
k, a field, 2
k[t], polynomial ring, 2
in≺(I), initial ideal, 4
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affine
Reed-Muller-type code, 14
torus, 26

ascending chain condition, 1

basic parameters, 13
binomial, 7

ideal, 7
Buchberger

algorithm, 5
criterion, 6

clutter type, 62
colon ideal, 7
complete intersection ideal, 66
computer algebra systems

Macaulay2, 6

Dickson’s lemma, 4
dimension

of a ideal, 8
direct product, 42
division algorithm, 4

elimination order, 6
evaluation

code, 12
map, 12

forms, 2

Gröbner basis, 5
reduced, 5

graded
ideal, 3, 11
map, 2
module, 2

ring, 2
submodule, 2

GRevLex order, 6

Hamming weight, 12
generalized, 41

height, 8
Hilbert

basis
theorem, 2

series, 9
homogeneous

element, 2
ideal, 3

homogenization, 10
hypergraph, 64

simple, 64

initial
ideal, 4

interpolation problem, 14

Krull dimension, 8

Laurent monomial, 10, 18
leading

coefficient, 4
monomial, 4
term, 4

lex order, 3
lexicographical order, 3
linear code, 12, 41

Macaulay2
see computer algebra systems, 6

minimum distance, 12
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monomial, 3
order, 3

Noetherian
module, 1
ring, 2

polynomial
quasi-homogeneous, 3

presentation ideal, 18
projective

Reed-Muller-type code, 12
closure, 11
Segre code, 49
space, 10
torus, 26

reduction of a polynomial, 4
regularity index, 8
remainder, 5
revlex order, 3

S-polynomial, 5
saturation

of an ideal, 7
Segre

embedding, 43
product, 45

standar algebra, 45
standard

grading, 3
monomial, 6

support, 41

usual grading, 3

vanishing ideal, 11

weight hierarchy, 42

zero set, 11


