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Resumen
En esta tesis se construye una representación en series de Neumann de funciones de
Bessel (representación NSBF) para soluciones regulares de ecuaciones diferenciales lineales
ordinarias de orden n, n � 2. Inicialmente, siguiendo a [35], por medio de una extensión
del kernel de transmutación, se obtiene la representación NSBF para una solución regular
u (!; x) de la ecuación de Bessel perturbada de la forma

�u00 +
�
l (l + 1)

x2
+ q

�
u = !2u; x 2 (0; 1] ; ! 2 C;

donde l � �1
2
y q es una función compleja continua de variable real en [0; 1]. Se demues-

tra que es una serie uniformemente convergente con respecto al parámetro espectral !
sobre un subconjunto �nito del plano complejo de la variable !. Además, se demuestra
que la suma parcial de la representación NSBF aproxima uniformente a la solución u y
admite una estimación independiente de ! para todo ! tal que jIm!j � C; C � 0. Los
resultados están basados en la aplicación de diferentes ideas sobre propiedades de mapeo
de operadores de transmutación y de una expansión del kernel de transmutación en series
de Fourier-Legendre.

Para el caso que involucra ecuaciones de orden superior, n > 2, se considera el siguiente
problema de Cauchy

(0.1) y(n) +
nX
k=2

pky
(n�k) = !ny;

(0.2) y (!; 0) = 1; y0 (!; 0) = !; :::; y(n�1) (!; 0) = !n�1:

donde pk; k = 2; :::; n:; son funciones de valor complejo y continuas con respecto a la
variable x en [0; b] ; b > 0. Se sabe que la solución y (!; x) del problema (0.1), (0.2)
es una función entera con respecto a ! y de tipo exponencial x; en consecuencia; esta
admite la representación integral de Polya, cuyo kernel es la transformada de Borel  de
la solución y. La representación de Polya está de�nida naturalemente sobre un contorno
C� contenido en el dominio de regularidad de la transformada de Borel . En esta tesis
se considera C� como un cuadrado centrado en el origen y con uno de sus vértices en
t1 = (x+ �) + i (x+ �) con � > 0, y se de�ne una parametrización en sentido antihorario
sobre los lados del cuadrado. Por tanto, se obtienen cuatro integrales de�nidas en el
intervalo [0; 1] ; y se expande el kernel de cada integral en series de Fourier-Legendre.

Por último, se demuestra que la solución y (!; x) para un problema de Cauchy de orden
arbitrario de la forma (0.1), (0.2) se puede representar como una suma de cuatro series de
Neumann de funciones de Bessel que convergen uniformemente con respecto a x en [0; b]
con los parámetros ! y � �jos. Se demuestra que esta representación analítica permite
resolver problemas tanto de valor inicial como de valores en la frontera, y también se
presenta una explicación sobre la importancia de buscar un valor óptimo para el parámetro
�:



Abstract
In this thesis a Neumann series of Bessel functions representation (NSBF representation)
is constructed, for regular solutions of ordinary linear di¤erential equations of order n;
n � 2. Initially, following [35], by means of an extension of the transmutation kernel, a
NSBF representation for the regular solution u (!; x) of the perturbed Bessel equation of
the form

�u00 +
�
l (l + 1)

x2
+ q (x)

�
u = !2u; x 2 (0; 1] ; ! 2 C

is obtained, where l � �1
2
and q is a continuous complex valued function on the interval

[0; 1] : The series is uniformly convergent with respect to the spectral parameter ! on a
�nite subset of complex plane of the variable !: This representation guarantees a uniform
approximation of eigendata and admits a ! � independent estimate for ! belonging to
the strip jIm!j � C; C � 0. The results are based on the application of di¤erent ideas on
mapping properties of transmutation operators and of an expansion of the transmutation
kernel into Fourier-Legendre series.

In the case of higher order equations, n > 2, the following Cauchy problem is considered

(0.3) y(n) +
nX
k=2

pky
(n�k) = !ny;

(0.4) y (!; 0) = 1; y0 (!; 0) = !; :::; y(n�1) (!; 0) = !n�1;

where pk; k = 2; :::; n:, are complex-valued continuous functions on [0; b], 0 < b < 1.
The solution y (!; x) of the problem (0.3), (0.4) is an entire function with respect to !,
and of exponential type equal to x; consequently; this solution admits the Polya integral
representation, whose kernel is the Borel transform  of the solution y. The Polya repre-
sentation is de�ned naturally on a contour C� lying entirely on the regularity domain of
the Borel transform . In this thesis C� is considered as a square centered at the origin and
with one of the vertex being t1 = (x+ �)+ i (x+ �) with � > 0, and a parametrization on
counterclockwise oriented boundary of this square is applied. Thus, four integrals, de�ned
on [0; 1] are obtained. We prove that the kernel, in each integral, admits an expansion in
Fourier-Legendre series.

Finally, we prove that the solution y (!; x) of the Cauchy problem of the form (0.3), (0.4)
can be represented as a sum of four Neumann series of Bessel functions. For parameters
! and � �xed the series converge uniformly with respect to x 2 [0; b]. We show that this
analytical representation allows us to solve problems, both initial value, as well as values
boundary value, and present an explanation on the importance of �nding an optimum
value of the parameter �:



Overview

Introduction
This dissertation is associated with the recent works on the Neumann series of Bessel
functions method for regular solutions of second order di¤erential equations, consisting in
representing the regular solutions as Neumann series of Bessel functions [34], [35].

The NSBF representations in [28], [34], and [35] were obtained for the solutions of the
Sturm-Liouville equation, and for a regular solution of the perturbed Bessel equation,
respectively. The series of Bessel functions obtained in the previous works o¤er analytical
representations of the solutions where the series converge uniformly with respect to the
spectral parameter ! on any compact subset of complex plane of the variable !: Fur-
thermore, these representations guarantee a uniform approximation of eigendata and its
partial sum admits an ! � independent error estimate which is of particular importance
for solving spectral problems.

In this thesis, a new representation for the regular solution u (!; x) of the equation

(0.5) A [u] = �d
2u

dx2
+

�
l (l + 1)

x2
+ q

�
u = !2u; l � �1

2
; x 2 (0; 1]

is obtained, where u (!; x) is normalized by the asymptotic relation u (!; x) � xl+1 when
x ! 0; and the operator A is a perturbed Bessel operator, also known as a spherical
Schrödinger operator, where the potential q is a complex valued continuous function on
[0; 1] satisfying the following condition

xq (x) 2 L1 (0; 1) ; l > �
1

2
;(0.6)

x1�"q (x) 2 L1 (0; 1) ; for some " > 0 if l = �
1

2
:

The solution u (!; x) of the equation (0.5) is represented as a Neumann series of Bessel
functions uniformly convergent with respect to ! on any compact subset of the complex
plane of the variable ! and we give two estimates which guarantee that a partial sum of
this representation approximates well the solution u (!; x) for any ! 2 C; ! 6= 0 belonging
to the strip jIm!j � C; C � 0:

This representation contains new coe¢ cients in the series coinciding with the coe¢ cients
obtained in [35] only at x = 1. The result was obtained using two principal tools. The �rst,

I



TRANSMUTATION OPERATORS, NSBF, AND LINEAR HIGHER ORDER ODE II

an extension of the transmutation kernel, and the second, an interesting mapping property
of the transmutation operators obtained in [11], which states that the transmutation
operator T maps the powers x2k+l+1 to the functions (�1)k 22kk!

�
l + 3

2

�
k
'2k; k 2 N[f0g;

where the functions '2k are called formal powers (see de�nition in [8]) and the operator T
is the transmutation operator for the pair of operators A and B where B := � d2

dx2
+ l(l+1)

x2
:

The main result that we consider is developed in this thesis, is a generalization of the
NSBF representation for solutions of Cauchy problems associated with ordinary linear
di¤erential equations of nth order of the form

(0.7) y(n) + p2y
(n�2) + :::+ pny = !ny; x 2 (0; b) ;

(0.8) y (!; 0) = 1; y0 (!; 0) = !; :::; yn�1 (!; 0) = !n�1;

where the coe¢ cients pk; k = 2; :::; n; are complex-valued continuous functions on [0; b] ;
0 < b < 1, and ! 2 C: The solution y (!; x) of the problem (0.7), (0.8) is obtained
as a sum of four Neumann series of Bessel functions. The formulas for the coe¢ cients
of the series are derived by the representation in the form of a uniformly convergent
Fourier-Legendre series of the Borel transform  of the solution y along the boundary of
a square centered at the origin that measures 2 (x+ �) , � > 0 of side and containing all
singularities of : In addition, for each �xed x and !, an estimate for the convergence
rate of the approximate solution yN (!; x) to the exact solution y (!; x) is obtained. The
results were obtained because the solution y (!; x) is an entire function with respect to !
and exponential type equal to x, which was proved in [37].
Note that the initial conditions (0.8) are su¢ cient to represent arbitrary Cauchy data for
(0.7). One can multiply ! by n roots of 1 resulting in a system of n linearly independent
solutions of (0.8).
The NSBF analytical representations obtained in this thesis are of easy numerical imple-
mentation that allows us to approximate the solution of both initial value and spectral
problems, thus several numerical applications are presented in this work.

This thesis is structured in �ve chapters. In the preliminary chapter, we present a histor-
ical summary of the method implemented in the previous papers and some de�nitions of
the terminology that are used from now on. In the second chapter, a Fourier-Legendre
series expansion of an extension of the transmutation kernel of the operator T is ob-
tained, and we prove that the regular solution u (!; x) of the perturbed Bessel equation
A [u] = !2u admits a NSBF representation. In addition, an estimate for the decay rate of
the coe¢ cients of the Neumann series of Bessel functions is also obtained in this chapter.

In Chapter 3, a NSBF representation for solutions of linear di¤erential equations of higher
order is obtained. We think that this chapter contains the most important result of this
dissertation because it presents all the theoretical development of the representation for
the solution of the Cauchy problem (0.7), (0.8); we also present as an example all the
development for the Cauchy problem for the equation of fourth order allowing us to
approach the solution of initial value and spectral problems. An example for equations
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TRANSMUTATION OPERATORS, NSBF, AND LINEAR HIGHER ORDER ODE III

of �fth order is also presented, for this case, we use a procedure based on variation
of parameters as in [37, p. 31] in order to obtain the coe¢ cients of the power series
representation in ! for the solution y (!; x).

Next in Chapter 4, we present a proof of why it is necessary to �nd an optimal value of the
parameter � in the coe¢ cients of the sums of Neumann series of Bessel functions �kn (x; �)
in order to obtain a good numerical approximation of the solution y (!; x). Finally, in
Chapter 5 the results of the previous chapters are used in order to obtain new representa-
tions for solutions of Cauchy problems of arbitrary order. For instance, we prove that the
solution y (!; x) of the problem (0.7), (0.8) can be represented as a sum of three Neumann
series of Bessel functions or as a sum of eight Neumann series of Bessel functions. The
results obtained in this dissertation are in collaboration with professors V. Kravchenko
and S. Torba. I am deeply grateful for the guidance and support during this process.

State of the Art
The Neumann series of Bessel functions

The Neumann series of Bessel functions were �rst studied by the German mathematician
C. Neumann in 1867 and are named after him. Later, L. Gegenbauer in 1877 developed
this theory. Since that date, this subject has been widely studied and used in several areas
of mathematics, such as functional analysis and di¤erential equations (see, e.g., [51], [17],
[16], [43], [2]). For a function f (z) analytic inside and on a circle of radius R with centre
at the origin, if C denotes de contour formed by this circle and if z is any point inside it,
then f (z) admits the form

z�f (z) =
1X
n=0

�nJ�+n (z) :

This series is named a Neumann series of Bessel functions [50, Chap. XVI, Sect. 16.13]
where

�n =
1

2�i

Z
C

f (t)An;� (t) dt

provided only that � is not a negative integer; An;� (t) is the Gegenbauer polynomial
de�ned in [50, Chap. IX, Sect. 9.2]. The function Jm (z) is a Bessel function of the �rst
kind of order m, de�ned as

Jm (!) =
1X
n=0

(�1)n
�
z
2

�2n+m
n!� (m+ n+ 1)

where m is supposed to be real (see, e.g., [1, Chap. 9. Formula 9.1.10], [42, Formula
10.2.2, p. 217], and [50, Chap. III. Sect. 3.7 ]).

One of the �rst works where a representation in series of Bessel functions was obtained
for a regular solution of the perturbed Bessel equation was in [16]. In [16], A. Fitouhi

III



TRANSMUTATION OPERATORS, NSBF, AND LINEAR HIGHER ORDER ODE IV

and M. Hamza (1990) proved that the series

(0.9) u! (x) =
1X
p=0

xp+
1
2Bp (x)

J�+p (!x)

!�+p

is a solution of the equation

(0.10) u00 �
�
�2 � 1

2

x2
� !2 � � (x)

�
u = 0; � > �1

2
; x 2 (0; b] ;

where � (x) is an even holomorphic function in a disc centered at the origin, and the
coe¢ cients Bp (x) satisfy the following relations

B0
0 (x) = 0;�

xp+1Bp+1 (x)
	0

= �1
2
xp
�
B00
p (x) +

1� 2�
x

B0
p (x) + � (x)Bp (x)

�
:

The spectral parameter ! is a real or complex parameter. In [12], H. Chebli, A. Fitouhi
and M. Hamza (1994) used the transmutation operators theory to obtain an expansion of
the form (0.9) for regular solutions of the equation (0.10) and proved that if � (x) is an
even holomorphic function in a disc D (0; 2R) then the series (0.9) is the unique solution
of this equation satisfying

2�� (�+ 1)u! (x) � x�+
1
2 ; x � 0+

and that this series is uniformly convergent on every subinterval
�
0;
�
1 + j1� 2�j�

1
2

�
e�1R

�
was also proved.

In [16] and [12], the NSBF representations obtained do not possess the uniformity with
respect to the spectral parameter !, and these also do not guarantee an uniform approx-
imation of eigendata.

Recently, the interest in �nding NSBF representations for solutions of di¤erential equa-
tions where a uniform approximation of eigendata is guaranteed has grown because these
representations o¤er a simple numerical method to solve spectral problems. In [28], V.
Kravchenko, L. Navarro and S. Torba (2017) proved that the solutions of the Sturm-
Liouville equation,

�y00 + q(x)y = !2y; ! 2 C;
assuming q being a complex-valued continuous function of an independent real variable
x 2 [0; b]; admit the following NSBF representations

c (!; x) = cos (!x) + 2

1X
n=0

(�1)n �2n (x) j2n (!x) ;(0.11)

s (!; x) = sin (!x) + 2
1X
n=0

(�1)n �2n+1 (x) j2n+1 (!x) ;(0.12)

IV
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where �n admit the form

�n (x) =
2n+ 1

2

 
nX
k=0

lk;n'k(x)

xk
� 1
!
;

the functions 'k(x) are the formal powers, which were obtained by the SPPS method (see,
e.g., [8]), lk;n is the corresponding coe¢ cient of xk of the Legendre polynomial of order
n; and jn stands for the spherical Bessel function of order n: The series (0.11) and (0.12)
converge uniformly with respect to x on [0; b] and converge uniformly with respect to !
on any compact subset of the complex plane of the variable !:Moreover, for the functions

cN (!; x) = cos (!x) + 2

[N=2]X
n=0

(�1)n �2n (x) j2n (!x) ;

sN (!; x) = sin (!x) + 2

[(N+1)=2]X
n=0

(�1)n �2n+1 (x) j2n+1 (!x) ;

where [a] denotes the largest integer less or equal to a the following estimates were proved

jc (!; x)� cN (!; x)j � 2 jxj "N (x) and js (!; x)� sN (!; x)j � 2 jxj "N (x) ;

for ! 2 R; ! 6= 0, and

jc (!; x)� cN (!; x)j �
2 jxj "N (x) sinh (Cx)

C

and

js (!; x)� sN (!; x)j �
2 jxj "N (x) sinh (Cx)

C
;

for ! 2 C; ! 6= 0 belonging to the strip jIm!j � C; C � 0 [28, Theorem 4.1]. "N (x) is a
su¢ ciently small nonnegative function such that jK (x; t)�KN (x; t)j � "N (x) ; K (x; t)

is the kernel of the transmutation operator for the operators � d2

dx2
and � d2

dx2
+ q (x) and

KN (x; t) is its approximation by a polynomial of order N:

In the recent paper [35] a NSBF representation for the regular solution ul of the perturbed
Bessel equation,

�u00 +
�
l (l + 1)

x2
+ q (x)

�
u = !2u; x 2 (0; 1] ;

where l is a real number, l � �1
2
, q is a complex-valued function on [0; b] satisfying the

following condition

xq (x) 2 L1 (0; 1) ; l > �
1

2
;

x1�"q (x) 2 L1 (0; 1) ; for some " > 0 if l = �
1

2
:

V
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was obtained. A NSBF representation for ul satisfying the asymptotic relation ul(!; x) �
xl+1 when x! 0 was obtained in the following form

(0.13) ul(!; x) = d(!)bl(!x) +

1X
n=0

(�1)n�n(x)j2n(!)

where �n are de�ned by the formula

�n (x) = (4n+ 1)
nX
k=0

l2k;2nx
x2k

�
'k (x)� ck;lx

2k+l+1
�
;

with d(!) := 2l+
1
2 �(l+ 3

2
)

!l+1
, and bl(!x) :=

p
!xJl+ 1

2
(!x). In [35], V. Kravchenko, S. Torba

and R. Castillo (2018) proved that the series (0.13) converges uniformly with respect to x
on [0; b] and converges uniformly with respect to ! on any compact subset of the complex
plane of the variable !: And for the approximate solution

ul;N (!; x) = d (!) bl (!x) +
NX
n=0

(�1)n �n (x) j2n (!x)

the following estimates

jul (!; x)� ul;N (!; x)j �
p
x"N (x)

for any ! 2 R; ! 6= 0; and

jul (!; x)� ul;N (!; x)j �
�
sin (2Cx)

2C

� 1
2

"N (x)

for any ! 2 C; ! 6= 0 belonging to the strip jIm!j � C; C � 0; where "N (x) is a su¢ ciently
small nonnegative function such that kR (x; t)�RN (x; t)kL2[0;x] � "N (x) were obtained.
R (x; t) is the transmutation kernel.

