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Resumen

En esta tesis utilizamos la teoría de excursiones para la difusión de Brox. Lo hacemos

relacionando este proceso con el movimiento browniano a través de la representación de

Itô-McKean para las difusiones y la representación de su tiempo local. Como primera

aplicación de este análisis, obtenemos la distribución de variables aleatorias con respecto

al tiempo local en determinados tiempos de paro. Finalmente, utilizamos esta información

y un conocido teorema ergódico para proporcionar dos algoritmos diferentes que recuperan

el ambiente detrás de una trayectoria de la difusión de Brox.
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Abstract

In this thesis, we apply Excursion theory to the so-called Brox di�usion. We do so by

relating this process with the Brownian motion through the Itô-McKean's representation

for di�usions and the representation of their local time. As a �rst application of this

analysis, we obtain the distribution of random variables regarding the local time at certain

hitting times. Finally, we use this information and a well-known ergodic theorem to give

two di�erent algorithms that retrieve the environment behind a path of the Brox di�usion.
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Introduction

Random processes in a random environment are mathematical models of great interest

in the area of probability. Roughly speaking, these objects arise from phenomena that

can be described by a random model with a �nite number of parameters, but instead of

assuming these parameters to be constant, it is assumed that they are subject to random

�uctuations, which we call the environment. Once the environment is �xed, the evolution

of the random process can be performed. Examples of the phenomena that these type

of processes can model are of DNA chain replication (see [9]) and turbulent behaviour in

�uids through a Lorentz gas description (see [32]).

In discrete time, Sinai's walk is an example of such process. In the Sinai's walk, as in the

random walk, a particle moves from point x ∈ Z to either x+1 or x−1 according to some

parameter α. However, for Sinai's walk α is a function of the position x of the particle,

that is,

P[Xn = x+ 1|Xn−1 = x] = αx,

P[Xn = x− 1|Xn−1 = x] = 1− αx.

Where α = {αx}x∈Z is a sequence of i.i.d. random variables taking values in (0, 1) called

the environment. In Figure 1 a realization of the Sinai's walk is given. In this example,

the values of the environment are given in the y-axis and each αx take the value .25 or .75

according to a Bernoulli law of parameter 1/2.
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Figure 1: Path of Sinai's walk

In continuous time, an example of a random process in a random environment is the so-

called Brox di�usion. This process is often considered as the time and space continuous

analogue of Sinai's walk. The Brox di�usion is a continuous strong Markov process that has

two sources of randomness, the �intrinsic� randomness, which is a Brownian motion, and

the �extrinsic� randomness or environment, which is assumed to be a two-sided Brownian

motion (a Brownian motion with index R). This process has the peculiarity of spending

most of its time near the so-called minima of its environment. Indeed, a known result of

the Brox di�usion is that, for t large enough the points where the process spends most of

its time are around local minima of the environment [8]. To give an heuristic idea of the

reason behind this behavior, consider the following SDE

dXt = dBt −
1

2
W ′(Xt)dt,

where X is the Brox di�usion, B is a Brownian motion and W is a two-sided Brownian

motion. Then, Xt can be viewed as a Brownian motion Bt with drift term −1
2

∫ t
0
W ′(Xs)ds.

Suppose for a moment that W is a nice function, if x0 is a local minimum of W then for ε

small enough,W ′(u) is positive for u ∈ (x0, x0+ε] andW ′(u) is negative for u ∈ [x0−ε, x0).

Therefore, when the process X takes values close to this minimum (which will happen with

probability 1 as X is recurrent), the drift coe�cient will pull the di�usion into the value of

X(x0). Furthermore, this behavior will be more dramatic as the �depth� of the minimum

increases.
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The main objectives of this thesis are the following:

1. To apply Excursion theory to the Brox di�usion in order to �nd probabilistic prop-

erties of random variables of this di�usion. In particular, variables related to the

local time which ultimately will help us understand why the particle is attracted to

the minima of the environment.

2. To provide methods to infer information of the environmentW based on observations

from a known trajectory of the Brox di�usion. These methods may be applied for

practical purposes in the context of forecasting time series in the future.

Let us further elaborate on our goals. The idea of excursion theory (�rst developed by K.

Itô) is to decompose the path of a stochastic processes into its excursions at a recurrent

point a ∈ R. In the discrete setting, it is easy to verify that the successive excursions of

a Markov chain at a recurrent point are independent and identically distributed, and this

property plays a major role in the analysis of discrete-time Markov chains. In the contin-

uous setting, it is no longer possible to enumerate the successive excursions at point a in

chronological order. The correct point of view, which turns out to be extremely powerful,

is to consider local time as a way to enumerate these excursions, which gives rise to Itô's

point process of excursions.

Itô's excursion theory has proven to be a powerful tool to understand �ne aspects of the

paths of a stochastic process. In particular, for Brownian motion it has been used to

prove results such as the Skorokhod embedding theorem, the Ray-Knight theorem and

the arc-sine law. In [28], the proof of the Ray-Knight theorem is described as �a proof

so simple as to explain very clearly why the result must take the form it does�. For this

reason, in Chapter 2 we apply the ideas of excursion theory to the particular case of the

Brox di�usion in order to study random variables regarding this process. These random

variables will help us understand the rigorous arguments behind the behaviour of the Brox

di�usion paths that was heuristically explained above.

With respect to the second point in our list of objectives, when a random process in a

random environment is used to model certain phenomenon, recovering information of the

environment behind the movement observed can be extremely useful. The idea is that,

when conducting an experiment, the realizations observed may depend on a hidden pro-

cess (or environment) arising from external conditions. Thus, one is interested in inferring

this process through the observations. This type of computations have been presented in
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[1] for the Sinai's walk, where the logarithm of the local time was used as an estimator of

the random environment.

In the last part of this thesis, our aim is to construct an algorithm for recovering the

environment from a Brox di�usion path. In order to achieve this goal we use two di�erent

approaches. One is through the use of an ergodic theorem from [16] p. 228, which gives

us the long term properties of the quotient of functions of the environment. The second

approach employs the results of the random variables studied when excursion theory was

applied to the Brox di�usion to view the path of the Brox di�usion as samples of these

variables, thus obtaining a con�dence interval for each point of the environment to be

estimated.

In summary, Chapter 1 is concerned with providing the preliminaries that will be used

throughout this thesis. We introduce the ideas of Excursion theory and we explain how

to calculate certain values of the so-called excursion law of the Brownian motion. In

Chapter 2 we apply the ideas seen on Section 1.6 to the Brox di�usion. The main tool

used throughout this chapter is Itô and McKean's representation of a di�usion via a time

and scale transformation. In Chapter 3 the ideas of recovering the environment from one

path of the Brox di�usion are developed, resulting in two di�erent algorithms. The �rst

one gives an a.s. convergence when two parameters (that can be viewed as lengths of

partitions of the time and the space) go to zero and the time goes to in�nity (Subsection

3.1.2). The second one gives a con�dence interval for the value of the environment at a

certain point when the length of partitions of time and space go to zero (Subsection 3.2.3).

In addition, for the bene�t of the reader we provide the computational coding in R used

to carry on the simulations of a Brox di�usion path (Appendix A) and of the estimation

of the environment, both for the �rst and second algorithm (Subsections 3.1.3 and 3.2.4,

respectively).
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Chapter 1

Preliminaries

Throughout this thesis, our main object of study will be a mathematical model called

a stochastic process. Natural phenomena with some kind of randomness and evolving

through time can be modeled using stochastic processes, this has be done with great suc-

cess in areas such as biology [2], physics [12] and �nance [22].

Before we introduce the de�nition of a stochastic process we need to understand where

this object �lives�. Let Ω be some set and F be a σ-�eld (also σ-algebra) on Ω. Then the

tuple (Ω,F) is a measurable space, called the sample space. Now we can place on it a

probability measure, which will be denoted by P, this is a function that takes a measurable

set (a set in F) and maps it to a value between 0 and 1, among other properties [6].

Thus, a stochastic process is a collection of random variables indexed by some parameter

t. For our purposes, t ∈ [0,∞) so that X = {Xt, 0 ≤ t < ∞} is a stochastic process on

(Ω,F) which takes values in a second measurable space (S,S), called the state space. In

this thesis, we deal mainly with the state space (R,B(R)). It is often convenient to give

the index t an interpretation of time, thereby obtaining a process evolving through time,

in which, at every t ≥ 0 we can talk about a past, present and future. For a �xed ω ∈ Ω,

the function t 7→ Xt(ω) t ≥ 0 is a path (trajectory, realization) of the process X associated

with ω.

The notation and conventions used throughout this thesis are the following:

σ(U): The σ-�eld generated by the family of sets U , the smallest σ-�eld which contains

every set in U .

B(R): Borel sets in R.
Ba: Brownian motion started at a ∈ R .

1



2 CHAPTER 1. PRELIMINARIES

Pa: Probability measure under which a stochastic process starts at a ∈ R.
Ea: Expectation with respect to Pa.
f ◦ g(x) := f(g(x)) Composition of functions f : X → Y and g : Z → X.

θs : Ω → Ω Is the operator such that Xt(θsω) = Xt+s(ω) ∀ω ∈ Ω, s, t ≥ 0. Is called the

shift operator.

λ(A): Lebesgue measure of set A ∈ B(R).

〈X〉: Quadratic variation of process X = {Xt}t≥0.

a ∧ b := min(a, b), a, b ∈ R.
a ∨ b := max(a, b), a, b ∈ R.
exp(λ) : Exponential distribution with parameter λ.

Poi(λ) : Poisson distribution with parameter λ.

X ∼ F : X has distribution F .

LX(t, x): Local time of the process X until time t at point x.

LX(t, x): Modi�ed local time of the process X.

Excursion: A right-continuous with left limits function f : R+ → R such that for some

a ∈ R f(t) = f(H) = a for all t ≥ H, where H := inf{t > 0 : f(t) = a}.
U : Excursion space, the set of all excursions.

Na
X((0, l] × A): Number of excursions of X at a belonging to the set A ⊆ U , and with

local time ≤ l.

Nu
X∆

(I): Number of crossing of X∆ de�ned as Nu
X∆

(I) = #{t ∈ I : X∆(t) = u}.
Ha
X := inf{t > 0 : Xt = a}, a ∈ R.

γat := inf{u > 0 : LX(u, a) > t}.
C[0,∞) : The space of continuous, real valued functions on [0,∞).

N := {1, 2, 3, ...}, Z+ := {0, 1, 2, ...}, R+ := [0,∞), R++ := (0,∞).

Sometimes, if the subscripts or superscripts take the value zero, we may omit them e.g.

B = B0 is the Brownian motion started at 0. Let T be a function, then both Tt and T (t)

denote the evaluation of the function T at point t.
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1.1 Brownian motion, �ltrations and stopping times

The �rst natural example of a stochastic process is the Brownian motion. This process

satis�es several of the most important properties one can ask from a stochastic process

(e.g. independent and stationary increments, continuous paths, self-similarity). Even

though the de�nition of the Brownian motion is very particular, as we will see in the next

sections, it is a fundamental element in the theory of much more general processes.

For some given probability triple (Ω,F ,P), we have the following de�nition of a Brownian

motion.

De�nition 1. A real-valued stochastic process {Bt, 0 ≤ t < ∞} is a Brownian motion if

it satis�es the following properties:

(i) B0 = 0, P a.s.

(ii) the map t 7→ Bt(ω) is a continuous function of t ∈ R+, P a.s.

(iii) for every t, h ≥ 0, Bt+h−Bt is independent of {Bu : 0 ≤ u ≤ t}, and has a Gaussian

distribution with mean 0 and variance h.

In order to keep track of the information known by the observer, we introduce a �ltration

to our measurable space (Ω,F). A �ltration is a nondecreasing family {Ft, t ≥ 0} of sub
σ-�elds of F i.e. Fs ⊆ Ft ⊆ F for 0 ≤ s < t <∞. Given a stochastic process X, one can

choose the �ltration generated by the process itself by taking

FXt := σ(Xs, 0 ≤ s ≤ t),

this is the smallest σ-�eld with respect to which Xs is measurable for every s ∈ [0, t].

Remark 1. Usually, the �ltration is part of the de�nition of a stochastic process. When

the �ltration is not explicitly stated on the de�nition, assume we are working with the

�ltration {FXt , t ≥ 0}.

De�nition 2. The stochastic process X is adapted to the �ltration {Ft}t≥0 if, for each

t ≥ 0, Xt is a Ft measurable random variable.

De�nition 3. The stochastic process X is called progressively measurable with respect

to the �ltration {Ft}t≥0 if, for each t ≥ 0 and A ∈ B(R), the set {(s, ω) : 0 ≤ s ≤ t, ω ∈
Ω, Xs(ω) ∈ A} belongs to the product σ-�eld B([0, t])⊗Ft.
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Remark 2. We will only consider stochastic processes X = {Xt,Ft : t ≥ 0} where X is

progressively measurable with respect to the �ltration {Ft}t≥0.

With the interpretation of a �ltration as the information accumulated until time t, we now

introduce the idea of a stopping time. Intuitively, a stopping time of a �ltration {Ft}t≥0

is a random event which can be determined if it happened with the information obtained

up to time t.

