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Ciudad de México. Agosto, 2019.





Agradecimientos

The beauty of mathematics only shows itself to more patient followers.

Maryam Mirzakhani

Agradezco al Consejo Nacional de Ciencia y Tecnoloǵıa, CONACYT, por la beca que
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Abstract

Let S be a polynomial ring over the field K and let I be a graded ideal of S. In this thesis
we introduce and study two functions associated to I: the minimum distance function δI
and the footprint function fpI . To define δI and fpI we use the Hilbert function, the degree
(multiplicity), and a Gröbner basis for I. We study these functions from a computational
point of view using Gröbner bases methods and implementations in Macaulay2. We also
study these functions from a theoretical point of view and examine their asymptotic
behavior. These functions can be expressed in terms of the algebraic invariants of I. One
of our main results shows that fpI is a lower bound for δI . We give formulas to compute fpI
and δI in the case of certain complete intersections. In the case of complete intersection
monomial ideals δI is equal to fpI and we are able to give an explicit formula in terms of
the degrees of a minimal set of generators of I.

Let K = Fq be a finite field and let X ⊂ Ps−1 be a finite subset of points in the
projective space Ps−1 over the field K. We show a formula to compute the number of zeros
that a homogeneous polynomial has in X. We use the minimum distance function of the
vanishing ideal associated to X in order to give an algebraic formulation for the minimum
distance in coding theory, in particular for projective Reed–Muller-type codes defined on
X, we also compute its dimension and length. Following the footprint method, we present
bounds for the number of zeros of polynomials in a projective nested Cartesian set X and
for the minimum distance of the corresponding projective nested Cartesian codes.

To show applications of the footprint method we need to study certain monomial ideals
that occur as initial ideals of vanishing ideals over finite fields. This leads us to introduce
the edge ideal I = I(D) of a weighted oriented graph D. Using the combinatorial structure
of digraphs, we determine the irredundant irreducible decomposition of I. Furthermore,
we give a combinatorial characterization for the unmixed property of I, when the digraph
is bipartite, a whisker or a cycle. We will also study the Cohen–Macaulay property of I
and show that in certain cases I is unmixed if and only if I is Cohen–Macaulay.
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Resumen

Sean S un anillo de polinomios sobre el campo K e I un ideal graduado de S. En esta tesis
introducimos y estudiamos dos funciones asociadas a I: la función de distancia mı́nima
δI y la función huella fpI . Para definir δI y fpI usamos la función de Hilbert, el grado
(multiplicidad) y una base de Gröbner para I. Estudiamos estas funciones desde un
punto de vista computacional usando métodos de bases de Gröbner e implementaciones
en Macaulay2. También estudiamos estas funciones desde un punto de vista teórico y
examinamos su comportamiento asintótico. Estas funciones pueden ser expresadas en
términos de los invariantes algebraicos de I. Uno de nuestros resultados principales prueba
que fpI es una cota inferior para δI . Damos fórmulas para calcular fpI y δI en el caso de
ciertas intersecciones completas. En el caso de ideales monomiales que son intersección
completa δI es igual a fpI y exhibimos una fórmula expĺıcita en términos de los grados de
un conjunto minimal de generadores de I.

Sea K = Fq un campo finito y X ⊂ Ps−1 un subconjunto finito de puntos en el espacio
proyectivo Ps−1 sobre el campo K. Mostramos una fórmula para calcular el número de
ceros que un polinomio homogéneo tiene en X. Usamos la función de distancia mı́nima del
ideal anulador asociado a X para dar una formulación algebraica para la distancia mı́nima
en teoŕıa de códigos, en particular para códigos proyectivos tipo Reed–Muller definidos
en X, también calculamos su dimensión y longitud. Siguiendo el método de la huella,
presentamos cotas para el número de ceros de un polinomio en un conjunto proyectivo
Cartesiano anidado X y para la distancia mı́nima de códigos proyectivos Cartesianos
anidados.

Para mostrar aplicaciones del método de la huella necesitamos estudiar ciertos ideales
monomiales que aparecen como ideales iniciales de ideales anuladores sobre campos finitos.
Esto nos lleva a introducir el ideal de aristas I = I(D) de una gráfica orientada pesada
D. Usando la estructura combinatoria de digráficas, determinamos la descomposición
irreducible irredundante de I. Además, caracterizamos de manera combinatoria cuándo
el ideal I es no mezclado para digráficas bipartitas, aristas colgantes o ciclos. También
estudiaremos la propiedad Cohen–Macaulay de I y mostraremos que en ciertos casos I es
no mezclado si y sólo si I es Cohen–Macaulay.
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Introduction

In this thesis we introduce two numerical functions over graded ideals; the minimum dis-
tance function and the footprint function, these are defined in terms of algebraic invariants
such as the Hilbert function and the degree (multiplicity), these functions have a relevant
connection with coding theory that justifies its name. The footprint function of a graded
ideal I is obtained by fixing a monomial order and then using the initial ideal of I to find
an approximation for the minimum distance function of I.

The interest in these functions is essentially due to the following facts: The minimum
distance function is related to the minimum distance in coding theory (Theorem 3.2.1),
and the footprint function is much easier to compute. There are significant cases in
which either the footprint function is a lower bound for the minimum distance function
(Theorem 2.3.2) or the two functions coincide (Theorem 2.5.9, Corollary 3.3.1). Our main
interest is to find exact formulas to calculate or to find upper and lower bounds for these
functions for some families of graded ideals.

In Chapter 2, we study the minimum distance function and the footprint function of
a graded ideal from a theoretical point of view. These functions are defined as follows.

Let S = K[x1, . . . , xs] =
⊕∞

d=0 Sd be the polynomial ring over a field K with the
standard grading and let I 6= (0) be a graded ideal of S of Krull dimension k.

• The Hilbert function of S/I is

HI(d) := dimK(Sd/Id), d = 0, 1, 2, . . .,

where Id = Sd ∩ I.

• The degree or multiplicity of S/I is:

deg(S/I) =

(k − 1)! lim
d→∞

HI(d)

dk−1
if k ≥ 1,

dimK(S/I) if k = 0.

Let Fd be the set of all polynomials of degree d ≥ 0 which are zero divisors of S/I:

Fd := {f ∈ Sd | f /∈ I, (I : f) 6= I} ,
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where (I : f) = {g ∈ S | gf ∈ I} is a quotient ideal. The minimum distance function of
I, denoted δI , is the function δI : N→ Z given by

δI(d) :=

{
deg(S/I)−max{deg(S/(I, f)) | f ∈ Fd} if Fd 6= ∅,
deg(S/I) if Fd = ∅.

For unmixed graded ideals, δI(d) = min{deg(S/(I : f)) | f ∈ Sd \ I} (Theorem 2.1.7).

We are able to show that the minimum distance function satisfies the following prop-
erties, which allow us to study the asymptotic behavior of δI (Section 2.2).

Theorem 2.1.9. Let I ⊂ S be an unmixed graded ideal, let ≺ be a monomial order on
S, and let d ≥ 1 be an integer. The following hold.

(i) δI(d) ≥ 1.

(ii) If dim(S/I) ≥ 1 and Fd 6= ∅ for d ≥ 1, then δI(d) ≥ δI(d+ 1) ≥ 1 for d ≥ 1.

Theorem 2.1.12. Let I ⊂ S be an unmixed radical graded ideal. If all the associated
primes of I are generated by linear forms, then there is an integer r0 ≥ 1 such that

δI(1) > δI(2) > · · · > δI(r0) = δI(d) = 1 for d ≥ r0.

The integer r0 where the stabilization occurs is called the regularity index of δI and is
denoted by reg(δI). If I is the graded vanishing ideal of a set of points in a projective
space over a finite field, then r0 ≤ reg(S/I) where reg(S/I) is the Castelnuovo–Mumford
regularity of S/I or simply the regularity of S/I (Definition 1.5.9). An excellent reference
for this notion is the book of Eisenbud [17]. The regularity index of S/I, denoted ri(S/I),
is the least integer r ≥ 0 such that HI(d) is equal to hI(d) for d ≥ r, where hI is the Hilbert
polynomial of S/I (Theorem 1.5.2, Definition 1.5.5). If I is a graded Cohen–Macaulay
ideal of dimension 1, then reg(S/I) = ri(S/I) (Remark 1.5.10).

In Section 2.2, we conjecture that δI(d) = 1 for d ≥ reg(S/I), that is, r0 ≤ reg(S/I)
(Conjecture 2.2.2). We show this conjecture when I is the edge ideal (Definition 1.9.14)
of a Cohen–Macaulay bipartite graph without isolated vertices.

Proposition 2.2.4. If I = I(G) is the edge ideal of a Cohen–Macaulay bipartite graph
without isolated vertices, then δI(d) = 1 for d ≥ reg(S/I).

Conjecture 2.2.2 is still open for square-free monomial ideals. The regularity of S/I
can be computed using Macaulay2 [25], but r0 is in general difficult to compute [12].

We use Gröbner bases to study the minimum distance function as we now explain.

Fix a monomial order ≺ on S. Let ∆≺(I) be the footprint of S/I consisting of all
standard monomials of S/I, with respect to ≺, and let G = {g1, . . . , gr} be a Gröbner
basis of I. Then ∆≺(I) is the set of all monomials of S that are not a multiple of any of
the leading monomial of g1, . . . , gr (Lemma 1.6.13). We set ∆≺(I)d = ∆≺(I) ∩ Sd.

If ∆≺(I)d = {xa1 , . . . , xan} and F≺,d = {f =
∑
i

λix
ai | f 6= 0, λi ∈ K, (I : f) 6= I},

then using the division algorithm (Theorem 1.6.5) we can write:

δI(d) = deg(S/I)−max{deg(S/(I, f)) | f ∈ F≺,d}.
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If K = Fq is a finite field, using this equality and Macaulay2 [25], we present an
implementation to compute δI (Example 2.1.16). Other systems that can be employed
are CoCoA [1] and Singular [21]. To compute δI is a difficult problem in commutative
algebra, because the number of standard polynomials (Definition 1.6.9) of degree d is
qn − 1, where n is the number of standard monomials of degree d. Hence, we can only
compute δI(d) for small values of n and q.

Upper bounds for δI(d) can be obtained by fixing a subset F ′≺,d of F≺,d and computing

δ′I(d) = deg(S/I)−max{deg(S/(I, f)) | f ∈ F ′≺,d} ≥ δI(d).

Typically one use F ′≺,d = {f =
∑

i λix
ai | f 6= 0, λi ∈ {0, 1}, (I : f) 6= I} or a subset of it.

Lower bounds for δI(d) are harder to find. Thus, we seek to estimate δI(d) from below.
So, with this in mind, in Section 2.3, we introduce the footprint function of I. This is
a numerical function defined similarly as δI , but here we use a monomial order and the
initial ideal of I. The footprint function is defined as follows (Definition 2.3.1).

LetM≺,d be the set of all zero divisors of S/in≺(I) of degree d ≥ 1 that are in ∆≺(I):

M≺,d := {xa |xa ∈ ∆≺(I)d, (in≺(I) : xa) 6= in≺(I)},

where in≺(I) denotes the initial ideal of I (Definition 1.6.3). The footprint function of I,
denoted fpI , is the function fpI : N+ → Z given by

fpI(d) :=

{
deg(S/I)−max{deg(S/(in≺(I), xa)) |xa ∈M≺,d} if M≺,d 6= ∅,
deg(S/I) if M≺,d = ∅.

We come to one of our main results.

Theorem 2.3.2. Let I be an unmixed graded ideal and let ≺ be a monomial order. The
following hold.

(i) δI(d) ≥ fpI(d) and δI(d) ≥ 0 for d ≥ 1.

(ii) fpI(d) ≥ 0 if in≺(I) is unmixed.

In particular, the previous theorem tells us that fpI is a lower bound for δI , when both
values coincide for d ≥ 1, we call the ideal I a Geil–Carvalho ideal , any unmixed monomial
ideal is Geil–Carvalho (Proposition 2.3.3). The first interesting family of ideals where
equality holds is due to Geil [18, Theorem 2]. His result essentially shows that fpI(d) =
δI(d) for d ≥ 1 when ≺ is a graded lexicographical order and I is the homogenization of the
vanishing ideal of the affine space As−1 over a finite field K = Fq. Recently Carvalho [10,
Proposition 2.3] extended this result by replacing As−1 by a Cartesian products of subsets
of Fq. In this case the underlying Reed–Muller-type code is called an affine Cartesian
code and an explicit formula for the minimum distance was first given in [19, 34]. As an
application we show this formula for the minimum distance of an affine Cartesian code
by examining the underlying vanishing ideal (Section 3.3).
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In Section 2.5, we study the footprint function with respect to a monomial order of
a graded ideal I whose initial ideal is a complete intersection. This implies that I is a
complete intersection (Proposition 2.5.4(a)). In this case we present an explicit formula
for fpI in terms of the degrees of the generators of the ideal. Now, we present our main
results on complete intersections.

Theorem 2.5.6. Let I ⊂ S be a graded ideal and let ≺ be a monomial order. If in≺(I)
is a complete intersection of height s− 1 generated by xα2 , . . . , xαs with di = deg(xαi) and
1 ≤ di ≤ di+1 for i ≥ 2, then δI(d) ≥ fpI(d) ≥ 1 and the footprint function in degree
d ≥ 1 is given by

fpI(d) =


(dk+2 − `)dk+3 · · · ds if d ≤

s∑
i=2

(di − 1)− 1,

1 if d ≥
s∑
i=2

(di − 1) ,

where 0 ≤ k ≤ s − 2 and ` are the unique integers such that d =
∑k+1

i=2 (di − 1) + ` and
1 ≤ ` ≤ dk+2 − 1.

This result is valid if the initial ideal is a complete intersection of dimension greater
than or equal to 1. This follows using the next theorem and noticing that Proposition
2.5.4 holds for any height.

Theorem 2.5.9. Let I ⊂ S be a complete intersection monomial ideal of dimension ≥ 1
minimally generated by xα1 , . . . , xαr and let d ≥ 1 be an integer. If di = deg(xαi) for
i = 1, . . . , r and d1 ≤ · · · ≤ dr, then

δI(d) = fpI(d) =


(dk+1 − `) dk+2 · · · dr if d <

r∑
i=1

(di − 1) ,

1 if d ≥
r∑
i=1

(di − 1) ,

where 0 ≤ k ≤ r − 1 and ` are integers such that d =
∑k

i=1 (di − 1) + ` and 1 ≤ ` ≤
dk+1 − 1.

In Chapter 3, we show that the minimum distance function of a graded ideal in a
polynomial ring with coefficients in a field generalizes the minimum distance of projec-
tive Reed–Muller-type codes over finite fields (see the discussion below). This gives an
algebraic formulation of the minimum distance of a projective Reed–Muller-type code in
terms of the algebraic invariants and structure of the underlying vanishing ideal. Then,
we give a method based on Gröbner bases and Hilbert functions, to find lower bounds for
the minimum distance of certain Reed–Muller-type codes. This is a very important result
because in general computing the minimum distance of linear codes is NP-hard [54].

The study of δI was motivated by the notion of minimum distance of linear codes in
coding theory. For convenience we mention this notion. Let K = Fq be a finite field.
An [m, k]−linear code is a linear subspace of Km of dimension k for some m. The basic
parameters of a linear code C are length: m, dimension: k = dimK(C), and minimum
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distance:
δ(C) := min{‖v‖ : 0 6= v ∈ C},

where ‖v‖ is the number of nonzero entries of v.

The minimum distance of affine Reed–Muller-type codes has been studied using Gröbner
bases techniques; see [10, 18, 19] and the references therein. Of particular interest to us
is the footprint technique introduced by Geil [18] to bound from below the minimum
distance. In this work we extend this technique to projective Reed–Muller-type codes,
a special type of linear codes that generalizes affine Reed–Muller-type codes [35]. These
projective codes are constructed as follows.

Let K = Fq be a finite field with q elements, let Ps−1 be a projective space over K,
and let X be a subset of Ps−1. The vanishing ideal of X, denoted I(X), is the ideal of S
generated by the homogeneous polynomials that vanish at all points of X. In this case the
Hilbert function of S/I(X) is denoted by HX(d). We can write X = {[P1], . . . , [Pm]} ⊂ Ps−1

with m = |X|.
Fix a degree d ≥ 1. For each i there is fi ∈ Sd such that fi(Pi) 6= 0. There is a

K-linear map given by

evd : Sd → Km, f 7→
(
f(P1)

f1(P1)
, . . . ,

f(Pm)

fm(Pm)

)
.

The image of Sd under evd, denoted by CX(d), is called a projective Reed–Muller-type
code of degree d on X [15, 24]. The basic parameters of the linear code CX(d) are:

(a) length: |X|,

(b) dimension: dimK(CX(d)),

(c) minimum distance: δX(d) := δ(CX(d)).

The length and the dimension of CX(d) are deg(S/I(X)) and HX(d), respectively. The
Hilbert function and the minimum distance are related by the Singleton bound:

1 ≤ δX(d) ≤ |X| −HX(d) + 1.

In particular, if d ≥ reg(S/I(X)) ≥ 1, then δX(d) = 1. The converse is not true
(Example 3.2.7). Thus, potentially good Reed–Muller-type codes CX(d) can occur only
if 1 ≤ d < reg(S/I(X)). There are some families where d ≥ reg(S/I(X)) ≥ 1 if and only
if δX(d) = 1 [34, 47, 49], but we do not know of any set X parameterized by monomials
where this fails. If X is parameterized by monomials we say that CX(d) is a projective
parameterized code [46, 52].

A main problem in Reed–Muller-type codes and the theory of algebraic schemes is the
following [12, 20, 40]; if X has nice algebraic or combinatorial structure, find formulas in
terms of s, q, d, and the structure of X, for the basic parameters of CX(d) and S/I(X):
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HX(d), deg(S/I(X)), δX(d), and reg(S/I(X)). Our main results can be used to study this
problem, especially when X is parameterized by monomials or when X is a projective
nested Cartesian set (Definition 3.5.1).

The basic parameters of projective Reed–Muller-type codes have been computed in
the following cases:

• If X = Ps−1, CX(d) is the classical projective Reed–Muller code. Formulas for its
basic parameters were given in [49, Theorem 1].

• If X is a projective torus (Definition 1.7.7), CX(d) is the generalized projective Reed–
Solomon code. Formulas for its basic parameters were given in [47, Theorem 3.5].

• If X is the image of a Cartesian product of subsets of K, under the map Ks−1 →
Ps−1, x → [x, 1], then CX(d) is an affine Cartesian code and formulas for its basic
parameters were given in [19, 34].

Let f be a homogeneous polynomial of S, the zero set of f , denoted by VX(f), is the
set of all [P ] ∈ X such that f(P ) = 0, that is, VX(f) is the set of zeros of f in X. To
calculate the minimum distance of a projective Reed–Muller-type code is directly related
to computing the number of elements of VX(f). We give the following nice formula to
compute this number (Lemma 3.1.1, Example 3.1.4):

|VX(f)| =
{

deg(S/(I(X), f)) if (I(X) : f) 6= I(X),
0 if (I(X) : f) = I(X).

As a consequence of this formula we derive one of the main results of this thesis.

Theorem 3.2.1. If |X| ≥ 2, then δX(d) = δI(X)(d) ≥ 1 for d ≥ 1.

If ≺ is a monomial order on S, by Proposition 2.1.15, one has:

δX(d) = deg(S/I(X))−max{deg(S/(I(X), f))| f ∈ F≺,d}.

This description allows us to compute the minimum distance of Reed–Muller-type
codes for small values of q and s and it is the first algebraic formulation of the minimum
distance in terms of the algebraic properties and invariants of the vanishing ideal. The
formula in Theorem 3.2.1 is more interesting from the theoretical point of view than from
a computational perspective. Indeed putting together Theorems 2.3.2 and 3.2.1 one has:

δX(d) ≥ fpI(X)(d) ≥ 0 for d ≥ 1.

This inequality gives a lower bound for the minimum distance of any Reed–Muller-type
code over a set X (Example 3.2.6).

As the two most relevant applications of our main results to algebraic coding theory in
Section 3.3, we recover the formula for the minimum distance of an affine Cartesian code
given in [34, Theorem 3.8] and [19, Proposition 5] and the fact that the homogenization
of the corresponding vanishing ideal is a Geil–Carvalho ideal.
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Corollary 3.3.1. Let K be a field and let CX(d) be the projective Reed–Muller-type
code of degree d on the finite set X = [1 × A2 × · · · × As] ⊂ Ps−1. If 1 ≤ di ≤ di+1 for
i ≥ 2, with di = |Ai|, and d ≥ 1, then the minimum distance of CX(d) is given by

δX(d) =


(dk+2 − `) dk+3 · · · ds if d ≤

s∑
i=2

(di − 1)− 1,

1 if d ≥
s∑
i=2

(di − 1) ,

where k ≥ 0, ` are the unique integers such that d =
∑k+1

i=2 (di − 1)+` and 1 ≤ ` ≤ dk+2−1.

Then we present an extension of a result of Alon and Füredi [3, Theorem 1] (in
terms of the regularity of a vanishing ideal) about coverings of the cube {0, 1}n by affine
hyperplanes, that can be applied to any finite subset of a projective space whose vanishing
ideal has a complete intersection initial ideal (Example 3.3.4).

Corollary 3.3.3. Let X be a finite subset of a projective space Ps−1 and let ≺ be a
monomial order such that in≺(I(X)) is a complete intersection generated by xα2 , . . . , xαs

with di = deg(xαi) and 1 ≤ di ≤ di+1 for all i. If the hyperplanes H1, . . . , Hd in Ps−1

avoid a point [P ] in X but otherwise cover all the other |X| − 1 points of X, then d ≥
reg (S/I(X)) =

∑s
i=2(di − 1).

Finally using Macaulay2 [25], we exemplify how some of our results can be used
in practice, and show that the vanishing ideal of P2 over F2 is not Geil–Carvalho by
computing all possible initial ideals (Example 3.3.7).

Let d1, . . . , ds be a non-decreasing sequence of positive integers with d1 ≥ 2 and s ≥ 2,
and let L be the ideal of S generated by the set of all xix

dj
j such that 1 ≤ i < j ≤ s.

It turns out that the ideal L is the initial ideal of the vanishing ideal of a projective
nested Cartesian set (Definition 3.5.1, Proposition 3.5.3). In Section 3.4, we study the
ideal L and show some degree equalities as a preparation to show some applications. In
particular, we have the following lemma.

Lemma 3.4.1. The ideal L is Cohen–Macaulay of height s− 1, has a unique irredundant
primary decomposition given by

L = q1 ∩ · · · ∩ qs,

where qi = (x1, . . . , xi−1, x
di+1

i+1 , . . . , x
ds
s ) for 1 ≤ i ≤ s, and deg(S/L) = 1 +

∑s
i=2 di · · · ds.

In the last chapter of this thesis we recover the previous result from a combinatorial
point of view using the notion that L is the edge ideal of a vertex weighted oriented graph
(Definition 4.2.2, Corollary 4.4.8).

Projective nested Cartesian codes were introduced and studied in [11]. This type of
evaluation codes generalize the classical projective Reed–Muller codes [49]. As an appli-
cation in Section 3.5, we will give some support for the following interesting conjecture.

Conjecture 3.5.2. (Carvalho, Lopez-Neumann, and López [11]) Let A1, . . . , As be sub-
sets of K and let CX (d) be the d-th projective nested Cartesian code on the set X =
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[A1 × · · · × As] with di = |Ai| for i = 1, . . . , s. Then its minimum distance is given by

δX (d) =


(dk+2 − `+ 1) dk+3 · · · ds if d ≤

s∑
i=2

(di − 1) ,

1 if d ≥
s∑
i=2

(di − 1) + 1,

where 0 ≤ k ≤ s−2 and ` are integers such that d =
∑k+1

i=2 (di − 1)+` and 1 ≤ ` ≤ dk+2−1.

We find a counterexample where this conjecture fails in general (Example 3.5.8). How-
ever the conjecture holds in certain cases. One could ask whether or not the conjecture
is valid for d ≤ reg(δI(X )).

Let ≺ be the lexicographical order on S with x1 ≺ · · · ≺ xs. Carvalho et. al. found a
Gröbner basis for I(X ) whose initial ideal is L, and obtained formulas for the regularity
and the degree of the coordinate ring S/I(X ) (Proposition 3.5.3).

They showed the conjecture for certain families, and essentially showed that their
conjecture can be reduced to:

Conjecture 3.5.4. (Carvalho, Lopez-Neumann, and López [11]) If f ∈ Sd is a standard
polynomial such that (I(X ) : f) 6= I(X ), 1 ≤ d ≤

∑s
i=2(di − 1), and VX (f) is zero set of

f in X , then
|VX (f)| ≤ deg(S/I(X ))− (dk+2 − `+ 1) dk+3 · · · ds,

where 0 ≤ k ≤ s − 2 and ` are integers such that d =
∑k+1

i=2 (di − 1) + ` and 1 ≤ ` ≤
dk+2 − 1.

We show an explicit upper bound for the number of zeros of f in X :

Theorem 3.5.5. |VX (f)| ≤ deg(S/(in≺(I(X )), xa)) = deg(S/I(X ))−
r+1∑
i=2

(di − ai) · · · (ds − as) if ar ≤ dr,

deg(S/I(X ))− (dr+1 − ar+1) · · · (ds − as) if ar ≥ dr + 1.

Then we use Theorem 3.5.5 to show Conjecture 3.5.4 when the variable x1 divides the
leading monomial of f .

Theorem 3.5.6. If x1 divides xa = in≺(f), then

|VX (f)| ≤ deg(S/I(X ))− (dk+2 − `+ 1) dk+3 · · · ds,

where 0 ≤ k ≤ s−2 and ` are integers such that d =
∑k+1

i=2 (di − 1)+` and 1 ≤ ` ≤ dk+2−1.

As a consequence we show that the minimum distance of CX (d) of Conjecture 3.5.2 is
in fact the minimum distance of certain evaluation linear code (Corollary 3.5.7).

In Chapter 4, we introduce the edge ideal I(D) of a weighted oriented graph D, for
convenience we recall the definition of this notion below. The study of this ideal was
motivated because edge ideals of weighted oriented graphs arise in the theory of Reed–
Muller codes as initial ideals of vanishing ideals of projective nested Cartesian sets over
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finite fields [11, 40, 49]. Indeed, the ideal L is the edge ideal of a complete weighted
oriented graph and is the initial ideal of I(X ). Recall that in Section 3.4, we studied
these edge ideals and some of their algebraic invariants from an algebraic point of view.
In Chapter 4, we continue this study and develop an algebraic combinatorics theory of
these ideals, determine the irredundant irreducible decomposition of I(D) in terms of the
notion of strong vertex cover, give a characterization of the associated primes and the
unmixed property for certain weighted oriented graphs. Finally, we study the Cohen–
Macaulay property of I(D) [45].

A weighted oriented graph is a triplet D = (V (D), E(D), w), where V (D) is a finite
set, E(D) ⊂ V (D) × V (D) and w is a weight function w : V (D) → N. This set V (D) is
the vertex set of D and E(D) is the edge set of D. Sometimes we will write V and E for
the vertex set and edge set of D, respectively. The weight of x ∈ V (D) is w(x). The set
{x ∈ V (D) | w(x) 6= 1} is denoted by V +. If e = (x, y) ∈ E(D), then x is the tail of e
and y is the head of e. The underlying graph of D is the simple graph G whose vertex set
is V and whose edge set is {{x, y}|(x, y) ∈ E}. If V (D) = {x1, . . . , xs}, then we consider
the polynomial ring S = K[x1, . . . , xs] in s variables over a field K. The edge ideal of D
is the ideal of S is given by

I(D) := (xix
w(xj)
j : (xi, xj) ∈ E(D)),

see Definition 4.2.2. If w(x) = 1 for all x ∈ V (D), we recover the edge ideal of a graph
because in this case I(D) is I(G).

In Section 4.1, we study the vertex covers of D and extend the classical definition in
graph theory of minimal vertex cover by introducing the notion of strong vertex cover
(Definition 4.1.8) and prove that a minimal vertex cover is strong (Corollary 4.1.10). A
set of vertices C of G (resp. D) is called a vertex cover of G (resp. of D) if any edge of G
(resp. D) contains at least one vertex of C. Note that C is a vertex cover of G if and only
if C is a vertex cover of D. A vertex cover C of G or D is minimal if for any other vertex
cover C ′ with C ′ ⊂ C one has C ′ = C. Now, we explain some definitions and introduce
some more notation.

Let D be a weighted oriented graph and let x be a vertex of D. The out-neighbourhood
and the in-neighbourhood of x are given by

N+
D (x) = {y | (x, y) ∈ E(D)} and N−D (x) = {y | (y, x) ∈ E(D)},

respectively. Furthermore, the neighbourhood of x is the set ND(x) = N+
D (x) ∪N−D (x).

Let C be a vertex cover of D, we define the following partition of C:

• L1(C) := {x ∈ C | N+
D (x) ∩ Cc 6= ∅},

• L2(C) := {x ∈ C | x /∈ L1(C) and N−D (x) ∩ Cc 6= ∅},

• L3(C) := C \ (L1(C) ∪ L2(C)),
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ND(x)

x

C

V (D)

L1(C)

L2(C)

L3(C)

Figure 1: L1(C), L2(C) and L3(C).

where Cc is the complement of C, i.e., Cc = V (D) \ C. It is not hard to see that L3(C)
is the set of all x ∈ V (D) such that ND(x) ⊂ C (Proposition 4.1.6). To illustrate L1(C),
L2(C) and L3(C) see Figure 1.

A vertex cover C of D is strong if for each x ∈ L3(C) there is (y, x) ∈ E(D) such
that y ∈ L2(C) ∪ L3(C) and w(y) > 1. An important fact is that a strong vertex
cover is not always minimal. The vertex set V (D) is clearly a vertex cover that is not
minimal. Furthermore since L3(V (D)) = V (D), V (D) is a strong vertex cover if and only
if N−D (x) ∩ V + 6= ∅ for each x ∈ V (D) (Remark 4.1.11). In Example 4.2.15, we give a
weighted oriented graph D, where V (D) is a strong vertex cover properly containing all
other strong vertex covers. We give necessary and sufficient conditions for the vertex set
of D to be a strong vertex cover (Lemmas 4.1.14 and 4.1.15).

We are able to characterize when V (D) is a strong vertex cover of D in terms of
unicycle oriented subgraphs (Definition 4.1.13).

Propositon 4.1.16. Let D = (V,E,w) be a weighted oriented graph, hence V is a strong
vertex cover of D if and only if there are D1, . . . ,Dt unicycle oriented subgraphs of D such
that V (D1), . . . , V (Dt) is a partition of V = V (D).

The strong vertex covers will determine the irredundant irreducible decomposition of
the edge ideal of D by associating an irreducible ideal to each vertex cover of D. Let C
be a vertex cover of D, the irreducible ideal associated to C is the ideal of S given by

IC :=
(
L1(C) ∪ {xw(xj)

j | xj ∈ L2(C) ∪ L3(C)}
)
.

The following are some of our main results on edge ideals of weighted oriented graphs.
The next theorem gives a combinatorial characterization of the minimal irreducible ideals
(Definition 4.2.7) of I(D) that would lead us to determine its irredundant irreducible
decomposition (Definition 4.2.1).

Theorem 4.2.12. The following conditions are equivalent:
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(1) q is a minimal irreducible monomial ideal of I(D).

(2) There is a strong vertex cover C of D such that q = IC.

We are able to show that an irredundant primary decomposition (Definition 1.3.15,
Corollary 1.3.17) of I(D) is the irredundant irreducible decomposition of I(D).

Theorem 4.2.13. If S(D) is the set of strong vertex covers of D, then the irredundant
irreducible decomposition of I(D) is given by I(D) =

⋂
C∈S(D) IC.

If C1, . . . , Ct are the strong vertex covers of D, then by Theorem 4.2.13, IC1 ∩ · · · ∩ ICt

is the irredundant irreducible decomposition of I(D). Furthermore, if pi = rad(ICi
), then

pi = (Ci). So, pi 6= pj for 1 ≤ i < j ≤ t. Thus, IC1 ∩ · · · ∩ ICt is an irredundant primary
decomposition of I(D). In particular we have Ass(I(D)) = {p1, . . . , pt}.

The ideal I(D) is unmixed if all its associated primes have height equal to ht(I(D))
(Definition 1.4.11). The unmixed property is important because Cohen–Macaulay ideals
are unmixed [22, Corollary 1.5.14]. In Section 4.3, we use the two previous results to
prove the following combinatorial characterization of the unmixed property of I(D).

Theorem 4.3.1. The following conditions are equivalent:

(1) I(D) is unmixed.

(2) All strong vertex covers of D have the same cardinality.

(3) I(G) is unmixed and L3(C) = ∅ for each strong vertex cover C of D.

In addition we prove that the unmixed property of a weighted oriented graph is closed
under c-minors (Definition 4.3.4).

Theorem 4.3.7. If D is unmixed, then a c-minor of D is unmixed.

We say that a weighted oriented graph D has the minimal-strong property if each
strong vertex cover is a minimal vertex cover (Definition 4.3.2). The following picture
illustrated our results about the unmixed property of D.

I(D) is unmixed G is unmixed
D has the minimal-

strong property

All strong vertex
covers of D have

the same cardinality

All minimal vertex
covers of G have

the same cardinality

All strong vertex
covers are minimal

&

Furthermore, if the underlying graph H of a weighted oriented graph H is a whisker
graph, bipartite graph or a cycle, we give an effective combinatorial characterization of
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the unmixed property of the edge ideal of H. First, we explain the definition of a whisker
graph, the origin of the name is clear from a picture where a whisker is added to each
vertex of a cycle (see Figure 2), this terminology appears in [48].

To add a whisker to a vertex x of a graph G, one adds a new vertex y and the
edge connecting y and x. Then, a whisker graph of G is a graph H whose vertex set is
V (H) = V (G)∪{y1, . . . , ys} and whose edge set is E(H) = E(G)∪{{x1, y1}, . . . , {xs, ys}}
(Definition 4.3.13).

x1
x2

x3

y3

y1

y2

Figure 2: The whisker graph of a 3-cycle.

Let D and H be weighted oriented graphs. We say that H is a whisker weighted
oriented graph of D if D ⊂ H and the underlying graph H of H is a whisker graph of the
underlying graph of D (Definition 4.3.14).

Theorem 4.3.15. Let H be a whisker weighted oriented graph of D, where V (D) =
{x1, . . . , xs} and V (H) = V (D) ∪ {y1, . . . , ys}. The following conditions are equivalents:

(1) I(H) is unmixed.

(2) If (xi, yi) ∈ E(H) for some 1 ≤ i ≤ s, then w(xi) = 1.