Transmutation operators

An important tool through which the NSBF representations in this thesis are obtained
and that was used to obtain the representations (0.11) and (0.13) is the transmutation
operator theory. In the theory of the di¤erential equations the concept of the transmu-
tation operator is also known as transformation operator. The notion of a transmutation
operator relating two linear di¤erential operators was introduced in 1938 by J. Delsarte
[13] and the idea was extended together with L. Lions (see, e.g., [14]). For some classes of
di¤erential operators a transmutation operator can be realized in the form of a Volterra
integral operator. A. Povzner in 1948 proved the existence of a transmutation operator
T in the form of a Volterra integral operator of the second kind for the operators � d2

dx2

and � d2

dx2
+ q (x) [44].

VI
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Let T be the transmutation operator for the operators A = � d2

dx2
+ l(l+1)

x2
+ q (x) and

B = � d2

dx2
+ l(l+1)

x2
; where the potential q is a continuous complex-valued function on [0; b]

and l � �1
2
.

In [49] using the aid of a transmutation (transformation) operator in the form of a Volterra
integral operator the existence of a unique continuous kernel V (x; t) was proved such that
for all ! 2 C; the function

u (!; x) = T [bl (!x)] := bl (!x) +

Z x

0

V (x; t) bl (!x) dt

is a regular solution of the equation A [u] = !2u; x 2 (0; b] : The kernel V is !-independent
continuous function with respect to both arguments satisfying the Goursat condition

V (x; x) =
1

2

Z x

0

q (t) dt

and bl (!x) :=
p
!xJl+ 1

2
(!x) is a regular solution of the unperturbed Bessel equation

B [bl] = !2bl; x 2 (0; b] :

The transmutation operators theory has been associated with forward and inverse prob-
lems for linear di¤erential equations (see, e.g., [9], [40], [39]). For di¤erential operators
of higher order the transmutation operators have also been studied (see, e.g., [23], [37]).

In [8] and [11] mapping properties for transmutation operators T and T were revealed
making possible to apply the transmutation technique even when the integral kernel of the
operator is unknown. These mapping properties allow us to know the result of application
of the operator T to the non-negative integer powers of the independent variable x and
of application of T to the powers x2k+l+1, k 2 N0; even not knowing the transmutation
kernel.

Nowadays it is a widely used tool by the authors V. Kravchenko and S. Torba [32], [21],
[33] in order to obtain representations for the solutions of di¤erential equations, these
representations allow us to approximate the solution of spectral problems with excellent
numerical results.

The two main results of this dissertation are summarized in the following two theorems.

Theorem 2.4. The regular solution ul(!; x) of the perturbed Bessel equation,

�u00 +
�
l (l + 1)

x2
+ q (x)

�
u = !2u; x 2 (0; 1] ;

VII
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where l is a real number, l � �1
2
, q is a complex-valued function on [0; b] satisfying the

following condition

xq (x) 2 L1 (0; 1) ; l > �
1

2
;

x1�"q (x) 2 L1 (0; 1) ; for some " > 0 if l = �
1

2
;

can be exppessed in the following form

ul(!; x) = d(!)bl(!x) +

1X
n=0

(�1)n~�n(x)j2n(!)

where ~�n are de�ned by the formula

~�n (x) = (4n+ 1)
nX
k=0

l2k;2n
�
'k (x)� ck;lx

2k+l+1
�
;

d(!) :=
2l+

1
2 �(l+ 3

2
)

!l+1
, and bl(!x) :=

p
!xJl+ 1

2
(!x), the series of Bessel functions converges

uniformly with respect to x on [0; 1] and converges uniformly with respect to ! on any
compact subset of the complex plane of the variable !.
The approximate solution

ul;N (!; x) = d (!) bl (!x) +
NX
n=0

(�1)n ~�n (x) j2n (!) :

admits the following estimates for 2N �
�
l + 3

2
� �

�
+ 1;

if ! 6= 0 is a real number,

jul (!; x)� ul;N (!; x)j =
����Z 1

0

�
~R (x; t)� ~RN (x; t)

�
cos (!t) dt

����
�

 ~R (x; t)� ~RN (x; t)

L2[0;1]

Z 1

0

��cos2 (!t)�� dt
� c1 (x)

N l+ 3
2
��
:

If ! 6= 0 is a number complex,

jul (!; x)� ul;N (!; x)j �
c1 (x)

N l+ 3
2
��

Z 1

0

��cos2 (!t)�� dt
� c1 (x)

N l+ 3
2
��

�
1

2
+
2 sinh j2Cj
2 jCj

�
;

where jIm (!)j � C; C � 0:
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Consider a solution of the problem (0.7), with the initial conditions (0.8) in the following
form

(0.14) y (!; x) =
1X
k=0

�k (x)

k!
!k

Theorem 3.7. The solution y (!; x) of the Cauchy problem

y(n) + p2(x)y
(n�2) + :::+ pn(x)y = !ny; x 2 (0; b) ;

y (!; 0) = 1; y0 (!; 0) = !; :::; yn�1 (!; 0) = !n�1;

where the coe¢ cients pk; k = 2; :::; n; are complex-valued continuous functions on [0; b] ;
0 < b <1, and ! 2 C; admits the following representation

y(!; x) = 2
1X
n=0

�
�(1)n (x; �)e

�i!(x+�) + (�1)n+1 �(3)n (x; �)ei!(x+�)
�
in(!(x+ �))

+2
1X
n=0

�
in+1�(2)n (x; �)e

!(x+�) + (�i)n+1 �(4)n (x; �)e�!(x+�)
�
jn(!(x+ �)):

where the coe¢ cients �(k)n are de�ned by the formula

�(j)n (x; �) =
1X
k=1

(�1)kck;j�k�1(x) (k)n (1� i)n+k

(x+ �)k�12k
2F1

�
n+ k; n+ 1; 2 (n+ 1) ;

2

1 + i

�
where bn =

(2n+1)
2�i(n+1)n+1

, �k�1(x) is the k�1 th coe¢ cient of the series (0.14), � is a positive
real parameter, (k)n is the Pochhammer symbol, and 2F1 is the Gauss hypergeometric
function. Here jn stands for the spherical Bessel function of the �rst kind of order n, and
in is the modi�ed spherical Bessel function of the �rst kind of order n (see the de�nition,
e.g., in [42, Chap. 10 ]). For the approximate solution

yM(!; x) = 2
MX
n=0

�
�(1)n (x; �)e

�i!(x+�) + (�1)n+1 �(3)n (x; �)ei!(x+�)
�
in(!(x+ �))

+2

MX
n=0

�
in+1�(2)n (x; �)e

!(x+�) + (�i)n+1 �(4)n (x; �)e�!(x+�)
�
jn(!(x+ �))

the following estimate holds

jy(!; x)� yM(!; x)j <
2
p
�
�
M + 1

2
+ 2e

�
�(M + 3

2
)

(x+ �)
j(x; �)L2[�x��;x+�]pj!j�

cosh((x+ �) Im(!))e(x+�)jRe(!)j + cosh((x+ �) Re(!))e(x+�)j Im(!)j
�
:

Approbation
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CHAPTER 1

Preliminaries

The aim of this chapter is to introduce the terminology, the notation as well as to explain
the motivation for our research. A brief exposition of the methods developed in this thesis
focused on the NSBF representation for the solutions of the linear di¤erential equations
in question is presented. In Section 1 we present results about the SPPS method focused
to solve ordinary linear di¤erential equations. Section 2 contains results on the NSBF
representation obtained in previous works for solutions of di¤erential equations of second
order. In Section 3 we introduce the notion of transmutation operator. Section 4 contains
results about the Borel transform and the Polya representation.

1. Linear di¤erential equations and SPPS representation

Consider the ordinary linear di¤erential equation of order n

(1.1) y(n) + p1 (x) y
(n�1) + p2 (x) y

(n�2) + � � �+ pn (x) y = !ny

where p1 (x) ; :::; pn (x) are assumed to be complex-valued functions: The coe¢ cients p2 (x),
..., pn (x) are continuous with respect to x in the interval [a; b] ; p1 2 Cn�1 [a; b] ; and ! 2 C,
! is named the spectral parameter. Without loss of generality, we may assume p1 (x) � 0:
For if p1 (x) 6= 0; then by using the substitution

y = ue(�
1
n

R
p1(x)dx);

we obtain the equation

u(n) + q2 (x)u
(n�2) + :::+ qn (x)u = !nu

where the coe¢ cients q2 (x) ; :::; qn (x) are also continuous with respect to x in the interval
[a; b], and ! has not changed (see, e.g.,[41, Chap. 2]).

In [37, Chap. 1, Sect. 2.5] it was proved that the solution u (!; x) of the following Cauchy
problem

(1.2) u(n) + q2u
(n�2) + :::+ qnu = !nu;

u (!; 0) = 1; u0 (!; 0) = !; :::; u(n�1) (!; 0) = !n�1;

as a function of the variable ! is an entire function of the �rst order of the type equal to
jxj : Therefore, u (!; x) admits the following representation

1
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(1.3) u (!; x) =

1X
n=0

�n (x)!
n;

where the coe¢ cients �n (x) are obtained using the variation of parameters method. The
power series representation (1.3) for the same problem has also been obtained in [30], and
by a di¤erent method the integral recurrent formulas for the coe¢ cients were obtained.
The method used to get the representation is named SPPS method. The SPPS method
has been used even in cases when the coe¢ cients are not continuous, (see, for example,
[4], [11]).

The SPPS representation of a solution of an ordinary linear di¤erential equation of the
form (1.2) consists in representing the solution in form of a power series with respect to
the spectral parameter !. For n = 2 the coe¢ cients are obtained by a simple procedure
of recurrent integration and requires knowledge of a nonvanishing solution of the equation
with one �xed value of the spectral parameter (which can be zero). In contrast to the
second order case, for n > 2 the coe¢ cients are obtained by a integral procedure in terms
of a system of n linearly independent solutions of the equation

y(n) + p1y
(n�1) + p2y

(n�2) + � � �+ pny = 0;

where is required that n corresponding partial Wronskians do not vanish. In general
the system of n linearly independent solutions can be obtained for a �xed value of the
spectral parameter. The existence of such a solution system fy1; y2; :::; yng is established
in [7], where it can be seen that in fact almost all complex-valued solution sets satisfy
this nonvanishing requirement.

This representation was introduced by V. Kravchenko in the work [26] for the Sturm-
Liouville equation, the result was obtained with the aid of the theory of pseudoanalytic
functions [3].

In joint work with other researchers, the SPPS representation has been extended to other
kinds of equations without depending on pseudoanalytic function theory. For instance, in
[29] the equation (1.4) was considered

(1.4) (pu0)
0
+ qu = !ru:

Assuming that on a �nite interval [a; b], the equation (pu0)0+qu = 0 possesses a particular
solution u0; such that the functions u20r and 1= (u

2
0p) are continuous on [a; b], then, the

general solution of (1.4) on (a; b) has the form

u = c1u1 + c2u2;

where c1 and c2 are arbitrary complex constants, and the functions u1 and u2 are de�ned
as

(1.5) u1 = u0

1X
n=0

~X(2n) (x)

(2n)!
!n and u2 = u0

1X
n=0

X(2n+1) (x)

(2n+ 1)!
!n

2
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with ~X(2n) and X(2n+1) being de�ned by the following procedure
~X(0) � 1; X(0) � 1

~X(n) �

8>>>><>>>>:
n

Z x

x0

~X(n�1) (s)u20 (s) r (s) ds; n odd,

n

Z x

x0

~X(n�1) (s) 1
u20(s)p(s)

ds; n even.

X(n) �

8>>>><>>>>:
n

Z x

x0

X(n�1) (s) 1
u20(s)p(s)

ds; n odd,

n

Z x

x0

X(n�1) (s)u20 (s) r (s) ds; n even.

where x0 is an arbitrary point in [a; b]; such that p is continuous at x0 and p(x0) 6= 0.
Furthermore, both series in (1.5) converge uniformly on [a; b].

Remark 1.1. By de�nition the solutions u1 and u2 from (1.5) satisfy the following initial
conditions

u1 (x0) = 1; u01 (x0) = u0 (x0)

u2 (x0) = 0; u02 (x0) =
1

u0 (x0)

Definition 1.2. [27] The family of functions f'ng
1
n=0 constructed according to the rule

'n (x) �
�

u0 (s)X
(n) (s) ; n odd

u0 (s)
~X(n) (s) ; n even

is named the system of formal powers associated with u0 (s) :

In [4], the SPPS representation was obtained for equations with discontinuous coe¢ cients
involving Sturm-Liouville equations. For the perturbed Bessel equation of the form

(1.6) �y00 +
�
l (l + 1)

x2
+ q

�
y = ! (r1 (x)u

0 + r0 (x)u) ; x 2 (0; b]

where l � �1
2
and q is a complex valued continuous function on (0; b] satisfying a bounded

growth jq (x)j � Cx� at the origin for some � > �2, and r0;1 2 C [0; b] are complex
valued functions, in [11], R. Castillo, V. Kravchenko, and S. Torba obtained the SPPS
representation for a regular solution. which does not have zeros on [0; b] except at x = 0.

Formally this result was proved in the following theorem.

Let u0 be the regular solution for ! = 0 and suppose it does not have zeros on [0; b] :
De�ne

~X(0) � 1; ~X(�1) � 0
3
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(1.7) ~X(n) (x) �

8><>:
Z x

0

�
u0 (s)R [u0] (s) ~X

(n�1) (s)� r1 (s) ~X
(n�2) (s)

�
ds; n odd,

�
Z x

0

~X(n�1) (s) 1
u20(s)

ds; n even.

Ru = r0u+ r1u
0:

Theorem 1.3. [11] Let �u000+
�
l(l+1)
x2

+ q (x)
�
u0 = 0 admit a solution u0 2 [0; b]\C2 (0; b]

(in general complex valued) which does not have other zeros on [0; b] except at x = 0 and
satis�es the asymptotic relations

u0 (x) � xl+1; x! 0;

u00 (x) � (l + 1) xl; x! 0:

Then, for any ! 2 C the function

u = u0

1X
n=0

!n ~X(2n)

is a solution of (1.6) belonging to C [0; b] \ C2 (0; b] and the series converges uniformly
on [0; b]. The �rst derivative of u is given by

u0 =
u00
u0
u� 1

u0

1X
n=1

!n ~X(2n�1)

and the series for the �rst and second derivatives converge uniformly on an arbitrary
compact K � (0; b] :

In Chapter 3 of this thesis, we give some numerical illustrations of the NSBF representa-
tion for the solution of the equation y(4) + (p (x) y0)0 = !4y; x 2 (0; b) where p 2 C1 [0; b].
We chose this particular equation due to the fact that for the construction of correspond-
ing formal powers and hence of the SPPS representation of the solution an especially
simple procedure was developed in [24].

Recently, for di¤erential equations of arbitrary order this method has being also applied.
The SPPS representation for solutions of linear di¤erential equations of nth order was
de�ned and justi�ed in [30] by the researches V. Kravchenko, R. Porter, and S. Torba.

2. Transmutation operator

An important tool in the theory of the di¤erential equations is the concept of the trans-
mutation operator. The main idea of its use consists in relating two linear di¤erential
operators and to analyze a more complicated equation in terms of a simpler one. For
some classes of di¤erential operators a transmutation operator can be realized in the form
of a Volterra integral operator, this result was initially proved by A. Povzner [44] for
Sturm-Liouville equations. The transmutation operators have been widely studied in a

4
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large number of works associated with direct and inverse problems for linear di¤erential
equations (see, e.g., [14], [40], [9], [37]) and nowadays it is a widely used tool in a prac-
tical approach developed by V. Kravchenko and S. Torba (see, e.g., [32], [21], [33], [34])
in order to obtain representations of the solutions of di¤erential equations that allow us
to approximate the solution of spectral problems.

We keep the de�nition proposed in [31], which is a modi�cation of the de�nition given
by B. Levitan in [39], and su¢ cient for the purposes of this work. Let E be a linear
topological space and E1 its linear subspace (not necessarily closed). Let A, B : E1 ! E
be linear operators.

Definition 1.4. A linear invertible operator T de�ned on the whole E such that E1 is
invariant under the action of T is called a transmutation operator for the pair of operators
A and B if it ful�lls the following two conditions.

1. Both the operator T and its inverse T�1 are continuous in E;

2. The following operator equality is valid

AT = TB

or which is the same

A = TBT�1

If for a pair of di¤erential operators the transmutation operator is constructed as a Volterra
integral operator of second kind then its integral kernel is obtained as a solution of a certain
Goursat problem. For instance, considering the functional space E = C[�b; b] and its
subspace E1 = C2[�b; b]; an operator of transmutation for the operators A = � d2

dx2
and

B = � d2

dx2
+ q (x) where the potential q is a continuously di¤erentiable function is

T [u] = u(x) +

Z x

�x
K (x; t)u (t) dt;

where the kernel K is the solution of the Goursat problem�
@2

@x2
� q(x)

�
K (x; t) =

@2

@t2
K (x; t) ;

K (x; x) =
1

2

Z x

0

q (t) dt; K (x;�x) = 0;

(see [31]). Property 2 of transmutation operators from De�nition 1.4 is very interesting
because if we know the solution u of the equation B [u] = !2u then v = T [u] is a solution
of the equation A [�] = !2�:

5
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2.1. Transmutation operator for perturbed Bessel operators. Denote the dif-
ferential operator

A = � d2

dx2
+
l (l + 1)

x2
+ q (x) ;

as the perturbed Bessel di¤erential operator, where q is a continuous complex-valued
function on [0; b] and l � �1

2
: Let bl (!x) be a regular solution of the unperturbed Bessel

equation

B [bl] = �
d2

dx2
bl +

l (l + 1)

x2
bl = !2bl; x 2 (0; b] :

The transmutation operator T for the perturbed Bessel di¤erential operator and the un-
perturbed Bessel di¤erential operator (q � 0) exists. In [49], looking for a transmutation
operator in the form of a Volterra integral operator, the existence of a unique continuous
kernel V (x; t) was proved such that for all ! 2 C; the function

(1.8) u (!; x) = T [bl (!x)] := bl (!x) +

Z x

0

V (x; t) bl (!x) dt

is a regular solution of the equation A [u] = !2u; x 2 (0; b] : The kernel V is !-independent
continuous function with respect to both arguments, satisfying the Goursat condition

(1.9) V (x; x) =
1

2

Z x

0

q (t) dt:

Remark 1.5. In [11] a mapping property for the transmutation operator for the pair of
operators A and B was presented.

