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Abstract

We consider functions of a vector variable in a domain in 3-dimensional space,

taking values in the space of complex quaternions. Let D be the Moisil-

Teodorescu differential operator and f a separable nonvanishing function.

The first contribution of this thesis is the construction of an invertible

quaternionic operator which transforms solutions of the operator D+MDf/f

into solutions of the operator D for bounded domains with certain symmetry.

This permits giving a complete solution to equations of the form Du+ λu+

uγ = 0 with certain restrictions on the coefficients λ and γ. The solutions are

represented locally by a new type of Taylor series adapted to the equation

under consideration.

The second contribution is the application of these results to exhibit com-

plete solution sets for various physical systems, including Beltrami fields,

some important cases of the Maxwell equations, the Helmholtz equation and

the free Dirac equation for particles with mass, among others.
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Resumen

Consideramos funciones de una variable vectorial en un dominio en el espacio

tridimensional, que toman valores en el espacio de los cuaternios complejos.

Sea D el operador diferencial de Moisil-Teodorescu y f es una función sepa-

rable que no se anula.

La primera contribución de esta tesis es la construcción de un oper-

ador cuaternionico invertible, que transforma las soluciones del operador

D +MDf/f en soluciones del operador D para dominios acotados con cierta

simetŕıa. Esto permite dar una solución completa a ecuaciones de la forma

Du + λu + uγ = 0 con ciertas restricciones sobre los coeficientes λ y γ. Las

soluciones se representan localmente por un nuevo tipo de serie de Taylor

adaptada a la ecuación bajo consideración.

La segunda contribución es la aplicación de estos resultados para exhibir

conjuntos completos de soluciones a diversos sistemas f́ısicos, incluyendo cam-

pos de Beltrami, ciertos casos importantes de las ecuaciones de Maxwell, la

ecuación de Helmholtz y la ecuación de Dirac libre para part́ıculas con masa.
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Chapter 1

Introduction

The fundamental equations of mathematical physics, such as the Laplace

and Helmholtz equations, Maxwell’s equations, and others, are second-order

differential equations or systems of first-order equations intimately related to

equations of second order, in particular to the Schrödinger equation. In many

cases the treatment can be simplified by expressing the equations in terms

of quaternionic differential operators such as the Moisil-Teodorescu operator

D =
3∑
j=1

ej∂j,

where ej denotes the quaternionic unities for j ∈ {1, 2, 3}. For example, the

Helmholtz operator admits the factorization [5]

∆ + λ2 = − (D + λ) (D − λ) . (A)

Here ∆ is the Laplacian operator and λ is a complex number. The situation

is analogous to the factorization x2 + 1 = (x + i)(x − i) which cannot be
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carried out in the field of real numbers.

In this thesis we find a complete set (in various senses) of complex-

quaternion valued solutions u of the equation

(D + λ+Mγ)u = 0 (B)

where u is defined in a suitable domain in Euclidean space R3, and λ, γ

are functions of a single spatial variable. In this formula λ refers to the

operator of multiplication from the left, while Mγ indicates multiplication

from the right. The term complete refers to the property that every solution

of the equation may be approximated in an appropriate way by some linear

combination of the set of functions under consideration.

When λ = 0 and γ = 0, we have the simplest case, functions of three

space variables which are annihilated by the operator D. In this thesis such

functions will be called monogenic. Monogenic functions, first studied as

functions of a quaternionic variable, satisfy many properties analogous to

those of a complex variable, being subject to a very rich theory initiated

by R. Fueter [23], G. C. Moisil [68], N. Teodorescu (also transliterated as

Théodoresco) [78] and developed by R. Delanghe [14].

1. Quaternionic representation of differential equations.

We will apply the general solution of (B) to give explicit solutions to many

of the equations of mathematical physics. This is possible because the anal-

ysis of complex quaternions provides a method for expressing relationships

between important equations of physics such as the following.
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(a) Beltrami fields. Beltrami fields are complex vector fields F which are

eigenvector of the curl operator. Such fields appear in many branches of

physics including astrophysics [1], electromagnetics [63] and plasma physics

[72]. The case λ = 0 corresponds to potential field theory. For the case when

the eigenvalue λ is a nonzero constant (Trkalian fields), see [3, 13]. The

case when λ depends only on one variable is studied in [45, 65]. The field is

quite vast; the survey book by Marsh [65] collects essentially all which had

been discovered concerning the construction of solutions of up to the time of

publication.

Our study of Beltrami fields applies a result from [45] due to V. V.

Kravchenko, where it was shown that F is a Beltrami field if and only if

the purely vectorial complex quaternionic function G =
√
λF is a solution

of the equation of the type of (B).

(b) Maxwell’s equations. The system of equations developed by J. Maxwell

[66] describe the relationship between the electric and magnetic fields of some

electromagnetic phenomena including light. For some particular cases (but of

great importance), such as an electromagnetic field in a vacuum, these equa-

tions can be expressed via complex quaternionic operators of the form (B). V.

V. Kravchenko and M. Shapiro investigated this relationship in [54, 55], giv-

ing many equivalent conditions for a pair of fields to be a solution of Maxwell’s

equations, including the question of boundary value problems. Similar re-

sults concerning Maxwell’s equations in the context of Clifford algebras were

obtained in [67] by A. Mcintosh and M. Mitrea. The bibliographies of these
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references lead to a great deal of research in this direction. In section 5.2 we

apply our description of the kernel of the operator (B) to give a complete

solution for the time-harmonic Maxwell’s equations.

(c) Dirac equation. The classical Dirac operator for a free particle with

a specified energy is given in equation (127). A first attempt to rewrite

the Dirac equation into a complex quaternionic form was carried out by C.

Lanczos in [60], and played an important role in the development of the use of

Clifford algebras in physics. Further research in this direction can be found

in [11, 43, 49]. In section 5.3 we give complete solutions to the complex-

quaternionic forms of the Dirac equation in the context of scalar, electrical

and pseudoscalar potentials.

(d) Helmholtz equation. K. Gürlebeck [32] studied the operator D+λ for

λ ∈ R and gave the factorization (A) of the Helmholtz operator. After that S.

Bernstein and K. Gürlebeck [5] worked on the factorization of the Schrödinger

operator which is based into appropriate perturbed Moisil-Teodorescu opera-

tors (i.e., nonconstant λ). Other research on these operators may be found in

[7, 37, 54, 69, 81, 82]. By means of the factorization (A) we give a complete

solution for the Helmholtz equation in section 5.4.

(e) Vekua equation. Vekua equations play an important role in mathemat-

ical physics because many partial differential equations can be transformed

into this type of equations. The theory of generalized analytic functions by

I. Vekua [79] and L. Bers [6] is used in areas like analysis, geometry and

mechanics. This is because the theory of generalized analytic functions is in
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a position to use the advantages of complex analysis for solving more general

systems of partial differential equations than is possible in the framework of

classical complex analysis. V.V. Kravchenko found the importance of these

type of functions because that are closely related to many important equa-

tions such as the Dirac, Maxwell, Klein-Gordon among others (see [46]).

There have been efforts to generalize the notion of pseudoanalytic function

(see [46, 64, 76]) for higher dimensions. There are works which solve certain

types of Vekua equations (see [9, 17, 52, 73]). V.V. Kravchenko and S.

Tremblay in [58] found a way to relate the Vekua equation with vectorial

solutions to operator of the type (B).

2. Transmutation operators.

The notion of a transmutation operator relating two linear differential op-

erators was introduced in 1938 by J. Delsarte [18] and the idea was extended

together with L. Lions [19]. A. Povzner in [71] proved that for some classes of

differential operators a transmutation operator can be realized in the form of

a Volterra integral operator (see also [36]). The idea of using transmutation

operators for obtaining complete systems of solutions of partial differential

equations with variable coefficients was studied and developed in numerous

publications. Some examples are in the books [4, 12, 25]. Recently this idea

was advanced further in [42, 51, 59], where it was shown that complete sys-

tems of solutions for equations with variable coefficients quite often can be

obtained with the aid of a transmutation operator, even when a closed form

of the transmutation operator is not available. It is sufficient to know how
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the transmutation operator acts on certain complete systems of elementary

functions.

For example, in the present work we find the images of basic monogenic

polynomials under the action of the transmutation operator relating mono-

genic function and the equation (B). Thus, in order to obtain a complete

system of solutions of the equation (B) it turns out to be sufficient to choose

a complete system of monogenic polynomials.

The complete system of monogenic polynomials which is used in this work

was constructed in [30], and we call them Grigor’ev’s polynomials.

We use as a starting point the transmutation operators defined on spaces

of real- or complex-valued functions, as developed by V. V. Kravchenko and

S. Torba, the results can be found in [48]. H. Campos, V. V. Kravchenko

and L. Méndez in [9] applied such operators to functions taking values in

hyperbolic numbers, applying the real operators to projections of the func-

tions onto subspaces of the hyperbolic numbers. In this thesis we introduce

an essentially quaternionic transmutation operator T defined on spaces of

complex-quaternionic valued functions. We develop the basic theory of this

operator and use it to solve equation (B) explicitly.

***

In Chapter 1 we give some basic definitions regarding real quaternion

and complex quaternions and their properties. Using the existence of zero

divisors in the complex quaternions H(C), we define the projectors P± as
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right multiplication by (1 ± ie3)/2, which allows us to simplify the opera-

tor D + λ + Mγe3 . We summarize many known properties of monogenic

functions including the expansion in Taylor series in terms of the Grigor’ev

polynomials.

In Chapter 2 the notion of transmutation operator between d2

dx2
and d2

dx2
−

r(x) is defined, where r(x) is a continuous complex-valued function of a real

variable. Some of the properties of the transmutation operator are stated

such as boundedness, invertibility and how it acts on the polynomials xn.

Also a fundamental relation between two transmutation operators Tf and

T1/f due to [56] is stated, one of the main ideas behind this thesis. We

introduce a complex quaternion operator Tf using Tf , T1/f and we prove some

of its properties including invertibility, boundedness, and the transmutation

of monogenic functions into solutions of the system D +MDf/f .

In Chapter 3 we prove a quaternionic analogue of the complex Runge’s

theorem for the kernel Ker(D + MDf/f ) in a bounded set Ω ⊆ R3 with

a certain type of symmetry necessary for the application of transmutation

operators. We show that complex quaternionic function u ∈ Ker(D+MDf/f )

can be approximated (in various senses) by means of images of polynomials

under Tf . In the case that Ω is a ball we prove a direct analogue of the

complex case of Taylor’s theorem; that is, that every solution u of Ker(D +

MDf/f ) can be expressed a sum of transmuted polynomials. Finally, we use

the projectors P± to reduce the solution of operator D + λ + Mγe3 into a

direct sum of two solutions of the operator D +M (λ±iγ)e3 .

7



In Chapter 4, we use the techniques and results developed in the previous

chapters to find complete systems of solutions to various physical systems

such as the Dirac equation, the Helmholtz equation, the impedance electrical

equation and the Vekua equation.

8



Chapter 2

Summary of results in complex

quaternionic analysis

In this chapter we will summarize all the facts that we need concerning mono-

genic (holomorphic) functions of a quaternionic or biquaternionic variable.

Quaternionic analysis was initiated by W. Hamilton [38] and developed by

various researchers including R. Fueter [23], who proposed the notion of reg-

ular function, often referred to as Fueter-regular or holomorphic [8, 30, 34]

and showed many analogies between quaternionic functions and the the-

ory of functions of a complex variable, for example Cauchy integral for-

mula, Laurent expansion, among others. In particular the representation of

quaternionic-analytic (monogenic) functions as power series will be essential

in this thesis.
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2.1 Complex quaternions

For our purposes we define quaternions as follows.

Definition 2.1. A real quaternion q is a formal real linear combination of

the quaternionic basis elements 1 (also denoted by e0), e1, e2, e3,

q = q0 + q1e1 + q2e2 + q3e3, qj ∈ R. (1)

The sum of quaternions is the usual sum in R4, while for the multiplication

we define

e1e2 = e3, e2e3 = e1, e3e1 = e2, and e2
j = −1 for j = 1, 2, 3, (2)

and extend by linearity; that is, applying the associative and distributive

laws. The set of H = H(R) of real quaternions is isomorphic to R4 as a real

vector space.

The vector part of q is ~q = q− q0 where q0 in (1) is the scalar part. Using

the rules of multiplication we have that the multiplication of two quaternions

p, q can be expressed in terms of the the scalar product ~p·~q and vector product

~p× ~q as

pq = (p0q0 − ~p · ~q) + (p0~q + q0~p+ ~p× ~q). (3)

A feature of quaternions is that the operation multiplication of two quater-

nions is noncommutative.

Definition 2.2. A complex quaternion [27, 33, 47] is defined by taking qj ∈ C

to be complex in (1).
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Thus the space H(C) of complex quaternions can be identified with C4.

In the context of H(C) elements of C are regarded as scalars. the sum of

two complex quaternions and the multiplication by scalars coincide with the

usual operation on vectors in C4. For clarity we list the algebraic rules:

e0 = 1, e2
1 = e2

2 = e2
3 = −1, iej = eji j = 1, 2, 3,

e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2,

and extended by linearity as in the case of real quaternions.

Another way to represent the complex quaternion q = q0 + ~q ∈ H(C) is

q = ReH q + i ImH q (4)

where ReH q, ImH q ∈ H = H(R) are real quaternions called the real quater-

nionic part and imaginary quaternion part respectively. If Sc q = 0 we say

that q = ~q is a purely vectorial quaternion (sometimes also called a pure

quaternion). The space of all purely vectorial quaternions is

VecH(C) = {q ∈ H(C) : Sc q = 0} (5)

which is a complex linear space.

Definition 2.3. The quaternionic conjugate of the quaternion q is

q = q0 − ~q. (6)

The norm of q ∈ H(C) is

|q| =
√
|q0|2 + |q1|2 + |q2|2 + |q3|2, (7)

where |qj| is the usual complex norm. Thus |q| is the usual norm in C4.

11



Quaternionic conjugation satisfies the properties p · q = q ·p and |q|2 = qq.

In general we have |pq| 6= |p||q| but we can estimate |pq| as follows.

Lemma 2.4. [47] Let p, q ∈ H(C). Then

|pq| ≤
√

2|p||q| (8)

The inequality (8) cannot be improved. As an example take p = q =

(1 + ie1)/2, then
√

2|p||q| =
√

2/2 and |pq| = |p| =
√

2/2.

A big difference between H and H(C) is the existence of zero divisors in

H(C). As an example take q = (1 + ie1)/2 and p = q. Then pq = 0 and both

are different from the zero element.

Let us denote the set of all zero divisors in H(C) by Z:

Z = {q 6= 0 ∈ H(C)| ∃p 6= 0 ∈ H(C) : pq = 0}

Lemma 2.5. [47] Let q 6= 0 ∈ H(C). The following statements are equiva-

lent:

1. q ∈ Z;

2. qq = 0;

3. q2
0 = (~q)2;

4. q2 = 2q0q = 2~qq.