As an important application of Theorem 4.3.1, we give the following characterization
for unmixed bipartite weighted oriented graphs. Our result is inspired by a criterion of
Villarreal [57, Theorem 1.1] that describe the unmixed property of bipartite graphs in
combinatorial terms. A graph G is bipartite if its vertex set V (G) can be partitioned into
two disjoint subsets V1 and V2 such that every edge of G has one end in V1 and one end
in V2 (Definition 1.9.3). Accordingly, D is call a bipartite weighted oriented graph if its
underlying graph G is bipartite.

Theorem 4.3.16. Let D be a bipartite weighted oriented graph, then I(D) is unmixed if
and only if

(1) G has a perfect matching {{x1
1, x

2
1}, . . . , {x1

t , x
2
t}} where {x1

1, . . . , x
1
t} and {x2

1, . . . , x
2
t}

are stable sets. Furthermore if {x1
j , x

2
i }, {x1

i , x
2
k} ∈ E(G) then {x1

j , x
2
k} ∈ E(G).

(2) If w(xkj ) 6= 1 and N+
D (xkj ) = {xk′i1 , . . . , x

k′
ir} where {k, k′} = {1, 2}, then ND(xki`) ⊂

N+
D (xkj ) and N−D (xki`) ∩ V

+ = ∅ for each 1 ≤ ` ≤ r.
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For a cycle Cn (Definition 1.9.3), it is well known that Cn is unmixed if and only if
n = 3, 4, 5, 7 [22, Exercise 2.4.22]. However, to study unmixed weighted oriented cycles
we need to consider the following obstructions:

x1 x2

x5 x3

x4

1 1

w(x5) 6= 1

1

w(x3) 6= 1

D1

x1 x2

x5 x3

x4

w(x1) 6= 1 w(x2) 6= 1

1

1

1

D2

x1 x2

x5 x3

x4

1 1

w(x5) 6= 1

w(x4) 6= 1

w(x3) 6= 1

D3

x1 x2

x5 x3

x4

1 w(x2) 6= 1

w(x5) 6= 1

1

w(x3) 6= 1

D4

Then, our characterization for the unmixed property of weighted oriented cycles is the
following:

Theorem 4.3.19. If the underlying graph of a weighted oriented graph D is a cycle and
w is the weight function of D, then I(D) is unmixed if and only if one of the following
conditions hold:

(1) n = 3 and there is x ∈ V (D) such that w(x) = 1.

(2) n ∈ {4, 5, 7} and the vertices with weight greater than 1 are sinks.

(3) n = 5, there is (x, y) ∈ E(D) with w(x) = w(y) = 1 and D 6' D1,D 6' D2, D 6' D3.

(4) D ' D4.

Finally in Section 4.4, we study the Cohen–Macaulayness of I(D). We say that a
weighted oriented graph D is Cohen–Macaulay over the field K if the ring S/I(D) is
Cohen–Macaulay (Definitions 1.4.4 and 4.4.1). And we propose the following interesting
conjecture.

Conjecture 4.4.5. I(D) is Cohen–Macaulay if and only if I(D) is unmixed and I(G) is
Cohen–Macaulay.

In fact, it is clear that rad(I(D)) is the edge ideal of the underlying graph G (Defini-
tion 1.9.14) of D. Then, if I(D) is a Cohen–Macaulay ideal, applying a result of Herzog,
Takayama and Terai [30, Theorem 2.6], we have that I(G) is Cohen–Macaulay. Further-
more I(D) is unmixed. This means that to prove Conjecture 4.4.5 we need only show
that if I(D) is unmixed and I(G) is Cohen–Macaulay then I(D) is Cohen–Macaulay.

As a support to Conjecture 4.4.5, we characterize the Cohen–Macaulayness when D
is a weighted oriented path or a complete weighted oriented graph.
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Proposition 4.4.6. Let D be a weighted oriented graph such that V = {x1, . . . , xk} and
whose underlying graph is a path G = {x1, . . . , xk}. Then the following conditions are
equivalent:

(1) S/I(D) is Cohen–Macaulay.

(2) I(D) is unmixed.

(3) k = 2 or k = 4. In the second case, if (x2, x1) ∈ E(D) or (x3, x4) ∈ E(D), then
w(x2) = 1 or w(x3) = 1 respectively.

Theorem 4.4.7. If the underlying graph G of a weighted oriented graph D is a complete
graph, then the following conditions are equivalent:

(1) I(D) is unmixed.

(2) I(D) is Cohen–Macaulay.

(3) There are not D1, . . . ,Dt unicycle oriented subgraphs of D such that V (D1), . . . , V (Dt)
is a partition of V (D).

The previous result allows us to recover some the algebraic properties of the initial
ideal of the vanishing ideal of a projective nested Cartesian set over a finite field (Lemma
3.4.1, Corollary 4.4.8), which was studied in Section 3.4 from an algebraic point of view.

For all explained terminology and additional information, we refer to [9, 13, 16] (for
the theory of Gröbner bases, commutative algebra, and Hilbert functions), and [37, 51]
(for the theory of error-correcting codes and linear codes). In the first chapter we present
some of the results that will be needed throughout this work and introduce some notation.
Some of the results of this chapter are well known. We recall some necessary preliminaries
on algebraic geometry, commutative algebra and graph theory. Some of the main topics
in this chapter are Noetherian modules, Hilbert functions, Gröbner bases theory, also, we
introduce the family of Reed–Muller-type codes and define their basic parameters (length,
dimension, minimum distance).
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Chapter 1

Preliminaries

In this chapter we introduced some notion and results from commutative algebra that
will be needed throughout this work. For instance we introduce primary decomposition
of modules, Cohen–Macaulay modules and rings, Hilbert function. There are very good
references to learn commutative algebra, we use mainly [5, 13, 16, 22, 26, 41, 58].

We write a section about graph theory in order to understand relevant results in
Section 2.2 and Chapter 4. All results of this section are well-known.

1.1 Noetherian modules

Definition 1.1.1. Let R be a commutative ring and let M be an R-module. M is called
Noetherian if every submodule N of M is finitely generated, that is N = Rf1 + · · ·+Rfq,
for some f1, . . . , fq.

The following theorem gives us a characterization of the definition of Noetherian mod-
ule.

Theorem 1.1.2. [58, Theorem 2.1.1] The following conditions are equivalent:

(a) M is Noetherian.

(b) M satisfies the ascending chain condition for submodules; that is, for every ascend-
ing chain of submodules of M

N0 ⊂ N1 ⊂ · · · ⊂ Nn ⊂ Nn+1 ⊂ · · · ⊂M

there exists an integer k such that Ni = Nk for every i ≥ k.

(c) Any family F of submodules of M partially ordered by inclusion has a maximal
element, i.e, there is N ∈ F such that if N ⊂ Ni and Ni ∈ F , then N = Ni.
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Proposition 1.1.3. [16, Proposition 1.4] If M is a finitely generated R-module over a
Noetherian ring R, then M is a Noetherian module.

Corollary 1.1.4. If R is a Noetherian ring and I is an ideal of R, then R/I and Rn are
Noetherian R-modules. In particular any submodule of Rn is finitely generated.

Theorem 1.1.5. (Hilbert’s basis theorem [5, Theorem 7.5]) A polynomial ring R[x] over
a Noetherian ring R is Noetherian.

Definition 1.1.6. Let R be a ring and let I ⊂ R be an ideal, the set of all prime ideals
of R containing I is denoted by V (I) and is called the variety of I. And the minimal
primes of I are the minimal elements of V (I) respect to inclusion.

1.2 Krull dimension and height

In this thesis we will always assume that the rings will be noetherian.

Definition 1.2.1. Let R be a ring.

• The set of all prime ideals of a ring R is called the spectrum of R, denoted by
Spec(R).

• A chain of prime ideals of R is a finite strictly increasing sequence of primes ideals

p0 ⊂ p1 ⊂ · · · ⊂ pn,

the integer n is called the length or the chain.

• The Krull dimension of R, denoted by dim(R), is the supremum of the lengths of
all chains of prime ideals in R.

• Let p be a prime ideal of R, the height of p, denoted by ht(p), is the supremum of
the lengths of all chains of prime ideals

p0 ⊂ p1 ⊂ · · · ⊂ pn = p

which end at p.

• If I is an ideal of R, then ht(I), the height of I, is defined as

ht(I) = min{ht(p) | I ⊂ p and p ∈ Spec(R)}.

In general dim(R/I) + ht(I) ≤ dim(R). The difference dim(R) − dim(R/I) is called the
codimension of I and dim(R/I) is called the dimension of I.

Definition 1.2.2. Let M be an R-module.
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• The annihilator of M is given by

annR(M) = {x ∈ R | xM = 0},

if m ∈M , the annihilator of m is ann(m) = ann(Rm).

• Let N1 and N2 be submodules of M , their ideal quotient or colon ideal is defined as

(N1 : RN2) = {x ∈ R | xN2 ⊂ N1}.

Remark 1.2.3. The dimension of an R-module M is dim(M) = dim(R/ann(M)) and
the codimension of M is codim(M) = dim(R)− dim(M).

Theorem 1.2.4. [16, Corollary 10.3] If R[x] is a polynomial ring over a Noetherian ring
R, then dim(R[x]) = dim(R) + 1.

1.3 Primary decomposition of modules

Definition 1.3.1. Let R be a ring and let I be an ideal of R.

• The radical of I is

rad(I) = {x ∈ R | xn ∈ I for some n > 0}.

• rad(0) is called the nilradical of R, is the set of nilpotent elements of R and is
denoted by NR or nil(R).

• A ring is reduced if its nilradical is zero.

• The Jacobson radical of R is the intersection of all the maximal ideals of R.

Proposition 1.3.2. [16, Corollary 2.12] If I is a proper ideal of a ring R, then rad(I) is
the intersection of all prime ideals containing I.

Definition 1.3.3. Let M be a module over a ring R. The set of associated primes
of M , denoted by AssR(M), is the set of all prime ideals p of R such that there is a
monomorphism φ of R-modules:

R/p ↪→M .

Note that p = ann(φ(1)).

Lemma 1.3.4. [58, Lemma 2.1.12] If M 6= 0 is an R-module, then Ass(M) 6= ∅.

If M = R/I, we say that an associated prime ideal of R/I is an associated prime ideal
of I and we set Ass(I) = Ass(R/I).
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Definition 1.3.5. Let M be an R-module, the support of M , denoted by Supp(M), is
the set of all prime ideals p of R such that Mp 6= 0, where Mp is the localization of M at
the prime p.

Definition 1.3.6. Let M be an R-module. An element x ∈ R is a zero divisor of M if
there is 0 6= m ∈M such that xm = 0. The set of zero divisors of M is denoted by Z(M).
If x is not a zero divisor on M , x is called a regular element of M .

Lemma 1.3.7. [58, Lemma 2.1.19] If M is an R-module, then

Z(M) =
⋃

p∈AssR(M)

p.

Lemma 1.3.8. [9, Lemma 1.5.6] If M is an N-graded R-module and p is in Ass(M), then
p is a graded ideal and there is m ∈M homogeneous such that p = ann(m).

Lemma 1.3.9. Let V 6= {0} be a vector space over an infinite field K. Then V is not a
finite union of proper subspaces of V .

Proof. By contradiction. Assume that there are proper subspaces V1, . . . , Vm of V such
that V =

⋃m
i=1 Vi, where m is the least positive integer with this property. Let

v1 ∈ V1 \ (V2 ∪ · · · ∪ Vm) and v2 ∈ V2 \ (V 1 ∪ V3 ∪ · · · ∪ Vm).

Pick m+ 1 distinct non-zero scalars k0, . . . , km in K. Consider the vectors βi = v1 − kiv2

for i = 0, . . . ,m. By the pigeon–hole principle there are distinct vectors βr, βs ∈ Vj for
some j. Since βr − βs ∈ Vj we get v2 ∈ Vj. Thus j = 2 by the choice of v2. To finish the
proof observe that βr ∈ V2 imply v1 ∈ V2, which contradicts the choice of v1.

Proposition 1.3.10. Let I be a graded ideal of R. If K is infinite and m is not in
Ass(R/I), then there is h1 ∈ R1 such that h1 ∈ Z(R/I).

Proof. Let p1, . . . , pm be the associated primes of R/I. As R/I is graded, by Lemma 1.3.8,
p1, . . . , pm are graded ideals . We proceed by contradiction. Assume that R1, the degree
1 part of S, is contained in Z(R/I). By Lemma 1.3.7, one has that Z(R/I) =

⋃m
i=1 pi.

Hence

R1 ⊂ (p1)1 ∪ (p2)1 ∪ · · · ∪ (pm)1 ⊂ R1,

where (pi)1 is the homogeneous part of degree 1 of the graded ideal pi. Since K is infinite,
from Lemma 1.3.9, we get R1 = (pi)1 for some i. Hence, pi = m, a contradiction.

Definition 1.3.11. Let M be an R-module.

• The minimal primes of M are defined to be the minimal elements of Supp(M) with
respect to inclusion.
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• A minimal prime of M is called an isolated associated prime of M . An associated
prime of M which is not isolated is called an embedded prime.

Definition 1.3.12. Let M be an R-module. A submodule N of M is said to be a p-
primary submodule if AssR(M/N) = {p}. An ideal q of a ring R is called a p-primary
ideal if AssR(R/q) = {p}.

Definition 1.3.13. Let M be an R-module. A submodule N of M is said to be irreducible
if N cannot be written as an intersection of two submodules of M that properly contain
N .

Proposition 1.3.14. [58, Proposition 2.1.24] Let M be an R-module. If Q 6= M is an
irreducible submodule of M , then Q is a primary submodule.

Definition 1.3.15. Let M be an R-module and let N ( M be a proper submodule.
An irredundant primary decomposition of N is an expression of N as an intersection of
submodules, say N = N1 ∩ · · · ∩Nr, such that:

(a) (Submodules are primary) AssR(M/Ni) = {pi} for all i.

(b) (Irredundancy) N 6= N1 ∩ · · · ∩Ni−1 ∩Ni+1 ∩ · · · ∩Nr for all i.

(c) (Minimality) pi 6= pj if Ni 6= Nj.

Theorem 1.3.16. [58, Proposition 2.1.27] Let M be an R-module. If N (M is a proper
submodule of M , then N has an irredundant primary decomposition.

Corollary 1.3.17. If R is a Noetherian ring and I is a proper ideal of R, then I has an
irredundant primary decomposition I = q1 ∩ · · · ∩ qr, such that, qi is a pi-primary ideal
and Ass(R/I) = {p1, . . . , pr}.

Proof. Let (0) = I/I = (q1/I)∩ · · · ∩ (qr/I) be an irredundant decomposition of the zero
ideal of R/I. Then I = q1 ∩ · · · ∩ qr and qi/I is pi-primary; that is Ass((R/I)/(qi/I)) =
Ass(R/qi) = {pi}. Now show that qi is a primary ideal. If xy ∈ qi and x /∈ qi, then y is a
zero-divisor of R/qi, but Z(R/qi) = pi, hence y ∈ pi = rad(ann(R/qi)) = rad(qi) and yn

is in qi for some n > 0.

Corollary 1.3.18. [58, Corollary 2.1.29] If M is an R-module, then

rad(ann(M)) =
⋂

p∈Ass(M)

p.

Corollary 1.3.19. [58, Corollary 2.1.30] If N ( M and N = N1 ∩ · · · ∩ Nr is an
irredundant primary decomposition of N with AssR(M/Ni) = {pi}, then

AssR(M/N) = {p1, . . . , pr}

and ann(M/Ni) is a pi-primary ideal for all i.
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1.4 Cohen–Macaulay rings and modules

We introduce a some special type of rings and modules called Cohen–Macaulay, this topic
is well studied in commutative algebra. The main references for Cohen–Macaulay rings
are [9, 16, 58].

Definition 1.4.1. Let M be an R-module.

• M has finite length if there is a composition series

(0) = M0 ⊂M1 ⊂M1 ⊂ · · · ⊂Mr = M ,

where Mi/Mi−1 is a non-zero simple module (that is, Mi/Mi−1 has no proper sub-
modules other than (0)) for all i. Note that Mi/Mi−1 must be cyclic and thus
isomorphic to R/m, for some maximal ideal m. The number r is independent of the
composition series and is called the length of M , it is usually denoted by `R(M).

• A sequence θ̄ := θ1, . . . , θr in R is called a regular sequence of M or an M-regular
sequence if (θ̄)M 6= M and θi /∈ Z(M/(θ1, . . . , θi−1)) for all i.

Theorem 1.4.2. (Dimension theorem [41, Theorem 13.4]) Let (R,m) be a local ring and
let M be an R-module. Set

δ(M) = min{r | there are x1, . . . , xr ∈ m with `R(M/(x1, . . . , xr)M) <∞},

then dim(M) = δ(M).

Lemma 1.4.3. [58, Lemma 2.3.6] Let M be a module over a local ring (R,m). If θ1, . . . , θr
is an M-regular sequence in m, then r ≤ dim(M).

Definition 1.4.4. Let (R,m) be a local ring and M 6= 0 an R-module.

• The depth of M , denoted by depth(M), is the length of any maximal regular se-
quence on M , which is contained in m.

• M is called a Cohen–Macaulay module (C-M for short) if depth(M) = dim(M).

• R is called a Cohen–Macaulay ring if R is C-M as an R-module.

• If the dimension of M is d. A system of parameters (s.o.p. for short) of M is a set
of elements θ1, . . . , θd in m such that

`R(M/(θ1, . . . , θd)) <∞.

Definition 1.4.5. Let R be a Noetherian ring and M an R-module.



1.4 Cohen–Macaulay rings and modules 7

• M is a Cohen–Macaulay module if Mm is a C-M module for all maximal ideals
m ∈ Supp(M). In particular we consider the zero module to be Cohen–Macaulay.

• As in the local case, R is a Cohen–Macaulay ring if R is C-M as an R-module.

• An ideal I of R is Cohen–Macaulay if R/I is a C-M R-module.

Lemma 1.4.6. (Depth lemma [55, p. 305]) If 0 → N → M → L → 0 is a short exact
sequence of modules over a local ring R, then

(a) If depth(M) < depth(L), then depth(N) = depth(M).

(b) If depth(M) = depth(L), then depth(N) ≥ depth(M).

(c) If depth(M) > depth(L), then depth(N) = depth(L) + 1.

Lemma 1.4.7. [58, Lemma 2.3.10] If M is a module over a local ring (R,m) and z ∈ m
is a regular element of M , then

(a) depth(M/zM) = depth(M)− 1.

(b) dim(M/zM) = dim(M)− 1.

Proposition 1.4.8. [58, Proposition 2.3.19] Let M be a module of dimension d over a
local ring (R,m) and let θ̄ = θ1, . . . , θd be a system of parameters of M . Then M is C-M
if and only if θ̄ is an M-regular sequence.

Lemma 1.4.9. [58, lemma 2.3.20] Let (R,m) be a local ring and let (f1, . . . , fr) be an
ideal of height equal to r. Then there are fr+1, . . . , fd in m such that f1, . . . , fd is a system
of parameters of R.

Definition 1.4.10. Let R be a ring and let I be an ideal of R. If I is generated by a
regular sequence we say that I is a complete intersection.

Definition 1.4.11. An ideal I of a ring R is height unmixed or unmixed if ht(I) = ht(p)
for all p in AssR(R/I).

Proposition 1.4.12. [58, Proposition 2.3.24] Let (R,m) be a Cohen–Macaulay local ring
and let I be an ideal of R. If I is a complete intersection, then R/I is Cohen–Macaulay
and I is unmixed.

Theorem 1.4.13. (Unmixedness theorem [41, Theorem 17.6]) A ring R is Cohen–Macaulay
if and only if every proper ideal I of R of height r generated by r elements is unmixed.
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1.5 Hilbert function

We introduce the Hilbert function and the notion of degree. In particular, we will recall
some results well-known about a standard method to compute the degree using Hilbert
series. The main references for Hilbert functions are [4, 13, 16, 21].

Let S = K[x1, . . . , xs] be a polynomial ring over a field K and let I ⊂ S be an ideal. We
will use the following multi-index notation: for a = (a1, . . . , as) ∈ Ns, set xa := xa11 · · ·xass .
The multiplicative group of K is denoted by K∗. As usual, m will denote the maximal
ideal of S generated by x1, . . . , xs. The vector space of polynomials in S (resp. I) of
degree at most i is denoted by S≤i (resp. I≤i).

Definition 1.5.1. Let S =
⊕∞

d=0 Sd be the polynomial ring with the standard grading
and let I be a graded ideal of S.

• The affine Hilbert function of S/I, denoted by Ha
I , is given by

Ha
I (i) = dimK(S≤i/I≤i).

• The Hilbert function of S/I, denoted by HI , is given by

HI(i) = Ha
I (i)−Ha

I (i− 1).

Theorem 1.5.2. (Hilbert [9, Theorem 4.1.3]) Let S =
⊕∞

d=0 Sd be the polynomial ring
with the standard grading and let I be a graded ideal of S with k = dim(S/I). If S0 is a
field, then there is a unique polynomial ϕI(t) ∈ Q[t] of degree k−1 such that ϕI(i) = HI(i)
for i� 0.

Let S[u] be a polynomial ring where u = xs+1 is a new variable. For f ∈ S of degree
d define

fh = udf(x1/u, . . . , xs/u);

that is, fh is the homogenization of the polynomial f with respect to u. The homogeniza-
tion of I is the ideal Ih of S[u] given by Ih = (fh | f ∈ I), and S[u] is given the standard
grading.

Lemma 1.5.3. Let I be a graded ideal of S. Then, Ha
I (i) = HIh(i) for i ≥ 0.

Proof. Fix i ≥ 0. The mapping S[u]i → S≤i induced by mapping u 7→ 1 is a K-linear
surjection. Consider the induced composite K-linear surjection S[u]i → S≤i → S≤i/I≤i.
An easy check show that this has kernel Ihi . Hence, we have a K-linear isomorphism of
finite dimensional K-vector spaces

S[u]i/I
h
i ' S≤i/I≤i.

Thus, Ha
I (i) = HIh(i).
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Proposition 1.5.4. Let I ⊂ S be an ideal and let k be the Krull dimension of S/I. Then
there are unique polynomials

haI(t) =
k∑
j=0

ajt
j ∈ Q[t] and hI(t) =

k−1∑
j=0

cjt
j ∈ Q[t]

of degrees k and k− 1, respectively, such that haI(i) = Ha
I (i) and hI(i) = HI(i) for i� 0.

Proof. Let Ih be the homogenization of I relative to a new variable u. By Lemma 1.5.3,
Ha
I (i) = HIh(i) for i� 0, and by Theorem 1.5.2, the Hilbert function of Ih is a polynomial

function of degree equal to dim(S[u]/Ih)− 1. Since dim(S[u]/Ih) = dim(S/I) + 1, we get
that Ha

I is a polynomial function of degree k. That HI is a polynomial function of degree
k − 1 follows recalling that HI(i) = Ha

I (i)−Ha
I (i− 1) for i ≥ 1.

Definition 1.5.5. The polynomials haI and hI are called the affine Hilbert polynomial
and the Hilbert polynomial of S/I. By convention, the zero polynomial has degree −1.

Now, we introduce some algebraic invariants which will be mentioned throughout this
thesis.

Definition 1.5.6. The integer ak(k!), denoted by deg(S/I), is called the degree of S/I.

Remark 1.5.7. Notice that ak(k!) = ck−1((k − 1)!) for k ≥ 1. If k = 0, then Ha
I (i) =

dimK(S/I) for i� 0 and the degree of S/I is just dimK(S/I).

Definition 1.5.8. The regularity index of S/I, denoted by ri(S/I), is the least integer
r ≥ 0 such that hI(d) = HI(d) for d ≥ r. The affine regularity index of S/I, denoted by
ria(S/I), is the least integer r ≥ 0 such that haI(d) = Ha

I (d) for d ≥ r.

Definition 1.5.9. Let I ⊂ S be a graded ideal and consider the minimal graded free
resolution of M = S/I as an S-module:

F? : 0→
⊕
j

S(−j)bgj → · · · →
⊕
j

S(−j)b1j → S → S/I → 0.

The Castelnuovo–Mumford regularity of M (regularity of M for short) is defined as

reg(M) = max{j − i|bij 6= 0}.

Remark 1.5.10. If I is a graded Cohen–Macaulay ideal of S of dimension 1, then
reg(S/I), the Castelnuovo–Mumford regularity of S/I, is equal to the regularity index
of S/I (see [17]). In this case we call ri(S/I) (resp. ria(S/I)) the regularity (resp. affine
regularity) of S/I and denote this number by reg(S/I) (resp. rega(S/I)).

Definition 1.5.11. Let I ⊂ S be a graded ideal and let f1, . . . , fr be a minimal generating
set of I. The big degree of I is defined as bigdeg(I) = maxi{deg(fi)}.
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If I is graded, its regularity is related to the degrees of a minimal generating set of I.
From definition of the regularity of S/I, one has.

Proposition 1.5.12. [17] Let I ⊂ S be a graded ideal, then

reg(S/I) ≥ bigdeg(I)− 1.

Remark 1.5.13. The degree or multiplicity of S/I is the positive integer

deg(S/I) =

{
(k − 1)! lim

d→∞
HI(d)/dk−1 if k ≥ 1,

dimK(S/I) if k = 0.

Remark 1.5.14. If I is graded, Id = Sd ∩ I is a vector subspace of Sd and

Ha
I (d) =

d∑
i=0

dimK(Sd/Id)

for d ≥ 0. Thus, one has HI(d) = dimK(S/I)d for all d.

Definition 1.5.15. Let I ⊂ S be a graded ideal. The Hilbert series of S/I, denoted by
FI(t), is given by

FI(t) :=
∞∑
d=0

HI(d)td =
∞∑
d=0

dimK(S/I)dt
d.

Proposition 1.5.16. [58, Propositions 3.1.33 and 5.1.11] Let A = R1/I1, B = R2/I2 be
two standard graded algebras over a field K, where R1 = K[x], R2 = K[y] are polynomial
rings in disjoint sets of variables and Ii is an ideal of Ri. If R = K[x,y] and I = I1 + I2,
then

(R1/I1)⊗K (R2/I2) ' R/I and F (A⊗K B, t) = F (A, t)F (B, t),

where F (A, t) and F (B, t) are the Hilbert series of A and B, respectively.

Theorem 1.5.17. (Hilbert-Serre [58, Theorem 5.1.4]) Let I ⊂ S be a graded ideal. Then
there is a unique polynomial h(t) ∈ Z[t] such

FI(t) =
h(t)

(1− t)ρ
and h(1) > 0,

where ρ = dim(S/I).

Definition 1.5.18. Let I ⊂ S be a graded ideal. The a-invariant of the graded ring S/I,
denoted by a(S/I), is the degree of FI(t) as a rational function, i.e., a(S/I) = deg(h(t))−ρ.

The a−invariant, the regularity, and the depth of M are closely related.

Theorem 1.5.19. [55, Corollary B.4.1] a(M) ≤ reg(M)− depth(M), whit equality if M
is Cohen–Macaulay.
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We can read of the degree of S/I from its Hilbert series:

Remark 1.5.20. The leading coefficient of the Hilbert polynomial hI(t) of S/I is equal
to h(1)/(k − 1)!. Thus h(1) is equal to deg(S/I).

Lemma 1.5.21. [58, p. 177] If I ⊂ S is an ideal generated by homogeneous polynomi-
als f1, . . . , fr, with r = ht(I) and δi = deg(fi), then Hilbert series, the degree and the
regularity of S/I are given by

FI(t) =

r∏
i=1

(
1− tδi

)
(1− t)s

, deg(S/I) = δ1 · · · δr and reg(S/I) =
r∑
i=1

(δi − 1).

Lemma 1.5.22. If I ⊂ S is a graded ideal and u is a new variable, then a(S/I) =
a(S[u]/I) + 1.

Proof. Let F1(t) and F2(t) be the Hilbert series of the graded rings S/I and S[u]/I
respectively. Using additivity of Hilbert series, from the exact sequence

0→ (S[u]/I)[−1]
u→ S[u]/I → S[u]/(I, u)→ 0,

we get F2(t) = F1(t)/(1− t), that is, deg(F1) = 1 + deg(F2).

Lemma 1.5.23. [58, Corollary 5.1.9] Let I ⊂ S be a graded ideal. Then ri(S/I) = 0 if
a(S/I) < 0, and ri(S/I) = a(S/I) + 1 otherwise.

Lemma 1.5.24. Let I ⊂ S be a graded ideal. If dim(S/I) = 1 and deg(S/I) ≥ 2, then
ri(S/I) = ria(S/I) + 1.

Proof. Let u be a new variable. The affine regularity index of S/I is the regularity index
of S[u]/I because I is graded. Hence, by Lemmas 1.5.22 and 1.5.23 it suffices to show
that a(S/I) ≥ 0. If a(S/I) < 0, the Hilbert series of S/I has the form FI(t) = 1/(1− t),
i.e., HI(d) = 1 for d ≥ 0 and deg(S/I) = 1, a contradiction.

Theorem 1.5.25. Let I be a graded ideal of S. If depth(S/I) > 0, and HI is the Hilbert
function of S/I, then HI(i) ≤ HI(i+ 1) for i ≥ 0.

Proof. Case 1: If K is infinite, by Proposition 1.3.10, there is h ∈ S1 a non-zero divisor
of S/I. The homomorphism of K-vector spaces

(S/I)i → (S/I)i+1, z̄ 7→ h̄z

is injective, therefore HI(i) = dimK(S/I)i ≤ dimK(S/I)i+1 = HI(i+ 1).

Case 2: If K is finite, consider the algebraic closure K̄ of K. We set S̄ = S⊗K K̄ and
Ī = IS̄. Hence, from [50, Lemma 1.1], one has that HI(I) = HĪ(i). This means that the
Hilbert function does not change when the base field is extended from K to K̄. Applying
the previous case to HĪ we obtain the result.
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Lemma 1.5.26. Let I be a graded ideal of S.The following hold.

(a) If Si = Ii for some i, then S` = I` for all ` ≥ i.

(b) If dim(S/I) ≥ 2, then dimK(S/I)i > 0 for i ≥ 0.

Proof. a) It suffices to prove the case ` = i + 1. As Ii+1 ⊂ Si+1, we need only show
Si+1 ⊂ Ii+1. Take a non-zero monomial xa ∈ Si+1. Then, xa = xa11 · · ·xass with aj > 0 for
some j. Thus, xa ∈ S1Si. As S1Ii ⊂ Ii+1, we get xa ∈ Ii+1.

b) If dimK(S/I)i = 0 for some i, then Si = Ii. Thus, by a), HI(j) vanishes for j ≥ i,
a contradiction because the Hilbert polynomial of S/I has degree dim(S/I)− 1 ≥ 1; see
Theorem 1.5.2.

Theorem 1.5.27. [20] Let I be a graded ideal with depth(S/I) > 0. If dim(S/I) = 1,
then there is an integer r and a constant c such that:

1 = HI(0) < HI(1) < · · · < HI(r − 1) < HI(i) = c for i ≥ r.

Proof. Consider the algebraic closure K̄ of K. Notice that |K̄| = ∞. As in the proof of
Theorem 1.5.25, we make a change of coefficients using the functor (·) ⊗K K̄. Hence we
may assume that K is infinite. By Proposition 1.3.10, there is h ∈ S1 a non-zero divisor
of S/I. From the exact sequence

0 −→ (S/I)[−1]
h−→ S/I −→ S/(h, I) −→ 0,

we get HI(i+ 1)−HI(i) = HR(i+ 1), where R = S/(h, I).

Let r ≥ 0 be the first integer such that HI(r) = HI(r + 1), thus Rr+1 = (0) and
Sr+1 = (h, I)r+1. Then, by Lemma 1.5.26, Rk = (0) for k ≥ r + 1. Hence, the Hilbert
function of S/I is constant for k ≥ r and strictly increasing on [0, r − 1].

Proposition 1.5.28. ([26, Lemma 5.3.11], [44]) If I is an ideal of S and I = q1∩· · ·∩qm
is a minimal primary decomposition, then

deg(S/I) =
∑

ht(qi)=ht(I)

deg(S/qi).

Lemma 1.5.29. Let I ⊂ S be a radical unmixed graded ideal. If f ∈ S is homogeneous,
(I : f) 6= I, and A is the set of all associated primes of S/I that contain f , then ht(I) =
ht(I, f) and

degS/(I, f) =
∑
p∈A

deg(S/p).

Proof. As f is a zero divisor of S/I and I is unmixed, there is an associated prime
ideal p of S/I of height ht(I) such that f ∈ p. Thus I ⊂ (I, f) ⊂ p, and consequently
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ht(I) = ht(I, f). Therefore the set of associated primes of (I, f) of height equal to ht(I)
is not empty and is equal to A. There is an irredundant primary decomposition

(I, f) = q1 ∩ · · · ∩ qr ∩ q′r+1 ∩ · · · ∩ q′t, (1.5.1)

where rad(qi) = pi, A = {p1, . . . , pr}, and ht(q′i) > ht(I) for i > r. We may assume
that the associated primes of S/I are p1, . . . , pm. Since I is a radical ideal, we get that
I =

⋂m
i=1 pi. Next we show the following equality:

p1 ∩ · · · ∩ pm = q1 ∩ · · · ∩ qr ∩ q′r+1 ∩ · · · ∩ q′t ∩ pr+1 ∩ · · · ∩ pm. (1.5.2)

The inclusion “⊃” is clear because qi ⊂ pi for i = 1, . . . , r. The equality “⊂” follows by
noticing that the right hand side of Eq. (1.5.2) is equal to (I, f) ∩ pr+1 ∩ · · · ∩ pm, and
consequently it contains I =

⋂m
i=1 pi. Notice that rad(q′j) = p′j 6⊂ pi for all i, j and pj 6⊂ pi

for i 6= j. Hence localizing Eq. (1.5.2) at the prime ideal pi for i = 1, . . . , r, we get that
pi = Ipi ∩ S = (qi)pi ∩ S = qi for i = 1, . . . , r. Using Eq. (1.5.1) and the additivity of the
degree the required equality follows.

We can note that the computation of the dimension, degree, a-invariant or index of
regularity is reduced to the computation of the Hilbert series of S/I, for this we can help
us of different computer algebra systems (Macaulay2 [25] , CoCoA [1], Singular [21])
that compute the Hilbert series and the degree of S/I using Gröbner bases. For compute
Hilbert series using elimination of variables we can see [6, 7].

1.6 Gröbner theory and footprint of an ideal

In this section we review some basic facts and definitions on Gröbner theory and the
footprint of an ideal. The literature on the basics of Gröbner bases theory is numerous
we cite for instance [2, 4, 13, 16, 21]. In this thesis we denote byM the set of monomials
in S = K[x1, . . . , xs].

