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Resumen∗

Esta tesis trata sobre algunas conexiones entre códigos lineales y demimatroides. Se

ha escrito siguiendo un formato de tres art́ıculos separados. Cada caṕıtulo corre-

sponde a un art́ıculo, con su propio resumen, introducción y referencias. Los concep-

tos preliminares sobre códigos lineales y matroides necesarios para iniciar la lectura

del trabajo, tales como pesos de Hamming generalizados y extendidos, identidad de

MacWilliams, dualidad de Wei, demimatroides, gráficas signadas, matriz de incidencia

de una gráfica signada, biparticidad por aristas, connectividad por aristas, resoluciones

libres y números de Betti, se van dando conforme se van necesitando dentro de cada

caṕıtulo.

Sea G una gráfica conexa y sea X el conjunto de puntos proyectivos determinados

por los vectores columna de la matriz de incidencia de G sobre un campo finito K de

cualquier caracteŕıstica. En el caṕıtulo 1 determinamos los pesos de Hamming gener-

alizados de un código de tipo Reed-Muller, definido sobre el conjunto X, en términos

de invariantes de la gráfica. Como aplicación a la teoŕıa de códigos, mostramos que si

G es no-bipartita y K es un campo finito de caracteŕıstica distinta de 2, entonces el r-

ésimo peso de Hamming generalizado del código lineal generado por los renglones de la

matriz de incidencia de G es igual a la r-ésima biparticidad por aristas débil de G, i.e.

el menor número de aristas cuya remoción resulta en una gráfica con r componentes

bipartitas, y posiblemente algunas componentes no-bipartitas.

Por otro lado, si G es bipartita o la caracteŕıstica de K es 2, entonces probamos que

el r-ésimo peso de Hamming generalizado del código es igual a la r-ésima conectividad

por aristas de G, i.e. el menor número de aristas cuya remoción resulta en una gráfica

con r+1 componentes conexas. Una vez obtenidos los pesos de Hamming generalizados

∗Esta tesis fue realizada con el apoyo de una beca otorgada por el CONACyT.
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del código, los de su código dual pueden obtenerse mediante la dualidad de Wei [30].

Ver Teoremas 1.2.8, 1.2.9, 1.2.10.

En el caṕıtulo 2 damos fórmulas, en términos de invariantes de la gráfica, para los pe-

sos de Hamming generalizados del código lineal generado por los renglones de la matriz

de incidencia de una gráfica signada sobre un campo finito, y también para aquéllos de

su código dual. Después, determinamos la regularidad (de Castelnuovo-Mumford) de

los ideales de circuitos y cocircuitos de una gráfica signada, y obtenemos una fórmula

algebraica, en términos de la multiplicidad, para el ı́ndice de frustación de una gráfica

signada no-balanceada. Para esto usamos un resultado de Johnsen y Verdure [19] que

da una interpretación de los pesos generalizados de Hamming como los menores cor-

rimientos en la resolución libre minimal del ideal de circuitos del matroide asociado al

código, y también utilizamos un resultado de Zaslavsky [33] que determina los circuitos

y cocircuitos del matroide asociado a la gráfica signada. Ver Teoremas 2.3.16, 2.3.19,

2.4.7.

Basados en el trabajo de Britz, Johnsen, Mayhew and Shiromoto [1], en el caṕıtulo

3 introducimos demimatroides como una generalización natural de matroides. Como

dichos autores lo han mostrado, los demimatroides son los objetos combinatorios ade-

cuados para estudiar la dualidad de Wei. Nuestros resultados aportan más evidencia

que confirma la veracidad de esa observación.

Definimos el polinomio de Hamming de un demimatroide M , denotado por W (x, y, t),

como una generalización del enumerador de pesos de Hamming extendidos de un ma-

troide. El polinomio W (x, y, t) es una especialización del polinomio de Tutte de M , y

de hecho es equivalente a él. Guiados por el trabajo de Johnsen, Rocksvold y Verdure

para matroides [10], probamos que los números de Betti de un demimatroide y sus

elongaciones determinan al polinomio de Hamming. Los resultados obtenidos en la

tesis pueden aplicase a complejos simpliciales, ya que éstos, de una forma canónica,

pueden verse como demimatroides.

Adicionalmente, siguiendo el trabajo de Brylawski y Gordon [4], mostramos cómo los

demimatroides pueden generalizarse un paso más, a combinatroides. Un combinatroide,

o estructura de Brylawski, es una función entero-valuada ρ, definida sobre el conjunto

potencia de un conjunto finito, que satisface la única condición ρ(∅) = 0. Aún en esta
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generalidad extrema, vemos cómo muchos conceptos e invariantes de teoŕıa de códigos,

pueden llevarse de manera directa a combinatroides, digamos, el polinomio de Tutte,

el polinomio caracteŕıstico, la identidad de MacWilliams, el polinomio de Hamming

extendido, y el r-ésimo polinomio de pesos de Hamming generalizados; este último,

al menos conjeturalmente, guiados por el trabajo de Jurrius y Pellikaan para códigos

lineales [11]. Todo ésto resulta en una vasta generalización de las nociones de borrado,

contracción, dualidad y códigos a estructuras no-matroidales. Ver Teoremas 3.4.13,

3.5.9, 3.6.2, 3.9.4.

Los resultados de esta tesis han dado lugar a tres pre-art́ıculos (con J. Mart́ınez-

Bernal y R.H. Villarreal): “Generalized Hamming weights of projective Reed-Muller-

type codes over graphs”, “Linear codes over signed graphs” y “Hamming polynomial

of a demimatroid”.
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Summary

This thesis treats on some connections between linear codes and demimatroids. It is

written following a format of three separated papers. Each chapter corresponds to a

paper with its own abstract, introduction and references. The preliminary concepts

on linear codes and matroids needed to start reading the work, such as generalized

and extended Hamming weights, MacWilliams identity, Wei’s duality, demimatroids,

signed graph, incidence matrix of a signed graph, edge biparticity, edge connectivity,

free resolutions and Betti numbers, are given as they are needed within each chapter.

Let G be a connected graph and let X be the set of projective points defined by the

column vectors of the incidence matrix of G over a finite field K of any characteristic. In

chapter 1 we determine the generalized Hamming weights of the Reed-Muller-type code

over the set X in terms of graph theoretic invariants. As an application to coding theory,

we show that if G is non-bipartite and K is a finite field of characteristic different from

2, then the r-th generalized Hamming weight of the linear code generated by the rows

of the incidence matrix of G is the r-th weak edge biparticity of G, i.e. the minimum

number of edges whose removal results in a graph with r bipartite components, and

maybe some non-bipartite components. On the other hand, if G is bipartite or the

characteristic of K is 2, then we prove that the r-th generalized Hamming weight

of that code is the r-th edge connectivity of G, i.e. the minimum number of edges

whose removal results in a graph with r +1 connected components. Once obtained the

generalized Hamming weights, those of the dual code may be computed by using Wei’s

duality [30]. See Theorems 1.2.8, 1.2.9, 1.2.10.

In chapter 2 we give formulas, in terms of graph theoretical invariants, for the gen-

eralized Hamming weights of the linear code generated by the rows of the incidence

matrix of a signed graph over a finite field, and for those of its dual code. Then we
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determine the (Castelnuovo-Mumford) regularity of the ideals of circuits and cocircuits

of a signed graph, and prove an algebraic formula in terms of the multiplicity, for the

frustration index of an unbalanced signed graph. Here we have used a result of Johnsen

and Verdure [19], which gives an interpretation of the generalized Hamming weights as

the minor shifts in the minimal free resolution of the ideal of circuits of the matroid

associated to the code, as well as a result of Zaslavsky [33], which determine the circuits

and cocircuits of a vector matroid associated to a signed graph. See Theorems 2.3.16,

2.3.19, 2.4.7.

Following Britz, Johnsen, Mayhew and Shiromoto [1], in chapter 3 we introduce

demimatroids as a natural generalization of matroids. As these authors have shown,

demimatroids are the appropriate combinatorial objects for studying Wei’s duality.

Our results here apport further evidence about the trueness of that observation. We

define the Hamming polynomial of a demimatroid M , denoted by W (x, y, t), as a gen-

eralization of the extended Hamming weight enumerator of a matroid. The polynomial

W (x, y, t) is a specialization of the Tutte polynomial of M , and actually is equiva-

lent to it. Guided by work of Johnsen, Roksvold and Verdure for matroids [10], we

prove that Betti numbers of a demimatroid and its elongations determine the Hamming

polynomial. Our results may be applied to simplicial complexes since in a canonical

way they can be viewed as demimatroids. Furthermore, following work of Brylawski

and Gordon [4], we show how demimatroids may be generalized one step further, to

combinatroids. A combinatroid, or Brylawski structure, is an integer-valued func-

tion ρ, defined over the power set of a finite ground set, satisfying the only condition

ρ(∅) = 0. Even in this extreme generality, we see how many concepts and invariants

in coding theory can be carried on directly to combinatroids, say, Tutte polynomial,

characteristic polynomial, MacWilliams identity, extended Hamming polynomial, and

the r-th generalized Hamming polynomial; this last one, at least conjecturelly, guided

by the work of Jurrius and Pellikaan for linear codes [11]. All this largely extends the

notions of deletion, contraction, duality and codes to non-matroidal structures. See

Theorems 3.4.13, 3.5.9, 3.6.2, 3.9.4.

The results of this thesis have led to three preprints (with J. Mart́ınez-Bernal and

R.H. Villarreal): “Generalized Hamming weights of projective Reed-Muller-type codes
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over graphs”, “Linear codes over signed graphs” and “Hamming polynomial of a demi-

matroid”.
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Chapter 1

Reed-Muller-type codes over graphs

Abstract. Let G be a connected graph and let X be the set of projective points defined

by the column vectors of the incidence matrix of G over a field K of any characteristic.

We determine the generalized Hamming weights of the Reed-Muller-type code over the

set X in terms of graph theoretic invariants. As an application to coding theory we

show that if G is non-bipartite and K is a finite field of characteristic different from 2,

then the r-th generalized Hamming weight of the linear code generated by the rows of

the incidence matrix of G is the r-th weak edge biparticity of G. If the characteristic

of K is 2 or G is bipartite, then we prove that the r-th generalized Hamming weight

of that code is the r-th edge connectivity of G.

1.1 Introduction

In this work we study basic parameters of Reed-Muller-type codes on graphs using a

geometric approach via graph theory and commutative algebra, and show some appli-

cations to linear codes whose generator matrices are incidence matrices of graphs.

Let K be a field of characteristic p ≥ 0 and let G be a connected graph with vertex

set V (G) = {t1, . . . , ts} and edge set E(G) = {f1, . . . , fm}. The incidence matrix of

G, over the field K, is the s × m matrix A = (aij) given by aij = 1 if ti ∈ fj and

aij = 0 otherwise. The edge biparticity of G, denoted ϕ(G), is the minimum number of

edges whose removal makes the graph bipartite. The r-th weak edge biparticity of G,

denoted υr(G), is the minimum number of edges whose removal results in a graph with

r bipartite components, and maybe some non-bipartite components. If r = 1, υ1(G) is
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the weak edge biparticity of G, and is denoted by υ(G).

The r-th edge connectivity of G, denoted λr(G), is the minimum number of edges

whose removal results in a graph with r + 1 connected components. If r = 1, λ1(G)

is the edge connectivity of G and is denoted by λ(G). We will use these invariants to

study the minimum distance and the Hamming weights of Reed-Muller-type codes on

graphs. The edge biparticity and the edge connectivity are well studied invariants of a

graph [16, 26, 33].

The set of columns {P1, . . . , Pm} of the matrix A can be regarded as a set of points

X = {[P1], . . . , [Pm]} in a projective space Ps−1 over the field K. Consider a polynomial

ring S = K[t1, . . . , ts] =
⊕∞

d=0 Sd over the field K provided with its standard grading.

The vanishing ideal I(X) of X is the graded ideal of S generated by the homogeneous

polynomials of S that vanish at all points of X. Fix integers d ≥ 1 and r ≥ 1. The aim

of this chapter is to determine the following number, in terms of the combinatorics of

the graph G:

δX(d, r) := min{|X \ VX(F )| : F = {fi}r
i=1 ⊂ Sd, dimK({f i}r

i=1) = r},

where VX(F ) is the set of zeros or projective variety of F in X, and f i = fi + I(X) is

the class of fi modulo I(X). This is equivalent to determine:

hypX(d, r) := max{|VX(F )| : F = {fi}r
i=1 ⊂ Sd, dimK({f i}r

i=1) = r},

because δX(d, r) = |X| − hypX(d, r).

A projective Reed-Muller-type code of degree d on X [8, 13], denoted CX(d), is the

image of the following evaluation linear map

evd : Sd → Km, f 7→ (f(P1), . . . , f(Pm)) .

The motivation to study δX(d, r) comes from algebraic coding theory because, over

a finite field, the r-th generalized Hamming weight of the Reed-Muller-type code CX(d)

of degree d is equal to δX(d, r) [11, Lemma 4.3(iii)].

Generalized Hamming weights were introduced by Wei [18, 22, 30]. For convenience

we recall this notion. Let K = Fq be a finite field and let C be a linear [m, k] code of

length m and dimension k, that is, C is a linear subspace of Km with k = dimK(C).
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Let 1 ≤ r ≤ k be an integer. Given a linear subspace D of C, the support of D is the

set

supp(D) := {i | ∃ (a1, . . . , am) ∈ D, ai 6= 0}.

The r-th generalized Hamming weight of C, denoted δr(C), is given by

δr(C) := min{|supp(D)| : D is a subspace of C with dimK(D) = r}.

The set {δ1(C), . . . , δk(C)} is called the weight hierarchy of the code C. Define the

dual code of C, denoted by C⊥, as the vector space consisting of all those words in

Fn
q orthogonal to C, with respect to the usual inner product. The following duality of

Wei [30, Theorem 3] is a classical result in this area that shows a strong relationship

between the weight hierarchies of C and its dual C⊥:

{δi(C) | i = 1, . . . , k} = {1, . . . , m} \ {m + 1− δi(C
⊥) | i = 1, . . . , m− k}.

These numbers are a natural generalization of the notion of minimum distance and

they have several applications from cryptography (codes for wire-tap channels of type

II), t-resilient functions, trellis or branch complexity of linear codes, and shortening or

puncturing structure of codes; see [1, 3, 4, 6, 9, 11, 12, 17, 20, 25, 28, 29, 30, 31, 32]

and the references therein. If r = 1, we obtain the minimum distance δ(C) of C, which

is among the most important parameters of a linear code [24]. In this chapter we give

combinatorial formulas for the weight hierarchy of CX(d) for d ≥ 1.

Our main results are:

Theorems 1.2.8, 1.2.9, 1.2.10 Let G be a connected graph with s vertices, m edges, r-

th weak edge biparticity υr(G), r-th edge connectivity λr(G); and let A be the incidence

matrix of G over a field K of char(K) = p. If X is the set of column vectors of A, then

δX(d, r) = δr(CX(d)) =





υr(G), if d = 1, p 6= 2, G is non-bipartite, 1 ≤ r ≤ s,

λr(G), if d = 1, p = 2, 1 ≤ r ≤ s− 1,

λr(G), if d = 1, G is bipartite, 1 ≤ r ≤ s− 1,

r, if d ≥ 2 and 1 ≤ r ≤ m.

Thus computing υr(G) and λr(G) is equivalent to computing the r-th generalized

Hamming weight of CX(1) for K = F2 or K = F3. These are the only cases that matter.
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The incidence matrix code of a graph G over a finite field K of characteristic p,

denoted Cp(G), is the linear code generated by the rows of the incidence matrix of G.

As an application to coding theory we obtain the following combinatorial formulas for

the generalized Hamming weights of Cp(G) when G is connected (Corollary 1.2.11).

δr(Cp(G)) =





υr(G), if p 6= 2, G is non-bipartite, 1 ≤ r ≤ s,

λr(G), if p = 2, 1 ≤ r ≤ s− 1,

λr(G), if G is bipartite, 1 ≤ r ≤ s− 1.

The minimum distance of the incidence matrix code of the graph G is defined as

δ(Cp(G)) := min{ω(α) : α ∈ Cp(G) \ {0}},

where ω(α) is the Hamming weight of the vector α, that is, the number of nonzero

entries of α. The minimum distance of Cp(G) is δ1(Cp(G)), i.e. the 1st Hamming

weight of this code. Then we can recover the combinatorial formulas of Dankelmann,

Key and Rodrigues [5, Theorems 1-3] for the minimum distance of Cp(G) in terms of

the weak edge biparticity υ(G) and the edge connectivity λ(G) of G (Corollary 1.2.12).

In Section 1.2 we address the problem of computing the edge biparticity ϕ(G) of a

graph G. One has the following relationships [7, 16]:

κ(G) ≤ λ(G) ≤ ∆(G) and max{υ(G), λ(G)} ≤ ϕ(G),

where κ(G) is the vertex connectivity of G and ∆(G) is the minimum degree of the

vertices of G.

Using Macaulay 2 [14], SageMath [27], and Wei’s duality [30, Theorem 3], we can

compute the weight hierarchy of Cp(G). In Sections 1.3 and 1.4, we illustrate this with

some examples and procedures.

1.2 Reed-Muller-type codes over graphs

In this section we present our main results. To avoid repetitions, we continue to employ

the notations and definitions used in Section 1.1.

Lemma 1.2.1. Let G be a graph and let e1, . . . , er be a minimum set of edges whose

removal makes the graph bipartite. Then there is ω : V (G) → {+,−} such that the edges

of G whose vertices have the same sign, positive or negative, are precisely e1, . . . , er.
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Proof. If G is bipartite, there is nothing to prove. If G is not bipartite, pick a bipartition

V1, V2 of the graph G\{e1, . . . , er}. Setting ω(v) = + if v ∈ V1 and ω(v) = − if v ∈ V2,

note that the vertices of each ei have the same sign. Indeed if the vertices of ei have

different sign, then G \ {e1, . . . , ei−1, ei+1, . . . , er} is bipartite, a contradiction.

The edge biparticity of a graph ϕ(G) of a graph G can be easily expressed by con-

sidering all possible ways of making G a vertex-signed graph.

Proposition 1.2.2. Let G be a graph, let F be the set of surjective functions ω : V (G) →
{+,−}, and let Eω be the set of edges of G whose vertices have the same sign. Then

ϕ(G) = min{|Eω| : ω ∈ F}.

Proof. If G is bipartite, ϕ(G) = 0 and there is nothing to prove. Assume that G is not

bipartite. Then Eω 6= ∅ for ω ∈ F . By Lemma 1.2.1, one has the inequality “≥”. To

show the reverse inequality take ω in F . It suffices to show that ϕ(G) ≤ |Eω|. The

vertex set of G can be partitioned as V (G) = V + ∪ V −, where V + (resp. V −) is the

set of vertices of G with positive (resp. negative) sign. Then G \ Eω is bipartite with

bipartition V +, V −. Thus ϕ(G) ≤ |Eω|.

The following result is well known.

Proposition 1.2.3. [2, 15, 21] Let G be a connected graph with s vertices and let A

be its incidence matrix over a field K. Then

rank(A) =

{
s, if char(K) 6= 2 and G is non bipartite,

s− 1, if char(K) = 2 or G is bipartite.

Corollary 1.2.4. Let G be a connected graph with s vertices and m edges and let

C = Cp(G) (resp. C⊥) be the code (resp. dual code) of G. Then

(a) C (resp. C⊥) is an [m, s] (resp. [m, m− s]) code if p 6= 2 and G is non bipartite.

(b) C (resp. C⊥) is an [m, s−1] (resp. [m,m−s+1]) code if p = 2 or G is bipartite.

Lemma 1.2.5. Let G be a connected graph and let K be a field. The following hold.

(a) If char(K) 6= 2, G is non-bipartite and h is a linear form in I(X), then h = 0.

5



(b) If char(K) = 2 and h 6= 0 is a linear form in I(X), then h = c
∑s

i=1 ti, for some

c ∈ K.

(c) If char(K) = 2 and h is a linear form in I(X), in s− 1 variables, then h = 0.

Proof. Let ψ be the linear map ψ : Ks → Km, x 7→ xA. Fix a linear form h =
∑s

i=1 aiti

of S1 and set vh = (a1, . . . , as). Then vh is in ker(ψ) if and only if h ∈ I(X). For use

below notice that s = dim(ker(ψ)) + rank(A).

(a): By Proposition 1.2.3, ker(ψ) = 0. Then vh = 0, that is, h = 0.

(b): From Proposition 1.2.3 we get that ker(ψ) has dimension 1, and since 1 =

(1, . . . , 1) ∈ ker(ψ) the result follows.

(c): It is a consequence of (b).

Lemma 1.2.6. Let G be a connected bipartite graph with bipartition V1, V2. The

following hold.

(a) If K is a field and h 6= 0 is a linear form of S that vanishes at all points of X,

then h = c(
∑

ti∈V1
ti −

∑
ti∈V2

ti) for some c ∈ K.

(b) If ti and tj are in V1, then G ∪ {ti, tj} contains an odd cycle.

Lemma 1.2.7. Let G be a connected non-bipartite graph. If ` = υr(G) and f1, . . . , f`

are edges of G, then the graph H = G \ {f1, . . . , f`} has at most r bipartite connected

components.

Proof. Let H1, . . . , Hn be the connected components of H. We proceed by contradiction

assuming that H1, . . . , Hr+1 are bipartite. Consider the graph G′ = G \ {f2, . . . , f`}. If

f1 ⊂ Hi for some i, then G′ has r bipartite components, a contradiction. Thus f1 6⊂ Hi

for i = 1, . . . , n. Hence, f1 joins Hi and Hj for some i, j with i < j. If j ≤ r + 1, the

graph Hi ∪Hj ∪ {f1} is bipartite and connected, and G′ has r bipartite components,

a contradiction. Thus j > r + 1 and in this case G′ has r bipartite components, a

contradiction.

We come to one of our main results.

6



Theorem 1.2.8. Let G be a connected non-bipartite graph with s vertices and m edges,

let K be a field of char(K) 6= 2, and let A be the incidence matrix of G. If X is the set

of column vectors of A and υr(G) is the r-th weak edge biparticity of G, then

δX(d, r) =

{
υr(G), if d = 1 and 1 ≤ r ≤ s = dimK(CX(d)),

r, if d ≥ 2 and 1 ≤ r ≤ m = dimK(CX(d)).

