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Abstract

This work is about the study of optimal control problems and dynamic games and its relation with backward
stochastic differential equations (BSDE). We analyze the existence and uniqueness of solutions of several types
of BSDE with a general degree of generality for the cases of zero, one and two barriers. We are going to base
ourselves on these equations in order to analyze the existence of optimal values related to the aforementioned
control and game problems.

The first part of this thesis surveys very well-known results on BSDE, Reflected BSDE (RBSDE) and
systems of RBSDE with continuous barriers that later are applied to find optimality associated to optimal
stopping times and switching control problems. Later, the second part constitutes the originality of this work.
In this sense, we provide new results on the existence and uniqueness and/or characterizations of systems of
interconnected RBSDE with either one and two barriers of càdlàg type (i.e., right continuous with left limits).

Our original contributions can be summarized as follows:

(1) We prove the existence and uniqueness of interconnected systems of RBSDE for one càdlàg barriers.

(2) Assuming the existence of a Markov process as a driver of the randomness of the model, we characterize
the solutions of the systems above mentioned in item (1) as solutions of systems of interconnected PDE’s
with discontinuous obstacles. This connection is possible when the former system is evaluated at the
initial condition.

(3) We ensure the existence of the interconnected PDE’s of one discontinuous barrier in a weak viscosity
sense.

(4) The optimality of a switching control problem with càdlàg switching cost is guaranteed through the
theory of Snell envelopes.

(5) The above switching control problem can be also characterized as a solution of special cases of both
systems of (RBSDEs and PDEs) with one càdlàg barrier above mentioned in (2).

(6) The same property given in (5) applies for switching games when the systems of (BRSDEs and PDEs)
are càdlàg with double barriers.
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Resumen

Esta tesis trata sobre el estudio de problemas de control óptimo y juegos dinámicos así como su relación
con las ecuaciones diferenciales estocásticas hacia atrás (BSDE). Analizamos la existencia y unicidad de
soluciones de varios tipos de BSDE especialmente aquellas que tienen asociadas una o dos restricciones o
barreras. Usando estas ecuaciones analizamos la existencia de valores óptimos relacionados con los problemas
de control y juegos antes mencionados.

La primera parte de esta tesis revisa resultados muy conocidos sobre BSDE, BSDE Reflejado (RBSDE) y
sistemas de RBSDE con barreras continuas que luego se aplican para encontrar las optimalidades asociadas a
tiempos de parada óptimos y problemas de control tipo switching. Posteriormente, la segunda parte constituye
la originalidad de este trabajo. En este sentido, brindamos nuevos resultados sobre la existencia y singularidad
y/o caracterizaciones de sistemas de RBSDE interconectados con una o dos barreras de tipo càdlàg (i.e.,
continuas por la derecha con límites por la izquierda).

Nuestras contribuciones originales se pueden resumir de la siguiente manera:

(1) Demostramos la existencia y unicidad para sistemas de ecuaciones interconectadas de RBSDE con una
barrera tipo càdlàg.

(2) Suponiendo que la aleatoriedad del modelo proviene un proceso de Markov, caracterizamos las soluciones
de los sistemas arriba mencionados en el ítem (1) como soluciones de sistemas de PDEs interconectadas
y con obstáculos discontinuos. Esta conexión es posible cuando el sistema anterior se evalúa en la
condición inicial.

(3) Aseguramos la existencia de las PDE interconectadas de una barrera discontinua en un sentido de
viscosidad débil.

(4) A través de la teoría de las envolturas de Snell se proporciona un teorema de verificación para el problema
de control tipo switching con costos càdlàg.

(5) El problema de control tipo switching también se puede caracterizar en terminos de las soluciones de casos
especiales de ambos sistemas de (RBSDE y PDE) con una barrera càdl àg mencionada anteriormente
en (2). item [(6)] La misma propiedad dada en (5) se aplica para los juegos tipo switching cuando los
sistemas de (BRSDEs y PDE) son càdlàg con barreras dobles.
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1

Introduction

We can say that the theory of optimal control is essentially a technique of mathematical modeling designed to
optimize, along time, the employment of limited resources. This theory is quite vast and the advances on this
interesting field have still successfully prevailed during decades due to its huge applicability in many fields of
natural and social sciences, such as economy, engineering, finance, biology, among others. At the same time
this theory has been also of great interest from the mathematical point of view as it studies a wide spectrum
of topics among “pure” and “applied” mathematics. The classification of optimal control problems can be
given according to the controlled system itself (for instance, we can have deterministic or stochastic systems)
and/or by its performance criterion (for instance, finite- or infinite-horizon problems, with random horizon, or
with a discounted or an ergodic criterion).

Among the family of optimal control problems we can highlight those whose control is applied on
the discontinuities to the dynamic. A special type of these problems is the so-called optimal multiple
switching problems consisting in configuring the state of system according to doing changes of regimes (a.k.a.
configurations) allowed for the controller. The times on which these changes are triggered are also part of the
control, so the controller needs to apply a sequence, say (τn, ξn) such that at time τn, he/she changes the
state from the regime ξn−1 to ξn, n ≥ 1. The objective for the controller is to find an optimal sequence like
the one above that optimizes a certain total payoff.

On the other hand, in a general setting, a game can be regarded as a mathematical model of conflict
or bargaining between players (a.k.a. agents, or controllers). A first classification in game theory consists
when a game is played either one or several times. As for the former type, players apply one decision only
in order to optimize a single payoff and the game is over; this type of games is known in the literature as
static games. On the other hand, when the game is sequentially played in time, it is repeated a finite or an
infinite number of times. Sometimes these types of games involve a state of the system driven by a given
dynamics, and thus, based on the state of the system, players apply decisions/actions from time to time in
order to optimize a (more sophisticated) payoff function. This kind of games is well-known as dynamic games.
Similar to the optimal control theory, dynamic games can be classified according to the dynamical system (for
instance, we can have deterministic or stochastic systems) and/or by their performance criteria (for instance,
with a deterministic finite- or infinite-horizon, with random horizon, of discounted or ergodic type, etc. . . ).
But also games can be classified according to their rules. Among this classification we have cooperative and
noncooperative games; the latter category, can in turn be classified as zero and nonzero sum games. In this
work we deal with a special case of dynamic games so-called zero-sum switching games that can somehow
be regarded as a natural extension of the above mentioned switching control problems when the number or
controllers are n ≥ 2.

There are several methods to analyze optimality associated to the theory of both (1) switching control
problems and (2) switching games. One of these methods consists to regard the optimal values of either
problems (1) and (2) as solutions of systems of reflected backward stochastic differential equations (RBSDEs)
with one barrier for the case (1), and the same type of systems but with two barriers (rather than one) for
the case (2).

7
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We can say that a system of RBSDEs is a generalization of the theory of backward stochastic differential
equations (BSDEs) when there are more than one equation, interconnected in some way, and with one extra
element that plays the role to not allow the process to exit from certain region. These types of systems will
be defined with details in Chapters 4 and 5.

1.1 Related literature.

The class of switching control problems has been studied in the literature by several authors. For instance,
Carmona and Ludkovski [9] study this kind of problems in order to find management optimal strategies
with the purpose to release a power plant that converts natural gas into electricity and hence to sell this
commodity in the market. Doucet and Ristic [18] apply the switching control theory to problems of target
tracking that are commonly used in aerospace and electronic systems. Trigeorgis [51, 52] relates this type of
problems to real option theory. Perhaps the most studied switching control problem is when only two-modes
are considered. Several authors have put attention on this type of problems (see e.g., Brekke and Oksendal
[5, 6], Hamadène and Jeanblanc [30], Duckworth and Zervos [19], among others).

