
Center for Research and Advanced Studies

of the National Polythechnic Institute

Campus Zacatenco

Department of Mathematics

Algebraic Methods for Parameterized

and Cartesian Codes

A dissertation presented by

Hiram Habid López Valdez
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Mexico City May 2016.





Centro de Investigación y de Estudios Avanzados

del Instituto Politécnico Nacional
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work: Dr. Ćıcero Fernandes De Carvalho, Dr. Sudhir R. Ghorpade, Dr. Elisa Gorla, Dr.
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Abstract

Let Lρ ⊆ Zn be a lattice (additive subgroup) and ρ : Lρ → K∗ a partial character, with
K a field. We prove that the lattice ideal I(ρ) contains no monomials. For a fixed
monomial order, there are a finite number of elements a1, . . . , ar in the lattice Lρ such

that the binomials ta
+
1 − ρ(a1)ta

−
1 , . . . , ta

+
r − ρ(ar)t

a−r form a Gröbner basis of the lattice
ideal. The initial ideal of this Gröbner basis is independent from the partial character,
and so are the Hilbert function, the Hilbert series, the Hilbert polynomial, the index of
regularity, the a-invariant and the degree of the lattice ideal. We give a proof that the
lattice is generated by the elements a1, . . . , ar if and only if its lattice ideal is equal to
the saturation of the ideal generated by the binomials ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
r − ρ(ar)t

a−r

with respect to the monomial t1 · · · tn. We prove that an ideal is binomial if and only
if the ideal is characterized by a finite number of lattices and partial characters. If the
lattice ideal is standard-graded of dimension 1, we show that its degree is the order of
the torsion subgroup of the quotient group of the lattice. If the lattice ideal is ω-graded
of dimension 1, we establish a complete intersection criterion in algebraic and geometric
terms. In positive characteristic, it is shown that all ideals of this family are binomial set
theoretic complete intersections; in characteristic zero, we show that an arbitrary lattice
ideal which is a binomial set theoretic complete intersection is a complete intersection.

We study the complete intersection property, the index of regularity and the degree
of vanishing ideals on degenerate tori over finite fields. We establish a correspondence
between vanishing ideals and toric ideals associated to numerical semigroups. We give
formulas for the degree and for the index of regularity of a complete intersection in terms
of the Frobenius number and the generators of a numerical semigroup.

For affine evaluation codes parameterized by monomials over a finite field we give an
algebraic method, using Gröbner bases, to compute their length and dimension. When
the code is defined on a finite cartesian product of finite sets over an arbitrary field we
find its dimension, length and minimum distance in terms of the cardinalities of the sets
that define the cartesian product. Given a sequence of positive integers, we construct an
evaluation code with prescribed parameters of a certain type in terms of these integers.
We recover the formulas for the minimum distance of various families of evaluation codes,
e.g., generalized Reed-Muller codes. For projective evaluation codes parameterized by a
sequence of positive integers we compute length and regularity. If the projective code is
defined by a nested cartesian set, we find its length, dimension and minimum distance. We
give a relation between the parameters of generalized and projective Reed-Muller codes.
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Resumen

Sean Lρ ⊆ Zn una ret́ıcula (subgrupo aditivo) y ρ : Lρ → K∗ un caracter parcial, con K
un campo. Probamos que el ideal reticular I(ρ) no contiene monomios. Para un orden
monomial fijo, existen un número finito de elementos a1, . . . , ar en la ret́ıcula Lρ tal que los

binomios ta
+
1 −ρ(a1)ta

−
1 , . . . , ta

+
r −ρ(ar)t

a−r forman una base de Gröbner del ideal reticular.
El ideal inicial de esta base de Gröbner no depende del caracter, y tampoco la función de
Hilbert, la serie de Hilbert, el polinomio de Hilbert, el ı́ndice de regularidad, el a-invariante
y el grado del ideal reticular. Damos una prueba de que la ret́ıcula está generada por
los elementos a1, . . . , ar si y solo si su ideal reticular es igual a la saturación del ideal
generado por los binomios ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
r − ρ(ar)t

a−r con respecto al monomio
t1 · · · tn. Probamos que un ideal es binomial si y solo si el ideal está caracterizado por un
número finito de ret́ıculas y caracteres parciales. Si el ideal reticular es estandar-graduado
de dimensión 1, mostramos que su grado es el orden del subgrupo de torsión del grupo
cociente de la ret́ıcula. Si el ideal reticular es ω-graduado de dimensión 1, establecemos un
criterio de intersección completa en términos algebraicos y geométricos; en caracteŕıstica
positiva, se muestra que todos los ideales de esta familia son intersecciones completas
conjuntistas binomiales; en caracteŕıstica cero, mostramos que un ideal reticular que es
una intersección completa conjuntista binomial es una intersección completa.

Estudiamos la propiedad de intersección completa, el ı́ndice de regularidad y el grado
de ideales anuladores del toro degenerado sobre campos finitos. Establecemos una corre-
spondencia entre ideales anuladores e ideales tóricos asociados a semigrupos numéricos.
Damos fórmulas para el grado y para el ı́ndice de regularidad de una intersección completa
en términos del número de Frobenius y los generadores de un semigrupo numérico.

Para códigos de evaluación afines parametrizados por monomios en un campo finito
damos un método algebraico, usando bases de Gröbner, para calcular su longitud y di-
mensión. Si el código es definido por un producto cartesiano finito de conjuntos finitos en
un campo arbitrario, calculamos su dimensión, longitud y distancia mı́nima en términos
de las cardinalidades de los conjuntos. Construimos un código con parámetros prescritos
de un cierto tipo en términos de una sucesión arbitraria de enteros positivos. Recobramos
las fórmulas para la distancia mı́nima de varias familias de códigos, como los códigos Reed-
Muller afines. Para códigos de evaluación proyectivos parametrizados por una sucesión de
enteros positivos calculamos longitud y regularidad. Si el código proyectivo es definido por
un conjunto cartesiano anidado, encontramos su longitud, dimensión y distancia mı́nima.
Damos una relación entre los parámetros de los códigos Reed-Muller afines y proyectivos.
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Introduction

There are two main topics for this thesis: lattice ideals and coding theory.

Let K be a field, K∗ := K \ {0} the multiplicative group of K and S := K[t1, . . . , tn]
a polynomial ring over the field K with n variables. The concept of lattice ideal was
introduced by Eisenbud and Sturmfels [16]. They defined this sort of ideals using a
subgroup Lρ of Zn called lattice and a group homomorphism ρ from Lρ to K∗ called
partial character. The lattice ideal, denoted by I(ρ), is defined as

I(ρ) :=
({
ta

+ − ρ(a)ta
− | a ∈ Lρ

})
⊂ S.

A pure lattice ideal, denoted by I(L), is a lattice ideal associated with the trivial partial
character, i.e. the partial character that sends all the lattice L to the identity element
1 ∈ K∗. There are works, for instance [10, 29, 39, 40, 46], where properties about lattice
ideals are given. In this thesis we are going to study arbitrary lattice ideals.

In Chapter 1 we introduce some important topics of commutative algebra, for instance
Hilbert functions, Hilbert series, the degree and toric ideals. We define some sets that we
use to define evaluation codes in Chapters 3 and 4. At the end of Chapter 1 we write a pair
of small sections, one of them about graph theory and the second one about polyhedral
sets.

By a binomial in S we mean a polynomial with at most two terms. A binomial ideal is
an ideal of S generated by binomials. In Section 2.1 we introduce elementary facts about
lattice ideals and the concept of congruence in a commutative semigroup with identity.
The concept of congruence is useful because it allows us to introduce the concept of a sim-
ple component of an element f of S. The theory of congruences has been studied deeply
by S. Eliahou [81] and R. Gilmer [84]. With this theory they prove important features
about lattice ideals, for instance they show that the radical of a pure binomial ideal is
again a pure binomial ideal. We use this theory to prove the following result, which is
well-known for the case of pure lattice ideals.

Theorem 2.1.21 Let K be a field and ρ : Lρ → K∗ a partial character. The lattice ideal

I(ρ) =
({
ta

+ − ρ(a)ta
− | a ∈ L

})
contains no monomials.

Using the concept of congruence we show in Theorem 2.1.22 that ti is a regular element
of S/I(ρ) for all i. Thus at the end of Section 2.1 we give the following characterization
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of a lattice ideal in terms of zero divisors. This characterization is well-known for pure
lattice ideals.

Theorem 2.1.23An ideal I ⊂ S is a lattice ideal if and only if

(i) I is binomial,

(ii) I contains no monomials and

(iii) ti /∈ Z(S/I) for all i.

If a := (a1, . . . , an) is an element of Nn, we set ta := ta1
1 · · · tann . In Section 2.2 we

study some relations between Lρ and I(ρ). We prove for instance in Proposition 2.2.6
that ta − λtb is in I(ρ) if and only if a − b is Lρ and λ = ρ(a − b). Then we show the
following result.

Theorem 2.2.7 Lρ = Z {a1, . . . , ar} if and only if

I(ρ) =
(
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
r − ρ(ar)t

a−r
)

: (t1 · · · tn)∞ .

Then we show a lattice ideal is characterized by a unique lattice and a unique partial
character.

Theorem 2.2.9Let ρ be a partial character on a lattice Lρand let I(ρ) be its lattice
ideal. If I(ρ) =

(
ta1 − λ1t

b1 , . . . , tar − λrtbr
)
, then Lρ = Z {a1 − b1, . . . , ar − br} and

ρ(ai − bi) = λi, for i = 1, . . . , r. In particular, if L is a lattice ideal, there are a unique
lattice Lρ and a unique partial character ρ on the lattice Lρ such that L = I(ρ).

At the end of Section 2.2 we have a pair of nice results. Proposition 2.2.12 tells if I(L)
is a standard graded pure lattice ideal and the initial ideal LT (I(L)) is square-free, then
I(L) is a prime ideal and S/I(L) is normal and Cohen-Macaulay. Example 2.2.13 shows
the primary decompositions of lattice ideals is dependent from the partial character.

By [16, Corollary 2.5] we know that a binomial ideal containing no monomials is
characterized by a lattice and a partial character. In some way we complement this
result in Section 2.3. We show that a binomial ideal (without restrictions) can be always
characterized by a finite number of lattices.

Theorem 2.3.4 Let K be a field with characteristic different than 2. An ideal I of S is
a binomial ideal if and only if there are m lattices Li := Z {ai1 − bi1, . . . , a1ri − b1ri} and
m partial characters ρi : Li → K∗ such that I = I1 + · · ·+ Im, where

Ii :=
(
tai1 − ρi(ai1 − bi1)tbi1 , . . . , tairi − ρi(airi − biri)tbiri

)
,

and for i 6= j, the ideal Ii + Ij contains a monomial.

If the field has characteristic 2, in Remark 2.3.5 we show the binomial ideal depends of a
lattice ideal and of a monomial ideal.
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In Section 2.4 we prove that there are a finite number of elements of the lattice Lρ
such that this elements define a Gröbner basis of the lattice ideal I (ρ) . Then we give a
procedure, which is based on the Buchberger’s algorithm, to find the elements of Lρ that
define the Gröbner basis of I (ρ) . The main result of Section 2.4 is the following Theorem.

Theorem 2.4.1 Let ρ : Lρ → K∗ be a partial character and ≺ an arbitrary monomial
order fixed on S. There are elements a1, . . . , as of Lρ such that

G :=
{
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
s − ρ(as)t

a−s
}

is a Gröbner basis of I(ρ). In particular the reduced Gröbner basis has this form.

In [44] Morales and Thoma show the complete intersection property of I(ρ) is inde-
pendent from the partial character ρ. In Section 2.5 we prove that also the initial ideal of
a lattice ideal is independent from the partial character.

Theorem 2.5.1 Let ρ : Lρ → K∗ be a partial character and ≺ an arbitrary monomial

order fixed on S. The set G :=
{
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
r − ρ(ar)t

a−r
}

is a Gröbner basis of

the lattice ideal I(ρ) if and only if the set G ′ :=
{
ta

+
1 − ta−1 , . . . , ta+

r − ta−r
}

is a Gröbner

basis of the pure lattice ideal I(Lρ).
As a consequence the Hilbert function, the Hilbert series, the Hilbert polynomial, the
index of regularity, the a-invariant and the degree of the lattice ideal I(ρ) are also inde-
pendent from the partial character ρ.

Section 2.6 is dedicate to the case that the lattice ideal (Iρ) is graded and has dimen-
sion 1. We prove in Lemma 2.6.9 that an element of the torsion group T (Zn/L) can be
represented in a unique way. Then we compute the degree of the lattice ideal (Iρ) . In
order to compute the degree we can assume the partial character ρ is trivial because by
Corollary 2.5.3 the degree is independent of the partial character.

Theorem 2.6.12 If I(L) ⊂ S is a graded pure lattice ideal of dimension 1, then

deg S/I(L) = |T (Zn/L)|.

Let ω be a vector with positive integer entries. If I (ρ) is ω-graded of dimension 1, we
establish a complete intersection criterion in algebraic and geometric terms. We only need
to prove the result for the case the partial character is trivial, because in [44] is proved
that the complete intersection property is independent of the partial character.

Theorem 2.6.31 Let L be the pure lattice ideal of an ω-homogeneous lattice L in Zn.
If V (L, ti) = {0} for all i, then L is a complete intersection if and only if there are
homogeneous pure binomials h1, . . . , hn−1 in L satisfying the following conditions :

(i) L = Z
{
ĥ1, . . . , ĥn−1

}
.

(ii) V (h1, . . . , hn−1, ti) = {0} for all i.
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(iii) hi = ta
+
i − ta−i for i = 1, . . . , n− 1.

If I (ρ) is a pure lattice ideal, it is ω-graded of dimension 1, and K has positive charac-
teristic, then we show I (ρ) is a pure binomial set theoretic complete intersection.

Proposition 2.6.34 If K is a field of positive characteristic and L ⊂ S is a ω-graded pure
lattice ideal of dimension 1, then L is a pure binomial set theoretic complete intersection.

If K has characteristic zero, we prove that in the set of pure lattice ideals the property
binomial set theoretic complete intersection implies complete intersection.

Theorem 2.6.37 Let L ⊂ S be an arbitrary pure lattice ideal of height r. If char(K) = 0
and rad(L) = rad(g1, . . . , gr) for some pure binomials g1, . . . , gr, then L = (g1, . . . , gr).

Define
Q := {[(xυ11

1 · · ·xυ1s
s , . . . , xυn1

1 · · · xυnss )] |xi ∈ K∗ for all i} ⊂ Pn−1,

the projective algebraic toric set parameterized by the non-negative vectors υ1, . . . , υn. The
vanishing ideal of Q, denoted by I(Q), is the ideal of S generated by the homogeneous
polynomials that vanish on Q. This ideal has very important applications in coding theory
as we will see below. We prove in Lemma 2.6.39 that there is a unique homogeneous lattice
L such that I(Q) = I(L). So at the end of Section 2.6 we apply previous results of this
work about graded lattice ideals of dimension 1 and compute the degree of I (L) . Also
we give a pair of complete intersection criterions of the vanishing ideal I (Q).

Let v := {v1, . . . , vn} be a sequence of positive integers and

T := {[(xv11 , . . . , x
vn
n )] |xi ∈ K∗ for all i} ⊂ Pn−1

the projective degenerate torus of type v. The vanishing ideal I (T ) plays a important role
in coding theory, as we will see in Chapters 3 and 4.

In what follows β denotes a generator of the cyclic group (K∗, · ), di denotes o(βvi), the
order of βvi for i = 1, . . . , n, and S denotes the semigroup Nd1 + · · ·+ Ndn. If d1, . . . , dn
are relatively prime, S is called a numerical semigroup. We will see below that the algebra
of I(T ) is closely related to the algebra of the toric ideal of the semigroup ring

K[S] := K[yd11 , . . . , y
dn
1 ] ⊂ K[y1],

where K[y1] is a polynomial ring. Recall that the toric ideal of K[S], denoted by P , is
the kernel of the following epimorphism of K-algebras

ϕ : S := K[t1, . . . , tn] −→ K[S], f
ϕ7−→ f(yd11 , . . . , y

dn
1 ).

Thus, S/P ' K[S]. Since K[y1] is integral over K[S] we have ht(P ) = n− 1. The ideal
P is graded if one gives degree di to variable ti. For n = 3, the first non-trivial case, this
type of toric ideals were studied by Herzog [30]. For n ≥ 4, these toric ideals have been
studied by many authors [4, 6, 12, 15, 17, 58].

In Section 2.7 we relate some of the algebraic invariants and properties of I(T ) with those
of P and S. The most well-known properties that P and I(T ) have in common is that
both are Cohen-Macaulay graded lattice ideals of dimension 1 [30, 49].
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Some of the key facts that allow to link the properties of P and I(T ) are Propositions 2.7.4
and 2.7.5. Proposition 2.7.4 says that the homogeneous lattices of P and I(T ) are closely
related. Proposition 2.7.5 affirms that if g1, . . . , gm is a set of generators for P consisting of
binomials, then h1, . . . , hm is a set of generators for I(T ), where hk is the binomial obtained
from gk after ti is substituted by tdii for i = 1, . . . , n. As a consequence, Corollary 2.7.6 says
that if n = 3, then I(T ) is minimally generated by 2 or 3 binomials. If I(T ) is a complete
intersection, the following result shows that a minimal generating set for I(T ) consisting
of binomials corresponds to a minimal generating set for P consisting of binomials, and
viceversa.

Theorem 2.7.8 (a) If I(T ) is a complete intersection generated by binomials h1, . . . , hn−1,
then P is a complete intersection generated by binomials g1, . . . , gn−1 such that hi is equal
to gi(t

d1
1 , . . . , t

dn
n ) for all i. (b) If P is a complete intersection generated by binomials

g1, . . . , gn−1, then I(T ) is a complete intersection generated by binomials h1, . . . , hn−1,
where hi is equal to gi(t

d1
1 , . . . , t

dn
n ) for all i.

We show in Corollary 2.7.9 that I(T ) is a complete intersection if and only if P is a
complete intersection. The Frobenius number of a numerical semigroup is the largest
integer not in the semigroup. For complete intersections, in the following result we give a
formula that relates the index of regularity of S/I(T ) with the Frobenius number of the
numerical semigroup generated by o(βrv1), . . . , o(βrvn), where r is the greatest common
divisor of d1, . . . , dn.

Corollary 2.7.14 (i) deg(S/I(T )) = d1 · · · dn/ gcd(d1, . . . , dn).

(ii) If I(T ) is a complete intersection, then

regS/I(T ) = gcd(d1, . . . , dn) g(S ′) +
∑n

i=1 di − (n− 1),

where g(S ′) denotes the Frobenius number of the numerical semigroup S ′ generated by
o(βrv1), . . . , o(βrvn); and r is the greatest common divisor of d1, . . . , dn.

The Frobenius number occurs in many branches of mathematics and is one of the most
studied invariants in the theory of semigroups. A great deal of effort has been directed at
the effective computation of this number, see the monograph of Ramı́rez-Alfonśın [48].

The complete intersection property of P has been nicely characterized, using the notion
of a binary tree [4, 6] and the notion of suites distinguées [12]. For n = 3, there is a classical
result of [30] showing an algorithm to construct a generating set for P . Thus we obtain
various classifications of the complete intersection property of I(T ). Furthermore, in [4]
an effective algorithm is given to determine whether P is a complete intersection. This
algorithm has been implemented in the distributed library cimonom.lib [5] of Singular
[65]. Therefore we can use this algorithm and some results of this thesis, in special
Corollary 2.7.9, to determine whether I(T ) is a complete intersection. For instance see
Example 2.7.15. If I(T ) is a complete intersection, this algorithm returns the generators
of P and the Frobenius number. As a byproduct, we can construct interesting examples
of complete intersection vanishing ideals. For instance see Example 2.7.17.

At the end of Section 2.7 we also give a way to compute the ideal I (T ) in terms of the
di’s and a saturation with respect to the monomial t1 · · · tn.
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Proposition 2.7.20Let I ′ be the ideal (t
cij
i − t

cij
j | 1 < i < j ≤ n), where cij := lcm{di, dj}.

If gcd(d1, . . . , dn) = 1, then I(T ) = I ′ : (t1 · · · tn)∞.

It is worth mentioning that our results of this Section 2.7 could be applied to coding
theory, for instance, Theorem 4.1.1 is an application, because potentially good evaluation
codes can occur only if the index of regularity satisfies certain constraints. The basic
parameters of evaluation codes arising from complete intersections have been studied in
[14, 22, 28, 37, 38, 54, 55]. See below for a detailed explanation of this fact.

Before to start with the introduction to linear codes we would like to make an extra
comment. There is a series of results where a binomial ideal is associated to a given
linear code. Thus properties of the code are obtained in terms of the ideal. For instance.
Given a linear code C over F2, in [8] the authors associate a binomial ideal I (C) to C.
Then they prove that it is possible to decode and to compute the minimum distance of
C from a reduced Gröbner basis of I (C). In [53] Saleemi and Zimmermann associate a
binomial ideal to any code over Fp, where p is a prime. The authors study the minimal
generators and Gröbner bases for this sort of ideals. The same authors, Saleemi and
Zimmermann, complement their previous work in this topic and write [52], where they
associate a binomial ideal to any code over F4. The authors find the reduced Gröbner
basis with respect to the lex order. Finally, given a linear code C over any finite field Fq,
in [42] Márquez-Corbella et al associate a binomial ideal I (C) to C. They prove that a
reduced Gröbner basis relative to a degree-compatible ordering gives a complete decoding
algorithm. In this thesis we study linear codes with lattice ideals, and every lattice ideal
is a binomial ideal, but the approach is different to which we just describe. In the works
that we just describe the authors associate a binomial ideal to a linear code, and then
properties of the code are obtained from the associated ideal. What we do, it is to study
evaluation codes. An evaluation code has by definition an associated ideal, which is a
binomial ideal, in fact, it is a lattice ideal. We obtain some properties of the evaluation
code in terms of the lattice ideal. Until here everything looks very similar, but the big
difference is that the ideals are different, they come from a very different point of view as
we will see below.

Let K := Fq be a finite field. A linear code (code for short) of length m, is a linear
subspace C of the vector space Km. Such a code is also called a q-ary code. If q = 2 or
q = 3, the code is described as a binary code, or a ternary code respectively. This sort of
codes can be studied as affine variety codes [20, Proposition 1], which are introduced also
in the same work.

The dimension of a code C, denoted by dimK C, is the dimension of C as K-vector
space. The dimension and the length of a code C are two of the basic parameters of a
linear code. A third basic parameter is the minimum distance, which is given by

δ(C) := min{‖v‖ : v 6= 0},

where ‖v‖ is the number of non-zero entries of vector v.

The basic parameters of a code C are related by the Singleton bound for the minimum
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distance

δ(C) ≤ |C| − dimK C + 1.

A linear code is called maximum distance separable (MDS for short) if equality holds in
the Singleton bound.

The length of a code is usually the “easiest” parameter to compute. The minimum
distance is related with the number of errors that a code can solve, and to find it is
consider a NP-hard problem [60]. We use different results in order to find the minimum
distance, as “Combinatorial Nullstellensatz” [1, Theorem 1.2] or variety of an ideal [9,
Proposition 2.3]. We are interested in evaluation codes, which are codes that depend of
a set of points. When the set of points is a subset of an affine space (projective space),
the code is called affine evaluation code (projective evaluation code). Define the following
sets.

• An affine set X ∗ ⊆ An, where An := Kn is an affine space over the field K.

• X ∗ := {[(a, 1)] | a ∈ X ∗} ⊆ Pn, the projective closure of X ∗.

• X , the image of X ∗ \ {0} under the map An \ {0} 7→ Pn−1, γ 7→ [γ].

Let S := K[t1, . . . , tn] be a polynomial ring with the standard grading, S≤d the K-
vector space of all polynomials of S of degree at most d and a1, . . . , am the points of X ∗.
The evaluation map

evd : S≤d −→ K |X
∗|, f 7→ (f(a1), . . . , f(am)) ,

defines a linear map of K-vector spaces. The image of evd in K |X
∗|, denoted by CX ∗(d),

defines a K-vector subspace. Permitting an abuse of language, we are referring to CX ∗(d)
as a linear code, even though in some cases we use a field K that might not be finite,
as in Section 3.3, where K has no restrictions. We call CX ∗(d) the affine evaluation code
(affine code for short) of degree d on the set X ∗. Affine codes are special types of affine
Reed-Muller codes in the sense of [99, p. 37]. The basic parameters of affine codes are:

• The length of CX ∗(d) is |X ∗|.

• The dimension of CX ∗(d) is dimK CX ∗(d).

• The minimum distance of CX ∗(d) is

δX ∗(d) = min{‖ϕd(f)‖ : ϕd(f) 6= 0; f ∈ S≤d},

where ‖ϕd(f)‖ is the number of non-zero entries of ϕd(f). This means that in order
to find the minimum distance, we need to find the polynomial of degree d with the
greatest number of zeros in X ∗.
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Some families of evaluation codes –including several variations of Reed-Muller codes–
have been studied extensively using commutative algebra methods (e.g., Hilbert functions,
resolutions, Gröbner bases), see [13, 14, 22, 27, 38, 49, 50, 51, 56, 59]. In Chapter 3 we
use these methods to study some families of affine codes.

The vanishing ideal of X ∗, denoted by I(X ∗), is the ideal of S generated by the
polynomials that vanish on all X ∗. A key observation that allows to use commutative
algebra methods in the study evaluation codes is that the kernel of the evaluation map
evd is precisely S≤d ∩ I(X ∗). Thus, using commutative algebra methods and algebraic
invariants (Hilbert functions, Hilbert series, Gröbner bases, degree, regularity) of I(X ∗),
as is seen in the references given above, or in [38, 49, 51, 54, 55], the algebra of S/I(X ∗)
is related to the basic parameters of CX ∗(d). Below we will clarify some more the role of
commutative algebra in coding theory.

The Hilbert function of S/I(X ∗) is given by

HX ∗(d) := dimK(S≤d/I(X ∗) ∩ S≤d),

and HX ∗(d) is precisely the dimension of CX ∗(d). The Krull dimension of S/I(X ∗) is
denoted by dim(S/I(X ∗)) and its Hilbert polynomial by hX ∗(t).

The vanishing ideal of X ∗, denoted by I(X ∗), is the ideal of S[u] generated by the
homogeneous polynomials that vanish on X ∗, where u := tn+1 is a new variable and
S[u] := ⊕d≥0S[u]d is a polynomial ring, with the standard grading, over the field K. Let
p1, . . . ,pm be a set of representatives for the points of X ∗ and let f0(t1, . . . , tn+1) = td1.
The evaluation map

ev′d : S[u]d −→ K |X
∗|, f 7→

(
f(p1)

f0(p1)
, . . . ,

f(pm)

f0(pm)

)
,

defines a linear map of K-vector spaces. If p′1, . . . ,p
′
m is another set of representatives,

then there are λ1, . . . , λm in K∗ such that p′i = λipi for all i. Thus, f(p′i)/f0(p′i) =
f(pi)/f0(pi) for f ∈ S[u]d and 1 ≤ i ≤ m. This means that the map ev′d is independent
of the set of representatives that we choose for the points of X ∗. In what follows we
choose (a1, 1), . . . , (am, 1) as a set of representatives for the points of X ∗. The image of
ev′d, denoted by CX ∗(d), defines a linear code that we call a projective evaluation code
(projective code for short) of degree d on the set X ∗.

We use the algebraic invariants (regularity, degree, Hilbert function) of the graded
ring S[u]/I(X ∗) as a tool to study the described codes. It is a fact that this graded ring
has the same invariants that the affine ring S/I(X ∗) [65, Remark 5.3.16]. The Hilbert
function of S[u]/I(X ∗) is given by

HX ∗(d) := dimK(S[u]d/I(X ∗) ∩ S[u]d).

The Krull dimension of S[u]/I(X ∗) is denoted by dim(S[u]/I(X ∗)) and its Hilbert poly-
nomial by hX ∗(t). According to [86, Lecture 13], or [21], we have that HX ∗(d) = |X ∗| for
d ≥ |X ∗|−1. This means that |X ∗| is the degree of S[u]/I(X ∗) in the sense of algebraic ge-
ometry [86, p. 166]. The index of regularity of S[u]/I(X ∗), denoted by reg

(
S[u]/I(X ∗)

)
, is
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the least integer ` ≥ 0 such that HX ∗(d) = |X ∗| for d ≥ `. The knowledge of the regularity
of S[u]/I(X ∗) is important because the code CX ∗(d) coincides with the underlying vector
space K |X

∗| for d ≥ reg (S[u]/I(X ∗)), and has, accordingly, minimum distance equal to 1.
Thus, potentially good codes CX ∗(d) can occur only if 1 ≤ d < reg(S[u]/I(X ∗)).

The basic parameters of different types of Reed-Muller codes (or evaluation codes)
over finite fields have been computed in a number of cases. If X = Pn, the parameters of
CX (d) are described in [56, Theorem 1]. If X is the image of An under the map An → Pn,
x 7→ [(x, 1)], the parameters of CX (d) are described in [13, Theorem 2.6.2]. If X ⊂ Pn is
a set parameterized by monomials arising from the edges of a clutter and the vanishing
ideal of X is a complete intersection, the parameters of CX (d) are described in [54].

In Proposition 3.1.3 we give a short proof of the well-known result that says that
the codes CX ∗(d) and CX ∗(d) have the same basic parameters. Then we show in Corol-
lary 3.1.5 a pair of properties of two of the basic parameters of CX ∗(d) : the dimension is
an increasing function until it reaches a constant value equal to |X ∗| and the minimum
distance is a decreasing function until it reaches a constant value equal to 1. In both cases
the functions depend of d.

Let υ1, . . . , υn be a sequence of vectors in Ns with υi = (υi1, . . . , υis) for 1 ≤ i ≤ n and

Q∗ := {(xυ11
1 · · ·xυ1s

s , . . . , xυn1
1 · · ·xυnss ) ∈ An|xi ∈ K∗ for all i},

the affine algebraic toric set parameterized by the vectors υ1, . . . , υn on An. The affine
code of degree d on the set Q∗, denoted by CQ∗(d), is called a parameterized affine code of
degree d on the set Q∗. Parameterized affine codes are special types of affine Reed-Muller
codes in the sense of [99, p. 37]. If s = n = 1 and υ1 = 1, then Q∗ = K∗ and we obtain
the classical Reed-Solomon code of degree d [98, p. 42].

Let Q∗ be the projective closure of Q∗. One of the main theorems of Section 3.2 talks
about the length of Q∗.
Theorem 3.2.1The length of CQ∗(d) is deg(S[u]/I(Q∗)).

In Theorem 3.2.9 we show how to compute the vanishing ideal of Q∗ when K is a
finite field. In Proposition 3.2.10 we prove it for infinite fields. Then we use these pairs
of results to compute some basic parameters of CQ∗(d).

Corollary 3.2.12 The dimension and the length of CQ∗(d) can be computed using Gröbner
basis.

If CX ∗G(d) is a parameterized code associated to a graph G, Theorem 3.2.16 tell us how
to compute the length of this code.

Let K be an arbitrary field, An := Kn an affine space over the field K, S :=
K[t1, . . . , tn] a polynomial ring over K with n variables and Λ1, . . . ,Λn a collection of
non-empty subsets of K with a finite number of elements. Consider the following finite
sets: (a) an affine cartesian product

C∗ := Λ1 × · · · × Λn ⊂ An,
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and (b) the projective closure of C∗

C∗ := {[(λ1, . . . , λn, 1)] |λi ∈ Λi for all i} ⊂ Pn,

where Pn is a projective space over the field K. For i = 1, . . . , n, we define di := |Λi|, the
cardinality of Λi.We may always assume that 2 ≤ di ≤ di+1 for all i (see Proposition 3.3.6).
The vanishing ideal of C∗, denoted by I

(
C∗
)
, consists of all homogeneous polynomials f

of S that vanish on the set C∗.
We show in Proposition 3.3.3 that I

(
C∗
)

is a complete intersection. Then we use [14,
Corollary 2.6] and in the same proposition we give explicit formulas, in terms of the di’s,
for a set of generators, for the Hilbert series, for the index of regularity and for the degree
of the ideal I

(
C∗
)
.

The code defined by C∗, denoted by CC∗(d), is called an affine cartesian code of degree
d on the set C∗. We compute the length and the dimension of affine cartesian codes.

Theorem 3.3.5 The length of CC∗(d) is d1 · · · dn, its minimum distance is 1 for d ≥∑n
i=1(di − 1), and its dimension is

HC∗(d) =

(
n+ d

d

)
−
∑

1≤i≤n

(
n+ d− di
d− di

)
+
∑
i<j

(
n+ d− (di + dj)

d− (di + dj)

)
−

∑
i<j<k

(
n+ d− (di + dj + dk)

d− (di + dj + dk)

)
+ · · ·+ (−1)n

(
n+ d− (d1 + · · ·+ dn)

d− (d1 + · · ·+ dn)

)
.

Then in Proposition 3.3.10 and Corollary 3.3.11 we show upper bounds in terms of
d1, . . . , dn for the number of roots, over C∗, of polynomials in S which do not vanish at
all points of C∗. Thus we come to one of the main theorems of Section 3.3, a formula for
the minimum distance of CC∗(d) in terms of the di’s.

Theorem 3.3.12 Let K be a field and let CC∗(d) be the cartesian evaluation code of degree
d on the finite set C∗ := Λ1 × · · · × Λn ⊂ Kn. If 2 ≤ di ≤ di+1 for all i, with di := |Λi|,
and d ≥ 1, then the minimum distance of CC∗(d) is given by

δC∗(d) :=


(dk+1 − `) dk+2 · · · dn if d ≤

n∑
i=1

(di − 1)− 1,

1 if d ≥
n∑
i=1

(di − 1) ,

where k ≥ 0, ` are the unique integers such that d =
∑k

i=1 (di − 1) + ` and 1 ≤ ` ≤
dk+1 − 1.

In general, the problem of computing the minimum distance of a linear code is difficult
because it is NP-hard [60]. The basic parameters of evaluation codes over finite fields have
been computed in a number of cases. Our main results provide unifying tools to treat
some of these cases. As an application, if T is a projective torus in Pn over a finite field
K, we recover in Corollary 3.3.13 a formula proved in [54] for the minimum distance of
CT (d). If An is the image of An under the map An → Pn, x 7→ [(x, 1)], we also recover in
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Corollary 3.3.14 a formula given in [13] for the minimum distance of CAn(d). If X = Pn,
the parameters of CX (d) are described in [56, Theorem 1] (see also [35]), notice that in
this case X does not arise as the projective closure of some cartesian product C∗.

It should be mentioned that we do not know of any efficient decoding algorithm for
the family of cartesian codes. The reader is referred to [33], [76, Chapter 9],[100] and the
references there for some available decoding algorithms for some families of linear codes.

At the end of Section 3.3 we consider cartesian codes over degenerate tori. Given a
non-decreasing sequence of positive integers d1 ≤ · · · ≤ dn, there exists a finite field K
such that di divides q − 1 for all i. We use this field to construct a cartesian code over a
degenerate torus with previously fixed parameters, expressed in terms of d1, . . . , dn.

Theorem 3.3.17 Let 2 ≤ d1 ≤ · · · ≤ dn be a sequence of integers. Then, there is a
finite field K := Fq and an affine degenerate torus T ∗ such that the length of CT ∗(d) is
d1 · · · dn, its dimension is

dimK CT ∗(d) =

(
n+ d

d

)
−
∑

1≤i≤n

(
n+ d− di
d− di

)
+
∑
i<j

(
n+ d− (di + dj)

d− (di + dj)

)
−

∑
i<j<k

(
n+ d− (di + dj + dk)

d− (di + dj + dk)

)
+ · · ·+ (−1)n

(
n+ d− (d1 + · · ·+ dn)

d− (d1 + · · ·+ dn)

)
,

its minimum distance is 1 if d ≥
∑n

i=1(di − 1), and

δT ∗(d) = (dk+1 − `)dk+2 · · · dn if d ≤
∑n

i=1 (di − 1)− 1,

where k ≥ 0, ` are the unique integers such that d =
∑k

i=1 (di − 1) + ` and 1 ≤ ` ≤
dk+1 − 1.

As a byproduct, we obtain formulas for the basic parameters of any affine evaluation
code over an affine degenerate torus (see Definition 1.2.7). Thus, we are also recovering
the main results of [25, 26] (Remark 3.3.18).

Let K := Fq be a finite field with q elements, Pn a projective pace over the field K,S :=
K[t0, . . . , tn] a polynomial ring over the field K with n+ 1 variables and Sd the K-vector
space of all homogeneous polynomials of S of degree d union the zero polynomial. Let X
be a subset of Pn and p1, . . . ,pm the points of X written with standard representation
for projective points, that is, zeros to the left and the first nonzero entry equal 1.

The evaluation map

ϕd : Sd −→ K |X |, f 7→ (f(p1), . . . , f(pm)) ,

defines a linear map of K-vector spaces. The image, denoted by CX (d), defines a linear
code, i.e., a K-vector subspace. We call CX (d) the projective evaluation code (projective
code for short) of degree d on the set X . The dimension, the length and the minimum
distance of projective codes are defined of analogous way to affine codes. Also the degree
and the regularity have the same interpretation. All the projective codes treated in this
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thesis are a generalization of projective Reed-Muller codes in the sense of [35] or [56, Def.
1, p. 1568].

Let v := {v1, . . . , vn} be a sequence of positive integers and T := {[(xv11 , . . . , x
vn
n )] |xi ∈

K∗ for all i} ⊆ Pn−1 a projective degenerate torus of type v. The projective code associ-
ated with T , denoted by CT (d), is called a parameterized projective code of degree d.

The linear code CT (d) has length |T |. The index of regularity of S/I(T ) is important
because good codes CT (d) can occur only if 1 ≤ d < reg(S/I(T )). Let β be a generator
of the cyclic group (K∗, · ), and di denotes o(βvi), the order of βvi for i = 1, . . . , n. We
compute the length of CT (d) and we give a condition over d in order to good codes can
appear in terms of a Frobenius number.

Theorem 4.1.1 (i) The length of CT (d) is d1 · · · dn/ gcd(d1, . . . , dn).

(ii) If I(T ) is a complete intersection, then good codes CT (d) can occur only if

d ≤ gcd(d1, . . . , dn) g(S ′) +
∑n

i=1 di − (n− 1),

where g(S ′) denotes the Frobenius number of the numerical semigroup S ′ generated by
o(βrv1), . . . , o(βrvn); and r is the greatest common divisor of d1, . . . , dn.

Let K := Fq be a finite field, and let Λ0,Λ1, . . . ,Λn be a collection of non-empty subsets
of K such that (i) for all i = 0, . . . , n we have 0 ∈ Λi, and (ii) for every i = 1, . . . , n we

have
Λj

Λi−1
⊂ Λj for j = i, . . . , n. Under these conditions, a projective cartesian product

C := [Λ0 × Λ1 × · · · × Λn] = {[(λ0, · · · , λn)]| aj ∈ Λj for all j} ⊂ Pn,

is called a projective nested cartesian set. The projective code CC(d) is called a projective
nested cartesian code. For i = 0, . . . , n, define di := |Λi|, the cardinality of Λi. We shall
always assume that 2 ≤ di ≤ di+1 for all i. The case d1 = · · · = dj = 1 will be treated
separately in Lemma 4.2.5. We give an explicit formula in terms of the di’s for the length
and the dimension.

Theorem 4.2.3 The length of CC(d) is m := 1 +
∑n

i=1 di · · · dn.
Theorem 4.2.9 The dimension of CC(d) is given by

dimK CC(d) =
n∑
j=0

[(
j + d− 1

d− 1

)
−

∑
n+1−j≤i≤n

(
j + d− 1− di
d− 1− di

)
+

∑
i<j

(
j + d− 1− (di + dj)

d− 1− (di + dj)

)
−
∑
i<j<k

(
j + d− 1− (di + dj + dk)

d− 1− (di + dj + dk)

)

+ · · ·+ (−1)j
(
j + d− 1− (dn+1−j + · · ·+ dn)

d− 1− (dn+1−j + · · ·+ dn)

)]
.

Then we find a Gröbner basis for the vanishing ideal I (C) .
Proposition4.2.14Let C := [Λ0 × · · · × Λn] be a projective nested cartesian set. The set

G :=
{
ti
∏

λj∈Λj
(tj − λjti) , i < j; i, j = 0, . . . , n

}
is a Gröbner basis for I(C).
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In Lemma 4.2.15 we give an upper bound for the minimum distance, and we give an
explicit formula that we think it is the exact value.

Conjecture 4.2.16If C is the projective nested cartesian set over Λ0, . . . ,Λn, then the
minimum distance of CC(d) is given by

δC(d) :=


(dk+1 − `) dk+2 · · · dn if 1 ≤ d ≤

n∑
i=1

(di − 1) ,

1 if
n∑
i=1

(di − 1) < d,

where 0 ≤ k ≤ n − 1 and 0 ≤ ` < dk+1 − 1 are the unique integers such that d − 1 =
k∑
i=1

(di − 1) + `.

We prove that the previous formula is true if we assume that every Λi is a field.

Theorem 4.2.23If C is the projective nested product of fields over K0, . . . , Kn, then the
minimum distance of CC(d) is given by

δC(d) :=


(dk+1 − `) dk+2 · · · dn if 1 ≤ d ≤

n∑
i=1

(di − 1) ,

1 if
n∑
i=1

(di − 1) < d,

where 0 ≤ k ≤ n− 1 and 0 ≤ ` < dk+1 − 1 are the unique integers such that

d− 1 =
k∑
i=1

(di − 1) + ` .

At the end of Section 4.2 we give a relation between projective cartesian codes and
affine cartesian codes. In particular, we show that there exists a relation between the
basic parameters of generalized Reed-Muller codes and the basic parameters of projective
Reed-Muller codes.

Corollary 4.2.25Let K0, . . . , Kn be subfields of K such that
C := [K0 ×K1 × · · · ×Kn] is a projective nested product of fields and
C∗i := Kn+1−i × · · · ×Kn ⊆ Ai, where i = 1 . . . , n. If

CC(d) is a [|C| , dimCC(d), δC(d)] -code

and
CC∗i (d) is a

[
|C∗i | , dimCC∗i (d), δC∗i (d)

]
-code,

then

|C| =
n∑
i=0

|C∗i | , dimCC(d) =
n∑
i=0

dimCC∗i (d− 1) and δC(d) = δC∗n(d− 1),
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where C∗0 := [1] and δC∗n(0) := d1 · · · dn.
Corollary 4.2.26 (Relationship between Generalized and Projective Reed-Muller codes).
If the Projective Reed-Muller code

PCd(n, q) is a [|Pn| , dimCPn(d), δPn(d)] - code

and for i = 1, . . . , n the Generalized Reed-Muller code

GCd(i, q) is a
[∣∣Ai

∣∣ , dimCAi(d), δAi(d)
]

- code ,

then

|Pn| =
n∑
i=0

∣∣Ai
∣∣ , dimCPn(d) =

n∑
i=0

dimCAi(d− 1) and δPn(d) = δAn(d− 1),

where `A0 := 1, kA0(d) := 1 and δAn(0) := qn.

