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Resumen

Sean K un campo y X (resp. X*) un subconjunto del espacio proyectivo P5~! (resp.
espacio afin A®) sobre el campo K, parametrizado por funciones racionales. Sea I(X)
(resp. I(X*)) el ideal anulador de X (resp. X*). Una de las principales contribuciones
de esta tesis consiste en determinar férmulas para I(X) (resp. [(X*)), con el fin de cal-
cular sus invariantes algebraicos usando teoria de eliminaciéon y bases de Grobner. Las
formulas para los ideales anuladores sobre campos finitos que proporcionamos en este tra-
bajo, fueron descubiertas haciendo experimentos con Macaulay2; estamos especialmente
interesados en este caso debido a su relacién con la teoria algebraica de codigos. También
consideramos a los conjuntos X y X* en P~! y A® respectivamente, parametrizados
por funciones racionales sujetas a ciertas restricciones. Posteriormente usamos nuestros
resultados para estudiar: el grado y la estructura de los ideales anuladores, la cerradura
proyectiva de X* y los parametros bésicos de cédigos tipo Reed-Muller afines y proyec-
tivos. Cabe destacar que recuperamos algunos resultados para ideales anuladores con
parametrizaciones monomiales.

Sea K = F, un campo finito. Introducimos una familia de cédigos tipo Reed-Muller,
llamados cddigos proyectivos de Segre. Usando métodos de algebra conmutativa y algebra
lineal, estudiamos sus parametros basicos y demostramos que dichos c6digos son productos
directos de cédigos tipo Reed-Muller. Como una consecuencia inmediata recuperamos
algunos resultados acerca de codigos proyectivos tipo Reed-Muller sobre la variedad de
Segre y sobre el toro proyectivo.

Caracterizamos, en términos algebraicos y geométricos, cuando un ideal anulador gra-
duado es generado por binomios sobre cualquier campo K. Después damos una clasifi-
cacion de los ideales anuladores de interseccién completa en conjuntos parametrizados de
tipo clutter sobre campos finitos.
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Abstract

Let K be a field and let X (resp. X*) be a subset of a projective space P*~! (resp. affine
space A®), over the field K, parameterized by rational functions. Let I(X) (resp. (X*))
be the vanishing ideal of X (resp. X*). Some of the main contributions of this thesis are in
determining formulas for [(X) (resp. I(X*)) to compute their algebraic invariants using
elimination theory and Grobner bases. The formulas for vanishing ideals over finite fields
that we give in this work were discovered by making experiments with Macaulay2, we are
specially interested in this case because of its relation to algebraic coding theory. We also
consider sets X and X* in P*~! and A®, respectively, parameterized by rational functions
which are subject to some restrictions. Then we use our results to study: the degree
and structure of vanishing ideals, the projective closure of X* and the basic parameters
of affine and projective Reed-Muller-type codes. We recover some results for vanishing
ideals over monomial parameterizations.

Let K = F, be a finite field. We introduce a family of projective Reed-Muller-type
codes called projective Segre codes. Using commutative algebra and linear algebra meth-
ods, we study their basic parameters and show that they are direct products of projective
Reed-Muller-type codes. As a consequence we recover some results on projective Reed-
Muller-type codes over the Segre variety and over projective tori.

We characterize, in algebraic and geometric terms, when a graded vanishing ideal

is generated by binomials over any field K. Then we give a classification of complete
intersection vanishing ideals on parameterized sets of clutter type over finite fields.
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Introduction

This dissertation studies the structure of vanishing ideals over rational parameterizations
over arbitrary fields, and their algebraic invariants (degree, regularity, Hilbert function)
and algebraic properties (complete intersection). The structure of binomial vanishing
ideals and complete intersection vanishing ideals is studied in this thesis. We are specially
interested in the case that the field is finite because of its relation to algebraic coding
theory. We are also interested in studying the corresponding Reed-Muller-type codes
associated to vanishing ideals over finite fields and in examining their basic parameters
(length, dimension, minimum distance, generalized Hamming weights). Special attention
is given to examine the family of projective Segre codes and the role that Segre products
and direct product codes play in this setting.

Contents of Chapter 1 In this chapter, we present some of the results that will be
needed throughout this work and introduce some notation. All results of this chapter are
well-known.

We recall some necessary preliminaries on algebraic geometry and commutative al-
gebra. Some of the main topics are graded modules, Grobner bases, projective closure,
vanishing ideals, and Hilbert functions. We introduce the algebraic invariants of affine
and graded algebras (regularity, degree, Hilbert polynomial), and examine some of their
properties.

Then we introduce the family of projective Reed-Muller-type codes, examine their
basic parameters (length, dimension, minimum distance), and explain how the basic pa-
rameters relate to Hilbert functions and vanishing ideals (see Proposition 1.5.3). Finally
we study the vanishing ideal of the projective closure of an affine set and its connection to
Grobner bases. This will allows us to link affine and projective Reed-Muller-type codes,
and affine and graded algebras (see Propositions 1.5.3, 1.4.21, and 1.5.4).

Contents of Chapter 2 In this chapter we extend the scope of [49, 52] to include
vanishing ideals of sets in affine and projective spaces parameterized by rational functions
over finite fields. We also include the case of rational parameterizations over infinite fields
which is treated in a slightly different way than that of [9, Chapter 3] because here we
emphasize the role of vanishing ideals in the implicitization problem when the field is
infinite.
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Let R = Kly] = K|[y1,...,yn) be a polynomial ring over an arbitrary field K and
let F' be a finite set {fi/g1,..., fs/gs} of rational functions in K(y), the quotient field
of R, where f; (resp. g¢;) is in R (resp. R\ {0}) for all i. As usual we denote the
affine and projective spaces over the field K by A® and P!, respectively. Points of the
projective space P*~! are denoted by [a], where 0 # o € K*. We consider the following
sets parameterized by these rational functions:

(i) Xis the set of all points [(f1(z)/g1(), ..., fs(x)/gs(x))] in P*~! that are well defined,
ie, x € K" fi(x)# 0 for some ¢, and g;(z) # 0 for all i. We call X the projective
set parameterized by F.

(ii) X is the set of all points [(fi(x)/gi(x), ..., fs(x)/gs(x))] in P*~! such that x € K"
and f;(x)g;(x) # 0 for all i. We call X the projective algebraic set parameterized by
F.

(iii) X* is the set of all points (fi(z)/g1(x), ..., fs(x)/gs(x)) in A® such that z € K™ and
gi(x) # 0 for all i. We call X* the affine set parameterized by F.

(iv) X* is the set of all points (f1(x)/g1(x), ..., fs(z)/gs(x)) in A® such that x € K™ and
fi(x)gi(z) # 0 for all i. We call X* the affine algebraic set parameterized by F.

(V) o&(X*) (resp. ¢(X*)), is the projective closure of X* (resp. X*), where ¢: A* — P*
is the map given by a — [(«, 1)].

The reason we are calling X and X* the projective algebraic set and affine algebraic
set, respectively, is to remind us that in certain cases X and X* are algebraic groups
acting on X and X*, respectively (e.g., when K = C and f;, g; are monomials for all 7).

Let S = K[ty ..., ts] = &3 ,Sq be a polynomial ring over the field K with the standard
grading. The graded ideal I(X) (resp. I(X)) generated by the homogeneous polynomials
of S that vanish at all points of X (resp. X) is called the vanishing ideal of X (resp. X).
The vanishing ideal 1(X*) (resp. I(X*)) is the ideal of S of all polynomials that vanish at
all points of X* (resp. X*). Thus S/I(X) is a graded ring and S/I(X*) is an affine ring.

There are good reasons to study vanishing ideals and their algebraic invariants (degree,
Hilbert polynomial, regularity) over infinite and finite fields. They are used in algebraic
geometry [34] and algebraic coding theory [29]. They are also used in polynomial interpo-
lation problems as we briefly explain. Let d > 1 be an integer and let Y = {P,,..., P}
be a set of m points in the affine space A®.

Interpolation problem Given scalars by, ..., b, in K, i.e., given (by,...,b,) in A™ can we
find a polynomial f € S of degree at most d such that f(P;) =b; for all i 7

The answer to this problem can be given in terms of the regularity of S/I(Y). The
answer is positive if and only if d > reg® S/I(Y) (see Section 1.5). Since the regularity
of the affine ring S/I(Y) is at most m — 1 the answer is positive if d = m — 1. The
construction of an interpolating polynomial f is a difficult task except when s = 1. For
information about algebraic and computational aspects of polynomial interpolation in
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several variables see the survey article [19, Section 6] and [57]. For the interpolation
problem over finite fields see [36].

The parameterized sets X and X*, and their vanishing ideals, were studied in [52] and
[44], respectively, when f; and g; are monomials of Kly] for all ¢ and K is a finite field,
i.e., when X and X* are parameterized by Laurent monomials over a finite field.

The contents of this chapter are as follows. In Section 2.1 we give a formula for
the presentation ideal of the subring K[F| C K(y), which is related to the rational
implicitization problem [9, Theorem 2, p. 131] (see Proposition 2.1.2). It is known that
the degree of a monomial subring K[F| is independent of the field K [51]. When F is
a set of polynomials this is no longer true, we show an example where the degree of the
subring K[F] depends on K (see Example 2.1.4).

Some of the main contributions of this chapter are in determining formulas for the
vanishing ideals of the parameterized sets X, X, X* X* introduced above (see Theo-
rems 2.2.5, 2.2.10, 2.2.11, and 2.2.13 for the case of infinite fields, and Theorems 2.3.7,
2.3.10, 2.3.12, and 2.3.14 for the case of finite fields). For finite fields the first formulas
for I(X) and I(X™*) were given in [52, Theorems 2.1] and [44, Theorem 3.4], respectively,
when X and X* are parameterized by monomials. We show the following relations among
vanishing ideals

(I(X):ty--ts) =1(X) and ([(X*):ty---t5) = [(X7),

that is 7(X) (resp. I(X™)) is the colon ideal of I(X) (resp. I(X*)) with respect to ¢; - - -t
(see Definition 1.3.20, and Propositions 2.3.9 and 2.3.13).

Using the computer algebra system Macaulay?2 [30], our results can be used to compute
the degree, regularity, Hilbert polynomial, and a Grobner basis of a vanishing ideal over a
rational parameterization over a field K (see Example 2.3.17). By the algebraic methods
introduced in [52] (see Chapter 1), our results can also be used to compute the length and
the dimension of a Reed-Muller-type code over a rational parameterization over a finite
field K (see Example 2.3.18). The formulas for vanishing ideal over finite fields that we
give in this chapter were discovered by making experiments with Macaulay2.

Our main results are also useful from a theoretical point of view as we now explain.
We are able to show the following results about the structure of vanishing ideals:

(a) Let K be an infinite field and let I C S be a graded ideal. Then [ is the vanishing
ideal of a projective set in P*~! parameterized by Laurent monomials if and only if [ is a
prime ideal of S generated by binomials (see Corollary 2.2.8), i.e., I is a vanishing ideal
if and only if I is a toric ideal in the sense of [61, p. 31].

(b) If K is an algebraically closed field and X* is parameterized by Laurent monomials,
using a result of Katsabekis and Thoma [39, 40], we show that the Zariski closure X* is
parameterized by Laurent monomials (see Corollary 2.2.15).

(c) If K is an infinite field, we give a method to compute the degree of S/I(p(X*)),
without using Grébner bases, for any affine set X* in A® parameterized by Laurent mono-
mials (see Corollary 2.2.21 and Remark 2.2.22). As an application we use this method
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to give a formula for the degree of the projective closure of a monomial curve (see Corol-
lary 2.2.23).

(d) Let K = F, be a finite field. If X, X, X*, X* are parameterized by Laurent
monomials, then I(X), I(X), I(X*), I(X*) are binomial ideals (see Corollary 2.3.20).

(e) Let K = T, be a finite field. If X is a projective set parameterized by Laurent
monomials, then /(X) is a radical Cohen-Macaulay binomial ideal of dimension 1 (see
Corollary 2.3.21).

As another application we recover the following result:

(f) [52, Theorem 2.1] Let K = F, be a finite field. If X is a projective algebraic
set parameterized by Laurent monomials, then I(X) is a radical Cohen-Macaulay lattice
ideal of dimension 1 (see Corollary 2.3.22). The converse is true by [49, Proposition 6.7].

We give a family of ideals where the converse of (e) is true; see Proposition 2.3.25.
This leads us to pose the following conjecture.

Conjecture Let K = F, be a finite field and let Y be a subset of P¥~'. If I(Y) is a
binomial ideal, then Y is a projective set parameterized by Laurent monomials (see Con-
jecture 2.3.26).

This conjecture fails for infinite fields (see Example 2.2.9).

For a finite field K = I, there are some rational parameterizations where the algebraic
invariants and explicit sets of generators for I(X), I(X), [(X*), and [(X*) are known.
The simplest and more natural parameterization by rational functions occurs when f; = y;
and g; = 1 for all 7. In this case one has the following well-known descriptions [29, 37, 52,
55, 59]:

(i) X =P deg S/I(X) = (¢ —1)/(qg— 1), reg S/I(X) = (s —1)(¢ — 1) + 1, and
I(X) = (tit; — it 1 < i< j < s),

(i) X =T, deg S/I(X) = (¢ —1)*"", reg S/I(X) = (s — 1)(¢ — 2), and
I(X)=@t" =t 1<i<j<s),

(i) X* =A% = K, deg S/I(X*) = ¢°, reg® S/I(X*) = s(¢ — 1), and

IX) =t —t;li=1,...,8),
(iv) X* =T" = (K*)*, deg S/I(X") = (¢ — 1)*, reg” 5/1(X") = s(q — 2),
I(XY)=@t""—1li=1,...,s),

where T' and T* are the affine and projective torus respectively, that is, T* = (K*)?,
K* = K\ {0}, and T is the image of T* under the map A* — P*~! « + [a]. In these four
cases the minimum distance and the dimension of the corresponding Reed-Muller-type
codes are also known (see [29, 52, 55, 59] and the references therein).
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This suggests the following;:

Problem If K =T, and f;/g; = y" is a Laurent monomial for all ¢, find formulas for the
algebraic invariants of a vanishing ideal and for the basic parameters of a Reed-Muller-
type code of degree d, over the corresponding parameterization, in terms of s, ¢, d, and
the combinatorics of vy, ..., vs.

This is an open problem where our results can be used to try to find formulas for the
degree and the regularity of vanishing ideals (see Problem 2.3.29 and the discussion that
follows), and for the dimension and length of Reed-Muller-type codes over finite fields.
The degree is the easiest invariant to compute. Formulas for the degree of S/I(X) are
known when y"', ... y% are square-free monomials of degree 2 [50]. The regularity is
harder to compute. Some formulas for the regularity of S/I(X) are known when X is
parameterized by the edges of a graph (see [28, 49, 50] and the references therein).

If f;, g; are monomials for all 7, the sets X and X are related as follows (a similar
relation holds for X* and X*). Notice that in this situation X is a multiplicative group
under componentwise multiplication. The group X acts on X by multiplication:

XxX=X, ([a,[7]) = [a] -],

where [a] = [(o1 ..., 05)], [v] = [(11,---,7s)] and [ - [7] = [, - -+, as7s)]. If K =TF,
is a finite field one can use this action to find a formula for the degree of I(X) when X is
parameterized by the edges of a complete graph or by the edges of a complete bipartite
graph (see Propositions 2.3.27 and 2.3.28).

Contents of Chapter 3 Reed-Muller-type evaluation codes have been extensively stud-
ied using commutative algebra methods (e.g., Hilbert functions, resolutions, Grobner
bases); see [7, 20, 52] and the references therein. In this work we use these methods—
together with linear algebra techniques—to study projective Segre codes over finite fields.
There are other works that have studied evaluation codes from the commutative algebra
perspective [3, 33, 65].

Let K be an arbitrary field, let a;,as be two positive integers, let P@~1 P2~ he
projective spaces over K, and let K[x] = K(xy,...,2z4,], K[y] = K[y1,- -, Ya,], K[t] =
Klti1,...,ta ay) be polynomial rings with the standard grading. If d € N, let K[t],
denote the set of homogeneous polynomials of total degree d in K|[t], together with the
zero polynomial. Thus K[t} is a K-linear space and K[t] = &5 Kt];. In this grading
each t; ; is homogeneous of degree one.

Given X; C P41 i = 1,2, denote by I(X;) (resp. I(Xy)) the vanishing ideal of X,
(resp. Xy) generated by the homogeneous polynomials of K[x] (resp. K[y|) that vanish
at all points of X (resp. Xj). The Segre embedding is given by

w: ]P;al—l % Pag—l SN ]P;alag—l
([0417 s 704(11]7 [517 s 7Ba2]> — [(Oéiﬂj)]a

where [(;0;)] = [(a1f1, 2182, .,01Bags -, ¥y B1, 0y B2, - - ., 0y Bay)]. The map 1 is
well-defined and injective [35, p. 13]. The image of X; x Xy under the map ¢, denoted
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by X, is called the Segre product of X; and Xj5. The vanishing ideal I(X) of X is a graded
ideal of K[t]|, where the ¢, ; variables are ordered as t11,..., %145, ta11s - -+ tay,an- Lhe
Segre embedding is used in algebraic geometry to show that the product of projective
varieties is again a projective variety, see [34, Lecture 2. If X; = P%~! for ¢ = 1,2, the set
X is a projective variety and is called a Segre variety [34, p. 25]. The Segre embedding is
used in coding theory to study the generalized Hamming weights of some product codes;
see [58] and the references therein.

The contents of Chapter 3 are as follows. Let K = [F, be a finite field. In Section 3.1
we introduce linear codes and recall two results about the basic parameters and the second
generalized Hamming weight of direct product codes (see Theorems 3.1.1 and 3.1.2). Then
for an arbitrary field K we show that K[t|/I(X) is the Segre product of K[x]/I(X;) and
Kly]/I(X2) (see Definition 3.2.1 and Theorem 3.2.3). The Segre product of these two
graded algebras is a subalgebra of

(K[x]/1(X1)) @ (K[y]/1(X2)),

the tensor product algebra. Segre products have been studied by many authors; see
[13, 29, 38] and the references therein. We give full proofs of two results for which we could
not find a reference with the corresponding proof (see Lemma 3.1.4 and Theorem 3.2.3).
Apart from this all results of this section are well known.

If K = F, is a finite field, we introduce a family {Cx(d)}4en of projective Reed-
Muller-type codes that we call projective Segre codes (see Definition 3.3.1). It turns
out that Cx(d) is isomorphic to K[t]s/1(X)4, as K-vector spaces, where [(X), is equal
to I(X) N K[t]g. Accordingly Cx, (d) ~ K[x]s/I(X;)qs and Cx,(d) ~ Klyla/I(Xs)4. In
Section 3.3 we study the basic parameters (length, dimension, minimum distance) and the
second generalized Hamming weight of projective Segre codes. Our main result expresses
the basic parameters of Cx(d) in terms of those of Cx,(d) and Cx,(d), and shows that
Cx(d) is the direct product of Cx, (d) and Cx,(d) (see Theorem 3.3.2); this means that the
direct product of two projective Reed-Muller-type codes of degree d is again a projective
Reed-Muller-type code of degree d.

Formulas for the basic parameters of affine and projective Reed-Muller-type codes are
known for a number of families [8, 10, 11, 12, 21, 23, 24, 27, 29, 43, 55, 59]. Since affine
Reed-Muller-type codes can be regarded as projective Reed-Muller-type codes [44], our
results can be applied to obtain explicit formulas for the basic parameters of Cx(d) if
Ck, (d) is in one of these families and Ck,(d) is in another of these families or both are in
the same family.

As an application we recover some results on Reed-Muller-type codes over projective
tori and over the Segre variety [24, 25, 26, 29]. If K* = K \ {0} and X is the image of
(K*)%, under the map (K*)% — P%~! x — [z], we call X; a projective torus in P%~1. In
particular: If X; = P%~! and X, = P®~!, using Theorem 3.3.2 we recover the formula
for the minimum distance of Cx(d) given in [29, Theorem 5.1], and if X; is a projective
torus for ¢ = 1,2, using Theorem 3.3.2 we recover the formula for the minimum distance
of Cx(d) given in [24, Theorem 5.5]. In these two cases formulas for the basic parameters
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of Cx,(d), i = 1,2, are given in [59, Theorem 1] and [55, Theorem 3.5], respectively.
We also recover the formulas for the second generalized Hamming weight given in [25,
Theorem 5.1] and [26, Theorem 3] (see Corollary 3.3.6).

Contents of Chapter 4 Let S = K|ty,...,ts] be a polynomial ring over a field K with
the standard grading induced by setting deg(t;) = 1 for all i. By the dimension of an
ideal I C S we mean the Krull dimension of S/I. The affine and projective spaces over
the field K of dimensions s and s — 1 are denoted by A® and P*~!, respectively. Points of
P! are denoted by [a], where 0 # a € A®.

Given a set Y C P! define I(Y), the vanishing ideal of Y, as the graded ideal
generated by the homogeneous polynomials in .S that vanish at all points of Y. Conversely,
given a homogeneous ideal I C S define V(I), the zero set of I, as the set of all [a] € P51
such that f(«) = 0 for all homogeneous polynomial f € I. The zero sets are the closed
sets of the Zariski topology of P*~'. The Zariski closure of Y is denoted by Y.

We will use the following multi-index notation: for a = (ay,...,as) € Z°, set t* =
t1' - -t%. We call t* a Laurent monomial. If a; > 0 for all 4, t* is called a monomial of
S. A binomial of S is an element of the form f = t* — t*, for some a,b in N°. An ideal
I C S generated by binomials is called a binomial ideal. A binomial ideal I C S with the
property that ¢; is not a zero-divisor of S/I for all i is called a lattice ideal.

In this chapter we classify binomial vanishing ideals in algebraic and geometric terms.
There are some reasons to study vanishing ideals. They are used in algebraic geometry
[34] and algebraic coding theory [29, 43]. They are also used in polynomial interpolation
problems [19, 36, 63].

The set S = P*~! U {[0]} is a monoid under componentwise multiplication, that is,
given [a] = [(a1,...,as)] and [B] = [(B1,. .., Fs)] in S, the product operation is given by

[Oé] ’ [ﬁ] = [Oé : 5] = [(Oélﬁla ce 7asﬁs)]7

where [1] = [(1,...,1)] is the identity element. Accordingly the affine space A® is also a
monoid under componentwise multiplication.

The contents of this chapter are as follows. Let Y be a subset of P*~1. If Y U {[0]}
is a submonoid of P*~! U {[0]}, we show that I(Y) is a binomial ideal (Theorem 4.2.1).
The same type of result holds if Y is a subset of A® (Remark 4.2.3). Then we show that
I(Y) is a binomial ideal if and only if V(I(Y)) U {[0]} is a monoid under componentwise
multiplication (Theorem 4.2.4). As a result if Y is finite, then /(Y) is a binomial ideal
if and only if Y U {0} is a monoid (Corollary 4.2.5). This essentially classifies all graded
binomial vanishing ideals of dimension 1 (Corollary 4.2.6)

If Y is a submonoid of an affine torus (see Definition 4.2.7), then I(Y") is a non-graded
lattice ideal [16, Proposition 2.3]. We give a graded version of this result, namely, if Y is
a submonoid of a projective torus, then I(Y) is a lattice ideal (Corollary 4.2.8).

Let I(Y) be a vanishing ideal of dimension 1. According to [49, Proposition 6.7(a)] 1(Y)
is a lattice ideal if and only if Y is a finite subgroup of a projective torus. We complement
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this result by showing that—over an algebraically closed field—Y is a finite subgroup of
a projective torus if and only if there is a finite subgroup H of K* = K \ {0} and Laurent
monomials "', ..., y" that parameterize Y relative to H (Proposition 4.2.10). For finite
fields, this result was shown in [49, Proposition 6.7(b)].

