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Abstract

In this work we present the construction of a family of quantum scalar fields

over a p−adic spacetime which satisfy p−adic analogues of the G̊arding–Wightman

axioms, this p−adic scalar fields satisfy certain p−adic Klein-Gordon pseudo-

differential equations. We compute explicitly the fundamental solutions of these

equations, we also present the second quantization of the solutions of these Klein-

Gordon equations which corresponds exactly to the scalar fields introduced here.

Most of the axioms can be formulated the same way in both, the Archimedean and

non-Archimedean frameworks; however, the axioms depending on the ordering of

the background field must be reformulated, reflecting the acausality of p−adic

spacetime. The main conclusion is that there seems to be no obstruction to the

existence of a mathematically rigorous quantum field theory (QFT) for free fields

in the p−adic framework, based on an acausal spacetime. This dissertation is

based in the article [38], which was written in collaboration with my doctoral

supervisors.
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Resumen

En este trabajo presentamos la construcción de una familia de campos escalares

cuánticos sobre un espacio-tiempo p−ádico que satisfacen los análogos p−ádicos de

los axiomas G̊arding–Wightman, estos campos escalares p−ádicos satisfacen cier-

tas ecuaciones pseudodiferenciales p−ádicas de tipo Klein-Gordon. Calculamos

expĺıcitamente las soluciones fundamentales de estas ecuaciones, también presen-

tamos la segunda cuantización de las soluciones de estas ecuaciones de Klein-

Gordon que corresponden exactamente a los campos escalares introducidos aqúı.

La mayoŕıa de los axiomas se pueden formular de la misma manera, tanto en el

marco arquimediano como en el no arquimediano; sin embargo, los axiomas que

dependen del orden del campo de fondo deben ser reformulados, reflejando la posi-

bilidad de un espacio-tiempo p−ádico. La conclusión principal es que no parece

haber ningún obstáculo para la existencia de una teoŕıa de campos cuánticos

(TCC) matemáticamente rigurosa para los campos libres en el marco p−ádico,

basada en un espacio-tiempo acausal. Esta tesis se basa en el art́ıculo [38], que

fue escrito en colaboración con mis supervisores de doctorado.
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Overview
This work deals with the construction of scalar quantum fields on a p−adic

spacetime. Although our treatment will be purely mathematical, there are certain

physical motivations behind it that we briefly describe next.

There is a increasing amount of research pointing towards the fact that quan-

tum mechanics conflicts with the classical notions relating causality to time order-

ing1. In [44], quantum correlations incompatible with a definite classical causal

order are constructed (although they prove that a causal order emerges in the

classical limit), and the experimental existence of these correlations is reported in

[52]. Another experiment reaching similar conclusions is described in [37], using

quantum optics, while in [45] quantum gates based on waveplates are used to get

acausal superpositions of states. See also [50] for the incompatibility of Quantum

Mechanics with some non-local causal models. Applications of the absence of a

predefined causal structure to quantum computations are given in [8].

Motivated by these considerations, one could wonder whether it is possible to

construct a quantum field theory (QFT) on a spacetime devoid of any a priori

causal structure. The notions of spacelike and timelike intervals which, from

an operational point of view, characterize the causal structure, are intimately

tied to the existence of a total order on the field number R compatible with the

algebraic field operations, so a possibility is to start from a non-ordered number

field. Leaving aside the case of finite fields, the most obvious choice is to consider

the non-Archimedean field of p−adic numbers Qp. The corresponding spacetime

is Q4
p. In this way, (p−adic) time no longer acts as an ordering parameter. While

this is completely consistent with the requirement of covariance, it raises some

questions about its meaning in Quantum Mechanics; for some theoretical points

of view about the possibility of quantum processes without a time parameter see

[70, 51].

The spacetime Q4
p is acausal in the broad sense of lacking a causal structure,

but also in the particular, technical, sense that for any pair of points on it, there

exists no causal curve connecting them (which, in particular, also implies that

it is achronal). The question of the intrinsic (a)causality of spacetime has been

1Notice that we emphasize the causal character of the time ordering. There are other possible
orderings (chronological, horismos) that will be not considered here, although they are related,
see [32].
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studied sometime ago [33], and is a topic of obligated discussion when dealing

with the possibility of ‘travels in time’ [36, 59]. Acausal (portions of) spacetimes

appears often in relation with wormholes in General Relativity [42]. There have

been problems in constructing the S matrix for interacting massive scalar fields

in this setting [15], but it should be stressed that these are due to the interaction

along closed timelike curves, which do not exist at all in the framework of a

globally acausal spacetime such as the one presented here, where the very notion

of ‘timelike’ does not make sense.

A problem present in any acausal theory is the characterization of micro-

causality or local commutativity, that is, the vanishing of the commutator of field

operator-valued distributions when the test functions have support in spacelike

separated regions. It is not clear a priori that a theory without a causal structure

will allow for vanishing commutators even restricting the domain of the involved

operators, but we will show below that a similar property holds when the test

functions are supported in the p−adic unit ball. Thus, there is no room for phe-

nomena arising in the non-Archimedean case, such as the connection of spacelike

regions by large timelike loops. It is also reasonable to expect that the consid-

eration of p−adics numbers could also cure the divergences in 1−loop effective

Lagrangians that appear in the real Euclidean case [6], although no attempt is

made here to pursue this direction of research.

Another, different, kind of motivation for studying quantum field theory in

the p−adic setting comes from the conjecture of Vladimirov and Volovich stat-

ing that spacetime has a non-Archimedean nature at the Planck scale, [67], see

also [60]. The existence of the Planck scale implies that below it the very notion

of measurement as well as the idea of ‘infinitesimal length’ become meaningless,

and this fact translates into the mathematical statement that the Archimedean

axiom is no longer valid. Before Volovich, some authors explored the possibility

of constructing theories of the spacetime using background fields different from

R and C; for instance, in [13] Everett and Ulam study the Lorentz group over

Qp in the hope that ‘spaces of this sort might be useful in some future models

of nuclear or subnuclear theories’, see also [60], [61, Chapter 6] and references

therein. Volovich’s conjecture propelled a wide variety of investigations in cos-

mology, quantum mechanics, string theory, QTF, etc., and the influence of this

conjecture is still relevant nowadays, see e.g. [1], [4]-[12], [11], [10], [20]-[21], [30]-
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[41], [62]-[67], [71], [73]. In a completely different framework, that of the physics

of complex systems, the paradigm asserting that the space of states of several

complex systems has an ultrametric structure has also originated a large amount

of research, see [47], [29] and references therein. These two ideas are the main

motivations driving the development of p−adic mathematical physics. In particu-

lar, during the last thirty years p−adic QFT has been studied intensively, a topic

whose importance has been highlighted by Varadarajan in [61].

The construction of a quantum field theory over a p−adic spacetime raises

the question about the physical meaning of the prime p. Once a choice for p is

made, we can construct Q4
p (endowed with the maximum norm) and then give it

a geometric structure through a quadratic form q. The geometry of the result-

ing spacetime, the quadratic space (Q4
p, q), depends crucially on both, p and q.

We choose the simplest case in which the quadratic form is the unique elliptic

form of dimension four and a prime number p ≡ 1 mod 4. The first choice is

motivated by the need for ellipticity when doing the explicit computation of the

fundamental solutions (and the corresponding propagators) of the Klein-Gordon

equation. Notice that the naive choice q(k) = k2
0 − (k2

1 + k2
2 + k2

3) is excluded

because it is not elliptic. It is possible to develop a theory based on this form,

but at the cost of facing greater technical difficulties. However, as we will see,

our choice for q retains all the essential features of a relativistic theory, so it is

justifiable from a physical point of view. Regarding the choice of p, the quantum

fields introduced here will strongly depend on the geometry of the hypersurface

V =
{
k ∈ Q4

p; q(k) = 1
}

, and if we pick p ≡ 1 mod 4, then we can guarantee that√
ω(k) 6= 0 for any k ∈ Uq, where Uq ⊂ Q3

p is a certain open and compact subset

(depending on q) that will be defined later on. Notice that, due to these choices,

we are actually defining a family of quantizations, a fact that could be viewed as

an advantage over the rigidity of the classical case.

Thus, given a prime number p ≡ 1 mod 4 and a p−adic elliptic quadratic form

q of dimension 4, we will denote by O(q) the orthogonal group of q. As stated, the

p−adic Minkowski spacetime is, by definition, the quadratic space (Q4
p, q), so the

Lorentz group of spacetime isO(q). In this work, ‘time’ is a p−adic variable, so the

notions of past and future are not clearly defined. However, the p−adic implicit

function theorem allows us to determine k0, from q (k0,k) = 1, as k0 = ±
√
ω (k),

where
√
ω (k) is a p−adic analytic function defined in Uq, and in this way we can
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define the mass shells:

V ± =
{

(k0,k) ∈ Qp ×Q3
p; k0 = ±

√
ω (k) , k ∈ Uq

}
.

We will denote by F the Fourier transform operator associated to the quadra-

tic form q. The p−adic Klein-Gordon operator attached to q with unit mass is

defined as

�q,αϕ = F−1
(
|q− 1|αp Fϕ

)
where ϕ is a test function and α is a fixed positive number.

The p−adic Klein-Gordon equations in the form used in this thesis were intro-

duced by Zúñiga-Galindo, see [73, Chapter 6] and references therein, where also

the problem of the second quantization of their solutions was posed [73, Chapter

7]. The resulting field theory has a strong number-theoretic flavor. For instance,

the calculation of the Green functions is related to the meromorphic continua-

tion of Igusa’s local zeta functions, see Theorem 48 and the references [23], [29,

Chapter 10], [73, Chapter 5].

The existence of fundamental solutions for p−adic pseudodifferential equations

with arbitrary polynomial symbol was established by Zúñiga Galindo, see [[73],

Theorem 134] by using Igusa’s local zeta functions. In this work we show the

existence of fundamental solutions for the Klein-Gordon operators �q,α, which

are invariant under the action of O(q), the orthogonal group of the quadratic

form q, see [Theorem 48, Chapter 3].

The p−adic Klein-Gordon equation

�q,αu (t,x) = 0 (1)

admits solutions of plane wave type, more precisely, the functions

exp 2πi
{
tE± − sx1l1 − px2l2 + spx3l3

}
p
,

where {·}p denotes the p−adic fractional part, l = (l1, l2, l3) ∈ Q3
p is a fixed vector,

and E± = ±
√
ω (l) (here

√
ω (k) is the p−adic dispersion) are weak solutions of

(1), see Theorem 67.

The general solution of (1), up to multiplication by a non-zero complex con-



xiii

stant, is∫
Uq

(
χp

(
−
√
ω(k)t+ k · x

)
a (k) + χp

(√
ω(k)t− k · x

)
a†(−k)

) d3k∣∣∣√ω (k)
∣∣∣
p

,

(2)

where χp (·) = exp
(

2πi {·}p
)

is the standard additive character of Qp, Uq ⊂
Q3
p is an open and compact subset, k · x denotes a suitable bilinear form, and

a (k), a† (−k) are test functions, see Theorem 67. We consider the inhomogeneous

p−adic Klein-Gordon equation:

�q,αu (t,x) = h (t,x) , (3)

where (t,x) ∈ Qp × Q3
p and h (t,x) ∈ DC(Qp × Q3

p). We use the techniques

and results of [73, Chapter 6]. By a solution (or weak solution) we understand

a distribution from D′C(Qp × Q3
p) satisfying (5.14). We denote by E0

q (t,x), the

fundamental solution of (5.14) obtained in Theorem 48.

In the Theorem 67, in Chapter 5, we show that the p−adic Klein-Gordon

equations admit plane waves as weak solutions, and also we study the Cauchy

problem attached to these equations.

Notice that
∣∣∣√ω (k)

∣∣∣
p
A (k),

∣∣∣√ω (k)
∣∣∣
p
B (k), are test functions, and also

∫
Uq

χp

(√
ω (k)t+ B0 (k,x)

)
B (k)

d3k∣∣∣√ω (k)
∣∣∣
p

=

∫
Uq

χp

(√
ω (k)t−B0 (k,x)

)
B (−k)

d3k∣∣∣√ω (k)
∣∣∣
p

,

so the unique weak solution of �q,αu (t,x) = 0 (with C = 1/
√

2) invariant under

L↑+ corresponds to the free scalar field Φ (t,x), with a (k) =
∣∣∣√ω (k)

∣∣∣
p
A (k),

a† (k) =
∣∣∣√ω (k)

∣∣∣
p
B (k). As we have seen, these solutions can be quantized using

the machinery of the second quantization in such a way that Wightman axioms

are satisfied.

In conventional QFT there have been some studies devoted to the optimal

choice of the space of test functions. In [24], Jaffe discussed this topic (see also

[57] and [35]); his conclusion was that, rather than an optimal choice, there exists
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a set of conditions that must be satisfied by the candidate space, and any class

of test functions with these properties should be considered as valid. The main

condition is that the space of test functions must be a nuclear countable Hilbert

one. In this thesis, we use the following Gel’fand triple: H∞ (K) ⊂ L2
K ⊂ H∗∞ (K),

where K = R, C. This triple was introduced in [71]. The space H∞ (K) is a

nuclear countable Hilbert space, which is invariant under the action of a large

class of pseudo-differential operators. This space can be considered the ‘true’

non-Archimedean analogue of the classical Schwartz space, as we will repeatedly

justify in what follows. In fact, our results could be summarized by saying that

the G̊arding–Wightman axioms make sense in the p−adic context if we replace

the Schwartz space of the classical framework by H∞ (C).

The solutions (2) can be quantized using the techniques described below, and

the corresponding Klein-Gordon fields satisfy the corresponding Wightman ax-

ioms, see Theorem 66.

In Chapters 4 and 5 we give the construction of a family of quantum scalar

fields over a p−adic spacetime which satisfy p−adic analogues of the Garding-

Wightman axioms. Then at this point it is worth to mention the main continuous

operators that we needed for the construction and briebly summarize the con-

struction and state the main theorem obtained in Chapter 5.

For f ∈ H, the Segal quantum field operator ΦS on F0 is defined as

ΦS(f) =
1√
2

[a−(f) + a−(f)∗]. (4)

We define for each f ∈ H∞ (R),

Φ(f) = ΦS(Rf) ,

with R defined as in Lemma 58, and for each g ∈ H∞ (C),

Φ(g) = Φ(Re g) +
√
−1Φ(Im g) . (5)

The main result of this dissertation, (see Theorem 66) says:

(i) the quadruple {
Fs(L

2
C
(
V +, dλ

)
),Γ (U (·, ·)) ,Φ, F0

}
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satisfies the p-adic Wightman axioms.

(ii) For each f ∈ H∞ (C),

Φ (�q,αf) = 0.

In order to guarantee that the resulting theory has some physical content, in

Chapters 4, 5 we show that the corresponding quantum non-Archimedean scalar

fields satisfy p−adic versions of G̊arding–Wightman’s axioms. Most of them can

be formulated in a way valid in both the Archimedean and non-Archimedean cases,

but some of them must be appropriately reformulated in the p−adic setting by in-

troducing new mathematical ideas and reinterpreting some classical constructions

that are not directly available in the p−adic context. For instance, the absence of

an ordering in the background number field implies some profound modifications

in the usual interpretation of notions such as the timelike or spacelike character of

p−adic spacetime events, and the introduction of new mathematical objects such

as the p−adic restricted Lorentz group, that we will discuss below. As another

example, our p−adic spectral condition does not provide a definition of energy

and momentum operators, because this would require a theory of semigroups,

with p−adic time, for operators acting on complex-valued functions, and such

a theory does not exist at the moment. However, the outcomes of our analysis

are consistent with the requirement that the mathematical description of physical

reality must not depend on the background number field, see [68]. This property

is due to the particular nature of the Klein-Gordon field, notice that the same is

not true for the Schrödinger equation, as the number i does not have an analog

in an arbitrary field.

In the p−adic setting the usual geometric notion of cone does not make sense,

because it depends on the fact that the real numbers form an ordered field. For

this reason, we replace the notion of closed forward light cone by that of ‘closed

forward semigroup’, which is the topological closure of the additive semigroup

generated by V +. This notion allow us to construct a spectral measure attached

to a strongly continuous unitary representation of the p−adic Poincaré group as

in the classical case, the detailed proof will appear in the Theorem 66.

In the Archimedean case, the commutator vanishes whenever the test func-

tions f, g are supported on two respective spacelike-separated subsets, that is,

f(x)g(y) = 0 whenever x − y does not belong to the interior of the light cone.
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This subset can be characterized as the ‘ball of radius 0’ of Minkowski spacetime

in the sense of the theory of indefinite quadratic forms (see, e.g., [22] and refer-

ences therein). Our result can be seen as the equivalent statement in the p−adic

case, with the unit ball playing this role.