For all unexplained terminology and additional information, we refer to [16] for the
theory of lattice ideals; [57, 75, 78, 86, 97, 102] for commutative algebra, the theory of
Gröbner bases, Hilbert functions, and toric ideals; [88, 98, 99] for the theory of linear
codes; and [22, 23, 24, 27, 51] for the theory of Reed-Muller codes and evaluation codes.
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Chapter 1

Preliminaries

In this chapter we introduce some important topics of commutative algebra. For instance
we introduce Hilbert functions and the notion of degree. We are going to recall some
well-known results about the behavior of Hilbert functions of graded ideals. In particular
we recall a standard method, using Hilbert series, to compute the degree.

Toric ideals are well-known and well-studied objects in commutative algebra. In this
chapter we study some technics used for toric ideals in order to obtain results about some
vanishing ideals in Sections 2.6 and 2.7.

We define the sets that we use to define some evaluation codes, the main topic of
Chapters 3 and 4.

Small section about graph theory is introduced here in order to understand only Sub-
section 3.2.3. In other words, if you do not want to read Subsection 3.2.3, you do not
need to study this small section.

Finally we write a section about polyhedral sets. The reason is because in Subsection
2.6.1 we compute the degree of a family of lattice ideals and we make this computation
in terms of the relative volume of a lattice polytope.

From start to finish we shall use the following symbology and terminology.

Z integers.
R real numbers.
Z≥d,R≥d integers ≥ d, real numbers ≥ d.
N,R+,N+ abbreviation for Z≥0,R≥0,Z≥1.
Fq a finite field with q elements.
F∗q := Fq \ {0} multiplicative group of a finite field with q elements.
K a field.
K∗ := K \ {0} multiplicative group of the field K.
S a polynomial ring K [t1, . . . , tn] over K with n indeterminates.
S≤d polynomials of S of degree at most d.
Sd homogeneous polynomials of S of degree d union the zero polynomial.
ta abbreviation for the monomial ta1

1 · · · tann , where a := (ai) ∈ Nn.



2 Preliminaries

1.1 Commutative algebra

In this section we are going to introduce the following topics of commutative algebra:
Cohen-Macaulay rings, Gröbner basis, Hilbert functions and toric ideals. All these topics
will be very important tools for all the thesis. First for the study of lattice ideals and
then for coding theory.

There are very good references to learn commutative algebra. We use mainly [65, 68,
73, 75, 78, 82, 83, 89, 90, 102, 103].

Let R be a ring, K a field and S := K [t1, . . . , tn] a polynomial ring over the field K
with n indeterminates.

The Krull dimension of R, denoted by dim(R), is defined to be the supremum of the
lengths of all strictly ascending chains of primes:

dim(R) := sup {r | there is a chain of primes p0 ( · · · ( pr in R} .

Let p be a prime ideal of R. The height of p, denoted by ht(p), is the supremum of the
lengths of all chains of prime ideals

p0 ( · · · ( pr = p

which end at p; note that dim(Rp) = ht(p). The height of an ideal I of R, denoted by
ht(I), is defined as

ht(I) := min {ht(p) | I ⊂ p and p prime} .

In general, for an arbitrary ideal I of R we have dim(R/I)+ht(I) ≤ dim(R); the difference
dim(R)− dim(R/I) is called the codimension of I and dim(R/I) is called the dimension
of I.

Definition 1.1.1 An ideal I ⊂ S is called a complete intersection if there exist f1, . . . , fr
in S such that I = (f1, . . . , fr), where r is the height of I.

1.1.1 Cohen-Macaulay rings and modules

We introduce some special types of rings and modules called Cohen-Macaulay. Let R
be a ring, K a field and S := K [t1, . . . , tn] a polynomial ring over the field K with n
indeterminates. The main references for Cohen-Macaulay modules are [73, 78, 80, 102,
103].

Definition 1.1.2 Let M be an R-module.
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• An element x ∈ R is a zero divisor of M if there is 0 6= y ∈M such that xy = 0. If
x is not a zero divisor, we call x a regular element of M. The set of zero divisors of
M is denoted by Z(M). Note that if I is an ideal of S, then

Z(S/I) = {f ∈ S | there is g ∈/ I with f · g ∈ I} .

• A sequence θ := θ1, . . . , θr in R is called a regular sequence of M or an M-regular
sequence if (θ)M 6= M and θi ∈/Z (M/ (θ1, . . . , θi−1)M) for all i.

• The annihilator of M is given by

annR(M) := {x ∈ R | xM = 0} ,

if y ∈M the annihilator of y is ann(y) = ann(Ry).

• The dimension of M is

dim(M) := dim(R/ann(M))

and the codimension of M is

codim(M) := dim(R)− dim(M).

• M has finite length if there is a composition series

(0) = M0 ⊂M1 ⊂ . . . ⊂Mr = M,

where Mi/Mi−1 is a nonzero simple module (that is, Mi/Mi−1 has no proper submod-
ules other than (0)) for all i. Note that Mi/Mi−1 must be cyclic and thus isomorphic
to R/m, for some maximal ideal m. The number r is independent of the composition
series and is called the length of M, it is usually denoted by `R(M) or simply `(M).

Proposition 1.1.3 Let M be an R-module and let I be an ideal of R such that IM 6= M.
If θ = θ1, . . . , θr is an M-regular sequence in I, then θ can be extended to a maximal
M-regular sequence in I.

Proof. By induction assume there is an M -regular sequence θ1, . . . , θi in I for some i ≥ r.
Set M = M/ (θ1, . . . , θi)M. If I ⊂/Z(M), pick θi+1 in I which is regular on M. Since

(θ1) ⊂ (θ1, θ2) ⊂ · · · ⊂ (θ1, . . . , θi) ⊂ (θ1, . . . , θi, θi+1) ⊂ R

is an increasing sequence of ideals in a Noetherian ring R, this inductive construction
must stop at a maximal M -regular sequence in I. 2

Lemma 1.1.4 ([103, Lemma 2.3.6]) Let M be a module over a local ring (R,m). If
θ1, . . . , θr is an M-regular sequence in m, then r ≤ dim(M).
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Definition 1.1.5 Let (R,m) be a local ring and M 6= 0 an R-module.

• The depth ofM, denoted by depth(M), is the length of any maximal regular sequence
on M, which is contained in m.

• M is called a Cohen-Macaulay module (C-M for short) if depth(M) = dim(M).

• R is called a Cohen-Macaulay ring if R is C-M as an R-module.

• Assume that M has dimension d. A system of parameters (s.o.p for short) of M is
a set of elements θ1, . . . , θd in m such that

`R (M/ (θ1, . . . , θd)M) <∞.

Definition 1.1.6 Let R be an arbitrary Noetherian ring and M an R-module.

• M is a Cohen-Macaulay module if Mm is a C-M module for all maximal ideals
m ∈ Supp(M). So we consider the zero module to be Cohen-Macaulay.

• As in the local case, R is a Cohen-Macaulay ring if R is C-M as an R-module.

Proposition 1.1.7 ([102, Proposition 1.3.17]) Let M be a module of dimension d over a
local ring (R,m) and let θ = θ1, . . . , θd be a system of parameters of M. Then M is C-M
if and only if θ is an M-regular sequence.

Proposition 1.1.8 ([102, Lemma 1.3.18]) Let (R,m) be a local ring and let (f1, . . . , fr)
be an ideal of height equal to r. Then there are fr+1, . . . , fd in m such that f1, . . . , fd is a
system of parameters of R.

1.1.2 Gröbner basis

In this subsection we review some basic facts and definitions on Gröbner bases. The
main references for Gröbner bases are [65, 68, 75, 78], there the reader will find a detailed
discussion of Gröbner bases and the missing proofs of this subsection.

Let R be a ring, K a field and S := K [t1, . . . , tn] a polynomial ring over the field K
with n indeterminates. A polynomial of S can be defined as a finite sum of terms. The
presentation of a polynomial as a linear combination of monomials is unique only up to
an order of the summands, due to the commutativity of the addition. We can make this
order unique by choosing an order on the set of monomials.

Definition 1.1.9 A monomial order on S is any relation � on Nn, or equivalently, any
relation on the set of monomials Mon(S) := {ta | a ∈ Nn} satisfying the following three
conditions.

(i) � is a total order (ta � tb or ta = tb or ta ≺ tb).
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(ii) If ta � tb and c ∈ Nn, then tcta � tctb.

(iii) � is a well-ordering on Nn. This means that every nonempty subset of Nn has a
smallest element under � .

Some monomial orders are listed in the next definition.

Definition 1.1.10 Monomials orders.

• Lexicographical order �lex

ta �lex tb ⇐⇒ ∃1 ≤ i ≤ n : a1 = b1, . . . , ai−1 = bi−1, ai > bi.

• Reverse lexicographical order �revlex

ta �revlex tb ⇐⇒ ∃1 ≤ i ≤ n : an = bn, . . . , ai+1 = bi+1, ai < bi

• Degree lexicographical order �Dp

ta �Dp tb ⇐⇒ deg ta > deg tb or
(
deg ta = deg tb and ta �lex tb

)
.

• Degree reverse lexicographical order �dp

ta �dp tb ⇐⇒ deg ta > deg tb or
(
deg ta = deg tb and ta �revlex tb

)
.

Definition 1.1.11 Let f :=
∑

a αat
a be a nonzero polynomial in S and let � be a

monomial order on S.

• The multidegree of f is denoted and defined by

multideg(f) := max {a | αa 6= 0} ,

where max is taken with respect to �.

• The degree of f is denoted and defined by

deg≺(f) :=
n∑
i=1

(multideg(f))i .

Observe that deg≺(ta) = a1 + · · ·+ an.

• The total degree of f is denoted and defined by

degtotal(f) := max {deg≺(ta) ∈ N | αa 6= 0} ,

where max is taken in N.
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• The degree with respect to ti of f is denoted and defined by

degti(f) := deg≺(f(1, . . . , 1, ti, 1, . . . , 1)).

• The leading coefficient of f is denoted and defined by

LC(f) := αmultideg(f) ∈ K.

The leading monomial of f is denoted and defined by

LM(f) := tmultideg(f).

The leading term of f is denoted and defined by

LT(f) := LC(f) · LM(f).

Proposition 1.1.12 (Division algorithm on S [75, Theorem 3, pag 64]) Fix a monomial
order � on S, and let F := {f1, . . . , fr} be an ordered r-tuple of polynomials in S. Then
every f ∈ S can be written as

f = g1f1 + · · · grfr + f
F
,

where gi, f
F ∈ S, and either f

F
= 0 or f

F
is a linear combination, with coefficients in

K, of monomials, none of which is divisible by any of LT (f1), . . . , LT (fr). We will call

f
F

the remainder of f by the ordered r-tuple F = {f1, . . . , fr} . Furthermore, if gifi 6= 0,
then we have

multideg(f) �= multideg(gifi).

Definition 1.1.13 Fix a monomial order � on S and let I ⊂ S be an ideal other than
{0} . We denote by LT(I) the initial ideal, i.e., the ideal generated by the leading terms
(with respect to ≺) of the elements of I.

Definition 1.1.14 A finite subset G := {g1, . . . , gr} of an ideal I ⊂ S is said to be a
Gröbner basis if

(LT (g1), . . . , LT (gr)) = LT (I).

Equivalently, but more informally, G is a Gröbner basis of I if and only if the leading
term of any element of I is divisible by one of the LT (gi).

Proposition 1.1.15 [75, Corollary 6, pag 77] Fix a monomial order on S. Then every
ideal I of S other than {0} has a Gröbner basis. Furthermore, any Gröbner basis of an
ideal I is a set of generators of I.

Gröbner basis are useful, among others things, because it can tell us when an element of
S is a member of an ideal I.
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Proposition 1.1.16 [65, Proposition 1.6.7 (1)] Fix a monomial order on S. Let G be a
Gröbner basis of an ideal I ⊂ S and let f ∈ S. Then f ∈ I if and only if the remainder
on division of f by G is zero, i.e.,

f ∈ I if and only if f
G

= 0.

Given an ideal I we would like to find a Gröbner basis for this ideal, to solve this problem
we need the following tools.

Definition 1.1.17 Fix a monomial order on S and let f, g ∈ S be nonzero polynomials.

(i) Assume multideg(f) = a and multideg(g) = b. Define c := (c1, . . . , cn) and γ :=
(γ1, . . . , γn), where ci := max {ai, bi} and γi := min {ai, bi} for each i. We call tc the
least common multiple of LM(f) and LM(g), and it is denoted by lcm(LM(f),LM(g)).
tγ is called the greatest common divisor of LM(f) and LM(g), and it is denoted by
gcd(LM(f),LM(g)).

(ii) The S-polynomial of f and g is the combination

S(f, g) :=
tc

LT(f)
· f − tc

LT(g)
· g.

S-polynomials are important because they can tell us when a set of generators of an ideal
I is a Gröbner basis.

Proposition 1.1.18 (Buchberger’s Criterion [75, Theorem 6, pag 85]) Fix a monomial
order on S and let I := (g1, . . . , gr) be an ideal of S. Then G := {g1, . . . , gr} is a Gröbner

basis of I if and only if for all pairs i, j we have that S(gi, gj)
G

is zero.

By Proposition 1.1.15 we know that a Gröbner basis of an ideal I always exists. Further-
more by Proposition 1.1.18 we have a criterion to identify if a set of generators of an ideal
is also a Gröbner basis. Given an ideal I, the following remarkable algorithm uses these
previous facts to give a method to find a Gröbner basis of I.

Proposition 1.1.19 (Buchberger’s Algorithm [75, Theorem 2, pag 90]) Fix a monomial
order on S and let I := (f1, . . . , fs) be an ideal of S. A Gröbner basis of I can be con-
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structed in a finite number of steps by the following algorithm:

Data: F := {f1, . . . , fs}
Result: A Gröbner basis G := {g1, . . . , gr} of I, with F ⊂ G
G := F ;
repeat
G ′ := G
for each pair {f, g} , f 6= g in G ′ do

f ∗ := S (f, g)
G′

if f ∗ 6= 0 then
G := G ∪ {f ∗}

end

end
until G = G ′ ;

Definition 1.1.20 Fix a monomial order on S. We have two special sorts of Gröbner
basis.

(i) A minimal Gröbner basis of I is a Gröbner basis G of I such that the following
conditions are satisfied.

(a) LC(g) = 1 for all g ∈ G.

(b) For all g ∈ G, LT(g) ∈/LT (G − {g}) .

(ii) A reduced Gröbner basis of I is a Gröbner basis G of I such that the following
conditions are satisfied.

(a) LC(g) = 1 for all g ∈ G.

(b) For all g ∈ G, no monomial of g lies in LT (G − {g}) .

The “problem” with a Gröbner basis of an ideal I is that it is not unique, but the reduced
Gröbner basis are unique.

Proposition 1.1.21 [75, Proposition 6, pag 92] Let I 6= {0} be an ideal. Then, for a
given monomial order, I has a unique reduced Gröbner basis.

1.1.3 Hilbert functions

We introduce Hilbert functions and the notion of degree. We will recall some well-known
results about the behavior of Hilbert functions of graded ideals. In particular we recall
a standard method, using Hilbert series, to compute the degree. The main references for
Hilbert functions are [65, 68, 75, 78].
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Definition 1.1.22 We call a ring R graded if there are additive subgroups Rd for d ∈ N
with R =

⊕
Rd and RdRm ⊂ Rd+m for all d,m ∈ N. The elements of Rd are called

homogeneous elements of degree d.

Definition 1.1.23 An ideal I of a graded ring R :=
⊕

Rd is called a graded ideal or a
homogeneous ideal if it is generated by homogeneous elements.

Lemma 1.1.24 [65, Lemma 2.2.7] Let I be an ideal of a graded ring R :=
⊕

Rd. The
following conditions are equivalents.

(i) I is a graded ideal.

(ii) I is graded with the induced grading, that is, I =
⊕

d (Rd ∩ I) .

(iii) Let f :=
∑
fd be a element of R, with fd ∈ Rd. Then f ∈ I if and only if fd ∈ I for

all d.

Example 1.1.25 Let see how S can be graded.

(i) If we take S0 := K and for d > 0 we construct Sd as the K-vector space generated
by the monomials ta with deg(ta) = d, then S has the standard grading S :=

⊕
Sd.

If I is a graded ideal of S, we say that I is standard graded.

(ii) If now we take a vector of positive integers ω := (ω1, . . . , ωn) , then S has the grading
induced by ω, or the grading induced by setting deg(ti) := ωi for i = 1, . . . , n, if we
make S :=

⊕
Sd, where Sd is the K-vector space generated by all monomials ta,

with 〈ω, a〉 = d. In this case we say that S is ω-graded. If I is a graded ideal of S,
we say that I is ω-graded.

Definition 1.1.26 Assume S := K[t1, . . . , tn] =
⊕∞

d=0 Sd has the standard grading and
let I be a graded ideal of S.

(i) The Hilbert function of S/I, denoted by HI , is given by

HI(d) := dimK(S/I)d = dimK Sd/Id,

where Id := I ∩ Sd is the degree d part of I.

(ii) The Hilbert series of S/I, denoted by HPI , is given by

HPI (t) :=
∑
d≥0

HI (d) · td.
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Remark 1.1.27 When I is a monomial ideal, HI(d) is the number of monomials not in
I of degree d, and by [75, Proposition 8, pag 452], for d sufficiently large, we can express
the Hilbert function of I in the form

HI(d) =
r∑
i=1

bi

(
d

r − i

)
.

Proposition 1.1.28 [75, Proposition 9, pag 463] Let I be a homogeneous ideal and let �
be a monomial order on S. Then the monomial ideal LT(I) has the same Hilbert function
as I.

Definition 1.1.29 (Same hypothesis that Definition 1.1.26) Using Remark 1.1.27 and
Proposition 1.1.28 we can define the Hilbert polynomial of S/I as the unique polynomial
hI(t) :=

∑k−1
i=0 cit

i ∈ Q[t] such that for d sufficiently large we have

HI(d) = hI(d).

Definition 1.1.30 (Same hypothesis that Definition 1.1.26) Let hI(t) :=
∑k−1

i=0 cit
i ∈ Q[t]

be the Hilbert polynomial of S/I.

(i) If dim(S/I) ≥ 1, the integer ck−1(k − 1)!, denoted by deg(S/I), is called the degree
of S/I or the degree of I.

(ii) If dim(S/I) = 0, the integer dimK(S/I) is called the degree of S/I.

Thanks to Hilbert-Serre’s theorem we can extract a lot of information from the Hilbert
series.

Proposition 1.1.31 (Hilbert-Serre [68, Corollary 20.8]) Assume S has the standard grad-
ing and let I be a graded ideal of S. Then

(i) The Hilbert series of I can be written uniquely in the form HPI(t) = p(t)

(1−t)k , where

p(t) ∈ Z [t] , p(1) 6= 0 and n ≥ k ≥ 0.

(ii) The Hilbert polynomial hI(t) has degree k− 1 and has leading coefficient p(1)/(k−
1)!. Furthermore for d ≥ deg(p(t)) − k + 1 we have HI(d) = hI(d) (function and
polynomial agree).

(iii) k = dim(S/I).

(iv) deg(S/I) = p(1).

The following result is about the behavior of the Hilbert function and it will be useful
for our research.
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Lemma 1.1.32 (a) If Si = Ii for some i ≥ 1, then Sd = Id for all d ≥ i.

(b) If dim S/I ≥ 1, then HI(i) > 0 for i ≥ 0.

Proof. (a) It suffices to prove the case d = i + 1. As Ii+1 ⊂ Si+1, we need only show
Si+1 ⊂ Ii+1. Take a monomial f in Si+1. Then, f = ta1

1 · · · tass with
∑s

i=1 ai = i + 1 and
aj > 0 for some j. Thus, f ∈ S1Si. As S1Si = S1Ii ⊂ Ii+1, we get f ∈ Ii+1.

(b) The Hilbert polynomial hI of S/I has degree dim(S/I) − 1 ≥ 0. Hence, hI is a
non-zero polynomial. If HI(i) = dimK(S/I)i = 0 for some i, then Si = Ii. Thus, by
(a), HI(d) vanishes for d ≥ i, a contradiction because the Hilbert polynomial of S/I is
non-zero. 2

Next, we recall and prove a general fact about 1-dimensional Cohen-Macaulay graded
ideals: the Hilbert function is increasing until it reaches a constant value. This behavior
was pointed out in [14, p. 456] (resp. [21, Remark 1.1, p. 166]) for finite (resp. infinite)
fields, see also [11]. No proof was given in neither of these places, likely because the result
is not hard to show.

Proposition 1.1.33 (i) If dim S/I ≥ 2 and depthS/I > 0, then HI(i) < HI(i + 1) for
i ≥ 0.

(ii) If depthS/I = dim S/I = 1, then there is an integer r ≥ 0 such that

1 = HI(0) < HI(1) < · · · < HI(r − 1) < HI(i) = deg(S/I) for i ≥ r.

Proof. Consider the algebraic closure K of the field K. We set

S = S ⊗K K and I = IS.

By [57, Lemma 1.1], S/I and S/I have the same Krull dimension, the same depth, and
the same Hilbert function. Hence, replacing K by K, we may assume that K is infinite.
As S/I has positive depth, there is h ∈ S1 which is a non zero-divisor of S/I. Applying
the function dimK(·) to the exact sequence

0 −→ (S/I)[−1]
h−→ S/I −→ S/(h, I) −→ 0,

we get HI(i+ 1)−HI(i) = H(i+ 1) ≥ 0 for i ≥ 0, where H(i) = dimK(S/(h, I))i. We set
S ′ = S/(h, I). Notice that dim(S ′) = dim(S/I)− 1.

(i) If H(i + 1) = 0 for some i ≥ 0, then, by Lemma 1.1.32(a), dimK(S ′) <∞. Hence
S ′ is Artinian, i.e., dim(S ′) = 0, a contradiction. Thus, HI(i+ 1) > HI(i) for i ≥ 0.

(ii) Since dim(S/I) = 1, the Hilbert polynomial of S/I is a non-zero constant equal
to deg(S/I). Let r ≥ 0 be the first integer such that HI(r) = HI(r+ 1), thus S ′r+1 = (0),
i.e., Sr+1 = (h, I)r+1. Then, by Lemma 1.1.32(a), S ′i = (0) for i ≥ r + 1. Hence, the
Hilbert function of S/I is constant for i ≥ r and strictly increasing on [0, r − 1]. 2

In words of Dr. David Eisenbud, “the regularity of an ideal in S is an important
measure of how complicated the ideal is”. This measure can be defined in terms of a
complex. For the purpose of our work, we will take an equivalent definition of regularity,
which is valid when S/I is Cohen-Macaulay [80, Proposition 4.2].
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Definition 1.1.34 Assume S has the standard grading and let I be a graded ideal of S
such that S/I is Cohen-Macaulay.

(i) The index of regularity of S/I, denoted by reg(S/I), is the least integer r ≥ 0 such
that hI(d) = HI(d) for d ≥ r.

(ii) The integer reg(S/I)−1 is denoted by a(S/I), or a(I), and it is called the a-invariant
of S/I, or a-invariant of I.

We can complete the Proposition1.1.31 using the hypothesis that S/I is Cohen-Macaulay.

Proposition 1.1.35 Continuation of Proposition1.1.31 using the extra hypothesis that
S/I is Cohen-Macaulay.

(v) a(S/I) = deg(p(t))− k.

(vi) reg(S/I) = deg(p(t))− k + 1.

Thus, the computation of the dimension, degree, a-invariant or index of regularity is
reduced to the computation of the Hilbert series of S/I. There are a number of computer
algebra systems (Macaulay2 [61], CoCoA [63], Singular [65]) that compute the Hilbert
series and the degree of S/I using Gröbner bases. Two excellent references to compute
Hilbert series, using elimination of variables, are [3, 7].

Finally some definitions and a result that will be useful for this thesis.

Definition 1.1.36 Let I, J be ideals of S.

• The ideal quotient of I by J is defined as

I : J := {f ∈ S | f · J ⊂ I} .

• The saturation of I with respect to J is

I : J∞ := {f ∈ S | there is r ∈ N such that f · Jr ⊂ I} .

• In particular

I : (t1 · · · tn)∞ = {f ∈ S | there is r ∈ N with f · (t1 · · · tn)r ∈ I} .

• The radical of I, denoted by
√
I or rad(I), is the ideal

√
I := {f ∈ S | there is r ∈ N with f r ∈ I} .

Proposition 1.1.37 Let I be an ideal of S. The following hold.

(a) [47] If LT (I)is square-free, then rad(I) = I.

(b) [82, Corollary 6.9] If I is graded and LT (I) is Cohen-Macaulay (resp. Gorenstein),
then I is Cohen-Macaulay (resp. Gorenstein).
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1.1.4 Toric ideals

Toric ideals are well-known and well-studied objects in commutative algebra. In this
section we study some technics used for toric ideals in order to obtain results about
vanishing ideals of projective algebraic toric sets in Section 2.6 and projective degenerate
torus in Section 2.7. Let K be a field, S := K [t1, . . . , tn] a polynomial ring over the field
K with n indeterminates and S ′ := K [x1, . . . , xs] a polynomial ring with s indeterminates
over the same field K. There is an isomorphism between the multiplicative semigroup of
monomials of S ′ and the additive semigroup Ns :

Mon(S ′) → Ns

xa := xa1
1 · · ·xass → a := (a1, . . . , as)

xa+b := xaxb → a+ b.

Let F := {f1 := xυ1 , . . . , fn := xυn} be a finite set of n distinct monomials in S ′ with
fi 6= 1 for all i. The set F has a corresponding set of vectors in Ns under the previous
isomorphism:

F = {xυ1 , . . . , xυn} → A := {υ1, . . . , υn} .

Definition 1.1.38 The monomial subring generated or spanned by F is denoted and
defined by

K[F ] :=
⋂
R∈R

R,

where R is the family of all subrings R of S ′ such that K ∪ F ⊂ R.

The elements of K[F ] are polynomial expressions with coefficients in K :∑
finite

αa(x
υ1)a1 · · · (xυn)an ,

where αa ∈ K and a := (a1, . . . , an) ∈ Nn.

Let NA := Nυ1 + · · ·+ Nυn be the subsemigroup of Ns generated by the set A.
As K-vector space K[F ] is generated by the set of monomials of the form xa, with a ∈ NA.
Consequently

K[F ] = K[NA] := K[{xa | a ∈ NA}],
thus K[F ] is the semigroup ring of NA. Assume that S ′ := ⊕i≥0S

′
i has the standard

grading. An important feature of K[F ] is that it is a graded subring of S ′ with the
grading given by

K[F ]i := K[F ] ∩ S ′i.

There is a graded epimorphism of K-algebras:

ϕ : S −→ K[F ]

ϕ(ti) −→ fi,
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where S is graded by deg(ti) := |υi|. Note that in general we have

ϕ(h(t1, . . . , tn)) = h(f1, . . . , fn), for all h ∈ S.

The kernel of ϕ, denoted by PF , is called the toric ideal of K[F ] with respect to
f1, . . . , fn. We also denote the toric ideal of K[F ] by IA. We say that IA is the toric ideal
of A.

Theorem 1.1.39 [102, Proposition 7.1.2] PF is a graded prime ideal generated by a finite
set of pure binomials.

Definition 1.1.40 If F := {xυ1 , . . . , xυn} is a set of monomials in S ′, the associated
matrix of K[F ], denoted by A, is the s × n matrix whose columns are the exponent
vectors υ1, . . . , υn.

Corollary 1.1.41 [102, Corollary 7.1.4] If A is the associated matrix of K[F ], then

PF =
({
ta

+ − ta− | a ∈ Zn and Aa = 0
})

.

This result can be restated as:

Corollary 1.1.42 The toric ideal of A := {υ1, . . . , υn} is given by

IA =
(
ta − tb | a := (ai) , b := (bi) ∈ Nn,

∑
aiυi =

∑
biυi

)
⊂ S.

Corollary 1.1.43 [102, Corollary 7.1.5] PF has a Gröbner basis consisting of pure bino-
mials with respect to any monomial ordering of the polynomial ring S.

Definition 1.1.44 Let F be a finite set of monomials in S and let PF be the toric ideal
of K[F ]. A pure binomial ta− tb ∈ PF is called primitive if there is no other pure binomial
tγ − tδ ∈ PF such that tγ divides ta and tδ divides tb.

Lemma 1.1.45 [103, Lemma 8.33] If f is a pure binomial in the reduced Gröbner basis
of PF with respect to some term order ≺, then f is a primitive binomial.

Definition 1.1.46 The universal Gröbner basis of a toric ideal PF is a finite set U ⊂ I
which is a Gröbner basis of I with respect to all term orders.

Theorem 1.1.47 [103, Proposition 8.3.6] If P := PF is the toric ideal of a monomial
subring K[F ], then the set GP of primitive pure binomials in P contains the universal
Gröbner basis of PF .
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If F is a subset of K(x1, . . . , xs), we define PF and K [F ] of a similar way that when
F is a subset of S ′.

Theorem 1.1.48 [103, Proposition 8.2.12] If F := {f1/g1, . . . , fn/gn} ⊂ K(x1, . . . , xs)
is a set of rational functions with fi, gi ∈ S ′ and gi 6= 0 for all i, then the kernel of the
homomorphism of K-algebras

ϕ : S = K [t1, . . . , tn] −→ K [F ]

ti −→ fi/gi,

is the ideal
(g1t1 − f1, . . . , gntn − fn, yg1 · · · gn − 1) ∩ S,

where y is an extra variable.

Theorem 1.1.49 Let F := {xυi}ri=1 be a set of distinct monomials in K (x1, . . . , xs) with
fi 6= 1 for all i.

• ([97],[103, Theorem 9.6.16]) If the initial ideal LT (PF) is generated by square-free
monomials, then K[F ] is normal.

• ([31],[73, Theorem 6.3.5]) If K[F ] is normal, then K[F ] is Cohen-Macaulay.

Theorem 1.1.50 [103, Proposition 8.2.12] If R is a polynomial ring over a field K and
f1, . . . , fn are in R, then the kernel of the homomorphism of K-algebras

ϕ : S = K [t1, . . . , tn] −→ K [f1, . . . , fn]

ti −→ fi,

is the ideal
(t1 − f1, . . . , tn − fn) ∩ S.

For toric ideals there are methods, implemented in Normaliz [62], to compute its
Hilbert series and its degree using polyhedral geometry.

1.2 Algebraic geometry

Definitions that we introduce in this section are simple and can be found at all basic
algebraic geometry book, for instance [75, 86]. Sets that we define in this section will be
important to define some evaluation codes, the main topic of Chapters 3 and 4.

Let K be an arbitrary field, K∗ := K \ {0} the multiplicative group of K and S :=
K[t1, . . . , tn] a polynomial ring over K with n indeterminates.

Definition 1.2.1 Spaces.
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(i) The affine space of dimension n over K, denoted by An
K , is the cartesian product

Kn of n-copies of K. If there is not ambiguity hazard about the field, we denote
An
K only by An.

(ii) The projective space of dimension n over K, denoted by PnK , (or simply by Pn if
there is not ambiguity hazard about the field) is defined as the quotient space(

Kn+1 \ {0}
)
/ ∼,

where two points a,b in Kn+1 \ {0} are equivalent if there is λ ∈ K such that
a = λb. It is usual to denote the equivalent class of a by [a] .

Definition 1.2.2 Varieties.

(i) Given an ideal I ⊂ S, its zero set or variety, denoted by V (I), is the set of all a ∈ An

such that f(a) = 0 for all f ∈ I.

(ii) Given a homogeneous ideal I ⊂ S[t0], its zero set or projective variety, denoted by
V (I), is the set of all p ∈ PnK such that f(p) = 0 for all homogeneous polynomials
f ∈ I.

Definition 1.2.3 Zariski Topologies.

(i) We can define a topology on An, called the Zariski topology on An, by defining the
closed subsets to be the varieties. X ∗ ⊂ An is open if and only if An \ X ∗ = V (I),
for some ideal I ⊂ S.

(ii) We can define a topology on Pn, called the Zariski topology on Pn, by defining
the closed subsets to be the projective varieties. X ⊂ Pn is open if and only if
Pn \ X = V (I), for some homogeneous ideal I ⊂ S.

Definition 1.2.4 Vanishing ideals.

(i) If X ∗ is a subset of An, the vanishing ideal of X ∗, denoted by I(X ∗), is the ideal of
S generated by the polynomials that vanish at all points of X ∗.

(ii) If X is a subset of Pn, the vanishing ideal of X , denoted by I(X ), is the ideal of
S[t0] generated by the homogeneous polynomials that vanish at all points of X .

Definition 1.2.5 Let X ∗ be a subset of An. The projective closure of X ∗, denoted by X ∗,
is defined as the closure of the set {[(a, 1)] | a ∈ X ∗} in the Zariski topology of Pn.

Remark 1.2.6 Note that if a := [(a1, . . . , an, 1)] and b := [(b1, . . . ,bn, 1)] are two points
of Pn, then {a} = V (Ia) and {b} = V (Ib), where Ia := (t1 − a1tn+1, . . . , tn − antn+1) and
Ib := (t1 − b1tn+1, . . . , tn − bntn+1). Thus {a} ∪ {b} = V (IaIb). As a conclusion, if X ∗ is
a finite subset of An, then X ∗ = {[(a, 1)] | a ∈ X ∗}.
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Definition 1.2.7 Let v = {v1, . . . , vn} be a sequence of positive integers.

• The set T ∗ := {(x1, . . . , xn) ∈ An | xi ∈ K∗} is called an affine torus.

• The set T := {[(x1, . . . , xn)] | xi ∈ K∗} ⊂ Pn−1 is called a projective torus.

• The set T ∗ := {(xv11 , . . . , x
vn
n ) ∈ An|xi ∈ K∗ for all i} is called an affine degenerate

torus of type v on An.

• The set T := {[(xv11 , . . . , x
vn
n )] |xi ∈ K∗ for all i} ⊂ Pn−1 is called a projective

degenerate torus of type v on Pn−1.

Definition 1.2.8 Let υ1, . . . , υn be a sequence of vectors in Ns with υi = (υi1, . . . , υis)
for 1 ≤ i ≤ n.

• The set Q∗ := {(xυ11
1 · · ·xυ1s

s , . . . , xυn1
1 · · ·xυnss ) ∈ An|xi ∈ K∗ for all i} is called an

affine algebraic toric set parameterized by the vectors υ1, . . . , υn on An.

• The set Q := {[(xυ11
1 · · ·xυ1s

s , . . . , xυn1
1 · · · xυnss )] |xi ∈ F∗q for all i} ⊂ Pn−1 is called a

projective algebraic toric set parameterized by the vectors υ1, . . . , υn on Pn−1.

1.3 Graph theory

Concepts about graph theory are introduced in order to understand only Subsection 3.2.3.
In other words, if you do not want to read Subsection 3.2.3, you do not study this section.
The main references for graph theory are [72, 77].

A graph G is an ordered pair of disjoint finite sets (V,E) such that E is a subset of
the set of unordered pairs of V. The set V is the set of vertices and the set E is called the
set of edges. In order to be more precise and to avoid confusions with different graphs, it
is usual to write V (G) and E (G) for the vertex set and edge set of G, respectively.

Let G := (V,E) be a graph and e := {x,y} an edge of G, (e is also denoted by xy)
e is said to join the vertices x and y and we say that the vertices x and y are adjacent
vertices of G; it is also usual to say that e is incident with x and y. The degree of a vertex
x in V, denoted by deg(x), is the number of incident edges with x. A vertex with degree
zero is called an isolated vertex. When all the vertices of G are isolated, G is called a
discrete graph. A complete graph , denoted by Kn, is a graph with n vertices in which
every pair of vertices are adjacent vertices.

Let G be a graph. A graph H is called a subgraph of G if V (H) ⊂ V (G) and
E(H) ⊂ E(G). A subgraph H of G is called a subgraph induced by V (H), which is
denoted by G[V (H)], or 〈V (H)〉 or GV (H), if H contains all the edges {x,y} ∈ E(G)
whenever x and y are elements of V (H). A spanning subgraph is a subgraph H of G
containing all the vertices of G.
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Definition 1.3.1 Let G be a graph. A walk of length r in G is an alternating sequence
of vertices and edges

walk := {x0, e1,x1, . . . , er,xr},

where ei := {xi−1,xi} is the edge joining the vertices xi−1 and xi. A walk may also be
written {x0, . . . ,xr} with the edges understood, or {e1, . . . , er} with the vertices under-
stood. If x0 = xr, the walk is called a closed walk. A path is a walk where all the vertices
are different.

Definition 1.3.2 A cycle of length n, denoted by Cn, is a closed path {x0, . . . ,xn} in
which n ≥ 3. A cycle is even (resp. odd) if its length is even (resp. odd). C3 is called
a triangle, C4 a square and so on. A forest is an acyclic graph and a tree is a connected
forest.

We say that a graph G is connected if for every pair of vertices x and y there is a path
from x to y. Notice that G has a vertex disjoint decomposition

G = G1 ∪G2 ∪ · · · ∪Gr, (∗∗)

where G1, . . . ,Gr are the maximal (with respect to inclusion) connected subgraphs of
G. The Gi’s in ∗∗ are called the connected components of G. A connected component is
called even (resp. odd) if its order (number of vertices) is even (resp. odd).

Let G be a graph. G is called bipartite if V (G) can be partitioned into two disjoint
subsets V1 and V2 such that every edge xy of G has the property that x is in V1 and y
is in V2; the pair (V1,V2) is called a bipartition of G. If G is connected and bipartite, a
bipartition of G is uniquely determined. The graph G is called a complete bipartite graph
if G is bipartite and we have that V1 and V2 are completely joined, i.e. if x is in V1

and y is in V2 then xy is in E(G); if V1 and V2 have m and n vertices respectively, we
denote such a complete bipartite graph by Km,n. A star is a complete bipartite graph of
the form K1,n.

Definition 1.3.3 The distance between two vertices x and y of a graph G, denoted by
d(x,y), is defined to be the minimum of the lengths of all possible paths from x to y. If
there is no path joining x and y, then d(x,y) :=∞.

Proposition 1.3.4 [72, Theorem 4.7] A graph G is bipartite if and only it contains no
odd cycle.

Let G and H be graphs. A mapping ϕ from V (G) to V (H) is called a homomorphism
from the graph G to H if {x,y} ∈ E(G) implies {ϕ(x), ϕ(y)} ∈ E(H) (so if {x,y} is an
edge then ϕ(x) 6= ϕ(y)). Two graphs G and H are isomorphic if there is a bijective map
ψ from V (G) to V (H) such that {x,y} ∈ E(G) if and only if {ψ(x), ψ(y)} ∈ E(H); in
this case ψ is called an isomorphism from G to H. An isomorphism from G to itself is
called an automorphism. A map taking graphs as arguments is called a graph invariant
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if it assigns equal values to isomorphic graphs. The number of vertices and the number
of edges are two simple examples of graph invariants.

Note that by definition a graph does not contain a loop, a pair {x,x} in the edge set
(“an edge joining a vertex with itself”). Also a graph does not contain a pair {x,y} that
occurs several times in the edge set (“that is, several edges joining the same two vertices”).
If we allow any of these type of relations at edges then G is called a multigraph. Most
results on graphs carry over to multigraphs in a natural way. There are areas and notions
in graph theory (such as plane duality and minors) where multigraphs arise more naturally
than graphs. Terminology introduced earlier for graphs can be used correspondingly for
multigraphs.

1.4 Polyhedral sets

In Subsection 2.6.1 we compute the degree of a family of lattice ideals. We make this
computation in terms of the relative volume of a lattice polytope, for that reason there
exists this section. The main references for polyhedral sets are [18, 69].

Definition 1.4.1 A point a ∈ Rn is called a convex combination of b1, . . . , br ∈ Rn if
there are nonegative real numbers ι1, . . . , ιr such that

a = ι1b1 + · · ·+ ιrbr and ι1 + · · ·+ ιr = 1.

Let B be a subset of Rn. The convex hull of B, denoted by conv(B), is the set of all
convex combinations of points of B. If B = conv(B), we say that B is a convex set.

Let A := {a1, . . . , ar} be a finite subset of Zn. The convex hull of A,P := conv(A) ⊂
Rn, is called a lattice polytope. The dimension of P , denoted by dim(P), is equal to
dimR(RA′), the dimension as R-vector space of RA′ (linear space spanned by A′), where
A′ := {0, a2 − a1, . . . , ar − a1} . The relative volume of P , denoted by vol(P), is given by

vol(P) := lim
i→∞

|Zn ∩ iP|
id

,

where d := dim(P), i ∈ N, iP := {ix | x ∈ P} and |·| denotes cardinality. When d = n,
we recover the usual volume of P (see [83, p. 111] or [95, p. 238]).
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Chapter 2

Lattice Ideals

Let K be a field and S := K [t1, . . . , tn] a polynomial ring with n variables over K. A
lattice Lρ is a subgroup of Zn and a partial character ρ from Lρ is a homomorphism from
Lρ to the multiplicative group K∗ := K \ {0} .

We start this chapter introducing the lattice ideal I (ρ) ; this is an ideal that depends
of the lattice Lρ and the partial character ρ. We prove that I (ρ) contains no monomials.
Then we give a characterization, an ideal I is a lattice ideal if and only if I is a binomial
ideal, I contains no monomials and ti is a non-zero divisor of S/I, for all i = 1, . . . , n.

We show some relations between Lρ and I (Lρ) . One of them is that Lρ is generated
by a1, . . . , ar if and only if I (Lρ) is equal to the saturation of the ideal generated by

the binomials ta
+
1 − ρ(a1)ta

−
1 , . . . , ta

+
r − ρ(ar)t

a−r with respect to the monomial t1 · · · tn. As
another example, the height of I(ρ) is the rank of Lρ.

By [16, Corollary 2.5] we know that a binomial ideal containing no monomials is
characterized by a lattice. In some way we complement this result. If the field has
characteristic different that 2, we show that a binomial ideal (without restrictions) can
be characterized by a finite number of lattices. If the field has characteristic 2, we show
that the binomial ideal depends of a lattice ideal and of a monomial ideal.