Note that if q ∈ Z and q0 = Sc q 6= 0 then the number q/(2q0) satisfies

(q/(2q0))2 = q/(2q0), so q/(2q0) is idempotent. Also if q 6∈ Z then the

12



quaternion q−1 = q/|q| is the multiplicative inverse of q. We are going to use

these special zero divisors

1 + ie3

2
,

1− ie3

2
, (9)

which are idempotent zero divisors in H(C) whose sum is 1, giving the fol-

lowing complementary projection operators.

Definition 2.6. The operators P± : H(C)→ H(C) are defined by

P± = M (1±ie3)/2, (10)

where M q(p) = pq is the operator of multiplication on the right by q.

Note that P± commutes with the differential operator D which will be

defined in (11) as well as with multiplication by complex values.

Lemma 2.7. For q ∈ H(C) the numbers p± = 2 ReP±(q) = Re q ∓ Im qe3

are the unique values in H (i.e. with vanishing imaginary part) such that

P±(p±) = P±(q).

Proof. Let q = Re q + i Im q be a complex quaternion. Then

2P±q = (Re q + i Im q)± (−i Im q + i Im q)e3

= (Re q ± i Re qe3) + (Im q ∓ i Im q)e3

= 2P±p± ∈ H(R).

Since the operators P± are idempotent and are projectors, the uniqueness is

proved.
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2.2 Moisil-Teodorescu differential operator and

monogenic functions

The functions regarded as regular by Fueter are the functions in a domain of

H which are annihilated by the operator

∂0 + e1∂1 + e2∂2 + e3∂3,

where ∂j = ∂/∂xj, j = 0, 1, 2, 3. This operator and its theory can be gener-

alized readily to the setting of Clifford algebras [8, 26, 34]. Further operators

may be obtained by restricting to a subspace, for example by embedding C3

in H(C) in different ways [28, 74]. Since we are interested in equations of

mathematical physics, we will use H(C)-valued functions defined in domains

in R3.

From now on we will use the notation x ∈ R3.

Definition 2.8. The Moisil-Teodorescu differential operator is defined by

D = e1∂1 + e2∂2 + e3∂3. (11)

The operator D may be applied to differentiable functions u : Ω→ H(C),

i,e u(x) = u0(x) +
∑3

j=1 ejuj(x) = Scu(x) + Vecu(x), where the coordinate

functions uj are complex valued functions defined in Ω. Thus D really refers

to two different operators, acting from either side as follows:

Du0 = u0D = gradu0,

D~u =− div ~w + curl ~u, ~uD = − div ~w − curl ~u.

14



Thus for u = u0 + ~u, then the left and right operators are

Du = − div ~u+ gradu0 + curl ~u, (12)

uD = − div ~u+ gradu0 − curl ~u, (13)

We will be concerned exclusively with the left operator (12). We use the

standard notation Cr(Ω,H(C)) for the set of r-times continuously differen-

tiable functions defined in Ω, taking values in H(C). Note that Cr(Ω,H(C))

is a right-H(C) module, that is, uλ ∈ Cr(Ω,H(C)) when u ∈ Cr(Ω,H(C))

and λ ∈ H(C). Then we have the associativity relation

D(uλ) = (Du)λ. (14)

Using (14) one can verify the following lemma.

Lemma 2.9. KerD is a quaternionic right linear space. Then means that

for u, v ∈ KerD and λ ∈ H(C) constant, then (uλ+ v) ∈ KerD.

Proof. Let λ ∈ H(C) be a complex quaternionic constant. Then due to (14),

uλ belongs to KerD. Then we have D[uλ+ v] = D[uλ] +D[v] and these are

zero if u, v ∈ KerD.

Equation (14) is a particular case of the following.

Proposition 2.10 ([47]). (Leibniz Rule) Let u, v be functions in C1(Ω,H).

Then

D[uv] = D[u]v + uD[v] + 2(Sc(uD))[v] (15)
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where we write

(Sc(vD))[v] = −
3∑
j=1

vj∂jv.

Note that when ~u = 0, this simplifies to the classical formula D[uv] =

D[u]v + uD[v].

Definition 2.11. Let Ω ⊆ R3 be an open set. A function u ∈ C1(Ω,H(C))

is called left-monogenic or monogenic in Ω when Du = 0 and we denote by

KerD the set of all monogenic functions in Ω.

Then by (12), the Moisil-Teodorescu system is satisfied:

u ∈ KerD ⇐⇒

 div ~u = 0,

curl ~u = − gradu0.
(16)

Because i commutes with ej and div, curl and grad are linear operators.

Therefore when u ∈ KerD, the real quaternionic functions ReH u, ImH u ∈

H(R) are also monogenic.

In general u ∈ KerD does not imply, λu lies also in KerD when λ ∈ H(C).

As an example, let u = x2−x3e1 and λ = e2. Then Du = 0 but D(e2u) = −2.

2.3 Harmonic functions and quaternionic in-

tegral operators

Recall that the Laplacian is defined as

∆ = ∂2
1 + ∂2

2 + ∂2
3 . (17)
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The Laplacian is a second order differential operator, so ∆: Ck(Ω) →

Ck−2(Ω) for k ≥ 2. A function u ∈ C2(Ω,H(C)) is said to be harmonic if

∆u = 0. Properties of harmonic functions are given in [2, 21, 41].

Lemma 2.12. The Laplacian admits the factorization

∆ = DD = DD (18)

when applied to C2 functions. Every monogenic function u is harmonic.

Moreover since ∆ is a real operator each component uj of u also satisfies

that ∆uj = 0.

Proof. Observe that

DD = (∂1e1 + ∂2e2 + ∂3e3)(−∂1e1 − ∂2e2 − ∂3e3)

= ∂2
1 + ∂2

2 + ∂2
3

= ∆.

Similarly DD = ∆. Suppose that u is monogenic. It is well known [8] that

u is infinitely differentiable. Then we have

∆u = DDu = 0.

Since ∆ is a real operator, this implies that each component is harmonic.

Define

Har(Ω,H(C)) = {u : Ω→ H(C) : ∆u = 0} (19)

for the set of harmonic functions defined in Ω.

Definition 2.13. When u = u0 + ~u ∈ KerD, one says that (u0, ~u) form a
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hyperconjugate pair or that ~u is a harmonic hyperconjugate of u0.

Definition 2.14. We say that a set Ω is star-shaped respect to the origin if

tx ∈ Ω whenever x ∈ Ω and t ∈ [0, 1].

The next proposition give us a way to construct the hyperconjugate pair

in star-shaped domains.

Proposition 2.15. [35] Let Ω be an open set in R3 star-shaped with re-

spect to the origin and let u0 : Ω → R be harmonic in Ω. Then the complex

quaternionic function

u = u0 − Vec

∫ 1

0

t(Du0)(tx)xdt (20)

is monogenic in Ω.

Given u0 : Ω → R, we can apply Proposition 2.15 to the real and imag-

inary parts of u0 to construct a purely vector-valued to construct a purely

vector-valued function ~u : Ω→ Vec(H(C)) be a hyperconjugate pair given a

complex harmonic function.

Corollary 2.16 ([35]). Let Ω be an open set in R3 and star-shaped with

respect to the origin and let u0 : Ω→ C be harmonic in Ω. Then

~u = −Vec

∫ 1

0

t(Du0)(tx)xdt, (21)

is a harmonic hyperconjugate of u0.

The case when u ∈ KerD and Scu = 0 has an important role in mathematical-

physics as known potential theory, since D~u = 0 is equivalent to div ~u = 0 =
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curl ~u, also in this work in the sections 5.6, 5.2.2, so with aid of (21) we can

construct monogenic purely vectorial functions.

Definition 2.17. Let Ω be an open star-shaped set. The operator

F : KerD ∩ C1(Ω,H(C))→ KerD ∩ C1(Ω,VecH(C))

is defined as follows:

F [u] = u0 + Vecu−
(
u0 − Vec

∫ 1

0

t(Du0)(tx)xdt

)
,

= Vec

(
u+

∫ 1

0

t(Du0)(tx)xdt

)
. (22)

In Definition 5.5 we will give a similar operator which does not require

the domain to be star-shaped. Since F2 = F we have the following decom-

position of KerD.

Lemma 2.18. Let Ω be an open star-shaped set. Then the following decom-

position holds:

KerD = KerF ⊕KerD ∩ C1(Ω,VecH(C)). (23)

The following function is a non-trivial function which is left and right

monogenic:

Definition 2.19. The Cauchy kernel is defined for x ∈ R3 \ {0} by

G(x) = − 1

4π

x

|x|3
. (24)

This function is a fundamental solution of D (see [35]). Let us assume

that Ω is a bounded domain in R3 with a piecewise smooth boundary Γ = ∂Ω.
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Proposition 2.20 ([34], Theorem 7.12). (Cauchy Integral Formula) Let Ω ∈

R3 be a bounded domain with boundary at least C2 smooth. Then for every

u ∈ C1(Ω) we have

u(x) =

∫
Γ

G(y − x)n(y)u(y)dΓy (25)

where n is the quaternionic representation of the outward unit normal to the

surface Γ.

Definition 2.21. The Teodorescu transform in Ω is defined by

TΩ[u](x) = −
∫

Ω

G(y − x)u(y)dy, x ∈ R3 (26)

The importance of this operator is that it is an right inverse of D.

Proposition 2.22 ([35]). Let u ∈ Lp(Ω,H) and 1 < p < ∞. Then TΩ[u] ∈

W 1,p(Ω,H). Further,

DTΩ[u] = u. (27)

2.3.1 Taylor series

It is known in complex analysis that every holomorphic function in a disk can

be expressed as a power series whose summands are multiples of holomorphic

polynomials which have the form (x+iy)n. Unfortunately this idea cannot be

copied directly into quaternion theory since the polynomials p(x) = (x1e1 +

x2e2 + x3e3)n in general are not monogenic. This is the reason for using

a different type of polynomials. R. Fueter in [23] introduced polynomials

in 1936 using the variables zj = xj − x0ej and the permutational product
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(see [35, section 6]). These variables satisfy (∂0 + D)zj = zj(∂0 + D) = 0

where D is given by (11). Also it was proved that every function u which

satisfies (∂0 +D)u = 0 can be expanded into a Taylor series of permutational

products of zj, j = 1, 2, 3. Since the monogenic functions which we are

studying do not depend on the variable x0, this expansion is not the best for

our purposes. Instead we will use the polynomials defined by Y. Grigor’ev

and V. V. Naumov in [29]. For further properties and applications see [30, 31].

Definition 2.23. Let l,m integers and we write n = l + m. The Grigor’ev

polynomials P l,m are the homogeneous H-valued polynomials of degree n =

l + m in the vector variable x = (x1, x2, x3) constructed by means of the

recurrence formulas

P l,m(x) = P 1,0(x)P l−1,m(x) + P 0,1(x)P l,m−1(x), (28)

where l,m ≥ 0, from the initial cases P 0,0, P 1,0, P 0,1 as given in Table 2.1.
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P 0,0 1

P 0,1 x2 − x3e1

P 1,0 x1 + x3e2

P 0,2 x2
2 − x2

3 − 2x2x3e1

P 1,1 2x1x2 − 2x1x3e1 + 2x2x3e2

P 2,0 x2
1 − x2

3 + 2x1x3e3

P 0,3 x3
2 − 3x2x

2
3 + (x3

3 − 3x2
2x3)e3

P 1,2 (3x1x
2
2 − 3x1x

2
3)− 6x1x2x3e1 + (3x2

2x3 − x3
3)e2

P 2,1 (3x2
1x2 − 3x2x

2
3)− (3x2

1x3 − x3
3)e1 + 6x1x2x3e2

P 3,0 (x3
1 − 3x1x

2
3) + (3x2

1x3 − x3
3)e2

P 0,4 (x4
2 − 6x2

2x
2
3 + x4

3) + (4x2x
3
3 − 4x3

2x3)e1

P 1,3 (4x1x2x
2
2 − 12x1x2x

2
3) + (4x1x

3
3 − 12x1x

2
2x3)e1 + (4x3

2x3 − 4x2x
3
3)e2

P 2,2 (−6x2
2x

2
3 + 2x4

3 + 6x2
1x

2
2 − 6x2

1x
2
3) + (−12x2

1x2x3 + 4x2x
3
3)e1 + (12x1x

2
2x3 − 4x1x

3
3)e2

P 3,1 (4x3
12x2 − 12x1x2x

2
3)− (4x3

1x3 − 4x1x
3
3)e1 + 12(x2

1x2x3 − 4x2x
3
3)e2

P 4,0 x4
1 − 6x2

1x
2
3 + x4

3 + (4x3
1x3 − 4x1x

3
3)e2

Table 2.1: Grigor’ev polynomials of low degree

Proposition 2.24. [30] The polynomials P l,m are left monogenic (but not

necessarily right monogenic), and for each n ≥ 0 the set

{P l,m : l +m = n}

is a basis of the right-vector space over H(C) of homogeneous left monogenic

polynomials of degree n over R.

Indeed the Grigor’ev polynomials have the following representation [30,
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Theorem 3.4]

P l,m = P l,m
0 + P l,m

1 e1 − P l−1,m+1
1 e2 (29)

where the P l,m
0 , P l,m

1 are homogeneous scalar valued polynomials in (x1, x2, x3).

We are interested in purely vectorial monogenic functions, so we need to

construct a family of monogenic purely vectorial polynomials. It is known

that the dimension over R of monogenic purely vectorial homogeneous poly-

nomials is 2n+ 3 (see [62]).

Lemma 2.25. The system

Mn = {P l,me3, P
l,me2 + P l−1,m+1e1, P

n,0e1} (30)

forms a basis for the finite dimensional vector space over R of monogenic

purely vectorial homogeneous polynomials of degree n.

Proof. Since P l,m are monogenic, is clear that P l,mej is also monogenic for

j = 1, 2, 3 and using the fact that the system P l,m is linearly independent

over the real this implies that the system Mn is linearly independent over

R. Only rests show that are purely vectorial, using (29) is clear that P l,me3

and P n,0 = (x1 + x2e2)n are vectorial polynomials, notice that due to (29)

Sc(P l,me2) = P l−1,m+1
1 and Sc(P l−1,m+1e1) = −P l−1,m+1

1 this makes their

sum purely vectorial. Only rest to show dimRMn = 2n+ 3, since l+m = n,

this implies that dimR P
l,me3 = n+1 = dimR P

l,me2 +P l−1,m+1e1 and finally

dimR P
n,0 = 1.

23



There exist explicit formulas to obtain the Grigor’ev polynomials; for

details see [30, Theorem 6.1], the importance of these are the Taylor series

and Runge Theorem for monogenic functions.

Proposition 2.26. (Taylor series)[30] Let u be a monogenic function in any

domain Ω and let x0 ∈ Ω. Then in any ball BR(x0) ⊆ Ω this function can be

expressed as a sum of convergent Taylor series

u(x) =
∞∑
j=0

∑
l+m=j

P l,m(x− x0)Cl,m (31)

where the coefficients Cl,m are

Cl,m =
1

j!