In Chapter 5, we present a second-quantization, based on Segal’s formalism,

for p-adic free scalar fields whose evolution is described by a certain class of Klein-

Gordon type pseudo-differential operators.

We have remarked some features derived from the fact that the spacetime is

p−adic. Let us now make some comment about those originated in the configu-

ration space of the fields. A key fact is that we work with complex-valued fields.

This allow us to use the tools from classical functional analysis, in particular Segal

quantization. On the other hand, it is also possible to work with p−adic valued

fields. In this setting, Khrennikov developed a theory of Gaussian integration

of non-Archimedean-valued functions on infinite-dimensional non-Archimedean

spaces and a calculus of pseudo-differential operators which is suitable for the

second-quantization representation in non-Archimedean quantum field theory, see

[25]-[27] and references therein. Mathematically speaking, this is a completely dif-

ferent setting from ours: for instance, p−adic Hilbert spaces are radically different

to their complex counterparts.

It must be remarked that here we deal with free fields, omitting interactions.

The reason for this is that, due to Haag’s theorem, interactions require a more

technical treatment, but having a consistent theory for the free case is the first

step towards a complete p−adic QFT.

Finally, let us remark that there are a lot of open questions related to p−adic

quantum fields and their underlying mathematical techniques that remain to be

studied within the present framework. Among them, probably the most important

one is the reconstruction theorem, which depends on an appropriate definition

of Wightman distributions, and, of course, the inclusion of non-trivial interac-

tions, that will be discussed elsewhere. The corresponding theory for non-elliptic

quadratic forms q, though much more difficult, is also of interest.
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Chapter 1

p−adic Analysis: basic aspects

Along this thesis p will denote a prime number different from 2. Due to physical

considerations we will formulate all our results in dimension 4, however, many of

our results are still valid in arbitrary dimension.

1.1 The field of p−adic numbers

In this section we summarize the essential aspects and basic results on p−adic

analysis that we will use through the thesis. For a detailed exposition of p−adic

analysis the reader may consult [2, 58, 66].

The field of p−adic numbers Qp is defined as the completion of the field of

rational numbers Q with respect to the p−adic norm | · |p, which in turn is defined

as

|x|p =

0 if x = 0

p−γ if x = pγ
a

b
,

where a and b are integers coprime with p. The integer γ := ord(x), with ord(0) :=

+∞, is called the p−adic order of x. Any p−adic number x 6= 0 has a unique

expansion of the form

x = pord(x)

∞∑
j=0

xjp
j , (1.1)

where xj ∈ {0, . . . , p − 1} and x0 6= 0. Any non-zero p−adic number x can be

written uniquely as x = pord(x)ac (x), with |ac (x)|p = 1, ac (x) is called the angular

component of x.

1
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By using expansion (1.1), we define the fractional part of x ∈ Qp, denoted

{x}p, as the rational number

{x}p =

0 if x = 0 or ord(x) ≥ 0

pord(x)
∑−ord(x)−1

j=0 xjp
j if ord(x) < 0 .

As a topological space Qp is homeomorphic to a Cantor-like subset of the real

line, see e.g. [2, 66]. The balls and spheres are compact subsets.

The 3-adic unit ball Z3, x0 + x13 + x232 + x333 + x434 · · · , xi ∈ {0, 1, 2}

We extend the p−adic norm to Q4
p by taking

||x||p := max
0≤i≤3

|xi|p, for x = (x0, x1, x2, x3) ∈ Q4
p.

We define ord(x) = min
0≤i≤3

{ord(xi)}, then ||x||p = p−ord(x). The metric space(
Q4
p, || · ||p

)
is a complete ultrametric space. Thus (Q4

p, ‖ · ‖p) is a locally compact

topological space.

For l ∈ Z, denote by B4
l (a) = {x ∈ Q4

p : ||x − a||p ≤ pl} the ball of radius

pl with center at a = (a0, a1, a2, a3) ∈ Q4
p, and take B4

l := B4
l (0). Note that

B4
l (a) = Bl(a0) × · · · × Bl(a3), where Bl(ai) := {x ∈ Qp : |x − ai|p ≤ pl} is the

one-dimensional ball of radius pl with center at ai ∈ Qp. The ball B4
0 equals the

product of four copies of B0 := Zp, the ring of p−adic integers. For l ∈ Z, denote

by S4
l (a) = {x ∈ Q4

p : ||x−a||p = pl} the sphere of radius pl with center at a ∈ Q4
p,

and take S4
l := S4

l (0).

Remark 1. The natural map Zp → Zp/pZp ' Fp, where Fp is the finite field

with p elements, is called the reduction modulo p, denoted as ·. We will identify
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Figure 1.1: The p-adic unit balls Z2, Z3 and Z5.

Fp =
{

0, 1, . . . , p− 1
}

, where the addition and multiplication are defined modulo

p. We will distinguish between {0, 1, . . . , p− 1} ⊂ Zp and Fp. Later on, we will

also use the symbol ‘·’ to mean conjugation of complex numbers, but it will be clear

from the context which case it is being considered.

Remark 2. Let us collect here some conventions.

(i) We denote by Ω(‖x‖p) the characteristic function of B4
0 . For more general

sets, say Borel sets, we use 1A (x) to denote the characteristic function of

A.

(ii) From now on, we denote by d4x the Haar measure of the locally compact

group
(
Q4
p,+

)
normalized so that the volume of Z4

p equals one.

(iii) We will use the notation x = (x0, x1, x2, x3) = (x0,x) ∈ Qp ×Q3
p from now

up to Section 5.5.

1.2 Some function spaces

The theory of generalized functions on any locally compact group was presented by

Bruhat in [5], and on a locally compact disconnected field by Gelfand, Graev and

Pjatetskii-Shapiro in [16]. Vladimirov exposes the basics of this theory adapted

to the field Qp and to the space Qn
p in [64], [66]. In many aspects, the theory is

similar to the corresponding theory on the space Rn, but there are some essential

distinctions, that will be stressed in what follows.
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1.2.1 The Bruhat-Schwartz space

We take K to mean R or C. A K-valued function ϕ defined on Q4
p is called locally

constant, if for any x ∈ Q4
p there exists an integer l(x) ∈ Z such that

ϕ(x+ x′) = ϕ(x) for x′ ∈ B4
l(x). (1.2)

A function ϕ : Q4
p → K is called a Bruhat-Schwartz function (or a test function),

if it is locally constant with compact support. The K-vector space of Bruhat-

Schwartz functions is denoted by DK(Q4
p) := DK. Let D′K(Q4

p) := D′K denote the

space of all continuous functionals (distributions) on DK. The space D′K coincides

with the algebraic dual of DK, i.e. any linear functional on DK is continuous. For

an in-depth discussion the reader may consult [2], [58], [66].

Remark 3. Most of the time we will work in dimension four, with spaces like

DK(Q4
p) and D′K(Q4

p), in these cases we will use the abbreviated notation DK,

D′K. In a few occasions we will work in dimensions different from 4, then we will

use the notation DK(Qn
p ), D′K(Qn

p ). A similar rule will be used for other function

spaces.

1.2.2 The spaces Lr

Given r ∈ [1,+∞), we denote by LrK
(
Q4
p, d

4x
)

:= LrK, the K-vector space of all

the K-valued functions g satisfying
∫
Q4
p
|g (x)|r d4x <∞.

1.3 Fourier transform

Set χp(y) = exp(2πi{y}p) for y ∈ Qp. The map χp(·) is an additive character on

Qp, i.e. a continuous map from Qp into the unit circle satisfying χp(y0 + y1) =

χp(y0)χp(y1), y0, y1 ∈ Qp. Using the character χp(x) and the Haar measure d4x

one constructs the Fourier transform for complex valued functions f(x), f̃(y) =∫
Q4
p
f(x)χp(x · y)d4x. We set

B (x, y) = x0y0 − sx1y1 − px2y2 + spx3y3,
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where s ∈ Z is a quadratic non-residue module p, i.e. the congruence x2 ≡ s

mod p does not have solution. Then B (x, y) is a symmetric non-degenerate

Qp−bilinear form on Q4
p ×Q4

p, and

q(x) := B (x, x) = x2
0 − sx2

1 − px2
2 + spx2

3, x ∈ Q4
p

is a non-degenerate quadratic form on Q4
p. In addition, q(x) is the unique (up to

linear equivalence) elliptic quadratic form in dimension four, here elliptic means

that q(x) = 0 ⇔ x = 0 (notice that this is not equivalent to the non-degeneracy

of B, as the equation q(x) = 0 could have its own solutions, not coming from

vectors orthogonal to all the vectors in Q4
p).

In the definition of the Fourier transform, the bilinear form x · y = x0y0 +

x1y1 + x2y2 + x3y3 can be generalized for any symmetric non-degenerate bilinear

form B (x, y). We will use such Fourier transforms in this work.

We identify the Qp−vector space Q4
p with its algebraic dual

(
Q4
p

)∗
by means

of B (·, ·). We now identify the dual group (i.e. the Pontryagin dual) of
(
Q4
p,+

)
with

(
Q4
p

)∗
by taking x∗ (x) = χp (B (x, x∗)). The Fourier transform is defined

by

(Fg)(k) =

∫
Q4
p

g (x)χp (B (x, k)) dµ (x) , for g ∈ L1
C,

where dµ (x) is a Haar measure on Q4
p. Let L

(
Q4
p

)
be the space of complex-

valued continuous functions g in L1
C whose Fourier transform Fg is integrable.

The measure dµ (x) can be uniquely normalized in such a way that

(F(Fg))(x) = g(−x) for every g belonging to L
(
Q4
p

)
.

We say that dµ (x) is a self-dual measure relative to χp (B (·, ·)). Notice that

dµ (x) = C(q)d4x where C(q) = p−2 and d4x is the normalized Haar measure on

Q4
p. For further details about the material presented in this section the reader

may consult [69].

We will also use the notation Fx→ξg and ĝ for the Fourier transform of g. The

Fourier transform F [T ] of a distribution T ∈ D′C is defined by

(F [T ] , ϕ) = (T,Fϕ) for all ϕ ∈ DC.
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The Fourier transform T → F [T ] is a linear isomorphism from D′C onto itself.

Furthermore, T (ξ) = F [F [T ] (−ξ)].

Remark 4. Along this thesis we will use the notation q(x) = x2
0 − q0(x), where

q0(x) = sx2
1 + px2

2 − spx2
3 is an elliptic quadratic form. The bilinear form corre-

sponding to q0 will be denoted B0(·, ·). Then B (x, y) = x0y0 −B0(x,y).

1.4 The p−adic Minkowski space

Take q(x) as before, and define

G =


1 0 0 0

0 −s 0 0

0 0 −p 0

0 0 0 sp

 .

Then q(x) = x>Gx, where > denotes the transpose of a matrix, and x is identified

with the column vector [x0, x1, x2, x3]>. The orthogonal group of q is defined as

O(q) = {Λ ∈ GL4(Qp);B (Λx,Λy) = B (x, y)}

= {Λ ∈ GL4(Qp); Λ>GΛ = G}.

Notice that any Λ ∈ O(q) satisfies det Λ = ±1. We call the quadratic space

(Q4
p, q) the p-adic Minkowski space, and we define the p-adic Lorentz group to be

O(q). Later on, we will introduce the p−adic restricted Lorentz group and the

p−adic restricted Poincaré group.

Remark 5. Special relativity in the p−adic framework was discussed in [13], how-

ever, our definitions of Lorentz group and ‘light cones’ are completely different. In

[62]-[63], the authors also investigated the representations of the p−adic Poincaré

group, our notion of Lorentz group agrees with the one used in these works.
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1.5 The Dirac distribution supported on a hy-

persurface

Take f ∈ Qp [x0, x1, x2, x3] to be a non-constant polynomial. The hypersurface

attached to f is the set

H := H(f) =
{
x ∈ Q4

p; f(x) = 0
}
.

We say that H is a non-singular hypersurface, if

∇f(x) 6= 0 for any x ∈ H. (1.3)

By using the p−adic implicit function theorem, see e.g. [23], [53], one shows,

as in the case R4, that H is a p−adic manifold embedded in Q4
p. More exactly,

H is a closed submanifold of Q4
p (which is a p−adic manifold of dimension 4) of

codimension 1. For further details about p−adic manifolds the reader may consult

[23], [53].

The condition (1.3) implies the existence of a 3-form λ (whose restriction to

H is unique) satisfying

dx0 ∧ dx1 ∧ dx2 ∧ dx3 = df ∧ λ. (1.4)

Usually λ is called a Gel’fand-Leray form for H. We denote by dλ the measure

induced by λ on H. For the details about the construction of dλ, the reader may

consult [23, Chapter 7]. This construction is similar to the one in the real case,

[17, Chapter III].

The linear functional

DK → K

ϕ → (δH , ϕ) =
∫
H

ϕ (x) dλ

gives rise to a distribution D′K, which is called the Dirac distribution δH supported

on H.
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Denote Q×p = Qp − {0}. For t ∈ Q×p , we set

Vt := Vt(q) = {x ∈ Q4
p; q(x) = t}.

Then Vt is a non-singular hypersurface in Q4
p. The orthogonal group O(q) acts

transitively on Vt. On each non-empty orbit Vt there is a non-zero, positive mea-

sure which is invariant under O(q) and unique up to multiplication by a positive

constant, see [46, Proposition 2-2].

For each t ∈ Q×p , let dµt be a measure on Vt invariant under O(q). Since

Vt is closed in Q4
p, it is possible to consider dµt as a measure on Q4

p supported

on Vt, and by the using the Caratheodory theorem, we can identify dµt with a

positive distribution, i.e., if φ is a non-negative function, then (dµt, φ) ≥ 0. The

Rallis-Schiffman result above mentioned can be reformulated as follows: on each

non-empty orbit Vt there is a non-zero, positive distribution which is invariant

under O(q) and unique up to multiplication by a positive constant.

Now, since δVt is invariant under O(q) (see [73, Lemma 156] for a similar

calculation) we conclude that dµt agrees (up to a positive constant) with δVt .

From now on we identify δVt with dµt.

Remark 6. We will denote by δ (f) the Dirac distribution supported on the non-

singular hypersurface attached to the polynomial f.

1.6 The spaces H∞

The Bruhat-Schwartz space DK is not invariant under the action of pseudod-

ifferential operators; for example, DK is not invariant under the action of the

Vladimirov and Taibleson Operators. In [71], see also [29, Chapter 10], a class of

nuclear countably Hilbert spaces which are invariant under the action of a large

class of pseudo-differential operators is introduced. In this section, we review some

basic results about these spaces that we will use in the remaining sections.

Remark 7. We set R+ := {x ∈ R : x ≥ 0}, [ξ]p := max(1, ‖ξ‖p) and consider N
to be the set of non-negative integers.
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We define for f, g ∈ DK, with K = R,C, the following scalar product:

〈f, g〉l :=

∫
Q4
p

[ξ]lpf̂(ξ)ĝ(ξ)d4ξ,

for l ∈ N, where the bar denotes the complex conjugate. We also set ‖f‖2
l =

〈f, f〉l. Notice that ‖ · ‖l ≤ ‖ · ‖m for l ≤ m. Denote by Hl(K) := Hl(Q4
p,K) the

completion of DK with respect to 〈·, ·〉l. Then Hm(K) ↪→ Hl(K) is a continuous

embedding for l ≤ m. We set

H∞(Q4
p,K) := H∞(K) =

⋂
l∈N

Hl(K).

Notice that H0(K) = L2
K and that H∞(K) ⊂ L2

K. With the topology induced by

the family of seminorms ‖ · ‖l, H∞(K) becomes a locally convex space, which is

metrizable. Indeed,

d(f, g) := max
l∈N

{
2−l

‖f − g‖l
1 + ‖f − g‖l

}
, for f , g ∈ H∞(K),

is a metric for the topology of the convex topological space H∞(K). A sequence

{fl}l∈N ∈ (H∞(K), d) converges to f ∈ H∞(K), if and only if, {fl}l∈N converges to

f in the norm ‖·‖l for all l ∈ N. From this observation it follows that the topology

of H∞(K) coincides with the projective limit topology τP . An open neighborhood

base at zero of τP is given by the choice of ε > 0 and l ∈ N, and the sets

Uε,l := {f ∈ H∞(K) : ‖f‖l < ε}.