For a fixed but an arbitrary monomial order, the following main result of this chapter
says that there are a finite number of elements a1, . . . , ar in the lattice Lρ such that the

binomials ta
+
1 − ρ(a1)ta

−
1 , . . . , ta

+
r − ρ(ar)t

a−r form a Gröbner basis of I(ρ). Then we adapt
the Buchberger’s algorithm to create a procedure that extends a set of generators of Lρ,
{a1, . . . , ar} , to a subset {a1, . . . , as} of Lρ such that

{
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
s − ρ(as)t

a−s
}

is a Gröbner basis of I(ρ). As a very important application, we prove that a Gröbner
basis, or more precisely the initial ideal of I (ρ), is independent from ρ, and so are the
Hilbert function, the Hilbert series, the Hilbert polynomial, the index of regularity, the
a-invariant and the degree of I (ρ).

We study an special case. We prove that if the lattice ideal I (ρ) is standard-graded
and has dimension 1, then the degree of this ideal is equal to |T (Zn/L)|. Let ω be a
vector with positive integer entries. If I (ρ) is ω-graded of dimension 1, we establish a
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complete intersection criterion in algebraic and geometric terms. If I (ρ) is ω-graded of
dimension 1, and K has positive characteristic, then we show that L is a pure binomial
set theoretic complete intersection. If K has characteristic zero, we prove that in the
set of pure lattice ideals the property binomial set theoretic complete intersection implies
complete intersection. Let υ1, . . . , υn be a sequence of vectors in Ns and Q the projective
algebraic toric set parameterized by the vectors υ1, . . . , υn on Pn−1. We apply the results
about graded pure lattice ideals of dimension 1 to the vanishing ideal I (Q) .

For the end of this chapter, let v := {v1, . . . , vn} be a sequence of positive integers and

T := {[(xv11 , . . . , x
vn
n )] |xi ∈ K∗ for all i} ⊂ Pn−1,

the projective degenerate torus of type v on Pn−1. We study a complete intersection
property, the index of regularity and the degree of the vanishing ideal of T , I (T ). This
ideal has very important consequences in mathematics, for instance in coding theory, as
we will see in Chapters 3 and 4. We also give a way to compute the ideal I (T ) in terms
of a saturation of an ideal with respect to the monomial t1 · · · tn.

2.1 Identifying lattice ideals

Let K be a field and S := K [t1, . . . , tn] a polynomial ring with n variables over K. In
this section we introduce the basic definitions about lattice ideals. Then we prove that a
lattice ideal contains no monomials. Finally we show that an ideal I is a lattice ideal if
and only if I is a binomial ideal, I contains no monomials and ti is a non-zero divisor of
S/I, for all i = 1, . . . , n.

Definition 2.1.1 By a binomial in S we mean a polynomial with at most two terms,
αta + βtb, where α, β ∈ K, a := (ai), b ∈ Nn and

ta := ta1
1 · · · tann ∈ S.

tb is defined in a similar way. A binomial ideal is an ideal of S generated by binomials.

Definition 2.1.2 A binomial of the form ta−tb, with a, b ∈ Nn, is called a pure binomial.
An ideal generated by pure binomials is called a pure binomial ideal.

In the world of the mathematics there are at least two definitions of a lattice. For us a
lattice is defined in the following way.

Definition 2.1.3 A subset L ⊂ Zn is a lattice if L is a subgroup of Zn. If A is a subset
of Zn, ZA denotes the lattice of Zn generated by A.

Definition 2.1.4 Concepts about partial characters.



2.1 Identifying lattice ideals 23

(i) A partial character on Zn is a homomorphism ρ from a lattice Lρ of Zn to the
multiplicative group K∗.

(ii) Let ρ, ρ′ be partial characters on Zn. We say ρ′ is an extension of ρ if Lρ ⊂ Lρ′ and
ρ′ |Lρ= ρ.

Whenever we speak about a partial character ρ, it is assumed that the domain of ρ is a
lattice Lρ ⊂ Zn.

Definition 2.1.5 Given c := (ci) ∈ Zn, we set supp(c) := {i | ci 6= 0} . The set supp(c) is
called the support of c. The vector c can be uniquely written as c = c+−c−, where c+ (the
positive part of c) and c− (the negative part of c) are two nonnegative vectors with disjoint
support. If ta is a monomial, with a := (ai) ∈ Nn, we define the support of the monomial
ta as the set supp(ta) := {ti | ai > 0} . If f := αta + βtb is a binomial, with α, β ∈ K∗, we
define the support of the binomial f as the set supp(f) := supp(ta) ∪ supp(tb).

Definition 2.1.6 Given a partial character ρ, we define the lattice ideal of Lρ as

I(ρ) :=
({
ta

+ − ρ(a)ta
− | a ∈ Lρ

})
⊂ S.

In the case that ρ is a trivial partial character ρ : Lρ → K∗, a → 1, the lattice ideal
I(ρ) is denoted by I(L), and is called a pure lattice ideal. The concept of lattice ideal is
a natural generalization of a toric ideal [102, Corollary 7.1.4]. Lattice ideals have been
studied extensively, see [16, 19, 91] and the references there.

The concept of congruence [15, 17, 81, 84, 102] is an useful tool for the study of lattices.
We use this concept to compute a Gröbner basis of a lattice ideal.

Definition 2.1.7 A congruence in a commutative semigroup with identity (S,+) is an
equivalence relation ∼ on S compatible with +, i.e., a ∼ b implies a+ c ∼ b+ c.

Example 2.1.8 Let L be a lattice in Zn. If a, b ∈ Nn, the relation a ∼L b if and only
if a − b ∈ L defines a congruence in Nn. In this case we say that ∼L is the congruence
determined by L.

Let ∼ be a congruence in Nn. We say that two monomials ta and tb of S are equivalent
under ∼ if a ∼ b.

Definition 2.1.9 Let ∼ be a congruence in Nn. A non-zero polynomial f :=
∑

a λat
a

in S is called simple with respect to ∼ if all its monomials, i.e., those ta with non-zero
coefficient λa, are pairwise equivalent under ∼ .

Let ∼ be a congruence in Nn. Given any polynomial f ∈ S \ {0}, we can group together
its monomials by equivalence classes under ∼, thereby obtaining a decomposition

f = h1 + · · ·+ hm,
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with the property that each summand hi is simple, and that no monomial in hi is equiva-
lent with a monomial in hj if j 6= i. Such a decomposition of f as a sum of maximal simple
subpolynomials is unique up to order. We will refer to the hi’s as the simple components
of f respect to ∼.

The following notation is far to be nice, but it will be really needed for this chapter.
We encourage to the reader to spend a pair of minutes in the next paragraph.

Definition 2.1.10 Let ρ be a partial character on Zn, a, b1, b2 elements of Lρ and γ an
element of Zn such that γ − b2, γ − b1 ∈ Nn. We define

f(a) := ta
+ − ρ(a)ta

−
and g(γ, b1, b2) := ρ(b2)tγ−b2 − ρ(b1)tγ−b1 .

Note that f(a) = g(a+, a, 0).

Lemma 2.1.11 Let ρ be a partial character and let ∼Lρ be the congruence determined by
Lρ. If f ∈ I(ρ), then every simple component of f also belongs to I(ρ).

Proof. Each generator f(a) of I(ρ) is simple by definition, because a+ − a− = a ∈ Lρ.
As f belongs to I(ρ), f is of the form

f = f1f(a1) + · · ·+ frf(ar) =
r∑
i=1

∑
j

λijt
bij f(ai).

Every polynomial tbij f(ai) is simple since the relation ∼Lρ is compatible with the sum. We
group its monomials by equivalence classes under ∼Lρ and we get that every simple com-
ponent hi of f is a linear combination of some tbij f(ai). Therefore every simple component
hi of f belongs to I(ρ). 2

The previous result can be adapted to binomial ideals containing no monomials. Given
a binomial g := αta − βtb, α, β ∈ K∗, we set ĝ := a− b. If β = 0, then we set ĝ := a.

Lemma 2.1.12 Let I := (g1, . . . , gr) be a binomial ideal of S such that gi is no monomial.
Then any simple component of 0 6= f ∈ I with respect to ∼G belongs to I, where G :=
Z {ĝ1, . . . , ĝr}.

Proof. Each generator gi of I is simple by definition. As f belongs to I, f is of the form

f = f1g1 + · · ·+ frgr =
r∑
i=1

∑
j

λijt
aijgi.

Every polynomial taijgi is simple since the relation ∼G is compatible with the sum. We
group its monomials by equivalence classes under ∼G and we get every simple component
hi of f is a linear combination of some taijgi and therefore every simple component belongs
to I. 2
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Definition 2.1.13 Let (M,+) be an abelian group. The torsion subgroup of M, denoted
by T (M), is the set of all x ∈ M such that dx = 0 for some d ∈ N+. The group M is
torsion free if T (M) = (0).

The following result tells when a pure lattice ideal is a toric ideal.

Theorem 2.1.14 [103, Theorem 8.2.22] If L is a lattice of rank r in Zn, then the following
conditions are equivalents.

(a) I(L) is a toric ideal.

(b) I(L) is a prime ideal.

(c) Zn/L is torsion-free.

(d) L = kerZ(A) for some integral matrix A.

For the rest of this section, let ≺ be an arbitrary monomial order fixed on S, Lρ ⊂ Zn

a lattice and ρ : Lρ → K∗ a partial character. We denote the S-polynomial (Definition
1.1.17 (ii)) of f and g by S(f, g), and we write

f
F

for the remainder on division of f by the ordered r-tuple F := {f1, . . . , fr} ⊂ S.

Remark 2.1.15 If g(γ, b1, b2) is a monomial, then it is the zero polynomial, because
γ − b2 = γ − b1 implies b1 = b2 and g(γ, b1, b2) = g(γ, b1, b1) = 0.

Lemma 2.1.16 If a1, a2 are elements of Zn, then there are γ, b1, b2 in Zn with γ− b1, γ−
b2 ∈ Nn such that

S(f(a1), f(a2)) = g(γ, b1, b2).

Proof.

(i) If a+
1 � a−1 and a+

2 � a−2 then γ := LCM(a+
1 , a

+
2 ) and bi := ai, i = 1, 2.

(ii) If a+
1 ≺ a−1 and a+

2 ≺ a−2 then γ := LCM(a−1 , a
−
2 ), b1 := −a2 and b2 := −a1.

(iii) If a+
1 � a−1 and a+

2 ≺ a−2 then γ := LCM(a+
1 , a

−
2 ), b1 := a1 and b2 := −a2.

(iv) If a+
1 ≺ a−1 and a+

2 � a−2 then γ := LCM(a−1 , a
+
2 ), b1 := a2 and b2 := −a1. 2

Lemma 2.1.17 If a1, a2, a3, γ1 are elements of Zn such that γ1 − a2, γ1 − a3 ∈ Nn, then
there are γ, b1, b2 in Zn with γ − b1, γ − b2 ∈ Nn such that

S(f(a1), g(γ1, a2, a3)) = g(γ, b1, b2).
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Proof.

(i) If a+
1 � a−1 and γ1 − a2 � γ1 − a3 then γ := LCM(a+

1 , γ1 − a2), b1 := a1 and
b2 := a3 − a2.

(ii) If a+
1 � a−1 and γ1 − a3 � γ1 − a2 then γ := LCM(a+

1 , γ1 − a3), b1 := a1 and
b2 := a2 − a3.
Other cases are similar. 2

Lemma 2.1.18 Let a1, a2, a3, a4 be elements of Lρ and γ1, γ2 elements of Zn such that
γ1 − a1, γ1 − a2, γ2 − a3, γ2 − a4 ∈ Nn, then there are b1, b2 in Lρ and γ in Zn with
γ − b1, γ − b2 ∈ Nn such that

S(g(γ1, a1, a2), g(γ2, a3, a4)) = g(γ, b1, b2).

Proof. If γ1− a1 � γ1− a2 and γ2− a3 � γ2− a4 then γ := LCM(γ1− a1, γ2− a3), b1 :=
a2 − a1 and b2 := a4 − a3. Other cases are similar. 2

Lemma 2.1.19 The remainder after dividing g(γ1, a1, a2) by g(γ2, a3, a4) is of the form
g(γ1, b1, b2).

Proof. Assume γ1 − a2 � γ1 − a1 and γ2 − a4 � γ2 − a3. If tγ2−a4 | tγ1−a2 then b2 :=
a2 + a3 − a4 and b1 := a1, otherwise b1 := a1 and b2 := a2. 2

Proposition 2.1.20 Let ≺ be an arbitrary monomial order on S. There is a Gröbner
basis of I(ρ) of the form

G :=
{
f(a1), . . . , f(ar), g(γr+1, b

′
r+1, br+1), . . . , g(γs, b

′
s, bs)

}
.

Proof. S noetherian implies there are a1, . . . , ar elements of Lρ such that

I(ρ) = (f(a1), . . . , f(ar)) .

By Lemmas 2.1.18 and 2.1.19 we have that the output in every step of the Buchberger’s
Algorithm (Proposition1.1.19) is of the form g(γ, b1, b2). 2

We come to one of the main results of this section.

Theorem 2.1.21 Let K be a field and ρ : Lρ → K∗ a partial character. The lattice ideal

I(ρ) =
({
ta

+ − ρ(a)ta
− | a ∈ L

})
contains no monomials.

Proof. By Proposition 2.1.20 there is a Gröbner basis G of I(ρ) which consists of elements
of the form f(ai) and g(γj, b

′
j, bj). By Remark 2.1.15 G contains no monomials. Let ta be

a monomial of S. By Proposition 1.1.16 ta belongs to I(ρ) if and only if ta
G

= 0.
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If ta
+
i divides ta, then, by division algorithm,

ta = ta−a
+
i f(ai) + ρ(ai)t

a−ai︸ ︷︷ ︸
remainder

. (∗)

If tγj−bj divides ta, then, by division algorithm,

ta =
1

ρ(bj)
ta−γj+bjg(γj, b

′
j, bj) + ρ(b′j − bj)ta−b

′
j+bj︸ ︷︷ ︸

remainder

. (∗∗)

In both cases the remainder is a non-zero term. If the remainder in Eq. (∗) is zero, the
left-hand side of this equation is a monomial, but its right-hand side is a binomial, a
contradiction. The same situation happens in Eq. (∗∗). Thus ta

G 6= 0 and ta, an arbitrary
monomial of S, is not an element of I(ρ). 2

Theorem 2.1.22 ti /∈ Z(S/I(ρ)) for all i.

Proof. By definition it suffices to show that if tif ∈ I(ρ), with i = 1, . . . , n, then f ∈ I(ρ).
By Lemma 2.1.11 we can assume tif is simple and f =

∑r
j=1 λjt

aj . By induction on r.
Case r = 1 is not possible because I(ρ) contains no monomials.

Case r = 2 (λ1, λ2 6= 0) : tif = λ1tit
a1 +λ2tit

a2 = λ1tit
c1

(
tb

+
1 + λtb

−
1

)
∈ I(ρ). As b+

1 −b−1 =

a1 − a2 ∈ L then λ1tit
c1f(b1) ∈ I(ρ). Thus tif − λ1tit

c1f(b1) = λ1tit
c1

(
tb

+
1 + λtb

−
1

)
−

λ1tit
c1f(b1) = (λ+ ρ(b1))λ1tit

c1+b−1 ∈ I(ρ). By Theorem 2.1.21 λ = −ρ(b1). Therefore
tif = λ1tit

c1f(b1) and f = λ1t
c1f(b1) ∈ I(ρ).

Case r = 3 (λ1, λ2, λ3 6= 0) : tif = λ1tit
a1 + λ2tit

a2 + λ3tit
a3 = λ1tit

c1

(
tb

+
1 + λtb

−
1

)
+

λ3tit
a3 ∈ I(ρ). As b+

1 − b−1 = a1 − a2 ∈ L then λ1tit
c1f(b1) ∈ I(ρ). Thus

ti (f − λ1t
c1f(b1)) = tif − λ1tit

c1f(b1)

= λ1tit
c1
(
tb

+
1 + λtb

−
1

)
− λ1tit

c1f(b1) + λ3tit
a3

= (λ+ ρ(b1))λ1tit
c1+b−1 + λ3tit

a3

= ti

(
(λ+ ρ(b1))λ1t

c1+b−1 + λ3t
a3

)
. (2.1.1)

Equation c1 + b−1 = a2 implies Eq. (2.1.1) is a simple component. By r = 2, we have

f − λ1t
c1f(b1) = (λ+ ρ(b1))λ1t

c1+b−1 + λ3t
a3 is an element of I(ρ). Therefore f ∈ I(ρ).
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Case r = n (λ1, . . . , λn 6= 0) : tif = λ1tit
a1 +λ2tit

a2 +
∑n

j=3 λjtit
aj = λ1tit

c1

(
tb

+
1 + λtb

−
1

)
+∑n

j=3 λjtit
aj ∈ I(ρ). As b+

1 − b−1 = a1 − a2 ∈ L then λ1tit
c1f(b1) ∈ I(ρ). Thus

ti (f − λ1t
c1f(b1)) = tif − λ1tit

c1f(b1)

= λ1tit
c1
(
tb

+
1 + λtb

−
1

)
− λ1tit

c1f(b1) +
n∑
j=3

λjtit
aj

= (λ+ ρ(b1))λ1tit
c1+b−1 +

n∑
j=3

λjtit
aj ∈ I(ρ)

= ti

(
(λ+ ρ(b1))λ1t

c1+b−1 +
n∑
j=3

λjt
aj

)
. (2.1.2)

Equation c1 + b−1 = a2 implies Eq. (2.1.2) is a simple component. By case r = n − 1 we

get f − λ1t
c1f(b1) = (λ+ ρ(b1))λ1t

c1+b−1 +
∑n

j=3 λjt
aj is an element of I(ρ). We conclude

that f is an element of I(ρ). 2

The previous result presents a base to obtain in the following Theorem a characteri-
zation of a lattice ideal in terms of zero divisors.

Theorem 2.1.23 An ideal I ⊂ S is a lattice ideal if and only if

(i) I is binomial,

(ii) I contains no monomials and

(iii) ti /∈ Z(S/I) for all i.

Proof. (⇒) (i) It follows by definition. (ii) It follows by Theorem 2.1.21. (iii) It follows
by Theorem 2.1.22.

(⇐) Using (i), (ii) and [16, Corollary 2.5] there is a unique partial character ρ on
Lρ ⊂ Zn such that I : (t1 · · · tn)∞ = I(ρ). By (iii) we have I = I(ρ). 2

The last theorem is a well-known description of pure lattice ideals that follows from
[16, Corollary 2.5]. We have extended the result for an arbitrary lattice ideal.

2.2 Relation between a lattice and its lattice ideal

Let K be a field, S := K [t1, . . . , tn] a polynomial ring with n variables over K, Lρ ⊂ Zn a
lattice and ρ a partial character from Lρ. In this section we show some relations between
the lattice Lρ and its lattice ideal I (Lρ) . One of the most important properties says that
the lattice Lρ is generated by the elements a1, . . . , ar if and only if its lattice ideal I (Lρ)
is equal to the saturation of the ideal generated by the binomials ta

+
1 −ρ(a1)ta

−
1 , . . . , ta

+
r −

ρ(ar)t
a−r with respect to the monomial t1 · · · tn. Other relation is that the height of I(ρ)

is the rank of Lρ.
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Lemma 2.2.1 If z ∈ Z and a ∈ Lρ then f(za) ∈ (f(a)) .

Proof. We just need to prove it for z > 0 because f(−za) = −1
ρ(za)

f(za) gives us the
negative case. Now we use induction over z > 0. z = 1 is clear. Assume the result is true
for z. We have f ((z + 1) a) = f(za)f(a) + ρ(za)tza

−
f(a) + ρ(a)ta

−
f(za) and the Lemma is

true. 2

Lemma 2.2.2 If z1, . . . , zr ∈ Z and a1, . . . , ar ∈ Lρ then

(f(z1a1), . . . , f(zrar)) : (t1 · · · tn)∞ ⊂ (f(a1), . . . , f(ar)) : (t1 · · · tn)∞.

Proof. This is a consequence of Definition 1.1.36 and Lemma 2.2.1.

Lemma 2.2.3 If a1, . . . , ar ∈ Lρ then f(a1 + · · ·+ ar) ∈ (f(a1), . . . , f(ar)) : (t1 · · · tn)∞.

Proof. By induction on r.

Case r = 1 : This is Lemma 2.2.1.

Case r = 2 : We have a1 + a2 = a+
1 − a−1 + a+

2 − a−2 =
(
a+

1 + a+
2

)
−
(
a−1 + a−2

)
. Thus

there is b ∈ Nn such that (a1 + a2)+ = a+
1 + a+

2 − b and (a1 + a2)− = a−1 + a−2 − b. These

equations imply f(a1)f(a2) +ρ(a1)ta
−
1 f(a2) +ρ(a2)ta

−
2 f(a1) = ta

+
1 +a+

2 −ρ(a1 +a2)ta
−
1 +aon− =

tb
(
t(a1+a2)+ − ρ(a1 + a2)t(a1+a2)−

)
= tbf(a1 + a2).

Case r = n : By case r = n−1, f(a1 + · · ·+ar) ∈ (f(a1 + a2), f(a3), . . . , f(ar) : (t1 · · · tn)∞) ,
then there is b1 ∈ Nn such that

f(a1 + · · ·+ ar)t
b1 = gf(a1 + a2) + g3f(a3) + · · ·+ grf(ar). (∗)

By case r = 2 there is b2 ∈ Nn such that

f(a1 + a2)tb2 = g1f(a1) + g2f(a2). (∗∗)

By Eqs. (∗) and (∗∗) we have f(a1 + · · · + ar)t
b1+b2 = gg1f(a1) + gg2f(a2) + g3t

b2f(a3) +
· · ·+ grt

b2f(ar). 2

Proposition 2.2.4 If a ∈ Lρ := Z {a1, . . . , ar} , then

f(a) ∈
(
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
r − ρ(ar)t

a−r
)

: (t1 · · · tn)∞ .

Proof. Assume a = z1a1 + · · · + zraz. It suffices to notice that by Lemma 2.2.3 f(a) ∈
(f(z1a1), . . . , f(zrar)) : (t1 · · · tn)∞, and that by Lemma 2.2.2
(f(z1a1), . . . , f(zrar)) : (t1 · · · tn)∞ ⊂ (f(a1), . . . , f(ar)) : (t1 · · · tn)∞. 2

Lemma 2.2.5 If a, b ∈ Nn and a − b ∈ Lρ := Z {a1, . . . , ar} , then there is tδ ∈ S such
that

tδ
(
ta − ρ (a− b) tb

)
∈
(
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
r − ρ(ar)t

a−r
)
.
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Proof. By Proposition 2.2.4 there is δ∗ ∈ Nn such that

tδ
∗
f(a− b) ∈ I :=

(
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
r − ρ(ar)t

a−r
)
.

As [(a− b)+]i =

{
ai − bi if ai ≥ bi,

0 if ai < bi,
then a − (a − b)+ = b − (a − b)− ∈ Nn, and we

have tδ
∗ (
ta − ρ(a− b)tb

)
= tδf(a− b) ∈ I, where δ = δ∗ + a− (a− b)+. 2

Proposition 2.2.6 ta − λtb ∈ I(ρ) if and only if a− b ∈ Lρ and λ = ρ(a− b).

Proof. (⇒) By Theorem 2.1.21 I(ρ) contains no monomials, so ta − λtb is simple with

respect to ∼Lρ and a− b ∈ Lρ. We have ta − λtb = tc
(
tγ

+ − λtγ−
)
∈ I(ρ) and

tc
(
tγ

+ − ρ (γ) tγ
−
)
∈ I(ρ). So

tc
(
tγ

+ − λtγ−
)
− tc

(
tγ

+ − ρ (γ) tγ
−
)

= tctγ
−

(ρ (γ)− λ) ∈ I(ρ)

and λ = ρ (γ) = ρ (c+ γ+ − c− γ−) = ρ (a− b) because I(ρ) contains no monomials by
Theorem 2.1.21.

(⇐) By Lemma 2.2.5 there is tδ ∈ S such that tδ
(
ta − ρ (a− b) tb

)
∈ I(ρ). By Theorem

2.1.23 (ii) we can omit tδ. 2

We come to one of the main results of this section.

Theorem 2.2.7 Lρ = Z {a1, . . . , ar} if and only if

I(ρ) =
(
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
r − ρ(ar)t

a−r
)

: (t1 · · · tn)∞ .

Proof. (⇒) (⊇) It is clear. (⊆) If f(a) ∈ I(ρ), then a ∈ Lρ because f(a) is simple with
respect to ∼Lρ , and by Proposition 2.2.4

f(a) ∈
(
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
r − ρ(ar)t

a−r
)

: (t1 · · · tn)∞ .

(⇐) (⊇) For i = 1, . . . , r we have

f(ai) ∈
(
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
r − ρ(ar)t

a−r
)

: (t1 · · · tn)∞ = I(ρ).

As I(ρ) contains no monomials (Theorem 2.1.21), f(ai) is simple with respect to ∼Lρ and
ai ∈ Lρ. Thus Z {a1, . . . , ar} ⊂ Lρ. (⊆) Let L′ = Z {a1, . . . , ar} ⊂ Lρ and ρ′ = ρ|L′ . If
a ∈ Lρ,

f(a) ∈ I(ρ) =
(
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
r − ρ(ar)t

a−r
)

: (t1 · · · tn)∞ ,

then there is δ ∈ Nn such that tδf(a) ∈
(
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
r − ρ(ar)t

a−r
)
⊂ I(ρ′). As

ti /∈ Z(S/I(ρ′)) for all i (Theorem 2.1.23 (iii)), f(a) ∈ I(ρ′) and it is simple (with respect
to ∼L′). Thus a ∈ L′ and Lρ ⊂ Z {a1, . . . , ar} . The proof is complete. 2
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Remark 2.2.8 Let �lex be the lex order on S[t0] (and on Zn+1) with t0 �lex · · · �lex tn,
where t0 is a new indeterminate. Following the notation of Theorem 2.2.7 we know that

I(ρ) =
(
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
r − ρ(ar)t

a−r
)

: (t1 · · · tn)∞ ,

and by [103, Proposition 3.3.23]

I(ρ) =
(
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
r − ρ(ar)t

a−r , t0t1 · · · tn − 1
)

︸ ︷︷ ︸
J

⋂
S.

By [75, Theorem 2, pag 116], if GJ is a Gröbner basis of J with respect to �lex, then

G := {f ∈ Gj | t0 does not appear in f}

is a Gröbner basis of I(ρ).

A lattice ideal is defined by a unique lattice and by a unique partial character.

Theorem 2.2.9 Let ρ be a partial character on a lattice Lρand let I(ρ) be its lattice
ideal. If I(ρ) =

(
ta1 − λ1t

b1 , . . . , tar − λrtbr
)
, then Lρ = Z {a1 − b1, . . . , ar − br} and

ρ(ai − bi) = λi, for i = 1, . . . , r. In particular, if L is a lattice ideal, there are a unique
lattice Lρ and a unique partial character ρ on the lattice Lρ such that L = I(ρ).

Proof. Consider the lattice G := Z {a1 − b1, . . . , ar − br}. First we show the inclusion
L ⊂ G. Take 0 6= a ∈ L. We can write a = a+−a−. Then f(a) = ta

+−ρ(a)ta
−

belongs to
I(ρ) =

(
ta1 − λ1t

b1 , . . . , tar − λrtbr
)

by Proposition 2.2.6. By Lemma 2.1.12, any simple

component of f(a) with respect to ∼G is also in
(
ta1 − λ1t

b1 , . . . , tar − λrtbr
)
. Since ta

+

and ta
−

are not in I(L) (Theorem 2.1.21), then f(a) is a simple component of f(a) with
respect to ∼G, i.e., a = a+ − a− ∈ G. Thus, L ⊂ G. To show the other inclusion notice
that a binomial ta − λtb is in I(ρ) if and only if a − b ∈ L and λ = ρ(a − b). This is
Proposition 2.2.6. Hence, ai − bi ∈ L for all i, i.e., G ⊂ L and λi = ρ(ai − bi). 2

Proposition 2.2.10 [91, Proposition 7.5] The height of I(ρ) is the rank of Lρ.

Theorem 2.2.11 [46, Theorem 3.2] Let I(L) be a pure lattice ideal of S over an arbitrary
field K of characteristic p, let c be the number of associated primes of I(L), and for p > 0,
let G be the unique largest subgroup of T (Zn/L) whose order is relatively prime to p. Then

(a) All associated primes of I(L) have height equal to rank(L).

(b) |T (Zn/L)| ≥ c if p = 0 and |G| ≥ c if p > 0, with equality if K is algebraically
closed.

(c) deg(S/I(L)) ≥ |T (Zn/L)| if p = 0 and deg(S/I(L)) ≥ |G| if p > 0.
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Proposition 2.2.12 Let I = I(L) ⊂ S be a standard graded pure lattice ideal. If the
initial ideal LT (I) is square-free, then I is a prime ideal and S/I is normal and Cohen-
Macaulay.

Proof. By Theorem 2.2.11 and Proposition 1.1.37 all associated prime ideals of I have
height r = rank(L) and I is a radical ideal. Then I has an irredundant primary decompo-
sition I = p1∩· · ·∩pm, where pi is a prime ideal of height r for all i. Let Ls = Sat(L) be the
saturation of L consisting of all a ∈ Zn such that pa ∈ L for some 0 6= p ∈ N and let I(Ls)
be its lattice ideal. Since rank(L) is equal to rank(Ls), by Theorem 2.2.10, we get that r
is also the height of I(Ls). As Zn/Ls is torsion-free, by Theorem 2.1.14, I(Ls) is a prime
toric ideal. Then we may assume that p1 = I(Ls). We claim that LT (I) = LT (I(Ls)).
Clearly LT (I) ⊂ LT (I(Ls)) because I ⊂ I(Ls). To show the reverse inclusion take any
element f in the reduced Gröbner basis of I(Ls). It suffices to show that LT (f) ∈ LT (I).
By Lemma 1.1.45, we can write f = ta

+−ta− for some a = a+−a− in Ls. We may assume
that LT (f) = ta

+
. There is p ∈ N+ such that pa ∈ L. The binomial g = tpa

+ − tpa− is
in I = I(L) and LT (g) = tpa

+
. Thus tpa

+ ∈ LT (I) and since this ideal is square-free we
get that ta

+ ∈ LT (I). This proves the claim. Hence deg(S/I) is deg(S/I(Ls)) because
S/I and S/I(Ls) have the same Hilbert function. Therefore, by additivity of the degree,
we get that m = 1. Consequently, by Theorems 1.1.49 and 1.1.49, S/I is normal and
Cohen-Macaulay. 2

The primary decomposition of a lattice ideal depends from the partial character ρ.

Example 2.2.13 Using Singular [65] with K := R and ≺dp we have(
t1t3 − 1, t1t

2
2 − t3, t23 − t2

)
= (t3 − 1, t2 − 1, t1 − t3) ∩ (t3 + 1, t2 − 1, t1 − t3)(

t1t3 − 2, t1t
2
2 − 3t3, t

2
3 − 4t2

)
=
(
t23 − 24, t2 − 6, 12t1 − t3

)
.

2.3 Binomial ideals in terms of lattice ideals

Let K be a field and S := K [t1, . . . , tn] a polynomial ring with n variables over K. By [16,
Corollary 2.5] we know that a binomial ideal containing no monomials is characterized by
a lattice. In some way we complement this result. If the field has characteristic different
that 2, we show that a binomial ideal (without restrictions) can be characterized by a
finite number of lattices. If the field has characteristic 2, the binomial ideal depends of a
lattice ideal and of a monomial ideal.

Lemma 2.3.1 Let I be a binomial ideal. I contains no monomials if and only if there
are a1, b1, . . . , ar, br in Nn and a partial character ρ : Lρ := Z {a1 − b1, . . . , ar − br} → K∗

such that I =
(
ta1 − ρ(a1 − b1)tb1 , . . . , tar − ρ(ar − br)tbr

)
.

Proof. (⇒) Assume I =
(
ta1 − λ1t

b1 , . . . , tas − λstbs
)
. By [16, Corollary 2.5] there is a

lattice Lρ and a partial character ρ : Lρ → K∗ such that

I : (t1 · · · tn)∞ = I(ρ).
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For i = 1, . . . , s we have tai − λit
bi ∈ I ⊂ I : (t1 · · · tn)∞ = I(ρ). By Proposition 2.2.6

ai − bi ∈ Lρ and λi = ρ(ai − bi), then I =
(
ta1 − ρ(a1 − b1)tb1 , . . . , tas − ρ(as − bs)tbs

)
,

with {a1 − b1, . . . , as − bs} ⊂ Lρ. Finally the set {a1 − b1, . . . , as − bs} can be extended to
a generating set {a1 − b1, . . . , ar − br} of Lρ.

(⇐) Observe that there are ci’s and di’s in Zn such that

I =
(
ta1 − ρ(a1 − b1)tb1 , . . . , tar − ρ(ar − br)tbr

)
=

=
(
tc1(td

+
1 − ρ(d1)td

−
1 ), . . . , tcr(td

+
r − ρ(dr)t

d−r )
)
.

By Theorem 2.1.23 (ii)
(
td

+
1 − ρ(d1)td

−
1 , . . . , td

+
r − ρ(dr)t

d−r
)

contains no monomials, so, I

contains no monomials. 2

Lemma 2.3.2 Let I1 :=
({
tai − ρ1(ai − bi)tbi

}r
i=1

)
and I2 :=

({
tcj − ρ2(cj − dj)tdj

}s
j=1

)
be ideals of S, where ρ1 and ρ2 are partial characters from Lρ1 := Z {a1 − b1, . . . , ar − br}
and Lρ2 := Z {c1 − d1, . . . , cs − ds} , respectively. The ideal I1 +I2 contains no monomials
if and only if ρ1 |Lρ1∩Lρ2 = ρ2 |Lρ1∩Lρ2 .

Proof. (⇒) Assume ρ1 |Lρ1∩Lρ2 6= ρ2 |Lρ1∩Lρ2 . Let a be an element of Lρ1 ∩Lρ2 such that
ρ1(a) 6= ρ2(a). For i = 1, . . . , r, define γi := lcm (ai, bi) , a

′
i := ai − γi and b′i := bi − γi.

Thus I1 =
(
tγi
(
ta
′
i − ρ1(a′i − b′i)tb

′
i

))
and ai−bi = a′i−b′i for i = 1, . . . , r. By Lemma 2.2.5,

there is δ in Nn such that tδ
(
ta

+ − ρ1(a)ta
−
)
∈
(
ta
′
i − ρ1(a′i − b′i)tb

′
i

)
. Therefore

tδ+
Pr
i=1 γi

(
ta

+ − ρ1(a)ta
−
)
∈
(
tγi
(
ta
′
i − ρ1(a′i − b′i)tb

′
i

))
= I1.

In a similar way, there is γ in Nn such that tγ
(
ta

+ − ρ2(a)ta
−
)
∈ I2. Finally the poly-

nomials tγ+δ+
Pr
i=1 γi

(
ta

+ − ρ1(a)ta
−
)

and tγ+δ+
Pr
i=1 γi

(
ta

+ − ρ2(a)ta
−
)

are in I1 + I2, and

the difference of them, tγ+δ+
Pr
i=1 γi (ρ1(a)− ρ2(a)) ta

−
, is a monomial also in I1 + I2.

(⇐) Define the lattice L := Lρ1 + Lρ2 and the partial character ρ from L as

ρ(a) :=

{
ρ1(a) if a ∈ Lρ1 ,
ρ2(a) if a ∈ Lρ2 .

By Theorem 2.1.21 I(ρ) contains no monomials. As I1 + I2 is contained in I(ρ), then
I1 + I2 contains no monomials. 2

Remark 2.3.3 Observe that Lemma 2.3.2 can be seen as I1 + I2 contains no monomials
if and only if there is a lattice Lρ := Z {e1 − f1, . . . , et − ft} and a partial character ρ
from Lρ such that

I1 + I2 :=
({
tei − ρ(ei − fi)tfi

}t
i=1

)
.
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We come to one of the main results of this section.

Theorem 2.3.4 Let K be a field with characteristic different than 2. An ideal I of S is
a binomial ideal if and only if there are m lattices Li := Z {ai1 − bi1, . . . , a1ri − b1ri} and
m partial characters ρi : Li → K∗ such that I = I1 + · · ·+ Im, where

Ii :=
(
tai1 − ρi(ai1 − bi1)tbi1 , . . . , tairi − ρi(airi − biri)tbiri

)
,

and for i 6= j, the ideal Ii + Ij contains a monomial.

Proof. Observe that if a monomial ta is a generator of the ideal I, then this monomial
can be substituted by the binomials t2a− ta and t2a− 2ta; thus the ideal I can be written
as I =

(
ta1 − λ1t

b1 , . . . , tas − λstbs
)
, where λ1, . . . , λs are elements of K∗. Define for i =

1, . . . , s, the ideals Ii :=
(
tai − ρ′i(ai − bi)tbi

)
, where ρ′i(ai− bi) := λi is a partial character

from L′i := Z {ai − bi} . The rest of the proof is just a consequence of Remark 2.3.3. We
compare every two ideals. If two ideals Ii and Ij are such that their sum contains no
monomials, then we define the ideal Iij := Ii + Ij. By Remark 2.3.3 Iij depends of a
lattice and a partial character, so we replace Ii and Ij by the ideal Iij. We compare again
every two ideals. We do this until we obtain maximal components in the sense that the
sum of each two ideals contains a monomial. 2

When the characteristic of the field is 2, then a binomial ideal is characterized by a
lattice and a set of monomials.

Remark 2.3.5 Let K be a field of characteristic 2. If I is a binomial ideal of S, then
there is a partial character

ρ : Lρ := Z {a1 − b1, . . . , ar − br} → K∗

and monomials tc1 , . . . , tcs in S such that

I =
(
ta1 − ρ(a1 − b1)tb1 , . . . , tar − ρ(ar − br)tbr

)
+ (tc1 , . . . , tcs) .

This is true because the ideal I is of the form I =
(
ta1 − tb1 , . . . , tar − tbr , tc1 , . . . , tcs

)
.

Thus the associated partial character is the trivial partial character and the lattice is the
lattice defined by the powers of the pure binomials of I. The following example shows
that this property is not always true when the characteristic is different than 2

Example 2.3.6 LetK be a field with characteristic other than 2 and S := K [t1, t2, t3, t4] .
The ideal I = (t1t3− t2t3, t1t4− 2t2t4, t2t3t4) can not be characterized using only a lattice
and a set of monomials as in Remark 2.3.5. Assume that there is a partial character ρ
from a lattice Lρ := {a1 − b1, . . . , ar − br} such that

I =
(
ta1 − ρ(a1 − b1)tb1 , . . . , tar − ρ(ar − br)tbr

)
+ (tc1 , . . . , tcs) .

By Lemma 2.3.2, there is δ in Nn such that tδ ∗ t3 (t1 − t2) is in the part of I that depends
of the lattice. Thus ρ(e1−e2) = 1, where e1 and e2 are two of the canonical vectors of Nn.
But also there is γ in Nn such that tγ ∗ t4 (t1 − 2t2) is also in the part of I that depends
of the lattice. In this case we obtain ρ(e1 − e2) = 2. A contradiction.
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2.4 Gröbner basis of lattice ideals

Let K be a field, S := K [t1, . . . , tn] a polynomial ring with n variables over K, Lρ ⊂
Zn a lattice and ρ a partial character from Lρ. In this section we prove that there are

a finite number of elements a1, . . . , ar in the lattice Lρ such that the binomials ta
+
1 −

ρ(a1)ta
−
1 , . . . , ta

+
r − ρ(ar)t

a−r form a Gröbner basis of the lattice ideal I(ρ). Then we adapt
the Buchberger’s algorithm to create a procedure that extends a set of generators of Lρ,
{a1, . . . , ar} , to a subset {a1, . . . , as} of Lρ such that

{
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
s − ρ(as)t

a−s
}

is a Gröbner basis of I(ρ).

We come to one of the main results of this section.

Theorem 2.4.1 Let ρ : Lρ → K∗ be a partial character and ≺ an arbitrary monomial
order fixed on S. There are elements a1, . . . , as of Lρ such that

G :=
{
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
s − ρ(as)t

a−s
}

is a Gröbner basis of I(ρ). In particular the reduced Gröbner basis has this form.

Proof. By Proposition 2.1.20 there is a Gröbner basis for I(ρ) of the form

G ′ :=
{
f(a1), . . . , f(ar), g(γr+1, b

′
r+1, br+1), . . . , g(γs, b

′
s, bs)

}
.

We can assume that in every f(ai) we have a+
i � a−i . As g(γj, b

′
j, bj) = ρ(bj)t

γ−bj−ρ(b′j)t
γ−b′j

and(
ρ(bj)t

γ−bj − ρ(b′j)t
γ−b′j

)
=
(
tγ−bj − ρ(b′j − bj)tγ−b

′
j

)
=
(
tc
(
ta

+
j − ρ(b′j − bj)ta

−
j

))
,

then every g(γj, b
′
j, bj) can be substituted by ta

+
j − ρ(aj)t

a−j , because ρ(aj) = ρ(b′j − bj)
by Theorem 2.1.21, tc can be omitted by Theorem 2.1.22 and the leading term of f(aj)
divides the leading term of g(γj, b

′
j, bj), for j = r + 1, . . . , s. Finally by Proposition 2.2.6

if f(aj) is an element of I(ρ), then aj is an element of Lρ. 2

Now we give an algorithm that extends a generating set of {a1, . . . , ar} of Lρ to a

set of vectors {a1, . . . , as} of Lρ such that G :=
{
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
s − ρ(as)t

a−s
}

is a

Gröbner basis of I(ρ). The idea is very simple, we are going to adapt the Buchberger’s
algorithm (Proposition 1.1.19) that works with monomials in an algorithm that works
with vectors.

Lemma 2.4.2 Let a, b be elements of Zn. The following hold:

(i) lcm(a+, b+)− b− gcd (lcm (a+, b+)− b, lcm (a+, b+)− a) = (a− b)+ .

(ii) lcm(a+, b+)− a− gcd (lcm (a+, b+)− b, lcm (a+, b+)− a) = (a− b)− .
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(iii) gcd (lcm (a+, b+)− b, lcm (a+, b+)− a) = gcd (a−, b−) .

Proof. The idea is to compare the i-th element of both sides of each equation. Considering
all possible combinations of ai and bi : ai ≥ 0, ai < 0, bi ≥ 0, bi < 0, ai ≥ bi and ai < bi
the proof follows readily. 2

Let a, b be elements of Zn.Observe the following facts on S-polynomials and reductions.

Lemma 2.4.3 Let a, b be elements of Zn and set γ := gcd (a−, b−) . The following hold.