Definition 1.6.1. A total order ≺ on M is called a monomial order or term order if

(a) 1 � xa for all xa ∈M, and

(b) for all xa, xb, xc ∈M, xa � xb implies xaxc � xbxc.

Example 1.6.2. Let S = K[x1, . . . , xs] be the polynomial ring over a field K.

(a) The lexicographic order (with xs � · · · � x1) is defined by setting

• xa � xb if a = b,

• or the first non-zero entry from the left to the right in b− a is positive.

(b) The graded lexicographic order (with xs � · · · � x1) is defined by setting
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• xa � xb if a = b or
s∑
i=1

ai <
s∑
i=1

bi,

• or if
s∑
i=1

ai =
s∑
i=1

bi then xa �lex xb.

(c) The graded reverse lexicographic order is defined by setting

• xa � xb if a = b or
s∑
i=1

ai <
s∑
i=1

bi,

• or if
s∑
i=1

ai =
s∑
i=1

bi then the first non-zero entry from the right to the left in b− a
is negative.

Definition 1.6.3. Let ≺ be a monomial order on S and let (0) 6= I ⊂ S be an ideal. If
f is a non-zero polynomial in S. Then one can write

f = λ1x
α1 + · · ·+ λrx

αr ,

with λi ∈ K∗ for all i and xα1 � · · · � xαr .

• The leading monomial : xα1 of f is denoted by in≺(f).

• The leading coefficient : λ1 of f is denoted by lc≺(f).

• The leading term: λ1x
α1 of f is denoted by lt≺(f).

• The initial ideal of I, denoted by in≺(I), is the monomial ideal given by

in≺(I) = ({in≺(f)| f ∈ I}).

Definition 1.6.4. To divide f ∈ S by {g1, . . . , gr} ⊂ S \ {0}, with respect to a monomial
order �, means to find quotients q1, . . . , qr and a remainder r is S such that f = q1g1 +
· · ·+ qrgr + r, and either r = 0 or no monomial appearing in r is a multiple of in≺(gi), for
all i ∈ {1, . . . , r}.

Theorem 1.6.5. (Division algorithm [13, Theorem 3, p. 63]) If f, g1, . . . , gr are polyno-
mials in S, then f can be written as

f = a1g1 + · · ·+ argr + h,

where ai, h ∈ S and either h = 0 or h 6= 0 and no term of h is divisible by one of the
initial monomials in≺(g1), . . . , in≺(gr). Furthermore if aigi 6= 0, then in≺(f) ≥ in≺(aigi).

Definition 1.6.6. A subset G = {g1, . . . , gr} of I is called a Gröbner basis of I if

in≺(I) = (in≺(g1), . . . , in≺(gr)).
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Proposition 1.6.7. [13, Corollary 6, p. 77] Fix a monomial order on S. Then every
ideal I of S other than {0} has a Gröbner basis. Furthermore, any Gröbner basis of an
ideal I is a set of generators of I.

Proposition 1.6.8. [13, Proposition 9,p. 463] Let I be a homogeneous ideal and let ≺ be
a monomial order on S. Then the initial ideal in≺(I) has the same Hilbert function as I.

Definition 1.6.9. Let I ⊂ S be an ideal.

• The footprint of I (with respect to a fixed monomial order in M) is the set

∆(I) = {M ∈M | is not the leading monomial of any polynomial on I}.

• The elements of ∆(I) are called standard monomials of I.

• A polynomial f is called standard if f 6= 0 and f is a K-linear combination of
standard monomials.

The footprint of an ideal I has a close relationship with a Gröbner basis for I, both
begin defined with respect to the same monomial order on M.

Lemma 1.6.10. If I ⊂ S is an ideal and G = {g1, . . . , gr} is a Gröbner basis of I. Then
a monomial xa is in ∆≺(I) if and only if xa is not a multiple of in≺(gi) for all i = 1, . . . , r.

Proof. (⇐) Is obvious from the definition of ∆≺(I).

(⇒) From the definition of Gröbner basis we know that if xa is not a multiple of in≺(gi)
for all i = 1, . . . , r, then xa is not the leading monomial of any polynomial in I.

Remark 1.6.11. We can define a Gröbner basis for I as being a set {g1, . . . , gr} ⊂ I such
that the set of monomial which are multiples of in≺(gi) for some i ∈ {1, . . . , r} is exactly
M\∆≺(I).

In the following example we show how to use the above result to obtain a graphical
representation of the footprint.

Example 1.6.12. Let I = (x3 − x, y3 − y, x2y − y) ⊂ R[x, y] and endow the monomial
set of R[x, y] with the lexicographic order where y ≤ x. It is not difficult to check that
{x3−x, y3−y, x2y−y} is a Gröbner basis for I. We have in≺(x3−x) = x3, in≺(y3−y) = y3

and in≺(x2y − y) = x2y and we apply the above lemma to determine ∆≺(I).

We can see the footprint of I in the figure below, where we represent a monomial xayb by
the pair of non negative integers (a, b).
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Leading monomials of the
Gröbner basis for I
Monomials of ∆(I)

In fact, the pairs (3, 0), (0, 3), (2, 1) correspond to the leading monomials of the Gröbner
basis and from them is easy to determine the monomials which are multiples of at least
one of these leading monomials (thus determining the set of monomials of the polynomials
in I). Form this set and the above result we get that ∆≺(I) = {1, x, x2, y, xy, y2, xy2}.
This graphical representation for the footprint can be generalized for a polynomial ring
in n-variables.

This follows from the definition of a Gröbner basis.

Lemma 1.6.13. [10, p. 2] Let I ⊂ S be an ideal generated by G = {g1, . . . , gr}, then

∆≺(I) ⊂ ∆≺(in≺(g1), . . . , in≺(gr)),

with equality if G is a Gröbner basis.

Proof. Take xa in ∆≺(I). If xa /∈ ∆≺(in≺(g1), . . . , in≺(gr)), then xa = xc in≺(gi) for some i
and some xc. Thus xa = in≺(xcgi), with xcgi in I, a contradiction. The second statement
holds by the definition of a Gröbner basis.

Lemma 1.6.14. Let ≺ be a monomial order, let I ⊂ S be an ideal, and let f be a
polynomial of S of positive degree. If in≺(f) is regular on S/in≺(I), then f is regular on
S/I.

Proof. Let g be a polynomial of S such that gf ∈ I. It suffices to show that g ∈ I.
By the Theorem 1.6.5 we may assume that g = 0 or that g is a standard polynomial
of S/I. If g 6= 0, then in≺(g)in≺(f) is in in≺(I) and consequently in≺(g) is in in≺(I), a
contradiction.

Lemma 1.6.15. Let G = {g1, . . . , gr} be a Gröbner basis of I. If for some i, the variable
xi does not divides in≺(gj) for all j, then xi is a regular element on S/I.

Proof. Assume that xif ∈ I. By the division algorithm we can write f = g + h, where
g ∈ I and h is 0 or a standard polynomial. It suffices to show that h = 0. If h 6= 0,
then xiin≺(h) ∈ in≺(I). Hence, using our hypothesis on xi, we get in≺(h) ∈ in≺(I), a
contradiction.

This lemma tells us that if xi is a zero divisor of S/I for all i, then any variable xi
must occur in an initial monomial in≺(gj) for some j.
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1.7 Vanishing ideals of finite sets

Definition 1.7.1. Let K be a field. We define the projective space of dimension s − 1
over K, denoted by Ps−1

K or Ps−1 if K is understood, to be the quotient space

(Ks \ {0})/ ∼

where two points α, β in Ks \ {0} are equivalent under ∼ if α = cβ for some c ∈ K. It is
usual to denote the equivalence class of α by [α].

Definition 1.7.2. Let X be a subset of Ps−1.

• The vanishing ideal of X denoted by I(X), is defined as the graded ideal generated
by the homogeneous polynomials in S that vanish at all points of X.

• For a graded ideal I ⊂ S define its zero set relative to X as

VX(I) = {[α] ∈ X| f(α) = 0, ∀f ∈ I homogeneous} .

• If f ∈ S is homogeneous, the zero set of f , denoted by VX(f), is the set of all [α] ∈ X
such that f(α) = 0, that is, VX(f) is the set of zeros of f in X.

Lemma 1.7.3. [31, Proposition 6.3.3, Corollary 6.3.19] Let X be a finite subset of Ps−1,
let [α] be a point in X, with α = (α1, . . . , αs) and αk 6= 0 for some k, and let I[α] be the
vanishing ideal of [α]. Then I[α] is a prime ideal,

I[α] = ({αkxi − αixk| k 6= i ∈ {1, . . . , s}), deg(S/I[α]) = 1,

ht(I[α]) = s− 1, and I(X) =
⋂

[β]∈X
I[β] is the primary decomposition of I(X).

Corollary 1.7.4. If X ⊂ Ps−1 is a finite set, then deg(S/I(X)) = |X|.

Proof. It follows from Lemma 1.7.3 and Proposition 1.5.28.

If X is a subset of Ps−1 it is usual to denote the Hilbert function of S/I(X) by HX.

Proposition 1.7.5. [20] If X ⊂ Ps−1 is a finite set, then

1 = HX(0) < HX(1) < · · · < HX(r − 1) < HX(d) = |X|

for d ≥ r = reg(S/I(X)).

Proof. It follows from Theorem 1.5.27.

Lemma 1.7.6. If ∅ 6= X ⊂ Ps−1 and dim(S/I(X)) = 1, then |X| <∞ and deg(S/I(X)) =
|X|.
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Proof. Since dim(S/I(X)) = 1, the Hilbert polynomial of S/I(X) has degree 0. Then the
Hilbert function of S/I(X) is HX(d) = a1 for d � 0. If |X| > a1, pick [P1], . . . , [Pa1+1]
distinct points in X and set I =

⋂a1+1
i=1 I[Pi], where I[Pi] is the vanishing ideal of [Pi].

Then by Proposition 1.5.28 we have, dim(S/I) = 1 and deg(S/I) = a1 + 1. Hence, by
Corollary 1.7.4, HI(d) = a1 + 1 for d� 0. From the exact sequence

0→ I/I(X)→ S/I(X)→ S/I → 0

we get that a1 = dimK(I/I(X))d + (a1 + 1) for d� 0, a contradiction. Thus |X| ≤ a1 and
by Corollary 1.7.4 one has equality.

Definition 1.7.7. The set T = {[(x1, . . . , xs)] ∈ Ps−1|xi ∈ K∗ ∀ i} is called a projective
torus .

Notice that a torus is a group under componentwise multiplication.

1.8 Reed–Muller-type codes

In this section we introduce the families of projective Reed–Muller-type codes and its
connection to vanishing ideals and Hilbert functions. Some references where this codes
have been studied are [15, 24, 23].

Let K = Fq be a finite field and let X = {[P1], . . . , [Pm]} 6= ∅ be a subset of Ps−1 with
m = |X|. Fix a degree d ≥ 1. For each i there is fi ∈ Sd such that fi(Pi) 6= 0. There is a
well-defined K-linear map:

evd : Sd = K[x1, . . . , xs]d → K |X|, f 7→
(
f(P1)

f1(P1)
, . . . ,

f(Pm)

fm(Pm)

)
. (1.8.1)

Definition 1.8.1. • The map evd is called an evaluation map.

• The image of Sd under evd, denoted by CX(d), is called a projective Reed–Muller-type
code of degree d over the set X. It is also called an evaluation code associated to X.

The kernel of the evaluation map evd is I(X)d. Hence there is an isomorphism of K-
vector spaces Sd/I(X)d ' CX(d). If X is a subset of Ps−1 it is usual to denote the Hilbert
function S/I(X) by HX. Thus HX(d) is equal to dimK CX(d).

Definition 1.8.2. By a linear code we mean a linear subspace of Km for some m and for
some finite field K.

Definition 1.8.3. Let 0 6= v ∈ CX(d).

• The Hamming weight of v, denoted by ||v||, is the number of non zero entries of v.

• The minimum distance of CX(d), denoted by δX(d) or δ(CX(d)), is defined as

δX(d) := min{||v|| : 0 6= v ∈ C)}.
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Definition 1.8.4. The basic parameters of the linear code CX(d) are its length: |X|,
dimension: dimK(CX(d)) and minimum distance: δX(d).

Lemma 1.8.5. The following hold.

(a) The map evd is well-defined, i.e., it is independent of the set of representatives that
we choose for the points of X.

(b) The basic parameters of CX(d) are independent of f1, . . . , fm.

Proof. (a): If P ′1, . . . , P
′
m is another set of representatives, there are λ1, . . . , λm in K∗ such

that P ′i = λiPi for all i. Thus, f(P ′i )/fi(P
′
i ) = f(Pi)/fi(Pi) for f ∈ Sd and 1 ≤ i ≤ m.

(b): Let f ′1, . . . , f
′
m be homogeneous polynomials of S of degree d such that f ′i(Pi) 6= 0 for

i = 1, . . . ,m, and let

ev′d : Sd → K |X|, f 7→
(
f(P1)

f ′1(P1)
, . . . ,

f(Pm)

f ′m(Pm)

)
be the evaluation map relative to f ′1, . . . , f

′
m. Then ker(evd) = ker(ev′d) and ‖evd(f)‖ =

‖ev′d(f)‖ for f ∈ Sd. It follows that the basic parameters of evd(Sd) and ev′d(Sd) are the
same.

Lemma 1.8.6. Let Y = {[α], [β]} be a subset of Ps−1 with two elements. The following
hold.

(i) reg(S/I(Y)) = 1.

(ii) There is h ∈ S1, a form of degree 1, such that h(α) 6= 0 and h(β) = 0.

(iii) For each d ≥ 1, there is f ∈ Sd, a form of degree d, such that f(α) 6= 0 and
f(β) = 0.

(iv) If X is a subset of Ps−1 with at least two elements and d ≥ 1, then there is f ∈ Sd
such that f /∈ I(X) and (I(X) : f) 6= I(X).

Proof. (i): As HY(0) = 1 and |Y| = 2, by Proposition 1.7.5, we get that HY(1) = |Y| = 2.
Thus S/I(Y) has regularity equal to 1.

(ii): Consider the evaluation map

ev1 : S1 −→ K2, f 7→ (f(α)/f1(α), f(β)/f2(β)) .

By part (i) this map is onto. Thus (1, 0) is in the image of ev1 and the result follows.

(iii): It follows from part (ii) by setting f = hd.

(iv): By part (iii), there are distinct [α], [β] in X and f ∈ Sd such that f(α) 6= 0, f(β) = 0.
Then f /∈ I(X). Notice that f(β) = 0 if and only if f ∈ I[β]. Hence, by Lemma 1.3.7 and
Lemma 1.7.3, f is a zero divisor of S/I(X), that is, (I(X) : f) 6= I(X).
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Proposition 1.8.7. There is an integer r0 ≥ 0 such that

|X| = δX(0) > δX(1) > · · · > δX(d) = δX(r0) = 1 for d ≥ r0.

Proof. Assume that δX(d) > 1, it suffices to show that δX(d) > δX(d + 1). Pick g ∈ Sd
such that g /∈ I(X) and

|VX(g)| = max{|VX(f)| : evd(f) 6= 0; f ∈ Sd}.

Then δX(d) = |X| − |VX(g)| ≥ 2. Thus there are distinct points [α], [β] in X such that
g(α) 6= 0 and g(β) 6= 0. By Lemma 1.8.6, there is a linear form h ∈ S1 such that h(α) 6= 0
and h(β) = 0. Hence the polynomial hg is not in I(X), has degree d+ 1, and has at least
|VX(g)|+ 1 zeros. Thus δX(d) > δX(d+ 1), as required.

The following summarizes the well-known relation between projective Reed–Muller-
type codes and the theory of Hilbert functions.

Proposition 1.8.8. ([24], [46]) The following hold.

(i) HX(d) = dimK(CX(d)) for d ≥ 0.

(ii) deg(S/I(X)) = |X|.

(iii) δX(d) = 1 for d ≥ reg(S/I(X)).

(iv) S/I(X) is a Cohen–Macaulay graded ring of dimension 1.

(v) CX(d) 6= (0) for d ≥ 1.

Proof. (i): The kernel of the evaluation map evd, defined in Eq. (1.8.1), is precisely I(X)d.
Hence there is an isomorphism of K-vector spaces Sd/I(X)d ' CX(d). Thus HX(d) is equal
to dimK(CX(d)).

(ii): This follows readily from Corollary 1.7.4.

(iii): For d ≥ reg(S/I(X))), one has that HX(d) = |X|. Thus, by part (i), we get that
CX(d) is equal to K |X|. Consequently δX(d) = 1.

(iv): Let [P ] be a point in X, with P = (α1, . . . , αs) and αk 6= 0 for some k, and let I[P ]

be the ideal generated by the homogeneous polynomials of S that vanish at [P ]. Then
I[P ] is a prime ideal of height s− 1,

I[P ] = ({αkxi − αixk| k 6= i ∈ {1, . . . , s}), I(X) =
⋂

[Q]∈X

I[Q], (1.8.2)

and the latter is the primary decomposition of I(X). As I[P ] has height s − 1 for any
[P ] ∈ X, we get that the height of I(X) is s − 1 and the dimension of S/I(X) is 1.
Hence depth(S/I(X)) ≤ 1. To complete the proof notice that, m = (x1, . . . , xs) is not an
associated prime of I(X); that is depth(S/I(X)) > 0 and S/I(X) is Cohen–Macaulay.

(v): This follows readily from Proposition 1.7.5.
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1.9 Graph theory and edge ideals of graphs

In this section concepts and facts about graph theory and edge ideals are introduced in
order to understand Section 2.2 and Chapter 4. The main references for graph theory are
[8, 14, 22] and for edge ideals we cite [22, 28, 58].

A graph G is an ordered pair of disjoints finite sets (V,E) where E is a subset of the
set of unordered pairs of V . The set V is the set of vertices and the set E is called the
set of edges. Sometimes to refer to the graph G is usually write V (G) and E(G) for the
vertex set and the edge set of G.

Let G := (V,E) be a graph and e = {v1, v2} an edge of G, e is said to join the vertices
v1 and v2 and we say that the vertices v1 and v2 are adjacent vertices of G, it is usual to
say that e is incident with v1 and v2. The degree of the vertex v ∈ V , denoted by deg(v)
is the number of incident edges with v. A vertex with degree zero is called an isolated
vertex.

Definition 1.9.1. Let H and G be two graphs.

• H is called a subgraph of G if V (H) ⊂ V (G) and E(H) ⊂ E(G).

• A subgraph H is called an induced subgraph if H contains all the edges {v1, vj} ∈
E(G), with vi, vj ∈ V (H).

• A spanning subgraph is a subgraph H of G containing all the vertices of G.

Definition 1.9.2. Let G be a graph.

• A walk of length n in G is an alternating sequence of vertices and edges

w = {v0, e1, v1, . . . , vn−1, en, vn},

where ei = {vi−1, vi}. A walk may also be written {v0, . . . , vn} with the edges
understood, or {e1, . . . , en} with the vertices understood.

• If v0 = vn, the walk w is called a closed walk.

• A path is a walk all its vertices distinct.

We say that G is connected if for every pair of vertices v1 and vj there is a path form
vi to vj. Thus G has a vertex disjoint decomposition

G = G1 ∩ · · · ∩Gr

where G1, . . . , Gr are the maximal (w.r.t inclusion) connected subgraphs of G, the Gi are
called the connected components of G. A component is called even (resp. odd) if its order
(number of vertices) is even (resp. odd).

Definition 1.9.3. Let G be a graph.
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• A cycle of length n, denoted by Cn, is a closed path {v0, . . . , vn} in which n ≥ 3.

• If all the vertices of G are isolated, G is called a discrete graph.

• A forest is an acyclic graph and a tree is a connected forest.

• G is a complete graph if every pair of its n vertices are adjacent and is denoted by
Kn.

• G is bipartite if its vertex set V (G) can be partitioned into two disjoint subsets V1

and V2 such that every edge of G has one end in V1 and one end in V2. The pair is
called a bipartition of G.

• G is a complete bipartite graph if G is bipartite and we have that V1 and V2 are
completely joined.

Definition 1.9.4. The distance d(v1, v2) between two vertices v1 and v2 of a graph G is
defined to be the minimum of the lengths of all possible paths from v1 to v2. If there is
no a path joining v1 and v2, then d(v1, v2) =∞.

Proposition 1.9.5. [22, Proposition 2.1.2] A graph G is bipartite if and only if all the
cycles of G are even.

If e is an edge, denoted by G \ {e} the spanning subgraph of G obtained by deleting
e and keeping all the vertices of G. The removal of a vertex v from a graph G results in
a subgraph G \ {v} of G consisting of all the vertices of G except v and all the edges not
incident with v.

Definition 1.9.6. A set of edges in a graph G is called independent or a matching if no
two of them have a vertex in common.

Definition 1.9.7. Let A be a set of vertices of a graph G. The neighbor set of A, denoted
by NG(A) or simply by N(A) if G is understood, is the set of vertices of G that are adjacent
with at least one vertex of A.

Definition 1.9.8. Let G be a graph with vertex set V .

• A subset C ⊂ V is a minimal vertex cover of G if:

(a) Every edge of G is incident with at least one vertex in C.

(b) There is no proper subset of C with the first property.

If C only satisfies the condition a), then C is called a vertex cover of G and C is
said to cover all the edges of G.

• A set of vertices of G is called independent or stable if no two of them are adjacent.
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Remark 1.9.9. A set of vertices in G is a maximal independent set (with respect to
inclusion) if and only if its complement is a minimal vertex cover of G.

Theorem 1.9.10. (Marriage theorem [22, Theorem 2.1.9]) If G = (V,E) is a bipartite
graph with bipartition (V1, V2), then the following are equivalent

(a) G has a perfect matching.

(b) |A| ≤ |N(A)| for all A ⊂ V independent set of vertices.

Definition 1.9.11. An induced matching in a graph G is a set of pairwise disjoint edges
f1, . . . , fr such that the only edges of G contained in

⋃r
i=1 fi are f1, . . . , fr. The induced

matching number , denoted by im(G), is the number of edges in the largest induced match-
ing.

Definition 1.9.12. A directed graph or digraph D consists of a finite set V (D) of vertices
together with a prescribed collection E(D) of ordered pairs of distinct points called edges
or arrows. An oriented graph is a digraph having no symmetric pair of directed edges.
In other words an oriented graph is a graph together with an orientation of its edges. A
tournament is a complete oriented graph.

Remark 1.9.13. Any tournament has a spanning directed path according to [27].

Edge ideals of graphs. Let G be a graph with vertex set {v1, . . . , vs} and let S =
K[x1, . . . , xs] be a polynomial ring over a field K, with one variable xi for each vertex vi,
we will often identify the vertex vi with the variable xi.

Definition 1.9.14. The edge ideal I(G) associated to the graph G is the ideal of S
generated by the set of square-free monomials xixj such that vi is adjacent to vj, that is

I(G) = ({xixj | {vi, vj} ∈ E(G)}) ⊂ S.

If all the vertices of G are isolated we set I(G) = (0). The ring S/I(G) is called the edge
ring of G.

The next result establish a one to one correspondence between the minimal vertex
covers of a graph and the minimal primes of the corresponding edge ideal.

Proposition 1.9.15. [22, Proposition 2.2.2] Let S = K[x1, . . . , xs] be a polynomial ring
over a field K and let G be a graph with vertices x1, . . . , xs. If p is an ideal of S generated
by C = {xi1 , . . . , xir}, then p is a minimal prime of I(G) if and only if C is a minimal
vertex cover of G.

Corollary 1.9.16. If G is a graph and I(G) is its edge ideal, then the vertex covering
number α0(G) (that is the number of vertices in a minimum vertex cover in G) is equal
to the height of the ideal I(G).
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Proposition 1.9.17. [22, Proposition 2.2.11] Let G be a graph with n vertices and let
I(G) be its edge ideal. Then

s = α0(G) + β0(G) = ht(I) + dim(S/I(G)),

where β0(G) is the vertex independent number (that is the number of vertices in a maxi-
mum independent set). In particular β0 = dim(S/I(G)).

Definition 1.9.18. A graph G is said to be an unmixed graph if any two minimal vertex
covers of G have the same cardinality.

Definition 1.9.19. A graph G is said to be Cohen–Macaulay over the field K (C-M graph
for short) if S/I(G) is a Cohen–Macaulay ring.

Proposition 1.9.20. [22, Proposition 2.2.14] If G is a Cohen–Macaulay graph, then G
is unmixed.

Proposition 1.9.21. [22, Proposition 2.4.9] If G is a graph and G1, . . . , Gr its connected
components, then G is Cohen–Macaulay if and only if Gi is Cohen–Macaulay for all i.

Proposition 1.9.22. [22, Corollary 2.4.14] If G is a tree, then G is Cohen–Macaulay if
and only if G is unmixed.

Proposition 1.9.23. [22, Corollary 2.4.15] The only Cohen–Macaulay cycles are the
triangle and the pentagon.

Lemma 1.9.24. [22, Lemma 2.5.2] Let G be an unmixed bipartite graph and let I(G) be its
edge ideal. If I(G) has height r, then there are disjoints sets of vertices V1 = {v1, . . . , vr}
and V2 = {u1, . . . , ur} such that:

(a) {v1, ui} is an edge of G for all i.

(b) Every edge of G joins V1 with V2.

Corollary 1.9.25. [22, Corollary 2.5.5] If G is a Cohen–Macaulay bipartite graph, then
G \ {v} is Cohen–Macaulay for some vertex v in G.

Theorem 1.9.26. [57, Theorem 1.1] Let G be a bipartite graph without isolated vertices.
Then G is unmixed if and only if G has a bipartition V1 = {v1, . . . , vr}, V2 = {u1, . . . ur}
such that:

(a) {vi, ui} ∈ E(G) for all i.

(b) If {vi, uj} and {vj, uk} are in E(G) and i, j, k are distinct, then {vi, uk} ∈ E(G).

Theorem 1.9.27. [28, Theorem 3.4] Let G be a bipartite graph without isolated vertices.
Then G is a Cohen–Macaulay graph if and only if there is a bipartition V1 = {v1, . . . , vr},
V2 = {u1, . . . , ur} of G such that:

(a) {vi, ui} ∈ E(G) for all i.

(b) If {vi, uj} ∈ E(G), then i ≤ j.

(c) If {vi, uj} and {vj, uk} are in E(G) and i < j < k, then {vi, uk} ∈ E(G).



Chapter 2

Minimum Distance and Footprint
Functions of Graded Ideals

Let S be a graded polynomial ring over a field K, with a monomial order ≺, and let I be
a graded ideal of S. In this chapter we study two functions associated to I: the minimum
distance function δI and the footprint function fpI . It is shown that δI is positive and
that fpI is positive if the initial ideal of I is unmixed. We show that if I is an unmixed
radical ideal and its associated primes are generated by linear forms, then δI is strictly
decreasing until it reaches the asymptotic value 1. If I is the edge ideal of a Cohen–
Macaulay bipartite graph, we show that δI(d) = 1 for d greater than or equal to the
regularity of S/I. For a graded ideal of dimension ≥ 1, whose initial ideal is a complete
intersection, we give an exact sharp lower bound for the corresponding minimum distance
function.

We study δI and fpI from a theoretical point of view. The functions δI and fpI were
introduced in [39, 43]. The interest in these functions is essentially due to the following
two facts: the minimum distance function is related to the minimum distance in coding
theory (Theorem 3.2.1) and the footprint function is much easier to compute. There are
significant cases in which either the footprint function is a lower bound for the mini-
mum distance function (Theorem 2.3.2) or the two functions coincide (Proposition 2.3.3,
Theorem 2.5.9).

2.1 Minimum distance function

Let S = K[x1, . . . , xs] =
⊕∞

d=0 Sd be a polynomial ring over a field K with the standard
grading and let I be a graded ideal of S. We define Fd, the set of all polynomials of degree
d ≥ 0 which are zero divisors of S/I:

Fd := {f ∈ Sd | f /∈ I, (I : f) 6= I} ,

where (I : f) = {h ∈ S|hf ∈ I} is a quotient ideal. Note that F0 = ∅.
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Remark 2.1.1. The set Fd = { f ∈ Sd : f /∈ I, (I : f) 6= I} could be empty for some
values of d. If all the associate primes of S/I are minimally generated by polynomials of
degree at least r ≥ 2, then Fd = ∅ for 1 ≤ d < r. On the other hand if I is prime, then
Fd is empty for d ≥ 0.

Lemma 2.1.2. Let I ⊂ S be a radical unmixed graded ideal and let p1, . . . , pm be its
associated primes. If f ∈ Fd for some d ≥ 1, then

deg(S/(I : f)) =
∑
f /∈pi

deg(S/pi).

Proof. Since I is a radical ideal, we get that I =
⋂m
i=1 pi. From the equalities

(I : f) =
m⋂
i=1

(pi : f) = ∩f /∈pipi,

and using the additivity of the degree (Proposition 1.5.28), the required equality follows.

Definition 2.1.3. The minimum distance function of I, denoted δI , is the function
δI : N→ Z given by

δI(d) :=

{
deg(S/I)−max{deg(S/(I, f)) | f ∈ Fd} if Fd 6= ∅,
deg(S/I) if Fd = ∅.

The next result will be used to bound the number of zeros of polynomials over finite
fields (Corollary 3.1.2) and to study the general properties of δI .

Lemma 2.1.4. Let I ⊂ S be an unmixed graded ideal and let ≺ be a monomial order. If
f ∈ S is homogeneous and (I : f) 6= I, then

deg(S/(I, f)) ≤ deg(S/(in≺(I), in≺(f))) ≤ deg(S/I).

Proof. To simplify notation we set J = (I, f) and L = (in≺(I), in≺(f)). First we show
that S/J and S/L have dimension equal to dim(S/I). As f is a zero divisor of S/I
and I is unmixed, there is an associated prime ideal p of S/I such that f ∈ p and
dim(S/I) = dim(S/p). Since I ⊂ J ⊂ p, we get that dim(S/J) is dim(S/I). Since S/I
and S/in≺(I) have the same Hilbert function, and so does S/p and S/in≺(p), we obtain

dim(S/in≺(I)) = dim(S/I) = dim(S/p) = dim(S/in≺(p)).

Hence, taking heights in the inclusions in≺(I) ⊂ L ⊂ in≺(p), we obtain ht(I) = ht(L).

Pick a Gröbner basis G = {g1, . . . , gr} of I. Then J is generated by G ∪ {f} and by
Lemma 1.6.13 one has the inclusions

∆≺(J) = ∆≺(I, f) ⊂ ∆≺(in≺(g1), . . . , in≺(gr), in≺(f)) =

∆≺(in≺(I), in≺(f)) = ∆≺(L) ⊂ ∆≺(in≺(g1), . . . , in≺(gr)) = ∆≺(I).
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Thus ∆≺(J) ⊂ ∆≺(L) ⊂ ∆≺(I). Recall that HI(d), the Hilbert function of I at d, is the
number of standard monomials of degree d. Hence HJ(d) ≤ HL(d) ≤ HI(d) for d ≥ 0. If
dim(S/I) is equal to 0, then

deg(S/J) =
∑
d≥0

HJ(d) ≤ deg(S/L) =
∑
d≥0

HL(d) ≤ deg(S/I) =
∑
d≥0

HI(d).

Assume now that dim(S/I) ≥ 1. By the Hilbert-Serre theorem, HJ , HL, HI are
polynomial functions of degree equal to k = dim(S/I)− 1. Thus

k! lim
d→∞

HJ(d)

dk
≤ k! lim

d→∞

HL(d)

dk
≤ k! lim

d→∞

HI(d)

dk
,

that is deg(S/J) ≤ deg(S/L) ≤ deg(S/I).

Lemma 2.1.5. Let I ⊂ S be an unmixed graded ideal and let ≺ be a monomial order. If
f ∈ S \ I is homogeneous and (I : f) 6= I, then

deg(S/I) = deg(S/(I : f)) + deg(S/(I, f)), in particular deg(S/(I, f)) < deg(S/I).

Proof. Using that I is unmixed, it is not hard to see that S/I, S/(I : f), and S/(I, f)
have the same Krull dimension. There is an exact sequence

0 −→ S/(I : f)[−d]
f−→ S/I −→ S/(I, f) −→ 0.

Hence, by the additivity of Hilbert functions [58, Lemma 5.1.1], we get

HI(i) = H(I : f)(i− d) +H(I,f)(i) for i ≥ 0. (2.1.1)

If dimS/I = 0, then using Eq. (2.1.1) one has∑
i≥0

HI(i) =
∑
i≥0

H(I : f)(i) +
∑
i≥0

H(I,f)(i).

Therefore, using the definition of degree, the required equality follows. If k = dimS/I−
1 and k ≥ 1, by Theorem 1.5.2, HI , H(I,f), and H(I : f) are polynomial functions of degree
k. Then dividing Eq. (2.1.1) by ik and taking limits as i goes to infinity, the required
equality follows.

Remark 2.1.6. Let I ⊂ S be an unmixed graded ideal of dimension 1. If f ∈ Sd, then
(I : f) = I if and only if dim(S/(I, f)) = 0. In this case deg(S/(I, f)) could be greater
than deg(S/I).

The next alternative formula for the minimum distance function is valid for unmixed
graded ideals. It was pointed out to us by Vasconcelos.
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Theorem 2.1.7. Let I ⊂ S be an unmixed graded ideal and let ≺ be a monomial order
on S. If ∆≺(I)pd is the set of homogeneous standard polynomials of degree d and Sd 6⊂ I,
then

δI(d) = min{deg(S/(I : f)) | f ∈ Sd \ I}
= min{deg(S/(I : f)) | f ∈ ∆≺(I)pd}.

Proof. The second equality is clear because by the division algorithm any f ∈ Sd \ I can
be written as f = g+h, where g ∈ I and h ∈ ∆≺(I)pd, and (I : f) = (I : h). Next we show
the first equality. If Fd = ∅, δI(d) = deg(S/I) and for any f ∈ Sd \ I, one has that (I : f)
is equal to I. Thus equality holds. Assume that Fd 6= ∅. Take f ∈ Fd. Using that I is
unmixed, it is not hard to see that S/I, S/(I : f), and S/(I, f) have the same dimension.
There are exact sequences

0 −→ (I : f)/I −→ S/I −→ S/(I : f) −→ 0, and

0 −→ (I : f)/I −→ (S/I)[−d]
f−→ S/I −→ S/(I, f) −→ 0.