Finally, we classify the graded lattice ideals of dimension 1 over an algebraically closed
field of characteristic zero. It turns out that they are the vanishing ideals of finite sub-
groups of projective tori (Proposition 4.2.13).

Contents of Chapter 5 Let R = Kl|y| = K{y,...,y,] be a polynomial ring over a
finite field K = F, and let y™,...,y" be a finite set of monomials in K[y]. As usual
we denote the affine and projective spaces over the field K of dimensions s and s — 1 by
A% and P!, respectively. Points of the projective space P! are denoted by [a], where
0# ae A’

We consider a set X, in the projective space P*~!, parameterized by %, ...,y". The
set X consists of all points [(z,...,z%)] in P*~! that are well defined, i.e., z € K" and
x¥i 2 0 for some i. The set X is called of clutter type if supp(y“') ¢ supp(y*’) for i # j,
where supp(y") is the support of the monomial y¥ consisting of the variables that occur
in y. In this case we say that the set of monomials y**, ..., y" is of clutter type. This
terminology comes from the fact that the condition supp(y”) ¢ supp(y*’) for i # j means
that there is a clutter C, in the sense of [55], with vertex set V(C) = {v1,...,yn} and edge
set

E(C) = {supp(y™),...,supp(y*)}.
A clutter is also called a simple hypergraph, see Definition 5.2.7.

Let S = K[ty ..., ts] = ®2,Sq be a polynomial ring over the field K with the standard
grading. The graded ideal I(X) generated by the homogeneous polynomials of S that
vanish at all points of X is called the vanishing ideal of X.

There are good reasons to study vanishing ideals over finite fields. They are used
in algebraic coding theory [29] and in polynomial interpolation problems [19, 63]. The
Reed-Muller-type codes arising from vanishing ideals on monomial parameterizations have
received a lot of attention [7, 10, 21, 29, 43, 52, 55, 59].

The vanishing ideal I(X) is a complete intersection if I(X) is generated by s — 1
homogeneous polynomials. Notice that s —1 is the height of /(X) in the sense of [47]. The
interest in complete intersection vanishing ideals over finite fields comes from information
and communication theory, and algebraic coding theory [12, 23, 33].

Let T be a projective torus in P*~1 (see Definition 4.2.7) and let X be the set in P*~*
parameterized by a clutter C (see Definition 5.2.8). Consider the set X = XN 7. In [55]
it is shown that I(X) is a complete intersection if and only if X is a projective torus in
Ps—! | If the clutter C has all its edges of the same cardinality, in [56] a classification of
the complete intersection property of I(X) is given using linear algebra.

The main result of this chapter is a classification of the complete intersection property
of I(X) when X is of clutter type (Theorem 5.2.17). Using the techniques of [52], this
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classification can be used to study the basic parameters [46, 66] of the Reed-Muller-type
codes associated to X.

Contents of Chapter 6 In this chapter we present a number of problems on vanishing
ideals for future works.

Main references For all unexplained terminology and for additional information, we
refer to [13, 15, 41, 62] (for computational commutative algebra), [9, 60] (for Hilbert
functions), [9, 34] (for Grébner bases, algebraic geometry, and vanishing ideals), [5, 34, 47|
(for commutative algebra), [13, Appendix 2| (for multilinear algebra), [16, 51, 70] (for
binomial and lattice ideals), and [46, 52, 66] (for vanishing ideals and coding theory).
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Chapter 1

Preliminaries

In this chapter, we present some of the results that will be needed throughout this work
and introduce some notation. The main topics are graded modules, Grobner bases, pro-
jective closure, vanishing ideals, and Hilbert functions. The family of Reed-Muller-type
codes is introduced here, and its relation to Hilbert functions and vanishing ideals is
discussed. All results of this section are well-known.

1.1 Noetherian rings and modules

Let S be a commutative ring with unit and let M be an S-module. Recall that M is called
Noetherian if every submodule N of M is finitely generated, that is, N = Sf;+---+Sf,,
for some fi,..., fsin N.

Theorem 1.1.1. The following conditions are equivalent:

(a) M is Noetherian.

(b) M satisfies the ascending chain condition for submodules; that is, for every ascending
chain of submodules of M

N0CN1C"'CNnCNn+1C"'CM

there exists an integer k such that N; = Ny for every i > k.

(¢) Any family F of submodules of M partially ordered by inclusion has a maximal
element, i.e., there is N € F such that if N C N; and N; € F, then N = N;.

Proof. (a)=(b): Consider the submodule N = U;>oN;. By hypothesis there are
mi,...,m, such that N = Smy; + --- + Sm,. Then, there is k£ such that m; € N,
for all 7. It follows that N; = N, for all 7 > k.

(b)=(c): Let Ny € F. If Ny is not maximal, there is Ny € F such that Ny C Ny. If Ny
is not maximal, there is N3 € F such that Ny C N3. Applying this argument repeatedly
we get that F has a maximal element.
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(¢)=(a): Let N be a submodule of M and let F be the family of submodules of N
that are finitely generated. By hypothesis F has a maximal element N’. It follows that
N =N O

In particular a Noetherian ring S is a commutative ring with unit with the property
that every ideal of I is finitely generated; that is, given an ideal I of S there exists a finite
number of generators fi, ..., fs such that

I = {alfl—l—-“—i—asfs\ a; ES,VZ}
As usual, if [ is generated by fi,..., fs, we write I = (f1,..., fs).

Theorem 1.1.2. (Hilbert’s basis theorem [2, Theorem 7.5]) A polynomial ring S|t] over
a Noetherian ring S is Noetherian.

One of the important examples of a Noetherian ring is a polynomial ring over a field
k. Often we will denote a polynomial ring in several variables by k[t] and a polynomial
ring in one variable by k[t]. The letters & and K will always denote fields.

1.2 Graded modules

Let (H,+) be an abelian semigroup. An H-graded ring is a ring S together with a
decomposition

S = @ Sa (as a Z-module),

acH
such that S,S, C Sqip for all a,b € H. A graded ring is by definition a Z-graded ring.

If S'is an H-graded ring and M is an S-module with a decomposition

M= M,

aceH

such that S, M, C M, for all a,b € H, we say that M is an H-graded module.

An element 0 # f € M is said to be homogeneous of degree a if f € M,; in this case
we set deg(f) = a. The non-zero elements in .S, are also called forms of degree a.

Any element f € M can be written uniquely as f = Y . fo with only finitely many
fa #0.

Definition 1.2.1. Let M = @,cy M, be an H-graded module. A submodule N C M is
called a graded submodule if N is generated over S by homogeneous elements.

A map ¢: M — N between H-graded modules is graded if p(M,) C N, for alla € H.

Let M = ©uengM, be an H-graded module and N a graded submodule. Then M/N is
an H-graded S-module with (M/N), = M,/N N M, for a € H, Sy C S is a subring and
M, is an Sp-module for a € H.
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Proposition 1.2.2. Let M = ®,cgM, be an H-graded module and N C M a submodule.
Then the following three conditions are equivalent.

(g1) N is generated over S by homogeneous elements.
(g2) N is graded with the induced grading. N = @a.cgN N M,.
(g3) If [ =2 ey faisin N, f, € M, for all a, then each f, is in N.

Let S = Klty,...,ts] be a polynomial ring over a field K and let dy,...,ds be a
sequence in Ny. For a = (a;) in N°* we set t* = ¢{* -+ - t% and |a] = >, a;d;. The induced
N-grading on S is given by:

S = é.OBSZ, where SZ = @Kta.
=0 la|=1

Notice that deg(t;) = d; for all i. The induced grading extends to a Z-grading by setting
S; = 0 for i < 0. The homogeneous elements of S are called quasi-homogeneous polyno-
mials. Let I be a homogeneous ideal of S generated by a set fi,..., f. of homogeneous
polynomials. Setting deg(f;) = d;, I becomes a graded ideal with the grading

Ii=1INS;= fiSi—s, + -+ [-Si-s,-
Hence S/I is an N-graded S-module graded by (S/I); = S;/I;.

Definition 1.2.3. The standard grading or usual grading of a polynomial ring Kty, ..., t]
is the N-grading induced by setting deg(t;) = 1 for all i.

1.3 Grobner bases

In this section we review some basic facts and definitions on Grobner bases. Our main
references are [9, 17].

Let K be a field and let S = K]lty,...,ts] be a polynomial ring. A monomial of S is
an element of the form:

t¢ =ttt a=(ay,...,as) € N°.
The set of monomials of S is denoted by Mg = {t* |a € N*}.
Definition 1.3.1. A total order > of M, is called a monomial order if

(a) t* = 1 for all t* € M, and

(b) for all t* b t¢ € M, t* = t* implies t¢¢ = t°t¢.
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Two examples of monomial orders of M are the lexicographical order (lex order for
short) defined as t* = t¢ iff the first non-zero entry of b — a is positive, and the reverse
lexicographical order (revlex order for short) given by * = t¢ iff the last non-zero entry of
b — a is negative.

In what follows we assume that a monomial order < for M has been fixed. Let f be
a non-zero polynomial in S. Then one can write

f = i )\itaia
i=1

with \; € K* = K\ {0}, t% € M, and t** > --- > t* . The leading monomial t** of f is
denoted by inL(f) or Im<(f), or simply by in(f). The leading coefficient \; of f and the
leading term At®* of f are denoted by lc(f) and 1t(f), respectively.

Definition 1.3.2. Let [ be an ideal of S. The initial ideal of I, denoted by in.(I) or
simply by in(/), is the monomial ideal given by

in.(I) = ({in<(F)| f € 1}).
Lemma 1.3.3 (Dickson). If {t*}32, is a sequence in My, then there is an integer k so

that t* is a multiple of some monomial in the set {t**,... t*} for every i > k.

Proof. Let I C Klty,...,ts] be the ideal generated by {t*}3°;. By the Hilbert’s basis
theorem I is finitely generated (see Theorem 1.1.2). It is seen that I can be generated by
a finite set of monomials t**, ..., t*. Hence for each ¢ > k, there is 1 < 57 < k such that
t* is a multiple of %4, O

Definition 1.3.4. Let f, g be two polynomials in S and let F = {f1,..., fs} € S\ {0}
be a set of polynomials in S. One says that f reduces to g modulo F, denoted f —x g, if
g9 =[f— (u/le(fi))fi

for some f; € F, u € M, A € K* such that A - -inL(f;) occurs in f with coefficient A.

Proposition 1.3.5. The reduction relation “— 7 is Noetherian, that is, any sequence
of reductions gy —F -+ —F g —>F - -+ 1S stationary.

Proof. Notice that at the ith step of the reduction some term of g; is replaced by terms
of lower degree. Therefore if the sequence above is not stationary, then there is a never
ending decreasing sequence of terms in My, but this is impossible according to Dickson’s
lemma. O

Theorem 1.3.6. (Division algorithm [17, Theorem 2.11]) If f, f1, ..., fs are polynomials
in S, then f can be written as

f:a1f1+"'+asfs+ra

where a;,r € S and either r = 0 or r # 0 and no term of r is divisible by one of
in(f1),...,in(fs). Furthermore if a;f; # 0, then in(f) = in(a; f;).



1.3 Grobner bases 5

Definition 1.3.7. The polynomial r in the division algorithm is called a remainder of f
with respect to F = {f1,..., fs}

Definition 1.3.8. Let I # (0) be an ideal of S and let G = {¢1, ..., g,} be a subset of I.
The set G is called a Grobner basis of I if

in_(1) = (in<(g1), ..., in~(g,)).

Definition 1.3.9. A Grébner basis G = {g1,...,9,} of an ideal I is called a reduced
Grobner basis for I if:

(i) lc(gi) =1 Vi, and
(i) none of the terms occurring in g; belongs to in<(G \ {g:}) Vi.
Theorem 1.3.10. [17, Theorem 2.17] Each ideal I has a unique reduced Grébner basis.

Definition 1.3.11. Let f,g € S\ {0} and let [t*,t*] = lem(¢%,#*) be the least common
multiple of the monomials t* and #°. The S-polynomial of f and g is given by

[in(f),in(g)] , _ [in(f),in(g)]

S =) ilg)

f_

Given a set of generators of a polynomial ideal one can determine a Grobner basis
using the next fundamental procedure:

Theorem 1.3.12. (Buchberger [6]) If F = {fi,..., fs} is a set of generators of an ideal
I of S, then one can construct a Grobner basis for I using the following algorithm:

Input: F
Output: a Grobner basis G for 1
Initialization: G :=F, B :={{fi,fj} fi # [; € G}
while B # () do
pick any {f,g} € B
B:=B\{{f g}}

r := remainder of S(f, g) with respect to G

if 7 # 0 then
B:=BU{{r,h}|h € G}
G:=6gU{r}

Proposition 1.3.13. Let I be an ideal of S and let F = {f1,..., [s} be a Grébner basis
of I. If
B={u|ueM, and u & (in(f1),...,in(f;))},

then B is a basis for the K-vector space S/1I.
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Proof. First we show that B is a generating set for S/I. Take f € S/I. Since “— 5" is
Noetherian, we can write f = > "  a;fi + > ;_; Niu;, where \; € K* and such that every
u; is a term which is not a multiple of any of the terms in(f;). Accordingly w; is in B for
all i and f is a linear combination of the @;’s.

To prove that B is linearly independent assume h = Y, A\ju; € I, where u; € B
and \; € K. We must show \; = 0, for all 7. If not, then we can label the u;’s so that
uy = -+ = us and Ay # 0. Hence in(h) = uy € in(I), but this is a clear contradiction
because in(I) = (in(f1),...,in(fs)). Therefore \; = 0, for all 4, as required. O

Definition 1.3.14. A monomial in B is called a standard monomial with respect to

fioo ooy fs

Corollary 1.3.15 (Macaulay). If I is a graded ideal of S, then S/I and S/inL(I) have
the same Hilbert function.

Lemma 1.3.16. [17, Proposition 2.15] Let f, g be polynomials in S and let F = {f, g}.
If in(f) and in(g) are relatively prime, then S(f,g) —# 0.

Theorem 1.3.17. [6] Let I be an ideal of S and let F = {f1,..., fs} be a set of generators
of I, then F is a Grébner basis for I if and only if

S(fi, fj) — 70 forall i# j.

Elimination of variables Let K[x1,...,2,,t1,...,ts] be a polynomial ring over a field
K. A useful monomial order is the elimination order with respect to the variables
Z1,...,%,. This order is given by

zt¢ - 2t?
if and only if deg(xz®) > deg(z”), or both degrees are equal and the last non-zero en-
try of (a,c) — (b,d) is negative. The elimination order with respect to all variables
X1y, Ty, ty,. .., ts is defined accordingly. This order is called the GRevLex order.

Theorem 1.3.18. Let B = Klxy,...,xpn,t1,...,ts] be a polynomial ring over a field K
with a monomial order < such that monomials in the x;’s are greater than monomials in
the t;’s. If I is an ideal of B with a Grébner basis G, then G N K[ty,...,ts] is a Grébner
basis of I N K[ty,. .., t4.

Proof. Set S = K[ty,...,ts] and I =INS. If M is a monomial in in(/€), thereis f € I¢
with Im(f) = M. Hence M = mlm(g) for some g € G, because G is a Grobner basis.
Since M € S and 2% = t? for all @ and 3 we obtain g € GN S, that is, M € (in(GN 9)).
Thus in(/¢) = (in(G N S)), as required. O

Example 1.3.19. Let < be the elimination order with respect to x1,...,x4. Using
Macaulay?2 [30], we can compute the reduced Grobner basis of

I = (t; — x1m9,tg — 2123, T3 — 124, ty — ToXs, by — Toly, tg — T3Ty).

By Theorem 1318, it follows that I N K[tl, .« ,t6] = (t3t4 - tltﬁ, t2t5 — tltﬁ).
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Definition 1.3.20. Let I and J be two ideals of a ring S. The ideal
(I:J)={feS|fJcCl}

is called the colon ideal of I w.xr.t J. If f € S, weset (I: (f)):=(I: f)and we call (I: f)
the colon ideal of I with respect to f.

Definition 1.3.21. Let [ and J be two ideals of a ring .S. The ideal
(I:J>°) = Ju: )
i>1

is the saturation of I wr.t J. If f €S, weset (I: (f)>®):=(I: f>).

The saturation can be computed by elimination of variables using the following result.

Proposition 1.3.22. Let S[t] be a polynomial ring in one variable over a ring S and let
I be an ideal of S. If f € S, then

(I ) =Ja: fHy=I,1-tf)ns.

i>1

Proof. Let g € (I,1 —tf)NS. Then g = > 7, a;fi + asy1(1 — tf), where f; € I and
a; € S[t]. Making t = 1/f in the last equation and multiplying by f™, with m large
enough, one derives an equality

gf™ =bifi+ -+ bsfs,

where b; € S. Hence gf™ € I and g € (I: f*).

Conversely let g € (I: f*°), hence there is m > 1 such that gf™ € I. Since one can
write

g=1—=t"f")g+t"f"g and 1 —¢"f" = (1 —1tf)b,
for some b € S[t], one derives g € (I,1 —tf)NS. O

Definition 1.3.23. A binomial of S is a polynomial of the form t* — t* for some a,b € N°.
An ideal of S generated by binomials is called a binomial ideal.

Lemma 1.3.24. Let B = Kly1,...,Yn,t1,-..,ts] be a polynomial ring over a field K. If
I is a binomial ideal of B, then the reduced Grobner basis of I with respect to any term
order consists of binomials and I N K[ty,...,ts] is a binomial ideal.

Proof. Let B be a finite set of generators of I consisting of binomials and let f, g € B.
Since the S-polynomial S(f,g) is again a binomial and the remainder of S(f,g) with
respect to B is also a binomial, it follows that the output of the Buchberger’s algorithm
(see Theorem 1.3.12) is a Grobner basis of I consisting of binomials. Hence if G is the
reduced Grobner basis of I, then G consists of binomials.

If < is the lex order yy > -+ > y,, > t; > --- = t5 and K][t] is the ring K[ty,..., 1],
then by elimination theory (see Theorem 1.3.18) G N K[t] is a Grobner basis of I N K[t].
Hence I N K|[t] is a binomial ideal. O
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1.4 Hilbert functions

Let S = Klt1,...,ts] = &2 (5S4 be a graded polynomial ring, over the field K, with
the standard grading, that is, each ¢; is homogeneous of degree one and Sy is the set of
homogeneous polynomials of total degree d in S, together with the zero polynomial. The
set Sy is a K-vector space of dimension (drle). Let I be an ideal on S. As usual, m will
denote the maximal ideal of S generated by ti,...,ts. The vector space of polynomials
in S (resp. I) of degree at most i is denoted by S<; (resp. I<;). The functions

H{(i) =dimg(S<;/I<;) and H(i) = Hf(i) — Hf (i — 1)

are called the affine Hilbert function and the Hilbert function of the affine algebra S/I,
respectively.

According to [31, Remark 5.3.16, p. 330], there are unique polynomials

k k—1
Ri(t) = ait! € Q[t] and hy(t)=> c;t’ € Qt]
j=0 Jj=0

of degrees k and k — 1, respectively, such that k is the Krull dimension of the affine ring
S/, h$(i) = H{(i), and h;(i) = H;(i) for i > 0. The polynomials hf and h; are called
the affine Hilbert polynomial and the Hilbert polynomial of S/I. By convention, the zero
polynomial has degree —1. The Krull dimension of the ring S/I is denoted by dim(S/1).
The height of I, denoted ht([), is dim(S) —dim(S/I). By the dimension of an ideal I C S
we mean the dimension of S/1.

Definition 1.4.1. The integer ay(k!), denoted by deg(S/I), is called the degree of S/I.

Remark 1.4.2. Notice that ax(k!) = cp—1((k — 1)!) for k£ > 1. If k = 0, then
H(3) = dimg(S/T)
for i > 0 and the degree of S/I is just dimg(S/1).

Definition 1.4.3. The regularity index of S/I, denoted by ri(S/I), is the least integer
r > 0 such that h;(d) = H;(d) for d > r. The affine regularity index of S/I, denoted by
ri*(S/1I), is the least integer r > 0 such that h{(d) = H(d) for d > r.

If S has the standard grading and [ is a graded Cohen-Macaulay ideal of S of dimension
1, then reg(S/I), the Castelnuovo-Mumford regularity of S/I in the sense of [14], is equal
to the regularity index of S/I (see [14]). In this case we call ri(S/I) (resp. 1i*(S/I))
the regularity (resp. affine regularity) of S/I and denote this number by reg(S/I) (resp.
reg®(S/1)). If I is graded its regularity is related to the degrees of the polynomials in a
minimal generating set of I [14].
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Remark 1.4.4. If I is graded, we let I; := I NSy, denote the set of homogeneous
polynomials in I of total degree d, together with the zero polynomial. Note that I, is a
vector subspace of S; and

Hi(d) = Y21, dimg(Sa/La)
for d > 0. Thus, one has H;(d) = dimg(S4/14) for all d.
Definition 1.4.5. Let I C S be a graded ideal. The Hilbert series of S/I, denoted by
Fi(t), is given by

Fi(t) = i H;(d)t? = i dimg (S/1) 4t

Theorem 1.4.6. (Hilbert-Serre [70, Theorem 5.1.4]) Let I C S be a graded ideal. Then
there is a unique polynomial h(t) € Z[t] such

Fit) = (ﬁti)p and h(1) £0,

where p = dim(S/I).

Definition 1.4.7. Let [ C S be a graded ideal. The a-invariant of the graded ring S/I,
denoted by a(S/1I), is the degree of Fi(t) as a rational function, i.e., a(S/I) = deg(h(t))—p.

Lemma 1.4.8. If I C S is a graded ideal and u is a new variable, then
a(S/I) = a(S[u]/I) + 1.

Proof. Let Fi(t) and Fy(t) be the Hilbert series of the graded rings S/I and S[u|/I
respectively. Using additivity of Hilbert series, from the exact sequence

0 — (S[u)/1)[~=1] = S[u]/I — S[u]/(I,u) — 0,
we get Fy(t) = Fi(t)/(1 —t), that is, deg(Fy) = 1 + deg(F?). O

Lemma 1.4.9. [70, Corollary 5.1.9] Let I C S be a graded ideal. Then ri(S/I) = 0 if
a(S/I) <0, and ri(S/I) = a(S/I) + 1 otherwise.

Lemma 1.4.10. Let I C S be a graded ideal. If dim(S/I) = 1 and deg(S/I) > 2, then
ri(S/1) =ri*(S/I) + 1.

Proof. Let u be a new variable. The affine regularity index of S/I is the regularity index
of Su]/I because I is graded. Hence, by Lemmas 1.4.8 and 1.4.9 it suffices to show that
a(S/I) > 0. If a(S/I) < 0, the Hilbert series of S/I has the form F(t) = 1/(1 —t), i.e.,
H;(d) =1 for d > 0 and deg(S/I) = 1, a contradiction. O

Proposition 1.4.11. ([31, Lemma 5.3.11], [51]) If I is an ideal of S and I = q1N---N gy,
15 a minimal primary decomposition, then

deg(S/T) = ) deg(S/a).

ht(q;)=ht(I)
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Hilbert functions of vanishing ideals

Definition 1.4.12. Let K be a field. We define the projective space of dimension s — 1
over K, denoted by ]P’;gl or P*~! if K is understood, to be the quotient space

(K\{0})/ ~

where two points «, 5 in K*®\ {0} are equivalent under ~ if o = ¢f for some ¢ € K. Tt is
usual to denote the equivalence class of a by [a].

Definition 1.4.13. An ideal I C S is graded if I is generated by homogeneous polyno-
mials.

Proposition 1.4.14. [47, p. 92] Let I C S be an ideal. The following conditions are
equivalent:

(g1) I is a graded ideal.
(g2) If f=>""_ofaisinl, fo€ Sq ford=0,...,r, then each fy is in I.