(i) S(ta
+ − ρ(a)ta

−
, tb

+ − ρ(b)tb
−

) = tγ
(
t(a−b)

+ − ρ(a− b)t(a−b)−
)
.

(ii) If b+ | a+, the remainder after dividing ta
+ − ρ(a)ta

−
by tb

+ − ρ(b)tb
−

is

tγ
(
ρ(b)t(a−b)

+ − ρ(a)t(a−b)
−
)
.

Proof. Both items are a consequence of Lemma 2.4.2. 2

Lemma 2.4.4 Let a, b be elements of Zn, c1, c2 elements of Nn, set γ := gcd (a−, b−) and
δ := gcd (lcm (a+ + c1, b

+ + c2)− b, lcm (a+ + c1, b
+ + c2)− a) . The following hold.

(i) S(ta
++c1 − ρ(a)ta

−+c1 , tb
++c2 − ρ(b)tb

−+c2) = tδ
(
t(a−b)

+ − ρ(a− b)t(a−b)−
)
.

(ii) If b++c2 | a++c1, the remainder after dividing ta
++c1−ρ(a)ta

−+c1 by tb
++c2 − ρ(b)tb

−+c2

is tc1+γ
(
ρ(b)t(a−b)

+ − ρ(a)t(a−b)
−
)
.

Proof. The proof is similar to the proof of Lemma 2.4.2. 2

Definition 2.4.5 Let A := {a1, . . . , ar} be an ordered set of Zn with a+
i �lex a−i for all

i, and b an element of Zn. We define the element

b
A

:= b	 ab1 	 · · · 	 abs,

where 	 is a non-associative operation, we perform this operation from left to right, i.e.,
first b	 ab1, second (b	 ab1)	 ab2 and so on. It is defined as:

x	 y :=

{
x− y if (x− y)+ �lex (x− y)−,
y − x otherwise;

for all abj we have

(i) a1, . . . , abj−1 are no divisors of b	 ab1 	 · · · 	 ab(j−1)

(ii) abj | b	 ab1 	 · · · 	 ab(j−1),
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and there is not other abk such that abk | b	 ab1 	 · · · 	 abs.

Using Definition 2.4.5, Lemma 2.4.4 and Buchberger’s algorithm we extend a set of
generators of Lρ, {a1, . . . , ar} , to a subset {a1, . . . , as} of Lρ such that

G =
{
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
s − ρ(as)t

a−s
}

is a Gröbner basis of I(ρ).

Theorem 2.4.6 Let ρ : Lρ → K∗ be a partial character and ≺ an arbitrary monomial
order fixed on S. The set {a1 . . . , ar} can be extended to a subset of elements {a1, . . . , as}
of Lρ such that

G =
{
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
s − ρ(as)t

a−s
}

is a Gröbner basis of I(ρ) in a finite number of steps by the following algorithm.

Data: {a1, . . . , ar} , a set of generators of Lρ
Result: L, a finite subset of Lρ such that G =

{
ta

+ − ρ(a)ta
− | a ∈ L

}
is a

Gröbner basis of I(ρ).
A := {(1,1), (0, a1), . . . , (0, ar)} ⊂ Zn+1;
repeat
A′ := A
for each pair a, b in A′, a 6= b do

S := a	 bA
′

if S 6= 0 then
A := A ∪ {S}

end

end
until A = A′ ;
L := {a ∈ A | (0, a) ∈ A} .

Proof. It is a consequence of Definition 2.4.5, Lemma 2.4.4 and Buchberger’s algorithm
(Proposition 1.1.19). 2

2.5 Algebraic invariants of lattice ideals

This is one of our favorite sections for its implications. We prove that a Gröbner basis, or
more precisely the initial ideal of a lattice ideal, is independent from the partial character,
and so are the Hilbert function, the Hilbert series, the Hilbert polynomial, the index of
regularity, the a-invariant and the degree of the lattice ideal.

Let K be a field, S := K [t1, . . . , tn] a polynomial ring with n variables over K, Lρ ⊂ Zn

a lattice and ρ a partial character from Lρ. We define
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Hρ(d) := HI(ρ)(d) (Hilbert function),

Fρ(t) := FI(ρ)(t) (Hilbert series), and

hρ(t) := hI(ρ)(t) (Hilbert polynomial).

We come to the main result of this section.

Theorem 2.5.1 Let ρ : Lρ → K∗ be a partial character and ≺ an arbitrary monomial

order fixed on S. The set G :=
{
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
r − ρ(ar)t

a−r
}

is a Gröbner basis of

the lattice ideal I(ρ) if and only if the set G ′ :=
{
ta

+
1 − ta−1 , . . . , ta+

r − ta−r
}

is a Gröbner

basis of the pure lattice ideal I(Lρ).

Proof. We denote ta
+
i − ta−i by f′(ai) and g′(γ, b1, b2) := tγ−b2 − tγ−b1 . We just need to see

that in Lemma 2.1.18

S (f(ai), f(aj)) = g(γ, b1, b2) if and only if S (f′(ai), f
′(aj)) = g′(γ, b1, b2),

and in Lemma 2.1.19

g(γ, d1, d2)
G

= g(γ′, d′1, d
′
2) if and only if g′(γ, d1, d2)

G′

= g′(γ′, d′1, d
′
2).

Finally the fact that g(γ′, d′1, d
′
2) = 0 if and only if g′(γ′, d′1, d

′
2) = 0 tells us that the result

is true. 2

Theorem 2.5.2 (Hilbert function of a lattice ideal is independent from the partial char-
acter) If L is a lattice and ρ, ρ′ are two partial characters on L, then

Hρ(d) = Hρ′(d) for all d ≥ 0.

Proof. By Theorem 2.5.1 G :=
{
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
r − ρ(ar)t

a−r
}

is a Gröbner basis of

I(ρ) if and only if G ′ :=
{
ta

+
1 − ρ′(a1)ta

−
1 , . . . , ta

+
r − ρ′(ar)ta

−
r

}
is a Gröbner basis of I(ρ).

Thus LT(I(ρ)) = LT(I(ρ′)). 2

Corollary 2.5.3 (Algebraic invariants of a lattice ideal are independent from the partial
character) If L is a lattice and ρ, ρ′ are two partial characters on L, then

Fρ(t) = Fρ′(t) (Hilbert series).

hρ(t) = hρ′(t) (Hilbert polynomial).

deg(S/I(ρ)) = deg(S/I(ρ′)) (degree).

regS/I(ρ) = regS/I(ρ′) (regularity index).

a(ρ) = a(ρ′) (a-invariant).

Proof. They are a direct consequence of Theorem 2.5.2. 2
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2.6 Graded lattice ideals of dimension 1

Let K be a field, S := K [t1, . . . , tn] a polynomial ring with n variables over K, Lρ ⊂ Zn

a lattice and ρ a partial character from Lρ. In this section we prove that if the lattice
ideal I (ρ) is standard-graded and has dimension 1, then the degree of this ideal is equal to
|T (Zn/L)|. Let ω be a vector with positive integer entries. If I (ρ) is ω-graded of dimension
1, we establish a complete intersection criterion in algebraic and geometric terms. If I (ρ)
is ω-graded of dimension 1, and K has positive characteristic, then we show that I (ρ)
is a pure binomial set theoretic complete intersection. If K has characteristic zero, we
prove that in the set of pure lattice ideals the property binomial set theoretic complete
intersection implies complete intersection. Let υ1, . . . , υn be a sequence of vectors in Ns

and Q the projective algebraic toric set parameterized by the vectors υ1, . . . , υn on Pn−1.
In the last subsection we apply the results about graded pure lattice ideals of dimension
1 to the vanishing ideal I (Q) .

By the dimension of I(ρ) we mean the Krull dimension of the quotient ring S/I(ρ).

Definition 2.6.1 Let a := (a1, . . . , an) be an element of Zn. We set |a| :=
∑n

i=1 ai. A
lattice L is called homogeneous if |a| = 0 for all a ∈ L.

Lemma 2.6.2 Let ρ : Lρ → K∗ be a partial character. Then Lρ is homogeneous if and
only if its lattice ideal I(ρ) is graded with respect to the standard graduation.

Proof. We can express a = a+ − a− with disjoint support supp(a+) ∩ supp(a−) = φ,
then 0 = |a| = |a+| − |a−| if and only if |a+| = |a−| if and only if the lattice ideal

I (ρ) =
({
ta

+ − ρ(a)ta
− | a ∈ Lρ

})
is graded. 2

Definition 2.6.3 Let ω := (ω1, . . . , ωn) be an integral vector with positive entries. A
lattice L is called ω-homogeneous (or homogeneous with respect to ω ) if 〈ω, a〉 = 0 for all
a ∈ L.

Remark 2.6.4 Analogous to Lemma 2.6.2, a lattice Lρ is ω-homogeneous if and only
if its lattice ideal I(ρ) is graded with respect to the grading of S induced by setting
deg(ti) = ωi for i = 1, . . . , n. The standard grading of S is obtained when ω = (1, . . . , 1).

Lemma 2.6.5 Let ρ : Lρ → K∗ be a partial character. If Lρ ⊂ Zn is homogeneous of
rank n− 1, then S/I(ρ) is a Cohen-Macaulay ring of dimension 1.

Proof. This follows from Theorem 2.1.23 and using Proposition 2.2.10. 2

2.6.1 The degree

Let K be a field, S := K [t1, . . . , tn] a polynomial ring with n variables over K and L a
lattice of Zn. In this subsection we are going to work with the pure lattice ideal I (L) ,
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i.e. we use the trivial partial character to define the lattice ideal. We do not consider
an arbitrary partial character because by Corollary 2.5.3 the degree of a lattice ideal is
independent from the partial character. We prove that an element of T (Zn/L) can be
written in a unique way. Then we show that if the ideal I (L) is graded and has dimension
1, then the degree of this ideal is equal to |T (Zn/L)|.

In what follows of this subsection we shall assume that � is the revlex order �revlex
(reverse lexicographical order, Definition 1.1.10) on the monomials of S. It is also im-
portant to remember from Section 1, Definition 1.1.11, that if g is a polynomial of S, we
denote the leading term of g by LT(g) as well as if L is an ideal of S, the initial ideal of
L, denoted by LT(L), is generated by the leading terms of the polynomials of L.

Lemma 2.6.6 [18, Lemma 2.3] Let A := {a1, . . . , ar} be a subset of Zn and define L :=
ZA. Then

(i) QL ∩ Zn/ZL = T (Zn/ZL).

(ii) In particular, QL ∩ Zn = ZL if and only if Zn/ZL is torsion-free.

Lemma 2.6.7 Let L ⊂ Zn be a homogeneous lattice of rank n − 1 and let QL be the
Q-linear space spanned by L. Then

(a) QL ∩ Zn = Z(e1 − en)⊕ · · · ⊕ Z(en−1 − en), where ei is the ith unit vector in Qn.

(b) T (Zn/L) = Z(e1 − en)⊕ · · · ⊕ Z(en−1 − en)/L.

Proof. (a) (⊆) Take a := (a1, . . . , an) in QL ∩ Zn. Then an = −an−1 − · · · − a1 and we
can write

a = a1(e1 − en) + · · ·+ an−1(en−1 − en).

Thus a is a Z-linear combination of e1 − en, . . . , en−1 − en. (⊇) It suffices to show that
ek − en is in QL for all k. The dimension of QL is equal to rank(L) = n− 1. Notice that
en /∈ QL because L is homogeneous. Hence Qen + QL = Qn. Therefore we can write

ek = µknen + λk1γ1 + · · ·+ λkmγm (µkn, λki ∈ Q; γj ∈ L for all i, j).

Taking inner products with 1 := (1, . . . , 1) ∈ Zn and using that 〈1, γi〉 = 0 for all i, we get
1 − µkn = 〈1, ek − µknen〉 = 〈1, λk1γ1 + · · ·+ λkmγm〉 =

∑m
i=1 λki 〈γi〉 = 0. Thus µkn = 1.

We conclude that ek − en ∈ QL.
(b) By Lemma 2.6.6 (i) the torsion subgroup of Zn/L is QL ∩ Zn/L. Hence, the

expression for the torsion follows from (a). 2

Remark 2.6.8 By Buchberger’s algorithm (Proposition 1.1.19) and by Proposition 1.1.21,
a graded pure lattice ideal I(L) has a unique reduced Gröbner basis G consisting of ho-
mogeneous pure binomials and, by Theorem 2.1.23 (iii), each pure binomial ta − tb ∈ G
satisfies that supp(a) ∩ supp(b) = ∅.
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Lemma 2.6.9 Let L ⊂ Zn be a homogeneous lattice of rank n−1. Then, given γ̃ := γ+L
in the torsion subgroup T (Zn/L) there exists a unique a := (a1, . . . , an−1, an) in Zn such
that

(i) ai ≥ 0 for i = 1, . . . , n− 1,

(ii) ta1
1 · · · t

an−1

n−1 /∈ LT(I(L)), and

(iii) ã = γ̃.

Proof. First we show the existence of a. If γ ∈ L, then a = 0 satisfies (i), (ii) and
(iii). Assume that γ /∈ L. By Lemma 2.6.7, ẽi − ẽn is a torsion element of Zn/L for
1 ≤ i ≤ n− 1, that is, there is a positive integer ni such that ni(ei − en) is in L. If γi is
the ith entry of γ, there are integers qi and ci such that γi = qini + ci and 0 ≤ ci ≤ ni− 1.
Hence, since |γ| = 0, we can write

γ = γ1(e1 − en) + · · ·+ γn−1(en−1 − en)

= c1(e1 − en) + · · ·+ cn−1(en−1 − en) + q1n1(e1 − en) + · · ·+ qn−1nn−1(en−1 − en).

If we set c := (c1, . . . , cn) = c1(e1 − en) + · · · + cn−1(en−1 − en), then c̃ = γ̃, c /∈ L and
|c| = 0. Consider the homogeneous binomial

f := tc11 · · · t
cn−1

n−1 − t−cnn .

Let G := {g1, . . . , gr} be the reduced Gröbner basis of I(L), with respect to the revlex
order, then LT(I(L)) = (LT(g1), . . . ,LT(gr)). By Remark 2.6.8, tn does not divide any of
the leading terms of g1, . . . , gr. Hence, by the division algorithm Proposition 1.1.12, we
can write

f = h1g1 + · · ·+ hrgr + g (∗)
for some h1, . . . , hr in S, where g := tb11 · · · tbnn − t−cnn is homogeneous and tb := tb11 · · · tbnn
is not divisible by any of the leading terms of g1, . . . , gr, i.e., tb /∈ LT(I(L)). Thus,

tb11 · · · t
bn−1

n−1 /∈ LT(I(L)). Notice that bi > 0 for some 1 ≤ i ≤ n− 1, otherwise g = 0 and c
would be in L, a contradiction. By Eq. (∗), the binomial f − g is in I(L) and simplifies
to

f − g = tc11 · · · t
cn−1

n−1 − tb11 · · · tbnn .
Hence, (c1, . . . , cn−1, 0)− (b1, . . . , bn) is in L. Consequently, one has

(c1, . . . , cn−1, cn)− (b1, . . . , bn−1, bn + cn) = (c1, . . . , cn−1, 0)− (b1, . . . , bn−1, bn) ∈ L. (∗∗)

Consider the vector a := (a1, . . . , an), where ai := bi for i = 1, . . . , n−1 and an := bn+ cn.
Then, by Eq. (∗∗), c− a ∈ L. Thus, ã = c̃. For all the above, we get that a satisfies (i),
(ii) and (iii).

Next, we show the uniqueness of a. Assume that there are vectors a := (a1, . . . , an)
and a′ := (a′1, . . . , a

′
n) in Zn that satisfy (i), (ii) and (iii). If ai 6= a′i for some 1 ≤ i ≤ n−1,

then the binomial
h := ta1

1 · · · t
an−1

n−1 t
−an
n − ta

′
1

1 · · · t
a′n−1

n−1 t
−a′n
n
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is non-zero and belongs to I(L) because a−a′ ∈ L by (iii), a contradiction because none of
the two terms of h are in the initial ideal of I(L) by (ii). Thus, ai = a′i for i = 1, . . . , n−1.
Since |a| = |a′|, we get a = a′. 2

Remark 2.6.10 A graded ideal I is a complete intersection if and only if I is gener-
ated by a homogeneous regular sequence with ht(I) elements (see Proposition 1.1.7 and
Lemma 1.1.8).

Proposition 2.6.11 If L ⊂ S is a graded pure lattice ideal of dimension 1, then there
are positive integers m1, . . . ,mn−1 such that

(a) L′ := (tm1
1 − tm1

n , . . . , t
mn−1

n−1 − tmn−1
n ) ⊂ L,

(b) reg(S/(tn, L)) ≤ reg(S/(tn, L
′)) =

∑n−1
i=1 (mi − 1) + 1, and

(c) HL(d) = HL(d− 1) = deg S/L for d ≥
∑n−1

i=1 (mi − 1) + 1.

Proof. There is a regular sequence in L of length ht(L) = n − 1, because S/L is
C-M of dimension 1 from Lemma 2.6.5. By Lemma 2.6.7 there are positive integers
m1, . . . ,mn−1 such that mi(ei − en) ∈ L for all i, thus L′ is contained in L. Then
(L′, tn) =

(
tm1
1 , . . . , t

mn−1

n−1 , tn
)

is a complete intersection and we have the result. 2

We come to one of the main results of this section.

Theorem 2.6.12 If I(L) ⊂ S is a graded pure lattice ideal of dimension 1, then

deg S/I(L) = |T (Zn/L)|.

Proof. Let�revlex be the revlex order on the monomial of S and let LT(I(L)) be the initial
ideal of I(L). We set d :=

∑n−1
i=1 (mi − 1) + 1. By Proposition 2.6.11, there are positive

integers m1, . . . ,mn−1 such that tmii − tmin ∈ I(L) for all i and HI(L)(d) = deg S/I(L).
There is an injective map

Md := {tc| tc /∈ LT(I(L))} ∩ Sd −→ (S/I(L))d, tc 7→ tc + I(L).

By a classical result in Gröbner bases theory ([75, Proposition 1, pag 230]), the image of
this map is a basis for the K-vector space (S/I(L))d. Thus, |Md| = HI(L)(d). Consider
the map

φ : Md → T (Zn/L), tc := tc11 · · · tcnn
φ7−→ (c1, . . . , cn−1, cn − d) + L.

The map φ is well defined, i.e., φ(tc) is in T (Zn/L) for all tc in Md. This follows
directly from Lemma 2.6.7 (b) by noticing the equality

(c1, . . . , cn−1, cn − d) = c1(e1 − en) + · · ·+ cn−1(en−1 − en).
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Altogether, we need only show that φ is bijective. Notice that tdn maps to 0̃ under φ.
By Lemma 2.6.9, the map φ is injective. To show that φ is onto, take ã ∈ T (Zn/L). By
Lemma 2.6.9, we may assume that ai ≥ 0 for i = 1, . . . , n−1 and ta1

1 · · · t
an−1

n−1 /∈ LT(I(L)).
Notice that 0 ≤ ai ≤ mi − 1 for i = 1, . . . , n− 1 because tmii − tmin ∈ I(L) for all i. Thus,∑n−1

i=1 ai ≤
∑n−1

i=1 (mi − 1) < d. Consider the vector c := (c1, . . . , cn) given by ci := ai for
i = 1, . . . , n − 1 and cn := d −

∑n−1
i=1 ai. Then, the monomial tc is in Md and maps to ã

under the map φ. 2

Corollary 2.6.13 If I(ρ) ⊂ S is a graded lattice ideal of dimension 1, then

deg S/I(ρ) = |T (Zn/Lρ)|.

Proof. It follows by Corollary 2.5.3 and Theorem 2.6.12. 2

Corollary 2.6.14 Let L ⊂ Zn be a homogeneous lattice of rank n − 1 generated as a
Z-module by the rows of an integral matrix A. Then

degS/I(L) = d1 · · · dn−1,

where d1, . . . , dn−1 are the invariant factors of A.

Proof. It is well known [92, Theorem II.9, pp. 26-27] that there are invertible integral
matrices U and V such that

UAV = D := diag{d1, . . . , dn−1, 0, . . . , 0},

di > 0 for 1 ≤ i ≤ n − 1 and di divides di+1 for all i. In matrix theory terminology,
this means that D = diag{d1, . . . , dn−1, 0, . . . , 0} is the Smith normal form of A and
d1, . . . , dn−1 are the invariant factors of A. Hence, by the fundamental structure theorem
for finitely generated abelian groups [87, pp. 187-188], we get

Zn/L ' Z/(d1)⊕ · · · ⊕ Z/(dn−1)⊕ Z and T (Zn/L) ' Z/(d1)⊕ · · · ⊕ Z/(dn−1).

Thus, the result follows from Theorem 2.6.12. 2

Corollary 2.6.15 Let L ⊂ S be a graded pure lattice ideal of dimension 1. If L is
generated by the binomials ta

+
1 − ta−1 , . . . , ta+

m − ta−m. Then

degS/L = d1 · · · dn−1,

where d1, . . . , dn−1 are the invariant factors of the matrix A whose rows are a1, . . . , am.

Proof. Let L be the homogeneous lattice that defines the pure lattice ideal L. By
Theorem 2.2.9, one has the equality L = Za1 + · · · + Zam. Thus, the result follows at
once from Corollary 2.6.14. 2
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Lemma 2.6.16 [96, pp. 32-33] If M ⊂ M ′ are free abelian groups of the same rank d
with Z-bases δ1, . . . , δd and γ1, . . . , γd related by δi :=

∑
j zijγj, where zij ∈ Z for all i, j,

then |M ′/M | = | det(zij)|.

Definition 2.6.17 Let O be a lattice d-simplex in Rn, i.e., O is the convex hull of a set
of d + 1 affinely independent points in Zn. The normalized volume of O is defined as
d!vol(O).

The next result shows that the degree is the normalized volume of any (s−1)-simplex
arising from a Z-basis of L.

Corollary 2.6.18 If L ⊂ Zn is a homogeneous lattice and a1, . . . , an−1 is a Z-basis of L,
then

degS/I(L) = (n− 1)!vol(conv(0, a1, . . . , an−1)),

where vol is the relative volume and conv is the convex hull.

Proof. By hypothesis, L = Za1⊕· · ·⊕Zan−1. Hence, using Lemma 2.6.7 (b), we get the
equality

T (Zn/L) = Z(e1 − en)⊕ · · · ⊕ Z(en−1 − en)/Za1 ⊕ · · · ⊕ Zan−1.

For 1 ≤ i ≤ n − 1, we can write ai = ai,1(e1 − en) + · · · + ai,n−1(en−1 − en), where ai,j is
the jth entry of ai. Applying Theorem 2.6.12 and Lemma 2.6.16 gives

degS/I(L) = |T (Zn/L)| =

∣∣∣∣∣∣∣det

 a1,1 · · · a1,n−1
...

...
...

an−1,1 . . . an−1,n−1


∣∣∣∣∣∣∣ = (n− 1!)vol(O),

where O := conv(0, (a1,1, . . . , a1,n−1), . . . , (an−1,1, . . . , an−1,n−1)) is a simplex in Rn−1. To
finish the proof we need only show that vol(O) = vol(conv(0, a1, . . . , an−1)). This follows
from the very definition of the notion of a relative volume (see [18, Section 2] and [95,
p. 238]). 2

Corollary 2.6.19 Let I(L) ⊂ S be a graded pure lattice ideal of dimension 1. If I(L) is

a complete intersection generated by ta
+
1 − ta−1 , . . . , ta

+
n−1 − ta

−
n−1, then

degS/I(L) = (n− 1)!vol(conv(0, a1, . . . , an−1)).

Proof. By Theorem 2.2.9, one has the equality L = Za1⊕· · ·⊕Zan−1. Thus, the formula
for the degree follows from Corollary 2.6.18. 2

Corollary 2.6.20 If I(L) ⊂ S is a graded lattice ideal of dimension 1, then Zn/L is
torsion-free if and only if I(L) = (t1 − tn, . . . , tn−1 − tn).

Proof. Assume that Zn/L is torsion-free. Then, by Lemma 2.6.7 b), one has the equality.

L = Z(e1 − en)⊕ · · · ⊕ Z(en−1 − en).

Hence, I(L) = (t1− tn, . . . , tn−1− tn). The converse is clear because the (n−1)×n matrix
with rows e1 − en, . . . , en−1 − en diagonalizes over the integers to an identity matrix. 2
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Examples

Given a set of generators of a homogeneous lattice L ⊂ Zn, a standard method to compute
the degree of the lattice ring S/I(L) consists of two steps.

• First, one computes a generating set for I(L) using Theorem 2.2.7: If L ⊂ Zn is a
lattice generated by a1, . . . , ar, then

((ta
+
1 − ta

−
1 , . . . , ta

+
r − ta

−
r ) : (t1 · · · tn)∞) = I(L).

• Second, one uses Hilbert functions and Proposition 1.1.31 to compute the degree of
S/I(L). The handy command “degree” of Macaulay2 [61] computes the degree.

This standard method works for any homogeneous lattice. For homogeneous lattices of
rank n− 1, our method is far more efficient, especially with large examples.

Example 2.6.21 Let L ⊂ Z5 be the homogeneous lattice of rank 4 generated by the
rows of the matrix

A =


1001 500 −501 0 0

0 3500 −3500 0 0
0 0 3200 −200 −3000

5000 −1000 −1000 −1001 −1999

 .

The following procedure for Maple [64]

with(linalg);

A:=array([[1001,-500,-501,0,0],[0,3500,-3500,0,0],

[0,0,3200,-200,-3000],[5000,-1000,-1000,-1001,-1999]]);

ismith(A);

computes the Smith normal form of A:

D =


1 0 0 0 0
0 1 0 0 0
0 0 100 0 0
0 0 0 56000 0

 .

Thus, by Theorem 2.6.12, we obtain deg S/I(L) = (28)(55)(7). The standard procedure
for computing the degree of S/I(L) fails for this example. Indeed, Macaulay2 does not
even computes the saturation (I : h∞) of the ideal

I := (t1001
1 − t500

2 t501
3 , t3500

2 − t3500
3 , t3200

3 − t200
4 t3000

5 , t5000
1 − t1000

2 t1000
3 t1001

4 t1999
5 )

with respect to h = t1t2t3t4t5. Notice that I is a complete intersection and accordingly

deg(S/I) = (1001)(3500)(3200)(5000) = (212)(59)(72)(11)(13).
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Remark 2.6.22 Given an integral matrix A, the Macaulay2 [61] function “smithNor-
malFrom” produces a diagonal matrix D, and invertible matrices U and V such that
D = UAV . Warning: even though this function is called the Smith normal form, it doesn’t
necessarily satisfy the more stringent condition that the diagonal entries d1, d2, . . . , dm of
D satisfy: d1|d2| · · · |dm. For this reason we prefer to use Maple [64] to compute the Smith
normal form of A.

Example 2.6.23 Let L ⊂ Z3 be the homogeneous lattice of rank 2 generated by the
rows of the matrix

A =

18 −18 0
45 0 −45
0 10 −10

 .

The following procedure for Maple [64]

with(linalg);

A:=array([[18,-18,0],[45,0,-45],[0,10,-10]]);

ismith(A);

computes the Smith normal form of A:

D =

1 0 0
0 90 0
0 0 0


Thus, by Theorem 2.6.12, we obtain deg S/I(L) = 90. The standard procedure for
computing the degree of S/I(L) works fine in this “small” example. Indeed, using the
following procedure for Macaulay2

S=QQ[t1,t2,t3]

I=ideal(t1^18-t2^18,t1^45-t3^45,t2^10-t3^10)

saturate(I,t1*t2*t3)

degree saturate(I,t1*t2*t3)

we obtain

I(L) = I : (t1t2t3)∞ = (t91 − t42t53, t10
2 − t10

3 ) and deg(S/I(L)) = 90.

Remark 2.6.24 The program Normaliz [62] computes the normalized volume of lattice
polytopes. Hence, by Corollary 2.6.18, we can use this program with the handy option -v

to compute the degree. This of course requires to compute a Z-basis of the lattice first.
We computed the degree of Example 2.6.23 without any problem using “normbig.exe”.

Our main result of Subsection 2.6.1, Theorem 2.6.12, does not extend to graded pure
lattice ideals of dimension ≥ 2.

Example 2.6.25 Consider the homogeneous lattice L := Z{(−1, 2,−1)} ⊂ Z3. Then,

I(L) = (t22 − t1t3) and deg Q[t1, t2, , t3]/I(L) = 2 6= 1 = |T (Z3/L)|.
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2.6.2 A complete intersection criterion

Let K be a field, S := K [t1, . . . , tn] a polynomial ring with n variables over K and L
a lattice of Zn. In this section we work with a pure lattice ideal L := I (L) , i.e. we
use the trivial partial character to define a lattice ideal. We do not consider arbitrary
partial characters because in [44] it is proved that the complete intersection property of
a lattice ideal is independent from the partial character. If L is ω-graded of dimension
1, we establish a complete intersection criterion in algebraic and geometric terms. If L is
ω-graded of dimension 1, and K has positive characteristic, then we show that L is a pure
binomial set theoretic complete intersection. If K has characteristic zero, we prove that
in the set of pure lattice ideals the property binomial set theoretic complete intersection
implies complete intersection.

Lemma 2.6.26 Let I be a pure binomial ideal of S such that V (I, ti) = {0} for all i. If
p is a prime ideal containing (I, tm) for some 1 ≤ m ≤ n, then p = (t1, . . . , tn).

Proof. Let h1, . . . , hr be a generating set for I consisting of pure binomials. For simplicity
of notation assume that m = 1. We may assume that t1, . . . , tk are in p and ti /∈ p for
i > k. If ti ∈ supp(hj) for some 1 ≤ i ≤ k, say hj = taj − tbj and ti ∈ supp(taj), then
tbj ∈ p and there is 1 ≤ ` ≤ k such that t` is in the support of tbj . Thus, hj ⊂ (t1, . . . , tk).
Hence, for each 1 ≤ j ≤ r, either

(i) supp(hj) ∩ {t1, . . . , tk} = ∅ or

(ii) hj ∈ (t1, . . . , tk).

Consider the point c := (ci) ∈ An
K , with ci := 0 for i ≤ k and ci := 1 for i > k. If (i) occurs,

then hj(c) = (taj−tbj)(c) = 1−1 = 0. If (ii) occurs, then hj(c) = (taj−tbj)(c) = 0−0 = 0.
Clearly the polynomial t1 vanishes at c. Hence, c ∈ V (I, t1) = {0}. Therefore, k = n.
Thus, p contains all the variables of S, i.e., p = (t1, . . . , tn). 2

Proposition 2.6.27 Let I ⊂ S be a ω-graded pure binomial ideal.

(a) If V (I, ti) = {0} for all i, then ht(I) = n− 1.

(b) If I is a pure lattice ideal and ht(I) = n− 1, then V (I, ti) = {0} for all i.

Proof. (a) As I is ω-graded, all associated prime ideal of S/I are ω-graded. Thus, all
associated prime ideals of S/I are contained in m := (t1, . . . , tn). If ht(I) = n, then m

would be the only associated prime of S/I, that is, m is the radical of I, a contradiction
because I cannot contain a power of ti for any i. Thus, ht(I) ≤ n−1. On the other hand,
by Lemma 2.6.26, the ideal (I, tn) has height n. Hence, n = ht(I, tn) ≤ ht(I) + 1 (here
we use the fact that I is ω-graded). Altogether, we get ht(I) = n− 1.

(b) Let L be the lattice that defines I and let g1, . . . , gr be a generating set for I
consisting of homogeneous pure binomials. By Theorem 2.2.9, one has the equality L =
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Z {ĝ1, . . . , ĝr}. Notice that n−1 = ht(I) = rank(L). Given two distinct integers 1 ≤ i, k ≤
n, the vector space Qn is generated by ek, ĝ1, . . . , ĝr. Hence, as L is homogeneous with
respect to ω := (ω1, . . . , ωn), there are positive integers ri and rk such that riei− rkek ∈ L
and riωi− rkωk = 0. By Lemma 2.2.5, there is tδ such that tδ(trii − t

rk
k ) is in I. Hence, by

Theorem 2.1.23 (iii), trii − t
rk
k is in I. Therefore, V (I, ti) = {0} for i = 1, . . . , n. 2

Example 2.6.28 Let S := Q[t1, t2, t3]. The ideal I := (t21− t2t3, t21− t1t2) has height 2 is
not a pure lattice ideal and V (I, t1) 6= {0}, that is, Proposition 2.6.27 (b) only holds for
pure lattice ideals.

Recall that a ω-graded ideal I is a complete intersection if and only if I is generated
by a homogeneous regular sequence with ht(I) elements (see [102, Proposition 1.3.17,
Lemma 1.3.18]).

Lemma 2.6.29 Let I ⊂ S be a ω-graded pure binomial ideal. If V (I, ti) = {0} for all i
and I is a complete intersection, then I is a pure lattice ideal.

Proof. By Proposition 2.6.27 (a), the height of I is n − 1. It suffices to prove that ti is
a non-zero divisor of S/I for all i (see Theorem 2.1.23 (iii)). If ti is a zero divisor of S/I
for some i, there is an associated prime ideal p of S/I containing (I, ti). Hence, using
Lemma 2.6.26, we get that p = m, a contradiction because I is a complete intersection
of height n− 1 and all associated prime ideals of I have height equal to n− 1 (see [102,
Proposition 1.3.22]). 2

Example 2.6.30 Let S := Q[t1, t2, t3]. The ideal I := (t21− t2t3, t22− t23) has height 2 and
V (I, ti) = {0} for all i. Thus, by Lemma 2.6.29, I is a pure lattice ideal.

We come to one of the main results of this subsection.

Theorem 2.6.31 Let L be the pure lattice ideal of an ω-homogeneous lattice L in Zn.
If V (L, ti) = {0} for all i, then L is a complete intersection if and only if there are
homogeneous pure binomials h1, . . . , hn−1 in L satisfying the following conditions :

(i) L = Z
{
ĥ1, . . . , ĥn−1

}
.

(ii) V (h1, . . . , hn−1, ti) = {0} for all i.

(iii) hi = ta
+
i − ta−i for i = 1, . . . , n− 1.

Proof. As L is ω-homogeneous, its pure lattice ideal L is graded with respect to the
grading of S induced by setting deg(ti) := ωi for i = 1, . . . , n (Remark 2.6.4). By Propo-
sition 2.6.27, the height of L is n− 1.

(⇒) Since L is a ω-graded pure binomial ideal which is a complete intersection, it is
well known that L is an ideal generated by homogeneous pure binomials h1, . . . , hn−1 (see



2.6 Graded lattice ideals of dimension 1 49

for instance [102, Lemma 2.2.16]). Then, by Theorem 2.1.23 and Theorem 2.2.9 (iii), we
have (i) and (iii) hold. From the equality (L, ti) = (h1, . . . , hn−1, ti), we get

{0} = V (L, ti) = V (h1, . . . , hn−1, ti).

Thus, V (h1, . . . , hn−1, ti) = {0} for all i, i.e., (ii) holds.

(⇐) We set I := (h1, . . . , hn−1). By hypothesis I ⊂ L. Thus, we need only to show
the inclusion L ⊂ I. Let g1, . . . , gm be a generating set of L consisting of pure binomials,
then ĝi ∈ L for all i. Using condition (i) and Lemma 2.2.5, for each i there is a monomial
tγi such that tγigi ∈ I. Hence, tγL ⊂ I, where tγ is equal to tγ1 · · · tγm . By (ii) and
Proposition 2.6.27, the height of I is n− 1. This means that I is a complete intersection.
As tγL ⊂ I, to show the inclusion L ⊂ I, it suffices to notice that by (ii), Lemma 2.6.29
and Theorem 2.1.23 (iii) ti is a non-zero divisor of S/I for all i. 2

Remark 2.6.32 The result remains valid if we remove condition (iii), i.e., condition (iii)
is redundant. In both implications of the theorem the set h1, . . . , hn−1 is shown to generate
L.

Definition 2.6.33 An ideal I is called a (pure) binomial set theoretic complete intersec-
tion if there are (pure) binomials g1, . . . , gr such that rad(I) = rad(g1, . . . , gr), where r is
the height of I.

The next result gives a family of binomial set theoretic complete intersections. We
show this result using a theorem of Katsabekis, Morales and Thoma [34, Theorem 4.4(2)].

Proposition 2.6.34 If K is a field of positive characteristic and L ⊂ S is a ω-graded pure
lattice ideal of dimension 1, then L is a pure binomial set theoretic complete intersection.

Proof. Let L be the ω-homogeneous lattice of Zn such that L = I(L). Notice that L is
a lattice of rank n− 1 because ht(L) = rank(L). Thus, there is an isomorphism of groups
ψ : Zn/Sat(L)→ Z, where Sat(L) is the saturation of L consisting of all a ∈ Zn such that
da ∈ L for some 0 6= d ∈ Z. For each 1 ≤ i ≤ n, we set ai := ψ(ei + Sat(L)), where ei
is the ith unit vector in Zn. Following [34], the multiset A := {a1, . . . , an} is called the
configuration of vectors associated to L. Recall that s − 1 = rank(L). Hence, as L is
homogeneous with respect to ω := (ω1, . . . , ωn), there are positive integers ri and rk such
that riei − rkek ∈ L and riωi − rkωk = 0. Thus, riai = rkak and ai has the same sign as
ak. This means that a1, . . . , an are all positive or all negative. It follows that A is a full
configuration in the sense of [34, Definition 4.3]. Thus, I(L) is a binomial set theoretic
complete intersection by [34, Theorem 4.4(2)] and its proof. 2

Corollary 2.6.35 [6] If P ⊂ S is the toric ideal of a monomial curve, then P is a
complete intersection if and only if there are homogeneous pure binomials g1, . . . , gn−1 in
P , with gi = ta

+
i − ta−i for all i, such that the following conditions hold :
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(a) L1 = Z {ĝ1, . . . , ĝn−1}, where L1 is the lattice that defines P .

(b) V (g1, . . . , gn−1, ti) = {0} for i = 1, . . . , n.

Proof. There are positive integers ω1, . . . , ωn such that P is the kernel of the epimorphism
of K-algebras:

ϕ : K[t1, . . . , tn] −→ K[yω1
1 , . . . , yωn1 ], f

ϕ7−→ f(yω1
1 , . . . , yωn1 ),

where y1 is a new variable. Consider the homomorphism of Z-modules ψ : Zn → Z,
ei 7→ ωi. According to [102, Corollary 7.1.4], the toric ideal P is the pure lattice ideal of
the homogeneous lattice L1 := ker(ψ) with respect to the vector ω := (ω1, . . . , ωn), that
is P = I(L1). In particular the height of P is n− 1. The binomial t

ωj
i − t

ωi
j is in P for all

i, j. Thus, V (I(L1), ti) = {0} for all i. Then, the result follows from Theorem 2.6.31. 2

Corollary 2.6.36 [43] Let P ⊂ S be the toric ideal of a monomial curve. If char(K) > 0,
then P is a binomial set theoretic complete intersection.

Proof. As seen in the proof of Corollary 2.6.35, P is a 1-dimensional ω-graded pure
lattice ideal. Thus, the result follows at once from Proposition 2.6.34. 2

We come to another of our main results of this subsection.

Theorem 2.6.37 Let L ⊂ S be an arbitrary pure lattice ideal of height r. If char(K) = 0
and rad(L) = rad(g1, . . . , gr) for some pure binomials g1, . . . , gr, then L = (g1, . . . , gr).

Proof. Consider the pure binomial ideal I := (g1, . . . , gr), where gi := tai − tbi for
i = 1, . . . , r. Since rad(I) is again a pure binomial ideal (see [84, Theorem 9.4 and
Corollary 9.12]), we may assume that rad(I) is generated by a set of pure binomials
{h1, . . . , hm}. From [84, Corollary 9.12, p. 106], it is seen that any lattice ideal over a
field K of characteristic zero is radical, i.e., rad(L) = L. Let

I = q1 ∩ · · · ∩ qp (2.6.1)

be a primary decomposition of I. Since I is an ideal of height r generated by r elements
and S is Cohen-Macaulay, by the unmixedness theorem [73, Theorem 2.1.6], I has no
embedded primes. Hence, rad(qi) = pi is a minimal prime of both I and L for i = 1, . . . , p.
Since char(K) = 0, by [6, Lemma 2.2], we have the equality

Z {ĝ1, . . . , ĝr} = Z
{
ĥ1, . . . , ĥm

}
. (2.6.2)

The inclusion I ⊂ L is clear. We now show the reverse inclusion. Take a pure binomial
h in L. Since L is generated by h1, . . . , hm, by Theorem 2.2.9, the lattice that defines L

is Z
{
ĥ1, . . . , ĥm

}
. Therefore, using Eq. (2.6.2) and Lemma 2.2.5, we get that there is a

monomial tδ so that tδh ∈ I. Thus, by Eq. (2.6.1), tδh ∈ qi for all i. If tδ = 1, then h ∈ I
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and there is nothing to prove. Assume that tδ 6= 1. It suffices to prove that h belongs to
qi for all i. If h /∈ qi for some i, then (tδ)` ∈ qi and consequently pi must contain at least
one variable tk. Since pi is a minimal prime of L, all its elements are zero divisors of S/L.
In particular tk must be a zero divisor of S/L, a contradiction because L is a pure lattice
ideal and none of the variables of S can be a zero divisor of S/L (see Theorem 2.1.23
(iii)). 2

As a consequence, we recover the following result.

Corollary 2.6.38 [2] Let P ⊂ S be an arbitrary toric ideal of height r. If char(K) = 0
and P = rad(g1, . . . , gr) for some pure binomials g1, . . . , gr, then P = (g1, . . . , gr).

2.6.3 Vanishing ideals over finite fields

Let K := Fq be a finite field with q elements, S := K[t1, . . . , tn] = ⊕∞d=0Sd a polynomial
ring over the field K with the standard grading, υ1, . . . , υn a sequence of vectors in Ns

and
Q := {[(xυ11

1 · · ·xυ1s
s , . . . , xυn1

1 · · · xυnss )] |xi ∈ K∗ for all i} ⊂ Pn−1,

the projective algebraic toric set parameterized by the vectors υ1, . . . , υn on Pn−1. In
this subsection we study the degree and a pair of complete intersection criterions of the
vanishing ideal of Q, I (Q). This ideal has very important consequences in mathematics,
for instance in coding theory, as we will see in Chapters 3 and 4. The following lemma
and theorem show that the results about graded pure lattice ideals of dimension 1 proved
in Subsections 2.6.1 and 2.6.2 can be applied to the ideal I (Q) .

Lemma 2.6.39 If K is a finite field, then there is a unique homogeneous lattice such
that I(Q) = I(L).