Hence, by the additivity of Hilbert functions, we get

HI(i)−H(I : f)(i) = HI(i− d)−HI(i) +H(I,f)(i) for i ≥ 0. (2.1.2)

By definition of δI(d) it suffices to show the following equality

deg(S/(I : f)) = deg(S/I)− deg(S/(I, f)). (2.1.3)

If dim(S/I) = 0, then using Eq. (2.1.2) one has∑
i≥0

HI(i)−
∑
i≥0

H(I : f)(i) =
∑
i≥0

HI(i− d)−
∑
i≥0

HI(i) +
∑
i≥0

H(I,f)(i).

Therefore, using the definition of degree, the equality of Eq. (2.1.3) follows. If k =
dim(S/I)− 1, by the Hilbert-Serre theorem, HI , H(I,f), and H(I : f) are polynomial func-
tions of degree k. Then dividing Eq. (2.1.2) by ik and taking limits as i goes to infinity,
the equality of Eq. (2.1.3) holds.

Definition 2.1.8. Let I ⊂ S be a non-zero proper graded ideal. The Vasconcelos function
of I is the function ϑI : N+ → N+ given by

ϑI(d) =

{
min{deg(S/(I : f)) | f ∈ Sd \ I} if md 6⊂ I,
deg(S/I) if md ⊂ I.

Very little is known about the Vasconcelos function when I is not an unmixed graded
ideal. The following results show some properties of δI .

Theorem 2.1.9. Let I ⊂ S be an unmixed graded ideal, let ≺ be a monomial order on
S, and let d ≥ 1 be an integer. The following hold.



2.1 Minimum distance function 29

(i) δI(d) ≥ 1.

(ii) If dim(S/I) ≥ 1 and Fd 6= ∅ for d ≥ 1, then δI(d) ≥ δI(d+ 1) ≥ 1 for d ≥ 1.

Proof. (i) If Fd = ∅, then δI(d) = deg(S/I) ≥ 1, and if Fd 6= ∅, then using Lemma 2.1.5
it follows that δI(d) ≥ 1.

(ii) By part (i), one has δI(d) ≥ 1. The set Fd is not empty for d ≥ 1. Thus, by
Theorem 2.1.7, δI(d) = deg(S/(I : f)) for some f ∈ Fd. As I is unmixed and dim(S/I) ≥
1, m is not an associated prime of S/I. Thus, since (I : f) is a graded ideal, one has
(I : f) ( m. Pick a linear form h ∈ S1 such that hf /∈ I. As f is a zero divisor of S/I,
so is hf . The ideals (I : f) and (I : hf) have height equal to ht(I). Therefore taking the
Hilbert functions in the exact sequence

0 −→ (I : hf)/(I : f) −→ S/(I : f) −→ S/(I : hf) −→ 0

it follows that deg(S/(I : f)) ≥ deg(S/(I : hf)). Therefore, applying Theorem 2.1.7, we
get the inequality δI(d) ≥ δI(d+ 1).

Theorem 2.1.10. Let ≺ be a monomial order and let I ⊂ S be an unmixed ideal of
dimension ≥ 1 such that xi is a zero divisor of S/I for i = 1, . . . , s. The following hold.

(i) The set Fd = {f ∈ Sd : f /∈ I, (I : f) 6= I} is not empty for d ≥ 1.

(ii) deg(S/(I, xa)) ≤ deg(S/(in≺(I), xa)) ≤ deg(S/I) for any xa ∈ ∆≺(I) ∩ Sd.

(iii) δI(d) ≥ δI(d+ 1) for d ≥ 1.

(iv) If I is a radical ideal and its associated primes are generated by linear forms, then
there is an integer r0 ≥ 1 such that

δI(1) > δI(2) > · · · > δI(r0) = δI(d) = 1 for d ≥ r0.

Proof. (i): Since dim(S/I) ≥ 1, there is 1 ≤ ` ≤ s such that xd` is not in I, and (I : xd` ) 6= I
because xd` is a zero divisor of S/I. Thus xd` is in Fd.

(ii): Since any standard monomial of degree d is a zero divisor, by Lemma 2.1.4, we
get the inequalities in item (ii).

(iii): The set Fd is not empty for d ≥ 1 by part (i). From Theorem 2.1.9(ii) we have
that δI(d) ≥ δI(d+ 1) for d ≥ 1.

(iv): By Lemma 2.1.4, δI(d) ≥ 1 for d ≥ 1. Assume that δI(d) > 1. By part (iii) it
suffices to show that δI(d) > δI(d+1). Pick a polynomial F as in part (iii). Let p1, . . . , pm
be the associated primes of I. Then, by Lemma 1.5.29, one has

δI(d) = deg(S/I)− deg(S/(I, F ))

=
m∑
i=1

deg(S/pi)−
∑
F∈pi

deg(S/pi) ≥ 2.
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Hence there are pk 6= pj such that F is not in pk∪pj. Pick a linear form h in pk \pj; which
exists because I is unmixed and pk is generated by linear forms. Then hF /∈ I because
hF /∈ pj, and hF is a zero divisor of S/I because (I : F ) 6= I. Noticing that F /∈ pk and
hF ∈ pk, by Lemma 1.5.29, we get

deg(S/(I, F )) =
∑
F∈pi

deg(S/pi) <
∑
hF∈pi

deg(S/pi) = deg(S/(I, hF )).

Therefore δI(d) > δI(d+ 1).

Corollary 2.1.11. If I ⊂ S is a Cohen–Macaulay square-free monomial ideal, then there
is an integer r0 ≥ 0 such that

δI(1) > δI(2) > · · · > δI(r0) = δI(d) = 1 for d ≥ r0.

Proof. If I is prime, then I is generated by a subset of {x1, . . . , xs}, deg(S/I) = 1, and
Fd = ∅ for all d. Hence δI(d) = 1 for d ≥ 1. Thus we may assume that I has at least two
associated primes. Any Cohen–Macaulay ideal is unmixed [58]. Thus the degree of S/I is
the number of associated primes of I. Hence, we may assume that all variables are zero
divisors of S/I and the result follows from Theorem 2.1.10(iv).

The next result about the asymptotic behavior of the minimum distance function gives
a wide generalization of Theorem 2.1.10(iv).

Theorem 2.1.12. Let I ⊂ S be an unmixed radical graded ideal. If all the associated
primes of I are generated by linear forms, then there is an integer r0 ≥ 1 such that

δI(1) > δI(2) > · · · > δI(r0) = δI(d) = 1 for d ≥ r0.

Proof. Let p1, . . . , pm be the associated primes of I. As pi is generated by linear forms,
then deg(S/pi) = 1 for all i. Indeed if pi = m, then deg(S/pi) is dimK(S/pi) = 1, and if
pi ( m, then the initial ideal of pi, with respect to the GRevLex order ≺, is generated by
a subset of x1, . . . , xs and deg(S/pi) is equal to the deg(S/in≺(pi)) = 1. The last equality
follows noticing that S/in≺(pi) is a polynomial ring.

If I is prime, then I = pi for some i and Fd = ∅ for d ≥ 1. Thus δI(d) = deg(S/pi) = 1
for d ≥ 1, and we can take r0 = 1. We may now assume that I has at least two associated
primes, that is, m ≥ 2. As I ( p1, there is a form h of degree 1 in p \ I. Hence, as I is a
radical ideal, we get that hd is in p1 \ I. Thus Fd 6= ∅ for d ≥ 1. Therefore, by Theorem
2.1.9(ii), one has that δI(d) ≥ δI(d + 1) ≥ 1 for d ≥ 1. Hence, assuming that δI(d) > 1,
it suffice to show that δI(d) > δI(d + 1). By Theorem 2.1.7, there is f ∈ Fd such that
δI(d) = deg(S/(I : f)). Then, by Lemma 2.1.2, one has

δI(d) = deg(S/(I : f)) =
∑
f /∈pi

deg(S/pi) ≥ 2.

Hence there are pk 6= pj such that f is not in pk∪pj. Pick a linear form h in pk \pj. Then
hf /∈ I because hf /∈ pj, and hf is a zero divisor of S/I because (I : f) 6= I. Noticing
that f /∈ pk and hf ∈ pk, one obtains the strict inclusion
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{pi | hf /∈ pi} ( {pi | f ∈ pi}.

Therefore, by Lemma 2.1.2, we get

deg(S/(I : f)) =
∑
f /∈pi

deg(S/pi) >
∑
hf /∈pi

deg(S/pi) = deg(S/(I : hf)).

Hence, by Theorem 2.1.7, we get δI(d) > δI(d+ 1).

The next lemma tells us that one can study the minimum distance function of I for
d� 0 for a wide class of graded ideals.

Lemma 2.1.13. Let I ⊂ S be an unmixed graded ideal with at least two associated primes.
If K is an infinite field, then the set Fd = {f ∈ Sd : f /∈ I, (I : f) 6= I} is not empty for
d� 0.

Proof. Let p1, . . . , pm be the associated primes of S/I. As K is infinite, there is h ∈
S1 \ ∪mi=1pi. As p1 6⊂ rad(I), there an integer d ≥ 1 and a homogeneous polynomial
f ∈ p1 \ rad(I) of degree d. Then hjf is in p1 and hjf 6∈ I for j ≥ 1.

Proposition 2.1.14. Let I ⊂ S be a radical unmixed graded binomial ideal of dimension
d ≥ 1 over a field K such that x` is a zero divisor of S/I for some `. Then δI(d) ≥ 0 and
δI(d) ≥ δI(d+ 1) for d ≥ 1.

Proof. The set {F ∈ Sd : F /∈ I, (I : F ) 6= I} is not empty for d ≥ 1. Indeed xd` is not in
I because I is a binomial ideal and (I : xd` ) 6= I because xd` is a zero divisor of S/I. Then,
by Lemma 2.1.4, δI(d) ≥ 0. Pick G ∈ Sd such that G /∈ I, (I : G) 6= I and

deg(S/(I,G)) = max{deg(S/(I, F ))|F /∈ I, F ∈ Sd, (I : F ) 6= I}.

There is h ∈ S1 such that hG /∈ I because otherwise one has that m = (x1, . . . , xs)
is an associated prime of S/I, a contradiction to the assumption that I is unmixed of
dimension ≥ 1. As G is a zero divisor of S/I, so is hG. The ideals (I,G) and (I, hG)
have the same height. Therefore taking Hilbert functions in the exact sequence

0→ (I,G)/(I, hG)→ S/(I, hG)→ S/(I,G)→ 0

it follows that deg(S/(I, hG)) ≥ deg(S/(I,G)). This proves that δI(d) ≥ δI(d+ 1).

To compute the minimum distance function, we need the following result.

Proposition 2.1.15. Fix a monomial order ≺. If ∆≺(I) ∩ Sd = {xa1 , . . . , xan} and
F≺,d = {f =

∑
i λix

ai | f 6= 0, λi ∈ K, (I : f) 6= I}, then

δI(d) = deg(S/I)−max{deg(S/(I, f)) | f ∈ Fd}
= deg(S/I)−max{deg(S/(I, f)) | f ∈ F≺,d}.
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Proof. It follows using the division algorithm, see Theorem 1.6.5.

Notice that Fd 6= ∅ if and only if F≺,d 6= ∅. If K = Fq is a finite field, then the
number of standard polynomials of degree d is qn− 1, where n is the number of standard
monomials of degree d. Hence, we can compute δI(d) for small values of n and q.

Upper bounds for δI(d) can be obtained by fixing a subset F ′≺,d of F≺,d and computing

δ′I(d) = deg(S/I)−max{deg(S/(I, f)) | f ∈ F ′≺,d} ≥ δI(d).

Typically one use F ′≺,d = {f =
∑

i λix
ai | f 6= 0, λi ∈ {0, 1}, (I : f) 6= I} or a subset of it.

Lower bounds for δI(d) are harder to find. Thus, we seek to estimate δI(d) from below.
So, with this in mind, in Section 2.3, we introduce the footprint function of I.

In the following example we give an implementation using Macaulay2 [25] to explicitly
calculate the value of the minimum distance function of the vanishing ideal of a finite
projective set of points.

Example 2.1.16. Let K be the field F3, let X be the subset of P3 given by

X = {[e1], [e2], [e3], [e4], [(1,−1,−1, 1)], [(1, 1, 1, 1)], [(−1,−1, 1, 1)], [(−1, 1,−1, 1)]},

where ei is the i-th unit vector, and let I = I(X) be the vanishing ideal of X. Using
Lemma 1.7.3 and Macaulay2 [25], we get that I is the ideal of S = K[x1, x2, x3, x4] gener-
ated by the binomials x1x2−x3x4, x1x3−x2x4, x2x3−x1x4. Hence, using Theorem 2.1.7
and the procedure below for Macaulay2 [25], we get

d 1 2 3 · · ·
deg(S/I) 8 8 8 · · ·
HI(d) 4 7 8 · · ·
δI(d) 4 2 1 · · ·

q=3

S=ZZ/q[x1,x2,x3,x4]

I=ideal(x1*x2-x3*x4,x1*x3-x2*x4,x2*x3-x1*x4)

M=coker gens gb I

h=(d)->min apply(apply(apply(apply(toList

(set(0..q-1))^**(hilbertFunction(d,M))-

(set{0})^**(hilbertFunction(d,M)),toList),x->basis(d,M)*vector x),

z->ideal(flatten entries z)),x-> degree quotient(I,x))

apply(1..2,h)--this gives the minimum distance in degrees 1,2

2.2 Asymptotic behavior of the minimum distance

In this section we study a conjecture about the regularity index of the minimum distance
function.
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Let I ⊂ S be an unmixed radical graded ideal whose associated primes are generated
by linear forms. According to Theorem 2.1.12, there is an integer r0 ≥ 1 such that

δI(1) > · · · > δI(r0) = δI(d) = 1 for d ≥ r0.

Definition 2.2.1. The integer r0 is called the regularity index of δI .

If I is the graded vanishing ideal of a set of points in a projective space over a finite
field, then r0 ≤ reg(S/I) [24, 46], but we do not know whether this holds in general. The
regularity of S/I can be computed using Macaulay2 [25], but r0 is difficult to compute.

Conjecture 2.2.2. Let I ⊂ S be an unmixed radical graded ideal. If all the associated
primes of I are generated by linear forms, then δI(d) = 1 for d ≥ reg(S/I), that is,
r0 ≤ reg(S/I).

In this section we give some support for this conjecture. In what follows we focus in
the case that I is an unmixed ideal generated by square-free monomial ideals of degree 2.

Conjecture 2.2.2 is open even in the case that I is the edge ideal of an unmixed bipartite
graph. Below we prove the conjecture for edge ideals of Cohen–Macaulay graphs.

Proposition 2.2.3. [32, Lemma 2.2] If G is a graph, then reg(S/I(G)) ≥ im(G).

Next we prove Conjecture 2.2.2 for edge ideals of Cohen–Macaulay bipartite graphs.

Proposition 2.2.4. If I = I(G) is the edge ideal of a Cohen–Macaulay bipartite graph
without isolated vertices, then δI(d) = 1 for d ≥ reg(S/I).

Proof. By [33, Theorem 1.1], reg(S/I) = im(G). Thus, by Theorem 2.1.12, it suffices to
show that δI(d) = 1 for some d ≤ im(G). According to [28, Theorem 3.4], there is a
bipartition V1 = {x1, . . . , xg}, V2 = {y1, . . . , yg} of G such that:

(a) ei = {xi, yi} ∈ E(G) for all i,

(b) if {xi, yj} ∈ E(G), then i ≤ j, and

(c) if {xi, yj}, {xj, yk} are in E(G) and i < j < k, then {xi, yk} ∈ E(G).

Next we construct a sequence xi1 , . . . , xid such that ei1 , . . . , eid form an induced match-
ing and V2 is a pairwise disjoint union

V2 = NG(xi1) ∪ · · · ∪NG(xid), (2.2.1)

where NG(xij) ∩ NG(xik) = ∅ for j 6= k and NG(xij) is the neighbor set of xij , that is,
NG(xij) is the set of vertices of G adjacent to xij . We set i1 = 1. If NG(xi1) ( V2, pick yi2
in V2\NG(xi1). By condition (b), ei1 , ei2 is an induced matching andNG(xi1)∩NG(xi2) = ∅.
If NG(xi1)∪NG(xi2) ( V2, pick yi3 in V2\(NG(xi1)∪NG(xi2)). By condition (b), ei1 , ei2 , ei3
form an induced matching and NG(xij) ∩NG(xik) = ∅ for j 6= k. Thus one can continue
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this process until we get a sequence xi1 , . . . , xid such that V2 is the disjoint union of the
NG(xij)’s and the eij ’s form an induced matching.

Let p1, . . . , pm be the associated primes of I. Then, there are minimal vertex covers
C1, . . . , Cm of G such that pi is generated by Ci for i = 1, . . . ,m (see [56, p. 279]). We
may assume that Cm = V2. Setting xa = xi1 · · ·xid , by Theorem 2.1.7, it suffices to show
that xa is in

⋂m−1
i=1 pi \ pm and that deg(S/(I : xa)) = 1, where S = K[V (G)]. If i 6= m,

there is y` /∈ Ci. From Eq. (2.2.1), there is xij such that y` ∈ NG(xij) for some ij. Hence,

as Ci covers the edge {xij , y`}, one has that xij is in pi. Thus xa is in
⋂m−1
i=1 pi and xa is

not in pm because pm = (y1, . . . , yg). Therefore

(I : xa) = (p1 ∩ · · · ∩ pm : xa) = (p1 : xa) ∩ · · · ∩ (pm : xa) = pm.

Hence deg(S/(I : xa)) = 1, as required.

2.3 Footprint function

In this section we introduce the footprint function of I. This is a numerical function
defined similarly as δI , but here we use a monomial order and the initial ideal of I.

LetM≺,d be the set of all zero divisors of S/in≺(I) of degree d ≥ 1 that are in ∆≺(I):

M≺,d := {xa |xa ∈ ∆≺(I)d, (in≺(I) : xa) 6= in≺(I)}.

Definition 2.3.1. The footprint function of I, denoted fpI , is the function fpI : N+ → Z
given by

fpI(d) :=

{
deg(S/I)−max{deg(S/(in≺(I), xa)) |xa ∈M≺,d} if M≺,d 6= ∅,
deg(S/I) if M≺,d = ∅.

We come to one of our main results.

Theorem 2.3.2. Let I be an unmixed graded ideal and let ≺ be a monomial order. The
following hold.

(i) δI(d) ≥ fpI(d) and δI(d) ≥ 0 for d ≥ 1.

(ii) fpI(d) ≥ 0 if in≺(I) is unmixed.

Proof. If F≺,d = ∅, then clearly δI(d) = deg(S/I) ≥ 1, δI(d) ≥ fpI(d), and if in≺(I)
is unmixed, then fpI(d) ≥ 0 (this follows from Lemma 2.1.4). Thus, (i) and (ii) hold.
Assume that F≺,d 6= ∅. Pick a standard polynomial f ∈ Sd such that (I : f) 6= I and

δI(d) = deg(S/I)− deg(S/(I, f)).

As I is unmixed, by Lemma 2.1.4, deg(S/(I, f)) ≤ deg(S/(in≺(I), in≺(f))). On the
other hand, by Lemma 1.6.14, in≺(f) is a zero divisor of S/in≺(I). Hence δI(d) ≥ fpI(d).
Using the second inequality of Lemma 2.1.4 it follows that δI(d) ≥ 0, fpI(d) ≥ 0 if in≺(I)
is unmixed.
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Proposition 2.3.3. If I is an unmixed monomial ideal and ≺ is any monomial order,
then δI(d) = fpI(d) for d ≥ 1, that is, I is a Geil–Carvalho ideal.

Proof. The inequality δI(d) ≥ fpI(d) follows from Theorem 2.3.2. To show the reverse
inequality notice thatM≺,d ⊂ F≺,d because one has I = in≺(I). Also notice thatM≺,d =
∅ if and only if F≺,d = ∅, this follows from Lemma 1.6.14. Therefore one has fpI(d) ≥
δI(d).

Next we show that in certain cases the footprint function can be expressed in terms
of the degree of colon ideals.

Corollary 2.3.4. Let I be a graded ideal and let ≺ be a monomial order. If in≺(I) is an
unmixed ideal and M≺,d 6= ∅, then

fpI(d) = min{deg(S/(in≺(I) : xa)) |xa ∈ Sd \ in≺(I)}.

Proof. Take xa ∈M≺,d. By Lemma 2.1.5(ii) one has the equality:

deg(S/(in≺(I) : xa)) = deg(S/in≺(I))− deg(S/(in≺(I), xa)).

In this case deg(S/(in≺(I) : xa)) ≤ deg(S/in≺(I)). Therefore, noticing that deg(S/in≺(I))
is equal to deg(S/I), we get

fpI(d) = deg(S/I)−max{deg(S/(in≺(I), xa))|xa ∈M≺,d}
= min{deg(S/(in≺(I) : xa)) |xa ∈M≺,d}
= min{deg(S/(in≺(I) : xa)) |xa ∈ Sd \ in≺(I)}. 2

One can apply the corollary to graded lattice ideals of dimension 1.

Proposition 2.3.5. Let I ⊂ S be a graded lattice ideal of dimension 1 and let ≺ be a
graded monomial order with x1 � · · · � xs. The following hold.

(a) If in≺(I) is not prime, then in≺(I) is unmixed and M≺,d 6= ∅ for d ≥ 1.

(b) If in≺(I) is prime, then I = (x1 − xs, . . . , xs−1 − xs) and M≺,d = ∅ for d ≥ 1.

Proof. The reduced Gröbner basis of I consists of binomials of the form xa+ − xa− (see
[58, Proposition 8.2.7]). It follows that xs is a regular element on both S/I and S/in≺(I).
Hence I and in≺(I) are Cohen–Macaulay ideals. In particular these ideals are unmixed.

(a): Assume that in≺(I) is not prime. Then there is an associated prime p of S/in≺(I)
such that in≺(I) ( p. Pick a variable xi in p \ in≺(I). Then xix

d−1
s is in p and is not in

in≺(I) for d ≥ 1. Thus xix
d−1
s is in M≺,d for d ≥ 1.

(b): Assume that in≺(I) is prime. This part follows by noticing that in≺(I), being a
face ideal generated by variables, is equal to (x1, . . . , xs−1).
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The following result improves a bit the lower bound for the footprint function given
in Theorem 2.3.2.

Proposition 2.3.6. Let I ⊂ S be an unmixed graded ideal, let ≺ be a monomial order
on S, and let d ≥ 1 be an integer. Then, fpI(d) ≥ 1 if in≺(I) is unmixed.

Proof. IfM≺,d = ∅, then fpI(d) = deg(S/I) ≥ 1. Next assume thatM≺,d 6= ∅. As in≺(I)
is unmixed, by Corollary 2.3.4, fpI(d) ≥ 1.

The following examples shows an implementation in Macaulay2 [25] to calculate the
values of δI and fpI , also show that fpI is a lower bound for δI .

Example 2.3.7. Let K be the field F3, let X be the subset of P3 given by

X = {[(1, 0, 0)], [(1, 1, 0)], [(0, 1, 0)], [(1, 0, 1)], [(1, 1, 1)],

[(0, 1, 1)], [(1, 0, 2)], [(1, 1, 2)], [(0, 1, 2)], [(0, 0, 1)]},

and let I = I(X) be the vanishing ideal of X using Lemma 1.7.3 and Macaulay2 [25] ,
we get that I is the ideal of K[x1, x2, x3] generate by the monomials x2

1x2 − x1x
2
2, x

3
2x3 −

x2x
3
3, x

3
1x3 − x1x

3
3. Hence using Theorem 2.1.7 and the procedure below for Macaulay2

[25], we get

d 1 2 3 4 · · ·
|X| 10 10 10 10 · · ·

HX(d) 3 6 9 10 · · ·
δX(d) 6 3 1 1 · · ·

fpI(X)(d) 6 2 1 1 · · ·

q=3

S=ZZ/q[x_1,x_2,x_3]

I=(a1,a2,a3)->ideal(a1*x_2-a2*x_1,a1*x_3-a3*x_1,a2*x_1-a1*x_2,a2*x_3-

a3*x_2, a3*x_1-a1*x_3,a3*x_2-a2*x_3)

I1=I(1,0,0), I2=I(1,1,0), I3=I(0,1,0), I4=I(1,0,1), I5=I(1,1,1)

I6=I(0,1,1), I7=I(1,0,2), I8=I(1,1,2), I9=I(0,1,2), I10=I(0,0,1)

Ix=intersect(I1,I2,I3,I4,I5,I6,I7,I8,I9,I10)

M=coker gens gb Ix

degree M

regularity M

H=(d)->hilbertFunction(d,M)

apply(1..7,H)

h=(d)->min apply(apply(apply(apply(toList(set(0..q-1))^**(hilbertFunction

(d,M))-(set{0})^**(hilbertFunction(d,M)),toList),x->basis(d,M)*vector x),
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z->ideal(flatten entries z)), x->degree quotient(Ix,x))

apply(1..2,h)

-----This gives the footprint in degree d------

load "gfaninterface.m2"

universalGroebnerBasis(Ix)

(InL,L)= gfan Ix, #InL

init=ideal(InL_0)

N=coker gens gb init

f=(x)-> if not quotient(init,x)==init then degree ideal(init,x) else 0

fp=(d) ->degree N -max apply(flatten entries basis(d,N),f)

apply(1..regularity(N),fp)

Example 2.3.8. Let K be the field F5, let X be the subset of P3 given by

X = {[(0, 0, 1)], [(0, 1, 0)], [(0, 1, 1)], [(0, 1, 2)], [(0, 1, 3)], [(1, 0, 0)], [(1, 0, 1)],

[(1, 0, 2)], [(1, 0, 3)], [(1, 1, 0)], [(1, 1, 1)], [(1, 1, 2)], [(1, 1, 3)]},

and let I = I(X) be the vanishing ideal of X using Lemma 1.7.3 and Macaulay2 [25], we
get that I is the ideal of K[x1, x2, x3] generate by the monomials x2

1x2−x1x
2
2, x

4
2x3−x3

2x
2
3+

x2
2x

3
3 − x2x

4
3, x

4
1x3 − x3

1x
2
3 + x2

1x
3
3 − x1x

4
3. Hence using Theorem 2.1.7 and the procedure

below for Macaulay2 [25], we get

d 1 2 3 4 5 · · ·
|X| 13 13 13 13 13 · · ·

HX(d) 3 6 9 12 13 · · ·
δX(d) 8 4 3 1 1 · · ·

fpI(X)(d) 8 3 2 1 1 · · ·

q=5

S=ZZ/q[x_1,x_2,x_3]

I=(a1,a2,a3)->ideal(a1*x_2-a2*x_1,a1*x_3-a3*x_1,a2*x_1-a1*x_2,a2*x_3-a3*x_2,

a3*x_1-a1*x_3,a3*x_2-a2*x_3)

I1=I(0,0,1), I2=I(0,1,0), I3=I(0,1,1), I4=I(0,1,2), I5=I(0,1,3), I6=I(1,0,0),

I7=I(1,0,1), I8=I(1,0,2), I9=I(1,0,3), I10=I(1,1,0), I11=I(1,1,1),

I12=I(1,1,2), I13=I(1,1,3)

I=intersect(I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,I11,I12,I13)

M=coker gens gb I

degree M

regularity M

H=(d)->hilbertFunction(d,M)

apply(1..7,H)
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h=(d)->min apply(apply(apply(apply(toList(set(0..q-1))^**(hilbertFunction(d,M))-

(set{0})^**(hilbertFunction(d,M)),toList),x->basis(d,M)*vector x),z->ideal

(flatten entries z)), x->degree quotient(I,x))

h(3)

-----This gives the footprint in degree d------

"gfaninterface.m2"

universalGroebnerBasis(I)

(InL,L)= gfan I, #InL

init=ideal(InL_0)

N=coker gens gb init

f=(x)-> if not quotient(init,x)==init then degree ideal(init,x) else 0

fp=(d) ->degree N -max apply(flatten entries basis(d,N),f)

apply(1..regularity(N),fp)

2.4 Two integer inequalities

Lemma 2.4.1. Let a1, . . . , ar, a, b, e be positive integers with e ≥ a. Then

(a) a1 · · · ar ≥ (a1 + · · ·+ ar)− (r − 1), and

(b) a(e− b) ≥ (a− b)e.

Proof. Part (a) follows by induction on r, and part (b) is straightforward.

The next inequality is a generalization of part (a).

Lemma 2.4.2. Let 1 ≤ e1 ≤ · · · ≤ em and 0 ≤ bi ≤ ei − 1 for i = 1, . . . ,m be integers.
Then

m∏
i=1

(ei − bi) ≥

(
k∑
i=1

(ei − bi)− (k − 1)−
m∑

i=k+1

bi

)
ek+1 · · · em (2.4.1)

for k = 1, . . . ,m, where ek+1 · · · em = 1 and
∑m

i=k+1 bi = 0 if k = m.

Proof. Fix m and 1 ≤ k ≤ m. We will proceed by induction on σ =
∑k

i=1(ei − bi − 1).
If σ = 0, then ei − bi − 1 = 0 for i = 1, . . . , k. Thus either 1 −

∑m
i=k+1 bi < 0 or

1 −
∑m

i=k+1 bi ≥ 1. In the first case the inequality is clear because the left hand side of
Eq. (2.4.1) is positive and in the second case one has bi = 0 for i = k + 1, . . . ,m and
equality holds in Eq. (2.4.1). Assume that σ > 0. If k = m or bi = 0 for i = k+ 1, . . . ,m,
the inequality follows at once from Lemma 2.4.1(a). Thus, we may assume k < m and
bj > 0 for some k + 1 ≤ j ≤ m. To simplify notation, and without loss of generality, we
may assume that j = m, that is, bm > 0. If the right hand side of Eq. (2.4.1) is negative
or zero, the inequality holds. Thus we may also assume that

k∑
i=1

(ei − bi)−
m∑

i=k+1

bi ≥ k. (2.4.2)



2.4 Two integer inequalities 39

Hence there is 1 ≤ ` ≤ k such that e` − b` ≥ 2.

Case (1): Assume e` − b` − bm ≥ 1. Setting a = e` − b`, e = em, and b = bm in
Lemma 2.4.1(b), we get

(e` − b`)(em − bm) ≥ (e` − (b` + bm))em. (2.4.3)

Therefore using Eq. (2.4.3), and then applying the induction hypothesis to the two se-
quences of integers

e1, . . . , e`−1, e`, e`+1, . . . , em−1, em; b1, . . . , b`−1, b` + bm, b`+1, . . . , bm−1, 0,

we get the inequalities

m∏
i=1

(ei − bi) =

 ∏
i/∈{`,m}

(ei − bi)

 (e` − b`)(em − bm)

≥

 ∏
i 6={`,m}

(ei − bi)

 (e` − (b` + bm))em

≥

(
k∑
6̀=i=1

(ei − bi) + (e` − (b` + bm))− (k − 1)−
m−1∑
i=k+1

bi

)
ek+1 · · · em

=

(
k∑
i=1

(ei − bi)− (k − 1)−
m∑

i=k+1

bi

)
ek+1 · · · em.

Case (2): Assume e` − b` − bm < 1. Setting r` = e` − b` − 1 ≥ 1, one has

b` + r` = e` − 1 ≥ 1, bm − r` ≥ 1, e` − (b` + r`) = 1.

On the other hand by Lemma 2.4.1(a) one has

(e` − b`)(em − bm) ≥ (e` − b`) + (em − bm)− 1 = (e` − (b` + r`))(em − (bm − r`)). (2.4.4)

Therefore using Eq. (2.4.4), and then applying the induction hypothesis to the two se-
quences of integers

e1, . . . , e`−1, e`, e`+1, . . . , em−1, em; b1, . . . , b`−1, b` + r`, b`+1, . . . , bm−1, bm − r`,
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we get the inequalities

m∏
i=1

(ei − bi) =

 ∏
i/∈{`,m}

(ei − bi)

 (e` − b`)(em − bm)

≥

 ∏
i 6={`,m}

(ei − bi)

 (e` − (b` + r`))(em − (bm − r`))

≥

(
k∑
6̀=i=1

(ei − bi) + (e` − (b` + r`))− (k − 1)−
m−1∑
i=k+1

bi − (bm − r`)

)
ek+1 · · · em

=

(
k∑
i=1

(ei − bi)− (k − 1)−
m∑

i=k+1

bi

)
ek+1 · · · em. 2

Proposition 2.4.3. Let 1 ≤ e1 ≤ · · · ≤ em and 0 ≤ bi ≤ ei − 1 for i = 1, . . . ,m be
integers. If b0 ≥ 1, then

m∏
i=1

(ei − bi) ≥

(
k+1∑
i=1

(ei − bi)− (k − 1)− b0 −
m∑

i=k+2

bi

)
ek+2 · · · em (2.4.5)

for k = 0, . . . ,m− 1, where ek+2 · · · em = 1 and
∑m

i=k+2 bi = 0 if k = m− 1.

Proof. If 0 ≤ k ≤ m − 1, then 1 ≤ k + 1 ≤ m. Applying Lemma 2.4.2, and making the
substitution k → k + 1 in Eq. (2.4.5), we get

m∏
i=1

(ei − bi) ≥

(
k+1∑
i=1

(ei − bi)− k −
m∑

i=k+2

bi

)
ek+2 · · · em

≥

(
k+1∑
i=1

(ei − bi)− (k − 1)− b0 −
m∑

i=k+2

bi

)
ek+2 · · · em,

where the second inequality holds because b0 ≥ 1.

2.5 Formulas for complete intersections

In this section we study the footprint function, with respect to a monomial order, of
complete intersection graded ideals in a polynomial ring with coefficients in a field. For
graded ideals of dimension one, whose initial ideal is a complete intersection, we give a
formula for the footprint function and a sharp lower bound for the corresponding minimum
distance function.

Let S = K[x1, . . . , xs] =
⊕∞

d=0 Sd be a polynomial ring over a field K with the standard
grading and s ≥ 2. In what follows, we denote a monomial order by ≺, (Definition 1.6.1).
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Lemma 2.5.1. Let L ⊂ S be an ideal generated by monomials. If dim(S/L) = 1, then L
is a complete intersection if and only if, up to permutation of variables, we can write

(i) L = (xd22 , . . . , x
ds
s ) with 1 ≤ di ≤ di+1 for i ≥ 2, or

(ii) L = (xd21 , . . . , x
dp
p−1, x

cp
p x

cp+1

p+1 , x
dp+2

p+2 , . . . , x
ds
s ) for some p ≥ 1 such that 1 ≤ cp ≤ cp+1

and 1 ≤ di ≤ di+1 for 2 ≤ i ≤ s− 1, where dp+1 = cp + cp+1.