For any set Y C P! define I(Y), the vanishing ideal of Y, as the graded ideal
generated by the homogeneous polynomials in .S that vanish at all points of Y. Conversely,
given a graded ideal I C S define its zero set as

V(I)={le] e P7!| f(a) =0, Vf € I homogeneous} .

A projective variety is the zero set of a graded ideal. It is not difficult to see that the
members of the family

7= {P"'\ V(I)| I is a graded ideal of S}

are the open sets of a topology on P*~!, called the Zariski topology. In a similar way
we can define affine varieties, vanishing ideals of subsets of the affine space A®, and the
corresponding Zariski topology of A®. The Zariski closure of Y is denoted by Y.

If Y (resp. Y) is a subset of P5~! (resp. A®) it is usual to denote the Hilbert func-
tion and Hilbert polynomial of S/I(Y) (resp. affine Hilbert function and affine Hilbert
polynomial of S/I(Y)) by Hy and hy(t) (resp. H¢ and h{.(1)).

Lemma 1.4.15. (a) [9, pp. 191-192] Let K be a field. If Y C A® and Y C P*~', then
Y =V{I(Y)) and Y = V(I(Y)).
(b) If K is a finite field, then Y =V (I(Y)) and Y = V(I(Y)).

Proof. Part (b) follows from (a) because Y =Y and Y =Y, if K is finite. O

Let Y = V(I) be a projective variety. The dimension of Y, denoted dim(Y), is the
degree of the Hilbert polynomial of S/I(Y), i.e., dim(Y) = dim(S/I(Y))—1. If Y = V(1)
is an affine variety, the dimension of Y is the degree of the affine Hilbert polynomial of
S/1(Y), that is, dim(Y) = dim(S/I(Y)).
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Theorem 1.4.16. (The Dimension Theorem [9, p. 434]) Let K be an algebraically closed
field. If Y = V(I) is a projective variety in P~ (resp. Y = V(I) is an affine variety in
A®), then dim(Y) = dim(S/I) — 1 (resp. dim(Y) = dim(S/1)).

Corollary 1.4.17. [22] If Y C P*~! is a finite set, then deg(S/I1(Y)) = |Y|.

Proof. It follows from the additivity of the degree (see Proposition 1.4.11). O

Proposition 1.4.18. ([12], [22], [45]) If X is a finite set and r = reg(S/1(X)), then
1=Hx(0) < Hx(1) <--- < Hx(r—1) < Hx(d) = | X|

for d>r and deg(S/I(X)) = | X].

Lemma 1.4.19. If ) # Y C P*~! and dim(S/I(Y)) = 1, then we have |Y| < oo and
deg(S/I(Y)) = [Y].

Proof. The Hilbert polynomial of S/I(Y) has degree 0. If Hy denotes the Hilbert
function of S/I(Y), one has that Hy(d) = ag for d > 0. If |Y| > ay, pick [P1],..., [Pag+1)
distinct points in Y and set [ = N2} Ijp], where I;p; is the vanishing ideal of [P;]. Then
dim(S/I) = 1 and deg(S/I) = ap+1 (see Proposition 1.4.11). Hence, by Corollary 1.4.17,
H;(d) = ap+ 1 for d > 0. From the exact sequence

0—TI/I(Y)— S/I(Y)— S/I =0

we get that ap = dimg (1/1(Y))q+ (ap+ 1) for d > 0, a contradiction. Thus |Y| < ay and
by Corollary 1.4.17 one has equality. O

Projective closure and Grobner bases. We will use the following multi-index no-
tation: for a = (ay,...,as) € Z°, set t* = t{* ---t%. We call t* a Laurent monomial. If
a; > 0 for all i, t* is a monomial of S.

Definition 1.4.20. The graded reverse lexicographical order (GRevLex for short) on the
monomials of S is defined as t* = ¢ if and only if deg(#®) > deg(t?), or deg(t®) = deg(t*)
and the last nonzero entry of b — a is negative.

Let > be the GRevLex order on the monomials of S[u], where u = t,;; is a new
variable. This order extends the GRevLex on the monomials of S. Given an ideal I C S
and f € S, we denote the initial ideal of I (resp. leading monomial of f) by in-(I) (resp.
in<(f)). We refer to [9] for the theory of Grébner bases. For f € S of degree e define

=t (t/u,. ..t u);

that is, f" is the homogenization of the polynomial f with respect to u. The homogeniza-
tion of I is the ideal I" of S[u] given by I" = (f"| f € I), and S[u] is given the standard
grading.

The Grobner bases and the degrees of I and I" are nicely related.



12 Preliminaries

Proposition 1.4.21. ([51, Lemma 2.4], [69, Proposition 2.4.26]) Let I be an ideal of S
and let = be the GRevLex order on S and S[ul, respectively.

(a) If g1,...,9r is a Grébner basis of I, then gt, ..., g" is a Grébner basis of I".
(b) H{(d) = Hyn(d) for d > 0.
(c) deg(S/1) = deg(S[u]/I").

Definition 1.4.22. Let Y C A®. The projective closure of Y is defined as ¢(Y), where
¢ is the map ¢: A* — P* a — [(«,1)], and ¢(Y) is the closure of ¢(Y) in the Zariski
topology.

Proposition 1.4.23. Let Y C A® be a set, let p(Y) C P*® be its projective closure and let
fi,-- .y fr be a Grébner basis of I(Y). The following hold.

(a) [69, Proposition 2.4.30] I(¢(Y)) = I(Y)" = (fF,..., ).

(b) [69, Corollary 2.4.31] The height of I1(Y) in S is equal to the height of I1(¢(Y)) in
Slul.

1.5 Reed-Muller-type codes

In this part we introduce the families of projective and affine Reed-Muller-type codes and
its connection to vanishing ideals and Hilbert functions.

Projective Reed-Muller-type codes. Let K = [, be a finite field as usual and let
Y ={P,...,P,} # 0 a subset of P*~! with m = |Y|. Fix a degree d > 1. For each i
there is f; € Sy such that f;(P;) # 0; we refer to Section 3.3 to see a convenient way to
choose f1,..., fmn. There is a well-defined K-linear map:

f(Pl) f(Pm) )
AP) T fn(Pr) )

The map evy is called an evaluation map. The image of S; under evy, denoted by
Cy(d), is called a projective Reed-Muller-type code of degree d over the set Y [12, 29]. It
is also called an evaluation code associated to Y [23]. The kernel of the evaluation map
evg is 1(Y)4. Hence there is an isomorphism of K-vector spaces S;/I(Y)q ~ Cy(d). If Y
is a subset of P*~! it is usual to denote the Hilbert function S/I(Y) by Hy. Thus Hy(d)
is equal to dimg Cy(d). By a linear code we mean a linear subspace of K™ for some m
and for some finite field K.

Definition 1.5.1. Let 0 # v € Cy(d). The Hamming weight of v, denoted by w(v), is
the number of non-zero entries of v. The minimum distance of Cy(d), denoted by dy(d)
or 0(Cy(d)), is defined as

€evy: Sd:K[tl,...,ts]d—)K‘Yl, fl—> ( (151)

dy(d) := min{w(v): 0 #£v € C)}.
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Definition 1.5.2. The basic parameters of the linear code Cy(d) are: its length |Y|,
dimension dimg Cy(d), and minimum distance 0y (d).

If Y = P, Cy(d) is the classical projective Reed—Muller code, and formulas for its
basic parameters are given in [59, Theorem 1]. If Y is a projective torus, Cy(d) is the
generalized projective Reed—Solomon code, and formulas for its basic parameters are given
in [55, Theorem 3.5].

The following summarizes the well-known relation between projective Reed-Muller-
type codes and the theory of Hilbert functions.

Proposition 1.5.3. ([29], [52]) The following hold.
(i) Hy(d) = dimy Cy(d) for d > 0.
(i) deg(S/I(Y)) = [Y].
(iii) Sy(d) =1 for d > reg(S/I(Y)).
(iv) S/I(Y) is a Cohen-Macaulay graded ring of dimension 1.
(v) Cy(d) # (0) ford > 1.

Proof. (i): The kernel of the evaluation map ev,, defined in Eq. (1.5.1), is precisely
I(Y),. Hence there is an isomorphism of K-vector spaces S;/1(Y)q =~ Cy(d). Thus Hy(d)
is equal to dimg Cy(d).

(ii): This follows readily from Proposition 1.4.18.

(iii): For d > reg(S/I(Y))), one has that Hy(d) = |Y|. Thus, by part (i), we get that
Cy(d) is equal to K'¥I. Consequently dy(d) = 1.

(iv): Let [P] be a point in Y, with P = (a,...,as) and oy # 0 for some k, and let
I1p) be the ideal generated by the homogeneous polynomials of S that vanish at [P]. Then
Iip is a prime ideal of height s —1,

Ipy = ({onti — ity k £i € {1,...,s}), I(Y) = () g (1.5.2)
[QleY

and the latter is the primary decomposition of I(Y). As I;p] has height s — 1 for any
[P] € Y, we get that the height of I(Y) is s — 1 and the dimension of S/I(Y) is 1. Hence
depth(S/I1(Y)) < 1. To complete the proof notice that, by Eq. (2.3.5), m = (¢y,...,t5)
is not an associated prime of I(Y); that is depth(S/I(Y)) > 0 and S/I(Y) is Cohen—
Macaulay.

(v): This follows readily from Proposition 1.4.18. O
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Affine Reed-Muller-type codes. Let K = F, be a finite field, let Y be a subset of
A% and let Y be the projective closure of Y. As Y is finite, its projective closure is:

Y ={[(e,1)]|]a €Y} C P

Let S = K[ti,...,ts] be a polynomial ring, let Py, ..., P,, be the points of Y, and let
S<q be the K-vector space of all polynomials of S of degree at most d. The evaluation

map
evnggd—>K|Y|, fH(f(Pl)avf(Pm»?

defines a linear map of K-vector spaces. The image of ev}, denoted by Cy(d), defines
a linear code. We call Cy(d) the affine Reed-Muller-type code of degree d on Y [66,
p. 37). The kernel of ev§ is I(Y)<q. Thus S<q/I1(Y)<q4 =~ Cy(d). If Y is a subset of A®
it is usual to denote the affine Hilbert function S/I(Y) by H{. In our situation one has
H{“/(d) = dlmK Cy(d)

The linear code Cy (d) has the same basic parameters that Cy(d), the projective Reed-
Muller-type code of degree d on Y (see [44, 43]). This means that affine Reed-Muller-type
codes are a particular case of projective Reed-Muller-type codes and are somewhat easier
to understand.

The following result reduces the computation of the algebraic invariants of S/I1(Y") to
the computation of those of S[u]/I(Y).

Proposition 1.5.4. (a) I(Y) = I(Y)",
(b) [Y] = deg S/I(Y) = deg Slul/I1(Y) = |Y|,
(c¢) Hy(d) = Hy(d) ford >0,
(d) reg® S/I(Y) = reg S[u]/I(Y).

Proof. This follows from Propositions 1.4.21 and 1.4.23. O
The computation of the regularity of S[u]/I(Y) is important for applications to coding
theory: for d > reg S[u]/I(Y) the linear code Cy(d) coincides with the underlying vector

space KY! and has, accordingly, minimum distance equal to 1. Thus, potentially good
codes Cy(d) can occur only if 1 < d < reg(S[u]/I(Y)).

Interpolation problems. Let K be an arbitrary field, let Y = {P,..., P,,} be a finite
set of points in A®, and let Y be the projective closure of Y.

The regularity also plays an important role in interpolation problems.
Interpolation Problem. Given scalars by, ..., b, in K, i.e., given (by,...,b,) in A™ can
we find a polynomial f € S of degree at most d such that f(P;) = b; for all i ?

The answer to this problem is positive if and only if d > reg S[u|/I(Y). Indeed the
Hilbert function of Sfu]/I(Y) is strictly increasing for ¢ = 1, ..., 7, where r is the regularity
of S[u]/I(Y), and Hy(d) = |Y| for d > r (see [12, 22]). Thus Cy(d) = K™ if and only if
H¢(d) = m, that is, Cy(d) = K™ if and only if d > r. Since the regularity of S{u|/I(Y)
is at most m — 1 the answer to this problem is positive if d = m — 1.
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Degree and regularity via Hilbert series. The degree and regularity of S[u]/I(Y)
can be read off from its Hilbert series. Indeed, the Hilbert series can be written as

hot bt ht”
n 1—t ’

Fy(t) == Z Hy (i)t = Z dimg (S[u]/1(Y))it!

where hy, ..., h, are positive integers; see [60]. This follows from the fact that I(Y) is a
Cohen-Macaulay ideal of height s [22]. The number r is the regularity of S[u]/I(Y) and
ho + -+ + h, is the degree of S[u]/I(Y); see [69, Corollary 4.1.12].
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Chapter 2

Vanishing Ideals over Rational
Parameterizations

Let K be a field and let X (resp. X*) be a subset of a projective space P! (resp. affine
space A®), over the field K, parameterized by rational functions. Recall that we consider
the following sets parameterized by rational functions:

(i) Xis the set of all points [(f1(z)/g1(), ..., fs(x)/gs(x))] in P57 that are well defined,
ie, x € K" fi(x)# 0 for some ¢, and g;(z) # 0 for all i. We call X the projective
set parameterized by F.

(i) X is the set of all points [(fi(z)/g1(x), ..., fs(x)/gs(x))] in P*~! such that z € K"
and f;(z)g;(x) # 0 for all i. We call X the projective algebraic set parameterized by
F.

(i) X* is the set of all points (fi(x)/g1(x), ..., fs(x)/gs(x)) in A® such that z € K™ and
gi(x) # 0 for all . We call X* the affine set parameterized by F.

(iv) X* is the set of all points (f1(x)/g1(x), ..., fs(z)/gs(x)) in A® such that x € K™ and
fi(z)gi(z) # 0 for all i. We call X* the affine algebraic set parameterized by F'.

(v) o(X*) (resp. ¢(X*)), is the projective closure of X* (resp. X*), where ¢: A® — P*
is the map given by a — [(«, 1)].

Let I(X) (resp. I(X*)) be the vanishing ideal of X (resp. X*). Some of the main
contributions of this thesis are in determining formulas for I(X) (resp. I(X*)) to compute
their algebraic invariants using elimination theory and Grobner bases. The formulas for
vanishing ideals over finite fields that we give in this work were discovered by making ex-
periments with Macaulay2; we are especially interested in this case because of its relation
to algebraic coding theory. We also consider sets X and X* in P*~! and A®, respectively,
parameterized by rational functions which are subject to some restrictions. Then we use
our results to study: the degree and structure of vanishing ideals, the projective closure of
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X*, and the basic parameters of affine and projective Reed-Muller-type codes. We recover
some results for vanishing ideals over monomial parameterizations.

2.1 Presentation ideals of subrings generated by ra-
tional functions

In this section we give a formula for the presentation ideal of a subring generated by
rational functions which is related to the rational implicitization problem [9].

Let R = Kl[y] = K[yi,...,yn] be a polynomial ring over a field K, let K(y) be the
field of fractions of Kly| and let F' = {fi/g1,..., fs/gs} be a set of rational functions.
If K[F] is the subring of K(y) generated by F' over K, then there is an epimorphism of
K-algebras:

p: S =K[t,...,t] — K[F] — 0, induced by ¢(t;) = fi/g;,

where S is a polynomial ring over the field K with the standard grading S = @©32,S4.

The kernel Pr of ¢ is called the presentation ideal of K[F| with respect to F. An
interesting case arises when F' consists of Laurent monomials, i.e., f;/g; = y” with v; € Z"
for all 7. In this case Pr is called the toric ideal of K[F| with respect to F' and K[F] is
called the monomial subring spanned by F' [61, 69].

Lemma 2.1.1. Let f1/q1, ..., fs/gs be rational functions of K(y) and let f = f(ty, ... ts)
be a polynomial in S of degree d. Then

gi“rl .. -gng — Zgl o gshi(giti — fi) + gilH " -gnglf(fl/gl, ooy f5/9s)
i=1

for some hy, ... hs in the polynomial ring K[y, ..., Yn,t1,...,ts|. If f is homogeneous
and z is a new variable, then

gi“'l .. .gg+1f = Zgl cee gshz(gztz — sz) + giH—l tee gg+lzdf(fl/gl7 EIRIC) fs/gs>
i=1

for some hy, ..., hs in the polynomial ring K[y, ..., Yn, 2,11, .., ts].

Proof. We can write f = A\t™ + --- + A\ t"" with \; € K* and m; € N® for all . Write
m; = (Mg, ...,m4) for 1 <i <randset I = ({g;t; — fi};_;). By the binomial theorem,
for all 4, j, we can write

t; = [(t; = (£i/9:)) + (fi/ g™ = (hi/9;") + (f3/ )™,
for some h;; € I. Hence for any i € {1,...,r} we can write

tr =t = (G g g )+ (i g)™ e (fs/gs) ™
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where G; € I. Notice that m;, + -+ m;s < d for all © because f has degree d. Then
substituting these expressions for t™, ..., t™s in f = A\t™ 4 --- 4+ A\t and multiplying
f by gétt... ¢! we obtain the required expression.

If f is homogeneous of degree d, the required expression for g¢™' - . - g& L f follows from
the first part by considering the rational functions f1z/g1,..., fsz/gs, i-e., by replacing f;
by fiz, and observing that f(fiz,..., fs2) = 2%f(f1,. .., fs). O

The next result is related to rational implicitization in the sense of [9, Theorem 2,
p. 131].

Proposition 2.1.2. If ' = {f1/g1,.-., [s/gs} is a set of rational functions with f;, g; € R
and g; # 0 for all i, then the kernel of the homomorphism of K -algebras

p: S=Klt,...,ts] — K[F], induced by p(t;) = fi/gi,
is the ideal (g1t1 — f1,...,9sts — fs,Yog1 -+ gs — 1) N S, where yo is an extra variable.

Proof. We set I = (g1t1 — f1,---,9sts — fs,Yog1-+-gs— 1) and h; = f;/gi fori=1,... s
We first show the inclusion ker(p) C I N S. Let f be a polynomial in ker(p) of degree d.
Then, by Lemma 2.1.1, one can write

glf = Zazgm f)+ gt gl f (h/gr, - fags) = Zazg“ £y (211)

for some ay,...,asin B=K[y1,...,Yn,t1,...,ts]. Making W = yog; - - - gs — 1, we get the
equality g, -+ gs = (W +1)/yo. Thus, from Eq. (2.1.1), we obtain that (W + 1)¢f € I.
Hence f € I'NS. Conversely let f € I N.S. Then we can write

f = f<t1,...,t5) = al(gltl - fl) + +as(gst5 - fs) +b(gl"'gsy0 - 1)

for some ay, ..., a5, bin Blyg|. Hence f(hy, ..., hs) = h(g1--- gsyo— 1) for some h in Blyo).
The left-hand side of this equality does not depend on yy. Thus making yo = 1/g1 - - gs,
we obtain f(hi,...,hs) =0, ie., f € ker(p). O

Corollary 2.1.3. [69, Proposition 7.1.9] If fi,..., fs are in R, then the kernel of the
homomorphism of K-algebras

p: S=Klt1,...,ts] — K[f1,..., fs], induced by p(t;) = fi,
is the ideal (t — f1,...,ts — fs)NS.
Proof. By Proposition 2.1.2 it suffices to notice that any element of
(tr = fr,oosts = foyo — 1) NS,

being independent of yg, belongs to (t; — fi1,...,ts — f5) N S. O
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Example 2.1.4. If F = {y; + 4y + 3ys, ¥3 — ¥, y1 — Y2}, then using Macaulay2 and the
procedure below we get that Pr = (0) if K = Q and Pr = (t1t3 — t3) if K = F3. Thus
the degree of Q[F] is 1 and the degree of F3[F] is 2, i.e., the degree of K[F] depends on
the field K.

R=K[y1,y2,y3,t1,t2,t3,Monomial0rder=>Eliminate 3];
fl=y1+4*y2+3*y3

£2=y1°2-y2"2

f3=y1-y2

I=ideal(t1-f1,t2-f2,t3-£3)

P=ideal selectInSubring(l,gens gb I)

degree P

Let A = {ay,...,an} be a set of lattice points of Z™ and let P = conv(A) be the
convex hull of A. The set P is called a lattice polytope. We denote the relative volume of
P by vol(P). A reference for relative volumes of lattice polytopes is [18].

Definition 2.1.5. If » = dim(P), the integer r!vol(P) is called the normalized volume of
P.

Definition 2.1.6. The torsion subgroup of an abelian group (M, +), denoted by T(M),
is the set of all z in M such that fx = 0 for some ¢ € N,.

The next result holds for any toric ideal.

Theorem 2.1.7. [51, Theorem 4.5] Let Pr be the toric ideal of K[F| = K[y, ..., y"],
let A be the n x s matriz with column vectors vy, ..., vs. Then deg(S/Pr) = deg(S[u]/Pp)
and

|T(Z" ) Z{ vy, . .., vs})| deg(S/ Pr) = rivol(conv(vy, . .., vs,0)), where r = rank(A).

Remark 2.1.8. The degree of K[F] is independent of K if F' is a set of monomials.
Theorem 2.1.7 will allows us to compute the degree of vanishing ideals of affine sets

parameterized by Laurent monomials over infinite fields without using Grobner bases (see
Theorem 2.2.11).

2.2 Rational parameterizations over infinite fields

In this section we study vanishing ideals over sets parameterized by rational functions
over infinite fields.

Theorem 2.2.1. (Combinatorial Nullstellensatz [1]) Let S = K][ty,...,ts] be a polynomial
ring over a field K, let f € S, and let a = (a;) € N*. Suppose that the coefficient of t* in
f is non-zero and deg (f) = a1 + -+ + as. If Ay,..., As are subsets of K, with |A;| > «;
for all i, then there are x1 € Ay, ..., x5 € A such that f (xq,...,25) # 0.
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Lemma 2.2.2. Let K be a field and let Ay, ..., A, be a collection of non-empty finite
subsets of K. If Y := Ay x --- x Ay, CA®, g€ I(Y) and deg,, (g) < |A;| fori=1,...,s,
then g = 0. In particular if g is a polynomial of S that vanishes at all points of A®, then
g=0.

Proof. We proceed by contradiction. Assume that ¢ is not zero. Then, there is a
monomial t* = ¢*---t% of g with deg(g) = a1 + -+ a5 and a = (ay,...,as) # 0.
As deg; (g) < |A;| for all 4, then a; < |A;] for all i. Thus, by Theorem 2.2.1, there
are ri,...,rs with x; € A; for all i such that g (xy,...,xs) # 0, a contradiction to the
assumption that g vanishes on Y. O

Example 2.2.3. If K = Fy and g = t1ly + t; + ¢2 + 1, then g vanishes on K2\ {(0,0)}
and deg, (g) < 1fori=1,2but g #0.

Lemma 2.2.4. Let K be an infinite field. Then the following hold.
(a) X* £ 0.

(b) X # 0 and X* # 0 (resp. X # (0) iof and only if f; # 0 for all i (resp. f; # 0 for
some ).

Proof. (a) The affine set X* is always non-empty because there are no restrictions on
fi,..., fs and the non-zero polynomial ¢; --- g5 does not vanish at all points of K™ by
Lemma 2.2.2.