Proof. By [49, Theorem 2.1], I(Q) is a pure lattice ideal generated by homogeneous
binomials. Let L be a homogeneous lattice that defines I(Q). The uniqueness of L
follows from Theorem 2.2.9. 2

Theorem 2.6.40 If K is a finite field, then

(a) [21] I(Q) is a radical 1-dimensional Cohen-Macaulay ideal.

(b) [86, Lecture 13] HI(Q)(d) = |Q| for d ≥ |Q| − 1.

Hence, by (b), the degree of S/I(Q) is equal to |Q|. Thus, our results can be used
to compute |Q|, especially in cases where the homogeneous lattice that defines the ideal
I(Q) is known (see for instance [49, Theorem 2.5] for such cases).

Let L be the homogeneous lattice that defines I(Q). The next result shows how the
algebraic structure of Zn/L is reflected in the algebraic structure of I(Q).
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Corollary 2.6.41 If q − 1 is a prime number such that υi 6≡ υj mod (q − 1) for i 6= j
and T (Zn/L) ' (Zq−1)n−1, then I(Q) is a complete intersection if and only if

I(Q) = (tq−1
1 − tq−1

n , . . . , tq−1
n−1 − tq−1

n ).

Proof. Assume that I(Q) is a complete intersection, i.e., the ideal I(Q) is generated
by homogeneous pure binomials f1, . . . , fn−1 of degrees δ1, . . . , δn−1. The linear binomial
ti − tj is not in I(Q) for any i 6= j, this follows using that υi 6≡ υj mod (q − 1). Thus,
deg(fi) = δi ≥ 2 for all i. By Theorem 2.6.12, we have

degS/I(Q) = (q − 1)n−1 = δ1 · · · δs−1.

As q − 1 is prime, we get that δi = q − 1 for all i. Consider the K-vector spaces

V = K(tq−1
1 − tq−1

n ) + · · ·+K(tq−1
n−1 − tq−1

n ) and I(Q)q−1 = Kf1 + · · ·+Kfn−1.

It suffices to show the equality V = I(Q)q−1. Since tq−1
i −tq−1

n vanishes at all point of Q for
all i, we get that tq−1

i −tq−1
n ∈ I(Q)q−1 for all i. Consequently V = I(Q)q−1 because V and

I(Q)q−1 have the same dimension. The converse is clear because tq−1
1 −tq−1

n , . . . , tq−1
n−1−tq−1

n

form a regular sequence and the height of I(Q) is n− 1. 2

The complete intersection property of I(Q) is partial characterized in the next results
(see also [55]). If Q is parameterized by the edges of a clutter, then I(Q) is a complete
intersection if and only if Q is a projective torus [54].

Corollary 2.6.42 If K is a finite field, then I(Q) is a complete intersection if and only
if there are homogeneous pure binomials h1, . . . , hn−1 in I(Q) such that the following
conditions hold :

(i) L = Z
{
ĥ1, . . . , ĥn−1

}
, where L is the lattice that defines I(Q).

(ii) V (h1, . . . , hn−1, ti) = {0} for i = 1, . . . , n.

(iii) hi = ta
+
i − ta−i for i = 1, . . . , n− 1.

Proof. By Lemma 2.6.39 or Theorem 2.6.40, there is a unique homogeneous lattice L
with respect to the vector ω := 1 such that I(Q) = I(L). The binomial tq−1

i − tq−1
j is

in I(Q) for all i, j. Thus, V (I(L), ti) = {0} for all i. Therefore the result follows from
Theorem 2.6.31. 2

Corollary 2.6.43 If K is a finite field, then I(Q) is a pure binomial set theoretic com-
plete intersection.

Proof. I(Q) is a 1-dimensional ω-graded pure lattice ideal [21, 49]. Thus, the result
follows at once from Proposition 2.6.34. 2
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2.7 Vanishing ideals on projective degenerate tori

over finite fields

Let K := Fq be a finite field with q elements, S := K[t1, . . . , tn] a polynomial ring over
the field K, v := {v1, . . . , vn} a sequence of positive integers and

T := {[(xv11 , . . . , x
vn
n )] |xi ∈ K∗ for all i} ⊂ Pn−1,

the projective degenerate torus of type v on Pn−1. In this section we study a complete
intersection property, the index of regularity and the degree of the vanishing ideal of T ,
I (T ). This ideal has very important consequences in mathematics, for instance in coding
theory, as we will see in Chapters 3 and 4. In what follows β denotes a generator of the
cyclic group (K∗, · ), di denotes o(βvi), the order of βvi for i = 1, . . . , n, and S denotes
the semigroup Nd1 + · · ·+ Ndn. If d1, . . . , dn are relatively prime, S is called a numerical
semigroup. We will see below that the algebra of I(T ) is closely related to the algebra of
the toric ideal of the semigroup ring

K[S] := K[yd11 , . . . , y
dn
1 ] ⊂ K[y1],

where K[y1] is a polynomial ring. Recall that the toric ideal of K[S], denoted by P , is
the kernel of the following epimorphism of K-algebras

ϕ : S := K[t1, . . . , tn] −→ K[S], f
ϕ7−→ f(yd11 , . . . , y

dn
1 ).

Thus, S/P ' K[S]. Since K[y1] is integral over K[S] we have ht(P ) = n − 1. The
ideal P is graded if one gives degree di to variable ti. The most well-known properties
that P and I(T ) have in common is that both are Cohen-Macaulay graded pure lattice
ideals of dimension 1 [30, 49]. At the end of the section we also give a way to compute the
ideal I (T ) in terms of the di’s and a saturation with respect to the monomial t1 · · · tn.

Remark 2.7.1 By Definition 1.1.1 an ideal I ⊂ S is called a complete intersection if
there exist f1, . . . , fr in S such that I = (f1, . . . , fr), where r is the height of I. If I is a
graded binomial ideal, then I is a complete intersection if and only if I is generated by a
set of homogeneous binomials g1, . . . , gr, and any such set of homogeneous generators is
already a regular sequence (see [102, Proposition 1.3.17, Lemma 1.3.18]).

Lemma 2.7.2 Let S := K[t1, . . . , tn] be a polynomial ring with the standard grading. If
I is a graded ideal of S generated by a homogeneous regular sequence f1, . . . , fn−1, then

reg(S/I) =
n−1∑
i=1

(deg(fi)− 1) and deg(S/I) = deg(f1) · · · deg(fn−1).
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Proof. We set δi := deg(fi). By [102, p. 104], the Hilbert series of S/I is given by

FI(t) =

∏n−1
i=1

(
1− tδi

)
(1− t)n

=

∏n−1
i=1 (1 + t+ · · ·+ tδi−1)

(1− t)
. (2.7.1)

Thus, by Proposition 1.1.31, reg(S/I) =
∑n−1

i=1 (δi − 1) and deg(S/I) = δ1 · · · δn−1. 2

Let D be the non-singular matrix D := diag(d1, . . . , dn). Consider the homomorphisms
of Z-modules:

ψ : Zn → Z, ei 7→ di,

D : Zn → Zn, ei 7→ diei.

If c := (ci) ∈ Rn, we set |c| :=
∑n

i=1 ci. Notice that |D(c)| = ψ(c) for any c ∈ Zn.
There are two homogeneous lattices that will play a role here:

L1 := ker(ψ) and L := D(ker(ψ)).

The map D induces a Z-isomorphism between L1 and L. It is well known [102] that the
toric ideal P is the pure lattice ideal of L1. Below, we show that I(T ) is the pure lattice
ideal of L.

Lemma 2.7.3 The map ta − tb 7→ tD(a) − tD(b) induces a bijection between the binomials
ta − tb of P whose terms ta, tb have disjoint support and the binomials ta

′ − tb′ of I(T )
whose terms ta

′
, tb

′
have disjoint support.

Proof. If f := ta−tb is a binomial of P whose terms have disjoint support, then a−b ∈ L1

and the terms of g := tD(a) − tD(b) have disjoint support because

supp(ta) = supp(tD(a)) and supp(tb) = supp(tD(b)).

Thus, |D(a)| = ψ(a) = ψ(b) = |D(b)|. This means that g = tD(a) − tD(b) is homogeneous
in the standard grading of S. As (βvi)di = 1 for all i, it is seen that g vanishes at all
points of T . Hence, g ∈ I(T ) and the map is well defined.

The map is clearly injective. To show that the map is onto, take a binomial f ′ := ta
′−tb′

in I(T ) with a′ := (a′i), b
′ := (b′i) and such that ta

′
and tb

′
have disjoint support. Then,

(βvi)a
′
i−b′i = 1 for all i because f ′ vanishes at all points of T . Hence, since the order of βvi is

di, there are integers c1, . . . , cn such that a′i − b′i = cidi for all i. Since f ′ is homogeneous,
one has |a′| = |b′|. It follows readily that c ∈ L1 and a′ − b′ = D(c). We can write
c = c+− c−. As a′ and b′ have disjoint support, we get a′ = D(c+) and b′ = D(c−). Thus,
the binomial tc

+ − tc− is in P and maps to ta
′ − tb′ . 2

Proposition 2.7.4 P = I(L1) and I(T ) = I(L).
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Proof. As mentioned above, the first equality is well known [102]. Since I(T ) is a pure
lattice ideal [49], it is generated by binomials of the form ta

+− ta− (this follows using that
ti is a non-zero divisor of S/I(T ) for all i). To show the second equality, take ta

+ − ta− in
I(T ). Then, by Lemma 2.7.3, a+ − a− ∈ L and ta

+ − ta− is in I(L). Thus, I(T ) ⊂ I(L).
Conversely, take f := ta

+− ta− in I(L) with a+−a− in L. Then, there is c ∈ L1 such that
a+− a− = D(c+− c−). Then, tc

+ − tc− is in P and maps, under the map of Lemma 2.7.3,
to f . Thus, f ∈ I(T ). This proves that I(L) ⊂ I(T ). 2

Proposition 2.7.5 If P = ({tai − tbi}mi=1), then I(T ) = ({tD(ai) − tD(bi)}mi=1).

Proof. We set gi := tai − tbi and hi := tD(ai) − tD(bi) for i = 1, . . . , n. Notice that hi
is equal to gi(t

d1 , . . . , tdn), the evaluation of gi at (td11 , . . . , t
dn
n ). By Lemma 2.7.3, one

has the inclusion (h1, . . . , hm) ⊂ I(T ). To show the reverse inclusion take a binomial
0 6= f ∈ I(T ). We may assume that f = ta

+ − ta
−

. Then, by Lemma 2.7.3, there is
g := tc

+−tc− in P such that f = tD(c+)−tD(c−). By hypothesis we can write g =
∑m

i=1 figi
for some f1, . . . , fm in S. Then, evaluating both sides of this equality at (td11 , . . . , t

dn
n ), we

get

f = tD(c+) − tD(c−) = g(td11 , . . . , t
dn
n ) =

m∑
i=1

fi(t
d1
1 , . . . , t

dn
n )gi(t

d1
1 , . . . , t

dn
n ) =

m∑
i=1

f ′ihi,

where f ′i := fi(t
d1
1 , . . . , t

dn
n ) for all i. Then, f ∈ (h1, . . . , hm). 2

Corollary 2.7.6 If n = 3, then I(T ) is minimally generated by at most 3 binomials.

Proof. By a classical theorem of Herzog [30], P is generated by at most 3 binomials.
Hence, by Proposition 2.7.5, I(T ) is generated by at most 3 binomials. 2

Given a subset I ⊂ S, recall that its variety, denoted by V (I), is the set of all a ∈ An
K

such that f(a) = 0 for all f ∈ I, where An
K is the affine space over K. Given a binomial

g := ta − tb, we set ĝ := a − b. If A is a subset of Zn, ZA denotes the subgroup of Zn

generated by A.

Proposition 2.7.7 [6, Proposition 2.5] Let B := {g1, . . . , gn−1} be a set of binomials in
P . Then, P = (B) if and only if the following two conditions hold :

(i′) L1 = Z {ĝ1, . . . , ĝn−1}, where L1 := ker(ψ).

(ii′) V (g1, . . . , gn−1, ti) = {0} for i = 1, . . . , n.

We come to one of the main results of this section.

Theorem 2.7.8 (a) If I(T ) is a complete intersection generated by binomials h1, . . . , hn−1,
then P is a complete intersection generated by binomials g1, . . . , gn−1 such that hi is equal
to gi(t

d1
1 , . . . , t

dn
n ) for all i. (b) If P is a complete intersection generated by binomials

g1, . . . , gn−1, then I(T ) is a complete intersection generated by binomials h1, . . . , hn−1,
where hi is equal to gi(t

d1
1 , . . . , t

dn
n ) for all i.
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Proof. (a) Since tk is a non-zero divisor of S/I(T ) for all k, it is not hard to see that

the monomials of hi have disjoint support for all i, i.e., we can write hi = ta
+
i − ta−i for

i = 1, . . . , n− 1. We claim that the following two conditions hold.

(i) L = Z {a1, . . . , an−1}, where ai := a+
i − a−i and L is the lattice that defines I(T ).

(ii) V (h1, . . . , hn−1, ti) = {0} for i = 1, . . . , n.

As I(T ) is generated by h1, . . . , hn−1, by [39, Lemma 2.5], condition (i) holds. The
binomial tq−1

i − tq−1
n is in I(T ) for all i because F∗q is a group of order q − 1. Thus,

V (I(T ), ti) = {0} for all i. From the equality (h1, . . . , hn−1, ti) = (I(T ), ti), we get

V (h1, . . . , hn−1, ti) = V (I(T ), ti) = {0}.

Thus, (ii) holds. This completes the proof of the claim.

By (i) and Proposition 2.7.4, there are b1, . . . , bn−1 in L1 := ker(ψ) such that ai :=

D(bi) for all i. Accordingly a+
i = D(b+

i ) and a−i = D(b−i ) for all i. We set gi := tb
+
i − tb−i

for all i. Clearly, all the gi’s are in P and hi is equal to gi(t
d1
1 , . . . , t

dn
n ) for all i. Next, we

prove that P is generated by g1, . . . , gn−1. By Proposition 2.7.7 it suffices to show that
the following two conditions hold:

(i′) L1 = Z {b1, . . . , bn−1}, where L1 := ker(ψ).

(ii′) V (g1, . . . , gn−1, ti) = {0} for i = 1, . . . , n.

First we show (i′). Since b1, . . . , bn−1 are in L1, we need only show the inclusion (⊆).
Take γ ∈ ker(ψ), then D(γ) ∈ L, and by (i) it follows that γ ∈ Z {b1, . . . , bn−1}.

Next we show (ii′). For simplicity of notation, we may assume that i = n. Take c
in the variety V (g1, . . . , gn−1, tn) and write c := (c1, . . . , cn). Then, cn = 0 and gi(c) =

cb
+
i − cb−i = 0 for all i, were cb

+
i means to evaluate the monomial tb

+
i at the point c. Let i

be a fixed but arbitrary integer in {1, . . . , n− 1}. We can write

bi = b+
i − b−i = (b+

i1, . . . , b
+
in)− (b−i1, . . . , b

−
in)

and ai = a+
i − a−i = (a+

i1, . . . , a
+
in)− (a−i1, . . . , a

−
in). Then

hi(c
v1
1 , . . . , c

vn
n ) = (cv11 )a

+
i1 · · · (cvnn )a

+
in − (cv11 )a

−
i1 · · · (cvnn )a

−
in

= c
v1d1b

+
i1

1 · · · cvndnb
+
in

n − cv1d1b
−
i1

1 · · · cvndnb
−
in

n . (2.7.2)

We claim that hi(c
v1
1 , . . . , c

vn
n ) = 0. To show this we consider two cases.

Case (I): b+
in > 0. Then, as gi(c) = cb

+
i − cb−i = 0 and cb

+
i =0, one has cb

−
i = 0. Hence,

there is j such that b−ij > 0 and cj = 0. Thus, by Eq. (2.7.2), hi(c
v1
1 , . . . , c

vn
n ) = 0.

Case (II): b+
in = 0. If cj = 0 for some b+

ij > 0, then cb
−
i = 0 because gi(c) = 0.

Hence, there is k such that ck = 0 and b−ik > 0. Thus, by Eq. (2.7.2), hi(c
v1
1 , . . . , c

vn
n ) = 0.
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Similarly, if cj = 0 for some b−ij > 0, then cb
+
i = 0 because gi(c) = 0. Hence, there is

k such that ck = 0 and b+
ik > 0. Thus, by Eq. (2.7.2), hi(c

v1
1 , . . . , c

vn
n ) = 0. We may

now assume that cj 6= 0 if b+
ij > 0, and cm 6= 0 if b−im > 0. Let β be a generator of the

cyclic group (F∗q, · ). Any cj 6= 0 has the form cj = βj` . Thus, using that (βvj)dj = 1,

we get that (c
vj
j )djb

+
ij = 1 if b+

ij > 0 and (c
vj
j )djb

−
ij = 1 if b−ij > 0. Hence, by Eq. (2.7.2),

hi(c
v1
1 , . . . , c

vn
n ) = 0, as required. This completes the proof of the claim.

As hi(c
v1
1 , . . . , c

vn
n ) = 0 for all i, the point c′ := (cv11 , . . . , c

vn
n ) is in V (h1, . . . , hn−1, tn).

By (ii), the point c′ is zero. Hence, c = 0 as required. This completes the proof of (ii′).
Hence, P is a complete intersection generated by g1, . . . , gn−1.

(b) It follows from Proposition 2.7.5. 2

Using the notion of a binary tree, a criterion for complete intersection toric ideals of
affine monomial curves is given in [6]. In [4] an effective algorithm is given to determine
whether P is a complete intersection. If P is a complete intersection, this algorithm
returns the generators of P and the Frobenius number.

In our situation, the next result allows us to: (A) use the results of [6, 12, 30] to give
criteria for complete intersection vanishing ideals over a finite field, (B) use the effective
algorithms of [4] to recognize complete intersection vanishing ideals over finite fields and
to compute its invariants (see Example 2.7.15).

Corollary 2.7.9 I(T ) is a complete intersection if and only if P is a complete intersec-
tion.

Proof. Assume that I(T ) is a complete intersection. By Remark 2.7.1 there are binomials
h1, . . . , hn−1 that generate I(T ). Hence, P is a complete intersection by Theorem 2.7.8.
The converse follows by similar reasons. 2

Lemma 2.7.10 If r := gcd(d1, . . . , dn) and d′i := o(βrvi), then di = rd′i and
gcd(d′1, . . . , d

′
n) = 1.

Proof. It follows readily by recalling that o(βrvi) = o(βvi)/ gcd(r, o(βvi)). 2

In what follows T ′ will denote the degenerate torus in Pn−1 parameterized by

x
v′1
1 , . . . , x

v′n
n , where v′i := rvi and r := gcd(d1, . . . , dn). Below, we relate I(T ) and I(T ′).

Proposition 2.7.11 The vanishing ideal I(T ) is a complete intersection if and only if
I(T ′) is a complete intersection.

Proof. Let P and P ′ be the toric ideals ofK[yd11 , . . . , y
dn
1 ] andK[y

d′1
1 , . . . , y

d′n
1 ], respectively,

where d′i := o(βrvi) for all i. It is not hard to see that P = P ′. Then, by Theorem 2.7.8,
P is a complete intersection if and only if I(T ) is a complete intersection and P ′ is a
complete intersection if and only if I(T ′) is a complete intersection. Thus, I(T ) is a
complete intersection if and only if I(T ′) is a complete intersection. 2
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Lemma 2.7.12 Let T ∗ be the affine degenerate torus of type v on A. Then

|T ∗| = d1 · · · dn and deg(S/I(T )) = |T | = d1 · · · dn/ gcd(d1, . . . , dn).

Proof. Let Si := 〈βvi〉 be the cyclic group generated by βvi . The set T ∗ is equal to the
cartesian product S1 × · · · × Sn. Hence, to show the first equality, it suffices to recall
that |Si| is o(βvi), the order of βvi . Notice that any element of T ∗ can be written as
((βi1)v1 , . . . , (βin)vn) for some integers i1, . . . , in. The kernel of the epimorphism of groups
T ∗ 7→ T , x 7→ [x], is equal to

{(γ, . . . , γ) ∈ (K∗)n : γ ∈ 〈βv1〉 ∩ · · · ∩ 〈βvn〉}.

Hence, |T ∗|/| ∩ni=1 〈βvi〉| = |T |. Since 〈βvi〉 is a subgroup of K∗ for all i and K∗ is a cyclic
group, one has | ∩ni=1 〈βvi〉| = gcd(d1, . . . , dn) (see for instance [67, Theorem 4, p. 4]).
Thus, the second equality follows. 2

Definition 2.7.13 If S is a numerical semigroup of N, the Frobenius number of S, de-
noted by g(S), is the largest integer not in S.

Consider the semigroup S ′ := Nd′1 + · · ·+Nd′n, where d′i := o(βrvi) for i = 1, . . . , n. By
Lemma 2.7.10, one has gcd(d′1, . . . , d

′
n) = 1, i.e., S ′ is a numerical semigroup. Thus, g(S ′)

is finite. If the toric ideal of K[S ′] is a complete intersection, then g(S ′) can be expressed
entirely in terms of d′1, . . . , d

′
n [6, Remark 4.5].

We come to one of the main results of this section.

Corollary 2.7.14 (i) deg(S/I(T )) = d1 · · · dn/ gcd(d1, . . . , dn).

(ii) If I(T ) is a complete intersection, then

regS/I(T ) = gcd(d1, . . . , dn) g(S ′) +
∑n

i=1 di − (n− 1),

where g(S ′) denotes the Frobenius number of the numerical semigroup S ′ generated by
o(βrv1), . . . , o(βrvn); and r is the greatest common divisor of d1, . . . , dn.

Proof. Part (i) follows at once from Lemma 2.7.12. Next, we prove (ii). Let P and
P ′ be as in the proof of Proposition 2.7.11. With the notation above, by Lemma 2.7.10,
we get that di = rd′i for all i. The toric ideals P and P ′ are equal but they are graded
differently. Recall that P and P ′ are graded with respect to the gradings induced by
assigning deg(ti) := di and deg(ti) := d′i for all i, respectively. Let g1, . . . , gn−1 be a
generating set of P = P ′ consisting of binomials. Then, by Theorem 2.7.8, I(T ) is
generated by h1, . . . , hn−1, where hi is gi(t

d1
1 , . . . , t

dn
n ) for all i. Accordingly, I(T ′) is

generated by h′1, . . . , h
′
n−1, where h′i is gi(t

d′1
1 , . . . , t

d′n
n ) for all i. If Di := deg(hi) and

D′i := deg(h′i), then Di = rD′i for all i. As P ′ is a complete intersection generated by
g1, . . . , gn−1 and degP ′(gi) = D′i for all i, using [6, Remark 4.5], we get

g(S ′) =
n−1∑
i=1

D′i −
n∑
i=1

d′i =
n−1∑
i=1

(Di/r)−
n∑
i=1

(di/r).
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Therefore, using the equality regS/I(T ) =
∑n−1

i=1 (Di− 1) (see Lemma 2.7.2), the formula
for the regularity follows. 2

Example 2.7.15 To illustrate how to use the algorithm of [4] we consider the degenerate
torus T , over the field Fq, parameterized by xv11 , . . . , x

v5
5 , where v1 := 1500, v2 := 1000,

v3 := 432, v4 := 360, v5 := 240, and q := 54001. In this case, one has

d1 = 36, d2 = 54, d3 = 125, d4 = 150, d5 = 225.

Using [4, Algorithm CI, p. 981], we get that P is a complete intersection generated by
the binomials

g1 := t31 − t22, g2 := t34 − t25, g3 := t33 − t4t5, g4 := t81t
3
2 − t34,

and we also get that the Frobenius number of S is 793. Hence, by our results, the vanishing
ideal I(T ) is a complete intersection generated by the binomials

h1 := t108
1 − t108

2 , h2 := t450
4 − t450

5 , h3 := t375
3 − t150

4 t225
5 , h4 := t288

1 t162
2 − t450

4 ,

the index of regularity and degree of S/I(T ) are 1379 and 8201250000, respectively.

The next example is interesting because if one chooses v1, . . . , vn at random, it is likely
that I(T ) will be generated by binomials of the form tmi − tmj .

Example 2.7.16 Let Fq be the field with q := 211 elements. Consider the sequence
v1 := 42, v2 := 35, v3 := 30. In this case, one has d1 = 5, d2 = 6, d3 = 7. By a well known
result of Herzog [30], one has

P = (t22 − t1t3, t41 − t2t23, t31t2 − t33).

Hence, by our results, I(T ) = (t12
2 − t51t73, t20

1 − t62t14
3 , t

15
1 t

6
2− t21

3 ) and this ideal is not a
complete intersection. The index of regularity and the degree of S/I(T ) are 25 and 210,
respectively. The Frobenius number of S is equal to 9. Notice that the toric relations
t30
1 − t30

2 , t35
1 − t35

3 , t42
2 − t42

3 do not generate I(T ).

The next example was found using Theorem 2.7.8. Without using this theorem it is
very difficult to construct examples of complete intersection vanishing ideals not generated
by binomials of the form tmi − tmj .

Example 2.7.17 Let Fq be the field with q := 271 elements. Consider the sequence
v1 := 30, v2 := 135, v3 := 54. In this case, one has d1 = 9, d2 = 2, d3 = 5. The ideals P
and I(T ) are complete intersections given by

P = (t1 − t22t3, t52 − t23) and I(T ) = (t91 − t42t53, t10
2 − t10

3 ).

By Lemma 2.7.2, the index of regularity of S/I(T ) is 17 and by Corollary 2.7.14 the
Frobenius number of S is 3.
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Thesis [36] contains more information about this sort of vanishing ideals. Some results
at this thesis are:

Theorem 2.7.18 [36, pp. 32–35] Let B := K [t1, . . . , tn, y1, . . . , ys, z] be a polynomial
ring over the finite field K := Fq. If vi ∈ Ns for all i, then the following holds:

(a) I(T ) = ({ti − yviz}ni=1 ∪ {y
q−1
i − 1}si=1) ∩ S and I(T ) is a pure binomial ideal.

(b) ti ∈/ZS(S/I(T )) for all i and I(T ) is a radical pure lattice ideal.

(c) S/I(T ) is a Cohen-Macaulay ring of dimension 1.

Finally we show how to compute the vanishing ideal I (T ) using the notion of satura-
tion of an ideal with respect to the monomial t1 · · · tn.

The next lemma is easy to show.

Lemma 2.7.19 If cij := lcm{di, dj} = lcm{o(βvi), o(βvj)}, then t
cij
i − t

cij
j ∈ I(T ).

The set of toric relations F := {tciji − t
cij
j : 1 ≤ i, j ≤ n} do not generate I(T ), as

is seen in Example 2.7.16. If vi := 1 for all i, then cij = q − 1 for all i, j and I(T ) is
generated by F .

For an ideal I ⊂ S and a polynomial h ∈ S, recall that the saturation of I with respect
to h is the ideal

I : h∞ := {f ∈ S | fhk ∈ I for some k ≥ 1}.

Proposition 2.7.20 Let I ′ be the ideal (t
cij
i − t

cij
j | 1 < i < j ≤ n), where cij :=

lcm{di, dj}. If gcd(d1, . . . , dn) = 1, then I(T ) = I ′ : (t1 · · · tn)∞.

Proof. We claim that L = Z {cijei − cijej| 1 ≤ i < j ≤ n} . By [102, Proposition 10.1.8],
we get

L1 = Z {(dj/ gcd(di, dj))ei − (di/ gcd(di, dj))ej| 1 ≤ i < j ≤ n} .

Thus, the claim follows from the equality L = D(L1). (⊇) This follows readily using that
ti is a non-zero divisor of S/I(T ) for all i because I(T ) is a lattice ideal containing I ′

(see Lemma 2.7.19). (⊆) Take a binomial f := ta − tb ∈ I(T ). By Proposition 2.7.4,
I(T ) = I(L). Thus, a − b ∈ L. Using the previous claim and [39, Lemma 2.3], there is
δ ∈ Nn such that tδf ∈ I ′. Hence, f ∈ I ′ : (t1 · · · tn)∞. 2



Chapter 3

Affine Codes

Let K := Fq be a finite field with q elements, An := Kn an affine space over the field K
and X ∗ an affine subset of An. In this chapter we define an affine evaluation code, a code
that depends of X ∗. We show that the dimension of this code is an increasing function
and the minimum distance is a decreasing function. Let X ∗ be the projective closure of
X ∗ In analogous way to X ∗ we can construct a code that depends of X ∗. We prove codes
depending of X or X ∗ are equivalents.

Let υ1, . . . , υn be a sequence of non-negative vectors with υi := (υi1, . . . , υis) for 1 ≤
i ≤ n. The set Q∗ := {(xυ11

1 · · ·xυ1s
s , . . . , xυn1

1 · · · xυnss ) ∈ An|xi ∈ K∗ for all i}, is called
an affine algebraic toric set parameterized by the vectors υ1, . . . , υn on An. The code
associated with Q∗, denoted by CQ∗(d), is called a parameterized affine code of degree d.
In this chapter we show that the length of the code CQ∗(d) is equal to the degree of the
quotient ring S[u]/I(Q∗), where Q∗ is the projective closure of Q∗ and u := tn+1 is a new
indeterminate. We prove that the length and the dimension of the code CQ∗(d) can be
computed using Gröbner bases. Then we give an explicit procedure written in Macaulay2.

We compute an explicit formula for the dimension of CQ∗(d) when n = s and the
vectors υ1, . . . , υn that parameterize Q∗ are the canonical vectors e1, . . . , en in Qn. When
the vectors υ1, . . . , υn come from a graph, the set is called a set associated to a graph. We
show a formula for the length of a code that comes from a graph.

Let Λ1, . . . ,Λn be a collection of non-empty subsets of K with a finite number of
elements. Consider the affine cartesian product C∗ := Λ1 × · · · × Λn ⊂ An, and C∗, the
projective closure of C∗. We show I

(
C∗
)

is a complete intersection. Then we give explicit
formulas, in terms of the cardinalities of the Λi’s, for a set of generators, for the Hilbert
series, for the index of regularity and for the degree of the ideal I

(
C∗
)
.

The code defined by C∗, denoted by CC∗(d), is called an affine cartesian code. In this
chapter we give explicit formulas for the length, dimension and minimum distance for this
family of codes in terms of the cardinalities of the Λi’s.

At the end of this section, given a non decreasing sequence of positive integers d1, . . . , dn,
we construct an affine cartesian code, over an affine degenerate torus, with prescribed pa-
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rameters in terms of d1, . . . , dn.

3.1 Elementary concepts about affine codes

Let K := Fq be a finite field with q elements, An := Kn an affine space over the field K
and X ∗ an affine subset of An. In this section we define an affine evaluation code, a code
that depends of X ∗. We show that the dimension of this code is an increasing function
and the minimum distance is a decreasing function. Let X ∗ := {[(λ, 1)] |λ ∈ X ∗} ⊂ Pn be
the projective closure of X ∗ and X the image of X ∗ \{0} under the map An \{0} 7→ Pn−1,
γ 7→ [γ]. In analogous way to X ∗ we can construct a code that depends of X ∗ or X . We
prove codes depending of X or X ∗ are equivalents.

Consider S := K[t1, . . . , tn] with the standard grading and let a1, . . . , am be the points
of X ∗. Let S≤d be the K-vector space of all polynomials of S of degree at most d. The
evaluation map

evd : S≤d −→ K |X
∗|, f 7→ (f(a1), . . . , f(am)) ,

defines a linear map of K-vector spaces.

Definition 3.1.1 The image of evd in K |X
∗|, denoted by CX ∗(d), defines a K-vector

subspace. Permitting an abuse of language, we are referring to CX ∗(d) as a linear code,
even though in some cases we use a field K that might not be finite (Section 3.3). We
call CX ∗(d) the affine evaluation code (affine code for short) of degree d on the set X ∗.

The vanishing ideal of X ∗, denoted by I(X ∗), is the ideal of S[u] generated by the
homogeneous polynomials that vanish on X ∗, where u := tn+1 is a new variable and
S[u] := ⊕d≥0S[u]d is a polynomial ring, with the standard grading, over the field K.
Let p1, . . . ,pm (it is the same m that we use for the points of X ∗, this is because by
Theorem 3.1.3 (b) |X ∗| = |X ∗|) be a set of representatives for the points of X ∗ and let
f0(t1, . . . , tn+1) := td1. The evaluation map

ev′d : S[u]d −→ K |X
∗|, f 7→

(
f(p1)

f0(p1)
, . . . ,

f(pm)

f0(pm)

)
,

defines a linear map of K-vector spaces. If p′1, . . . ,p
′
m is another set of representatives,

then there are λ1, . . . , λm in K∗ such that p′i = λipi for all i. Thus, f(p′i)/f0(p′i) =
f(pi)/f0(pi) for f ∈ S[u]d and 1 ≤ i ≤ m. This means that the map ev′d is independent
of the set of representatives that we choose for the points of X ∗. In what follows we choose
(a1, 1), . . . , (am, 1) as a set of representatives for the points of X ∗.

Definition 3.1.2 The image of ev′d, denoted by CX ∗(d), defines a linear code that we call
the projective evaluation code (projective code for short) of degree d on the set X ∗.

Theorem 3.1.3 (a) There is an isomorphism of K-vector spaces ϕ : CX ∗(d)→ CX ∗(d),

(f(a1), . . . , f(am))
ϕ7−→
(
fh(a1, 1)

f0(a1, 1)
, . . . ,

fh(am, 1)

f0(am, 1)

)
=

(
f(a1)

f0(a1)
, . . . ,

f(am)

f0(am)

)
.
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(b) The codes CX ∗(d) and CX ∗(d) have the same basic parameters.

Proof. (a) We set I(X ∗)≤d := I(X ∗)∩S≤d. The kernel of evd is precisely I(X ∗)≤d. Hence,
there is an isomorphism of K-vector spaces

S≤d/I(X ∗)≤d ' CX ∗(d) = {(f(a1), . . . , f(am)) | f ∈ S≤d}. (3.1.1)

The kernel of ev′d is the homogeneous part I(X ∗)d of degree d of I(X ∗). Notice that
I(X ∗)d is equal to I(X ∗) ∩ S[u]d. Therefore, there is an isomorphism of K-vector spaces

S[u]d/I(X ∗)d ' CX ∗(d). (3.1.2)

The homogenization map ψ : S≤d→S[u]d, f 7→ fh, is an isomorphism of K-vector
spaces (see [65, p. 330]) such that ψ(I(X ∗)≤d) = I(X ∗)d. Hence, the induced map

Φ: S≤d → S[u]d/I(X ∗)d, f 7−→ fh + I(X ∗)d, (3.1.3)

is a surjection. Thus, by Eqs. (3.1.1) and (3.1.2), it suffices to observe that ker(Φ) =
I(X ∗)≤d.

(b) From part (a) it is clear that CX ∗(d) and CX ∗(d) have the same dimension and
length. To show that they have the same minimum distance it suffices to notice that the
isomorphism ϕ between CX ∗(d) and CX ∗(d) preserves the norm, i.e., ‖c‖ = ‖ϕ(c)‖ for
c ∈ CX ∗(d). 2

Remark 3.1.4 If HX ∗(d) is the affine Hilbert function of the affine K-algebra S/I(X ∗),
given by

HX ∗(d) := dimK S≤d/I(X ∗)≤d,

then, by Eq. (3.1.3), HX ∗(d) = HX ∗(d) for d ≥ 1 (see [65, Remark 5.3.16]).

From this result it follows at once that the codes CX ∗(d) and CX ∗(d) are equivalent in
the sense of [98, p. 48].

Corollary 3.1.5 (a) The dimension of CX ∗(d) is increasing, as a function of d, until it
reaches a constant value equal to |X ∗|. (b) The minimum distance of CX ∗(d) is decreasing,
as a function of d, until it reaches a constant value equal to 1.

Proof. The dimension of CX ∗(d) is increasing, as a function of d, until it reaches a
constant value equal to |X ∗| (see [21, Remark 1.1, p. 166] or [14, p. 456]). The minimum
distance of CX ∗(d) is decreasing, as a function of d, until it reaches a constant value equal
to 1. This was shown in [49, Proposition 5.1, p. 99] and [59, Proposition 2.1] for some
cases. For the general case one simply should observe that for every point a of X ∗ there
is a polynomial f in S1 such that f(a) = 0. The result follows from Theorem 3.1.3. 2
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3.2 Parameterized affine codes

Let K := Fq be a finite field with q elements, An := Kn an affine space over the field
K, S := K[t1, . . . , tn] a polynomial ring over K with n indeterminates and υ1, . . . , υn a
sequence of vectors in Ns with υi := (υi1, . . . , υis) for 1 ≤ i ≤ n. Consider the affine
algebraic toric set

Q∗ := {(xυ11
1 · · ·xυ1s

s , . . . , xυn1
1 · · ·xυnss ) ∈ An|xi ∈ K∗ for all i},

parameterized by the vectors υ1, . . . , υn on An. The set Q∗ is a multiplicative group under
componentwise multiplication. We call CQ∗(d), the code defined by Q∗ using Defini-
tion 3.1.1, a parameterized affine code of degree d.

In this section we show that the length of the code CQ∗(d) is equal to the degree of
the quotient ring S[u]/I(Q∗), where Q∗ is the projective closure of Q∗ and u := tn+1 is a
new indeterminate. We prove that the length and the dimension of the code CQ∗(d) can
be computed using Gröbner bases. We give an explicit procedure written in Macaulay2.

We compute an explicit formula for the dimension of CQ∗(d) when n = s and the
vectors υ1, . . . , υn that parameterize Q∗ are the canonical vectors e1, . . . , en in Qn. When
the vectors υ1, . . . , υn come from a graph, the set is called a set associated to a graph. We
show a formula for the length of a code that comes from a graph.

Parameterized affine codes are interesting because they generalize others important
family of codes. For instance they generalize sets parameterized by graphs (Section 3.2.3).
Also parameterized affine codes are special types of affine Reed-Muller codes in the sense
of [99, p. 37]. If s := n := 1 and υ1 := 1, then Q∗ = K∗ and we obtain the classical
Reed-Solomon code of degree d [98, p. 42].

3.2.1 Length and dimension (Theoretically)

Let K := Fq be a finite field with q elements, S := K[t1, . . . , tn] a polynomial ring over
K with n indeterminates and Q∗ the affine algebraic toric set parameterized by the non-
negative vectors υ1, . . . , υn. Most of the cases length of a code is the “easiest” parameter
to compute. But sometimes, as in the case of parameterized affine codes, this is a non-
trivial parameter. We show in this subsection that the length of the code CQ∗(d) is equal
to the degree of the quotient ring S[u]/I(Q∗), where Q∗ is the projective closure of Q∗
and u := tn+1 is a new indeterminate. We compute the dimension of CQ∗(d) when n = s
and the non-negative vectors υ1, . . . , υn that parameterize Q∗ are the canonical vectors
e1, . . . , en in Qn.

The projective closure of Q∗ can be seen as

Q∗ = {[(xυ11
1 · · ·xυ1s

s , . . . , xυn1
1 · · ·xυnss , 1)] |xi ∈ K∗ for all i} ⊂ Pn.

Notice that Q∗ is parameterized by the vectors υ1, . . . , υn, υn+1, where υn+1 := 0.

Recall that the vanishing ideal of Q∗, denoted by I(Q∗), consists of all polynomials f
of S that vanish on the set Q∗.
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Theorem 3.2.1 The length of CQ∗(d) is deg(S[u]/I(Q∗)).

Proof. The ring S[u]/I(Q∗) has Krull-dimension 1 (see [49, Theorem 2.1(c), p. 85]), thus
its Hilbert polynomial hQ∗(t) = c0 is a non-zero constant and its degree is equal to c0.
Then, according to [86, Lecture 13], or [21], we get that

|Q∗| = hQ∗(d) = c0 = deg(S[u]/I(Q∗))

for d ≥ |Q∗| − 1. Thus, |Q∗| is the degree of S[u]/I(Q∗). Hence, from part (b) of
Theorem 3.1.3, we get that the length of CQ∗(d) is equal to the degree of S[u]/I(Q∗). 2

Next, we give an application by computing the basic parameters of a certain family of
parameterized affine codes. Let Q∗ be an affine algebraic toric set parameterized by the
canonical vectors in Qs : e1, . . . , es. In this case Q∗ becomes in T ∗, the affine torus, and
Q∗ becomes in T, the projective torus. Recall that T ∗ and T are given by

T ∗ := {(x1, . . . , xn) ∈ An | xi ∈ K∗} and T := {[(x1, . . . , xn, 1)] | xi ∈ K∗} ⊂ Pn.

Corollary 3.2.2 The minimum distance of CT ∗(d) is given by

δT ∗(d) :=

{
(q − 1)n−k−1(q − 1− `) if d ≤ (q − 2)n− 1,

1 if d ≥ (q − 2)n,

where k and ` are the unique integers such that k ≥ 0, 1 ≤ ` ≤ q−2 and d = k(q−2) + `.

Proof. It was shown in [54] that the minimum distance of CT (d) is given by the formula
above. Thus, by Theorem 3.1.3, the result follows. 2

As a consequence of this result we obtain the well-known formula for the minimum
distance of a Reed-Solomon code [98, p. 42].

Corollary 3.2.3 (Reed-Solomon codes) Let T ∗ be an affine torus in A1. Then the min-
imum distance δT ∗(d) of CT ∗(d) is given by

δT ∗(d) :=

{
q − 1− d if 1 ≤ d ≤ q − 3,

1 if d ≥ q − 2,

and CT ∗(d) is an MDS code.

Proof. In this situation s = 1. If d ≤ q − 3, we can write d = k(q − 2) + `, where
k := 0 and ` := d. Then, by Corollary 3.2.2, we get δT ∗(d) = q − 1− d for d ≤ q − 3 and
δT ∗(d) = 1 for d ≥ q − 2. 2

Corollary 3.2.4 The length of CT ∗(d) is (q − 1)n and its dimension is

dimK CT ∗(d) =

b d
q−1c∑
j=0

(−1)j
(
n

j

)(
n+ d− j(q − 1)

n

)
.
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Proof. The length of CT ∗(d) is clearly equal to (q − 1)n because T ∗ = (K∗)n. It was
shown in [14] that the dimension of CT (d) is given by the formula above. Thus, by
Theorem 3.1.3, the result follows. 2

Example 3.2.5 Let T ∗ be an affine torus in A2 and let CT ∗(d) be its parameterized affine
code of degree d over the field K := F11. Using Corollaries 3.2.2 and 3.2.4, we obtain:

d 1 2 3 4 5 6 7 8 9 10 11 12 13
|T ∗| 100 100 100 100 100 100 100 100 100 100 100 100 100

dimCT ∗(d) 3 6 10 15 21 28 36 45 55 64 72 79 85
δT ∗(d) 90 80 70 60 50 40 30 20 10 9 8 7 6

3.2.2 Length and dimension (Computation)

Let K := Fq be a finite field with q elements, S := K[t1, . . . , tn] a polynomial ring over
K with n indeterminates and Q∗ the affine algebraic toric set parameterized by the non-
negative vectors υ1, . . . , υn. We show in this subsection that the length and the dimension
of the code CQ∗(d) can be computed using Gröbner bases. We give an explicit procedure
written in Macaulay2.