Proof. ⇒) Let xα1 , . . . , xαs−1 be the minimal set of generators of L consisting of mono-
mials. By the generalized Krull principal ideal theorem [58, Theorem 2.3.16] it follows
that xαi and xαj have no common variables for i 6= j. Then, either all variables occur
in xα1 , . . . , xαs−1 and we are in case (ii), or there is one variable that is not in any of the
xαi ’s and we are in case (i).

⇐) In both cases L is an ideal of height s− 1 generated by s− 1 elements, that is, L
is a complete intersection.

Proposition 2.5.2. Let L be the ideal of S generated by xd22 , . . . , x
ds
s . If xa = xa11 x

ar
r · · · xass ,

r ≥ 2, ar ≥ 1, and ai ≤ di − 1 for i ≥ r, then

deg(S/(L, xa)) = deg(S/(L, xarr · · ·xass )) = d2 · · · ds − (d2 − a2) · · · (ds − as),

where ai = 0 if 2 ≤ i < r.

Proof. In what follows we will use the fact that Hilbert functions and Hilbert series
are additive on short exact sequences [58, Lemma 5.1.1]. If a1 ≥ 1, then taking Hilbert
functions in the exact sequence

0 −→ S/(L, xarr · · ·xass )[−a1]
x
a1
1−→ S/(L, xa) −→ S/(L, xa11 ) −→ 0,

and noticing that dimS/(L, xa11 ) = 0, the first equality follows. Thus we may assume that
xa has the form xa = xarr · · ·xass and ai = 0 for i < r.

We proceed by induction on s ≥ 2. Assume s = 2. Then r = 2, xa = xa22 , (L, xa) =
(xa22 ), and the degree of S/(L, xa) is a2, as required. Assume s ≥ 3. If ai = 0 for i > r,
then (L, xa) = (L, xarr ) is a complete intersection and the required formula follows from
Lemma 1.5.21. Thus we may assume that ai ≥ 1 for some i > r. There is an exact
sequence

0 −→ S/(xd22 , . . . , x
dr−1

r−1 , x
dr−ar
r , x

dr+1

r+1 , . . . , x
ds
s , x

ar+1

r+1 · · ·xass )[−ar]
xarr−→ (2.5.1)

S/(L, xa) −→ S/(xd22 , . . . , x
dr−1

r−1 , x
ar
r , x

dr+1

r+1 , . . . , x
ds
s ) −→ 0.

Notice that the ring on the right is a complete intersection and the ring on the left is
isomorphic to the tensor product

K[x2, . . . , xr]/(x
d2
2 , . . . , x

dr−1

r−1 , x
dr−ar
r )⊗K K[x1, xr+1, . . . , xs]/(x

dr+1

r+1 , . . . , x
ds
s , x

ar+1

r+1 · · ·xass ).
(2.5.2)
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Hence taking Hilbert series in Eq. (2.5.1), and applying Lemma 1.5.21, Theorem 1.5.17,
and Proposition 1.5.16, we get that the Hilbert series of S/(L, xa) can be written as

F (S/(L, xa), t) =
xar(1− xd2) · · · (1− xdr−1)(1− xdr−ar)

(1− x)r−1

g(x)

(1− x)
+

(1− xd2) · · · (1− xdr−1)(1− xar)(1− xdr+1) · · · (1− xds)
(1− x)s

,

where g(x)/(1 − x) is the Hilbert series of the second ring in the tensor product of
Eq. (2.5.2) and g(1) is its degree (Remark 1.5.20). By induction hypothesis

g(1) = dr+1 · · · ds − (dr+1 − ar+1) · · · (ds − as).

Therefore writing F (S/(L, xa), x) = h(x)/(1− x) with h(x) ∈ Z[x] and h(1) > 0, and
recalling that h(1) is the degree of S/(L, xa), we get

deg(S/(L, xa)) = h(1) = d2 · · · dr−1(dr − ar)g(1) + d2 · · · dr−1ardr+1 · · · ds
= d2 · · · ds − (d2 − a2) · · · (ds − as). 2

Lemma 2.5.3. Let L be the ideal of S generated by xd21 , . . . , x
dp
p−1, x

cp
p x

cp+1

p+1 , x
dp+2

p+2 , . . . , x
ds
s ,

where p ≥ 1, 1 ≤ cp ≤ cp+1 and di ≥ 1 for all i. If xa = xa11 · · ·xass is not in L,
dp+1 = cp + cp+1, and ai ≥ 1 for some i, then the degree of S/(L, xa) is equal to

• d2 · · · ds − (cp+1 − ap+1)

p−1∏
i=1

(di+1 − ai)
s∏

i=p+2

(di − ai) if ap ≥ cp;

• d2 · · · ds − (cp − ap)
p−1∏
i=1

(di+1 − ai)
s∏

i=p+2

(di − ai) if ap < cp, ap+1 ≥ cp+1;

• d2 · · · ds − (dp+1 − ap − ap+1)

p−1∏
i=1

(di+1 − ai)
s∏

i=p+2

(di − ai) if ap < cp, ap+1 < cp+1.

Proof. Case (i): Assume ap ≥ cp. If ai = 0 for i 6= p, then xa = x
ap
p , and by the first

equality of Proposition 2.5.2 and using Lemma 1.5.21, we get

deg(S/(L, xa)) = deg(S/(xd21 , . . . , x
dp
p−1, x

ap
p , x

dp+2

p+2 , . . . , x
ds
s , x

cp
p x

cp+1

p+1 ))

= deg(S/(xd21 , . . . , x
dp
p−1, x

cp
p , x

dp+2

p+2 , . . . , x
ds
s )) = d2 · · · dpcpdp+2 · · · ds

= d2 · · · dp(dp+1 − cp+1)dp+2 · · · ds = d2 · · · ds − cp+1d2 · · · dpdp+2 · · · ds,

as required. We may now assume that ai ≥ 1 for some i 6= p. As xa /∈ L and ap ≥ cp, one
has ai < di+1 for i = 1, . . . , p− 1, ap+1 < cp+1, and ai < di for i = p+ 2, . . . , s. Therefore
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from the exact sequence

0 −→ S/(xd21 , . . . , x
dp
p−1, x

cp+1

p+1 , x
dp+2

p+2 , . . . , x
ds
s , x

a1
1 · · · x

ap−1

p−1 x
ap−cp
p x

ap+1

p+1 · · · xass )[−cp]
x
cp
p−→

S/(L, xa) −→ S/(xd21 , . . . , x
dp
p−1, x

cp
p , x

dp+2

p+2 , . . . , x
ds
s ) −→ 0,

and using Proposition 2.5.2 together with Lemma 1.5.21, the required equality follows.

Case (ii): Assume ap < cp. If ai = 0 for i 6= p, then xa = x
ap
p and 0 = ap+1 < cp+1.

Hence, by Lemma 1.5.21 we get

deg(S/(L, xa)) = deg(S/(xd21 , . . . , x
dp
p−1, gp

ap , x
dp+2

p+2 , . . . , x
ds
s ))

= d2 · · · dpapdp+2 · · · ds
= d2 · · · ds − (dp+1 − ap)d2 · · · dpdp+2 · · · ds,

as required. We may now assume that ai ≥ 1 for some i 6= p. Consider the exact sequence

0 −→ S/(xd21 , . . . , x
dp
p−1, x

cp+1

p+1 , x
dp+2

p+2 , . . . , x
ds
s , x

a1
1 · · · x

ap−1

p−1 x
ap+1

p+1 · · ·xass )[−cp]
x
cp
p−→

S/(L, xa) −→ S/(xd21 , . . . , x
dp
p−1, x

cp
p , x

dp+2

p+2 , . . . , x
ds
s , x

a1
1 · · ·xass ) −→ 0. (2.5.3)

Subcase (ii.1): Assume ap+1 ≥ cp+1. As xa /∈ L, in our situation, one has ai < di+1 for
i = 1, . . . , p − 1, ap < cp, and ai < di for i = p + 2, . . . , s. If ai = 0 for i 6= p + 1, then
taking Hilbert series in Eq. (2.5.3) and noticing that the ring on the right has dimension
0, we get

deg(S/(L, xa)) = d2 · · · dpcp+1dp+2 · · · ds
= d2 · · · ds − cpd2 · · · dpdp+2 · · · ds,

as required. Thus we may now assume that ai ≥ 1 for some i 6= p + 1. Taking Hilbert
series in Eq. (2.5.3), and using Lemma 1.5.21, we obtain

deg(S/(L, xa)) = d2 · · · dpcp+1dp+2 · · · ds +

deg(S/(xd21 , . . . , x
dp
p−1, x

cp
p , x

dp+2

p+2 , . . . , x
ds
s , x

a1
1 · · ·xass )).

Therefore, using Proposition 2.5.2, the required equality follows.

Subcase (ii.2): Assume ap+1 < cp+1. If ai = 0 for i 6= p + 1, taking Hilbert series in
Eq. (2.5.3) and noticing that the ring on the right has dimension 0, by Proposition 2.5.2,
we get

deg(S/(L, xa)) = d2 · · · dpcp+1dp+2 · · · ds − d2 · · · dp(cp+1 − ap+1)dp+2 · · · ds
= d2 · · · dpap+1dp+2 · · · ds
= d2 · · · ds − (dp+1 − ap+1)d2 · · · dpdp+2 · · · ds,

as required. Thus we may now assume that ai ≥ 1 for some i 6= p + 1. Taking Hilbert
series in Eq. (2.5.3) and applying Proposition 2.5.2 to the ends of Eq. (2.5.3) the required
equality follows.
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Proposition 2.5.4. Let I ⊂ S be a graded ideal and let ≺ be a monomial order. Suppose
that in≺(I) is a complete intersection of height s− 1 generated by xα2 , . . . , xαs with di =
deg(xαi) and di ≥ 1 for all i. The following hold.

(a) I is a complete intersection and dim(S/I) = 1.

(b) deg(S/I) = d2 · · · ds and reg (S/I) =
∑s

i=2(di − 1).

(c) 1 ≤ fpI(d) ≤ δI(d) for d ≥ 1.

Proof. (a): The rings S/I and S/in≺(I) have the same dimension. Thus dim(S/I) = 1. As
≺ is a graded order, there are f2, . . . , fs homogeneous polynomials in I with in≺(fi) = xαi

for i ≥ 2. Since in≺(I) = (in≺(f2), . . . , in≺(fs)), the polynomials f2, . . . , fs form a Gröbner
basis of I, and in particular they generate I. Hence I is a graded ideal of height s − 1
generated by s− 1 polynomials, that is, I is a complete intersection.

(b): Since I is a complete intersection generated by the fi’s, then the degree and
regularity of S/I are deg(f2) · · · deg(fs) and

∑s
i=2(deg(fi)− 1), respectively. This follows

from the formula for the Hilbert series of a complete intersection given in Lemma 1.5.21.

(c) The ideal I is unmixed because, by part (a), I is a complete intersection. Hence the
inequality δI(d) ≥ fpI(d) follows from Theorem 2.3.2. Let xa be a standard monomial of
S/I of degree d such that (in≺(I) : xa) 6= in≺(I), that is, xa is inM≺,d. Using Lemma 2.5.1,
and the formulas for deg(S/(in≺(I), xa)) given in Proposition 2.5.2 and Lemma 2.5.3, we
obtain that deg(S/(in≺(I), xa)) < deg(S/I). Thus fpI(d) ≥ 1.

Remark 2.5.5. Parts (a)-(c) of Proposition 2.5.4 do not need any assumption on the
height.

We come to one of the main result of this section.

Theorem 2.5.6. Let I ⊂ S be a graded ideal and let ≺ be a monomial order. If in≺(I)
is a complete intersection of height s− 1 generated by xα2 , . . . , xαs with di = deg(xαi) and
1 ≤ di ≤ di+1 for i ≥ 2, then δI(d) ≥ fpI(d) ≥ 1 and the footprint function in degree
d ≥ 1 is given by

fpI(d) =


(dk+2 − `)dk+3 · · · ds if d ≤

s∑
i=2

(di − 1)− 1,

1 if d ≥
s∑
i=2

(di − 1) ,

where 0 ≤ k ≤ s − 2 and ` are the unique integers such that d =
∑k+1

i=2 (di − 1) + ` and
1 ≤ ` ≤ dk+2 − 1.

Proof. Let xa be any standard monomial of S/I of degree d which is a zero divisor of
S/in≺(I), that is, xa is in M≺,d. Thus d =

∑s
i=1 ai, where a = (a1, . . . , as). We set
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r =
∑s

i=2(di − 1). If we substitute −` =
∑k+1

i=2 (di − 1) −
∑s

i=1 ai in the expression
(dk+2 − `)dk+3 · · · ds, it follows that for d < r the inequality

fpI(d) ≥ (dk+2 − `)dk+3 · · · ds

is equivalent to show that

deg(S/I)− deg(S/(in≺(I), xa)) ≥

(
k+2∑
i=2

(di − ai)− k − a1 −
s∑

i=k+3

ai

)
dk+3 · · · ds (2.5.4)

for any xa in M≺,d, where by convention
∑s

i=k+3 ai = 0 and dk+3 · · · ds = 1 if k = s− 2.
Recall that by Proposition 2.5.4 one has that fpI(d) ≥ 1 for d ≥ 1. By Lemma 2.5.1, and
by permuting variables and changing I, ≺, and xa accordingly, one has the following two
cases to consider.

Case (i): Assume that in≺(I) = (xd22 , . . . , x
ds
s ) with 1 ≤ di ≤ di+1 for i ≥ 2. Then, as

xa is inM≺,d, we can write xa = xa11 · · ·xarr · · ·xass , r ≥ 2, ar ≥ 1, ai = 0 if 2 ≤ i < r, and
ai ≤ di − 1 for i ≥ r. By Proposition 2.5.2 we get

deg(S/(in≺(I), xa)) = d2 · · · ds − (d2 − a2) · · · (ds − as) (2.5.5)

for any xa in M≺,d. If d ≥ r, setting xc = xd−r1 xd2−1
2 · · ·xds−1

s , one has xc ∈ M≺,d. Then,
using Eq. (2.5.5), it follows that deg(S/(in≺(I), xc)) = d2 · · · ds − 1. Thus fpI(d) ≤
1 and equality fpI(d) = 1 holds. We may now assume d ≤ r − 1. Setting xb =

xd2−1
2 · · ·xdk+1−1

k+1 x`k+2, one has xb ∈M≺,d. Then, using Eq. (2.5.5), we get

deg(S/(in≺(I), xb)) = d2 · · · ds − (dk+2 − `)dk+3 · · · ds.

Hence fpI(d) ≤ (dk+2 − `)dk+3 · · · ds. Next we show the reverse inequality by showing
that the inequality of Eq. (2.5.4) holds for any xa ∈ M≺,d. By Eq. (2.5.5) it suffices to
show that the following equivalent inequality holds

(d2 − a2) · · · (ds − as) ≥

(
k+2∑
i=2

(di − ai)− k − a1 −
s∑

i=k+3

ai

)
dk+3 · · · ds

for any a = (a1, . . . , as) such that xa ∈ M≺,d. This inequality follows from Proposi-
tion 2.4.3 by making m = s− 1, ei = di+1, bi = ai+1 for i = 1, . . . , s− 1 and b0 = 1 + a1.

Case (ii): Assume that in≺(I) = (xd21 , . . . , x
dp
p−1, x

cp
p x

cp+1

p+1 , x
dp+2

p+2 , . . . , x
ds
s ) for some p ≥ 1

such that 1 ≤ cp ≤ cp+1 and 1 ≤ di ≤ di+1 for all i, where dp+1 = cp + cp+1.

If d ≥ r, setting xc = xd2−1
1 · · ·xdp−1

p−1 x
d−r+cp
p x

cp+1−1
p+1 x

dp+2−1
p+2 · · ·xds−1

s , we get that xc ∈
M≺,d. Then, using the first formula of Lemma 2.5.3, it follows that deg(S/(in≺(I), xc)) =
d2 · · · ds − 1. Thus fpI(d) ≤ 1 and the equality fpI(d) = 1 holds.

We may now assume d ≤ r − 1. First we show the inequality fpI(d) ≥ (dk+2 −
`)dk+3 · · · ds by showing that the inequality of Eq. (2.5.4) holds for any xa inM≺,d. Take
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xa in M≺,d. Then we can write xa = xa11 · · ·xass with ai < di+1 for i < p and ai < di for
i > p+ 1. There are three subcases to consider.

Subcase (ii.1): Assume ap ≥ cp. Then cp+1 > ap+1 because xa is a standard monomial
of S/I, and by Lemma 2.5.3 we get

deg(S/(in≺(I), xa)) = d2 · · · ds − (cp+1 − ap+1)

p−1∏
i=1

(di+1 − ai)
s∏

i=p+2

(di − ai).

Therefore the inequality of Eq. (2.5.4) is equivalent to

(cp+1 − ap+1)

p−1∏
i=1

(di+1 − ai)
s∏

i=p+2

(di − ai)

≥

(
k+2∑
i=2

(di − ai)− k − a1 −
s∑

i=k+3

ai

)
dk+3 · · · ds,

and this inequality follows at once from Proposition 2.4.3 by making m = s− 1, ei = di+1

for i = 1, . . . ,m, bi = ai for 1 ≤ i ≤ p − 1, bp = ap+1 + cp, bi = ai+1 for p < i ≤ m, and
b0 = ap − cp + 1. Notice that

∑m
i=0 bi = 1 +

∑s
i=1 ai.

Subcase (ii.2): Assume ap < cp, ap+1 ≥ cp+1. By Lemma 2.5.3 we get

deg(S/(in≺(I), xa)) = d2 · · · ds − (cp − ap)
p−1∏
i=1

(di+1 − ai)
s∏

i=p+2

(di − ai).

Therefore the inequality of Eq. (2.5.4) is equivalent to

(cp − ap)
p−1∏
i=1

(di+1 − ai)
s∏

i=p+2

(di − ai)

≥

(
k+2∑
i=2

(di − ai)− k − a1 −
s∑

i=k+3

ai

)
dk+3 · · · ds,

and this inequality follows from Proposition 2.4.3 by making m = s − 1, ei = di+1 for
i = 1, . . . ,m, bi = ai for 1 ≤ i ≤ p − 1, bp = cp+1 + ap, bi = ai+1 for p < i ≤ m, and
b0 = ap+1 − cp+1 + 1. Notice that

∑m
i=0 bi = 1 +

∑s
i=1 ai.

Subcase (ii.3): Assume ap < cp, ap+1 ≤ cp+1 − 1. By Lemma 2.5.3 we get

deg(S/(in≺(I), xa)) = d2 · · · ds − (dp+1 − ap − ap+1)

p−1∏
i=1

(di+1 − ai)
s∏

i=p+2

(di − ai).
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Therefore the inequality of Eq. (2.5.4) is equivalent to

(dp+1 − ap − ap+1)

p−1∏
i=1

(di+1 − ai)
s∏

i=p+2

(di − ai)

≥

(
k+2∑
i=2

(di − ai)− k − a1 −
s∑

i=k+3

ai

)
dk+3 · · · ds,

and this inequality follows from Proposition 2.4.3 by making m = s − 1, ei = di+1 for
i = 1, . . . ,m, bi = ai for 1 ≤ i ≤ p−1, bp = ap+ap+1, bi = ai+1 for p < i ≤ m, and b0 = 1.
Notice that

∑m
i=0 bi = 1 +

∑s
i=1 ai.

To complete the proof, we now show the inequality fpI(d) ≤ (dk+2 − `)dk+3 · · · ds. It
suffices to find a monomial xb in M≺,d such that

deg(S/(in≺(I), xb)) = (dk+2 − `)dk+3 · · · ds. (2.5.6)

Subcase (ii.a): k ≥ p+ 1. Setting xb = xd2−1
1 · · ·xdp−1

p−1 x
cp
p x

cp+1−1
p+1 x

dp+2−1
p+2 · · ·xdk+1−1

k+1 x`k+2,
one has that xb is inM≺,d. Then, by the first formula of Lemma 2.5.3, we get the equality
of Eq. (2.5.6).

Subcase (ii.b): k = p. Setting xb = xd2−1
1 · · ·xdp−1

p−1 x
cp
p x

cp+1−1
p+1 x`p+2, one has that xb is in

M≺,d. Then, by the first formula of Lemma 2.5.3, we get the equality of Eq. (2.5.6).

Subcase (ii.c): k ≤ p − 2. Setting xb = xd2−1
1 · · ·xdk+1−1

k x`k+1, one has that xb is in
M≺,d. Then, by the third formula of Lemma 2.5.3, we get the equality of Eq. (2.5.6).

Subcase (ii.d): Assume k = p− 1 and ` ≥ cp. Setting xb = xd2−1
1 · · ·xdp−1

p−1 x
cp
p x

`−cp
p+1 , one

has that xb is inM≺,d. Then, by the first formula of Lemma 2.5.3, we get the equality of
Eq. (2.5.6).

Subcase (ii.e): Assume k = p − 1 and ` < cp. Setting xb = xd2−1
1 · · · xdp−1

p−1 x
`
p, one has

that xb is in M≺,d. Then, by the third formula of Lemma 2.5.3, we get the equality of
Eq. (2.5.6).

It is an open question whether in Theorem 2.5.6 one has the equality δI(d) = fpI(d)
for d ≥ 1. The reader is referred to [40] for some interesting applications of this result to
algebraic coding theory. In Section 3.3, we give some applications and examples of our
main result. A formula for the minimum distance of an affine Cartesian code is given in
[34, Theorem 3.8] and in [19, Proposition 5]. A short and elegant proof of this formula
was given by Carvalho in [10, Proposition 2.3], where he shows that the best way to study
the minimum distance of an affine Cartesian code is by using the footprint. In Section
3.3, we prove this formula.

The lower bound of Theorem 2.5.6 holds for any complete intersection monomial ideal
of dimension 1. To show this we need to introduce some results.

Lemma 2.5.7. Let I ⊂ S be a complete intersection ideal with minimal set of generators
{xα1 , . . . , xαr} and let xa = xa11 · · ·xass be a zero divisor of S/I not in I. The following
hold.
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(a) xαi and xαj have no common variable for i 6= j.

(b) If x
aj
j is regular on S/I and xc = xa/x

aj
j , then (I : xa) = (I : xc).

(c) If xj is a zero divisor of S/I, then there is a unique αi = (αi,1, . . . , αi,s) such that
αi,j > 0, that is, xj occurs in exactly one xαi. If aj > αi,j and xc = xa/xj, then
(I : xa) = (I : xc).

(d) For each i there is xβi dividing xαi such that deg(xβi) < deg(xαi) and (I : xa) =
(I : xβ), where xβ = xβ1 · · ·xβr .

Proof. (a): This follows readily from the Krull principal ideal theorem [58, Theorem 2.3.16].

(b): The inclusion “⊃” is clear. To show the reverse inclusion take xδ in (I : xa), that
is, xδxa = xδx

aj
j x

c is in I. Hence xδxc is in I because x
aj
j is regular on S/I. Thus xδ is in

(I : xc).

(c): If xj is a zero divisor of S/I, then xj is in some associated prime of S/I. Hence,
by part (a), xj must occur in a unique xαi for some i. Thus one has αi,j > 0. We claim
that ((xαk) : xa) = ((xαk) : xc) for all k. If k 6= i, by part (a), xj is regular on S/(xαk).
Thus, as in the proof of part (b), we get the asserted equality. Next we assume that k = i.
The inclusion “⊃” is clear. To show the reverse inclusion take xδ in ((xαi) : xa), that is,
xδxa = xγxαi for some xγ. Since aj > αi,j > 0, xj must divide xγ. Then we can write
xδxc = xωxαi , where xω = xγ/xj. Thus xδ is in ((xαi) : xc). This completes the proof of
the claim. Therefore one has

(I : xa) = ((xα1) : xa) + · · ·+ ((xαr) : xa)

= ((xα1) : xc) + · · ·+ ((xαr) : xc) = (I : xc).

(d): Using part (a) and successively applying parts (b) and (c) to xa, we get a monomial
xβ that divides xa such that the following conditions are satisfied: (i) all variables that
occur in xβ are zero divisors of S/I, (ii) if xβ = xγ11 · · ·xγss and γj > 0, then αi,j ≥ γj, where
xαi is the unique monomial, among xα1 , . . . , xαr , containing xj, and (iii) (I : xa) = (I : xβ).
We let xβi be the product of all x

γj
j such that xj occurs in xαi . Clearly xβi divides xαi ,

and deg(xαi) > deg(xβi) because xa is not in I by hypothesis.

The next result gives some additional support to Conjecture 2.2.2.

Proposition 2.5.8. Let I ⊂ S be a complete intersection monomial ideal of dimension
≥ 1 minimally generated by xα1 , . . . , xαr . If di = deg(xαi) for i = 1, . . . , r. The following
hold.

(a) reg(S/I) =
∑r

i=1(di − 1),

(b) δI(d) = 1 if d ≥ reg(S/I),

(c) δI(d) ≤ (dk+1 − `) dk+2 · · · dr if d < reg(S/I), where 0 ≤ k ≤ r−1 and ` are integers
such that d =

∑k
i=1 (di − 1) + ` and 1 ≤ ` ≤ dk+1 − 1.
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Proof. (a): This follows at once from Proposition 2.5.4.

(b): By Lemma 2.5.7(a) the monomials xαi and xαj have no common variables for
i 6= j. For each i pick xji in xαi . If I is prime, then I = (xj1 , . . . , xjr), reg(S/I) = 0,
Fd = ∅ and δI(d) = 1 for d ≥ 1. Thus we may assume that I is not prime. We claim
that Fd 6= ∅ for d ≥ 1. As I is not prime, there is m such that xjm a zero divisor of
S/I not in I. If a variable xn is not in xαi for any i, then xn is a regular element on
S/I, and Fd 6= ∅ because xjmx

d−1
n is in Fd. If any variable xn is in xαi for some i, then

any monomial of degree d is a zero divisor of S/I because any variable xn belongs to at
least one associated prime of S/I. As dim(S/I) ≥ 1, one has md 6⊂ I. Pick a monomial
xa of degree d not in I. Then Fd 6= ∅ because xa is in Fd. This completes the proof
of the claim. We set xci = xαi/xji for i = 1, . . . , r and xc = xc1 · · ·xcr . Then it is seen
that (I : xc) = (xj1 , . . . , xjr) and deg S/(I : xc) = 1. Notice that xc is a zero divisor of
S/I, xc /∈ I and deg(xc) = reg(S/I). Hence, by Theorem 2.1.7, we get that δI(d) = 1 for
d = reg(S/I). Thus, by Theorem 2.1.9(ii), we get δI(d) = 1 for d ≥ reg(S/I).

(c): There is a monomial xa of degree ` that divides xαk+1 because ` is a positive
integer less than or equal to dk+1 − 1. Setting xc = xc1 · · ·xckxa and xγ = xαk+1/xa, one
has

(I : xc) = (xj1 , . . . , xjk , x
γ, xαk+2 , . . . , xαr).

Hence, by Proposition 2.5.4, we get deg(S/(I : xc)) = (dk+1− `)dk+2 · · · dr because (I : xc)
is a complete intersection. Since deg(xc) = d =

∑k
i=1 (di − 1)+`, xc is not in I, and xc is a

zero divisor of S/I, by Theorem 2.1.7 we get that deg(S/(I : xc)) ≥ δI(d), as required.

We are ready to present the other main result of this section, showing that the lower
bound of Theorem 2.5.6 holds when I is a complete intersection monomial ideal of dimen-
sion 1.

Theorem 2.5.9. Let I ⊂ S be a complete intersection monomial ideal of dimension ≥ 1
minimally generated by xα1 , . . . , xαr and let d ≥ 1 be an integer. If di = deg(xαi) for
i = 1, . . . , r and d1 ≤ · · · ≤ dr, then

δI(d) = fpI(d) =


(dk+1 − `) dk+2 · · · dr if d <

r∑
i=1

(di − 1) ,

1 if d ≥
r∑
i=1

(di − 1) ,

where 0 ≤ k ≤ r − 1 and ` are the unique integers such that d =
∑k

i=1 (di − 1) + ` and
1 ≤ ` ≤ dk+1 − 1.

Proof. The ideal I is unmixed because I is Cohen–Macaulay. Hence, by Proposition 2.3.3,
I is Geil–Carvalho, that is, δI(d) = fpI(d) for d ≥ 1. Therefore, by Proposition 2.5.8, it
suffices to show that

fpI(d) ≥ (dk+1 − `)dk+2 · · · dr for d < reg(S/I).
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Let xa be a monomial of degree d such that xa /∈ I and (I : xa) 6= I. By Lemma 2.5.7(d),
for each i there is a monomial xβi dividing xαi such that deg(xβi) < deg(xαi) and
(I : xa) = (I : xβ), where xβ = xβ1 · · ·xβr . One can write

xαi = x
αi,1

1 · · ·xαi,s
s and xβi = x

βi,1
1 · · ·xβi,ss

for i = 1, . . . , r. According to Lemma 2.5.7(a) the monomials xαi and xαj have no common
variables for i 6= j. As (I : xβ) is a monomial ideal, it follows that

(I : xa) = (I : xβ) = ({xαi,1−βi,1
1 · · ·xαi,s−βi,s

s }ri=1).

Hence, setting gi = x
αi,1−βi,1
1 · · ·xαi,s−βi,s

s for i = 1, . . . , r and observing that gi and gj
have no common variables for i 6= j, we get that g1, . . . , gr form a regular sequence, that
is, (I : xa) is again a complete intersection. Thus, by Proposition 2.5.4, we obtain

deg(S/(I : xa)) =
r∏
i=1

[
s∑
j=1

(αi,j − βi,j)

]
=

r∏
i=1

[
deg(xαi)− deg(xβi)

]
.

Therefore, setting bi = deg(xβi) for i = 1, . . . , r, we get

deg(S/(I : xa)) =
r∏
i=1

(di − bi).

Thus, by Theorem 2.1.7, it suffices to show the inequality

deg(S/(I : xa)) =
r∏
i=1

(di − bi) ≥ (dk+1 − `)dk+2 · · · dr.

Noticing that d = deg(xa) =
∑k

i=1 (di − 1) + ` ≥ deg(xβ) =
∑r

i=1 bi, one has(
dk+1 +

k∑
i=1

(di − 1)−
r∑
i=1

bi

)
dk+2 · · · dr ≥ (dk+1 − `)dk+2 · · · dr.

Hence, we need only show the inequality

r∏
i=1

(di − bi) ≥

(
k+1∑
i=1

(di − bi)− k −
r∑

i=k+2

bi

)
dk+2 · · · dr,

which follows making b0 = 1 and m = r in Proposition 2.4.3.

The formula of Theorem 2.5.9, is also valid in dimension zero for d <
∑r

i=1 (di − 1).
Now, for d ≥

∑r
i=1 (di − 1), the set Fd is empty simply because (S/I)d = (0), and so by

definition, δI(d) = deg(S/I).

The most basic application is for complete intersections in P1.
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Corollary 2.5.10. If X is a finite subset of P1 and I(X) is a complete intersection, then

δI(X)(d) = fpI(X)(d) =

{
|X| − d if 1 ≤ d ≤ |X| − 2,

1 if d ≥ |X| − 1.

Proof. Let f be the generator of I(X). In this case d2 = deg(f) = |X| and reg(S/I(X)) =
|X| − 1. By Proposition 1.8.8 and Theorem 2.5.6 one has

δX(d) = δI(X)(d) ≥ fpI(X)(d) = |X| − d for 1 ≤ d ≤ |X| − 2,

and δX(d) = 1 for d ≥ |X| − 1. Assume that 1 ≤ d ≤ |X| − 2. Pick [P1], . . . , [Pd] points
in P1. By Lemma 1.7.3, the vanishing ideal I[Pi] of [Pi] is a principal ideal generated by
a linear form hi. Notice that VX(hi), the zero set of hi in X, is equal to {[Pi]}. Setting
h = h1 · · ·hd, we get a homogeneous polynomial of degree d with exactly d zeros. Thus
δX(d) ≤ |X| − d.
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Chapter 3

Minimum Distance of
Reed–Muller-type Codes

In this chapter we show that the minimum distance function of a graded ideal in a poly-
nomial ring with coefficients in a field generalizes the minimum distance of projective
Reed–Muller-type codes over finite fields. This gives an algebraic formulation of the min-
imum distance of a projective Reed–Muller-type code in terms of the algebraic invariants
and structure of the underlying vanishing ideal. Then we give a method, based on Gröbner
bases and Hilbert functions, to find lower bounds for the minimum distance of certain
Reed–Muller-type codes. As an application we recover a formula for the minimum dis-
tance of an affine Cartesian code and the fact that in this case the minimum distance
and the footprint functions coincide. Then we present an extension of a result of Alon
and Füredi, about coverings of the cube by affine hyperplanes, in terms of the regularity
of a vanishing ideal. Finally we show explicit upper bounds for the number of zeros of
polynomials in a projective nested Cartesian set and give some support to a conjecture
of Carvalho, Lopez-Neumann and López.

Some of our results rely on degree formulas to compute the number of zeros that a
homogeneous polynomial has in any given finite set of points in a projective space.

3.1 Computing the number of zeros using the degree

In this section we give a degree formula to compute the number of zeros that a homo-
geneous polynomial has in any given finite set of points in a projective space over any
field.

Let Ps−1 be a projective space over a field K, and let X be a subset of Ps−1. The
vanishing ideal of X, denoted by I(X), is the ideal in a polynomial ring S = K[x1, . . . , xs]
generated by homogeneous polynomials that vanish at all points of X.

Lemma 3.1.1. Let X be a finite subset of Ps−1 over a field K and let I(X) ⊂ S be its
graded vanishing ideal. If 0 6= f ∈ S is homogeneous, then the number of zeros of f in X
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is given by

|VX(f)| =
{

deg(S/(I(X), f)) if (I(X) : f) 6= I(X),
0 if (I(X) : f) = I(X).

Proof. Let [P1], . . . , [Pm] be the points of X with m = |X| and let [P ] be a point in X,
with P = (α1, . . . , αs) and αk 6= 0 for some k. Then the vanishing ideal I[P ] of [P ] is a
prime ideal of height s− 1,

I[P ] = ({αkxi − αixk| k 6= i ∈ {1, . . . , s}), deg(S/I[P ]) = 1,

and I(X) =
⋂m
i=1 I[Pi] is a primary decomposition (Lemma 1.7.3). In particular I(X) is an

unmixed radical ideal of dimension 1.

Assume that (I(X) : f) 6= I(X). Let A be the set of all I[Pi] that contain the polynomial
f . Then f(Pi) = 0 if and only if I[Pi] is in A. Hence, by Lemma 1.5.29, we get

|VX(f)| =
∑

[Pi]∈VX(f)

deg(S/I[Pi]) =
∑
f∈I[Pi]

deg(S/I[Pi]) = deg(S/(I(X), f)).