Proof. Assume d = 1. First we show the inequality δX(1, r) ≥ υr(G). We proceed

by contradiction assuming that υr(G) > δX(1, r). Then υr(G) > |X \ VX(F )| for some

set F consisting of r linear forms h1, . . . , hr which are linearly independent modulo

I(X). Let [P1], . . . , [P`] be the points in X \ VX(F ) and let f1, . . . , f` be the edges

of G corresponding to these points. Consider the graph H = G \ {f1, . . . , f`}. Let

H1, . . . , Hn be the bipartite connected components of H. Since υr(G) > `, n is at most

r−1. Let XH be the set of points corresponding to the columns of the incidence matrix

of H. Note that hi vanishes at all points of XH for i = 1, . . . , r. Then, by Lemma 1.2.5,

h1, . . . , hr are linear forms in the variables V (H1) ∪ · · · ∪ V (Hn). For each 1 ≤ j ≤ n,

let Aj
1, Aj

2 be the bipartition of Hj and set gj =
∑

ti∈Aj
1
ti −

∑
ti∈Aj

2
ti. Then, by

Lemma 1.2.6, F = {h1, . . . , hr} is in the K-linear space generated by g1, . . . , gn, a

contradiction because F is linearly independent over K and n < r.

Now we show the inequality δX(1, r) ≤ υr(G). Note that by Lemma 1.2.5, it suffices

to find a set F = {h1, . . . , hr} of linearly independent forms of degree 1 such that

υr(G) = |X \ VX(F )|. We set ` = υr(G). There are edges f1, . . . , f` of G such that the

graph

H = G \ {f1, . . . , f`}
has exactly r connected bipartite components (see Lemma 1.2.7). We denote the

connected components of H by H1, . . . , Hn, where H1, . . . , Hr are bipartite. Consider

a bipartition Aj
1, Aj

2 of Hj for j = 1, . . . , r and set

hj =
∑

ti∈Aj
1

ti −
∑

ti∈Aj
2

ti.

Let Pi be the point in Ps−1 that corresponds to fi for i = 1, . . . , `. To complete the

proof of the case d = 1 we need only show the equality {[P1], . . . , [P`]} = |X \ VX(F )|.
To show the inclusion “⊂” fix an edge fk with 1 ≤ k ≤ ` and set

H ′ =
⋃r

i=1Hi, H ′′ =
⋃n

i=r+1Hi and G′ = G \ {f1, . . . , fk−1, fk+1, . . . , f`}.
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Note that fk 6⊂ V (Hj) for r < j, otherwise G′ has r bipartite components. As a

consequence fk intersects V (H ′), otherwise fk ⊂ V (H ′′), fk joins Hi and Hj for some

r < i < j, and the graph G′ has a r bipartite components, a contradiction.

Case (1): fk ⊂ V (Hj) for some 1 ≤ j ≤ r. As V (Hj) = Aj
1 ∪ Aj

2, either fk ⊂ Aj
1 or

fk ⊂ Aj
2, otherwise the graph G′ has r bipartite components, a contradiction. Hence,

as char(K) 6= 2, we get that hj(Pk) 6= 0. Thus [Pk] ∈ X \ VX(F ).

Case (2): fk ∩ V (Hi) 6= ∅ and fk ∩ V (Hj) 6= ∅ for some i < j ≤ r. Then using the

bipartitions of Hi and Hj we get hi(Pk) 6= 0 and hj(Pk) 6= 0. Thus [Pk] ∈ X \ VX(F ).

Case (3): fk ∩ V (Hi) 6= ∅ for some 1 ≤ i ≤ r and fk ∩ V (H ′′) 6= ∅. Then using the

bipartition of Hi we get hi(Pk) 6= 0. Thus [Pk] ∈ X \ VX(F ).

To show the inclusion “⊃” take [P ] ∈ X \ VX(F ) and denote by f its corresponding

edge in G. Then there is 1 ≤ j ≤ n such that hj(P ) 6= 0. We proceed by contradiction

assuming [P ] /∈ {[P1], . . . , [P`]}, that is, f 6= fi for i = 1, . . . `. Then f is an edge

of H. Thus f is an edge of Hk for some 1 ≤ k ≤ n. If r < k, then hi(P ) = 0 for

i = 1, . . . , r by construction of the hi’s, a contradiction. Thus 1 ≤ k ≤ r. If f ⊂ Ak
1 or

f ⊂ Ak
2, then Hk would not be bipartite, a contradiction. Hence f joins Ak

1 with Ak
2,

and consequently hi(P ) = 0 for i = 1, . . . , r by construction of the hi’s, a contradiction.

Thus P = Pi for some 1 ≤ i ≤ `, as required.

Assume d ≥ 2. We claim that dimK(Sd/I(X)d) is equal to m = |E(G)| = |X|, the

number of edges of G. The set of all squarefree monomials titj such that {ti, tj} is an

edge of G is K-linearly independent modulo I(X). This follows using that the vanishing

ideal of X is the intersection of the vanishing ideals of the points of X and using a well

known formula for the vanishing ideal of a projective point [23, p. 398, Corollary 6.3.19].

Therefore dimK(S2/I(X)2) ≥ |X|. As dimK(Sd/I(X)d) is a non-decreasing function of

d and it is bounded from above by the number of points of |X| (see [10]), the claim

follows. Therefore, since Sd/I(X)d ' CX(d), one has CX(d) = Km. Thus δX(d, r) = r

for 1 ≤ r ≤ m.

We come to another of our main results.

Theorem 1.2.9. Let G be a connected graph with s vertices and m edges, let K be a

field of char(K) = 2, and let A be the incidence matrix of G. If X is the set of column
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vectors of A and λr(G) is the r-th edge connectivity of G, then

δX(d, r) =

{
λr(G), if d = 1 and 1 ≤ r ≤ s− 1 = dimK(CX(d)),

r, if d ≥ 2 and 1 ≤ r ≤ m = dimK(CX(d)).

Proof. Assume d = 1. First we show the inequality δX(1, r) ≥ λr(G). We proceed by

contradiction assuming that λr(G) > δX(1, r). Then λr(G) > |X \ VX(F )| for some set

F consisting of r linear forms h1, . . . , hr which are linearly independent modulo I(X).

We set ` = |X\VX(F )|. Let [P1], . . . , [P`] be the points in X\VX(F ) and let f1, . . . , f` be

the edges of G corresponding to these points. Consider the graph H = G \ {f1, . . . , f`}
and denote by H1, . . . , Hn its connected components. Since λr(G) > `, H cannot have

r + 1 components, that is, n ≤ r. Let XH be the set of points corresponding to the

columns of the incidence matrix of H. Note that hi vanishes at all points of XH for

i = 1, . . . , r. Indeed, take a point [P ] in XH , then its corresponding edge f is in Hk

for some k, then f 6= fj for j = 1, . . . , ` and [P ] /∈ X \ VX(F ), that is, hi(P ) = 0. We

set gj =
∑

ti∈V (Hj)
ti for j = 1, . . . , n. As hi ∈ I(XH), by Lemma 1.2.5, hi is a linear

combination of g1, . . . , gn for i = 1, . . . , r. Therefore

Kh1 ⊕ · · · ⊕Khr ⊂ Kg1 ⊕ · · · ⊕Kgn,

and consequently r ≤ n. Thus r = n and the inclusion above is an equality. Therefore

taking classes modulo I(X), we get

Kh1 ⊕ · · · ⊕Khr = Kg1 ⊕ · · · ⊕Kgn.

As h1, . . . , hr are linearly independent, so are g1, . . . , gn because r = n, a contra-

diction because by construction of the gi’s and since char(K) = 2, one has
∑n

i=1 gi =
∑s

i=1 ti = 0.

Next we show the inequality δX(1, r) ≤ λr(G). Note that by Lemma 1.2.5. It suffices

to find a set F = {h1, . . . , hr} of forms of degree 1 whose image F = {h1, . . . , hr} in

S/I(X) is linearly independent over K and λr(G) = |X \ VX(F )|. We set ` = λr(G).

There are edges f1, . . . , f` of G such that the graph

H = G \ {f1, . . . , f`}
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has exactly r + 1 connected components H1, . . . , Hr+1. For j = 1, . . . , r, we set

hj =
∑

ti∈V (Hj)

ti.

Note that hi and hj have no common variables for i 6= j and any sum of the poly-

nomials h1, . . . , hr is a linear form in s − 1 variables. Hence, by Lemma 1.2.6, F is

linearly independent.

Let Pi be the point in Ps−1 that corresponds to fi for i = 1, . . . , `. To complete the

proof of the case d = 1 we need only show the equality {[P1], . . . , [P`]} = |X \ VX(F )|.
To show the inclusion “⊂” fix an edge fk with 1 ≤ k ≤ ` and set

G′ = G \ {f1, . . . , fk−1, fk+1, . . . , f`}.

Note that fk 6⊂ V (Hj) for j = 1, . . . , r + 1, otherwise G′ has r + 1 components, a

contradiction. As a consequence fk joins Hi and Hj for some i < j. Thus hi(Pk) 6= 0

and Pk ∈ X \ VX(F ).

To show the inclusion “⊃” take [P ] ∈ X \ VX(F ) and denote by f its corresponding

edge in G. Then there is 1 ≤ j ≤ r such that hj(P ) 6= 0. We proceed by contradiction

assuming [P ] /∈ {[P1], . . . , [P`]}, that is, f 6= fi for i = 1, . . . `. Then f is an edge

of H. As char(K) = 2, we get hi(P ) = 0 for i = 1, . . . , r by construction of hi, a

contradiction.

If d ≥ 2, the equality δX(d, r) = r for 1 ≤ r ≤ m = dimK(CX(d)) follows from the

proof of Theorem 1.2.8.

The next result is a hybrid of Theorems 1.2.8 and 1.2.9 and is characteristic free.

Theorem 1.2.10. Let G be a connected bipartite graph with s vertices and m edges,

let K be a field of any characteristic, and let A be the incidence matrix of G. If X is

the set of column vectors of A and λr(G) is the r-th edge connectivity of G, then

δX(d, r) =

{
λr(G), if d = 1 and 1 ≤ r ≤ s− 1 = dimK(CX(d)),

r, if d ≥ 2 and 1 ≤ r ≤ m = dimK(CX(d)).

Proof. Let V1, V2 be the bipartition of G. Consider the set Y of all points [ei − ej] in

Ps−1 such that {ti, tj} is an edge of G with ti ∈ V1 and tj ∈ V2, where ei is the i-th unit
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vector in Ks. Noticing that the polynomial h = t1 + · · · + ts vanishes at all points of

Y and the equality CX(1) = CY(1), the result follows adapting Lemma 1.2.5 and the

proof of Theorem 1.2.9 with Y playing the role of X.

Corollary 1.2.11. Let Cp(G) be the code of a connected graph G with s vertices, m

edges, r-th weak edge biparticity υr(G), r-th edge connectivity λr(G), over a finite field

K of char(K) = p. Then the r-th generalized Hamming weight of Cp(G) is given by

δr(Cp(G)) =





υr(G), if p 6= 2, G is non-bipartite, 1 ≤ r ≤ s,

λr(G), if p = 2, 1 ≤ r ≤ s− 1,

λr(G), if G is bipartite, 1 ≤ r ≤ s− 1.

Proof. Note that the linear code Cp(G) is the image of S1—the vector space of linear

forms of S—under the evaluation map ev1 : S1 → Km, f 7→ (f(P1), . . . , f(Pm)). Note

that the image of the linear function ti, under the map ev1, gives the i-th row of the

incidence matrix of G. This means that Cp(G) is the Reed-Muller-type code CX(1).

Hence, the result follows using the equality δX(1, r) = δr(CX(1)) [11, Lemma 4.3(iii)]

and Theorems 1.2.8, 1.2.9, and 1.2.10.

Corollary 1.2.12. [5, Theorems 1–3] Let Cp(G) be the code of a connected graph G

with s vertices, m edges, weak edge biparticity υ(G), edge connectivity λ(G), over a

finite field K of char(K) = p. Then the minimum distance of Cp(G) is given by

δ(Cp(G)) =





υ(G), if p 6= 2, G is non-bipartite, 1 ≤ r ≤ s,

λ(G), if p = 2, 1 ≤ r ≤ s− 1,

λ(G), if G is bipartite, 1 ≤ r ≤ s− 1.

Proof. It follows from Corollary 1.2.11 making r = 1.

1.3 Examples

Let G be a connected graph and let Cp(G) be the incidence matrix code of G over

a finite field Fq of characteristic p. Using Macaulay 2 [14], SageMath [27], and Wei’s

duality [30, Theorem 3], we can compute the weight hierarchy of Cp(G). We illustrate

this with some examples.

The weight hierarchy of Cp(G) can also be computed using a nice formula of Johnsen

and Verdure [19] for the generalized weights in terms of the Betti numbers of the
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Stanley-Reisner ring of the representable matroid determined by the incidence matrix

of G.

Note that, by Corollary 1.2.11, we can compute the corresponding higher weak bi-

particity and edge connectivity numbers of the graph. Conversely any algorithm that

computes these graph invariants can be used to compute the weight hierarchy of Cp(G).

Example 1.3.1. Let G be the graph of Figure 1.1. Recall that the dimension of Cp(G)

is 6 if p = 3 and is 5 if p = 2 (Corollary 1.2.4). For use below we denote the dual code

by Cp(G)⊥.

t3

t1

t2

t6

t4

t5**
**

**
**

*

OOOOO

²²
²²
²

**
**

**
**

*
dddddddddddd

dddddddddddd

dddddd
O O O

²
²

²

Figure 1.1: Non-bipartite graph G.

Using Procedure 1.4.1, together with Wei’s duality [30, Theorem 3], we obtain the

following table with the weight hierarchy of Cp(G). The edge biparticity of this graph

is 2, the weak edge biparticity is 2, and the edge connectivity is 3.

r 1 2 3 4 5 6

δr(C2(G)) 3 5 6 8 9
δr(C2(G)⊥) 3 6 8 9
δr(C3(G)) 2 4 5 7 8 9
δr(C3(G)⊥) 4 7 9

Table 1.1: Weight hierarchy of Cp(G) for the graph of Figure 1.1.

Example 1.3.2. Let G be the Petersen graph of Figure 1.2. Recall that the dimension

of Cp(G) (resp. Cp(G)⊥) is 9 (resp. 6) if p = 2, and the dimension of Cp(G) (resp.

Cp(G)⊥) is 10 (resp. 5) if p 6= 2; (Corollary 1.2.4).

Using Procedure 1.4.2, together with, Wei’s duality [30, Theorem 3] we obtain the

following table with the weight hierarchy of Cp(G) for p = 2. The edge biparticity, the

weak edge biparticity , and the edge connectivity of the Petersen graph are equal to 3.
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Figure 1.2: Petersen graph G.

r 1 2 3 4 5 6 7 8 9 10

δr(C2(G)) 3 5 7 9 10 12 13 14 15
δr(C2(G)⊥) 5 8 10 12 14 15
δr(C3(G)) 3 5 7 8 9 11 12 13 14 15
δr(C3(G)⊥) 6 10 12 14 15

Table 1.2: Weight hierarchy of Cp(G) for the graph of Figure 1.2.

1.4 Procedure for Macaulay2 and SageMath

Procedure 1.4.1. Computing the weight hierarchies using Macaulay2 [14], SageMath

[27], and Wei duality [30]. This procedure corresponds to Example 1.3.1. It could be

applied to any connected graph G to obtain the generalized Hamming weights of Cp(G).

The next procedure for Macaulay2 uses the algorithms of [11] to compute generalized

minimum distance functions.

--Procedure for Macaulay2

input "points.m2"

q=3, R=ZZ/q[t1,t2,t3,t4,t5,t6]--p=char(K)=3

A=transpose(matrix{{1,1,0,0,0,0},{0,1,1,0,0,0},{1,0,1,0,0,0},

{0,0,0,1,1,0},{0,0,0,0,1,1},{0,0,0,1,0,1},{1,0,0,1,0,0},

{0,1,0,0,0,1},{0,0,1,0,1,0}})

I=ideal(projectivePointsByIntersection(A,R)), M=coker gens gb I
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genmd=(d,r)->degree M-max apply(apply(subsets(apply(apply(apply

(toList(set(0..q-1))^**(hilbertFunction(d,M))

-(set{0})^**(hilbertFunction(d,M)),toList),x->basis(d,M)*vector x),

z->ideal(flatten entries z)),r),ideal),x-> if #set flatten entries

mingens ideal(leadTerm gens x)==r and not quotient(I,x)==I

then degree(I+x) else 0)

--The following are the first two generalized Hamming weights

genmd(1,1),genmd(1,2)

#Procedure for SageMath

A=transpose(matrix(GF(3),[[1,1,0,0,0,0],[0,1,1,0,0,0],[1,0,1,0,0,0],

[0,0,0,1,1,0],[0,0,0,0,1,1],[0,0,0,1,0,1],[1,0,0,1,0,0],[0,1,0,0,0,1],

[0,0,1,0,1,0]]))

C = codes.LinearCode(A)

C.parity_check_matrix()

C.generator_matrix()

#the next line Gives the minimum distance of the dual code

C.dual_code().minimum_distance()

Procedure 1.4.2. Computing the weight hierarchies using Macaulay2 [14], SageMath

[27], and Wei duality [30]. This procedure corresponds to Example 1.3.2. The next

procedure for Macaulay2 uses the algorithms of [11] to compute generalized footprint

functions. The footprint gives lower bounds for the generalized weights.

--Procedure for Macaulay2 for Petersen graph

input "points.m2"

R=QQ[t1,t2,t3,t4,t5,t6,t7,t8,t9,t10]

--Incidence matrix to compute biparticity

A=transpose matrix{{1,1,0,0,0,0,0,0,0,0},{0,1,1,0,0,0,0,0,0,0},

{0,0,1,1,0,0,0,0,0,0},{0,0,0,1,1,0,0,0,0,0},{1,0,0,0,1,0,0,0,0,0},

{1,0,0,0,0,1,0,0,0,0},{0,1,0,0,0,0,1,0,0,0},{0,0,1,0,0,0,0,1,0,0},

{0,0,0,1,0,0,0,0,1,0},{0,0,0,0,1,0,0,0,0,1},{0,0,0,0,0,1,0,1,0,0},

{0,0,0,0,0,0,0,1,0,1},{0,0,0,0,0,0,1,0,0,1},{0,0,0,0,0,0,1,0,1,0},
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{0,0,0,0,0,1,0,0,1,0}}

q=2, R = ZZ/q[t1,t2,t3,t4,t5,t6,t7,t8,t9]

--Generator matrix computed with Sage to find Hamming weights.

A1=matrix({{1,0,0,0,1,0,0,0,0,0,1,0,0,0,1},

{0,1,0,0,1,0,0,0,0,0,1,0,1,1,1},{0,0,1,0,1,0,0,0,0,0,0,1,1,1,1},

{0,0,0,1,1,0,0,0,0,0,0,1,1,0,0},{0,0,0,0,0,1,0,0,0,0,1,0,0,0,1},

{0,0,0,0,0,0,1,0,0,0,0,0,1,1,0},{0,0,0,0,0,0,0,1,0,0,1,1,0,0,0},

{0,0,0,0,0,0,0,0,1,0,0,0,0,1,1},{0,0,0,0,0,0,0,0,0,1,0,1,1,0,0}})

q=2, R = ZZ/q[t1,t2,t3,t4,t5,t6]

--parity check matrix computed with Sage to find

--the Hamming weights of dual code

A2=matrix({{1,0,0,0,0,1,1,0,0,0,0,0,0,1,1},

{0,1,0,0,0,0,1,1,0,0,0,1,1,0,0},{0,0,1,0,0,0,0,1,1,0,0,1,1,1,0},

{0,0,0,1,0,0,0,0,1,1,0,0,1,1,0},{0,0,0,0,1,1,0,0,0,1,0,0,1,1,1},

{0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}})

--The following functions can be applied to A, A1, A2

I=ideal(projectivePointsByIntersection(A,R)),M=coker gens gb I

init=ideal(leadTerm gens gb I),degree M

--This function computes the edge biparticity of Petersen graph.

--using the incidence matrix over the rational numbers

genmd1=(d,r)->degree M-max apply(apply(subsets(apply(apply(apply

(toList(set(1,-1))^**(hilbertFunction(d,M))

-(set{0})^**(hilbertFunction(d,M)),toList),x->basis(d,M)*vector x),

z->ideal(flatten entries z)),r),ideal),x-> if #set flatten entries

mingens ideal(leadTerm gens x)==r and not quotient(I,x)==I

then degree(I+x) else 0)

--To compute the r-weight of the dual code

--use genmd(1,r) of the previous procedure:

genmd(1,1),genmd(1,2),genmd(1,3),genmd(1,4),genmd(1,5)

--To compute edge biparticity use: genmd1(1,1)

er=(x)-> if not quotient(init,x)==init then degree ideal(init,x) else 0
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--This is the footprint function

fpr=(d,r)->degree M - max apply(apply(apply(subsets(flatten

entries basis(d,M),r),toSequence),ideal),er)

--To find lower bounds for Hamming weights use the footprint:

fpr(1,1),fpr(1,2),fpr(1,3),fpr(1,4),fpr(1,5),fpr(1,6),fpr(1,7),fpr(1,8)
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Chapter 2

Linear codes over signed graphs

Abstract. We give formulas, in terms of graph theoretical invariants, for the gen-

eralized Hamming weights of the linear code generated by the rows of the incidence

matrix of a signed graph over a finite field, and for those of its dual code. Then we

determine the regularity of the ideals of circuits and cocircuits of a signed graph, and

prove an algebraic formula in terms of the multiplicity for the frustration index of an

unbalanced signed graph.

2.1 Introduction

The generalized Hamming weights (GHWs) of a linear code are parameters of interest

in many applications [9, 13, 17, 24, 28, 34, 39, 40, 42] and they have been nicely related

to the graded Betti numbers of the ideal of cocircuits of the matroid of a linear code

[16, 17], to the nullity function of the dual matroid of a linear code [39], and to the

enumerative combinatorics of linear codes [3, 15, 19, 20]. Because of this, their study

has attracted considerable attention, but determining them is in general a difficult

problem. The notion of generalized Hamming weight was introduced by Helleseth,

Kløve and Mykkeltveit in [14] and was first used systematically by Wei in [39]. For

convenience we recall this notion. Let K = Fq be a finite field and let C be a linear

[m, k] code of length m and dimension k, that is, C is a linear subspace of Km with

k = dimK(C). Let 1 ≤ r ≤ k be an integer. Given a linear subspace D of C, the

support of D, denoted supp(D), is the set of nonzero positions of D, that is,

supp(D) := {i : ∃ (a1, . . . , am) ∈ D, ai 6= 0}.

21



The r-th generalized Hamming weight of C, denoted δr(C), is given by

δr(C) := min{|supp(D)| : D is a subspace of C with dimK(D) = r}.

As usual we call the set {δ1(C), . . . , δk(C)} the weight hierarchy of the linear code

C. The 1st Hamming weight of C is the minimum distance δ(C) of C, that is, one has

δ1(C) = δ(C) = min{ω(x) : x ∈ C \ {0}},

where ω(x) is the Hamming weight of the vector x, i.e., the number of nonzero entries

of x. To determine the minimum distance is essential to find good error-correcting

codes [20].