The space H∞(K) endowed with the topology τP is a countably Hilbert space in

the sense of Gel’fand and Vilenkin, see e.g. [18, Chapter I, Section 3.1] or [43,

Section 1.2]. Furthermore (H∞(K), τP ) is metrizable and complete and hence a

Fréchet space, cf. [71, Lemma 3.3]. In addition, the completion of the metric

space (DK(Q4
p), d) is (H∞(K), d), and this space is a nuclear countably Hilbert

space, see [71, Lemma 3.4, Theorem 3.6] or [29, Chapter 10].

For m ∈ N and T ∈ D′K, we set

‖T‖2
−m :=

∫
Q4
p

[ξ]−ml |T̂ (ξ)|2d4ξ.
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Then H−m(K) := H−m(Q4
p,K) = {T ∈ D′K; ‖T‖2

−m < ∞} is a Hilbert space over

K. Denote by H∗m (K) the strong dual space of Hm (K). It is useful to suppress the

correspondence between H∗m (K) and Hm (K) given by the Riesz theorem. Instead

we identify H∗m (K) and H−m (K) by associating T ∈ H−m (K) with the functional

on Hm (K) given by

[T, g] :=

∫
Q4
p

T̂ (ξ)ĝ(ξ)d4ξ. (1.5)

Notice that |[T, g]| ≤ ‖T‖−m‖g‖m. Now by a well-known result in the theory of

countable Hilbert spaces, see [18], H∗0 (K) ⊂ H∗1 (K) ⊂ . . . ⊂ H∗m (K) ⊂ . . . and

H∗∞ (K) =
⋃
m∈N

H−m (K) = {T ∈ D′K; ‖T‖−l <∞, for some l ∈ N} (1.6)

as vector spaces. SinceH∞ (K) is a nuclear space, the weak and strong convergence

are equivalent in H∗∞ (K), see e.g. [18]. We consider H∗∞ (K) endowed with the

strong topology. On the other hand, let B : H∗∞ (K)×H∞ (K)→ K be a bilinear

functional. Then B is continuous in each of its arguments if and only if there exist

norms ‖ · ‖(a)
m in H∗m (K) and ‖ · ‖(b)

l in Hl (K) such that |B(T, g)| ≤M‖T‖(a)
m ‖g‖(b)

l

with M a positive constant independent of T and g, see e.g. [18]. This implies

that (1.5) is a continuous bilinear form on H∗∞ (K) ×H∞ (K), which we will use

as a paring between H∗∞ (K) and H∞ (K).

Remark 8. The spaces H∞ (K) ⊂ L2
K ⊂ H∗∞ (K) form a Gel’fand triple (also

called a rigged Hilbert space), i.e. H∞ (K) is a nuclear space which is densely

and continuously embedded in L2
K and ‖g‖2

L2
K

= [g, g]. This Gel’fald triple was

introduced in [71].

The following result will be used later on:

Lemma 9. With the above notation, the following assertions hold:

(i) Hl(K) = {f ∈ L2
K; ‖f‖l <∞} = {T ∈ D′K; ‖T‖l <∞};

(ii) H∞(K) = {f ∈ L2
K; ‖f‖l <∞, for any l ∈ N};

(iii) H∞(K) = {T ∈ D′K; ‖T‖l <∞, for any l ∈ N}.

For the proof the reader may consult ([72, Lemma 3.2]) or [29, Lemma 10.8].



Chapter 2

Second Quantization: basic

aspects

2.1 The particle interpretation of fields

The usual quantum mechanical description of a system is based on the Schrödiger

equation, which is a one-particle description. When quantum mechanics is coupled

to relativity, there exists the possibility of annihilation and creation of particle

pairs (due to the mass-energy equivalence), hence a description using a fixed

number of particles is not consistent. This fact motivates the introduction of

fields into our mathematical framework. Each particle generates a field defined at

each point of spacetime, carrying its own energy and momentum. Again, special

relativity implies that a field configuration is equivalent to an infinite distribution

of particles (the field excitations): photons in the case of the electromagnetic

field, gravitons in the case of the gravitational field, etc. Thus, to mathematically

describe a quantum field, we need first to give a suitable space of states for a

system of infinite particles, a construction known as Fock space. In doing this,

we must take into account the celebrated spin-statistics theorem, stating that

the state of a collection of bosons (integer spin particles) must be described by

a symmetric wavefunction. Our first task, then, is to construct a multiparticle

state by tensoring one-particle states, and then to symmetrize the completion of

the resulting space.

As mentioned above, the treatment of bosonic and fermionic fields is different,

due to the spin-statistics theorem. In the present work we have chosen to work

11
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with bosonic fields in the simplest context, the scalar one. In this way, we can

explore the mathematical features arising from the p-adic setting without being

disturbed by accesory questions, but at the same time we maintain a close con-

nection with the physics behind the problem. Thus, we will work with the p−adic

analog of the well-known Klein-Gordon equation describing scalar quantum fields

with 0−spin. In classical Minkowski spacetime R1,3, the Klein-Gordon operator

(or D’alembertian) is given in cartesian coordinates by

� :=
∂2

∂t2
+ M

where M is the 3−dimensional Laplacian operator. The Klein-Gordon equation

for the scalar field φ : R1,3 → R is then (�+m2)φ(x) = 0.

In the p−adic setting, the corresponding equation must be obtained through

the formalism of pseudodifferential operators, and its solutions have a weak char-

acter. Details will be provided in Chapters 3 and 4.

For an in-depth discussion of these matters, the reader may consult [9], [14],

[48], [49]. Our presentation follows closely the book of Reed and Simon [49].

2.2 Tensor products of Hilbert spaces

We start by reviewing some well-known facts about quantization. Although a

functorial construction of tensor products does not exist in the category of Hilbert

spaces, it is possible to complete the purely algebraic tensor product H1⊗H2, and

this will suffice to make sense of the Fock spaces that will be introduced below as

the states space for a multiparticle system.

A function from a set X to another set Y , denoted by f : X → Y . f [X] will

usually be called the range of f and will be denoted Ranf . The restriction of f

to a subset A of its domain will be denoted by f � A. Let H1 and H2 be Hilbert

spaces. For each ϕ1 ∈ H1, ϕ2 ∈ H2, let ϕ1 ⊗ ϕ2 denote the conjugate bilinear

form which acts on H1 ×H2 by

(ϕ1 ⊗ ϕ2)〈ψ1, ψ2〉 = (ψ1, ϕ1)(ψ2, ϕ2)

Let E be the set of finite linear combinations of such conjugate linear forms; we

define an inner product (·, ·) on E by defining
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(ϕ⊗ ψ, η ⊗ µ) = (ϕ, η)(ψ, µ)

and extending by linearity to E.

In what follows we summarize some of the main results that we needed for the

construction of the main theorem in Chapter 5. For further details, see [48] and

[49].

Proposition 10. (·, ·) is well defined and positive definite.

For the proof we refer the reader to [[48], Proposition 1].

Definition 11. We define H1 ⊗ H2 to be the completion of E under the inner

product (·, ·) defined above. H1 ⊗H2 is called the tensor product of H1 and H2.

Proposition 12. If {ϕk} and {ψl} are orthonormal bases for H1 and H2 respec-

tively, then {ϕk ⊗ ψl} is an orthonormal basis for H1 ⊗H2.

For the proof we refer the reader to [[48], Proposition 2].

Theorem 13. Let 〈M1, µ1〉 and 〈M2, µ2〉 be measures spaces so that L2(M1, dµ1)

and L2(M2, dµ2) are separable. Then

(a) There is a unique isomorphism from L2(M1, dµ1)⊗L2(M2, dµ2) to L2(M1×
M2, dµ1 ⊗ dµ2) so that f ⊗ g 7→ fg.

(b) If H′ is a separable Hilbert space, then there is a unique isomorphism from

L2(M1, dµ1)⊗H′ to L2(M1, dµ1;H′) so that f(x)⊗ ϕ 7→ f(x)ϕ.

(c) There is a unique isomorphism from L2(M1×M2, dµ1⊗dµ2) to L2(M1, dµ1;L2(M2, dµ2))

such that f(x, y) is taken into the function x 7→ f(x, ·).

See [[48], Theorem II.10] for more details.

Example 14. The Hilbert space in the quantum-mechanical description of a single

Schrödinger particle of spin one-half is L2(R3, dx;C2), that is, the set of pairs

{ψ1(x), ψ2(x)} of square-integrable functions (dx is Lebesgue measure). By the

above theorem, L2(R3, dx;C2) is naturally isomorphic to L2(R3)⊗ C2.
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Example 15. (Fock spaces) Let H be a Hibert space and denote by H(n) = ⊗nk=1H
the n−fold tensor product. Set H0 = C, and define

F(H) =
∞⊕
n=0

H(n) (2.1)

F(H) is called the Fock space over H; it will be separable if H is. For example, if

H = L2(R, dx), then an element ψ ∈ F(H) is a sequence of functions

ψ = {ψ0, ψ1(x1), ψ2(x1, x2), ψ3(x1, x2, x3), . . .}

so that

|ψ0|2 +
∞∑
n=1

∫
Rn
|ψn(x1, . . . , xn)|2dx1 · · · dxn <∞.

There are two subspaces of the Fock space which are used most frequently in

quantum field theory. These two subspaces are constructed as follows: Let Pn be

the permutation group on n elements and let {ϕk} be a basis for H. For each

σ ∈ Pn, we define an operator on basis elements of H(n) by

σ(ϕk1 ⊗ ϕk2 ⊗ · · · ⊗ ϕkn) = ϕkσ(1) ⊗ ϕkσ(2) ⊗ · · · ⊗ ϕkσ(n) (2.2)

σ extends by linearity to a bounded operator on H(n) so we can define Sn =
1
n!

∑
σ∈Pn σ, S2

n = Sn and S∗n = Sn, so Sn is an orthogonal projection. The range

of Sn is called the n−fold symmetric tensor product of H. In the case where

H = L2(R, dx) and H(n) = L2(R)⊗ · · · ⊗L2(R) = L2(Rn, dnx), SnH(n) is just the

subspace of L2(Rn) of all functions left invariant under any permutation of the

variables.

We denote by Sn : H(n) → SnH(n), the symmetrization operator, and S =⊕∞
n=0 Sn see [48, Section II.4]. The symmetric Fock space over H or the boson

Fock space over H is defined as Fs(H) =
⊕∞

n=0H
(n)
s , where H(n)

s = SnH(n). We

call H(n)
s the n-particle subspace of Fs(H).

Let ε(·) be the function from Pn to {1,−1} which is one on even permutations

and minus one on odd permutations. Define Altn = 1
n!

∑
σ∈Pn ε(σ)σ; then Alt is

an orthogonal projection on H(n), AltnH(n) is called the n−fold antisymmetric

tensor product of H. In the case where H = L2(R), AltnH(n) is just the subspace

of L2(Rn) consisting of those functions odd under interchange of two coordinates.
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The subspace

Fa(H) =
∞⊕
n=0

AltnH(n) (2.3)

is called the antisymmetric Fock space over H or the Fermion Fock space over H.

2.3 Symmetric self-adjoint operators

Definition 16. Let P be an operator on Hilbert space H, if P 2 = P , then P

is called a projection. If in addition P = P ∗, then P is called an orthogonal

projection.

Definition 17. A densely defined operator T on a Hilbert space is called sym-

metric or Hermitian if T ⊂ T ∗, that is, if D(T ) ⊂ D(T ∗) and Tϕ = T ∗ϕ for all

ϕ ∈ D(T ). Equivalently, T is symmetric if and only if

(Tϕ, ψ) = (ϕ, Tψ) for all ϕ, ψ ∈ D(T ). (2.4)

Definition 18. T is called self-adjoint if T = T ∗, that is, if and only if T is

symmetric and D(T ) = D(T ∗).

Definition 19. A symmetric operator T is called essentially self-adjoint if its

closure T is self-adjoint. If T is closed, a subset D ⊂ D(T ) is called a core for T

if T � D = T .

Definition 20. An operator-valued function U(t) satisfying

(a) For each t ∈ R, U(t) is a unitary operator and U(t + s) = U(t)U(s) for all

s, t ∈ R.

(b) If ϕ ∈ H and t→ t0, then U(t)ϕ→ U(t0)ϕ.

is called a strongly continuous one-parameter unitary group.

Let A and B be densely defined operators on Hilbert spaces H1 and H2 re-

spectively. We will denote by D(A)⊗D(B) the set of finite linear combinations of

vectors of the form φ⊗ψ where φ ∈ D(A) and ψ ∈ D(B). D(A)⊗D(B) is dense

in H1 ⊗H2. We define A ⊗ B on D(A) ⊗D(B) by (A ⊗ B)(φ ⊗ ψ) = Aφ ⊗ Bψ
and extend by linearity.
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Proposition 21. The operator A ⊗ B is well defined. Further, if A and B are

closable, so is A⊗B.

Similarly, if A and B are closable then A⊗I+I⊗B, defined on D(A)⊗D(B),

is closable. For the proof we refer the reader to [[48], Section VIII.10, Proposition

1].

Definition 22. Let A and B be closable operators on Hilbert spaces H1 and H2.

The tensor product of A and B is the closure of the operator A ⊗ B defined on

D(A) ⊗ D(B). We will denote the closure by A ⊗ B also. Usually A + B will

denote the closure of A⊗ I + I ⊗B on D(A)⊗D(B).

Proposition 23. Let A1, . . . , AN be self-adjoint operators on H1, . . . ,HN and

suppose that, for each k, Dk is a domain of essential self-adjointness for Ak.

Then the operators Aπ = A1 ⊗ · · · ⊗ AN and AΣ = A1 + · · ·+ AN are essentially

self-adjoint on D = ⊗Nk=1Dk.

For the proof we refer the reader to [[48], Section VIII.10, Corollary 1].

Example 24. (Second quantization) Let H be a Hilbert space, F(H) the associated

Fock space over H. Suppose that A is a self-adjoint operator on H with a domain

of essential self-adjointness D. Corresponding to each such A we can define an

operator dΓ(A) on F(H) as follows. Let

A(n) = A⊗ I ⊗ · · · ⊗ I + I ⊗ A⊗ · · · ⊗ I + · · ·+ I ⊗ I ⊗ · · · ⊗ A,

on ⊗nk=1D where I is the identity operator. Let DA ⊂ F(H) be the set of ψ =

{ψ0, ψ1, . . .} such that ψn = 0 for n large enough and ψn ∈ ⊗nk=1D for each n.

DA is dense in F(H) since D is dense in H. Define A(0) = 0 and dΓ (A) =∑∞
n=0A

(n). dΓ (A) makes sense on DA ∩ H(n)
s and easily seen to be symmetric.

A(n) is essentially self-adjoint on ⊗nk=1D. Thus dΓ(A) is essentially self-adjoint

on DA. If A is a quantum operator, dΓ (A) is called the second quantization of

A. dΓ (A) commutes with the projections onto the symetric and antisymmetric

Fock spaces and it follows that dΓ (A) � Fs(H) and dΓ (A) � Fa(H) are essentially

self-adjoint on D ∩ Fs(H) and D ∩ Fa(H) respectively.
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Remark 25. The notation dΓ arises in the following way. F(H) is an algebra in

a natural way with a product defined so that (ψ1⊗· · ·⊗ψn) · (ψn+1⊗· · ·⊗ψn+k) =

(ψ1 ⊗ · · · ⊗ ψn+k). This product is denoted by ⊗. Thus ψ ⊗ φ is defined for all

ψ, φ ∈ F(H). The natural automorphisms of F(H) are invertible linear, norm

preserving maps, V , obeying V (ψ ⊗ φ) = V ψ ⊗ V φ. The natural automorphisms

of H are just the unitaries. With each unitary, U , one can associate uniquely

an automorphism, Γ(U) on F(H) obeying Γ(U) = U on H by requiring that on

H(n) = ⊗nk=1H, Γ(U) be just U ⊗ · · · ⊗ U (n times). Thus Γ maps the group of

unitaries on H into the group of automorphisms on F(H) in a strongly continuous

manner.

Proposition 26. A closed symmetric operator A is self-adjoint if and only if

D(A) contains a dense set of analytic vectors.

For more details we refer the reader to [[49], Section X, Corollary 1].

Proposition 27. Suppose that A is a symmetric operator and let D be a dense

linear set contained in D(A). Then, if D contains a dense set of analytic vectors

if D is invariant under A, then A is essentially self-adjoint on D.

For the proof we refer the reader to [[49], Section X, Corollary 2].

2.4 Free quantum fields

Our goal is to define the abstract free field on Fs(H), the boson subspace of F(H);

to do this we need to introduce other families of operators and some terminology.