(1.10) T
�
x2k+l+1

�
= (�1)k 22kk!

�
l +

3

2

�
k

u0 (x) ~X
(2k) (x) ;

where u0 (x) is a non vanishing on (0; b] complex -valued solution of the equation A [u0] =
0 and ~X(2k) (x) is de�ned as in (1.7).

We would like to note here that, in practice this interesting property (1.10) of the operator
T is available even when the kernel V is unknown.

In [35], the following representation for ul (!; x)

(1.11) ul (!; x) = T [cos!] (x) := d (!) bl (!x) +

Z x

0

R (x; t) cos (!x) dt

with d (!) =
2l+

1
2 �(l+ 3

2)
!l+1

and

R (x; t) =
2l+1�

�
l + 3

2

�
p
�� (l + 1)

Z x

s

V (x; t)

�
t� s2

t

�l
dt

6
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was constructed. Also, the following mapping property for the operator de�ned in ( 1.11)
was given

T
�
x2k
�
= 'k (x)� ck;lx

2k+l+1; k = 0; 1; 2; :::

where ck;l :=
�(l+ 3

2)�(k+
1
2)p

��(k+l+ 3
2)
: Moreover, that the integral kernel R (x; �) is square-integrable

on [0; x] was also proved in [35]:

Finally, another important theorem for the subsequent results, is about the following
representation of the integral kernel R in terms of the Legendre-Fourier series using the
formal powers f'k (x)gk2N0: :

Let Pn be the Legendre polynomial of order n, lk;n the corresponding coe¢ cients of xk,
that is Pn (x) =

Pn
k=0 lk;nx

k: The Legendre polynomials provide a basis for the space
L2 [�1; 1] ; therefore every function R in this space can be represented by the series

R =
1X
n=0

2n+ 1

2
hR;PniPn:

From here on Pn stands by Legendre polynomial of of order n unless we give another
explanation.

Theorem 1.6. [35, Theorem 4.3.] If q is a complex valued function on [0; b] satisfying
the following condition

xq (x) 2 L1 (0; b) if l > �1
2
;(1.12)

x1�"q (x) 2 L1 (0; b) for some " > 0 if l = �1
2
;

then the kernel R (x; t) has the form

(1.13) R (x; t) =
1X
n=0

�n (x)

x
P2n

�
t

x

�
with �n being de�ned by the equality

(1.14) �n (x) = (4n+ 1)

nX
k=0

l2k;2nx
x2k

�
'k (x)� ck;lx

2k+l+1
�
,

where ck;l =
�(l+ 3

2)�(k+
1
2)p

��(k+l+ 3
2)
: For any l � �1

2
the series (1.13) converges in the L2 norm.

Let additionally q satisfy

(1.15) x�~q (x) 2 L1 (0; b) ; for some � 2 [0; 1] ; � <
3

2
+ l:

7
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where

(1.16) ~q (x) :=

8<: jq(x)j ; l > �1
2
;�

1� log
�
x
b

��
jq(x)j ; l = �1

2
:

If l > � � 1
2
then for any x 2 (0; b] the series (1.13) converges uniformly with respect to

t 2 [0; x]; if � � 1 < l � � � 1
2
, then for any x 2 (0; b] the series converges uniformly

with respect to t 2 [0; x0] � [0; x). Denote

RN (x; t) :=
NX
n=0

�n (x)

x
P2n

�
t

x

�
:

There exist constants C1 and C2 dependent on q and l and independent of x and N , such
that for any x > 0

kR (x; t)�RN (x; t)kL2[0;x] �
C1x

l+ 3
2
��

N l+ 3
2
��

; 2N �
�
l +

5

2

�
and

j�N (x)j �
C2x

l+2��

(N � 1)l+1��
; 2N �

�
l +

9

2

�
:

3. NSBF representation for regular solutions of Cauchy problems

The NSBF representation of a function f (!) has two main goals. The �rst is the solu-
tion of di¤erential equations even when we do not know the kernel of the transmutation
operator. And the second goal is to obtain an expansion in Neumann series of Bessel
functions that allows us to obtain uniform convergence of this series with respect to !
in a compact subset of complex plane of the variable !; and to obtain estimates for the
convergence of the partial sums of the exact solutions independent of ! for any strip such
that jIm!j � C; C > 0: A relation on convergence of Neumann series of Bessel functions
with the Maclaurin expansion of f (!) is the following

Remark 1.7. [50, Chap. XVI, Sect. 16.2] If f (z) admits the Neumann expansion

(1.17) f (z) =

1X
n=0

anJ�+n (z)

and suppose that the Maclaurin expansion is known

f (z) =
1X
n=0

bnz
n:

It follows that a Neumann series has a circle of convergence, just like a power series,
and the circles of convergence of a Neumann series and of the associated power series are
identical.

8
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Then, it should be noted that if a solution of a di¤erential equation is obtained by the
SPPS representation, then it is possible to know the convergence of this series on any com-
pact subset of the complex plane of the variable z; therefore that the NSBF representation
of this solution achieve convergence is also known.

Spherical Bessel functions j� ; are related with the ordinary Bessel functions J� ; by the
formula

j� (z) =

r
�

2z
J�+ 1

2
(z) ;

(see, e.g. [1, p. 437, Formula 10.1.1]). The Bessel functions of the �rst kind have a
number of beautiful properties that we do not describe here ( for a good introduction
see, e.g., [50]). One of the reasons why these functions are convenient and used in this
work is due to their behaviour for large values of n: The numbers jn (z) for �xed z rapidly
decrease as n!1 (see, e.g., [1, Formula 9.1.62]).

The method used to obtain the NSBF representation for a regular solution u of a linear
di¤erential equation requires three main mathematical tools. The �rst is a power series
representation of the solution, this can be obtained by the SPPS method. In second place
is an integral representation that we can obtain from the transmutation operators theory
or by the Borel transform of the solution u. Finally, an expansion in Fourier-Legendre
series for the kernel of the integral representation.
An expansion in Fourier-Legendre series for the kernel R (x; t) of the integral representa-
tion .was presented in the theorem.
A result that summarizes the main features of the NSBF representation for the regular
solution of the perturbed Bessel equation is the following, which was obtained by V.
Kravchenko, S. Torba, and R. Castillo (2018).

Theorem 1.8. [35, Theorem 5.1] Under conditions of Theorem 1.6, the regular solution
ul (!; x) of the perturbed Bessel equation satisfying the asymptotic relation ul (!; x) � xl+1

when x! 0 has the form

ul (!; x) = d (!) bl (!x) +
1X
n=0

(�1)n �n (x) j2n (!x)

where �n are de�ned by the equality (1.14) and j2n stands for the spherical Bessel func-
tion of order 2n, the series converges uniformly with respect to x on [0; b] and converges
uniformly with respect to ! on any compact subset of the complex plane of the variable !:
For the approximate solution,

ul;N (!; x) = d (!) bl (!x) +

NX
n=0

(�1)n �n (x) j2n (!x)

the following estimates hold

jul (!; x)� ul;N (!; x)j �
p
x"N (x)

9
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for any ! 2 R; ! 6= 0; and

jul (!; x)� ul;N (!; x)j �
�
sin (2Cx)

2C

� 1
2

"N (x)

for any ! 2 C; ! 6= 0 belonging to the strip jIm!j � C; C � 0; where "N (x) is a
su¢ ciently small nonnegative function such that kR (x; t)�RN (x; t)kL2[0;x] � "N (x) :

Moreover, for each �xed x and ! the convergence rate of ul;N (!; x) is exponential. To be
more precise, let x > 0 be �xed and ! 2 C satisfy j!j � !0:Then for all N > !0x=2 one
has

jul (!; x)� ul;N (!; x)j �
cxejIm!jx

N l+1�� :
1

(2N + 2)!
:
���!0x
2

���2N+2 ;
where c is a constant depending on q and l only and � is the constant from the condition
(1.15).

4. The Borel transform

Following the notation from [5, Chap. 2] and [6] we enunciate the following de�nition.

Definition 1.9. An entire function f (z) is of exponential type x if some number � exist
such that for every positive number " there exists a quantity M depending on " and � in
general but independent of z, such that for all (�nite) values of z we have

(1.18) jf (z)j < Me(�+")jzj

and that x shall be the least possible value for such numbers �. Also an alternative de�n-
ition is

(1.19) x = lim sup
n!1

��f (n) (z)�� 1n ;
it is immaterial which value of z is used in (1.19).

Let f (z) =
P1

n=0
bn
n!
zn be the Maclaurin series of the entire function f , therefore

bn = f (n) (0) ;

thus, we can get x = lim supn!1 jbnj
1
n in the equation (1.19). The growth of the function

f in di¤erent directions is closely related to the location of the singular points of the
Borel associated function. An idea of this is expressed in the next theorem, whose proof
is found in [5, Chap. 5].

Theorem 1.10. [5, Chap. 5. Theorem 5.3.1] The function

(1.20) f (z) =
1X
n=0

bn
n!
zn

10
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is an entire function of exponential type if and only if

(1.21) F (z) =
1X
n=0

bn
zn+1

is convergent for some (�nite) z. If the radius of non convergence of the series in (1.21)
is x, f (z) is of type x if x > 0, of exponential type 0 if x = 0:The function F (z) is often
called the Borel transform of f (z) :

4.1. The Borel-Laplace transform.

Definition 1.11. A function f : R! C, has exponential order c if there exist a constant
A > 0 such that for some t0 � 0;

jf (t)j � Aect; t � t0:

Definition 1.12. Let f (t) be a function locally integrable on (0;1) and of exponential
order c: The function F de�ned on the set fzjRe (z) > cg and given by the formula

F (z) :=

Z 1

0

e�ztf (t) dt:

is the Laplace transform of a function f:

Given F (z) ; �nd f such that L [f ] = F we call f the inverse Laplace transform of F .

If the function F (z) is the Borel transform of f (z) as in Theorem 1.10, then F (z) is the
Laplace transform of f (z) for z of su¢ ciently large positive real part, and the analytic
continuation of this for the other values of z for which it is regular (see, e.g., [5, p. 73] ).
Therefore, if we consider z = a+ ib, and a > x;Z 1

0

e�ztf (t) dt =
1X
n=0

bn
n!

Z 1

0

e�zttndt =
1X
n=0

bn
zn+1

= F (z) :

The series
P1

n=0
bn
zn+1

converges for jzj > x where x is de�ned by formula (1.19).

Following [5] and [37] we enunciate the following relation for any simple path C lying
entirely in the domain of holomorphy of F:

Theorem 1.13. If f(z) is an entire function of exponential type x, then the function f (z)
can be expressed by the formula

(1.22) f (z) =
1

2�i

Z
C

F (t) eztdt

where C is a contour containing within itself all singular points of F (z). Note than the
contour C can always be taken as a circle jzj = x + �, � > 0. The representation (1.22)
is called the Polya integral representation.

11
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Proof. The series
P1

n=0
bn
zn+1

converges uniformly on C; then we justify the inter-
change of integration and summation, and the following equality is obtainedZ

C

F (t) eztdt =
1X
n=0

bn

Z
C

ezt

tn+1
dt;

by the Cauchy integral formula for derivatives, it is clear that
1X
n=0

bn

Z
C

ezt

tn+1
dt =

1X
n=0

bn
zn

n!

�

12



CHAPTER 2

Neumann series representation for the regular solution of
perturbed Bessel equation

In this chapter, for the regular solution ul (!; x) of the equation

(2.1) �u00 +
�
l (l + 1)

x2
+ q (x)

�
u = !2u; x 2 (0; 1] ;

where l � �1
2
; q is a complex-valued function on [0; 1] satisfying the following conditions

xq (x) 2 L1 (0; 1) if l > �1
2
;(2.2)

x1�"q (x) 2 L1 (0; 1) for some " > 0 if l = �1
2
;

and ! 2 C we construct an NSBF representation in the form

(2.3) ul(!; x) = d(!)bl(!x) +
1X
n=0

(�1)n~�n(x)j2n(!):

where d(!) =
2l+

1
2 �(l+ 3

2)
!l+1

; bl(!x) =
p
!xJl+ 1

2
(!x).

In the recent work [35], the use of transmutation operators allowed to show that a regular
solution ul (!; x) of the equation (2.1) satisfying the asymptotic relation ul (!; x) v xl+1

when x! 0 admits the form

(2.4) ul (!; x) =
2l+1�(l + 3

2
)xjl(!x)p

�!l
+

Z x

0

R(x; t) cos(!t)dt;

where the kernel R(x; t) is a continuous function in 0 � t � x. In [35], the regular solution
of the equation ( 2.1) was obtained as follows

(2.5) ul(!; x) =
2l+1�(l + 3

2
)xjl(!x)p

�!l
+

1X
n=0

(�1)n�n(x)j2n(!x);

where the Neumann series of Bessel functions converges uniformly with respect to x on
[0; 1] and converges uniformly with respect to ! on any compact subset of the complex
plane of the variable !:

13
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Note that if we need the solution ul for many di¤erent values of x, the representation
(2.5) saves the necessity to compute j2n(!x), while in the representation (2.3) one need
to compute j2n(!) only once.

Following [35], we obtain the NSBF representation (2.3) for the solution ul using the
extension ~R (x; t) of kernel R; which is de�ned as

(2.6) ~R (x; t) =

�
R (x; t) ; 0 � t � x;
0; x < t � 1:

The results of this chapter are obtained in the following order. In Section 1, a Fourier-
Legendre series expansion for the kernel ~R (x; t) is obtained, for the coe¢ cients ~�n explicit
formulas are obtained, and we present a convergence rate estimate depending on the
parameter l and the smoothness of potential q. In Section 2, we construct the NSBF
representation for the solution ul(!; x) and we prove that the series converges uniformly
with respect to x on [0; 1] and converges uniformly with respect to ! on any compact subset
of the complex plane of the variable !: Moreover, we obtain estimates of convergence rate
of the approximate solution ul;N(!; x) to ul(!; x) for any ! 2 C; ! 6= 0 belonging to the
strip jIm!j � C, C � 0:

Finally, in Section 3 we �nd a sequence of di¤erential equations satis�ed by the coe¢ cients
~�n and we use two methods to solve this system of equations. The �rst method is based
on the Polya factorization and the second method is the Green function method. In the
last part of the section, we present a numerical example.

1. A Fourier-Legendre representation of the kernel ~R

We consider the function ~q (x) de�ned in (1.16) (see, [25], [35]) and it satis�es additionally
that

(2.7) x�~q (x) 2 L1 (0; 1) ; for some � 2 [0; 1] ; � <
3

2
+ l:

We recall that the condition (2.7) does not imply additional restrictions on q compared
with (2.2), it only speci�es the order of the regularity at zero. In [25], it was proved that
the function

g (!; x) = ul (!; x)�
2l+1�(l + 3

2
)xjl(!x)p

�!l

is an entire function and for all ! 2 C satis�es the following estimate

(2.8) jg (!; x)j � C

�
x

1 + j!jx

�l+1
ejIm!jx

Z x

0

y ~q (y)

1 + j!j ydy:

Using the facts that y1��

(1+j!jy)1�� �
1

j!j1�� and
1

(1+j!jy)� � 1 in the estimate (2.8) and under
the condition (2.7), the following estimate is obtained

14
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(2.9) jg (!; x)j � C

j!jl+2��
; ! 2 R;

see, [35]. This estimate shows that for any �xed x; g 2 L2 (R) as a function of !.
Moreover, gjR on any compact symmetric interval containing zero is bounded because g
is analytic in there.

Now, applying the Paley-Wiener theorem [22, Theorem VI.7.4], the following representa-
tion for the function g is obtained

(2.10) g (!; x) =

Z x

�x

R(x; t)

2
ei!tdt;

that is, the Fourier transform of the function g, which was denoted by R(x;t)
2
; is compactly

supported on [�x; x] : Besides, R is an even function since g is even. Therefore,

ul (!; x) = d (!) bl (!x) +

Z x

0

R (x; t) cos (!t) dt:

Thus, using the extension de�ned in (2.6), we can represent the solution ul as

(2.11) ul (!; x) = d (!) bl (!x) +

Z 1

0

~R (x; t) cos (!t) dt;

furthermore, we can consider that there exists an even functionK (x; t) de�ned on (�1;1)
such that 2K (x; t) = ~R (x; t) ; 0 � t � 1. In Lemma 2.2 properties of the function K (x; t)
are presented.

By W�
2 (R) with � � 0; Lip� (R) and L�� (R; 2) we denote the fractional order Sobolev

space, Lipschitz class of functions and generalized Lipschitz class of functions respectively,
see Appendix A.

Proposition 2.1. [35, Proposition 4.1] Let q satisfy the condition (2.7). Let x > 0 be
�xed. Then there exist an even, compactly supported on [�x; x] function R0 (x; t) such
that

1 . R0 2 W
l+ 3

2
����

2 (R) for any su¢ ciently small � > 0; if � < l + 1 then additionally
K 2 Lipl+1����(R).

2 . R0 2 L�
l+ 3

2
��(R; 2).

3 . The function R0 satis�es

R(x; t) = 2R0(x; t) t � t � x:

Considering that K(x; t) is an extension of ~R(x; t) we obtain the following result.

Lemma 2.2. The functionK(x; t) as a function of t for any x 2 [0; 1] satis�es the following
properties

15
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1 . K 2 W
l+ 3

2
����

2 (R) for any su¢ ciently small � > 0; if � < l + 1 then additionally
K 2 Lipl+1����(R).