(b) Assume that f; # 0 for all i. Consider the non-zero polynomial f;--- fsg1 - gs.
As K is infinite this polynomial does not vanish at all points of K" by Lemma 2.2.2. Thus
there is € K™ such that f;(z)g;(x) # 0 for all i. Then X # () and X* # (). The reverse
implication is clear. O

Theorem 2.2.5. Let B = K[yo, Y1, - - - Yn, 2, L1, .-, ts] be a polynomial ring over an infi-
nite field K. If X is a projective set parameterized by rational functions fi1/g1, ..., fs/gs
in K(y) not all of them zero, then

I(X) = ({giti = fiz}izi, 091 ---9s = 1) NS
and I(X) is the presentation ideal of K[f1z/qg1,. .., [s2/9s)-

Proof. We denote by I = ({git; — fiz};_1,%001 - g9s — 1). First we show the inclusion
I(X) c INS. Take a homogeneous polynomial f = f(¢y,...,ts) of degree d that vanishes
at all points of X. Setting W = yog1 - -+ gs — 1, by Lemma 2.1.1, we can write

W+ DM = "y g1 gahalgits — fiz) + 2"yg g™ - g f(ffgus o fo96),
=1

(2.2.1)
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where hq,..., hs are in K[y1,...,Yn, 2, t1,...,ts]. We only need to show that

H=g g™ f(fi)ar, - fs]9s)

is equal to zero. It is not hard to see that H is a polynomial in K[y|. Thus we only
need to show that H vanishes at all points of K". Take a point x € K". If g;(z) = 0
for some i, then clearly H(x) = 0 because g - --gs; divides H. Thus we may assume
that g;(z) # 0 for all 4. If f;(x) # 0 for some ¢, then by definition of X, we get that
f(fi(z)/q1(x),..., fs(x)/gs(x)) = 0 and by Eq. (2.2.1) or directly from the definition of
H it is seen that H(z) = 0. If fi(x) = 0 for all i, as f is homogeneous, it follows that
H(z)=0. Thus H=0and f€INS.

Next we show the inclusion I(X) D I NS. By Proposition 2.1.2 we get that I N S
is the presentation ideal of K[f1z/g1,..., fsz/gs]. Therefore, using Proposition 1.4.14, it
follows that I NS is graded. Let f be a homogeneous polynomial of I N S. Then we can
write

f = f(tla s 7ts> = h1<91t1 - flz) + o+ hs(gsts - fsz> + h(gl o gsYo — 1) (222)

for some hy, ..., hg, hin B. Take a point [P] in X with P = (f1(z)/q1(x), ..., fs(x)/gs(x)),
and v = (z1,...,2,) € K". From Eq. (2.2.2), making ¢t; = fi(z)/g:(2), y; = z;, 2 = 1
and yo = 1/g1(x) - - - gs(z) for all 4, 7, it follows that f(P) = 0. Thus f vanishes on X. O

Example 2.2.6. If X is the projective set parameterized by F' = {y2/y1,y3/Y2, y1/y3, 1}
over the field Q of rational numbers. Using Macaulay2 [30] and Theorem 2.2.5 we get

I(X) = (y1t1 — Y22, Yota — Y32, Ysts — Y12, t4 — 2, Yotatays — 1) NS = (titats — t1).

Notice that (yit1 — Y22, Yata — Y32, ysts — y12,t4 — 2) NS = (0). This means that the
variable yq is essential to compute [(X).

Definition 2.2.7. Let S = K[t,...,1s] be a polynomial ring over a field K. A binomial
of S is an element of the form f = t* — t*, for some a,b in N°. An ideal generated by
binomials is called a binomial ideal.

The next lemma is well known, see for instance [69, Corollary 7.1.5] and its proof.

Corollary 2.2.8. Let K be an infinite field and let I C S be a graded ideal. Then I is
the vanishing ideal of a projective set in P~ parameterized by Laurent monomials if and
only if I 1s a prime ideal generated by binomials.

Proof. =) By Theorem 2.2.5 and Lemma 1.3.24 we get that [ is a prime ideal generated
by binomials.

<) By [48, Theorem 7.4] it follows that I is a toric ideal, that is, there are y**, ..., y%
in K(y) and an epimorphism of K-algebras

p: S=Klt1,...,ts] — K[y™,...,y"], induced by p(t;) = y*,
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such that I = ker(p). Consider the epimorphism of K-algebras
o1 S=Klty,...,ts] — Kly™z,...,y"z], induced by (t;) = y"z.

As I and ker(y7) are graded binomial ideals in the standard grading of S it is not hard
to see that I = ker(p). If X is the projective set parameterized by y"',...,y", using
Theorem 2.2.5 we get that [(X) = ker(¢). Thus I = I(X) as required. O

Example 2.2.9. Let K be an infinite field. If Y = {[(1,0)],[(0,1)],[(1,1)]} C P!, then
its vanishing ideal is generated by ¢;t5(t; — t2). Notice that Y cannot be parameterized
by Laurent monomials because /(Y) is not a prime ideal (see Corollary 2.2.8).

Theorem 2.2.10. Let B = K[Yo,Y1,---,Yn, 2, t1, ..., ts] be a polynomial ring over an
infinite field K. If X is a projective algebraic set parameterized by rational functions

fi/g1, -, [s/gs in K(y) with f; # 0 for all i, then
I(X) = ({giti — fiz¥io o1 -+ 9s — 1) NS
and I(X) is the presentation ideal of K[f1z/q1, ..., fsz/gs]-

Proof. We set I = ({figit; — f22}_1,v0f1 - fsg1---gs — 1). As f; # 0 for all i, by
Proposition 2.1.2, one has the equality

{giti — fizYimr, wog - 9s — 1) NS = ({figits — f[72Yiovofi-- - fsqrgs—1)N S

and ({git; — fiz}_1, Y091 -+ - gs — 1) NS is the presentation ideal of K[fiz/q1,..., fs2/gs)-
Using Proposition 1.4.14, it follows that 1 N S is graded.

First we are going to show the inclusion I(X) C I N S. Take a homogeneous poly-
nomial f = f(t1,...,ts) of degree d that vanishes at all points of X. Now setting
W =wvyofi - fsg1---gs — 1, by Lemma 2.1.1, we can write

(W + 1)d+1f = Zy(c)l+lfl e fsgl e gshl(flgltl - f;z) + Zd(W+ 1)d+1f(f1/gl7 ceey fs/gs)a
i=1
(2.2.3)
where hq,...,hs are in B. We only need to show that

H = (fl"'fsgl'"98)d+1f(f1/917--wa/QS)

is equal to zero. It is not hard to see that H is a polynomial in K[y]. Thus we only
need to show that H vanishes at all points of K. Take a point € K™. If g;(z) = 0 for
some ¢ or f;(x) = 0 for some i, then clearly H(x) = 0 because f--- fsg1 - - gs divides H.
Thus we may assume that f;(x)g;(x) # 0 for all i and, by definition of X, we get that
f(filx)/g1(x),. .., fs(x)/gs(x)) = 0. Hence by Eq. (2.2.3) or directly from the definition
of H it is seen that H(x) = 0.

Next we show the inclusion I(X) D I NS. We proceed as in the second part of the
proof of Theorem 2.2.5. Let f be a homogeneous polynomial of 7 N S. Take a point [P)]



24 Vanishing Ideals over Rational Parameterizations

in X with P = (fi(z)/g1(x),..., fs(x)/gs(x)) and f;(x)gi(x) # 0 for all i. Then f is a
linear combination of {figit; — f22}i; U{yofi - fsg1- - gs — 1} with coefficients in B.
Making t; = fi(z)/gi(x), = = 1, y; = x;, and yo = 1/fi(z) -+~ fs(x)g1(x) - - - gs(2) for all
i,7, it follows that f(P) = 0. Thus f vanishes on X. O

Theorem 2.2.11. Let B = Klyo, Y1, - -, Yn,t1,---,ts] be a polynomial ring over an infi-
nite field K. If X* is the affine set parameterized by rational functions fi/g1, ..., fs/gs in
K(y), then

I(X*) = ({giti = fi}i=1, 9091+ 9s — 1) NS
and I(X*) is the presentation ideal of K[fi/q1,- .-, fs/gs)-

Proof. Weset I = ({giti—fi}i_1, Y091 - - - gs—1). First we show the inclusion I(X*) C INS.
Take a polynomial f = f(t1,...,ts) of degree d that vanishes at all points of X*. Setting
W =1yg1---g9s — 1, by Lemma 2.1.1, we can write

W+ = yi g1 gehilgiti— ) + g gt - g8 f(Figr, - fo/gs), (22.4)
=1

where hy, ..., hg are in B. We only need to show that H = ¢ - g f(fi /g1, ..., fs/gs)
is equal to zero. It is not hard to see that H is a polynomial in K[y]. Thus we need only
show that H vanishes at all points of K™. Take a point z € K". If g;(x) = 0 for some 1,
then clearly H(x) = 0 because g; - - - g5 divides H. Thus we may assume that g;(z) # 0
for all . Then, by definition of X*, we get that f(fi(z)/g1(x),..., fs(x)/gs(x)) = 0 and
by Eq. (2.2.4) or directly from the definition of H it is seen that H(z) = 0.

Next we show the inclusion I(X*) D I'NS. Take fin INS. Let P be any point in X*
with P = (fi(z)/g1(x),..., fs(x)/gs(x)). Then f is a linear combination of

{giti — fi}iei U{yog1---9s — 1}

with coefficients in B. Making t; = fi(z)/g:(z), y; = x;, and yop = 1/g1(x) - - - gs(x) for all
i, 7, it follows that f(P) = 0. Thus f vanishes on X*. By Proposition 2.1.2 we get that
I'N S is the presentation ideal of K[f1/q1,..., fs/gs]- O

Corollary 2.2.12. If K is infinite, f; # 0 for all i and Y = ¢(X*), then I(Y) is equal to
the presentation ideal of K|f1z/q1, ..., fsz/gs, z].

Proof. Notice that Y is the projective algebraic set parameterized by fi1/q1,..., fs/gs, 1.
Hence the result follows from Theorem 2.2.10. O

Theorem 2.2.13. Let B = Kl[yo,Y1,---,Yn,t1,---,ts] be a polynomial ring over an
infinite field K. If X* is the affine algebraic set parameterized by rational functions

fi/91,- -5 fs/gs in K(y) and f; # 0 for all i, then
I(X™) = ({giti — fitic, 9091+ --9s —1)NS

and I(X*) is the presentation ideal of K[f1/q1, ..., fs/gs]-
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Proof. We set I = ({figiti — f7}i_1.yof1- - fsg1---gs — 1). Because f; # 0 for all 7, by
Proposition 2.1.2, one has

({gitz‘ - fz‘}f:hyOgl T gs — 1) ns = ({fzgztz - fzg}f:hy()fl T fsgl s — 1) ns

and ({g;t; — fi}i_1, Y091 -+ gs — 1) N S is the presentation ideal of K[f1/g1,..., fs/gs]-

First we show the inclusion I(X*) € I N S. Take a polynomial f = f(tq,...,ts)
of degree d that vanishes at all points of X*. Setting W = yof1--- fsg1---9s — 1, by
Lemma 2.1.1, we can write

(W + 1) =" yd i fagre o gshilfigits — £ + (W + D5 (fu/gn, - [/ 95),

i=1
(2.2.5)
where hq,...,hs are in B. We only need to show that

H = (fl"'fsgl"'gs)d+1f(f1/gla'"7f8/gs)

is equal to zero. It is not hard to see that H is a polynomial in K[y]. Thus we only
need to show that H vanishes at all points of K". Take a point z € K". If ¢;,(xz) = 0 for
some ¢ or f;(x) =0 for some i, then clearly H(x) = 0 because fi--- fsg1 - gs divides H.
Thus we may assume that f;(x)g;(x) # 0 for all 7 and, by definition of X, we get that
f(fi(z)/q1(x),..., fs(x)/gs(x)) = 0. Hence by Eq. (2.2.5) or directly from the definition
of H it is seen that H(x) = 0.

Next we show the inclusion /(X*) D I NS. Let f be a polynomial of I NS. Take a
point P in X* with P = (fi1(x)/g1(2), ..., fs(x)/gs(x)) and f;(x)g;(x) # O for all i. Then
f is a linear combination of { figit; — f2}i, U{yofi--- fsg1- - gs — 1} with coefficients in
B. Making t; = f(2)/:(x), 3 = 73, and g = 1/fy(2) - £o(£)g1(x) - () for all 5,
it follows that f(P) = 0. Thus f vanishes on X*. O

The Zariski closure of an affine set. Here we examine the Zariski closure of an affine
set X* parameterized by Laurent monomials.

Theorem 2.2.14. [39, 40] Let F' = {y™,...,y"} be a set of Laurent monomials such
that K is algebraically closed or K|[F| is normal. Then there exists an affine set X3,
parameterized by H = {y*, ..., y"} with u; € Z" such that V(Pr) = X}; and Pr = Py,
where Pr and Py are the toric ideals of K[F| and K[H], respectively.

Corollary 2.2.15. If F' = {y",...,y"} is a set of monomials with vy, ..., vs in Z" and
K is an algebraically closed field, then there exists a set of monomials H = {y", ... y"}
with uy, ..., us in Z" such that X* is the affine set X3, parameterized by H.

Proof. Let Pr be the presentation ideal of K[F]. By Theorem 2.2.14 the affine variety
V(Pr) is parameterized by a set H = {y*',...,y*} of monomials with u;,...,us in
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7", and by Theorem 2.2.11 the vanishing ideal of X* is equal to Pr. Therefore, by
Lemma 1.4.15, we get

Xpy = V(Pp) = VI(X")) =X,
as required. O

Lemma 2.2.16. Let K be a field. If Y is a subset of A® or a subset of P* and we have

that Z =V (1(Y)), then I(Z) = I(Y'). In particular I(Y) = I1(Y).

Proof. Since Y C Z, we get I(Z) C I(Y). As I(Z) = I(V(I(Y))) D I(Y), one has
equality. By Lemma 1.4.15 one has Y = V(I(Y)). Thus I(Y) = I(Y). O

Corollary 2.2.17. Let F' = {y",...,y*}, H = {y"™,...,y"} be sets of Laurent mono-
mials and let X3, be the affine set parameterized by H. If K is infinite and V (Pr) = X},
then Pp = Pp.

Proof. Let X} be the affine set parameterized by F. By Theorem 2.2.11 we have that
Pr = I(X},) and Py = I(Xj;). Thus, by Lemma 1.4.15, one has

Xy =V(Pp) = VI(X}) = X5
Then, by Lemma 2.2.16, we get 1(X};) = I(X3%) = I(X}). Hence Py = Pp. O

Definition 2.2.18. If F = {y;',...,y-'}, the projective algebraic set parameterized
by F, denoted by T, is called a projective torus in P*~!, and the affine algebraic set
parameterized by F', denoted by T, is called an affine torus in A™.

Remark 2.2.19. If 7* is an affine torus in A” and K is infinite, then 7% = A" because
T* is equal to the open set A"\ V(y;---y,). Thus T* has to be dense in A" because K
is an infinite field (see for instance |70, Exercise 3.2.20]).

Example 2.2.20. If F = {y;,y;",...,yn,y;'} and K is an infinite field, then we have
[(X*) = PF7 PF = (tltg - 1, e ,tgnfltgn - 1) and V([(X*)) =X*= X"

The degree of the projective closure. In this part we study the projective closure
of an affine set X* parameterized by rational functions.

For use below recall that ¢ is the map ¢: A* — P*, a — [(a, 1)].
Corollary 2.2.21. If K is an infinite field and Y = ¢(X*), then I(Y) = I(Y) = I(X*)",
deg S[ul/I(Y) = deg S[ul/I(Y) = deg S/I(X") = deg Slu]/I(X")",

and I(Y) is equal to the presentation ideal of K|[f12/g1,- .., fsz/gs, 2]
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Proof. By Lemma 1.4.15 and Proposition 1.4.23 one has that V(I(Y)) = Y and that
I(Y) = I(X*)" and by Lemma 2.2.16 one has the equality I(Y) = I(Y). Hence, by
Proposition 1.4.21, we get

deg S/I(X*) = deg S[u]/I(X*)" = deg S[u]/I(Y) = deg S[u]/I(Y).

The set Y is the projective set parameterized by fi/¢1, ..., fs/gs, 1. As a consequence,
by Theorem 2.2.5, I(Y) is the presentation ideal of K|[f1z/q1,..., fsz/gs, z]. O

Remark 2.2.22. This result, together with Theorems 2.1.7 and 2.2.11, can be used
to compute the degree—without using Gobner bases—of the projective closure of any
affine set X* parameterized by Laurent monomials, i.e., we can compute the degree of

S/1(6(X%)).

As an application we recover the following known description of the projective closure
of a monomial curve (see [69, Proposition 10.1.17]) and compute its degree.

Corollary 2.2.23. Let X* = {(z,...,2{")| 2z, € K} be a monomial curve in the affine
space A®. If dy > dy > --- > dg and K C, then the projective closure ¢(X*) of X* is a
projective toric variety in P* of degree ds/ ged(dy, ..., ds) and dimension 1 given by

gb (X*) = { 1’1 , T uih d . xﬁlsul ds,ufl)] EIP’S‘ U, x € K},

and its vanishing ideal is I((X*)) = I(X) = ({t; — "2} N K[ty, ..., te1], where
ds—f—l = 0.

Proof. Setting Y = ¢(X*) and F = {y{'2,...,y"2, 2z}, by Corollary 2.2.21, I(Y) is the
toric ideal Pp of K[F]. Consider the 2 x (s + 1) matrix A with rows a; = (dy,...,ds,0)
and ap = (1,...,1). The matrix A is row equivalent over Q to the 2 x (s + 1) matrix
With rows 1 = (di,ds,...,ds,0) and By = (0,dy — da,...,dy — ds,dy). Hence, setting

= {y, yPub—t . yfeudi—ds ) it follows that the toric ideal Py of K[H] is the
torlc ideal Pr of K[F|. . By Theorem 2.2.5, we get Py = [(Xp), where Xy is the
projective set parameterized by H. All together one has:

I(Xg) = Py = Pp = I(Y).

Notice that V(I(Xy)) = X. This equality follows by observing that /' — t{¢% % is
in Py fori=1,...,s+ 1, where ds;; = 0. Applying Lemma 1.4.15 we obtain

Y = V(I(Y)) = V(I(Xn)) = Xu.

Thus Y is the projective set parameterized by H, as required. Next we compute the
degree of S[u|/I(Y). By Corollary 2.2.21 one has

deg S[u]/I(Y) = deg S/I(X*).
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On the other hand by Theorems 2.1.7 and 2.2.11 we get
\T(Z)Z4dy, . ..,ds})| deg(S/I1(X*)) = vol(conv(dy, ..., ds,0)).

Since |T(Z)Z{dy,...,ds})| = ged(dy,...,ds) and vol(conv(dy,...,ds,0)) = ds, we get
that the degree of S[u]/I(Y) is d,/ gcd(dy, ... ,ds). Finally notice that by Corollary 2.2.21
one has that T(X*)" is the toric ideal of K[y{2,... 42, 2]. Thus the formula for I(X*)"
follows at once from Corollary 2.1.3. O

Example 2.2.24. Let X* = {(23,2%,21)|z; € K} C A? be a monomial curve and let
»(X*) be its projective closure. If K = Q and Y = ¢(X*), then using Macaulay?2 [30],
with the procedure below, and Corollary 2.2.23, we get

Y = {[(:Ci’,x?ul,xlu%,uf)] € IEDS‘ Uy, 1 € @}7

deg S[u]/I(Y) = 3, and

I(Y) = I(Y) = (2 — tou, tots — tyu, t5 — tit3) = I(X*)", where u = t,.

R=QQ[yl,z,t1,t2,t3,t4,Monomial0rder=>Eliminate 2]
I=ideal (t1-y173%z,t2-y1"2xz,t3-yl*z,t4-2)
Ixxac= ideal selectInSubring(1l,gens gb I)

Polynomial parameterizations over infinite fields. In this part we specialize our
results to polynomial parameterizations over infinite fields.

Let R = Klyi, ..., yn] be a polynomial ring over a field K and let F = {f1,..., fs} be
a finite set of polynomials of R. Consider the following polynomial parameterizations:

(i) X:={[(fi(2), .., fs(x))] |z € K" and fi(x) # 0 for some i} C P*~!, the projective
set parameterized by F',

(i) X = {[(fi(z),..., fs(x))] |z € K™ and fi(x) # 0 for all i} C P*~! the projective

algebraic set parameterized by F,
(ili) X*:={(fi(x),..., fs(z)) |z € K"} C A®, the affine set parameterized by F,

(iv) X*:={(fi(z),..., fs(z)) |z € K™ and f;(z) # 0 for all i} C A®, the affine algebraic

set parameterized by F', and
(v) X* (resp. X*), the projective closure of X* (resp. X*).

Theorem 2.2.25. Let K be an infinite field, let F' = {f1,..., fs} be a set of polynomials
of R and let X, X, X* and X* be the corresponding sets parameterized by F. Then the
following holds.

() IFX 0, then I(X) = ({t: — fiz},) N S.
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(i) If X £0, then I(X) = ({t: — fiz}2,) N S.
(iii) [69, Corollary 7.1.12] I(X*) = ({t; — f;}5_,) N S.
(iv) If X* # 0, then I(X*) = ({t; — f;}:_,) N S.
Proof. (i): By Theorem 2.2.5, making ¢; = 1 for all i, we get
IX)=({ti = fiztiei 0 —1)NS

and I(X) is the presentation ideal of K[fiz,..., fsz]. Since t; — f;z is independent of 1,
it follows readily that ({t; — fiz};_,,50 — 1) NS is equal to ({t; — fiz}i_,)NS.
(ii): Making g; =1 for i = 1,...,s in Theorem 2.2.10, we get
I(X)={ti - fiztioppo—1)NS

and I(X) is the presentation ideal of K[fiz,..., fsz]. Since t; — f;z is independent of y
it follows readily that ({t; — fiz}_;,v0 — 1) NS is equal to ({t; — fiz}i_,) N S.

(iii) and (iv): The two assertions follow by the arguments above and by a direct
application of Theorems 2.2.11 and 2.2.13 respectively. O

Corollary 2.2.26. Let K be an infinite field. The following hold for polynomial param-
eterizations.

(a) [9, Theorem 1, p. 128] X* = V(({t; — f;}:,) N S).
(b) If X # 0 and X* # 0, then I(X) = I(X) and I(X*) = I(X*).
(c) If X# () and X* # (), then X = X and X* = X*.

Proof. Notice that X* = V(I(X*)) and X* = V(I(X*)) (see Lemma 1.4.15) and that
similar formulas hold for X and X. Thus the result follows from Theorem 2.2.25. O

Next we recover a result of [49].

Corollary 2.2.27. [49, Theorem 6.9] If K is an infinite field and X is a projective
algebraic set parameterized by monomials y**, ..., y" in R, then I(X) = ({t;—y"z};_;)NS
and I(X) is the presentation ideal of K[y"z, ... ,y"z].

Proof. It follows at once from Theorem 2.2.25(ii). O

2.3 Rational parameterizations over finite fields

Throughout this section K = IF, is a finite field and X, X*, X and X*, are the sets
parameterized by rational functions F' = {f1/g1,..., fs/g9s} in K(y).
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Proposition 2.3.1. [37, pp. 136-137] Let K = F, be a finite field and let A® be the affine
space of dimension s over K. Then I(A®) = ({t! —t;}:_,).

Proof. The inclusion “D” is clear. To show the inclusion “C” take f € I(A*®). Consider
the GRevLex order < on S. By the division algorithm [9, Theorem 3, p. 63| the residue
of dividing f by {t{ —t;};_,, denoted by g, satisfies that deg, (g) < ¢ for all i. Thus, by
Lemma 2.2.2, g = 0. Hence f € ({t] —¢;}5_,). O

Lemma 2.3.2. Let K =T, be a finite field. The following conditions are equivalent:

1+ gs vanishes at all points of K™.
195 € (Y —wikin)-
(Lgiti = fiz¥imi AVl —vitie vog1 - 9s = 1) NS = S.

Proof. (a) < (b)): This follows at once from Proposition 2.3.1.
(a) < (d)): This follows from the definition of X*.

(c) = (a)): We can write 1 = 370, ai(gits = fi2) + 3250 by(y] = 45) +-h(y0g1 -~ g5 1),
where the a;’s, b;’s and h are polynomials in the variables y; s t;’s, yo and z. Take an
arbitrary point « = (x;) in K™. In the equality above, making y; = x; for all i, z = 0 and
t; = 0 for all i, we get that 1 = hy(yog1(x) - gs(x) — 1) for some hy. If (g1 - gs)(x) # 0,
then hi(yog1(z) -« gs(x) — 1) is a polynomial in y, of positive degree, a contradiction.
Thus (g1---gs)(x) = 0.