During the last decade, the switching control problem has been extensively studied by several authors
including [9, 10, 16, 30, 50, 35, 36], etc. (see also the references therein).

However all the aforementioned papers consider the cases where the switching costs are continuous. To
the best of our knowledge the case where the switching costs are discontinuous has not been considered yet.
This is one of the main objectives of this work. In summary, Chapter 4 (see also reference [29]) is somehow
the extension of the references Djehiche et. al. [16] and Hamadène and Morlais [33] when the switching costs
are of càdlàg type.

Switching games, on the other hand, have been studied in a Markovian framework in Djehiche et. al.
[15] where the authors provide solutions of a system of partial differential equations (PDEs) with bilateral
interconnected obstacles of min-max and max-min types. It is also justified how the solutions of such PDEs
are related to the solution of a system of double RBSDE (DRBSDE) with bilateral interconnected barriers.
The authors conclude the analysis by showing that the solution of these systems coincides with the value of
the switching game in the case when the coefficient and the terminal conditions satisfy a certain separability
condition. On the other hand, the case when the switching costs are continuous but their coefficients and
terminal condition are not separated was tackled in Hamadène et. al. [32]. In fact, this last reference was our
departure point for the development of Chapter 5.

1.2 Summary of the following chapters.

The material in this thesis is organized as follows. After this introductory part, Chapter 2 provides a series of
properties related to the theory of BSDEs as well as some key miscellaneous results of probability theory.
Namely, in Sections 2.1 and 2.2 there are established some known results on Snell envelopes, martingale
theory and some famous inequalities. The concept of BSDE and more complex extensions such as reflected
backward stochastic differential equations (RBSDE) and double RBSDE, are stated in Section 2.3. The
key results on the existence and uniqueness of all these equations as well as their corresponding comparison
theorems are also discussed with details, and finally, in order to illustrate the theory of BSDEs, we have
included an example regarding to mathematical finance. Chapter 3 is devoted to the preliminary theory of
our later original results. Firstly, we introduce the concept of a switching control problem with continuous
costs. Later, in Section 3.2, and based on the theory of Snell envelopes, we provide a verification theorem
that is very common in control theory. This theorem provides, among other things, the characterizations of
switching optimal control strategies. We then present the existence and uniqueness of solutions for a system
of RBSDEs with interconnected continuous barriers in Section 3.3, whereas in Section 3.4 we show that under
a Markovian framework i.e. the dynamic of the system is also governed by a underlying diffusion process,
our unique solution, obtained in the previous section provides a viscosity solution for a system of PDEs with
interconnected obstacles. On the other hand, in Chapter 4, we present a similar theory than its predecessor
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chapter. The difference lies in that the switching costs associated to the switching control problem are not
longer continuous but càdlàg with respect to the time variable. This new assumption produces substantial
changes throughout the entire analysis due that we need to deal with weaker concepts. For instance, the
related verification theorem is valid also in the context of ε-optimal control strategies. Another substantial
change is the treatment on the existence and uniqueness of systems of RBSDEs with càdlàg barriers, since
both the barriers and the generator of such system are assumed to be dependent on the unknown solutions,
making the problem more general but at the same time more challenging; this analysis is covered in Section
4.3. The later part of this chapter, namely, Section 4.4, is similar to the material of Section 3.4, but in this new
case, the solution of the systems of PDE’s is not necessarily continuous. This setting forces us to deal with
the concept of weak viscosity solutions. Existence of solutions of systems of PDEs with the aforementioned
characteristics in this later sense was also proved within Section 4.4. In Chapter 5, we give a probabilistic
verification theorem for an optimal switching game with càdlàg switching costs in a general setting. This
theorem is formulated in terms of a solution of a system of DRBSDEs with càdlàg barriers. By the end of the
chapter, we analyze two special cases that ensure the existence of solutions to this system, so through the use
of our previously proved verification theorem, it will follow the existence of the value of the switching game
associated to those instances. We conclude the thesis with Chapter 6 by presenting our general remarks and
some possible extensions of our work.

1.3 Notation and terminology

Throughout this thesis we consider a fixed filtered probability space (Ω,F ,F = (Ft)t≤T ,P) on which a standard
d-dimensional Brownian motion B = (Bt)t≤T is defined, with (Ft)t≤T being the natural filtration of Bt which
is completed with the P-null sets of F , hence (Ft)t≤T satisfies the usual conditions, i.e., it is right continuous
and complete. Associated to P, we denote by E its respective expectation.

Next let us consider the following elements:

• |·| will denote the Euclidean norm in Rl, for some appropriate l ∈ N.

• We denote by 1A the indicator function of a given set A

• Given θ ∈ [0, T ], L2
l (Fθ) is the set of random variables ξ, Fθ-measurable, and Rl-valued such that

E
[
|ξ|2
]
<∞.

• P denotes the σ-algebra on [0, T ]× Ω of F-progressively measurable sets.

• H2,l the set of P-measurable processes w = (wt)t≤T , Rl-valued such that ‖w‖H2,l := E[
∫ T

0
|ws|2 ds]

1
2 <∞.

• S2,l (resp. S2,l
c ) stands for the set of P-measurable, càdlàg (resp. continuous), Rl-valued processes

w = (wt)t≤T such that ‖w‖S2,l = {E[supt≤T |wt|
2
]} 1

2 <∞.

• If l = 1, then we will simply write H2,1, S2,1, and L2,1 by H2, S2, and L2, respectively.

• A random variable τ defined on Ω and valued in R+ ∪ {+∞} is called a stopping time with respect to the
filtration F, or simply an Ft-stopping time, if for all t ∈ R+, {ω|τ(ω) ≤ t} ∈ Ft. For a given stopping time
τ , define Tτ the set of all stopping times θ such that τ ≤ θ ≤ T , P-a.s.

• I = {1, . . . , q} denotes the set of indices so-called set of configurations (a.k.a. modes or regimes), while the
notation I−i means I − {i}.

• The notation D2
xxφ and Dxφ means the Hessian matrix and the gradient vector of the function φ, respectively.

• Given A andB given metric spaces, we denote by Cp,q(A×B,R) the set of continuous functions f : A×B 7→ R
such that f is of class Cp on the interior of A, and of class Cq on the interior of B.
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• Let Γk = {1, . . . ,mk}, k ∈ {1, 2}, be a finite, discrete set representing the operating modes that player
k can choose, while the notation (Γk)−l means Γk − {l}. Let Γ = Γ1 × Γ2 denote the product space of
operating modes.

• The notation P− a.s. means almost surely with respect to a (generic) probability measure P.

• The space of function C1,2([0, T ]×Rk) represents all the continuous functions h : [0, T ]×Rk 7→ R, that are
of class C1 in (0, T ) and of class C2 in Rk.



2

Preliminaries

In this chapter we present a survey of some key results of Snell envelopes and backward stochastic differential
equations (BSDEs) with some extensions. We also establish a well-known relation of BSDEs with the theory
of partial differential equations (PDE’s) when the randomness is carried out by means of a given Markov
process. We illustrate the aforementioned theories through an application on mathematical finance.

The material of this chapter is thought to introduce the reader to this interesting area but at the same
time most of the results posed in here are the basis of a more sophisticated theory provided in later chapters,
which are in fact the novelty of this work.