2 . K 2 L�
l+ 3

2
��(R; 2).

Proof. The proof is similar to the proof of Proposition 2.1 because the kernel ~R (x; t)
inherits these properties of the kernel R (x; t). �

Consider the solution u of the equation (2.1) in the form

ul (!; x) =

1X
k=0

!2n'k (x) ;

where 'k (x) = u0 ~X
(2n) (x), ~X(2n) (x) is de�ned by the recursive procedure (1.7), and u0

de�ned in Theorem 1.3. It is a particular case of the equation (1.6), when r1 (x) � 0 and
r0 (x) � 1:

Theorem 2.3. Let q satisfy (2.2). Then the kernel ~R(x; t) admits the form

(2.12) ~R(x; t) =
1X
n=0

~�n (x)P2n(t);

with ~�n being de�ned by the equality,

(2.13) ~�n (x) = (4n+ 1)
nX
k=0

l2k;2n
�
'k (x)� ck;lx

2k+l+1
�
;

and ck;l =
�(l+ 3

2)�(k+
1
2)p

��(l+k+ 3
2)
: For l � �1

2
; the series in (2.12) converges in the L2 norm. Let

~RN (x; t) =

NX
n=0

~�n(x)P2n (t) :

There exist constants c1 and c2; dependent on q and l and independent of x and N; such
that for any x � 0 the inequality holds

(2.14)
 ~R(x; t)� ~R(x; t)N


L2[0;1]

� c1

N l+ 3
2
��
;

and

(2.15)
���~�N (x)��� � c2

(N � 1)l+1��
; 2N �

�
l +

3

2
� �

�
+ 1:

Let additionally q satisfy condition (2.7). If l > � � 1
2
then for any x 2 (0; 1] the series

in (2.12) converges uniformly with respect to t 2 [0; 1]; if �� 1 < l � �� 1
2
, l � �1

2
, then

for any x 2 (0; 1] the series converges uniformly with respect to t 2 [0; x0] � [0; 1).
16
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Proof. For any x 2 (0; 1] the kernel ~R (x; �) 2 L2 [0; 1] : Hence it admits a Fourier-
Legendre series representation of the form

P1
n=0 �n (x)P2n (t) : Note thatZ 1

0

~R (x; t)P2n (t) dt =

Z 1

0

1X
m=0

�m (x)P2m (t)P2n (t) dt

= �n (x)
1

4n+ 1
;

and on the other hand using the equality

(2.16) 'k (x) = ck;lx
2k+l+1 +

Z x

0

R (x; t) t2kdt;

which was obtained in [35, Proposition 4.1], we deduce thatZ 1

0

~R (x; t)P2n (t) dt =
nX
k=0

l2k;2n

Z 1

0

~R (x; t) t2kdt

=
nX
k=0

l2k;2n

Z x

0

R (x; t) t2kdt

=
nX
k=0

l2k;2n
�
'k (x)� ck;lx

2k+l+1
�
:

Thus, (2.13) is obtained.

Consider the restriction of the function K (x; t) from lemma 2.2 to the segment [�1; 1] :
We de�ne the functions h (t) = K (x; t) and hN (t) = KN (x; t) ; t 2 [�1; 1] : The function
hN is a partial sum of the Fourier-Legendre of h; that is, hN coincides with the polynomial
of the best approximation in L2 [�1; 1] of the function h by polynomials of degree 2N:
Hence, by [15, Chap. 7, Theorem 6.3], we have that for any r 2 N there exists a universal
constant cr such that

(2.17) kh� h
N
kL2[�1;1] � cr!r

�
h;

1

2N

�
L2[�1;1]

; 2N � r

where !r is the rth modulus of smoothness of h de�ned as in [15, Chap. 2, Sect. 7 and
Sect. 9]. If a function f belongs to the class of generalized Lipschitz functions Lip�� (I; p)
then !r (f; t)Lp(I) �Mt� for all t > 0 with some constant M =M (f) where r = [�] + 1:
We take r of the form r =

�
l + 3

2
� �

�
+1; and by the second condition of Lemma 2.2, we

conclude that

(2.18) !r

�
h;

1

2N

�
L2[�1;1]

� !r

�
h;

1

2N

�
L2(R)

� C (q)

(2N)l+
3
2
��
;

where the constant C (q) depends neither on x nor on N: Now, note that ~R� ~R
N


L2[0;1]

= 2 kh� h
N
kL2[�1;1] ;

17
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thus, using the inequalities (2.17) and (2.18) the estimate (2.14) is veri�ed.

To prove the estimate (2.15), we use the fact that ~R can be represented by a polynomial
~RN in even powers of t of degree 2N and that the polynomial P2N is orthogonal to the
every polynomial ~RN�1 of degree lower than 2N , we proceed as follows

���~�N (x)��� = (4N + 1)

����Z 1

0

~R (x; t)P2N (t) dt

����
= (4N + 1)

����Z 1

0

�
~R (x; t)� ~RN�1 (x; t)

�
P2N (t) dt

����
� (4N + 1)

 ~R (x; t)� ~RN�1 (x; t)

L2[0;1]

1p
4N + 1

� c2

(N � 1)l+1��
;

where we used the Cauchy-Schwarz inequality.

Now, let additionally q satisfy (2.7). Consider the restriction of the function K from
Lemma (2.2) to the segment [�1; 1]. The function K is an even function, then its Fourier-
Legendre series contains only even terms and due to the equality

~R (x; t) = 2K (x; t) ; 0 � t � 1

one has that K (x; t) =
P1

n=0

~�n(x)
2
P2n (t) ; where the series converges in L2 [�1; 1] : By

Lemma 2.2K 2 Lip1+l���" (R) ; hence its restriction on [�1; 1] belongs to Lip1+l���" [�1; 1] ;
then by [48, Theorem 4.10] the uniform convergence of the series (2.12) for any l > �� 1

2
is established.

For l > � � 1; l � �1
2
; we use the Corollary to Theorem XIII from [20], which as-

serts the uniform convergence of the Fourier-Legendre series K (x; t) on any segment
[�1 + "; 1� "] � (�1; 1) ; i.e., the series (2.12) converges uniformly with respect to
t 2 [0; 1� "] � [0; 1) for any " > 0: �

Note that the potential q does not need to be continuous on [0; 1] : For the equality (2.16),
the condition (2.2) is su¢ cient, see [4] and [11]. The estimates (2.14) and (2.15) do not
depend on the smoothness of the potential q. In [35] some improved decay rates for the
coe¢ cients �n requiring q to be su¢ ciently smooth were given.

2. On the decay rate order of the coe¢ cients ~�n (x)

In this section we give a result that let us conclude that for x < 1; the decay rate order
of the coe¢ cients of Fourier-Legendre expansion can not be faster than is known in [35,
Proposition 4.1], that is not be faster than 2l + 3:

18
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We remember that the solution ul admits the representation

(2.19) ul (!; x) =
2l+1�(l + 3

2
)xjl(!x)p

�!l
+

Z 1

0

~R(x; t) cos(!t)dt;

because the function f (!; x) = ul (!; x) �
2l+1�(l+ 3

2
)xjl(!x)p

�!l
as function of ! is an entire

function of exponential type and f (!) jR satis�es that f 2 L2 (R) :

In [16], the following asymptotic expansion for ul (!; x) was obtained

(2.20) ul (!; x) =

mX
k=0

Ak (x)

p
xJl+k+ 1

2
(!x)

!l+k+
1
2

+Rm (!; x) ;

when the potential q (x) is analytic on [0; 1]. The coe¢ cients Ak are de�ned as follows.
Consider the operators Hp; p = 1; 2; :::; acting as

(Hpf) (x) =

8<: 1
xp

Z x

0

tp�1f (t) dt; if x 6= 0;
1
p
f (0) ; if x = 0:

If f 2 C(r) [0; 1] then Hpf 2 C(r) [0; 1] and (Hpf)
(r) = Hp+r

�
f (r)
�
; r = 0; 1; 2; ::::

Let Ak (x) = xkBk (x) : Then the functions Bk satisfy the following recursive relations

B0 = 2
l+ 1

2�

�
l +

3

2

�
and

Bk+1 = �
1

2
Hk+1 [B

00
k � 2lH1B

00
k � qBk] ;

Moreover, their derivatives satisfy the equalities

B
(j)
k+1 = �

1

2
Hk+j+1

h
B
(j+2)
k � 2lHj+1B

(j+2)
k � (qBk)(j)

i
; j 2 N:

For ! 2 R; j!j � 1 the remainder Rm (!; x) satis�es the inequality

(2.21) jRm (!; x)j �
c (l;m)

j!jl+m+2
Z x

0

����tm+1Bm+1 (t)�0��� dt;
see [35, Proposition 4.5.]. By (2.20) the solution ul is an even entire function with respect
to ! then Rm (!; x) also is an even entire function of the complex variable !; and by
inequality (2.21) Rm (�; x) jR 2 L2 (R) and beside it also is an exponential type function:
The expression (tpBp (t))

0 is well de�ned when q 2 C2p�1 [0; 1] : Applying the Paley-Wiener
theorem we have that

(2.22) Rp (!; x) =

Z x

�x
R̂ (x; t) ei!tdt;

where the function R̂ (x; �) 2 W l+p+3=2 (R)\Lipl+p+1�" (R)\Lip�l+p+3=2 (R; 2) and suppR̂ (x; �) �
[�x; x] ; for more details see [35, Proposition 4.5.]:

19



TRANSMUTATION OPERATORS, NSBF, AND LINEAR HIGHER ORDER ODE 20

We de�ne

(2.23) ul (!; x) = A0 (x)

p
xJl+ 1

2
(!x)

!l+
1
2

+ A1 (x)

p
xJl+1+ 1

2
(!x)

!l+1+
1
2

+R1 (!; x)

and using (2.22) we obtain

(2.24) R1 (!; x) =

Z x

�x
R̂1 (x; t) e

i!tdt =

Z x

�x
R̂1 (x; t) cos (!t) dt:

We use the formula [38, (5.10.2)], J� (z) =
( z2)

�

p
��(�+ 1

2)

Z 1

�1
(1� t2)

�� 1
2 cos (zt) dt and we have

for the second term of the right side of (2.23) the following equality

(2.25) A1 (x)

p
xJl+1+ 1

2
(!x)

!l+1+
1
2

=
A1 (x)x

l+1

2l+
3
2
p
��
�
l + 5

2

�Z x

�x

�
1� s2

x2

�l+1
cos (!s) ds:

From the equations (2.19) and (2.23) we obtain

(2.26)
Z x

0

R(x; t) cos(!t)dt = A1 (x)

p
xJl+1+ 1

2
(!x)

!l+1+
1
2

+R1 (!; x) ;

substituting (2.24) and (2.25) in (2.26) we obtain
(2.27)Z x

0

R(x; t) cos(!t)dt =
A1 (x)x

l+1

2l+
3
2
p
��
�
l + 5

2

�Z x

�x

�
1� s2

x2

�l+1
cos (!s) ds+

Z x

�x
R̂1 (x; t) cos (!t) dt:

We de�ne

R̂1 (x; t) =

�
R̂1 (x; t) ; � x � t � x;

0; x < jtj � 1;
and

g (t) =

( �
1� t2

x2

�l+1
; � x � t � x;

0; x < jtj � 1;
then by (2.27) we obtain

(2.28)
~R(x; t)

2
� R̂1 (x; t) =

�
�
l + 3

2

�
xl+2

2
p
�� (l + 2)

g (t) ; t 2 [�1; 1] :

We need prove that the decay rate order of R̂1 (x; t) is faster than l + 3
2
; (The order

l+ 3
2
��; 0 < � < 1 was obtained in the estimate (2.14) for ~R(x; t) ) and that there exist

a bound for term of the right-hand side of (2.28).
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Now, we consider the Fourier-Legendre series for R̂1;

R̂1 (x; t) =

1X
n=0

�̂n (x)P2n(t); t 2 [�1; 1] :

We know that R̂ (x; �) 2 W l+1+3=2
2 (R) \ Lipl+1+1�" (R) \ Lip�l+1+3=2 (R; 2), then using the

same idea that in the proof of theorem (2.3) we obtain the estimateR̂1 (x; t)� R̂1;N (x; t)

L2[�1;1]

� C (q)

N l+ 5
2

;

where R̂1;N (x; t) =
PN

n=0 �̂n (x)P2n(t); and

(2.29)
����̂N (x)��� � C2 (q)

(N � 1)l+2
; 2N �

�
l +

5

2

�
+ 1:

On the other hand, using [36] (see Appendix B) we will obtain a estimate for the approx-
imate error by polinomials of function g. Consider a weight function

W(�+m;�+m) (t) = (1� t)
�+m
2 (1 + t)

�+m
2

with � = � = 0; then W(m;m) (t) = (1� t2)
m
2 : Thus,Z 1

�1

��g(m) (t)W(m;m) (t)
��2 dt = Z x

�x

�
g(m) (t)

�2 �
1� t2

�m
dt:

We consider the following cases in order to prove that g (t) =2 Sl+2, ( Sl+2 := S
(0;0)
l+2 is

de�ned in Appendix B)

(1) When l 2 N; the function g has zeros at t = x and t = �x; which are of order
l + 1; so the derivatives of order m satisfy

g(m) (x) = g(m) (�x) = 0; 8m = 0; :::; l:

(2) When l 2
�
�1
2
; 0
�
; the function g has zeros at t = x and t = �x; but does not

have continuous derivatives at these points.
(3) When l 2 R � N; the function g has zeros at t = x and t = �x; which are of

order bl + 1c ; so the derivatives of order m satisfy

g(m) (x) = g(m) (�x) = 0; 8m = 1; :::; bl + 1c
where the function bxc is de�ned as

bxc = maxfk 2 Zj k � xg:
The derivative l+1 (l 2 N) of g is not continuous, and the derivative l+2 does not exist.
Using the Inverse Theorem 2 from [36], see Appendix B, we conclude that if g (t) =2 Sl+2 (
Sl+2 is de�ned in Appendix B), then

P1
N=0 (N + 1)l+2�1EN

�
W(0;0); g

�
!1. Therefore,
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it is not true that the asymptotic estimate EN
�
W(0;0); g

�
= O

�
1

N l+2+"

�
holds, 0 < " < 1.

Here EN
�
W(0;0); g

�
is the functional of best approximation of g in the norm L2 de�ned as

EN
�
W(0;0); g

�
= inf

P2�
kg � Pk2 ; N 2 N0;

where � are the polynomials of order n:

The fourier-Legendre coe¢ cients for the right-hand side of (2.28) can be estimate using
that there exist a constant C > 0 such that EN

�
W(0;0); g

�
> C

N l+2+" : Let

g (t) =
1X
n=0

��n (x)P2n(t); t 2 [�1; 1]

be the Fourier Legendre expansion of g then

(2.30)
�

C

N l+2+"

�2
< E2N

�
W(0;0); g

�
=

1X
n=N+1

����n (x)��2
4n+ 1

� C2
2rN2r

;

we used the fact that j
��n(x)j2
4n+1

� C2
n2r+1

: We obtain that l + 2 + "
2
> r, where r is the

decay rate order of the coe¢ cients ��n (x), therefore by the estimates (2.29) and (2.30) we
conclude that the decay rate order of the coe¢ cients ~�n (x) does not exceed 2l + 3:

3. Representation in Neumann series of Bessel functions of ul (!; t)

Theorem 2.4. Under the conditions of Theorem 2.3, the regular solution ul(!; x) of (2.1)
satisfying the asymptotic relation u(!; x) � xl+1 when x! 0 has the form

(2.31) ul(!; x) = d(!)bl(!x) +
1X
n=0

(�1)n~�n(x)j2n(!)

where ~�n are de�ned by (2.13), d(!) :=
2l+

1
2 �(l+ 3

2
)

!l+1
, and bl(!x) :=

p
!xJl+ 1

2
(!x), the

series converges uniformly with respect to x on [0; 1] and converges uniformly with respect
to ! on any compact subset of the complex plane of the variable !. For the approximate
solution,

ul;N(!; x) = d(!)bl(!x) +
NX
n=0

(�1)n~�n(x)j2n(!)

the following estimates hold

jul (!; x)� ul;N (!; x)j �
c1

N l+ 3
2
��

for any ! 2 R; ! 6= 0; and

jul (!; x)� ul;N (!; x)j �
c1

N l+ 3
2
��

�
1

2
+
2 sinh (2C)

2C

�
22
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for any ! 2 C; ! 6= 0 belonging to the strip jIm!j � C; C � 0; where c1 is a constant

such that
 ~R(x; t)� ~R(x; t)N


L2[0;1]

� c1(x)

N l+3
2��

which was obtained in the Theorem 2.3.

Proof. Using the solution (2.11) and the kernel representation (2.3) we get

ul (!; x) = d (!) bl (!x) +

Z 1

0

~R (x; t) cos (!t) dt

= d (!) bl (!x) +
1X
n=0

~�n (x)

Z 1

0

P2n (t) cos (!t) dt

and using the formula 2.17.7 from [45, p. 433], the representation (2.31) is obtained. The
convergence with respect to ! on any compact subset of the complex plane is established
using the fact that for each x the series is considered as a function of the complex variable
!; which is entire and its radius of convergence coincides with the radius of convergence
of its associated power series (obtained by the SPPS representation), see [50, Chap. XVI,
p. 526].