(b) = (c)): Writing g1---gs = Y7, b;(yf — y;), we get
Yogr -~ gs — =—1+Zyob ! — ;)

Thus 1 is in the ideal ({g;t; — fiz}i_ i, {y! —vi}i1, yog1- - gs — 1). 0

Example 2.3.3. If K = F3, fi = yoy3, fo = 11y3, g1 = ¥5 — y1 and go = 1, then clearly
= 0. Thus (g1t1 — f12, gata — fo2, ¥} — Y1, U5 — Y2, 93 — Y3, 19290 — 1) NS = S.

Lemma 2.3.4. Let K =T, be a finite field. The following conditions are equivalent:
(&) ({giti — fizkici Ay — ¥itici, Y091+ 9s — 1) NS = (1, ..., ts).
(b) X* = {0}.

Proof. (a) = (b)): By Lemma 2.3.2, X* # (). Take a point P in X*, ie., there is
r = (z;) € A® such that g;(x) # 0 for all ¢ and P = (fi(z)/g1(x), ..., fs(x)/gs(x)). By
hypothesis, for each t;, we can write

ty = ZCI/’L gz i fz + Zb + h(yog1 *gs 1), (231)
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where the a;’s, b;’s and h are polynomials in the variables y;’s, t;’s, yo and z. From
Eq. (2.3.1), making y; = x; for all i, yo = 1/g1(x) - - - gs(x), t; = fi(x)/g:(x) for all i, and
z =1, we get that fy(z)/gr(x) =0. Thus P = 0.

(b) = (a)): Setting I = ({giti—fiz}i_1, {u!—vi}i 1, Yog1 - - - gs—1), by Lemma 2.3.2 one
has that INS C S. Thus it suffices to show that ¢, € I'N.S for all k. Notice that g; - - - gs fx
vanishes at all points of A™ because X* = {0}. Hence, thanks to Proposition 2.3.1,

1 gsfr is in ({y! — yi ). Setting W = yog1---gs — 1, and applying Lemma 2.1.1
with f =, we can write

(W1t = yigr - gshalgits — fi2) + vagi - - 922(fu/ 9)-

i=1
Therefore (W +1)%t, € I. Thus t, € INS. O

Example 2.3.5. Using Macaulay?2 [30], and the procedure below, we get that
INS = (ty,....t,),
i.e., X* = {0} in concordance with Lemma 2.3.4.

B=GF (3) [y0,y1,y2,y3,y4,y5,z,t1,t2,t3,t4,t5,t6,Monomial0rder=>Eliminate 7];
fl=ylxy3, f2=ylxy4, f3=ylxyb, fd=y2x*y3, fb=y2x*y4, f6=y2x*y5,

gl=y2~2-1, g2=y372-1, g3=y1°3-1, g4=y1°3-1, gb=y4"2-1 ,gb=y172-1, q=3
I=ideal (glxt1-flxz,g2*t2-f2*z,g3*t3-£3*z,gd*t4-f4*z,gb*xt5-f5*z,gb*xt6-f6%z,
y17q-y1,y27q-y2,y37q-y3,y47q-y4,y5°q-y5, gl*g2*g3*gaxghb*gb*y0-1)

Ixx=ideal selectInSubring(l,gens gb Ia)

mingens IXx

Lemma 2.3.6. If I = ({git: — fiz} 1, {y! — v}y, 9091 9s — 1) and m = (t1,...,t) is
the irrelevant maximal ideal of S, then

(a) I NS is graded, and
(b) X #0 if and only if INS C m.

Proof. (a): We set B = K[yo, Y1, ---,Yn, 2, t1,...,ts]. Take 0 # f € INS and write it as
f=fi+---+ f., where f; is a homogeneous polynomial of degree d; and d; < --- < d,.
By induction, using Proposition 1.4.14, it suffices to show that f. € I N.S. We can write

f Zaz gz ) fz +Zcz — Y +c<y091 "gs — 1)a

where the a;’s, ¢;’s, and ¢ are in B. Making the substitution t; — t;,v, z — zv, with v an
extra variable, and regarding f(t1v,...,tv) as a polynomial in v it follows readily that
v? f, is in the ideal generated by B = {g;t;v — fizv}i, U{y! — v}y U{yog1 - gs — 1}
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Writing v% f, as a linear combination of B, with coefficients in B, and making v = 1, we
get that f, € INS.

(b): =) If X # ), by Lemma 2.3.2, we get that 1 NS # S. By part (a) the ideal INS
is graded. Hence I NS C m.

<) If INS € m, by Lemmas 2.3.2 and 2.3.4, we get X* # () and X* # {0}. Thus
X # 0. 0

Theorem 2.3.7. Let B = Ky, Y1,---,Yn, 2, t1, ..., ts] be a polynomial ring over a finite
field K =F,. If X is a projective set parameterized by rational functions fi/g1, ..., fs/9s
in K(y) and X # (), then

[(X) = <{9ﬂfi - fiz}f:p {yf - Z/i}?:p Yog1 - gs — 1) NSs.

Proof. Weset I = ({giti— fiz}i_1, {v!—vi}’-1, Y091 - - - gs—1). First we show the inclusion
I(X) Cc INS. Take a homogeneous polynomial f = f(¢y,...,ts) of degree d that vanishes
at all points of X. Setting W = ypg1---9s — 1, by Lemma 2.1.1, we can write

(W + 1 d+1f Zyd+1 gsaz<gz i fz ) + ZdngrlgilJrl gg+1f<f1/gla s 7fs/gs)>

(2.3.2)
where ai,...,a, are in B. We set H = gf* .. g¥ 1 f(f1 /g1, ..., fs/gs). This is a polyno-
mial in K[y|. Thus, by the division algorithm in Ky] (see [9, Theorem 3, p. 63]), we can
write

for some hy, ..., h, in K[y]|, where the monomials that occur in G = G(y, ..., y,) are not
divisible by any of the monomials y{, ..., y?, i.e., deg,. (G) < qfori=1,...,n. Therefore,
using Eqs. (2.3.2) and (2.3.3), we obtain the equality

W+ =Dy g1 geailgiti — fiz) + 2"y Z ha(y! =) + 2%V Gy, - ).

(2.3.4)

Thus to show that f € I'N.S we only need to show that G = 0. We claim that G vanishes
on K. Notice that y — y; vanishes at all points of K™ because (K*, -) is a group of order
q — 1. Take an arbitrary sequence z1, ..., z, of elements of K, i.e., x = (x;) € K".

Case (I): g;(z) = 0 for some . Making y; = z; for all j in Eq. (2.3.4) we get G(z) =

Case (II): fi(z) = 0 and g;(z) # 0 for all <. Making y, = x; and t; = f;(z)/g;(x) for
all k,j in Eq. (2.3.4) and using that f is homogeneous, we obtain that G(x) =

Case (III): f;(x) # 0 for some i and g,(z) # 0 for all £. In this case, making
yr, = xx, t; = fi(z)/gj(x) and z = 1 in Eq. (2.3.4) and using that f vanishes on
[(fi(z)/qr(x),..., fs(x)/gs(x))], we get that G(x) = 0. This completes the proof of the
claim.
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Therefore G vanishes at all points of K" and deg, (G) < ¢ for all i. Hence, by
Lemma 2.2.2, we get that G = 0.

Next we show the inclusion I(X) D I N S. By Lemma 2.3.6 we have that the ideal
I'n S is graded. Let f be a homogeneous polynomial of [ NS. Take a point [P] in
X with P = (fi(x)/g1(x),..., fs(x)/gs(x)). Writing f as a linear combination of the
elements {g;t; — fiz}i_1, {y! — vi}P1, Y091 - - - gs — 1, with coefficients in K, and making
ti = fi(z)/gi(x), y; = xj, z = 1 and yo = 1/g1(x)---gs(z) for all i, it follows that
f(P)=0. Thus f vanishes on X. O

Lemma 2.3.8. If I := ({git: — fiz}ioy, (v — vity,vog1 - 9s — Lwfr--- fs — 1) and
K =T, is a finite field, then the following conditions are equivalent:

1°-+9sf1-- - fs vanishes at all points of K",

v gsfie fe € () —widie),

Proof. (a) < (b)): This follows at once from Proposition 2.3.1.
(a) & (d)): This follows from the definition of X.
(c) = (a)): Writing

s

1:Zazgzz fz +Zb '_yj +h(3/091 g_l)+h1(f1fsw_1)a

7

where the a;’s, b;’s, h and h; are polynomials in the variables y;’s, t;’s, o, w and z.
We proceed by contradiction assuming there is a point * = (z1,...,x,) in K™ such
that (g1 ---gsf1---gs)(x) # 0. Making y; = x; for all i, z = 0, t; = 0, for all i, yp =
1/(g1---gs)(x), and w = 1/(f1--- fs)(x), in the equation above we get that 1 = 0, a
contradiction.

(b) = (¢)): Since whi - fulngs -+ go— 1)+ (whi -+ fo— 1)+ 1 = winfi -+ fugs -+ 9o
we get that 1 € INS. O

The ideal I(X) can be computed from 7(X) using the colon operation.
Proposition 2.3.9. If X # 0, then (I(X): t;---ts) = [(X).

Proof. Since X C X, one has I(X) C I(X). Consequently (I(X): ¢;---t5) C I(X)
because ¢; is not a zero-divisor of S/I(X) for all i. To show the reverse inclusion take a
homogeneous polynomial f in I(X). Let [P] be a point in X, with P = (ay, ..., as) and
ay # 0 for some k, and let Ijp) be the ideal generated by the homogeneous polynomials
of S that vanish at [P]. Then I (p] is a prime ideal of height s — 1,

I[P] - ({Oékti - Oéitk| k 7’é 1 E {1, ey S}), ](X) = ﬂ I[Qb (235)
[QleX
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and the latter is the primary decomposition of I(X). Noticing that t; € Ijp) if and only if
a; = 0, it follows that ¢; - - - ts f € I(X). Indeed if [P] has at least one entry equal to zero,
then ¢, ---t, € Ijp and if all entries of P are not zero, then f € I(X) C Ijp. In either
case t1---tsf € I(X). Hence f € (I(X): t1---1,). O

Next we present some other means to compute the vanishing ideal 7(X).

Theorem 2.3.10. Let B = Klyo, w, Y1, -, Yn, 2, t1,...,ts] be a polynomial ring over a
finite field K =TF,. If X is a projective algebraic set parameterized by rational functions
f1/91, -5 fs/gs in K(y) and X # 0, then

I(X) = ({giti = fiztici ) —vitim, w091 9s — Lwfr--- fi=1)NS

Proof. Weset I = ({giti— fiz}i_1, {v —vi}' 1, %091 - - gs—1,wf1 -+ fs—1). First we show
the inclusion I(X) C I N S. Take a homogeneous polynomial f = f(t1,...,ts) of degree
d that vanishes at all points of X. Setting W, = ypg1---9s — 1 and Wy = wf--- fs — 1,
by Lemma 2.1.1, we can write

(W + D) (Wa + 1) f = Zde g1 9s(Wa + Vai(giti — fiz) + wzyg™ H,  (2.3.6)

where ai,...,a, are in B and H = f1--- fog™™ - g f(fi/g1, ..., fs]gs). As H is a
polynomial in K[y], by the division algorithm in K [y} (see [9, Theorem 3, p. 63]), we can
write

H=HW,. -, yn) Zh T—y)+Gy1, - Yn) (2.3.7)

for some hy, ..., h, in K[y|, where the monomials that occur in G = G(y, ..., y,) are not
divisible by any of the monomials y{,...,yZ, i.e., deg, (G) < qfori = 1,...,n. Therefore,
setting F' = (W +1)41(Wy+1) f and using Egs. (2.3.6) and (2.3.7), we obtain the equality

F = Zy‘“’l 9s(Wo + 1) (git; — fi2) +wztyd™ Z hi( )+ w2y G (2.3.8)

Thus to show that f € IN.S we only need to show that G = 0. By Lemma 2.2.2 it suffices
to show that G vanishes on all points of K" because deg, (G) < ¢ for all i. Notice that
y! — y; vanishes at all points of K™ because (K*, -) is a group of order ¢ — 1. Take an
arbitrary sequence xy,...,x, of elements of K, i.e., z = (z;) € K™.

Case (I): Assume that fz( ) =0 or g;(z) = 0 for some 7. Using Eq. (2.3.8), we obtain
that G(x) =

Case (II). Assume that f;(z)g;(z) # 0 for all i. Making y; = x;, t; = fi(z)/g:;(x) and
z =11in Eq. (2.3.8) and using that f vanishes on [(fi(z)/g1(x), ..., fs(x)/gs(x))], we get
that G(z) =

Next we show the inclusion I(X) D I N S. One can proceed as in the proof of
Lemma 2.3.6 to show that /NS is graded. Let f be a homogeneous polynomial of 7N S.
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Take a point [P] in the set X with P = (fi(z)/g1(x),..., fs(x)/gs(x)). Writing f as a
linear combination of

{giti — fiz}ici Ay! —vitici, wogn - g5 — Lwfr - fo — 1

with coefficients in B, and making t; = f;(z)/¢:(z), y; = xj, 2 =1, yo = 1/q1(x) - - - gs (),
and w = 1/f1(z) - fs(x) for all 4, j it follows that f(P) = 0. Thus f vanishes on X. O

Remark 2.3.11. The vanishing ideal I(X) can also be computed using the following
formula:

I(X) = ({giti — fizY gl —wid (U = 1 yogr - gs — 1) N S.

To show this we can proceed essentially as in the proof of Theorem 2.3.10 by considering
the polynomial F' = (W, + 1)¥ Wy + 1) -+ (W, + 1), where Wy = g1 -+ gsyo — 1 and
Wy=fr" ' —1fori=1,...,s

Theorem 2.3.12. Let B = K[yo,Y1,.--,Yn,t1,.-.,ts] be a polynomial ring over a finite
field K = F,. If X* is an affine set parameterized by rational functions fi/g1,..., fs/3s
in K(y), then

[(X*) = ({giti - fz‘}f:p {3/3 - @/i}?:lv Yog1 " Ggs — 1) n.S.

Proof. We set I = ({git; — fitioi, {v! — vi}'q, %001 - 9s — 1) N S. First we show the
inclusion I(X*) Cc I'nS. Take a polynomial f = f(t1,...,ts) of degree d that vanishes
at all points of X*. Setting W = ypg1---gs — 1, by Lemma 2.1.1 and using the division
algorithm in KTy] (see the proof of Theorem 2.3.7), we obtain the equality

(W +1 d+1f Z yd+1 gsaz(gz i fl + ngrl Z h + ngrlG(yh s ,yn),

=1 =1
(2.3.9)

where ay, ..., a5, hy,..., h, arein B, G = G(yi,...,y,) is a polynomial in K[y] such that
deg, (G) < q fori =1,...,n. Thus to show that f € I NS we only need to show that
G = 0. By Lemma 2.2.1 it suffices to show that G vanishes on K”. Take an arbitrary
sequence 1, ..., &, of elements of K and set = (z1,...,2,).

Case (I): gi(z) = 0 for some . Making y; = x; for all j in Eq. (2.3.9) we get G(z) =

Case (II): g;(z) # 0 for all i. Making vy = =%, t; = f;j(z)/g;(z) in Eq. (2.3.9) and
using that f Vanlshes on (fi(x)/g1(x),..., fs(x)/gs(x)), we get that G(x) = 0.

Next we show the inclusion I(X*) D I NS. Let f be a polynomial of 7 NS. Take a

point P in X* with P = (f1(x)/g1(z), ..., fs(x)/gs(x)). Making t; = f;(x)/g:(z), y a:],
and yo = 1/g1(z) - - - gs(z) for all 4, j, it follows that f(P) = 0. Thus f vanishes on X*

The ideal I(X™*) can be computed from I(X*) using the colon operation.

Proposition 2.3.13. (I(X*): ty---t,) = I(X™).
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Proof. This follows adapting the proof of Proposition 2.3.9. O

Next we present some other means to compute the vanishing ideal 7(X™*).

Theorem 2.3.14. Let B = Klyo, w, Y1, -, Yn, 2, t1,...,ts] be a polynomial ring over a
finite field K = F,. If X* is an affine algebraic set parameterized by rational functions

filgi, -y fs/gs in K(y) with f; # 0 for all i, then
I(X7) = ({giti = filizo vl —witisowogr - gs = Lwfi-- fo = 1) NS,
Proof. This follows adapting the proof of Theorem 2.3.10. O

Remark 2.3.15. The vanishing ideal I(X*) can also be computed using the following
formula:

I<X*) = ({gltl - fi}le? {y? —Yi ?:17 {fiq_l - 1}?:17%)91 s — 1) ns.

To show this we can proceed essentially as in the proof of Theorem 2.3.10 by considering
the polynomial F = (W, + 1) (W, + 1) -+ (W, + 1), where Wy = g1 -+ gsyo — 1 and
W,=f"'—1fori=1,...,s.

Corollary 2.3.16. Let B = Klt1,...,ts,Y1,--.,Yn, 2] be a polynomial ring over the finite
field K =T, and let f1,..., fs be polynomials of R. The following hold:

(a) IFX £, then 1(X) = ({t; — fiz}iy U{y! —wi}i) N S.

(b) If X #0, then I(X) = ({t: = fiz}i U{y! —w i UL =3NS,
(¢) I(X*) = ({t: = fiki U {y! —wi) N S.

(d) I(X*) = ({ti = i U {y! —wdi U = 13N s,

Proof. The result follows readily by adapting the proof of Theorem 2.2.25, and using
Theorem 2.3.7, Remark 2.3.11, Theorem 2.3.12, and Remark 2.3.15, respectively. O

The formula for I(X) given in (b) can be slightly simplified if the f;’s are Laurent
monomials (see [52, Theorems 2.1 and 2.13]).

Example 2.3.17. Let fi =y1 + 1, fo =y + 1, f3 = y1y2 and let K = 5 be a field with
5 elements. Using Proposition 1.5.4, Corollary 2.3.16, and Macaulay2 [30], we get

deg S/I(X) =19, degS/I(X) =6, degS/I(X*) =25 degS/I(X*)=29,
reg S/I(X) =5, regS/I(X)=2, reg®S/I(X*) =4, reg®S/I(X*)=2.

For convenience we present the following procedure for Macaulay?2 [30] that we used to
compute the degree and the regularity:
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R=GF(5) [z,y1,y2,t1,t2,t3,Monomial0Order=>Eliminate 3];
f1=y1+1,£2=y2+1,£3=y1%y2,q=5

I=ideal (t1-f1*z,t2-f2xz,t3-f3*z,y17q-y1,y2°q-y2)
Jxx=ideal selectInSubring(l,gens gb I)

I=ideal (t1-f1x*z,t2-f2xz,t3-£3*z,y1"q-y1,y2°q-y2,
f1°(q-1)-1,f2"(q-1)-1,£37(q-1)-1)

Jx=ideal selectInSubring(l,gens gb I)

I=ideal (t1-f1,t2-f2,t3-£3,y1"°q-y1,y2"q-y2)

Jxxa=ideal selectInSubring(1l,gens gb I)
I=ideal(t1-f1,t2-£2,t3-£3,y1°q-y1,y2 q-y2,
f1°(q-1)-1,f2"(q-1)-1,£37(q-1)-1)

Jxa=ideal selectInSubring(l,gens gb I)
S=2Z/5[t1,t2,t3]

Ixx=sub(Jxx,S) ,Mxx=coker gens Ixx

degree Ixx, regularity Mxx

Ix=sub(Jx,S) ,Mx=coker gens Ix

degree Ix, regularity Mx

Su=7z/5[t1,t2,t3,u]

Ixxa=sub(Jxxa,Su) ,K=ideal(gens gb Ixxa),Ixxah=homogenize (K,u)
Mxxah=coker gens Ixxah

degree Mxxah, regularity Mxxah

Ixa=sub(Jxa,Su) ,K=ideal(gens gb Ixa),Ixah=homogenize (K,u)
Mxah=coker gens Ixah

degree Mxah, regularity Mxah

Example 2.3.18. Let fi =y1 + 1, fo =y + 1, f3 = 112 and let K = F5 be a field with
5 elements. Using Proposition 1.5.3, Corollary 2.3.16 and Macaulay2 [30], we get

d 121345 d 1]2
X 1919191919 IX] [6]6
dimCx(d) | 3| 6 [10] 15|19 dim Cx(d) |36

The dth column of these tables represent the length and the dimension of the pro-
jective Reed-Muller-type codes Cx(d) and Cx(d), respectively (see Chapter 1). Using
Proposition 1.5.4, Corollary 2.3.16 and Macaulay2 [30], we get

d 12314 d 1]2
X 25 25|25 |25 X
dim Cy-(d) | 4 | 9 |16 | 25 dim Cx-(d) [ 4] 9

Ne)

Continuing with the Macaulay2 procedure of Example 2.3.17 we can compute these four
tables as follows:

degree Ixx, regularity Mxx
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hilbertFunction(1,Ixx) ,hilbertFunction(2,Ixx) ,hilbertFunction(3,Ixx),
hilbertFunction(4,Ixx) ,hilbertFunction(5, Ixx)

degree Ix, regularity Mx

hilbertFunction(1,Ix) ,hilbertFunction(2,Ix)

degree Mxxah, regularity Mxxah

hilbertFunction(1,Ixxa) ,hilbertFunction(2,Ixxa)
hilbertFunction(3,Ixxa), hilbertFunction(4,Ixxa)

degree Mxah, regularity Mxah

hilbertFunction(1l,Ixa) ,hilbertFunction(2,Ixa)

Remark 2.3.19. Let K = F, be a finite field and let hq,...,hy, be polynomials that
generate [(X*). The system of polynomial equations f;(y) = b; for i = 1,...,s has a
solution in the affine space A™ if and only if h;(b) = 0 for all i, where b = (by,...,0bs).
This follows from Lemma 1.4.15.

Our results are useful to compute a finite set of generators for vanishing ideals over
finite fields and are interesting from a theoretical point of view. Let us give some appli-
cation to vanishing ideals over monomial parameterizations.

Corollary 2.3.20. Let K = F, be a finite field. If X, X, X*, X* are parameterized by
Laurent monomials, then I(X), I(X), I(X*), I(X*) are binomial ideals.

Proof. The result follows from Lemma 1.3.24 and applying Theorems 2.3.7, 2.3.10, 2.3.12,
and 2.3.14. O

Corollary 2.3.21. Let K =, be a finite field. If X is parameterized by Laurent mono-
mials, then I(X) is a radical Cohen-Macaulay binomial ideal of dimension 1.

Proof. By Corollary 2.3.20, I(X) is a binomial ideal. That I(X) is a radical ideal
of dimension 1 is well known and follows from Eq. (2.3.5) (see the proof of Proposi-
tion 2.3.9). Recall that depthS/I(X) < dim S/I(X) = 1. From Eq. (2.3.5) one has
that m = (¢1,...,%s) is not an associated prime of I(X). Thus depth S/I(X) > 0 and
depth S/1(X) = dim S/1(X) = 1, i.e., I(X) is Cohen-Macaulay. O

Corollary 2.3.22. [52, Theorem 2.1] Let K =, be a finite field and let X be a projec-
tive algebraic set parameterized by Laurent monomials. Then I(X) is a Cohen-Macaulay
lattice ideal and dim S/I(X) = 1.

Proof. It follows from Proposition 2.3.9, Theorem 2.3.10 and Lemma 1.3.24. O

Binomial vanishing ideals. Let K be a field. The projective space P*~1 U {[0]})
together with the zero vector [0] is a monoid under componentwise multiplication, where
(1] = [(1,...,1)] is the identity of P*~1 U {[0]}. Recall that monoids always have an
identity element.
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Lemma 2.3.23. Let K =F, be a finite field and let Y be a subset of P*~1. If YU{[0]} is a
submonoid of P~1U{[0]} such that each element of Y is of the form [a] with o € {0,1}*,
then Y is parameterized by Laurent monomials.