2.1 Some results of stochastic analysis

In this section we extract useful miscellaneous results of probability theory. The details can be seen consulted
in [40, 49].

Theorem 2.1. (Martingale representation theorem) Let B = (B1, . . . , Bd) be a d-dimensional Brownian
motion defined on the probability space in Section 1.3. Then, every local martingale M = (Mt)0≤t≤T , adapted
to the filtration (Ft)t≤T , can be expressed as

Mt = M0 +

d∑
i=1

∫ t

0

Zis dB
i
s

for predictable processes Zi satisfying
∫ t

0
(Zis)

2 ds <∞, almost surely, for each 0 ≤ t ≤ T .

Theorem 2.2. (Doob-Meyer decomposition) Any local supermartingale X, adapted to the filtration (Ft)t≤T ,
has a unique decomposition

X = M −A

where M is a local martingale and A is a predictable increasing process starting from zero.

Theorem 2.3. (Burkholder-Davis-Gundy) For any p ∈ [1,∞) there exist positive constants cp, Cp such that,
for all local martingales X, adapted to the filtration (Ft)t≤T , with X0 = 0 and stopping times τ , the following
inequality holds.

cpE
[
[X]p/2τ

]
≤ E

[
( sup
0≤s≤τ

|Xs|)p
]
≤ CpE

[
[X]p/2τ

]
.

where [X]τ denotes the quadratic variation of a process X. Furthermore, for continuous local martingales,
this statement holds for all p ∈ (0,∞).

The next result will be useful in later sections for obtaining a priori estimates.

11
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Lemma 2.4 (The Generalized Bellman-Gronwall Inequality). Assume that f(t), g(t) and y(t) are non-negative
integrable functions in [0, T ] verifying the integral inequality

y(t) ≤ g(t) + C

∫ t

0

y(u)du, t ∈ [0, T ].

Then we have

y(t) ≤ g(t) + C

∫ t

0

g(u)eC(t−u)du, t ∈ [0, T ].

2.2 The Snell envelope

The notion of Snell envelopes is very useful to deal with the optimal properties of optimal stopping and
switching problems. We begin this section by showing a proposition that summarizes some key results
concerning Snell envelopes. All these properties have been borrowed from Proposition 2 in [16].

Recall that for any right-continuous process X = {Xt, t ∈ [0, T ]} we define its jump size ∆Xt at time t as
the difference ∆Xt = Xt −Xt− for t ∈ [0, T ], and X0− = 0, where Xt− denotes the left-hand limit of X at
time t.

Proposition 2.5. Let Z = (Zt)0≤t≤T be an F-adapted R-valued càdlàg process that belongs to the class [D];
i.e., the family of random variables {Zτ , τ ∈ T0} is uniformly integrable. Then there exists an F-adapted
and R-valued càdlàg process Y := (Yt)0≤t≤T of class [D] such that Y is the smallest supermartingale which
dominates Z; i.e., if (Ȳt)0≤t≤T is another càdlàg supermartingale of class [D] such that for all 0 ≤ t ≤ T ,
Ȳt ≥ Zt, then Ȳt ≥ Yt for any 0 ≤ t ≤ T . The process Y is called the Snell envelope of Z.

Moreover it satisfies the following properties:

(i) For any F-stopping time τ we have
Yτ = ess sup

θ∈Tτ
E[Zθ|Fτ ].

In particular, Y0 = supθ∈T0 E[Zθ].

(ii) The Doob-Meyer decomposition of Y implies the existence of a martingale (Mt)0≤t≤T and two nonde-
creasing processes (At)0≤t≤T and (Bt)0≤t≤T which are, respectively, continuous and purely discontinuous
predictable such that for all 0 ≤ t ≤ T ,

Yt = Mt −At −Bt (with A0 = B0 = 0).

Moreover, for any 0 ≤ t ≤ T , {∆Bt > 0} ⊂ {∆Zt < 0} ∩ {Yt− = Zt−}.

(iii) If Z has only positive jumps, then Y is a continuous process. Furthermore, if τ is an F-stopping time
and θ∗τ = inf{s ≥ τ, Ys = Zs} ∧ T , then θ∗τ is optimal after τ , i.e.,

Yτ = E[Yθ∗τ |Fτ ] = E[Zθ∗τ |Fτ ] = ess sup
θ≥τ

E[Zθ|Fτ ].

In particular, Y0 = supθ∈T0 E[Zθ] = E[Zθ∗0 ].

(iv) If (Zn)n≥0 and Z are càdlàg and of class [D] and such that the sequence (Zn)n≥0 converges increasingly
and pointwisely to Z, then the sequence of Snell envelopes associated to the former sequence, denoted by
(Y Zn)n≥0, converges increasingly and pointwisely to the corresponding Snell envelope Y Z associated to
Z. Finally, if Z belongs to S2

c , then Y Z belongs to S2
c .
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2.3 Backward stochastic differential equations (BSDEs)

Unlike the theory of deterministic ordinary differential equations where one can formulate the model under
study by using indistinctly the initial or final condition, in the stochastic framework there is a huge difference
on the use of such initial and final conditions. Indeed, let us consider the following forward stochastic
differential equation (FSDE) with an initial condition,{

dXt = 0 · dBt, t ∈ [0, T ]

X0 = ξ.
(2.1)

By virtue of the theory of FSDE and Itô’s calculus, it is well known that this equation has a unique adapted
solution. Furthermore due that the filtration is generated by the Brownian motion (Bt)0≤t≤T , it is very easy
to know that X0 = ξ is F0-measurable, which implies that ξ is constant. Hence, Xt = ξ is the unique adapted
solution of (2.1).

Now, let us change the initial condition to a final one, and use the next model{
dYt = 0 · dBt, t ∈ [0, T ]

YT = ξ.
(2.2)

with ξ being a FT -measurable random variable. From the dynamics in (2.2), we see that the process {Yt}0≤t≤T
is equal to the random variable ξ for all t ∈ [0, T ]. But from the theory of FSDE and Itô’s calculus, the only
adapted solution of this equation is when ξ is a constant (not random), that would make the problem idle.

In order to overcome this lack of adaptability, it is natural to think on the conditional expectation
Y = E[ξ|Ft] rather than the relation Yt = ξ. If we assume that ξ ∈ L2(FT ), then by the Representation
Martingale Theorem (Theorem 2.1), there exist a unique Z ∈ H2 such that P-a.s.

Yt = Y0 +

∫ t

0

ZtdBt for all t ≤ T .

Taking into account that YT = ξ, and writing the above integral in differential form we have{
dYt = ZtdBt, t ∈ [0, T ]

YT = ξ.
(2.3)

Note from the above arguments that the processes Y and Z are both adapted. Thus, if we now look for a pair
(Y,Z) instead of a single Y (as in (2.2)), we are able to find adapted processes that verify (2.3).

The previous example is the simplest one to introduce the theory of BSDE. Another example appears in
Bismut [3], in which the author uses linear BSDE as a tool to solve both stochastic control problems and
financial problems. As for the attribute “linear” we mean a BSDE of type{

dYt = (a+ bYt + cZt)dt+ Zt · dBt, t ∈ [0, T ]

YT = ξ.
(2.4)

The nonlinear case was tackled by Pardoux and Peng in [44], where they showed the well-posedness of
these equations with reasonable integrability and Lipschitz conditions on the data (f, ξ) —see Definition 2.1
below. More precisely, the authors consider the following assumptions on the data (f, ξ),

(A1) The terminal value ξ ∈ L2
l (FT ).