The notion of generalized Hamming weights for linear codes was extended to matroids

by Johnsen and Verdure [16, Definition 1], as we now explain.

Let M be a matroid with ground set E, rank function ρ, nullity function η, and let

M∗ be its dual matroid. The r-th generalized Hamming weight of M , denoted dr(M),

is given by

dr(M) := min{|X| : X ⊂ E and η(X) = r} for 1 ≤ r ≤ η(E).

A major result of Johnsen and Verdure [16] shows that the GHWs of a matroid

can be read off the minimal graded free resolution of the Stanley-Reisner ideal of the

independence complex of the matroid [16, Theorem 2] (see Theorem 2.4.2).

We can associate to a linear [m, k] code C the vector matroid M [A] on the ground

set E = {1, . . . , m}, where A is a generator matrix of C. The rank function (resp.

nullity) of M [A] is given by ρ(X) = rank(AX) (resp. η(X) = |X| − ρ(X)) for X ⊂ E,

where AX is the submatrix of A obtained by picking the columns indexed by X. It can

be verified that the matroid M [A] does not depend on the generator matrix we choose.

We call M [A] the (generator) matroid of C. If H is a parity check matrix of C, then

M [A]∗ = M [H] and M [A] = M [H]∗. By Lemma 2.2.4, one has

δr(C) = dr(M [A]∗) for 1 ≤ r ≤ k and δr(C
⊥) = dr(M [A]) for 1 ≤ r ≤ m− k.

Thus computing GHWs of vector matroids is equivalent to computing those of linear

codes. This relationship between the GHWs of linear codes and those of vector matroids
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is attributed to Wei [39, Theorem 2] (cf. Theorem 2.2.2). In this work we study GHWs

of linear codes defined over signed graphs, combining the theory of GHWs of matroids

[16, 17] and the combinatorial structure of signed-graphic matroids [43, 44, 45] that we

introduce next.

A signed graph Gσ is a pair (G, σ) consisting of a multigraph G with vertex set

V (G) and edge set E(G) (loops and multiple edges are permitted), and a mapping

σ : E(G) → {±}, that assigns a sign to each edge. If no loops or multiple edges

are permitted, G is called a simple graph and Gσ is called a signed simple graph. In

particular, the signed graph with σ(e) = + (resp. σ(e) = −) for all e, denoted G+

(resp. G−), is called the positive signed graph (resp. negative signed graph) on G.

There are more general definitions of signed graphs, where the edge set includes empty

loops and half edges, that are essential to represent root systems [43].

Let Gσ be a signed graph. A cycle of Gσ is a simple closed path in G. A cycle with

an even number of negative edges is called balanced. A signed graph is balanced if every

cycle is balanced.

An isolated vertex is regarded as balanced. A bowtie of Gσ is the union of two

unbalanced cycles which meet at a single vertex or the union of two vertex-disjoint

unbalanced cycles and a simple path which meets one cycle at each end and is otherwise

disjoint from them.

A central result of Zaslavsky [43, Theorem 5.1] shows the existence of a matroid

M(Gσ) with ground set E(G), called the signed-graphic matroid of Gσ, whose rank

function is

ρ(X) = |V (G)| − c0(X) for X ⊂ E(G),

where c0(X) is the number of balanced connected components of the signed subgraph

with edge set X and vertex set V (G), the circuits of M(Gσ) are the balanced cycles

and the bowties of Gσ. The circuits of M(Gσ) are called the circuits of Gσ. For parts

(f) and (g) of [43, Theorem 5.1] the reader is referred to [45, Theorem 2.1].

If Gσ = G+, the signed-graphic matroid M(G+) is the graphic matroid M(G) of G

whose circuits are the cycles of G [25, 41]. If Gσ = G−, the signed-graphic matroid

M(G−) is the even cycle matroid [43] whose circuits are the even cycles and the bowties

of G−. The circuits of the matroids M(G+), M(G−) and those of their dual matroids,
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as well as the related notion of an elementary integral vector, occur in coding theory

[6, 31], convex analysis [26], the theory of toric ideals of graphs [2, 8, 22, 29, 36, 37],

and in matroid theory [25, 30, 43, 46].

The content of this chapter is as follows. In Section 2.2 we briefly introduce matroids

and present some well known results about GHWs of matroids and linear codes.

In what follows Gσ denotes a signed graph with s vertices, m edges, c connected

components, and c0 balanced components, and K denotes a finite field Fq of character-

istic p. The incidence matrix code of Gσ over the field K, denoted by C, is the linear

code generated by the row vectors of the incidence matrix of Gσ (Definition 2.3.6). In

Section 2.3 we present our main results on the generalized Hamming weights of inci-

dence matrix codes of signed graphs and those of their dual codes, and describe the

GHWs of the signed-graphic matroid of a signed graph and those of its dual matroid,

in terms of the combinatorics of a signed graph.

The frustration index of Gσ, denoted ϕ(Gσ), is the smallest number of edges whose

deletion from Gσ leaves a balanced signed graph. The minimum distance of C is

bounded from above by ϕ(Gσ). We are interested in the following related invariant.

The r-th cogirth of Gσ, denoted υr(Gσ), is the minimum number of edges whose removal

results in a signed graph with r balanced components. If r = 1 and Gσ is connected,

υ1(Gσ) is the cogirth of M(Gσ), that is, the minimum size of a cocircuit of M(Gσ)

(Lemma 2.3.4). We denote υ1(Gσ) simply by υ(Gσ). The r-th edge connectivity of Gσ,

denoted λr(Gσ) or λr(G), is the minimum number of edges whose removal results in a

signed graph with r + 1 connected components. Note that the r-th edge connectivity

is a property of the underlying multigraph G, that is, it is independent of σ. If r = 1,

λ1(Gσ) is the edge connectivity of Gσ and is denoted by λ(Gσ). We will relate these

graph invariants to the generalized Hamming weights and the minimum distance of

incidence matrix codes.

Our main results on linear codes are the following. First, we give graph theoretical

formulas for the generalized Hamming weights of the incidence matrix code of a signed

graph.

Theorem 2.3.16 If C is the incidence matrix code of a connected signed graph Gσ,
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then

δr(C) =





υr(Gσ), if p 6= 2, Gσ is unbalanced and 1 ≤ r ≤ s,

λr(G), if p = 2 and 1 ≤ r ≤ s− 1,

λr(G), if Gσ is balanced and 1 ≤ r ≤ s− 1.

We show that the formulas of [23, Corollary 2.13] for the generalized Hamming

weights of incidence matrix codes of simple graphs can be extended to multigraphs

(Corollary 2.3.17). Then we show that the combinatorial formulas of Dankelmann, Key

and Rodrigues [6, Theorems 1–3] for the minimum distance of the incidence matrix

code of a simple graph can be extended to signed graphs (Corollary 2.3.18).

A family of circuits {Ci}r
i=1 of a matroid M is called non-redundant if Ci 6⊆

⋃
j 6=i Cj

for i = 1, . . . , r [16]. Our next result gives graph theoretical formulas for the generalized

Hamming weights of the dual code of the incidence matrix code of a signed graph.

Theorem 2.3.19 Let C be the incidence matrix code of a connected signed graph Gσ.

(a) If p = 2 or Gσ is balanced, and 1 ≤ r ≤ m − s + 1 (resp. 1 ≤ r ≤ s − 1), then

δr(C
⊥) (resp. δr(C)) is the minimum number of edges of G forming a union of

r non-redundant cycles (resp. cocycles) of G.

(b) If p 6= 2 and 1 ≤ r ≤ m − s (resp. 1 ≤ r ≤ s), then δr(C
⊥) (resp. δr(C)) is

the minimum number of edges of G forming a union of r non-redundant circuits

(resp. cocircuits) of Gσ.

If C is the incidence matrix code of a connected digraph D and G is its underlying

multigraph, we show that δr(C) = λr(G) and give graph theoretical formulas for the

generalized Hamming weights of the dual code C⊥ (Corollary 2.3.20). For a connected

multigraph, we give formulas for the GHWs of the dual of its incidence matrix code

(Corollary 2.3.21).

The main result of Section 2.4 gives explicit formulas for the regularity of the ideals

of circuits and cocircuits of the vector matroid of the incidence matrix of a signed graph

(Theorem 2.4.7).

Let M be the matroid of C. By Theorems 2.3.16 and 2.3.19, one has graph the-

oretical formulas for the weight hierarchies of C and C⊥. On the other hand, using

Macaulay2 [11], the package Matroids [5], and the formulas of Johnsen and Verdure

(Theorem 2.4.2, Corollary 2.4.3), we can compute the weight hierarchies of C and
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C⊥. Hence, our results can be used to compute the r-th cogirth υr(Gσ) of Gσ and the

r-th edge connectivity λr(Gσ) of Gσ. The main result of Section 2.5 is an algebraic

formulation for the frustration index of Gσ, in terms of the degree or multiplicity of

graded ideals, that can be used to compute or estimate this number using Macaulay2

[11] (Theorem 2.5.4, Example 2.6.6). If G is a graph, the frustration index of G− is

the edge biparticity of G, that is, the minimum number of edges whose removal makes

the graph bipartite. In Section 2.6 we illustrate how to use our results in practice with

some examples.

Our main results and their proofs show that the weight hierarchies of the incidence

matrix code C and its dual code C⊥ of a signed graph Gσ can be computed using

the field Q of rational numbers as the ground field. To compute the GHWs of C and

C⊥ over a finite field Fq of characteristic p, we use the incidence matrix of Gσ (resp.

G+) over the field Q if p 6= 2 (resp. p = 2). One can also use the rational numbers

to compute the cycles, circuits, and cocircuits of a signed graph, as well as its r-th

cogirth, frustration index, and r-th edge connectivity. In Section 2.7 we give procedures

for Macaulay2 [11] that allows us to obtain this information for graphs with a small

number of vertices, see the examples of Section 2.6. The package Matroids [5] plays an

important role here because it computes the circuits and cocircuits of vector matroids

over the field of rational numbers, however the problem of computing all circuits of a

vector matroid is likely to be NP-hard [18, 35] (cf. [16, p. 76]). The minimum distance

of any linear code can be computed using SageMath [27]. For signed simple graphs one

can also compute the minimum distance using Proposition 2.5.6 and the algorithms of

[9, 21].

2.2 Matroids and linear codes

A matroid is a pair M = (E, ρ) where E is a finite set, called the ground set of M ,

and ρ : 2E → Z+ := {0, 1, . . .} is a function, called the rank function of M , satisfying:

(R0) ρ(∅) = 0;

(R1) If X ⊂ E and e ∈ E, then ρ(X) ≤ ρ(X ∪ {e}) ≤ ρ(X) + 1;

(R2) If X ⊂ E and Y ⊂ E, then ρ(X ∪ Y ) + ρ(X ∩ Y ) ≤ ρ(X) + ρ(Y ).

26



An independent set of a matroid M is subset X ⊂ E such that ρ(X) = |X|. In

particular the empty set is always an independent set. A base is a maximal independent

set. A subset of the ground set which is not independent is called dependent and a

circuit of M is a minimal dependent set. We denote by CM the family of all circuits

of M . The rank of the matroid M , denoted ρ(M), is ρ(E). The nullity of X ⊂ E,

denoted η(X), is defined by

η(X) := |X| − ρ(X),

and the nullity of M , denoted η(M), is η(E). Let M = (E, ρ) be a matroid, its dual

is the matroid M∗ = (E, ρ∗) with the same ground set E and rank function given by

ρ∗(X) := |X| − ρ(E) + ρ(E\X) for all X ⊂ E,

see [25, p. 72]. The nullity function of M∗ is denoted by η∗. One can verify that

(M∗)∗ = M .

A family of circuits {Ci}r
i=1 of a matroid M is called non-redundant if Ci 6⊆

⋃
j 6=i Cj

for i = 1, . . . , r [16]. Let X be a subset of the ground set E. The degree or non-

redundancy of X is the maximum number of non-redundant circuits contained in X,

and it is denoted by deg(X).

Lemma 2.2.1. [16, Proposition 1] Let M = (E, ρ) be a matroid, let X be a subset of

E, and let η be the nullity function of M . Then deg(X) = η(X).

Theorem 2.2.2. [39, Theorem 2] Let C be a linear [m, k] code and let M∗ be the dual

of the vector matroid of C. Then, the r-th generalized Hamming weight of C is given

by

δr(C) = min{|X| : X ⊂ E and η∗(X) ≥ r} for 1 ≤ r ≤ k.

By Lemma 2.2.1, we can replace the inequality η∗(X) ≥ r by η∗(X) = r. This result

suggests how to define the generalized Hamming weights of any matroid M .

Definition 2.2.3. [16, Definition 1] Let M = (E, ρ) be a matroid with nullity function

η. The generalized Hamming weights of M are defined as

dr(M) := min{|X| : X ⊂ E and η(X) = r} for 1 ≤ r ≤ η(E).
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Lemma 2.2.4. Let C be a linear code of length m and dimension k and let M be the

its vector matroid. Then δr(C) = dr(M
∗) for 1 ≤ r ≤ k and δr(C

⊥) = dr(M) for

1 ≤ r ≤ m− k.

Proof. By Lemma 2.2.1 and Theorem 2.2.2, we obtain δr(C) = dr(M
∗) for 1 ≤ r ≤ k.

The matroid associated to C⊥ is M∗. Hence δr(C
⊥) = dr(M) for 1 ≤ r ≤ m− k.

Theorem 2.2.5. ([1, Corollary 1.3], [17, Proposition 6]) Let M = (E, ρ) be a matroid

and let η be its nullity function. The following hold.

dr(M
∗) = min{|X| : X ⊂ E and ρ(E \X) = ρ(E)− r} for 1 ≤ r ≤ ρ(E).

dr(M) = min {|⋃r
i=1Ci| : {Ci}r

i=1 are non-redundant circuits of M} for 1 ≤ r ≤ η(E).

Proof. According to [41, Theorem 2, p. 35], one has ρ(E\X) = ρ(E)−η∗(X). Therefore

the first equality follows from

dr(M
∗) = min{|X| : X ⊂ E and η∗(X) = r} for 1 ≤ r ≤ ρ(E).

On the other hand, recall that by definition of dr(M), one has

dr(M) = min{|X| : X ⊂ E and η(X) = r} for 1 ≤ r ≤ η(E).

Therefore, applying Lemma 2.2.1, the second equality follows.

Corollary 2.2.6. Let C be a linear [m, k] code and let M = (E, ρ) be the vector matroid

of C. Then the following equalities hold:

δr(C) = min{|X| : X ⊂ E and ρ(E \X) = ρ(E)− r} for 1 ≤ r ≤ k.

δr(C
⊥) = min {|⋃r

i=1Ci| : {Ci}r
i=1 are non-redundant circuits of M} for 1 ≤ r ≤ m− k.

Proof. By Lemma 2.2.4, we obtain δr(C) = dr(M
∗) for 1 ≤ r ≤ k and δr(C

⊥) = dr(M)

for 1 ≤ r ≤ m− k. Thus the result follows from Theorem 2.2.5.

If C is a linear [m, k] code, then δ1(C) < · · · < δk(C) [15, 39]. The following duality

theorem of Wei is a classical result in this area.

Theorem 2.2.7. (Wei’s duality [39, Theorem 3]) Let C be a linear [m, k] code. Then

{δr(C) | r = 1, . . . , k} = {1, . . . , m} \ {m + 1− δr(C
⊥) | r = 1, . . . , m− k}.

This result was generalized by Britz, Johnsen, Mayhew and Shiromoto [4, Theorem 5]

from linear codes to arbitrary matroids.
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2.3 Generalized weights over signed graphs

In this section we present our main results on linear codes. To avoid repetitions, we

continue to employ the notations and definitions used in Sections 2.1 and 2.2.

A multigraph G consists of a finite set of vertices, V (G), and a finite multiset of

edges, E(G). Edges of G are of two types. A link e = {v, w}, with two distinct

endpoints, v, w in V (G) and a loop, e = {v, v}, with two coincident endpoints. As

E(G) is a multiset, multiple edges are allowed. The number of edges of G counted

with multiplicity is denoted by m = |E(G)|. A multigraph with no loops or multiple

edges is called a simple graph or a graph. Let G be a multigraph. A cycle of G is a

simple closed path in G. A loop is a cycle of length 1, a pair of parallel links is a cycle

of length 2, a triangle is a cycle of length 3, and so on.

Theorem 2.3.1. ([43, Theorem 5.1], [45, Theorem 2.1]) Let Gσ be a signed graph.

Then there exists a matroid M(Gσ) on E(G) whose circuits are the balanced cycles

and the bowties of Gσ.

The matroid M(Gσ) is called the signed-graphic matroid of Gσ. The circuits of

M(Gσ) are called the circuits of Gσ. If Gσ is balanced, then M(Gσ) is the graphic

matroid M(G) of G.

Definition 2.3.2. Let Gσ be an unbalanced (resp. balanced) signed graph. A cutset of

Gσ is a set of edges whose removal from Gσ increases the number of balanced connected

components (resp. connected components) of Gσ. A cocircuit of Gσ is a minimal cutset

of Gσ. If Gσ is balanced, a cocircuit of Gσ is called a cocycle or bond of G.

Lemma 2.3.3. [25, Proposition 2.3.1] If Gσ is a balanced signed graph, then the co-

circuits of Gσ are the cocircuits of the graphic matroid M(G) of G, that is, the circuits

of M(G)∗.

Lemma 2.3.4. [43, Theorem 5.1(i)] If Gσ is a connected unbalanced signed graph and

M(Gσ) is its signed-graphic matroid, then the cocircuits of Gσ are the cocircuits of

M(Gσ), that is, the circuits of the dual matroid M(Gσ)∗.

Proof. Let ρ be the rank function of M(Gσ). We set V = V (G) and E = E(G). Take

a cocircuit X ⊂ E of Gσ. As Gσ is connected, one has, c0(E) = 0 and c0(E \X) = 1
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if Gσ is unbalanced, and c0(E) = 1 and c0(E \ X) = 2 if Gσ is balanced. Then

c0(E \X) = c0(E) + 1. According to [43, Theorem 5.1(j)], one has

(2.3.1) ρ(E) = |V | − c0(E) and ρ(E \X) = |V | − c0(E \X).

Therefore ρ(E\X) = ρ(E)−1. Since X is a minimal cutset, it follows that H := E\X
is closed, that is, ρ(H ∪ {e}) = ρ(H) + 1 = ρ(E) for e /∈ H. Indeed, from the equality

H ∪ {e} = E \ (X \ {e}), and the minimality of X, we get c0(H ∪ {e}) = c0(E).

Hence, using Eq. (2.3.1), we obtain ρ(H ∪ {e}) = ρ(E) = ρ(H) + 1 for e /∈ H. As

a consequence H is a maximal set of rank ρ(E) − 1. Thus, by [41, Lemma 1, p. 38],

H is a hyperplane of M(Gσ) in the sense of [41], and by [41, Theorem 2, p. 39], X is

a cocircuit of M(Gσ). Similarly, if X is a cocircuit of M(Gσ), it is seen that X is a

cocircuit of Gσ.

Theorem 2.3.5. Let Gσ be a connected signed graph, let ρ and η be the rank and

nullity functions of the signed-graphic matroid M = M(Gσ) of Gσ. The following hold.

(i) If 1 ≤ r ≤ η(M), then dr(M) is equal to the minimum number of edges of G

forming a union of r non-redundant circuits of Gσ.

(ii) If 1 ≤ r ≤ ρ(M) and Gσ is unbalanced (resp. balanced), then dr(M
∗) is the r-th

cogirth υr(Gσ) (resp. r-th edge connectivity λr(Gσ)) of Gσ.

(iii) If 1 ≤ r ≤ ρ(M), then dr(M
∗) is equal to the minimum number of edges of Gσ

forming a union of r non-redundant cocircuits of Gσ.

Proof. (i): By Theorem 2.3.1, the circuits of M are the balanced cycles and the bowties

of Gσ. Hence, it suffices to recall the following formula of Theorem 2.2.5:

dr(M) = min {|⋃r
i=1Ci| : {Ci}r

i=1 are non-redundant circuits of M} for 1 ≤ r ≤ η(M).

(ii): Let E be the edge set of Gσ, which is the ground set of M , and let V be the

vertex set of Gσ. According to [43, Theorem 5.1(j)] the rank function of M(Gσ) satisfies

(2.3.2) ρ(E \X) = |V | − c0(E \X) for X ⊂ E,
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where c0(E\X) is the number of balanced connected components of the signed subgraph

Gσ \X with edge set E \X and vertex set V . Therefore, by Theorem 2.2.5, we obtain

dr(M
∗) = min {|X| : X ⊂ E and ρ(E \X) = ρ(E)− r}

= min {|X| : X ⊂ E and |V | − c0(E \X) = ρ(E)− r}

for 1 ≤ r ≤ ρ(E). If Gσ is unbalanced (resp. balanced), then making X = ∅ in

Eq. (2.3.2) we get ρ(E) = |V | (resp. ρ(E) = |V | − 1). Therefore

dr(M
∗) =

{
min{|X| : X ⊂ E and c0(E \X) = r} = υr(Gσ), if Gσ is unbalanced,

min{|X| : X ⊂ E and c(E \X) = r + 1} = λr(Gσ), if Gσ is balanced,

where c(E\X) is the number of connected components of the signed subgraph Gσ\X.

(iii): By Lemmas 2.3.3 and 2.3.4, the circuits of the dual matroid M∗ of M are the

cocircuits of the signed graph Gσ, and by Theorem 2.2.5 we get

dr(M
∗) = min {|⋃r

i=1C
∗
i | : {C∗

i }r
i=1 are non-redundant circuits of M∗} , 1 ≤ r ≤ η∗(E).

Hence, the required equality follows noticing that η∗(E) = ρ(E).

Definition 2.3.6. Let Gσ be a signed graph with s vertices t1, . . . , ts and m edges, let

K be a field, and let ei be the i-th unit vector in Ks. The incidence matrix of Gσ over

the field K is the s×m matrix A whose column vectors are given by:

(i) ei − ej (resp. ei + ej) if e = {ti, tj} is a link with σ(e) = + (resp. σ(e) = −);

(ii) 0 (resp. 2ei) if e = {ti, ti} is a loop with σ(e) = + (resp. σ(e) = −).

Note that the columns of A are defined up to sign, one can pick ei − ej or ej − ei

if e = {ti, tj} is a link with σ(e) = +. To avoid ambiguity we could normalize and

pick ei − ej if i > j. The order of the columns of A and the choice of sign have no

significance for the invariants of linear codes, signed graphs, and Stanley-Reisner ideals

that we want to study.

If G is a multigraph with vertices t1, . . . , ts, the incidence matrix of G over a field

K is the incidence matrix of the negative signed graph G−, that is, the matrix whose

columns are all vectors ei + ej such that {ti, tj} is an edge of G. A digraph D consists
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of a multigraph G with vertices t1, . . . , ts where all edges of G are directed from one

vertex to another. The edges or arrows of D are ordered pairs of vertices (ti, tj) with

e = {ti, tj} an edge of G, where (ti, tj) represents the edge e directed from ti to tj.