De�nition 4. Let (Ω,F) be a measurable space equipped with a �ltration {Ft}t≥0. A

random time T is a stopping time of the �ltration, if

{T ≤ t} ∈ Ft, for every t ≥ 0.

A random time T is an optional time of the �ltration, if

{T < t} ∈ Ft, for every t ≥ 0.

Remark 3. Every stopping time is an optional time, and the two elements coincide if the

�ltration is right-continuous i.e. if Ft = Ft+ :=
⋂
u>tFu for all t ≥ 0.

For a process X on (Ω,F), �ltration {Ft}t≥0 and a stopping time T , we de�ne the mapping

XT on the set {T <∞} by
XT (ω) = XT (ω)(ω).

Furthermore, we can de�ne the σ-�eld generated by this process as we see in the next

de�nition.

De�nition 5. Let X be a measurable process and T a random time. The collection of all

sets of the form {XT ∈ A}, A ∈ B(R), together with the set {T =∞} forms a sub-σ-�eld

of F . We call this the σ-�eld generated by XT .

The de�nition of XT and of its σ-�eld will be relevant in the next section, when Markov

processes are de�ned.

De�nition 6. The space (Ω,F ,P, {Ft}t≥0) is said to satisfy the usual conditions if in

addition to the �ltration property

Fs ⊆ Ft ⊆ F 0 ≤ s ≤ t,

the following properties hold:

(i) The σ-�eld F is P-complete (i.e. every subset of every null set is measurable)
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(ii) F0 contains all P-null sets in F

(iii) {Ft} is right-continuous

Remark 4. From now on, all processes considered are de�ned on a space (Ω,F ,P, {F}t≥0)

that satisfy the usual conditions. These conditions are standard in the literature and are

required by some fundamental theorems, such as Doob's Supermartingale Convergence

Theorem (see [27]).

Let X be a continuous stochastic process on (Ω,F ,P), i.e. with P almost surely continuous

sample paths. Then, X can be regarded as a random variable on (Ω,F ,P) with values

in (C[0,∞),B(C[0,∞))), that is, the space of continous, real valued functions on [0,∞)

together with the Borel σ-�eld generated by the collection of �nite-dimensional cylinders

(see [19] ch. 2). Then X induces a probability measure on (C[0,∞),B(C[0,∞))) called

the law of the stochastic process.

De�nition 7. Let X be a continuous stochastic process on (Ω,F ,P). Then, the law of

X is given by

P(B) := PX−1(B) = P{ω ∈ Ω : X(ω) ∈ B}, B ∈ B(C[0,∞)).
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1.2 Markov processes

The Markov property is sometimes referred to as the memoryless property. Intuitively

speaking, it encapsulates the idea that sometimes in order to make a prediction about the

future state of a process we only need information about the present, thus making the

past information irrelevant.

An example of a Markov process is the Brownian motion, recall the de�nition of the

Brownian motion from last section as a stochastic process that starts at zero P a.s. In

this section we introduce the concept of a family of measures in order to let our processes

start at points other than zero.

De�nition 8. Let µ be a probability measure on (R,B(R)). A process X = {Xt,Ft :

t ≥ 0} on some probability space (Ω,F ,Pµ) is said to be a Markov process with initial

distribution µ if

(i) Pµ(X0 ∈ Γ) = µ(Γ), ∀ Γ ∈ B(R)

(ii) for every bounded, measurable map f : R→ R and s, t ≥ 0,

Eµ[f(Xs+t)|Fs] = Eµ[f(Xs+t)|Xs], Pµ a.s.

Remark 5. If µ assigns measure one to some singleton {x}, we will write Px instead of Pµ.

We will see in the next sections that it is often convenient to have a whole family of prob-

ability measures that give rise to a family of Markov processes. Each of these probability

measures denotes a di�erent starting point of process X, this will be notationally helpful,

especially when studying excursion theory in section 1.6.

De�nition 9. AMarkov family is a processX = {Xt,Ft : t ≥ 0} on some (Ω,F), together

with a family of probability measures {Px}x∈R on (Ω,F), such that

(i) for each F ∈ F , the mapping x 7→ Px(F ) is universally measurable

(ii) Px(X0 = x) = 1 ∀ x ∈ R

(iii) for every bounded, measurable map f : R→ R and s, t ≥ 0

Ex[f(Xs+t)|Fs] = EXs [f(Xt)], Px a.s.
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Remark 6. Condition (i) is a weaker measurability condition that allows the expansion of

F to larger σ-�elds (see [19] p.73). Condition (ii) gives rise to the fact that process X

under Px is called the Markov process X started at x. Finally, condition (iii) constitute

the Markov property.

Our next step is to de�ne the strong Markov property. This property is one of the few

requirements we will ask from a stochastic process in order to be a di�usion. A process

satis�es the strong Markov property if the Markov property can be applied to certain

random times.

De�nition 10. Let µ be a probability measure on (R,B(R)). A process X = {Xt,Ft :

t ≥ 0} on some (Ω,F ,Pµ) is said to be a strong Markov process with initial distribution µ

if

(i) Pµ(X0 ∈ Γ) = µ(Γ), ∀ Γ ∈ B(R)

(ii) for any stopping time S of {Ft}, t ≥ 0 and f : R→ R bounded and measurable

Eµ[f(XS+t)|FS] = Eµ[f(XS+t)|XS], Pµ a.s. on {S <∞}.

De�nition 11. A strong Markov family is a process X = {Xt,Ft : t ≥ 0} on some (Ω,F),

together with a family of probability measure {Px}x∈R on (Ω,F), such that

(i) for each F ∈ F , the mapping x 7→ Px(F ) is universally measurable

(ii) Px(X0 = x) = 1 ∀ x ∈ R

(iii) for any bounded continuous f : R→ R,

Ex[f(XS+t)|FS] = EXs [f(Xt)] Px a.s. on {S <∞}.

Remark 7. De�nitions 10 and 11 can be stated for optional times instead of stopping times

(see [19]), in our context these two elements coincide (recall Remark 3 and De�nition 6).



8 CHAPTER 1. PRELIMINARIES

1.3 Itô's formula

The main goal of this section is to introduce the single most important formula of Itô cal-

culus, namely Itô's formula (also change of variable formula or Itô's rule). This formula

provides an integral-di�erential calculus for the sample paths of certain types of stochastic

processes. Before we can state this result, we begin by recalling some basic de�nitions.

Martingales are stochastic processes associated with the dynamics of �fair� games, where

the best guess about the future is the present state of the process. They are characterized

by the the fact that P a.s.

E[Xt|Fs] = Xs, for every 0 ≤ s < t <∞.

This de�nition can be generalized by asking a process to be a martingale only at some

sequence of random times as follows:

De�nition 12. Let X = {Xt,Ft : t ≥ 0} be a (continuous) process with X0 = 0 a.s.

If there exists a nondecreasing sequence {Tn}∞n=1 of stopping times of {Ft}, such that

{X(n) := Xt∧Tn ,Ft : 0 ≤ t <∞} is a martingale for each n ≥ 1 and P(limn→∞ Tn =∞) =

1, then we say that X is a (continuous) local martingale.

This last de�nition can be further generalized by introducing the concept of a semimartin-

gale. This class of processes is of special importance in stochastic calculus since it consti-

tutes the largest class of processes with respect to which the Itô integral can be de�ned

(see [19] chapter 3 for more information on the Itô integral).

De�nition 13. A continuous semimartingale X = {Xt,Ft; 0 ≤ t < ∞} is an adapted

process which has the decomposition P a.s.,

Xt = X0 +Mt + At; 0 ≤ t <∞, (1.1)

where M = {Mt,Ft; 0 ≤ t < ∞} is a continuous local martingale and A = {At,Ft; 0 ≤
t <∞} is the di�erence of continuous, nondecreasing, adapted processes started at zero.

This de�nition is P-a.s. unique. Now for the main result of this section, Itô's formula

states the rules by which a continuous semimartingale can be manipulated.

Theorem 1 ([18]). Let f : R→ R be a function of class C2 and let X = {Xt,Ft; 0 ≤ t <
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∞} be a continuous semimartingale with decomposition (1.1). Then P a.s.,

f(Xt) =f(X0) +

∫ t

0

f ′(Xs)dMs +

∫ t

0

f ′(Xs)dAs

+
1

2

∫ t

0

f ′′(Xs)d〈M〉s, 0 ≤ t <∞, (1.2)

where 〈M〉 is the quadratic variation of M .

Remark 8. From the properties of the stochastic integral, we know that the �rst integral

is a continuous, local martingale. The other two integrals of (1.2) are to be understood in

the Lebesgue-Stieltjes sense, and so, as function of the upper limit of integration, are of

bounded variation. Thus, {f(Xt),Ft; 0 ≤ t <∞} is a continuous semimartingale.

Remark 9. Equation (1.2) is often written in di�erential notation:

df(Xt) =f ′(Xt)dMt + f ′(Xt)dAt +
1

2
f ′′(Xt)d〈M〉t

=f ′(Xt)dXt +
1

2
f ′′(Xt)d〈M〉t, 0 ≤ t <∞,

This equality is called the �chain rule� for stochastic calculus.
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1.4 Local time

Local time is a mathematical object that allows us to measure the amount of time spent

by a path of certain stochastic processes around some value x ∈ R, it was �rst introduced
for the Brownian motion by P. Lévy [21] and proven to be jointly continuous by H.F.

Trotter [35]. Local time will be a major tool used throughout this thesis, as we will see

later on, it is a fundamental element of excursion theory.

Here, we begin by de�ning Brownian local time and then we extend the concept of local

time for continuous semimartingales.

Theorem 2. ([35]) There exists a process {LB(t, x) : t ≥ 0, x ∈ R} such that

(i) (t, x)→ LB(t, x) is jointly continuous;

(ii) for any bounded measurable f and t ≥ 0,∫ t

0

f(Bs)ds =

∫ ∞
−∞

f(x)LB(t, x)dx. (1.3)

Remark 10. In some literature, equation 1.3 is given with a di�erent normalizing constant.

Here we follow [27].

LB(t, x) is called the local time of B at x up to time t. For a �xed Borel set A ∈ B(R),

we de�ne the occupation time of the Brownian motion B up to time t as

ΓB(t, A) =

∫ t

0

1A(Bs)ds = λ{0 ≤ s ≤ t : Bs ∈ A}, 0 ≤ t <∞,

where λ is the Lebesgue measure. Equation (1.3) with f(x) = 1A(x), A ∈ B(R) indicates

that LB(t, x) can be viewed as the density with respect to the Lebesgue measure of the

occupation time. In other words, we have

ΓB(t, A) =

∫
A

LB(t, x)dx, 0 ≤ t <∞, A ∈ B(R).

Later on, we will use this intuition to de�ne a modi�ed local time for di�usions satisfying

a certain property.

The next theorem is a well-known result called Tanaka's formula, it has two very important

contributions: It introduces the important notion of local time for semimartingales and

secondly, this result leads to a generalization of Ito's formula for convex function (recall

that Itô's formula was stated for C2 functions in Theorem 1.2) called the Itô-Tanaka

formula (see [34] p.223).
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Theorem 3 ([34] p.222). Let X be a continuous semimartingale. For any real number a,

there exists an increasing continuous process {LX(t, a) : t ≥ 0} such that:

|Xt − a| = |X0 − a|+
∫ t

0

sgn(Xs − a)dXs + LX(t, a),

where sgn(x) = −1 if x ≤ 0 and sgn(x) = 1 if x > 0. The process LX is called the

(semimartingale) local time of X at zero.

Remark 11. The alternative forms of the Tanaka's formula are

(Xt − a)+ = (X0 − a)+ +

∫ t

0

1{Xs>a}dXs +
1

2
LX(t, a),

(Xt − a)− = (X0 − a)− −
∫ t

0

1{Xs≤a}dXs +
1

2
LX(t, a)

where x+ := x ∨ 0 and x− := −(x ∧ 0).

The next result deals with the question of measurability of the two parameter process

{LX(t, a) : a ∈ R, t ≥ 0}.

Theorem 4. There exists a version of {LX(t, a) : a ∈ R, t ≥ 0} which is continuous in t

and right-continuous with left limits in a.

Remark 12. From now on, we will assume local time LX(t, a) to be continuous at t and

right-continuous with left limits in a.
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1.5 Di�usions and the in�nitesimal generator

We will now give a review on di�usion theory, the material in this chapter is mainly based

on [28]. We assume the state space to be I = R.

De�nition 14. A stochastic process X = {X(t),Ft, t ≥ 0} on some (Ω,F), together with

a family of probability measures {Px}x∈R on (Ω,F) is said to be a di�usion if it has a.s.

continuous paths and it is a strong Markov family.

Remark 13. From De�nition 14 we see that a di�usion is in fact a strong Markov family.

We use the term di�usion for both the whole family and a single element of it without

risk of confusion.

There are several approaches for the construction and study of di�usions, varying from

the purely analytical to the probabilistic ones. The methodology of stochastic di�erential

equations (SDEs) was �rst suggested by P.Lévy and carried out by K. Itô. They considered

the following equation

dXt = σ(Xt)dBt + b(Xt)dt, (1.4)

where B is a standard Brownian motion, σ : R → (0,∞) and b : R → R. Presumably,

the most important result of this theory is the theorem by K. Itô which states that if σ

and b are Lipschitz functions, then the SDE in 1.4 has a strong solution (a solution on a

given probability space, with respect to a given �ltration and a given Brownian motion).