Proof. The set Y can be written as Y = {[au],. .., [am]}, where a; = (a1, ..., @s) and
a;; = 0 or oy = 1 for all 4, k. Consider variables y;,...,y, and 21,...,2,. For each oy
define h;, = yf_l if i, = 1 and hy, = zf_l/yf_l if i, = 0. Setting h; = (hi, ..., his) for
1=1,....,mand F; = hy; - hy; fori=1,...,s, we get

hihg -+l = (hat - Pty ooy has s hins) = (B, oo FY).
It is not hard to see that Y is parameterized by Fi, ..., Fj. O

Example 2.3.24. Let K be the field F5 and let Y = {[(1, 1, 0)], [0, 1,1], [0, 1,0],[1, 1, 1]}.
With the notation above, we get that Y is the projective set parameterized by

By = (112223)%) (y2y3)%, Fo = (1y23)?, Fs = (yaz123)%/ (1193)*.

The next result gives a family of ideals where the converse of Corollary 2.3.21 is true.

Proposition 2.3.25. Let K =T, be a finite field. If Y is a subset of P*~' such that each
element of Y is of the form [a] with a € {0,1}* and 1(Y) is a binomial ideal, then Y is a
projective set parameterized by Laurent monomials.

Proof. Since Y is finite, one has that Y = Y = V(/(Y)). Hence, as I(Y) is generated by
binomials, we get that Y U {[0]} is a submonoid of P*~* U {[0]}. Thus, by Lemma 2.3.23,
Y is parameterized by Laurent monomials. O

This leads us to pose the following conjecture.

Conjecture 2.3.26. Let K =, be a finite field and let Y be a subset of P*~'. If I(Y)
is a binomial ideal, then Y is a projective set parameterized by Laurent monomials.

In particular from Proposition 2.3.25 this conjecture is true for ¢ = 2.

Computing degrees using group actions. Let K = F, be a finite field, let y*, ..., y%
be Laurent monomials in K (y) and let X and X be the projective sets parameterized by
these monomials. By the exponent laws it is not hard to show that X is a multiplicative
group under componentwise multiplication. The group X acts on X by componentwise
multiplication

XxX =X, (la,[) = [a] - [, (2.3.10)

where [a] = [(a1...,a4)], [v] = [(7,-.-,7s)] and [a] - [v] = [(e171, ..., asYs)]. One can
use this action to study X as is seen in the next result. Recall that X decomposes as a
disjoint union of the orbits of the action X x X — X, where an orbit of this action is a
subset of X of the form X - [v] = {[a] - [7]|[a] € X} for some [7] in X and where two
orbits are either equal or disjoint.
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Proposition 2.3.27. Let G be a complete graph with vertices y1,...,Yn, n > 2, and let
Xe C P51 be the projective set parameterized by the set of all monomials y;y; such that
{yi,y;} is an edge of G, where s =n(n —1)/2. Then

dog(5/10%) = el = L1+ () == (5 ) a0

Proof. Let V C {y1,...,yn} be a set of vertices of G and let Gy be its induced subgraph
which is again a complete graph with vertex set V. Consider the algebraic projective set
X, parameterized by Gy. As Gy is a subgraph of G, X¢, embeds in X¢, we denote
the embedding of X¢, by Xg, . By [52, Corollary 3.8], one has that |X¢,, | = (¢ — 1)IVI~?
if [V| > 3 and |Xg, | = 1if |V| = 2. It is not hard to see that the orbits of the action
X x X — X are precisely the sets Xg,,. For each 2 < k£ < n there are (Z) induced
subgraphs with k& vertices. Hence

() S - () gy G

k=3

Since ¢" = [(¢ — 1)+ 1]" = >_1_, (1) (g — 1)*, the required equality follows readily. O
The next result also follows from the results of Chapter 3.
Proposition 2.3.28. Let G be a complete bipartite graph with bipartition (Vi,Va), with
m; = |Vi| for i = 1,2, and let X be the projective set parameterized by the monomials
corresponding to the edges of G. Then
qm1 _ 1 me _ 1
g—1 ¢—-1°

Xe| =
Proof. It follows adapting the proof of Proposition 2.3.27, and using that the group Xg
acts on X by componentwise multiplication. O

Problem 2.3.29. Let G be a graph. Find a formula for the degree of S/I(Xs) in terms
of the graph invariants of G and the combinatorics of the graph.

If X is the algebraic projective set parameterized by the edges of GG, then a formula
for the degree of S/X¢ is given in [50, Theorem 3.2].



Chapter 3

Direct Products in Projective Segre

Codes

Let K =, be a finite field. We introduce a family of projective Reed-Muller-type codes
called projective Segre codes. Using commutative algebra and linear algebra methods,
we study their basic parameters and show that they are direct products of projective
Reed-Muller-type codes. As a consequence we recover some results on projective Reed-
Muller-type codes over the Segre variety and over projective tori.

3.1 Linear codes and direct products

In this section we study direct product codes, and some of their properties and charac-
terizations.

Generalized Hamming weights. Let K = F, be a finite field and let C' be a [s, k]
linear code of length s and dimension k, that is, C' is a linear subspace of K*® with
k = dimg(C).

Given a subcode D of C (that is, D is a linear subspace of C), the support of D,
denoted x(D), is the set of non-zero positions of D, that is,

x(D) :={i|3(as,...,as) € D, a; # 0}.

The rth generalized Hamming weight of C, denoted 0,(C), is the size of the smallest
support of an r-dimensional subcode, that is,

0,(C) := min{|x(D)| : D is a linear subcode of C' with dimg(D) = r}.

Let 0 # v € C. The Hamming weight of v, denoted by w(v), is the number of non-zero
entries of v. If §(C) is the minimum distance of C, that is,

6(C) :==min{w(v): 0 £ v € C)},
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then note that 6;(C') = §(C'). The weight hierarchy of C'is the sequence (61 (C), . .., 5 (C)).
According to [71, Theorem 1] the weight hierarchy is an increasing sequence

1 <6(C) <0(C) <---<6,(C) <,

and 0,(C) < s—k+rforr=1,..., k. For r = 1 this is the Singleton bound for the
minimum distance. Generalized Hamming weights have received a lot of attention; see
[7, 20, 58, 71, 72| and the references therein.

Direct product codes and tensor products. Let ¢ C K*' and Cy C K*®2 be two
linear codes over the finite field K = F, and let Mj, «,(K) be the K-vector space of all
matrices of size s; X sy with entries in K.

The direct product (also called Kronecker product) of Cy and Cy, denoted by C; ® Cs,
is defined to be the linear code consisting of all s; X s, matrices in which the rows belong
to Cy and the columns to Cy; see [66, p. 44]. The direct product codes usually have poor

minimum distance but are easy to decode and can be useful in certain applications; see
[46, Chapter 18].

We denote the tensor product of C; and Cy—in the sense of multilinear algebra [13,
p. 573]—by C} ® x Cs. As is shown in Lemma 3.1.4 another way to see the direct product
of C7 and () is as a tensor product.

Theorem 3.1.1. [67, Theorems 2.5.2 and 2.5.3] Let C; C K*® be a linear code of length
si, dimension k;, and minimum distance 6(C;) fori =1,2. Then Cy ® Cy has length s;s9,
dimension kiks, and minimum distance 6(C1)0(Cy).

Theorem 3.1.2. [72, Theorem 3(d)] Let Cy C K* and Cy C K* be two linear codes and
let C'= C1®Cy be their direct product. Then

52(0) = min{51(01)52(02), 52(01)51(02)}

Proof. Let V; and V5 be subcodes of C; and Cs of dimensions 2 and 1, respectively.
Settlng V= ‘/1@‘/27 X(‘/l) - {jb s 7j7“}7 and X(‘/Q) - {ib cee 7Z.m}7 one has

x(V) = {(i,4)| 3 € V whose (i, j)-entry is not 0}
= {(ir,J0)| 1 <kE<m, 1 <0< r}
= x(V2) x x(W).

Therefore, using that dim(V') = 2 (see Theorem 3.1.1), we get
05(C) < x(V) = Ix(Vo)l[x (V1)1

Hence 05(C) < 01(C2)d2(C1). By a similar argument, considering subcodes V; and V, of
Cy and (5 of dimensions 1 and 2, respectively, we get that d5(C) < §1(C1)d2(Cy). Thus

(52(0) S min{51(01)52(02), (52(01)(51(02)}
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Next we show the reverse inequality. Let V' be an arbitrary subcode of C' of dimension
2. Consider the subcode W5 of Cy generated by the rows of all matrices in V' and the
subcode W; of C generated by the columns of all matrices in V. Since V' C Wy @ Wy, by
Theorem 3.1.1, we get that dimg (W;) dimg(Ws) > 2. If dimg (Ws) > 2, then |x(Ws)| >
92(Cs). We set x(Ws) = {j1,...,4r}. For a € C denote the (i, j)-entry of a by a; ;.
Recall that
x(V) ={(,7)|Fa € V with «; ; # 0}.

Let Ry,..., R,, be the list of all rows of matrices in V, i.e., the R;’s form a generating
set for Wy. For each j; € x(W2) there exists v = (71, ...,7s,) With ;, # 0. We can write

V= By Ry e A i R

for some p;’s in K. Clearly there is ¢ such that the j;-entry of Ry is not zero. Hence there
is @ € V whose (k, j;)-entry is not zero for some k. Therefore there are at least 0,(Ch)
non-zero entries in the column j; of a. Hence, as ji, ..., j, are distinct, we get

XV = [x(W2)[61(C1) = 02(C2)d1(Ch).
If dim(W;) > 2, a similar argument (with W, playing the role of W5) shows that
IX(V)| = 62(C1)01(C).

Therefore (52(0) 2 min{51(01)52(02), (52(01)51(02)} |

Recall that there is a natural isomorphism vec: M, «s, (K) — K*'%2 of K-vector spaces
given by vec(A) = (Fy, ..., Fy,), where Fy, ..., Fy, are the rows of A. Consider the bilinear
map 1y given by

Yo K%' x K% — Mg, x5, (K)

a1b1 Cllbg e aleQ

asby  asby ... agbs,
((ala"'7a51)7(b17-"7b52)> — 2. ' 2.2 2.

as,01 as,ba ... as, s,

Definition 3.1.3. The Segre embedding is given by
w(la], [b]) == [(vec o ¢hp)(a, )].

The map v is well-defined and injective [35, p. 13].

The next lemma is not hard to prove and is probably known in some equivalent
formulation; but we could not find a reference with the corresponding proof.

Lemma 3.1.4. There is an isomorphism T: Cy @k Co — C1 ® Cy of K-vector spaces
such that T'(a ® b) = Yg(a,b) for a € Cy and b € Cs.
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Proof. We set k; = dimg(C;) for ¢ = 1,2. Using the universal property of the tensor
product [13, p. 573], we get that the bilinear map 1)y induces a linear map

T:Cy®r Cy — Cy®C,y, such that,
a®b — g(a,b)

fora € Cy and b € Cy. By [47, Formula 5, p. 267] and Theorem 3.1.1, one has that C; ® x C
and C7 ® Cy have dimension kiks. Thus to prove that 7' is an isomorphism it suffices to
prove that 7' is a one-to-one linear map. Fix bases {a1,...,ax, } and {f,..., Bk, } of C}
and Cs, respectively. Take any element 7 in the kernel of T. We can write

Y= hig ® B
with \; ; in K for all 7, j. Then

T(y) = MaT(a1 @ Pr) + -+ Mg T (o ® Bi,) +
M1T (g @ Pr) + -+ Ao, T (a2 @ Br,) +

A1 T (o, @ B1) + -+ My, Tk, @ By ).
Setting oy = (i1, .., i), Bj = (Bjas- -+, Bjsy) fori=1,... ky, j=1,... ko, we get
(Apoaf+ o+ A @11 8k ) 0+ (A 1@y 181+ -+ Ak ko @k 15, )
T(v) = (Apa12B1+ -+ Ak 126k,) + - '.+ (Akp 10y 281 + A Ay ko Oy 25k,
(A101,6 01+ + A gy Qsy Bry) + - ’.+ (M, 10y B A Ay ko Qg s Bin)
Since T'(v) = (0), using that the §;’s are linearly independent, we get

)\1’j06;r+"'+/\k17j0é; :OfOI'j:].,...,l{fg.

Thus A; ; = 0 for all ¢, and v = 0. O

3.2 Segre products of coordinate rings

In this section we study Segre products of standard graded algebras arising from vanishing
ideals.

Let K be an arbitrary field, let a;,as be two positive integers, let Pa1—1 Paz=1 he
projective spaces over the field K, and let K[x| = K|x1,...,7q,], K[y] = K[y1,- .-, Ya,],
K[t] = K[t11,...,ta,.qa,) be polynomial rings with the standard grading. If d € N, let
K [t]4 denote the set of homogeneous polynomials of total degree d in K|t], together with
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the zero polynomial. Thus KJt]; is a K-linear space and K[t] = & K[t]s. In this
grading each ¢; ; is homogeneous of degree one.

Given X; C P~ 4 = 1,2, denote by I(X;) (resp. I(Xy)) the vanishing ideal of X;
(resp. Xo) generated by the homogeneous polynomials of K[x] (resp. K[y]) that vanish
at all points of X; (resp. Xy).

The image of X; x X5 under the Segre embedding 1 (see Definition 3.1.3), denoted by
X, is called the Segre product of X; and Xs. The vanishing ideal I(X) of X is a graded
ideal of K[t], where the ¢; ; variables are ordered as t11,...,t1.45, -5 ta1,15- -+ tay,an-

A standard algebra over an arbitrary field K is a finitely generated graded K-algebra
A =@, Aq such that A = K[A] and Ay = K (that is, A is isomorphic to K[x]/I, for
some polynomial ring K [x| with the standard grading and for some graded ideal I).

Definition 3.2.1. [13, p. 304]} Let A = @4>0A4, B = ©a>0B4 be two standard algebras
over a field K. The Segre product of A and B, denoted by A ®s B, is the graded algebra

A®s B := (A ®k By) ® (A1 ®k B1) ©--- C AQk B,

with the normalized grading (A ®s B)y := Aq @k By for d > 0. The tensor product
algebra A ® B is graded by

(A ®K B)p = Z Az ®K Bj.

i+j=p

Example 3.2.2. [4, p. 161] The Segre product (resp. tensor product) of K[x] and K[y]|
1s

Kx] @s Kyl = K[{zy;|1 <i < a1, 1< j < as}]

(resp. K[x] ®x K[y] ~ K[x,y]). Notice that the elements x;y; have normalized degree 1
as elements of K[x] ®s K[y| and total degree 2 as elements of K[x| ®x Kly].

The next result is well-known assuming that X; and X, are projective algebraic sets;
see for instance [13, Excercise 13.14(d)]. However David Eisenbud pointed out to us that
the result is valid in general. We give a proof of the general case.

Theorem 3.2.3. Let K be a field. If X;, Xy are subsets of the projective spaces P11,
Pe2=1  respectively, and X is the Segre product of X; and Xs, then the following hold:

(a) (K[x]/I(X1))a @K (K[y]/I(X5))q = (K[t]/I(X))q as K-vector spaces for d > 0.
(b) K[x]/I(Xy) ®s K[y]/I(Xy) ~ K[t]/I(X) as standard graded algebras.
(c) Hx,(d)Hx,(d) = Hx(d) for d > 0.

(d) reg(K[t]/1(X)) = max{reg(K[x]/I(X1)), reg(K[y]/1(X2))}.
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(&) If pr = dim(K[x]/1(X1)) and ps = dim(K[y]/I(X2)), then

d%@Wﬂ®D=®gMﬂﬂmmwﬂKMN®m(

Proof. (a): Let ¢ be the epimorphism of K-algebras
o: K[t] = K[{zwy;|i € [1,a1], j € [1, a2]}]

induced by t;; + x;y;, where [1,a;] = {1,...,a;}. For each element 2’y with the
property deg(z’) = deg(y®) = d there is a unique t* € K[t]; such that t* = t;, ;, -~ ti, j,,
1<ip <+ <iig, 1 <5y <+ < jgand o(t*) = 2by°. Notice that if o(t*) = 2y for
some other monomial t* € K|[t]4, then t* — t* € I(X). This is used below to ensure that
the mapping of Eq. (3.2.1) is surjective. Setting og(2?,y¢) = t¢, gives a K-bilinear map

wo: K[x]a x K[yla = K][t]a

induced by o (2?, y¢) = t*. Notice that ©o(>_ M, > pey®) = S Appreo (2%, ), where
the Ax’s and p,’s are in K. To show that ¢g induces a K-bilinear map

o (K x]a/1(X1)a) x (K[yla/1(X2)a) = K[tla/I(X)a, (a,5%) = go(2®,y°),  (3.2.1)

which is a surjection, it suffices to show that for any f € K[x]|; that vanish on X; (resp.
g € K|ylq that vanish on Xj3) one has that ¢o(f,g) vanishes at all points of X. Assume
that f = A\a® + .-+ + \,2"" is a polynomial in K[x]|; that vanish on X; and that
g = my* + -+ pye is a polynomial in K[y|s with g, g, in K for all k,¢. For each
2Py there is t%¢ € K[t] such that o(t%¢) = zb*y. Then

po(fr9) = D> Netepo(z”,y™) = Nepuet®™, and
wolf,9)(@iy;) = (a® + -+ Apa®) (ay™ + - + 1y,
where we use (z;y;) as a short hand for (z1y1, Z1y2, - - -, T1Yags - - - s Tay Y1, Tay Y25 - - - s Lay Yay ) -
Now if [(aq, ..., aq,)] is in Xy and [(B1,. .., Be,)] is in Xy, making z; = a; and y; = f; for
all 7, j in the last equality, we get po(f, g)(; ;) = 0. Therefore, by the universal property

of the tensor product [13, p. 573], there is a surjective map p that makes the following
diagram commutative:

(K[x]a/1(X1)a) * (K[Y]d/I(XQ)cﬁi' (K[x]a/1(X1)a) @k (K[yla/I(X2)a)
'd

K[t]a/1(X)a

\

where ¢ is the canonical map, given by ¢(f,9) = f ® 7, and ¢ = 5.
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For each t* € K|[t]; there are unique monomials z° € K|[x]; and y¢ € K|[y]y such that
o(t*) = z%y°. We set oy (t%) = z° and 05(t*) = y°. Thus we have a surjective K-linear
map

05 Klt]la = K[x]a/1(X1)q @k Kyla/1(X2)a

given by o§(>° Aat®) = D Aao1(tY) @ o9(t*), where the \,’s are in K. Notice that the
K-vector space on the right hand side is generated by all ¥ ® y° such that 2* € K[x]; and
y© € Klylq. Take f € I(X)g, then o(f)(cf;) =0 for all @ = [(aq,...,0q4,)] € X and all
B=1[(P1,...,Ba) € Xo. We can write o(f) = lezl fege with fo € K[x|q, g0 € K[y]|q for
(=1,....k and o3(f) = b, fe ® Gi. Next we show that oi(f) = 0, i.c., f € ker(a).
If K = 1, we may assume that f; ¢ I(X;) otherwise f; = 0. Pick a € X, such that
fi(a) # 0. Then, as fi(a)gi(B) = 0 for all 8 € Xy, one has g; € I(X,) and g; = 0. We
may now assume that k > 1 and fj, # 0. Pick a € X; such that f,(a) # 0. By hypothesis
the polynomial

fila)gr + -+ + fula)gr

is in K[y]s and vanishes at all points of X,. Thus

gk = —(fi(@)/ fe(@))gy = - = (fo-1(@)/ fie(@))Gg1-

Therefore, setting hy = f; — (fo(a)/fe(@)) fr for £ =1,... k — 1, we get
k — —
o(f)=>_ fi®g, = ¢ ® 7y

and Zf:_ll he(7)ge(B) = 0 for all v € X; and 8 € Xy. Repeating the same argument,
with h, playing the role of f, and k — 1 playing the role of k, as many times as necessary
we conclude that oj(f) = 0. Hence I(X),; C ker(of). Therefore o induces a K-linear
surjection

0" Klt]a/I1(X)a = (K[x]a/I(X1)a) @k (K[yla/1(X2)a)-
Altogether we get that the linear maps @ and ¢* are bijective.

Items (b) to (e) follow directly from (a) and its proof. O

3.3 Projective Segre codes

In this section we study projective Segre codes and their basic parameters; including the
second generalized Hamming weight. It is shown that direct product codes of projective
Reed-Muller-type codes are projective Segre codes. Then some applications are given.
We continue to employ the notations and definitions used in Sections 3.1 and 3.2.

In preparation for our main theorem, let K = F, be a finite field, let a;,as be two
positive integers with a; > as, and for ¢« = 1,2, let X; be a non-empty subset of the
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projective space P%~!

embedding is given by

over K. We set s = ajas and s; = |X;| for ¢ = 1,2. The Segre

1/}: Pal—l % ]P;ag—l N Palag—l — Ps—l
([051, s 7aa1]7 [617 s 7ﬁa2]) - [(alﬂla O‘lﬁQa <o 70516&27

(1/2/81, a?ﬁ?a cee ,0425(127

amﬁlv aalﬁ% s aaalﬁag)]'

The image of X; x Xy under the map 1, denoted by X, is the Segre product of X; and
Xy. As 1) is injective, we get |X| = |X;||Xs| = s152. Then we can write X, X;, and X, as:

X:{Pl,la"‘7ps1,sg} - {Pl,lu Pl,?)"'a Pl,sgv
P2,17 P2,27"'7 P2,827

P81,17 Psl,27 s 7P81,82}7
Xy ={Q1,...,Qs}, and Xy = {Ry, ..., R, }, respectively, where

Qi = [(061',1, i, ... ,ai,al)] and Rj = [(@',17 ﬁj,27 - ;5;@)];

fort=1,...,s; and j = 1,...,52. Because of the embedding 1 each P, ; € X is of the
form

P =9(Qi,R;) = [(a1-Bi1,i1-Bia- %1 Bjas

Qg Bins ia B2y s Q2 Bjas,
Qiay Bt Xiay * Bj2s -+ Viay * Bja)]-
Given a positive integer r, we set [1,7] := {1,...,r}. For use below notice that for

each ¢ € [1,s] and for each j € [1, so] there are k; € [1,a1] and ¢; € [1, az] such that
ik, 7 0 and B, # 0. In fact, choose k; to be the smallest & € [1,a;] such that o, # 0,
and choose /; to be the smallest ¢ € [1, as] such that 3;, # 0. Hence a;, - B¢, # 0.

Setting K[t] = K[t11,t12---t1ay---star1stay.2s -+ tayas), S = aiaz2, and fixing an
integer d > 1, define fi,j(tl,b .« ;tal,ag) = (tki,fj)d- Then fz',j(F)i,j) = (sz',ki . 6j7gj)d 7’é 0.
The evaluation map evy is defined as:

evg: K[t)y — KX = K552

f N ( f<P171> f(PLQ) f(PSLSQ) )
f1,1<P1,1>7 f1,2(P1,1)7”‘7 fs1,52(Ps1,52) .

This is a linear map of K-vector spaces.
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Definition 3.3.1. The image of ev,, denoted by Cx(d), defines a projective Reed-Muller-
type linear code of degree d that we call a projective Segre code of degree d.

For each i € [1,s1] and for each j € [1, s3], define the following polynomials:
Gi(21, .. Tay) = 2 € K[z1,...,20,]a and h;(y1, ..., Ya,) = y}ij € Ky, -y Yayla-

Clearly ¢i(Qi) = oy, # 0, hj(R;) = B, # 0, fi;(Pij) = (ir)hi(R;) = 9i(Qi)(Be,)".
We also define the following two evaluation maps:

evy: Koy, ..., T4, ]d K%l = g1
9(Q1) 9(Q2) 9(Qs,) ) d
g (91(621)’QQ(Qz)’m?ga(QsJ o

K1l = 2

hi(Ry) ha(R2)" 7 hey(Rs,) )

ev?l: Klyi, . Yayla
h

N

and their corresponding Reed-Muller-type linear codes Ck,(d) := im(ev}) for i = 1, 2.