The incidence matrix of D over a field K is the incidence matrix of the positive signed

graph G+, that is, the matrix whose columns are all vectors ei− ej such that (ti, tj) is

an edge of D.

Theorem 2.3.7. [43, Theorems 8B.1, 8B.2] Let Gσ be a signed graph and let A be its

incidence matrix over a field of characteristic p. The following hold.

(a) If p 6= 2, then the vector matroid M [A] of A is the signed-graphic matroid M(Gσ).

(b) If p = 2, then M [A] is the graphic matroid M(G) of G.

Proposition 2.3.8. Let Gσ be a signed graph with s vertices, c connected components,

c0 balanced connected components, and let A be its incidence matrix over a field K.

Then

rank(A) =

{
s− c0, if char(K) 6= 2,

s− c, if char(K) = 2 or Gσ is balanced.

Proof. Assume char(K) 6= 2. By Theorem 2.3.7 (a), the signed graphic matroid M(Gσ)

is the vector matroid M [A]. According to [43, Theorem 5.1(j)], the rank of M(Gσ) is

s−c0. Thus in this case rank(A) = s−c0. Assume char(K) = 2. By Theorem 2.3.7 (b),

the graphic matroid M(G) is the vector matroid M [A]. If G is connected, then the bases

of the matroid M(G) are the spanning trees of G [41, p. 28], and rank(A) = s−1. As a

consequence, if G has c components, one has rank(A) = s− c. If Gσ is balanced, then

c = c0, and by the previous two cases rank(A) = s− c, regardless of the characteristic

of the field K.

Corollary 2.3.9. Let D be a digraph with s vertices, c connected components, and let

A be its incidence matrix over a field K. Then, rank(A) = s− c.

Proof. Let G be the underlying unoriented simple graph of D. Consider the positive

signed graph G+. Note that G+ is balanced. Since D and G+ have the same incidence

matrix, the result follows from Proposition 2.3.8.
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Definition 2.3.10. The incidence matrix code of a signed graph Gσ (resp. multigraph

G, digraph D), over a finite field Fq, is the linear code C generated by the rows of the

incidence matrix of the signed graph Gσ (resp. multigraph G, digraph D).

Corollary 2.3.11. Let Gσ be a connected signed graph with s vertices and m edges,

and let C be the incidence matrix code of Gσ over a finite field of characteristic p.

Then

(a) C (resp. C⊥) is an [m, s] (resp. [m,m− s]) code if p 6= 2 and Gσ is unbalanced.

(b) C (resp. C⊥) is an [m, s−1] (resp. [m,m−s+1]) code if p = 2 or Gσ is balanced.

Proof. This follows from Proposition 2.3.8 noticing that dim(C) + dim(C⊥) = m.

Definition 2.3.12. Let G be a multigraph. A bowtie of G is the union of two odd cycles

which meet at a single vertex or the union of two vertex-disjoint odd cycles and a

simple path which meets one cycle at each end and is otherwise disjoint from them.

Corollary 2.3.13. Let G be a multigraph and let G+ and G− be the positive and

negative signed graphs, respectively. The following hold.

(a) The circuits of the signed-graphic matroid M(G+) are the cycles of G, that is,

M(G+) is the graphic matroid M(G) of G.

(b) The signed-graphic matroid M(G+) is the vector matroid, over any field K, of

the incidence matrix of G+ whose columns are of the form ei − ej.

(c) The balanced (resp. unbalanced) cycles of G− are the even (resp. odd) cycles of

G. A circuit of M(G−) is either an even cycle or a bowtie of G.

(d) If Gσ is a balanced signed graph, then M(Gσ) is the graphic matroid M(G) of G.

Proof. (a): There are no unbalanced cycles of G+. Hence, by Theorem 2.3.1, the

circuits of M(G+) are the cycles of G.

(b): Let p be the characteristic of the field K. If p 6= 2, by Theorem 2.3.7, M(G+)

is the vector matroid of the incidence matrix A of G+ and the columns of this matrix

have the required form. If p = 2, the graphic matroid M(G) of G is the vector matroid
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M [A] of the incidence matrix A of G [41, Theorem 3, p. 149]. By part (a), M(G+) is

the graphic matroid of G. Thus M(G+) is the vector matroid of A. The columns of A

have the required form because in this case 1 = −1.

(c), (d): This follows readily from Theorem 2.3.1.

Remark 2.3.14. Let G be a multigraph and let A be the incidence matrix of G+

over the field K = Q of rational numbers. Since M [A] is the graphic matroid of G, to

compute all cycles of G one can use Macaulay2 [11] and the package Matroids [5].

Corollary 2.3.15. [30, 36, 43] If A is the incidence matrix of a multigraph G over a

field of char(K) 6= 2, then the circuits of the vector matroid M [A] are the even cycles

and bowties of G.

Proof. It follows from Theorem 2.3.7(a) and Corollary 2.3.13(c) considering G−.

Our main results on linear codes are the following. First, we give graph theoretical

formulas for the GHWs for the incidence matrix code of a signed graph.

Theorem 2.3.16. Let C be the incidence matrix code of a connected signed graph Gσ

with s vertices, r-th cogirth υr(Gσ), r-th edge connectivity λr(G), over a finite field K

of char(K) = p. Then, the r-th generalized Hamming weight of C is given by

δr(C) =





υr(Gσ), if p 6= 2, Gσ is unbalanced and 1 ≤ r ≤ s,

λr(G), if p = 2 and 1 ≤ r ≤ s− 1,

λr(G), if Gσ is balanced and 1 ≤ r ≤ s− 1.

Proof. Let A be the incidence matrix of Gσ and let ρ be the rank function of the vector

matroid M = M [A]. According to Proposition 2.3.8, ρ(M) = s if p 6= 2 and Gσ is

unbalanced, and ρ(M) = s− 1 if p = 2 or Gσ is balanced.

Assume that p 6= 2. By Theorem 2.3.7(a), the signed-graphic matroid M(Gσ) is the

vector matroid M = M [A]. Hence, using Lemma 2.2.4 and Theorem 2.3.5(ii), one has

δr(C) = dr(M
∗) =

{
υr(Gσ), if Gσ is unbalanced and 1 ≤ r ≤ s,

λr(G), if Gσ is balanced and 1 ≤ r ≤ s− 1.

Assume that p = 2. By Theorem 2.3.7(b), M = M [A] is the graphic matroid M(G)

and, by Corollary 2.3.13(a), M(G+) is also the graphic matroid M(G). As M(G+) is

balanced, by Lemma 2.2.4 and Theorem 2.3.5(ii), we get δr(C) = dr(M
∗) = λr(G+) =

λr(G).
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Let G be a multigraph. The r-th cogirth υr(G−) of G− is the minimum number of

edges whose removal results in a multigraph with r bipartite connected components.

If r = 1, υ1(G−) is denoted υ(G−). For simple graphs, the following combinatorial

formulas for the generalized Hamming weights were shown in [23].

Corollary 2.3.17. Let C be the incidence matrix code of a connected multigraph G

with s vertices over a finite field K of char(K) = p. Then

δr(C) =





υr(G−), if p 6= 2, G is non-bipartite and 1 ≤ r ≤ s,

λr(G), if p = 2 and 1 ≤ r ≤ s− 1,

λr(G), if G is bipartite and 1 ≤ r ≤ s− 1.

Proof. It follows from Theorem 2.3.16 by considering the negative signed graph G−

and noticing that G− is balanced if and only if G is bipartite.

The next result shows that the combinatorial formulas of Dankelmann, Key and

Rodrigues [6, Theorems 1–3] for the minimum distance of C can be extended to signed

graphs.

Corollary 2.3.18. Let C be the incidence matrix code of a connected signed graph

Gσ with s vertices, cogirth υ(Gσ), edge connectivity λ(Gσ), over a finite field K of

char(K) = p. Then, the minimum distance δ(C) of C is given by

δ(C) =





υ(Gσ), if p 6= 2, Gσ is unbalanced and 1 ≤ r ≤ s,

λ(Gσ), if p = 2 and 1 ≤ r ≤ s− 1,

λ(Gσ), if Gσ is balanced and 1 ≤ r ≤ s− 1.

Proof. It follows making r = 1 in Theorem 2.3.16.

Our next result gives graph theoretical formulas for the generalized Hamming weights

of the dual code of the incidence matrix code of a signed graph.

Theorem 2.3.19. Let Gσ be a connected signed graph with s vertices and m edges,

and let C be the incidence matrix code of Gσ over a finite field K of characteristic p.

The following hold.

(a) If p = 2 or Gσ is balanced, and 1 ≤ r ≤ m − s + 1 (resp. 1 ≤ r ≤ s − 1), then

δr(C
⊥) (resp. δr(C)) is the minimum number of edges of G forming a union of

r non-redundant cycles (resp. cocycles) of G.
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(b) If p 6= 2 and 1 ≤ r ≤ m − s (resp. 1 ≤ r ≤ s), then δr(C
⊥) (resp. δr(C)) is

the minimum number of edges of G forming a union of r non-redundant circuits

(resp. cocircuits) of Gσ.

Proof. (a): Assume p = 2 and 1 ≤ r ≤ m−s+1. Let A be the incidence matrix of Gσ.

By Theorem 2.3.7(b), the vector matroid M = M [A] is the graphic matroid M(G).

Thus the circuits of M [A] are the cycles of G. Therefore, by Corollary 2.2.6, we get

δr(C
⊥) = min {|⋃r

i=1Ci| : {Ci}r
i=1 are non-redundant cycles of G} .

Assume p = 2 and 1 ≤ r ≤ s − 1. By the previous part, M = M [A] is the graphic

matroid M(G). The circuits of M∗ = M [A]∗ are the cocycles of G [41, p. 41], that

is, these are edge sets X whose removal from G increases the number of connected

components of G and are minimal with respect to this property. The dual matroid M∗

of M is the vector matroid of C⊥ [41, p. 141]. Therefore, by Corollary 2.2.6 and the

equality C = (C⊥)⊥, we get

δr(C) = min {|⋃r
i=1C

∗
i | : {C∗

i }r
i=1 are non-redundant circuits of M∗}

= min {|⋃r
i=1C

∗
i | : {C∗

i }r
i=1 are non-redundant cocycles of G} .

Assume that Gσ is balanced. If p = 2, the formulas for δr(C
⊥) and δr(C) follow

from the two previous cases. Assume p 6= 2. By Theorem 2.3.7(a), the vector matroid

M [A] is the signed-graphic matroid M(Gσ) and, by Corollary 2.3.13(d), M(Gσ) is the

graphic matroid M(G). Hence, we can proceed as in the previous cases.

(b): Assume 1 ≤ r ≤ m − s. Let A be the incidence matrix of Gσ. By Theo-

rem 2.3.1, the circuits of M(Gσ) are the balanced cycles and bowties of Gσ. As p 6= 2,

by Theorem 2.3.7(a), the vector matroid M = M [A] is M(Gσ). Therefore the circuits

of M [A] are the balanced cycles and bowties of Gσ, and by Corollary 2.2.6 one has

δr(C
⊥) = min {|⋃r

i=1Ci| : {Ci}r
i=1 are non-redundant circuits of M} .

Assume 1 ≤ r ≤ s. As M = M [A] is the signed-graphic matroid M(Gσ), the circuits

of M∗ = M [A]∗ are the cocircuits of Gσ by Lemmas 2.3.3 and 2.3.4. The dual matroid

M∗ of M is the vector matroid of C⊥ [41, p. 141]. Hence, by Corollary 2.2.6 and

36



noticing C = (C⊥)⊥, we get

δr(C) = min {|⋃r
i=1C

∗
i | : {C∗

i }r
i=1 are non-redundant circuits of M∗}

= min {|⋃r
i=1C

∗
i | : {C∗

i }r
i=1 are non-redundant cocircuits of Gσ} .

This completes the proof of part (b).

Corollary 2.3.20. Let C be the incidence matrix code, over a finite field K = Fq,

of a connected digraph D with s vertices and m edges, and let G be its underlying

multigraph. Then

(a) δr(C) = λr(G) for 1 ≤ r ≤ s− 1.

(b) If 1 ≤ r ≤ m − s + 1 (resp. 1 ≤ r ≤ s − 1), then δr(C
⊥) (resp. δr(C)) is the

minimum number of edges of G forming a union of r non-redundant cycles (resp.

cocycles) of G.

Proof. Parts (a) and (b) follow from Theorems 2.3.16 and 2.3.19, respectively, by con-

sidering the positive signed graph G+ and noticing that this is a balanced signed

graph.

Corollary 2.3.21. Let G be a connected multigraph with s vertices and m edges, and

let C be its incidence matrix code over a finite field K = Fq of characteristic p. The

following hold.

(a) If p = 2 or G is bipartite, and 1 ≤ r ≤ m − s + 1 (resp. 1 ≤ r ≤ s − 1), then

δr(C
⊥) (resp. δr(C)) is the minimum number of edges of G forming a union of

r non-redundant cycles (resp. cocycles) of G.

(b) If p 6= 2 and 1 ≤ r ≤ m− s, then δr(C
⊥) is the minimum number of edges of G

forming a union of r non-redundant even cycles and bowties of G.

Proof. (a): This follows from Theorem 2.3.19(a) noticing that, if G is bipartite, then

the circuits of M(G+) and M(G−) are the cycles of G.

(b): This part follows from Corollary 2.3.13(c) and Theorem 2.3.19(b), by considering

the negative signed graph G−.
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2.4 The regularity of the ideal of circuits

Let M be a matroid on E = {1, . . . , m}, let ∆ be its independence complex, that is,

the faces of ∆ are the independent sets of M , and let R = Q[x1, . . . , xm] =
⊕∞

d=0 Rd be

a polynomial ring with the standard grading over the field of rational numbers. It is

convenient also to think of E as the set of variables {x1, . . . , xm}. The Stanley-Reisner

ideal I∆ of ∆, in the sense of [33], is the edge ideal I(CM) of the clutter of circuits CM

of M , that is, I∆ is the ideal of circuits of M generated by all squarefree monomials
∏

i∈X xi such that X is a circuit of M .

The simplicial complex ∆ is pure shellable, in particular the ideal I∆ is Cohen-

Macaulay, and the graded Betti numbers of the Stanley-Reisner ring K[∆] = R/I∆ are

the same if we replace Q by any other field (see [16, Remark 1, p. 78] and the references

therein).

Definition 2.4.1. Let I ⊂ R be a graded ideal and let F be the minimal graded free

resolution of R/I as an R-module:

F : 0 → ⊕
jR(−j)βg,j → · · · → ⊕

jR(−j)β1,j → R → R/I → 0.

The (i, j)-th graded Betti number of R/I, denoted βi,j(R/I), is βi,j, the integer j is a

shift of the resolution, g is the projective dimension of R/I, and the regularity of R/I

is

reg(R/I) := max{j − i | βi,j 6= 0}.
If R/I is Cohen-Macaulay (i.e. g = dim(R) − dim(R/I)) and there is a unique j

such that βg,j 6= 0, then the ring R/I is called level.

An excellent reference for the regularity of graded ideals and Betti numbers is the

book of Eisenbud [7]. The shifts and the Betti numbers of the Stanley-Reisner ring of

the independence complex ∆ of a matroid M were determined by Johnsen and Verdure

[16].

The following result shows that one can read the generalized Hamming weights of a

matroid M from the minimal graded free resolution of the ideal of circuits of M .

Theorem 2.4.2. [16, Theorem 2] Let M be a matroid, let R/I∆ be the Stanley-Reisner

ring of the independence complex ∆ of M , and let βr,j(M) denote the (r, j)-th graded
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Betti number of R/I∆. Then the generalized Hamming weights of M are given by

dr(M) = min{j : βr,j(M) 6= 0} for 1 ≤ r ≤ η(M).

Corollary 2.4.3. Let C be a linear [m, k] code and let R/I∆ be the Stanley-Reisner

ring of the independence complex of the matroid of C. Then

δr(C
⊥) = min{j : βr,j(R/I∆) 6= 0} for 1 ≤ r ≤ m− k.

Proof. It follows from Lemma 2.2.4 and Theorem 2.4.2.

The following notion of a non-degenerate code will play a role here.

Definition 2.4.4. If C ⊂ Km is a linear code and πi is the i-th projection map

πi : C → K, (v1, . . . , vm) 7→ vi,

for i = 1, . . . , m, we say that C is degenerate if for some i the image of πi is zero,

otherwise we say that C is non-degenerate.

Remark 2.4.5. If C ⊂ Km is a non-degenerate linear code, then δk(C) = m, where

k is the dimension of C. If all columns of a generator matrix of C are nonzero, then

πi 6= 0 for i = 1, . . . , m and C is non-degenerate.

Lemma 2.4.6. Let M be the matroid on E of a linear code C and let ∆ (resp. ∆∗)

be the independence complex of M (resp. M∗). The following hold.

(a) If r = dim(C⊥), then reg(R/I∆) = δr(C
⊥)− dim(C⊥).

(b) If r = dim(C), then reg(R/I∆∗) = δr(C)− dim(C).

(c) If C⊥ is non-degenerate, then reg(R/I∆) = dim(C).

(d) If C is non-degenerate, then reg(R/I∆∗) = dim(C⊥).

Proof. By [38, Corollary 6.3.5], the Stanley-Reisner ring K[∆] := R/I∆ has Krull

dimension dim(∆)+1. As dim(∆) is ρ(M)−1 and dim(R) = |E|, one has |E|−ht(I∆) =

ρ(M), where ht(I∆) is the height of the ideal I∆. Therefore

η(M) = |E| − ρ(M) = ht(I∆)

= |E| − dim(C) = dim(C⊥) = ρ(M∗).
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Thus η(M) = ht(I∆) = dim(C⊥) = ρ(M∗). The independence complex ∆ is pure

shellable [16, Remark 1, p. 78]. Hence I∆ is Cohen–Macaulay, that is, ht(I∆) is equal

to pdR(R/I∆), the projective dimension of R/I∆. Let βr,j be the (r, j)-th graded Betti

number of R/I∆, with r = η(M) = pdR(R/I∆). According to [33, Theorem 3.4], the

ring R/I∆ is level. Therefore, making r = dim(C⊥) in Corollary 2.4.3, we get

reg(R/I∆) = max{j − r| βr,j 6= 0} = min{j − r| βr,j 6= 0}
= min{j| βr,j 6= 0} − r = δr(C

⊥)− dim(C⊥).

Thus the equality of (a) holds. The equality of (b) follows from (a) using duality.

Parts (c) and (d) follow readily from Remark 2.4.5.

Theorem 2.4.7. Let Gσ be a signed graph without loops with s vertices, m edges,

c connected components, c0 balanced components, let M be the matroid on E of the

incidence matrix code C of Gσ, over a finite field of characteristic p, and let ∆ (resp.

∆∗) be the independence complex of M (resp. M∗). The following hold.

reg(R/I) =





m− s + c0, if I = I∆∗ , p 6= 2,

m− s + c, if I = I∆∗ , p = 2 or Gσ is balanced,

s− c0, if I = I∆, p 6= 2, and any i ∈ E is in some circuit of M,

s− c, if I = I∆, p = 2 or Gσ is balanced, and G has no bridges.

Proof. Let A be the incidence matrix of Gσ. As Gσ has no loops, all columns of A

are nonzero, that is, C is non-degenerate. Hence, the first two formulas follow at once

from Proposition 2.3.8, Lemma 2.4.6(d), and the equality dim(C⊥) = m− dim(C).

Assume that p 6= 2 and suppose any i ∈ E is in some circuit of M . Let H be the

parity check matrix of C whose rows correspond to the circuits of C (see the discussion

below). The matrix H is a generator matrix for C⊥ and M∗ is the vector matroid

M [H]. Let v1, . . . ,vm be the column vectors of A. Take any i ∈ E, then i is in some

circuit X ⊂ E of M . Then
∑

j∈X λjvj = 0, where λj 6= 0 for j ∈ X. Setting λj = 0

for j ∈ E \X, we get that λ = (λ1, . . . , λm) is a row of H and λi 6= 0. Thus the i-th

column of H is nonzero for i = 1, . . . , m, that is, C⊥ is non-degenerate. Therefore, the

third formula follows from Proposition 2.3.8 and Lemma 2.4.6(c).

Assume that p = 2 or Gσ is balanced, and suppose G has no bridges. Then the

vector matroid M is the graphic matroid of G. As G has no bridges, i.e., any edge
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belongs to a cycle, one has that every edge is in some circuit of M . Hence, by the

previous part, C⊥ is non-degenerate. Hence, by Proposition 2.3.8 and Lemma 2.4.6(c),

the fourth equality follows.

2.5 An algebraic formula for the frustration index

Let Gσ be a connected signed simple graph with s vertices, m edges, frustration index

ϕ(Gσ), and let V (Gσ) = {t1, . . . , ts} be its vertex set. For use below, X will denote

the set of projective points in the projective space Ps−1 defined by the column vectors

of the incidence matrix of Gσ over a field K of char(K) 6= 2. Consider a polynomial

ring S = K[t1, . . . , ts] =
⊕∞

d=0 Sd over a field K with the standard grading. Given a

homogeneous polynomial h in S, that is, h ∈ Sd for some d, we denote the set of zeros

of h in X by VX(h). The vanishing ideal of X, denoted I(X), is the ideal of S generated

by the homogeneous polynomials that vanish at all points of X.

The following characterization of balanced signed graphs is due to Harary [12]. For

other characterizations of this property see [43] and the references therein.

Theorem 2.5.1. ([12, Theorem 3], [43, Proposition 2.1]) A signed simple graph is

balanced if and only if its vertex set can be partitioned into two disjoint classes (possible

empty), such that an edge is negative if and only if its two endpoints belong to distinct

classes.

Lemma 2.5.2. Let Gσ be a connected signed simple graph over a field K of char(K) 6=
2. Then

(2.5.1) ϕ(Gσ) = min{|X \ VX(h)| : h = a1t1 + · · ·+ asts, ai ∈ {±1} for all i}.

Proof. Let v1, . . . ,vm be the column vectors of the incidence matrix of Gσ. We set

r = ϕ(Gσ) and let r0 be the right-hand side of Eq. (2.5.1). If Gσ is balanced, using

Theorem 2.5.1, it is not hard to see that there is a linear polynomial h = a1t1+· · ·+asts,

ai ∈ {±1} for all i, such that h(vi) = 0 for all i, that is, r0 = 0 and ϕ(Gσ) = r0 (see the

discussion below). Thus we may assume that Gσ is not balanced. Pick a minimum set

of edges e1, . . . , er such that the signed subgraph Hσ = Gσ\{e1, . . . , er} is balanced. We

may assume that {e1, . . . , er, . . . , em} is the set of edges of Gσ and that ei corresponds
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to vi for i = 1, . . . , m. We first show the inequality r ≥ r0. Note that V (Hσ) = V (Gσ).