(A2) The coefficient (a.k.a. drift or generator) f : Ω× [0, T ]× Rl × Rl×d → Rl satisfies

(a) f(·, 0, 0) ∈ H2,l

(b) f(·, y, z) is progressively measurable for each y, z in Rl × Rl×d.
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(c) f is Lipschitz continuous with respect to (y, z) uniformly in (t, ω); this implies that, P-a.s., for all
t ∈ [0, T ], (y1, z1) and (y2, z2), we have

|f(t, y1, z1)− f(t, y2, z2)| ≤ C(|y1 − y2|+ |z1 − z2|)

where C is a fixed constant.

In the above conditions for f , we have omitted the variable ω ∈ Ω for simplicity.

Definition 2.1. A solution of a BSDE with coefficient f and terminal condition ξ is pair (Y,Z) ∈ S2, l
c ×H2, l×d

satisfying

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdBs for all t ∈ [0, T ], a.s. (2.5)

where YT = ξ a.s.

Remark 2.1. For a sake of simplicity, hereafter we analyze just the case l = 1.

The existence and uniqueness theorem for BSDE is as follows. For further details see [44, 48].

Theorem 2.6 (Pardoux and Peng). If the data (ξ, f) satisfy (A1) and (A2), then the BSDE (2.5) has a
unique solution (Y,Z) ∈ S2

c ×H2, d.

The proof of the theorem uses three results:

• Martingale representation theorem.

• Fixed point method.

• Itô’s formula.

Sketch of the proof. The idea of the proof is to define a convenient mapping and show the existence of a
(unique) fixed point that will match desired solution. Indeed, the convenient mapping is the next one:

Φ : S2
c ×H2, d −→ S2

c ×H2, d

(U, V ) 7→ (Y, Z),

where, given (U, V ) ∈ S2
c ×H2, d, the pair (Y,Z) is obtaining as follows:

• Since ξ and f satisfy assumptions (A1) and (A2) then

Mt = E
[
ξ +

∫ T

0

f(s, Us, Vs)ds
∣∣∣Ft]

is a square integrable martingale and thus, by Theorem 2.1, there exist a unique Z ∈ H2, d such that

Mt = M0 +

∫ t

0

ZsdBs t ∈ [0, T ]. (2.6)

• The process Y is defined by

Yt = E
[
ξ +

∫ T

t

f(s, Us, Vs)ds
∣∣∣Ft] = Mt −

∫ t

0

f(s, Us, Vs)ds, 0 ≤ t ≤ T. (2.7)
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From (2.6) and (2.7), it follows easily that Y and Z hold

Yt = ξ +

∫ T

t

f(s, Us, Vs)ds−
∫ T

t

ZsdBs for all t ∈ [0, T ], a.s. (2.8)

Thus, the mapping Φ is defined by Φ(U, V ) = (Y,Z) such that (2.8) holds. The following step is to show that
Φ is a contraction on the Banach space S2

c ×H2, d, when this space is endowed with the norm

‖(Y, Z)‖β :=

{
E

[∫ T

0

eβs
(
|Ys|2 + |Zs|2

)
ds

]} 1
2

.

We begin by applying Itô’s formula to the process eβs
∣∣Y 1
s −Y 2

s

∣∣2, where (Y 1, Z1) = Φ(U1, V 1) and (Y 2, Z2) =
Φ(U2, V 2) and hence applying expectation, we get

E

[∣∣Y 1
0 − Y 2

0

∣∣2 +

∫ T

0

eβs
(∣∣Y 1

s − Y 2
s

∣∣2 +
∣∣Z1
s − Z2

s

∣∣2) ds]

= 2E

[∫ T

0

eβs
∣∣Y 1
s − Y 2

s

∣∣ . ∣∣f(s, U1
s , V

1
s )− f(s, U2

s , V
2
s )
∣∣ ds].

Using the Lipschitz condition of f and the inequality ab ≤ 2a2 + b2

4 we have

E

[∣∣Y 1
0 − Y 2

0

∣∣2 +

∫ T

0

eβs
(∣∣Y 1

s − Y 2
s

∣∣2 +
∣∣Z1
s − Z2

s

∣∣2) ds] ≤ 4C2E
[
eβs|Y 1

s − Y 2
s

∣∣2]

+ E

[
1
2

∫ T

0

eβs
( ∣∣U1

s − U1
s

∣∣2 +
∣∣V 1
s − V 2

s

∣∣2 )ds].
Thus, taking β = 1 + 4C2, we get

E

[∫ T

0

eβs
(∣∣Y 1

s − Y 2
s

∣∣2 +
∣∣Z1
s − Z2

s

∣∣2) ds] ≤ 1

2
E

[∫ T

0

eβs
( ∣∣U1

s − U1
s

∣∣2 +
∣∣V 1
s − V 2

s

∣∣2 )ds],
which proves that Φ is a contraction and hence has fixed point, i.e., the BSDE (2.5) has a unique solution.

�

One of the most important tools within the theory of BSDEs, is the following comparison theorem, which
is a powerful tool in many applications. For further details on the proof of this theorem, we refer the interested
reader to El Karoui et al [23], page 23 or Pham [48], page 142. For self-contained purposes, we only provide a
sketch of the proof.

Theorem 2.7. Let (ξ1, f1) and (ξ2, f2) be two pairs of data satisfying assumptions (A1) and (A2). Suppose
in addition that

(i) ξ1 ≤ ξ2 P- a.s.

(ii) f1(t, y, z) ≤ f2(t, y, z) dt⊗ dP- a.e., for all (y, z) ∈ R× Rd.

Then Y 1
t ≤ Y 2

t , 0 ≤ t ≤ T , P- a.s. Moreover, if Y 2
0 ≤ Y 1

0 , then Y 1
t = Y 2

t , 0 ≤ t ≤ T . In particular, if ξ1 < ξ2

P- a.s. or f1(t, y, z) < f2(t, y, z) dt⊗ dP- a.e., then Y 1
0 < Y 2

0 .

Before we write the sketch, we give a proposition which establishes an explicit solution when the coefficient
f is linear in y and z. The proof can be consulted in references [23, 48].
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Proposition 2.8. Consider the so-called linear BSDE given by

Yt = ξ +

∫ T

t

(αs + βsYs + γsZs)ds−
∫ T

t

ZsdBs

where β and γ are bounded progressively measurable processes valued in R and Rd, and α ∈ H2. Then the
unique solution (Y,Z) of this equation is given by

Yt = E
[
ΓTt ξ +

∫ T

t

Γstαsds|Ft
]

with
Γst = exp

[ ∫ s

t

βrdr −
1

2

∫ s

t

|γr|2dr +

∫ s

t

γrdBr

]
.

Sketch of the proof of Theorem 2.7 Let us set Ȳ = Y 2 − Y 1, Z̄ = Z2 − Z1, then (Ȳ , Z̄) is solution of the
BSDE

dȲt = −
[
αtȲt + βtZ̄t + γt

]
+ Z̄tdBt, ȲT = ξ2 − ξ1

with
αt =

f2(t,Y 2
t ,Z

2
t )−f2(t,Y 1

t ,Z
2
t )

Y 2
t −Y 1

t
1[Y 2

t −Y 1
t 6=0]

βt =
f2(t,Y 1

t ,Z
2
t )−f2(t,Y 1

t ,Z
1
t )

Z2
t−Z1

t
1[Z2

t−Z1
t 6=0]

γt = f2(t, Y 1
t , Z

1)− f1(t, Y 1
t , Z

1
t ).