The uniform convergence of the series (2.31) with respect to the variable x is obtained
directly from the following estimates. We consider the approximate solution ul;N (!; x) :
If ! 6= 0 is a real number,we obtain

jul (!; x)� ul;N (!; x)j =
����Z 1

0

�
~R (x; t)� ~RN (x; t)

�
cos (!t) dt

����
�

 ~R (x; t)� ~RN (x; t)

L2[0;1]

Z 1

0

��cos2 (!t)�� dt
� c1

N l+ 3
2
��
:

If ! 6= 0 is complex, we get

jul (!; x)� ul;N (!; x)j �
c1

N l+ 3
2
��

Z 1

0

��cos2 (!t)�� dt
� c1

N l+ 3
2
��

�
1

2
+
sinh j2 Im (!)j
jIm (!)j

�
:

�

4. Recurrent equations for ~�n

In this section we develop a recurrent procedure for calculating the coe¢ cients ~�n, the pro-
cedure lets us �nd a sequence of recurrent di¤erential equations which must be satis�ed by
the coe¢ cients ~�n. We use two methods to solve the equation. The �rst method consists
of using the Green function and the second method is based on the Polya factorization.
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Proposition 2.5. Under the conditions of Theorem 2.3, let ul de�ned as in (2.31) be the
regular solution of equation (2.1) then the coe¢ cients ~�n satisfy the following recurrent
di¤erential equations for n � 1,
(2.32)

A

"
~�n+1(x)

(4n+ 3)(4n+ 5)
� 2~�n(x)

(4n� 1)(4n+ 3) +
~�n�1(x)

(4n� 1)(4n� 3)

#
= �~�n(x) +Anxl+1q (x)F;

where An =
(�1)n(2n+ 1

2
)�(n� 1

2)
2
p
��(n+2)

and F =2 F1
�
n� 1

2
;�(n+ 1); l + 3

2
;x2
�
.

Proof. Substitution of (2.31) into equation (2.1) gives us the equality

q(x)2l+1�(l +
3

2
)
p
x
Jl+ 1

2
(!x)

!l+
5
2

=
1X
n=0

(�1)n
�
~�(x)j2n(w)� A

h
~�n(x)

i j2n(!)
!2

�
:

Using twice the identity jn(z) =
jn�1(z)+jn+1(z)

2n+1
z; the linearity of summations, and rewriting

the series we obtain

q(x)2l+
1
2�

�
l +

3

2

�p
x
Jl+ 1

2
(!x)

!l+
5
2

=

 
~�0(x) +

A[~�1(x)]

15
+
A[ ~�0(x)]

3

!
j0(x)(2.33)

+A[~�0]j�2(!) +
1X
n=1

(�1)n�n(x)j2n(!)

where

(2.34) �n(x) = ~�n(x) + A

"
~�n+1(x)

(4n+ 3)(4n+ 5)
� 2~�n(x)

(4n� 1)(4n+ 3) +
~�n�1(x)

(4n� 1)(4n� 3)

#
:

Now, we multiply equality (2.33) by j2m(!), m = 1; 2; :::, integrate with respect to ! over
(0;1) and utilize the orthogonality of the functions j2m(!). Using [1, Formula 11.4.34,
p. 487] the following equality is obtained

(2.35) �n(x) = Anx
l+1q(x)2F1

�
n� 1

2
;�(n+ 1); l + 3

2
;x2
�
:

Thus, using (2.34) and (2.35), equation (2.32) is obtained. �

Hence, as can be seen from Proposition 2.5, the construction of the functions ~�n+1 for
n = 1; 2; ::: reduces to solution of a recurrent sequence of non-homogeneous equations
(2.32) of the following form

(2.36) Aun = hn:
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4.1. Formula for coe¢ cients ~�n using the Green function. A regular solution
un of (2.36) with the condition un(x) � xl+1, x ! 0 can be obtained using the Green
function method. We consider a fundamental set of solutions fu; vg of the equation
Lun = 0, therefore, a regular solution for (2.36) is given in the following form

(2.37) un(x) =

Z x

0

G(x; t)hn(t)dt

and G is the well known Green function,

G(x; t) =
v(x)u(t)� v(t)u(x)

W (v; u)
; (x; t) 2 (0; 1)� (0; 1);
.

W is the Wronskian of v and u. The solutions v and u can be constructed by Picard�s
iteration method, where fu0; v0g is a fundamental system of solutions for L0 [u] = 0 (
when q � 0),

u0 = xl+1; v0(x) = x�l

and l > 0. Let u and v be de�ned by

u(x) =
X
k�0

�k(x; q); v(x) =
X
k�0

 k(x; q)

where 8<: �0(x; q) = u0

�k+1(x; q) =

Z x

0

G0 (x; t) q (t)�k(q; t)dt; k 2 N;8<:  0(x; q) = v0

 k+1(x; q) = �
Z x

1

G0 (x; t) q (t) k (q; t) dt; k 2 N:

The function G0 is the Green function for u0 and v0 de�ned by

G0 (x; t) =
x�ltl+1 � t�lxl+1

2l + 1
:

The series u and v uniformly converge on [0; 1] and on bounded sets of (0; 1] respectively,
(see, e.g., [46]).

Remark 2.6. The functions u and v are constructed in such a way that u(x) � xl+1

and v(x) � x�l when x ! 0, therefore, the function (2.36) is solution provided that
jhn(x)j � Cxl�1+� in a neighborhood of zero for some positive constants C and �.

The functions ~�n from equation (2.32) satisfy j~�n(x)j � cn;1x
l+1,

���~�0n(x)��� � cn;2x
l and���~�00n(x)��� � cn;3x

l�1, n � 1 because the functions 'n in (2.13) satisfy j'n(x)j � cn;4x
2n+l+1,

j'0n(x)j � cn;5x
2n+l and j'00n(x)j � cn;6x

2n+l�1, n � 0, for some constants cn;i.
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Thus, one can see that a regular solution for (2.32) is given by

~�n+1(x)

(4n+ 3)(4n+ 5)
� 2~�n(t)

(4n� 1)(4n+ 3) +
~�n�1(t)

(4n� 1)(4n� 3) =
Z x

0
G(x; t)

�
�n(t)� ~�n(x)

�
dt

when n � 1, whereZ x

0

G(x; t)�n(t)dt = An

Z x

0

G(x; t)tl+1q(t)2F1

�
n� 1

2
;�(n+ 1); l + 3

2
; t2
�
dt:

Applying the fact that the hypergeometric function 2F1
�
n� 1

2
;�(n+ 1); l + 3

2
;x2
�
is re-

duced to a polynomial

(2.38)
n+1X
k=0

(�1)k
�
n+ 1

k

��
n� 1

2

�
k�

l + 3
2

�
k

x2k;

we obtainZ x

0

G(x; t)�n(t)dt = An

n+1X
k=0

(�1)k
�
n+ 1

k

��
n� 1

2

�
k�

l + 3
2

�
k

Z x

0

G(x; t)tl+1+2kq(t)dt:

Therefore, the following recurrent formulas for the coe¢ cients ~�n+1(x) are obtained

(2.39) ~�n+1(x) =
2(4n+ 5)

4n� 1
~�n(x)�

(4n+ 3)(4n+ 5)

(4n� 1)(4n� 3)
~�n�1(x) + (4n+ 3)(4n+ 5)~�(x);

where

~�(x) =

Z x

0

G(x; t)

 
An

n+1X
k=0

(�1)k
�
n+ 1

k

��
n� 1

2

�
k�

l + 3
2

�
k

tl+1+2kq(t)� ~�n(t)
!
dt:

The coe¢ cients ~�0 and ~�1 can be obtained from (2.13),

~�0(x) = '0(x)�
�(1=2)p

�
xl+1;

~�1(x) = �
5

2
~�0(x) +

15

2

�
'1(x)�

�(l + 3=2)�(3=2)p
��(l + 5

2
)

xl+3
�
:

On the other hand, the solution ~�n+1(x) of equation (2.32) can be obtained using the
Pólya factorization of A; Au = � 1

u0
@u20@

u
u0
; where @ denotes the derivative with respect

to x and u0 is the solution of Au = 0: Following [11], in the next section we give the
corresponding formulas for the coe¢ cients ~�n.
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4.2. Formula for coe¢ cients ~�n using the Polya factorization. The regular
solution un of the equation (2.36) admits the form

(2.40) un(x) = �u(t)
Z x

0

�
1

u2(x)

Z s

0

u(t)hn(t)dt

�
ds

provided that jhn (t)j � Cxl�1+" in a neighborhood of zero for some positive C and "
where u(t) is the solution of the equation Au = 0: Note that the expression (2.40) gives
the unique solution of (2.36) satisfying u (x) = o

�
xl+1

�
; x! 0:

We know that the coe¢ cients ~�n(x) satisfy the equation

A

"
~�n+1(x)

(4n+ 3)(4n+ 5)
� 2~�n(x)

(4n� 1)(4n+ 3) +
~�n�1(x)

(4n� 1)(4n� 3)

#
= �~�n(x) + �n(x)

then,

~�n+1(x)

(4n+ 3)(4n+ 5)
� 2~�n(x)

(4n� 1)(4n+ 3) +
~�n�1(x)

(4n� 1)(4n� 3)

= u(x)

Z x

0

1

u2(s)

Z s

0

u(t)
�
�n(t)� ~�n(t)

�
dtds:

Using the formula (2.38) we obtainZ s

0

u(t)�n(t)dt = An

n+1X
k=0

(�1)k
�
n+ 1

k

��
n� 1

2

�
k�

l + 3
2

�
k

Z s

0

u (t) tl+1+2kq (t) dt:

Therefore, the following recurrent formulas for the coe¢ cients ~�n; n � 2 are valid

(2.41) ~�n(x) = (1� 16n2)
 

~�n�2(x)

(4n� 5)(4n� 7) �
2~�n�1(x)

(4n� 5)(4n� 1) + u(x)n(x)

!
;

where

n =

Z x

0

�n(s)� �n(s)

u2(s)
ds

and

�n(x) = �
(�1)n(2n� 3

2
)�(n� 3

2
)

2
p
��(n+ 1)

nX
k=0

(�1)k
�
n

k

��
n� 3

2

�
k�

l + 3
2

�
k

Z s

0

u (t) tl+1+2kq (t) dt;

�n =

Z x

0

u(s)~�n�1(s)ds:

Thus, the following statement is proved.
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Figure 2.1: The coe¢ cients ~�n (1) for di¤erent values of parameter l are illustrated:

Proposition 2.7. The coe¢ cients ~�n, n = 2; 3; :::; in (2.12) satisfy the sequence of
recurrent di¤erential equations (2.36), satisfy the asymptotic properties in Remark 2.6,
and can be obtained from the recursive formulas (2.39) or from formulas (2.41). The
coe¢ cients ~�n obtained by the formulas (2.39) and (2.41) are the same.

4.3. Numerical results. Absolute values of the coe¢ cients ~�n decrease as n!1;
see the estimate (2.15). Unfortunately the formulas (2.39) and (2.41) lead to rapid growth
of the error even more than direct formulas (2.13). For the next numerical example we
have computed functions ~�n in Matlab 2018. We compute the functions ~�n in 2001 points
on the interval [0; 1] : The integrals of the formulas (2.39) and (2.41) were calculated using
the modi�ed six-point Newton-Cotes rule. This rule consists in interpolating the function
values at six points by a �fth-order polynomial and using the integral of this polynomial
as the approximation for the integral [35]. The m-�le of this function was provided by
Professor S. Torba.

Example 2.8. Consider q (x) = x2 in the equation (2.1). On Figure 2.1 we present the
plot of the decay of the values j�n (1)j vs. n for the �rst ten coe¢ cients for several values
of the parameter l. For this illustration we use the direct formula (2.13). As one can
see from the graph, the absolute values j�n (1)j obey a power law decay whenever l =2 N,
and a faster than polynomial decay for l 2 N. On Figure 2.2 we illustrate that the decay
rate order of the coe¢ cients at x, such that x < 1, does not change when l =2 N or l 2 N:

Example 2.9. Consider q (x) = x2 and l = 1
2
in the equation (2.1). On Figures 2.3, 2.4

we illustrate the coe¢ cients �N obtained by four di¤erent methods: The exact formula
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Figure 2.2: The coe¢ cientes ~�n (0; 9) are illustrated. In this case the decay rate order
is the same both for values l 2 N and l =2 N:

de�ned in (2.13), Green function method, Polya factorization method and the recurrent
formulas obtained in [35]. We conclude that the method that allows to calculate a large
number of coe¢ cients is KTC obtained in [35], unfortunately none of the other methods
present a computational advantage compared to this one.

Example 2.10. Consider q (x) = 1 and l = 5
2
in the equation (2.1). An exact solution of

this equation has the form

(2.42) ul (!; x) =
2l+

1
2
�(l+ 3

2)x
1
2

(!2 � 1)
l
2
+ 1
4

Jl+ 1
2

�p
!2 � 1x

�
:

It satis�es the asymptotic property ul (!; x) � xl+1; x ! 0: On Figure 2.5 we illustrate
the plot of the approximate solution uN ; for N = 1; 2; 5; 6 and the exact solution ul de�ned
in (2.42) for ! = 15. Note that already when N = 6; the graph of uN overlaps with the
graph of ul: On Figure 2.6 we illustrate the absolute error between the exact solution ul
and the approximate solution uN with N = 10. We compute the coe¢ cients with the direct
formula obtained in (2.13). It should be noted that we can not improve the approximation
numerically because the computation of more coe¢ cients leads to a growth in the error.
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0 2 4 6 8 10 12 14
10 8

10 7

10 6

10 5

10 4

10 3

10 2

Exact formula
 Green function
 Polya factorization

n KTC

Figure 2.3: The coe¢ cientes �n obtained by di¤erents methods at x = 0; 5 are illustred.
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Figure 2.4: The coe¢ cientes �n obtained by di¤erents methods at x = 0; 9 are illustred.
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Figure 2.5: The approximate solution uN converges rapidly to the exact solution ul:
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Figure 2.6: Illustration of the absolute error between the exact solution ul and the
approximate solution uN , when N = 10:
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CHAPTER 3

On transmutation operators and Neumann series of Bessel
functions representation for solutions of linear higher order

di¤erential equations

Transmutation operators for linear di¤erential equations of order n > 2 have been subject
of dozens of publications re�ecting the e¤orts of mathematicians to obtain a satisfactory
generalization of this concept, well understood and developed in the case n = 2. We refer
to a historical review of these e¤orts in [47] and [21]. Here we use an idea of such a
transmutation operator for n > 2 developed in [37] and based on the Borel transform
of entire functions. The formula for the inverse transform as was pointed out in [37] in
fact represents a natural transmutation operator transmuting solutions of an elementary
equation into solutions of the equation with variable coe¢ cients. Moreover, as was noticed
in [37, p. 59], this operator reduces to the usual transmutation operator in the case n = 2.

Based on the transmutation operator from [37] in the present section we obtain a repre-
sentation of solutions of linear di¤erential equations of order n > 2 in terms of Neumann
series of Bessel functions. This is an extension of the recent results of [28] onto the case
n > 2. The main result consists in a representation of a solution of a linear di¤erential
equation of the form

y(n) + p2(x)y
(n�2) + :::+ pn(x)y = !ny; x 2 (0; b)

as a sum of four Neumann series of Bessel functions. The formulas for the coe¢ cients of
the series are derived and an estimate for the approximation of the solution by the partial
sums of the series is obtained. The result is obtained by representing in the form of a
Fourier-Legendre series of the Borel transform  of the solution y along the boundary of
a square centered at the origin and containing all singularities of . Additionally we show
that the representation obtained is applicable to numerical calculation.

1. A transmutation operator and a representation for the solution

Let y (!; x) denote the solution of the following Cauchy problem

(3.1) L[y] = y(n) + p2(x)y
(n�2) + :::+ pn(x)y = !ny; x 2 (0; b)

(3.2) y (!; 0) = 1; y0 (!; 0) = !; :::; y(n�1) (!; 0) = !n�1

33



TRANSMUTATION OPERATORS, NSBF, AND LINEAR HIGHER ORDER ODE 34

where p2; :::; pn are assumed to be complex valued continuous functions on [0; b], 0 < b <
1 and ! 2 C is a spectral parameter.
The following two representations for the solution y (!; x) will be used throughout the
chapter.

Theorem 3.1. [37, Sect. 3] The solution y (!; x) of the problem 3.1 and 3.2 admits the
following spectral parameter power series (SPPS) representation

(3.3) y (!; x) =
1X
m=0

�m(x)!
m

m!

where the coe¢ cients �m can be computed using the simple recursive integration procedure
from [37, Sect. 3] or from [30]. The series converges uniformly with respect to x 2 [0; b]
and uniformly on any compact subset of the complex plane with respect to !. The solution
y (!; x) admits the following representation

(3.4) y (!; x) =
1

2�i

Z
C

 (x; t) e!tdt

where for any �xed x 2 [0; b] the function  (x; t) as a function of the variable t is analytic
outside a regular n -sided polygon �x with center at the origin and one of whose vertices
being the point t = x. C is a circle centered at the origin with a radius greater than x:
Moreover,  (x; t) is continuous up to the boundary of the polygon �x.

Remark 3.2. The function  (x; t) is nothing but the Borel transform of the function
y (!; x) which is entire with respect to ! (see, e.g., [5] and [37]).

Remark 3.3. Instead of (3.4) the following representation can be used as well

y (!; x) = e!x +
1

2�i

Z
C

~ (x; t) e!tdt

where the function ~ (x; t) enjoys the same properties as those of the function , formulated
in the previous theorem.
Both integral representations can be regarded as transmutations of the solution of the
elementary Cauchy problem

�(n) = !n�; x 2 (0; b) ;
� (!; 0) = 1; � 0 (!; 0) = !; :::; �(n�1) (!; 0) = !n�1

into the solution of (3.1), (3.2).

Proposition 3.4. Outside �x the function  (x; t) admits the following series represen-
tation

(3.5)  (x; t) =

1X
m=0

�m (x)

tm+1

where �m are the coe¢ cients from (3.3).
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Proof. Let C be a circle centered at the origin with a radius greater than x. Then
outside C the function  (x; t) admits the representation

 (x; t) =
1X
m=0

bm(x)

tm+1
:

Substitution of this series into (3.4) gives us the equalities

2�iy (!; x) =
1X
m=0

bm(x)

Z
C

e!t

tm+1
dt = 2�i

1X
m=0

bm (x)
!m

m!
:

From here and from (3.3) we obtain (3.5). �
In what follows by C� we denote the counterclockwise oriented boundary of the square
centered at the origin and with one of the vertex being t1 = (x+ �)+i (x+ �) with � > 0.