According to Theorem 2.5.1, the vertex set of Hσ can be partitioned into two disjoint

classes V1 and V2 (possible empty) is such a way that an edge of Hσ is negative if and

only if its two endpoints belong to distinct classes. We set

h :=
∑
ti∈V1

ti −
∑
ti∈V2

ti.

To show the inequality r ≥ r0 it suffices to show the equality VX(h) = {vi}m
i=r+1

because this equality implies r = |X \ VX(h)|, and consequently r = ϕ(Gσ) ≥ r0.

Case (I): V2 = ∅. Therefore, σ(e) = + for e ∈ E(Hσ). As h =
∑s

i=1 ti, one has the

inclusion {vi}m
i=r+1 ⊂ VX(h). We claim that σ(ei) = − for i = 1, . . . , r. If σ(ei) = + for

some 1 ≤ i ≤ r, then Gσ \{e1, . . . , ei−1, ei+1, . . . , er} is balanced because it is a positive

signed graph, a contradiction. As h =
∑s

i=1 ti, the inclusion VX(h) ⊂ {vi}m
i=r+1 follows

because char(K) 6= 2.

Case (II): V1 6= ∅ and V2 6= ∅. If 1 ≤ i ≤ r and ei joins V1 and V2, then

σ(ei) = + and h(vi) 6= 0 because char(K) 6= 2. Indeed, if σ(ei) = −, then Gσ \
{e1, . . . , ei−1, ei+1, . . . , er} is balanced by Theorem 2.5.1, a contradiction. If 1 ≤ i ≤ r

and the two endpoints of ei are both in V1 or V2, then σ(ei) = − and h(vi) 6= 0 because

char(K) 6= 2. Indeed, if σ(ei) = +, then Gσ \ {e1, . . . , ei−1, ei+1, . . . , er} is balanced

by Theorem 2.5.1, a contradiction. Thus, one has the inclusion VX(h) ⊂ {vi}m
i=r+1. If

i > r, then h(vi) = 0, that is, {vi}m
i=r+1 ⊂ VX(h). This follows noticing that, for i > r,

one has σ(ei) = + if the endpoints of ei are in V1 or V2, and σ(ei) = − if ei joins V1

and V2. Therefore the equality VX(h) = {vi}m
i=r+1 holds.

Now, we show the inequality r ≤ r0. Pick h = a1t1 + · · · + asts, ai = ±1 for

i = 1, . . . , s, such that r0 = |X \ VX(h)|. We may assume that the set X \ VX(h) is

equal to {v1, . . . ,vr0}, and we may also assume that {e1, . . . , er0 , . . . , em} is the set

of edges of Gσ and that ei corresponds to vi for i = 1, . . . , m. It suffices to show

that the signed subgraph Hσ = Gσ \ {e1, . . . , er0} is balanced because this implies

that r = ϕ(Gσ) ≤ r0. There are disjoint sets V1 and V2 (possibly empty) such that

V (Gσ) = {t1, . . . , ts} = V1 ∪ V2 and

h =
∑
ti∈V1

ti −
∑
ti∈V2

ti.

42



Note that h(vi) = 0 if and only if i > r0 and E(Hσ) = {ei}m
i=r0+1. If σ(ei) = − for

some i > r0, then h(vi) = 0, and consequently ei joins V1 and V2 because char(K) 6= 2.

If σ(ei) = + for some i > r0, then h(vi) = 0, and consequently the endpoints of ei are

in V1 or V2. Therefore, by Theorem 2.5.1, Hσ = Gσ \ {e1, . . . , er0} is balanced.

Let I 6= (0) be a graded ideal of S of Krull dimension k. The Hilbert function of S/I

is:

HI(d) := dimK(Sd/Id), d = 0, 1, 2, . . . ,

where Id = I ∩ Sd. By a theorem of Hilbert [32, p. 58], there is a unique polynomial

hI(x) ∈ Q[x] of degree k − 1 such that HI(d) = hI(d) for d À 0. The degree of the

zero polynomial is −1.

The degree or multiplicity of S/I, denoted deg(S/I), is the positive integer given by

deg(S/I) := (k − 1)! lim
d→∞

HI(d)/d k−1 if k ≥ 1,

and deg(S/I) = dimK(S/I) if k = 0. If f ∈ S, the ideal (I : f) = {g ∈ S | gf ∈ I} is

referred to as a colon ideal. Note that f is a zero-divisor of S/I if and only if (I : f) 6= I.

Lemma 2.5.3. [21, Lemma 3.2] Let X be a finite subset of Ps−1 over a field K and let

I(X) ⊂ S be its vanishing ideal. If 0 6= f ∈ S is homogeneous and (I(X) : f) 6= I(X),

then

|VX(f)| = deg(S/(I(X), f)).

The following algebraic formula for the frustration index can be used to compute or

estimate this number using Macaulay2 [11] (Example 2.6.6).

Theorem 2.5.4. Let Gσ be a connected unbalanced signed simple graph with frustration

index ϕ(Gσ) over a field K of char(K) 6= 2, and let F be the set of linear forms

h =
∑s

i=1 aiti such that ai = ±1 for all i and (I(X) : h) 6= I(X). Then

ϕ(Gσ) = |X| −max{deg(S/(I(X), h)) : h ∈ F}.

Proof. The vanishing ideal I(X) does not contains linear forms. This follows noticing

that the incidence matrix of Gσ has rank equal to s, the number of vertices of Gσ,

because Gσ is unbalanced and connected (see Proposition 2.3.8). Thus X \ VX(h) 6= ∅
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for any 0 6= h ∈ S1. If h is a linear form, by [9, Lemma 3.1], VX(h) 6= ∅ if and only if

(I(X) : h) 6= I(X). Therefore, using Lemmas 2.5.2 and 2.5.3, we obtain

ϕ(Gσ) = min{|X \ VX(h)| : h =
∑s

i=1 aiti, ai = ±1 for all i}
= min{|X \ VX(h)| : h =

∑s
i=1 aiti, ai = ±1 for all i and VX(h) 6= ∅}

= min{|X \ VX(h)| : h ∈ F} = |X| −max{|VX(h)| : h ∈ F}
= |X| −max{deg(S/(I(X), h)) : h ∈ F}.

The second equality follows discarding all h with VX(h) = ∅.

Remark 2.5.5. If we allow the coefficients a1, . . . , as to be in {0,±1} such that not

all of them are zero, we obtain the minimum distance of the incidence matrix code

C of Gσ over any finite field of characteristic p 6= 2. This follows from the results of

Section 2.3 and Proposition 2.5.6 below.

The following algebraic formula for the minimum distance of an incidence matrix

code can be used to compute or estimate this number using Macaulay2 [11] and the

algorithms of [9, 21].

Proposition 2.5.6. Let Gσ be a connected signed simple graph and let C be its in-

cidence matrix code over a finite field K. Then the minimum distance of C is given

by

δ(C) = |X| −max{deg(S/(I(X), h)) : h ∈ S1 \ I(X) and (I(X) : h) 6= I(X)}.

Proof. Let v1, . . . ,vm be the column vectors of the incidence matrix of Gσ and let Pi be

the point [vi] in Ps−1 for i = 1, . . . , m. Thus, X is the set of points {P1, . . . , Pm}. Note

that C is the image of S1—the vector space of linear forms of S—under the evaluation

map

ev1 : S1 → Km, h 7→ (h(P1), . . . , h(Pm)) .

The image of the linear function ti, under the map ev1, gives the i-th row of C. This

means that C is the Reed-Muller-type code CX(1) in the sense of [10]. The result now

follows readily applying [21, Theorem 4.7].
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2.6 Examples of signed graphs

In this section we illustrate how to use our results in practice with some examples.

Example 2.6.1. Let Gσ be a signed simple graph whose underlying graph G is given

in Figure 2.1, let C be the incidence matrix code of Gσ, let A be the incidence matrix

of Gσ, and let M = M [A] be the matroid of C. Assume that K is either a field of

characteristic 2 or that K is any field and Gσ = +G. In either case, by Theorem 2.3.7(b)

and Corollary 2.3.13(d), M is the cycle matroid of G and, by Proposition 2.3.8, the

rank of M is 10.
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Figure 2.1: Simple graph G with 11 vertices and 14 edges

Therefore, the circuits of M are the cycles of G and they are given by

c1 = {1, 2, 3}, c2 = {9, 10, 11}, c3 = {12, 13, 14}, c4 = {4, 5, 6, 7}.

Hence, applying Theorem 2.3.19(a), we get the generalized Hamming weights of C⊥:

r 1 2 3 4
δr(C

⊥) 3 6 9 13
.

Concretely, one has δr(C
⊥) = |c1 ∪ · · · ∪ cr| for 1 ≤ r ≤ 4. Let R = K[x1, . . . , x14]

be a polynomial ring over the field K. The ideal of circuits of M is the squarefree

monomial ideal I = I(CM) of R generated by all
∏

j∈ci
xj with i = 1, . . . , 4. Using

Macaulay2 [11], we obtain that the minimal free resolution of R/I is:

0 → R(−13) → R(−9)⊕R3(−10) → R3(−6)⊕R3(−7) → R3(−3)⊕R(−4) → R.

One can verify the values of the δr(C
⊥)’s applying Corollary 2.4.3 to this resolution.

By Wei’s duality (Theorem 2.2.7), one has
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r 1 2 3 4 5 6 7 8 9 10
δr(C) 1 3 4 5 7 8 10 11 13 14

.

According to Theorem 2.3.16, δr(C) = λr(C) for r = 1, . . . , 10. Removing edge 8

from G, we get two connected components. Thus δ1(C) = 1. To illustrate the equality

δ7(C) = 10, note that removing the ten edges that are not in the square of the graph

G results in a subgraph with eight connected components, and λ7(C) = 10. The edge

biparticity of G is ϕ(−G) = 3.

Example 2.6.2. Let G be the graph of Figure 2.1, let K be a field of char(K) 6= 2, and

let C be the incidence matrix code of G−. By Corollary 2.3.13(c), the circuits of the

negative signed graph G−, that is, the circuits of the signed-graphic matroid M(G−),

are the even cycles and the bowties of G:

c1 = {4, 5, 6, 7}, c2 = {9, 10, 11, 12, 13, 14},
c3 = {1, 2, 3, 4, 5, 8, 9, 10, 11}, c4 = {1, 2, 3, 4, 5, 8, 12, 13, 14},
c5 = {1, 2, 3, 6, 7, 8, 9, 10, 11}, c6 = {1, 2, 3, 6, 7, 8, 12, 13, 14}.

Hence, by Theorem 2.3.19(b), it follows that δr(C
⊥) = |c1 ∪ · · · ∪ cr| for 1 ≤ r ≤ 3,

and we obtain the generalized Hamming weights of C⊥:

r 1 2 3
δr(C

⊥) 4 10 14
.

Let R = K[x1, . . . , x14] be a polynomial ring over the field K and let I = I(CM) ⊂ R

be the ideal of circuits of the signed-graphic matroid M(G−). Using Macaulay2 [11],

we obtain that the minimal free resolution of R/I is:

0 → R4(−14) → R(−10)⊕R4(−11)⊕R4(−12) → R(−4)⊕R(−6)⊕R4(−9) → R.

One can verify the values of the δr(C
⊥)’s applying Corollary 2.4.3 to this resolution.

By Wei’s duality (Theorem 2.2.7), we obtain the generalized Hamming weights of C:

r 1 2 3 4 5 6 7 8 9 10 11
δr(C) 2 3 4 6 7 8 9 10 12 13 14

.

According to Theorem 2.3.16, δr(C) = υr(G−) for r = 1, . . . , 11. Next we verify these

values. Removing edges 2 and 3 from G, we get a graph with a bipartite component.

Therefore, by Theorem 2.3.16, δ1(C) = 2. To check the other values of δr(C) using by

Theorem 2.3.16, note that successively removing from the graph G the edges

{1, 2}, 3, 8, {10, 13}, 9, 11, 12, 14, {4, 5}, 6, 7,
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we obtain a subgraph with r bipartite connected components at the r-th step. By

Theorem 2.4.7, the regularity of R/I is 11. The frustration index of G− is 3 which is

the edge biparticity of G.

Example 2.6.3. Let Gσ be the signed graph of Figure 2.2, let C be the incidence

matrix code of Gσ over a finite field of char(K) = p 6= 2, and let M = M [A] be the

vector matroid of C, where A is the incidence matrix of Gσ.
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Figure 2.2: Signed graph with 3 vertices and 6 edges

The incidence matrix of the signed graph Gσ is

A =




1 1 0 0 1 1
−1 1 1 1 0 0

0 0 −1 1 −1 1


.

Using Procedure 2.7.1, we obtain the following information. The ideals of circuits

and cocircuits of M are given by

I = (x1x2x3x4, x1x3x5, x2x4x5, x2x3x6, x1x4x6, x1x2x5x6, x3x4x5x6),

I∗ = (x2x4x6, x1x3x6, x1x4x5, x2x3x5, x3x4x5x6, x1x2x5x6, x1x2x3x4),

and reg(R/I) = reg(R/I∗) = 3. The generalized Hamming weights of C⊥ and C are

r 1 2 3
δr(C

⊥) 3 5 6
r 1 2 3

δr(C) 3 5 6
.

Thus, by Theorem 2.3.16, the cogirth of the signed graph Gσ is υ1(Gσ) = 3, and one

has υ2(Gσ) = 5, υ3(Gσ) = 6. The frustration index of Gσ is 3.

Example 2.6.4. Let G+ be the positive signed graph of Figure 2.3, let C be the

incidence matrix code of G+ over a finite field K, and let M = M [A] be the vector
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matroid of C, where A is the incidence matrix of G+. By Corollary 2.3.13(b), M is

the graphic matroid of the underlying graph G, that is, the circuits and cocircuits of

M are the cycles and cocycles of G.
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Figure 2.3: Positive signed graph with 3 vertices and 6 edges

The incidence matrix of the positive signed graph G+ is

A =




1 1 0 0 1 1
−1 −1 1 1 0 0

0 0 −1 −1 −1 −1


.

Using Procedure 2.7.2, we obtain the following information. The ideals of circuits

and cocircuits of M are given by

I = (x5x6, x3x4, x1x2, x2x4x6, x1x4x6, x2x3x6, x1x3x6, x2x4x5, x1x4x5, x2x3x5, x1x3x5),

I∗ = (x3x4x5x6, x1x2x5x6, x1x2x3x4),

reg(R/I) = 2, and reg(R/I∗) = 4. The generalized Hamming weights of C⊥ and C are

r 1 2 3 4
δr(C

⊥) 2 4 5 6
r 1 2

δr(C) 4 6
.

Thus, by Theorem 2.3.16, the edge connectivity of G is λ1(G) = 4, and λ2(G) = 6.

Example 2.6.5. Let G− be the negative signed graph of Figure 2.4, let C be the

incidence matrix code of G− over a field K of characteristic p 6= 2, and let M = M [A]

be the vector matroid of C, where A is the incidence matrix of G−. By Corollary 2.3.15,

M is the even cycle matroid of the underlying graph G, that is, the circuits of M are

the even cycles and bowties of G.
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Figure 2.4: Negative signed graph with 3 vertices and 6 edges

The incidence matrix of the negative signed graph G− is the incidence matrix of G:

A =




1 1 0 0 1 1
1 1 1 1 0 0
0 0 1 1 1 1


.

Using Procedure 2.7.3, we obtain the following information. The ideals of circuits

and cocircuits of M are given by

I = (x1x2, x3x4, x5x6), I∗ = (x1x2, x3x4, x5x6),

reg(R/I) = reg(R/I∗) = 3. The generalized Hamming weights of C⊥ and C are

r 1 2 3
δr(C

⊥) 2 4 6
r 1 2 3

δr(C) 2 4 6
.

Thus, by Theorem 2.3.16, the cogirth of G− is υ1(G−) = 2, and υ2(G−) = 4,

υ3(G−) = 6.

Example 2.6.6. Let Gσ be the signed graph of Figure 2.5 and let G be its underlying

graph. The incidence matrix of Gσ is given in Procedure 2.7.4. Using this procedure

we obtain that the frustration index ϕ(Gσ) of Gσ is 7 and the frustration index ϕ(G−)

of the negative signed graph G− is 6. The minimum distance δ(C) of the incidence

matrix code C of Gσ is 4 if char(K) 6= 2 and δ(C) is 3 if char(K) = 2. In this case

δ(C) = δ(C⊥) in any characteristic.

2.7 Procedures for Macaulay2 and Matroids

In this section we give procedures for Macaulay2 [11], using the field of rational numbers

as the ground field, to compute the generalized Hamming weights of the incidence
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Figure 2.5: Unbalanced signed graph with frustration index 7

matrix code of a signed graph and the corresponding graph theoretical invariants (r-

th cogirth, r-th edge connectivity), as well as the ideals of circuits, cocircuits, cycles

and cocycles of a signed graph, and their algebraic invariants (Betti numbers, shifts,

regularity). We also give a procedure to compute the frustration index of a connected

signed simple graph. In all procedures the input is a rational matrix. The package

Matroids [5] plays an important role here because it computes the circuits and cocircuits

of a vector matroid over the field Q of rational numbers.

Procedure 2.7.1. Given the incidence matrix A of a signed graph Gσ over a field of

char(K) 6= 2, the procedure below computes the following:

• The ideal of circuits and the ideal of cocircuits of Gσ, and its regularity.

• The graded Betti numbers of the ideal of circuits and the ideal of cocircuits of

Gσ.

• The weight hierarchies of the incidence matrix code C of Gσ and its dual code

C⊥.

• The r-th cogirth of Gσ (Theorem 2.3.16).

The next procedure corresponds to Example 2.6.3. To compute other examples just

change the incidence matrix A.
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--Procedure for Macaulay2

loadPackage "Matroids"

loadPackage "BoijSoederberg"

A=transpose matrix{{1,-1,0},{1,1,0},{0,1,-1},{0,1,1},{1,0,-1},{1,0,1}}

MA=matroid(A), I=ideal(MA)

m=matrix{flatten entries gens gb I}

N=coker m, F=res N, B=betti F, regularity N

lowestDegrees B --gives the weight hierarchy of the dual of C

I=ideal(dual(MA))

m=matrix{flatten entries gens gb I}

N=coker m, F=res N, B=betti F, regularity N

lowestDegrees B --gives the weight hierarchy of C

Procedure 2.7.2. Using the incidence matrix A of a positive signed graph G+ over a

field K and the Procedure 2.7.1, we can compute the following:

• The ideal of cycles and the ideal of cocycles of G and its regularity.

• The graded Betti numbers of the ideals of cycles and cocycles.

• The weight hierarchies of the incidence matrix code of G+ and its dual code, and

the generalized Hamming weights of the incidence matrix code of a digraph D.

• The r-th edge connectivity of G.

The next incidence matrix corresponds to Example 2.6.4.

--Incidence matrix for Macaulay2

A=transpose matrix{{1,-1,0},{1,-1,0},{0,1,-1},{0,1,-1},{1,0,-1},{1,0,-1}}

Procedure 2.7.3. Using the incidence matrix A of a negative signed graph G− over a

field K of characteristic p 6= 2 and the Procedure 2.7.1, we can compute the following:

• The ideal I of the even cycles and bowties of G and the ideal I∗ of cocircuits of

G−.

• The graded Betti numbers of I and I∗, and its regularity.
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• The weight hierarchies of the incidence matrix code of G− and its dual code.

• The r-th cogirth of G−.

The next incidence matrix corresponds to Example 2.6.5.

--Incidence matrix for Macaulay2

A=transpose matrix{{1,1,0},{1,1,0},{0,1,1},{0,1,1},{1,0,1},{1,0,1}}

Procedure 2.7.4. One can use Theorem 2.5.4 and Macaulay2 [11] to compute the

frustration index of a connected unbalanced signed simple graph Gσ. The incidence

matrix of the following procedure corresponds to the graph of Figure 2.5 given in

Example 2.6.6.

--Procedure for Macaulay2

input "points.m2"

R=QQ[t1,t2,t3,t4,t5,t6,t7,t8,t9,t10]

A = transpose matrix{{1,-1,0,0,0,0,0,0,0,0},{0,1,1,0,0,0,0,0,0,0},

{0,0,1,1,0,0,0,0,0,0},{0,0,0,1,1,0,0,0,0,0},{0,0,0,0,1,-1,0,0,0,0},

{0,0,0,0,0,1,1,0,0,0},{0,0,0,0,0,0,1,1,0,0},{0,0,0,0,0,0,0,1,1,0},

{0,0,0,0,0,0,0,0,1,1},{1,0,0,0,0,0,0,0,0,-1},{1,0,-1,0,0,0,0,0,0,0},

{1,0,0,-1,0,0,0,0,0,0},{0,1,0,1,0,0,0,0,0,0},{0,1,0,0,1,0,0,0,0,0},

{0,0,1,0,1,0,0,0,0,0},{0,0,0,0,1,0,0,0,0,-1},{0,0,0,0,0,1,0,0,1,0},

{0,0,0,0,0,0,1,0,1,0},{0,0,0,0,0,0,0,1,0,1},{0,0,0,0,0,1,0,1,0,0},

{0,0,0,0,0,0,1,0,0,1}}

I=ideal(projectivePointsByIntersection(A,R))

M=coker gens gb I, G=gb I

frustration=degree M-max apply(apply(subsets(apply(apply(apply

(toList ((set{1}**(set(1,-1))^**(hilbertFunction(1,M)-1))/splice)-

(set{0})^**(hilbertFunction(1,M)),toList),x->basis(1,M)*vector x),

z->ideal(flatten entries z)),1),ideal),x-> if #set flatten entries

mingens ideal(leadTerm gens x)==1 and not quotient(I,x)==I

then degree(I+x) else 0)--This gives the frustration index
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[31] P. Solé and T. Zaslavsky, A coding approach to signed graphs, SIAM J. Discrete

Math. 7 (1994), no. 4, 544–553.

[32] R. Stanley, Hilbert functions of graded algebras, Adv. Math. 28 (1978), 57–83.