∂u

∂l1∂
m
2

∣∣∣∣
x=x0

, (32)

and the convergence is uniform on every closed subset K ⊆ BR(x0).

Definition 2.27. Let E ⊆ C0(Ω,H(C)) be a linear subspace which is a right

module over H(C). A collection of functions E0 ⊆ E is called a complete

system in E in the sense of compact-uniform convergence if for every v ∈ E,

for every compact K ⊆ Ω and for every ε > 0 there exists a finite collection

of elements {vn}Nn=1 ⊆ E0 and collection of coefficients {an}Nn=1 ⊆ H(C) such

that

‖v −
N∑
n=1

vnan‖K < ε.

Proposition 2.28. (Runge theorem) [30] Let Ω ⊆ R3 be an open subset

which has connected complement. Then every monogenic function u : Ω→ H

can be uniformly approximated on each compact subset K ⊆ Ω by quater-

nionic right linear combinations of monogenic polynomials P l,m. Thus {P l,m}
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is a complete system in KerD in the sense of compact-uniform convergence.

Definition 2.29. Let X be a normed right module over H or H(C). A

system of vectors {uk}∞k=0 ⊆ X is said to be complete system in X (with

respect to the given norm) if (∀u ∈ X)(∀ε > 0)(∃N ∈ N)(∃{αk}Nk=0 ∈ H)

such that ∥∥∥∥∥u−
N∑
k=0

ukαk

∥∥∥∥∥ < ε. (33)

We will be interested in completeness of sets in subspaces of the Hilbert

space L2(Ω,H) or L2(Ω,H(C)). The norm given by

‖u‖2
2 =

3∑
i=0

∫ ∫ ∫
Ω

|ui(x)|2 dx1 dx2 dx3. (34)

The starting point of the theory of holomorphic Bergman spaces is the

well known fact that [8, Theorem 24.8] that L2(Ω,H) ∩ KerD is a closed

subspace of L2(Ω,H) with respect to the norm (34) and is therefore itself a

Hilbert space.

Proposition 2.30. [34, Theorem 10.4.] Let Ω, Ω2 be bounded domains in

R3 whose boundaries ∂Ω, ∂Ω2 are at least C2 surfaces, and Ω ⊆ Ω2. Let {ξk}

be a dense subset of ∂Ω2. Then the collection of vector fields {G(x− ξk)}∞k=1

is a complete system in L2(Ω,H) ∩KerD.

Corollary 2.31. Let Ω, Ω2 be bounded domains in R3 whose boundaries ∂Ω,

∂Ω2 are at least C2 surfaces, and Ω ⊆ Ω2 and Ω has connected complement.

Then the monogenic polynomials P l,m form a complete system in L2(Ω,H)∩

KerD.
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It is immediate that Proposition 2.30 and Corollary 2.31 hold when H is

replaced by H(C) because the real and imaginary parts of monogenic func-

tions are monogenic.

2.4 Perturbed Moisil-Teodorescu operator

Let λ ∈ C(Ω,C) be a scalar function. We are interested in studying the kernel

of the operators D ± λ since they are related to some physical problems, as

we will see in Chapter 5. For later reference we mention the following. Let

u ∈ C1(Ω,H(C)). Then using (16) we have the following equivalence:

u ∈ Ker(D ± λ) ⇐⇒

 − div ~u± λu0 = 0,

curl ~u± λ~u = − gradu0.
(35)

When Scu = 0 this means that λ is an eigenvalue of the curl operator.

We will also consider the differential operator D+Mλ acting on functions

u ∈ C1(Ω,H(C)) as follows:

(D +Mλ)u = Du+ uλ. (36)
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Chapter 3

Transmutation theory

In this chapter we first summarize the definitions and results of [10, 18, 19,

36, 56] referring to transmutation operators. Transmutation operators relate

solutions between two linear differential operators, where it may be easier

to find solutions for one of them. Applying the transmutation operator we

obtain solutions for the other.

The transmutation operators in the references cited above apply to func-

tions in a real interval. In a trivial way one can apply such operators to

functions in R3 by acting on only one of the variables. Our main objective

in this chapter is to define an operator Tf on functions of a complex quater-

nionic variable. This operator relates monogenic functions to solutions of the

differential operator (D + M
Df
f ). Then using the projectors P± defined by

(10) we can also find solutions for the differential operator D+ λ(x3), where

λ is a complex valued function and only depends on a single variable.
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3.1 Transmutation operators of functions of

a single variable

3.1.1 Construction of transmutation operator

We begin recalling the basic concept of transmutation operator and then

details of the particular operator which we will use.

Definition 3.1. [57] Let X be a linear topological space and let X1 ⊆ X

be a linear subspace (not necessarily closed) and let A,B : X1 → X be

linear operators. A linear invertible operator T : X → X, such that X1 is T

invariant, is said to be a transmutation operator for the pair A and B, if the

following conditions are fulfilled:

1. Both the operators T and its inverse T −1 are continuous in X.

2. The following equality is valid in X1:

AT = T B. (37)

The importance of this type of operators is that if we know any solution

v ∈ X1 of Bv = 0, then we have that u = T v satisfies Au = AT v =

T Bv = 0. Our interest concerns when A = − d2

dx2
+ r(x) and B = − d2

dx2

(we know the solutions), where r is a complex valued function, because the

transmutation operator is known and their properties (see [56]). We will

explain the construction in this section.
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The kernels of transmutation operators can be identified with the solu-

tions of partial differential equations. We explain the relationship briefly

here.

Definition 3.2. Let r be a continuous complex valued function in an interval

[−a, a]. Let h ∈ C. The Goursat problem for r with complex parameter h

on the region 0 ≤ |t| ≤ |x| ≤ a in the (x, t)-plane is:(
∂2

∂x2
− r(x)

)
K(x, t;h) =

∂2

∂t2
K(x, t;h), (38)

K(x, x;h) =
h

2
+

1

2

∫ x

0

r(s)ds, K(x,−x;h) =
h

2
. (39)

Proposition 3.3 ([36]). Let r : [0, a]→ C be a continuous function. Then

1. The Goursat problem has a unique solution for every parameter h ∈ C.

2. If r is n times continuously differentiable, then the kernel K(x, t;h) is

n+ 1 times continuously differentiable respect to x and t.

3. Let r ∈ C1[−a, a]. Then the Volterra operator

v(x) 7→ v(x) +

∫ x

−x
K(x, y, h)v(y) dy, (40)

is a transmutation operator on the space C2[−a, a] sending Ker(− d2

dx2
+

r(x)) to Ker(− d2

dx2
) if and only if the integral kernel K(x, t;h) satisfies

the Goursat problem (38), (39).

This result of [36] only guarantees the existence of a Volterra operator in

the form (40) with a suitable kernel K, but does not indicate how to obtain

the kernel. In [10, 57] a construction of operators which convert solutions

29



of one second-order differential operator − d2

dx2
+ r(x) to another − d2

dx2
+ r̃(x)

was given. We summarize the procedure for r̃ = 0, and for r of a particular

form which is all the generality which we require, as follows.

Definition 3.4. A complex-valued function f ∈ C2[−a, a] such that f(x) 6= 0

for all x ∈ [−a, a], f(0) = 1, will be called simply a nonvanishing coefficient

on the real interval [−a, a].

Let f be a nonvanishing coefficient. Define the following iterated integrals

(see [56]) associated to f as the sequences X(n), X̃(n) constructed as follows:

X(0)(x) ≡ X̃(0)(x) ≡ 1,

X(n)(x) = n

∫ x

0

X(n−1)(s)
(
f 2(s)

)(−1)n
ds,

X̃(n)(x) = n

∫ x

0

X̃(n−1)(s)
(
f 2(s)

)(−1)n−1

ds. (41)

Definition 3.5. The formal powers ϕn, n = 0, 1, . . . associated to a nonva-

nishing coefficient f are defined as

ϕn(x) =


f(x)X(n)(x), n odd,

f(x)X̃(n)(x), n even.

(42)

Properties of these formal powers may be found in [10, 50, 56].

Example 3.6. The simplest case is when f ≡ 1. Then X̃(n) = X(n) and

X(n) = n
∫ x

0
sn−1ds = xn, therefore ϕn(x) = xn.

Theorem 3.7. [10] Let f be a nonvanishing coefficient. There exists a

Volterra operator Tf of the form

Tf [v](x) = v(x) +

∫ x

−x
Kf (x, t;h)v(t) dt, (43)
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with continuous kernel Kf such that

Kf (x, t;h) =
h

2
+K(x, t) +

h

2

∫ x

−t
(K(x, s)−K(x,−s))ds,

the function K satisfies (38) and (39) and

Tf (x
n) = ϕn(x), (44)

for n = 0, 1, . . . Further, for any v ∈ C2[−a, a], Tf satisfies the transmutation

property (
−∂2 +

f ′′

f

)
Tf [v] = Tf [−∂2v]. (45)

In general it is very difficult to find these kernels in an explicit form

due to the difficulty of solving the corresponding Goursat problem. In [53,

Theorem 3.2] a general representation for the kernel K is given in terms of

Fourier-Legendre series, where the coefficients can be obtained in a recursive

way.

Example 3.8. [10, Example 12] Let f ′′/f = c ∈ C. Then the kernel Kf is

known and has the following form:

Kf (x, t) = −1

2

√
c(x2 − t2)J1

(√
c(x2 − t2)

)
x− t

+
f ′(0)

2
J0

(√
c(x2 − t2)

)
,

(46)

where J0, J1 are the Bessel functions of first kind.

3.1.2 Properties of the basic transmutation operator

Let f be a nonvanishing coefficient. Note that 1/f is also a nonvanishing

coefficient. When we interchange f by 1/f in Theorem 3.7 and (42), the
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Volterra operator T1/f with continuous kernel K1/f satisfies:

T1/f (x
n) = ψn(x), (47)

for k = 0, 1, . . . , where ψ are the formal powers associated with 1/f ,

ψn(x) =


1

f(x)
X̃(n)(x), n odd,

1
f(x)

X(n)(x), n even.

(48)

Further, for any v ∈ C2[−a, a], T1/f satisfies the transmutation property(
−∂2 +

(1/f)′′

1/f

)
T1/f [v] = T1/f [−∂2v]. (49)

For the purpose of this work the following property plays a fundamental role,

because it tells us how the operators Tf , T1/f are related.

Proposition 3.9. [56] On C1[−a, a] we have the following relation for any

nonvanishing coefficient f :

∂x
1

f
Tf =

1

f
T1/f∂x. (50)

Using this proposition, in [50] the concept of generalized derivatives or

f -derivatives was introduced as follows.

Definition 3.10. Let f be a nonvanishing coefficient. Then the generalized

f -derivatives dfn of a sufficiently differentiable function g are defined by the

following relation.

df0 [g] = g, (51)

dfk [g] =

 f d
dx

(
1
f
dfk−1[g]

)
, k odd,

1
f
d
dx

(
fdfk−1[g]

)
, k even.

(52)
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We say that an operator T fixes values at the origin if T [v](0) = v(0) for

all v ∈ C[a, b]. Note that the transmutation operator Tf fixes values at the

origin because of the limits of integration in (43).

Proposition 3.11 ([57]). Let u ∈ Cn[−a, a] and g = Tf [u]. Then there exist

the first n generalized derivatives of g on [−a, a] and the following equalities

hold for 0 ≤ k ≤ n:

dfk [g] =

 T1/f [∂
ku], k odd,

Tf [∂
ku], k even.

(53)

Since the operators Tf , T1/f fix the value at the origin we have

dfk [g](0) = (∂ku)(0). (54)

3.2 Quaternionic transmutation operator be-

tween D +M
Df
f and D

The transmutation operator Tf defined in (43) acts on C-valued functions

defined on a real interval. In this section we will extend the notion of Tf to

complex-quaternionic operators Tf,j for j = 1, 2, 3. The inspiration comes

from ideas of [9] acting on H(C)-valued functions in a spatial domain Ω. For

each j, Tf,j will essentially act only on the variable xj. This will lead to the

definition of Tf1f2f3 for a separable function of three variables.

In this chapter Ω will be a bounded open subset of R3 with connected

complement, and satisfying the following symmetry property with respect to
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at least one of the variables xj:

Definition 3.12. Let j ∈ {1, 2, 3}. We will say that Ω ⊆ R3 is convex in the

xj direction if whenever x = (x1, x2, x3) ∈ Ω, the straight segment from x to

x∗ lies in Ω, where x∗ is the point obtained by replacing xj with −xj in x.

We require this so that the complex operators Tf , T1/f can be applied to

functions in Ω with respect to the variable xj when the other two coordinates

are fixed. A nonvanishing coefficient for Ω (with respect to xj) is understood

to be defined in [−aj, aj] where a = sup{xj : (x1, x2, x3) ∈ Ω}.

Definition 3.13. A function of a vector x = (x1, x2, x3) is said to depend

only upon the variable x1 if it can be expressed as (x1, x2, x3) 7→ f(x1) for

some function f(t) of a real variable t, for all (x1, x2, x3) in the domain under

consideration. Similarly one defines functions which only depend upon x2 or

x3.

An operator acting on functions v ∈ C(Ω,H(C)) is said to act only

upon the variable x1 if it can be expressed as sending v to the function

(x1, x2, x3) 7→ Ψ[v|x2,x3 ](x1) in Ω for some operator Ψ acting on functions of

a single real variable. Here v|x2,x3 refers to the map x1 7→ v(x1, x2, x3). Simi-

larly one defines functions which act upon x2 or x3. Thus we can extend the

real operator Tf of (43) to act on H(C)-valued functions of a single variable

by acting term-by-term. This convention is used in the following definition.

Definition 3.14. Let j ∈ {1, 2, 3}. Let f be a nonvanishing coefficient for

Ω in the direction xj. The quaternionic transmutation operator Tf,j acts in
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the variable xj on u(x1, x2, x3) =
∑4

i=0 ui(x)ei ∈ C(Ω,H(C)) (ui : Ω→ C) as

follows:

Tf,j[u](x) = T1/f [u0,j](x) + Tf [u
⊥
0,j](x), (55)

where Tf , T1/f act on the variable xj and the decomposition u = u0,j + u⊥0,j

is given by

u0,j(x) = u0(x) + uj(x)ej, u⊥0,j(x) = u(x)− u0,j(x). (56)

This operator is not strictly right-linear over H(C), but we have the fol-

lowing properties:

Lemma 3.15. Let u, v be complex quaternion valued continuous functions

of (x1, x2, x3) and let a ∈ H(C). Then for all j, k ∈ {1, 2, 3},

1. Sc Tf,j[u] = Tf,j[Scu], Vec Tf,j[u] = Tf,j[Vecu],

2. Tf,j[u+ v] = Tf,j[u] + Tf,j[v],

3. Tf,j[M
a0,j [u]] = Ma0,jTf,j[u], where a0,j = a0 + ajej,

4. Tf,j[M
a⊥0,j [u]] = Ma⊥0,jT1/f,j[u], where a⊥0,j = a− a0,j,

5. T−1
f,j [u](x) = T−1

1/f [u0,j](x) + T−1
f [u⊥0,j](x),

6. Tf,jTg,k = Tg,kTf,j where g is a nonvanishing coefficient in the direc-

tion xk.