Theorem 3.5. The solution y (!; x) of the problem (3.1), (3.2) admits the following
representation

y (!; x) =
1X
k=1

�k�1 (x)

2�i

 
e�i!(x+�)

Z x+�

�x��

e!�

(� � i (x+ �))k
d�

+ ie!(x+�)
Z x+�

�x��

(�i)k ei!�

(� � i (x+ �))k
d� � ei!(x+�)

Z x+�

�x��

(�1)k e�!�

(� � i (x+ �))k
d�(3.6)

� ie�!(x+�)
Z x+�

�x��

ike�i!�

(� � i (x+ �))k
d�

!
where for any ! and � �xed each of the four series converges absolutely and uniformly for
x 2 [0; b].

Proof. From (3.4) by a natural parametrization of contour C� we obtain the equality

y(!; x) = e�i!(x+�)
Z x+�

�x��
1(x; �)e

!�d� + ie!(x+�)
Z x+�

�x��
2(x; �)e

i!�d�

� ei!(x+�)
Z x+�

�x��
3(x; �)e

�!�d� � ie�!(x+�)
Z x+�

�x��
4(x; �)e

�i!�d�

(3.7)

where

1(x; �) : =
1

2�i
(x; � � i(x+ �));

2(x; �) : =
1

2�i
(x; (x+ �) + i�);

3(x; �) : =
1

2�i
(x;�� + i(x+ �));

4(x; �) : =
1

2�i
(x;�(x+ �)� i�);
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for � 2 [�x� �; x+ �]. Due to Proposition 3.4 for the functions j we have the following
series representations

1(x; �) =
1

2�i

1X
k=0

�k(x)

(� � i(x+ �))k+1
; 2(x; �) =

1

2�i

1X
k=0

(�i)k+1�k(x)
(� � i(x+ �))k+1

;

3(x; �) =
1

2�i

1X
k=0

(�1)k+1 �k(x)
(� � i(x+ �))k+1

; 4(x; �) =
1

2�i

1X
k=0

ik+1�k(x)

(� � i(x+ �))k+1
:

(3.8)

Let us prove that for any �xed x 2 [0; b] the series converge absolutely and uniformly with
respect to � on [�x� �; x+ �].
Consider the series for 1(x; �). We have���� �k(x)

(� � i(x+ �))k+1

���� = j�k(x)j
(� 2 + (x+ �)2)

k+1
2

� j�k(x)j
(x+ �)k+1

:

Therefore,

(3.9)
1X
k=0

���� �k(x)

(� � i(x+ �))k+1

���� � 1X
k=0

j�k(x)j
(x+ �)k+1

:

Since for any x 2 [0; b], y(!; x) is an entire function with respect to ! of order one and
exponential type x [37, Sect. 3 ], we have that x = lim supk!1 jy(k)(!; x)j1=k where !
is any �xed complex number, see [5, Chap. 2, Formula 2.2.12]. From the series repre-
sentation (3.3) it is obtained that j�k(x)j = jy(k)(0; x)j and so lim supk!1 j�k(x)j1=k = x.
Therefore, by Cauchy�s criterion the series on the right hand side of (3.9) converges for
any x 2 [0; b]. By Weierstrass M-test, we conclude that for any x 2 [0; b] the series in
(3.8) are uniformly absolutely convergent on [�x� �; x+ �]. Substitution of the function
series for j into equality (3.7) leads then to the representation (3.6).
In order to prove that the function series (3.6) converge absolutely for all x we �rst obtain
the following estimates���� Z x+�

�x��

e!��i!(x+�)

(� � i(x+ �))k
d�

���� � 2eIm(!)(x+�) sinh (Re(!)(x+ �))

Re(!)(x+ �)k
;���� Z (x+�)

�(x+�)

ei!�+!(x+�)

(� � i(x+ �))k
d�

���� � 2eRe(!)(x+�) sinh(Im(!)(x+ �))

Im(!)(x+ �)k
;���� Z x+�

�x��

e�!�+i!(x+�)

(� � i(x+ �))k
d�

���� � 2e� Im(!)(x+�) sinh(Re(!)(x+ �))

Re(!)(x+ �)k
;���� Z (x+�)

�(x+�)

e�i!��!(x+�)

(� � i(x+ �))k
d�

���� � 2e�Re(!)(x+�) sinh(Im(!)(x+ �))

Im(!)(x+ �)k
:

Considering the �rst of them we observe that the function 2eIm(!)(x+�) sinh(Re(!)(x+�))
Re(!)

attains

a maximum on the interval [0; b]. Denote c1(!; �) := maxx2[0;b]
2eIm(!)(x+�) sinh(Re(!)(x+�))

Re(!)
.
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Hence we have the following estimate for the �rst series
1X
k=1

�����k�1(x)Z x+�

�x��

e!��i!(x+�)

(� � i(x+ �))k
d�

���� � c1(!; �)

1X
k=1

j�k�1(x)j
(x+ �)k

:

The series on the right converges for all x 2 [0; b] because lim sup j�k�1(x)j1=k = x.
The convergence of the other three series is proved in a similar way. �

2. A Fourier-Legendre series representation for the kernels j

Denote c1;k = 1, c2;k = (�i)k, c3;k = (�1)k and c4;k = ik. Then the kernels j, j = 1; 2; 3; 4
can be written as follows

(3.10) j(x; �) =
1

2�i

1X
k=1

cj;k�k�1(x)

(� � i(x+ �))k
:

Proposition 3.6. The functions j(x; �) admit the following representations

(3.11) j(x; �) =
1X
n=0

�(j)n (x; �)

x+ �
Pn

�
�

x+ �

�
where Pn stands for the Legendre polynomial of order n, and the coe¢ cients �

(j)
n are

de�ned by the equality

�(j)n (x; �) = bn

1X
k=1

(�1)kck;j�k�1(x) (k)n (1� i)n+k

(x+ �)k�12k
2F1

�
n+ k; n+ 1; 2 (n+ 1) ;

2

1 + i

�
where bn =

(2n+1)
2�i(n+1)n+1

; (k)n is the Pochhammer symbol, and 2F1 is the Gauss hypergeo-
metric function.
The series in (3.11) converges uniformly and for any x 2 [0; b] the following estimate is
valid

(3.12) j�(j)n (x; �)j �
p
2n+ 1(x+ �)1=2

j(x; �)L2[�x��;x+�]:
Proof. Since (x; t) as a function of the variable t is analytic outside �x the functions

j(x; �) admit the uniformly convergent Fourier-Legendre series representations of the form
(3.11). Multiplying (3.11) by Pm

�
�
x+�

�
and integrating we obtain

2�(j)n (x; �)

2n+ 1
=

Z x+�

�x��
j(x; �)Pn

�
�

x+ �

�
d� :
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Now substitution of (3.10) leads to the equalities

�(j)n (x; �) =
2n+ 1

4�i

1X
k=1

cj;k�k�1(x)

Z x+�

�x��

Pn
�

�
x+�

�
(� � i(x+ �))k

d�

=
2n+ 1

4�i

1X
k=1

cj;k�k�1(x)

(x+ �)k�1

Z 1

�1

Pn (s)

(s� i)k
ds

= bn2
n

1X
k=1

(�1)k cj;k�k�1(x) (k)n
(x+ �)k�1 (1 + i)n+k

2F1

�
n+ k; n+ 1; 2 (n+ 1) ;

2

1 + i

�
where for calculating the integrals

pn;k :=

Z 1

�1

Pn (s)

(s� i)k
ds

formula 2.17.1 (12) from [45] was used.
The estimate (3.12) follows from the Cauchy-Schwarz inequality,

j�(j)n (x; �)j =
2n+ 1

2

���� Z x+�

�x��
j(x; �)Pn

�
�

x+ �

�
d�

����
�2n+ 1

2

j(x; �)L2[�x��;x+�]
Pn� �

x+ �

�
L2[�x��;x+�]

=
p
2n+ 1(x+ �)1=2

j(x; �)L2[�x��;x+�]:
�

3. The Neumann series of Bessel functions representation of the solution

Theorem 3.7. The solution y(!; x) of (3.1), (3.2) admits the representation

y(!; x) = 2

1X
n=0

�
�(1)n (x; �)e

�i!(x+�) + (�1)n+1 �(3)n (x; �)ei!(x+�)
�
in(!(x+ �))

(3.13) +2
1X
n=0

�
in+1�(2)n (x; �)e

!(x+�) + (�i)n+1 �(4)n (x; �)e�!(x+�)
�
jn(!(x+ �))

with the coe¢ cients �(k)n from Proposition 3.6. Here jn stands for the spherical Bessel
function of the �rst kind of order n, and in is the modi�ed spherical Bessel function of
the �rst kind of order n (see the de�nition, e.g., in [42, chap. 10 ]).
For the approximate solution
(3.14)

yM(!; x) = 2
PM

n=0

�
�(1)n (x; �)e

�i!(x+�) + (�1)n+1 �(3)n (x; �)ei!(x+�)
�
in(!(x+ �))

+2
PM

n=0

�
in+1�(2)n (x; �)e

!(x+�) + (�i)n+1 �(4)n (x; �)e�!(x+�)
�
jn(!(x+ �))
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the following estimate holds

jy(!; x)� yM(!; x)j <
2
p
�
�
M + 1

2
+ 2e

�
�(M + 3

2
)

(x+ �)
j(x; �)L2[�x��;x+�]pj!j�

cosh((x+ �) Im(!))e(x+�)jRe(!)j + cosh((x+ �) Re(!))e(x+�)j Im(!)j
�
:

(3.15)

Proof. Substitution of (3.11) into (3.7) with the aid of [42, formula 18.17.19 ] leads
to (3.13).
Consider

jy(!; x)� yM(!; x)j �2
1X
n=0

�����(1)n+M+1(x; �)e
�i!(x+�)

��������in+M+1(!(x+ �))

����
+ 2

1X
n=0

�����(3)n+M+1(x; �)e
i!(x+�)

��������in+M+1(!(x+ �))

����
+ 2

1X
n=0

�����(2)n+M+1(x; �)e
!(x+�)

��������jn+M+1(!(x+ �))

����
+ 2

1X
n=0

�����(4)n+M+1(x; �)e
�!(x+�)

��������jn+M+1(!(x+ �))

����:
Since

jJ�(z)j �
jzjejIm(z)j
2�(� + 1)

;

�
� � �1

2

�
(see formula 9.1.62 from [1]) we get����jM+1+n(!(x+ �))

���� �
p
�(x+ �)

p
j!je(x+�)j Im(!)j

2
p
2�(M + 3

2
+ n)

;����iM+1+n(!(x+ �))

���� �
p
�(x+ �)

p
j!je(x+�)jRe(!)j

2
p
2�(M + 3

2
+ n)

:

Using (3.12) we obtain

jy(!; x)� yM(!; x)j �2
p
�(x+ �)

j(x; �)L2[�x��;x+�]pj!j
�
�
cosh((x+ �) Im(!))e(x+�)jRe(!)j + cosh((x+ �) Re(!))e(x+�)j Im(!)j

�
�

1X
n=0

p
M + n+ 3=2

�(M + n+ 3
2
)
:

Notice that the series on the right hand side admits the following chain of relations

1X
n=0

q
M + n+ 3

2

�(M + n+ 3
2
)
�

1X
n=0

M + n+ 3
2

�(M + n+ 3
2
)
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=

1X
n=0

M + n+ 1
2

�(M + n+ 3
2
)
+

1X
n=0

1

�(M + n+ 3
2
)

=
1X
n=0

1

�(M + n+ 1
2
)
+

1X
n=0

1

�(M + n+ 3
2
)

=
1

�(M + 1
2
)
+ 2

1X
n=0

1

�(M + n+ 3
2
)
:

Note that

1X
n=0

1

�(M + n+ 3
2
)
=

1

�(M + 3
2
)

1X
n=0

1�
M + 3

2

�
n

;

and since 1
(1)n

> 1

(M+ 3
2)n

for any M � 0, we have that

1X
n=0

1�
M + 3

2

�
n

<
1X
n=0

1

n!
= e:

Thus,

1X
n=0

q
M + n+ 3

2

�(M + n+ 3
2
)
<

1

�(M + 1
2
)
+

2e

�(M + 3
2
)
=
M + 1

2
+ 2e

�(M + 3
2
)
:

�

4. An example of application to fourth order ordinary di¤erential equations

In this section we give some numerical illustrations of the representation (3.13) in the case
when the equation of the problem (3.1), (3.2) has the following form

(3.16) y(4) + (p(x)y0)
0
= !4y; x 2 (0; b) ;

(3.17) y(!; 0) = 1; y0(!; 0) = !; y00(!; 0) = !2; y000(!; 0) = !3

where p 2 C1 [0; b]. We chose this particular equation due to the fact that for the con-
struction of corresponding formal powers and hence of the SPPS representation of the
solution an especially simple procedure was developed in [24].
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4.1. The SPPS representation. Let f be a particular solution (in general a complex-
valued one) of the equation v00 + pv = 0 such that f and 1=f 2 C[0; b]. Then following
[24], we de�ne a system of recursive integrals where k = 0; 1; 2; :::,

X
(0)
1 � X

(0)
2 � X

(0)
3 � X

(0)
4 � 1

X
(m)
1 (x) =

8>>>>>>>>><>>>>>>>>>:

m

Z x

0

X
(m�1)
1 (s)f(s)ds; m = 4k + 4;

m

Z x

0

X
(m�1)
1 (s) 1

f2(s)
ds; m = 4k + 3;

m

Z x

0

X
(m�1)
1 (s)f(s)ds; m = 4k + 2;

m

Z x

0

X
(m�1)
1 (s)ds; m = 4k + 1;

X
(m)
2 (x) =

8>>>>>>>>><>>>>>>>>>:

m

Z x

0

X
(m�1)
2 (s) 1

f2(s)
ds; m = 4k + 4;

m

Z x

0

X
(m�1)
2 (s)f(s)ds; m = 4k + 3;

m

Z x

0

X
(m�1)
2 (s)ds; m = 4k + 2;

m

Z x

0

X
(m�1)
2 (s)f(s)ds; m = 4k + 1;

X
(m)
3 (x) =

8>>>>>>>>><>>>>>>>>>:

m

Z x

0

X
(m�1)
3 (s)f(s)ds; m = 4k + 4;

m

Z x

0

X
(m�1)
3 (s)ds; m = 4k + 3;

m

Z x

0

X
(m�1)
3 (s)f(s)ds; m = 4k + 2;

m

Z x

0

X
(m�1)
3 (s) 1

f2(s)
ds; m = 4k + 1;

X
(m)
4 (x) =

8>>>>>>>>><>>>>>>>>>:

m

Z x

0

X
(m�1)
4 (s)ds; m = 4k + 4;

m

Z x

0

X
(m�1)
4 (s)f(s)ds; m = 4k + 3;

m

Z x

0

X
(m�1)
4 (s) 1

f2(s)
ds; m = 4k + 2;

m

Z x

0

X
(m�1)
4 (s)f(s)ds; m = 4k + 1:

Proposition 3.8. The solution of the problem (3.16), (3.17) admits the following repre-
sentation

(3.18) y(!; x) =
1X
m=0

�m(x)

m!
!m
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where �0 � 1,

(3.19) �m(x) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

1
f(0)

X
(m)
2 (x)� f 0(0)

X
(m+1)
3 (x)

(m+1)
� f 00(0)

f(0)

X
(m+2)
4 (x)

(m+1)(m+2)
;

m = 4k + 1;

f(0)X
(m)
3 (x);

m = 4k + 2;

X
(m)
4 (x);

m = 4k + 3;

Xm
1 (x); m = 4k + 4;

k = 0; 1; : : : and the series (3.18) converges uniformly with respect to x on [0; b] and with
respect to ! on any compact subset of the complex plane.

Proof. The proof consists in application of Theorem 3 from [24] to the problem
(3.16), (3.17). The solution of (3.16), (3.17) is obtained as a linear combination of the
four linearly independent solutions from [24],

u1(x) =
1X
m=0

X
(4m)
1 (x)

(4m)!
!4m u2(x) =

1X
m=0

X
(4m+1)
2 (x)

(4m+ 1)!
!4m

u3(x) =
1X
m=0

X
(4m+2)
3 (x)

(4m+ 2)!
!4m u4(x) =

1X
m=0

X
(4m+3)
4 (x)

(4m+ 3)!
!4m:

The initial conditions (3.17) are ful�lled by a linear combination of these solutions with
the corresponding constants chosen as

c1 = 1; c2 =
!

f(0)
; c3 = !2f(0)� !f 0(0); c4 = !3 � !

f 00(0)

f(0)
:

�

4.2. Numerical illustrations. By �jn;K we denote the approximation of the coe¢ -
cient �jn for j = 1; 2; 3; 4; de�ned by

(3.20) �jn;K(x; �) :=
2n+ 1

4�i

KX
k=1

cj;k�k�1(x)

(x+ �)k�1

Z 1

�1

Pn (s)

(s� i)k
ds:

The coe¢ cients �k de�ned by (3.19) are computed using the numerical integration ap-
proach explained in [32, Section 7], although other approaches (for example, that based
on splines [10] though considerably slower is also applicable). We emphasize that the
computation of a couple of hundreds of the coe¢ cients �k does not represent any dif-
�culty and can be performed with a remarkable accuracy. The integrals in (3.20) were
computed numerically as well, where n = 0; 1; 2; :::; N and N is the number of coe¢ cients
used for calculating the approximate solution.
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Figure 3.1: Absolute error (3.15) of the approximate solution yM de�ned in (3.14)
corresponding to the value � = 0. For the fourth order equation (3.21).

4.2.1. Solution of initial value problems.

Example 3.9. Consider the equation

(3.21) y(4) + 2y00 = !4y

subject to conditions (3.17). Figure 3.1 shows the absolute error (3.15) of the approximate
solution (3.14) corresponding to the value � = 0 and computed for several distinct values
of !.