Let C be a linear code. From Section 3.1 recall that §,(C) is the rth generalized
Hamming weight of C' and that 6, (C) is the minimum distance §(C) of C. For 0 £ v € C
its Hamming weight, denoted by w(v), is the number of non-zero entries of v.

We come to the main result of this section.

Theorem 3.3.2. Let K =T, be a finite field, let X; C Pai=t for i = 1,2, and let X be
the Segre product of X1 and Xy. The following hold.

(a) [X] = [X[|Xa].
(b) dim(Cx(d)) = dimg (Cx, (d)) dimg (Cx, (d)) for d > 1.
(c) 0(Cx(d)) = (Cx,(d))d(Cx, (d)) for d > 1.
(d) Cx(d) is the direct product C, (d) ® Cx,(d) of Cx, (d) and Cx,(d) for d > 1.
(€) 02(Cx(d)) = min{dy (Cx, (d))02(C, (d)), 62(Cx, ()01 (Cx, (d)) } for d = 1.
(f) 6(Cx(d)) =1 for d > max{reg(K[x]/I(X1)),reg(K[y]/I1(Xs))}.
Proof. (a): This is clear because the Segre embedding is a one-to-one map.

(b): Since K[x|q/I(X1)q ~ Cx,(d), K[yla/1(X2)q ~ Cx,(d), and K[t]4/1(X); ~ Cx(d),
the results follows at once from Theorem 3.2.3.
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(c): We set dx(d) = 0(Cx(d)) and 6x,(d) = 6(Cx,(d)) for i = 1,2. Given f € K[t]q,
the entries of evy(f) can be arranged as:

f(Pa) f(Pr2) f(Prs,)
ev = . ., = — T 3.3.1
) <f1,1(P1,1) F2oPi2)” " Fona(Prs) r B3
f(Py) f(P2) f(Pas,) T
) R R AN 2
fo1(Pa1)” foo(Pap) f2,5,(Pays,)
f(PShl) f<P8172) f<p81752) ) ST
f51,1(P81,1), f51,2(P51,2)’ ’ fsl,SQ(Psl,SQ) o
\J 1 \J
Al A2 e ASQ
where I'y, ..., 'y, and Ay, ..., Ay, are row and column vectors, respectively. Thus evy(f)

can be viewed as a matrix of size s1 X s,. Below we show that I'; € Cx,(d) and A € Cx, (d)
for all 7, 7. Define the following polynomials

hQi = f(ai,l Y1, Q1 Y2, - BT Yag,

Qi Y1, Q2 Yo, ..., O 2 Yay,

ai,al Y1, ai,al Yo, ... 7ai,a1 : yaz) S K[yla s 7ya2]d7 a’nd

gr;, = [y - Bi1, 1 Biay- -1 Biags

Tg - /Bj,h@ : 5;‘,2, sy L2 5;‘,@7

Laq * ﬁj,lvxou : 6j72a R T Bj,az) € K[xlv cee 7xa1]d~

Observe that f(Pj;) = ho,(R;) = gr,(Q:).
First we show the inequality dx(d) > dx, (d)dx,(d). Let f € K[t]4 such that evy(f) # 0.
We want to prove that w(evy(f)), the Hamming weight of ev,(f), satisfies

w(eva(f)) > 0x, (d)dx, (d).

For simplicity, we set 7; = ev,4(f) and denote the Hamming weight of I'; by w(I';). One
has

W(Tf) = w(Fl) + W(Pg) + -+ W(Fsl).
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Notice that

) AP (P
: (f“(Pﬂ)’ fia(P2)” fisz(Pi52)>

hq,(£1) hq,(R) hq,(Rs,) 1 2
- , ! ooy ———— | = —— -evy(hg,), and
(a?,ki (R o, e () ) Gyt )
1
A = —— evi(gr),
j (ﬁj,fj)d d(gRJ)
fori=1,...,syand j =1,...,sy. Therefore w(I'y), the number of non-zero entries of I'y,

is the same as the number of non-zero entries of ev3(hg, ), and if I'; # 0, then ev3(hg,) # 0
and w(I'y) > 0x,(d). Similarly, for any i € [1, s1] such that I'; # 0, w(I';) > dx,(d). Setting
b= [{i|T'; # 0}|, we get that

w(Tf> Z b- 5X2(d)

Now we want to prove that b > dx, (d). Suppose b < Jx,(d). Choose j € [1, s2] such
that A; # 0. If w(A;) is the number of non-zero entries of A;, we have w(A;) < b < 0%, (d)
and w(A;) is equal to the number of non-zero entries of evj(gg,). As evy(gg,) is in Cx, (d),
we conclude that w(A;) > dx, (d), a contradiction. Thus b > dx, (d) and

w(eva(f)) = 0x, (d)dx, (d).

As this holds for any f € K|[t]; such that evy(f) # 0, we obtain dx(d) > dx, (d)dx, (d).

Next we prove that dx(d) < dx,(d)dx,(d). It suffices to find a word in Cx(d) with
Hamming weight equal to dx, (d)dx,(d). Let § € Klxy,...,%4,]q be such that ev}(g) is
not zero and w(ev}(g)) = dx,(d) and let h € K[y, ..., Ya,]a be such that evi(h) # 0 and
w(evi(h)) = 6x,(d). Let §; = 6x,(d) for i = 1,2. There are Q. . . , Qi;, € Xy such that

9(Qi) #0,...,9(Qs, ) #0 and g(Q;) =0 for Q; € Xi\{Qi,, ..., Qi },

and there are R;,, ..., R,

€ Xy such that

R(Rj,) #0,...,h(Ri;) #0 and h(R;) =0 for R; € Xo\{Rj,,..., Rj; }.

Notice that g (resp. k) is a sum of monomials of degree d in the variables z, ..., zq,
(resp. Y1,...,Ya,). Each monomial is a product of d variables; the variables could be
repeated. Therefore, G-h = g(x1,...,%q,)-h(y1, .. ., Ya,) is a sum of monomials, each one of
these monomials is a product of 2d variables, d variables among z1, ..., z,, and d variables
among Y, . .., Ys,; and again, variables could be repeated. Let wg, --- g,y - -y, be a

monomial of gh with 0y,...,6; € [1,a1], 1,...,7a € [1, az]. We can write

Loy~ LoqYyy =" Yyg = (x91y71) o (xedyw)’

this is one possible way to match these d x’s and these d y’s in pairs; there are many
other ways to do it. If, for each monomial of §- h, we choose a way to match the d x’s and
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the d y’s in pairs, then we can see g - h as a polynomials in (zxy,), k € [1,a1], £ € [1, as].
Now, if in g - h we substitute x;y, by the variable ¢, we obtain a polynomial

f(tl,h R 7ta1,a2> € K[t]d = K[tl,h o 7tl11,l12]d

such that f(P;;) = g(Q:)-h(R;), where P, ; = (Q;, Rj) fori =1,...,syand j = 1,..., s9.
Hence f(FP;;) # 0 if and only if g(Q;) # 0 and h(R;) # 0. As a result evy(f) # 0, and
w(evd(f)) = (51(52 = (le (d)5X2 (d) Hence 5x(d) < (le (d)5X2 (d)

(d): By part (b) and Theorem 3.1.1 the linear codes Cx(d) and Cx, (d) ® Cx,(d) have
the same dimension. Using Eq. (3.3.1) it follows that Cx(d) can be regarded as a linear

subspace of Cx, (d) ® Cx,(d). Hence these linear spaces must be equal.
(e): It follows at once from Theorem 3.1.2 and part (d).
(f): This follows from part (c), Proposition 1.5.3(iii), and Theorem 3.2.3(d). O

Remark 3.3.3. This result tells us that the direct product of projective Reed-Muller-type
codes is again a projective Reed-Muller-type code.

Definition 3.3.4. If K* = K\ {0} and X; is the image of (K*)*, under the map (K*)% —
Pu~1 z — [z], we call X; a projective torus in P%~1.

Our main theorem gives a wide generalization of most of the main results of [24, 25,
26, 29].

Remark 3.3.5. If X; = P%~! and X, = P! using Theorem 3.3.2 we recover the
formula for the minimum distance of Cx(d) given in [29, Theorem 5.1], and if X; is a
projective torus for ¢ = 1, 2, using Theorem 3.3.2 we recover the formula for the minimum
distance of Cx(d) given in [24, Theorem 5.5]. In these two cases formulas for the basic
parameters of Cx,(d), i = 1,2, are given in [59, Theorem 1] and [55, Theorem 3.5],
respectively. We also recover the formulas for the second generalized Hamming weight of

some evaluation codes arising from complete bipartite graphs given in [25, Theorem 5.1]
and [26, Theorem 3| (see Corollary 3.3.6).

It turns out that the formula given in Theorem 3.3.2(d) is a far reaching generalization
of the following result.

Corollary 3.3.6. [25, Theorem 5.1] Let X be the Segre product of two projective torus Xy
and Xy. Then the second generalized Hamming weight of Cx(d) is given by

05(Cx(d)) = min{01(Cx, (d))da2(Cx, (d)), 02(Cx, (d))01(Cx, (d)) }-

Remark 3.3.7. The knowledge of the regularity of K[t]/I(X) is important for appli-
cations to coding theory: for d > reg(K|[t]/I(X)) the projective Segre code Cx(d) has
minimum distance equal to 1 by Theorem 3.3.2(f). Thus, potentially good projective
Segre codes Cx(d) can occur only if 1 < d < reg(K[t]/I(X)).
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Definition 3.3.8. If X is parameterized by monomials z"1, ..., 2% we say that Cx(d) is
a parameterized projective code of degree d.

Corollary 3.3.9. If Cx,(d) is a parameterized projective code of degree d for i = 1,2,
then so is the corresponding projective Segre code Cx(d).

Proof. It suffices to observe that if X; and X, are parameterized by z%',...z% and
w, .. w", respectively, then X is parameterized by z%w",¢1=1,...,s,7=1,...,r. O
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Chapter 4

Vanishing ideals generated by
binomials

In this chapter we characterize, in algebraic and geometric terms, when a graded vanishing
ideal is generated by binomials over any field K. Then we show some applications.

4.1 Monoids in affine and projective spaces

Let (S, -,1) be a monoid and let K be a field. As usual we define a character x of S in
K (or a K-character of §) to be a homomorphism of S into the multiplicative monoid
(K, -, 1). Thus x is a map of S into K such that x(1) =1 and x(af) = x(a)x(5) for all
a,fin S.

Theorem 4.1.1. (Dedekind’s Theorem [37, p. 291)) If x1, ..., Xm are distinct characters
of a monoid S into a field K, then the only elements Ay, ..., A\, in K such that

Aixi(a) 4+ -+ Apxm () =0
forallae S are \y =---= X, =0.

Let P*~! be a projective space over K. The set § = P*~! U {[0]} is a monoid under
componentwise multiplication, i.e., given [a] = [(aq, ..., a,)] and [B] = [(f1,...,Bs)] in S,
the product operation is given by

[CM] ’ [ﬁ] = [Oé : 5] = [(Oélﬁla ce 7asﬁs)}>

where [1] = [(1,...,1)] is the identity element. Accordingly the affine space A® is also a
monoid under componentwise multiplication.

Let S = K|ty,...,ts] be a polynomial ring over a field K with the standard grading
induced by setting deg(t;) = 1 for all i. Given a set Y C P!, recall that the vanishing
ideal of Y is the graded ideal generated by the homogeneous polynomials in S that vanish
at all points of Y.
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Lemma 4.1.2. Let Y and Y be finite subsets of P~ and A® respectively, let P and [P] be
points in Y and Y, respectively, with P = (av, ..., ), and let Ijp) and Ip be the vanishing
ideal of [P] and P, respectively. Then

I[p] = ({Oéktz — Oéztk‘ k 7é 1€ {17 .. .,S}}), IP = (tl — Q71,... ,ts - Oés), (411)

where ay, # 0 for some k. Furthermore I(Y) = (\giey L@, 1(Y) = Ngey Lo, Lip) is a
prime ideal of height s — 1 and Ip is a prime ideal of height s.

4.2 Binomial vanishing ideals

We continue to employ the notations and definitions used in Section 4.1. In this part we
classify vanishing ideals generated by binomials.

Theorem 4.2.1. If Y is a subset of P*~' and Y U {[0]} is a submonoid of P*~1 U {[0]}
under componentwise multiplication, then I(Y) is a binomial ideal.

Proof. Theset S = {x € A®|[z] € YU{[0]}} is a submonoid of A®. Take a homogeneous
polynomial 0 # f = A\t +- - -+ \,,,t%" that vanishes at all points of Y, where \; € K\ {0}
for all ¢ and ay,...,a,, are distinct non-zero vectors in N*. We set a; = (a;,, ..., a;s) for
all 7. For each i consider the K-character of S given by

a;1

Xi: S = K, (aq,...,05) — af

Qs

..&8

As f € I(Y), one has that A\;x1 + -+ + Apxm = 0. Hence, by Theorem 4.1.1, we get
that m > 2 and x; = x; for some i # j. Thus t% —t% is in I(Y). For simplicity of
notation we assume that ¢ = 1 and j = 2. Since [1] € Y, we get that A\ +--- + A, = 0.
Thus

=Xt — ") 4 oo Ay (2™ — ).

Since f — Ao(t*2 — ) is a homogeneous polynomial in I(Y), by induction on m, we
obtain that f is a sum of homogeneous binomials in 7(Y). O

This result can be restated as:

Theorem 4.2.2. Let Y be a subset of P*~! such that (1) € Y and [a] - [3] € Y for all [a],
(8] inY with a- f # 0. Then I(Y) is a binomial ideal.

Remark 4.2.3. If YV is a submonoid of A®, then /(YY) is a binomial ideal. This follows
by adapting the proof of Theorem 4.2.1

Theorem 4.2.4. Let K be a field and let Y be a subset of P~t. Then I(Y) is a binomial
ideal if and only if V(I(Y)) U {[0]} is a monoid under componentwise multiplication.
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Proof. =) Consider an arbitrary non-zero binomial f = t* — t* in I(Y) with a = (a;)
and b = (b;) in N*. As I(Y) is graded, f is homogeneous. First notice that [1] € V(I(Y))
because f vanishes at [1]. Take [a], [f] in V(I(Y)) with a = (), 8 = (8;). Then

ay as __ b1 b a1 as __ b b
al...ass_al...assand/ﬁl ...ﬁss_ 1“.5887

and consequently we have (ay31)% - - - (asBs)% = (181)% - - - (aBs)%, i.e., f vanishes at
[o] - [8] = [a- ] if a- B # 0. Thus [a] - [8] € V(I(Y)) U {[0]}.

<) Thanks to Theorem 4.2.1 one has that I(V(I(Y))) is a binomial ideal. Recall
that V(I(Y)) is equal to Y (see Lemma 1.4.15). On the other hand, by Lemma 2.2.16,

I(Y) = I(Y). Thus I(Y) is a binomial ideal. O

Corollary 4.2.5. If Y is a subset of P*~! which is closed in the Zariski topology, then
I(Y) is a binomial ideal if and only if Y U {[0]} is a submonoid of P*~' U {[0]}.

Proof. Thanks to Theorem 4.2.4 it suffices to recall that V(I(Y)) is equal to Y (see
Lemma 1.4.15). O

Corollary 4.2.6. IfY is a subset of P*~' and dim(S/I1(Y)) = 1, then I(Y) is a binomial
ideal if and only if Y U {[0]} is a submonoid of P*~* U {[0]}.

Proof. This is a direct consequence of Lemma 1.4.19 and Corollary 4.2.5. O

Definition 4.2.7. The set T = {[(x1,...,2,)] € P*7!|z; € K* for all i} is called a
projective torus in P*71 and the set T* = (K*)* is called an affine torus in A®, where
K*= K\ {0}.

A binomial ideal I C S with the property that ¢; is not a zero-divisor of S/I for all ¢
is called a lattice ideal.

If Y is a submonoid of an affine torus 7%, then I(Y") is a non-graded lattice ideal (see
[16, Proposition 2.3]). The following corollary is the graded version of this result.

Corollary 4.2.8. IfY is a submonoid of a projective torus T, then 1(Y) is a lattice ideal.

Proof. By Theorem 4.2.1, I(Y) is a binomial ideal. Thus it suffices to show that ¢; is
not a zero-divisor of S/I(Y) for all 4. If f € S and ¢;f vanishes at all points of Y, then so
does f, as required. O

Corollary 4.2.9. [49, Proposition 6.7(a)] If Y C P! and dim(S/I(Y)) = 1, then the
following are equivalent:

(a) I(Y) is a lattice ideal.

(b) Y is a finite subgroup of a projective torus T
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Proof. (a) = (b): By Lemma 1.4.19 the set Y is finite. Using Corollary 4.2.6 and
Lemma 4.1.2 it follows that Y is a submonoid of 7. As the cancellation laws hold in T’
and Y is finite, we get that Y is a group.

(b) = (a): This is a direct consequence of Corollary 4.2.8. O

Proposition 4.2.10. Let K be an algebraically closed field. If Y C P*~L, then the follow-
ing are equivalent:

(a) Y is a finite subgroup of a projective torus T'.
(b) There is a finite subgroup H of K* and vq,...,vs € Z™ such that

Y = {[(z*,...,2")] |z = (z1,...,zn)and x; € H for all i} C P71

Proof. (b) = (a): It is not hard to verify that Y is a subgroup of 7" using the parame-
terization of Y relative to H.

(a) = (b): By the fundamental theorem of finitely generated abelian groups, Y is a
direct product of cyclic groups. Hence, there are [a],. .., [a,] in Y such that

Y = {[a]" - o)™ | dr, ... in € Z} .

We set a; = (1, ...,q4) for i = 1,...,n. As [ay],...,[a,] have finite order, for each
1 <i < n there is m; = o([«;]) such that [«;]™ = [1]. Thus

mg

(gr’s oy as’) = (A, o A)

for some \; € K*. Pick p; € K* such that p;" = A;. Setting, f8;; = a;;/p;, one has

Bt =1for all 4, j, that is all §;;’s are in K* and have finite order. Consider the subgroup
H of K* generated by all 8;;’s. This group is cyclic because K is a field. If 3 is a generator

of (H,-), we can write a;;/p; = 3% for some vj; in N. Hence
] = [(B™, .., B, [aw] = (B, 8.

We set v; = (vi1,...,vi) for i =1,...,s. Let Yy be the set in P*~! parameterized by
the monomials y*, ..., y" relative to H. If [y] € Y, then we can write

ol = Lol o™ = [((B)™ - (8™ ()% - (B7))

for some iy, ...,i, € Z. Thus [y] € Yg. Conversely if [y] € Yy, then [y] = [(z¥, ..., 2")]
for some z1,...,2, in H. Since any z;, is of the form 3% for some integer i, one can
write [y] = [aq]™ - - - [, ]™, that is, [y] € Y. O

Remark 4.2.11. The equivalence between (a) and (b) was shown in [49, Proposition 6.7(b)]
under the assumption that K is a finite field.

If I is a binomial ideal of S, then its saturation (I: (¢ - --t5)*°) is binomial ideal. The
converse is not true in general as the next example shows.
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Example 4.2.12. Let K be any field and let Y = {[(1,1,1)],[(1,1,0)],[(1,0,1)]}. By
Corollary 4.2.5 the vanishing ideal I(Y) is not a binomial ideal because Y U {[0]} is not
a monoid. The vanishing ideal I(Y) of Y = YNT = {[(1,1,1)]} is a lattice ideal and
(L(Y): (tr---5)>) = I(Y).

Proposition 4.2.13. Let K be an algebraically closed field of characteristic zero and let
I be a graded ideal of S of dimension 1. Then I is a lattice ideal if and only if I is the
vanishing ideal of a finite subgroup Y of a projective torus T'.

Proof. =) Assume that I = I(L£) is the lattice ideal of a lattice £ in Z°. Since I is
graded and dim(S/I) = 1, for each ¢ > 2, there is a; € N such that f; :=¢]* —t* € I.
This polynomial has a factorization into linear factors of the form t; — ut; with p € K*.
In characteristic zero a lattice ideal is radical [70, Theorem 8.2.27]. Therefore I is the
intersection of its minimal primes and each minimal prime is generated by s — 1 linear
polynomials of the form ¢; — ut,. It follows that [ is the vanishing ideal of some finite
subset Y of a projective torus 7. By Corollary 4.2.5, Y is a submonoid of 7. As the
cancellation laws hold in 7" and Y is finite, we get that Y is a group.

<) This implication follows at once from Corollary 4.2.8. a
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Chapter 5

Complete intersection vanishing
ideals on sets of clutter type

In this chapter we give a classification of complete intersection vanishing ideals on param-
eterized sets of clutter type over finite fields.

5.1 Vanishing ideals of clutter type

Let R = Kly| = Kly1,-..,Yn| be a polynomial ring over a finite field K = F, and let
y", ..., y" be a finite set of monomials in K[y|]. As usual we denote the affine and
projective spaces over the field K of dimensions s and s — 1 by A® and P*~!, respectively.

Points of the projective space P*~! are denoted by [a], where 0 # a € A®,

We consider a set X, in the projective space P*~!, parameterized by %', ..., y". The
set X consists of all points [(z%,...,z%)] in P*~! that are well defined, i.e., z € K" and
x¥ # 0 for some 7. The set X is called of clutter type if supp(y") ¢ supp(y*’) for i # j,
where supp(y*) is the support of the monomial y¥ consisting of the variables that occur
in y%. In this case we say that the set of monomials y**,... y" is of clutter type. This
terminology comes from the fact that the condition supp(y*) ¢ supp(y%) for i # j means
that there is a clutter C, in the sense of [55], with vertex set V' (C) = {v1,...,yn} and edge
set

E(C) = {supp(y™),...,supp(y”)}.
A clutter is also called a simple hypergraph, see Definition 5.2.7.

Let S = K[ty ..., ts] = & Sa be a polynomial ring over the field K with the standard
grading. The graded ideal I(X) generated by the homogeneous polynomials of S that
vanish at all points of X is called the vanishing ideal of X.

There are good reasons to study vanishing ideals over finite fields. They are used
in algebraic coding theory [29] and in polynomial interpolation problems [19, 63]. The
Reed-Muller-type codes arising from vanishing ideals on monomial parameterizations have
received a lot of attention [7, 10, 21, 29, 43, 52, 55, 59].
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The vanishing ideal I(X) is a complete intersection if I(X) is generated by s — 1
homogeneous polynomials. Notice that s —1 is the height of I(X) in the sense of [47]. The
interest in complete intersection vanishing ideals over finite fields comes from information
and communication theory, and algebraic coding theory [12, 23, 33].

Let T be a projective torus in P*~! (see Definition 4.2.7) and let X be the set in P*~1
parameterized by a clutter C (see Definition 5.2.8). Consider the set X = XN7T. In [55]
it is shown that I(X) is a complete intersection if and only if X is a projective torus in
Ps=! | If the clutter C has all its edges of the same cardinality, in [56] a classification of
the complete intersection property of I(X) is given using linear algebra.

The main result of this chapter is a classification of the complete intersection property
of I(X) when X is of clutter type (Theorem 5.2.17). Using the techniques of [52], this
classification can be used to study the basic parameters [46, 66] of the Reed-Muller-type
codes associated to X.

For all unexplained terminology and additional information, we refer to [47] (for com-
mutative algebra), [9] (for Grobner bases), and [52, 63, 66] (for vanishing ideals and coding
theory).

5.2 Complete intersections

In this section we give a full classification of the complete intersection property of vanishing
ideals of sets of clutter type over finite fields. We continue to employ the notations and
definitions used in Section 5.1.