Proof. Consider the decomposition a = a0,j + a⊥0,j ∈ H(C) as in (56). Since

according to (55) the operator Tf,j acts component by component on the
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functions u, part 1 follows. Part 2 follows from the fact that the complex

operator Tf satisfies Tf [uj+vj] = Tf [uj]+Tf [vj] for complex valued functions

uj, vj. Part 3 follows from the fact Ma0,ju0,j = a0u0+a0ujej−ajuj+aju0ej =

(a0u0−ajuj)+(a0uj +aju0)ej. Therefore using the linearity of T1/f , we have

Tf,j[M
a0,ju0,j] = T1/f [(a0u0 − ajuj) + (a0uj + aju0)ej]

= a0T1/f [u0]− ajT1/f [uj] + a0T1/f [uj]ej + ajT1/f [u0]ej

= T1/f [u0,j]a0,j

= Ma0,jTf,j[u0,j].

In a similar way Tf,[M
a0,ju⊥0,j] = Ma0,jTf,j[u

⊥
0,j], since the operator M (·)

satisfies Ma0,j [u+ v] = Ma0,ju+Ma0,jv; this ends the proof of part 3. Part 4

is proved in the same way as the part 3. Since Tf is a Volterra operator, this

implies the existence of its inverse T−1
f also acting component by component.

Thus the inverse has the form T−1
f,j [u](x) = T−1

1/f [u0,j](x) + T−1
f [u⊥0,j](x). For

part 6 it is clear when j = k. Let j 6= k. Consider two integral operators

G1, G2 acting on variables x1 and x2. Their composition is

G2[G1u](x) =

∫ x2

−x2
G2(x2, s)

∫ x1

−x1
G1(x1, t)u(t, s, x3) dt ds,

=

∫ x1

−x1
G1(x1, t)

∫ x2

−x2
G2(x2, s)u(t, s, x3) ds dt,

= G1[G2u](x),

by Fubini’s theorem. We apply this fact to the real operators Tf , T1/f acting
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on a single variable. Therefore we have

Tf,j[Tg,k u] = T1/f [T1/g u] + T1/f [Tg u]e1

+ Tf [T1/g u]e2 + Tf [Tg u]e3,

= Tg,k[Tf,j u].

We have arranged the coordinates in (55) in such a way that the following

transmutation property holds.

Theorem 3.16. For v ∈ C1(Ω,H(C)) and any nonvanishing coefficient f

for Ω in the direction xj,(
D +M

f ′
f
ej

)
Tf,j[v] = T1/f,j[Dv], (57)(

D −M
f ′
f
ej

)
T1/f,j[v] = Tf,j[Dv], (58)

where D is the Moisil-Teodorescu operator (11).

In the expression M
f ′
f
ej in (57), the function f ′/f is also interpreted as

acting on the variable xj in R3. In the following this convention will always

be clear from the context.

Proof. Let k 6= j. We are going to use the fact that each limit of integration

of all components of the operator Tf defined in (43) (and applied to the vari-

able xj) does not depend on xk, so we can interchange the partial derivatives

with the integration. Thus we have ∂kTf,j = Tf,j∂k. According to (12) and
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Definition 3.14, the scalar part of the left side of (57) is

− div Vec (Tf,j[v])− f ′

f
T1/f [vj] = − div Tf,j[Vec v]− f ′

f
T1/f [vj],

= −Tf,j[div[v⊥0,j]]− ∂jT1/f [vj]−
f ′

f
T1/f [vj],

= −Tf,j[div[v⊥0,j]]−Tf,j[∂jvj],

= T1/f,j[ScDv],

where the second equality is due to (50), as can be seen from Tf∂x =

(f ′/f)T1/f + ∂xT1/f . In other words,

Sc
((
D +M

f ′
f
e3
)
Tf,j[v]

)
= −T1/fj [div v] = Sc

(
T1/f,j[Dv]

)
.

The equality of the vector parts of (57) can be verified in a similar way.

Definition 3.17. Suppose that Ω is convex in all three coordinate directions.

Let fj be a nonvanishing coefficient for Ω in the direction xj for j = 1, 2, 3.

Write f(x) = f1(x1)f2(x2)f3(x3). We denote the compositions of the opera-

tors Tf,j,T1/f,j as follows:

Tf = Tf1,1Tf2,2Tf3,3, (59)

T̃f = T1/f1,1T1/f2,2T1/f3,3. (60)

Observe that by Lemma 3.15, part 6, the operators defining Tf , T̃f com-

mute.

Corollary 3.18. In the notation of Definition 3.17, for every v ∈ C1(Ω,H(C))
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the following equality holds:(
D +M

Df
f

)
Tf [v] = T̃f [Dv], (61)(

D −M
Df
f

)
T̃f [v] = Tf [Dv]. (62)

Proof. By part 4 of Lemma 3.15, we have Tf,j[uek] = T1/f,j[uek] for k 6= j.

Therefore(
D +M

f ′1
f1

e1

)
Tf = T1/f1,1

[
DT1/f2,2T1/f3,3

]
,

= T1/f1,1

[
−M

f ′2
f2

e2Tf2,2Tf3,3 + T1/f2,2[DTf3,3]

]
,

= −M
f ′2
f2

e2Tf + T1/f1,1T1/f2,2

[
−M

f ′3
f3

e3 + T1/f3,3[D]

]
,

= −M
f ′2
f2

e2+
f ′3
f3

e3Tf + T̃f [D].

Corollary 3.19. Let v ∈ C1(Ω,H(C)). Then(
D+M

f ′j
fj

ej)
Tfj ,j[v] = 0 ⇐⇒ v ∈ KerD ⇐⇒

(
D−M

f ′j
fj

ej)
T1/fj ,j[v] = 0,

(
D +M

Df
f
)
Tf [v] = 0 ⇐⇒ v ∈ KerD ⇐⇒

(
D −M

Df
f
)
T̃f [v] = 0.

Proof. By Lemma 3.15 part 5, the inverse of Tfj ,j exists. Then the inverse

of Tf exists, thus Dv = 0 ⇐⇒ (∀j) Tfj ,j[Dv] = 0 ⇐⇒ Tf [Dv] = 0.

Therefore the first equivalence is given by (57). The second equivalence

follows from the observation that when f is replaced by 1/f , the logarithmic

derivative f ′/f is replaced by −f ′/f .

Using the relations described in (53) and (54) we introduce the quater-

nionic generalization of dfn in the following way:
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Definition 3.20. Let fj be a nonvanishing coefficient for Ω in the direction

xj, j = 1, 2, 3, and consider f = f1f2f3. The nth quaternionic fj-derivative

d
fj ,j
n is defined as follows acting on the variable xj, of a differentiable function

u by

dfj ,jn [u] = dfjn [u0,j] + d1/fj
n [u⊥0,j] (63)

and the nth quaternionic f -derivative acting on (x1, x2, x3) is

dfn[u] = df1,1n df2,2n df3,3n [u]. (64)

Lemma 3.21. Let u ∈ Cn(Ω,H(C)). Then we have for j = 1, 2, 3,

d
fj ,j
k [Tfj ,j[u]] =

 T1/fj ,j[∂
k
j u], k odd,

Tfj ,j[∂
k
j u], k even,

(65)

for 0 ≤ k ≤ n. Since the operators Tfj ,j,T1/fj ,j fix the value at the origin we

have

d
fj ,j
k [Tfj ,j[u]](0) = (∂kj u)(0). (66)

Proof. Let u = u0+u1e1+u2e2+u3e3 ∈ Cn(Ω,H(C)). Then each component

ui is of class Cn. Using Proposition 3.11 we have for each component ui for

i = 0, 1, 2, 3,

d
fj ,j
k [ui] =

 T1/f [∂
k
j ui], k odd,

Tf [∂
k
j ui], k even.

(67)

and

d
1/fj ,j
k [ui] =

 Tf [∂
k
j ui], k odd,

T1/f [∂
k
j ui], k even.

(68)

40



Since d
fj ,j
k acts componentwise the first part is proved. Equation (66) follows

since the operators Tf , T1/f fix the value at the origin.
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Chapter 4

Approximation theory for

Ker
(
D +MDf/f

)
In this chapter we will prove generalized Runge and Taylor theorems for

solutions v ∈ Ker(D + MDf/f ). We also give an approximation theorem in

the L2 norm. These results will be consequences of the analogous theorems

for monogenic functions u ∈ KerD and the continuity of the transmutation

operator Tf which we introduced in the previous chapter. The Grigor’ev

polynomials will be used for the approximations.

In this chapter we assume that Ω ⊆ R3 is an open bounded set which

is convex with respect to the variable xj. Note that when Ω is convex with

respect to all three of the variables xj the complement of Ω is connected.
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4.1 Runge theorem

In this section we work with uniform approximation on compact subsets of

Ω.

4.1.1 Compact-uniform approximation of monogenic

functions

Our first result is a generalization of Runge’s approximation theorem which,

in the original version (see for example [75, Theorem 13.9]) states that a

holomorphic function in a plane domain may be approximated uniformly on

compact sets of that domain by rational functions whose poles lie in the

complement of the domain. This was generalized for quaternionic functions

by K. Nôno (see [70]) with a slightly different differential operator. Nôno’s

operator is as follows. Let

x = x0 + e1x1 + e2x2 + e3x3 = z1 + z2e2

where z1 = x0 + e1x1 and z2 = x2 + e1x3. He considers the differential

operator

∂

∂z∗
=

∂

∂z1

+ e2
∂

∂z2

.

Any quaternionic function u which satisfies
∂u

∂z∗
= 0, will be called Nôno-

hyperholomophic.

Proposition 4.1 ([70]). Let Ω be an open subset in C2 and let K be a compact

subset of Ω. Then every function which is Nôno-hyperholomorphic in Ω can
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be approximated uniformly on K by Nôno-hyperholomorphic polynomials.

The Runge theorem in Clifford algebras was given by Delanghe and

Brackx [15, Theorem 4.1]. They consider the generalized Cauchy-Riemann

differential operator DCl = ∂0 +
∑n

j=1 ej∂j acting on functions u defined in an

open subset Ω of Rn+1 and with values in a Clifford Algebra C1,n defined via

a quadratic form on an n-dimensional real vector space. A Clifford-valued

function u is called a hyperholomorphic function when DClu = 0 in Ω.

Proposition 4.2. [15, Theorem 3.1] Let Ω be a domain in Rm+1 whose

complement is connected. Let K be a compact subset of Ω. Then the hyper-

holomorphic functions on Ω can be uniformly approximated on K by hyper-

holomorphic polynomials.

In fact Delange and Brackx prove the analogous result for powers Dk
Cl of

the differential operator DCl.

Versions of Runge’s Theorem for harmonic functions in several variables,

can be found for example in [2] and [21]. The common element in all of these

theorems is uniform convergence on compact subsets.

4.1.2 Runge theorem for D +MDf/f

Definition 4.3. For a compact subset K ⊆ Ω, we introduce the seminorm

‖v‖K = sup
K

(
3∑
j=0

|vj|2
)1/2

,

where v =
∑3

j=0 vjej ∈ C0(Ω,H(C)).
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Definition 4.4. Let E ⊆ C0(Ω,H(C)). A complex-linear operator T : E →

C0(Ω,H(C)) will be called bounded on compact subsets of Ω if for every

compact K ⊆ Ω there is a constant cK > 0 such that

‖Tv‖K ≤ cK‖v‖K ,

for every v ∈ E. We write ‖T‖K for the minimal such cK ,

Lemma 4.5. Let T : E → C0(Ω,H(C)) be a bounded C-linear operator on

compact subsets of Ω, where E ⊆ C0(Ω,H(C)) is an H(C) submodule. Let

{uk}∞k=0 be a complete system in E in the sense of compact-uniform conver-

gence. Then the system{
T [uk], T [uke1], T [uke2], T [uke3]

}∞
k=0

(69)

is complete in T (E) in the sense of compact-uniform convergence.

Proof. Let v ∈ T (E), i.e. v = T (u) for some u ∈ E. Let K be a compact

subset of Ω and ε > 0. Assume that ‖T‖K > 0 since otherwise the argument

will be trivial. Since {uk} is complete, we may take {αk}Nk=0 ⊆ H(C), such

that ∥∥∥∥∥u−
N∑
k=0

ukαk

∥∥∥∥∥
K

<
ε

‖T‖K
.

Then we apply T ,∥∥∥∥∥v − T
[

N∑
k=0

ukαk

]∥∥∥∥∥
K

=

∥∥∥∥∥T
[
u−

N∑
k=0

ukαk

]∥∥∥∥∥
K

,

< ‖T‖K

∥∥∥∥∥u−
N∑
k=0

ukαk

∥∥∥∥∥
K

,

< ε.

46



Write αk =
∑3

i=0 αkiei with αki ∈ C. Since T is C-linear, T [ukαk] =∑3
i=0 T [ukei]αki. From this the result follows.

Given a nonvanishing coefficient f for Ω with in the direction xj, for

simplicity we will abbreviate by T the operator Tf,j. Since the Grigor’ev

polynomials are complete in the compact convergence by Proposition 2.28

we have the following corollary. It requires the convexity property of Ω with

respect to xj which was specified at the beginning of this chapter.

Corollary 4.6. Given a nonvanishing coefficient f for Ω in the single direc-

tion xj, the following system{
T[P l,m],T[P l,me1],T[P l,me2],T[P l,me3]

}∞
l+m=0

is complete in Ker(D + M (f ′/f)ej) ⊆ C1(Ω,H(C)) in compact uniform con-

vergence.

Proof. Note that Tfj ,j is a bounded operator on compact subsets of Ω. Let

K ⊆ Ω be an arbitrary compact subset. We take a compact subset K2 convex

with respect to xj, such that K ⊆ K2 ⊆ Ω. Then

‖Tfj ,j[v]‖K2 ≤ N1,j‖v0,j‖K2 +N2,j‖v⊥0,j‖K2

≤ N‖v‖K2 ,

where the constants N1,j, N2,j depend only on the corresponding kernels of

the bounded Volterra operators Tfj , T1/fj . This implies the boundedness on

compact subsets, and Proposition 2.28 can be applied.
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Remark 4.7. Note that if we write T for Tf1f2f3 corresponding to a separable

nonvanishing coefficient where Ω satisfies the appropriate triple symmetry,

the statement of Corollary 4.6 remains valid (replacing (f ′/f)ej with Df/f)

since T is the composition of bounded operators Tfj ,j, and therefore is also

bounded.

4.2 L2 approximation of solutions of D+MDf/f

We begin with the following observation.