57



[33] R. Stanley, Combinatorics and Commutative Algebra, Birkhäuser Boston, 2nd ed.,
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Chapter 3

Hamming polynomial of a
demimatroid

Abstract. Following Britz, Johnsen, Mayhew and Shiromoto, we consider demima-

troids as a natural generalization of matroids. As they have shown, demimatroids

are the appropriate combinatorial objects for studying Wei’s duality. Our results here

apport further evidence about the trueness of that observation. We define the Ham-

ming polynomial of a demimatroid M , denoted by W (x, y, t), as a generalization of the

extended Hamming weight enumerator of a matroid. The polynomial W (x, y, t) is a

specialization of the Tutte polynomial of M , and actually is equivalent to it. Guided

by work of Johnsen, Roksvold and Verdure for matroids, we prove that Betti numbers

of a demimatroid and its elongations determine the Hamming polynomial. Our results

may be applied to simplicial complexes since in a canonical way they can be viewed as

demimatroids. Furthermore, following work of Brylawski and Gordon, we show how

demimatroids may be generalized one step further, to combinatroids. A combinatroid,

or Brylawski structure, is an integer valued function ρ, defined over the power set

of a finite ground set, satisfying the only condition ρ(∅) = 0. Even in this extreme

generality, we will show that many concepts and invariants in coding theory can be

carried on directly to combinatroids, say, Tutte polynomial, characteristic polynomial,

MacWilliams identity, extended Hamming polynomial, and the r-th generalized Ham-

ming polynomial; this last one, at least conjecturelly, guided by the work of Jurrius and

Pellikaan for linear codes. All this largely extends the notions of deletion, contraction,

duality and codes to non-matroidal structures.
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3.1 Introduction

Matroids are combinatorial objects introduced by Whitney in 1935 as a generalization

of both graphs and matrices. They capture geometric and combinatorial properties

of linear independence over finite structures. Demimatroids (Section 3.3) are a gen-

eralization of matroids, and in what follows we will show how demimatroids may be

generalized one step further to combinatroids, via the rank function. We will show

that combinatroids capture many concepts related with duality in coding theory and

matroids. For instance, we define invariants as the Tutte polynomial, the generalized

Hamming polynomial and the extended Hamming polynomial; or relationships between

them, as deletion, contraction and the MacWilliams identity.

Denote by C the family of combinatroids defined over the same ground set E, and

by D the smaller subfamily of demimatroids. The four operations: identity, dual,

nullity and supplement (Section 3.4), may be seen as duality operators acting on C,

actually, these last three operators form a triality, in the sense that the composition of

two of them results in the third one. The restriction to D of these operators behave

even better: D has a natural structure of a bounded distributive lattice, and each

demimatroid determines a weight hierarchy and a Duursma zeta function, which is a

largely extension of well-known results for linear codes. All these facts show that D is

a mathematical object that merits a further study.

As a final result, by extending work of Johnsen, Roksvold and Verdure for ma-

troids [10], we prove that Betti numbers of a demimatroid and its elongations determine

the extended Hamming polynomial of a demimatroid. All these results may be applied

to simplicial complexes since in a canonical way they can be viewed as demimatroids.

In forthcoming works we will study the k-analogue and q-analogue of a demimatroid.

For unexplained notions of graph theory, linear codes and matroids we refer to [6], [8]

and [13], respectively.

3.2 Matroids and linear codes

A matroid is a pair M = (E, ρ), where E is a finite set called the ground set of M ,

and ρ : 2E → Z+ := {0, 1, . . .} is a function satisfying:
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(R0) ρ(∅) = 0;

(R1) If X ⊆ E and x ∈ E, then ρ(X) ≤ ρ(X ∪ {x}) ≤ ρ(X) + 1;

(R2) If X, Y ⊆ E, then ρ(X ∪ Y ) + ρ(X ∩ Y ) ≤ ρ(X) + ρ(Y ).

The function ρ is called the rank function of the matroid. Condition (R2) is known

as the submodularity condition. An independent set of M is a subset X ⊆ E such that

ρ(X) = |X|, where |X| denotes the cardinality of X; in particular the empty set is

always an independent set. A basis is an inclusion maximal independent set; one can

verify that bases of a matroid are equicardinal. A subset of the ground set which is

not independent is called a dependent set, and a circuit is a minimal dependent set.

Let X be a subset of E. From (R0) and (R1), and by a direct induction argument,

if follows that 0 ≤ ρ(X) ≤ |X| for all X ⊆ E. The nullity of X, denoted by η(X), is

defined as η(X) := |X| − ρ(X). In particular, the nullity of M is defined as η(M) :=

η(E). The r-generalized Hamming weight of the matroid M is given by

dr(M) := min{|X| : η(X) = r}, 1 ≤ r ≤ η(E),

and the sequence d1(M), . . . , dη(E)(M) is called the weight hierarchy of M .

Let p be a prime, q a positive power of p and Fq a field with q elements. A linear

[n, k]q code is a k-dimensional subspace C of Fn
q . In this context the field Fq is called the

alphabet, the elements of Fn
q are the words and the elements of C are called codewords

of the code. We consider Fn
q provided with its Hamming distance, which is the number

of coordinates in which two words differ. For c ∈ C its weight, denoted by w(c), is the

number of its nonzero coordinates. For a subset X of Fn
q we define the support of X,

denoted supp(X), as the union of all the supports of elements in X, i.e.

supp(X) := {i : ∃(c1, . . . , cn) ∈ C such that ci 6= 0}.

Let C be a linear [n, k]q code. For 1 ≤ r ≤ k, the r-th generalized Hamming weight of

C is defined as

dr(C) := min{|supp(X)| : X is a r-dimensional subspace of C}.
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The number d1(C) is known as the minimum distance of the code and the sequence

d1(C), . . . , dk(C) is called the weight hierarchy of C.

With each linear code C one associate the vector matroid M [H] on the ground set

E = {1, . . . , n}, where H is a parity check matrix of C. The rank function of M [H] is

given by ρ(X) := rank(HX) for X ⊆ E, where HX is the submatrix of H obtained by

picking the columns indexed by X. The matroid M [H] does not depend on the parity

check matrix we use. We call M [H] the (parity) matroid of C. A basic result in this

area, relating codes and matroids, is that the weight hierarchies of both the code C

and the matroid M [H] coincide [14].

3.3 Demimatroids

A demimatroid is a pair M = (E, ρ), where E is a finite set called the ground set of

M , and ρ : 2E → Z+ is a function such that

(R0) ρ(∅) = 0;

(R1) If X ⊆ E and x ∈ E, then ρ(X) ≤ ρ(X ∪ {x}) ≤ ρ(X) + 1;

The function ρ is called the rank function of the demimatroid. Clearly matroids are

examples of demimatroids. By abuse of notation we will frequently refer to ρ itself

as the demimatroid. The rank of a demimatroid M is defined as ρ(M) := ρ(E). A

straightforward verification shows that 0 ≤ ρ(X) ≤ |X| for all X ⊆ E. We define

the nullity of X as η(X) := |X| − ρ(X). The nullity of a demimatroid M is defined

as η(M) := η(E). The dual of a demimatroid M = (E, ρ) is the pair M∗ := (E, ρ∗),

where

ρ∗(X) := |X|+ ρ(E\X)− ρ(E).

Clearly ρ∗(∅) = 0. To simplify notation, from here one we will write X\x and X ∪ x

instead of X\{x} and X∪{x}, respectively. If x ∈ X, obviously (R1) is satisfied, and if

x /∈ X, then ρ∗(X) ≤ ρ∗(X∪x) ≤ ρ∗(X)+1 if and only if ρ(E\X) ≤ ρ((E\X)\x)+1 ≤
ρ(E\X)+ 1. But each of these last two inequalities readily follows from the properties

of ρ. So, in fact, ρ∗ is a demimatroid. Moreover, one can verify that M∗∗ = M ; to see
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this just note that ρ(E) + ρ∗(E) = |E|, and then

ρ∗∗(X) = |X|+ ρ∗(E\X)− ρ∗(E) = |E|+ ρ(X)− |E| = ρ(X).

As in the case of matroids, we define independent sets of a demimatroid as those

X ⊆ E such that ρ(X) = |X|; and in a similar fashion, one might define bases,

dependent sets and circuits. But in this generality we must remark that bases of a

demimatroid are not necessarily equicardinal.

Example 3.3.1. Let E be a finite set and ρ : 2E → Z+ given by:

(i) ρ(X) = 0 for all X ⊆ E. Then ρ is a demimatroid; called the trivial demimatroid.

(ii) ρ(X) = |X| for all X ⊆ E. Then ρ is a demimatroid; actually it is a matroid.

(iii) ρ(X) = 0 if X 6= E and ρ(E) = 1. Then ρ is a demimatroid; if E has at least

two elements, then ρ is not a matroid.

(iv) ρ(∅) = 0 and ρ(X) = 1 for all X 6= ∅. Then M = (E, ρ) is a demimatroid.

Example 3.3.2. Let M = (E, ρ) be a nontrivial dematroid. For X ⊆ E define

ρ•(X) = ρ(X) if ρ(X) < ρ(E) and ρ•(X) = ρ(X)− 1 if ρ(X) = ρ(E). Then (E, ρ•) is

a demimatroid.

A simplicial complex ∆ on a finite vertex set E is an inclusion closed family of subsets

of E, i.e. σ ∈ ∆ and τ ⊆ σ implies τ ∈ ∆. Elements of ∆ are called faces and maximal

faces are called facets. A face of ∆ whose cardinality is i + 1 is said to be of dimension

i. The dimension of ∆ is the maximum dimension of any one of its faces.

Example 3.3.3. Let ∆ be a simplicial complex on the vertex set E. We define the

demimatroid ∆↑ := (E, ρ), where, for all X ⊆ E,

ρ(X) := max{|σ| : σ ⊆ X, σ ∈ ∆}.

Example 3.3.4. A graph may be viewed as a 1-dimensional simplicial complex, and

then as a demimatroid. Say the graph has no isolated vertices and let E denote the

vertex set. Thus, in this case, the demimatroid in Example 3.3.3 is given by ρ(∅) = 0,

ρ(X) = 1 if X is and independent vertex set of G, and ρ(X) = 2 if X is not an

independent vertex set of G.
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Example 3.3.5. Let M = (E, ρ) be a demimatroid. If ρ(X) = |X| for some X ⊆ E,

then ρ(Y ) = |Y | for all Y ⊆ X. Therefore, the set

M↓ := {X ⊆ E : ρ(X) = |X|}

is a simplicial complex.

Example 3.3.6. Let ∆ be a simplicial complex with vertex set E and ρ : 2E → Z+

given by ρ(X) = |X| if X ∈ ∆ and ρ(X) = |X| − 1 if X /∈ ∆. Then ∆] := (E, ρ) is a

demimatroid.

Example 3.3.7. Let M = (E, ρ) be a demimatroid. Since ρ is non-decreasing, it

follows that, for all nonnegative integers r, the set M(r) := {X ⊆ E : ρ(X) ≤ r} is a

simplicial complex.

Let E be a finite set. Denote by S the family of all simplicial complexes with ground

set E, and make S a poset defining ∆ ≤ Γ when ∆ ⊆ Γ. Denote by D the family of

all demimatroids with ground set E, and make D a poset by defining (E, ρ) ≤ (E, τ)

when ρ(X) ≤ τ(X) for all X ⊆ E. The next lemma is not hard to prove.

Lemma 3.3.8. (i) ∆ ≤ Γ implies ∆↑ ≤ Γ↑;

(ii) (E, ρ) ≤ (E, τ) implies (E, ρ)↓ ≤ (E, τ)↓;

(iii) (∆↑)↓ = ∆.

(iv) M↓ = ∆ implies ∆↑ ≤ M ; in particular, (M↓)↑ ≤ M .

(v) (M↓)↑ = M if and only if M = ∆↑ for some simplicial complex ∆.

Proof. (iv): Say M = (E, ρ) and ∆↑ = (E, τ). Take any X ⊆ E. τ(X) = max{|σ| :

σ ⊆ X, ρ(σ) = |σ|}. Choose σ ⊆ X such that τ(X) = |σ| and ρ(σ) = |σ|. Then

τ(X) = |σ| = ρ(σ) ≤ ρ(X).

Example 3.3.9. Let ∆ be a simplicial complex and M a demimatroid. Then M↓ = ∆

if and only if ∆↑ ≤ M ≤ ∆].

A Galois connection between two posets P and Q is a pair of functions α : P → Q and

β : Q → P with the properties: (1) both α and β are order-inverting; (2) p ≤ β(α(p))

for all p ∈ P and q ≤ α(β(q)) for all q ∈ Q.
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Proposition 3.3.10. Let Dop denote the dual poset of D. The maps ↑ : S → D′,

∆ 7→ ∆↑ and ↓ : Dop → S, M 7→ M↓ form a Galois connection.

3.4 Combinatroids

Three important operations on matroids are motivated by graph theory: deletion,

contraction and duality. Brylawski realized that it is possible to extend all of these

three operations to any finite set E provided with an arbitrary function r : 2E → Z,

see [4]. Thus we define a combinatroid (with values in Z) as a pair M := (E, ρ),

where E is a finite set called the ground set of M , and ρ : 2E → Z is a function

satisfying the only condition ρ(∅) = 0. The function ρ is called the rank function

of the combinatroid. Clearly demimatroids are examples of combinatroids. Another

name for a combinatroid is a (normalized) Brylawski structure, as is done in [4]. One

define the dual combinatroid M∗ = (E, ρ∗), where ρ∗, called the dual rank function, is

given by

ρ∗(X) = |X|+ ρ(E\X)− ρ(E).

Then, the deletion of A ⊆ E, denoted by M\A, is defined as the restriction of the

rank function ρ to E\A, i.e. ρM\A(X) := ρ(X) for all X ⊆ E\A. Moreover, contraction,

denoted by M/A, is defined using deletion and duality: M/A := (M∗\A)∗. Note that

both M\A and M/A have the same ground set E\A.

Proposition 3.4.1. (Brylawski, Gordon; see [4]) Let M = (E, ρ) be a combinatroid

and A ⊆ E.

(i) ρM/A(X) = ρ(X ∪ A)− ρ(A) for all X ⊆ E\A;

(ii) (M∗)∗ = M ;

(iii) (M\A)∗ = M∗/A;

(iv) (M/A)∗ = M∗\A.

Proposition 3.4.2. Let M = (E, ρ) be a demimatroid and A ⊆ E. Then

(i) M\A is a demimatroid;
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(ii) M/A is a demimatroid.

Proof. Let X ⊂ E\A and x ∈ (E\A)\X.

(i): ρM\A(X) ≤ ρM\A(X ∪ x) ≤ ρM\A(X) + 1 ⇔ ρ(X) ≤ ρ(X ∪ x) ≤ ρ(X) + 1.

(ii): ρM/A(X) ≤ ρM/A(X ∪ x) ≤ ρM/A(X) + 1 ⇔ ρ(X ∪A)− ρ(A) ≤ ρ(X ∪ x∪A)−
ρ(A) ≤ ρ(X ∪ A)− ρ(A) + 1 ⇔ ρ(X ∪ A) ≤ ρ(X ∪ A ∪ x) ≤ ρ(X ∪ A) + 1.

A minor of a demimatroid M is any demimatroid obtainded from M by a sequence

of deletions and contractions.

One can also define the nullity combinatroid M◦ = (E, ρ◦), where ρ◦, called the

nullity function, is given by

ρ◦(X) = |X| − ρ(X).

Proposition 3.4.3. Let M = (E, ρ) be a combinatroid. Then

(i) ρ∗◦(X) = ρ◦∗(X) = ρ(E)− ρ(E\X) for all X ⊆ E;

(ii) (M◦)◦ = M ;

(iii) (M∗)◦ = (M◦)∗;

(iv) If M is a demimatroid, then M◦ is a demimatroid.

Proof. (iv): Obviously ρ◦(∅) = 0. Let X ⊂ E and x ∈ E\X. ρ◦(X) ≤ ρ◦(X ∪ x) ≤
ρ◦(X) + 1 if and only if |X| − ρ(X) ≤ |X|+ 1− ρ(X ∪ x) ≤ |X| − ρ(X) + 1 if and only

if ρ(X) + 1 ≥ ρ(X ∪ x) ≥ ρ(X).

Following [1], we define the supplement combinatroid M~ := (E, ρ~), where ρ~,

called the supplement (or supplementary) function, is given by

ρ~(X) = ρ(E)− ρ(E\X).

Proposition 3.4.4. Let M = (E, ρ) be a combinatroid. Then

(i) (M~)~ = M ;

68



(ii) (M∗)◦ = (M◦)∗ = M~;

(iii) (M◦)~ = (M~)◦ = M∗;

(iv) (M∗)~ = (M~)∗ = M◦;

(v) ([1, Thm. 8]) If M is a demimatroid, then M~ is a demimatroid.

Proof. (v): Obviously ρ~(∅) = 0. Let X ⊂ E and x ∈ E\X. ρ~(X) ≤ ρ~(X ∪ x) ≤
ρ~(X) + 1 if and only if ρ(E)− ρ(E\X) ≤ ρ(E)− ρ(E\(X ∪x)) ≤ ρ(E)− ρ(E\X) + 1

if and only if ρ(E\X) ≥ ρ((E\X)\x) ≥ ρ(E\X) − 1. But each of these last two

inequalities directly follows from the properties of ρ.

The identity (denoted by “id”), dual, nullity and supplement operations may be

viewed as operators acting on the set of combinatroidal structures defined on the same

ground set E.

Proposition 3.4.5. Let M = (E, ρ) be a combinatroid. Then the operators {id, ∗, ◦, ~}
form an abelian group isomorphic to Z2 × Z2:

id ∗ ◦ ~
id id ∗ ◦ ~
∗ ∗ id ~ ◦
◦ ◦ ~ id ∗
~ ~ ◦ ∗ id

.

Remark 3.4.6. Note that the operators {∗, ◦, ~} form a triality, in the sense that the

composition of two of them gives the third one.

Example 3.4.7. Let E be a finite set and ρ : 2E → Z+, X 7→ |X|. Then ρ∗ ≡ ρ◦ ≡ 0

and ρ~ ≡ ρ.

Example 3.4.8. Let E be a finite set and ρ : 2E → Z+, ρ(X) = 0 if X 6= E and

ρ(E) = 1. We have that ρ∗(∅) = 0 and ρ∗(X) = |X| − 1 if X 6= ∅; ρ◦(X) = |X| if

X 6= E and ρ◦(E) = |E| − 1; ρ~(∅) = 0 and ρ~(X) = 1 if X 6= ∅.
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Example 3.4.9. Let M = (E = {1, 2, 3}, ρ) be the matroid whose basis are {1, 2} and

{1, 3}. We have the following table:

X ∅ 1 2 3 12 13 23 E

ρ 0 1 1 1 2 2 1 2
ρ∗ 0 0 1 1 1 1 1 1
ρ◦ 0 0 0 0 0 0 1 1
ρ~ 0 1 0 0 1 1 1 2

.

Remark 3.4.10. If M is a matroid, then M◦ and M~ are demimatroids, but they

might not be matroids. For instance, in Example 3.4.9, 1 = ρ◦(23) + ρ◦(∅) 6≤ ρ◦(2) +

ρ◦(3) = 0 and 1 = ρ~(23) + ρ~(∅) 6≤ ρ~(2) + ρ~(3) = 0, show that ρ◦ and ρ~ do not

satisfy the submodularity condition.

Example 3.4.11. Let G be a simple graph with no isolated vertices; we see G as

a 1-dimensional simplicial complex. Let E denote the vertex set of G and define

ρ : 2E → Z+, ρ(∅) = 0, ρ(X) = 1 if X is and independent vertex set of G, and

ρ(X) = 2 if X is not an independent vertex set of G. Then

ρ∗(X) =





|X|, if X is not a covering;

|X| − 1, if X is a covering;

|X| − 2, if X = E.

ρ◦(X) =





0, if X = ∅;
|X| − 1, if X is idependent;

|X| − 2, if X is not independent.

ρ~(X) =

{
0, if X is not a covering;

1, if X is a covering.

For α and β, combinatroids over E, we define (α ∨ β)(X) = max{α(X), β(X)} and

(α ∧ β)(X) = min{α(X), β(X)} for all X ⊆ E.

Lemma 3.4.12. If α and β are demimatroids, then α∨β and α∧β are demimatroids.

Proof. This follows immediately from the fact that for real numbers a1 ≤ a2 and b1 ≤ b2

it holds that min{a1, b1} ≤ min{a2, b2} and max{a1, b1} ≤ max{a2, b2}.

The set of combinatroids on a set E may be partially ordered by defining α ≤ β if

α(X) ≤ β(X) for all X ⊆ E.
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Theorem 3.4.13. The set of demimatroides on a finite set E, with ∨ and ∧ defined as

above, form a bounded distributive lattice. The maximum demimatroid is | · | : X 7→ |X|
and the minimum demimatroid is 0 : X 7→ 0.

Example 3.4.14. This lattice has only one atom, namely, ρ : 2E → Z+, ρ(X) = 0 if

X 6= E and ρ(E) = 1. And it also has only one coatom, which is the nullity of ρ, i.e.

ρ◦(X) = |X| for all X 6= E and ρ◦(E) = |E| − 1.

Let M = (E, ρ) be a nontrivial demimatroid, and set k := ρ(E) ≤ |E|. Define

σk(M) := min{|X| : ρ(X) = k} and choose X ⊆ E such that σk(M) = |X|. For

x ∈ X we know that ρ(X\x) < ρ(X) ≤ ρ(X\x) + 1. From this it follows that

ρ(X\x) = k − 1. Define σk−1(M) := min{|Y | : ρ(Y ) = k − 1} and choose Y ⊆ E

such that σk−1(M) = |Y |. For y ∈ Y we know that ρ(Y \y) < ρ(Y ) ≤ ρ(Y \y) + 1.

From this it follows that ρ(Y \y) = k − 2. Continuing this process we obtain that

0 = σ0(M) < σ1(M) < · · · < σk(M) ≤ |E|. A subset X of E is said to be of level r

if ρ(X) = r. Thus ρ induce a partition of 2E by level sets. We put this on record as

the following lemma, but first a definition. For 1 ≤ r ≤ ρ(E) we define the r-th Wei

number of the demimatroid as

(3.4.1) σr(M) := min{|X| : ρ(X) = r}.

Lemma 3.4.15. Let M = (E, ρ) be demimatroid of rank k := ρ(M). Then

(i) The image of ρ is the set {0, 1, . . . , k};

(ii) 0 < σ1(M) < · · · < σk(M) ≤ |E|;

(iii) If ρ(X) ≥ r, then |X| ≥ σr(M);

(iv) min{|X| : ρ(X) = r} = min{|X| : ρ(X) ≥ r}.

(v) (Generalized Singleton bound) For all 0 ≤ r ≤ k it holds that

k + σr(M) ≤ |E|+ r.

Proof. (iii): Say ρ(X) = r + s. Then |X| ≥ σr+s(M) ≥ σr(M).

(v): k + σk(M) ≤ |E|+ k iff σk(M) ≤ |E|, which is true. Suppose the result is true

for r, . . . , k. Hence k + σr−1(M) ≤ k + σr(M)− 1 ≤ |E|+ r − 1.
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Example 3.4.16. Let M = (E = {1, 2, 3, 4}, ρ) be the matroid whose basis are {1, 2},
{1, 3}, {1, 4}, {2, 3}, {3, 4}. We have the following table:

X ∅ 1 2 3 4 12 13 14 23 24 34 123 124 134 234 E

ρ 0 1 1 1 1 2 2 2 2 1 2 2 2 2 2 2
ρ∗ 0 1 1 1 1 2 1 2 2 2 2 2 2 2 2 2
ρ◦ 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 2
ρ~ 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 2

,

σ1 σ2

ρ 2 4
ρ∗ 2 4
ρ◦ 1 2
ρ~ 1 2

.