Theorem 3.2.6 (Combinatorial Nullstellensatz [1, Theorem 1.2]) Let R := K[y1, . . . , ys]
be a polynomial ring over a field K, let f ∈ R, and let a := (ai) ∈ Ns. Suppose that the
coefficient of ya in f is non-zero and deg (f) = a1 + · · ·+ as. If S1, . . . , Ss are subsets of
K, with |Si| > ai for all i, then there are p1 ∈ S1, . . . , ps ∈ Ss such that f (p1, . . . , ps) 6= 0.

Lemma 3.2.7 Let K := Fq and let G be a polynomial in K[y1, . . . , ys]. If G vanishes on
(K∗)s and degyi (G) < q − 1 for i = 1, . . . , s, then G = 0.

Proof. We proceed by contradiction. Assume that G is non-zero. Then, there is a
monomial ya that occurs in G with deg(G) = a1 + · · · + as, where a := (a1, . . . , as) and
ai > 0 for some i. We set Si := K∗ for all i. As degyi(G) < q − 1 for all i, then
ai < |Si| = q − 1 for all i. Thus, by Theorem 3.2.6, there are x1, . . . , xs ∈ K∗ so that
G (x1, . . . , xs) 6= 0, a contradiction to the fact that G vanishes on (K∗)s. 2

Lemma 3.2.8 Let B := K[t1, . . . , tn, y1, . . . , ys] be a polynomial ring over an arbitrary
field K. If I ′ is a pure binomial ideal of B, then I ′∩K[t1, . . . , tn] is a pure binomial ideal.

Proof. Let S := K[t1, . . . , tn] and let G be a Gröbner basis of I ′ with respect to the
lexicographic order y1 � · · · � ys � t1 � · · · � tn. By Buchberger algorithm [75,
Theorem 2, p. 89] the set G consists of binomials and by elimination theory [75, Theorem 2,
p. 114] the set G ∩ S is a Gröbner basis of I ′ ∩ S. Hence I ′ ∩ S is a pure binomial ideal.
See the proof of [97, Corollary 4.4, p. 32] for additional details. 2
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Theorem 3.2.9 Let B := K[t1, . . . , tn, y1, . . . , ys] be a polynomial ring over a finite field
K with q elements. Then

I (Q∗) =
(
t1 − yυ1 , . . . , tn − yυn , yq−1

1 − 1, . . . , yq−1
s − 1

)
∩ S

and I(Q∗) is a binomial ideal.

Proof. We set I ′ :=
(
t1 − yυ1 , . . . , tn − yυn , yq−1

1 − 1, . . . , yq−1
s − 1

)
⊂ B. First we show

the inclusion I(Q∗) ⊂ I ′ ∩ S. Take a polynomial F := F (t1, . . . , tn) that vanishes on Q∗.
We can write

F = λ1t
m1 + · · ·+ λrt

mr (λi ∈ K∗; mi ∈ Nn) . (3.2.1)

Write mi = (mi1, . . . ,mis) for 1 ≤ i ≤ r. Applying the binomial theorem to expand the
right hand side of the equality

t
mij
j = [(tj − yυj) + yυj ]mij , 1 ≤ i ≤ r, 1 ≤ j ≤ n,

we get the equality

t
mij
j =

(
mij−1∑
k=0

(
mij

k

)(
tj − yυj)mij−k(yυj)k

))
+ (yυj)mij .

As a result, we obtain that tmi can be written as:

tmi = tmi11 · · · tminn = pi + (yυ1)mi1 · · · (yυn)min ,

where pi is a polynomial in the ideal (t1−yυ1 , . . . , tn−yυn). Thus, substituting tm1 , . . . , tmr

in Eq. (3.2.1), we obtain that F can be written as:

F =
n∑
i=1

gi(ti − yυi) + F (yυ1 , . . . , yυn) (3.2.2)

for some g1, . . . , gn in B. By the division algorithm in K[y1, . . . , ys] (see [75, Theorem 3,
p. 63]) we can write

F (yυ1 , . . . , yυn) =
s∑
i=1

hi(y
q−1
i − 1) +G(y1, . . . , ys) (3.2.3)

for some h1, . . . , hs in K[y1, . . . , ys], where the monomials that occur in G := G(y1, . . . , ys)
are not divisible by any of the monomials yq−1

1 , . . . , yq−1
s , i.e., degyi(G) < q − 1 for i =

1, . . . , s. Therefore, using Eqs. (3.2.2) and (3.2.3), we obtain the equality

F =
n∑
i=1

gi(ti − yυi) +
s∑
i=1

hi(y
q−1
i − 1) +G(y1, . . . , ys). (3.2.4)
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Thus to show that F ∈ I ′ ∩ S we need only show that G = 0. We claim that G vanishes
on (K∗)s. Take an arbitrary sequence x1, . . . , xs of elements of K∗. Making ti := xυi for
all i in Eq. (3.2.4) and using that F vanishes on Q∗, we obtain

0 = F (xυ1 , . . . , xυn) =
s∑
i=1

g′i(x
υi − yυi) +

s∑
i=1

hi(y
q−1
i − 1) +G(y1, . . . , ys), (3.2.5)

where g′i := gi(x
υ1 , . . . , xυn , y1, . . . , ys). Since (K∗, · ) is a group of order q − 1, we can

then make yi := xi for all i in Eq. (3.2.5) to get that G vanishes on (x1, . . . , xs). This
completes the proof of the claim. Therefore G vanishes on (K∗)s and degyi(G) < q − 1
for all i. Hence G = 0 by Lemma 3.2.7.

Next we show the inclusion I(Q∗) ⊃ I ′ ∩ S. Take a polynomial f in I ′ ∩ S. Then we
can write

f =
n∑
i=1

gi(ti − yυi) +
s∑
i=1

hi(y
q−1
i − 1) (3.2.6)

for some polynomials g1, . . . , gn, h1, . . . , hs in B. Take a point P := (xυ1 , . . . , xυn) in Q∗.
Making ti := xυi in Eq. (3.2.6), we get

f(xυ1 , . . . , xυn) =
n∑
i=1

g′i(x
υi − yυi) +

s∑
i=1

h′i(y
q−1
i − 1),

where g′i := gi(x
υ1 , . . . , xυn , y1, . . . , ys) and h′i := hi(x

υ1 , . . . , xυn , y1, . . . , ys). Hence making
yi := xi for all i, we get that f(P ) = 0. Thus f vanishes on Q∗. 2

In this section we are always working over a finite field K. For infinite fields the
situation is as follows. If K := C is the field of complex numbers and Q is an affine toric
variety, i.e.,

Q := V (P ) := {a ∈ Kn| f(a) = 0 for all f ∈ P}

is the zero set of a toric ideal P , then by the Nullstellensatz [78, Theorem 1.6] we have
that I(Q) = P . This means that I(Q) is a binomial ideal. For infinite fields, we can use
the Combinatorial Nullstellensatz (see Theorem 3.2.6) to show the following description
of I(Q∗). We refer to [97] for the theory of toric ideals.

Proposition 3.2.10 Let B := K[t1, . . . , tn, y1, . . . , ys] be a polynomial ring over an infi-
nite field K. Then

I(Q∗) = (t1 − yυ1 , . . . , tn − yυn) ∩ S

and I(Q∗) is the toric ideal of K[yυ1 , . . . , yυn ].

Our next aim is to show how to compute I(Q∗). For f ∈ S of degree l define

fh = ulf (t1/u, . . . , tn/u) ,
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that is, fh is the homogenization of the polynomial f with respect to u and l. The
homogenization of I(Q∗) ⊂ S is the ideal I(Q∗)h of S[u] given by

I(Q∗)h := ({fh| f ∈ I(Q∗)}).

Let� be the elimination order on the monomials of S[u] with respect to t1, . . . , tn, tn+1,
where u := tn+1. Recall that this order is defined as tb � ta if and only if the total degree
of tb in the variables t1, . . . , tn+1 is greater than that of ta, or both degrees are equal, and
the last nonzero component of b− a is negative.

Lemma 3.2.11 If f1, . . . , fr is a Gröbner basis of I(Q∗), then fh1 , . . . , f
h
r form a Gröbner

basis and the following equalities hold:

I(Q∗) = I(Q∗)h = (fh1 , . . . , f
h
r ).

Proof. The result follows readily from [102, Propositions 2.4.26 and 2.4.30]. 2

We come to one of the main results of this section.

Corollary 3.2.12 The dimension and the length of CQ∗(d) can be computed using Gröbner
basis.

Proof. By Lemma 3.2.11 we can find a generating set of I(Q∗) using Gröbner basis.
Thus, using the computer algebra system Macaulay2 [79, 61], we can compute the Hilbert
function and the degree of S[u]/I(Q∗), i.e., we can compute the dimension and the length
of CQ∗(d). Consequently, Theorem 3.1.3 allows to compute the dimension and the length
of CQ∗(d) using Gröbner basis. 2

Putting the results of this section together we obtain the following process.

Process 3.2.13 The following simple procedure for Macaulay2 computes the dimension
and the length of a parameterized affine code CQ∗(d) of degree d.

R=GF(q)[y1,...,ys,t1,...,tn,u,MonomialOrder=>Eliminate s]

I’=ideal(t1-y^{\upsilon_1},...,t_n-y^{\upsilon_n},

y1^{q-1}-1,...,ys^{q-1}-1)

I(\mathcal{Q}^*)=ideal selectInSubring(1,gens gb I’)

I({\overline{\mathcal{Q}^*}})’=homogenize(I(\mathcal{Q}^*),u)

S=GF(q)[t1,...,tn,u]

I({\overline{\mathcal{Q}^*}})=substitute(I({\overline{\mathcal{Q}^*}})’,S)

degree I({\overline{\mathcal{Q}^*}})

hilbertFunction(d,I({\overline{\mathcal{Q}^*}}))
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Example 3.2.14 Let Q∗ be the affine algebraic toric set parameterized by the vectors
(1, 1, 0), (0, 1, 1), (1, 0, 1) and let CQ∗(d) be its parameterized affine code of order d over
the field K := F5. Using Macaulay2, together with Process 3.2.13, we obtain:

I(Q∗) = (t43 − 1, t22t
2
3 − t21, t21t23 − t22, t42 − 1, t21t

2
2 − t23, t41 − 1),

I(Q∗) = (t43 − t44, t22t23 − t21t24, t21t23 − t22t24, t42 − t44, t21t22 − t23t24, t41 − t44),

d 1 2 3 4 5
|Q∗| 32 32 32 32 32

dimCQ∗(d) 4 10 20 29 32
δQ∗(d) 23 8 1

The minimum distance was also computed with Macaulay2. An algorithm to compute
the minimum distance can be found in Thesis [36].

3.2.3 The parameterized code associated to a graph

Let K := Fq be a finite field with q elements. When the non-negative vectors υ1, . . . , υn
that parameterize an affine algebraic toric set come from a graph, the set is called a set
associated to a graph. Here we have a more precise definition.

Definition 3.2.15 Let G be a simple graph with vertex set V (G) := {x1, . . . ,xs} and
edge set E(G) := {e1, . . . , en}. For an edge ei := {xj,xk}, where xj,xk ∈ V (G), let
Vi := ej + ek ∈ Ns, where, for 1 ≤ j ≤ s, ej is the j-th element of the canonical basis of
Qs.

The set associated to G is the set Q∗G parameterized by the s-tuples V1, . . . ,Vn ∈ Ns,
obtained from the edges of G. If Q∗G is the set associated to G we call its associated linear
code CQ∗G(d) the parameterized code associated to G and we refer to the vanishing ideal
of Q∗G as the vanishing ideal over G.

Theorem 3.2.16 [45, Theorem 3.2] Suppose G has r connected components, of which λ
are non-bipartite. Then,

|Q∗G| =


(

1
2

)λ−1
(q − 1)n−r+λ−1, if λ ≥ 1 and q is odd,

(q − 1)n−r+λ−1, if λ ≥ 1 and q is even,
(q − 1)n−r−1, if λ = 0.

3.3 Affine cartesian codes

Let K be an arbitrary field, An := Kn an affine space over the field K, S := K[t1, . . . , tn]
a polynomial ring over K with n indeterminates and Λ1, . . . ,Λn a collection of non-empty
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subsets of K with a finite number of elements. Consider the following finite sets: (a) an
affine cartesian product

C∗ := Λ1 × · · · × Λn ⊂ An,

and (b) the projective closure of C∗

C∗ := {[(λ1, . . . , λn, 1)] |λi ∈ Λi for all i} ⊂ Pn,

where Pn is a projective space over the field K. For i = 1, . . . , n, we define di := |Λi|, the
cardinality of Λi.We may always assume that 2 ≤ di ≤ di+1 for all i (see Proposition 3.3.6).
The vanishing ideal of C∗, denoted by I

(
C∗
)
, consists of all homogeneous polynomials f

of S that vanish on the set C∗.
We show in this section that I

(
C∗
)

is a complete intersection. Then we give explicit
formulas, in terms of the di’s, for a set of generators, for the Hilbert series, for the index
of regularity and for the degree of the ideal I

(
C∗
)
.

The code defined by C∗ using Definition 3.1.1, denoted by CC∗(d), is called an affine
cartesian code of degree d on the set C∗. In this section we give explicit formulas for the
length, dimension and minimum distance of CC∗(d) in terms of the di’s.

At the end of this section, given a non decreasing sequence of positive integers d1, . . . , dn,
we construct an affine cartesian code, over an affine degenerate torus, with prescribed pa-
rameters in terms of d1, . . . , dn.

3.3.1 Complete intersections and algebraic invariants

Let K be an arbitrary field, An := Kn an affine space over the field K, S := K[t1, . . . , tn]
a polynomial ring over K with n variables, C∗ := Λ1 × · · · × Λn ⊂ An an affine cartesian
product and C∗, the projective closure of C∗. Recall that the vanishing ideal of C∗, denoted
by I

(
C∗
)
, consists of all homogeneous polynomials f of S that vanish on the set C∗. We

show in this section that I
(
C∗
)

is a complete intersection. Then we give explicit formulas,
in terms of the cardinalities of the Λi’s, for a set of generators, for the Hilbert series, for
the index of regularity and for the degree of the ideal I

(
C∗
)
.

Lemma 3.3.1 (a) |C∗| = |C∗| = d1 · · · dn.

(b) If Λi is a subgroup of (K∗, · ) for all i, then |C∗|/|Λ1 ∩ · · · ∩ Λn| = |C|.
(c) If G ∈ I(C∗) and degti (G) < di for i = 1, . . . , n, then G = 0.

Proof. (a) The map C∗ 7→ C∗, x 7→ [(x, 1)], is bijective. Thus, |C∗| = |C∗|. (b) Since Λi is
a group for all i, the sets C∗ and C are also groups under componentwise multiplication.
Thus, there is an epimorphism of groups C∗ 7→ C, x 7→ [x], whose kernel is equal to

{(λ, . . . , λ) ∈ C∗ : λ ∈ Λ1 ∩ · · · ∩ Λn}.

Thus, |C∗|/|Λ1∩· · ·∩Λn| = |C|. To show (c) we proceed by contradiction. Assume that G
is non-zero. Then, there is a monomial ta = ta1

1 · · · tann of G with deg(G) = a1 + · · ·+ an,
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where a := (a1, . . . , an) and ai > 0 for some i. As degti(G) < di for all i, then ai < |Λi| = di
for all i. Thus, by Theorem 3.2.6, there are x1, . . . , xn with xi ∈ Λi for all i such that
G (x1, . . . , xn) 6= 0, a contradiction to the assumption that G vanishes on C∗. 2

Lemma 3.3.2 Let fi be the polynomial
∏

λ∈Λi
(ti − λ) for 1 ≤ i ≤ n. Then

I(C∗) = (f1, . . . , fn).

Proof. (⊇) This inclusion is clear because fi vanishes on C∗ by construction. (⊆) Take
f in I(C∗). Let � be the reverse lexicographical order on the monomials of S. By the
division algorithm (Proposition 1.1.12 or [66, Theorem 1.5.9, p. 30]), we can write

f = g1f1 + · · ·+ gnfn +G,

where each of the terms of G is not divisible by any of the leading monomials td11 , . . . , t
dn
n ,

i.e., degti(G) < di for all i. As G belongs to I(C∗), by Lemma 3.3.1, we get that G = 0.
Thus, f ∈ (f1, . . . , fn). 2

The degree and the regularity of S[u]/I(C∗) can be computed from its Hilbert series.
Indeed, the Hilbert series can be written as

FC∗(t) :=
∞∑
i=0

HC∗(i)t
i =

∞∑
i=0

dimK(S[u]/I(C∗))iti =
h0 + h1t+ · · ·+ hrt

r

1− t
,

where h0, . . . , hr are positive integers. This follows from the fact that I(C∗) is a Cohen-
Macaulay ideal of height n [21]. The number r is the regularity of S[u]/I(C∗) and h0 +
· · ·+ hr is the degree of S[u]/I(C∗) (see [102, Corollary 4.1.12]).

A homogeneous ideal I ⊂ S is called a complete intersection if there exists homoge-
neous polynomials g1, . . . , gr such that I = (g1, . . . , gr), where r is the height of I.

Proposition 3.3.3 (a) I(C∗) = (
∏

λ∈Λ1
(t1 − uλ), . . . ,

∏
λ∈Λn

(tn − uλ)).

(b) I(C∗) is a complete intersection.

(c) FC∗(t) =
∏n

i=1(1 + t+ · · ·+ tdi−1)/(1− t).

(d) regS[u]/I(C∗) =
∑n

i=1(di − 1) and deg(S[u]/I(C∗)) = |C∗| = d1 · · · dn.

Proof. (a) For i = 1, . . . , n, we set fi :=
∏

λ∈Λi
(ti−λ). Let � be the reverse lexicograph-

ical order on the monomials of S[u]. Since f1, . . . , fn form a Gröbner basis with respect
to this order, by Lemma 3.3.2 and [38, Lemma 3.7], the vanishing ideal I(C∗) is equal to
(fh1 , . . . , f

h
n ), where fhi :=

∏
λ∈Λi

(ti − uλ) is the homogenization of fi with respect to a

new variable u. Part (b) follows from (a) because I(C∗) is an ideal of height n [21]. (c)
This part follows using (a) and a well known formula for the Hilbert series of a complete
intersection (see [102, p. 104]). (d) This part follows directly from [14, Corollary 2.6]. 2

Lemma 3.3.4 From Remark 3.1.4 HC∗(d) = HC∗(d) for d ≥ 0.

In particular, from this Lemma, the dimension and the length of the cartesian code
CC∗(d) are HC∗(d) and deg(S[u]/I(C∗)), respectively.
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3.3.2 Cartesian evaluation codes

Let K be an arbitrary field, An := Kn an affine space over the field K, S := K[t1, . . . , tn]
a polynomial ring over K with n variables, C∗ := Λ1 × · · · × Λn ⊂ An an affine cartesian
product and CC∗(d), the affine evaluation code associated with C∗. In this subsection we
give explicit formulas for the length, dimension and minimum distance of CC∗(d) in terms
of the cardinalities of Λi’s.

We come to one of the main results of this section.

Theorem 3.3.5 The length of CC∗(d) is d1 · · · dn, its minimum distance is 1 for d ≥∑n
i=1(di − 1), and its dimension is

HC∗(d) =

(
n+ d

d

)
−
∑

1≤i≤n

(
n+ d− di
d− di

)
+
∑
i<j

(
n+ d− (di + dj)

d− (di + dj)

)
−

∑
i<j<k

(
n+ d− (di + dj + dk)

d− (di + dj + dk)

)
+ · · ·+ (−1)n

(
n+ d− (d1 + · · ·+ dn)

d− (d1 + · · ·+ dn)

)
.

Proof. The length of CC∗(d) is |C∗| = d1 · · · dn. We set r :=
∑n

i=1(di − 1). By Proposi-
tion 3.3.3, the regularity of S[u]/I(C∗) is equal to r, i.e., HC∗(d) = |C∗| for d ≥ r. Thus,
by Lemmas 3.3.1 and 3.3.4, HC∗(d) = |C∗| for d ≥ r, i.e., CC∗(d) = K |C

∗| for d ≥ r. Hence
δC∗(d) = 1 for d ≥ r. By Proposition 3.3.3, the ideal I(C∗) is a complete intersection
generated by n homogeneous polynomials f1, . . . , fn of degrees d1, . . . , dn. Thus, applying
[14, Corollary 2.6] and using the equality HC∗(d) = HC∗(d), we obtain the required formula
for the dimension. 2

Proposition 3.3.6 If d1 = 1 and C ′ = Λ2 × · · · × Λn, then CC∗(d) = CC′(d) for d ≥ 1.

Proof. Let λ1 be the only element of Λ1 and let C ′ be the projective closure of C ′. Then,
by Proposition 3.3.3, we get

I(C∗) = (t1 − uλ1, f
h
2 , . . . , f

h
n ) and I(C ′) = (fh2 , . . . , f

h
n ),

where fhi :=
∏

λ∈Λi
(ti − uλ) for i = 2, . . . , n. Since S[u]/I(C∗) and K[t2, . . . , tn, u]/I(C ′)

have the same Hilbert function, we get that the dimension and the length of CC∗(d) and
CC′(d) are the same. Thus, to show the equality CC∗(d) = CC′(d), it suffices to show the
inclusion (⊆). Any element of CC∗(d) has the form

c = (f(λ1, a1), . . . , f(λ1, am)),

where a1, . . . , am are the points of C ′ and f ∈ S≤d. If f̃ is the polynomial f(λ1, t2, . . . , tn),

then f̃ is in K[t2, . . . , tn]≤d and f(λ1, ai) = f̃(ai) for all i. Thus, c is an element of CC′(d),
as required. 2

Since permuting the sets Λ1, . . . ,Λn does not affect neither the parameters of the cor-
responding cartesian evaluation codes, nor the invariants of the corresponding vanishing
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ideal, by Proposition 3.3.6 we may always assume that 2 ≤ di ≤ di+1 for all i, where
di := |Λi|.

For G ∈ S, we denote the zero set of G in C∗ by ZC∗(G). We begin with a general
bound that will be refined later in this section. The proof of [93, Lemma 3A, p. 147] can
be easily adapted to obtain the following auxiliary result.

Lemma 3.3.7 Let 0 6= G := G(t1, . . . , tn) ∈ S be a polynomial of total degree d. If
di ≤ di+1 for all i, then

|ZC∗(G)| ≤
{
d2 · · · dnd if n ≥ 2,
d if n = 1.

Proof. By induction on n + d ≥ 1. If n + d = 1, then n = 1, d = 0 and the result is
obvious. If n = 1, then the result is clear because G has at most d roots in K. Thus, we
may assume d ≥ 1 and n ≥ 2. We can write G as

G = G(t1, . . . , tn) = G0(t1, . . . , tn−1) +G1(t1, . . . , tn−1)tn + · · ·+Gr(t1, . . . , tn−1)trn, (†)

where Gr 6= 0 and 0 ≤ r ≤ d. Let β1, . . . , βd1 be the elements of Λ1. We set

Hk = Hk(t2, . . . , tn) := G(βk, t2, . . . , tn) for 1 ≤ k ≤ d1.

Case (I): Hk(t2, . . . , tn) = 0 for some 1 ≤ k ≤ d1. From Eq. (†) we get

Hk(t2, . . . , tn) = G0(βk, t2, . . . , tn−1)+G1(βk, t2, . . . , tn−1)tn+· · ·+Gr(βk, t2, . . . , tn−1)trn = 0.

Therefore Gi(βk, t2, . . . , tn−1) = 0 for i = 0, . . . , r. Hence t1 − βk divides Gi(t1, . . . , tn−1)
for all i. Thus, by Eq. (†), we can write

G(t1, . . . , tn) = (t1 − βk)G′(t1, . . . , tn)

for some G′ ∈ S. Notice that deg(G′) + n = d− 1 + n < d+ n. Hence, by induction, we
get

|ZC∗(G)| ≤ |ZC∗(t1 − βk)|+ |ZC∗(G′(t1, . . . , tn))| ≤ d2 · · · dn + d2 · · · dn(d− 1) = d2 · · · dnd.

Case (II): Hk(t2, . . . , tn) 6= 0 for 1 ≤ k ≤ d1. Observe the inclusion

ZC∗(G) ⊂
d1⋃
k=1

({βk} × Z(Hk)),

where Z(Hk) := {a ∈ Λ2×· · ·×Λn |Hk(a) = 0}. As deg(Hk)+n−1 < d+n and di ≤ di+1

for all i, then by induction

|ZC∗(G)| ≤
d1∑
k=1

|Z(Hk)| ≤ d1d3 · · · dnd ≤ d2d3 · · · dnd,

as required. 2
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Lemma 3.3.8 Let d1, . . . , dn−1, d
′, d be positive integers such that d :=

∑k
i=1(di − 1) + `

and d′ :=
∑k′

i=1(di − 1) + `′ for some integers k, k′, `, `′ satisfying that 0 ≤ k, k′ ≤ n − 2
and 1 ≤ ` ≤ dk+1 − 1, 1 ≤ `′ ≤ dk′+1 − 1. If d′ ≤ d and di ≤ di+1 for all i, then k′ ≤ k
and

− dk′+1 · · · dn−1 + `′dk′+2 · · · dn−1 ≤ −dk+1 · · · dn−1 + `dk+2 · · · dn−1, (∗)

where dk+2 · · · dn−1 = 1 (resp., dk′+2 · · · dn−1 = 1) if k = n− 2 (resp., k′ = n− 2).

Proof. First we show that k′ ≤ k. If k′ > k, from the equality

` = (d− d′) + `′ + [(dk+1 − 1) + · · ·+ (dk′+1 − 1)],

we obtain that ` ≥ dk+1, a contradiction. Thus, k′ ≤ k. Since dk+2 · · · dn−1 is a common
factor of each term of Eq. (∗), we need only show the equivalent inequality:

dk+1 − ` ≤ (dk′+1 − `′)dk′+2 · · · dk+1. (∗∗)

If k = k′, then dk′+2 · · · dk+1 = 1 and d−d′ = `− `′ ≥ 0. Hence, ` ≥ `′ and Eq. (∗∗) holds.
If k ≥ k′ + 1, then

dk+1 − ` ≤ dk+1 ≤ dk′+2 · · · dk+1 ≤ dk′+2 · · · dk+1(dk′+1 − `′).

Thus, Eq. (∗∗) holds. 2

Lemma 3.3.9 If 0 6= G ∈ S. Then, there are r ≥ 0 distinct elements β1, . . . , βr in Λn

and G′ ∈ S such that

G = (tn − β1)l1 · · · (tn − βr)lrG′, li ≥ 1 for all i,

and G′(t1, . . . , tn−1, λ) 6= 0 for any λ ∈ Λn.

Proof. Fix a monomial ordering in S. If the degree of G is zero, we set r := 0 and
G′ := G. Assume that deg(G) > 0. If G(t1, . . . , tn−1, λ) 6= 0 for all λ ∈ Λn, we set G′ := G
and r := 0. If G(t1, . . . , tn−1, λ) = 0 for some λ ∈ Λn, then by the division algorithm there
are F and H in S such that G = (tn−λ)F +H, where H is a polynomial whose terms are
not divisible by the leading term of tn−λ, i.e., H is a polynomial in K[t1, . . . , tn−1]. Thus,
as G(t1, . . . , tn−1, λ) = 0, we get that H = 0 and G = (tn − λ)F . Since deg(F ) < deg(G),
the result follows using induction on the total degree of G. 2

Proposition 3.3.10 Let G := G(t1, . . . , tn) ∈ S be a polynomial of total degree d ≥ 1
such that degti(G) ≤ di−1 for i = 1, . . . , n. If di ≤ di+1 for all i and d =

∑k
i=1(di−1)+ `

for some integers k, ` such that 1 ≤ ` ≤ dk+1 − 1, 0 ≤ k ≤ n− 1, then

|ZC∗(G)| ≤ dk+2 · · · dn(d1 · · · dk+1 − dk+1 + `),

where we set dk+2 · · · dn = 1 if k = n− 1.
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Proof. We proceed by induction on n. By Lemma 3.3.9, there are r ≥ 0 distinct elements
β1, . . . , βr in Λn and G′ ∈ S such that

G = (tn − β1)l1 · · · (tn − βr)lrG′, li ≥ 1 for all i,

and G′(t1, . . . , tn−1, λ) 6= 0 for any λ ∈ Λn. Notice that r ≤
∑r

i=1 ai ≤ dn − 1 because the
degree of G in tn is at most dn − 1. We may assume that Λn = {β1, . . . , βdn}. Let d′i be
the degree of G′(t1, . . . , tn−1, βi) and define d′ := max{d′i| r + 1 ≤ i ≤ dn}.

Case (I): Assume n = 1. Then, k = 0 and d = `. Then |ZC∗(G)| ≤ ` because a
non-zero polynomial in one variable of degree d has at most d roots.

Case (II): Assume n ≥ 2 and k = 0. Then, d = ` ≤ d1 − 1. Hence, by Lemma 3.3.7,
we get

|ZC∗(G)| ≤ d2 · · · dnd = d2 · · · dn` = dk+2 · · · dn(d1 · · · dk+1 − dk+1 + `),

as required.

Case (III): Assume n ≥ 2, k ≥ 1 and d′ = 0. Then, |ZC∗(G)| = rd1 · · · dn−1. Thus, it
suffices to show the inequality

rd1 · · · dn−1 ≤ d1 · · · dn − dk+1 · · · dn + `dk+2 · · · dn.

All terms of this inequality have dk+2 · · · dn−1 as a common factor. Hence, this case
reduces to showing the following equivalent inequality

rd1 · · · dk+1 ≤ dn(d1 · · · dk+1 − dk+1 + `).

We can write dn = r + 1 + δ for some δ ≥ 0. If we substitute dn by r + 1 + δ, we get
the equivalent inequality

dk+1(r + 1) ≤ `r + d1 · · · dk+1 + `+ δd1 · · · dk+1 − δdk+1 + δ`.

We can write d = r+δ1 for some δ1 ≥ 0. Next, if we substitute r by
∑k

i=1(di−1)+`−δ1

on the left hand side of this inequality, we get

0 ≤ `[r + 1 + δ − dk+1] + dk+1[d1 · · · dk − 1−
∑k

i=1(di − 1) + δ1] + δ[d1 · · · dk+1 − dk+1].

Since r+1+δ−dk+1 ≥ r+1+δ−dn = 0 and k ≥ 1, this inequality holds. This completes
the proof of this case.

Case (IV): Assume n ≥ 2, k ≥ 1 and d′ ≥ 1. We may assume that βr+1, . . . , βm are
the elements βi of {βr+1, . . . , βdn} such that G′(t1, . . . , tn−1, βi) has positive degree. We
set

G′i := G′(t1, . . . , tn−1, βi)

for r + 1 ≤ i ≤ m. Notice that d =
∑r

i=1 ai + deg(G′) ≥ r + d′ ≥ d′i. The polynomial

H := (tn − β1)a1 · · · (tn − βr)ar
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has exactly rd1 · · · dn−1 roots in C∗. Hence, counting the roots of G′ that are not in
ZC∗(H), we obtain:

|ZC∗(G)| ≤ rd1 · · · dn−1 +
m∑

i=r+1

|Z(G′i)|, (?)

where Z(G′i) is the set of zeros of G′i in Λ1 × · · · × Λn−1. For each r + 1 ≤ i ≤ m, we

can write d′i =
∑k′i

i=1(di − 1) + `′i, with 1 ≤ `′i ≤ dk′i+1 − 1. The proof of this case will be
divided in three subcases.

Subcase (IV.a): Assume ` ≥ r and k = n − 1. The degree of G′i in the variable tj is
at most dj − 1 for j = 1, . . . , n− 1. Hence, by Lemma 3.3.1, the non-zero polynomial G′i
cannot be the zero-function on Λ1 × · · · × Λn−1. Therefore, |Z(G′i)| ≤ d1 · · · dn−1 − 1 for
r + 1 ≤ i ≤ m. Thus, by Eq. (?), we get the required inequality

|ZC∗(G)| ≤ rd1 · · · dn−1 + (dn − r)(d1 · · · dn−1 − 1) ≤ d1 · · · dn − dn + `,

because in this case dk+2 · · · dn = 1 and ` ≥ r.

Subcase (IV.b): Assume ` > r and k ≤ n− 2. Then, we can write

d− r =
k∑
i=1

(di − 1) + (`− r)

with 1 ≤ `− r ≤ dk+1− 1. Since d′i ≤ d− r for i = r+ 1, . . . ,m, by applying Lemma 3.3.8
to the sequence d1, . . . , dn−1, d

′
i, d − r, we get k′i ≤ k for r + 1 ≤ i ≤ m. By induction

hypothesis we can bound |Z(G′i)|. Then, using Eq. (?) and Lemma 3.3.8, we obtain:

|ZC∗(G)| ≤ rd1 · · · dn−1 +
m∑

i=r+1

dk′i+2 · · · dn−1(d1 · · · dk′i+1 − dk′i+1 + `′i)

≤ rd1 · · · dn−1 + (dn − r)[(dk+2 · · · dn−1)(d1 · · · dk+1 − dk+1 + `− r)].

Thus, by factoring out the common term dk+2 · · · dn−1, we need only show the inequality:

rd1 · · · dk+1 + (dn − r)(d1 · · · dk+1 − dk+1 + `− r) ≤
dn(d1 · · · dk+1 − dk+1 + `).

After simplification, we get that this inequality is equivalent to r(dn−dk+1 +`−r) ≥ 0.
This inequality holds because dn ≥ dk+1 and ` > r.

Subcase (IV.c): Assume ` ≤ r. We can write d − r =
∑s

i=1(di − 1) + ˜̀, where

1 ≤ ˜̀≤ ds+1 − 1 and s ≤ k. Notice that s < k. Indeed, if s = k, then from the equality

d− r =
s∑
i=1

(di − 1) + ˜̀=
k∑
i=1

(di − 1) + `− r (??)
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we get that ˜̀= `− r ≥ 1, a contradiction. Thus, s ≤ n− 2. As d− r ≥ d′i, by applying
Lemma 3.3.8 to d1, . . . , dn−1, d

′
i, d − r, we have k′i ≤ s ≤ n − 2 for i = r + 1, . . . ,m. By

induction hypothesis we can bound |Z(G′i)|. Therefore, using Eq. (?) and Lemma 3.3.8,
we obtain:

|ZC∗(G)| ≤ rd1 · · · dn−1 +
m∑

i=r+1

[d1 · · · dn−1 − dk′i+1 · · · dn−1 + dk′i+2 · · · dn−1`
′
i]

≤ rd1 · · · dn−1 + (dn − r)[d1 · · · dn−1 − ds+1 · · · dn−1 + ds+2 · · · dn−1
˜̀].

Thus, we need only show the inequality

rd1 · · · dn−1 + (dn − r)[d1 · · · dn−1 − ds+1 · · · dn−1 + ds+2 · · · dn−1
˜̀] ≤

d1 · · · dn − dk+1 · · · dn + dk+2 · · · dn`.

After canceling out some terms, we get the following equivalent inequality:

dk+1 · · · dn − dk+2 · · · dn` ≤ (dn − r)[ds+1 · · · dn−1 − ds+2 · · · dn−1
˜̀]. (‡)

The proof now reduces to show this inequality.

Subcase (IV.c.1): Assume k = n− 1. Then, Eq. (‡) simplifies to

dn − ` ≤ (dn − r)[ds+1 · · · dn−1 − ds+2 · · · dn−1
˜̀].

Since dn ≥ r + 1, it suffices to show the inequality

r + 1− ` ≤ ds+2 · · · dn−1(ds+1 − ˜̀).

From Eq. (??), we get

r + (1− `) = `− ˜̀+
n−1∑
i=s+1

(di − 1) + (1− `) = −˜̀+ ds+1 +
n−1∑
i=s+2

(di − 1).

Hence, the last inequality is equivalent to

n−1∑
i=s+2

(di − 1) ≤ (ds+2 · · · dn−1 − 1)(ds+1 − ˜̀).
This inequality holds because ds+2 · · · dn−1 ≥

∑n−1
i=s+2(di − 1) + 1.

Subcase (IV.c.2): Assume k ≤ n−2. By canceling out the common term dk+2 · · · dn−1

in Eq. (‡), we obtain the following equivalent inequality

dk+1dn − dn` ≤ (dn − r)(ds+2 · · · dk+1)(ds+1 − ˜̀).

We rewrite this inequality as

r(ds+2 · · · dk+1)(ds+1 − ˜̀) ≤ dn[(ds+2 · · · dk+1)(ds+1 − ˜̀)− dk+1] + `dn.
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Since dn ≥ r + 1 it suffices to show the inequality

r(ds+2 · · · dk+1)(ds+1 − ˜̀) ≤
r[(ds+2 · · · dk+1)(ds+1 − ˜̀)− dk+1] + [(ds+2 · · · dk+1)(ds+1 − ˜̀)− dk+1] + `dn.

After a quick simplification, this inequality reduces to

(r + 1)dk+1 ≤ (ds+2 · · · dk+1)(ds+1 − ˜̀) + `dn.

From Eq. (??), we get r+1 = (−˜̀+ds+1)+(`+
∑k

i=s+2(di−1)). Hence, the last inequality
is equivalent to

dk+1

k∑
i=s+2

(di − 1) ≤ dk+1(ds+2 · · · dk − 1)(ds+1 − ˜̀) + `(dn − dk+1).

This inequality holds because ds+2 · · · dk ≥
∑k

i=s+2(di − 1) + 1. This completes the proof
of the proposition. 2

Corollary 3.3.11 Let d ≥ 1 be an integer. If di ≤ di+1 for all i and d =
∑k

i=1(di−1) + `
for some integers k, ` such that 1 ≤ ` ≤ dk+1 − 1 and 0 ≤ k ≤ n− 1, then

max{|ZC∗(F )| : F ∈ S≤d; F 6≡ 0} ≤ dk+2 · · · dn(d1 · · · dk+1 − dk+1 + `).

Proof. Let F := F (t1, . . . , tn) ∈ S be an arbitrary polynomial of total degree d′ ≤ d such

that F (a) 6= 0 for some a ∈ C∗. We can write d′ =
∑k′

i=1(di−1)+`′ with 1 ≤ `′ ≤ dk′+1−1
and 0 ≤ k′ ≤ k. Let ≺ be the graded reverse lexicographical order on the monomials of
S. In this order t1 � · · · � tn. For 1 ≤ i ≤ n, let fi be the polynomial

∏
λ∈Λi

(ti − λ).
Recall that di = |Λi|, i.e., fi has degree di. By the division algorithm [66, Theorem 1.5.9,
p. 30], we can write

F = h1f1 + · · ·+ hnfn +G′, (††)

for some G′ ∈ S with degti(G
′) ≤ di − 1 for i = 1, . . . , n and deg(G′) = d′′ ≤ d′. If

G′ is a constant, by Eq. (††) and using that 0 6= F (a) = G′(a), we get ZC∗(F ) = ∅.
Thus, we may assume that the polynomial G′ has positive degree d′′. We can write d′′ =∑k′′

i=1(di − 1) + `′′, where 1 ≤ `′′ ≤ dk′′+1 and 0 ≤ k′′ ≤ k′. Notice that ZC∗(F ) = ZC∗(G
′).

By Proposition 3.3.10, and applying Lemma 3.3.8 to the sequences d1, . . . , dn, d
′′, d′ and

d1, . . . , dn, d
′, d, we obtain

|ZC∗(F )| = |ZC∗(G′)| ≤ d1 · · · dn − dk′′+1 · · · dn + dk′′+2 · · · dn`′′

≤ d1 · · · dn − dk′+1 · · · dn + dk′+2 · · · dn`′

≤ d1 · · · dn − dk+1 · · · dn + dk+2 · · · dn`.

Thus, |ZC∗(F )| ≤ d1 · · · dn − dk+1 · · · dn + dk+2 · · · dn`, as required. 2

We come to one of the main results of this section.
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Theorem 3.3.12 Let K be a field and let CC∗(d) be the cartesian evaluation code of
degree d on the finite set C∗ := Λ1 × · · · × Λn ⊂ Kn. If 2 ≤ di ≤ di+1 for all i, with
di := |Λi|, and d ≥ 1, then the minimum distance of CC∗(d) is given by

δC∗(d) :=


(dk+1 − `) dk+2 · · · dn if d ≤

n∑
i=1

(di − 1)− 1,

1 if d ≥
n∑
i=1

(di − 1) ,

where k ≥ 0, ` are the unique integers such that d =
∑k

i=1 (di − 1)+` and 1 ≤ ` ≤ dk+1−1.

Proof. If d ≥
∑n

i=1(di − 1), then the minimum distance of CC∗(d) is equal to 1 by
Theorem 3.3.5. Assume that 1 ≤ d ≤

∑n
i=1 (di − 1)− 1. We can write

Λi = {βi,1, βi,2, . . . , βi,di}, i = 1, . . . , n.

For 1 ≤ i ≤ k + 1, consider the polynomials

fi :=

{
(βi,1 − ti)(βi,2 − ti) · · · (βi,di−1 − ti) if 1 ≤ i ≤ k,
(βk+1,1 − tk+1)(βk+1,2 − tk+1) · · · (βk+1,` − tk+1) if i = k + 1.

The polynomial G := f1 · · · fk+1 has degree d and G(β1,d1 , β2,d2 , . . . , βn,dn) 6= 0. From the
equality

ZC∗(G) = [(Λ1 \ {β1,d1})× Λ2 × · · · × Λn] ∪
[{β1,d1} × (Λ2 \ {β2,d2})× Λ3 × · · · × Λn] ∪

...

[{β1,d1} × · · · × {βk−1,dk−1
} × (Λk \ {βk,dk})× Λk+1 × · · · × Λn] ∪

[{β1,d1} × · · · × {βk,dk} × {βk+1,1, . . . , βk+1,`} × Λk+2 × · · · × Λn],

we get that the number of zeros of G in C∗ is given by:

|ZC∗(G)| =
k∑
i=1

(di − 1)(di+1 · · · dn) + `dk+2 · · · dn = d1 · · · dn − dk+1 · · · dn + `dk+2 · · · dn.