If (I(X) : f) = I(X), then f is a regular element of S/I(X). This means that f is not
in any of the associated primes of I(X), that is, f /∈ I[Pi] for all i. Thus VX(f) = ∅ and
|VX(f)| = 0.

Corollary 3.1.2. Let X be a finite subset of Ps−1, let I(X) ⊂ S be its vanishing ideal,
and let ≺ be a monomial order. If 0 6= f ∈ S is homogeneous and (I(X) : f) 6= I(X), then

|VX(f)| = deg(S/(I(X), f)) ≤ deg(S/(in≺(I(X))), in≺(f)) ≤ deg(S/I(X)),

and deg(S/(I(X), f)) < deg(S/I(X)) if f /∈ I(X).

Proof. It follows from Lemma 3.1.1 and Lemma 2.1.4.

Corollary 3.1.3. Let I = I(X) be the vanishing ideal of a finite set X of a projective
points, let f ∈ F≺,d, and in≺(f) = xa1i · · · xass . If in≺(I) is generated by xd22 · · ·xds2 , then
there is r ≥ 2 such that ar ≥ 1, ai ≤ di − 1 for i ≥ r, ai = 0 if 2 ≤ i ≤ r, and

|VX(f)| = d2 · · · ds − (d2 − a2) · · · (ds − as).

Proof. As f is a zero divisor of S/I, by Lemma 1.6.14, xa = in≺(f) is a zero divisor of
S/in≺(I). Hence, there is r ≥ 2 such that ar ≥ 1 and ai = 0 if 2 ≤ i < r. Using that xa is
a standard monomial of S/I, we get that ai ≤ di − 1 for i ≥ r. Therefore, using Lemma
3.1.1 together with Lemma 2.5.2 and Corollary 3.1.2, we get

|VX(f)| = deg(S/(I(X), f)) ≤ deg(S/(in≺(I(X))), in≺(f))

= d2 · · · ds − (d2 − a2) · · · (ds − as).
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The following examples shows how to calculate the number of zeros of a polynomial
in a finite set of points in a projective space.

Example 3.1.4. Let VX(F ) be the variety in X = P2 defined by the polynomial

F = x3
1 + x3

2 + x3
3 + x1x2x3

over the field K = F13. Using Lemma 3.1.1 and the following procedure for Macaulay2
[25] we obtain that F has 18 zeros in P2. Notice that I(X) = (x13

1 x2 − x1x
13
2 , x

13
1 x3 −

x1x
13
3 , x

13
2 x3 − x2x

13
3 ).

S=GF(13)[x1,x2,x3];

Ixx=ideal(x1^13*x2-x1*x2^13,x1^13*x3-x1*x3^13,x2^13*x3-x2*x3^13)

F=x1^3+x2^3+x3^3+x1*x2*x3

quotient(Ixx,F)==Ixx

degree ideal(Ixx,F)

Example 3.1.5. Let VX(F ) be the variety in X = P2 defined by the polynomial

F = x3
1 + x3

2 + x3
3 − 3x1x2x3 − 3x2

1x2 − 3x2
2x3 − 3x1x

2
3

over the finite field K = F13. Using Macaulay2 [25] with the procedure below we obtain
that F has no zeros in P2. Notice that I(X) = (x13

1 x2−x1x
13
2 , x

13
1 x3−x1x

13
3 , x

13
2 x3−x2x

13
3 ).

R=GF(13)[x1,x2,x3];

F=ideal(x1^3+x2^3+x3^3-3*x1*x2*x3-3*x1^2*x2-3*x2^2*x3-3*x1*x3^2)

Ix=ideal(x1^13*x2-x1*x2^13,x1^13*x3-x1*x3^13,x2^13*x3-x2*x3^13)

J=ideal(Ix,F)

quotient(Ix,F)==Ix

degree J

3.2 Minimum distance of Reed–Muller-type codes

In this section we give an algebraic formulation of the minimum distance of a projec-
tive Reed–Muller-type code in terms of the degree and the structure of the underlying
vanishing ideal.

Theorem 3.2.1. If K = Fq is a finite field and |X| ≥ 2, then δX(d) = δI(X)(d) ≥ 1 for
d ≥ 1.

Proof. Setting I = I(X), by Lemma 1.8.6, the set Fd := { f ∈ Sd : f /∈ I, (I : f) 6= I} is
not empty for d ≥ 1. Hence, using the formula for VX(f) of Lemma 3.1.1, we obtain

max{|VX(f)| : evd(f) 6= 0; f ∈ Sd} = max{deg(S/(I, f))| f ∈ Fd}.
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Therefore, using that deg(S/I) = |X|, we get

δX(d) = min{‖evd(f)‖ : evd(f) 6= 0; f ∈ Sd}
= |X| −max{|VX(f)| : evd(f) 6= 0; f ∈ Sd}
= deg(S/I)−max{deg(S/(I, f))| f ∈ Fd} = δI(d),

where ‖evd(f)‖ is the number of non-zero entries of evd(f).

If I is a graded ideal and ∆≺(I)∩Sd = {xa1 , . . . , xan}, recall that the set F≺,d is equal
to the set of standard polynomials of S/I of degree d which are zero divisors of S/I:

F≺,d := {f =
∑

i λix
ai | f 6= 0, λi ∈ K, (I : f) 6= I} .

The next result gives a description of the minimum distance which is suitable for
computing this number using a computer algebra system such as Macaulay2 [25].

Corollary 3.2.2. If K = Fq, |X| ≥ 2, I = I(X), and ≺ is a monomial order, then

δX(d) = deg S/I −max{deg(S/(I, f))| f ∈ F≺,d} ≥ 1 for d ≥ 1.

Proof. It follows from Proposition 2.1.15 and Theorem 3.2.1.

The expression for δX(d) of Corollary 3.2.2 gives and algorithm that can be imple-
mented in Macaulay2 [25] to compute δX(d) (Example 3.2.6). However, in practice, we
can only find the minimum distance for small values of q and d. Indeed, if n = |∆≺(I)∩Sd|,
to compute δI(X) requires to test the inequality (I(X) : f) 6= I(X) and compute the corre-
sponding degree of S/(I(X), f) for the qn − 1 standard polynomials of S/I.

Corollary 3.2.3. Let X be a finite subset of Ps−1, let I(X) be its vanishing ideal, and let
≺ be a monomial order. If the initial ideal in≺(I(X)) is a complete intersection generated
by xα2 , . . . , xαs, with di = deg(xαi) and 1 ≤ di ≤ di+1 for i ≥ 2, then

|VX(f)| ≤ deg(S/(I(X)))− (dk+2 − `)dk+3 · · · ds,

for any f ∈ Sd that does not vanish at all points of X, where 0 ≤ k ≤ s − 2 and ` are
integers such that d =

∑k+1
i=2 (di − 1) + ` and 1 ≤ ` ≤ dk+2 − 1.

Proof. It follows from Theorems 2.5.6 and 3.2.1.

Corollary 3.2.4. Let K = Fq be a finite field, let ≺ be a monomial order, and let X be
a subset of Ps−1. Then, δX(d) ≥ fpI(X)(d) ≥ 0 for d ≥ 1.

Proof. The inequalities δX(d) ≥ fpI(X)(d) ≥ 0 follow from Theorems 2.3.2 and 3.2.1.

One can use Corollary 3.2.4 to estimate the minimum distance of any Reed–Muller-
type code over a set X parameterized by a set of relatively prime monomials and one has
the following result that can be used to compute the vanishing ideal of X using Gröbner
bases and elimination theory.
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Theorem 3.2.5. [52] Let K = Fq be a finite field. If X is a subset of Ps−1 parameterized
by monomials yv1 , . . . , yvs in the variables y1, . . . , yn, then

I(X) = ({xi − yviz}si=1 ∪ {y
q
i − yi}ni=1) ∩ S,

and I(X) is a binomial ideal.

As an application, Corollary 3.2.4 will be used to study the minimum distance of
projective nested Cartesian codes [11] over a set X . In this case one has a Gröbner basis
for I(X ) [11] (Section 3.5).

In the following example, we present an implementation on Macaulay2 to calculate the
minimum distance function and footprint function. In particular, shows that the footprint
is a lower bound for the minimum distance.

Example 3.2.6. Let X be the set in P3 parameterized by y1y2, y2y3, y3y4, y1y4 over the
field F3. Using Theorem 3.2.5, Corollary 3.2.2, and the following procedure for Macaulay2
[25] we get

d 1 2 3 · · ·
|X| 16 16 16 · · ·

HX(d) 4 9 16 · · ·
δX(d) 9 4 1 · · ·

fpI(X)(d) 6 3 1 · · ·

q=3

R=ZZ/q[y1,y2,y3,y4,z,x1,x2,x3,x4,MonomialOrder=>Eliminate 5];

f1=y1*y2, f2=y2*y3, f3=y3*y4, f4=y4*y1

J=ideal(y1^q-y1,y2^q-y2,y3^q-y3,y4^q-y4,x1-f1*z,x2-f2*z,x3-f3*z,x4-f4*z)

C4=ideal selectInSubring(1,gens gb J)

S=ZZ/q[x1,x2,x3,x4];

I=sub(C4,S)

M=coker gens gb I

h=(d)->degree M - max apply(apply(apply(apply(

toList (set(0..q-1))^**(hilbertFunction(d,M))-

(set{0})^**(hilbertFunction(d,M)), toList),x->basis(d,M)*vector x),

z->ideal(flatten entries z)),x-> if not

quotient(I,x)==I then degree ideal(I,x) else 0)--The function h(d)

--gives the minimum distance in degree d

h(1), h(2)

f=(a1) -> degree ideal(a1,leadTerm gens gb I)

fp=(d)->degree M - max apply(flatten entries basis(d,M),f)--The

--function fp(d) gives the footprint in degree d

L=toList(1..regularity M)

apply(L,fp)
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Let CX(d) be a projective Reed–Muller-type code. If d ≥ reg(S/I(X)), then δX(d) = 1.
The converse is not true as the next example shows.

Example 3.2.7. Let X = {[(1, 1, 1)], [(1,−1, 0)], [(1, 0,−1)], [(0, 1,−1)], [(1, 0, 0)]} and let
I be its vanishing ideal over the finite field F3. Using Macaulay2 [25] we obtain that
reg(S/I) = 3. Notice that δX(1) = 1 because the polynomial x1 + x2 + x3 vanishes at all
points of X \ {[(1, 0, 0)]}.

The next example shows that δI is not in general non-increasing. This is why we often
require that the dimension of I be at least 1 or that I is unmixed with at least 2 minimal
primes.

Example 3.2.8. Let I be the ideal of F5[x1, x2] generated by x7
1, x

5
2, x

2
1x2, x1x

3
2. Using

Corollary 3.2.2 and Macaulay2 [25] we get that the regularity of S/I is 7, that is, HI(d) = 0
for d ≥ 7, and

d 1 2 3 4 5 6 · · ·
deg(S/I) 13 13 13 13 13 13 · · ·
HI(d) 2 3 3 2 1 1 · · ·
δI(d) 6 2 1 1 2 1 · · ·

3.3 Minimum distance of affine Cartesian codes

In this section, as an application of Theorem 2.5.6 and Theorem 3.2.1 we recover the
formula for the minimum distance of an affine Cartesian code by examining the underlying
vanishing ideal.

Let K = Fq be a finite field, let A2, . . . , As be a collection of subsets of K, and let

X = [1× A2 × · · · × As]

be the image of 1×A2 × · · · ×As \ {0} under the map Ks \ {0} → Ps−1, x→ [x]. CX (d)
denoted the corresponding d-th affine Reed–Muller-type code, and is called the d-th affine
nested Cartesian code.

Corollary 3.3.1. [19, 34] Let K be a field and let CX(d) be the projective Reed–Muller-
type code of degree d on the finite set X = [1×A2× · · · ×As] ⊂ Ps−1. If 1 ≤ di ≤ di+1 for
i ≥ 2, with di = |Ai|, and d ≥ 1, then the minimum distance of CX(d) is given by

δX(d) =


(dk+2 − `) dk+3 · · · ds if d ≤

s∑
i=2

(di − 1)− 1,

1 if d ≥
s∑
i=2

(di − 1) ,

where k ≥ 0, ` are the unique integers such that d =
∑k+1

i=2 (di − 1)+` and 1 ≤ ` ≤ dk+2−1.
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Proof. Let � be the reverse lexicographical order on S with xs � · · · � x2 � x1. Set-
ting fi =

∏
γ∈Ai

(xi − γx1) for i = 2, . . . , s, one has that f2, . . . , fs is a Gröbner basis

of I(X) whose initial ideal is generated by xd22 , . . . , x
ds
s (see [34, Proposition 2.5]). By

Theorem 3.2.1 one has the equality δX(d) = δI(X)(d) for d ≥ 1. Thus the inequality “≥”
follows at once from Theorem 2.5.6. Assume that d <

∑s
i=2(di − 1). To show the reverse

inequality notice that there is a polynomial f ∈ Sd which is a product of linear forms
such that |VX(f)|, the number of zeros of f in X, is equal to d2 · · · ds− (dk+2− `)dk+3 · · · ds
(see [34, p. 15]). As |X| is equal to d2 · · · ds, we get that δX(d) is less than or equal to
(dk+2 − `)dk+3 · · · ds.

Corollary 3.3.2. [10, Lemma 2.1] Let 2 ≤ d2 ≤ · · · ≤ ds be a sequence of integers with
s ≥ 2. Fix an integer 1 ≤ d ≤

∑s
i=2(di − 1). Then

min

{
s∏
i=2

(di − ai)

∣∣∣∣∣ 0 ≤ ai ≤ di − 1, ai ∈ N for i ≥ 2,
s∑
i=2

ai ≤ d

}
= (dk+2 − `)dk+3 · · · ds,

where k ≥ 0, ` are integers such that d =
∑k+1

i=2 (di − 1) + ` and 1 ≤ ` ≤ dk+2 − 1.

Proof. From Theorem 3.2.1 one has δI(X)(d) = δX(d). Hence, the equality follows at once
from Proposition 2.5.2 and Corollary 3.3.1.

The next result is an extension of a result of Alon and Füredi [3, Theorem 1] that can
be applied to any finite subset of a projective space whose vanishing ideal has a complete
intersection initial ideal relative to a graded monomial order.

Corollary 3.3.3. Let X be a finite subset of a projective space Ps−1 and let ≺ be a
monomial order such that in≺(I(X)) is a complete intersection generated by xα2 , . . . , xαs

with di = deg(xαi) and 1 ≤ di ≤ di+1 for all i. If the hyperplanes H1, . . . , Hd in Ps−1

avoid a point [P ] in X but otherwise cover all the other |X| − 1 points of X, then d ≥
reg(S/I(X)) =

∑s
i=2(di − 1).

Proof. Let h1, . . . , hd be the linear forms in S1 that define H1, . . . , Hd, respectively. As-
sume that d <

∑s
i=2(di−1). Consider the polynomial h = h1 · · ·hd. Notice that h /∈ I(X)

because h(P ) 6= 0, and h(Q) = 0 for all [Q] ∈ X with [Q] 6= [P ]. By Theorem 2.5.6
δX(d) ≥ fpI(X) ≥ 2. Hence, h does not vanish in at least two points of X, a contradic-
tion.

The following examples shows how some of our results can be used in practice, we
present implementations in Macaulay2 [25] to calculate HX(d), δX(d) and fpI(X)(d).

Example 3.3.4. Let S be the polynomial ring F3[x1, x4, x3, x2] with the lexicographical
order x1 ≺ x4 ≺ x3 ≺ x2, and let I = I(X) be the vanishing ideal of

X = {[(1, 0, 0, 0)], [(1, 1, 1, 0)], [(1,−1,−1, 0)], [(1, 1, 0, 1)],

[(1,−1, 1, 1)], [(1, 0,−1, 1)], [(1,−1, 0,−1)], [(1, 0, 1,−1)], [(1, 1,−1,−1)]}.
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Using the procedure below in Macaulay2 [25] and Theorem 2.5.6, we get that I(X) is
generated by x2 − x3 − x4, x3

3 − x3x
2
1, and x3

4 − x4x
2
1. The regularity and the degree of

S/I(X) are 4 and 9, respectively, and I(X) is a Geil–Carvalho ideal whose initial ideal is a
complete intersection generated by x2, x

3
3, x

3
4. The basic parameters of the Reed–Muller-

type code CX(d) are shown in the following table.

d 1 2 3 4
|X| 9 9 9 9

HX(d) 3 6 8 9
δX(d) 6 3 2 1

fpI(X)(d) 6 3 2 1

By Corollary 3.3.3, if the hyperplanes H1, . . . , Hd in P3 avoid a point [P ] in X but
otherwise cover all the other |X| − 1 points of X, then d ≥ reg(S/I(X)) = 4.

S=ZZ/3[x2,x3,x4,x1,MonomialOrder=>Lex];

I1=ideal(x2,x3,x4),I2=ideal(x4,x3-x1,x2-x1),I3=ideal(x4,x1+x3,x2+x1)

I4=ideal(x4-x1,x4-x2,x3),I5=ideal(x4-x1,x3-x1,x2+x1),

I6=ideal(x2,x1-x4,x3+x1), I7=ideal(x3,x1+x4,x1+x2),

I8=ideal(x2,x4+x1,x3-x1),I9=ideal(x1+x4,x3+x1,x2-x1)

I=intersect(I1,I2,I3,I4,I5,I6,I7,I8,I9)

M=coker gens gb I, regularity M, degree M

h=(d)->degree M - max apply(apply(apply(apply (toList

(set(0..q-1))^**(hilbertFunction(d,M))-(set{0})^**(hilbertFunction(d,M)),

toList),x->basis(d,M)*vector x),z->ideal(flatten entries z)),

x-> if not quotient(I,x)==I then degree ideal(I,x) else 0)--this

--gives the minimum distance in degree d

apply(1..3,h)

Example 3.3.5. Let S be the polynomial ring S = F3[x1, x2, x3] with the lexicographical
order x1 � x2 � x3, and let I = I(X) be the vanishing ideal of

X = {[(1, 1, 0)], [(1,−1, 0)], [(1, 0, 1)], [(1, 0,−1)], [(1,−1,−1)], [(1, 1, 1)]}.

As in Example 3.3.4, using Macaulay2 [25], we get that I(X) is generated by

x2
2x3 − x2x

2
3, x

2
1 − x2

2 + x2x3 − x2
3.

The regularity and the degree of S/I(X) are 3 and 6, respectively, I is a Geil–Carvalho
ideal, and in≺(I) is a complete intersection generated by x2

2x3 and x2
1. The basic param-

eters of the Reed–Muller-type code CX(d) are shown in the following table.
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d 1 2 3
|X| 6 6 6

HX(d) 3 5 6
δX(d) 3 2 1

fpI(X)(d) 3 2 1

By Corollary 3.3.3, if the hyperplanes H1, . . . , Hd in P2 avoid a point [P ] in X but
otherwise cover all the other |X| − 1 points of X, then d ≥ reg(S/I(X)) = 3.

Example 3.3.6. Let S be the polynomial ring S = F3[x1, x2, x3] with the lexicographical
order x1 � x2 � x3, and let I = I(X) be the vanishing ideal of

X = {[(1, 1, 0)], [(1,−1, 0)], [(1, 0, 1)], [(1, 0,−1)], [(1,−1,−1)], [(1, 1, 1)], [(0, 1, 0)], [(0, 0, 1)], [(0, 1, 1)]}.

As in Example 3.3.4, using Macaulay2 [25], we get that I(X) is generated by

x2
2x3 − x2x

2
3, x

3
1 − x1x

2
2 + x1x2x3 − x1x

2
3.

The regularity and the degree of S/I(X) are 4 and 9, respectively, I is a Geil–Carvalho
ideal, and in≺(I) is a complete intersection generated by x2

2x3 and x3
1. The basic param-

eters of the Reed–Muller-type code CX(d) are shown in the following table.

d 1 2 3 4
|X| 9 9 9 9

HX(d) 3 6 8 9
δX(d) 6 3 2 1

fpI(X)(d) 6 3 2 1

By Corollary 3.3.3, if the hyperplanes H1, . . . , Hd in P2 avoid a point [P ] in X but
otherwise cover all the other |X| − 1 points of X, then d ≥ reg(S/I(X)) = 4.

S=ZZ/3[x_1,x_2,x_3,MonomialOrder=>Lex]

I1=ideal(x_2-x_1,x_3)

I2=ideal(x_3,x_2+x_1)

I3=ideal(x_2,x_3-x_1)

I4=ideal(x_2,x_3+x_1)

I5=ideal(x_2+x_1,x_3+x_1)

I6=ideal(x_2-x_1,x_3-x_1)

I7=ideal(x_1,x_3)

I8=ideal(x_1,x_2)

I9=ideal(x_1,x_3-x_2,x_2-x_3)

I=intersect(I1,I2,I3,I4,I5,I6,I7,I8,I9)
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M=coker gens gb I

regularity M

degree M

h=d->hilbertFunction(d,M)

apply(1..4,h)

h1=(d)->degree M-max apply(apply(apply(apply(toList(set(0..2))^**

(hilbertFunction(d,M))-(set{0})^**(hilbertFunction(d,M)), toList),

x->basis(d,M)*vector x),z->ideal(flatten entries z)),

x->if not quotient(I,x)==I then degree ideal(I,x) else 0)

apply(1..4,h1)

Next we give an example of a graded vanishing ideal over a finite field, which is not
Geil–Carvalho, by computing all possible initial ideals.

Example 3.3.7. Let X = P2 be the projective space over the field F2 and let I = I(X)
be the vanishing ideal of X. Using the procedure below in Macaulay2 [25] we get that
the binomials x1x

2
2 − x2

1x2, x1x
2
3 − x2

1x3, x2x
2
3 − x2

2x3 form a universal Gröbner basis of I,
that is, they form a Gröbner basis for any monomial order. The ideal I has exactly six
different initial ideals and δX 6= fpI for each of them, that is, I is not a Geil–Carvalho
ideal. The basic parameters of the projective Reed–Muller code CX(d) are shown in the
following table.

d 1 2 3
|X| 7 7 7

HX(d) 3 6 7
δX(d) 4 2 1

fpI(X)(d) 4 1 1

load "gfaninterface.m2"

S=ZZ/2[symbol x1, symbol x2, symbol x3]

I=ideal(x1*x2^2-x1^2*x2,x1*x3^2-x1^2*x3,x2*x3^2-x2^2*x3)

universalGroebnerBasis(I)

(InL,L)= gfan I, #InL

init=ideal(InL_0)

M=coker gens gb init

f=(x)-> if not quotient(init,x)==init then degree ideal(init,x) else 0

fp=(d) ->degree M -max apply(flatten entries basis(d,M),f)

apply(1..regularity(M),fp)

3.4 Degree formulas of some monomial ideals

Let S = K[x1, . . . , xs] be a polynomial ring over a field K, let d1, . . . , ds be a non-
decreasing sequence of positive integers with d1 ≥ 2 and s ≥ 2, and let L be the ideal
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of S generated by the set of all xix
dj
j such that 1 ≤ i < j ≤ s. It turns out that the

ideal L is the initial ideal of the vanishing ideal of a projective nested Cartesian set. In
this section we study the ideal L and show a formula for the degree of S/(L, xa) for any
standard monomial xa of S/L as a preparation to show some applications.

Lemma 3.4.1. The ideal L is Cohen–Macaulay of height s− 1, has a unique irredundant
primary decomposition given by

L = q1 ∩ · · · ∩ qs,

where qi = (x1, . . . , xi−1, x
di+1

i+1 , . . . , x
ds
s ) for 1 ≤ i ≤ s, and deg(S/L) = 1 +

∑s
i=2 di · · · ds.

Proof. Using induction on s and the depth lemma it is seen that L is Cohen–Macaulay
(see Lemma 1.4.6). In particular L is unmixed. Since the radical of L is generated by
all xixj with i < j, the minimal primes of L are p1, . . . , ps, where pi is generated by
x1, . . . , xi−1, xi+1, . . . , xs. The pi-primary component of L is uniquely determined and is
given by LSpi ∩ S. Inverting the variable xi in LSpi it follows that LSpi = qiSpi . As qi
is an irreducible ideal, it is pi-primary and one has the equality LSpi ∩ S = qi. By the
additivity of the degree we obtain the required formula for the degree of S/L.

Proposition 3.4.2. Let xa = xarr · · · xass be a standard monomial of S/L with respect to
a monomial order ≺. If ar ≥ 1 and 1 ≤ r ≤ s, then 0 ≤ ai ≤ di − 1 for i > r and

deg(S/(L, xa)) =

 deg(S/L)−
r+1∑
i=2

(di − ai) · · · (ds − as) if ar ≤ dr,

deg(S/L)− (dr+1 − ar+1) · · · (ds − as) if ar ≥ dr + 1,

where (di − ai) · · · (ds − as) = 1 if i > s and ai = 0 for i < r.

Proof. As f = xa is not a multiple of xix
dj
j for i < j, we get that 0 ≤ ai ≤ di−1 for i > r.

To show the formula for the degree we proceed by induction on s ≥ 2. In what follows
we will freely use the additivity of Hilbert series [58, Lemma 5.1.1], a well-known formula
for the Hilbert series of a complete intersection [58, p. 177], the formula of Lemma 3.4.1
for the degree of S/L, and the fact any monomial is a zero divisor of S/L (this follows
from Lemma 3.4.1). We split the proof of the case s = 2 in three easy cases.

Case (1): Assume s = 2, r = 1. This case is independent of whether a1 ≤ d1 of
a1 ≥ d1 + 1 because the two possible values of deg(S/(L, f)) coincide. There are exact
sequences

0 −→ S/(x1)[−d2]
x
d2
2−→ S/(L, f) −→ S/(xd22 , f) −→ 0,

0 −→ S/(xa22 )[−a1]
x
a1
1−→ S/(xd22 , f) −→ S/(xd22 , x

a1
1 ) −→ 0.

Taking Hilbert series we get

F (S/(L, f), x) =
xd2

1− x
+
xa1(1 + x+ · · ·+ xa2−1)

1− x
+

(
d2−1∑
i=0

xi

)(
a1−1∑
i=0

xi

)
.
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Writing F (S/(L, f), x) = h(x)/(1− x) with h(x) ∈ Z[x] and h(1) > 0, and noticing that
h(1) is the degree of deg(S/(L, f)), we get

deg(S/(L, f)) = 1 + a2 = (d2 + 1)− (d2 − a2) = deg(S/L)− (d2 − a2).

Case (2): Assume s = 2, r = 2, a2 ≤ d2. In this case (L, f) is equal to (xa22 ). Thus

deg(S/(L, f)) = a2 = (1 + d2)− (d2 − a2)− 1 = deg(S/L)− (d2 − a2)− 1.

Case (3): Assume s = 2, r = 2, a2 ≥ d2 + 1. Taking Hilbert series in the exact
sequence

0 −→ S/(x1, x
a2−d2
2 )[−d2]

x
d2
2−→ S/(L, f) −→ S/(xd22 ) −→ 0,

we obtain

F (S/(L, f), x) = xd2(1 + x+ · · ·+ xa2−d2−1) +
(1 + x+ · · ·+ xd2−1)

1− x
.

Thus we may proceed as in Case (1) to get deg(S/(L, f)) = d2 = deg(S/L)− 1.

This completes the initial induction step. We may now assume that s ≥ 3 and split
the proof in three cases.

Case (I): Assume r = s ≥ 3 and as ≤ ds. Thus f = xass and ai = 0 for i < s. Setting

L′ equal to the ideal generated by the set of all xix
dj
j such that 2 ≤ i < j ≤ s, there is an

exact sequence

0 −→ S/(xd22 , . . . , x
ds−1

s−1 , x
as
s )[−1]

x1−→ S/(L, xass ) −→ S/(L′, xass , x1) −→ 0.

Taking Hilbert series one has

F (S/(L, xass ), x) = tF (S/(xd22 , . . . , x
ds−1

s−1 , x
as
s ), x) + F (S/(L′, xass , x1), x).

Hence, setting S ′ = K[x2, . . . , xs], from the induction hypothesis applied to S ′/(L′, xass ),
and using that deg(S ′/L′) = deg(S/L)− d2 · · · ds−1ds (see Lemma 3.4.1), we obtain

deg(S/(L, f)) = d2 · · · ds−1as + deg(S ′/L′)−
s+1∑
i=3

di · · · ds−1(ds − as)

= deg(S/L)−
s+1∑
i=2

di · · · ds−1(ds − as).

Case (II): Assume r = s ≥ 3 and as ≥ ds + 1. Using the exact sequence

0 −→ S/(xd22 , . . . , x
ds−1

s−1 , x
ds
s )[−1]

x1−→ S/(L, xass ) −→ S/(L′, xass , x1) −→ 0,

we can proceed as in Case (I) to get deg(S/(L, f)) = deg(S/L)− 1.
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Case (III): Assume r < s. Then, by assumption, as < ds. Let L′ be the ideal

generated by the set of all xix
dj
j such that 1 ≤ i < j ≤ s − 1. Setting f ′ = xarr · · ·x

as−1

s−1

and S ′ = K[x1, . . . , xs−1], there are exact sequences

0 −→ S/(x1, . . . , xs−1)[−ds]
xdss−→ S/(L, f) −→ S/(L′, f, xdss ) −→ 0,

0 −→ S/(L′, f ′, xds−ass )[−as]
xass−→ S/(L′, f, xdss ) −→ S/(L′, xass ) −→ 0.

Hence taking Hilbert series, and applying Proposition 1.5.16, we get

F(S/(L,f),x)= xds
1−x + F (S′/(L′, f ′), x)F (K[xs]/(x

ds−as
s ), x) + F (S′/L′, x)F (K[xs]/(x

as
s ), x).

Writing F (S/(L, f), x) = h(x)/(1− x) with h(x) ∈ Z[x] and h(1) > 0, and noticing that
h(1) is the degree of S/(L, f), the induction hypothesis applied to S ′/(L′, f ′) yields the
equality

deg(S/(L, f)) = 1 +

(
deg(S′/L′)−

r+1∑
i=2

(di − ai) · · · (ds−1 − as−1)

)
(ds − as) + deg(S′/L′)as

= 1 + deg(S′/L′)ds −
r+1∑
i=2

(di − ai) · · · (ds − as) if ar ≤ dr.

or the equality

deg(S/(L, f)) = 1 +
(
deg(S′/L′)− (dr+1 − ar+1) · · · (ds−1 − as−1)

)
(ds − as) + deg(S′/L′)as

= 1 + deg(S′/L′)ds − (dr+1 − ar+1) · · · (ds − as) if ar ≥ dr + 1.

To complete the proof it suffices to notice that deg(S/L) = 1 + deg(S ′/L′)ds. This
equality follows readily from Lemma 3.4.1.

Remark 3.4.3. Cases (1), (2), and (3) can also be shown using Hilbert functions instead
of Hilbert series, but case (III) is easier to handle using Hilbert series.

Corollary 3.4.4. Let xa = xarr · · ·xass be a standard monomial of S/L with respect to a
monomial order ≺. If ar ≥ 1 and 1 ≤ r ≤ s, then 0 ≤ ai ≤ di − 1 for i > r and

deg(S/(L, f)) =


deg(S/L)− (d2 − a2) · · · (ds − as) if r = 1,

deg(S/L)−
3∑
i=2

(di − ai) · · · (ds − as) if r = 2 and a2 ≤ d2,

deg(S/L)− (d3 − a3) · · · (ds − as) if r = 2 and a2 ≥ d2 + 1

where (di − ai) · · · (ds − as) = 1 if i > s and ai = 0 for i < r.

Proof. It follows at once from Proposition 3.4.2.
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3.5 Projective nested Cartesian codes

In this section we introduce projective nested Cartesian codes, a type of evaluation codes
that generalize the classical projective Reed–Muller codes [49]. As an application we
will give some support to a conjecture of Carvalho, Lopez-Neumann and López (Conjec-
ture 3.5.2).

Let K = Fq be a finite field, let A1, . . . , As be a collection of subsets of K, and let

X = [A1 × · · · × As]

be the image of A1 × · · · × As \ {0} under the map Ks \ {0} → Ps−1, x → [x]. Unless
otherwise stated X ∗ denote the Cartesian product A1 × · · · × As in the affine space.

Definition 3.5.1. [11] The set X is called a projective nested Cartesian set if

(i) {0, 1} ⊂ Ai for i = 1, . . . , s,

(ii) a/b ∈ Aj for 1 ≤ i < j ≤ s, a ∈ Aj, 0 6= b ∈ Ai, and

(iii) d1 ≤ · · · ≤ ds, where di = |Ai| for i = 1, . . . , s.

If X is a projective nested Cartesian set, we call CX (d) a projective nested Cartesian code.

Throughout this section ≺ is the lexicographical order on S with x1 ≺ · · · ≺ xs and
in≺(I(X )) is the initial ideal of I(X ).

Conjecture 3.5.2. (Carvalho, Lopez-Neumann, and López [11]) Let CX (d) be the d-
th projective nested Cartesian code on the set X = [A1 × · · · × As] with di = |Ai| for
i = 1, . . . , s. Then its minimum distance is given by

δX (d) =


(dk+2 − `+ 1) dk+3 · · · ds if d ≤

s∑
i=2

(di − 1) ,

1 if d ≥
s∑
i=2

(di − 1) + 1,

where 0 ≤ k ≤ s − 2 and ` are the unique integers such that d =
∑k+1

i=2 (di − 1) + ` and
1 ≤ ` ≤ dk+2 − 1.

This conjecture fails in general (Example 3.5.8). However the conjecture holds in
certain cases.

Proposition 3.5.3. [11] The initial ideal in≺(I(X )) is generated by the set of all mono-

mials xix
dj
j such that 1 ≤ i < j ≤ s,

deg(S/I(X )) = 1 +
s∑
i=2

di · · · ds, and reg(S/I(X )) = 1 +
s∑
i=2

(di − 1).
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Carvalho, Lopez-Neumann and López, showed that Conjecture 3.5.2 can be reduced
to:

Conjecture 3.5.4. (Carvalho, Lopez-Neumann, and López [11]) If 0 6= f ∈ Sd is a
standard polynomial, with respect to ≺, such that (I(X ) : f) 6= I(X ) and 1 ≤ d ≤∑s

i=2(di − 1), then

|VX (f)| ≤ deg(S/I(X ))− (dk+2 − `+ 1) dk+3 · · · ds,

where 0 ≤ k ≤ s−2 and ` are integers such that d =
∑k+1

i=2 (di − 1)+` and 1 ≤ ` ≤ dk+2−1.

We show a formula for deg(S/(in≺(I(X )), xa)) and use this to show an upper bound
for |VX (f)|.