Throughout this section K = F, is a finite field, y*,...,y" are distinct monomials
in the polynomial ring R = Kly| = Kly1,...,ys], with v; = (v;1,...,04,) and y” =
yite-ylin for i = 1,...,s, X is the set in P*~! parameterized by these monomials, and

I(X) is the vanishing ideal of X. Recall that I(X) is the graded ideal of the polynomial
ring S = K|[ty,...,ts] generated by the homogeneous polynomials of S that vanish on X.

Definition 5.2.1. Given a = (ay,...,a,) € N*, we set y* := yi* - - - y%. The support of
y®, denoted supp(y*), is the set of all y; such that a; > 0.

Definition 5.2.2. The set X is of clutter type if supp(y*) ¢ supp(y%) for i # j.

Definition 5.2.3. A binomial of S is an element of the form f = ¢ — ¢, for some a, b in
N*®. An ideal generated by binomials is called a binomial ideal.

The set S = P*~! U {[0]} is a monoid under componentwise multiplication, that is,
given [o] = [(aq,...,a,)] and [B] = [(f1,...,0s)] in S, the operation of this monoid is
given by

[Oé] ' [ﬁ] = [041517 the 7asﬁs]7
where [1] = [(1,...,1)] is the identity element.
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Remark 5.2.4. Since X is parameterized by monomials, the set X U {[0]} is a monoid
under componentwise multiplication. Hence, by Theorem 4.2.5, I(X) is a binomial ideal.

Lemma 5.2.5. Let y*,...,y" be a set of monomials such that supp(y“) ¢ supp(y“)
for any i # j and let G be a minimal generating set of 1(X) consisting of binomials. The

following hold.
(a) If0# f = t?j —t¢ for some 1 < j < s and some positive integer a;, then f ¢ I(X).

(b) For each pair 1 <i < j <s, there is g;j in G such that g;; = +(t;’t; — t*7), where
¢ij s a positive integer less than or equal to q and b;; € N°\ {0}.

(¢) If I(X) is a complete intersection, then s < 4.

Proof. (a): We proceed by contradiction. Assume that f is in I(X). Since [(X) is a
graded binomial ideal, the binomial f is homogeneous of degree a;, otherwise t;l»j and t¢
would be in I(X) which is impossible. Thus ¢ € N*\ {0}. Hence, as f # 0, we can pick
t; € supp(t®) with ¢ # j. By hypothesis there is y, € supp(y¥) \ supp(y*/), i.e., vy > 0
and vj, = 0. Making vy, = 0 and y, = 1 for ¢ # k, we get that f(y",...,y") =1, a
contradiction.

(b): The binomial h = t{t; —t;t{ vanishes at all points of P*~*, i.e., h is in I(X). Thus
there is ¢;; in G such that t7¢; is a multiple of one of the two terms of the binomial g;;.
Hence, by part (a), the assertion follows.

(c): Since I(X) is a complete intersection, there is a set of binomials G = {g1,...,¢s-1}
that generate I(X). The number of monomials that occurin gy, ..., gs_1 is at most 2(s—1).
Thanks to part (b) for each pair 1 <i < j < s, there is a monomial ¢;¢;, with ¢;; € Ny,
and a binomial g;; in G such that the monomial ¢;”¢; occurs in g;;. As there are s(s—1)/2
of these monomials, we get s(s —1)/2 < 2(s —1). Thus s < 4. O

Lemma 5.2.6. Let K be a field and let I be the ideal of S = K[t1,ts,1t3,t4] generated by
the binomials g1 = tity — t3ty, go = tits — taoty, g3 = tots — t1t4. The following hold.

1 g = t2t3 - t1t4, tltg - t2t4, tltg - t3t4, t2t4 — t2t4, t2t4 — t2t4, t3t4 — t3t3 is a Grobner
2 34,17 34,13 4
basis of I with respect to the GRevLex order < on S.

(i) If char(K) = 2, then rad([) # 1.
(iii) If char(K) # 2 and e; is the i-th unit vector, then I = I(X), where

X= {[61]7 [62]7 [63]7 [64]7 [(17_17_171)]7 [(1717171)]7 [(_17_17171)]7 [(_171?_171)]}'

Proof. (i): Using Buchberger’s criterion [9, p. 84], it is seen that G is a Grobner basis of
1.

(11) Settlng h = tltz - tltg, we get h2 = (t1t2)2 — (t1t3)2 = tltggl —+ tltggg, where
g1 = tity — tsty and gy = t1t3 — toty. Thus h € rad(I). Using part (i) it is seen that h ¢ I.
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(iii): As g; vanishes at all points of X for ¢ = 1,2,3, we get the inclusion I C I(X).
Since X U {0} is a monoid under componentwise multiplication, by Theorem 4.2.5, I(X)
is a binomial ideal. Take a homogeneous binomial f in S that vanishes at all points of X.
Let h =t —t* a = (a;), b = (b;), be the residue obtained by dividing f by G. Hence we
can write f = g + h, where g € I and the terms #* and t® are not divisible by any of the
leading terms of G. It suffices to show that h = 0. Assume that h # 0. As h € I(X) and
[e;] is in X for all i, we get that |[supp(t*)| > 2 and |supp(t®)| > 2. It follows that h has
one of the following forms:

h=tity —tath, h=tt) —t3t5, h=tst) —tst},
h=t2t7 —tst), h=1t3t7" —tot), h=ti1 — it

where 7 > 1, a contradiction because none of these binomials vanishes at all points of X.
O

Definition 5.2.7. A hypergraph H is a pair (V(H), E(#)) such that V(#) is a finite set
and E(H) is a subset of the set of all subsets of V(). The elements of E(H) and V(H)
are called edges and wvertices, respectively. A hypergraph is simple if f; ¢ fo for any two
edges f1, fo. A simple hypergraph is called a clutter and will be denoted by C instead of

H.

One example of a clutter is a graph with the vertices and edges defined in the usual
way.

Definition 5.2.8. Let C be a clutter with vertex set V/(C) = {y1,...,yn}, let fi,..., fs
be the edges of C and let v = inEfk e; be the characteristic vector of fi, for 1 < k <'s,
where e; is the i-th unit vector. The set in the projective space P*~! parameterized by
yv', ..., y", denoted by X¢, is called the projective set parameterized by C.

Lemma 5.2.9. Let K = F, be a finite field with ¢ # 2 elements, let C be a clutter with
vertices yi,...,Yn, let v1,..., v, be the characteristic vectors of the edges of C and let X¢
be the projective set parameterized by C. If f = t;it; — tyte € 1(Xc), with i, 7, k,1 distinct,
then yviy"i = y kyt.

Proof. For simplicity assume that the polynomial f = tity — t3t4. Setting A; =
supp(y"'y™), Az = supp(y*™y“), Si = supp(y”) N supp(y*?) and Sy = supp(y*®) N
supp(y*), it suffices to show the equalities A; = Ay and S; = Sy, If A ¢ A, pick
yr € A1\ As. Making yr = 0 and y, = 1 for ¢ # k, and using that f vanishes on X¢, we
get that f(y",...,y"*) = —1 = 0, a contradiction. Thus A; C As. The other inclusion
follows by a similar reasoning. Next we show the equality S; = S;. If S7 ¢ S, pick a
variable y, € S1 \ Sa. Let B be a generator of the cyclic group F; = F, \ {0}. Making
yr = B, yo = 1 for £ # k, and using that f vanishes on X and the equality A; = Ay, we
get that f(y*,...,y") = 32— 3 =0. Hence 3% =  and 8 = 1, a contradiction because
q # 2. Thus S; C Sy. The other inclusion follows by a similar argument. O
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Remark 5.2.10. Let K = I, be a finite field with ¢ odd and let X be the set of clutter
type in P? parameterized by the following monomials:

=yl sy e e

B SV T V-V

= i Ny Nyt sy

_ q—1,9¢-1,4¢-1 g1 g—1 g—1 g—1
= Y1 Yo Y3 Yi Yo Y7 Ys

SERSENNS
Il

where r = (¢ — 1)/2. Then
X= {[61]7 [62]7 [63]7 [64]7 [(17 _17 _17 1)]7 [(17 17 17 1)]7 K_lv _17 17 1)]7 [<_17 17 _17 1)]}7
‘X‘ = 8 and [(X) = (tltz — t3t4,t1t3 — t2t4,t2t3 — t1t4).
Below we show that the set X of Remark 5.2.10 cannot be parameterized by a clutter.

Remark 5.2.11. Let K =T, be a field with ¢ # 2 elements. Then the ideal
I = (tity — tgty, tits — toty, tots — tity)

cannot be the vanishing ideal of a set in P? parameterized by a clutter. Indeed assume that
there is a clutter C such that I = I(X¢) and Xe C P3. If vy,. .., vy are the characteristic
vectors of the edges of C. Then, by Lemma 5.2.9, we get v + vy = v3+ vy, V1 +v3 = vo+ 14
and vy + v3 = v1 + v4. It follows that v; = vy = v3 = v4, a contradiction.

Lemma 5.2.12. Let K be a field and let I be the ideal of S = Klty,ta,t3] generated by
the binomials g1 = ti1ty — tots, go = tits — tots. The following hold.

(i) G = {titz — tots, tily — tols, t3ts — ot} is a Grobner basis of I with respect to the
GRevLex order < on S.

(ii) I = I(X), where X = {[e1], [ea], [es], [(1,1,1)]}.
Proof. It follows using the arguments given in Lemma 5.2.6. O

Remark 5.2.13. Let K =IF, be a finite field with ¢ elements and let X be the projective
set in P? parameterized by the following monomials:

v .9 v _ .4 v3 q
=Y = Ys

y Tyl y ThydTh gt = gty

Then X = {[61], [62], [63], [(1, 1, 1)]} and I(X) = (tltg — t2t3, tltg — tztg).

Lemma 5.2.14. Let 3 be a generator of F, and 0 # r € N. Suppose s = 2. If I =
("t — t1t5™) and r divides ¢ — 1, then I = I(X), where X is the set of clutter type in
P! parameterized by yI ", y3 'y and r = o( G¥).
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Proof. We set f = t/*'t, — t,5™1. Take a point P = [(z¢"", 27 '2%)] in X. Then
FP) = (af ) (@ ) — (21 (25 "a5)™

We may assume z; # 0 and x5 # 0. Then f(P) = a2 — (25)"L. If 23 # 0, then 23 = 3° for
some i and (2%)""! = 2% that is, f(P) = 0. Therefore one has the inclusion (f) C I(X).

Next we show the inclusion I(X) C (f). By Theorem 4.2.5, I(X) is a binomial ideal.
Take a non-zero binomial g = 713 — t2'¢% that vanishes on X. Then a; + as = by + by
because I(X) is graded. We may assume that b; > a; and ag > by. We may also assume
that a; > 0 and by > 0 because {[ei],[e2]} C X. Then g = #5215 —5""). As g
vanishes on X, making y3 = 8 and y; = yo = 1, we get (8%)%27%2 = 1. Hence ay — by = \r
for some A\ € N, where 7 = o(8*). Thus 327" — 517 is equal to )" — )" € (] — t3).
Therefore g is a multiple of f = t1t2(t] — t}) because a; > 0 and by > 0. Thus g € (f). O

Lemma 5.2.15. Let K = F, be a finite field. If {[e1],[ea]} € Y C P' and Y U {0}
is a monoid under componentwise multiplication, then there is 0 # r € N such that
I(Y) = (t77 1y — 115" and r divides q — 1.

Proof. We set f = "', — ;5" and X = YN T, where T is a projective torus in P'.
The set X is a group, under componentwise multiplication, because X is a finite monoid
and the cancellation laws hold. By Theorem 4.2.5, I(Y) is a binomial ideal. Clearly
(f) € I(Y). To show the other inclusion take a non-zero binomial g = #5'¢5> — ¢}'¢%
that vanish on Y. Then a; 4+ as = by + by because I(Y) is graded. We may assume that
by > a; and as > by. We may also assume that a; > 0 and by > 0 because {[eq], [e2]} C X.
Then g = {52 (5>~ — #5179, The subgroup of Fy given by H = {{ € F; |[(1,€)] € X}
has order r = |X|. Pick a generator 8 of the cyclic group Fy. Then H is a cyclic
group generated by 8* for some k > 0. As g vanishes on Y, one has that #5272 — h17%
vanishes on X. In particular (8%)%27%2 = 1. Hence ay — by = A\r for some \ € N, where
r = o(f*) = | X|. Proceeding as in the proof of Lemma 5.2.14 one derives that g € (f).
Noticing that 7" has order ¢ — 1, we obtain that r divides ¢ — 1. O

Definition 5.2.16. An ideal I C S is called a complete intersection if there exists
g1, -, gr in S such that I = (gy,...,g,), where r is the height of I.

Recall that a graded ideal I is a complete intersection if and only if I is generated
by a homogeneous regular sequence with ht(/) elements (see [70, Proposition 2.3.19,
Lemma 2.3.20)).

Theorem 5.2.17. Let K = F, be a finite field and let X be a set in P5~! parameterized
by a set of monomials y*', ... ,y" such that supp(y*) ¢ supp(y*) for any i # j. Then
I(X) is a complete intersection if and only if s < 4 and, up to permutation of variables,
I(X) has one of the following forms:

(l) S = 4, q 1s odd and I = (tltg — t3t4, tltg — t2t4, t2t3 — t1t4).



5.2 Complete intersections 67

(11) s=3and I = (tltg — tgtg, t1t3 — tgtg).
(iii) s =2 and I = (t} 'ty — t115™), where 0 # r € N is a divisor of ¢ — 1.
(iv) s =1 and I = (0).

Proof. =): Assume that /(X) is a complete intersection. By Lemma 5.2.5(c) one has
s < 4.

Case (i): Assume that s = 4. Setting I = I(X), by hypothesis [ is generated by 3
binomials g1, g2, g3. By Lemma 5.2.5(b) for each pair 1 < i < j < 4 there are positive
integers ¢;; and a;; such that ¢;”t; and tit?“ occur as terms in gq, g2, g3. Since there are
at most 6 monomials that occur in the g;’s, we get that ¢;; = a;; =1 for 1 <17 < j < 4.
Thus, up to permutation of variables, there are 4 subcases to consider:

a) :
b) :
c):
d) :

~~

g1 =ti(ta —13), go = tity —tots, g3 = t4(t2 —t3).
g1 =ti(ta —13), g2 =t4(t1 —t3), g3 =ta(ts —1tg).
g1 = Uity — t3ts, g2 = tits —tats, g3 = tatz — til4.
g1 =t3(ty —t2), go=1ti(ts —ts), g3 =ta(t1 —1ta).

N~ o~
N~ —

Subcase (a): This case cannot occur because the ideal (g1, g2, g3) has height 2.

Subcase (b): The reduced Grobner basis of I = (g1, g, g3) with respect to the GRevLex
order < is given by

g1 = tito — tils, g2 = tity — l3ts, g3 = lats — taly,
ga = ity — tot], g5 = 0113 — o], ge = t5t5 — bl}.

Hence the binomial h = toty — t3t4 ¢ I because toty does not belong to in(7), the initial
ideal of I. Since h? = —2t2g3 + t494 + g6, we get that h € rad(I). Thus [ is not a radical
ideal which is impossible because I = I(X) is a vanishing ideal. Therefore this case cannot
occur.

Subcase (c¢): In this case one has I = (t1ty — t3ty, t1ts — tots, tots — t1t4), as required.
From Lemma 5.2.6, we obtain that ¢ is odd.

Subcase (d): The reduced Grobner basis of I = (g1, go, g3) with respect to the GRevLex
order < is given by

hi =tots — tits, g2 = tits — tits, g3 = tita — toty,
g1 = tit] — taly, g5 = tity — tal3, g = t3t; — tol}.

Setting h = tit4 — tats, as in Subcase (b), one can readily verify that h ¢ I and h* € I.
Hence I is not a radical ideal. Therefore this case cannot occur.

Case (ii): Assume that s = 3. By hypothesis I = I(X) is generated by 2 binomials
g1, g2. By Lemma 5.2.5(b) for each pair 1 <i < j < 3 there are positive integers ¢;; and
a;j such that ¢;”t; and tit?” occur as terms in gy, go. Since there are at most 4 monomials



68 Complete intersection vanishing ideals

that occur in the g;’s it is seen that, up to permutation of variables, there are 2 subcases
to consider:

(a) : g1 = titz — tatz, go = t{2ty — t1t5"? with ¢ = ay9 > 2.
(b) : g1 = tity —tat3, g2 = 1tz — lots.
Subcase (a) cannot occur because the ideal I = (g1, g2), being contained in (¢; — o),

has height 1. Thus we are left with subcase (b), that is, [ = (t1ty — tots, t1t3 — tol3), as
required.

Case (iii): If s = 2, then X is parameterized by y”*, y"2. Pick y € supp(y”*)\supp(y?).
Making y, = 0 and y, = 1 for ¢ # k, we get that [e3] € X, and by a similar argument
le1] € X. As XU{[0]} is a monoid under componentwise multiplication, by Lemma 5.2.15,
I(X) has the required form.

Case (iv): If s = 1, this case is clear.
<) The converse is clear because the vanishing ideal I(X) has height s — 1. O

Proposition 5.2.18. If [ is an ideal of S of one of the following forms:
(i) s =4, q is odd and I = (t1ty — tsly, tits — toly, tats — tily),
(ii) s =3 and I = (t1ty — tots, trts — tats),
(iii) s =2 and I = (t7'ty — t1t5™Y), where 0 #r € N and r divides ¢ — 1,
then there is a set X in P*~1 of clutter type such that I is the vanishing ideal I1(X).

Proof. The result follows from Lemma 5.2.6 and Remark 5.2.10, Lemma 5.2.12 and
Remark 5.2.13, and Lemma 5.2.14, respectively. O



Chapter 6

Problems and Related Results

6.1 Degree and regularity of vanishing ideals

The results of this thesis allows us to compute the degree and regularity index of vanishing
ideals parameterized by rational functions over any field.

The following general problem was one of our initial motivations to find computational
tools to compute generating sets of vanishing ideals.

Problem 6.1.1. Find explicit formulas for the degree and regulariy index for families of
vanishing ideals arising from combinatorial structures when the base field is finite.

Problem 6.1.2. Let K = [, be a finite field and let X and X be the projective and
algebraic sets in P*~! parameterized by a set y'',...,y% of Laurent monomials. Find
formulas for the algebraic invariants of the vanishing ideals 1(X) an I(X), and for the
basic parameters of Cx(d) and Cx(d), the Reed-Muller-type codes of degree d over X and
X, respectively, in terms of s, ¢, d, and the combinatorics of vy, ..., vs.

This is an open problem where our results can be used to find formulas for the degree
and the regularity of I(X) and I(X), and for the dimension and length of the Reed-
Muller-type codes Cx(d) and Cx(d). The degree is the easiest invariant to compute. The
regularity is harder to compute.

If X is the algebraic projective set parameterized by the edges of GG, then a formula
for the degree of S/X¢ is given in [50, Theorem 3.2].

Problem 6.1.3. Let G be a graph and let X be the set in P*~! parameterized by the
edges of G. Find a formula for the degree of S/I(X¢) in terms of the graph invariants of
G and the combinatorics of the graph.

The following is still a wide open problem.

Problem 6.1.4. Let GG be a graph and let X and X be the projective and algebraic sets
in P*~!, respectively, parameterized by the edges of G. Find formulas for the regularity
index of I(X¢) and I(X¢) in terms of ¢ and the combinatorics of G.
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The regularity index of S/I(X¢) has been studied in [28, 50, 68| for certain families
of graphs.

Problem 6.1.5. For a connected graph G characterize when I(X) is a complete intersec-
tion.

For an arbitrary graph G in [55] it is shown that I(X) is a complete intersection if
and only if X is a projective torus.

6.2 Binomial vanishing ideals

Problem 6.2.1. If X is a projective set parameterized by rational functions over a finite
field and I(X) is a binomial ideal, then by Proposition 2.3.9 I(X) is a binomial ideal. Is
the converse true?

Let K = F, be a finite field. If X is a set in P*~! parameterized by Laurent monomials,
then /(X) is a binomial ideal (see Corollary 2.3.21). We give a family of ideals where the
converse is true; see Proposition 2.3.25.

This leads us to pose the following conjecture.

Conjecture 6.2.2. Let K = [, be a finite field and let Y be a subset of P57, If I(Y)
is a binomial ideal, then Y is a set parameterized by Laurent monomials (see Conjec-
ture 2.3.26).

This conjecture fails for infinite fields (see Example 2.2.9). Notice that this conjecture
can be restated as:

Problem 6.2.3. Let K = F, be a finite field and Y C Ps~1. If V(I(Y))U{[0]} is a monoid
under componentwise multiplication, then Y is parameterized by Laurent monomials.

The next problem seems likely to hold.

Problem 6.2.4. Let K = F, be a finite field and X c P*~*. If XU {0} is a multiplicative
monoid and X = {[e1],...,[es]} U (X NT), where T is a projective torus in P!, then
X is parameterized by Laurent monomials. For this family when is I(X) a complete
intersection?

Another problem on vanishing ideals is:
Problem 6.2.5. Let K be a field and let X be a subset of P*~! parameterized by Laurent
monomials. Give necessary and/or sufficient conditions for the equality V(I(X)) = X.

If K is an infinite field, the affine case of this equality was studied [39, 40, 54]. We
plan to study these three papers to see if all results there hold for the projective case.

Problem 6.2.6. Let X be a set of clutter type such that 1(X) is a complete intersection.
Using the techniques of [12, 43, 52, 55] and Theorem 5.2.17 find formulas for the basic
parameters of the Reed-Muller-type codes associated to X.
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Notation

(I: J°°), saturation, 7

(I: f°°), saturation, 7

K, a field, 2

K*=K\{0},4

X, projective algebraic set, xii
X*, affine algebraic set, xii
lem, least common multiple, 5
Pﬁ;l or P*~1, projective space, 10
X, projective set, xii

X*, affine set, xii

S(f,g), the S-polynomial, 5

f —F g, reduction w.r.t F, 4
k, a field, 2

k[t], polynomial ring, 2
in,(/), initial ideal, 4
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affine
Reed-Muller-type code, 14
torus, 26

ascending chain condition, 1

basic parameters, 13
binomial, 7
ideal, 7
Buchberger
algorithm, 5
criterion, 6

clutter type, 62

colon ideal, 7

complete intersection ideal, 66

computer algebra systems
Macaulay2, 6

Dickson’s lemma, 4
dimension

of a ideal, 8
direct product, 42
division algorithm, 4

elimination order, 6
evaluation

code, 12

map, 12

forms, 2

Grobner basis, 5
reduced, 5
graded
ideal, 3, 11
map, 2
module, 2

ring, 2
submodule, 2
GRevLex order, 6

Hamming weight, 12
generalized, 41
height, 8
Hilbert
basis

theorem, 2

series, 9
homogeneous
element, 2
ideal, 3
homogenization, 10
hypergraph, 64
simple, 64

initial
ideal, 4
interpolation problem, 14

Krull dimension, 8

Laurent monomial, 10, 18
leading
coefficient, 4
monomial, 4
term, 4
lex order, 3
lexicographical order, 3
linear code, 12, 41

Macaulay?2

see computer algebra systems, 6

minimum distance, 12
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INDEX

monomial, 3
order, 3

Noetherian
module, 1
ring, 2

polynomial

quasi-homogeneous, 3
presentation ideal, 18
projective

Reed-Muller-type code, 12

closure, 11

Segre code, 49

space, 10

torus, 26

reduction of a polynomial, 4
regularity index, 8
remainder, 5

revlex order, 3

S-polynomial, 5
saturation

of an ideal, 7
Segre

embedding, 43

product, 45
standar algebra, 45
standard

grading, 3

monomial, 6
support, 41

usual grading, 3
vanishing ideal, 11
weight hierarchy, 42

zero set, 11