By Lemma 3.3.1, one has |C∗| = d1 · · · dn. Therefore

δC∗(d) = min{‖evd(F )‖ : evd(F ) 6= 0;F ∈ S≤d} = |C| −max{|ZC∗(F )| : F ∈ S≤d; F 6≡ 0}
≤ d1 · · · dn − |ZC∗(G)| = (dk+1 − `) dk+2 · · · dn,

where ‖evd(F )‖ is the number of non-zero entries of evd(F ) and F 6≡ 0 means that F is
not the zero function on C∗. Thus

δC∗(d) ≤ (dk+1 − `)dk+2 · · · dn.



3.3 Affine cartesian codes 81

The reverse inequality follows at once from Corollary 3.3.11. 2

Remember that if K is a finite field, the set T := {[(x1, . . . , xn+1)] ∈ Pn|xi ∈
K∗ for all i} is called a projective torus in Pn, where K∗ = K \ {0}.

As a consequence of our main result, we recover the following formula for the minimum
distance of a parameterized code over a projective torus.

Corollary 3.3.13 [54, Theorem 3.5] Let K = Fq be a finite field with q 6= 2 elements. If
T is a projective torus in Pn and d ≥ 1, then the minimum distance of CT (d) is given by

δT (d) :=

{
(q − 1)n−k−1(q − 1− `) if d ≤ (q − 2)n− 1,

1 if d ≥ (q − 2)n,

where k and ` are the unique integers such that k ≥ 0, 1 ≤ ` ≤ q−2 and d = k(q−2) + `.

Proof. If Λi := K∗ for i = 1, . . . , n, then C∗ = (K∗)n, C∗ = T , and di = q − 1 for all i.
Since δC∗(d) = δC∗(d), the result follows at once from Theorem 3.3.12. 2

As another consequence of our main result, we recover a formula for the minimum
distance of an evaluation code over an affine space.

Corollary 3.3.14 [13, Theorem 2.6.2] Let K := Fq be a finite field and let C∗ be the
image of An under the map An → Pn, x 7→ [(x, 1)]. If d ≥ 1, the minimum distance of
CC∗(d) is given by:

δC∗(d) :=

{
(q − `)qn−k−1 if d ≤ n(q − 1)− 1,

1 if d ≥ n(q − 1),

where k and ` are the unique integers such that k ≥ 0, 1 ≤ ` ≤ q−1 and d = k(q−1) + `.

Proof. If Λi := K for i = 1, . . . , n, then C∗ = Kn = An and di = q for all i. Since
δC∗(d) = δC∗(d), the result follows at once from Theorem 3.3.12. 2

Example 3.3.15 If C∗ := Fn2 , then the basic parameters of CC∗(d) are given by

|C∗| = 2n, dimCC∗(d) =
∑d

i=0

(
n
i

)
, δC∗(d) = 2n−d, 1 ≤ d ≤ n.

Example 3.3.16 Let K := F9 be a field with 9 elements. Assume that Λi := K for
i = 1, . . . , 4. For certain values of d, the basic parameters of CC∗(d) are given in the
following table:

d 1 2 3 4 5 10 16 20 28 31 32
|C∗| 6561 6561 6561 6561 6561 6561 6561 6561 6561 6561 6561

dimCC∗(d) 5 15 35 70 126 981 3525 5256 6526 6560 6561
δC∗(d) 5832 5103 4374 3645 2916 567 81 45 5 2 1
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3.3.3 Cartesian codes over affine degenerate tori

Let K be an arbitrary field, An := Kn an affine space over the field K and S :=
K[t1, . . . , tn] a polynomial ring over K with n variables. Given a non decreasing se-
quence of positive integers d1, . . . , dn, in this section we construct a cartesian code, over
an affine degenerate torus, with prescribed parameters in terms of d1, . . . , dn.

Let v := {v1, . . . , vn} be a sequence of positive integers. The set

T ∗ := {(xv11 , . . . , x
vn
n ) ∈ An |xi ∈ Fq∗ for all i}

is called an affine degenerate torus of type v on Fq.
We come to the main result of this section.

Theorem 3.3.17 Let 2 ≤ d1 ≤ · · · ≤ dn be a sequence of integers. Then, there is a
finite field K := Fq and an affine degenerate torus T ∗ such that the length of CT ∗(d) is
d1 · · · dn, its dimension is

dimK CT ∗(d) =

(
n+ d

d

)
−
∑

1≤i≤n

(
n+ d− di
d− di

)
+
∑
i<j

(
n+ d− (di + dj)

d− (di + dj)

)
−

∑
i<j<k

(
n+ d− (di + dj + dk)

d− (di + dj + dk)

)
+ · · ·+ (−1)n

(
n+ d− (d1 + · · ·+ dn)

d− (d1 + · · ·+ dn)

)
,

its minimum distance is 1 if d ≥
∑n

i=1(di − 1), and

δT ∗(d) = (dk+1 − `)dk+2 · · · dn if d ≤
∑n

i=1 (di − 1)− 1,

where k ≥ 0, ` are the unique integers such that d =
∑k

i=1 (di − 1)+` and 1 ≤ ` ≤ dk+1−1.

Proof. Pick a prime number p relatively prime to m := d1 · · · dn. Then, by Euler formula,
pϕ(m) ≡ 1 (mod m), where ϕ is the Euler function. We set q := pϕ(m). Hence, there exists
a finite field Fq with q elements such that di divides q−1 for i = 1, . . . , n. We set K := Fq.

Let β be a generator of the cyclic group (K∗, · ). There are positive integers v1, . . . , vn
such that q − 1 = vidi for i = 1, . . . , n. Notice that di is equal to o(βvi), the order of βvi

for i = 1, . . . , n. We set Λi := 〈βvi〉, where 〈βvi〉 is the subgroup of K∗ generated by βvi .
If T ∗ is the cartesian product of Λ1, . . . ,Λn, it not hard to see that T ∗ is given by

T ∗ = {(xv11 , . . . , x
vn
n ) |xi ∈ K∗ for all i} ⊂ An,

i.e., T ∗ is an affine degenerate torus of type v = {v1, . . . , vn}. The length of |T ∗| is
d1 · · · dn because |Λi| = di for all i. The formulae for the dimension and the minimum
distance of CT ∗(d) follow from Theorems 3.3.5 and 3.3.12. 2

Remark 3.3.18 Let K := Fq be a finite field and let β be a generator of the cyclic
group (K∗, · ). If T ∗ is an affine degenerate torus of type v := {v1, . . . , vn}, then T ∗ is the
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cartesian product of Λ1, . . . ,Λn, where Λi is the cyclic group generated by βvi . Thus, if
di := |Λi| for i = 1, . . . , n, the affine evaluation code over T ∗ is a cartesian code. Hence,
according to Theorem 3.3.5 and 3.3.12, the basic parameters of CT ∗(d) can be computed
in terms of d1, . . . , dn as in Theorem 3.3.17:

• The length of CT ∗(d) is d1 · · · dn.

• The dimension of CT ∗(d) is

HT ∗(d) =

(
n+ d

d

)
−
∑

1≤i≤n

(
n+ d− di
d− di

)
+
∑
i<j

(
n+ d− (di + dj)

d− (di + dj)

)
−

∑
i<j<k

(
n+ d− (di + dj + dk)

d− (di + dj + dk)

)
+ · · ·+ (−1)n

(
n+ d− (d1 + · · ·+ dn)

d− (d1 + · · ·+ dn)

)
.

• The minimum distance of CT ∗(d) is

δT ∗(d) :=


(dk+1 − `) dk+2 · · · dn if d ≤

n∑
i=1

(di − 1)− 1,

1 if d ≥
n∑
i=1

(di − 1) ,

where k ≥ 0, ` are the unique integers such that d =
∑k

i=1 (di − 1) + ` and 1 ≤ ` ≤
dk+1 − 1.

Therefore, we are recovering the main results of [25, 26].

As an illustration of Theorem 3.3.17 consider the following example.

Example 3.3.19 Consider the sequence d1 := 2, d2 := 5, d3 := 9. The prime number
q := 181 satisfies that di divides q − 1 for all i. In this case v1 = 90, v2 = 36, v3 = 20.
The basic parameters of the cartesian codes CT ∗(d), over the affine degenerate torus

T ∗ := {(x90
1 , x

36
2 , x

20
3 )|xi ∈ F∗181 for i = 1, 2, 3},

are shown in the following table. Notice that the regularity of S[u]/I(C∗) is 13.

d 1 2 3 4 5 6 7 8 9 10 11 12 13
|T ∗| 90 90 90 90 90 90 90 90 90 90 90 90 90

dimCT ∗(d) 4 9 16 25 35 45 55 65 74 81 86 89 90
δT ∗(d) 45 36 27 18 9 8 7 6 5 4 3 2 1

Notice that if K ′ := F9, and we pick subsets Λ1,Λ2,Λ3 of K ′ with |Λ1| = 2, |Λ2| = 5,
|Λ3| = 9, the cartesian evaluation code CT ′(d), over the set T ′ := Λ1 × Λ2 × Λ3, has the
same parameters that CT ∗(d) for any d ≥ 1.
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Chapter 4

Projective Codes

Let K := Fq be a finite field with q elements, Pn a projective pace over the field K,S :=
K[t0, . . . , tn] a polynomial ring over the field K with n+ 1 variables and Sd the K-vector
space of all homogeneous polynomials of S of degree d union the zero polynomial. Let X
be a subset of Pn and p1, . . . ,pm the points of X written with standard representation
for projective points, that is, zeros to the left and the first nonzero entry equal 1.

The evaluation map

ϕd : Sd −→ K |X |, f 7→ (f(p1), . . . , f(pm)) ,

defines a linear map of K-vector spaces. The image, denoted by CX (d), defines a linear
code, i.e., a K-vector subspace. We call CX (d) the projective evaluation code (projective
code for short) of degree d on the set X .

Let v := {v1, . . . , vn} be a sequence of positive integers and T := {[(xv11 , . . . , x
vn
n )] |xi ∈

K∗ for all i} ⊆ Pn−1 a projective degenerate torus of type v. In this chapter we compute
the length of CT (d). We give an explicit formula of the index of regularity of S/I(T ) in
terms of a Frobenius number. Thus we can give a condition over d in order to good codes
can appear.

Let Λ0, . . . ,Λn be a collection of non-empty subsets of K and C := [Λ0 × Λ1 × · · · × Λn]
a projective nested cartesian product. In this chapter we compute the length and the
dimension of CC(d). We also compute the minimum distance when every Λi is a field. We
give a relation between projective cartesian codes and affine cartesian codes. In particular,
we show that there exists a relation between the basic parameters of generalized Reed-
Muller codes and the basic parameters of projective Reed-Muller codes.

4.1 Parameterized projective codes

Let K := Fq be a finite field with q elements, Pn a projective pace over the field K and S :=
K[t0, . . . , tn] a polynomial ring over the field K with n+1 variables. Let v := {v1, . . . , vn}
be a sequence of positive integers and T := {[(xv11 , . . . , x

vn
n )] |xi ∈ K∗ for all i} ⊆ Pn−1 a
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projective degenerate torus of type v. The projective code associated with T , denoted by
CT (d), is called a parameterized projective code of degree d. In this section we compute
the length of CT (d) and we give a condition over d in order to good codes can appear.

The linear code CT (d) has length |T |. The index of regularity of S/I(T ) is important
because good codes CT (d) can occur only if 1 ≤ d < reg(S/I(T )). Therefore we apply
the results of Section 2.7 about S/I(T ).

Let β be a generator of the cyclic group (F∗q, · ) and di denotes o(βvi), the order of βvi

for i = 1, . . . , n.

Theorem 4.1.1 (i) The length of CT (d) is d1 · · · dn/ gcd(d1, . . . , dn).

(ii) If I(T ) is a complete intersection, then good codes CT (d) can occur only if

d ≤ gcd(d1, . . . , dn) g(S ′) +
∑n

i=1 di − (n− 1),

where g(S ′) denotes the Frobenius number of the numerical semigroup S ′ generated by
o(βrv1), . . . , o(βrvn); and r is the greatest common divisor of d1, . . . , dn.

Proof. This is a consequence of Corollary 2.7.14. 2

4.2 Projective nested cartesian codes

Let K := Fq be a finite field with q elements, Pn a projective pace over the field K,S :=
K[t0, . . . , tn] a polynomial ring over K with n+ 1 indeterminates, Λ0, . . . ,Λn a collection
of non-empty subsets of K. Consider the projective cartesian product :

C := [Λ0 × Λ1 × · · · × Λn] = {[(λ0, λ1, . . . , λn)]|λi ∈ Λi for all i} ⊆ Pn.

Let Λ and Λ′ be subsets of Fq. We define the set Λ
Λ′

:=
{
λ
λ′
| λ ∈ Λ, 0 6= λ′ ∈ Λ′

}
.

Definition 4.2.1 Let Λ0,Λ1, . . . ,Λn be a collection of non-empty subsets of K such that

(i) for all i = 0, . . . , n we have 0 ∈ Λi, and

(ii) for every i = 1, . . . , n we have
Λj

Λi−1
⊆ Λj, for j = i, . . . , n.

Under these conditions, the projective cartesian set C = [Λ0 × Λ1 × · · · × Λn] is called a
projective nested cartesian set, and the projective code CC(d) is called a projective nested
cartesian code. In this section we compute the length and the dimension of CC(d). We
also compute the minimum distance when every Λi is a field. We give a relation between
projective cartesian codes and affine cartesian codes. In particular, we show that there
exists a relation between the basic parameters of generalized Reed-Muller codes and the
basic parameters of projective Reed-Muller codes.

For i = 0, . . . , n, define di := |Λi|, the cardinality of Λi. We shall always assume that
2 ≤ di ≤ di+1 for all i. The case d1 = · · · = dj = 1 will be treated separately (Lemma
4.2.5).
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Remark 4.2.2 If for i = 0, . . . , n we take Λi := K, then the Λi’s satisfies the conditions of
Definition 4.2.1. This means that the projective space Pn is a projective nested cartesian
set. As a consequence the Projective Reed-Muller code PCd(n, q) is a projective nested
cartesian code.

4.2.1 Length

Let K := Fq be a finite field with q elements, C := [Λ0 × Λ1 × · · · × Λn] a projective
nested cartesian set and CC(d), the evaluation code associated with C. For i = 0, . . . , n,
define di := |Λi|, the cardinality of Λi.

We come to the main and unique result of this subsection.

Theorem 4.2.3 The length of CC(d) is m := 1 +
∑n

i=1 di · · · dn.

Proof. If C := [Λ0 × Λ1 × · · · × Λn] is a projective nested cartesian set, then

C =
[
Λ 6=0

0 × Λ1 × Λ2 × · · · × Λn

]
∪[

0× Λ 6=0
1 × Λ2 × · · · × Λn

]
∪

...[
0× 0× 0× · · · × Λ 6=0

n−1 × Λn

]
∪

[0× 0× 0× · · · × 0× 1] .

Finally, the condition that for every i = 1, . . . , n we have
Λj

Λi−1
⊆ Λj for j = i, . . . n, allow

us to change Λ6=0
i for 1 in the previous equation and we have the result. 2

4.2.2 Dimension

Let K := Fq be a finite field with q elements, Pn a projective pace over the field
K,S := K[t0, . . . , tn] a polynomial ring over K with n + 1 indeterminates and C :=
[Λ0 × Λ1 × · · · × Λn] a projective nested cartesian set. In this section we give a set of gen-
erators G of the ideal I (C) and we compute its Hilbert function. We prove that actually
G is a Gröbner basis using the degree lexicographical order. Then we give an explicit
formula for the dimension of the evaluation code associated with C, CC(d).

Lemma 4.2.4 If C is the projective nested cartesian set over Λ0, . . . ,Λn, then its vanish-
ing ideal is

I(C) =

ti ∏
λj∈Λj

(tj − λjti) , i < j; i, j = 0, . . . , n


 .
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Proof. By induction on n. If n = 1 then C = [1× Λn] ∪ [0× 1] and trivially (using [37,
Proposition 2.5 (a)]) I(C) =

({
t0
∏

λ1∈Λ1
(t1 − λ1t0)

})
. Now we assume that the result

is valid for n − 1. Take C1 := [1× Λ1 × Λ2 × · · · × Λn] , C0 := [Λ1 × Λ2 × · · · × Λn] and
F ∈ I(C). Define

F := F1t0 + F2,

where F2 ∈ K [t1, . . . , tn] . Let a be an element of C0. As C is a projective nested cartesian
set, C = C1 ∪ [0× C0] , so [1, a] , [0, a] ∈ C. We have 0 = F (0, a) = F2(a), then F2 ∈ I(C0)
and by induction

F2 ∈

ti ∏
λj∈Λj

(tj − λjti) , i < j; i, j = 1, . . . , n


 .

We know also that 0 = F (1, a) = F1(a), then F1 ∈ I(C1) and by [37, Proposition 2.5 (a)]

F1 ∈

({ ∏
λi∈Λi

(ti − λit0) , i = 1, . . . , n

})
.

As F = F1t0 + F2 the result is true. 2

Why can we consider that di ≥ 2 for i = 0, . . . , n? The answer is the following.

If d0 = · · · = dn = 1 then C = φ because Λ0 = · · · = Λn = 0. Otherwise

Lemma 4.2.5 Assume d0 = · · · = dl = 1 < dl+1 with 0 ≤ l ≤ n− 1.
If C := [Λ0 × Λ1 × · · · × Λn] and C ′ := [Λl+1 × · · · × Λn] then CC(d) and CC′(d) have same
basic parameters.

Proof. The condition d0 = · · · = dl = 1 means Λ0 = · · · = Λl = {0} and we have

I(C) =

t0, . . . , tl, ti ∏
λj∈Λj

(tj − λjti) , l + 1 ≤ i < j ≤ n


 .

By Lemma 4.2.4 I(C ′) =
({
ti
∏

λj∈Λj
(tj − λjti) , l + 1 ≤ i < j ≤ n

})
. Since

K [t0, . . . , tn] /I(C) and K [tl+1, . . . , tn] /I(C ′) have the same Hilbert function for d ≥ 1,
we get that the dimension and the length of CC(d) and CC′(d) are the same.

(i) CC(d) ⊆ CC′(d) : Let c := (f (0,p1) , . . . , f (0,pM)) be an element of CC(d). Then
f ∈ Sd and f = t0f0 + · · · + tlfl + F, with F ∈ K [tl+1, . . . , tn]d . As f (0,pi) = 0
if and only if F (pi) = 0, c′ := (f (p1) , . . . , f (pM)) is an element of CC′(d) with
‖c′‖ = ‖c‖.

(ii) CC′(d) ⊆ CC(d) : Let c′ := (f (p1) , . . . , f (pM)) be an element of CC′(d). Then
f ∈ K [tl+1, . . . , tn]d ⊂ Sd and c := (f (0,p1) , . . . , f (0,pM)) is an element of CC(d)
with ‖c‖ = ‖c′‖. 2
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Notation 4.2.6 The calculation of dimension arises using induction on n, for that reason
we consider:

for i = n, . . . , 0, Ci := [Λn−i × · · · × Λn] , and I(Ci) ⊂ K[tn−i, . . . , tn],

and for i = n, . . . , 1, C∗i := [1× Λn+1−i × · · · × Λn] , and I(C∗i ) ⊂ K[tn−i, . . . , tn].

Lemma 4.2.7 For any positive integer d HCn(d) = HCn−1(d) +HC∗n(d− 1).

Proof. From Lemma 4.2.4

I(Cn) =

ti ∏
λj∈Λj

(tj − λjti) , i < j; i, j = 0, . . . , n


 =

⊕
d≥0

ICn(d)

and

I(Cn−1) =

ti ∏
λj∈Λj

(tj − λjti) , i < j; i, j = 1, . . . , n


 =

⊕
d≥0

ICn−1(d)

and from [37, Proposition 2.5 (a)]

I(C∗n) =

({ ∏
λi∈Λi

(ti − λit0) ; i = 1, . . . , n

})
=
⊕
d≥0

IC∗n(d).

Thus I(Cn) = I(Cn−1) + t0I(C∗n). If 1 ≤ d ≤ d1 trivially ICn(d) = ICn−1(d)⊕ IC∗n(d) = 0. If
d > d1 we define the exact sequence between K-vector spaces:

0→ ICn−1(d)
φ−→ ICn(d)

ϕ−→ t0IC∗n(d− 1)→ 0,

where

φ

fijti ∏
λj∈Λj

(tj − λjti)

 = fijti
∏
λj∈Λj

(tj − λjti) and

ϕ

 n∑
i=1

fi

[
t0
∏
λi∈Λi

(ti − λit0)

]
+

∑
1≤i<j≤n

fijti
∏
λj∈Λj

(tj − λjti)

 = t0

[
n∑
i=1

fi
∏
λi∈Λi

(ti − λit0)

]
.

As

σ : t0IC∗n(d− 1)→ ICn(d), t0

[
n∑
i=1

fi
∏
λi∈Λi

(ti − λit0)

]
→

n∑
i=1

fi

[
t0
∏
λi∈Λi

(ti − λit0)

]
is a section of ϕ, by [68, Proposition 5.9 (1)] ICn(d) = ICn−1(d)

⊕
t0IC∗n(d − 1). We know

that Sd = t0K [t0, . . . , tn]d−1

⊕
K[t1, . . . , tn]d. Then

Sd/ICn(d) ' t0K [t0, . . . , tn]d−1 /t0IC∗n(d− 1)
⊕

K[t1, . . . , tn]d/ICn−1(d) '

' K [t0, . . . , tn]d−1 /IC∗n(d− 1)
⊕

K[t1, . . . , tn]d/ICn−1(d).

Thus we have the complete proof. 2
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Lemma 4.2.8 Let C := [Λ0 × · · · × Λn] be a projective nested cartesian set. The Hilbert
function of S/I(C) is

HC(d) =
n∑
j=0

[(
j + d− 1

d− 1

)
−

∑
n+1−j≤i≤n

(
j + d− 1− di
d− 1− di

)
+
∑
i<j

(
j + d− 1− (di + dj)

d− 1− (di + dj)

)
−

∑
i<j<k

(
j + d− 1− (di + dj + dk)

d− 1− (di + dj + dk)

)
+ · · ·+ (−1)j

(
j + d− 1− (dn+1−j + · · ·+ dn)

d− 1− (dn+1−j + · · ·+ dn)

)]
.

Proof. Using Lemma 4.2.7 we have

HC(d) = HC0(d) +
n∑
j=1

HC∗j (d− 1).

C0 = [1], I(C0) = 0 and HC0 = 1. From [37, Theorem 3.1]

HC∗j (d− 1) =

(
j + d− 1

d− 1

)
−

∑
n+1−j≤i≤n

(
j + d− 1− di
d− 1− di

)
+
∑
i<j

(
j + d− 1− (di + dj)

d− 1− (di + dj)

)
−

∑
i<j<k

(
j + d− 1− (di + dj + dk)

d− 1− (di + dj + dk)

)
+ · · ·+ (−1)j

(
j + d− 1− (dn+1−j + · · ·+ dn)

d− 1− (dn+1−j + · · ·+ dn)

)
.

2

We come to one of the main results of this section.

Theorem 4.2.9 The dimension of CC(d) is

HC(d) =
n∑
j=0

[(
j + d− 1

d− 1

)
−

∑
n+1−j≤i≤n

(
j + d− 1− di
d− 1− di

)
+

∑
i<j

(
j + d− 1− (di + dj)

d− 1− (di + dj)

)
−
∑
i<j<k

(
j + d− 1− (di + dj + dk)

d− 1− (di + dj + dk)

)

+ · · ·+ (−1)j
(
j + d− 1− (dn+1−j + · · ·+ dn)

d− 1− (dn+1−j + · · ·+ dn)

)]
.

Proof. As the kernel of the evaluation map ϕd is Sd∩I(C), the Hilbert function of S/I(C)
agrees with the dimension of CC(d). By Lemma 4.2.8 we have a proof. 2

Finally we show that for the degree lexicographical order ≺ in S, where t0 ≺ · · · ≺ tn,
the set

G :=

ti ∏
λj∈Λj

(Λj − λjΛi) , i < j; i, j = 0, . . . , n


is a Gröbner basis of the ideal I(C). In what follows, m denotes a monomial in S.
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Definition 4.2.10 The footprint (with respect to a monomial order ≺) of an ideal I ⊂
S, denoted by ∆(I), is the set of monomials which are not leading monomials of any
polynomial in I.
If F := {f1, f2, . . . , fs} is a subset of S, we set ∆(F) := {m | for all i, LM(gi) - m},
where LM(f) denotes the leading monomial of f ∈ S. We write ∆(F)d to denote de set
of monomials in ∆(F) of degree equal to d, for any integer d ≥ 0.

Lemma 4.2.11 Fix a graded monomial order in S. Let I be a homogeneous ideal of S
and F = {f1, f2, . . . , fs} a set of generators of I. The set F is a Gröbner Basis of I if
and only if the Hilbert function of I is given by HI(d) = #∆(F)d, for all d ≥ 0.

Proof. We know that (LM(f1), . . . ,LM(fs)) ⊆ (LM(I)), where equality holds if and only
if F is a Gröbner basis. This means that ∆(I) ⊆ ∆(F) and equality holds if F is a
Gröbner basis. As the number of elements of ∆(I)d is equal to HI(d), we have the result
is true. 2

From now on we choose the degree lexicographical order ≺ in S, where t0 ≺ · · · ≺ tn.

Lemma 4.2.12 The number of elements of ∆(G)d is given by(
n+ d

n

)
−

n∑
j=1

((
n+ d− dj

n

)
−
(
n− j + d− dj

n− j

))
+ · · ·+

+(−1)k
∑

1≤j1<j2<···<jk≤n

((
n+ d− (dj1 + · · ·+ djk)

n

)
−
(
n− j1 + d− (dj1 + · · ·+ djk)

n− j1

))
+

+ · · ·+ (−1)n
(
n+ d− (d1 + · · ·+ dn + 1)

n

)
.

Proof. Observe that ∆(G) =
{

m | XiX
dj
j - m, 0 ≤ i < j ≤ n

}
. For 1 ≤ j ≤ n, we define

Mj :=
{

m | there is i, 0 ≤ i < j,XiX
dj
j |m

}
. Then ∆(G) =MS −

(⋃n
j=1Mj

)
, where

MS is the set of all monomials in S. Therefore, when we count the number of monomials
of degree d in ∆(G), from the inclusion-exclusion theorem we get

∆(G)d = # (MS)d −
n∑
j=1

#(Mj)d +
∑
j1<j2

#(Mj1 ∩Mj2)d − · · ·

+(−1)k
∑

j1<j2<···<jk

#(Mj1 ∩Mj2 ∩ · · · ∩Mjk)d + · · ·

+(−1)n#(M1 ∩M2 ∩ · · · ∩Mn)d .

Clearly #(MS)d =
(
n+d
n

)
. Let j ∈ {1, . . . , n} and set m := tα0

0 · · · tαnn ∈ (Mj)d, then there
exists i < j, such that αi ≥ 1 and αj ≥ dj. Taking βj := αj − dj and for k 6= j, βk := αk,
we have that #(Mj)d is the number of solutions of β0 + · · · + βn = d − dj, such that
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β0 + · · · + βj−1 ≥ 1. Then #(Mj)d is the number of solutions of β0 + · · · + βn = d − dj
minus the number of solutions of βj + · · ·+ βn = d− dj. This means

#(Mj)d =

(
n+ d− dj

n

)
−
(
n− j + d− dj

n− j

)
.

Now set m = tα0
0 · · · tαnn ∈ (Mj1 ∩ · · · ∩Mjk)d, then there exists i < j1, such that αi ≥ 1

and αjw ≥ djw , for 1 ≤ w ≤ k. Taking βjw = αjw − djw , for 1 ≤ w ≤ k, with l 6= jw and
βl = αl, we get that #(Mj1 ∩ · · · ∩Mjk)d is the number of solutions of β0 + · · · + βn =
d− (dj1 + · · ·+ djk) minus the number of solutions of βj1 + · · ·+βn = d− (dj1 + · · ·+ djk),
hence

#(Mj1 ∩ · · · ∩Mjk)d =

(
n+ d− (dj1 + · · ·+ djk)

n

)
−
(
n− j1 + d− (dj1 + · · ·+ djk)

n− j1

)
.

For k = n we have
(
n+d−(d1+···+dn)

n

)
−
(
n−1+d−(d1+···+dn)

n−1

)
=
(
n+d−(d1+···+dn+1)

n

)
. 2

We use the next well-known combinatorial result to check that HC(d) = #∆(G)d for
all d ≥ 0.

Lemma 4.2.13 Let a, b be non-negative integers. Then
∑a

j=0

(
j+b−1
j

)
=
(
a+b
a

)
.

Proposition 4.2.14 Let C := [Λ0 × · · · × Λn] be a projective nested cartesian set. The

set G :=
{
ti
∏

λj∈Λj
(tj − λjti) , i < j; i, j = 0, . . . , n

}
is a Gröbner basis for I(C).

Proof. From Lemma 4.2.11 we only need to compare the formulas of Lemmas 4.2.8 and
4.2.12. On the formula for the Hilbert Function, we distribute the sum, use Lemma 4.2.13
and compare term by term with the formula for the footprint. The first term is

1 +
n∑
j=1

(
j + d− 1

d− 1

)
=

n∑
j=0

(
j + d− 1

j

)
=

(
n+ d

n

)
,

the second term is

n∑
j=1

n∑
i=n+1−j

(
j + d− 1− di
d− 1− di

)
=

n∑
i=1

n∑
j=n+1−i

(
j + d− 1− di

j

)

=
n∑
j=1

n∑
i=n+1−j

(
i+ d− 1− dj

i

)

=
n∑
j=1

(
n∑
i=0

(
i+ d− dj − 1

i

)
−

n−j∑
i=0

(
i+ d− dj − 1

i

))

=
n∑
j=1

((
n+ d− dj

n

)
−
(
n− j + d− dj

n− j

))
,
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and the general term is

n∑
j=1

∑
n+1−j≤i1<···<ik≤n

(
j + d− 1− (di1 + · · ·+ dik)

d− 1− (di1 + · · ·+ dik)

)
=

∑
1≤i1<···<ik≤n

n∑
j=n+1−i1

(
j + d− 1− (di1 + · · ·+ dik)

j

)
=

∑
1≤i1<···<ik≤n

((
n+ d− (di1 + · · ·+ dik)

n

)
−
(
n− i1 + d− (di1 + · · ·+ dik)

n− i1

))
.

Finally, for the last term, the sum on the formula for the Hilbert function has only one

term, and

(
n+ d− 1− (d1 + · · ·+ dn)

d− 1− (d1 + · · ·+ dn)

)
=

(
n+ d− (d1 + · · ·+ dn + 1)

n

)
, which proves

the Proposition. 2

4.2.3 Minimum distance

Let K := Fq be a finite field with q elements, Pn a projective pace over the field
K,S := K[t0, . . . , tn] a polynomial ring over K with n + 1 indeterminates, Sd the K-
vector space of all homogeneous polynomials of S of degree d union the zero polynomial,
C := [Λ0 × Λ1 × · · · × Λn] the projective nested cartesian set and CC(d), the evaluation
code associated with C. In this section we give an upper bound of the minimum distance
of CC(d). In the case that every Λi is a subfield of K, we give an explicit formula for the
minimum distance.

We start this section by presenting an upper bound for the minimum distance of
projective nested cartesian codes. Instead of f(t0, . . . , tn) we write simply f(t) for a
polynomial in S.

Lemma 4.2.15 If C is the projective nested cartesian set over Λ0, . . . ,Λn, then the mini-

mum distance of CC(d) satisfies δC(d) ≤ (dk+1 − `) dk+2 · · · dn if 1 ≤ d ≤
n∑
i=1

(di − 1) , and

δC(d) = 1 in otherwise, where 0 ≤ k ≤ n− 1 and 0 ≤ ` < dk+1− 1 are the unique integers

such that d− 1 =
k∑
i=1

(di − 1) + `.

Proof. For all i = 0, . . . , n choose λi ∈ Λi. It is easy to see that the polynomial

f(t) := t0

n∏
i=1

λ6=λi∏
λ∈Λi

(ti − λt0)

of degree
n∑
i=1

(di − 1) + 1 is zero for all points of C except for [(1, λ1, . . . , λn)]. Thus

for d >
n∑
i=1

(di − 1) we get δC(d) = 1. Let Γ ⊂ Λk+1 be a set with ` elements. For
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d− 1 =
k∑
i=1

(di − 1) + `, taking

f(t) := t0

(
k∏
i=1

λ 6=λi∏
λ∈Λi

(ti − λt0)

)(∏
λ∈Γ

(tk+1 − λt0)

)
,

we obtain the desired inequality. 2

We believe that this upper bound is actually the true value of the minumum distance.

Conjecture 4.2.16 If C is the projective nested cartesian set over Λ0, . . . ,Λn, then the
minimum distance of CC(d) is given by

δC(d) :=


(dk+1 − `) dk+2 · · · dn if 1 ≤ d ≤

n∑
i=1

(di − 1) ,

1 if
n∑
i=1

(di − 1) < d,

where 0 ≤ k ≤ n − 1 and 0 ≤ ` < dk+1 − 1 are the unique integers such that d − 1 =
k∑
i=1

(di − 1) + `.

We will prove below this conjecture in the special case where the sets Λi are subfields
of K (so it includes the projective Reed-Muller codes). Before that we study this case we
prove an auxiliary result.

Lemma 4.2.17 Let C := [Λ0 × · · · × Λn] be a projective nested cartesian set. For all
j = 0, . . . , n set λj ∈ Λ 6=0

j and define Γj := λ−1
j Λj. Then D := [Γ0 × · · · × Γn] is a

projective nested cartesian set such that 1 ∈ Γj, for all j = 0, . . . , n, and CC(d) = CD(d),
for all degree d.

Proof. Assume C = {p1, . . . ,pm} and D = {q1, . . . ,qm}, where pi = [(x0, . . . , xn)] and
qi = [(λ−1

0 x0, . . . , λ
−1
n xn)] for all i = 0, . . . , n. Let v be an element of CC(d), then v =

[(f(p1), . . . , f(pm))] for some f ∈ Sd. Define g(t0, . . . , tn) := f(λ0t0, . . . , λntn) ∈ Sd. It is
easy to see that v = [(g (q1) , . . . , g(qm))], so CC(d) ⊆ CD(d). The proof of CD(d) ⊆ CC(d)
is similar. 2

Thus we see that one may always assume that 1 ∈ Λj, for all j = 0, . . . , n. We present
now the special class of projective nested cartesian set for whose associated codes we will
determine the minimum distance.

Definition 4.2.18 Let K0 ⊆ · · · ⊆ Kn be subfields of K, with |Ki| = di for all 0 ≤ i ≤ n.
Observe that di+1 = drii , for some ri ≥ 1 and q = drnn . Then C := [K0 × · · · ×Kn] is a
projective nested cartesian set which is called a projective nested product of fields.
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Clearly Pn is a projective nested product of fields, so our results on codes defined over
such sets extend the results on projective Reed-Muller codes.

Definition 4.2.19 Let g be a polynomial in S of degree d not necessarily homogeneous.
We say that g is homogeneous on C, and we write g ∈ S̃d, if for every i ∈ {0, . . . , n} and
every x := [(0, . . . , 0, 1, xi+1, · · · , xn)] ∈ C we have that for any given λ ∈ Λ 6=0

i there exists
λ̃ ∈ Λ 6=0

i such that

g(0, . . . , 0, λ, λxi+1, . . . , λxn) = λ̃g(0, . . . , 0, 1, xi+1, . . . , xn) .

Definition 4.2.20 Let C := [Λ0 × · · · × Λn] be a projective nested cartesian set. For a

set E ⊆ C and f ∈ S̃d\I(E), define

ZE(f) := {p ∈ E | f(p) = 0} .

In this way, for a codeword v := (f(p1), . . . , f(pm)) 6= 0, where f(t) ∈ Sd\I(C)d, the
weight of v is |C\ZC(f)|, and the minimum distance of CC(d) is given by

δC(d) = min {|C\ZC(f)| : f ∈ Sd\I(C)d} .

Lemma 4.2.21 Let f be an element of S̃d such that for all ` ≤ j ≤ n we have ZC(tj) ⊆
ZC(f). Then there exists g`(t) in S̃d−(n−`+1) such that f − g` · t` · · · tn ∈ I(C).

Proof. Write f = gntn + hn, where hn ∈ K[t0, . . . , tn−1]. For any p := [(x0, · · · , xn−1, 0)]
in C we have f(p) = 0. This implies that hn ∈ I([K0 × · · · × Kn−1]), and a fortiori
we have hn ∈ I(C). By induction on k, suppose that for some ` + 1 ≤ k ≤ n we
have f = gktk · · · tn + hk, where hk ∈ I(C). Write gk = gk−1tk−1 + h̃k−1, where h̃k−1 ∈
K[t0, . . . , tk−2, tk . . . , tn]. For any p := [(x0, . . . , xk−2, 0, xk, . . . , xn)] ∈ C, we have f(p) =
0. This implies (h̃k−1tk · · · tn)(p) = 0, which means h̃k−1tk · · · tn ∈ I([K0 × · · · ×Kk−2 ×
Kk × · · · × Kn]) ⊆ I(C). We have then f = gk−1tk−1 · · · tn + h̃k−1tk · · · tn + hk, where
h̃k−1tk · · · tn + hk ∈ I(C). By induction on k, our result is proved. It is easy to see that

g` ∈ S̃d−(n−`+1). 2

Proposition 4.2.22 Let C be the projective nested product of fields over K0, . . . , Kn, and
let f /∈ I(C) be a not necessarily homogeneous polynomial on S of degree at most d and

homogeneous on C. If 1 ≤ d <
n∑
i=1

(di − 1), then

|C\ZC(f)| ≥ (dk+1 − `) dk+2 · · · dn ,

where 0 ≤ k ≤ n − 1 and 0 ≤ ` < dk+1 − 1 are the unique integers such that d − 1 =
k∑
i=1

(di − 1) + `.
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Proof. We will make an induction on n. If n = 1, then C = [K0 × K1] and set x :=
[(x0, x1)] ∈ C. Assume that x0 6= 0, since f is homogeneous on C we have f(x0, x1) = 0 if
and only if f(1, x1/x0) = 0. The last one is a polynomial of degree at most d on x1/x0,
which has no more than d roots. If f has a root on [(0, 1)], then writing f = t0g + f1,
with f1 ∈ K[t1] we get that f1(a) = 0 for all a ∈ K1. Hence f(1, a) = 0 if and only if
g(1, a) = 0 (for all a ∈ K1), and g(1, t1) has degree at most d− 1. In both cases we have

|C\ZC(f)| ≥ (d1 + 1)− d = d1 − (d− 1) .

Now we assume that the theorem is valid for the product [K0 ×K1 × · · · ×Kn−1] . Define

D∗n := [1×K1 × · · · ×Kn] and Dn−1 := [0×K1 × · · · ×Kn].

Observe that C = D∗n ∪Dn−1. Let f /∈ I(C) be a homogeneous polynomial on C of degree
at most d.

Suppose that f ∈ I(D∗n) (so f /∈ I(Dn−1)). From Theorem 3.3.3 (and the fact that
Kj is a finite field with dj elements, for j = 1, . . . , n) we get that I(D∗n) is generated by

G̃ = {tdjj − tjt
dj−1
0 | j = 1, . . . , n}. Endowing S with a graded-lexicographic order ≺ such

that t0 ≺ t1 ≺ · · · ≺ tn we get that lm(t
dj
j − tjt

dj−1
0 ) = t

dj
j , for all j = 1, . . . , n. Thus

any pair of these leading monomials are coprime, so G̃ is a Gröbner basis for I(D∗n), with
respect to ≺ (see [75, p. 104]). Dividing f by the elements of G̃ we find polynomials

gj of degree at most d − dj (j = 1, . . . , n) such that f(t) =
∑n

j=1 gj(t)(t
dj
j − tjt

dj−1
0 ).

Define g(t) :=
∑n

j=1 gj(t)tj, which is a polynomial of degree d̃ ≤ d − d1 + 1. Observe
that g |Dn−1= f |Dn−1 , which implies that for any x := (0, . . . , 0, 1, xi+1, . . . xn) and any

λ ∈ K 6=0
i there exists λ̃ ∈ K 6=0

i such that g(λx) = f(λx) = λ̃f(x) = λ̃g(x). So g is
homogeneous on Dn−1. Since f /∈ I(Dn−1), we must have g /∈ I(Dn−1), and as d̃ − 1 ≤

d− 1− (d1 − 1) =
k∑
i=2

(di − 1) + `, we can apply the induction hypothesis obtaining

|C\ZC(f)| = |Dn−1\ZDn−1(g)| ≥ (dk+1 − `) dk+2 · · · dn.

Suppose now that f ∈ I(Dn−1) and write f = h + t0g where h(t) = f(0, t1, . . . , tn).
Since f |Dn−1 = 0 we have h|Dn−1 = 0 and a fortiori h|D∗n = 0 so h ∈ I(C). Observe that
f |D∗n = g|D∗n and clearly the number of zeros of g in D∗n is the same of the number of zeros
of g(1, t1, . . . , tn) in the cartesian product K1 × · · · × Kn. Since deg(g) ≤ d − 1 a lower
bound for the number of non-zeros of g in D∗n may be obtained from Theorem 3.3.12, and
we have

|C\ZC(f)| = |D∗n\ZD∗n(g)| ≥ (dk+1 − `) dk+2 · · · dn .

Finally suppose that f /∈ I(D∗n) and f /∈ I(Dn−1).

For k = n− 1, i.e. when d =
n−1∑
i=1

(di − 1) + `+ 1, we have

|D∗n\ZD∗n(f)| ≥ dn − `− 1
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since, as above, we may consider the number of nonzero points of f(1, t1, . . . , tn) in K1 ×
· · · ×Kn and use Theorem 3.3.12. From f /∈ I(Dn−1) we get

|Dn−1\ZDn−1(f)| ≥ 1 ,

which implies
|C\ZC(f)| ≥ dn − `

and settles the case k = n−1. We treat now the case k < n−1, and we start by assuming
that l + d1 ≤ dk+1.

We have that d =
k∑
i=1

(di − 1) + `+ 1 and d− 1 =
k∑
i=2

(di − 1) + `+ d1 − 1, then

|D∗n\ZD∗n(f)| ≥ (dk+1 − `− 1)dk+2 · · · dn ,
|Dn−1\ZDn−1(f)| ≥ (dk+1 − (`+ d1 − 1))dk+2 · · · dn ≥ dk+2 · · · dn .

Adding both inequalities we obtain the desired result.

From now on we can assume that

f /∈ I(D∗n), f /∈ I(Dn−1), 0 ≤ k < n− 1 and l + d1 > dk+1.