Since ρ~(E\X) = ρ~(E)− ρ(X) for all X ⊆ E, Eq. (3.4.1) can be rewritten as

σr(M) = min{|X| : ρ~(E\X) = ρ~(E)− r}.

Thus we may interpret the r-th Wei number σr(M) as the minimum number of elements

that must be removed from E to decrease the rank of M~ by r. A fundamental result

is the following.

Theorem 3.4.17. (Wei’s duality [1, Thm. 13]) Let M = (E, ρ) be a demimatroid.

Then, with n = |E| and k = ρ(M),

{σ1(M), . . . , σk(M)} = {1, . . . , n} \ {n + 1− σ1(M
∗), . . . , n + 1− σn−k(M

∗)}.

Proof. Suppose σi(M) = n+1−σj(M
∗) for some i, j. Choose X ⊆ E such that ρ(X) =

i and σi(M) = |X|. Hence |E\X| = n − |X| = σj(M
∗) − 1. By Lemma 3.4.15(iii)

we have that ρ∗(E\X) ≤ j − 1. Similarly, choose Y ⊆ E such that ρ∗(Y ) = j

and σj(M
∗) = |Y |. Hence ρ(E\Y ) ≤ i − 1. But this implies that i + j − 1 =

ρ∗(E\X) + ρ(E\Y ) ≤ i + j − 2, which is not possible.

Remark 3.4.18. In the literature, σr(M
◦) is known as the r-th generalized Hamming

weight of M , and since (M◦)~ = M∗, then σr(M
◦) is the minimum number of elements

that must be removed from E to decrease the rank of M∗ by r.

Remark 3.4.19. min{|X| : η(X) = r}+ max{|Y | : ρ∗(E)− ρ∗(Y ) = r} = |E|.
Proof of the Remark. Set a = min{|X| : η(X) = r} and b = max{|Y | : ρ∗(Y ) =

ρ∗(E) − r}. Choose X such that a = |X|. Since ρ∗(E\X) = ρ(E) − r, it holds that

|E\X| ≤ b, so |E| ≤ a + b. To prove the other direction choose Y such that b = |Y |.
Since η(E\Y ) = r, it holds that a ≤ |E\Y |, so a + b ≤ |E|.

72



Let M = (E, ρ) be a demimatroid. From the Singleton bound we obtain that

σ1(M) ≤ |E| − ρ(E) + 1. When equality is attained, M is called a full demimatroid.

Corollary 3.4.20. Let M = (E, ρ) be a demimatroid, with n = |E| and k = ρ(E).

(i) If k + σr(M) = n + r, then k + σs(M) = n + s for all s ≥ r.

(ii) If M is full, then M∗ is full.

Proof. (i): The result is true for s = r. If it is true for r, . . . , s, then k + σs+1(M) ≥
k + σs(M) + 1 = n + s + 1.

(ii): By (i), n + 1− σr(M) = k − r + 1. Thus, by Wei’s duality, σs(M
∗) = k + s for

1 ≤ s ≤ n− k. In particular, σ1(M
∗) = k + 1 = n− (n− k) + 1 = n− ρ∗(E) + 1.

Example 3.4.21. Let M = (E = {1, 2, 3}, ρ) be the demimatroid, with ρ given by:

X ∅ 1 2 3 12 13 23 E

ρ 0 0 0 0 1 1 1 2
ρ∗ 0 0 0 0 0 0 0 1
ρ◦ 0 1 1 1 1 1 1 1
ρ~ 0 1 1 1 2 2 2 2

,

σ1 σ2

ρ 2 3
ρ∗ 3
ρ◦ 1
ρ~ 1 2

.

We observe that ρ and ρ∗ are full, whereas ρ◦ and ρ~ are not.

Lemma 3.4.22. Let M = (E, ρ) be a demimatroid, with n = |E| and k = ρ(E). Then

M is full if and only if

ρ(X) =

{
0, if |X| ≤ n− k;

r, if |X| = n− k + r and r ≥ 1.

Proof. (⇐) Evidently σ1(M) = min{|X| : ρ(X) = 1} = n− k + 1.

(⇒) By Lemma 3.4.15(v), σs(M) = n − k + s for all 1 ≤ s ≤ k. In particular,

σk(M) = n implies ρ(E\x) ≤ k − 1 for x ∈ E. Let X ⊆ E with |X| = n− 1. Suppose

that ρ(X) ≤ k − 2. Then ρ(X) ≤ ρ(E) ≤ ρ(X) + 1 ≤ k − 1, which is not possible.

Thus ρ(X) = k− 1. Suppose that if |X| = n− k + r, then ρ(X) = s. Let X such that

|X| = n− k + r − 1. If ρ(X) ≤ n− k + r − 2, then ρ(X) ≤ ρ(X ∪ x) ≤ ρ(X) + 1, i.e.

r ≤ r − 1, which is not possible.

Lemma 3.4.23. Let M = (E, ρ) be a full demimatroid, with n = |E| and k = ρ(E).

Then
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(i) ρ∗(X) =

{
0, if |X| ≤ k;

r, if |X| = k + r and r ≥ 1.

(ii) ρ◦(X) =

{
|X|, if |X| ≤ n− k;

n− k, if |X| > n− k.

(iii) ρ~(X) =

{
|X|, if |X| ≤ k;

k, if |X| > k.

We said that a demimatroid M is uniform when M◦ is full.

Corollary 3.4.24. Let M = (E, ρ) be a full demimatroid, with n = |E| and k = ρ(E).

Then M◦ and M~ are the uniform matroids of rank n− k and k, respectively.

The Wei numbers {σ1(M), . . . , σρ(M)(M)} of a demimatroid M = (E, ρ) determine

a subset of {1, . . . , |E|}. The reciprocal is also true.

Proposition 3.4.25. Let E be a finite set and {σ1 < . . . < σk} ⊆ {1, . . . , |E|}. Then

there exists ρ : 2E → {0, 1, . . . , k} such that M = (E, ρ) is a demimatroid, k = ρ(E)

and σr(M) = σr for all 1 ≤ r ≤ ρ(E).

Proof. Put σ0 := 0, σk+1 := |E| and define ρ(X) = i if σi ≤ |X| < σi+1. Then

σr(M) = min{|X| : ρ(X) = r} = σr.

Let M = (E, ρ) be a nontrivial demimatroid, and set k := ρ(E) ≤ |E|. Define

σ0(M) := max{|X| : ρ(X) = 0} and choose X ⊆ E such that σ0(M) = |X|. For x 6∈ X

we know that ρ(X) < ρ(X ∪ x) ≤ ρ(X) + 1. From this it follows that ρ(X ∪ x) = 1.

Define σ1(M) := max{|Y | : ρ(Y ) = 1} and choose Y ⊆ E such that σ1(M) = |Y |. For

y 6∈ Y we know that ρ(Y ) < ρ(Y ∪y) ≤ ρ(Y )+1. From this it follows that ρ(Y ∪y) = 2.

Continuing this process we obtain that 0 ≤ σ0(M) < σ1(M) < · · · < σk(M) = |E|. We

again put this on record as the following lemma, but first a definition. For 1 ≤ r ≤ ρ(E)

we define the r-th upper Wei number of the demimatroid as

(3.4.2) σr(M) := max{|X| : ρ(X) = r}.

Lemma 3.4.26. Let M = (E, ρ) be demimatroid of rank k := ρ(M). Then

(i) The image of ρ is the set {0, 1, . . . , k};
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(ii) 0 ≤ σ0(M) < · · · < σk(M) = |E|;

(iii) If ρ(X) ≤ r, then |X| ≤ σr(M);

(iv) max{|X| : ρ(X) = r} = max{|X| : ρ(X) ≤ r}.

(v) (Generalized upper Singleton bound) For all 0 ≤ r ≤ k it holds that

k + σr(M) ≤ |E|+ r.

Proof. (iii): Say ρ(X) = r − s. Then |X| ≤ σr−s(M) ≤ σr(M).

(v) k + σk(M) ≤ |E| + k iff σk(M) ≤ |E|, which is true. Suppose the result is true

for r, . . . , k. Hence k + σr−1(M) ≤ k + σr(M)− 1 ≤ |E|+ r − 1.

Theorem 3.4.27. (Upper Wei’s duality [1, Thm. 12]) Let M = (E, ρ) be a demima-

troid. Then, with n = |E| and k = ρ(M),

{σ0(M) + 1, . . . , σk−1(M) + 1} = {1, . . . , n} \ {n− σ0(M∗), . . . , n− σn−k−1(M∗)}.

Proof. Suppose σi(M)+1 = n−σj(M∗) for some i, j. Choose X ⊆ E such that ρ(X) =

i and σi(M) = |X|. Hence |E\X| = n − |X| = σj(M∗) + 1. By Lemma 3.4.26(iii)

we have that ρ∗(E\X) ≥ j + 1. Similarly, choose Y ⊆ E such that ρ∗(Y ) = j

and σj(M∗) = |Y |. Hence ρ(E\Y ) ≥ i + 1. But this implies that i + j + 1 =

ρ∗(E\X) + ρ(E\Y ) ≥ i + j + 2, which is not possible.

3.5 Tutte polynomial

The Tutte polynomial is an important invariant for graphs and matroids. We define

the Tutte polynomial of a combinatroid M = (E, ρ) as

(3.5.1) TM(x, y) :=
∑
A⊆E

(x− 1)ρ(E)−ρ(A)(y − 1)|A|−ρ(A).

Using the classical notation η := ρ◦, this can be rewritten as

(3.5.2) TM(x, y) =
∑
A⊆E

(x− 1)η∗(E\A)(y − 1)η(A).
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Remark 3.5.1. Since a combinatroid ρ may take negative values, we must remark

that TM(x, y), as defined above, could be a rational function; so, a better name would

be the Tutte enumerator or the Tutte rational function. However, since we will not use

its properties as a rational function, by abuse of language, we will continuous making

reference to it as the Tutte polynomial. On the other hand, if ρ is a demimatroid, then

TM(x, y) is in fact a polynomial.

This Tutte polynomial is well-behaved with respect to combinatroidal duality:

Proposition 3.5.2. (Tutte duality) Let M = (E, ρ) be a combinatroid. Then

TM∗(x, y) = TM(y, x).

Proof. It follows immediately from Eq. (3.5.2) by noticing that (ρ∗)◦ = (ρ◦)∗ = η∗.

Let M = (E, ρ) be a combinatroid with Tutte polynomial TM(x, y). We define its

Hamming polynomial by:

(3.5.3) WM(x, y, t) := (x− y)η(M)yρ(M) TM(
x

y
,
x + (t− 1)y

x− y
).

Example 3.5.3. Let E be a finite set and ρ : 2E → Z given by ρ(X) = |X|. Then

η(X) = 0 and η∗(E\X) = |E\X| for all X ⊆ E. Hence T (x, y) = W (x, y, t) = xn.

Theorem 3.5.4. (MacWilliams identity) Let M = (E, ρ) be a combinatroid. Then

WM∗(x, y, t) = t−η(M) WM(x + (t− 1)y, x− y, t).

Proof.

WM(x + (t− 1)y, x− y, t) = (ty)η(E)(x− y)ρ(E) TM((x + (t− 1)y)/(x− y), x/y)

= tη(E)
[
yη(E)(x− y)ρ(E)(x− y)−η∗(E)y−ρ∗(E)

]

× (x− y)η∗(E)yρ∗(E) TM((x + (t− 1)y)/(x− y), x/y)

= tη(E)(1)(x− y)η∗(E)yρ∗(E) TM((x + (t− 1)y)/(x− y), x/y)

= tη(E)(x− y)η∗(E)yρ∗(E) TM∗(x/y, (x + (t− 1)y)/(x− y))

= tη(E)WM∗(x, y, t).
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We define the Whitney generating function

f(M ; x, y) :=
∑
A⊆E

xη∗(E\A)yη(A).

Theorem 3.5.5. (Brylawski, Gordon; see [4]) Let M = (E, ρ) be a combinatroid. Then

(1) Duality :

f(M∗; x, y) = f(M ; y, x).

(2) Deletion-Contraction : For any p ∈ E,

f(M ; x, y) = xη∗(p)f(M\p; x, y) + y1−ρ(p)f(M/p; x, y).

We now proceed to prove a deletion-contraction formula for the Tutte and Hamming

polynomials.

Lemma 3.5.6. Let M = (E, ρ) be a combinatroid. Then

(a)

(x− y)η(E)yρ(E)(x/y − 1)ρ(E)−ρ(E\p) = (x− y)(x− y)|E\p|−ρ(E\p)yρ(E\p).

(b)

(x− y)η(E)yρ(E)(x− y)ρ(p)−1 = yρ(p)(x− y)|E\p|−ρ(E)+ρ(p)yρ(E)−ρ(p).

Proof. (a):

(x− y)η(E)yρ(E)(x/y − 1)ρ(E)−ρ(E\p) = (x/y − 1)ρ(E)−ρ(E\p)(x− y)η(E)yρ(E)

= (x− y)ρ(E)−ρ(E\p)y−ρ(E)+ρ(E\p)(x− y)η(E)yρ(E)

= (x− y)ρ(E)−ρ(E\p)yρ(E\p)(x− y)η(E)

= (x− y)|E|−ρ(E\p)yρ(E\p)

= (x− y)(x− y)|E\p|−ρ(E\p)yρ(E\p)

(b):

(x− y)η(E)yρ(E) = (x− y)1−ρ(p)(x− y)|E\p|−ρ(E)+ρ(p)yρ(E)−ρ(p)yρ(p)

= (x− y)1−ρ(p)yρ(p)(x− y)|E\p|−ρ(E)+ρ(p)yρ(E)−ρ(p).

From the Brylawski recurrence it follows:
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Proposition 3.5.7. Let M = (E, ρ) be a combinatroid. Then

TM(x, y) = (x− 1)η∗(p) TM\p(x, y) + (y − 1)1−ρ(p) TM/p(x, y).

Example 3.5.8. Let M be the demimatroid in Example 3.4.21, and take p = 3.

X ∅ 1 2 3 12 13 23 E

ρ 0 0 0 0 1 1 1 2
ρ∗ 0 0 0 0 0 0 0 1
ρ◦ 0 1 1 1 1 1 1 1
ρ~ 0 1 1 1 2 2 2 2

.

TM(x, y) = x− 2x2 + y − 3xy + 3x2y.

Set α := ρM\p and β := ρM/p.

X ∅ 1 2 12

α 0 0 0 1
α∗ 0 0 0 1
α◦ 0 1 1 1
α~ 0 1 1 1

,

X ∅ 1 2 12

β 0 1 1 2
β∗ 0 0 0 0
β◦ 0 0 0 0
β~ 0 1 1 2

TM\p(x, y) = −x− y + 2xy; TM/p(x, y) = x2.

(x− 1)TM\p(x, y) + (y − 1)TM/p(x, y) = TM(x, y).

From this we obtain the following recurrence for the Hamming polynomial.

Theorem 3.5.9.

WM(x, y, t) = (x− y) WM\p(x, y, t)) + t1−ρ(p)y WM/p(x, y, t).

Proof.

WM(x, y, t) = (x− y)η(E)yρ(E) TM(x/y, (x + (t− 1)y)/(x− y))

= (x− y)η(E)yρ(E)[(x/y − 1)ρ(E)−ρ(E\p) TM\p(x/y, (x + (t− 1)y)/(x− y))

+((x + (t− 1)y)/(x− y)− 1)1−ρ(p) TM/p(x/y, (x + (t− 1)y)/(x− y))]

= (x− y)(x− y)|E\p|−ρ(E\p)yρ(E\p) TM\p(x/y, (x + (t− 1)y)/(x− y))

+(ty)1−ρ(p)yρ(p)

× (x− y)|E\p|−ρ(E)+ρ(p)yρ(E)−ρ(p) TM/p(x/y, (x + (t− 1)y)/(x− y))

(by 3.5.6) = (x− y) WM\p(x, y) + t1−ρ(p)y WM/p(x, y).
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Example 3.5.10. We continuous Example 3.5.8.

WM(x, y, t) = x3 + 3(t− 1)x2y + 3(1− t)xy2 + (t− 1)y3.

WM\p(x, y, t) = x2 + 2(t− 1)xy + (1− t)y2; WM/p(x, y, t) = x2.

(x− y)WM\p(x, y, t) + t y WM/p(x, y, t) = WM(x, y, t).

3.6 Extended Hamming polynomials

For a combinatroid M = (E, ρ) we define its characteristic polynomial as

p(M ; t) :=
∑
X⊆E

(−1)|X|tρ(E)−ρ(X) = (−1)ρ(E)TM(1− t, 0) =
∑
X⊆E

(−1)|E\X|tη
∗(X).

Thus the characteristic polynomial of M∗ is

p(M∗; t) =
∑
X⊆E

(−1)|E\X|tη(X).

We generalize p(M∗; t) for every σ ⊆ E as: PM,∅(t) := 1 and

(3.6.1) PM,σ(t) :=
∑
γ⊆σ

(−1)|σ\γ|tη(γ).

We define the j-th generalized polynomial PM,j(t) as PM,0(t) := 1 and

(3.6.2) PM,j(t) :=
∑

|σ|=j

PM,σ(t) =
∑

|σ|=j

∑
γ⊆σ

(−1)|σ\γ|tη(γ), 1 ≤ j ≤ n.

Identically as for matroids [10], we define the Hamming polynomial of a combinatroid

M by

(3.6.3) WM(x, y, t) :=
n∑

j=0

PM,j(t)x
n−jyj.

Next, following [10], we will verify that this definition coincides with the one given in

Eq. (3.5.3).

Lemma 3.6.1.

WM(x, y, t) =
∑
σ⊆E

(x− y)|E|−|σ|y|σ| tη(σ).
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Proof. Set n = |E|.
∑

σ

(x− y)n−|σ|y|σ|tη(σ) =
∑

σ

n−|σ|∑
i=0

(
n− |σ|

i

)
xi(−y)n−|σ|−iy|σ| tη(σ)

=
∑

σ

∑

γ⊆E\σ
x|γ|yn−|γ|(−1)n−|σ|−|γ| tη(σ)

=
∑

γ

x|γ|yn−|γ| ∑

σ⊆E\γ
(−1)n−|γ|−|σ| tη(σ)

=
∑

γ

x|γ|yn−|γ|PM,E\γ(t)

=
∑

γ

xn−|γ|y|γ|PM,γ(t)

= WM(x, y, t).

Theorem 3.6.2.

WM(x, y, t) = (x− y)η(E)yρ(E) TM(
x

y
,
x + (t− 1)y

x− y
).

Proof.

TM(
x

y
,
x + (t− 1)y

x− y
) =

∑
σ

(
x

y
− 1)η∗(E\σ)(

x + (t− 1)y

x− y
− 1)η(σ)

=
∑

σ

(x− y)η∗(E\σ)

yη∗(E\σ)

(ty)η(σ)

(x− y)η(σ)

=
∑

σ

(x− y)η∗(E\σ)−η(σ)

yη∗(E\σ)−η(σ)
tη(σ)

=
∑

σ

(x− y)ρ(E)−|σ|

yρ(E)−|σ| tη(σ)

=
(x− y)ρ(E)−n

yρ(E)

∑
σ

(x− y)n−|σ|y|σ| tη(σ)

=
(x− y)ρ(E)−n

yρ(E)
WM(x, y, t).

Theorem 3.6.3.

TM(x, y) = (x− 1)−η(E)x|E| WM(1, x−1, (x− 1)(y − 1)).

Proof. A straightforward evaluation shows that

WM(1, x−1, (x− 1)(y − 1)) = (1− x−1)n−ρ(E)x−ρ(E)TM(x, y)

= (x− 1)n−ρ(E)x−nTM(x, y).
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Example 3.6.4. Let ∆ be a simplicial complex of dimension d; so d + 1 is the largest

cardinality of a face. The f -polynomial of ∆ is defined as

f(∆, t) := td+1 + c1t
d−1 + · · ·+ cd,

where ci is the number of faces of cardinality i, and its h-polynomial is defined as

h(∆, t) := f(∆, t− 1). It is well known that f(∆, t) = T (t + 1, 1), where T (x, y) is the

Tutte polynomial of ∆. Thus, by Theorem 3.6.3,

f(∆, t) = (x + 1)|E|x−η(E)W (1, (x + 1)−1, 0).

For instance, let ∆ be the simplicial complex with facets 12, 234, 345, i.e.

∆ = {∅, 1, 2, 3, 4, 5, 12, 23, 24, 34, 35, 45, 234, 345}.

T∆↑(x, y) = x− 2x2 + x3 + y − 4xy + 4x2y − y2 + 2xy2.

W∆↑(x, y, t) = x5 + 4(t− 1)x3y2 + 4(1− t)x2y3 + (−1− t + 2t2)xy4 + (1− t)ty5.

Thus, the f -polynomial of ∆ is

(x + 1)5x−2W∆↑(1, (x + 1)−1, 0) = x3 + 5x2 + 6x + 2.

Let M = (E, ρ) be a nontrivial demimatroid, PM,j(t) the polynomial defined in

Eq. (3.6.2), and δ the minimum j > 0 such that PM,j(t) 6= 0.

Proposition 3.6.5. δ = σ1(M
◦) and PM,δ(t) = c(t− 1), where

c = |{X ⊆ E : |X| = σ1(M
◦)}|.

Proof. Fix X ⊆ E such that η(X) = 1 and |X| = σ1(M
◦). If σ ⊆ E and |σ| < |X|, then

by Lemma 3.4.1(i), applied to the restriction of η to σ, it holds that η(σ) = 0. Thus

0 = PM,σ(t) :=
∑

γ⊆σ(−1)|σ\γ|tη(γ). The same result holds if |σ| = |X| and η(σ) = 0.

On the other hand, PM,X(t) = t− 1. Therefore, we obtain the desired result.

We call the number σ1(M
◦) the formal minimum distance of M .

Proposition 3.6.6. ([10, Prop. 4.1]) Let M be a demimatroid, and PM,j as defined in

Eq. (3.6.2). Then, for 1 ≤ r ≤ η(M◦),

σr(M
◦) = min{j : deg PM,j = r}.
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Proposition 3.6.7. Let M = (E, ρ) be a uniform matroid, with n = |E| and k = ρ(E).

Then

TM(x, y) =
k−1∑
i=0

(
n

i

)
(x− 1)k−i +

(
n

k

)
+

n∑

i=k+1

(
n

i

)
(y − 1)i−k.

Proof. ρ(X) = |X| if |X| ≤ k and ρ(X) = k if |X| > k. Hence, η(X) = 0 if |X| ≤ k

and η(X) = r if |X| = k + r with r > 0. Moreover, η∗(X) = 0 if |E\X| ≥ k, i.e.

|X| ≤ n− k, and η∗(X) = r if |E\X| = k − r with r > 0, i.e. |X| = n− k + r.