It can be shown that this solution is in fact a di�usion, moreover it is related to impor-

tant concepts, such as the Martingale Problem (for further information see [28] chapter 5).

Another probabilistic approach for the study of di�usions is by constructing it from a

Brownian motion via a time and space transformation. In this chapter we will be concerned

with this approach. As we will see, this method possess a very rich theory where two

important elements stand out, namely, the scale function and the speed measure.

De�nition 15. A di�usion X is called regular if for all x, y ∈ R we have

Px(Hy
X <∞) > 0.

The concept of regularity is similar to the concept of irreducibility for Markov chains and

gives the di�usion a much more orderly behaviour.

Remark 14. From now on all di�usions considered are regular.
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De�nition 16. A scale function for a (regular) di�usion X on R is a continuous strictly

increasing function s : R→ R such that, for all x, a, b ∈ R with x between a and b,

Px(Hb
X < Ha

X) =
s(x)− s(a)

s(b)− s(a)
.

If s(x) = x is the scale function of X, we say that X is in natural scale. The function s is

unique up to increasing a�ne transformations.

The following theorem gives the transformation that has to be applied to a di�usion with

scale measure s in order to obtain a di�usion in natural scale.

Theorem 5. Let X be a di�usion on R with scale function s, then Y := s(X) is a di�usion

in natural scale on s(R).

The next theorem has two purposes, one is to de�ne the speed measure of a di�usion in

natural scale X and the other is to observe that any regular di�usion in natural scale is a

Brownian motion with the time changed.

Theorem 6 ([28]). Let X be a regular di�usion in natural scale on R. Then there exists a

measure m on R such that, for each y ∈ R, there exists on some enrichment of (Ω,F ,Py)
a Brownian motion B started at y such that the di�usion X under Py, can be expressed

as a time change of B:

Xt = BT−1(t), (1.5)

where T−1 is the right-continuous inverse of

T (t) =

∫
R
LB(t, z)m(dz).

De�nition 17. The measure m appearing in the statement of Theorem 6 is called the

speed measure of the di�usion X. The speed measure also has the property:

m([a, b]) <∞ for any a < b ∈ R. (1.6)

Remark 15. The converse of Theorem 6 also holds. Given a measure m on R satisfying 1.6

and a Brownian motion B with local time LB(t, x), we can construct a regular di�usion

in natural scale on R with representation 1.5.

From the results above, we see that any (regular) di�usion is uniquely characterized by

its scale function and speed measure, moreover we have that any di�usion is a scale and

time-change of Brownian motion. Indeed, if X is a di�usion with scale function s then
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from Theorem 5, Y := s(X) is in natural scale therefore from Theorem 6 there exists m

so that X admits the representation

Xt = s−1(BT−1(t)), (1.7)

where T−1 is the inverse of the time-change function

T (t) =

∫
R
LB(t, x)m(dx)

and B is a standard Brownian motion.

Remark 16. Note that the measure m from last equation is the speed measure of the

process in natural scale Y .

From the next lemma we have that any regular di�usion in R is recurrent. This will greatly

simplify the results given on the next subsection about excursion theory for di�usions.

Lemma 1. Let X be a regular di�usion on R with scale function s and speed measure m.

Then X is recurrent, i.e.,

Px(Hy
X <∞) = 1, ∀x, y ∈ R.

De�nition 18. Consider a Markov family X = {Xt,Ft; 0 ≤ t <∞}, (Ω,F), {Px}x∈R, and
assume that X has continuous paths. The in�nitesimal generator of the Markov family is

given by

Af(x) = lim
t↓0

1

t
(Ex[f(Xt)]− f(x)),

where f is a function such that the previous limit exists.

From (1.7) and from the fact that Brownian local time exists, it is possible to de�ne the

local time of any one-dimensional di�usion. The next theorem provides the explicit form

of its local time in terms of the local time for Brownian motion and its interpretation as

an occupation density.

Theorem 7. Let X be a di�usion with representation (1.7), then the local time process

of X is

{LX(t, a) : a ∈ R, t ≥ 0} = {LB(T−1(t), s(a)) : a ∈ R, t ≥ 0}, (1.8)

and the occupation-measure formula says that, for any bounded measurable function f

supported in R, ∫ t

0

f(Xs)ds =

∫
f(a)LX(t, a)m(da). (1.9)
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From equation (1.9) with f(x) = 1A(x), A ∈ B(R) we see that the local time of the

di�usion X is the density with respect to the speed measure of X for the occupation time

of X, that is

ΓX(t, A) =

∫
A

LX(t, a)m(da), 0 ≤ t <∞, A ∈ B(R). (1.10)

De�nition 19. Let X be a di�usion with speed measure m and suppose that m is abso-

lutely continuous with respect to the Lebesgue measure. Then we can de�ne the process

{LX(t, a) : a ∈ R, t ≥ 0} := {LX(t, a)ṁ(a) : a ∈ R, t ≥ 0}, (1.11)

where m(da) = ṁ(a)da. We call LX(t, a) the modi�ed local time of X at time t in a.

The process LX(t, a) satis�es the following equation∫ t

0

f(Xs)ds =

∫
f(a)LX(t, a)da.

Note that for f(x) = 1A(x), the modi�ed local time de�ned above has the same interpre-

tation of local time for Brownian motion as seen in subsection 1.4. This is the reason why

we will give results in terms of this process instead of the local time LX(t, a).

Remark 17. In some literature, the modi�ed local time as de�ned above is in fact sim-

ply called the local time, we give it a di�erent name in order to be consistent with the

de�nitions found in [28]. See for example [14] and [15].
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1.6 Excursion theory

The �rst explicit appearance of formal excursion theory for Brownian motion was given by

K. Itô in [17]. He found that the excursions form a sequence of independent and identically

distributed random functions, which together with their local time form in fact a Poisson

point process. This discovery has proved to be a powerful computational technique.

The ideas of excursion theory can be applied to a wide variety of processes e.g. for

continuous-time Markov process with some recurrent state. Throughout this section

X = {Xt,Ft,Ω,F , {Pa}a∈R, t ≥ 0}

will denote a regular di�usion, the results will be given only for di�usions. For more

general results see [28].

Remark 18. We will be using the following notation:

(i) γxu is the right-continuous inverse of the local time LXa(t, x) i.e. γau := inf{t > 0 :

LXa(t, x) > u}.

(ii) Γxu the right-continuous inverse of the modi�ed local time LXa(t, x) i.e. Γxu := inf{t >
0 : LXa(t, x) > u}.

We will now present the following de�nition in order to give a brief reminder on Poisson

random measures.

De�nition 20. Let (Ω,F ,P) be a probability space, (H,H) a measurable space, and ν(C)

a Z+ ∪ {∞}-valued random variable, for each �xed C ∈ H. We say that ν is a Poisson

random measure if:

(i) For every C ∈ H, either P(ν(C) =∞) = 1, or else

ψ(C) := E[ν(C)] <∞

and ν(C) is a Poisson random variable:

P(ν(C) = n) = e−ψ(C) (ψ(C))n

n!
; n ∈ Z+.

(ii) For any pairwise disjoint sets C1, ..., Cm in H, the random variables ν(C1), ..., ν(Cm)

are independent.
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The measure ψ(C) = E[ν(C)], C ∈ H, is called the intensity measure of ν.

De�nition 21. An excursion is a right-continuous with left limits function f : R+ → R
such that for some a ∈ R satis�es the co�n condition:

f(t) = f(H) = a for all t ≥ H,

where

H := inf{t > 0 : f(t) = a or f(t−) = a}.

The lifetime H of the excursion f must be positive.

We denote the set of all excursions by U and B(U) the Borel σ-�eld of the topological

space U if we take the Skorokhod metric (for more on this topic see [5] Ch. 3).

De�nition 22. The point process of excursions at a of di�usion X is de�ned as

Π := {(l, el) : γal 6= γal−},

where el ∈ U is de�ned as follows:

el(s) =

{
X(γal− + s) for 0 ≤ s < γal − γal−;

a for s ≥ γal − γal−.

For each l such that γal 6= γal−, we call el the excursion at local time l.

One can think of a point process as a Z+-valued random measure. We therefore de�ne,

for Borel A ⊆ R++ × U , the Z+-valued random measure

Na
X(A) := |A ∩ Π| .

In Figure 1.1 we see an example of an excursion at a of the Brownian motion. On the left

we have the path of a Brownian motion and circled is an excursion at a that starts at time

t. On the right we have the excursion el where l = LB(t, a). In Figure 1.2 we illustrate

a representation of a point (l, el) ∈ Πa where the x-axis represents the local time and the

y-axis the excursion space U.
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Figure 1.1: Path of Brownian motion (left) and an excursion (right).

Figure 1.2: Point (l, el) that corresponds to the excursion above.

The following result is arguably the most important of Itô's excursion theory.

Theorem 8. There exists a σ-�nite measure η on U with the following property: if N ′ is

a Poisson random measure on R++×U with intensity measure µ = λ× η, then under Pa,

Na
X

d
= N ′.

The measure η is called the characteristic measure or Itô excursion law of the excursion

process.

Remark 19. From now on, η will be the characteristic measure of excursions at zero of the

Brownian motion, i.e. N0
B((0, t]× S) is a Poisson random variable with intensity measure

µ = λ× η.
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The description of η is somewhat complicated (see [36]), but it is possible to �nd the value

of η(S) for sets S of a certain form. The following well known proposition is a very useful

result whose proof shows the power of excursion theory, it is also instrumental for our

purposes.

Proposition 1. For x > 0,

(i) η({f ∈ U : supt f(t) > x}) = (2x)−1, and

(ii) η({f ∈ U : supt |f(t)| > x}) = x−1.

Proof. (i) Let U±(x) := {f ∈ U : supt±f(t) > x} and

T := inf{t : N0
B((0, t]× U+(x)) > 0}.

Then

P(T > l) = P(N0
B((0, l]× U+(x)) = 0).

By Theorem 8 applied to the Brownian motion, we have that under P, N0
B((0, l]×U+(x)) ∼

Poisson(lη(U+(x))), which yields

P(T > l) = exp(−lη(U+(x))).

Thus, T is an exponential random variable with parameter η(U+(x)), which gives

E[T ] = η(U+(x))−1. (1.12)

However, if τ := inf{t : Bt = x} then T = LB(τ, 0). By the Tanaka formula 11

B+
t − 1

2
LB(t, 0) is a martingale, therefore the optional sampling theorem yields E[T ] = 2x.

This result together with 1.12 establishes (i).

(ii) From the symmetry of the Brownian motion we have that

N0
B((0, l]× U+(x))

d
= N0

B((0, l]× U−(x)),

which together with Theorem 8 implies that η(U+(x)) = η(U−(x)). Thus, writing

{f ∈ U : sup
t
|f(t)| > x}

as the disjoint union of U+(x) and U−(x) and applying (i), the result follows (note that

U+(x) and U−(x) are indeed disjoint as we are looking at excursions at zero). �

Remark 20. In some literature the proposition above di�ers from ours by a constant. This

is a consequence of a di�erent normalization of local time.
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Chapter 2

Excursion theory for the Brox di�usion

2.1 The Brox di�usion

In [7] , T. Brox considered the following SDE:

dXt = dBt −
1

2
W ′(Xt)dt, X0 = 0, (2.1)

where B = {Bt : t ≥ 0} is the standard Brownian motion, and W = {W (x) : x ∈ R} is
a two sided Brownian motion independent of B called the environment. W ′ denotes the

derivative ofW in the sense of Schwartz distribution and is called the white noise (see [13]).

Assuming that the standard theory of di�usions apply, by taking b(x) := −1
2
W ′(x) and

σ(x) := 1, one may associate to equation (2.1) the following in�nitesimal generator (see

[28] p. 163)

Af(x) :=
1

2e−W (x)

d

dx

(
e−W (x)df(x)

dx

)
,

which is rigorously de�ned. Moreover, the di�usion associated to A has scale function

s(x) :=

∫ x

0

eW (y)dy,

and speed measure

m(A) :=

∫
A

e−W (y)dy, for Borel sets A ⊆ R. (2.2)

Following (1.7), using the scale function and speed measure above, we can construct a

di�usion X as

Xt = s−1(BT−1
t

), (2.3)

21
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where

Tt :=

∫ t

0

e−2W (s−1(Bu))du. (2.4)

De�nition 23. The stochastic process X = {Xt,Ft : t ≥ 0} de�ned on (Ω,F ,P) with

representation 2.3 is called the Brox di�usion.

Remark 21. There are two sources of randomness in (2.1). One coming from B and the

other from W .

Remark 22. For a �xed trajectory of W , the process X is a di�usion. From now on we

will work with the Brox di�usion with a �xed environment W (ω), this is known as the

Quenched case.

Several important relations can be derived from representation 2.3. For instance, the

following relationship between the hitting times of the Brownian motion and the Brox

di�usion.

Lemma 2. It holds

T (Ha
B) = H

s−1(a)
X . (2.5)

Proof. It follows from representation (2.3).

Figure 2.1: Hitting times

�

We now continue by de�ning the Brox di�usion started at a ∈ R, we will need this de�ni-

tion later on in order to apply what we saw in section 1.6 to the Brox di�usion.