We now fix a vector f inH. For the vectors of the form η = ψ1⊗. . .⊗ψn, we define

a map b− (f) : H(n) → H(n−1) by b− (f) (η) = 〈f, ψ1〉ψ2 ⊗ . . . ⊗ ψn. Then b− (f)

extends to a bounded map (of norm ‖f‖H) of H(n) in to H(n−1) for each n (except

for n = 0). In the case n = 0, we define b− (f) : H(0) → 0. The adjoint b+ (f) :

H(n) → H(n+1) of b− (f) is defined as b+ (f) (ψ1 ⊗ . . .⊗ ψn) = f ⊗ ψ1 ⊗ . . .⊗ ψn.

The map f → b+ (f) is linear, but f → b− (f) is antilinear.

The boson Fock space is invariant under b− (f) but not under b+ (f). A vector

ψ =
{
ψ(n)

}
n∈N ∈ Fs(H) is called a finite particle vector if ψn = 0 for all but

finitely many n. The set of all finite vectors is denote as F0. We set the vector

Υ0 = (1, 0, 0, . . .) to be the vacuum.
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In the case A = I, the second quantization N = dΓ (A) (the number operator)

is essentially self-adjoint on F0 and for φ ∈ H(n)
s , Nφ = nφ. If U is a unitary

operator on H, we define Γ(U) to be the unitary operator on Fs(H) which equals⊗n
k=1 U when restricted to H(n)

s for n ≥ 0 and which equals the identity on H(0)
s .

The annihilation operator a−(f) on Fs(H) with domain F0 is given by

a−(f) =
√
N + 1 b−(f).

a−(f) is called an annihilation operator because it takes each (n + 1)−particle

subspace into the n−particle subspace. For ψ, η in F0,〈√
N + 1 b−(f)ψ, η

〉
=
〈
ψ, Sb+(f)

√
N + 1η

〉
,

which implies that (
a−(f)

)∗
�F0= Sb+(f)

√
N + 1.

The operator (a−(f))
∗

is called a creation operator. Both a−(f) and (a−(f))
∗ �F0

are closable, the corresponding closures are denoted as a−(f) and as a−(f)∗.

Example 28. If H = L2(M,dν), we have

n⊗
j=1

L2(M,dν) = L2(M × · · · ×M,dν ⊗ · · · ⊗ dν)

and that

S

n⊗
j=1

L2(M,dν) = L2
s(M × · · · ×M,dν ⊗ · · · ⊗ dν)

where L2
s is the set of functions in L2 which are invariant under permutations of

the coordinates. The operators a−(f) and a−(f)∗ are given by

(a−(f)ψ)(n)(m1, . . . ,mn) =
√
n+ 1

∫
M

f(m)ψ(n+1)(m,m1, . . . ,mn)dν(m)

(a−(f)∗ψ)(n)(m1, . . . ,mn) =
1√
n

n∑
i=1

f(mi)ψ
(n−1)(m1, . . . , m̂i, . . . ,mn)dν(m).
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Where m̂i means that mi is omitted. If A operates on L2(M,dν) by multiplication

by the real-valued function ω(m), then

(dΓ(A)ψ)(n)(m1, . . . ,mn) =

(
n∑
i=1

ω(mi)

)
ψ(n)(m1, . . . ,mn).

The definition of the creation operator implies that the Segal field operator

ΦS(f) on F0 defined by

ΦS(f) =
1√
2

(a−(f) + a−(f)∗)

is symmetric. In fact, ΦS(f) is essentially self-adjoint. The mapping from H
to the self-adjoint operators on Fs(H) given by f 7→ ΦS(f) is called the Segal

quantization over H. The following theorem gives the fundamental propierties of

the Segal quantization. For further details, see [[49], Theorem X.41].

Theorem 29. Let H be a complex Hilbert space; ΦS(·) the corresponding Segal

quantization. Then:

(a) (self-adjointness) For each f ∈ H, ΦS(f) is essentially self-adjoint on F0,

the finite particle vectors.

(b) (cyclicity of the vacuum) Υ0 is in the domain of all finite products ΦS(f1) · · ·ΦS(fn)

and the set {ΦS(f1) · · ·ΦS(fn)Υ0 : fi and n arbitrary} is total in Fs(H).

(c) (commutation relations) For each ψ ∈ F0 and f, g ∈ H,

ΦS(f)ΦS(g)ψ − ΦS(g)ΦS(f)ψ = iIm(f, g)Hψ (2.5)

Further, if W (f) denotes the unitary operator eiΦS(f), then

W (f + g) = e
−iIm(f,g)

2 W (f)W (g) (2.6)

(d) (continuity) If fn → f in H, then

W (fn)ψ → W (f)ψ for all ψ ∈ Fs(H) (2.7)

ΦS(fn)ψ → ΦS(f)ψ for all ψ ∈ F0. (2.8)
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(e) For every unitary operator U on H, Γ(U) : D(Φs(f))→ D(Φs(Uf)) and for

ψ ∈ D(Φs(Uf)),

Γ(U)Φs(f)Γ(U)−1ψ = Φs(Uf)

for all f ∈ H. For the proof we refer the reader to [[49], Theorem X.41].

Remark 30. In chapter 5, we work in the p−adic case. Many of the results

presented in this section are still valid in the p−adic context of p−adic fields.

However, those that involve the notion of order need modifications both in their

formulation and its interpretation.



Chapter 3

Fundamental Solutions for

Pseudo-differential Operators of

Klein-Gordon Type

3.1 Some preliminary results

For α > 0, m ∈ Q×p , and q as before, we define the following pseudo-differential

operator:

�q,α,m = F−1 ◦ |q−m2|αp ◦ F , (3.1)

where |q − m2|αp denotes the multiplication operator by the function |q − m2|αp .

We call operators of type (3.1), p-adic Klein-Gordon pseudo-differential operators.

These operators were introduced by Zúñiga-Galindo, see [73, Chapter 6] and the

references therein.

In this section, we consider operators �q,α,m with domain

Dom(�q,α,m) = {T ∈ D′C : |q−m2|αpFT ∈ D′C}.

Remark 31. Notice that

�q,α,m (T (mx)) = |m|2αp (�q,α,1T ) (mx) for any T ∈ Dom(�q,α,m).

Consequently, we may normalize the mass m to one. From now on we assume

that m = 1, and we use the notation �q,α instead of �q,α,1.

21
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Definition 32. We say that Eq,α ∈ D′C is a fundamental solution for

�q,αu = ϕ, (3.2)

if u = Eq,α ∗ ϕ is a solution of (3.2) in D′C, for any ϕ ∈ DC.

From now on, by an abuse of language, we will say that Eq,α is a fundamental

solution of �q,α.

Lemma 33. Eq,α is a fundamental solution of �q,α if and only if

|q− 1|αpF(Eq,α) = 1 (3.3)

in D′C.

Proof. If Eq,α is a fundamental solution of �q,α, then

(
|q− 1|αpF(Eq,α)− 1

)
· Fϕ = 0,

for any test function in DC, which implies (3.3). Now, if (3.3) holds, by using

the fact that the product of two distributions, if it exists, is commutative and

associative (see e.g. [58, p. 127. Theorem 3.19]), we get that

(
|q− 1|αpFϕ

)
· F(Eq,α) = Fϕ

for any test function ϕ.

3.2 The p−adic submanifold V

Since q(k) = k2
0 − sk2

1 − pk2
2 + spk2

3, where s ∈ Z×p = Zp − {0} is a quadratic

non-residue mod p, is an elliptic quadratic form (i.e. q(k) = 0⇔ k = 0), we have

|q(k)|p ≥
(

inf
x∈S4

0

|q(x)|p
)
‖k‖2

p, (3.4)

see e.g. [73, Lemma 25]. Set

V := {k = (k0,k) ∈ Qp ×Q3
p; q(k) = 1}.
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By using (3.4), and the fact that inf
x∈S4

0

|q(x)|p = p−1, we get that V ⊆ Z4
p, which

implies that V is a compact submanifold of Z4
p of codimension 1. Let us emphasize

that V is bounded (in contrast to the classical case). Given (k̃0, k̃) ∈ V with

k̃0 6= 0, by applying the p−adic implicit function theorem, see e.g. [23], there exist

open and compact subsets U0
j ⊂ Zp, U1

j ⊂ Z3
p such that (k̃0, k̃) ∈ Uj = U0

j × U1
j ,

and a p−adic analytic function hj(x) : U1
j → U0

j such that

V ∩ Uj = {(k0,k) ∈ Uj; k0 = hj(k)} .

Notice that k0 = −hj(k) is also a ‘local parametrization’ of V . By using the

compactness of V , there exists a finite number of analytic functions ±hj(k) :

U1
j → ±U0

j , j = 1, . . . , N such that

V =
N⊔
j=1

{
(k0,k) ∈ U0

j × U1
j ; k0 = hj(k)

}⊔
N⊔
j=1

{
(k0,k) ∈ −U0

j × U1
j ; k0 = −hj(k)

}⊔
W ,

where W = {(0,k) : q0(k) = 1}. We set Uq :=
N⊔
j=1

U1
j ⊂ Z3

p. We now define in Uq,

two analytic functions as follows:

Uq → Qp

k → ±
√

1 + sk2
1 + pk2

2 − spk2
3 =: ±

√
ω (k),

where ±
√
ω (k) |U1

j
= ±hj(k).

3.2.1 A notion of positivity

We set F×p =
[
F×p
]

+

⊔[
F×p
]
−, where

[
F×p
]

+
:=
{

1, . . . , p−1
2

}
and

[
F×p
]
− =

{
p+1

2
, . . . , p− 1

}
.

We define the elements of
[
F×p
]

+
as positive and the elements of

[
F×p
]
− as negative.
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Notice that since p 6= 2,

[
F×p
]

+
→

[
F×p
]
−

y → −y mod p

is a bijection. Now, we say that a non-zero p−adic number

a = p−L (a0 + a1p+ . . .) , with L ∈ Z and a0 6= 0,

is positive (denoted as a > 0) if a0 ∈
[
F×p
]

+
, otherwise we say that a is negative

(denoted as a < 0). This is a well-defined and useful notion of ‘positivity’ in

Q×p , however, this notion of positivity is not compatible with the field operations,

consequently, this notion does not give rise to an order in Q×p . We also recall that

in the case p 6= 2, the equation x2 = a has two solutions in Qp if and only if L is

even and the congruence z2 ≡ a0 mod p has two solutions, one in
[
F×p
]

+
and the

other in
[
F×p
]
−. We denote them as ±√a0 ∈ F×p ; then

x = p−
L
2

(√
a0 + b1p+ b2p

2 + . . .
)
,

where the b’s are recursively determined by
√
a0, i.e. b1 = f1

(√
a0

)
, b2 =

f2

(√
a0, b1

)
, . . ., and

−x = −p−
L
2

(√
a0 + b1p+ b2p

2 + . . .
)

= p−
L
2

(
p−
√
a0 + (p− 1− b1) p+ (p− 1− b2) p2 + . . .

)
.

We now define

V + =
{

(k0,k) ∈ V ; k0 > 0 and k0 =
√
ω (k)

}
,

V − =
{

(k0,k) ∈ V ; k0 < 0 and k0 = −
√
ω (k)

}
.

We call V + the positive mass shell and V − the negative mass shell. Therefore

V = V +
⊔

V −
⊔

W .

Consequently, W has dλ-measure zero, so
∫
W
ϕdλ ≡ 0 for any ϕ ∈ DC.
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3.3 The distributions δV ±

Remark 34. Set q(k0,k) := k2
0 − q0(k), then

W =
{

(k0,k) ∈ Z4
p; q(0,k) = 1

}
=
{
k ∈ Z3

p;−q0(k) = 1
}
.

A necessary and sufficient condition to have W 6= ∅ is that

− q0(k) ≡ 1 mod p i.e. − sk2
1 ≡ 1 mod p. (3.5)

The sufficiency of condition (3.5) follows from the Hensel-Newton lemma, see

e.g. [19, Lemma 1]. The existence of solutions for congruence (3.5) requires the

computation of the following Legendre symbol:

(
−s−1

p

)
=


1 if congruence(3.5) has a solution,

−1 if congruence(3.5) has no solution.

By using the fact that the Legendre symbol is a multiplicative function and that(
s
p

)
= −1, we get that

(
−s−1

p

)
=


−1 if p ≡ 1 mod 4⇔ W = ∅

1 if p ≡ 3 mod 4⇔ W 6= ∅ .

Taking these results into account, we will set p ≡ 1mod 4 from now on, so W = ∅.

We set δV = δ (q− 1) as before. The characteristic functions 1V ± are locally

constant functions, so the product distributions 1V ±δ (q− 1) are well-defined. We

set δV ± := 1V ±δ (q− 1). Then

δV = δV + + δV − in D′C.

In the open subset of Q4
p defined by k0 6= 0, the 3-form λ satisfying (1.4) (with

f = q) is given by

λ =
dk1 ∧ dk2 ∧ dk3

2k0

,
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therefore the corresponding measure is

dλ =
dk1dk2dk3

|k0|p
=

d3k∣∣∣√ω (k)
∣∣∣
p

=
d3k√

|1 + q0 (k)|p
for k ∈ Uq.

If p ≡ 1 mod 4, then
√
ω (k) 6= 0 or any k ∈ Uq, and

(δV ± , ϕ) =

∫
Uq

ϕ
(
±
√
ω (k),k

) d3k∣∣∣√ω (k)
∣∣∣
p

for any ϕ ∈ DC.

Remark 35. Take a ∈ F4
p satisfying q(a) ≡ 1 mod p. Since ∇q(a) 6≡ 0 mod p, by

the Hensel-Newton lemma, see e.g. [19, Lemma 1], there exists b ∈ Z4
p such that

q(b) = 1 and b ≡ a mod p. This b is not unique. We now define the following

tubular neighborhood of V :

EV =
⊔
a∈F4

p
q(a)≡1 mod p

b+ pZ4
p,

where implicitly we are choosing for each a ∈ F4
p a point b in V . Notice that EV 6=

∅. Indeed, the solution set of the equation k2
0 − sk2

1 ≡ 1 mod p contains the set

A := {(1, 0, u, v) ;u, v ∈ Fp}, and the gradient satisfies the condition ∇q(y) 6≡ 0

mod p, for any y in A.

Lemma 36. Let b = (b0, b1, b2, b3) ∈ V , with b0 ∈ Z×p .Then

(δ(q(k)− 1), φ(k)Ω(p‖k − b‖p)) =

p−3

∫
Z3
p

φ(b0 + pf(0, u1, u2, u3), b1 + pu1, b2 + pu2, b3 + pu3)du1du2du3,

where f(0, u1, u2, u3) is a p−adic analytic function on the ball Z3
p.

Proof. Recall that

(δ(q(k)− 1), φ(k)Ω(p‖k − b‖p)) =

∫
V ∩(b+pZ4

p)
φ(k)

dk1dk2dk3

|k0|p
.
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Now, by changing variables as k = b+ pz,

(δ(q(k)− 1), φ(k)Ω(p‖k − b‖p)) = p−3

∫
{q(b+pz)=1}∩Z4

p

φ(b+ pz)dz1dz2dz3, (3.6)

where we are assuming that z0 is an analytic function of the variables z1, z2, z3.

We set

u = F (z), with u0 =
q(b+ pz)− 1

p
, ui = zi for i = 1, 2, 3. (3.7)

Then JacF (z) ≡ 2b0 + 2pz0 ≡ b0 6≡ 0 mod p, by [23, Lemma 7.4.3], F gives rise

to an analytic isomorphism from Z4
p into itself which preserves the Haar measure,

in this coordinate system {q(b+ pz) = 1} ∩ Z4
p becomes {u0 = 0} × Z3

p, and (3.6)

takes the form

(δ(q(k)− 1), φ(k)Ω(p‖k − b‖p)) = (3.8)

p−3

∫
Z3
p

φ(b0 + pf(0, u1, u2, u3), b1 + pu1, b2 + pu2, b3 + pu3)du1du2du3,

where f(0, u1, u2, u3) : Z3
p → Zp is a p−adic analytic function.

Remark 37. Let us comment about some related results.

(i) In the case b0 ∈ pZp, b1 ∈ Z×p , a calculation similar to the one done in the

proof of Lemma 36 shows that

(δ(q(k)− 1), φ(k)Ω(p‖k − b‖p)) =

p−3

∫
Z3
p

φ(b0 + pu0, b1 + pg(u0, 0, u2, u3), b2 + pu2, b3 + pu3)du0du2du3,

where g(u0, 0, u2, u3) : Z3
p → Zp is a p−adic analytic function.