Lemma 4.8. Let T : E → L2(Ω,H(C)) be a bounded C-linear operator where

E ⊆ L2(Ω,H(C)) is an H(C) submodule (not necessarily closed). Let {uk}∞k=0

be a complete system in E with respect to ‖ ‖2. Then the system (69) is

complete in T (E) with respect to ‖ ‖2.

The proof is completely analogous to Lemma 4.6.

Let us recall the hypothesis of Proposition 2.30, where Ω ⊆ Ω2. In this

situation the system {G(x − ξk)}∞k=0 is a complete system in L2(Ω,H(C)) ∩

KerD, whenever ξk is a dense subset in ∂Ω2. In the following we again write

T = Tf,j.

Corollary 4.9. Let Ω, Ω2 satisfy the hypothesis of Proposition 2.30 and let f

be a nonvanishing coefficient for Ω in the direction xj. The following system

{T[P l,m],T[P l,me1],T[P l,me2],T[P l,me3]}∞l+m=0 is complete in L2(Ω,H(C))∩

Ker(D +M (f ′/f)ej) with respect to ‖ ‖2.
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Proof. Let (D+M (f ′/f)ej)u = 0, u ∈ L2(Ω). Take ε > 0. By Corollary 3.18

u = T[w], where w ∈ KerD. By Proposition 2.30 take coefficients qk ∈ H

such that ∥∥∥∥v± − N∑
j=1

G(x− ξk)qk
∥∥∥∥
L2(Ω)

<
ε

2N
,

with N as in the proof of Theorem 4.14. Consider an open Ω1 such that Ω ⊆

Ω1 ⊆ Ω2. Since each G(x−ξk) is monogenic in Ω1, the sum is monogenic and

by Proposition 2.28 can be approximated uniformly in Ω via the Grigor’ev

polynomials:∣∣ N∑
k=1

G(x− ξk)qk −
∑

0≤l+m≤n

P l,mcl,m
∣∣ < ε

2N
√
V (Ω)

,

where cl,m ∈ H and V (Ω) is the volume of Ω. Since Ω is a bounded set, this

implies L2 convergence:∥∥ N∑
k=1

G(x− ξk)qj −
∑

0≤l+m≤n

P l,mcl,m
∥∥
L2(Ω)

<
ε

2N
.

Using the triangle inequality and then applying T, we show the completness

of the system.

As in Remark 4.7, the same statement holds when T is Tf1f2f3 .

4.3 Taylor theorem

We now consider the situation in which Ω is a ball, which we suppose to be

centered at the origin. Recall Proposition 2.26 which expresses every element

of KerD as a convergent series of “powers” which are the countably many
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Grigor’ev polynomials P l,m. In a similar way, in this section we will prove a

representation in convergent series of any solution u ∈ Ker(D + MDf/f ) in

a ball BR(0).

4.3.1 Taylor series for D +MDf/f

Here we give an explicit formula for the Taylor coefficients of elements of

Ker(D + MDf/f ) in terms of a basic set of solutions given by the transmu-

tation operator T = Tf1f2f3 defined in (59). We will work in a ball, which is

automatically symmetric with respect to all variables. Since the components

of a monogenic function v satisfy the relation ∂3v = e3(∂1ve1 + ∂2ve2), the

necessary information is contained in the first two partial derivatives.

Theorem 4.10. Let f = f1f2f3 be as in Definition 3.17 where Ω = BR(0).

Let u ∈ Ker(D + MDf/f ) in BR(0). Then u can be expanded into a Taylor

series in the form

u =
∞∑
n=0

∑
l+m=n

4∑
i=0

T[P l,mei]c
i
l,m, (70)

converging uniformly on compact subsets of BR(0). The coefficients

cl,m =
4∑
i=0

cil,mei,

with cil,m ∈ C (l,m ≥ 0) are calculated as follows:

cil,m =
1

n!

(
df1,1l df2,2m ui

)
(0). (71)

Proof. Let w = T−1[u]. Then w is a monogenic function, so we can expand
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it into a Taylor series by Proposition 31 as follows

w =
∞∑
n=0

∑
l+m=n

P l,mcl,m,

where the coefficients cl,m given by (32) for w. Application of T give us a

series for u,

u = T

[
∞∑
n=0

∑
l+m=n

P l,mcl,m

]
=
∞∑
n=0

∑
l+m=n

T
[
P l,mcl,m

]
,

=
∞∑
n=0

∑
l+m=n

4∑
i=0

T
[
P l,mei

]
cil,m,

converging uniformly in BR′(0) due to uniform boundedness of T. Then it

only remains to evaluate the coefficients cl,m, by Lemma 3.21 and by (66) we

have the following,

cl,m =
1

n!

(
∂nw

∂l1∂
m
2

)
(0),

=
1

n!

(
df1,1l df2,2m u

)
(0),

which is equal to (71).

4.3.2 Decomposition of Ker(D + λ(x3) +Mγ(x3)e3)

Up to now we have considered quaternionic operators of the form D+MDf/f

where f is a separable scalar-valued function of three variables. Theorem 3.16

permits us to determine Ker(D+M
Df
f ) because the transmutation operators

are invertible. We use this to find the kernel of Ker
(
D + λ(x3) +Mγ(x3)e3

)
where γ, λ are functions of a single space variable, which without loss of

generality we are taking to be x3, for consistency with the definition of the
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operators P± in (10). Thus Ω will be convex with respect to x3.

The following decomposition due to V. Kravchenko plays a main role in

this thesis. It reduces the study of D + λ(x3) +Mγ(x3)e3 to two operators of

the form already solved.

Proposition 4.11. [45] Let λ(x3), γ(x3) ∈ L1([−a, a]). Then

D + λ+Mγe3 = P+
(
D +M (γ+λi)e3

)
+ P−

(
D +M (γ−λi)e3

)
, (72)

acting on C1(Ω,H(C)). Further we have the following decomposition:

Ker (D + λ+Mγe3) = P+ Ker
(
D +M (γ+λi)e3

)
⊕ P−Ker

(
D +M (γ−λi)e3

)
.

(73)

We proceed to give our second main result. It expresses the solution as

a combination of transmutation operators applied to monogenic functions.

References to Tf± in the rest of this chapter will mean Tf±,3.

Theorem 4.12. Let Ω be convex with respect to x3. Let λ(x3), γ(x3) ∈

L1(−a, a) and let Θ± : (−a, a)→ C be such that

Θ′± = γ ± iλ (74)

and consider the nonvanishing coefficients f±(x1, x2, x3) = eΘ±(x3) for Ω in

the direction x3. Then every u ∈ C1(Ω,H(C)) in Ker(D+ λ+Mγe3) admits

a decomposition

u = u+ + u−, (75)
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where

u+ = Tf+ [P+ v+], u− = Tf− [P− v−], (76)

and where v+, v− ∈ KerD are unique H-valued monogenic functions. Con-

versely, every u of the form (75), (76) for monogenic v± is in Ker(D + λ +

Mγe3).

Proof. Let w+ = P+ T−1
f+

[u], w− = P−T−1
f−

[u]. Then by (57),

T1/f± [Dw±] = (D +M (γ±λi)e3)P± u = P±(D +M (γ±λi)e3)u,

because λie3 and (1 + ie3)/2 commute, and P± commutes with Tf and D.

Supposing (D + λ + Mγe3)u = 0, by Proposition 4.11 the sum of the two

functions T1/f± [Dw±] is zero, so they both vanish as they are in the image

of the complementary projectors P±. By invertibility of T1/f± , we have

Dw± = 0.

Now define v± = 2 Rew±. These satisfy Dv± = 0 and by Lemma 2.7 we

have P± v± = P±w± = w±. By construction,

u = P+ u+ P− u = Tf+w+ + Tf−w−,

which gives the desired decomposition.

The uniqueness is verified by writing the decomposition as u = P+ Tf+ [v+]+

P−Tf− [v−] which by Lemma 2.7 shows that Tf+ [v+] and Tf− [v−] are deter-

mined by u, so v± are also determined by u. The converse follows immediately

from (57).

Definition 4.13. Given λ(x3), γ(x3), the associated (λ, γ)-powers in Ω are
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defined as the H(C)-valued functions

σl,m± = Tf± [P l,m],

τ l,m± = T1/f± [P l,m]e1,

where the transmutation operators are constructed with the nonvanishing

coefficients f± given by (74).

Any c ∈ H(C) is naturally decomposed as c = c′ + c′′ with c′ ∈ C + e3C,

c′′ ∈ e1C + e2C, the natural projections of c on these linear subspaces. Let

a±(c) = P± c′, b±(c) = −e1P± c′′, (77)

so a±, b± : H(C) → C + e3C. Since P± commutes with c′ while e3 anticom-

mutes with c′′, we find that

a±(c) + e1b
∓(c) =

(
1± ie3

2

)
c. (78)

Theorem 4.14. Let λ, γ be as in Theorem 4.12. Then every H(C)-valued

solution u of (D + λ + Mγe3)u = 0 in Ω can be uniformly approximated on

each compact K ⊆ Ω by right-linear combinations of the (λ, γ)-powers, more

precisely, by expressions of the form∑
0≤l+m≤n

(
(σl,m+ al,m+ + σl,m− al,m− ) + (τ l,m+ bl,m+ + τ l,m− bl,m− )

)
, (79)

with constant coefficients al,m± , bl,m± ∈ C + Ce3.

Proof. Suppose (D+λ+Mγe3)u = 0 in Ω and take ε > 0, K ⊆ Ω compact.

Express u = Tf+ [w+] + Tf− [w−] as in Theorem 4.12, where w± = P± v±,

Dv± = 0. Take any compact subset K2 such that K ⊆ K2 ⊆ Ω and K2
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satisfies the symmetry property with respect to x3 as in Lemma 3.15. Let

N = max(‖Tf+‖K2 , ‖Tf−‖K2), and apply Proposition 2.28 to the monogenic

H-valued functions v± to obtain coefficients cl,m± ∈ H satisfying∣∣v± − ∑
0≤l+m≤n

P l,mcl,m±
∣∣ < ε

2N

uniformly in K2. Now apply P±Tf± to the difference appearing in this

inequality; since u = P+ u + P− u, we have by (2.4), (75) and the triangle

inequality that∣∣u− ∑
0≤l+m≤n

P+ Tf+ [P l,mcl,m+ ]−
∑

0≤l+m≤n

P−Tf− [P l,mcl,m− ]
∣∣ < ε

in K. Note that Lemma 3.15 says also that

P±Tf± [vc] = Tf± [v](P± c′) + T1/f± [v](P± c′′)

for any complex quaternionic c with c = c′ + c′′ as in (77). For this reason

we take

al,m± = a±(cl,m± ), bl,m± = b±(cl,m± ), (80)

and refer to Definition 4.13.

In the case that Ω = BR(0) we can calculate the coefficients of the ap-

proximating functions explicitly.

Theorem 4.15. Let u ∈ Ker(D + λ + Mγe3) in BR(0). Then u can be

expanded into a Taylor series in (λ, γ)-powers of the form

u =
∞∑
n=0

∑
l+m=n

(
(σl,m+ al,m+ + σl,m− al,m− ) + (τ l,m+ bl,m+ + τ l,m− bl,m− )

)
, (81)

converging uniformly on compact subsets of BR(0). The coefficients al,m, bl,m ∈
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C + Ce3 are given by

al,m± = a±(
1

n!
∂l1∂

m
2

∣∣
x=0

u),

bl,m± = b±(
1

n!
∂l1∂

m
2

∣∣
x=0

u), (82)

with a±, b± defined in (77).

Proof. Take v± ∈ KerD, P± v± = T−1
f±

[P± u] as before. By Proposition

2.26, each of these monogenic functions can be expanded into Taylor series

v± =
∞∑
n=0

∑
l+m=n

P l,mc±l,m,

with coefficients c±l,m ∈ H given by (32) for v±. Application of P±Tf± gives

us a series for u±,

u± = P±Tf±

[ ∞∑
n=0

∑
l+m=n

P l,mc±l,m
]

=
∞∑
n=0

∑
l+m=n

P±Tf±

[
P l,mc±l,m,

]
,

converging uniformly in BR′(0) due to uniform boundedness of Tf± . The

series can be written as (81) as in the proof of Theorem 4.14; it remains to

evaluate the coefficients. Since Tf operates only on the variable x3,

∂n

∂l1∂
m
2

u± = Tf± [P± ∂n

∂l1∂
m
2

v±]

for all x ∈ Ω. Since Volterra operators preserve values at the origin,

∂n

∂l1∂
m
2

∣∣∣∣
x=0

u± = P± ∂n

∂l1∂
m
2

∣∣∣∣
x=0

v± = n!P± cl,m± .

Thus al,m± , bl,m± in (81) are in fact given by (80).

In the next chapter we will give applications of Theorem 4.12 to several

specific differential equations.
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Chapter 5

Complete system of solutions

to physical systems

Now that we have solved the basic complex quaternionic differential equation

(D+λ+Mγ)u = 0, we apply it to obtain complete solutions for several basic

equations of mathematical physics. As usual Ω is a bounded domain in R3

and occasionally we will require the convexity property with with respect to

one of the variables x1, x2, x3. We will begin by applying our results to the

simplest case, that of Beltrami fields, in particular force-free fields. Then we

will look at certain cases of the Maxwell, Dirac, Helmholtz, and Schrödinger

equations.
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5.1 Beltrami fields

Definition 5.1. A Beltrami field in Ω with potential λ : Ω→ C is a complex-

valued vector field F : Ω→ C3 which satisfies the equation

curl F + λF = 0. (83)

Such fields appear in many branches of physics such as astrophysics [1],

electromagnetics [63] and plasma physics [72].

When the Beltrami field F also satisfies the condition div F = 0, then the

Beltrami field is known as a force-free field. This type of vector field appears

in areas of physics such as magnetohydrostatics (see [39]); the structure and

dynamics of the solar corona are determined by magnetic fields, which are

modeled by force free fields (see [80]).

One may verify that a purely vectorial function ~u ∈ C1(Ω,H(C)) is a

force-free field if and only if (D + λ)~u = 0, but this criterion does not apply

in the case of Beltrami fields F since these fields do not necessarily satisfy

div F = 0. Indeed these fields satisfy the following condition:

λ div F + gradλ · F = 0.

In [45] the following relation was found. For this we need λ to be a

nonvanishing function and we fix a branch of
√
λ. The shape of the domain

in question is not relevant.

Proposition 5.2. [45, Proposition 1] A C3-valued function F is a solution

of (83) if and only if the purely vectorial function ~u =
√
λF is a solution of
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the equation

(D +Mλ+~λ1)~u = 0, (84)

where ~λ1 = grad
√
λ√

λ
.

We are interested in solutions of the equation

(D +Mλ+γe1)u = 0.

If we assume that λ, γ depend only on one variable x3, then we have the

following decomposition.