Since the drift (or generator) f2 is uniformly Lipschitz in y and z, the processes α and β are bounded.
Moreover, γ is a process in H2. From Proposition 2.8, Y = Y 2 − Y 1 is given by

Y 2
t − Y 1

t = E
[
ΓTt (ξ2 − ξ1) +

∫ T

t

Γst (f
2(t, Y 1

s , Z
1
s )− f1(t, Y 1

s , Z
1
s ))ds|Ft

]
.

Note also that assumptions (i) and (ii) imply that this expectation is positive since Γ is strictly positive, i.e.,
Y 2
t ≤ Y 1

t , 0 ≤ t ≤ T , a.s. �

2.3.1 Reflected backward stochastic differential equations (RBSDEs)
A reflected backward stochastic differential equation (RBSDE) is a BSDE where the element Y of the solution
is conditioned to stay either above or below of a given process (St)0≤t≤T called barrier or obstacle. To fix
ideas, throughout this work we will choose a ‘lower’ barrier since the ‘upper’ case is similar. More precisely,
given an initial data (f, ξ) satisfying (A1) and (A2), together with a barrier process (St)0≤t≤T in S2

c , we want
to find a solution (Y,Z) such that Yt ≥ St, 0 ≤ t ≤ T . In order to guarantee that the element Y is always
above S, an increasing process K is necessary to push Y upwards once this later process reaches S. In other
words, in this new scenario the solution of a RBSDE is a triplet (Y,Z,K) ∈ S2

c ×H2,d × S2
c such that

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+KT −Kt −
∫ T

t

ZsdBs for all 0 ≤ t ≤ T,

Yt ≥ St for all 0 ≤ t ≤ T,

(2.9)

and ∫ T

0

(Ys − Ss)dKs = 0, (2.10)

where the new process K is a finite variation process which is increasing and whose “target” is to keep Y above
S. Moreover, the condition (2.10) is imposed in order to guarantee that the process K acts just when Yt = St
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for some 0 ≤ t ≤ T . Summarizing, the system (2.9) and (2.10) is so-called a RBSDE that was introduced by
El Karoui et al in [25].

The following theorem ensures that under the conditions (A1) and (A2) as well as some additional
conditions on the barrier, the above RBSDE has indeed a unique solution.

Theorem 2.9. Given (ξ, f, S) ∈ L2(FT )×H2 ×S2
c satisfying (A1), (A2) and ST ≤ ξ a.s. Then, there exists

a unique solution (Y,Z,K) ∈ S2
c ×H2 × S2

c of the RBSDE (2.9)-(2.10).

There exist at least two approaches to demonstrate this theorem:

• fixed point method

• Penalization method.

The proof via fixed point method is very similar to that used in Theorem 2.6, but by doing suitable changes
(see El Karoui et al [25], Theorem 5.2). Therefore, we will only provide a sketch of the proof by using the
penalization method. This method consists in transforming a constrained optimization problem to a family
of parametric unconstrained problems whose solutions converge to the solution of the original constrained
problem. In this case, the solution (Y,Z,K) is found by using a sequence (Y n, Zn)n≥0 of unconstrained
solutions of BSDEs (i.e. BSDEs without barriers). We refer the reader to El Karoui et al [25], page 719, for
further details of the proof (see also Pham [48], page 154).

Sketch of the proof. The idea is to consider for each n ≥ 0, the sequence (Y n, Zn)n≥0 of solutions of
unconstrained standard BSDEs.

Y nt = ξ +

∫ T

t

f(s, Y ns , Z
n
s )ds+ n

∫ T

t

(Y ns − Ss)−ds−
∫ T

t

Zns dBs. (2.11)

Besides, we shall define for any t ≤ T

Kn
t := n

∫ T

t

(Y ns − Ss)−ds, (penalized term).

Therefore, the proof consists in showing that under the assumptions on the data (f, ξ, S), the sequence
(Y n, Zn,Kn)n≥0 converges (in the norm of their corresponding spaces) to the unique solution (Y,K,Z) of the
RBSDE. Note that for any n, the solution (Y n, Zn) does exist by Theorem 2.5, since

fn(s, y, z) = f(s, y, z) + n(y − Ss)− (2.12)

satisfies (A2) and ξ ∈ L2(FT ).
More precisely, the proof can be divided into three main steps:
Step 1. The sequence (Y n, Zn,Kn)n≥0 satisfies the following a priori estimate (uniformly in n),

E
[

sup
0≤t≤T

∣∣Y nt ∣∣2 +

∫ T

0

∣∣Znt ∣∣2dt+ (Kn
T )2
]
≤ C, n ∈ N. (2.13)

Indeed, by applying Itô’s formula to |Y nt |2 and taking expectation we have

E[|Y nt |2] + E[

∫ T

t

|Zns |2ds] = E[ξ2] + 2E[

∫ T

t

f(s, Y ns , Z
n
s )Y ns ds] + 2E[

∫ T

t

Y ns dK
n
s ], (2.14)

This last equality together with the Lipschitz assumption on f along with the inequalities 2ab ≤ βa2 + 1
β b

2

and (a+ b)2 ≤ 2a2 + 2b2, with β properly taken, lead to

E[|Y nt |2] + E[

∫ T

t

|Zns |2ds] ≤ C
(

1 + E[

∫ T

t

|Y ns |2ds]
)

+
1

3
E[

∫ T

t

|Zns |2ds]

+
1

β
E[ sup

0≤t≤T
(S+
t )2] + βE(Kn

T −Kn
t )2.

(2.15)
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Note that from (2.11) one can see that the last term in the right hand side of (2.15) satisfies

E[(Kn
T −Kn

t )2] ≤ C
(
E[|Y nt |2] + E|ξ|2 + 1 +

∫ T

t

(|Y ns |2 + |Zns |2)ds
)
. (2.16)

Combining this last expression with (2.15), and taking β = 1
3C, we see that

2

3
E[|Y nt |2] +

1

3
E[

∫ T

t

|Zns |2ds] ≤ C
(

1 + E[

∫ T

t

|Y ns |2ds]
)

and thus by Gronwall’s Lemma (Lemma 2.4), and taking into account (2.16) along with that K0 = 0, we have

E
[

sup
0≤t≤T

∣∣Y nt ∣∣2 +

∫ T

0

∣∣Znt ∣∣2dt+ (Kn
T )2
]
≤ C, n ∈ N.

Finally, using this last inequality along with (2.11) and Burkholder-Davis-Gundy inequality (Theorem 2.3),
we obtain the a priori estimate (2.13).