(ii) In the case b0 ∈ pZp, b1 ∈ pZp, b2 ∈ Z×p , we have

{q(k) = 1} ∩ [pZp × pZp × [b2 + pZp]× [b3 + pZp]] ={
p
(
pk2

0 − spk2
1 − k2

2 + sk2
3

)
= 1
}
∩ [Zp × Zp × [b2 + pZp]× [b3 + pZp]] = ∅.

A similar result is valid in the cases where b0 ∈ pZp, b1 ∈ pZp,b2 ∈ pZp,
b3 ∈ Z×p , and where b0 ∈ pZp, b1 ∈ pZp,b2 ∈ pZp, b3 ∈ pZp.
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3.4 Fundamental solutions

The existence of fundamental solutions for operators �q,α is closely related to

the meromorphic continuation of the Igusa local zeta function attached to the

polynomial q− 1, which is the distribution defined as

(
|q− 1|sp, θ

)
=

∫
Q4
p\V
|q(x)− 1|spθ(x)d4x for Re(s) > 0, and θ ∈ DC. (3.9)

Here we use that for a > 0 and s ∈ C, as = es ln a. Integrals of type (3.9) admit

meromorphic continuations to the whole complex plane as rational functions of

p−s, see [23, Theorem 8.2.1].

For further calculations, we rewrite (3.9) as

(|q(x)− 1|sp, θ(x)) =

∫
Q4
p\EV
|q(x)− 1|spθ(x)d4x+

∫
EV rV

|q(x)− 1|spθ(x)d4x

=: (I0 (s) , θ) + (I1 (s) , θ).

A fundamental solution Eq,α for operator �q,α is obtained by computing the Lau-

rent expansion of the local zeta function |q − 1|sp at s = −α, see [73, Theorem

134]. Indeed, if

|q− 1|sp =
∞∑

j=−j0

cj(s+ α)j, where cj ∈ D′C, with − j0 ∈ Z, (3.10)

then Êq,α = c0.

Remark 38. Given two subsets A, B in Q4
p, we denote the distance between them

as

dist(A,B) := inf
x∈A, y∈B

‖x− y‖p .

Lemma 39. For any θ ∈ DC, the function (I0 (s) , θ) is holomorphic in the whole

complex plane.

Proof. The result follows, by using a well-known result about the analyticity of

integrals depending on a complex parameter, see [23, Lemma 5.3.1], from the fact

that there exists a positive constant ε = ε (q), such that

|q(x)− 1|p ≥ ε for any x ∈ Q4
p \ EV . (3.11)
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If (3.11) is false, there exists a sequence {yn}n∈N in Q4
p\EV such that |q(yn)−1|p →

0 as n→∞, which means that

dist
(
V,Q4

p \ EV
)

= 0, (3.12)

because, since V is compact, there exists x0 ∈ V such that

dist
(
V,Q4

p \ EV
)

= inf
y∈Q4

p\EV
‖x0 − y‖p = inf

y∈Q4
p\EV

dist (V, y) .

The assertion (3.12) is not true. Indeed, since V is compact and Q4
p \ EV is

closed (because EV is open and closed), we have dist
(
V,Q4

p \ EV
)
> 0.

Remark 40. Notice the following computation:

(I1(s), θ) =

∫
EV \V

|q(x)− 1|spθ(x)d4x =
∑
b∈F4

p

q(b)≡1 mod p

∫
b+pZ4

p

|q(x)− 1|spθ(x)d4x

= p−4
∑
b∈F4

p

q(b)≡1 mod p

∫
Z4
p

|q(b+ pz)− 1|spθ(b+ pz)d4z

=: p−4
∑
b∈F4

p

q(b)≡1 mod p

(Ib(s), θ) . (3.13)

Lemma 41. With the above notations and setting

Ib(s) =
∞∑
j=0

cj (Ib, α) (s+ α)j, where cj (Ib, α) ∈ D′C,

for b ∈ F4
p, q(b) ≡ 1 mod p, the coefficient c0 ∈ D′C in expansion (3.10) is given

by

(c0, θ) =

∫
Q4
p\EV
|q(x)− 1|−αp θ(x)d4x+ p−4

∑
b∈F4

p

q(b)≡1 mod p

(c0 (Ib, α) , θ) .

Proof. The formula follows from Lemma 39 and Remark 40.

We now compute the coefficients c0 (Ib, α) for some values of b, the calculation

of the remaining cases is similar to the one presented here.
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Lemma 42. Assume that b0 6≡ 0 mod p. If α 6= 1, then

(c0 (Ib, α) , θ) = pα
∫
Zp
|u0|−αp (Θb(u0)−Θb(0))du0 +

pα(1− p−1)

1− p−1+α
Θb(0),

where Θb = TIb,α (θ) ∈ DC (Qp), and TIb,α is a linear operator from DC
(
Q4
p

)
into

DC (Qp), and

Θb (0) = p3(δ(q(k)− 1), θ(k)Ω(p‖k − b‖p)).

In addition,

(1V c0 (Ib, α) , θ) =
pα(1− p−1)

1− p−1+α
Θb(0). (3.14)

If α = 1, then

(c0 (Ib, 1) , θ) = p

∫
Z4
p

|u0|−1
p (Θb(u0)−Θb(0))du0 −

p− 1

2
Θb(0).

Moreover,

(1V c0 (Ib, 1) , θ) = −p− 1

2
Θb(0). (3.15)

Proof. By changing variables as u = F (z), see (3.7), we get

(Ib(s), θ) =

∫
Z4
p

|q (b+ pz)− 1|sp θ (b+ pz) d4z

= p−s
∫
Z4
p

|u0|spθ(b0 + pf(u0, . . . , u3), b1 + pu1, b2 + pu2, b3 + pu3)du0du1du2du3

where f(u0, . . . , u3) is a p−adic analytic function on Z4
p. Set

Θb(u0) := ∫
Z3
p\D

θ(b0 + pf(u0, . . . , u3), b1 + pu1, b2 + pu2, b3 + pu3)du1du2du3,

where D = {b0 + pf(u0, . . . , u3) = 0}. Then Θb(u0) ∈ DC (Qp) and Θb(0) =

p3(Ω(p‖k − b‖p)δ(q(k) − 1), θ(k)), see (3.8). Notice that for a fixed u0, the set

{b0 + pf(u0, . . . , u3) = 0} has measure zero, and that b0 + pf(u0, . . . , u3) is locally

constant in u0 on Z3
p \ D, this last fact is verified by using the p−adic Taylor
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expansion, see e.g. [53]. Therefore

(Ib(s), θ) = p−s
∫
Z4
p

|u0|sp(Θb(u0)−Θb(0))du0 +
p−s(1− p−1)

1− p−1−s Θb(0). (3.16)

If α 6= 1, then (c0 (Ib, α) , θ) is obtained by replacing s = −α in (3.16). In the case

α = 1, the computation of (c0 (Ib, 1) , θ) is achieved by computing the Laurent

expansion of (Ib(s), θ) around (s+ 1), which follows from the formula:

p−s(1− p−1)

1− p−1−s =

(
p− 1

ln p

)
1

s+ 1
− p− 1

2
+O(s+ 1),

where O(s + 1) denotes a holomorphic function. Finally formulae (3.14)-(3.15)

follow from the fact that in the coordinate system (u0, . . . , u3), u0 = 0 is a local

equation of V .

Remark 43. Lemma 42 is valid for general b, but there are small variations in

the formulae for the c0 (Ib, α)s. In the case b0 ≡ 0 mod p, b1 6≡ 0 mod p, the

statement of Lemma 42 and the corresponding proof are similar to ones presented

here, see Remark 37. We outline the calculations for the case b0 ≡ 0 mod p, b1 ≡ 0

mod p, b2 6≡ 0 mod p. In this case, we use the following change of variables:

u = G(z) with u0 = z0, u1 = z1, u2 =
q(b+ pz)− 1

p2
, u3 = z3.

Then

JacG(z) = det


1 0 0 0

0 1 0 0
1
p2
∂u0
∂z0

1
p2
∂u1
∂z1

1
p2
∂u2
∂z2

1
p2
∂u3
∂z3

0 0 0 1

 =
1

p2

∂u2

∂z2

= −2 (b2 + pz2) ,

and thus JacG(z) ≡ −2b2 ≡ b2 6≡ 0 mod p, and by Lemma 7.4.3 in [23], G

gives rise to an analytic isomorphism from Z4
p to itself which preserves the Haar
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measure. By changing variables in integral (Ib(s), θ), we get that

(Ib(s), θ) =

p−2s

∫
Z4
p

|u2|spθ(b0 + pz0, b1 + pu1, b2 + ph(u0, . . . , u3), b3 + pu3)du0du1du2du3.

Now the calculations proceed as in the proof of Lemma 42 .

Remark 44. Set δk(x) := p4kΩ(pk‖x‖p). We recall the definition of the product

of two distributions: given F,G ∈ D′C, their product is defined as (F · G,ϕ) =

limk→∞(G, (F ∗ δk)ϕ), if the limit exist for all ϕ ∈ DC. If the product F ·G exists

then the product G · F exists and they are equal.

Lemma 45. (|q− 1|αp δ(q− 1), ψ) = 0 for any ψ ∈ DC and for any α > 0.

Proof. By Remark 44, (|q − 1|αp δ(q − 1), ψ) = limk→∞(δ(q − 1), (|q − 1|αp ∗ δk)ψ).

Now

(|q− 1|αp ∗ δk)(x) = p4k

∫
x+pkZ4

p

|q(y)− 1|αpd4y.

Since V ⊆ Z4
p has measure zero, we may assume without loss of generality that

x /∈ V . Now, if z ∈ Z4
p then q(x + pkz) − 1 = q(x) − 1 + pkA, with A ∈ Zp and

q(x)−1 6= 0, then by taking k sufficiently large, we have |q(x+pkz)−1|αp = |q(x)−
1|αp , consequently (|q − 1|αp ∗ δk)(x) = |q(x) − 1|αp for k sufficiently large. Finally,

(|q− 1|αp δ(q− 1), ψ) = (δ(q− 1), |q− 1|αpψ) = 0 because supp δ(q− 1) = V .

Remark 46. For any locally constant function h, it holds that h|q−1|αp δ(q−1) ∈
D′C, see e.g. [58, p. 126, Proposition 3.16]. Then (h|q − 1|αp δ(q − 1), ψ) =

(|q− 1|αp δ(q− 1), hψ) = (δ(q− 1), |q− 1|αphψ) = 0 for any ψ ∈ DC.

Remark 47. Let us make some comments about orthogonal invariance in this

setting.

(i) Let ϕ ∈ DC and let T ∈ D′C. We define the action of Λ ∈ O (q), by putting

(Λϕ) (x) = ϕ
(
Λ−1x

)
,

and the action of Λ on T , by putting

(ΛT, ϕ) =
(
T,Λ−1ϕ

)
.
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We say that T is invariant under O (q), if ΛT = T for any Λ ∈ O (q).

(ii) T is invariant under O (q) ⇔ T̂ is invariant under O (q). We first notice

that by using B (Λ−1y,Λ−1k) = B (y, k) for any Λ ∈ O (q), we have

(
Λ̂−1ϕ

)
(k) =

∫
Q4
p

χp (B (x, k))
(
Λ−1ϕ

)
(x) dµ (x)

=

∫
Q4
p

χp (B (x, k))ϕ (Λx) dµ (x) =

∫
Q4
p

χp
(
B
(
Λ−1y,Λ−1 (Λk)

))
ϕ (y) dµ (y)

=

∫
Q4
p

χp (B (y,Λk))ϕ (y) dµ (y) = ϕ̂ (Λk) ,

i.e.
(

Λ̂−1ϕ
)

= Λ−1ϕ̂. Now, assuming that ΛT = T for any Λ ∈ O (q), we

have (
ΛT̂ , ϕ

)
=
(
T̂ ,Λ−1ϕ

)
=
(
T, Λ̂−1ϕ

)
=
(
T,Λ−1ϕ̂

)
= (ΛT, ϕ̂)

= (T, ϕ̂) = (T̂ , ϕ).

Here, it is worth to mention that our definition of Fourier transform using

the bilinear form B plays a crucial role.

(iii) By a result of Rallis-Schiffman, the distribution δ(q−1) is the unique (up to

multiplication by complex constants) distribution supported on V invariant

under O (q), [46].

Theorem 48. There exist fundamental solutions Eq,α for operators �q,α which are

invariant under the action of O (q). Furthermore, the distributions Eq,α satisfy

the following:

•
F(Eq,α) = F(E0

q,α) + Cδ(q− 1), (3.17)

where C is a non-zero complex constant and F(E0
q,α), δ(q− 1) are distribu-

tions invariant under O(q).

•
1VF(Eq,α) = Cδ(q− 1). (3.18)
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In particular, the restriction of F(Eq,α) to V is unique up to multiplication

for a non-zero complex constant.

Proof. The existence of fundamental solutions for operators �q,α is guaranteed

by Theorem 134 in [73]. If E0
q,α is a fundamental solution for �q,α, then, by

Lemmas 33, 45, E0
q,α+CF−1 [δ(q− 1)] is also a fundamental solution for any non-

zero complex constant C. Therefore, the Fourier transform of any fundamental

solution may be written as

F [Eq,α] = F
[
E0

q,α

]
+ Cδ(q− 1), (3.19)

for some fundamental solution E0
q,α and some non-zero complex constant C.

Remark 49. In fact, if there is another fundamental solution E ′q,α of �q,α, in-

variant under O (q), satisfying

F [Eq,α] = F
[
E ′q,α

]
+ Cδ(q− 1) , (3.20)

then from (3.19) and (3.20) we get that F
[
E ′q,α − E0

q,α

]
is a distribution supported

on V and invariant under O (q), and consequently F
[
E ′q,α − E0

q,α

]
= C0δ(q− 1) ,

for some constant C0.

By Lemmas 41, 42 and Remark 43, there exists a fundamental solution E0
q,α,

such that F
[
E0

q,α

]
is a linear combination of distributions of any of the types∫

Q4
p\V
|q(x)− 1|−αp θ(x) d4x or pα

∫
Zp
|u0|−αp (Θb(u0)−Θb(0)) du0,

with Θb(u0) defined as in Lemma 42. In addition, we have

1VF
[
E0

q,α

]
= 0 in D′C(Q4

p).

The rest of assertions announced follows from Remark 47 by the following:

Claim. The distribution E0
q,α is invariant under O (q).

We first note that

Λ|q− 1|sp = |q− 1|sp for any Λ ∈ O (q) , and Re(s) > 0, (3.21)
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because q (Λ−1y) = q (y) for any Λ ∈ O (q), and any y ∈ Q4
p. Now, we rewrite

(3.21) as

(
|q− 1|sp,Λ−1ϕ

)
=
(
|q− 1|sp, ϕ

)
for Λ ∈ O (q) , ϕ ∈ DC, and Re(s) > 0,

and use that Λ−1ϕ ∈ DC for ϕ ∈ DC, and that the distribution |q− 1|sp admits a

meromorphic continuation to the whole complex plane to conclude that (3.21) is

valid for any s. We now recall that F
[
E0
q,α

]
= c0 ∈ D′C, where

(
|q− 1|sp, ϕ

)
=

∞∑
j=−j0

(cj, ϕ) (s+ α)j =
(
Λ|q− 1|sp, ϕ

)
=
(
|q− 1|sp,Λ−1ϕ

)
=

∞∑
j=−j0

(
cj,Λ

−1ϕ
)

(s+ α)j,

then (c0, ϕ) = (c0,Λ
−1ϕ), which implies that c0 is invariant under O (q), and

consequently, E0
q,α is invariant under O (q).
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Chapter 4

Klein-Gordon type operators

acting on H∞

In Chapter 5 we will construct a family of quantum scalar fields over a p−adic

spacetime. Here we present a class of continuous operators that will be used in

that construction.

4.1 Some technical continuous operator

Lemma 50. Let f(k) ∈ Qp[k0, k1, k2, k3] be a non-constant homogeneous polyno-

mial of degree e and α > 0. Then there exists a positive constant A = A(f, α)

such that

|f(k)− 1|αp ≤ A[k]eαp for k ∈ Q4
p.

Proof. We first note that |f(k) − 1|αp ≤
[
max{|f(k)|p , 1}

]α
. We now use that

|f(k)|p ≤ C (f) [k]ep for k ∈ Q4
p, to obtain

|f(k)− 1|αp ≤
[
max{C (f) [k]ep, 1}

]α ≤ [max{C (f) , 1}]α
[
max

[
[k]ep, 1

]]α
= A[k]eαp .