In particular l ≥ 1. In what follows we generalize some methods used by Sørensen [56] to
treat projective Reed-Muller codes. Define the set of hyperplanes

Π := {π = Z(h) ⊆ Pn | h = λ0t0 + · · ·+ λn−1tn−1 + tn ∈ Kn[t]}.

For all π ∈ Π, we want to estimate |(π ∩ C)\ZC(f))|.
For each h = λ0t0 + · · ·+ λn−1tn−1 + tn, define H : Pn 7→ Pn by

H([(x0, . . . , xn)]) = [(x0, . . . , xn−1, h(x0, . . . , xn))] .

It is easy to see that H is a projectivity that induces a bijection of C and sends the plane
π to the plane Z(tn), in fact

p ∈ π = Z(h)⇐⇒ H(p) ∈ Z(tn) .

It is also easy to check that f(H(t)) := f(t0, . . . , tn−1, λ0t0 + · · · + λn−1tn−1 + tn) is a
polynomial of degree at most d and homogeneous on C, and that the inverse projectivity
H−1 is the one associated to h∗ = −λ0t0− · · ·−λn−1tn−1 + tn. Define gh(t) := f(H−1(t)),
then we have a bijection between the zeros of f in C and the zeros of g in H(C)(= C)
given by

p ∈ ZC(f)⇐⇒ f(p) = 0⇐⇒ gh(H(p)) = 0⇐⇒ H(p) ∈ ZC(gh) ,

which implies that H((Z(h) ∩ C)\ZC(f)) = (Z(tn) ∩ C)\ZC(gh).
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To proceed we consider the following cases, regarding the possibility of ZC(f) to contain
or not a set π ∩ C, with π ∈ Π.
(a) Assume that ZC(f) does not contain any set π ∩ C, where π ∈ Π, and define the set
of pairs

Λf := {(p, π) ∈ (C\ZC(f))× Π | p ∈ π} .
Set C ′ := [K0 × · · · ×Kn−1] and for π = Z(h) define g′h(t0, . . . , tn−1) := gh(t0, . . . , tn−1, 0).
Since Z(h)∩ C 6⊆ ZC(f) we have that g′h does not vanish on C ′, is homogeneous on C ′ and
has degree at most d. Thus, from |(Z(tn)∩C)\ZC(gh)| = |C ′\ZC′(g′h)| and by the induction
hypothesis we get that

|Z(h) ∩ C\ZC(f)| ≥ (dk+1 − `) dk+2 · · · dn−1 .

So for each π ∈ Π we have at least (dk+1 − `) dk+2 · · · dn−1 points p such that (p, π) ∈ Λf .
From |Π| = dnn we have

|Λf | ≥ (dk+1 − `) dk+2 · · · dn−1d
n
n . (4.2.1)

Let p := [(b0, . . . , bn)] be an element of C\ZC(f). If [(b0, . . . , bn−1)] 6= 0 then there are
dn−1
n hyperplanes π ∈ Π such that p ∈ π. If p = [(0, . . . , 0, 1)], there is no hyperplane
π ∈ Π such that p ∈ π, so

|Λf | ≤ |C\ZC(f)|dn−1
n . (4.2.2)

From (4.2.1) and (4.2.2) we get

|C\ZC(f)| ≥ (dk+1 − `) dk+2 · · · dn .

(b) Assume that ZC(f) contains a set π ∩ C, for some π ∈ Π. To complete the proof we
will consider two subcases.

Subcase b.1: Assume that dk+1 < dn. Applying the projectivity H corresponding to
π and passing from f(t) to f(H−1(t)) we may assume that π = Z(tn). From Lemma
4.2.21 there exists a polynomial g of degree at most d − 1 and homogeneous on C such
that f − gtn ∈ I(C), which means ZC(f) = ZC(gtn). For C̃ := [1×K1×· · ·×Kn−1×K 6=0

n ]

we have D∗n \ ZD∗n(f) = C̃ \ ZeC(g). As before we may get a lower bound for C̃\ZeC(g)
by using Theorem 3.3.12 to obtain a lower bound for the number of nonzero points of
g(1, t1, . . . , tn) in K1× · · · ×Kn−1×K 6=0

n ∈ An. To do this we observe that g(1, t1, . . . , tn)
is a polynomial of degree at most d− 1, and also that d1 ≤ · · · ≤ dn−1 and dk+1 ≤ dn− 1.
Thus when we write K1, . . . , Kn−1, K

6=0
n in order of increasing size the set K 6=0

n does not
appear before Kk+1. In [37] the authors prove that this reordering does not affect the
lower bound in Theorem 3.3.12 (2) so we get

|C̃\ZeC(g)| ≥ (dk+1 − `)dk+2 · · · dn−1(dn − 1) .

On the set Dn−1 we can use the induction hypothesis, observing that d−1 =
k+1∑
i=2

(di − 1)+

`+ d1 − dk+1 and 0 < `+ d1 − dk+1 ≤ dk+2 − 1, so

|Dn−1\ZDn−1(f)| ≥ (dk+2 − (`+ d1 − dk+1))dk+3 · · · dn ≥ (dk+1 − `)dk+2 · · · dn−1 . (4.2.3)
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Adding both inequalities, we obtain the desired result.

Subcase b.2: Assume that dk+1 = dn. Let r ∈ {1, . . . , k + 1} be the least index such
that Kr = Kr+1 = · · · = Kn. For r ≤ j ≤ n, define

Πj := {π = Z(h) ⊆ Pn | h = λ0t0 + · · ·+ λj−1tj−1 + tj + λj+1tj+1 + · · ·+ λntn ∈ Kn[t]} .

If for some j ∈ {r, . . . , n} all sets π ∩ C, with π ∈ Πj, are not contained in ZC(f) then
we may use an argument similar to the one used in (a) above to obtain the desired result.

In this argument we will use Πj instead of Π, C ′j := [K0×· · ·×K̂j×· · ·×Kn] instead of C ′

(where K0×· · ·×K̂j×· · ·×Kn means that we omit the set Kj in the product) and for every
h = λ0t0+· · ·+λj−1tj−1+tj+λj+1tj+1+· · ·+λntn ∈ Kn[t] we will set g′h(t0, . . . , t̂j, . . . , tn) :=
f(t0, . . . , tj−1,−λ0t0 − · · · − λj−1tj−1 − λj+1tj+1 − · · · − λntn, tj+1, . . . , tn); at the end we
use that |Πj| = dnn = dnj to conclude the argument and prove the result.

If for every r ≤ j ≤ n there exists Z(hj) = πj ∈ Πj such that πj ∩ C ⊆ ZC(f) then let
H be the projectivity defined by

H([(x0, . . . , xn)]) := [(x0, . . . , xr−1, hr(x0, . . . , xn), xr+1, . . . , xn)].

As before, passing from f(t) to f(H−1(t)) we may assume that Z(tr) ∩ C ⊆ ZC(f). If
all sets π ∩ C, with π ∈ Πr+1, are not contained in ZC(f) then again we may use an
argument similar to the one used in (a) above to get the result. If there is some π ∈ Πr+1

such that π ∩ C ⊆ ZC(f) then using an appropriate projectivity we may assume that
Z(tr+1) ∩ C ⊆ ZC(f) (note that Z(tr) ∩ C ⊆ ZC(f) continues to hold). Proceeding in this
manner, we either get the result or we get that Z(tj) ∩ C ⊆ ZC(f) for all j = r, . . . , n,
which we assume from now on. From Lemma 4.2.21, there exists a polynomial g(t) of
degree at most d − (n − r + 1), homogeneous on C, such that f = g · tr · · · tn. From
f /∈ I(D∗n) we get that g is not zero on the set E = [1 ×K1 × · · · ×K∗r × · · · ×K∗n] and
also that |D∗n\ZD∗n(f)| = |E\ZE(g)|. The number of non-zero points of g in E is the same
of the number of non-zero points of g(1, t1, . . . , tn) in K1 × · · · × K∗r × · · · × K∗n ∈ An.
Observe that from the definition of r we get d1 ≤ · · · ≤ dr−1 ≤ dr − 1 = · · · = dn − 1 so
we may apply Theorem 3.3.12, noting that deg(1, t1, . . . , tn) ≤ d− 1− (n− r). To apply
that result we write

d−1−(n−r) =
r−1∑
i=1

(di − 1)+
k∑
i=r

((di − 1)− 1)+`−(n−k−1) =
s∑
i=1

(
d̃i − 1

)
+˜̀, (4.2.4)

where d̃i, 0 ≤ s ≤ k and ˜̀ are defined by

d̃i :=

{
di if 1 ≤ i < r,
di − 1 if r ≤ i ≤ n,

0 ≤ ˜̀ :=
k∑

i=s+1

(
d̃i − 1

)
+ `− (n− k − 1) < d̃s+1 − 1
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(we note that if r = k + 1 then we omit the term
k∑
i=r

((di − 1)− 1) in (4.2.4)). With this

notation, from Theorem 3.3.12 we have

|E\ZE(g)| ≥ (d̃s+1 − ˜̀)d̃s+2 · · · d̃n .

Define λs+1 := ds+1 − d̃s+1 + ˜̀ and λj := dj − d̃j for j = s+ 2, . . . , n− 1. Then

(d̃s+1 − ˜̀)d̃s+2 · · · d̃n−1 =
n−1∏
i=s+1

(di − λi),

and we have

n−1∑
i=s+1

λi = (ds+1 − d̃s+1 + ˜̀) +
n−1∑
i=s+2

(di − d̃i) = ˜̀+
n−1∑
i=s+1

(di − d̃i)

=
k∑

i=s+1

(
d̃i − 1

)
+ `− (n− k − 1) +

k∑
i=s+1

(di − d̃i) + (n− 1− k)

=
k∑

i=s+1

(di − 1) + `.

Thus, from [9, Lemma 2.1] we get
∏n−1

i=s+1(di−λi) ≥ (dk+1− `)dk+2 · · · dn−1, and a fortiori

|E\ZE(g)| ≥ (dk+1 − `)dk+2 · · · dn−1(dn − 1).

From the induction hypothesis, and similarly as (4.2.3), we have

|Dn−1\ZDn−1(f)| ≥ (dk+1 − `)dk+2 · · · dn−1 .

Adding both inequalities we obtain the desired result. This concludes the proof of the
proposition. 2

We come to the main result of this section.

Theorem 4.2.23 If C is the projective nested product of fields over K0, . . . , Kn, then the
minimum distance of CC(d) is given by

δC(d) :=


(dk+1 − `) dk+2 · · · dn if 1 ≤ d ≤

n∑
i=1

(di − 1) ,

1 if
n∑
i=1

(di − 1) < d,

where 0 ≤ k ≤ n− 1 and 0 ≤ ` < dk+1 − 1 are the unique integers such that

d− 1 =
k∑
i=1

(di − 1) + ` .



4.2 Projective nested cartesian codes 101

Proof. Now it is immediate by Lemma 4.2.15 and Proposition 4.2.22. 2

As consequences of our main results we have the next applications and examples. We
also recover the formula for the length and dimension of the Projective Reed-Muller codes.

Corollary 4.2.24 ([56, Theorem 1]; [51, Proposition 12]) The Projective Reed-Muller
code PCd(n, q) is an [|Pn| , dimCPn(d), δPn(d)]-code where

(a) |Pn| = (qn+1 − 1)/(q − 1),

(b) dimCPn(d) =
n∑
j=0

j∑
k=0

(−1)k
(
j

k

)(
j + d− 1− kq
d− 1− kq

)
and

(c)

δPn(d) =


qn if 1 = d,

(q − `) qn−k−1 if 1 < d ≤ n(q − 1),
1 if n (q − 1) < d;

here 0 ≤ k ≤ n − 1 and 1 ≤ ` ≤ dk+1 − 1 are the unique integers such that
d = 1 + k (q − 1) + `.

Proof. Using Remark 4.2.2 and Theorems 4.2.3, 4.2.9 and 4.2.23 we have the result. 2

Now we present a relationship between the parameters of codes defined over a projec-
tive nested product of fields and affine cartesian codes.

Corollary 4.2.25 Let K0, . . . , Kn be subfields of K such that
C := [K0 ×K1 × · · · ×Kn] is a projective nested product of fields and
C∗i := Kn+1−i × · · · ×Kn ⊆ Ai, where i = 1 . . . , n. If

CC(d) is a [|C| , dimCC(d), δC(d)] -code

and

CC∗i (d) is a
[
|C∗i | , dimCC∗i (d), δC∗i (d)

]
-code,

then

|C| =
n∑
i=0

|C∗i | , dimCC(d) =
n∑
i=0

dimCC∗i (d− 1) and δC(d) = δC∗n(d− 1),

where C∗0 := [1] and δC∗n(0) := d1 · · · dn.

Proof. This is a consequence of Theorems 3.3.5, 3.3.12, 4.2.3, 4.2.9 and 4.2.23. 2
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Corollary 4.2.26 (Relationship between Generalized and Projective Reed-Muller codes)
If the Projective Reed-Muller code

PCd(n, q) is a [|Pn| , dimCPn(d), δPn(d)] - code

and for i = 1, . . . , n the Generalized Reed-Muller code

GCd(i, q) is a
[∣∣Ai

∣∣ , dimCAi(d), δAi(d)
]

- code ,

then

|Pn| =
n∑
i=0

∣∣Ai
∣∣ , dimCPn(d) =

n∑
i=0

dimCAi(d− 1) and δPn(d) = δAn(d− 1),

where `A0 := 1, kA0(d) := 1 and δAn(0) := qn.

Proof. The generalized Reed-Muller code is an special case of the affine cartesian codes.
The projective Reed-Muller code is an especial case of the codes associated with projective
nested product of fields. Thus this proof is a consequence of Corollary 4.2.25. 2

Example 4.2.27 Let K := F25 be a finite field with 25 elements and let K0 := K1 :=
F5, K2 := F25 be subsets of K. Then C := [K0 ×K1 ×K2] is a projective nested cartesian
product, and the length, the dimension and the minimum distance of the code CC(d) are:

d 1 2 3 4 5 6 7 8 9 10 25
|C| 151 151 151 151 151 151 151 151 151 151 151

dimCC(d) 3 6 10 15 21 27 33 39 45 51 141
δC(d) 125 100 75 50 25 24 23 22 21 20 5



Appendix A

Main Results of The Thesis

In this appendix we present the main results of this work.

A.1 Main results of Chapter 2

Let K be a field, S := K [t1, . . . , tn] a polynomial ring with n variables over K, Lρ ⊂ Zn

a lattice and ρ a partial character from Lρ. Fix a monomial order ≺ . The following four
results are well-known for pure lattice ideals. We prove them for arbitrary lattice ideals.

• Theorem 2.1.21 Let K be a field and ρ : Lρ → K∗ a partial character. The lattice

ideal I(ρ) =
({
ta

+ − ρ(a)ta
− | a ∈ L

})
contains no monomials.

• Theorem 2.1.23An ideal I ⊂ S is a lattice ideal if and only if

(i) I is binomial,

(ii) I contains no monomials and

(iii) ti /∈ Z(S/I) for all i.

• Theorem 2.2.7 Lρ = Z {a1, . . . , ar} if and only if

I(ρ) =
(
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
r − ρ(ar)t

a−r
)

: (t1 · · · tn)∞ .

• Theorem 2.2.9Let ρ be a partial character on a lattice Lρand let I(ρ) be its lattice
ideal. If I(ρ) =

(
ta1 − λ1t

b1 , . . . , tar − λrtbr
)
, then Lρ = Z {a1 − b1, . . . , ar − br} and

ρ(ai−bi) = λi, for i = 1, . . . , r. In particular, if L is a lattice ideal, there are a unique
lattice Lρ and a unique partial character ρ on the lattice Lρ such that L = I(ρ).
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By [16, Corollary 2.5] we know that a binomial ideal containing no monomials is
characterized by a lattice. In some way we complement this result. We show that a
binomial ideal (without restrictions) can be always characterized by a finite number of
lattices.

• Theorem 2.3.4 Let K be a field with characteristic different than 2. An ideal I of S
is a binomial ideal if and only if there are m lattices Li := Z {ai1 − bi1, . . . , a1ri − b1ri}
and m partial characters ρi : Li → K∗ such that I = I1 + · · ·+ Im, where

Ii :=
(
tai1 − ρi(ai1 − bi1)tbi1 , . . . , tairi − ρi(airi − biri)tbiri

)
,

and for i 6= j, the ideal Ii + Ij contains a monomial.

We prove that with a finite number of elements of the lattice we can construct a
Gröbner basis of the lattice ideal.

• Theorem 2.4.1 Let ρ : Lρ → K∗ be a partial character and ≺ an arbitrary mono-
mial order fixed on S. There are elements a1, . . . , as of Lρ such that

G :=
{
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
s − ρ(as)t

a−s
}

is a Gröbner basis of I(ρ). In particular the reduced Gröbner basis has this form.

The following results tell that a Gröbner basis and as a consequence some invariant
algebraics of a lattice ideal are independent of the character.

• Theorem 2.5.1 Let ρ : Lρ → K∗ be a partial character and ≺ an arbitrary mono-

mial order fixed on S. The set G :=
{
ta

+
1 − ρ(a1)ta

−
1 , . . . , ta

+
r − ρ(ar)t

a−r
}

is a Gröbner

basis of the lattice ideal I(ρ) if and only if the set G ′ :=
{
ta

+
1 − ta−1 , . . . , ta+

r − ta−r
}

is a Gröbner basis of the pure lattice ideal I(Lρ).

• Theorem 2.5.2(Hilbert function of a lattice ideal is independent from the partial
character) If L is a lattice and ρ, ρ′ are two partial characters on L, then

Hρ(d) = Hρ′(d) for all d ≥ 0.

Let K be a field, S := K [t1, . . . , tn] a polynomial ring with n variables over K,L a
lattice of Zn and ω := (ω1, . . . , ωn) a integral vector with positive entries. In the following
four results we work with pure lattice ideal, i.e. we use the trivial partial character to
define the lattice ideal.

• Theorem 2.6.12 If I(L) ⊂ S is a graded pure lattice ideal of dimension 1, then

deg S/I(L) = |T (Zn/L)|.



A.2 Main results of Chapter 3 105

• Theorem 2.6.31 Let L be the pure lattice ideal of an ω-homogeneous lattice L
in Zn. If V (L, ti) = {0} for all i, then L is a complete intersection if and only
if there are homogeneous pure binomials h1, . . . , hn−1 in L satisfying the following
conditions :

(i) L = Z
{
ĥ1, . . . , ĥn−1

}
.

(ii) V (h1, . . . , hn−1, ti) = {0} for all i.

(iii) hi = ta
+
i − ta−i for i = 1, . . . , n− 1.

• Proposition 2.6.34 If K is a field of positive characteristic and L ⊂ S is a ω-graded
pure lattice ideal of dimension 1, then L is a pure binomial set theoretic complete
intersection.

• Theorem 2.6.37 Let L ⊂ S be an arbitrary pure lattice ideal of height r. If
char(K) = 0 and rad(L) = rad(g1, . . . , gr) for some pure binomials g1, . . . , gr, then
L = (g1, . . . , gr).

Let K := Fq be a finite field, T := {[(xv11 , . . . , x
vn
n )] |xi ∈ K∗ for all i} ⊆ Pn−1 a

projective degenerate torus of type v := (v1, . . . , vn) , P a toric ideal associated to the
numerical semigroup Nd1 + · · · + Ndn, where β denotes a generator of the cyclic group
(K∗, · ) and di denotes o(βvi), the order of βvi for i = 1, . . . , n.

• Theorem 2.7.8 (a) If I(T ) is a complete intersection generated by binomials
h1, . . . , hn−1, then P is a complete intersection generated by binomials g1, . . . , gn−1

such that hi is equal to gi(t
d1
1 , . . . , t

dn
n ) for all i. (b) If P is a complete intersection

generated by binomials g1, . . . , gn−1, then I(T ) is a complete intersection generated
by binomials h1, . . . , hn−1, where hi is equal to gi(t

d1
1 , . . . , t

dn
n ) for all i.

• Corollary 2.7.14 (i) deg(S/I(T )) = d1 · · · dn/ gcd(d1, . . . , dn).

(ii) If I(T ) is a complete intersection, then

regS/I(T ) = gcd(d1, . . . , dn) g(S ′) +
∑n

i=1 di − (n− 1),

where g(S ′) denotes the Frobenius number of the numerical semigroup S ′ generated
by o(βrv1), . . . , o(βrvn); and r is the greatest common divisor of d1, . . . , dn.

A.2 Main results of Chapter 3

Let K := Fq be a finite field with q elements and υ1, . . . , υn a sequence of vectors in
Ns with υi := (υi1, . . . , υis) for 1 ≤ i ≤ n. Let Q∗ = {(xυ11

1 · · ·xυ1s
s , . . . , xυn1

1 · · ·xυnss ) ∈
An|xi ∈ K∗ for all i} be the affine algebraic toric set.

• Theorem 3.2.1The length of CQ∗(d) is deg(S[u]/I(Q∗)).
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• Corollary 3.2.12 The dimension and the length of CQ∗(d) can be computed using
Gröbner basis.

Let K be an arbitrary field, Λ1, . . . ,Λn a collection of non-empty subsets of K, di := |Λi|
for i = 1, . . . , n and C∗ := Λ1 × · · · × Λn an affine cartesian product.

• Theorem 3.3.5 The length of CC∗(d) is d1 · · · dn, its minimum distance is 1 for
d ≥

∑n
i=1(di − 1), and its dimension is

HC∗(d) =

(
n+ d

d

)
−
∑

1≤i≤n

(
n+ d− di
d− di

)
+
∑
i<j

(
n+ d− (di + dj)

d− (di + dj)

)
−

∑
i<j<k

(
n+ d− (di + dj + dk)

d− (di + dj + dk)

)
+ · · ·+ (−1)n

(
n+ d− (d1 + · · ·+ dn)

d− (d1 + · · ·+ dn)

)
.

• Theorem 3.3.12 Let K be a field and let CC∗(d) be the cartesian evaluation code
of degree d on the finite set C∗ := Λ1 × · · · × Λn ⊂ Kn. If 2 ≤ di ≤ di+1 for all i,
with di := |Λi|, and d ≥ 1, then the minimum distance of CC∗(d) is given by

δC∗(d) :=


(dk+1 − `) dk+2 · · · dn if d ≤

n∑
i=1

(di − 1)− 1,

1 if d ≥
n∑
i=1

(di − 1) ,

where k ≥ 0, ` are the unique integers such that d =
∑k

i=1 (di − 1) + ` and 1 ≤ ` ≤
dk+1 − 1.

Given a non decreasing sequence of positive integers 2 ≤ d1 ≤ · · · ≤ dn we construct a
cartesian code, over an affine degenerate torus, with prescribed parameters in terms of
d1, . . . , dn.

• Theorem 3.3.17 Let 2 ≤ d1 ≤ · · · ≤ dn be a sequence of integers. Then, there
is a finite field K := Fq and an affine degenerate torus T ∗ such that the length of
CT ∗(d) is d1 · · · dn, its dimension is

dimK CT ∗(d) =

(
n+ d

d

)
−
∑

1≤i≤n

(
n+ d− di
d− di

)
+
∑
i<j

(
n+ d− (di + dj)

d− (di + dj)

)
−

∑
i<j<k

(
n+ d− (di + dj + dk)

d− (di + dj + dk)

)
+ · · ·+ (−1)n

(
n+ d− (d1 + · · ·+ dn)

d− (d1 + · · ·+ dn)

)
,

its minimum distance is 1 if d ≥
∑n

i=1(di − 1), and

δT ∗(d) = (dk+1 − `)dk+2 · · · dn if d ≤
∑n

i=1 (di − 1)− 1,

where k ≥ 0, ` are the unique integers such that d =
∑k

i=1 (di − 1) + ` and 1 ≤ ` ≤
dk+1 − 1.
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A.3 Main results of Chapter 4

Let K := Fq be a finite field, v := {v1, . . . , vn} a sequence of positive integers and
T = {[(xv11 , . . . , x

vn
n )] |xi ∈ K∗ for all i} ⊂ Pn−1 a projective degenerate torus of type v.

• Theorem 4.1.1 (i) The length of CT (d) is d1 · · · dn/ gcd(d1, . . . , dn).

(ii) If I(T ) is a complete intersection, then good codes CT (d) can occur only if

d ≤ gcd(d1, . . . , dn) g(S ′) +
∑n

i=1 di − (n− 1),

where g(S ′) denotes the Frobenius number of the numerical semigroup S ′ generated
by o(βrv1), . . . , o(βrvn); and r is the greatest common divisor of d1, . . . , dn.

Let K be a finite field and Λ0,Λ1, . . . ,Λn a collection of non-empty subsets of K such
that (i) for all i = 0, . . . , n we have 0 ∈ Λi, and (ii) for every i = 1, . . . , n we have

Λj
Λi−1
⊂ Λj

for j = i, . . . , n. Set C := [Λ0 × Λ1 × · · · × Λn] = {[(λ0, · · · , λn)]| aj ∈ Λj for all j} ⊂ Pn a
projective nested cartesian set and di := |Λi| for i = 0, . . . , n.

• Theorem 4.2.3 The length of CC(d) is m := 1 +
∑n

i=1 di · · · dn.

• Theorem 4.2.9 The dimension of CC(d) is given by

dimK CC(d) =
n∑
j=0

[(
j + d− 1

d− 1

)
−

∑
n+1−j≤i≤n

(
j + d− 1− di
d− 1− di

)
+

∑
i<j

(
j + d− 1− (di + dj)

d− 1− (di + dj)

)
−
∑
i<j<k

(
j + d− 1− (di + dj + dk)

d− 1− (di + dj + dk)

)

+ · · ·+ (−1)j
(
j + d− 1− (dn+1−j + · · ·+ dn)

d− 1− (dn+1−j + · · ·+ dn)

)]
.

• Proposition4.2.14Let C := [Λ0 × · · · × Λn] be a projective nested cartesian set.

The set G :=
{
ti
∏

λj∈Λj
(tj − λjti) , i < j; i, j = 0, . . . , n

}
is a Gröbner basis for

I(C).

• Conjecture 4.2.16If C is the projective nested cartesian set over Λ0, . . . ,Λn, then
the minimum distance of CC(d) is given by

δC(d) :=


(dk+1 − `) dk+2 · · · dn if 1 ≤ d ≤

n∑
i=1

(di − 1) ,

1 if
n∑
i=1

(di − 1) < d,

where 0 ≤ k ≤ n − 1 and 0 ≤ ` < dk+1 − 1 are the unique integers such that

d− 1 =
k∑
i=1

(di − 1) + `.
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In addition, assume that every Λi is a field.

• Theorem 4.2.23If C is the projective nested product of fields over K0, . . . , Kn, then
the minimum distance of CC(d) is given by

δC(d) :=


(dk+1 − `) dk+2 · · · dn if 1 ≤ d ≤

n∑
i=1

(di − 1) ,

1 if
n∑
i=1

(di − 1) < d,

where 0 ≤ k ≤ n− 1 and 0 ≤ ` < dk+1 − 1 are the unique integers such that

d− 1 =
k∑
i=1

(di − 1) + ` .

As a consequence, we show some relations between affine codes and projective codes.

• Corollary 4.2.25Let K0, . . . , Kn be subfields of K such that
C := [K0 ×K1 × · · · ×Kn] is a projective nested product of fields and
C∗i := Kn+1−i × · · · ×Kn ⊆ Ai, where i = 1 . . . , n. If

CC(d) is a [|C| , dimCC(d), δC(d)] -code

and
CC∗i (d) is a

[
|C∗i | , dimCC∗i (d), δC∗i (d)

]
-code,

then

|C| =
n∑
i=0

|C∗i | , dimCC(d) =
n∑
i=0

dimCC∗i (d−1) and δC(d) = δC∗n(d−1),

where C∗0 := [1] and δC∗n(0) := d1 · · · dn.

• Corollary 4.2.26 (Relationship between Generalized and Projective Reed-Muller
codes). If the Projective Reed-Muller code

PCd(n, q) is a [|Pn| , dimCPn(d), δPn(d)] - code

and for i = 1, . . . , n the Generalized Reed-Muller code

GCd(i, q) is a
[∣∣Ai

∣∣ , dimCAi(d), δAi(d)
]

- code ,

then

|Pn| =
n∑
i=0

∣∣Ai
∣∣ , dimCPn(d) =

n∑
i=0

dimCAi(d−1) and δPn(d) = δAn(d−1),

where `A0 := 1, kA0(d) := 1 and δAn(0) := qn.
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[24] M. González-Sarabia, C. Renteŕıa and M. Hernández de la Torre, Minimum distance
and second generalized Hamming weight of two particular linear codes, Congr. Nu-
mer. 161 (2003), 105–116.
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[48] J. Ramı́rez Alfonśın, The Diophantine Frobenius problem, Oxford Lecture Series in
Mathematics and its Applications, 30, Oxford University Press, Oxford, 2005.

[49] C. Renteŕıa, A. Simis and R. Villarreal, Algebraic methods for parameterized codes
and invariants of vanishing ideals over finite fields, Finite Fields Appl. 17 (2011),
no. 1, 81–104.
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Notation

C code, xvi
CC∗(d) affine cartesian code, xix, 68
CC(d) proj. nested cart. code, xxii, 83
CQ∗(d) parameterized affine code, xix, 61
CT (d) parameterized projective code, xxi
CX ∗(d) affine code, xvii, 59
CX (d) projective code, xxi
E (G) set of edges of a graph, 4
GCd(i, q) gene. Reed-Muller code, 91
HPI Hilbert series of S/I, 12
HI Hilbert function of S/I, 12
HX ∗(d) Hilbert function of S/I(X ∗), xvii
HX ∗(d) Hilbert func. of S[u]/I(X ∗), xviii
I(L) pure lattice ideal, xi, 22
I(Q) vanishing ideal of Q, xiv
I(T ) vanishing ideal of T , xiv
I(X ) vanishing ideal of X , 2
I(X ∗) vanishing ideal of X ∗, xvii, 2
I(ρ) lattice ideal, xi, 22
I(X ∗) vanishing ideal of X ∗, xvii
I : J ideal quotient, 6
I : J∞ saturation, 6
IA toric ideal, 18
K a field, xi
K[F ] mono. subring generated by F , 17
K∗ multiplicative group of K, xi
P toric ideal, xiv
PCd(n, q) proj. Reed-Muller code, 83, 91
PF toric ideal, 18
R ring, 11
S polynomial ring, xi, 1
S≤d polynomials of degree at most d, xvi
Sd homogeneous polynomials of deg. d, 1
T projective torus, 3
T (M) torsion subgroup, 4

T ∗ affine torus, 3
V (I) variety of an ideal, 2, 86
V (G) set of vertices of the graph G, 4
∆(I) footprint, 87
αta is a term, where α ∈ K, 1
deg(S/I) degree of an ideal, 13
deg(x) degree of a vertex, 4
deg≺(f) degree of a polynomial, 8
δ(C) minimum distance of a code, xvi
dim(M) dimension of a module, 15
dim(R) Krull dimension of a ring, 6
dim(S/I(X ∗)) Krull dimension, xvii
dim(S[u]/I(X ∗)) Krull dimension, xviii
dim(P) dimension of a polytope, 4
dimK C dimension of a code, xvi
dimR(RA′) dimen. as R-vector space, 4
`(M) length of a module, 15
`R(M) length of a R-module, 15
Λ
Λ′

the set
{
λ
λ′
| λ ∈ Λ, 0 6= λ′ ∈ Λ′

}
, 82

〈V (H)〉 induced subgraph, 5
An affine space, xvi
An
K affine space over a field K, 2

Fq finite field, xiv
N+ abbreviation for {1, 2, . . .}, 1
N abbreviation for Z≥0, 1
Pn projective space, xxi
PnK projective space over a field K, 2
R real numbers, 1
R+ abbreviation for R≥0, 1
R≥d real numbers ≥ d, 1
Z integers, 1
ZA lattice generated by A, 22
Z≥d integers ≥ d, 1
C projective cartesian product, xxii, 82
C∗ affine cartesian product, xix
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G Gröbner basis, 9
Kn complete graph, 5
K1,n star, 5
Km,n complete bipartite graph, 5
L lattice, 22
Lρ lattice, xi
O lattice d-simplex, 41
P lattice polytope, 3
Q projective algebraic toric set, xiv, 3
Q∗ affine algebraic toric set, xviii, 3
S semigroup, xiv
T projective degenerate torus, xiv, xxi, 3
T ∗ affine degenerate torus, 3
X projective set, xxi
X ∗ affine set, xvi
Z(M) zero divisors of a module, 14
f(a) abbr. for ta

+ − ρ(a)ta
−

, 24
g(γ, b1, b2) abbreviation for the polyno-

mial ρ(b2)tγ−b2 − ρ(b1)tγ−b1 , 24
m maximal ideal, 15
p prime ideal, 6

b
A

the element b	 ab1 	 · · · 	 abs, 28

f
F

remainder of f by F , 9√
I radical, 6
� monomial order, 8
�Dp degree lexicographical order, 8
�dp degree reverse lex. order, 8
�lex lexicographical order, 8
�revlex reverse lexicographical order, 8
LC(f) lead. coefficient of a polynomial, 9
LM(f) lead. mono. of a polynomial, 9
LT(f) leading term of a polynomial, 9
S(f, g) S-polynomial of f and g, 10
ann(y) annihilator of an element, 15
annR(M) annihilator of a module, 15
codim(M) codimension of a module, 15
conv(B) convex hull of B, 3
degti(f) deg. respect to ti of a poly., 9
degtotal(f) total degree of a polynomial, 9
depth(M) depth of a module, 15
gcd(LM(f),LM(g)) grtst. com. div., 10
ht(I) height of an ideal, 6
ht(p) height of a prime ideal, 6

lcm(LM(f),LM(g)) least com. mult., 10
multideg(f) multideg. of a polynomial, 8
rad(I) radical of an ideal, 6
supp(c) support of a vector, 22
supp(f) support of a binomial, 22
supp(ta) support of a monomial, 22
ϕd evaluation map (proj. case), xxi, 81
a(I) a-invariant of an ideal, 13
a(S/I) a-invariant of an ideal, 13
c+ positive part of a vector, 22
c− negative part of a vector, 22
d(x,y) distance between vertices, 6
hI(t) Hilbert polynomial of S/I, 13
hX ∗(t) Hilbert poly. of S/I(X ∗), xvii
hX ∗(t) Hilbert poly. of S[u]/I(X ∗), xviii
ta abbreviation for ta1

1 · · · tann , 1, 22
G graph, 4
G[V (H)] induced subgraph, 5
H = GV (H) induced subgraph, 5
LT(I) initial ideal, 9
evd evaluation map (affine case), xvi
reg(S/I) index of regularity of S/I, 13
reg

(
S[u]/I(X ∗)

)
index of regularity, xviii

# cardinality of a set, 86
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a-invariant of an ideal, 13

adjacent vertices, 4
affine

algebraic toric set, xix, 3
cartesian code, xix, 68
cartesian product, xix, 67
code, xvii, 59
code parameterized, xix
degenerate torus, 3
evaluation code, xvii, 59
evaluation map, 59
Hilbert function, 61
set, xvi
space, xvi, 2
torus, 3

algorithm division, 9
annihilator

of a module, 15
of an element, 15

ascending chain condition, 7
associated matrix, 18

basic parameters, xvi
binary code, xvi
binomial, 22

ideal, 22
pure, 22
pure primitive, 18
set theoretic complete intersection, 47
support of a, 22

bipartite graph, 5
bipartition, 5

code, xvi
q-ary, xvi

affine, xvii, 59
affine cartesian, xix, 68
affine evaluation, xvii, 59
associated to a graph, 67
basic parameters, xvi
binary, xvi
dimension, xvi
length, xvi
linear, xvi, 59
maximum distance separable, xvi
minimum distance, xvi
parameterized affine, xix, 61
parameterized projective, xxi, 82
projective, xviii, xxi, 60, 81
projective cartesian, 82
projective evaluation, xviii, xxi, 60,

81
projective nested cartesian, xxii, 83
ternary, xvi

codimension
of a module, 15
of an ideal, 6

Cohen-Macaulay
module, 15, 16
ring, 15, 16

complete
bipartite graph, 5
graph, 5
intersection, 7, 51

composition series, 15
congruence, 23
connected

component even, 5
component odd, 5
components, 5
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graph, 5
convex

combination, 3
hull, 3
set, 3

cycle, 5
even, 5
odd, 5

degree
of a vertex, 4
of an ideal, 13

depth of a module, 15
dimension

code, xvi
Krull, 6
of a lattice polytope, 4
of a module, 15
of an ideal, 6

distance between vertices, 6
division algorithm, 9

edges set, 4
ends, 4
endvertices, 4
evaluation code

affine, xvii, 59
projective, xviii, xxi, 60, 81

evaluation map
(affine case), xvi, 59
(projective case), xxi

footprint, 87
forest, 5
Frobenius number, xv, 56
function Hilbert, 12

of S/I(X ∗), xvii
of S[u]/I(X ∗), xviii

Gröbner basis, 9
minimal, 11
reduced, 11
universal, 19

graded

ideal, 12
ring, 11

graph, 4
bipartite, 5
complete, 5
complete bipartite, 5
connected, 5
discrete, 5
invariant, 5
order of a, 5

graphs
automorphism of, 5
homomorphism of, 4
isomorphic, 4

group
torsion free, 4

height
of a prime ideal, 6
of an ideal, 6

Hilbert
function, 12
function affine, 61
function of S/I(X ∗), xvii
function of S[u]/I(X ∗), xviii
polynomial, 13
series, 12

homogeneous
elements of degree d, 11
ideal, 12
lattice, 36

homogenization
of a polynomial, 66
of an ideal, 66

homomorphism of graphs, 4

ideal
ω-graded, 12
a-invariant of an, 13
binomial, 22
binomial set theoretic complete inter-

section, 47
codimension of an, 6
complete intersection, 51
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degree of an, 13
dimension of an, 6
Gröbner basis of an, 9
graded, 12
height of a prime, 6
height of an, 6
homogeneous, 12
homogenization of an, 66
initial, 9
lattice, xi, 22
pure binomial, 22
pure binomial set theoretic complete

intersection, 47
pure lattice, xi, 22
quotient, 6
standard graded, 12
toric, xiv, 18
vanishing of Q, xiv
vanishing of X , 2
vanishing of X ∗, xvii, 2
vanishing of X ∗, xvii
variety of an, 86

index of regularity, 13
of S[u]/I(X ∗), xviii

initial ideal, 9
Invariant factors of a matrix, 41
isolated vertex, 4
isomorphic graphs, 4

Krull dimension, 6

lattice, xi, 22
ω-homogeneous, 37
d-simplex , 41
homogeneous, 36
ideal, xi, 22
polytope, 3

leading
coefficient of a polynomial, 9
monomial of a polynomial, 9
term of a polynomial, 9

length
of a code, xvi
of a cycle, 5

of a module, 15
of a walk, 5

loop, 4

matrix
Invariant factors of a, 41
Smith normal form of a, 41

maximal condition, 7
maximum distance separable, xvi
minimal Gröbner basis, 11
minimum distance, xvi
module

annihilator of a, 15
codimension of a, 15
Cohen-Macaulay, 15, 16
composition series of a, 15
depth of a, 15
dimension of a, 15
length of a , 15
of finite length, 15
regular element of a, 14
regular sequence of a, 14
simple, 15
system of parameters of a, 16
zero divisor of a, 14

monomial
order, 8
subring, 17
support of a, 22

monomials
greatest common divisor of, 10
least common multiple of, 10

multigraph, 4

negative part of a vector, 22
Noetherian ring, 7
normalized volume, 41
numerical semigroup, 51

order
degree lexicographical, 8
degree reverse lexicographical, 8
elimination, 66
lexicographical, 8
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monomial, 8
of a graph, 5
reverse lexicographical, 8

parameterized
affine code, xix, 61
projective code, xxi, 82

partial character, xi, 22
extension of a, 22
trivial, xi

path, 5
polynomial, 7

degree of a, 8
degree with respect to ti of a, 9
Hilbert, 13
homogenization of a, 66
leading coefficient of a, 9
leading monomial of a, 9
leading term of a, 9
multidegree of a, 8
simple, 23
total degree of a, 9

positive part of a vector, 22
primitive pure binomial, 18
product

affine cartesian, 67
projective cartesian, 82

projective
algebraic toric set, xiv, 3
cartesian code, 82
cartesian product, xxii, 82
closure, xvi, 2
code, xviii, xxi, 60, 81
code parameterized, xxi
degenerate torus, xiv, xxi, 3
evaluation code, xviii, xxi, 60, 81
nested cartesian code, xxii, 83
nested cartesian set, xxii, 83
set, xxi
space, 2
torus, 3
variety, 2

pure

binomial, 22
binomial ideal, 22
binomial set theoretic complete inter-

section, 47
lattice ideal, xi, 22

quotient ideal, 6

radical, 6
reduced Gröbner basis, 11
regular

element, 14
sequence, 14

relative volume, 3
ring

ω-graded, 12
Cohen-Macaulay, 15, 16
graded, 11
Noetherian, 7
with the grading induced by ω, 12
with the standard grading, 12

S-polynomial, 10
saturation, 6
semigroup, xiv

numerical, xiv, 51
series Hilbert, 12
set

affine, xvi
affine algebraic toric, xix, 3
affine cartesian product, xix
affine degenerate torus, 3
affine torus, 3
associated to a graph, 67
convex, 3
of edges, 4
of vertices, 4
projective, xxi
projective algebraic toric, xiv, 3
projective cartesian product, xxii
projective degenerate torus, xiv, xxi,

3
projective nested cartesian, xxii, 83
projective torus, 3
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zero, 2, 65
simple

components, 23
polynomial, 23

Singleton bound, xvi
Smith normal form of a matrix, 41
space

affine, xvi, 2
projective, 2

square, 5
star, 5
subgraph, 5

induced, 5
spanning, 5

subgroup
torsion, 4

subring
monomial, 17

suites distinguées, xv
support

of a binomial, 22
of a monomial, 22
of a vector, 22

system of parameters, 16

ternary code, xvi
toric ideal, xiv, 18
torsion

free group, 4
subgroup, 4

tree, 5
triangle, 5

unital, 22

vanishing ideal
of Q, xiv
of X , 2
of X ∗, xvii, 2
of Q∗, 61
of X ∗, xvii

variety, 2, 86
projective, 2

vector

negative part of a, 22
positive part of a, 22
support of a, 22

vertex
degree of a , 4
isolated, 4

vertices
adjacent, 4
distance between, 6
set of, 4

volume normalized, 41

walk, 5
closed, 5

Zariski topology
on An, 2
on Pn, 2

zero
divisor, 14
set, 2, 65
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