Step 2. The sequence (Y n)n≥0 converges uniformly to Y in S2
c . Indeed, from (2.12) it is easily seen that

fn(t, y, z) ≤ fn+1(t, y, z)

and thus by Comparison Theorem (Theorem 2.7), we get that Y n ≤ Y n+1, a.s., which implies that there exist
a process (Yt)0≤t≤T such that

Y nt ↗ Yt, 0 ≤ t ≤ T, a.s.. (2.17)

Furthermore, from the a priori estimate (2.13) the sequences (Yn)n≥0 is uniform bounded in S2
c and hence

E(sup0≤t≤T |Yt|2) <∞. Moreover, this implies that

E
[ ∫ T

0

(Yt − Y nt )2dt
]
→ 0 as n→∞ (2.18)

by the Dominated Convergence Theorem.
On the other hand, using condition (A1) and (A2), we apply Itô’s formula to |Y nt −Y

p
t |2, for some n, p ∈ N,

and then take expectation to obtain

E
[
|Y nt − Y

p
t |2
]

+ E
∫ T

t

|Zns − Zps |2ds ≤ 2CE
[ ∫ T

t

(
|Y ns − Y ps |2 + |Y ns − Y ps )| · |Zns − Zps |

)
ds
]

+2E
[ ∫ T

t

(Y ns − Ss)−dKp
s

]
+ 2E

[ ∫ T

t

(Y ps − Ss)−dKn
s

]
which implies

E
∫ T

t

|Zns − Zps |2ds ≤ CE
[ ∫ T

t

|Y ns − Y ps |2ds
]

+ 2E
[ ∫ T

t

(Y ns − Ss)−dKp
s

]

+4E
[ ∫ T

t

(Y ps − Ss)−dKn
s

]
.

(2.19)

The key step of the proof is to show that the last two term in the right side of (2.19) go to zero as n→ 0,
which is achieved if we assume that

E
[

sup
0≤t≤T

|(Y nt − St)−|2
]
→ 0 as n→∞. (2.20)
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We omit the proof of this last claim and we refer to the reader to [25] Lemma 6.1. Then, this result along
with the convergence in (2.18) yields

E
∫ T

t

(|Y nt − Y
p
t |2 + |Zns − Zps |2)ds→ 0 as n, p→∞. (2.21)

Finally, applying Itô’s formula to |Y n − Y p|2 and hence taking the supremum over [0, T ], we get

sup
0≤t≤T

|Y nt − Y
p
t |2 ≤ 2

∫ T

0

|f(s, Y ns , Z
n
s )− f(s, Y ps , Z

p
s )| · |Y ns − Y ps )|ds+ 2

∫ T

0

(Y ns − Ss)−dKp
s

+2

∫ T

0

(Y ps − Ss)−dKn
s + 2 sup

0≤t≤T

∣∣ ∫ T

t

(Y ns − Y ps )(Zns − Zps )dBs
∣∣.

Taking expectations to the last expression and hence applying Burkholder-Davis-Gundy Theorem (Theorem
2.3) to the last term as well as the Lipschitz condition on f , we get

E[ sup
0≤t≤T

|Y nt − Y
p
t |2] ≤ CE

[ ∫ T

0

(|Y ns − Y ps |2 − |Zns − Zps )|2)
]
ds+ 2E

[ ∫ T

0

(Y ns − Ss)−dKp
s

]

+2E
[ ∫ T

0

(Y ps − Ss)−dKn
s

]
+ 1

2E
[

sup
0≤t≤T

|Y ns − Y ps |2
]

+ CE
[ ∫ T

0

|Zns − Zps |2ds
]
,

and thus, from the previous estimations, it is easy to verify that E(sup0≤t≤T |Y nt − Y
p
t |2)→ 0 as n, p→∞.

From this last property, it is not difficult to prove that

E
[

sup
0≤t≤T

∣∣Kn
t −K

p
t

∣∣2]→ 0.

Given that S2
c and H2 are Banach spaces, then there exists a pair (Z,K) of progressively measurable processes

such that the triplet (Y, Z,K) verifies the first equality in (2.9), but also, by (2.20), this pair satisfies also the
barrier condition in the second part of (2.9).

Step 3. This part is about the verification of (2.10). Since Kt is increasing and (Y n,Kn) converges to
(Y,K) in S2

c , the measure dKn converges to dK in probability, i.e.,∫ T

0

(Y nt − St)dKn
t →

∫ T

0

(Yt − St)dKt.

Moreover, we have ∫ T

0

(Y nt − St)dKn
t ≤ 0, for all n ∈ N,

thus we have ∫ T

0

(Yt − St)dKt ≤ 0.

On the other hand, from the proof of Lemma 6.1 in [25], we obtain∫ T

0

(Yt − St)dKt ≥ 0, n ∈ N.

The proof is finished. �

In the proof of Theorem 2.9, we saw how useful was to compare solutions of standard BSDEs allowing,
among other things, to obtain a monotone sequences of processes (Y n)n≥0. In the case of RBSDE it is also
possible to obtain a similar result. For more details we quote the reference [25].
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Theorem 2.10 (Comparison theorem for RBSDE). Let (ξ1, f1, S1) and (ξ2, f2, S2) be two pairs of data, both
satisfying (A1), (A2). Moreover suppose that the following conditions hold:

(i) ξ1 ≤ ξ2 a.s.

(ii) f1(t, y, z) ≤ f2(t, y, z) dP⊗ dt a.e., for all t ≥ 0, (y, z) ∈ R× Rd,

(iii) S1
t ≤ S2

t , 0 ≤ t ≤ T , a.s.

Then, if (Y 1, Z1,K1) and (Y 2, Z2,K2) are the respective solutions of the RBSDE, then we have

Y 1
t ≤ Y 2

t 0 ≤ t ≤ T, a.s.

Sketch of the proof. First note that it is enough to show that (Y 1
t − Y 2

t )+ = 0, for all 0 ≤ t ≤ T . Namely,
applying Itô’s formula to |(Y 1

t − Y 2
t )+|2 and then taking expectation, we derive

E
[
|(Y 1

t − Y 2
t )+|2

]
≤ 2E

[ ∫ T

t

(
(Y 1
s − Y 2

s )+
[
f1(s, Y 1

s , Z
1
s )− f2(s, Y 2

s , Z
2
s )
]
− |Z1

s − Z2
s |21{Y 1>Y 2}

)
ds
]

+2E
[ ∫ T

t

(
Y 1
s − Y 2

s

)+ · (dK1
s − dK2

s

)]
.

(2.22)

Since on the event {Y 1
t > Y 2

t }, the next relations hold Y 1
t > Y 2

t ≥ S2
t ≥ S1

t , so dK1
t = 0, and hence∫ T

t

(
Y 1
s − Y 2

s

)+ · (dK1
s − dK2

s

)
= −

∫ T

t

(
Y 1
s − Y 2

s

)+
dK2

s ≤ 0. (2.23)

Therefore, using Lipschitz condition on f1, assumption (ii) of this theorem and inequality (2.23), we get from
(2.22) that

E
[∣∣(Y 1

t − Y 2
t )+

∣∣2] ≤ 2CE
[ ∫ T

t

((
Y 1
s − Y 2

s

)+(|Y 1
s − Y 2

s |+ |Z1
s − Z2

s |)
]
−
∣∣Z1
s − Z2

s

∣∣2 1{Y 1>Y 2}

)
ds
]
, (2.24)

and using the inequalities 2ab ≤ βa2 + 1
β b

2 and (a+ b)2 ≤ 2a2 + 2b2, with β properly taken, in the right side
of (2.24), we have

E
[
|(Y 1

t − Y 2
t )+|2

]
≤ 2CE

[ ∫ T

t

(
|
(
Y 1
s − Y 2

s

)+|2 + |Z1
s − Z2

s |21{Y 1>Y 2} − |Z1
s − Z2

s |21{Y 1>Y 2}

)
ds
]
,

for some suitable constant C, and thus

E
[
|(Y 1

t − Y 2
t )+|2

]
≤ 2CKE

[ ∫ T

t

|
(
Y 1
s − Y 2

s

)+|2ds].
Finally, a simple use of Gronwall’s inequailty (Lemma 2.4), we obtain (Y 1

t − Y 2
t )+ = 0, 0 ≤ t ≤ T . �

Remark 2.2. Note that in (2.23) we have only applied the condition (2.10) to the process Y 1. Therefore,
given two solutions Y 1 and Y 2 of a RBSDE with the same data where Y 1 satisfies the condition (2.10) but
Y 2 does not, then applying this comparison result, we can show that Y 1 ≤ Y 2. That is why, the relation
(2.10) is so-named minimal condition.