Remark 51. For α ∈ R, we set dαe := min{γ ∈ Z; γ ≥ α}, the ceiling function.

37
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Lemma 52. The mapping

�q,α : H∞(K) → H∞(K)

h → �q,αh

is a well-defined continuous linear operator between locally convex spaces.

Proof. Take K = C. Let us first prove that �q,α is a well-defined linear operator.

Let h ∈ Hl+d4αe(C), then by the Lemma 50, with e = 2, we have

‖�q,αh‖2
l =

∫
Q4
p

[ξ]lp| ̂(�q,αh)(k)|2d4k =

∫
Q4
p

[ξ]lp|q(k)− 1|2αp |ĥ(k)|2d4k

≤ C

∫
Q4
p

[ξ]l+4α
p |ĥ(k)|2d4k ≤ C

∫
Q4
p

[ξ]l+d4αep |ĥ(k)|2d4k = C‖h‖2
l+d4αe.

By Lemma 9-(i), �q,αh ∈ Hl(C), i.e. �q,α is a well-defined, linear, and continuous

operator from Hl+d4αe(C) into Hl(C) for any l ∈ N. In turn, this implies that

�q,α is a well-defined linear operator from H∞(C) into H∞(C). To establish the

continuity, we use the fact that (H∞(C), d) is a metric space. Take a sequence

{ϕn}n∈N ⊂ H∞(C) such that ϕn
d→ ϕ, with ϕ ∈ H∞(C), which is equivalent to

say that ϕn
‖·‖r→ ϕ, for all r ∈ N. Take l ∈ N and ϕ, ϕn ∈ Hl+d4αe(C), then by the

continuity of �q,α : Hl+d4αe(C)→ Hl(C), we have �q,αϕn
‖·‖l→ �q,αϕ, and since l is

arbitrary in N, we conclude that �q,αϕn
d→ �q,αϕ.

We know turn to the case K = R. Since (�q,αϕ)(x) = (�q,αϕ)(x) for ϕ ∈
H∞(R), the statement is also valid in H∞(R).

Remark 53. The preceding lemma remains valid if we replace |q(k) − 1|αp by

g ([k]p) |q(k)− 1|αp , where g : R+ → C is any continuous function.

Remark 54. We recall that V is a p−adic compact submanifold of Z4
p of codi-

mension one. We denote by dλ the measure corresponding to the distribution

δ (q− 1) as before. Then (V,B(V ), dλ) is a measure space, where B(V ) is the

Borel σ-algebra generated by the open compact subsets of V , and thus the space

L2
K (V, dλ) is well-defined.
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Proposition 55. The mapping

R : Hl(C) → L2
C (V +, dλ)

f → f̂ |
V+

determines a well-defined operator satisfying

‖R(f)‖L2
C(V +,dλ) ≤ C ‖f‖l (4.1)

for any l ∈ N. Consequently, R induces a continuous operator from H∞(C) into

L2
C (V +, dλ).

Proof. Since DC is dense in Hl(C) for any l ∈ N, in order to prove (4.1) we may

assume without loss of generality that f ∈ DC and that f̂ |V + is not the constant

function zero. Notice that

‖R(f)‖2
L2
C(V +,dλ) =

∫
Uq

∣∣∣f̂ (√ω (k),k
)∣∣∣2 d3k∣∣∣√ω (k)

∣∣∣
p

, (4.2)

where
∣∣∣√ω (k)

∣∣∣
p
6= 0, cf. Remark 34. For m ∈ Q×p , we set

Vm =
{

(k0,k) ∈ Q4
p; q (k0,k) = m

}
.

We recall that q (k0,k) = k2
0 − q0 (k). Then Vm is a p−adic compact submanifold

of Q4
p of codimension one. In the case in which Vm 6= ∅, we denote by dλ (m)

the measure on Vm induced by the Gel’fand-Leray form on Vm. Then dk0d
3k =

dλ (m) dm, where dm is the normalized Haar measure of Qp.

Claim C. For f̂ (k0,k) ∈ DC, the R-valued function defined by∫
Q×p

∫
Vm

∣∣∣f̂ (k0,k)
∣∣∣2 dλ (m) dm

is in DR (Qp) and

‖f‖2
0 =

∫
Q4
p

∣∣∣f̂ (k0,k)
∣∣∣2 dk0d

3 k =

∫
Q×p

∫
Vm

∣∣∣f̂ (k0,k)
∣∣∣2 dλ (m) dm. (4.3)
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This claim is a very particular version of a general theorem on integration over

the fibers in the framework of p−adic manifolds, see [23, Theorem 7.6.1].

Claim D. There exists a positive constant C0 such that

‖f‖2
0 ≥ C0

∫
Uq

∣∣∣f̂ (√ω (k),k
)∣∣∣2 d3k∣∣∣√ω (k)

∣∣∣
p

. (4.4)

Estimation (4.1) follows from (4.2)-(4.4). The fact that operator R extends to

H∞(C) follows from (4.1), by using a classical argument based on convergence of

sequences due to the fact that the topology of H∞(C) is metrizable.

Proof of Claim D. In order to prove the Claim we proceed as follows. We

set GM := 1 + pMZp, for M ≥ 1. Then GM is a multiplicative subgroup of the

group of squares of Q×p . This is a compact subgroup so its Haar measure, denoted

as vol(GM), is finite. Now, we notice that∫
Q×p

∫
Vm

∣∣∣f̂ (k0,k)
∣∣∣2 dλ (m) dm ≥

∫
GM

∫
Vm

∣∣∣f̂ (k0,k)
∣∣∣2 dλ (m) dm

=

∫
GM

∫
Vm

∣∣∣f̂ (k0,k)
∣∣∣2 d3kdm

|m+ q0 (k)|
1
2
p

. (4.5)

We now use the fact that

Claim E. The mapping

√
· : GM → GM

m →
√
m

and its inverse are p−adic analytic functions, for M sufficiently large.

We change variables in the last integral in (4.5) as y0 = k0√
m

, y = k√
m

, then

dk0d
3 k = dy0d

3y and∫
GM

∫
Vm

∣∣∣f̂ (k0,k)
∣∣∣2 d3kdm

|m+ q0 (k)|
1
2
p

=

∫
GM

∫
V

∣∣∣f̂ (√my0,
√
my
)∣∣∣2 d3ydm

|1 + q0 (y)|
1
2
p

.

Finally since f̂ is locally constant and
√
m is a unit for every m ∈ GM , we have
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for M sufficiently large that∫
GM

∫
V

∣∣∣f̂ (√my0,
√
my
)∣∣∣2 d3ydm

|1 + q0 (y)|
1
2
p

=

∫
GM

∫
V

∣∣∣f̂ (y0,y)
∣∣∣2 d3ydm

|1 + q0 (y)|
1
2
p

≥ vol (GM)

∫
V +

∣∣∣f̂ (y0,y)
∣∣∣2 d3y

|1 + q0 (y)|
1
2
p

.

Proof of Claim E.

We first notice that
(
1 + pMZp

)2
= 1 + 2pMZp = 1 + pMZp for M ≥ 2, see

Lemma 8.4.1 in [23]. This means that the mapping

GM → GM

x → x2
(4.6)

is well-defined and surjective. Then for any m ∈ GM , the equation x2 = m

has a solution
√
m in GM . Notice that there is another solution −

√
m = −1 +

(higher order terms) which does not belong to GM . Consequently the mapping

GM → GM

m →
√
m

(4.7)

is well-defined. The fact that the mappings (4.6)-(4.7) are p−adic analytic follows

from the implicit function theorem.

Remark 56. The preceding Proposition remains valid if we replace R(f) = f̂ |V +

by R(f)(k) = g ([k]p) f̂(k)|V +, where g is any continuous function g : R+ → C.

Lemma 57. There exist a positive constant C such that

1

|1 + q0(k)|p
≤ C for any k ∈ Q3

p.

Proof. The hypothesis p ≡ 1 mod 4 implies W =
{
k ∈ Z3

p; 1 + q0(k) = 0
}

= ∅,
see Remark 34.

Claim A. |1 + q0(k)|p > C1 for any C1 ∈ (0, p) and for any ‖k‖p ≥ p.

We recall that q0(k) and q(k0,k) are elliptic quadratic forms and that

|q0(k)|p = |q(0,k)|p ≥
(

inf
x∈S3

0

|q(0,x)|p
)
‖k‖2

p = p−1‖k‖2
p for any k ∈ Q3

p, (4.8)
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see (3.4). Now, p−1‖k‖2
p > 1 if and only if ‖k‖p ≥ p, and by applying the

ultrametric property of the norm ‖ · ‖p, we get from (4.8), that for ‖k‖p ≥ p,

|1 + q0(k)|p = max {1, q0(k)} ≥ p−1‖k‖2
p ≥ p > C1 for any C1 ∈ (0, p) .

Claim B. There exist a constant C0 such that infk∈Z3
p
|1 + q0(k)|p ≥ C0 > 0.

This assertion follows from the fact that |1 + q0(k)|p > 0 for any k ∈ Z3
p. The

statement of the lemma is a consequence of Claims A and B.

Lemma 58. The mapping

R : L2
C
(
Q3
p, d

3x
)
→ L2

C (V +, dλ)

g → ĝ |
V+

satisfies ‖R(g)‖L2
C(V +,dλ) ≤ C ‖g‖L2

C(Q3
p,d

3x). Here ĝ (k) denotes the 3-dimensional

Fourier transform is defined with respect to the bilinear form −B0 (x,y) = −sx1y1−
px2y2 + spx3y3.

Proof. The results follows from Lemma 57, by using that |k0|p =
∣∣∣√ω (k)

∣∣∣
p

=

|1 + q0(k)|
1
2
p for k ∈ Uq.

Remark 59. Some observations about the functional spaces involved here:

(i) Let X be a locally compact totally disconnected space. We denote by DC(X)

the C-vector space of locally constant functions with compact support. We

recall that V + ⊂ Q4
p is an open and compact subset, then Q4

p \ V + is open

and closed subset, and thus V + and Q4
p \ V + are locally compact totally

disconnected spaces. The following exact sequence holds:

0→ DC(V +)→ DC(Q4
p)→ DC(Q4

p \ V +)→ 0, (4.9)

see e.g. [23, p. 99].

(ii) It is well-known that the C-space of finite-valued simple functions is dense

in L2
C (V +, dλ). By using the fact that dλ = d3k∣∣∣√ω(k)

∣∣∣
p

is an inner regular
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measure, one can show that any finite-valued simple function can be approx-

imated in the L2
C (V +, dλ)- norm by an element of DC(V +). i.e. DC(V +) is

dense in L2
C (V +, dλ).

(iii) The mapping

L2
C
(
Q4
p, d

4k
)

R−→ L2
C (V +, dλ)

f → f̂ |V +

is a well-defined continuous mapping, more precisely,∥∥∥f̂ |V +

∥∥∥
L2
C(V +,dλ)

≤ C
∥∥∥f̂∥∥∥

L2
C(Q4

p,d
4k)

= C ‖f‖L2
C(Q4

p,d
4k) . (4.10)

Indeed, (4.10) holds when f̂ ∈ DC(Q4
p) and f̂ |V +∈ DC(V +), see Claim D,

then (4.10) follows by the fact that DC(V +) is dense in L2
C (V +, dλ) and

that DC(Q4
p) is dense in L2

C
(
Q4
p, d

4k
)
.

Remark 60. Regarding the spaces of integrable functions introduced in the pre-

ceding Remark, we note the following.

(i) We have the following sequence:

L2
C
(
V +, dλ

) J
↪→ L2

C
(
Uq, d

3k
)
↪→ L2

C
(
Q3
p, d

3k
)
,

where ‘↪→’ denotes an isometry. The mapping J is defined as

f (ω (k) ,k)
J→ f (ω (k) ,k)∣∣∣√ω (k)

∣∣∣1/2
p

, k ∈ Uq.

Since Uq ⊂ Q3
p is open and compact, any function f : Uq → C can be

extended to Q3
p by putting f | Q3

prUq
≡ 0. It is known that L2

C
(
Q3
p, d

3k
)

admits a countable wavelet basis, see e.g. [2, Theorem 8.12.1], consequently

L2
C (V +, dλ) is separable.

(ii) Since L2
C
(
Q4
p, d

4k
)

and L2
C (V +, dλ) are separable spaces, we have

n⊗
j=1

L2
C
(
Q4
p, d

4xj
)

= L2
C

(
Q4n
p ,

n∏
j=1

d4xj

)
,
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and
n⊗
j=1

L2
C
(
V +, dλj

)
= L2

C

((
V +
)n
,
n∏
j=1

dλj

)
,

where each d4xj denotes a copy of normalized Haar measure of Q4
p, and each

dλj denotes a copy of the measure dλ.

(iii) Take θ(n+1) (y, x1, . . . , xn) ∈ L2
C
(
Q4
p, d

4y
)⊗

L2
C

(
Q4n
p ,

n∏
j=1

d4xj

)
, then

∫
Q4n
p

∫
V

∣∣θ(n+1) (y, x1, . . . , xn)
∣∣2 dλ (y)

n∏
j=1

d4xj ≤

C

∫
Q4n
p

∫
Q4
p

∣∣θ(n+1) (y, x1, . . . , xn)
∣∣2 d4y

n∏
j=1

d4xj = C
∥∥θ(n+1)

∥∥2

L2
C

(
Q4(n+1)
p ,

n+1∏
j=1

d4xj

) .

This result follows from Claim D, by using Fubini’s theorem.

Lemma 61. For f ∈ L2
C (V +, dλ), we define TV + (f) ∈ D′C by

(TV + (f) , ϕ) =

∫
V +

f(x)ϕ (x) dλ (x) for ϕ ∈ DC.

Then we have the following sequence of continuous mappings:

H∞ (C)
R→ L2

C (V +, dλ)
TV+→ H∗∞ (C) ,

where the map R is defined as in Proposition 55.

Proof. The support of TV + (f) is compact since it is contained in V , which is

a compact subset of Q4
p. The Fourier transform of TV + (f) in D′C is the locally

constant function

f̂ (k) =

∫
V +

χp (B (x, k)) f(x)dλ (x) ,

for a similar calculation the reader may see, for instance, [2, Theorem 4.9.3].

Now, identifying f with the induced distribution TV +f on V +, by using the def-

inition of H∗∞ (C) (see (1.6)), the Cauchy-Schwartz inequality, and the fact that
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∫
Q4
p

[k]−l d4k <∞ for l ≥ 5, we have

‖f‖2
−l =

∫
Q4
p

[k]−l
∣∣∣f̂(k)

∣∣∣2 d4k =

∫
Q4
p

[k]−l
∣∣∣∣∫
V +

χp (B (x, k)) f(x)dλ (x)

∣∣∣∣2 d4k

≤ C(l)

∫
V +

|f(x)|2 dλ (x) = C(l) ‖f‖2
L2
C(V +,dλ) ,

which implies that TV + (f) ∈ H∗∞ (C).
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Chapter 5

Free non-Archimedean quantum

fields

5.1 The Segal quantization

We start by reviewing some well-known fact about quantization. For an in-

depth discussion the reader may consult [56, 49], see also [9, 14, 35, 57] for more

physically-oriented approaches. Our presentation follows closely the book of Reed

and Simon [49]. In particular, our notation mimics the one used in that book. We

set H = L2
C (V +, dλ) and denote by 〈·, ·〉 the inner product of H. We assume that

〈f, αg〉 = α 〈f, g〉, for α ∈ C, and f , g ∈ H. We define the Fock space over H as

F(H) = ⊕∞n=0H(n), where H(n) = ⊗nk=1H, by definition H(0) = C. We denote by

Sn : H(n) → SH(n), the symmetrization operator, and define S = ⊕∞n=0Sn, see [48,

Section II.4]. The symmetric Fock space over H (also called the boson Fock space

over H) is defined as Fs(H) = ⊕∞n=0H
(n)
s , where H(n)

s = SnH(n). We call H(n)
s the

n-particle subspace of Fs(H). We use the same symbol 〈·, ·〉 to denote the inner

product of F(H).

We now fix a vector f in H. For the vectors of the form η = ψ1⊗ . . .⊗ψn, we

define a map b− (f) : H(n) → H(n−1) by b− (f) (η) = 〈f, ψ1〉ψ2 ⊗ . . . ⊗ ψn. Then

b− (f) extends to a bounded map (of norm ‖f‖H) of H(n) in to H(n−1). In the case

n = 0, we define b− (f) : H(0) → 0. The adjoint b+ (f) : H(n) → H(n+1) of b− (f)

is defined as b+ (f) (ψ1 ⊗ . . .⊗ ψn) = f ⊗ ψ1 ⊗ . . . ⊗ ψn. The map f → b+ (f) is

linear, but f → b− (f) is anti-linear.