It shows that meanwhile for the end point of the interval the accuracy is reasonably good
it deteriorates rapidly for the values of x closer to the origin, and the representation
(3.13) is not applicable in the vicinity of x = 0. An explanation of this is that the uniform
absolute convergence of series (3.8) does not hold with respect to the � when x = 0 and
� = 0:

Example 3.10. The situation is completely di¤erent for � > 0 as shown on Figure 3.2
where the absolute error of the approximate solution is depicted in the case � = 1. The
solution is su¢ ciently accurate on the whole interval, the accuracy deteriorates to the

43



TRANSMUTATION OPERATORS, NSBF, AND LINEAR HIGHER ORDER ODE 44

0 0.2 0.4 0.6 0.8 1
x

0

1

2

3

4

5

6

7

8

9 1013

=0.5
=0.8
=1.5
=2.0
=3.0
=4.0

Figure 3.2: The absolute error of the approximate solution (3.14) computed with � = 1
for several values of !.

right end of the interval, and according to the estimate from Theorem 3.7 the accuracy is
better for smaller values of j!j.

4.2.2. Solution of eigenvalue problems.

Example 3.11. Consider the following eigenvalue problem

u(4) = w4u(x);

u(!; 0) = 0 = u00(!; 0) u(!; 1) = 0 = u0(!; 1):

The exact characteristic equation of the problem has the form

(3.22) (e! � e�!) cos(!) = (e! + e�!) sin(!):

In terms of the solution y(!; x) satisfying conditions (3.17) the dispersion equation can
be written as follows

y(�!; 1)y0(!; 1)� y(!; 1)y0(�!; 1) + y(!; 1)y0(�i!; 1)� y(�i!; 1)y0(!; 1)
+y(�i!; 1)y0(�!; 1)� y(�!; 1)y0(�i!; 1) + y(i!; 1)y0(�i!; 1)� y(�i!; 1)y0(i!; 1) = 0:

(3.23)

The �rst six eigenvalues computed by solving this equation with the aid of the represen-
tation (3.13) are presented in the table below together with their corresponding absolute
errors. The eigenvalues increase rapidly, and similarly to the SPPS [24] the representation
(3.13) allows one accurate computation of several lower index eigenvalues.
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N = 40; K = 150 and � = 0:25 N = 180
n NSBF Absolute error Relative error E(SPPS) from [24]
0 237:721067584372 5:3� 10�8 2:2� 10�10 1:1� 10�13
1 2496:48744387544 6:0� 10�6 2:4� 10�9 2:1� 10�13
2 10867:5824450557 2:2� 10�4 2:1� 10�8 1:0� 10�11
2 31780:0997391812 3:2� 10�3 1:0� 10�7 2:7� 10�10
4 74000:9108835559 6:1� 10�2 8:3� 10�7 1:9� 10�9
5 148630:254375198 4:2 2:8� 10�5 9:7� 10�7

Table 1: The �rst six eigenvalues computed for the problem de�ned in Example 3.11.
The columns Absolute error and Relative error present absolute error and relative error
between the eigenvalues obtained by the equation (3.22) and by the equation (3.23). The
last column presents the absolute error between the eigenvalues obtained by the equation
(3.22) and by the SPPS method.

Application to order n > 4

Example 3.12. Consider the following equation of order �ve

y(5)(x) + y(x) = !5y(x); x 2 (0; 1)
with the initial conditions (3.2). Here we compute the coe¢ cients Am(x) =

�m(x)
m!

using
the method from [37, p. 31]. Thus, the coe¢ cients are de�ned by the formula

Am+5(x) =
5X
k=1

yk(x)(�1)k+1
Z x

0

Am(t)
�k(t)

�(t)
dt

where y1; :::; y5 is a fundamental system of the equation y(5)(x) + y(x) = 0, �(x) is their
Wronskian and �k(x) is the cofactor of the (5; k) entry of �(x).
The absolute error of the approximate solution computed with the aid of (3.13) with � = 1
is reported on Figure 3.3 for several di¤erent values of !.
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Figure 3.3: The absolute error between the approximate solution calculated by the rep-
resentation NSBF and the exact solution.
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CHAPTER 4

Properties of the functions j (x; �) and of the coe¢ cients �
j
n (x; �)

In Chapter 3, we presented illustrations where the parameter � has in�uence on the accu-
racy of the representation NSBF. In this Chapter, results about the connection between
the approximate error by polynomials of order N of function j (x; �), and the decay rate
of the coe¢ cients �jn (x; �) are presented. The results are based on approximation theory.

1. Properties of the functions j (x; �)

From the estimate for the convergence of the approximate solution yM in the Theorem
(3.7). We conclude that the estimate is better when � takes small values, however in
numerical applications we observed that it is important to �nd an optimal value for �,
especially for problems of eigenvalues: In this section we give an explanation of why this
happens.

In the Chapter 3, we de�ned the function  (x; t) as

 (x; t) =
1X
m=0

�m (x)

tm+1
;

which is analytic outside of a polygon of n sides with a vertex at x, t 2 C: Besides, we
considered  (x; �) de�ned on the sides of a square where one of its vertex is (x+ �) +
i (x+ �), we illustrate this on Figure 4.1.
The function  (x; �) de�ned on right side of square is analytic, therefore this admits an
extension on a elliptic domain E bounded by a ellipse: A point t = (u; v) on the ellipse
that pass at (x; 0) and has as foci the points (x+ �) + i (x+ �) and � (x+ �)� i (x+ �)
satis�es the equation

(4.1)
v2

�2 + (x+ �)2
+
(u� x� �)2

�2
= 1:

On the other hand, following [15, Chap. 4, Sect. 2], for �xed � and � > 1 an ellipse E�
described by the points �t such that

(4.2) �� =
x+ �

2

�
1

�
� �

�
sin (t) + i

x+ �

2

�
�+

1

�

�
cos (t) ;
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Figure 4.1: Ellipse with semi-axes a = x+�
2

�
�+ 1

�

�
and b = x+�

2

���1� � �
��� ; and the foci

� (x+ �) i: On the sides of red square is de�ned the function :

i.e. if �� = (r; s) then r and s satisfy

(4.3)
s2�

x+�
2

�2 �
�+ 1

�

�2 + r2�
x+�
2

�2 ���1� � �
���2 = 1;

has semi-axes a = x+�
2

�
�+ 1

�

�
and b = x+�

2

���1� � �
���, and the foci �i (x+ �) : The ellipse

(4.1) can be obtained by a translation of ellipse (4.3) when the major and minor axes
coincide with those of the ellipse de�ned by �� , thus

(4.4)
x+ �

2

����1� � p

���� = �:

We need to know about the behaviour of � when the length of the minor axis of the ellipse
Ep is equal to �; therefore solving the equation (4.4), we obtain

(4.5) � =
�

x+ �
+

s
1 +

�2

(x+ �)2
=

�
x

1 + �
x

+

vuut1 + �2

x2�
1 + �

x

�2 ;
48



TRANSMUTATION OPERATORS, NSBF, AND LINEAR HIGHER ORDER ODE 49

0 0.5 1 1.5 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Figure 4.2: The illustration shows the behaviour of � (u) : When � is very small, that
is, the ellipse widens its minor axis, the parameter � is smaller than when � takes larger
values.

when � > 1, therefore, if u = �
x
and � is understood as a function of variable u; then �

admits the form

(4.6) � (u) =
u

1 + u
+

s
1 +

u2

(1 + u)2
;

thus, when u!1; � (u)! 1 +
p
2. We conclude that for �xed x, if � takes large values

then the value of � increases, this fact is illustrated on the Figure 4.2.

Next we will state some results that relate the value of � with the approximation error of
an analytical function by polynomials.

Definition 4.1. The error of approximation, "N (f) of an function f by polynomials of
order N in the uniform norm on [�1; 1] is de�ned as

"N (f) := inf
p2�

kf � pk ; N = 1; 2; :::; "0 (f) = kfk

where kf � pk := maxx2[�1;1] jf (x)� p (x)j and � is the set of polynomial of order N:
Theorem 4.2. [15, Chap. 7, Theorem 8.1.] A function f , de�ned on [�1; 1] is analytic
on this interval if and only if lim sup N

p
"N (f) < 1; and more exactly

(4.7) lim sup
N!1

N
p
"N (f) =

1

�0
;
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where �0 > 1 is characterized by the property that f has an analytic extension onto the
bounded elliptic domain by the ellipse Ep0, but not onto any of the Ep for � > �0.

The error "N (f) is a positive sequence such that when N !1; "N (f)! 0. By Theorem
4.2 there exist a constant C (�) such that

N
p
"N (f) �

N
p
C (�)

�0 � �
; � > 0 and �0 � � > 1,

thus if we take �; 1 < � < �0 we obtain

(4.8) "N (f) �
M

�N
.

Consider the function j (x; �) that in the Chapter 3 was de�ned as

j (x; �) =
1

2�i

1X
k=0

ck;j�k (x)

(� � i (x+ �))k+1
,

the function j (x; �) is analytic on [�x� �; x+ �] then it has an analytic extension onto
the elliptic domains bounded by ellipses E�: By the Theorem 4.2 we obtain the following
result.

Proposition 4.3. The approximation error "N
�
j
�
of j (x; �) by polynomials of order

N in the uniform norm on [�x� �; x+ �] satis�es

(4.9) EN
�
j
�
� C (�)

�N
,

where C is a constant independent of N .

By proposition 4.3 we conclude even without knowing the value of C (�) it can be a¢ rmed
that if we take very small values of � then the order of decay of the estimation error of
j is slower that when � takes large values.

Theorem 4.4. Let ̂ (x; s) be a analytic function on [�1; 1] as function of s such that

̂ (x; s) = j (x; (x+ �) s) =
1

2�i

1X
k=1

cj;k�k�1(x)

((x+ �) s� i(x+ �))k
,

then coe¢ cients �jN (x; �) ( which were de�ned in Chapter 3, Proposition 3.6) satisfy the
following estimate ���jN (x; �)�� � p2N + 1

M (x+ �)

�N�1
.

where M is constant independent of N such that "N�1(̂) � M
�N�1 .
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Proof. Consider the polynomials qN and qN�1. qN is the best approximation poly-
nomial of degree N of function j (x; �) and qN�1 is a polynomial of degree no more than
N � 1. We know that���jN (x; �)�� = 2N + 1

2

����Z x+�

�x��
j (x; �)PN

�
�

x+ �

�
d�

���� ,
therefore,���jN (x; �)�� � 2N + 1

2

Z x+�

�x��

����j (x; �)� qN�1

�
�

x+ �

����� ����PN � �

x+ �

����� d�
� 2N + 1

2
(x+ �)

Z 1

�1

��j (x; (x+ �) s)� qN�1 (s)
�� jPN (s)j ds

� 2N + 1

2
(x+ �) "N�1

�
̂j
�
kPnkL2[�1;1]

�
p
2N + 1

M (x+ �)

�N�1
:

where M is a constant independent of N . �
Example 4.5. Consider the di¤erential equation

y(4) + 2y00 = !4y

with initial conditions

y (0; !) = 1; y0 (0; !) = !; y(2) (0; !) = !2; y(3) (0; !) = !3:

In the Figure 4.3, we illustrate the decay rate of the numbers
���jn (1; �)�� ; j = 1; 2: Observe

that for large values of �; the number of coe¢ cients that it is possible to calculate is less.
And when � ! 0 the decay rate of

���jn (1; �)�� is more slow than for large values of �:Thus,
it is important to consider an optimum value of � in order to improve the accuracy of the
approximate solution.

Considering once again the previous Cauchy problem of the Example 4.5, we present semi-
log graphs of the absolute error between the exact solution y (!; x) and the approximate
solution yN (!; x), and we illustrate the fact if we use an optimum value of � then obtain
better approximation to the exact solution of problem. We compare with the approximate
solution obtained by SPPS method. On Figure 4.4 we illustrate the absolute error between
exact solution and the approximate solution yN obtained by representation NSBF and
the absolute error between exact solution and the solution obtained by method SPPS
for di¤erent values of ! when � = 1:0. The approximate solution was obtained with 40
coe¢ cients �jn.
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Figure 4.3: Absolute value of the �rst 40 coe¢ cients �jn (x; �), j = 1; 2 evaluated at
x = 1 for di¤erent values of �:
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Figure 4.4: Illustration of absolute error between exact solution and approximated
solution by the SPPS method (dashed line) and absolute error between exact solution
and approximated solution by NSBF for some values of ! when � = 1:0.
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CHAPTER 5

Other representations for the solutions of ordinary linear
di¤erential equations of order n

Consider once again the Cauchy problem

(5.1) y(n) +
nX
i=2

pi (x) y
(n�i) = !ny;

(5.2) y (!; 0) = 1; :::; y(n�1) (!; 0) = !n�1

where pi (x) are continuous complex-valued functions with respect to the variable x; x 2
[0; b], 0 < b < 1; and ! 2 C: Di¤erent NSBF representations can be obtained for the
solution y (!; x) of the problem (5.1), (5.2) because by the principle of deformation of
contours, in the Polya integral representation for y (!; x) de�ned as

(5.3) y (!; x) =
1

2�i

Z
C

 (x; t) e!tdt

we can take any recti�able curve C� on the regularity domain of  (x; �) :

In this Chapter, we construct two new NSBF representations, taking two di¤erent forms
of contour C� in the Polya representation of the solution y (!; x) of the problem (5.1) and
(5.2); the �rst form is obtained by a parametrization on the sides of a triangle and the
second form on an 8 -sided polygon �x;both centered at the origin. A di¤erence with
respect to the results obtained in the Chapter 3 is that in these new representations was
used the Legendre shifted polynomials to represent the Borel transform of y (!; 0) in a
Fourier Legendre expansion.

1. Parametrization on a triangle

We give the following de�nition that will be used throughout this chapter.

Definition 5.1. The shifted Legendre polynomials are de�ned as

~Pm(�) = Pm(2� � 1)

where Pm are the Legendre polynomials. The polynomials ~Pm(�) are orthogonal on [0; 1] ;Z 1

0

~Pm(�) ~Pn(�)d� =
1

2n+ 1
�mn:
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Let us consider an equilateral triangle, in which a circle of radius r = x + � is inscribed,
whose vertices are z1 = �

p
3(x+�)�i(x+�), z2 =

p
3(x+�)�i(x+�) and z3 = 2i(x+�).

We suppose that the contour C� in the integral representation (5.3) is represented by the
counterclockwise oriented perimeter of the triangle z1z2z3.

Now, the contour C� is parametrized by the following functions ;

t(�) =
p
3(x+ �)(2� � 1)� i(x+ �); for the bottom side,

t(�) =
p
3(x+ �)(1� �) + i(x+ �)(3� � 1); for the right side,

t(�) = �
p
3(x+ �)� + i(x+ �)(2� 3�); for the left side.

where � 2 [0; 1]: We conclude the following result

Lemma 5.2. The solution y (!; x) of (5.1) admits the form

y(!; x) = 2
p
3(x+ �)e�(

p
3+i)(x+�)!

Z 1

0

1(x; �)e
2
p
3(x+�)!�d�

+
�
�
p
3 + 3i

�
(x+ �)e(

p
3�i)(x+�)!

Z 1

0

2 (x; �) e
(
p
3�3i)(x+�)!�d�(5.4)

�
�p
3 + 3i

�
(x+ �) e2(x+�)i!

Z 1

0

3 (x; �) e
�(
p
3+3i)(x+�)!�d� ;

where the functions i (x; t) ; i = 1; 2; 3; are de�ned as

1(x; �) = 
�
x; (x+ �)

�p
3 (2� � 1)� i

��
;

2(x; �) = 
�
x; (x+ �)

�p
3 (1� �) + i (3� � 1)

��
;

3(x; �) = 
�
x; (x+ �)

�
�
p
3� + i (2� 3�)

��
:

Here we can note that the functions j, j = 1; 2; 3 inherit the properties of the function
(x; t).

The previous result is obtained by the natural parametrization of contour, thus, we do
not present the proof.
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Lemma 5.3. The functions j, for j = 1; 2; 3; take the form

1(x; �) =
1

2�i

1X
k=0

�k(x)�
(x+ �)

�p
3 (2� � 1)� i

��k+1 ;
2(x; �) =

1

2�i

1X
k=0

�k(x)�
(x+ �)

�p
3 (1� �) + i (3� � 1)

��k+1 ;
3(x; �) =

1

2�i

1X
k=0

�k(x)�
(x+ �)

�
�
p
3� + i (2� 3�)

��k+1
The series j are uniformly absolutely convergent with respect to � on [0; 1] :

Proof. We prove for 2; the procedure is similar for all series. Note that����� �k(x)�
(x+ �)

�p
3 (1� �) + i (3� � 1)

��k+1
����� =

j�k(x)j

(x+ �)k+1
�
3 (1� �)2 + (3� � 1)2

� k+1
2

� j�k(x)j
(x+ �)k+1

;

because 3 (1� �)2 + (3� � 1)2 � 1; when � 2 [0; 1] : Thus,
1X
k=0

����� �k(x)�
(x+ �)

�p
3 (1� �) + i (3� � 1)

��k+1
����� �

1X
k=0

j�k(x)j
(x+ �)k+1

:

By Weierstrass M-test, we conclude that for any x 2 [0; b] the series 2 is uniformly
absolutely convergent on [0; 1] : �

Proposition 5.4. For any �xed x; the functions j, j = 1; 2; 3 admit Fourier-Legendre
representations

(5.5) j(x; �) =

1X
m=0

�jm(x; �)
~Pm(�)

respect to � ; where the coe¢ cients �jm are de�ned as

(5.6) �jm (x; �) =
(2m+ 1)

4�i

1X
k=0

�k(x)

(x+ �)k+1

Z 1

�1

Pm(u)

[zj(
u+1
2
)]k+1

du;

where

z1(�) =
p
3 (2� � 1)� i;

z2(�) =
p
3 (1� �) + i (3� � 1) ;

z3(�) = �
p
3� + i (2� 3�) ;
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and for �jm the following estimate holds

(5.7)
���jm (x; �)�� � p2m+ 1j(x; �)L[0;1] :

The functions ~Pm are the shifted Legendre polynomials, which were de�ned in De�nition
5.1 and Pm are the ordinary Legendre polynomials.