2.3.2 Double reflected backward stochastic differential equations (DRBSDEs)

A DRBSDE is a BSDE which is forced to stay between two given processes L and U called lower and upper
barrier, respectively.
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Definition 2.2. A solution for DRBSDE with lower barrier L, upper barrier U , coefficient f and terminal
value ξ, is a quadruple of processes (Y,Z,K+,K−) ∈ S2

c ×H2,d×S2
c ×S2

c such that a.s. and for all 0 ≤ t ≤ T ,

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+ (K+
T −K

+
t )− (K−T −K

−
t )−

∫ T

t

ZsdBs

Lt ≤ Yt ≤ Ut∫ T

0

(Ys − Ls)dK+
s =

∫ T

0

(Us − Ys)dK−s = 0.

(2.25)

where K+ and K− are the increasing processes with K+
0 = K−0 = 0.

Existence and uniqueness results for (2.25) can be proven under any of the following conditions:

• Mokobodski’s condition: There exist two non-negative supermartingales such that the difference of these
two last processes is always between L and U ,

or

• Regularity on the barrier: Either L or U is a semimartingale.

This type of equations was introduced by Cvitanic and Karatzas in [12] and inspired the work of El Karoui
et al [25]. The following result ensures the existence of a unique solution to this type of equations. We omit
the proof, for it can be found in [12].

Theorem 2.11. Given (ξ, f, L, U) ∈ L2(FT ) × H2 × S2
c × S2

c with f and ξ satisfying (A1) and (A2), and
L and U satisfying Mokobosdski’s condition with LT ≤ ξ ≤ UT . Then, there exists a unique solution
(Y,Z,K+,K−) ∈ S2

c ×H2,d × S2
c × S2

c of the DRBSDE (2.25).

We just point out that this theorem can be also proved either by a fixed point argument or penalization
argument as in the cases of BSDE and RBSDE.

2.3.3 An example of application of BSDEs in financial derivatives
In this section we illustrate how the theory of BSDE can be applied to financial mathematics, more precisely,
to the theory of European options and American contingent claims, in which their corresponding fair values
(pricing option) can be formulated in terms of solutions of BSDE and RBSDE respectively. We will base our
analysis from the examples in [8, 23, 43]

European options. We consider a standard complete market consisting of one non-risky asset and d risky
assets, whose prices are given by the following system of forward stochastic differential equations

dP 0
t = P 0

t rtdt (Bond)

dP it = P it (µ
i
tdt+ σitdBt) i = 1, . . . , d (Stocks)

(2.26)

for 0 ≤ t ≤ T with P i0 > 0 for i = 0, 1, . . . , d. The processes r ∈ R, µi ∈ R, and σi ∈ Rd are supposed to be
progressively measurable, bounded and stand for the short rate, the i-th stock appreciation rate and the i-th
volatility vector, respectively. Moreover, the volatility matrix σ = (σi,j) is invertible and its inverse σ−1 is
bounded. We will refer to as underlying securities or underlying market a subset of prices in (2.26) that will
be using along this example.

In a general setting, an option is a contract between two parts: a seller and a holder. Based on the value
of the underlying securities, the holder of the option has the right but not the obligation to either sell or buy
a stock contained in the underlying market at determined prescribed time. Besides, an option depends on the
following elements:
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(1) a predetermined price q (strike price)

(2) a terminal time T (maturity date).

(3) an exercise time.

Let us focus now on the European options. These financial instruments are contracts in which the exercise
time coincides with the terminal time T . For instance, let us consider the following situation: (1) assume
that the underlying market is just P 1

t , and (2) assume that an investor is interested to buy a stock associated
whose prices is P 1

t at a future time T (maturity time), at a specified price q (strike price) on that future
time. For this reason he/she can engage on an European call option in order to have the right (but not
the obligation) of buying the desired stock at time T at price q. Obviously, if P 1

T < q then he/she does not
exercise the option, otherwise, if P 1

T > q then she/he exercises it. Note in any case the buyer’s payoff at time
T is given by ξ = (P 1

T − q)+. Observe also in this example that the payoff is written explicitly as a function
of P 1

T . In general, when the option price at terminal T becomes an explicit function of the price, then the
contract is called option, otherwise, it is called a contingent claim.

On the other hand, there is the problem of calculating the price at which the seller trades the option, i.e.,
the so-called option pricing problem. Let us then assume, in order to get a fair price, that both parts of
the contract decide to adopt the following principle: if the sale price is y0 of the option is reinvested in the
q + 1 assets, then the value of the portfolio at time T must be sufficient to guarantee the amount (PT − q)+.
More precisely, let Yt be the total wealth at time t, once he/she has invested, at time 0, the amount y0.
Therefore, denoting by π = (π0

t , π
1
t , . . . , π

d
t )0≤t≤T , the so-called replicating strategy or portfolio, where π0

t and
πit represent the amounts invested in both, the bond and the i-th stock, respectively. Then we have that at
time t,

Yt = π0
t + π1

t + · · ·+ πdt ,

where Y0 = y0. Here we assume that the agent cannot withdraw his wealth at any time t.

Definition 2.3. A portfolio π is said to be:

(a) admissible if its components are progressively measurable and∫ T

0

|π0
t |dt < +∞,

∫ T

0

|πitσit|2dt < +∞ and Y πt ≥ 0, 0 ≤ t ≤ T (2.27)

for each i = 1, . . . , q P-a.s. where Y π is the value associated to the portfolio π.

(b) self-financing if

dY πt = π0
t

dP 0
t

P 0
t

+ π1
t

dP 1
t

P 1
t

+ · · ·πqt
dP qt
P qt

, for all 0 ≤ t ≤ T. (2.28)

We denote by A the set of self-financing admissible portfolios. Observe that by combining (2.28) with
(2.26), we get

dY πt = rtY
π
t dt+

q∑
i=1

[πit(µ
i
t − rt)dt+ πitσ

i
tdBt].

Therefore, rewriting this last expression and using a vector notation we obtain

dY πt = [rtY
π
t + Ztθt]dt+ ZtdBt.

where Zt = πtσt and θ = σ−1
t [µt − rt1d], with 1d the vector of ones of dimension d. This last process is the

so-called the risk premium process.
The problem to tackle is to find a fair price for the European option but at the same time to also find an

admissible replicating strategy. Rigorously speaking, we are looking for a value y0 satisfying

y0 = inf{y ≥ 0 : Y π0 = y and Y πT = ξ, for π ∈ A}.

The next theorem provides the solution of our problem. Details can be seen in [8, 23].
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Theorem 2.12. Assume that the matrix σt = [σ1
t , . . . , σ

d
t ] is invertible, and that the risk premium vector

θt = [σt]
−1(µt − rt1d) is bounded. Given a nonnegative random variable ξ ∈ L2(FT ), if (Yt, Zt)0≤t≤T is the

unique solution of the standard BSDE{
dYt = (rtYt + Ztθt)dt+ ZtdBt,

YT = ξ,
(2.29)

then y0 := Y0 is a fair price of the claim ξ and πt := Zt[σ
−1
t ] is a replicating self-financing portfolio.