Proposition 5.3. [45, Proposition 4] The following equality is true:

D + λ+Mγe3 = P+(D +M (γ+iλ)e3) + P−(D +M (γ−iλ)e3), (85)

where P± = 1
2
M1±ie3. Moreover, every solution ~u of (85) can be written as

u = P+v1 + P−v2, where the functions v1, v2 satisfy the equations

(D +M (γ+iλ)e3)v1 = 0, (86)

(D +M (γ−iλ)e3)v2 = 0. (87)

In this section we will consider λ a nonzero complex constant and also

when it depends on a single variable. When it is constant there is a direct

relation to the operator D + λ, so we can apply the results of the preceding

sections (with γ = 0) to give an explicit representation of the solutions of

(83). The main complication is to find solutions of (D + λ)u = 0 with van-

ishing scalar part. For nonconstant λ we give a complete system of solutions

and we exhibit a particular solution by a different method.
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5.1.1 λ is a complex constant

When the potential λ 6= 0 of a Beltrami field is a complex constant, solutions

of (83) are known as Trkalian fields [13]. In this case the factorization

−(D − λ)(D + λ) = ∆ + λ2 (88)

of the Helmholtz operator ∆ + λ2 is valid, where ∆ is the three-dimensional

Laplacian. Therefore whenever u = u0 + ~u is in Ker(D+λ)u, it also satisfies

the Helmholtz equation

(∆ + λ2)u = 0, (89)

and the scalar nature of λ implies that each quaternionic component of u

individually satisfies the Helmholtz equation. We will use the following ob-

servation.

Proposition 5.4. [16] Let u0 : Ω→ C be a scalar function that satisfies the

Helmholtz equation (89) where λ ∈ C \ {0} is constant. Let

~u = −1

λ
Du0. (90)

Then ~u is a purely vectorial function such that u0 + ~u ∈ Ker(D + λ).

Indeed from (89) it follows immediately that

(D + λ)(u0 −
1

λ
Du0) = −1

λ
(D + λ)(D − λ)u0 = 0.

With this idea, we can construct purely vectorial solutions of (D+λ)~u = 0

from solutions which are not vectorial. Given u ∈ Ker(D + λ), the scalar

part u0 satisfies the Helmholtz equation (89) and using Proposition 5.4 we

can construct a function ũ ∈ Ker(D + λ) with scalar part u0. This makes
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the difference u− ũ ∈ Ker(D + λ) purely vectorial.

We introduce the vector-field valued operator on H(C)-valued functions.

Definition 5.5. Let λ ∈ C \ {0}. The vectorializing operator V = Vλ is

defined by

V [u] = Vecu+
1

λ
D Scu. (91)

Proposition 5.6. The operator V sends Ker(D + λ) to vector fields in

Ker(D + λ), more precisely,

V : Ker(D + λ) ∩ C(Ω,H(C))→ Ker(D + λ) ∩ C(Ω,VecH(C)).

Further, V fixes every vector field in Ker(D + λ).

Proof. By construction V [u] is trivially vectorial. When (D+λ)(u0 +~u) = 0

with λ constant, we find that (D + λ)V [u0 + ~u] = (D + λ)(~u+ (1/λ)Du0) =

−(D+λ)u0 +(D+λ)(1/λ)Du0 = (1/λ)(D2−λ2)u0 = 0 since the scalar part

u0 satisfies the Helmholtz equation.

Observe that

KerV = {u0 −
1

λ
Du0 : u0 ∈ C2(Ω,C), (∆ + λ2)u0 = 0}.

i.e. given F = V [u] also we have F = V [u+ w0 − 1
λ
Dw0], for any solution w0

of Helmholtz equation. Also, one checks using (35) that F is a Beltrami field

with potential λ if and only if (D + λ)F = 0. Since trivially V2 = V , the

following decomposition holds.

Corollary 5.7.

Ker(D + λ) = KerV ⊕ Ker(D + λ) ∩ C(Ω,VecH(C)). (92)
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Example 5.8. Suppose Ω is convex in the direction x3. Let f(x3) = eiλx3

for a constant λ ∈ C\{0}. Thus f ′/f = iλ and f(0) = 1. The formal powers

X(n), X̃(n) of (41) for f coincide with the formal powers X̃(n), X(n) for 1/f ,

so one finds ϕ0 = 1/ψ0 = eiλx3 , ϕ1 = ψ1 = (sinλx3)/λ. For illustration let us

consider the monogenic functions v+ = P 1,0, v− = e2. Referring to Table 2.1

and recalling Lemma 3.15, we see (applying T1/f to the polynomial x1 but

with respect to x3) that

P+ Tf [v+] = P+(T1/f [x1] + Tf [x3]e2) = (x1ψ0(x3) + ϕ1(x3)e2)+

=
1

2
x1ψ0(x3) +

(
(ϕ1(x3)e2)+ +

i

2
x1ψ0(x3)e3

)
,

P−T1/f [v−] = P−
(
T1/f [1]e2

)
= (ψ0(x3)e2)−.

Here we have used the abbreviation (q)± = P± q. This leads to vectorial

solutions F1,F2 ∈ Ker(D + λ) given by

F1 = V [P+ Tfv+]

=
(
(ϕ1(x3)e2)+ +

i

2
x1ψ0(x3)e3

)
+

1

2λ
D(x1ψ0(x3))

=

(
sinλx3

λ
e2

)+

+
i

2
x1e
−iλx3e3 +

1

2λ
D
(
x1e
−iλx3

)
,

F2 = V [P−T1/fv−] = (ψ0(x3)e2)− = (eiλx3e2)−.

From here it is a simple matter to carry out the remaining operations. In

the evaluation of D in such examples it can be useful to have the following

partial derivative formulas, which are obtained from (42):

∂3ϕk =
f ′

f
ϕk + kψk−1, ∂3ψk = −f

′

f
ψk + kϕk−1. (93)

The functions F1, F2 satisfy (83) and hence are Beltrami fields. Further,
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this construction leads to a complete system of Beltrami fields.

Our procedure for constructing Beltrami fields with constant potential is

the following. Given λ ∈ C \ {0}, we take arbitrary u, v ∈ KerD. Then by

(85) with γ = 0, we have P+Tf [u] + P−T1/f [v] ∈ Ker(D + λ). We then

apply Proposition 5.6 to confirm that V sends this element of Ker(D+ λ) to

a vector field F in Ker(D+λ). Every vector field F in Ker(D+λ) is obtained

in this way (although not uniquely) since V is the identity on vector fields in

Ker(D + λ).

This procedure for constructing vector fields in Ker(D+λ) in a bounded

subset Ω ⊆ R3 with convexity respect to x3 is illustrated in Figure 1. Recall

that these solutions represent free force fields.

(u, v) ∈ KerD ⊕KerD

��

P+Tf ⊕ P−T1/f // Ker
(
D + λ

)

V

vv
Ker(D + λ) ∩ C(Ω,VecH(C))

Figure 1: Construction of force-free fields

5.1.2 λ is a function of one variable

Now we deal with the more difficult situation when λ(x3) is a complex valued

potential depending only on x3. We cannot proceed in the same way as in
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the constant case because when we apply the divergence to the relation (83),

the result is

λ(x3) div F + (gradλ(x3)) · F = 0,

while (D + λ(x3))F = 0 implies div F = 0.

In Proposition 5.2, we cited a general method given in [45] to transform

the equation (83) to a form involving D. For the proof of Proposition 5.10

below we rephrase Proposition 5.2 in the particular context of nonvanishing

coefficients. This will be the key to solving (D + λ + M (λ′/λ)e3)u = 0 with

complex-valued coefficient functions λ. Note the essential use of complex

quaternions in the decomposition.

Proposition 5.9. Let λ(x3) be a C-valued nonvanishing coefficient for Ω. A

C3-valued function F is a solution of (83) if and only if the purely vectorial

complex quaternionic function ~u =
√
λ(x3)F is a solution of the equation(

D + λ(x3) +M
λ′(x3)
2λ(x3)

e3
)
~u = 0. (94)

Figure 2 shows the method for constructing Beltrami fields via Proposi-

tion 5.9 and Proposition 4.11. At the bottom of the diagram are the arbitrary

monogenic functions and at the top are the Beltrami fields going through

Ker
(
D + λ(x3) +Mγe3

)
.
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Ker(curl +λ)

Ker
(
D + λ(x3) +Mγe3

)
OO

Ker
(
D +M

f ′+
f+

e3)
P+

88

⊕
Ker

(
D +M

f ′−
f−

e3)
P−

ff

KerD

Tf+

cc

Tf−

;;

Figure 2: Construction of Beltrami fields.

By Corollary 4.6, every solution of (94) can be uniformly approximated

on compact sets by right-linear combinations of (λ, γ)-powers σl,m± , τ l,m± which

we introduced in Definition 4.13. The approximants obtained for (83) ob-

tained in this way from Proposition 5.9 are not vectorial. The scalar parts

of the partial sums will tend to zero, so one may discard them to obtain

an approximation of ~u by vectors, although not by solutions of (94). This

procedure is illustrated by the upper part of Figure 2.

We construct here a certain class of Beltrami fields by means of functions

of a complex variable, without any claim of completeness. The idea is that
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a transmutation along the variable x3 does not affect functions of x1, x2.

Proposition 5.10. Let g = g1 + ig2, h = h1 + ih2 be analytic functions of

the complex variable x1 + ix2. Then a particular solution of (83) is given by

u = P+ eiΘ (g1(x1 + ix2)e1 − g2(x1 + ix2)e2)

+ P− e−iΘ (h1(x1 + ix2)e1 − h2(x1 + ix2)e2) ,

where Θ is any antiderivative of λ(x3).

Proof. Let

v+(x) = g1(x1 + ix2)e1 − g2(x1 + ix2)e2,

v−(x) = h1(x1 + ix2)e1 − h2(x1 + ix2)e2.

By the Cauchy-Riemann equations, Dv± = 0. Let f± =
√
λ(x3)e±iΘ(x3).

Then the functions

u+ = P+ Tf+ [v+], u− = P−Tf− [v−],

are by construction in VecH(C) since Tf± [ej] =
√
λ(x3)e±iΘ(ej) for j = 1, 2.

Further, u± are solutions of (94) by Theorem 4.12. Finally, by Proposition

5.9 we have the result.

5.1.3 Force-free fields

When the Beltrami field F also satisfies the condition div F = 0, the Beltrami

field is known as a force-free field. This type of vector field appears in areas

of physics like magnetohydrostatics [39] and the structure and dynamics of

the solar corona are determined by magnetic fields, which are modeled by
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force free fields [80]. It is immediate that a purely vectorial function ~u ∈

C1
(
Ω,Vec(H(C))

)
is a force-free field if and only if (D + λ)~u = 0.

Due to Theorem 4.15, we have the following series representation for

force-free fields.

Corollary 5.11. Let u ∈ Ker(D+λ(x3)) in BR(0). Then u can be expanded

into Taylor series in λ-powers of the form:

u =
∞∑
n=0

∑
l+m=n

(
P+ Tf [P

l,m] + P−T1/f [P
l,m]
)
cl,m, (95)

converging uniformly on compact subsets of BR(0). The coefficients cl,m are

the same as in the Taylor series (31) and f(x3) = e
∫ x3
0 iλ(s) ds.

Proof. Note that f+ = f = 1/f− because γ = 0 in (74), so τ l,m− = σl,m+ e1.

Applying (77), (78) to the Taylor coefficients cl,m we have

σl,m+ al,m+ + τ l,m− bl,m− = Tf [P
l,m](al,m+ + e1b

l,m
− ),

= Tf [P
l,m]

(
1 + ie3

2

)
cl,m,

=
(
P+Tf [P

l,m]
)
cl,m.

The relation σl,m− al,m− + τ l,m+ bl,m+ =
(
P−T1/f [P

l,m]
)
cl,m can be obtained in the

same way. The result now follows from the series (81).

Note that when λ = γ = 0, then f = 1/f = 1 and the operator Tf is the

identity operator. Then the Taylor series (95) turns into the series (31).

Theorem 5.12. Let λ be an integrable function in BR(0) depending only

on x3 and consider f(x3) = e
∫ x3
0 iλ(s) ds. Then every force free field F with
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potential λ can be expanded in BR(0) into λ-powers of the form

F =
∞∑
n=0

∑
l+m=n

(
P+ Tf [P

l,m] + P−T1/f [P
l,m]
)
~cl,m, (96)

where the purely vectorial coefficients ~cl,m ∈ VecH(C) are given by

~cl,m =
1

n!

∂nF(0)

∂l1∂
m
2

.

The series (96) converges uniformly in every BR′(0) with R′ < R.

In general, however, the individual summands in (96) are not vector val-

ued.

5.2 Maxwell’s equations

Here we apply the solution of the complex quaternionic operator to Maxwell’s

equations for time-harmonic electromagnetic fields, and fields in nonchiral

inhomogeneous media.

5.2.1 Time harmonic equations

Maxwell’s equations for time-harmonic electromagnetic fields in a chiral medium

have the form

div Ẽ(x) = div H̃(x) = 0, (97)

curl Ẽ(x) = iωB̃(x), (98)

curl H̃(x) = −iωD̃(x), (99)
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with the constitutive relations (see [61])

B̃ = µ
(
H̃(x) + β curl H̃(x)

)
, (100)

D̃ = ε
(
Ẽ(x) + β curl Ẽ(x)

)
, (101)

where ω is the frequency, ε and µ are complex permittivity and permeability

of a medium and β is its chirality measure. As usual x is a point in a spatial

domain in R3 and time does not appear in the equations. The following

development is given in [37]. Equations (98)-(99) can be written as follows:

curl Ẽ(x) = iωµ
(
H̃(x) + β curl H̃(x)

)
, (102)

curl H̃(x) = −iωε
(
Ẽ(x) + β curl Ẽ(x)

)
. (103)

Introducing the notations

Ẽ(x) = −√µ~E(x), (104)

H̃(x) =
√
ε ~H(x), (105)

we obtain the equations

curl ~E(x) = −iα
(
~H(x) + β curl ~H(x)

)
, (106)

curl ~H(x) = iα
(
~E(x) + β curl ~E(x)

)
, (107)

where α = ω
√
εµ. Let us consider the following purely vectorial complex

quaternionic functions:

~ζ(x) = ~E(x) + i ~H(x), (108)

~η(x) = ~E(x)− i ~H(x). (109)
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We have that

D~ζ(x) = curl ~E(x) + i curl ~H(x). (110)

Using (106) and (107) we obtain

D~ζ(x) = −
(
iα ~H(x) + α~E(x)

)
− αβ

(
D~E(x) + iD ~H(x)

)
,

= −α~ζ − αβD~ζ(x).