Let M = (E, ρ) be a demimatroid. Set n = |E| and write

WM(x, y, t) = xn +
n∑

j=δ

Aj(t)x
n−jyj.

where δ is the formal minimum distance of M .

Proposition 3.6.8. Let M = (E, ρ) be a uniform matroid, with n = |E|, k = ρ(E)

and δ = σ1(M
◦). Then, for δ ≤ i ≤ n,

Ai(t) = (t− 1)

(
n

i

) i−δ∑
j=0

(−1)j

(
i− 1

j

)
ti−δ−j.

Proof. The proof readily follows from Proposition 3.6.7.

Example 3.6.9. Let M◦ = (E, ρ◦) be as in Example 3.4.21. M◦ is a uniform matroid

of rank 1. TM◦(x, y) = x + y + y2, WM◦(x, y, t) = x3 + 3(t − 1)xy2 + (2 − 3t + t2)y3,

δ = 2, A1(t) = 0, A2(t) = 3(t− 1), A3(t) = 2− 3t + t2.

Example 3.6.10. Let M◦ = (E = {1, 2, 3, 4}, ρ◦) be the uniform matroid given by:

X ∅ 1 2 3 4 12 13 14 23 24 34 123 124 134 234 E

ρ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2
ρ∗ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2
ρ◦ 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
ρ~ 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

.

M◦ is a uniform matroid of rank 2. TM◦(x, y) = 2x + x2 + 2y + y2, WM◦(x, y) =

x4 + 4(t − 1)xy3 + (3 − 4t + t2)y4, δ = 3, A1(t) = 0, A2 = 0, A3(t) = 4(t − 1),

A4(t) = 3− 4t + t2.
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3.7 Elongations

Let M = (E, ρ) be a demimatroid with nullity function η. For 0 ≤ i ≤ η(M) we define

the i-th elongation of M as the demimatroid M [i] := (E, ρ[i]), where

ρ[i](σ) := min{|σ|, ρ(σ) + i},

or equivalently,

ρ[i](σ) =

{
|σ|, η(σ) ≤ i

ρ(σ) + i, η(σ) > i.

Note that ρ[0] ≡ ρ, ρ[i] ≡ (ρ[1])[i−1] and ρ[η(M)](σ) = |σ| for all σ ⊆ E. When there is no

confusion, we will write M [i] instead of M [i].

Proposition 3.7.1. Let M = (E, ρ) be a demimatroid. Then M [i], as defined above,

is a demimatroid.

Proof. Obviously ρ[i](∅) = 0. Let X ⊆ E and x ∈ E.

If x ∈ X, obviously ρ[i](X) ≤ ρ[i](X ∪ x) ≤ ρ[i](X) + 1, so we may assume x 6∈ X.

If ρ[i](X ∪ x) = |X|+ 1, thus ρ[i](X) = |X| and ρ[i](X) ≤ ρ[i](X ∪ x) ≤ ρ[i](X) + 1.

If ρ[i](X ∪ x) = ρ(X) + i, thus ρ[i](X) = ρ(X) + i and ρ[i](X) ≤ ρ[i](X ∪ x) ≤
ρ[i](X) + 1.

Since 1 ≤ i ≤ η(M) = |E| − ρ(E), it holds that ρ(E) + i ≤ |E|, so ρ[i](M [i]) =

ρ(M) + i. If X ⊆ E, then the rank function of M |X is the restriction of ρ to X. We

point out that from this it follows that (M [i])|X = (M |X)[i].

The nullity function of M [i] is given by

η[i](σ) = max{0, η(σ)− i},

or equivalently,

η[i](σ) =

{
0, η(σ) ≤ i

η(σ)− i, η(σ) > i.

An easy verification shows that

(3.7.1) η[i](σ) = 0 if and only if η(σ) ≤ i.
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Proposition 3.7.2. Let M = (E, ρ) be a demimatroid. Then σr+1(M
◦) = σ1(M [r]◦).

Proof. Choose X ⊆ E such that η(X) = r + 1 and |X| = σr+1(M
◦). Hence η[r](X) =

max{0, η(X)− r} = 1, and so σ1(M [r]◦) ≤ |X| = σr+1(M
◦). Similarly, choose Y ⊆ E

such that η[r](Y ) = 1 and |Y | = σ1(M [r]◦). Hence η(Y ) = r + 1, and so σr+1(M
◦) ≤

|Y | = σ1(M [r]◦).

3.8 Betti numbers

Let R = K[x1, . . . , xn] be a polynomial ring over the field K. We consider R provided

with its canonical Z-grading. Associated with each homogeneous ideal I of R there is

a minimal graded free resolution

0 → ⊕
jR(−j)βpj → · · · → ⊕

jR(−j)β1j → R → R/I → 0,

where R(−j) denotes the R-module obtained by shifting the degrees of R by j, i.e

R(−j)a = Ra−j. The number βij in the resolution may be interpreted as the minimum

number of generators of degree j in the i-th sizygie of R/I; or equivalently

βij(R/I) := βij = dim Tori(R/I, K)j.

These βij’s are called the graded Betti numbers of R/I. We collect all they together

by defining the graded Betti polynomial of R/I as

B(R/I; x, y) :=

p∑
i=0

∑
j

βijx
iyj.

Example 3.8.1. Let I ⊂ R = K[x1, . . . , x5] be the monomial ideal

I = 〈x1x2, x2x3, x3x4, x4x5〉.

We have the resolution

0 → R(−5) → R3(−3)⊕R(−4) → R4(−2) → R → R/I → 0,

so that

B(R/I; x, y) = 1 + 4xy2 + 3x2y3 + x2y4 + x3y5.
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Let ∆ be a simplicial complex; we assume that all the vertices belongs to ∆. It

is convenient, abusing notation, to identify σ ⊆ [n] with the characteristic vector

σ = (σi) ∈ {0, 1}n such that σi = 1 if i ∈ σ; and write |σ| := σ1 + · · ·+ σn. For σ ⊆ [n]

we denote by ∆σ the simplicial complex that results from the restriction of ∆ to the

vertex set σ.

Given a simplicial complex ∆, let I∆ denote its Stanley-Reisner ideal and K[∆] its

Stanley-Reisner ring, i.e. I∆ = 〈xi1 · · ·xir : {i1, . . . , ir} /∈ ∆〉 ⊂ R and K[∆] = R/I∆.

Let’s also denote by H̃i(∆; K) the i-th reduced homology group of ∆ with coefficients

in the field K. We have the fundamental result:

Theorem 3.8.2. (Hochster’s Formula [7]) Let ∆ be a simplicial complex with vertex

set [n]. Then

βij(R/I∆) =
∑

σ⊆[n]; |σ|=j

dim H̃j−i−1(∆σ).

If, instead of the Z-grading, we consider R provided with its Zn-grading, and for any

σ ⊆ [n] we define βiσ(R/I) := dim Tori(R/I, K)σ, then we have

Theorem 3.8.3. (Multigraded Hochster’s Formula) Let ∆ be a simplicial complex with

vertex set [n]. For any σ ⊆ [n] we have that

βiσ(R/I∆) = dim H̃|σ|−i−1(∆σ).

3.9 Hamming polynomial vs Betti numbers

Let ∆ be a simplicial complex of dimension d and denote by fi the number of i-

dimensional faces of ∆. The reduced Euler characteristic of ∆ is defined as

χ̃(∆) :=
d∑

i=−1

(−1)i dim H̃i(∆; K).

Lemma 3.9.1. (Euler-Poincaré formula) The reduced Euler characteristic of a simpli-

cial complex does not depend of the field and

χ̃(∆) = −1 + f0 − · · ·+ (−1)dfd.
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Let M = (E, ρ) be a demimatroid with nullity function η, and let M [i] be its i-th

elongation. Set n = |E| and denote by IM [i] the Stanley-Reisner ideal of M [i], viewed

as a simplicial complex.

Lemma 3.9.2. For σ ⊆ E the coefficient of tr in PM,σ(t) is equal to

n∑
i=0

(−1)i
(
βiσ(R/IM [r])− βiσ(R/IM [r−1])

)
.

Proof. According to Eq. (3.6.1), the coefficient of tr is

srσ = (−1)|σ|
∑

γ⊆σ; η(γ)=r

(−1)|γ|.

From Eq. (3.7.1) we have

srσ = (−1)|σ|


 ∑

γ⊆σ; η[r](γ)=0

(−1)|γ| −
∑

γ⊆σ; η[r−1](γ)=0

(−1)|γ|


 .

By Eq. 3.7.1 and Lemma 3.9.1,

(−1)|σ|
∑

γ⊆σ; η[r](γ)=0

(−1)|γ| = (−1)|σ|+1


 ∑

γ⊆σ; η[r](γ)=0

(−1)|γ|−1




= (−1)|σ|+1




ρ[r](σ)∑
i=−1

(−1)i dim H̃i(M [r]σ; K)




= (−1)|σ|+1




|σ|∑

j=η[r](σ)−1

(−1)|σ|−j−1 dim H̃|σ|−j−1(M [r]σ; K)




=

|σ|∑

j=η[r](σ)−1

(−1)j dim H̃|σ|−j−1(M [r]σ; K)

(by 3.8.3) =

|σ|∑
j=0

(−1)jβjσ(R/IM [r]).

Similarly,

(−1)|σ|
∑

γ⊆σ; η[r−1](γ)=0

(−1)|γ| =
|σ|∑
j=0

(−1)jβjσ(R/IM [r−1]).
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Corollary 3.9.3. For each 1 ≤ j ≤ n the coefficient of tr in PM,j(t) is equal to

n∑
i=0

(−1)i
(
βij(R/IM [r])− βij(R/IM [r−1])

)
.

Proof. Recall that PM,j(t) =
∑

|σ|=j PM,σ(t) and βij(R/IM [r]) =
∑

|σ|=j βiσ(R/IM [r]).

Hence the coefficient of tr in PM,j is

n∑
i=0

(−1)i
(
βij(R/IM [r])− βij(R/IM [r−1])

)
.

Theorem 3.9.4.

W (x, y, t) = xn

η∑
r=0

(
BM [r](−1, y/x)−BM [r−1](−1, y/x)

)
tr.

Proof. By definition W (x, y, t) =
∑n

j=0 PM,j(t)x
n−jyj. By Corollary 3.9.3,

W (x, y, t) =
n∑

j=0

(
n∑

r=0

(
n∑

i=0

(−1)i
(
βij(R/IM [r])− βij(R/IM [r−1])

)
)

tr

)
xn−jyj

=
n∑

r=0

(
n∑

j=0

(
n∑

i=0

(−1)i
(
βij(R/IM [r])− βij(R/IM [r−1])

)
)

xn−jyj

)
tr

=
n∑

r=0

(
n∑

i=0

(−1)i

(
n∑

j=0

(
βij(R/IM [r])− βij(R/IM [r−1])

)
xn−jyj

))
tr

= xn

n∑
r=0

(
n∑

i=0

(
n∑

j=0

(
βij(R/IM [r])− βij(R/IM [r−1])

)
(−1)i(y/x)j

))
tr

= xn

η(E)∑
r=0

(
BM [r](−1, y/x)−BM [r−1](−1, y/x)

)
tr.

Remark 3.9.5. (i) BM [−1](x, y) = 0 and BM [η(E)](x, y) = 1.

(ii) W (x, y, 0) = xnBM(−1, y/x).
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3.10 Examples

Example 3.10.1. Let G be the graph
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and let ∆ be the simplicial complex whose facets are the nine edges of this graph. Let us

consider ∆ provided with its natural structure of demimatroid, i.e. ρ(σ) = max{|X| :
X ⊆ σ and X ∈ ∆}. The circuits of ∆ are {24, 25, 26, 35, 36, 46, 123, 134, 145, 156};
here we have written 24 instead of {2, 4}, and so on. We have

T (x, y) = −x + x2 − y + 4xy + 2y2 + xy2 + 2y3 + y4

and

W (x, y, t) = (x− y)4y2 T (
x

y
,
x + (t− 1)y

x− y
)

= x6 + 6(−1 + t)x4y2 + (4− 5t + t2)x3y3

+ 3(3− 7t + 4t2)x2y4 + 3(−4 + 11t− 9t2 + 2t3)xy5

+ (4− 13t + 14t2 − 6t3 + t4)y6.

The Betti polynomial of the elongations of ∆, over Q, are

B0(x, y) = 1 + 6xy2 + 4xy3 + 8x2y3 + 12x2y4 + 3x3y4 + 12x3y5 + 4x4y6;

B1(x, y) = 1 + xy3 + 12xy4 + 21x2y5 + 9x3y6;

B2(x, y) = 1 + 6xy5 + 5x2y6;

B3(x, y) = 1 + xy6;

B4(x, y) = 1.
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From this we obtain

x6

4∑
r=0

(
BM [r](−1, y/x)−BM [r−1](−1, y/x)

)
tr = x6 + 6(−1 + t)x4y2

+ (4− 5t + t2)x3y3 + 3(3− 7t + 4t2)x2y4

+ 3(−4 + 11t− 9t2 + 2t3)xy5

+ (4− 13t + 14t2 − 6t3 + t4)y6.

Example 3.10.2. Let ∆ be the simplicial complex whose faces are the independent

vertex sets of the graph G in Example 3.10.1, i.e. the facets of ∆ are {1, 25, 35, 36, 246}.
The circuits of ∆ are all the edges of G. We have

T (x, y) = x− 2x2 + x3 + y − 2xy + x2y + y2 − 5xy2 + 4x2y2 − 2y3 + 3xy3

and

W (x, y, t) = (x− y)3y3 T (
x

y
,
x + (t− 1)y

x− y
)

= x6 + 9(−1 + t)x4y2 + (17− 21t + 4t2)x3y3

+ 12(−1 + t)x2y4 + 3(1 + t− 3t2 + t3)xy5 + t(−3 + 5t− 2t2)y6.

The Betti polynomial of the elongations of ∆ are

B0(x, y) = 1 + 9xy2 + 17x2y3 + x2y4 + 13x3y4 + 2x3y5 + 5x4y5 + x4y6 + x5y6;

B1(x, y) = 1 + 4xy3 + 3xy4 + 3x2y4 + 6x2y5 + 3x3y6;

B2(x, y) = 1 + 3xy5 + 2x2y6;

B3(x, y) = 1.

From this we obtain

x6

3∑
r=0

(
BM [r](−1, y/x)−BM [r−1](−1, y/x)

)
tr = x6 + 9(−1 + t)x4y2

+ (17− 21t + 4t2)x3y3 + 12(−1 + t)x2y4

+ 3(1 + t− 3t2 + t3)xy5 + t(−3 + 5t− 2t2)y6.
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Example 3.10.3. Let C be the Hamming linear [8, 4, 4]2 code, with parity check

matrix

H =




1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0


 .

We have

T (x, y) = 6x + 10x2 + 4x3 + x4 + 6y + 14xy + 10y2 + 4y3 + y4

and

W (x, y, t) = x8 + 14(−1 + t)x4y4 + 28(2− 3t + t2)x2y6

+ 8(−8 + 14t− 7t2 + t3)xy7 + (21− 42t + 28t2 − 8t3 + t4)y8.

The Betti polynomial of the elongations of M [H] are

B0(x, y) = 1 + 14xy4 + 56x2y6 + 64x3y7 + 21x4y8;

B1(x, y) = 1 + 28xy6 + 48x2y7 + 21x3y8;

B2(x, y) = 1 + 8xy7 + 7x2y8;

B3(x, y) = 1 + xy8;

B4(x, y) = 1.

From this we obtain

x8

4∑
r=0

(
BM [r](−1, y/x)−BM [r−1](−1, y/x)

)
tr = W (x, y, t).

Example 3.10.4. Let ∆ be the simplicial complex whose facets are the 2-dimensional

faces determined by the triangulation of the projective plane

i.e., the facets of ∆ are {124, 234, 345, 135, 125, 256, 236, 136, 146, 456}.
In characteristic 2 the Betti polynomials are

B0(x, y) = 1 + 10xy3 + 15x2y4 + 6x3y5 + x3y6 + x4y6;

B1(x, y) = 1 + 6xy5 + 5x2y6;

B2(x, y) = 1 + xy6;

B3(x, y) = 1.
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In characteristic 3 the Betti polynomials are

B0(x, y) = 1 + 10xy3 + 15x2y4 + 6x3y5;

B1(x, y) = 1 + 6xy5 + 5x2y6;

B2(x, y) = 1 + xy6;

B3(x, y) = 1.

Even though these polynomials do depend of the characteristic of the field, in both

cases it results that

T (x, y) = −4x + 3x2 + x3 − 4y + 10xy + 3y2 + y3

and

W (x, y, t) = x6 + 10(−1 + t)x3y3 − 15(−1 + t)x2y4 + 6(−1 + t2)xy5 + t(5− 6t + t2)y6.

Note that the coefficient of x2y4, i.e. −15(t − 1), is negative for any t > 1, so

W (x, y, t) cannot be the weight enumerator of any code over a finite field.

The Duursma zeta polynomial corresponding to W (x, y, t) is

Pq(t) = (1/2)(1 + (1− q)t + qt2).

This polynomial has negative discriminant for q ∈ (3− 2
√

2, 3− 2
√

2) ≈ (0.17, 5.82).

For q in this interval, the roots of Pq(t) lie in the circle (x + 1)2 + y2 = 2, moreover all

roots have module 1/
√

q, so that Pq(t) satisfies the Riemann hypothesis. See [3].
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Example 3.10.5. Let M be the Vamos matroid, i.e. the ground set is E = {1, . . . , 8}
and the bases are all the subsets of E of size 4, except {1234, 2356, 1456, 2378, 1478}.
We have

T (x, y) = x4 + 4x3 + 10x2 + 15x + 5xy + 15y + 10y2 + 4y3 + y4

and

W (x, y, t) = x8 + 5(−1 + t)x4y4 + 36(−1 + t)x3y5 + 2(55− 69t + 14t2)x2y6

+ 4(−25 + 37t− 14t2 + 2t3)xy7 + (30− 51t + 28t2 − 8t3 + t4)y8.

3.11 Generalized Hamming polynomial

For positive integers j ≤ m and q an indeterminate, let us define

[m]q := 1 + q + · · ·+ qm−1

[m]q! := [1]q [2]q · · · [m]q[
m
j

]

q

:=
[m]q!

[j]q! [m− j]q!

〈m〉q := (qm − 1)(qm − q) · · · (qm − qm−1).

Since [
m
j

]

q

=

[
m− 1

j

]

q

+ qm−j

[
m− 1
j − 1

]

q

,

it follows that all these are polynomials in q with integer coefficients.

Let M = (E, ρ) be a combinatroid. Set n = |E| and k = ρ(E). Following [11], for

1 ≤ r ≤ n, we define the r-generalized Hamming weight enumerator

W (r)(x, y, q) :=
1

〈r〉q
r∑

j=0

[
r
j

]

q

(−1)r−j q(
r−j
2 )(x− y)n−k yk TM(

x

y
,
x + (qj − 1)y

x− y
).

Conjecture 3.11.1. Let M = (E, ρ) be a combinatroid. Set n = |E| and k = ρ(E).

Then

(3.11.1) TM(x, y) = xn(x− 1)k−n

n−k∑
r=0

(
r−1∏
j=0

((x− 1)(y − 1)− qj)

)
W (r)(1, 1/x, q).
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Remark 3.11.2. When M is the associated matroid to a linear code, via its parity

check matrix, this conjecture has been proved by Jurrius [12, Thm. 3.3.5].

Example 3.11.3. Let C be the binary linear [6, 3] code with parity check matrix

H =




1 1 1 1 0 0
1 1 1 0 1 0
1 1 1 0 0 1


.

(See Example C1 of Section 5.2 in [12]) The bases of the matroid M [H] are

{145, 146, 156, 245, 246, 256, 345, 346, 356, 456},

and its Tutte polynomial is

T (x, y) = x + x2 + x3 + y + xy + x2y + y2 + xy2 + x2y2 + y3.

W (0)(x, y, t) = x6;

W (1)(x, y, t) = 3x4y2 + (−2 + t)x3y3 + 3x2y4 + 3(−2 + t)xy5 + (3− 3t + t2)y6;

W (2)(x, y, t) = x3y3 + 3xy5 + (−3 + t + t2)y6;

W (3)(x, y, t) = y6.

Substituting these W (r)’s in Eq. (3.11.1) we recover T (x, y).

Example 3.11.4. Let C be the binary linear [6, 3] code with parity check matrix

H =




1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1


.

(See Example C1 of Section 5.2 in [12]) The bases of the matroid M [H] are

{123, 126, 135, 156, 234, 246, 345, 456},

and its Tutte polynomial is

T (x, y) = x3 + 3x2y + 3xy2 + y3.

W (0)(x, y, t) = x6;

W (1)(x, y, t) = 3x4y2 + 3(−1 + t)x2y4 + (−1 + t)2y6;

W (2)(x, y, t) = 3x2y4 + (−2 + t + t2)y6;

W (3)(x, y, t) = y6.

Substituting these W (r)’s in Eq. (3.11.1) we recover T (x, y).
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Example 3.11.5. Let C be the binary Hamming linear [7, 4] code with parity check

matrix

H =




0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1


.

The Tutte polynomial of M [H] is

T (x, y) = 3x + 4x2 + x3 + 3y + 7xy + 6y2 + 3y3 + y4.

W (0)(x, y, t) = x7;

W (1)(x, y, t) = 7x4y3 + 7x3y4 + 21(−2 + t)x2y5 + 7(6− 5t + t2)xy6

+(−13 + 15t− 6t2 + t3)y7;

W (2)(x, y, t) = 21x2y5 + 7(−5 + t + t2)xy6 + (15− 6t− 5t2 + t3 + t4)y7;

W (3)(x, y, t) = 7xy6 + (−6 + t + t2 + t3)y7;

W (4)(x, y, t) = y7.

Substituting these W (r)’s in Eq. (3.11.1) we recover T (x, y).

Example 3.11.6. Let M be the demimatroid in Example 3.4.21.

X ∅ 1 2 3 12 13 23 E

ρ 0 0 0 0 1 1 1 2
ρ∗ 0 0 0 0 0 0 0 1
ρ◦ 0 1 1 1 1 1 1 1
ρ~ 0 1 1 1 2 2 2 2

.

TM(x, y) = x− 2x2 + y − 3xy + 3x2y.

WM(x, y, t) = x3 + 3(t− 1)x2y + 3(1− t)xy2 + (t− 1)y3.

W (0)(x, y, t) = (x− y)3x3;

W (1)(x, y, t) = (x− y)3y(3x2 − 3xy + y2);

W (2)(x, y, t) = 0.

x6(x− y)−4[W (0)(1, 1/x, t) + ((x− 1)(y − 1)− 1)W (1)(1, 1/x, t)] = TM(x, y).
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