Proof. The functions j(x; �) are continuous on [0; 1]; hence admit a Fourier-Legendre
series expansion. Multiplying in both sides of (5.5) by ~Pm(�) and using the orthogonality
property of shifted Legendre polynomials, the following equality is obtained

(5.8) �jm(x; �) = (2m+ 1)

Z 1

0

j(x; �) ~Pm(�)d� :

We evaluate j(x; �) in (5.8), and using the fact that
~Pm(x) = Pm(2x� 1) ; x 2 [0; 1],

we obtain

�jm(x; �) =
(2m+ 1)

2�i

1X
k=0

�k(x)

(x+ �)k+1

Z 1

0

~Pm(�)

[zj(�)]k+1
d�

=
(2m+ 1)

2�i

1X
k=0

�k(x)

(x+ �)k+1

Z 1

0

Pm(2� � 1)
[zj(�)]k+1

d�

=
(2m+ 1)

4�i

1X
k=0

�k(x)

(x+ �)k+1

Z 1

�1

Pm(u)

[zj(
u+1
2
)]k+1

du;

the change of order of summation and integration is justi�ed by the uniform convergence
of functions series j(x; �).
The estimate (5.7) follows as a consequence of the use of the Cauchy-Schwarz inequality

in (5.8) and the fact that
 ~Pm(�)

L2[0;1]
= 1p

2m+1
. �

Theorem 5.5. The solution y(!; x) of problem (5.1), (5.2) admits the following repre-
sentation

y(!; x) = 2
p
3(x+ �)e�i(x+�)!

1X
m=0

�(1)m (x; �)im

�p
3(x+ �)!

�
+

(�
p
3 + 3i)(x+ �)e

�p
3
2
+ 1
2
i
�
(x+�)!

1X
m=0

�(2)m (x; �))imjm

  p
3

2
i+

3

2

!
(x+ �)!

!

�(
p
3 + 3i) (x+ �) e

(x+�)
�
i
2
�
p
3
2

�
!

1X
m=0

�(3)m (x; �) imjm

  p
3

2
i� 3

2

!
(x+ �)!

!
where the coe¢ cients �jn are de�ned as in (5.6).
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Proof. Evaluating (5.5) in the solution y (!; x) de�ned in the Lemma 5.2, we obtain

y (!; x)

(x+ �)
= 2

p
3e�(

p
3+i)(x+�)!

1X
m=0

�(1)m (x; �)

Z 1

0

~Pm (�) e
2
p
3(x+�)!�d�

+
�
�
p
3 + 3i

�
e(
p
3�i)(x+�)!

1X
m=0

�(2)m (x; �)

Z 1

0

~Pm(�)e
(�
p
3+3i)(x+�)!�d�

�(
p
3 + 3i)e2(x+�)i!

1X
m=0

�(3)m (x; �)

Z 1

0

~Pm(�)e
�(
p
3+3i)(x+�)!�d� ;

the change of variable u = 2� � 1 gives
y(!; x)

(x+ �)
=

p
3e�(

p
3+i)(x+�)!

1X
m=0

�(1)m (x; �)

Z 1

�1
Pm(u)e

p
3(x+�)!(u+1)du+ 

�
p
3

2
+
3

2
i

!
e(
p
3�i)(x+�)!

1X
m=0

�(2)m (x; �)

Z 1

�1
Pm(u)e

�(
p
3+3i)(x+�)! u+1

2 du

�
 p

3

2
+
3

2
i

!
e2(x+�)i!

1X
m=0

�(3)m (x; �)

Z 1

�1
Pm(u)e

�(
p
3+i)(x+�)! u+1

2 du;

which is the same as

y(!; x)

(x+ �)
=

p
3e�i(x+�)!

1X
m=0

�(1)m (x; �)

Z 1

�1
Pm(u)e

p
3(x+�)!udu+

1

2
(�
p
3 + 3i)e(

p
3
2
+ 1
2
i)(x+�)!

1X
m=0

�(2)m (x; �)

Z 1

�1
Pm(u)e

(�
p
3+3i)(x+�)! u

2 du(5.9)

�1
2
(
p
3 + 3i)e(x+�)(

i
2
�
p
3
2
)!

1X
m=0

�(3)m (x; �)

Z 1

�1
Pm(u)e

�(
p
3+3i)(x+�)! u

2 du:

Using the formula 10.47.1 from [42] and the �nite Fourier transform of the Legendre
polynomial Pm Z 1

�1
Pm(x)e

i�xdx = im
r
2�

�
Jm+ 1

2
(�)

in (5.9) for each integral, thus the result is obtained. �
Example 5.6. Consider the Cauchy problem

y00 = !2y(x); y(!; 0) = 1; y0(!; 0) = !:

where x 2 [0; 1]. The Figure 5.1 illustrates the absolute error between the exact solution
y(!; x) = e!x and the approximate solution yM(!; x) of y (!; x) obtained in Theorem
5.5 . The �gure is illustrated using �(1)M ; M = 0; :::; 19; �

(2)
M ; M = 0; :::; 25; and �(3)M ;

M = 0; :::; 16 for di¤erent values of !:
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Figure 5.1: Absolute error between exact solution and aproximate solution yM , when
the contour C is a triangle.

2. Parametrization on 8 -sided polygon

In this section, we obtain a NSBF representation for the solution of the problem (5.1), (5.2)
when the contour C� in the Polya representation is represented by the counterclockwise
oriented perimeter of an 8 -sided polygon, which contains a circle of radius length x + �
inscribed.

Consider the following parametrization tk (�) : [0; 1]! C: k = 1; 2; 3; :::; 8: for the 8 -sided
polygon
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t1(�) = (x+ �)

 
1 + �

p
2� 2
2

!
+ i�

p
2

2
(x+ �)

t2 (�) = (x+ �)

p
2

2
(1� �) + i (x+ �)

 p
2

2
+ �

2�
p
2

2

!

t3 (�) = � (x+ �)

p
2

2
� + i (x+ �)

 
1 + �

p
2� 2
2

!

t4 (�) = (x+ �)

 
�
p
2

2
� �

 
2�

p
2

2

!!
+ i (x+ �)

p
2

2
(1� �)

t5 (�) = (x� �)

 
�1 + � 2�

p
2

2

!
� i (x+ �)

p
2

2
�

t6 (�) = (x+ �)

 
�
p
2

2
+ �

p
2

2

!
+ i (x+ �)

 
�
p
2

2
+ �

�2 +
p
2

2

!

t7 (�) = (x+ �) �

p
2

2
+ i (x+ �)

 
�1 + � 2�

p
2

2

!

t8 (�) = (x+ �)

 p
2

2
+ �

2�
p
2

2

!
+ i (x+ �)

 
�
p
2

2
+ �

p
2

2

!

Then, the solution y (!; x) takes the form

Z
C

 (x; t) e!tdt = (x+ �)E
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where

E =

 p
2� 2
2

+ i

p
2

2

!
e!(x+�)

Z 1

0

1 (x; �) e
!(x+�)

�p
2�2
2

+i
p
2
2

�
�
d�

+

 
�
p
2

2
+ i
2�

p
2

2

!
e
!(x+�)

�p
2
2
+i

p
2
2

� Z 1

0

2 (x; �) e
!(x+�)

�
�
p
2
2
+i 2�

p
2

2

�
�
d�

+

 
�
p
2

2
+ i

p
2� 2
2

!
ei!(x+�)

Z 1

0

3 (x; �) e
!(x+�)

�
�
p
2

2
+i

p
2�2
2

�
�
d�

+

 
�2�

p
2

2
� i

p
2

2

!
e
!(x+�)

�
�
p
2
2
+i

p
2
2

� Z 1

0

4 (x; �) e
!(x+�)

�
� 2�

p
2

2
�i

p
2
2

�
�
d�

+

 
2�

p
2

2
� i

p
2

2

!
e�

!(x+�)

Z 1

0

5 (x; �) e
!(x+�)

�
2�

p
2

2
�i

p
2
2

�
�
d�

+

 p
2

2
+ i
�2 +

p
2

2

!
e
!(x+�)

�
�
p
2
2
�i

p
2
2

� Z 1

0

6 (x; �) e
!(x+�)

�p
2
2
+i�2+

p
2

2

�
�
d�

+

 p
2

2
+ i
2�

p
2

2

!
e�i!(x+�)

Z 1

0

7 (x; �) e
!(x+�)

�p
2
2
+i 2�

p
2

2

�
�
d�

+

 
2�

p
2

2
+ i

p
2

2

!
e
!
�p

2
2
�i

p
2
2

�
(x+�)

Z 1

0

8 (x; �) e
!(x+�)

�
2�

p
2

2
+i

p
2
2

�
�
d�

where the functions j (x; �), j = 1; 2; :::; 8 admit a Legendre-Fourier series representation
de�ned as

j (x; �) =
1X
m=0

�jm (x; �)
~Pm (�) ; j = 1; 2; :::; 8

where we use the orthogonal properties of Legendre polynomials and obtain the relation

(5.10) �jn (x; �) = (2n+ 1)

Z 1

0

j (x; �) ~Pn (�) d� :

Moreover, the functions j (x; �) admit an expansion in the form

(5.11) j (x; �) =
1

2�i

1X
k=0

�k (x)

tk+1j

; j = 1; 2; :::; 8

where tj was de�ned at the beginning of this section. Thus, evaluating (5.11) in (5.10)
leads to the following formula

(5.12) �jn (x; �) =
2n+ 1

4�i

1X
k=0

�k (x)

Z 1

�1

Pn (s)

tk+1j

�
s+1
2

�ds:
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Theorem 5.7. The solution of the Cauchy problem (5.1), (5.2) admits the following
representation

u (!; x) =
8X
j=1

1X
n=0

�jn (x; �) e
zj!(x+�)

2 im
r

�

�izj! (x+ �)
Jn+ 1

2

�
�izj
2
! (x+ �)

�
where �jm (x; �) are de�ned as in (5.12) and

zj =

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

p
2�2
2
+ i

p
2
2
; j = 1;

�
p
2

2
+ i2�

p
2

2
; j = 2;

�
p
2
2
+ i

p
2�2
2
; j = 3;

p
2�2
2
� i

p
2
2
; j = 4;

�
p
2+2
2

� i
p
2
2
; j = 5;

p
2
2
+ i�2+

p
2

2
; j = 6;

p
2
2
+ i2�

p
2

2
; j = 7;

�
p
2+2
2

+ i
p
2
2
; j = 8:

Proof. The proof is analogous to the proof of the Theorem (5.5). �
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Appendix A

Bessel potential space and generalized Lipschitz class

De�nition A1: The fractional order Sobolev space W�
2 (R), also called Bessel potential

space consists of the functions satisfying f 2 L2 (R) and
�
1 + j!j2

��=2
F [f ] (!) 2 L2 (R) ;

where F is the Fourier transform operator.

De�nition A2: [15, Chap. 2, Sect. 7 and Sect. 9]The modulus of continuity ! (f; t) =:
! (t) of a function f can be de�ned when f is given on any metric space A; we consider
A = [a; b] :

! (t) := ! (f; t) = sup
jx�yj�t
x;y2A

jf (x)� f (y)j ; t � 0:

The function ! is continuous at t = 0 if and only if f is uniformly continuous on A:

De�nition A3: [15, Chap. 2, Sect. 9.] The Lipschitz space Lip� (A), 0 < � � 1,
consists of all continuous functions f de�ned on a set A = [a; b] which satisfy

j�t (f; x)j = jf (x+ t)� f (x)j �Mt�; t > 0;

or, equivalent,
! (f; t) �Mt�,

where M > 0: One can de�ne Lip� on any metric space X, for example, for the Lp norm,
the space Lip� (Lp) which consists of all f 2.Lp; 0 < p � 1 for which

k�t (f; x)kp =
�Z

At

jf (x+ t)� f (x)jp dx
� 1
p

�Mt�, t > 0,

whit At := [a; b� t], if A = [a; b], t < b� a.

For � > 0 we write � = r + �;where r 2 N and 0 < � < 1; and say that a function f
belongs to Lip� (I) class, with I being either a segment or the whole line, if f 2 Cr (I)
and f (r) 2 Lip� (I) : Consider the di¤erence operator �h : Lp (I) ! Lp (Ih) acting on a
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function f as �hf (�) = f (�+ h) � f (�) ;here Ih := [a; b� h] if I = [a; b] ; h < b � a and
Ih := I if I = R: Then the r-th modulus of smoothness of f is de�ned by

!r (f; t)Lp(I) := sup
0<h�t

k�r
h (f)kLp(Irh) :

De�nition A4: For � > 0 let r be the smallest integer satisfying r > �; i.e. r = [�]+1:
Then the generalized Lipschitz class Lip�� (I; p) is de�ned as the class of functions f 2
Lp (I) satisfying !r (f; t)Lp(I) �Mt� for all t > 0 with some constant M (f) :
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Appendix B

On weighted polynomial approximation

Let

W(�;�) (x) = (1� x)
�
2 (1 + x)

�
2 ; x 2 [�1; 1] ; �; � � �1

2
:

For W(�;�)f 2 L2; we de�ne

En
�
W(�;�); f

�
= inf

P2�

(f � P )W(�;�)


2
; n = 0; 1; :::

where � is the polynomials set of degree n. Consider the known orthonormal Jacobi
polynomial ~P (�;�)n (x) : For W(�;�)f 2 L2; we denote by S (�; �; f; x) the orthonormal

expansion of f with respect to the system
n
~P
(�;�)
n (x)

o
that is

f (x) � S (�; �; f; x) =
1X
k=0

ck (�; �; f) ~P
(�;�)
n (x)

where

ck (�; �; f) =

Z 1

�1
f (x) ~P

(�;�)
k (x)W 2

(�;�) (x) ; k = 0; 1; :::

De�nition B1: [36] Let S(�;�)k (k = 1; 2; :::) be the set of f satisfying

(1) f is a k-times iterated integral function of f (k) in (�1; 1) :
(2) f (l)W(�+l;�+l) 2 L2 (l = 0; 1; 2; :::k) ;

�
f (0) = f

�
:

We denote by S(�;�)0 the set of f(x) satisfying W(�;�)f 2 L2:

Theorem B2: [36](Inverse theorem 2) Let k be a positive integer, f 2 S(�;�)0 : If

1X
v=0

(v + 1)k�1Ev
�
W(�;�); f

�
<1
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then f 2 S(�;�)k ; also

En
�
W(�+k;�+k); f

(k)
�
� c2 (�; �; k)

h
(n+ 1)k�1En

�
W(�;�); f

�
+

1X
v=0

(v + 1)k�1Ev
�
W(�;�); f

�#
;

furthermore

En

�
W(�+k;�+k); f

(k);
1

n

�
� c3 (�; �; k)

1

n

nX
v=0

h
(v + 1)k�1Ev

�
W(�;�); f

�
+

1X
(s=v+1)

Es
�
W(�;�); f

�35 :
Remark B3: En

�
W(�;�); f

�
= O

�
1

nk+�

�
; (k = 0; 1; :::; 0 < 1) if and only if f 2 S(�;�)k and

!
�
W(�+k;�+k); �

�
= O (��)
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Conclusions and future work

Conclusions
In this thesis, we constructed a representation in Neumann series of Bessel functions for
solutions of Cauchy problems of order n; n � 2. One of the main contributions of our
work is to represent the solution of this problem in a sum of four Neumann series, which
converge uniformly with respect to x on [0; b] ; 0 < b < 1: We also proved that it is
possible to represent the solutions of linear di¤erential equations with speci�ed initial
conditions in many more ways because this representation depends of the contour C� that
is considered in the Polya representation . We gave two representations more, when the
parametrization is on the sides of a triangle and when it is on an 8 -sided polygon.

A discussion on parameter � has been provided, using some results of approximation
theory we explained the importance of look for an optimal value of � in order to achieve
a better approximation of the problem solution. In particular we presented numerical
applications solving initial value problems and spectral problems. Results showed that
our representation approaches better for not large values of parameter !:

Finally another contribution was a Neumann series representation for the solution of the
perturbed Bessel equation, the series converge uniformly with respect to both x on (0; 1]
and converge uniformly with respect to ! on a �nite subset of the complex plane of the
! variable. We also obtained estimates for the Neumann series of Bessel functions that
guarantee a uniform approximation of eigendata not depending of !. We obtained by
three ways the formulas to calculate the coe¢ cients of Neumann series of Bessel func-
tions, unfortunately these are not numerically better than coe¢ cients formulas obtained
in Theorem 3.1 of Chapter 2.

Future work

Future work concerns deeper analysis of the asymptotic behavior in the plane of !, this
can represent an important advance in the theory of linear di¤erential equations of order
n.

Many representations can be constructed depending on the contour that is taken the
integral representation of the solution y (!; x) and other functions may appear in the series
representation then it is interesting to study if this can in�uence for the convergence with
respect to !.
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Abbreviations & Notation

Abbreviations

SPPS Spectral parameter power series
NSBF Neumann Series of Bessel functions

Notation

T Transmutation operator for unperturbed Bessel operator
and perturbed Bessel operator

! Spectral parameter, ! 2 C:
~R (x; t) Expansion of transmutation kernel R (x; t).
�kn (x; �) n-th coe¢ cient of k-th Fourier-Legendre series.
~�n n-th coe¢ cient of Fourier -Legendre series of ~R (x; t)
J� (z) Bessel function of �rst kind of order �:
jn (z) Spherical Bessel function of �rst kind of order n:
h�; �i Scalar product
Pn Legendre polynomial of order n.
~Pn Legendre shifted polynomials of order n:
ul (!; x) Regular solution of the perturbed Bessel equation satisfying the asymptotic relation

ul (!; x) � xl+1 when x! 0:
W �
2 (R) Fractional order Sobolev space.

Lip� (R) Lipschitz class of functions.
Lip�� (R) Generalized Lipschitz class of functions.
!r (f:t)Lp(I) r-th modulus of smoothness of f , respect to Lp norm on I � R:
A Perturbed Bessel operator
B Unperturbed Bessel operator
L Linear di¤erential operator of order n:
y (!; x) Solution of equation L [y] = !ny:
 (x; t) Borel transform of the function y (!; x) :
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