Fix a ∈ R, and let us de�ne the process

Xa = {Xt+Ha
X
}t≥0.
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We call Xa the Brox di�usion started at a. This process is simply cutting o� the �rst

part of the original process and starting when it �rst visited a. As X satis�es the strong

Markov property and Ha
X is an almost surely �nite stopping time, this means that Xa is

independent of the information on X before Ha
X , X

a also inherits the properties of the

original process, therefore it is a di�usion. Our next step is to �gure out the analogue of

representation 2.3 for this process.

From (2.3) applied to time t+Ha
X we have

Xa
t = s−1(BT−1(t+Ha

X)), t ≥ 0. (2.6)

We de�ne T au := T
u+H

s(a)
B
− T

H
s(a)
B

for u ≥ 0. The function T a inherits the strict increasing

and continuity properties from T . By relation (2.5),

(T a)−1(t) = inf{u > 0 : T au > t}
= inf{u > 0 : T

u+H
s(a)
B
− T

H
s(a)
B

> t}

= inf{u > 0 : T
u+H

s(a)
B

> t+Ha
X}

= inf{u > 0 : Tu > t+Ha
X} −H

s(a)
B

=T−1(t+Ha
X)−Hs(a)

B . (2.7)

Let Bs(a) := {B
t+H

s(a)
B
}t≥0, then B

s(a) is a Brownian motion started at s(a). From equa-

tions (2.6) and (2.7) we see that the process Xa can be written as

Xa
t = s−1(B

s(a)

(Ta)−1(t)
). (2.8)

From this representation we can read that the scale function of Xa is the same as the scale

function of X, that is

sXa(x) =

∫ x

0

eW (y)dy.

To �nd the speed measure of Xa, notice that the de�nition of T a, equation (2.4) and the
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change of variable v = u−Hs(a)
B yields

T au =

∫ t+H
s(a)
B

0

e−2W (s−1(Bu))du−
∫ H

s(a)
B

0

e−2W (s−1(Bu))du

=

∫ t+H
s(a)
B

H
s(a)
B

e−2W (s−1(Bu))du

=

∫ t

0

e
−2W

(
s−1

(
B
v+H

s(a)
B

))
dv

=

∫ t

0

e−2W (s−1(B
s(a)
v ))dv.

As the speed measure is independent of the point in which the Brownian motion starts

(see Theorem 6), then the speed measure of Xa is the same as the speed measure of X.

That is,

mXa(A) =

∫
A

e−W (y)dy, A ∈ B(R). (2.9)

De�nition 24. Let X be a Brox di�usion on (Ω,F ,P), for each a ∈ R we de�ne the

following probability measure on (Ω,F)

Pa(Xt ∈ A) := P(Xa
t ∈ A) ∀t ≥ 0, A ∈ B(R).

Then {Px}x∈R is a family of probability measures on (Ω,F).

Remark 23. In [7] the Brox di�usion started at x ∈ R together with the family of proba-

bilities {Px}x∈R on the canonical space (C[0,∞),B(C[0,∞)),W) is also constructed.

Local time is an important element of excursion theory, using this tool Itô was able to

�enumerate� the excursions of Brownian motion. As we have mentioned, we will derive

results for some variables of the Brox process using known results for the Brownian motion,

this is why it is useful to relate the local time of Xa with Brownian local time. Moreover,

as we saw in the previous results, the speed measure of the Brox process is absolutely

continuous with respect to the Lebesgue measure, so that the modi�ed local time (as in

De�nition 19) exists. For this reason we will sometimes give results in terms of this process

instead of the local time process, recall discussion at the end of section 1.5.

Proposition 2. (i) The local time of the process Xa is

LXa(t, x) = LBs(a)((T a)−1(t), s(x)).
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(ii) The modi�ed local time of the process Xa is

LXa(t, x) = e−W (x)LBs(a)((T a)−1(t), s(x)).

Proof. i) Follows from Theorem 7 and ii) follows from De�nition 19, Equation 2.9 and

i). �

Proposition 3. The right-continuous functions γxu and Γxu of the Brox di�usion satisfy

the following relation

γxu = Γxe−W (x)u.

Proof. From Remark 18 and Proposition 2:

γxu = inf{t > 0 : LXa(t, x) > u}
= inf{t > 0 : e−W (x)LXa(t, x) > e−W (x)u}
= inf{t > 0 : LXa(t, x) > e−W (x)u}
= Γxe−W (x)u.

�
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2.2 The point process of excursions

We continue by linking the excursions of the Brownian motion B and the excursions of the

Brox process started at a. Here B is the Brownian motion that helps in the construction

(2.8) of the process Xa i.e. we have that

Xa
t (ω) = s−1(B

s(a)

Ta−1(t)
(ω)).

Let us begin by relating the times in which excursions of Bs(a) and Xa start and end.

Lemma 3. h1 and h2 are, respectively, the times in which an excursion of the Brownian

motion Bs(a) at b starts and ends if and only if T a(h1) and T a(h2) are, respectively, the

times in which an excursion of the process Xa at s−1(b) starts and ends.

Proof. By representation (2.8) we have

Xa
Ta(t) = s−1(B

s(a)

(Ta)−1(Ta(t)))

= s−1(B
s(a)
t ).

From this equality we see that B
s(a)
h1

= b if and only if Xa
Ta(h1) = s−1(b). Analogously,

B
s(a)
h2

= b if and only if Xa
Ta(h2) = s−1(b). Furthermore, B

s(a)
t 6= b for t ∈ (h1, h2) if and

only if Xa
u 6= s−1(b) for u ∈ (T a(h1), T a(h2)).

Figure 2.2: Path of BM (left) and path of Xa (right)

�

With the previous lemma we see that there is a bijection betweeen excursions of Bs(a) and

Xa. The following lemma tells us how such a bijection works.
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Lemma 4. Let (l, ξ) be a point in the point process of excursions at b of the process Xa,

then

(l, s ◦ ξ)

is the point of the point process of excursions at s(b) of the corresponding Brownian motion

Bs(a).

Proof. Suppose that T a(h1) is the time in which the excursion ξ at b starts. Then, by

Lemma 3 the corresponding excursion of the Brownian motion Bs(a) at s(b) starts at

h1, therefore the local time when such excursion starts is given by LBs(a)(h1, s(b)). By

Proposition 2, using t = T a(h1) and x = b, we have

LBs(a)(h1, s(b)) = LXa(T a(h1), b)

= l.

Which proves the transformation of the �rst entry of (l, ξ). For the second one note that

if ξ is the excursion of Xa at b that starts on T a(h1) then s ◦ ξ is the excursion of Bs(a) at

s(b) that starts on h1. �

Corollary 1. Let (l1, l2]× S ∈ B(R+)× B(U), then

N b
Xa((l1, l2]× S) = N

s(b)
B ((l1 + LB(H

s(a)
B , s(b)), l2 + LB(H

s(a)
B , s(b))]× (s ◦ S)).

Proof. It follows from the previous lemma and from the fact that

LBs(a)(t, x) = LB(t+H
s(a)
B , x)− LB(H

s(a)
B , x).

�

De�nition 25. For a �xed a ∈ R, we de�ne the operator

ζa : U → U,

such that for S ∈ B(U), ζa ◦ S = {f − a : f ∈ S}.

Lemma 5. Let T × S ∈ B(R+)× B(U), then Na
B(T × S)

d
= N0

B(T × ζa ◦ S).

Proof. By properties of the Brownian motion we have that the process

B′ := {Bt+Ha
B
}t≥0

d
= {Ba

t }t≥0, (2.10)
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where Ba := {Ba
t }t≥0 is a Brownian motion started at a. Since the process B does not

accumulates local time at a before Ha
B, it follows that

Na
B(T × S) = Na

B′(T × S)

d
= Na

Ba(T × S)

d
= N0

B(T × ζa ◦ S).

The second equality is a consequence of equation (2.10) and the medibility of the function

N , while the last equality is given by the space homogeneity of the Brownian motion. �

Now, we can describe the Poisson structure of the point process of excursions of Xa.

Theorem 9. Let (0, l]× S ∈ B(R+)× B(U). Then

N b
Xa((0, l]× S) ∼ Poisson(lη(ζs(b) ◦ s ◦ S)).

Where η is the characteristic measure of the process N0
B and s the scale function of Xa.

Proof. By Corollary 1 and Lemma 5,

N b
Xa((0, l]× S) = N

s(b)
B ((LB(H

s(a)
B , s(b)), l + LB(H

s(a)
B , s(b))]× (s ◦ S))

d
= N0

B((LB(H
s(a)
B , s(b)), l + LB(H

s(a)
B , s(b))]× ζs(b) ◦ s ◦ S).

The result follows from Theorem 8 applied to the Brownian motion. �

From this theorem, we can read the characteristic measure of the process N b
Xa in terms of

the characteristic measure of the process N0
B, both of which are known to exists thanks to

Theorem 8. Formally, we have the next corollary:

Corollary 2. The characteristic measure of the random measure N b
Xa is

η̃ := η ◦ ζs(b) ◦ s,

where η is the characteristic measure of N0
B, ζs(b) is the operator of De�nition 25 and s is

the scale function of di�usion Xa.

Proof. If we prove that η̃ is σ-�nite, then the result is straightforward from Theorems 8 and

9. As η is σ-�nite, we know that there exist sets {An}∞n=1 ∈ B(U) such that ∪∞n=1An = U

and η(An) <∞ for every n ∈ N . De�ne for n ∈ N the sets

Bn := s−1 ◦ ζ−1
s(b) ◦ An.
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Then

∪∞n=1Bn = ∪∞n=1s
−1 ◦ ζ−1

s(b) ◦ An
= s−1 ◦ ζ−1

s(b) ◦ ∪
∞
n=1An

= s−1 ◦ ζ−1
s(b) ◦ U

= U.

Finally,

η̃(Bn) = η ◦ ζs(b) ◦ s ◦ s−1 ◦ ζ−1
s(b) ◦ An

= η(An)

<∞.

�

Remark 24. Note that η̃ does not depend on the point a in which the di�usion starts.
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2.3 Some random variables

In this section, we will provide the explicit distribution of random variables regarding

the Brox di�usion, this results will be helpful in the next chapter, when an algorithm for

recovering the environment behind the path of X is given.

Proposition 4. If Hc
Xa < Hb

Xa the random variable LXa(Hb
Xa , c) has exponential distri-

bution with parameter eW (c)

2|s(c)−s(b)| . If H
c
Xa ≥ Hb

Xa then LXa(Hb
Xa , c) = 0.

Proof. When Hc
Xa ≥ Hb

Xa the process Xa reaches b before c so that it does not accumu-

lates local time at c, therefore LXa(Hb
Xa , c) = 0. For the case Hc

Xa < Hb
Xa we analyze it

in separate cases.

Case 1. b > c

LXa(Hb
Xa , c) = inf{l > 0 : N c

Xa((0, l] × U+(b)) > 0} (recall that U±(x) := {f ∈ U :

supt≥0±f(t) > x}). By Theorem 9 we have

P(LXa(Hb
Xa , c) > y) = P(N c

Xa((0, y]× U+(b)) = 0)

= e−yη◦ζs(c)◦s(U
+(b)).

As ζs(c) ◦ s(U+(b)) = U+(s(b)− s(c)), by Proposition 1

P(LXa(Hb
Xa , c) > y) = e−yη(U+(s(b)−s(c)))

= e−
y

2(s(b)−s(c)) . (2.11)

Figure 2.3: Equality ζs(c) ◦ s(U+(b)) = U+(s(b)− s(c))

Case 2. b < c

LXa(Hb
Xa , c) = inf{l > 0 : N c

Xa((0, l] × U−(−b)) > 0}. By Theorem 9, Proposition 1 and
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by the symmetry of the Brownian motion

P(LXa(Hb
Xa , c) > y) = P(N c

Xa((0, y]× U−(−b)) = 0)

= e−yη◦ζs(c)◦s(U
−(−b))

= e−yη(U−(s(c)−s(b)))

= e−yη(U+(s(c)−s(b)))

= e−y
1

2(s(c)−s(b)) . (2.12)

From (2.11) and (2.12) we have that LXa(Hb
Xa , c) has exponential distribution with pa-

rameter 1
2|s(c)−s(b)| . Applying Proposition 2, the result follows. �

Corollary 3. Let E be an exponential random variable with parameter eW (c)

2|s(c)−s(b)| and B

a Bernoulli random variable independent of E such that

P(B = 1) = 1− P(B = 0) =
s(a)− s(b)
s(c)− s(b)

.

Then, for a, b, c ∈ R and a between b and c we have

LXa(Hb
Xa , c)

d
= E ·B.

Proof. From De�nition 24 we have that

P(Hc
Xa < Hb

Xa) = Pa(Hc
X < Hb

X),

and the result follows from Proposition 4 and De�nition 16. �

Before our main result of this chapter, we will need the following de�nition.

De�nition 26. A real-valued process N = {Nt : 0 ≤ t < ∞} on a probability space

(Ω,F ,P) is called a subordinator if it has stationary, independent increments, and if almost

every path of N is nondecreasing, right-continuous, and satis�es N0 = 0.