Theorem 3.5.5. Let ≺ be the lexicographical order on S with x1 ≺ · · · ≺ xs and let f 6= 0
be a standard polynomial with in≺(f) = xarr · · ·xass and ar ≥ 1. Then 0 ≤ ai ≤ di − 1 for
i > r and

|VX (f)| ≤ deg(S/(in≺(I(X ))), in≺(f))

=

 deg(S/I(X ))−
r+1∑
i=2

(di − ai) · · · (ds − as) if ar ≤ dr,

deg(S/I(X ))− (dr+1 − ar+1) · · · (ds − as) if ar ≥ dr + 1,

where (di − ai) · · · (ds − as) = 1 if i > s and ai = 0 for i < r.

Proof. By Proposition 3.5.3 the initial ideal of I(X ) is generated by the set of all xix
dj
j

such that 1 ≤ i < j ≤ s and the degree of S/(in≺(I(X )) is equal to the degree of S/I(X ).
As in≺(f) is a standard monomial, it follows that 0 ≤ ai ≤ di− 1 for i > r. Notice that if
f is a zero divisor of S/I(X ), then VX (f) 6= ∅. Thus the inequality follows at once from
Corollary 3.1.2 and the equality follows from Proposition 3.4.2.

Theorem 3.5.6. Let ≺ be the lexicographical order on S with x1 ≺ · · · ≺ xs. If 0 6= f ∈ Sd
is a standard polynomial such that 1 ≤ d ≤

∑s
i=2(di − 1) and x1 divides in≺(f), then

|VX (f)| ≤ deg(S/I(X ))− (dk+2 − `+ 1) dk+3 · · · ds,

where 0 ≤ k ≤ s−2 and ` are integers such that d =
∑k+1

i=2 (di − 1)+` and 1 ≤ ` ≤ dk+2−1.

Proof. By Lemma 3.1.1 we may assume that (I(X ) : f) 6= I(X ). Let xa = in≺(f) be the
initial monomial of f . By Proposition 3.5.3, we can write

xa = xa11 · · ·xass ,

with a1 ≥ 1, 0 ≤ ai ≤ di− 1 for i > 1. By Lemmas 3.1.1 and 2.1.4 it suffices to show that
for r = 1, the following inequality holds

deg(S/(in≺(I(X )), xa)) ≤ deg(S/I(X ))− (dk+2 − `+ 1) dk+3 · · · ds. (3.5.1)
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If we substitute −` =
∑k+1

i=2 (di − 1) −
∑s

i=1 ai in Eq. (3.5.1), and use the formula
for the degree of S/(in≺(I(X )), xa) given in Theorem 3.5.5, we need only show that the
following inequalities hold for r = 1:

r+1∑
i=2

(di − ai) · · · (ds − as) ≥

(
k+2∑
i=2

(di − ai)− (k − 1)− a1 −
s∑

i=k+3

ai

)
dk+3 · · · ds if ar ≤ dr, (3.5.2)

s∏
i=r+1

(di − ai) ≥

(
k+2∑
i=2

(di − ai)− (k − 1)− a1 −
s∑

i=k+3

ai

)
dk+3 · · · ds if ar ≥ dr + 1, (3.5.3)

for 0 ≤ k ≤ s− 2, where (di − ai) · · · (ds − as) = 1 if i > s and ai = 0 for i < r.

Assume r = 1. Then Eqs. (3.5.2) and (3.5.3) are the same. Thus we need only show
the inequality

s∏
i=2

(di − ai) ≥

(
k+2∑
i=2

(di − ai)− (k − 1)− a1 −
s∑

i=k+3

ai

)
dk+3 · · · ds,

for 0 ≤ k ≤ s − 2. This inequality follows making m = s − 1, ei = di+1, bi = ai+1 for
i = 1, . . . ,m, and b0 = a1 in Proposition 2.4.3.

Let Ld be the K-vector space generated by all xa ∈ Sd such that xa contains x1 and
let Cd be the image of Ld under the evaluation map evd. From the next result it follows
that the minimum distance of CX (d) proposed in Conjecture 3.5.2, is in fact the minimum
distance of the evaluation linear code Cd.

Corollary 3.5.7. Let Ld be the K-vector space generated by all xa ∈ Sd such that xa

contains x1. If 1 ≤ d ≤
∑s

i=2(di − 1), then

max{|VX (f)| : f /∈ I(X ), f ∈ Ld} = deg(S/I(X ))− (dk+2 − `+ 1) dk+3 · · · ds,

where 0 ≤ k ≤ s− 2 and ` are integers, d =
∑k+1

i=2 (di − 1) + `, and 1 ≤ ` ≤ dk+2 − 1.

Proof. Take f ∈ Ld \ I(X ). Let ≺ be the lexicographical order with x1 ≺ · · · ≺ xs
and let G be the Gröbner basis of I(X ) given in [11, Proposition 2.14]. By the division
algorithm, we can write f =

∑r
i=1 aigi + g, where gi ∈ G for all i and g is a standard

polynomial of degree d. The polynomial g is again in Ld \ I(X ). Indeed if g /∈ Ld, there
is at least one monomial of g that do not contain x1, then making x1 = 0 in the last
equality, we get an equality of the form 0 =

∑r
i=1 bigi +h, where h is a non-zero standard

polynomial of I(X ), a contradiction. Hence, by Theorem 3.5.6, the inequality ≤ follows
because |VX (f)| = |VX (g)|. To show equality notice that according to the proof of [11,
Lemma 3.1], there is a polynomial f of degree d in Ld \ I(X ) whose number of zeros in
X is equal to the right hand side of the required equality.

The following example shows that Conjecture 3.5.2 is not valid in general.
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Example 3.5.8. Let K = Fq be a finite field with 4 elements and let K0 = K1 = F2,
K2 = F4 be subfields of K. Then X = [K0 ×K1 ×K2] is a projective nested Cartesian
product, and the minimum distance of the code CX (d) is:

d 1 2 3 4
δX (d) 8 4 3 1

Note that for d = 4 we have d− 1 = (2− 1) + 2 and from the formula in Conjecture 3.5.2
δX (4) = 4− 3 + 1 = 2, thus the formula fails. Conjecture 3.5.2 holds for d = 1, 2, 3.

The following result shows an upper bound for the minimum distance of projective
nested Cartesian codes.

Proposition 3.5.9. [11, Lemma 3.1] If X is the projective nested Cartesian set over
A0, . . . , An, then the minimum distance of CX (d) satisfies δX (d) ≤ (dk+1 − `)dk+2 · · · dn
if 1 ≤ d ≤

∑n
i=1(di − 1), and δX (d) = 1 in otherwise, where 0 ≤ k ≤ n − 1 and

0 ≤ ` < dk+1 − 1 are the unique integers such that d− 1 =
∑k

i=1(di − 1) + `.
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Chapter 4

Monomial ideals of weighted
oriented graphs

In this chapter we introduce the edge ideal I = I(D) of a weighted oriented graph D.
The study of this ideal was motivated because edge ideals of weighted oriented graphs
arise in the theory of Reed–Muller codes as initial ideals of vanishing ideals of projective
nested Cartesian sets over finite fields [11, 40, 49]. We study and develop an algebraic
combinatorics theory of these ideals; determine the irredundant irreducible decomposition
of I, characterize the associated primes and the unmixed property of I. Furthermore, we
give a combinatorial characterization for the unmixed property of I, when D is bipartite,
a whisker, or a cycle. Finally, we study the Cohen–Macaulay property of I and show that
in certain cases I is unmixed if and only if I is Cohen–Macaulay [45].

4.1 Weighted oriented graphs and their vertex covers

In this section we define the weighted oriented graphs, denoted byD and study their vertex
covers. We define the strong vertex covers, this notion extend the classical definition in
graph theory of minimal vertex covers and prove that a minimal vertex cover is strong.
Furthermore, we characterize when V (D) is a strong vertex cover of D.

Definition 4.1.1. A weighted oriented graph is a triplet D = (V (D), E(D), w), where
V (D) is a finite set, E(D) ⊂ V (D)×V (D) and w is a function w : V (D)→ N. Sometimes
we will write V and E for the vertex set and edge set of D respectively. The set {x ∈
V (D) | w(x) 6= 1} is denoted by V +.

Definition 4.1.2. The underlying graph of D is the simple graph G whose vertex set is
V (D) and whose edge set is {{x, y}|(x, y) ∈ E(D)}.
Definition 4.1.3. Let x be a vertex of a weighted oriented graph D, the sets N+

D (x) =
{y | (x, y) ∈ E(D)} and N−D (x) = {y | (y, x) ∈ E(D)} are called the out-neighbourhood
and the in-neighbourhood of v, respectively. Furthermore, the neighbourhood of x is the
set ND(x) = N+

D (x) ∪N−D (x).
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As usual, a set of vertices C of G (resp. D) is called a vertex cover of G (resp. of D)
if any edge of G (resp. D) contains at least one vertex of C. A vertex cover C of G or D
is minimal if for any other vertex cover C ′ with C ′ ⊂ C one has C ′ = C.

Remark 4.1.4. Is easy to check that; C is a vertex cover of G if and only if C is a vertex
cover of D

Definition 4.1.5. Let C be a vertex cover of a weighted oriented graph D, we define:

• L1(C) := {x ∈ C | N+
D (x) ∩ Cc 6= ∅},

• L2(C) := {x ∈ C | x /∈ L1(C) and N−D (x) ∩ Cc 6= ∅},

• L3(C) := C \ (L1(C) ∪ L2(C)),

where Cc is the complement of C, i.e. Cc = V \ C.

The previous subsets form a partition of C. In the following proposition, we give a
characterization for the set L3(C).

Proposition 4.1.6. If C is a vertex cover of D, then

L3(C) = {x ∈ C | ND(x) ⊂ C}.

Proof. If x ∈ L3(C), then N+
D (x) ⊂ C, since x /∈ L1(C). Furthermore N−D (x) ⊂ C, since

x /∈ L2(C). Hence ND(x) ⊂ C, since x /∈ ND(x). Now, if x ∈ C and ND(x) ⊂ C, then
x /∈ L1(C) ∪ L2(C). Therefore x ∈ L3(C).

Proposition 4.1.7. If C is a vertex cover of D, then L3(C) = ∅ if and only if C is a
minimal vertex cover of D.

Proof. ⇒) If x ∈ C, then by Proposition 4.1.6 we have ND(x) 6⊂ C, since L3(C) = ∅.
Thus, there is y ∈ ND(x) \ C implying C \ {x} is not a vertex cover. Therefore, C is a
minimal vertex cover.

⇐) If x ∈ L3(C), then by Proposition 4.1.6, ND(x) ⊂ C \ {x}. Hence, C \ {x} is a
vertex cover. A contradiction, since C is minimal. Therefore L3(C) = ∅.

Definition 4.1.8. A vertex cover C of D is strong if for each x ∈ L3(C) there is (y, x) ∈
E(D) such that y ∈ L2(C) ∪ L3(C) with y ∈ V + (i.e. w(y) 6= 1).

Remark 4.1.9. Let C be a vertex cover of D. Hence, by Proposition 4.1.6 and since
C = L1(C) ∪ L2(C) ∪ L3(C), we have that C is strong if and only if for each x ∈ C such
that N(x) ⊂ C, there exist y ∈ N−(v) ∩ (C \ L1(C)) with y ∈ V +.

Corollary 4.1.10. If C is a minimal vertex cover of D, then C is strong.

Proof. By Proposition 4.1.7, we have L3(C) = ∅, since C. Hence, C is strong.
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The converse of the Corollary 4.1.10 is true if w(x) = 1 for all x ∈ V (D), that is, in
the sense of graph theory all strong vertex cover is minimal. An important fact is that a
strong vertex cover is not always minimal. In what follows we characterize when V (D) is
a strong vertex cover of D.

Remark 4.1.11. The vertex set V of D is a vertex cover. Also, if z ∈ V , then ND(z) ⊂
V \ z. Hence, by Proposition 4.1.6, L3(V ) = V . Consequently, L1(V ) = L2(V ) = ∅. By
Proposition 4.1.7, V is not a minimal vertex cover of D. Furthermore since L3(V ) = V ,
V is a strong vertex cover if and only if N−D (x) ∩ V + 6= ∅ for each x ∈ V .

Definition 4.1.12. If D is a cycle with E(D) = {(x1, x2), . . . , (xn−1, xn), (xn, x1)} and
V (D) = {x1, . . . , xn}, then D is called oriented cycle.

Definition 4.1.13. D is called unicycle oriented graph if it satisfies the following condi-
tions:

(1) The underlying graph of D is connected and it has exactly one cycle C.

(2) C is an oriented cycle in D. Furthermore for each y ∈ V (D) \ V (C), there is an
oriented path from C to y in D.

(3) w(x) 6= 1 if degG(x) > 1.

Lemma 4.1.14. If V (D) is a strong vertex cover of D and D1 is a maximal unicycle
oriented subgraph of D, then V (D′) is a strong vertex cover of D′ = D \ V (D1).

Proof. We take x ∈ V (D′). Thus, by Remark 4.1.11, there is y ∈ N−D (x) ∩ V +(D). If
y ∈ D1, then we take D2 = D1∪{(y, x)}. Hence, if C is the oriented cycle of D1, then C is
the unique cycle of D2, since degD2

(v) = 1. If u ∈ C, then (y, x) is an oriented path from
C to x. Now, if y /∈ C, then there is an oriented path L form C to y in D1. Consequently,
L ∪ {(y, x)} is an oriented path form C to x. Furthermore, degD2

(x) = 1 and w(y) 6= 1,
then D2 is a unicycle oriented graph. A contradiction, since D1 is maximal. This implies
y ∈ V (D′), so y ∈ N−D′(v) ∩ V +(D′). Therefore, by Remark 4.1.11, V (D′) is a strong
vertex cover of D′.

Lemma 4.1.15. If V (D) is a strong vertex cover of D, then there is a unicycle oriented
subgraph of D.

Proof. Let y1 be a vertex of D. Since V = V (D) is a strong vertex cover, there is
y2 ∈ V such that y2 ∈ N−(u1) ∩ V +. Similarly, there is y3 ∈ N−(y2) ∩ V +. Conse-
quently, (y3, y2, y1) is an oriented path. Continuing this process, we can assume there exist
y2, y3, . . . , yk ∈ V + where (yk, yk−1, . . . , y2, y1) is an oriented path and there is 1 ≤ j ≤ k−2
such that (yj, yk) ∈ E(D), since V is finite. Hence, C = (yk, yk−1, . . . , yj, yk) is an oriented
cycle and L = (yj, . . . , y1) is an oriented path form C to y1. Furthermore, if j = 1, then
w(y1) 6= 1. Therefore, D1 = C ∪ L is a unicycle oriented subgraph of D.
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Proposition 4.1.16. Let D = (V,E,w) be a weighted oriented graph, hence V is a strong
vertex cover of D if and only if there are D1, . . . ,Dt unicycle oriented subgraphs of D such
that V (D1), . . . , V (Dt) is a partition of V = V (D).

Proof. ⇒) By Lemma 4.1.15, there is a maximal unicycle oriented subgraph D1 of D.
Hence, by Lemma 4.1.14, V (D′) is a strong vertex cover of D′ = D \ V (D1). So, by
Lemma 4.1.15, there is D2 a maximal unicycle oriented subgraph of D′. Continuing this
process we obtain unicycle oriented subgraphs D1, . . . ,Dt such that V (D1), . . . , V (Dt) is
a partition of V (D).

⇐) We take x ∈ V (D). By hypothesis there is 1 ≤ j ≤ t such that x ∈ V (Dj). We
assume C is the oriented cycle of Dj. If x ∈ V (C), then there is y ∈ V (C) such that
(y, x) ∈ E(Dj) and w(y) 6= 1, since degDj

(x) ≥ 2 and Dj is a unicycle oriented subgraph.
Now, we assume x /∈ V (C), then there is an oriented path L = (z1, . . . , zr) such that
z1 ∈ V (C) and zr = x. Thus, (zr−1, x) ∈ E(D). Furthermore, w(zr−1) 6= 1, since
degDj

(zr−1) ≥ 2. Therefore V is a strong vertex cover.

4.2 Edge ideals and their primary decomposition

As usual if I is a monomial ideal of a polynomial ring S, we denote by G(I) the minimal
monomial set of generators of I.

Definition 4.2.1. ([58, Theorem 6.1.17]) There exists a unique decomposition

I = q1 ∩ · · · ∩ qr,

where q1, . . . , qr are irreducible monomial ideals such that I 6=
⋂
i 6=j qi for each j = 1, . . . , r.

This is called the irredundant irreducible decomposition of I.

It is well known that, qi is an irreducible monomial ideal of I if and only if qi =
(xa1i1 , . . . , x

a`
i`

) for some variables xij [58, Theorem 6.1.16]. Irreducible ideals are primary,
then an irreducible decomposition is a primary decomposition. For more details of primary
decomposition of monomial ideals see [29, 58]. In this section, we define the edge ideal I(D)
of a weighted oriented graph D and characterize its irredundant irreducible decomposition.
In particular we prove that this decomposition is an irreducible primary decomposition,
i.e, the radicals of the elements of the irredundant irreducible decomposition of I(D) are
different.

Definition 4.2.2. Let D = (V,E,w) be a weighted oriented graph with vertex set V =
{x1, . . . , xs} and edge set E. The edge ideal of D, denote by I(D), is the ideal of S =

K[x1, . . . , xs] generated by {xix
w(xj)
j | (xi, xj) ∈ E}.

Definition 4.2.3. A source of D is a vertex x, such that ND(x) = N+
D (x). A sink of D

is a vertex y such that ND(y) = N−D (y).



4.2 Edge ideals and their primary decomposition 75

Remark 4.2.4. Let D = (V,E,w) be a weighted oriented graph. We take D′ = (V,E,w′)
a weighted oriented graph such that w′(x) = w(x) if x is not a source and w′(x) = 1 if x
is a source. Hence, I(D) = I(D′). For this reason in this chapter, we will always assume
that if x is a source, then w(x) = 1.

Definition 4.2.5. Let C be a vertex cover of D, the irreducible ideal associated to C is
the ideal

IC :=
(
L1(C) ∪ {xw(xj)

j | xj ∈ L2(C) ∪ L3(C)}
)
.

Lemma 4.2.6. I(D) ⊂ IC for each vertex cover C of D.

Proof. We take I = I(D) and m ∈ G(I), then m = xyw(y), where (x, y) ∈ D. Since C is a
vertex cover, x ∈ C or y ∈ C. If y ∈ C, then y ∈ IC or yw(y) ∈ IC . Thus, m = xyw(y) ∈ IC .
Now, we assume y /∈ C, then x ∈ C. Hence, y ∈ N+

D (x)∩Cc, so x ∈ L1(C). Consequently,
x ∈ IC implying m = xyw(y) ∈ IC . Therefore I ⊂ IC .

Definition 4.2.7. Let I be a monomial ideal. An irreducible monomial ideal q that con-
tains I is called a minimal irreducible monomial ideal of I if for any irreducible monomial
ideal p such that I ⊂ p ⊂ q one has that p = q.

Proposition 4.2.8. If I = I1 ∩ · · · ∩ Im is the irreducible decomposition of a monomial
ideal I, then I1, . . . , Im are the minimal irreducible monomial ideals of I.

Proof. Let L be an irreducible ideal that contains I. Then Ii ⊂ L for some i. Indeed
if Ii 6⊂ L for all i, for each i pick x

aji
ji
∈ Ii \ L. Since I ⊂ L, setting xa = lcm{xaji}

m
i=1

and writing L = (x
ck1
k1
, . . . , x

ck`
k`

), it follows that xa is in I and x
aji
ji

is a multiple of x
ckt
kt

for some 1 ≤ i ≤ m and 1 ≤ t ≤ `. Thus x
aji
ji

is in L, a contradiction. Therefore if L
is minimal one has L = Ii for some i. To complete the proof notice that Ii is a minimal
irreducible monomial ideal of I for all i. This follows from the first part of the proof using
that I = I1 ∩ · · · ∩ Im is an irredundant decomposition.

Lemma 4.2.9. Let D be a weighted oriented graph. If I(D) ⊂ (xa1i1 , . . . , x
a`
i`

), then
{xi1 , . . . , xi`} is a vertex cover of D.

Proof. We take q = (xa1i1 , . . . , x
a`
i`

). If (a, b) ∈ E(D), then abw(b) ∈ I(D) ⊂ q. Thus,

x
aj
ij
|abw(b) for some 1 ≤ j ≤ `. Hence, xij ∈ {a, b} and {a, b} ∩ {xi1 , . . . , xi`} 6= ∅.

Therefore {xi1 , . . . , xi`} is a vertex cover of D.

Lemma 4.2.10. Let q be a minimal irreducible monomial ideal of I(D) where G(q) =
{xa1i1 , . . . , x

a`
i`
}. If aj 6= 1 for some 1 ≤ j ≤ `, then there is (x, xij) ∈ E(D) where x /∈ G(q).

Proof. By contradiction suppose there is aj 6= 1 such that if (x, xij) ∈ E(D), then x ∈
G(q). We take the ideal q′ = (G(q) \ {xajij }). If (a, b) ∈ E(D), then abw(b) ∈ I(D) ⊂ q.

Consequently, xakik |ab
w(b) for some 1 ≤ k ≤ `. If k 6= j, then abw(b) ∈ q′. Now, if k = j,

then by hypothesis aj 6= 1. Hence, x
aj
ij
|bw(b) implying xij = b. Thus, (a, xij) ∈ E(D), so

by hypothesis a ∈ G(q) \ {xajij }. This implies abw(b) ∈ q′. Therefore I(D) ⊂ q′ ( q. A
contradiction, since q is minimal.
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Lemma 4.2.11. Let q be a minimal irreducible monomial ideal of I(D) where G(q) =
{xa1i1 , . . . , x

a`
i`
}. If aj 6= 1 for some 1 ≤ j ≤ `, then aj = w(xij).

Proof. By Lemma 4.2.10, there is (x, xij) ∈ E(D) with x /∈ G(q). Also, xx
w(xij )

ij
∈

I(D) ⊂ q, so xakik |xx
w(xij )

ij
for some 1 ≤ k ≤ `. Hence, xakik |x

w(xij )

ij
, since x /∈ G(q).

This implies, k = j and aj ≤ w(xij). If aj < w(xij), then we take q′ = (M ′) where

M ′ = {G(q) \ {xajij }} ∪ {x
w(xij )

ij
}. So, q′ ( q. Furthermore, if (a, b) ∈ E(D), then

m = abw(b) ∈ I(D) ⊂ q. Thus, xakik |ab
w(b) for some 1 ≤ k ≤ `. If k 6= j, then xakik ∈ M

′

implying abw(b) ∈ q′. Now, if k = j then x
aj
ij
|bw(b), since aj > 1. Consequently, xij = b

and x
w(xij )

ij
|m. Then m ∈ q′. Hence I(D) ⊂ q′ ( q, a contradiction since q is minimal.

Therefore aj = w(xij).

We come to two of our main results.

Theorem 4.2.12. The following conditions are equivalent:

(1) q is a minimal irreducible monomial ideal of I(D).

(2) There is a strong vertex cover C of D such that q = IC.

Proof. (2) ⇒ (1) By definition q = IC is a monomial irreducible ideal. By Lemma 4.2.6,
I(D) ⊂ q. Now, suppose I(D) ⊂ q′ ⊂ q, where q′ is a monomial irreducible ideal. We
can assume G(q′) = {xb1j1 , . . . , x

b`
j`
}. If x ∈ L1(C), then there is (x, y) ∈ E(D) with y /∈ C.

Hence, xyw(y) ∈ I(D) and yr /∈ q for each r ∈ N. Consequently yr /∈ q′ for each r, implying
y /∈ {xj1 , . . . , xj`}. Furthermore xbiji |xy

w(y) for some 1 ≤ i ≤ `, since xyw(y) ∈ I(D) ⊂ q′.

This implies, x = xbiji ∈ q′. Now, if x ∈ L2(C), then there is (y, x) ∈ E(D) with y /∈ C.

Thus y /∈ q, so y /∈ {xb1j1 , . . . , x
b`
j`
}. Also, xw(x)y ∈ I(D) ⊂ q′, then xbiji |x

w(x)y for some

1 ≤ i ≤ `. Consequently, xbiji |x
w(x) implies xw(x) ∈ q′. Finally if x ∈ L3(C), then there is

(y, x) ∈ E(D) where y ∈ L2(C) ∪ L3(C) and w(y) 6= 1, since C is a strong vertex cover.
So, xw(x)y ∈ I(D) ⊂ q′ implies xbiji |x

w(x)y for some i. Furthermore y /∈ q = IC , since

y ∈ L2(C)∪L3(C) and w(y) 6= 1. This implies y /∈ q′ so, xbiji |x
w(x) then xw(x) ∈ q′. Hence,

q = IC ⊂ q′. Therefore, q is a minimal monomial irreducible of I(D).

(1) ⇒ (2) Since q is irreducible, we can suppose G(q) = {xa1i1 , . . . , x
a`
i`
}. By Lemma

4.2.11, we have aj = 1 or aj = w(xij) for each 1 ≤ j ≤ `. Also, by Lemma 4.2.9,

C = {xi1 , . . . , xi`} is a vertex cover of D. We can assume G(IC) = {xb1i1 , . . . , x
b`
i`
}, then

bj ∈ {1, w(xij)} for each 1 ≤ j ≤ `. Now, suppose bk = 1 and w(xik) 6= 1 for some
1 ≤ k ≤ `. Consequently xik ∈ L1(C). Thus, there is (xik , y) ∈ E(D) where y /∈ C.
So, xiky

w(y) ∈ I(D) ⊂ q and xarir |xiky
w(y) for some 1 ≤ r ≤ `. Furthermore y /∈ C, then

r = k and ak = ar = 1. Hence, IC ∩ V (D) ⊂ q ∩ V (D). This implies, IC ⊂ q, since
aj, bj ∈ {1, w(xij)} for each 1 ≤ j ≤ `. Therefore q = IC , since q is minimal. In particular
ai = bi for each 1 ≤ i ≤ `.
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Now, assume C is not strong, then there is x ∈ L3(C) such that if (y, x) ∈ E(D),
then w(y) = 1 or y ∈ L1(C). We can assume x = xi1 , and we take q′ the monomial

ideal with G(q′) = {xa2i2 , . . . , x
a`
i`
}. We take (z1, z2) ∈ E(D). If x

aj
ij
|z1z

w(z2)
2 for some

2 ≤ j ≤ `, then z1z
w(z2)
2 ∈ q′. Now, assume x

aj
ij

- z1z
w(z2)
2 for each 2 ≤ j ≤ `. Consequently

z2 /∈ {xi2 , . . . , xi`}, since aj ∈ {1, w(xij)}. Also z1z
w(z2)
2 ∈ I(D) ⊂ q, then xa1i1 |z1z

w(z2)
2 .

But xi1 ∈ L3(C), so z1, z2 ∈ NG[xi1 ] ⊂ C. If xi1 = z1, then there is 2 ≤ r ≤ ` such that

z2 = xir . Thus xarir | z1z
w(z2)
2 . A contradiction, then xi1 = z2, z1 ∈ C and (z1, xi1) ∈ E(D).

Then, w(z1) = 1 or z1 ∈ L1(C). In both cases z1 ∈ G(IC). Furthermore z1 6= z2 since

(z1, z2) ∈ E(D). This implies z1 ∈ G(q′). So, z1z
w(z2)
2 ∈ q′. Hence, I(D) ⊂ q′. This is a

contradiction, since q is minimal. Therefore C is strong.

Theorem 4.2.13. If S(D) is the set of strong vertex covers of D, then the irredundant
irreducible decomposition of I(D) is given by I(D) =

⋂
C∈S(D) IC.

Proof. By [29, Theorem 1.3.1], there is a unique irredundant irreducible decomposition
I(D) =

⋂m
i=1 Ii. If there is an irreducible ideal I ′j such that I(D) ⊂ I ′j ⊂ Ij for some j ∈

{1, . . . ,m}, then I(D) = (
⋂
i 6=j Ii) ∩ I ′j is an irreducible decomposition. Furthermore this

decomposition is irredundant. Thus, I ′j = Ij. Hence, I1, . . . , Im are minimal irreducible
ideals of I(D). Now, if there is C ∈ S(D) such that IC /∈ {I1, . . . , Im}, then there is
xαi
ji
∈ Ii \ IC for each i ∈ {1, . . . ,m}. Consequently, z = lcm(xα1

j1
, . . . , xαm

jm
) ∈

⋂m
i=1 Ii =

I(D) ⊂ IC . Furthermore, if C = {xi1 , . . . , xik}, then IC = (xβ1i1 , . . . , x
βk
ik

) where βj ∈
{1, w(xij)}. Hence, there is j ∈ {1, . . . , k} such that x

βj
ij
|z. So, there is 1 ≤ u ≤ m such

that x
βj
ij
| xαu

ju
. A contradiction, since xαu

ju
/∈ IC . Therefore I(D) =

⋂
C∈S(D) IC is the

irredundant irreducible decomposition of I(D).

Remark 4.2.14. If C1, . . . , Ct are the strong vertex covers of D, then by Theorem 4.2.13,
IC1 ∩ · · · ∩ ICt is the irredundant irreducible decomposition of I(D). Furthermore, if
pi = rad(ICi

), then pi = (Ci). So, pi 6= pj for 1 ≤ i < j ≤ t. Thus, IC1 ∩ · · · ∩ ICt

is an irredundant primary decomposition of I(D). In particular we have Ass(I(D)) =
{p1, . . . , pt}.

Example 4.2.15. Let D be the following weighted oriented graph

x3 x4

x5

x1

x2

5 2

2

3

4

whose edge ideal is I(D) = (x3
1x2, x

4
2x3, x

5
3x4, x3x

2
5, x

2
4x5). From Theorems 4.2.12 and

4.2.13, the irreducible decomposition of I(D) is:
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I(D) = (x3
1, x3, x

2
4)∩ (x3

1, x3, x5)∩ (x2, x3, x
2
4)∩ (x2, x

5
3, x5)∩ (x2, x4, x

2
5)∩ (x3

1, x
4
2, x

5
3, x5)∩

(x3
1, x

4
2, x4, x

2
5) ∩ (x2, x

5
3, x

2
4, x

2
5) ∩ (x3

1, x
4
2, x

5
3, x

2
4, x

2
5).

Example 4.2.16. Let D be the following weighted oriented graph

x1 x2 x3 x4

2 5 7

Hence, I(D) = (x1x
2
2, x2x

5
3, x3x

7
4). By Theorems 4.2.12 and 4.2.13, the irreducible decom-

position of I(D) is:

I(D) = (x1, x3) ∩ (x2
2, x3) ∩ (x2, x

7
4) ∩ (x1, x

5
3, x

7
4) ∩ (x2

2, x
5
3, x

7
4).

In Examples 4.2.15 and 4.2.16, I(D) has embedding primes. Furthermore the mono-
mial ideal (V (D)) is an associated prime of I(D) in Example 4.2.15. Proposition 4.1.16
and Remark 4.2.14 give a combinatorial criterion for to decide when (V (D)) ∈ Ass(I(D)).

4.3 Unmixed weighted oriented graphs

Let D = (V,E,w) be a weighted oriented graph whose underlying graph is G.In this
section we characterize the unmixed property of I(D) and we prove that this property is
closed under c-minors. In particular if G is a bipartite graph, a whisker, or a cycle, we
give an effective (combinatorial) characterization of this property.

The next theorem gives a combinatorial characterization for the unmixed property of
weighted oriented graphs.

Theorem 4.3.1. The following conditions are equivalent:

(1) I(D) is unmixed.

(2) All strong vertex covers of D have the same cardinality.

(3) I(G) is unmixed and L3(C) = ∅ for each strong vertex cover C of D.

Proof. Let C1, . . . , C` be the strong vertex covers of D. By Remark 4.2.14, the associated
primes of I(D) are p1, . . . , p`, where pi = rad(ICi

) = (Ci) for 1 ≤ i ≤ `.

(1)⇒ (2) Since I(D) is unmixed, |Ci| = ht(pi) = ht(pj) = |Cj| for 1 ≤ i < j ≤ `.

(2)⇒ (3) If C is a minimal vertex cover, then by Corollary 4.1.10, C ∈ {C1, . . . , C`}.
By hypothesis, |Ci| = |Cj| for each 1 ≤ i ≤ j ≤ `, then Ci is a minimal vertex cover of D.
Thus, by Lemma 4.1.7, L3(Ci) = ∅. Furthermore I(G) is unmixed, since C1, . . . , C` are
the minimal vertex covers of G.

(3) ⇒ (1) By Proposition 4.1.7, Ci is a minimal vertex cover, since L3(Ci) = ∅ for
each 1 ≤ i ≤ `. This implies, C1, . . . , C` are the minimal vertex covers of G. Since G is
unmixed, we have |Ci| = |Cj| for 1 ≤ i < j ≤ `. Therefore I(D) is unmixed.
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Definition 4.3.2. A weighted oriented graph D has the minimal-strong property if each
strong vertex cover is a minimal vertex cover.

Remark 4.3.3. Using Proposition 4.1.7, we have that D has the minimal-strong property
if and only if L3(C) = ∅ for each strong vertex cover C of D.

Definition 4.3.4. D′ is a c-minor of D if there is a stable set S of D, such that D′ =
D \NG[S].

Lemma 4.3.5. If D has the minimal-strong property, then D′ = D \ NG[x] has the
minimal-strong property, for each x ∈ V .

Proof. We take a strong vertex cover C ′ of D′ = D \ NG[x] where x ∈ V . Thus, C =
C ′∪ND(x) is a vertex cover of D. If y′ ∈ L3(C ′), then by Proposition 4.1.6, ND′(y

′) ⊂ C ′.
Consequently, ND(y′) ⊂ C ′ ∪ ND(x) = C implying y′ ∈ L3(C). Hence, L3(C ′) ⊂ L3(C).
Now, we take y ∈ L3(C), then ND(y) ⊂ C. This implies y /∈ ND(x), since x /∈ C. Then,
y ∈ C ′ and ND′(y) ∪ (ND(y) ∩ ND(x)) = ND(y) ⊂ C = C ′ ∪ ND(x). So, ND′(y) ⊂ C ′

implies y ∈ L3(C ′). Therefore L3(C) = L3(C ′).

Now, if y ∈ L3(C) = L3(C ′), then there is z ∈ C ′ \ L1(C ′) with w(z) 6= 1, such that
(z, y) ∈ E(D′). If z ∈ L1(C), then there exist z′ /∈ C such that (z, z′) ∈ E(D). Since
z′ /∈ C, we have z′ /∈ C ′, then z ∈ L1(C ′). A contradiction, consequently z /∈ L1(C).
Hence, C is strong. This implies L3(C) = ∅, since D has the minimal-strong property.
Thus, L3(C ′) = L3(C) = ∅. Therefore D′ has the minimal-strong property.