The boson Fock space is invariant under b− (f) but not under b+ (f). A vector

47
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ψ =
{
ψ(n)

}
n∈N ∈ Fs(H) is called a finite particle vector if ψn = 0 for all but

finitely many n. The set of all finite vectors is denoted as F0. We set the vector

Υ0 = (1, 0, 0, . . .) to be the vacuum.

Let A be a self-adjoint operator on H with domain of essential self-adjointness

D. Let DA =
{
ψ ∈ F0;ψ(n) ∈ ⊗nk=1D for each n

}
. We define the operator Γ (A)

(the second quantization of A) on DA ∩H(n)
s as

A⊗ I ⊗ · · · ⊗ I + I ⊗ A⊗ · · · ⊗ I + · · ·+ I ⊗ I ⊗ · · · ⊗ A,

where I is the identity operator. The operator Γ (A) is essentially self-adjoint on

DA. In the case A = I, the second quantization N = Γ (A) (the number operator)

is essentially self-adjoint on F0 and for φ ∈ H(n)
s , Nφ = nφ.

The annihilation operator a−(f) on Fs(H) with domain F0 is given by

a−(f) =
√
N + 1 b−(f).

For ψ, η in F0, 〈√
N + 1 b−(f)ψ, η

〉
=
〈
ψ, Sb+(f)

√
N + 1η

〉
,

which implies that (
a−(f)

)∗
�F0= Sb+(f)

√
N + 1,

where ‘∗’ denotes the adjoint operator. The operator (a−(f))
∗

is called the creation

operator. Both a−(f) and (a−(f))
∗ �F0 are closable, the corresponding closures

are denoted as a−(f) and as a−(f)∗.

Definition 62. For f ∈ H, the Segal quantum field operator ΦS on F0 is defined

as

ΦS(f) =
1√
2

[a−(f) + a−(f)∗]. (5.1)

The mapping from H into the self-adjoint operators on Fs(H) given by f →
ΦS(f) is called the Segal quantization over H. Notice that the Segal quantization

is a real linear map.

Remark 63. By using the fundamental properties of the Segal quantization, see

[49, Theorem X.41 ], we obtain the following facts (among others):
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(i) For each f ∈ H, ΦS(f) is essentially self-adjoint on F0.

(ii) The commutation relations: for each ψ ∈ F0, and f , g ∈ H,

ΦS(f)ΦS(g)ψ −ΦS(g)ΦS(f)ψ =
√
−1 Im (〈f, g〉)ψ, (5.2)

that is, [ΦS(f),ΦS(g)] =
√
−1 Im (〈f, g〉) I, on F0.

5.1.1 The free Hermitian field of unit mass

We define for each f ∈ H∞ (R),

Φ(f) = ΦS(Rf) ,

with R defined as in Lemma 58, and for each g ∈ H∞ (C),

Φ(g) = Φ(Re g) +
√
−1Φ(Im g) . (5.3)

We call the mapping g → Φ(g) the free Hermitian scalar field of unit mass.

Remark 64. By extending the mapping R as in Remark 56, the field f 7→ Φ(f)

remains well-defined. We emphasize that the presence of R (in any of its forms)

means that we are working on-shell.

5.1.2 The p-adic restricted Poincaré group

As we do not have the structure of light cones available, we must choose a sub-

stitute for them. Here we will base our treatment on the mass shells V ±.

We define the p-adic restricted Lorentz group as

L↑+ =
{

Λ ∈ O(q); Λ
(
V ±
)

= V ±
}
.

This group is non trivial since transformations of the form{[
1 0

0 z

]
∈ O(q); z ∈ O(q0)

}
,

belong to L↑+. A further justification for choosing V ± as a replacement for the
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light cones comes from the fact that the distributions δ± (q− 1) are invariant

under L↑+, see [73, Lemma 163].

We define the p-adic restricted Poincaré group P↑+ as the set of pairs (a,Λ),

where a ∈ Q4
p and Λ ∈ L↑+, with the group operation

(a,Λ1) (b,Λ2) = (a+ Λ1b,Λ1Λ2) .

The group P↑+ acts naturally on Q4
p by setting (a,Λ)x = Λx + a. With the

topology inherited from
(
Q4
p, ‖·‖p

)
, L↑+ and P↑+ become locally compact topolog-

ical groups.

On L2
C (V +, dλ), we define the following projective representation of the re-

stricted Poincaré group:

(U (a,Λ)ψ) (k) = χp (B (a, k))ψ
(
Λ−1k

)
. (5.4)

5.2 The p-adic Wightman axioms

We present here a p-adic counterpart of the classical Wightman axioms, see e.g.

[56, 49], and references therein. We use units where the rationalized Planck’s

constant and the speed of light are equal to one. We take H = Fs(L
2
C (V +, dλ)),

U = Γ (U (·, ·)), with U (·, ·) being defined as in (5.4), Φ as in (5.3), and D = F0.

A p-adic Hermitian scalar quantum field theory is a quadruple {H,U,Φ, D} which

satisfies the following properties:

Relativistic invariance of states. H is a separable Hilbert space and U (·, ·) is

a strongly continuous unitary representation on H of the p-adic restricted Poincaré

group.

Spectral condition. We define the closed forward semigroup S(V +) as the topo-

logical closure of the additive semigroup generated by the vectors of V +. No-

tice that since V + ⊂ Z4
p, S(V +) is a compact subset of Z4

p. Furthermore, since

L↑+ (V +) = V +, we have L↑+
(
S(V +)

)
= S(V +). The p-adic counterpart of the

spectral condition is the following: there exists a projection-valued measure EV +

on Q4
p corresponding to U(a, I) having support in S(V +).

Remark 65. In the classical case by using a Stone type theorem, see [48, Theorem

VIII.12], one shows the existence of four commuting operators P0, P1, P2, P3, on a
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suitable Hilbert space so that U(a, I) = ei
∑
ajPj . In the p-adic case, we do not have

a complete theory of semigroups, with p-adic time, for operators acting on complex-

valued functions. For this reason, at the moment, we do not have a definition for

the p-adic counterparts of the operators P0, P1, P2, P3, and consequently, we do

not know their spectra.

Existence and uniqueness of the vacuum. There exists a unique vector

Υ0 ∈ H such that U (a, I) Υ0 = Υ0 for all a ∈ Q4
p, this vector is called the

vacuum.

Invariant domains for fields. There exists a dense subspace D ⊂ H and a

map from H∞ (C) to the unbounded operators on H such that:

(i) For each f ∈ H∞ (C), we have that D ⊂ Dom (Φ (f)), D ⊂ Dom (Φ (f)∗),

and Φ (f)∗ � D = Φ
(
f
)
� D.

(ii) Υ0 ∈ D, and Φ (f)D ⊂ D for any f ∈ H∞ (C).

(iii) For a fixed ψ ∈ D, the map f → Φ (f)ψ is linear.

Regularity of the field. For any ψ1 and ψ2 in D, the map

f → 〈ψ1,Φ (f)ψ2〉H

is an element of H∗∞ (C). In the Archimedean case this is just a tempered distribu-

tion, here it turns out to be an element ofH∗∞ (C), providing yet another argument

to consider this space as the correct replacement in the p−adic framework of the

Schwartz space S.

Poincaré invariance of the field. For each (a,Λ) ∈ P↑+, U(a,Λ)D ⊂ D, and

for all f ∈ H∞ (C), ψ ∈ D,

U (a,Λ) Φ (f)U (a,Λ)−1 ψ = Φ ((a,Λ) f)ψ,

where

(a,Λ) f (x) = f
(
Λ−1 (x− a)

)
.

Local commutativity. The p-adic local commutativity property states that if

f , g are in DC
(
Z4
p

)
, then

[Φ(f),Φ (g)] Ψ = (Φ(f)Φ (g)−Φ (g) Φ(f)) Ψ = 0,
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for all Ψ ∈ D. In the Archimedean case, the commutator vanishes whenever the

test functions f, g are supported on two respective spacelike-separated subsets,

that is, f(x)g(y) = 0 whenever x − y does not belong to the interior of the light

cone. This subset can be characterized as the ‘ball of radius 0’ of Minkowski

spacetime in the sense of the theory of indefinite quadratic forms (see, e.g., [22]

and references therein). Our result can be seen as the equivalent statement in the

p−adic case, with the unit ball playing this role.

Cyclicity of the vacuum. The set D0 of finite linear combinations of vectors

of the form Φ (f1) · · ·Φ (fn) Υ0 is dense in H.

Theorem 66. The following holds true:

(i) The quadruple {
Fs(L

2
C
(
V +, dλ

)
),Γ (U (·, ·)) ,Φ, F0

}
satisfies the p-adic Wightman axioms.

(ii) For each f ∈ H∞ (C),

Φ (�q,αf) = 0.

Proof. In the proof of the first part (66), we use the notation

Fs = Fs(L
2
C
(
V +, dλ

)
) = ⊕∞n=0H(n)

s .

Relativistic invariance of states. We first note that Fs is separable because

L2
C (V +, dλ) is separable, see Remark 60 (i). On the other hand, since V + is

invariant under L↑+, U (·, ·) is a strongly continuous unitary representation of P↑+
on L2

C (V +, dλ), see (5.4). By definition Γ (U) is the unitary operator on Fs given

on H(n)
s by ⊗nk=1U (·, ·), consequently Γ (U) : H(n)

s → H(n)
s determines a strongly

continuous unitary representation of P↑+ on H(n)
s . Notice that Γ (U) is strongly

continuous in F0, and since F0 is dense in Fs we conclude that Γ (U) is a strongly

continuous unitary representation of P↑+ on Fs.

Spectral condition. We show that the four parameter group Γ (U (a, I)) has as-

sociated a projection-valued measure supported on S(V +). The argument needed

is exactly the classical one, see [49, p. 213]. The notion of closed forward semi-

group, which is the p−adic counterpart of the closed forward light cone, allows

us to carry out the calculations as in the classical case. We first notice that
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L2
C (V +, dλ) is already a spectral representation of U(a, I) since

〈ϕ,U(a, I)ϕ〉L2
C(V +,dλ) =

∫
V +

χp (B (a, k)) |ϕ (k)|2 dλ (k) . (5.5)

Notice that if we define for ϕ, θ ∈ L2
C (V +, dλ), the set function

B →
∫
V +

ϕ (k)χp (B (a, k)) θ (k) dλ (k) ,

B being a Borel set in V +, and denote the corresponding projection-valued mea-

sure as d(ϕ,Ekϕ), in the case ϕ = θ, then (5.5) can be rewritten as

〈ϕ,U(a, I)ϕ〉L2
C(V +,dλ) =

∫
V +

χp (B (a, k)) d(ϕ,Ekϕ).

Now, since Γ (U(a, I)) � H(n)
s =

⊗n
k=1U(a, I), if ϕ(n) ∈ H(n)

s with n > 0, then

〈
ϕ(n), U(a, I)ϕ

〉
=∫

V +

· · ·
∫
V +

χp

(
B

(
a,

n∑
i=1

ki

))∣∣ϕ(n) (k1, . . . , kn)
∣∣2 n∏
k=1

dλ (ki) =∫
V +

χp (B (a, l)) dµϕ(n)(l) ,

where

µϕ(n)(A) =

∫
· · ·∑
ki∈A

∫ ∣∣ϕ(n) (k1, . . . , kn)
∣∣2 n∏
k=1

dλ (ki) ,

A being a Borel set in S(V +). Since λ is supported on V + ⊂ S(V +) and S(V +)

is an additive semigroup, then µϕ(n) is supported on S(V +), for any ϕ(n) ∈ H(n)
s .

We now take Ψ =
{

Ψ(n)
}
n∈N in Fs and denote by µΨ the spectral measure so that

〈Ψ,Γ (U (a, I)) Ψ〉 =

∫
χp (B (a, k)) dµΨ (k) ,

then µΨ =
∑∞

n=0 µΨ(n) since Γ (U(a, I)) : H(n)
s → H(n)

s .

Existence and uniqueness of the vacuum. The argument in the p-adic case

is the same as the Archimedean one, see [49, p. 213].
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Invariant domains for fields. By Proposition 55, we have

H∞(C)
R→ L2

C
(
V +, dλ

)
→ F0 → Fs(L

2
C
(
V +, dλ

)
), (5.6)

where all the arrows denote continuous mappings. By using sequence (4.9),

DC(V +) ⊂ DC(Q4
p), and since DC(Q4

p) ⊂ H∞(C), F(DC) = DC, and DC(V +)

is dense in L2
C (V +, dλ), we conclude that R(H∞(C)) is dense in L2

C (V +, dλ), and

hence ⊕∞n=0Sn(R(H∞(C))) in Fs(L
2
C(V +, dλ)).

If f is real-valued, we use that ΦS(f) is essentially self-adjoint on F0, the fact

that ΦS(f) : F0 → F0, and sequence (5.6), jointly with the density of R(H∞(C))

to obtain that Φ(f) �F0 is essentially self-adjoint, and Φ(f) : F0 → F0. If f

is complex-valued, the results follows from the previous discussion by using the

definition of Φ(f).

Regularity of the field. Suppose that ψ1, ψ2 ∈ F0 and that fn → f ∈ H∞(C)

(i.e. fn
‖·‖l→ f for any l ∈ N), with fn real-valued. Then (4.1) implies that

f̂n |V +

L2
C(V +,dλ)
→ f̂ |V + ,

i.e. R(fn)→ R(f) in Fs, see sequence (5.6). Now by using Segal’s quantization, cf.

Theorem X.41-(d) in [49], we have Φ (fn)ψ → Φ (f)ψ for all ψ in F0, therefore

〈ψ1,Φ (fn)ψ2〉 → 〈ψ1,Φ (f)ψ2〉 .

By treating the real and imaginary parts of f separately, we obtain that 〈ψ1,Φ (f)ψ2〉
is a complex-valued bilinear form in F0 × F0, and that

|〈ψ1,Φ (f)ψ2〉| ≤ ‖ψ1‖ ‖Φ (f)ψ2‖ . (5.7)

We now estimate ‖Φ (f)ψ2‖. By the definition of Φ (f), it is sufficient to consider

that f is real-valued. By taking ψ2 =
{
ψ

(n)
2

}
n∈N

, xi ∈ Q4
p for i ∈ {1, . . . , n},
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y ∈ V +, and using that

(Φ (f)ψ2)(n) (x1, · · · , xn) =

√
n+ 1√

2

∫
V +

f̂(y)ψ
(n+1)
2 (y, x1, · · · , xn) dλ (y)

+
1√
2n

n∑
i=1

f̂(xi)ψ
(n−1)
2 (x1, · · · , x̃i, · · · , xn) ,

where x̃i means that xi is omitted, we have∥∥∥(Φ (f)ψ2)(n)
∥∥∥2

H(n)
s

=

(n+ 1)

2

∫
Q4n
p

∣∣∣∣∫
V +

f̂(y)ψ
(n+1)
2 (y, x1, · · · , xn) dλ (y)

∣∣∣∣2 n∏
j=1

d4xj+

1

2n

∫
Q4n
p

∣∣∣∣∣
n∑
i=1

f̂(xi)ψ
(n−1)
2 (x1, · · · , x̃i, · · · , xn)

∣∣∣∣∣
2 n∏
j=1

d4xj =: I0 + I1.

To estimate I0, we use the Cauchy-Schwartz inequality, estimation (4.1), and

Remark 60 (iii) to get:

I0 ≤
(n+ 1)

2

{∫
V +

∣∣∣f̂ (y)
∣∣∣2 dλ (y)

}
×

∫
Q4n
p

∫
V +

∣∣∣ψ(n+1)
2 (y, x1, · · · , xn)

∣∣∣2 dλ (y)
n∏
j=1

d4xj


≤ C1(n) ‖f‖2

l

∫
Q4n
p

∫
Q4
p

∣∣∣ψ(n+1)
2 (y, x1, · · · , xn)

∣∣∣2 d4y

n∏
j=1

d4xj

≤ C1(n) ‖f‖2
l

∥∥∥ψ(n+1)
2

∥∥∥2

H(n+1)
s

,

for any l ∈ N. For I1, we have

I1 ≤
1

2n

(
n ‖f‖0

∥∥∥ψ(n−1)
2

∥∥∥
H(n−1)
s

)2

= n ‖f‖2
0

∥∥∥ψ(n−1)
2

∥∥∥2

H(n−1)
s

.