Thus the complex quaternionic function ~ζ(x) satisfies the following equation,(
D +

α

1 + αβ

)
~ζ(x) = 0. (111)

Analogously we obtain the equation for ~η,(
D − α

1− αβ

)
~η(x) = 0. (112)

Obviously the vectors ~E, ~H, can be recovered from ~ζ, ~η as

~E =
1

2
(~ζ + ~η), (113)

~H =
1

2i
(~ζ − ~η). (114)

We define the complex numbers

λ1 =
α

1 + αβ
, λ2 =

α

1− αβ
, (115)

so we are looking for vectorial solutions to D+ λ1 and D− λ2. By Theorem

4.11, the following decomposition holds:

D − λ2 = P+
(
D −M iλ2e3

)
+ P−

(
D +M iλ2e3

)
,

and this implies

Ker(D − λ2) = P+ Ker
(
D −M iλ2e3

)
⊕ P−Ker

(
D +M iλ2e3

)
. (116)
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We use this result of [37] as follows. In Subsection 5.1.1 we saw how to

find vectorial solutions for D + λ1 with the aid of V and the transmutation

operators Tf and T1/f where the nonvanishing coefficient is f(x3) = eiλ1x3 .

In this subsection we denote by V+, V− the operators V of (91) corre-

sponding to λ = λ1 and λ = −λ2 respectively,

V+ : Ker(D + λ1)→ Ker(D + λ1) ∩ C(Ω,VecH(C)),

V− : Ker(D − λ2)→ Ker(D − λ2) ∩ C(Ω,VecH(C)),

Since Maxwell’s equations for time-harmonic electromagnetic fields were

decomposed into two force-free fields, we have the following statements. We

state them without giving the proofs, because they are essentially the same

as what we did in Section 5.1 for Beltrami fields.

Every solution u1 ∈ Ker(D+λ1) and u2 ∈ Ker(D−λ2) in a domain with

the convexity property with respect to x3 can be obtained as

u1 =P+Tf [v−] + P−T1/f [v+],

u2 =P+T1/g[w−] + P−Tg[w+], (117)

where v±, w± ∈ KerD are arbitrary and f(x3) = eiλ1x3 , g(x3) = e−iλ2x3 .

Theorem 5.13. Every ~E, ~H which satisfy equations (106),(107) in a domain

with x3-convexity can be obtained as

~E =
1

2

(
V+[u1] + V−[u2]

)
,

~H =
1

2i

(
V+[u1]− V−[u2]

)
,

where u1, u2 are defined by (117).
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Example 5.14. Suppose β = 0 in (100),(101). Then by (115) λ1 = λ2 = α.

There is a relation between f and g in (117), g(x3) = e−iαx3 = 1/f(x3) . Take

v = v± = w± ∈ KerD. Then the pair of vectors ( ~E, ~H) has the following

form:

~E =
1

2

(
T1/f [Vec v] + Tf [Vec v] +

i

α
D
(
Tf [v1]− T1/f [v1]

))
,

~H =
1

2i

(
iT1/f [Vec(ve1)] + iTf [Vec(ve1)] +

1

α
D
(
Tf [v0] + T1/f [v0]

))
.

5.2.2 Nonchiral inhomogeneous medium

In this part we work with separable functions

ε(x) = ε1(x1)ε2(x2)ε3(x3),

µ(x) = µ1(x1)µ2(x2)µ3(x3), (118)

where εj, µj are complex valued functions depending on a single variable

xj, j = 1, 2, 3. We use the notation Tε, Tµ given in Definition 3.17 to work

with the non-vanishing coefficients
√
εj(xj),

√
µj(xj).

Consider Maxwell’s equations for static (time-independent) fields in a

nonchiral inhomogeneous medium, which has the form:

curl H = ε∂tE + j, (119)

curl E = µ∂tH, (120)

div(εE) = ρ, (121)

div(µH) = 0. (122)

where ε, µ are functions depending on x1, x2, x3 and j is real vector function
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which characterizes the distribution of sources of the electromagnetic field.

In [47] shows that introducing the notation

~E :=
√
εE, ~ε =

grad
√
ε√

ε
,

~H :=
√
µH, ~µ =

grad
√
µ

√
µ

,

the system described by (119)-(122) in sourceless conditions is equivalent to

following quaternionic equations:

(D +M~ε)~E = 0, (123)

(D +M ~µ) ~H = 0. (124)

Due to Vec(T[u]) = T[~u] and Corollary 3.19 we have the following result.

Theorem 5.15. With ε, µ as in (118), all solutions of (123), (124) in a

domain Ω with convexity with respect to x1, x2, x3 can be obtained as

~E = Tε[~u] (125)

~H = Tµ[~v] (126)

where ~u,~v ∈ KerD are arbitrary.

Due to Corollary 4.6 we have the following.

Corollary 5.16. With ε, µ as before, every solution of (123)–(124) in Ω can

be approximated arbitrarily closely on any compact subset K of Ω by a finite

right linear combination of the images of Grigor’ev polynomials under Tε

and Tµ.

Example 5.17. Suppose that Ω, in addition to the convexity with respect
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to x1, x2, x3, is also star-shaped. Then we can obtain every solution of (123)–

(124) through Theorem 5.15 from arbitrary H(C)-valued functions in KerD

by applying F defined in (22).

5.3 Dirac operators

In this section we present a complete system of solutions for a certain type of

Dirac operator. This is possible since the Dirac operator can be transformed

into an operator of the form D+MDf/f . We summarize the facts we will need

concerning the transformation of Dirac operator into a complex quaternionic

operator given by V. G. Kravchenko and V. V. Kravchenko in [43]. For more

information about Dirac operators see [9, 11, 47, 49, 52].

Paul Dirac [20] published in 1928 the equation(
~

(
γ0

c
∂t −

3∑
k=1

γk∂k

)
+ imc

)
Φ = 0, (127)

where γk, k = 0, 1, 2, 3, are the “γ-matrices”

γ0 =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


, γ1 =



0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0


,
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γ2 =



0 0 0 i

0 0 −i 0

0 −i 0 0

i 0 0 0


, γ3 =



0 0 −1 0

0 0 0 −1

1 0 0 0

0 −1 0 0


,

and γ5 = iγ0γ1γ2γ3.

In 1929 C. Lanczos in his article [60] rewrote equation (127) in terms of

complex quaternions as follows, where C is the complex conjugation an F is

a complex quaternionic function:(
i
~
c
∂t + ~D − imcCMe3

)
F = 0. (128)

We will not consider time dependence in the following, but will only

consider solutions of the Dirac operator in a spatial domain following [43].

The domain Ω̃ ⊆ R3 is obtained from the domain Ω ⊆ R3 by the reflection

x 7→ x̃ replacing x3 with −x3. A function Φ: Ω → C4 is transformed into a

function F = G[Φ] : Ω̃→ H(C) by the rule

F =
1

2

(
− (Φ̃1 − Φ̃2) + i(Φ̃0 − Φ̃3)e1 − (Φ̃0 + Φ̃3)e2 + i(Φ̃1 + Φ̃3)e3

)
(129)

where Φ̃i(x) = Φi(x̃). The correspondence Φ↔ F is invertible.

5.3.1 Dirac equation with scalar potential

First we will consider the Dirac operator in its covariant form (see [77]). In

[43] the classic Dirac operator for a free particle with a specified energy ω ∈ R
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is expressed as

D = iωγ0 +
3∑
j=1

γj∂j + im (130)

and the Dirac operator with scalar potential is written in the form

Dsc = D + iϕsc, (131)

where ϕsc is a scalar real-valued function of x = (x1, x2, x3) and as usual iϕsc

denotes left multiplication by this function.

Proposition 5.18. [43] Let ω,m ∈ R \ {0}, and ϕsc as above. Write

~αsc(x) = −(iωe1 + (m+ ϕ̃sc(x))e2) ∈ H(C)

for x in a domain Ω in R3. Then for F , Φ related by (129),

DscΦ = 0 in Ω ⇐⇒ (D +M ~αsc)F = 0 in Ω̃. (132)

Using the relation between the Dirac operator and the solution of (D +

M ~αsc) by Corollary 3.19, we have the following theorem. As noted in Remark

we can apply our results to compositions of quaternionic transformations.

Theorem 5.19. Let the bounded domain Ω ⊆ R3 be convex with respect

to the variables x1, x2. Let ϕsc : Ω → R be a function depending only on

x2. Consider the nonvanishing coefficients f1(x1) = e−iωx1 and f sc2 (x2) =

e−mx2−
∫ x2
0 ϕ̃sc(s)ds where m,ω ∈ R \ {0}. Then all elements Φ ∈ KerDsc can

be obtained as follows: take any u ∈ KerD in Ω̃ and let

F = Tf1Tfsc2
[u] (133)

in Ω̃. Then let Φ be the corresponding function in Ω given by (129).
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Indeed, if f(x) = f1(x1)f sc2 (x2), we have Df/f of the required form to

apply Corollary 3.19 to (132).

5.3.2 Dirac equation with electric potential

The Dirac equation with electric potential ϕel(x) > 0 has the form

Del = D + iϕelγ0, (134)

acting on C4-valued functions.

Proposition 5.20. [43]

DelΦ = 0 in Ω ⇐⇒ (D +M ~αel)F = 0 in Ω̃, (135)

where ~αel = −(i(ω + ϕel)e1 +me2) and F,Φ are related by (129).

In a similar way we use Corollary 3.19 to deduce the following.

Theorem 5.21. Let ϕel be a function depending only on the single variable

x1, where the domain Ω is convex with respect to x1 and x2. Consider the

nonvanishing coefficients f el1 (x1) = e−iωx1−
∫ x1
0 ϕel(s)ds and f2(x2) = e−mx2 .

Then every element Φ ∈ KerDel can be obtained as the transform via (129)

of

F = Tfel1
Tf2 [u] (136)

where u is an arbitrary monogenic function in Ω̃.
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5.3.3 Dirac equation with pseudoscalar potential

The Dirac equation with pseudoscalar potential has the form

Dps = D + ϕpsγ0γ5, (137)

where ϕps is a real-valued function.

Proposition 5.22. [43, Proposition 1] Let v = −iϕ̃ps. Let ~β = −(iωe1 +

me2), with m2 6= ω2. We choose a complex number λ ∈ C such that λ2 = ~β 2.

Then we define S± = 1
λ
M (λ±β), P±1 = 1

2
M1±ie1. Then the following equalities

are valid in any domain in R3:

D + v +M
~β = P±1 S+(D ±M (v+λ)ie1) + P−1 S+(D ±M (v−λ)ie1), (138)

Ker(D + v +M
~β) = P+

1 S
+ Ker(D +M (v+λ)ie1)⊕ P−1 S+ Ker(D −M (v+λ)ie1)

⊕ P+
1 S
−Ker(D +M (v−λ)ie1)⊕ P−1 S−Ker(D −M (v−λ)ie1).

(139)

By Proposition 5.22, the solution to the Dirac equation (137), can be

decomposed into solutions of D +MDf/f .

Theorem 5.23. Let ϕsc be a function depending on a single variable x1,

where Ω is bounded and convex with respect to x1, and consider the nonvan-

ishing coefficients

f(x1) = e
∫ x1
0 (ν(s)+λ)ids,

g(x1) = e
∫ x1
0 (ν(s)−λ)ids.

Under the hypothesis of Proposition 5.22, every element u ∈ Ker(D+v+M
~β)
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can be obtained as follows:

u = P+
1 S

+Tf1 [v
+] + P−1 S+T1/f1 [v

−] + P+
1 S
−Tg1 [w

+] + P−1 S−T1/g1 [w
−],

(140)

where v+, v−, w+, w− ∈ KerD.

The proof is immediate from (139) and Corollary 3.19.

5.4 Helmholtz equations

As mentioned in the Introduction, the Helmholtz equation, or reduced wave

equation, has the form

(∆ + λ2)u = 0. (141)

The quantity λ is the wave number. It is often real and constant, but it can

be complex if the medium of propagation is energy absorbing, or a function of

space if the medium is inhomogeneous. For physical considerations one often

assumes λ 6= 0 and Imλ ≥ 0 whether or not λ is constant. In [54, Section 2]

there is a factorization of ∆+Mλ for a general complex quaternionic constant

λ ∈ H(C), which specializes to the following when λ is a complex constant.

Lemma 5.24 ( [54]). For λ ∈ C \ {0}, we have a factorization of the

Helmholtz operator ∆ + λ2 : C2(Ω,H(C))→ C(Ω,H(C)) as

∆ + λ2 = −(D + λ)(D − λ) = −(D − λ)(D + λ). (142)

Further, there exists the following kernel decomposition:

Ker(∆ + λ2) = Ker(D + λ)⊕Ker(D − λ). (143)

79



It is immediate from (142) that for every complex quaternionic valued

function u ∈ Ker(D ± λ) its components uj (j = 0, 1, 2, 3) also satisfy (∆ +

λ2)uj = 0 since λ is scalar.

Theorem 5.25. Let λ ∈ C \ {0}. Then all elements of Ker(∆ + λ2) in

a bounded domain convex with respect to x3 can be obtained in terms of

arbitrary monogenic functions u±, v±,

P+Tf [u
+] + P−T1/f [u

−] + P+T1/f [v
+] + P−Tf [v

−],

where f(x3) = eiλx3.

This follows from the decompositions (117), (143), and is illustrated in

Figure 3.

Ker
(
∆ + λ2

)

Ker
(
D + λ

)

;;

⊕
Ker

(
D − λ

)

cc

Ker(D)

P+Tf [u+] + P−T1/f [u−]

^^

P+T1/f [v+] + P−Tf [v−]

@@

Figure 3: Construction of solutions to the Helmholtz equation
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5.5 Scalar Schrödinger operator

Consider the equation

(−∆ + w)g = 0 (144)

in Ω ⊆ R3 where again ∆ is the Laplacian and w and g are complex-valued

functions. We assume that g ∈ C2(Ω,C). The operator −∆ +w is known as

the Schrödinger operator.

Let ~λ be a purely complex quaternion valued function (i.e., a complex

quaternion vector field) such that

w = −D~λ− (~λ)2. (145)

In [5] the decomposition

(∆− w)u0 = −(D +M
~λ)(D −M~λ)u0, (146)

was found for C2 scalar functions u0. In [44] it was shown that the solution of

(146) necessarily has the form Df/f , with f being a solution of (144). Con-

sider f(x) = f1(x1)f2(x2)f3(x3) where each fj is a nonvanishing coefficient.

We are going to use the following elementary equality:

D

(
1

f

)
= − f ′1(x1)

f 2
1 (x1)f2(x2)f(x3)

e1 −
f ′2(x2)

f 2
2 (x2)f1(x1)f(x3)

e2 −
f ′3(x3)

f 2
3 (x3)f2(x1)f(x2)

e3

= − 1

f

(
f ′1(x1)

f(x1)
e1 +

f ′2(x2)

f2(x2)
e2 +

f ′3(x3)

f3(x3)
e3

)
= − 1

f

Df

f
.

Let ~λ = (Df)/f . Then the vectorial function w defined in (145) turns into

w =
∆f

f
, due to
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w = −D~λ− (~λ)2,

= −D
(

1

f
Df

)
−
(
Df

f

)2

,

= −
(
D

1

f

)
Df − 1

f
DDf −

(
Df

f

)2

,

=

(
Df

f

)2

+
∆f

f
−
(
Df

f

)2

,

=
∆f

f
.