Proposition 5. De�ne the process Yt = LXa(Γbt , c), t ≥ 0, a, b, c ∈ R. Then

(i) {Yt}t≥0 is a subordinator, in fact a compound Poisson process, and

(ii) for ζ > −eW (c)

2|s(c)−s(b)| we have

Ea[e−ζYt ] =

(
eW (c)

eW (c) + 2ζ |s(c)− s(b)|
· s(a)− s(b)
s(c)− s(b)

+
s(c)− s(a)

s(c)− s(b)

)
× exp

(
−ζteW (b)

eW (c) + 2ζ |s(c)− s(b)|

)
.
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Proof. After the process Xa reaches b for the �rst time, Yt increases on excursions at b

that reach point c during the interval [0,Γbt ]. From Proposition 3 we have that Γbt = γb
eW (b)t

,

therefore the number of such excursions is given by the random variable

N b
Xb([0, e

W (b)t]× U+(c)) when c > b,

and by

N b
Xb([0, e

W (b)t]× U−(−c)) when c < b.

From Theorem 9, both have Poisson distribution and by symmetry and Proposition 1,

they have parameter eW (b)t
2|s(c)−s(b)| .

Furthermore, the modi�ed local time at c of each of these excursions are the i.i.d. random

variables LXc(Hb, c) which by Proposition 4 have exponential distribution with parameter
eW (c)

2|s(c)−s(b)| . Thus, considering the time Xa spent on c before reaching b for the �rst time,

we can write

Yt = LXa(Hb, c) +
Rt∑
i=1

ei,

where Rt ∼ Poisson( eW (b)t
2|s(c)−s(b)|), ei ∼ exp( eW (c)

2|s(c)−s(b)|), and

LXa(Hb, c) ∼

{
exp( eW (c)

2|s(c)−s(b)|) if Hc
Xa < Hb

Xa ,

0 if Hc
Xa ≥ Hb

Xa .

Moreover, since LXa(Hb, c) only depends on the path of Xa before time Hb
Xa , by the strong

Markov property it is independent of ei, i = 1, 2, ... and Rt. Hence, for A := {Hc
Xa < Hb

Xa},
L := LXa(Hb, c) and ζ > −eW (c)

2|s(c)−s(b)| , we have

E[e−ζYt ] = E[e−ζ(L+
∑Rt
i=1 ei)]

= E[e−ζL(1A + 1Ac)]E[e−ζ
∑Rt
i=1 ei ]

=
(
E[e−ζL1A] + E[e−ζL1Ac ]

)
E[e−ζ

∑Rt
i=1 ei ]

=
(
E[e−ζL|A]P(A) + P(Ac)

)
E[e−ζ

∑Rt
i=1 ei ]

=

(
eW (c)

eW (c) + 2ζ |s(c)− s(b)|
· s(a)− s(b)
s(c)− s(b)

+
s(c)− s(a)

s(c)− s(b)

)
exp

(
−ζteW (b)

eW (c) + 2ζ |s(c)− s(b)|

)
,

where we used that L is an exponential random variable with parameter eW (c)

2|s(c)−s(b)| and

the fact that P(A) = Pa(Hc
X < Hb

X) (see De�nition 24). One can check that the process
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{Yt}t≥0 is non-decreasing, right-continuous and satis�es Y0 = 0 a.s. In addition, from

Lemma 1 we have that the Brox di�usion is recurrent, which implies that

lim
t→∞

Yt =∞ a.s.

Let us �nally see that the increments of Yt are independent and stationary. For t3 > t2 >

t1 > 0, we have that LXa(Γbt3 , c)−LXa(Γbt2 , c) and LXa(Γbt2 , c)−LXa(Γbt1 , c) depend on the

paths of {Xa
s , s ∈ [Γbt2 ,Γ

b
t3

]} and {Xa
s , s ∈ [Γbt1 ,Γ

b
t2

]}, respectively, so by the strong Markov

property Y has independent increments.

To see that Yt has stationary increments note that Yt2 − Yt1 increases at excursions at b

in [Γbt1 ,Γ
b
t2

] that reach c, that is

Yt2 − Yt1 =
R∑
i=1

ei,

where R ∼ Poisson( e
W (b)(t2−t1)
2|s(c)−s(b)| ) and ei ∼ exp( eW (c)

2|s(c)−s(b)|), therefore

E[e−ζ(Yt2−Yt1 )] = exp

(
−ζ(t2 − t1)eW (b)

eW (c) + 2ζ |s(c)− s(b)|

)
.

That is, the distribution of Yt2 − Yt1 depends only on the di�erence t2 − t1. From this we

can also conclude that {Rt, t ≥ 0} is a Poisson process. �

Corollary 4. For b = a, the Lévy measure of the process {Yt}t≥0 of Proposition 5 is given

by

σ(dy) =
eW (a)+W (c)

4 |s(c)− s(a)|2
exp

(
− eW (c)y

2 |s(c)− s(a)|

)
dy.

Proof. From [29] we have that the moment generating function of a compound Poisson

process {Xt}t≥0 is given by

E[e−ζXt ] = exp

[
−tc

∫ ∞
0

(1− e−ζx)σ(dx)

]
, for ζ ≥ 0,

where c > 0 and σ is a distribution on (0,∞) called the Lévy measure of {Xt}t≥0. Then,

for c = 1, ζ ≥ 0 and σ(dx) = eW (a)+W (c)

4|s(c)−s(a)|2 exp
(
− eW (c)x

2|s(c)−s(a)|

)
dx, we obtain

exp

[
−tc

∫ ∞
0

(1− e−ζx)σ(dx)

]
= exp

(
−ζteW (a)

eW (c) + 2ζ |s(c)− s(a)|

)
=Ea[e−ζYt ],

where the last equality is given by Proposition 5 (ii) with b = a. Thus, obtaining the

result. �
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Corollary 5. For each z ≥ 0, {LX(Γt, z)− e−W (z)t : t ≥ 0} is a martingale

Proof. By Proposition 5 (ii) with a = b = 0 and c = z we have that

E[e−ζLX(Γt,z)] = e
−ζt

eW (z)+2ζ|s(z)| ,

which implies

E[LX(Γt, z)] = e−W (z)t. (2.13)

Then for each z, LX(Γt, z)− e−W (z)t is a zero mean process with stationary independent

increments and hence a martingale. �

Remark 25. Equation (2.13) gives the expected value of the random variable LX(Γt, z).

From this equality we can see in a very intuitive and transparent way that, in average, the

Brox di�usion spends more time around a point z where the environment W has a local

minimum.



Chapter 3

Estimation of the environment from an

excursion

As we know, the Brox di�usion is a random process in a random environment. It becomes

a di�usion when such an environment is �xed i.e. for a trajectory W (ω) where W is a

two-sided Brownian motion. The aim of this chapter is to �nd the path of W (ω) from a

single path of the process X, this type of results are of great interest in many areas such

as biology or physics. In [1] an estimation of the environment is given for Sinai's walk,

which can be thought of as the discrete analogous of the Brox di�usion (see [25], [30]), in

his paper, P. Andreoletti uses properties of the local time to approximate the di�erence

of the random potential in a signi�cant interval.

Suppose that the values of a Brox di�usion path at certain times of length ∆ are known.

Let X∆ be the polygonal line going through the points {(k∆, X(k∆)) : k ∈ Z+} then, we
call X∆ the approximation by discretization of process X. In this chapter we will use the

information contained in X∆ in order to �nd a discrete function W∆ such that

lim
∆→0

W∆(t) = W (t),

in some sense, for each t ∈ {k∆ : k ∈ Z+}. Where W is the �xed environment behind the

path of X.

In the �rst section of this chapter we assume that the path of X∆ is known for every

t ∈ {k∆ : k ∈ Z+} and we use an ergodic result from [16] in order to �nd such function

W∆ up to a constant factor. We then give a corollary that allows us to approximate the

value of the constant that was left unknown.

35



36 CHAPTER 3. ESTIMATION OF THE ENVIRONMENT FROM AN EXCURSION

In the second section we work with the assumption that the values of X∆ are known for

a �nite number of points. We then apply the probabilistic results obtained in Chapter

2, more precisely Proposition 5, to learn the distribution of random variables concerning

the local time of X, these random variables have parameters that depend on the values

of the environment. Then we use a statistical approach, understanding that the values of

X∆ are in fact random samples of these variables, we give a con�dence interval for the

parameters, i.e. for the value of the environment at a �xed point.
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3.1 Algorithm using an Ergodic theorem

3.1.1 Introduction

The �rst (and most important) component of this �rst approach for approximating the

environment from a Brox di�usion path is a direct consequence of the next theorem. This

ergodic theorem yields the long-term behavior of the ratio of two local time integrals, each

of them with respect to non-negative measures π1 and π2. As we will see, when these

measures take a particular form, a result is obtained which will be fundamental for our

purposes.

Theorem 10 ([16] p.228). Let X be a recurrent di�usion with state space I and local time

LX , de�ne the local time integral

Πi(t) =

∫
I

LX(t, x)πi(dx), i = 1, 2,

for non-negative measures π1 and π2. Then

P
[
lim
t↑∞

Π1(t)

Π2(t)
=
π1(I)

π2(I)

]
= 1 in case 0 < π2(I) <∞. (3.1)

Corollary 6. Let X be as in Theorem 10, then a special case of (3.1) is

lim
t↑∞

ΓX(t, A)

ΓX(t, B)
=
m(A)

m(B)
, (3.2)

where ΓX is the occupation time of di�usion X, 0 < m(B) <∞ and A,B ∈ B(I).

Proof. Fix A,B ∈ B(I) with 0 < m(B) < ∞. Recalling equation 1.10 of section 1.5,

namely that

ΓX(t, A) =

∫
A

LX(t, x)m(dx), 0 ≤ t <∞,

the proof follows by taking π1(C) :=
∫
C
1A(x)m(dx) and π2(C) :=

∫
C
1B(x)m(dx) for

C ∈ B(I). �

As we mentioned in the introduction, we will use this result as a tool to approximate the

environment of a Brox di�usion path. Corollary 6 shows us how to compute the speed

measure from the path of a di�usion up to a constant factor [16], this is very important in

our case since for the Brox di�usion, the speed measure is a function of the environment

W . Before we can give any such approximation we have to deal with the problem of

�nding an approximation of the occupation time ΓX of the di�usion by some function of
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the discretization X∆ of X.

To solve this problem we follow the idea in [24]. In his paper H. Ngo presents an ap-

proximation of the occupation time for Itô di�usions that satisfy certain conditions on

the coe�cients σ and b, assuming a discrete sample data {Xk∆, 0 ≤ k ≤ t/∆}. As the

Brox di�usion does not satisfy the assumptions given in [24], these results can not be

applied directly, instead we prove that the same approximation for the occupation time of

the Brox di�usion holds for closed intervals of the form [a, b]. This assumption, although

restrictive, will be su�cient for our purposes.

Proposition 6. For each closed interval [a, b] a, b ∈ R and a < b, let us de�ne the

following estimator of the occupation time of the Brox di�usion

ΓX∆
(t, [a, b]) = ∆

bt/∆c∑
k=0

1[a,b](Xk∆),

where bxc denotes the integer part of x. Then,

ΓX∆
(t, [a, b])

a.s.−→ ΓX(t, [a, b])

as ∆→ 0 for any t > 0.

Proof. From the de�nition of the integral for simple functions and applying Fatou's lemma

we have that

lim sup
∆→0

∆

bt/∆c∑
k=0

1[a,b](Xk∆) = lim sup
∆→0

∫ t

0

1[a,b](Xbs/∆c∆)ds

≤
∫ t

0

lim sup
∆→0

1[a,b](Xbs/∆c∆)ds

≤
∫ t

0

1[a,b](Xs)ds

= ΓX(t, [a, b]) a.s. (3.3)

Where the last inequality is a consequence of the continuity of X and from the fact that

[a, b] is closed (i.e. contains all its limit points). Analogously, we can prove that

lim inf
∆→0

∆

bt/∆c∑
k=0

1[a,b](Xk∆) ≥ ΓX(t, [a, b]) a.s. (3.4)

Finally, equations 3.3 and 3.4 yield the result. �
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Proposition 7. Let X be the Brox di�usion with speed measure m and occupation measure

ΓX . Fix a ≤ b and c < d, a, b, c, d ∈ R then,

lim
t↑∞

lim
∆→0

ΓX∆
(t, [a, b])

ΓX∆
(t, [c, d])

=
m([a, b])

m([c, d])
a.s.

Proof. As X is recurrent, for t large enough we will have ΓX∆
(t, [c, d]) > 0, therefore

lim
∆→0

ΓX∆
(t, [a, b])

ΓX∆
(t, [c, d])

=
lim∆→0 ΓX∆

(t, [a, b])

lim∆→0 ΓX∆
([c, d])

=
ΓX(t, [a, b])

ΓX(t, [c, d])
a.s. (3.5)

Note that from the form of m (equation 2.2), we have that m([c, d]) is positive for all

c < d, applying limt↑∞ on both sides of 3.5 and from Corollary 6, the result follows. �

3.1.2 Algorithm

Now that we have a convergence of functions of the path X∆ to the ratio of speed measures

of the Brox di�usion, we can use this knowledge to give an approximation (up to a constant

factor) for the environment.