Consequently,

‖Φ (f)ψ2‖ ≤
√

2 ‖f‖l ‖ψ2‖ for any l ∈ N,
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which implies that

f → 〈ψ1,Φ (f)ψ2〉 is an element of H∗∞ (C) ,

see (1.6).

Poincaré invariance of the field. The proof is identical to that of Theorem

X.42 in [49].

Cyclicity of the vacuum. The cyclicity of the vacuum for Φ (·) follows from

Theorem X. 41 (parts (b) and (d)) in [49], by using the fact that the mapping

R : DC(Q4
p) → L2

C (V +, dλ)

f → f̂ |V +

(5.8)

has a dense range. Indeed, by using that DC(V +) is dense in L2
C (V +, dλ), see Re-

mark 59, and the sequence (4.9), we conclude that DC(Q4
p) is dense in L2

C (V +, dλ).

Finally, (5.8) follows from the fact that F(DC(Q4
p)) = DC(Q4

p).

Local commutativity. Segal’s quantization can be performed on the field Φ(f),

f ∈ H∞ (C), see [49, Theorem X.41]. Local commutativity in this context means

that

[Φ (f) ,Φ (g)]ψ = Φ (f) Φ (g)ψ −Φ (g) Φ (f)ψ = 0, (5.9)

for any f , g ∈ H∞ (C) with support on an appropriate domain, and for all ψ ∈ F0.

Without loss of generality we may suppose that f and g in (5.9) are real-valued

since Φ is linear. Since the range of R : DC → L2
C (V +, dλ) is dense in L2

C (V +, dλ),

we may assume that f , g belong to DC, cf. [49, Theorem X.41-(d)]. By using the

Segal quantization, cf. [49, Theorem X.41-(c) ], we have

[Φ (f) ,Φ (g)]ψ =
√
−1 Im 〈Rf,Rg〉L2

C(V +,dλ) ψ

=
1

2


∫
V +

{
f̂ (k)ĝ (k)− f̂ (k) ĝ (k)

}
dλ (k)

ψ.

Now, we define

∆ (x) =

∫
V +

{χp (−B (x, k))− χp (B (x, k))} dλ (k) , (5.10)
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which is a well-defined function in Q4
p because V + is open and compact. Then

[Φ (f) ,Φ (g)]ψ =
1

2


∫
Q4
p

∫
Q4
p

∆ (x− y) f (x) g (y) d4xd4y

ψ. (5.11)

Therefore, the study of the local commutativity in the p−adic quantum field

theory of a scalar field becomes the study of the vanishing of ∆(x) as a distribution

on DC(Q4
p) × DC(Q4

p). It is then enough to observe that ∆ (x) ≡ 0 if x ∈ Z4
p,

because χp|Zp ≡ 1.

Finally, to prove the second part (66) notice that, since �q,α : H∞ (C) →
H∞ (C), see Lemma 52 , Φ (�q,αf), f ∈ H∞ (C), is well-defined, and since

H∞ (C) ⊂ L2
C
(
Q4
p, d

4k
)
, we have F (�q,αf) = |q− 1|αp F(f), so R(�q,αf) = 0,

and consequently Φ (�q,αf) = 0, for all f ∈ H∞ (C).

5.3 Conjugated fields

We take H = L2
C (V +, dλ) as before. Recall that (k0,k) ∈ V + if and only if

(k0,−k) ∈ V +. By using this fact, we define

C : H → H

f (k0,k) → f (k0,−k).

Then C induces a conjugation on H, i.e. C gives an antilinear isometry satisfying

C2 = I. We set HC := {f ∈ H;Cf = f}.

We recall that ω (k) : Uq → Qp is a non-vanishing analytic function. We

define

µ(k) =


√
|ω(k)|p if k ∈ Uq ,

0 if k ∈ Q3
p\Uq.

Then µ (k) ∈ DR(Q3
p).
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We now define the canonical fields corresponding to C as follows:

ϕ (f) =
1√
2

{(
a− (Rf)

)∗
+ a− (CRf)

}
, for f ∈ H∞(C), and

π (f) =

√
−1√
2

{(
a− (µRf)

)∗ − a− (CµRf)
}

, for f ∈ H∞(C).

We call f → ϕ (f) the canonical free field over HC of mass 1, and f → π (f)

the canonical conjugate momentum over HC of mass 1. These maps are complex

linear and ϕ (f), π (f) are self-adjoint if and only if Rf ∈ HC .

The distribution δ (x0 − t0) g (x) is defined as the direct product of the distri-

butions δ (x0 − t0) and g (x):

δ (x0 − t0)× g (x) : DC(Qp)×DC(Q3
p) → C

∑
i φi (x0) θi (x) →

∑
i φi (t0)

∫
Q3
p
g (x) θi (x) d3x,

see e.g. [66]. If g ∈ L2
C
(
Q3
p, d

3x
)
, then the Fourier transform of the distribution

δ (x0 − t0) g (x) is χp (k0t0) ĝ (k), where ĝ (k) ∈ L2
C
(
Q3
p, d

3k
)

is the 3−dimensional

Fourier transform with respect to the bilinear form −B0 (x,k). By using Lemma

58, we can extend the projectionR to the distributions of the form δ (x0 − t0) g (x),

g ∈ L2
C
(
Q3
p, d

3x
)
, and thus we extend the class of functions on which ϕ (·) and

π (·) are defined to include these distributions.

In the case t0 = 0, with g real-valued, we have(
CRδ̂g

)
(k0,k) = Rδ̂g (k0,−k) = Rĝ (k0,−k) = ĝ(−k) = ĝ (k) = R

(
δ̂g
)
.

Consequently, R (δg) and µR (δg) are in HC , and ϕ (δg), π (δg) are self-adjoint

if g ∈ L2
C
(
Q3
p, d

3x
)

is real. We call the maps g → ϕ (δg) and g → π (δg) the

time-zero fields.

From now on, we will only use ‘test functions’ of the form δg with g ∈
L2
C
(
Q3
p, d

3x
)

in ϕ (·) and π (·), and write ϕ (g) and π (g) instead of ϕ (δg) and

π (δg). If f and g are functions from L2
R
(
Q3
p, d

3x
)
, by using Theorem X.43-(c),
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(
L2

C
(
V +

))
TO FS

(
L2

C (UQ)
)
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we have

[ϕ (f) ,π (g)]ψ =
√
−1


∫
V +

f̂(k)ĝ(k)µ (k) dλ(k)

ψ, for all ψ ∈ F0. (5.12)

5.4 Transferring fields from Fs
(
L2
C (V

+)
)

to Fs
(
L2
C (Uq)

)
We use the notation

a† (f) =
(
a− (f)

)∗
, a (f) =

(
a− (Cf)

)
.

As we already mentioned, each function f(k) = f
(√

ω (k),k
)
∈ L2

C (V +, dλ) is

a function on Uq. We take

(Jf) (k0,k) =
f
(√

ω (k),k
)

∣∣∣√ω (k)
∣∣∣ 12
p

as before. Then J is a unitary isometry of L2
C (V +, dλ) onto L2

C (Uq, d
3k). The

annihilation and creation operators on Fs (L2
C (Uq, d

3k)), ã (·), ã† (·) are related to

a (·) and a† (·) by the formulas:

ã (Jf) = Γ (J) a (f) Γ (J)−1 ,

ã† (Jf) = Γ (J) a† (f) Γ (J)−1 .

By using the unitary map Γ (J), we carry the quantum fields over Fs (L2
C (Uq, d

3k))

as follows:

Φ̃ (f) = Γ (J) Φ (f) Γ (J)−1 =
1√
2

ã
C̃ Rf∣∣∣√ω (k)

∣∣∣ 12
p

+ ã†

 Rf∣∣∣√ω (k)
∣∣∣ 12
p
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for f ∈ H∞(R), and

ϕ̃ (f) = Γ (J)ϕ (f) Γ (J)−1 =
1√
2

ã
 R (fδ)∣∣∣√ω (k)

∣∣∣ 12
p

+ ã†

 R (fδ)∣∣∣√ω (k)
∣∣∣ 12
p




for f ∈ L2
C(Q3

p, d
3x), where C̃ = Γ (J)CΓ (J)−1 acts by

(
C̃g
)

(k) = g(−k).

We drop the tilde ·̃, and from now on, we work with fields on Fs (L2
C (Uq, d

3k)),

for f , g real-valued. Then, formula (5.12) becomes

[ϕ (f) ,π (f)] =
√
−1

∫
Uq

f(x)g(x)d3x,

which is the canonical commutation relation in L2
C(Uq, d

3x).

5.5 Some classical calculations

In this section, we discuss in a p−adic frame the annihilation and creation oper-

ators introduced above, to show that they conform to the common usage in the

Physics literature. We start by defining

D0 =
{
ψ;ψ ∈ F0, ψ

(n) ∈ DC(Un
q ) for all n

}
and for each l ∈ Uq (we do not use bold letters for 3-dimensional vectors) an

operator a (l) on Fs (L2
C (Uq, d

3x)) = ⊕∞n=0H
(n)
s with domain D0 by

(a (l)ψ)(n) (k1, . . . , kn) =
√
n+ 1ψ(n+1) (l, k1, . . . , kn) , n ≥ 0 .

The formal adjoint of a (l) is given by

(
a (l)† ψ

)(n)

(k1, . . . , kn) =
1√
n

n∑
j=1

δ (l − kj)ψ(n−1)
(
k1, . . . , k̃j, . . . kn

)
,

for n ≥ 1, and by definition
(
a (l)† ψ

)(n)

(k1, . . . , kn) = 0 for n = 0. This operator

is a well-defined quadratic form on D0 ×D0: if ψ2 =
{
ψ

(n)
2

}
n∈N

, ψ1 =
{
ψ

(n)
1

}
n∈N
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∈ F0, then the quadratic form

〈
ψ2, a (l)† ψ1

〉
=
∞∑
n=1

〈
ψ

(n)
2 ,
(
a (l)† ψ1

)(n)
〉
H(n)
s

=

∞∑
n=1

1√
n

n∑
j=1

∫
Un−1
q

ψ
(n)
2 (k1, . . . , kj−1, l, kj+1, . . . , kn)×

ψ
(n−1)
1 (k1, . . . , kj−1, kj+1, . . . , kn)

n∏
i=1
i 6=j

d3ki

is well-defined. The formulas

a (g) =

∫
Uq

a (k) g (−k) d3k and a† (g) =

∫
Uq

a† (k) g (k) d3k, (5.13)

hold for all g (k) ∈ DC(Uq), if the equalities are understood in the sense of

quadratic forms, i.e.

〈ψ2, a (g)ψ1〉 :=

∫
Uq

〈ψ2, a (k)ψ1〉 g (−k) d3k

and 〈
ψ2, a

† (g)ψ1

〉
:=

∫
Uq

〈
ψ2, a

† (k)ψ1

〉
g (k) d3k.

On the other hand, since a (l) : D0 → D0, the powers of a (l) are well-defined on

D0. Then 〈
ψ1,
(
a (l)†

)n
ψ2

〉
= 〈(a (l))n ψ1, ψ2〉 ,

for each n, where the equality is to be understood in the sense of quadratic forms,

and 〈
ψ1,

(
N2∏

i=N1+1

a† (li)

)(
N1∏
i=1

a (li)

)
ψ2

〉
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is a well-defined quadratic form on D0×D0. In addition, if fi ∈ DC(Uq), then the

following expressions are well-defined as quadratic forms: The product(
N2∏

i=N1+1

a† (fi)

)(
N1∏
i=1

a (fi)

)
=

∫
U
N2
q

(
N2∏

i=N1+1

a† (ki)

)(
N1∏
i=1

a (−ki)

)(
N2∏
i=1

fi (ki)

)
d3k1 · · · d3kN2 ,

the number operator

N =

∫
Uq

a† (k) a (k) d3k ,

and the free Hamiltonian of unit mass,

H0 =

∫
Uq

µ (k) a† (k) a (k) d3k .

Finally, by using quadratic forms on D0 we can express the free scalar field

and the time zero fields in terms of a† (k) and a (k) (i.e. by using (5.13) with g

real-valued):

Φ (t, x) =

1√
2

∫
Uq

{
χp

(√
ω (k)t−B0 (k, x)

)
a† (k) + χp

(
−
√
ω (k)t+ B0 (k, x)

)
a (k)

}

× d3k∣∣∣√ω (k)
∣∣∣ 12
p

,

ϕ (x) =
1√
2

∫
Uq

{
χp (−B0 (k, x)) a† (k) + χp (B0 (k, x)) a (k)

} d3k∣∣∣√ω (k)
∣∣∣ 12
p

,

π (x) =

√
−1√
2

∫
Uq

{
χp (−B0 (k, x)) a† (k)− χp (B0 (k, x)) a (k)

} ∣∣∣√ω (k)
∣∣∣ 12
p
d3k.
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5.6 A p-adic Klein-Gordon equation

In this section, we consider the inhomogeneous p−adic Klein-Gordon equation:

�q,αu (t,x) = h (t,x) , (5.14)

where (t,x) ∈ Qp × Q3
p and h (t,x) ∈ DC(Qp × Q3

p). We use the techniques

and results of [73, Chapter 6]. By a solution (or weak solution) we understand

a distribution from D′C(Qp × Q3
p) satisfying (5.14). We denote by E0

q (t,x), the

fundamental solution of (5.14) obtained in Theorem 48.

Theorem 67. The following hold true:

(i) The equation

�q,αu (t,x) = 0 (5.15)

admits plane waves, this means that if (E±,κ) ∈ V ±, that is, they form a

fixed pair of solutions to E± = ±
√
ω (κ), then χp {∓B ((t,x) , (E±,κ))} is

a weak solution of (5.15).

(ii) The distributions∫
Uq

χp

{
−B

(
(t,x) ,

(√
ω (k),k

))} d3k∣∣∣√ω (k)
∣∣∣
p

+

∫
Uq

χp

{
B
(

(t,x) ,
(
−
√
ω (k),k

))} d3k∣∣∣√ω (k)
∣∣∣
p

are the unique weak solutions of (5.15) (up to the multiplication by a non-

zero complex constant) which are invariant under L↑+.

(iii) The distributions

u(t,x;A,B,C) = E0
q (t,x) ∗ h (t,x) +

C

∫
Uq

{
χp

(
−
√
ω (k)t+ B0 (k,x)

)
A (k) + χp

(√
ω (k)t+ B0 (k,x)

)
B (k)

}

× d3k∣∣∣√ω (k)
∣∣∣
p

,
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where C is a non-zero complex number, and A (k), B (k) ∈ DC(Q3
p), are

weak solutions of (5.14).

Proof.

(i) Since F−1
k0→t
k→x

(δ (k0 − E±,k− κ)) = χp {∓B ((E±,κ) , (t,x))}, the condition

E± = ±
√
ω (κ) implies that k±0 = ±

√
ω (k), so δ (k0 − E±,k− κ) is sup-

ported on V ± ⊂ V . The result follows from the fact that the weak solutions

of (5.15) are exactly the distributions from D′C(Qp × Q3
p) whose Fourier

transform is supported on V , see [73, Lemma 169].

(ii) The distributions of the form CδV , for C ∈ C×, are the unique solutions

of (5.15) which are invariant under O(q), see [73, Lemma 169] and [46,

Proposition 2-2.]. By writing CδV = CδV + + CδV − in D′C(Qp × Q3
p) and

using the fact that δV ± are invariant under L↑+ = {Λ ∈ O(q); Λ (V ±) = V ±},
see [73, Lemma 163], we conclude that CδV + + CδV −are the unique weak

solutions of (5.15) which are invariant under L↑+. The announced formula

follows by computing the inverse Fourier transform of δV ± .

(iii) The result follows from the second part by using Theorem 48.

Remark 68. Notice that
∣∣∣√ω (k)

∣∣∣
p
A (k),

∣∣∣√ω (k)
∣∣∣
p
B (k), are test functions,

and also∫
Uq

χp

(√
ω (k)t+ B0 (k,x)

)
B (k)

d3k∣∣∣√ω (k)
∣∣∣
p

=

∫
Uq

χp

(√
ω (k)t−B0 (k,x)

)
B (−k)

d3k∣∣∣√ω (k)
∣∣∣
p

,

so the unique weak solution of �q,αu (t,x) = 0 (with C = 1/
√

2) invariant under

L↑+ corresponds to the free scalar field Φ (t,x), with a (k) =
∣∣∣√ω (k)

∣∣∣
p
A (k),

a† (k) =
∣∣∣√ω (k)

∣∣∣
p
B (k). As we have seen, these solutions can be quantized using

the machinery of the second quantization in such a way that Wightman axioms

are satisfied.
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