We thus have another corollary to Theorem 3.16:

Corollary 5.26. Suppose Ω is bounded and convex with respect to x1, x2,

x3. Let ~λ = g1(x1)e1 + g2(x2)e2 + g3(x3)e3 be a purely vectorial function,

gi(xi) ∈ C, and let w = −D~λ− (~λ)2. Then we have the following relation for

u0 ∈ C2(Ω,C):

(∆− w)T̃f [u0] = T̃f [∆u0], (147)

where T̃f = T1/f1,1T1/f2,2T1/f3,3 and the nonvanishing coefficients are given

by fj(xj) = e
∫ xj
0 gj(s)ds.

Proof. Let u0 be a scalar function. Then T̃f [u0] by Lemma 3.15 is also

scalar. Then due to Corollary 3.18 we have:

−(D +M
~λ)(D −M~λ)T̃f [u0] = −(D +M

~λ)Tf [Du0]

= −T̃f [DDu0]

= T̃f [∆u0].

Thus we have found a transmutation operator between harmonic func-

tions and the Schrödinger operator (144).
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There is another way to construct solutions of Schrödinger operator (144)

using the operator D +MDf/f , but first we need the following definition.

Definition 5.27. The antigradient operator A is given by

A[~v](x1, x2, x3) =

∫ x1

a1

v1(t, a2, a3)dt+

∫ x2

a2

v2(x1, t, a3)dt+

∫ x3

a3

v3(x1, x2, t)dt,

(148)

where ~v : Ω→ R3 is any vector field such that curl~v = 0 and (a1, a2, a3) ∈ Ω.

The importance of the antigradient operator is the following.

Proposition 5.28 ([46]). Let Ω ⊆ R3 be a simply connected domain. Then

the scalar function A[~v] satisfies grad[A[~v]] = ~v, for any function such that

curl~v = 0.

Proposition 5.29. [46, Theorem 158] Let F be a purely vectorial solution

to

(D +MDf/f )F = 0

in a simply connected domain Ω. Then the function g = fA[f−1F] is a

solution of (144).

Theorem 5.30. Let u be a monogenic function in a star-shaped open set Ω

with respect to the origin and let f be a separable scalar function in Ω. Then

the function g = fA [f−1Tf [F [u]] is a solution of the following Schrödinger

equation: (
−∆ +

∆f

f

)
g = 0.
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Proof. Let u ∈ KerD. Then F [u] is a purely vectorial monogenic function

(recall Definition 2.17). Due to Corollary 3.19, the operator Tf [F [u]] is a

purely vectorial solution to D +MDf/f . Finally, due to Proposition 5.29 we

have the result.

5.6 Impedance equation

Electrical properties such as the electrical conductivity σ and the electric

permittivity ε, determine the behaviour of materials under the influence of

external electric fields. For example, both direct and alternating currents

flow easily through materials of high electrical conductivity.

First we summarize a quaternionic reformulation of electrical impedance

equation. The following derivation of the equivalence between the impedance

equation and the D+M system can be found in [73] and also in [46]. Consider

the electrical impedance equation

div(σ gradu) = 0. (149)

We define the vector
#»

E as

#»

E = − gradu,

so the equation (149) turns into

div
(
σ

#»

E
)

= (gradσ) · #»

E + σ div
#»

E = 0.

which is equivalent to

div
#»

E = −gradσ

σ
· #»

E. (150)
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Let
#»

E be a purely vectorial complex quaternionic function. Since σ is a

scalar function and curl
#»

E = 0 we have another equivalent formulation

D
#»

E = −
(
Dσ

σ

)
· #»

E. (151)

Using the multiplication rule (3), since Dσ and
#»

E are purely vectorial

functions we have the following relation:(
Dσ

σ

)
· #»

E =
1

2

(
Dσ

σ

#»

E +
#»

E
Dσ

σ

)
,

Introducing the notation
#»E =

√
σ

#»

E and #»σ = D
√
σ√
σ

, with the aid of the

Leibniz rule (Proposition 2.10) and the equality

1

2

Dσ

σ
=
D
√
σ√
σ
,

we have that (151) becomes (
D +M

#»σ
) #»E = 0. (152)

More generally the following result is known.

Lemma 5.31. [46, Theorem 159] Let u0 be a nonvanishing particular solu-

tion of the equation

(div σ grad +w)u = 0 in Ω ⊆ R3, (153)

with σ, w and u being complex-valued functions, σ ∈ C2(Ω). Then for any

scalar function v0 ∈ C2(Ω) the following equality holds:

(div σ grad +w)v0 = −σ1/2
(
D +MDf/f

) (
D −MDf/f

)
σ1/2v0, (154)

where f = σ1/2u0.

For recovering the function u from
#»E we use the next proposition, which
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relates purely vectorial solutions to the system D+MDf/f with solutions of

(154).

Proposition 5.32. [46, Theorem 160] Let u0 be a particular nonvanishing

solution of (153) where σ ∈ C2(Ω) does not vanish. Let f = σ1/2u0. Consider

a solution F of the equation(
D +MDf/f

)
F = 0.

Then the function

u = u0A[f−1F] (155)

is also a solution of (154); every solution u is obtained in this way.

We now apply our results to solve equation (153). This gives a complete

solution to the generalized electrical impedance equation (152). Then for

(149) we need only take the functions w ≡ 0 and u0 ≡ 1.

Theorem 5.33. Let Ω be bounded and convex with respect to x1, x2, x3.

Suppose w is given as well as σ(x) = σ1(x1)σ2(x2)σ3(x3), a product of C2

nonvanishing coefficents. Suppose there exists a separable nonvanishing so-

lution u0(x) = ũ1(x1)ũ2(x2)ũ3(x3) of (153) where each factor is integrable.

Let f = σ1/2u0. Then every solution u of (153) can be obtained as

u = A
[

Tf [~v]√
σ u0

]
, (156)

where ~v ∈ Ker(D) ∩ C1(Ω,VecH(C)).

Proof. Given u satisfying (156), set

~v = T−1
f [
√
σ u0 gradu].
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Since by Lemma 3.15 the operator Tf sends purely vectorial monogenic func-

tions into purely vectorial solutions of D + MDf/f , ~v is a vector field as

required.

In Theorem 5.33 when Ω is star-shaped we can alternatively use the

operator F defined in (22) to obtain a purely vectorial function starting

from monogenic functions.

The following is an illustration of the application of Theorem 5.33.

Example 5.34. Consider the equation (149) with electrical conductivity

σ(x) = ex1 . Its quaternionic reformulation is(
D +Me1/2

) #»E = 0.

Consider the purely vectorial monogenic function #»v = P 1,1e3. In this case

f(x) = ex1/2 and Tf = Tf1 . A short calculation using Table 2.1 gives us

ϕ1(x1) = −e−x1/2 + ex1/2, ψ0(x1) = e−x1/2 and

Tf [P
1,1e3] = Tf1 [2x2x3e1 + 2x1x3e2 + 2x1x2e3],

= 2ψ0(x1)x2x3e1 + 2ϕ1(x1)x3e2 + 2ϕ(x1)x2e3,

Tf [P
1,1e3]√
σ

= 2x2x3e
−x1e1 +

(
2x3 − 2e−x1x3

)
e2 +

(
2x2 − e−x1x2

)
e3,

and finally

u(x) = A
[

Tf [P
1,1e3]√
σ

]
=
(
2− 2e−x1

)
x2x3 + c.

It can be verified directly that u satisfies (div ex1 grad)u = 0.
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5.7 Quaternionic Vekua equation

In this final section we are going to find solutions of the system Du = Df
f
u in

Ω with the aid of the operator Tf . In addition, using a particular solution u0

of the three-dimensional Schrödinger equation we are able to construct the

vector part ~u such that u = u0 +~u is a solution of Du = (Df/f)u. Viceversa,

given a purely vectorial solution vectorial function such that div ~u = 0 and

curl(f−2 curl ~u) = 0 we are able to find u0, such that u = u0 + ~u is a solution

of Du = (Df/f)u.

The theory of pseudoanalytic functions was developed by Lipman Bers

[6] and Ilya Vekua [79] independently. They proved that many properties

of analytic functions in the complex plane are still valid for systems more

general than the Cauchy-Riemann system. Bers introduced the notion of

(F,G)-derivative, which gives a generalization of the notion of holomorphic

functions in the sense of complex analysis, since taking F = 1 and G = i, we

have that the (1, i)-derivative coincides with the holomorphic functions.

V.V. Kravchenko discovered that pseudoanalytic functions are closely re-

lated to many important equations such as Dirac, Maxwell, Klein-Gordon

among others (see [46]).

There have been efforts to generalize the notion of pseudoanalytic function

(see [46, 64, 76]). For our purposes we are going to work with the notion

introduced by V. V. Kravchenko, which can be found in Section 16 of [46].
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5.7.1 The main quaternionic Vekua equation

Definition 5.35. [46] The Vekua operator is

D +
Df

f
CH, (157)

acting on u ∈ C1(Ω,H(C)). CH denotes the quaternionic conjugate (6).

An important fact of the kernel of Vekua operator is the following.

Proposition 5.36. [46, Theorem 161] Let W0 + W be a solution of (157)

where W is a vector field. Then W0 is a solution of the stationary Schrödinger

equation

−∆W0 +
∆f

f
W0 = 0, (158)

and the scalar function u = f−1W0 is a solution of the equation

div
(
f 2 gradu

)
= 0. (159)

The vectorial function V = fW is a solution of the equation

curl
(
f−2 curl V

)
= 0. (160)

To find solutions of the Vekua equation (157) we need an inverse B for

the double curl operator curl curl. It is known [40, Section 5.7 ] that

~u 7→ 1

4π

∫
R3

~u(y)

|x− y|
dy (161)

is a right-inverse for curl curl for fields ~u on all of R3. In [17, Corollary A.4],

an inverse is given which works for bounded domains Ω with sufficiently

smooth boundary. The following proposition refers to the operator (161) but
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in fact any appropriate B can be used such that

curl curlB[~u] = ~u

for all smooth fields ~u in Ω.

Proposition 5.37. [58, Theorem 10] Let ~u ∈ C1(Ω,VecH(C)) be a solution

of the equation (
D +M

Df
f

)
~u = 0.

Then an H(C)-valued solution W in Ω of the Vekua equation

DW − Df

f
W = 0,

can be constructed as follows:

W =
1

2

(
fA
[
~u

f

]
− 1

f
curl

(
B[f~u]

)
+
∇h
f

)
, (162)

where h is an arbitrary complex valued harmonic function in Ω.

Using the methods developed in this thesis we find purely vectorial solu-

tion to D + MDf/f with the aid of the operators Tf and F defined in (59)

and (22) respectively.

Corollary 5.38. Let Ω ⊆ R3 be a star shaped open subset convex with re-

spect to x1, x2, x3. Let B be a right inverse for curl curl in Ω. Let fj be

a nonvanishing coefficient in Ω with respect to xj, j = 1, 2, 3 and define

f(x) = f1(x1)f2(x2)f3(x3). Then every solution of the Vekua equation

DW − Df

f
W = 0

can be constructed as follows: let u ∈ Ker(D) be an arbitrary H(C)-valued
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monogenic and h an arbitrary complex valued harmonic function in Ω. Write

~v = Tf [F [u]]. Then

W =
1

2

(
fA
[
~v

f

]
− 1

f
curl

(
B[f~v]

)
+
∇h
f

)
. (163)

Proof. Let u ∈ KerD. Then the purely vectorial function F [u] is in Ker(D).

Due to Corollary 3.18 the purely vectorial function ~v is a solution of D +

MDf/f . Therefore due to Proposition 5.37, W is the general solution of the

Vekua equation.

Our next result will be an application of the following.

Proposition 5.39. [58, Theorem 11] Let W0 be a scalar solution of the

Schrödinger equation (158). Then the complex vector fields W such that

V = fW is a solution of div V = 0 = curl(f−2 curl V) and the function

W0 + W is a solution of the Vekua equation (157), are constructed according

to the formula

W = −f−1

(
curl

(
B[f 2∇(f−1W0)]

)
+∇h

)
(164)

where h is an arbitrary complex-valued harmonic function in the domain

under consideration and B is a right inverse for curl curl. Conversely, given

a vectorial solution V of the equations div V = 0 = curl(f−2 curl V), letting

W = 1
f
V and

W0 = −fA[f−2 curl(fW)], (165)

then W0 is a solution of (158) such that W0 + W is a solution of (157).

Theorem 5.40. Let f(x) = f(x1)f(x2)f(x3) for fj(xj) be a nonvanishing
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coefficient in the direction xj for j = 1, 2, 3. Assume the same hypothe-

ses of Proposition 5.39 for the Vekua equation DW = (Df/f)W . Given a

harmonic function u0 : Ω → C, a solution W of the Vekua equation can be

constructed as

W = T̃f [u0] +−f−1

(
curl

(
B[f 2∇(f−1T̃f [u0])]

)
+∇h

)
. (166)

Further, let ~u ∈ KerD be a purely vectorial monogenic function. Then a

solution W of the Vekua equation (157) can be constructed as

W = −fA[f−2 curl(~u)] +
~u

f
. (167)

Proof. Let u0 be a harmonic function. Then due to Corollary 5.26 we have

T̃f [u0] is a scalar solution of the Schrödinger equation (158). By Proposition

5.39, equation (166) is proved.

Let ~u be a purely vectorial monogenic function. Then by (12), we have

div ~u = 0 and curl ~u = 0. Therefore curl (f−2 curl ~u) = 0. By Proposition

5.39, equation (167) is proved.
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Chapter 6

Conclusions

We have considered functions of a vector variable in a domain in 3-dimensional

space, taking values in the space of complex quaternions.

We have constructed an invertible quaternionic integral operator which

transforms solutions of the operator D+MDf/f into solutions of the Moisil-

Teodorescu operator D for bounded domains in R3 with sufficient symmetry

for application of classical transmutation operators on real intervals. Previ-

ous application of the classical transmutation operators beyond real domains

have only been found in few sources, such as [48] for functions taking values

in hyperbolic numbers; here we have found a transmutation applicable in the

complex quaternions, which opens the possiblity of application to other types

of differential equations, including other equations of mathematical physics.

We have given a complete and original solution to equations of the form

Du + λu + uγ = 0 with certain restrictions on the coefficients λ and γ.
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In particular, the solutions have been represented locally by a new type of

Taylor series adapted to the equation under consideration.

We have applied these results to give complete solution sets for various

physical systems, including Beltrami fields, important cases of the Maxwell

equations, the Helmholtz equation and the free Dirac equation for particles

with mass, among others. For many of these equations, it is common in

physics to use solutions of a first-order differential equation (such as involving

div or curl) to find some solutions of a related second-order equation (such as

the Schrödinger or Helmholtz equations), but not a complete set of solutions.

Future research in this direction would be to find similar factorizations in

other number systems such as biquaternions, to apply our results to boundary

value problems, and to develop further the applications of our results to other

equations of mathematical physics,
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