Theorem 11. For a given path X∆ of the Brox di�usion X and �xed c, d, y ∈ R with

c < d, the following approximation of the value of the environment W at y holds.

For y ≥ 0,

lim
ε→0

lim
t↑∞

lim
∆→0

ΓX∆
(t, [0, y + ε])− ΓX∆

(t, [0, y])

ε · ΓX∆
(t, [c, d])

=
e−W (y)

m([c, d])
a.s.

And for y < 0,

lim
ε→0

lim
t↑∞

lim
∆→0

ΓX∆
(t, [y, 0])− ΓX∆

(t, [y + ε, 0])

ε · ΓX∆
(t, [c, d])

=
e−W (y)

m([c, d])
a.s.

Proof. Fix y ≥ 0, from the previous proposition we have that

lim
t↑∞

lim
∆→0

ΓX∆
(t, [0, y + ε])− ΓX∆

(t, [0, y])

ΓX∆
(t, [c, d])

=
m([0, y + ε])−m([0, y])

m([c, d])

=
m((y, y + ε])

m([c, d])
a.s.
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Taking the limit when ε→ 0 and diving by ε we get that

lim
ε→0

lim
t↑∞

lim
∆→0

ΓX∆
(t, [0, y + ε])− ΓX∆

(t, [0, y])

ε · ΓX∆
(t, [c, d])

= lim
ε→0

m((y, y + ε])/ε

m([c, d])

=
ṁ(y)

m([c, d])

=
e−W (y)

m([c, d])
a.s.

And the result follows for y ≥ 0. For y < 0, the result can be obtained analogously. �

Towards the idea of approximating the unknown constant m([c, d]) of Theorem 11, we

have the next corollary.

Corollary 7. Under the assumptions of Theorem 11, we have that

lim
ε→0

lim
t↑∞

lim
∆→0

ε · ΓX∆
(t, [c, d])

ΓX∆
(t, [0, ε])

= m([c, d]) a.s.

Proof. The result is a direct consequence of Theorem 11 with y = 0 and the fact that

W (0) = 0 a.s. �

3.1.3 R code

Code in R for the approximation of the environment with the algorithm of section 3.1.

1 #Set v a r i a b l e s

2 ep s i l on1 <= round ( sq r t ( e p s i l o n ) ,3 ) #ep s i l o n i s the s tep s i z e o f X

3 #[ kmin , kmax ] are the va lue s to be approximated

4 kmin <= abs ( round_any (min (X) / 2 , eps i l on1 , f l o o r ) / ep s i l on1 )

5 kmax <= round_any (max(X) / 2 , eps i l on1 , f l o o r ) / ep s i l on1

6

7 #Number o f po in t s in s e t B=[0 ,k* ep s i l on1 ]

8 MedB <= c ( 1 : ( kmax+1) )

9 f o r ( k in 1 : ( kmax+1) )

10 {

11 j 2 <= 0

12 f o r ( i in 1 : (Tnew/ ep s i l o n+1) )

13 {

14 i f (X[ i ]<=k* ep s i l on1 & 0<=X[ i ] )

15 {

16 j 2 <= j 2+1

17 }

18 }
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19 MedB[ k ] <= j 2

20 }

21 #Number o f po in t s in s e t D=[=k* eps i l on , 0 ]

22 MedD <= c ( 1 : kmin )

23 f o r ( k in 1 : ( kmin ) )

24 {

25 h2 <= 0

26 f o r ( i in 1 : (Tnew/ ep s i l o n+1) )

27 {

28 i f (X[ i ]<=0 & =k* eps i l on1<=X[ i ] )

29 {

30 h2 <= h2+1

31 }

32 }

33 MedD[ k ] <= h2

34 }

35 #Approximation o f the environment non=negat ive part

36 WEst1 <= c ( 1 : ( l ength (MedB) ) )

37 WEst1 [ 1 ] <= 0

38 f o r ( i in 2 : l ength (MedB) )

39 {

40 i f (MedB[ i ]=MedB[ i =1]>0)

41 {

42 WEst1 [ i ] <= =l og ( (MedB[ i ]=MedB[ i =1]) / ( ep s i l on1 *MedB[ l ength (MedB) ] ) )

43 }

44 i f (MedB[ i ]=MedB[ i =1]==0)

45 {

46 WEst1 [ i ] <= WEst1 [ i =1]

47 }

48 }

49 #Approximation o f the environment negat ive part

50 WEst2 <= c ( 1 : ( l ength (MedD) ) )

51 WEst2 [ 1 ] <= =l og (MedD[ 1 ] / ( ep s i l on1 *MedB[ l ength (MedB) ] ) )

52 f o r ( i in 2 : l ength (MedD) )

53 {

54 i f ( (MedD[ i ]=MedD[ i =1])>0)

55 {

56 WEst2 [ i ] <= =l og ( (MedD[ i ]=MedD[ i =1]) / ( ep s i l on1 *MedB[ l ength (MedB) ] ) )

57 }

58 i f ( (MedD[ i ]=MedD[ i =1])==0)

59 {

60 WEst2 [ i ] <= WEst2 [ i =1]

61 }
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62 }

63 #Join p o s i t i v e and negat ive par t s

64 WEst2 <= rev (WEst2)

65 WEst <= c ( 1 : ( l ength (WEst2)+length (WEst1) ) )

66 WEst <= c (WEst2 ,WEst1)

67 e j ex <= c ( 1 : ( l ength (WEst) ) )

68 e j ex <= seq ((=kmin ) * eps i l on1 , kmax* eps i l on1 , by=ep s i l on1 )

69 TrueW <= c ( 1 : l ength (WEst) ) #True va lue s o f environment ( i f known)

70 f o r ( i in 1 : l ength (WEst) )

71 {

72 TrueW[ i ] <= W[T/ de l t a+1+e j ex [ i ] / d e l t a ] #de l t a i s the s tep s i z e o f W

73 }

74

75 #Plot o f the path o f W and the approximation

76 p lo t ( e jex ,TrueW, type=" l " ,main="Approximation o f W( t ) ( Ergodic theorem ) " , xlab

="time" , xlim=c ( e j ex [ 1 ] , e j ex [ l ength (WEst) ] ) , yl im=c (min (TrueW) =1.5 ,max(

TrueW)+ 3 . 5 ) , c o l=" black " , ylab="W( t ) " )

77 g r id (nx=15,ny=15)

78 l i n e s ( e jex ,WEst , type=" l " , c o l=" red " )

79 l egend ( " top r i gh t " , l egend=c ( "Environment" , "Approximation" ) , c o l=c ( " black " , "

red " ) , l t y =1:1 , cex =0.65 , t ex t . f ont=2,bg=8)

Listing 3.1: Approximation of the environment using an Ergodic theorem

3.1.4 Simulations

The �rst step to recover an environment is to have a path of an approximation by dis-

cretization of the Brox di�usion X∆. This path was obtained with the code of Appendix

A and the following parameters:

(i) t = 15

(ii) ∆ = .001

In Figure 3.1 we see the path of X∆ (black) and the environment (red) behind the path.

In this example, the environment has a local minimum at 0.5, so that the path of X∆

spends most of its time around this minimum.
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Figure 3.1: Path of the approximation X∆ and environment W

Assuming that the value of the environment is unknown, from the path of X∆ we use the

code of section 3.1.3 in order to obtain an approximation of the value of W (y) with the

following parameters:

(i) ε = .001

(ii) t = 15

(iii) ∆ =
√
ε

(iv) y ∈ [−0.28, 1.58]

(v) c = 0

(vi) d = 1.58

The interval of the values to be approximated, i.e. [−0.28, 1.58], was chosen as the values

where the path of X∆ spends most of its time. In Figure 3.2 the approximation of the

value of the environment up to a constant factor (red) is shown. In black we have the true

value of the environment.
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Figure 3.2: Approximation of the environment up to a constant factor

Following Corollary 7, we then computed the value of

ε · ΓX∆
(t, [c, d])

ΓX∆
(t, [0, ε])

≈ 1.426

with ε, t, c and d as above. Thus, an approximation of the environment with an estimation

for the constant factor may now be given. In Figure 3.3 this approximation (red) can be

observed.
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Figure 3.3: Approximation of the environment using an Ergodic theorem
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3.2 Algorithm using Excursion theory

3.2.1 Introduction

The results of this section are achieved through the information obtained in section 2.3.

We start by stating these results for the local time LX(t, x) instead of for the modi�ed

local time. Recall that from De�nition 19, that for the Brox di�usion we have that

LX(t, a) = e−W (a)LX(t, a).

The results are given without proof since they are a direct consequence of this relationship

and the results of section 2.3.

Proposition 8. If Hc
Xa < Hb

Xa the random variable LXa(Hb, c) has exponential distribu-

tion with parameter 1
2|s(c)−s(b)| . If H

c
Xa ≥ Hb

Xa then LXa(Hb, c) = 0.

Corollary 8. Let a, c ∈ R, for each excursion of the Brox di�usion at a that reaches point

c, the local time at c are i.i.d. exponential random variables with parameter 1
2|s(c)−s(a)| .

This corollary will be very important for developing the algorithm for recovering the

environment. As the local time at c of each excursion of X form an i.i.d. collection

of random variables, we can view the path of X as samples of these variables. This

will allow us to estimate the parameter 1
2|s(c)−s(a)| , which as we know, is a function of

the environment. In order to execute this idea, we will need to approximate the local

time through the information provided by X∆. This task will be the subject of our next

subsection.

3.2.2 Approximation of local time via the number of crossings

In [3], an approximation of the local time of the Brownian motion via the number of

crossings through a certain level are found. We will use this result, together with the Itô

and McKean representation of the Brox di�usion (recall Equation 1.7), in order to obtain

an analogous result for the Brox di�usion.

De�nition 27. Let X∆ be an approximation by discretization of the Brox di�usion X,

then the number of crossing of X∆ at level u in the interval I is de�ned as

Nu
X∆

(I) = #{t ∈ I : X∆(t) = u}.

Lemma 6. Let X be the Brox di�usion, X∆ an approximation by discretization of process

X and u, t ∈ R, then
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(i) X is in u at time t (i.e. Xt = u) if and only if the corresponding Brownian motion

B is in s(u) at time T−1(t).

(ii) We have that Nu
X∆

(I) = N
s(u)
BT−1(∆)

(T−1(I)), where BT−1(∆) is the approximation by

discretization of the Brownian motion B that goes through the points

{(T−1(k∆), B(T−1(k∆))) : k ∈ Z+}.

Proof. a) The proof is straightforward from the fact that

Xt = s−1(B(T−1(t))).

b) Follows from a). �

Lemma 7. ([3] p.192) Let B be a standard Brownian motion, then the following conver-

gence holds √
π/2
√

∆Nu
B∆

(I)
prob−→
∆→0

LB(I, u),

where LB(I, u) is the local time of B at level u during the interval I.

That is,

∀ε > 0,P
(∣∣∣√π/2

√
∆Nu

B∆
(I)− LB(I, u)

∣∣∣ ≥ ε
)
−→ 0,

when ∆→ 0.

Remark 26. Lemma 7 is in fact true for Lk convergence. In this thesis, we will only need

to make use of the convergence in probability.

Notice that in Lemma 7, the approximation B∆ is de�ned on a partition of the interval I

of constant length ∆, while BT−1(∆) is de�ned on a partition of I of variable length

T−1(k∆)− T−1((k − 1)∆) for k = 1, 2, ...

However, as ∆ → 0, these two partitions are more likely to count the same number of

crossings, this is the reason behind our next conjecture.

Conjecture 1. Let BT−1(∆) be as in Lemma 6, then√
π/2
√

∆Nu
BT−1(∆)

(I)
prob−→
∆→0

LB(I, u)

The rigorous proof of this convergence is left as an open problem for future work. If

we assume Conjecture 1 to be truth, we would have the following result that states the

convergence of the count process NX∆
to the local time of the Brox di�usion.
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Conjectural Result 1. Let X∆ be an approximation by discretization of the Brox di�usion

X, then √
π/2
√

∆Nu
X∆

(I)
prob−→
∆→0

LX(I, u).

Proof. From Lemma 6 and Conjecture 1 we have that

√
π/2
√

∆Nu
X∆

(I) =
√
π/2
√

∆N
s(u)
BT−1(∆)

(T−1(I))

prob−→
∆→0

LB(T−1(I), s(u))

= LX(I, u).

�

Lemma 8. Let {Ni,∆}i=1,..,n be random variables such that Ni,∆
prob−→
∆→0

Li for i = 1, ..., n.

Then,
n∑
i=1

Ni,∆
prob−→
∆→0

n∑
i=1

Li.

Proof. Let ε > 0 be �xed. Then,

P

(∣∣∣∣∣
n∑
i=1

Ni,∆ −
n∑
i=1

Li

∣∣∣∣∣ ≥ ε

)
≤ P (|N1,∆ − L1| ≥ ε/n ∪ |N2,∆ − L2| ≥ ε/n ∪ ... ∪ |Nn,∆ − Ln| ≥ ε/n)

≤
n∑
i=1

P (|Ni,∆ − Li| ≥ ε/n)

→ 0.