Proposition 4.3.6. If D is unmixed and x ∈ V , then D′ = D \NG[x] is unmixed.

Proof. By Theorem 4.3.1, G is unmixed and D has the minimal-strong property. Hence,
by [58], G′ = G \ NG[x] is unmixed. Also, by Lemma 4.3.5 we have that D′ has the
minimal-strong property. Therefore, by Theorem 4.3.1, D′ is unmixed.

Theorem 4.3.7. If D is unmixed, then a c-minor of D is unmixed.

Proof. If D′ is a c-minor of D, then there is a stable S = {a1, . . . , at} such that D′ =
D \NG[S]. Since S is stable, D′ = (· · · ((D \NG[a1]) \NG[a2]) \ · · · ) \NG[at]. Hence, by
induction and Proposition 4.3.6, D′ is unmixed.

Proposition 4.3.8. If V (D) is a strong vertex cover of D, then I(D) is mixed.

Proof. By Proposition 4.1.6 V (D) is not minimal, since L3(V (D)) = V (D). Therefore,
by Theorem 4.3.1, I(D) is mixed.

Remark 4.3.9. If V = V +, then I(D) is mixed.

Proof. If xi ∈ V , then by Remark 4.2.4 N−D (xi) 6= ∅, since V = V +. Thus, there is xj ∈ V
such that (xj, xi) ∈ E(D). Also, w(xj) 6= 1 and xj ∈ V = L3(V ). So, V is a strong vertex
cover. Hence, by Proposition 4.3.8, I(D) is mixed.
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In the following three results we assume that D1, . . . ,Dr are the connected components
of D. Furthermore Gi is the underlying graph of Di.

Lemma 4.3.10. Let C be a vertex cover of D, then L1(C) =
⋃r
i=1 L1(Ci) and L3(C) =⋃r

i=1 L3(Ci), where Ci = C ∩ V (Di).

Proof. We take x ∈ C, then x ∈ Cj for some 1 ≤ j ≤ r. Thus, ND(x) = NDj
(x). In

particular N+
D (x) = N+

Dj
(x), so C ∩N+

D (x) = Cj ∩N+
Dj

(x). Hence, L1(C) =
⋃r
i=1 L1(Ci).

On the other hand,

x ∈ L3(C)⇔ ND(x) ⊂ C ⇔ NDj
(x) ⊂ Cj ⇔ x ∈ L3(Cj).

Therefore, L3(C) =
⋃r
i=1 L3(Ci).

Lemma 4.3.11. Let C be a vertex cover of D, then C is strong if and only if each
Ci = C ∩ V (Di) is strong with i ∈ {1, . . . , r}.

Proof. ⇒) We take x ∈ L3(Cj). By Lemma 4.3.10, x ∈ L3(C) and there is z ∈ N−D (x)∩V +

with z ∈ C \ L1(C), since C is strong. So, z ∈ N−Dj
(x) and z ∈ V (Dj), since x ∈ Dj.

Consequently, by Lemma 4.3.10, z ∈ Cj \ L1(Cj). Therefore Cj is strong.

⇐) We take x ∈ L3(C), then x ∈ Ci for some 1 ≤ i ≤ r. Then, by Lemma 4.3.10,
x ∈ L3(Ci). Thus, there is a ∈ N−Di

(x) such that w(a) 6= 1 and a ∈ Ci \ L1(Ci), since Ci
is strong. Hence, by Lemma 4.3.10, a ∈ C \ L1(C). Therefore C is strong.

Corollary 4.3.12. I(D) is unmixed if and only if I(Di) is unmixed for each 1 ≤ i ≤ r.

Proof. ⇒) By Theorem 4.3.7, since Di is a c-minor of D.

⇐) By Theorem 4.3.1, Gi is unmixed thus G is unmixed. Now, if C is a strong vertex
cover, then by Lemma 4.3.10, Ci = C ∩ V (Di) is a strong vertex cover. Consequently,
L3(Ci) = ∅, since I(Di) is unmixed. Hence, by Lemma 4.3.10, L3(C) =

⋃r
i=1 L3(Ci) = ∅.

Therefore, by Theorem 4.3.1, I(D) is unmixed.

Definition 4.3.13. Let G be a simple graph whose vertex set is V (G) = {x1, . . . , xs} and
edge set E(G). A whisker ofG is a graphH whose vertex set is V (H) = V (G)∪{y1, . . . , ys}
and whose edge set is E(H) = E(G) ∪ {{x1, y1}, . . . , {xs, ys}}.

Definition 4.3.14. Let D and H be weighted oriented graphs. H is a whisker weighted
oriented graph of D if D ⊂ H and the underlying graph H of H is a whisker of the
underlying graph G of D.

In the following results we examine the unmixed property of the edge ideal of D if its
underlying graph G is a whisker graph, bipartite graph or a cycle.

Theorem 4.3.15. Let H be a whisker weighted oriented graph of D, where V (D) =
{x1, . . . , xs} and V (H) = V (D) ∪ {y1, . . . , ys}, then the following conditions are equiva-
lents:
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(1) I(H) is unmixed.

(2) If (xi, yi) ∈ E(H) for some 1 ≤ i ≤ s, then w(xi) = 1.

Proof. (2) ⇒ (1) We take a strong vertex cover C of H. Suppose xj, yj ∈ C, then
yj ∈ L3(C), since ND(yj) = {xj} ⊂ C. Consequently, (xj, yj) ∈ E(D) and w(xj) 6= 1,
since C is strong. This is a contradiction by condition (2). This implies, |C ∩{xi, yi}| = 1
for each 1 ≤ i ≤ s. So, |C| = s. Therefore, by Theorem 4.3.1, I(H) is unmixed.

(1) ⇒ (2) By contradiction suppose (xi, yi) ∈ E(H) and w(xi) 6= 1 for some i. Since
w(xi) 6= 1 and by Remark 4.2.4, we have that xi is not a source. Thus, there is xj ∈ V (D),
such that (xj, xi) ∈ E(H). We take the vertex cover C = {V (D) \ xj} ∪ {yj, yi}, then by
Proposition 4.1.6, L3(C) = {yi}. Furthermore ND(xi) \ C = {xj} and (xj, xi) ∈ E(H),
then xi ∈ L2(C). Hence C is strong, since L3(C) = {yi}, (xi, yi) ∈ E(D) and w(xi) 6= 1.
A contradiction by Theorem 4.3.1, since I(H) is unmixed.

Theorem 4.3.16. Let D be a bipartite weighted oriented graph, then I(D) is unmixed if
and only if

(1) G has a perfect matching {{x1
1, x

2
1}, . . . , {x1

t , x
2
t}} where {x1

1, . . . , x
1
t} and {x2

1, . . . , x
2
t}

are stable sets. Furthermore if {x1
j , x

2
i }, {x1

i , x
2
k} ∈ E(G) then {x1

j , x
2
k} ∈ E(G).

(2) If w(xkj ) 6= 1 and N+
D (xkj ) = {xk′i1 , . . . , x

k′
ir} where {k, k′} = {1, 2}, then ND(xki`) ⊂

N+
D (xkj ) and N−D (xki`) ∩ V

+ = ∅ for each 1 ≤ ` ≤ r.

Proof. ⇐) By (1) and [22, Theorem 2.5.7], G is unmixed. We take a strong vertex cover
C of D. Suppose L3(C) 6= ∅, thus there exist xki ∈ L3(C). Since C is strong, there is
xk
′
j ∈ V + such that (xk

′
j , x

k
i ) ∈ E(D), xk

′
j ∈ C \ L1(C) and {k, k′} = {1, 2}. Furthermore

N+
D (xk

′
j ) ⊂ C, since xk

′
j /∈ L1(C). Consequently, by (2), ND(xk

′
i ) ⊂ N+

D (xk
′
j ) ⊂ C. So,

xk
′
i ∈ L3(C). A contradiction, since by (2) N−D (xk

′
i ) ∩ V + = ∅ and C is strong. Hence

L3(C) = ∅ and D has the strong–minimal property. Therefore I(D) is unmixed, by
Theorem 4.3.1.

⇒) By Theorem 4.3.1, G is unmixed. Hence, by [22, Theorem 2.5.7], G satisfies (1).

If w(xkj ) 6= 1, then we take C = N+
D (xkj ) ∪ {xki | ND(xki ) 6⊂ N+

D (xkj )} and k′ such that

{k, k′} = {1, 2}. If {xki , xk
′

i′ } ∈ E(G) and xki /∈ C, then xk
′

i′ ∈ ND(xki ) ⊂ N+
D (xkj ) ⊂ C. This

implies, C is a vertex cover of D. Now, if xki1 ∈ L3(C), then ND(xki1) ⊂ C. Consequently
ND(xki1) ⊂ N+

D (xkj ) implies xki1 /∈ C. A contradiction, then L3(C) ⊂ N+
D (xkj ). Also,

N−G (xkj ) 6= ∅, since w(xkj ) 6= 1. Thus xkj ∈ L2(C), since N−G (xkj )∩C = ∅. Hence C is strong,

since L3(C) ⊂ N+
D (xkj ) and xkj ∈ V +. Furthermore {xk′1 , . . . , xk

′
t } is a minimal vertex cover,

then by Theorem 4.3.1 |C| = t, since D is unmixed. We assume N+
D (xkj ) = {xk′i1 , . . . , x

k′
ir}.

Since C is minimal, xki` /∈ C for each 1 ≤ ` ≤ r. So, ND(xki`) ⊂ N+
D (xkj ). Now, suppose

z ∈ N−D (xki`) ∩ V
+, then z = xk

′
i`′

for some 1 ≤ `′ ≤ r, since ND(xki`) ⊂ N+
D (xkj ). We

take C ′ = N+
D (xkj ) ∪ {xki | i /∈ {i1, . . . , ir}} ∪ N+

D (xk
′
i`′

). Since ND(xkiu) ⊂ N+
D (xkj ) for each

1 ≤ u ≤ r, we have that C ′ is a vertex cover. If {xkq , xk
′
q }∩L3(C) 6= ∅, then {xkq , xk

′
q } ⊂ C ′,



82 Monomial ideals of weighted oriented graphs

so xk
′
q ∈ N+

D (xkj ) implies q ∈ {i1, . . . , ir}. Consequently, xkq ∈ N+
D (xk

′
i`′

), since xkq ∈ C ′. This

implies, (xkj , x
k′
q ), (xk

′
i`′
, xkq) ∈ E(D). Moreover, N+

D (xk
′
i`′

)∪N+
D (xkj ) ⊂ C ′, then xk

′
i`′
/∈ L1(C ′)

and xkj /∈ L1(C ′). Thus, C ′ is strong, since xkj , x
k′
i`′
∈ V +. Furthermore, by Theorem 4.3.1,

|C ′| = t. But xk
′
i`
∈ N+

D (xkj ) and xki` ∈ N
+
D (xk

′
i`′

), hence xk
′
i`
, xki` ∈ C

′. A contradiction, so

N−D (xki`) ∩ V
+ = ∅. Therefore D satisfies (2).

Lemma 4.3.17. If the vertices of V + are sinks, then D has the minimal-strong property.

Proof. We take a strong vertex cover C of D. Hence, if y ∈ L3(C), then there is (z, y) ∈
E(D) with z ∈ V +. Consequently, by hypothesis, z is a sink. A contradiction, since
(z, y) ∈ E(D). Therefore, L3(C) = ∅ and C is a minimal vertex cover.

Lemma 4.3.18. Let D be a weighted oriented graph, where G ' Cn with n ≥ 6. Hence,
D has the minimal-strong property if and only if the vertices of V + are sinks.

Proof. ⇐) By Lemma 4.3.17.

⇒) By contradiction, suppose there is (z, y) ∈ E(D), with z ∈ V +. We can assume
G = (x1, x2, . . . , xn, x1) ' Cn, with x2 = y and x3 = z. We take a strong vertex cover C in
the following form: C = {x1, x3, . . . , xn−1} ∪ {x2} if n is even or C = {x1, x3, . . . , xn−2} ∪
{x2, xn−1} if n is odd. Consequently, if x ∈ C and ND(x) ⊂ C, then x = x2. Hence,
L3(C) = {x2}. Furthermore (x3, x2) ∈ E(D) with x3 ∈ V +. Thus, x3 is not a source,
so, (x4, x3) ∈ E(D). Then, x3 ∈ L2(C). This implies C is a strong vertex cover. But
L3(C) 6= ∅. A contradiction, since D has the minimal-strong property.

x1 x2

x5 x3

x4

1 1

w(x5) 6= 1

1

w(x3) 6= 1

D1

x1 x2

x5 x3

x4

w(x1) 6= 1 w(x2) 6= 1

1

1

1

D2

x1 x2

x5 x3

x4

1 1

w(x5) 6= 1

w(x4) 6= 1

w(x3) 6= 1

D3

x1 x2

x5 x3

x4

1 w(x2) 6= 1

w(x5) 6= 1

1

w(x3) 6= 1

D4

Theorem 4.3.19. If the underlying graph of a weighted oriented graph D is a cycle and
w is the weight function of D, then I(D) is unmixed if and only if one of the following
conditions hold:

(1) n = 3 and there is x ∈ V (D) such that w(x) = 1.

(2) n ∈ {4, 5, 7} and the vertices with weight greater than 1 are sinks.

(3) n = 5, there is (x, y) ∈ E(D) with w(x) = w(y) = 1 and D 6' D1,D 6' D2, D 6' D3.
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(4) D ' D4.

Proof. ⇒) By Theorem 4.3.1, D has the minimal-strong property and G is unmixed.
Then, by [22, Exercise 2.4.22], n ∈ {3, 4, 5, 7}. If n = 3, then by Remark 4.3.9, D
satisfies (1). If n = 7, then by Lemma 4.3.18, D satisfies (2). Now suppose n = 4 and D
does not satisfies (2), then we can assume x1 ∈ V + and (x1, x2) ∈ E(D). Consequently,
(x4, x1) ∈ E(G), since w(x1) 6= 1. Furthermore, C = {x1, x2, x3} is a vertex cover with
L3(C) = {x2}. Thus, x1 ∈ L2(C) and (x1, x2) ∈ E(D) so C is strong. A contradiction,
since C is not minimal. This implies D satisfies (2). Finally suppose n = 5. If D ' D1,
then C1 = {x1, x2, x3, x5} is a vertex cover with L3(C1) = {x1, x2}. Also (x5, x1), (x3, x2) ∈
E(D) with x5, x3 ∈ V +. Consequently, C1 is strong, since x5, x3 ∈ L2(C1). A contradiction,
since C1 is not minimal. If D ' D2, then C2 = {x1, x2, x4, x5} is a vertex cover where
L3(C2) = {x1, x5} and (x2, x1), (x1, x5) ∈ E(D) with x2, x1 ∈ V +. Hence, C2 is strong,
since x2, x1 /∈ L1(C2). A contradiction, since C2 is not minimal. If D ' D3, C3 =
{x2, x3, x4, x5} is a vertex cover where L3(C3) = {x3, x4} and (x4, x3), (x5, x4) ∈ E(D)
with x4, x5 ∈ V +. Thus, C3 is strong, since x4, x5 /∈ L1(C3). A contradiction, since C3 is
not minimal. Now, since n = 5 and by (3) we can assume (x2, x3) ∈ E(D), x2, x3 ∈ V +

and there are not two adjacent vertices with weight 1. Since x2 ∈ V +, (x1, x2) ∈ E(D).
Suppose there are not 3 vertices z1, z2, z3 in V + such that (z1, z2, z3) is a path in G, then
w(x4) = w(x1) = 1. Furthermore, w(x5) 6= 1, since there are not adjacent vertices with
weight 1. So, C4 = {x2, x3, x4, x5} is a vertex cover of D, where L3(C4) = {x3, x4}. Also
(x2, x3) ∈ E(G) with w(x2) 6= 1. Hence, if (x3, x4) ∈ E(D) or (x5, x4) ∈ E(D), then C4 is
strong, since x3, x5 ∈ V +. But C4 is not minimal. Consequently, (x4, x3), (x4, x5) ∈ E(D)
and D ' D4. Now, we can assume there is a path (z1, z2, z3) in D such that z1, z2, z3 ∈ V +.
Since there are not adjacent vertices with weight 1, we can suppose there is z4 ∈ V +

such that L = (z1, z2, z3, z4) is a path. We take {z5} = V (D) \ V ((L)) and we can
assume (z2, z3) ∈ E(D). This implies, (z1, z2), (z5, z1) ∈ E(D), since z1, z2 ∈ V +. Thus,
C5 = {z1, z2, z3, z4} is a vertex cover with L3(C5) = {z2, z3}. Then C5 is strong, since
(z1, z2), (z2, z3) ∈ E(D) with z2 ∈ L3(C5) and z1 ∈ L2(C5). A contradiction, since C5 is not
minimal.

⇐) If n ∈ {3, 4, 5, 7}, then by [22, Exercise 2.4.22] G is unmixed. By Theorem 4.3.1, we
will only prove that D has the minimal-strong property. If D satisfies (2), then by Lemma
4.3.17, D has the minimal-strong property. If D satisfies (1) and C is a strong vertex cover,
then by Proposition 4.1.16, |C| ≤ 2. This implies C is minimal. Now, suppose n = 5 and
C ′ is a strong vertex cover of D with |C ′| ≥ 4. If D ' D4, then x2, x5 /∈ L3(C ′), since
(N−D (x2) ∪ N−D (x5)) ∩ V + = ∅. So ND(x2) 6⊂ C ′ and ND(x5) 6⊂ C ′. Consequently, x1 /∈ C ′
implies C ′ = {x2, x3, x4, x5}. But x4 ∈ L3(C ′) and N−D (x4) = ∅. A contradiction, since C ′
is strong. Now assume D satisfies (3). Suppose there is a path L = (x1, x2, x3) in G such
that w(x1) = w(x2) = w(x3) = 1. We can suppose (x4, x5) ∈ E(D) where V (D) \ V (L) =
{x4, x5}. Since w(x1) = w(x3) = 1, x2 /∈ L3(C ′). If x2 /∈ C ′, then C ′ = {x1, x3, x4, x5} and
x4 ∈ L3(C ′). But N−D (x4) = {x3} and w(x3) = 1. A contradiction, hence x2 ∈ C ′. We can
assume x3 /∈ C ′, since x2 /∈ L3(C ′). This implies C ′ = {x1, x2, x4, x5} and L3(C ′) = {x1, x5}.
Thus, (x5, x1) ∈ E(D), x5, x4 ∈ V +. Consequently (x3, x4) ∈ E(D), since x4 ∈ V +. A
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contradiction, sinceD 6' D2. Hence, there are not three consecutive vertices whose weights
are 1. Consequently, since D satisfies (3), we can assume w(x1) = w(x2) = 1, w(x3) 6= 1
and w(x5) 6= 1. If w(x4) = 1, then x3, x5 /∈ L3(C ′) since ND(x3, x5) ∩ V + = ∅. This
implies ND(x3) 6⊂ C ′ and ND(x5) 6⊂ C ′. Then, x4 /∈ C ′ and C ′ = {x1, x2, x3, x5}. Thus,
(x5, x1), (x3, x2) ∈ E(D), since L3(C ′) = {x1, x2}. Consequently, (x4, x5), (x4, x3) ∈ E(D),
since x5, x3 ∈ V +. A contradiction, since D 6' D1. So, w(x4) 6= 1 and we can assume
(x5, x4) ∈ E(D), since x4 ∈ V +. Furthermore (x1, x5) ∈ E(D), since x5 ∈ V +. Hence,
(x3, x4) ∈ E(D), since D 6' D3. Then (x2, x3) ∈ E(D), since x3 ∈ V +. This implies
x1, x2, x3, x5 /∈ L3(C ′), since N−D (xi) ∩ V + = ∅ for i ∈ {1, 2, 3, 5}. A contradiction, since
|C ′| ≥ 4. Therefore D has the minimal-strong property.

4.4 Cohen–Macaulay weighted oriented graphs

In this section we study the Cohen–Macaulayness of I(D). In particular we give a combi-
natorial characterization of this property when the underlying graph G of D is a path or
a complete graph. Furthermore, we show the Cohen–Macaulay property depends of the
characteristic of K.

Definition 4.4.1. The weighted oriented graph D is Cohen–Macaulay over the field K
if the ring S/I(D) is Cohen–Macaulay.

Remark 4.4.2. If G is the underlying graph of D, then rad(I(D)) = I(G).

Proposition 4.4.3. If I(D) is Cohen–Macaulay, then I(G) is Cohen–Macaulay and D
has the minimal-strong property.

Proof. By Remark 4.4.2, I(G) = rad(I(D)), then by [30, Theorem 2.6], I(G) is Cohen–
Macaulay. Furthermore I(D) is unmixed, since I(D) is Cohen–Macaulay. Hence, by
Theorem 4.3.1, D has the minimal-strong property.

Example 4.4.4. In Examples 4.2.15 and 4.2.16 I(D) is mixed. Hence, I(D) is not
Cohen–Macaulay, but I(G) is Cohen–Macaulay.

Conjecture 4.4.5. I(D) is Cohen–Macaulay if and only if I(G) is Cohen–Macaulay and
D has the minimal-strong property. Equivalently I(D) is Cohen–Macaulay if and only if
I(D) is unmixed and I(G) is Cohen–Macaulay.

Proposition 4.4.6. Let D be a weighted oriented graph such that V = {x1, . . . , xk} and
whose underlying graph is a path G = (x1, . . . , xk). Then the following conditions are
equivalent:

(1) S/I(D) is Cohen–Macaulay.

(2) I(D) is unmixed.
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(3) k = 2 or k = 4. In the second case, if (x2, x1) ∈ E(D) or (x3, x4) ∈ E(D), then
w(x2) = 1 or w(x3) = 1 respectively.

Proof. (1) ⇒ (2) By [22, Corollary 1.5.14].

(2) ⇒ (3) By Theorem 4.3.16, G has a perfect matching, since D is bipartite. Con-
sequently k is even and {x1, x2}, {x3, x4}, . . . , {xk−1, xk} is a perfect matching. If k ≥ 6,
then by Theorem 4.3.16, we have {x2, x5} ∈ E(G), since {x2, x3} and {x4, x5} ∈ E(G).
A contradiction since {x2, x5} /∈ E(G). Therefore k ∈ {2, 4}. Furthermore by Theorem
4.3.16, w(x2) = 1 or w(x3) = 1 when (x2, x1) ∈ E(D) or (x3, x4) ∈ E(D), respectively.

(3) ⇒ (1) We take I = I(D). If k = 2, then we can assume (x1, x2) ∈ E(D). So,

I = (x1x
w(x2)
2 ) = (x1) ∩ (x

w(x2)
2 ). Thus, by Remark 4.2.14, Ass(I) = {(x1), (x2)}. This

implies, ht(I) = 1 and dim(S/I) = k − 1 = 1. Also, depth(S/I) ≥ 1, since (x1, x2) /∈
Ass(I). Hence, S/I is Cohen–Macaulay. Now, if k = 4, then ht(I) = ht(rad(I)) =
ht(I(G)) = 2. Consequently, dim(S/I) = k − 2 = 2. Furthermore one of the following

sets {x2 − x
w(x1)
1 , x3 − x

w(x4)
4 }, {x2 − x

w(x1)
1 , x4 − x

w(x3)
3 }, {x1 − x

w(x2)
2 , x4 − x

w(x3)
3 } is a

regular sequence of S/I, then depth(S/I) ≥ 2. Therefore, I is Cohen–Macaulay.

Theorem 4.4.7. If the underlying graph G of a weighted oriented graph D is a complete
graph, then the following conditions are equivalent:

(1) I(D) is unmixed.

(2) I(D) is Cohen–Macaulay.

(3) There are not D1, . . . ,Dt unicycle oriented subgraphs of D such that V (D1), . . . , V (Dt)
is a partition of V (D).

Proof. We take I = I(D). Since I(G) = rad(I) and G is complete, ht(I) = ht(I(G)) =
s− 1.

(1) ⇒ (3) Since ht(I) = s − 1 and I is unmixed, (x1, . . . , xs) /∈ Ass(I). Thus, by
Remark 4.2.14, V (D) is not a strong vertex cover of D. Therefore, by Proposition 4.1.16,
D satisfies (3).

(3)⇒ (2) By Proposition 4.1.16, V (D) is not a strong vertex cover of D. Consequently,
by Remark 4.2.14, (x1, . . . , xs) /∈ Ass(I). This implies, depth(S/I) ≥ 1. Furthermore,
dim(S/I) = 1, since ht(I) = s− 1. Therefore I is Cohen–Macaulay.

(2) ⇒ (1) By [22, Corollary 1.5.14].

As an application of some results of this chapter, we have the following corollary.

Let d1, . . . , ds be a non-decreasing sequence of positive integers with d1 ≥ 2 and s ≥ 2,
and let L be the ideal of S generated by the set of all xix

dj
j such that 1 ≤ i < j ≤ s.

Corollary 4.4.8. The ideal L is Cohen–Macaulay of height s−1, has a unique irredundant
primary decomposition given by

L = q1 ∩ · · · ∩ qs,
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where qi = (x1, . . . , xi−1, x
di+1

i+1 , . . . , x
ds
s ) for 1 ≤ i ≤ s, and deg(S/L) = 1 +

∑s
i=2 di · · · ds.

Proof. The ideal L corresponds to the edge ideal I(D), where D is a complete weighted
oriented graph whose vertex set is V (D) = {x1, . . . , xs} and edge set is E(D) = {(xi, xj) |
1 ≤ i < j ≤ s} and w(xi) = di for 1 ≤ i ≤ s.

Since I(G) = rad(L) and G is complete, ht(L) = ht(I(G)) = s − 1. As D is com-
plete, Ci = {x1, . . . , xi−1, xi+1, . . . , xs} is a minimal vertex cover of D for 1 ≤ i ≤ s, by
Proposition 4.1.7, L3(Ci) = ∅ and by Corollary 4.1.10, Ci is strong for all i = 1, . . . , s.
Furthermore, D has not oriented cycles, since i < j for each (xi, xj) ∈ E(D). Conse-
quently by Proposition 4.1.16, V (D) is not strong, that is, C1, . . . , Cs are all the strong
vertex cover of D. Therefore, by Theorem 4.3.1, I(D) is unmixed and by Theorem 4.4.7,
I(D) is a Cohen–Macaulay ideal.

Given that E(D) = {(xi, xj) | 1 ≤ i < j ≤ s}, then L1(Ci) = {x1, . . . , xi−1}, since
N+
D (xi) = {x1, . . . , xi−1} for all i = 1, . . . , s. Thus, by Theorem 4.2.13 and Remark 4.2.14,

we have that the irredundant primary decomposition of L is given by

L = q1 ∩ · · · ∩ qs,

where qi = ICi
= (x1, . . . , xi−1, x

di+1

i+1 , . . . , x
ds
s ). Finally by additivity of the degree (Propo-

sition 1.5.28), we get that, deg(S/L) = 1 +
∑s

i=2 di · · · ds.

If D is a complete weighted oriented graph or D is a weighted oriented path, then the
Cohen–Macaulay property does not depends of the field K. This is not true in general,
see the following example.

Example 4.4.9. Let D be the following weighted oriented graph:

x3

x2

x1

x9

x8

x7

x6

x5

x4

x11

x10

2

2

2

1

1

1

1

1

1

1

1

Hence,

I(D) = (x2
1x4, x

2
1x8, x

2
1x5, x

2
1x9, x

2
2x10, x

2
2x5, x

2
2x11, x

2
2x8, x

2
2x6, x

2
3x7, x

2
3x10, x

2
3x6,

x2
3x9, x4x8, x4x7, x4x11, x5x10, x5x9, x5x11, x6x8, x6x9, x6x11, x7x10, x7x11, x9x11).



4.4 Cohen–Macaulay weighted oriented graphs 87

By [38, Example 2.3], I(G) is Cohen–Macaulay when the characteristic of the field K
is zero but it is not Cohen–Macaulay in characteristic 2. Consequently, I(D) is not
Cohen–Macaulay when the characteristic of K is 2. Also, I(G) is unmixed. Furthermore,
by Lemma 4.3.17, I(D) has the minimal-strong property, then I(D) is unmixed. Using
Macaulay2 [25] we show that I(D) is Cohen–Macaulay when the characteristic of K is
zero.
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Conclusions

In this work, we studied two numerical functions, the minimum distance function δI and
footprint function fpI , associated to a graded ideal I of a polynomial ring over a field.
The first interesting result about the minimum distance is Theorem 2.1.12, where one can
find a description of the behavior of the minimum distance function for unmixed radical
graded ideals whose associated primes are generated by linear forms. In particular, we
show that this function is strictly decreasing until it stabilizes at the value 1. Concerning
the footprint function, it is a lower bound for the minimum distance whenever I is unmixed
(Theorem 2.3.2). We present some formulas for fpI of certain ideals that correspond to
ideals having a complete intersection initial ideal for some monomial order (Theorem
2.5.6, Theorem 2.5.9).

As an application of the previous results, we studied projective Reed–Muller-type
codes, which are evaluation codes associated to a set of points X of the (s−1)-dimensional
projective space over a finite field. Theorem 3.2.1, yields that the minimum distance and
footprint functions of these codes coincide with the one of the vanishing ideal of X.

Finally, we introduced the edge ideal I(D) of a weighted oriented graph D, and we de-
scribed the algebraic properties of this monomial ideal in terms of the underlying weighted
oriented graph. The main results were:

• All minimal vertex covers are strong.

• The irreducible monomial components of I(D) are in one to one correspondence
with the strong vertex covers: as a direct consequence of this, I(D) is unmixed if
and only if every strong vertex cover of the graph has the same cardinality.

• I(D) is unmixed when the underlying graph of D is a whisker, bipartite and a cycle.

• I(D) is Cohen–Macaulay when the underlying graph is a path or complete.

Future work: - Give the geometric interpretation of the minimum distance and
footprint functions. - Use our theory to study other families of codes. - Study big families
of weighted oriented graphs where the Conjecture 4.4.5 holds.
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[24] M. González-Sarabia, C. Renteŕıa and H. Tapia-Recillas, Reed–Muller-type codes
over the Segre variety, Finite Fields Appl. 8 (2002), no. 4, 511–518.

[25] D. Grayson and M. Stillman, Macaulay2 , a software system for research in algebraic
geometry, 1996. Available from http://www.math.uiuc.edu/Macaulay2/.

[26] G. M. Greuel and G. Pfister, A Singular Introduction to Commutative Algebra, 2nd
extended edition, Springer, Berlin, 2008.

[27] F. Harary, Graph Teory, Addison-Wesley, Reading, MA, 1972.

[28] J. Herzog and T. Hibi, Distributive lattices, bipartite graphs and Alexander duality,
J. Algebraic Combin. 22 (2005), no. 3, 289–302.



BIBLIOGRAPHY 93

[29] J. Herzog and T. Hibi, Monomial Ideals, Graduate Texts in Mathematics. 260,
Springer, 2011.

[30] J. Herzog, Y. Takayama, N. Terai, On the radical of a monomial ideal, Arch. Math.
85 (2005), 397–408.

[31] M. Kreuzer and L. Robbiano, Computational Commutative Algebra 2, Springer-
Verlag, Berlin, 2005.

[32] M. Katzman, Characteristic-independence of Betti numbers of graph ideals, J. Com-
bin. Theory Ser. A 113 (2006), no. 3, 435–454.

[33] M. Kummini, Regularity, depth and arithmetic rank of bipartite edge ideals, J. Al-
gebraic Combin. 30 (2009), no. 4, 429–445.
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[46] C. Renteŕıa, A. Simis and R. H. Villarreal, Algebraic methods for parameterized
codes and invariants of vanishing ideals over finite fields, Finite Fields Appl. 17
(2011), no. 1, 81–104.

[47] E. Sarmiento, M. Vaz Pinto and R. H. Villarreal, The minimum distance of param-
eterized codes on projective tori, Appl. Algebra Engrg. Comm. Comput. 22 (2011),
no. 4, 249–264.

[48] A. Simis, W. Vasconcelos, R. H. Villarreal, On the ideal theory of graphs, J. Algebra
167(1994) 389–416.

[49] A. Sørensen, Projective Reed–Muller codes, IEEE Trans. Inform. Theory 37 (1991),
no. 6, 1567–1576.

[50] R. Stanley, Hilbert functions of graded algebras, Adv. Math. 28 (1978), 57–83.

[51] M. Tsfasman, S. Vladut and D. Nogin, Algebraic geometric codes: basic notions,
Mathematical Surveys and Monographs 139, American Mathematical Society, Prov-
idence, RI, 2007.

[52] A. Tochimani and R. H. Villarreal, Vanishing ideals over rational parameterizations.
Mathematical Notes, to appear.
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Geil-Carvalho, 35
quotient, 3, 25
radical, 3

incident edge, 21
independent set, 22
induced matching, 23

number, 23
initial ideal, 14
irreducible

submodule, 5
isolated

vertex, 21

Jacobson
radical, 3

leading
coefficient, 14
monomial, 14
term, 14

length, 2
finite, 6
of a code, 19
of a module, 6

lexicographic order, 13
linear code, 18

matching, 22
minimal

primes
of a module, 4
of an ideal, 2

vertex cover
of a graph, 22

minimal irreducible monomial ideal, 75
minimal-strong property, 79
minimum distance

of a code, 18, 19
minimum distance function, 25, 26, 53
module

Noetherian, 1
simple, 6

monomial order, 13

neighbor set, 22
neighbourhood

of a vertex, 71
nilpotent, 3
nilradical, 3
number of zeros

formula, 53
of a polynomial, 53

order
of a graph, 21

path, 21
primary

decomposition
irredundant, 5

ideal, 5
submodule, 5

projective
Reed–Muller-type code, 18
space, 17
torus, 18

quotients, 14

regular
element, 4
sequence, 6



INDEX 97

regularity index, 9
affine, 9
of δI , 33

remainder, 14
ring

reduced, 3

series
composition, 6

sink, 74
source, 74
stable set, 22
standard monomials, 15
standard polynomial, 15
subgraph, 21

induced, 21
spanning, 21

support
of a module, 4

system of parameters, 6

tournament, 23
tree, 22

underlying graph, 71
unmixed

graph, 24
ideal, 7

vanishing ideal, 17
variety, 2
Vasconcelos function, 28
vertex cover, 22, 72

strong, 72
vertex covering number, 23
vertex independent number, 24
vertex set, 21

walk, 21
closed, 21

whisker, 80
weighted oriented, 80

zero
divisor, 4

zero set
of a polynomial, 17
of an ideal, 17