�

3.2.3 Algorithm

Lemma 9. Fix c ∈ R and consider the sequence {Xm := m
2
LXc+1/m(Hc, c + 1/m)}m≥1 of

random variables. Then

Xm
dist−→
m→∞

X,

where X is an exponential random variable with parameter e−W (c).
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Proof. From Proposition 8 we have that LXc+1/m(Hc, c+ 1/m) ∼ exp
(

1
2|s(c+1/m)−s(c)|

)
. So

that for each m = 1, 2, ... the random variable Xm ∼ exp
(

1/m
|s(c+1/m)−s(c)|

)
. Then

lim
m→∞

P(Xm ≤ x) = lim
m→∞

(1− e−
1/m

|s(c+1/m)−s(c)|x)

= 1− e−x limm→∞
1/m

|s(c+1/m)−s(c)|

= 1− e−
x

s′(c)

= 1− e−xe−W (c)

= P(X ≤ x).

From the Portmanteau lemma, the result follows. �

The next lemma is a well-known result of probability that gives a relation between an i.i.d.

collection of exponential random variables and the chi-square distribution. In general,

con�dence intervals are obtained by �nding pivots, which are functions of the data and

of the parameter of interest and whose distribution do not depend on the parameter (see

[10]). This lemma provides a pivot for a random sample of exponential distributions,

which is what we will need in order to �nd the con�dence intervals of the environment W .

Lemma 10. Let X1, ..., Xn be independent exponential random variables with parameter

λ, then 2λ
∑n

i=1Xi follows a chi-square distribution with 2n degrees of freedom.

Conjectural Result 2. Fix c ∈ R and 0 < α < 1. Suppose we have a path X∆, which is an

approximation by discretization of process X of size ∆. Let n be the number of excursions

at c that reach point c + ε of X∆ and let Ni,∆(c, c + ε), i = 1, ..., n be the number of

crossings of level c+ ε for the process X∆ at each of these excursions, then

lim
ε→0

lim
∆→0

P

(
ln

(√
π∆
∑n

i=1Ni,∆(c, c+ ε)√
2εχ2

2n(1− α/2)

)
≤ W (c) ≤ ln

(√
π∆
∑n

i=1Ni,∆(c, c+ ε)√
2εχ2

2n(α/2)

))
= 1− α,

where χ2
2n(α/2) and χ2

2n(1−α/2) are the (α/2)×100-th and (1−α/2)×100-th percentiles

of a chi-square distribution with 2n degrees of freedom, respectively.

Proof. We will prove the approximation for c > 0, the case c < 0 can be carried out

analogously. Let T∆ := {k∆ : k ∈ Z+}, for c > 0, ε > 0 and 0 < α < 1 �xed, let the

times 0 ≤ t1 < t2 < ... < tn < T , ti ∈ T∆ be the (approximated) starting times of an

excursion at c that reaches point c+ ε of the process X∆. In other words, t1, ..., tn satisfy

the following two conditions
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(i) sign(X∆(ti −∆)− c) 6= sign(X∆(ti)− c) and

(ii) X∆(ti) ≥ c+ ε, for some t ∈ [ti, ti+1) ∩ T∆.

Now, for each i = 1, ...n and each time l ∈ [ti, ti+1)∩T∆, where tn+1 := T , let us count the

number of crossings of level c+ε of the process X∆ and call them Ni,∆(c, c+ε), i = 1, .., n.

Furthermore, if {Li(c, c + ε)}i=1,..,n are n independent copies of the random variable

LXc+ε(Hc, c+ ε). Then, from the Conjectural Result 1 we have that for each i = 1, ..., n,√
π/2
√

∆Ni,∆(c, c+ ε)
prob−→
∆→0

Li(c, c+ ε).

Multiplying by 1/2ε and from Lemma 8, we get that

1

2ε

√
π/2
√

∆
n∑
i=1

Ni,∆(c, c+ 1/m)
prob−→
∆→0

1

2ε

n∑
i=1

Li(c, c+ ε).

From Lemma 9 we also have that

1

2ε
Li(c, c+ ε)

dist−→
ε→0

Li,c i = 1, ..., n,

where {Li,c}i=1,...,n are independent exponential random variables with parameter e−W (c),

then, from the continuous mapping theorem and since convergence in probability implies

convergence in distribution, we get

1

2ε
2e−W (c)

n∑
i=1

Li(c, c+ ε)
dist−→
ε→0

2e−W (c)

n∑
i=1

Li,c.

Finally, from Lemma 10,

2e−W (c)

n∑
i=1

Li,c ∼ χ2
2n.

That is, the following identities hold

1− α = P

(
χ2

2n(α/2) ≤ 2e−W (c)

n∑
i=1

Li,c ≤ χ2
2n(1− α/2)

)

= lim
ε→0

P

(
χ2

2n(α/2) ≤ 1

2ε
2e−W (c)

n∑
i=1

Li(c, c+ ε) ≤ χ2
2n(1− α/2)

)

= lim
ε→0

lim
∆→0

P

(
χ2

2n(α/2) ≤ 1

2ε

√
π/2
√

∆2e−W (c)

n∑
i=1

Ni,∆(c, c+ ε) ≤ χ2
2n(1− α/2)

)

= lim
ε→0

lim
∆→0

P

(√
π∆
∑n

i=1Ni,∆(c, c+ ε)√
2εχ2

2n(1− α/2)
≤ eW (c) ≤

√
π∆
∑n

i=1 Ni,∆(c, c+ ε)√
2εχ2

2n(α/2)

)
,

applying logarithm, the result follows. �
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This result gives us a con�dence interval for the value of the environment at some �xed

c when ε,∆ → 0. As the upper and lower con�dence interval from this theorem can

be calculated from the information provided by X∆, a construction of the approximation

of the environment follows. The proof of this result is not yet complete, as it uses the

Conjectural Result 1 as part of its proof.

3.2.4 R code

R-code for the approximation of the environment with the algorithm using Excursion

theory

1 #Set v a r i a b l e s

2 ep s i l on1 <= round_any ( sq r t ( e p s i l o n ) , ep s i l on , f l o o r ) #step s i z e o f po in t s to

be approximated , r e c a l l that ep s i l o n i s the s tep s i z e o f X

3 Cmin <= round_any (min (X) / 2 , eps i l on1 , f l o o r ) #minimum value to approximate

4 Cmax <= round_any (max(X) / 2 , eps i l on1 , f l o o r ) #maximum value to approximate

5 vectordec <= seq (Cmin ,Cmax, by=ep s i l on1 ) #i n t e r v a l to be approximated

6 Waproxsup <= rep (0 , l ength ( vectordec ) ) #upper approximation o f W

7 Waproxinf <= rep (0 , l ength ( vectordec ) ) #lower approximation o f W

8 TrueW <= rep (0 , l ength ( vectordec ) ) #true value o f W ( i f known)

9 a l f a <= 0 .05 #con f idence l e v e l

10

11 f o r ( j in 1 : l ength ( vectordec ) )

12 {

13 Xinic <= vectordec [ j ] #Excurs ions o f X at Xinic

14 #Dis t i ngu i sh i f po in t s o f X are above or below Xinic

15 s i gno <= rep (0 , l ength (X) )

16 i f ( s i gn ( Xin ic ) != 0) #case Xinic not zero

17 {

18 f o r ( i in 1 : l ength (X) )

19 {

20 i f (X[ i ]<Xinic )

21 {

22 s i gno [ i ] <= =1

23 }

24 i f (X[ i ]>Xinic )

25 {

26 s i gno [ i ] <= 1

27 }

28 }

29 #t0 i s the f i r s t time X reaches l e v e l Xin ic

30 t0 <= 1
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31 i f ( s i gn ( Xin ic )>0)

32 {

33 whi le ( s i gno [ t0 ]<0)

34 {

35 t0 <= t0+1

36 }

37 }

38 i f ( s i gn ( Xin ic )<0)

39 {

40 whi le ( s i gno [ t0 ]>0)

41 {

42 t0 <= t0+1

43 }

44 }

45 #Number o f ex cu r s i on s o f X from Xinic

46 NumExc <= 0

47 f o r ( i in t0 : ( l ength (X)=1) )

48 {

49 i f ( s i gno [ i ] != s igno [ i +1])

50 {

51 NumExc <= NumExc+1

52 }

53 }

54 i f (NumExc>1)

55 {

56 t f i n a l <= rep (1 ,NumExc)

57 #Fi r s t excur s i on

58 k <= t0

59 whi le ( s i gno [ k ] == s igno [ k+1])

60 {

61 k <= k+1

62 }

63 t f i n a l [ 1 ]<= k

64 #From second excur s i on to l a s t excur s i on

65 f o r ( i in 2 :NumExc)

66 {

67 h <= t f i n a l [ i =1]+1

68 whi le ( s i gno [ h ] == s igno [ h+1])

69 {

70 h<=h+1

71 }

72 t f i n a l [ i ]<=h

73 }
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74 #Count number o f ex cu r s i on s that reach l e v e l vec tordec [ j +1]

75 i f ( j<length ( vectordec ) ) #case Xinic < Cmax

76 {

77 c <= vectordec [ j +1]

78 }

79 i f ( j==length ( vectordec ) ) #case Xinic = Cmax

80 {

81 c <= vectordec [ j ]+ ep s i l on1

82 }

83 NumCruces <= rep (0 ,NumExc)

84 i f ( s i gn ( c )>=0)

85 {

86 #Fi r s t excur s i on

87 estado <= rep (0 , t f i n a l [1]= t0+1)

88 f o r ( i in 1 : ( t f i n a l [1]= t0+1) )

89 {

90 i f (X[ i+t0=1] >= c )

91 {

92 estado [ i ] <= 1

93 }

94 i f (X[ i+t0=1] < c )

95 {

96 estado [ i ] <= 0

97 }

98 }

99 #Count number o f c r o s s i n g s ( i . e . number o f changes in vec to r estado )

100 i f ( t f i n a l [1]= t0 >1)

101 {

102 f o r ( k in 1 : ( t f i n a l [1]= t0 ) )

103 {

104 i f ( estado [ k ] != estado [ k+1])

105 {

106 NumCruces [ 1 ] <= NumCruces [1 ]+1

107 }

108 }

109 }

110 #I f the excur s i on ends in a value over c , the re i s one more c r o s s i n g

111 i f ( estado [ t f i n a l [1]= t0+1]>0)

112 {

113 NumCruces [ 1 ] <= NumCruces [1 ]+1

114 }

115 #I f the excur s i on s t a r t ed below c and i t reached c , an extra

c r o s s i n g was counted
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116 i f (NumCruces [1 ] >0)

117 {

118 i f ( estado [1]==0)

119 {

120 NumCruces [ 1 ] <= NumCruces [ 1 ] =1

121 }

122 }

123 #From second excur s i on to l a s t excur s i on

124 f o r (h in 2 :NumExc)

125 {

126 i f ( t f i n a l [ h]= t f i n a l [ h=1]==1)

127 {

128 i f (X[ t f i n a l [ h]]>=c )

129 {

130 NumCruces [ h ] <= 1

131 }

132 }

133 i f ( t f i n a l [ h]= t f i n a l [ h=1]>1)

134 {

135 estado <= rep (0 , t f i n a l [ h]= t f i n a l [ h=1])

136 f o r ( i in ( t f i n a l [ h=1]+1) : t f i n a l [ h ] )

137 {

138 i f (X[ i ] >= c )

139 {

140 estado [ i=t f i n a l [ h=1] ] <= 1

141 }

142 i f (X[ i ] < c )

143 {

144 estado [ i=t f i n a l [ h=1] ] <= 0

145 }

146 }

147 i f ( estado [ t f i n a l [ h]= t f i n a l [ h=1]]>0)

148 {

149 NumCruces [ h ] <= NumCruces [ h]+1

150 }

151 f o r ( k in 1 : ( t f i n a l [ h]= t f i n a l [ h=1]=1) )

152 {

153 i f ( estado [ k ] != estado [ k+1])

154 {

155 NumCruces [ h ] <= NumCruces [ h]+1

156 }

157 }

158 i f (NumCruces [ h]>0)
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159 {

160 i f ( estado [1]==0)

161 {

162 NumCruces [ h ] <= NumCruces [ h]=1

163 }

164 }

165 }

166 }

167 }

168 i f ( s i gn ( c )<0)

169 {

170 #Fi r s t excur s i on

171 estado <= rep (0 , t f i n a l [1]= t0+1)

172 f o r ( i in 1 : ( t f i n a l [1]= t0+1) )

173 {

174 i f (X[ i+t0=1] <= c )

175 {

176 estado [ i ] <= 1

177 }

178 i f (X[ i+t0=1] > c )

179 {

180 estado [ i ] <= 0

181 }

182 }

183 #Count the number o f c r o s s i n g s

184 i f ( t f i n a l [1]= t0 >1)

185 {

186 f o r ( k in 1 : ( t f i n a l [1]= t0 ) )

187 {

188 i f ( estado [ k ] != estado [ k+1])

189 {

190 NumCruces [ 1 ] <= NumCruces [1 ]+1

191 }

192 }

193 }

194 #I f the excur s i on end below c , i t c r o s s e s one more time

195 i f ( estado [ t f i n a l [1]= t0+1]>0)

196 {

197 NumCruces [ 1 ] <= NumCruces [1 ]+1

198 }

199 #I f the excur s i on s t a r t ed above c and i t reached c , an extra

c r o s s i n g was counted

200 i f (NumCruces [1 ] >0)
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201 {

202 i f ( estado [1]==0)

203 {

204 NumCruces [ 1 ] <= NumCruces [ 1 ] =1

205 }

206 }

207 #Second excur s i on to l a s t excur s i on

208 f o r (h in 2 :NumExc)

209 {

210 i f ( t f i n a l [ h]= t f i n a l [ h=1]==1)

211 {

212 i f (X[ t f i n a l [ h]]<=c )

213 {

214 NumCruces [ h ] <= 1

215 }

216 }

217 i f ( t f i n a l [ h]= t f i n a l [ h=1]>1)

218 {

219 estado <= rep (0 , t f i n a l [ h]= t f i n a l [ h=1])

220 f o r ( i in ( t f i n a l [ h=1]+1) : t f i n a l [ h ] )

221 {

222 i f (X[ i ] <= c )

223 {

224 estado [ i=t f i n a l [ h=1] ] <= 1

225 }

226 i f (X[ i ] > c )

227 {

228 estado [ i=t f i n a l [ h=1] ] <= 0

229 }

230 }

231 i f ( estado [ t f i n a l [ h]= t f i n a l [ h=1]]>0)

232 {

233 NumCruces [ h ] <= NumCruces [ h]+1

234 }

235 f o r ( k in 1 : ( t f i n a l [ h]= t f i n a l [ h=1]=1) )

236 {

237 i f ( estado [ k ] != estado [ k+1])

238 {

239 NumCruces [ h ] <= NumCruces [ h]+1

240 }

241 }

242 i f (NumCruces [ h]>0)

243 {



3.2. ALGORITHM USING EXCURSION THEORY 57

244 i f ( estado [1]==0)

245 {

246 NumCruces [ h ] <= NumCruces [ h]=1

247 }

248 }

249 }

250 }

251 }

252 #Number o f ex cu r s i one s that reached c

253 m <= 0

254 f o r ( i in 1 :NumExc)

255 {

256 i f (NumCruces [ i ]>0)

257 {

258 m <= m+1

259 }

260 }

261 #Transform number o f c r o s s i n g s in to l o c a l time

262 NumCruces <= NumCruces* s q r t ( p i / 2) * s q r t ( ep s i l on1 )

263 #Approximation o f the va lue s o f W

264 i f (m>0)

265 {

266 Waproxinf [ j ] <= l og ( (1 / ep s i l on1 ) *sum(NumCruces [ 1 :NumExc ] ) / ( qch i sq (1=

a l f a / 2 , df=2*m) ) )

267 Waproxsup [ j ] <= l og ( (1 / ep s i l on1 ) *sum(NumCruces [ 1 :NumExc ] ) / ( qch i sq (

a l f a / 2 , df=2*m) ) )

268 }

269 i f (m==0)

270 {

271 Waproxinf [ j ] <= 0

272 Waproxsup [ j ] <= 0

273 }

274 }

275 i f ( s i gn ( Xin ic ) == 0) #Environment W s t a r t s at zero

276 {

277 Waproxinf [ j ] <= 0

278 Waproxsup [ j ] <= 0

279 }

280 }

281 i f (NumExc <= 1)

282 {

283 i f ( j == 1) #Xinic=Cmin

284 {
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285 Waproxinf [ j ] <= 0

286 Waproxsup [ j ] <= 0

287 }

288 i f ( j != 1)

289 {

290 Waproxinf [ j ] <= Waproxinf [ j =1]

291 Waproxsup [ j ] <= Waproxsup [ j =1]

292 }

293 }

294 TrueW[ j ] <= W[T/ de l t a+1+Xinic / de l t a ]

295 }

296 #Plot o f the approximation o f the environment and i t s t rue value

297 p lo t ( vectordec ,TrueW, type=" l " , ylim=c (min (TrueW) ,max(Waproxsup ) +.5) , xlab="

time" , ylab="W( t ) " ,main="Approximation o f W( t ) ( Excurs ion theory ) " )

298 g r id (nx=15,ny=15)

299 l i n e s ( vectordec ,TrueW)

300 l i n e s ( vectordec , Waproxinf , type=" l " , c o l="blue " )

301 l i n e s ( vectordec ,Waproxsup , type=" l " , c o l=" red " )

302 l egend ( " top r i gh t " , l egend=c ( "Environment" , "Upper band 95%" , "Lower band 95%" )

, c o l=c ( " black " , " red " , " blue " ) , l t y =1:1 , cex =0.65 , t ex t . f ont=2,bg=8)

Listing 3.2: Approximation of the environment using Excursion theory

3.2.5 Simulations

First, the path of an approximation by discretization of the Brox di�usionX∆ was obtained

with the code of Appendix A and the following parameters:

(i) t = 15

(ii) ∆ = .001

In Figure 3.4 we see the path of X∆ (black) and the environment (red) behind the path.

In this example, the environment has a local minimum at −0.1, so that the path of X∆

spends most of its time around this minimum.
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Figure 3.4: Path of the approximation X∆ and environment W

Assuming that the value of the environment is unknown, from the path of X∆ we use the

code of section 3.2.4 in order to obtain an approximation of the value of W (y) with the

following parameters:

(i) ∆ = .001

(ii) ε =
√

∆

(iii) α = .05

(iv) c ∈ [−0.86, 1.28]

The interval of the values to be approximated, i.e. [−0.86, 1.28], was chosen as the values

where the path of X∆ spends most of its time. In Figure 3.5 the upper (red) and lower

(blue) bands with con�dence level α is shown. In black we have the true value of the

environment.
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Figure 3.5: Upper and lower bands for the value of W



Appendix A

R-code Brox di�usion

R-code to obtain the path of a Brox di�usion X from a path of the Brownian motion B

and a path of the two-sided Brownian motion W (environment) through Itô and McKean's

representation of di�usions

Xt = s−1(B(T−1(t))).

1 #Load l i b r a r i e s

2 l i b r a r y ( sde )

3 l i b r a r y ( p ly r )

4

5 ##Set v a r i a b l e s

6 T <= 15 #time frame

7 de l t a <= . 001 #step s i z e f o r W

8 ep s i l o n <= . 001 #step s i z e f o r X

9 W1 <= c ( 1 : (T/ de l t a+1) ) #po s i t i v e part o f W

10 W2 <= c ( 1 : (T/ de l t a+1) )

11 W3 <= c ( 1 : (T/ de l t a ) ) #negat ive part o f W

12 W <= c ( 1 : ( ( 2 *T/ de l t a )+1) ) #environment

13 ExpW <= c ( 1 : ( ( 2 *T/ de l t a )+1) ) #exponent i a l o f environment

14 B <= c ( 1 : (T/ de l t a+1) ) #Brownian motion B

15 Spos <= c ( 1 : (T/ de l t a ) ) #po s i t i v e part o f s c a l e func t i on

16 Sneg <= c ( 1 : (T/ de l t a ) ) #negat ive part o f s c a l e func t i on

17 S <= c ( 1 : ( 2 *T/ de l t a+1) ) #s c a l e func t i on

18 SinvB <= c ( 1 : (T/ ep s i l o n+1) ) #inv e r s e o f s c a l e func t i on

19 G <= c ( 1 : (T/ ep s i l o n+1) ) #au x i l i a r func t i on

20 A <= c ( 1 : (T/ ep s i l o n ) ) #time=change func t i on

21 y <= seq(=T,T, by=de l t a ) #x=ax i s f o r W and S

22 h <= seq (0 ,T, by=ep s i l o n ) #x=ax i s f o r B and X

23

24 #Path o f Brownian motion B

61
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25 B <= BM(x=0, t0=0, T=T, N=T/ de l t a )

26

27 #Path o f two=s ided Brownian motion W

28 W1 <= BM(x=0, t0=0, T=T, N=T/ de l t a ) #po s i t i v e part

29 W2 <= BM(x=0, t0=0, T=T, N=T/ de l t a ) #negat ive part

30 W3 <= W2[=(1) ] #de l e t e W2[1]=0

31 W3 <= rev (W3) #r ev e r t s vec to r W3

32 W<= c (W3,W1) #j o i n s W3 with W1 to form W

33

34 #Exponent ia l o f environment W

35 ExpW <= exp (W)

36

37 #Riemann=i n t e g r a l o f vec to r ExpW

38 f o r ( i in 1 : (T/ de l t a ) )

39 {

40 Spos [ i ] <= sum(ExpW[ (T/ de l t a+1) : (T/ de l t a+i ) ] ) * de l t a

41 }

42 f o r ( i in 1 : (T/ de l t a ) )

43 {

44 Sneg [ i ] <= =sum(ExpW[ i : (T/ de l t a ) ] ) * de l t a

45 }

46 S <= c ( Sneg , 0 , Spos ) #j o i n s Sneg and Spos and adds value s (0 )=0

47

48 #Compare maximum and minimum of S and B to ensure that the i nv e r s e o f S

e x i s t s

49 max(S)

50 min(S)

51 max(B) #max(S) must be g r e a t e r or equal to max(B)

52 min(B) #min (S) must be l e s s or equal to min (B)

53

54 #Point in S where the minimum of B i s reached

55 i <= 1

56 whi le (S [ i ] < min (B) ) { i <= i+1 }

57 MinS <= i

58

59 #Compute vec to r S^{=1}(Bu)

60 f o r ( i in 1 : (T/ ep s i l o n+1) )

61 {

62 i f (B [ ( i =1)* ep s i l o n / de l t a +1]<0) #case B(u) negat ive

63 {

64 j <= MinS=1 #s t a r t from MinS=1

65 whi le (S [ j ] <= B[ ( i =1)* ep s i l o n / de l t a +1])

66 {
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67 j <= j+1

68 }

69 SinvB [ i ] <= j

70 }

71 i f (B [ ( i =1)* ep s i l o n / de l t a +1]>0) #case B(u) p o s i t i v e

72 {

73 j <= T/ de l t a+1 #S i s p o s i t i v e from T/ de l t a+1

74 whi le (S [ j ] <= B[ ( i =1)* ep s i l o n / de l t a +1])

75 {

76 j <= j+1

77 }

78 SinvB [ i ] <= j

79 }

80 i f (B [ ( i =1)* ep s i l o n / de l t a+1]==0) #case B(u)=0

81 {

82 SinvB [ i ] <= T/ de l t a+1 #S^{=1}(0)=0

83 }

84 }

85

86 #Riemann=i n t e g r a l o f f unc t i on e^{=2W(S^=1(Bu) ) }

87 #Function A( t ) i s the time=change func t i on T( t ) o f the t h e s i s

88 G <= exp(=2*W[ SinvB ] )

89 f o r ( i in 1 : (T/ ep s i l o n+1) ) { A[ i ] <= sum(G[ 1 : i ] ) * ep s i l o n }

90

91 #Function A must take va lue s g r e a t e r than the time frame T at some point in

order f o r the i nv e r s e o f A to e x i s t

92 Tnew <= min( round_any (max(A) , ep s i l on , f l o o r ) ,T)

93

94 #Set v a r i a b l e s with new time frame Tnew

95 x <= seq (0 ,Tnew , by=ep s i l o n )

96 Ainv <= c ( 1 : (Tnew/ ep s i l o n+1) )

97 BAinv <= c ( 1 : (Tnew/ ep s i l o n+1) )

98 X <= c ( 1 : (Tnew/ ep s i l o n+1) )

99

100 #Compute i nv e r s e o f A

101 f o r ( i in 1 : (Tnew/ ep s i l o n+1) )

102 {

103 j <= 1

104 whi le (A[ j ] <= ep s i l o n * ( i =1) )

105 {

106 j <= j+1

107 }

108 Ainv [ i ] <= j
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109 }

110

111 #Evaluate Ainv in Brownian motion B

112 BAinv <= B[ Ainv ]

113

114 #Point in S where the minimum of BAinv i s reached

115 i <= 1

116 whi le (S [ i ]<min (BAinv) ) { i<= i+1 }

117 MinBAinv <= i

118

119 #Compute func t i on S^{=1}(B(A^{=1}( t ) ) which g i v e s r i s e to the path o f X

120 j <= MinBAinv=1

121 f o r ( i in 1 : (Tnew/ ep s i l o n+1) )

122 {

123 whi le (S [ j ] <= BAinv [ i ] )

124 {

125 j <= j+1

126 }

127 X[ i ] <= de l t a * ( ( j=1)=(T/ de l t a+1) )

128 j <= MinBAinv=1

129 }

130

131 #Plot o f the Brox d i f f u s i o n X and environment W

132 p lo t (W, y , type=" l " , c o l=" red " , xlab="time" , ylab="X( t ) " , xl im=c (min (W)+.5 ,Tnew

+.5) , yl im=c (min (X) =.7 ,max(X) +1.5) ,main="Brox d i f f u s i o n " )

133 g r id (nx=15,ny=15)

134 l i n e s (x ,X, type=" l " , c o l=" black " )

135 l i n e s (W, y , c o l=" red " )

136 l egend ( " top r i gh t " , l egend=c ( "Environment" , "Brox d i f f u s i o n " ) , c o l=c ( " red " , "

black " ) , l t y =1:1 , cex =0.65 , t ex t . f ont=1,bg=8)

Listing A.1: Approximation of a Brox di�usion path
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