Sketch of the proof. Since ξ ∈ L2(FT ), then the solution (Y, Z) of (2.29) does exist by a simple use of
Theorem 2.5. Moreover, since (2.29) is a linear BSDE, then by Proposition 2.8, we have

Γt0Yt = E
[
ΓT0 ξ|Ft

]
(2.30)

with

Γst = exp
[ ∫ s

t

rrdr −
1

2

∫ s

t

|θr|2dr +

∫ s

t

θrdBr

]
.

Therefore, Yt ≥ 0 because ξ and ΓTt are nonnegative. Moreover, as F0 is the trivial σ-algebra, the value Y0 is
deterministic and thus y0 := Y0 is well defined. On the other hand, we have that

∫ T
0
|Zt|2 < +∞ P a.s., which

combined with the assumption that [σ]−1 is bounded, all together yield that π∗ := Z·[σ]−1 satisfies both, the
self-financing property, and ∫ T

0

|πi,∗t σit|2dt < +∞ a.s., for each i = 1, . . . , q,

and this along with the non-negativeness of Y and a simple algebra to get the first property of (2.27), gives
that π∗ ∈ A, and thus this last set is nonempty. Let us define Y π

∗
:= Y .

Now, if π ∈ A is another admissible replicating portfolio, (i.e., such that Y πT = ξ), using Itô’s formula for
the product (Γt0Y

π
t )0≤t≤T and taking into account (2.29) for Y π, we have that this product is a nonnegative

local martingale (hence a supermartingale) with terminal value ΓT0 Y
π
T = ΓT0 ξ = ΓTY

π∗

T , which implies that
for any t ≤ T ,

Γt0Y
π
t ≥ E[ΓT0 ξ|Ft] = E[ΓT0 Y

π∗

T |Ft] = Γt0Y
π∗

t ,

where the last equality is due to (2.30). Hence, for t = 0, we conclude that Y π0 ≥ Y π
∗

0 , which proves the result.
�

American contingent claims. The key difference of an American contingent claim with respect to a
European contingent claim is that the buyer can exercise the contract at any time t that might be less or
equal to the terminal time T .

Recall that Tt is the set of all the stopping times on [t, T ]. Using this definition, let us take τ ∈ Tt that is
the time when the buyer exercises the claim after time t. Hence, if τ < T , then the payoff is Sτ , whereas if
τ = T , then the payoff is ξ. The former and later expressions are also known as running and terminal payoffs,
respectively. These two payoffs in turn define the actual payoff of the contingent claim defined by follows:

S̃τ = Sτ1[τ<T ] + ξ1[τ=T ].

Next, in order to find the fair price of the American contingent claim, we assume that for any fixed t, the
buyer decides to execute his/her right of claiming the contract at time τ ∈ Tt, and therefore by Theorem 2.12,
there exist a unique solution (Y τ , Zτ ) which replicates S̃τ that satisfies{

dY τs = f(s, Y τs , Z
τ
s )ds+ Zτs dBs t ≤ s ≤ τ

Y ττ = S̃τ ,
(2.31)
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where f(s, y, z) is the linear coefficient in (2.29). In this later argument, we are assuming implicitly that both
the running payoff (St)0≤t≤T belongs to S2

c and the terminal payoff as a random variable in L2(FT ).
As is established in [8], the fair price for the American contingent claim with payoff (S̃s)t≤s≤T is given by

Yt = ess sup
τ∈Tt

Y τt . (2.32)

In other words, the fair price of an American contingent claim can be seen as an optimal stopping problem
associated to a family of solutions of BSDEs, whose elements represent the price of a European contingent
claim. Moreover, the price (2.32) can be characterized in terms of a solution of a RBSDE as is established in
the following proposition. For more details, we refer the reader to [8, 41].

Theorem 2.13. There exist a Z ∈ H2,d and a nondecreasing continuous process K such that for any t ≤ T ,
the fair price of the American contingent claim Yt satisfies

Yt = ξ −
∫ T

t

f(s, Ys, Zs)ds+KT −Kt −
∫ T

t

ZsdBs,

Yt ≥ St,∫ T

0

(Ys − Ss)dKs = 0.

(2.33)

Furthermore, the stopping time
τ∗ = inf{s ≥ t : Ys = Ss} ∧ T

is an optimal exercise time after t and Yt = Y τ
∗

t .

Sketch of the proof. The existence of a solution (Y,Z,K) of (2.33) is given by Theorem 2.9. Now, if τ ∈ Tt,
then by Theorem 2.12 we have

Y τs = S̃τ −
∫ τ

s

f(r, Y τr , Z
τ
r )dr −

∫ τ

s

Zτr dBr t ≤ s ≤ τ (2.34)

(recall equation (2.31)). But since

Ys = Yτ −
∫ τ

s

f(r, Yr, Zr)dr +Kτ −Ks −
∫ τ

s

ZrdBr t ≤ s ≤ τ, (2.35)

then comparing equations (2.34) and (2.35) and using the fact that ξ ≥ ST , we deduce that Yτ ≥ S̃τ .
Furthermore, as the process K is nonnegative and increasing, then it is straightforward to see that the
generator of (2.35) is greater than the generator of (2.34), and hence, a simple use of the Comparison Theorem
(Theorem 2.7) , yields that Ys ≥ Y τs , for every t ≤ s ≤ τ . Therefore, we get

Yt ≥ ess sup
τ∈Tt

Y τt .

On the other hand, by definition of τ∗ and K, this later process is zero on [t, τ∗]. This last assertion, together
with equation (2.35) evaluated at τ∗ gives that

Ys = Yτ∗ −
∫ τ∗

s

f(r, Yr, Zr)dr −
∫ τ∗

s

ZrdBr, t ≤ s ≤ τ∗.

Furthermore, Yτ∗ = S̃τ∗ . Finally by the uniqueness of the BSDEs, we conclude Yt = Y τ
∗

t , and so Yt ≤
ess supτ∈Tt Y

τ
t . �
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2.4 Markovian framework and partial differential equations (PDEs)

In this section we shall describe the link between BSDEs and second order semilinear PDEs. It turns out
that solutions of BSDEs are naturally related with viscosity solutions of PDEs when the randomness of the
data (f, ξ) comes from a Markov-diffusion process. More precisely, consider the following system of forward
stochastic differential equations (FSDE) and BSDE{

dXt,x
s = b(s,Xt,x

s )ds+ σ(s,Xt,x
s )dBs for all t ≤ s ≤ T ;

Xt,x
s = x for all 0 ≤ s ≤ t,

. (2.36)

and

Y t,xs = g(Xt,x
T ) +

∫ T

s

f(r,Xt,x
r , Y t,xr , Zt,xr )dr −

∫ T

s

Zt,xr dBr for all t ≤ s ≤ T, (2.37)

where

(B1) the functions b : [0, T ] × Rk → Rk and σ : [0, T ] × Rk → Rk×d are jointly continuous in (t, x) and
Lipschitz continuous with respect to x uniformly in t, i.e., there exists a constant K such that, for all
t ≥ 0, x1, x2 ∈ Rk,

|b(t, x1)− b(t, x2)|+ |σ(t, x1)− σ(t, x2)| ≤ K|x1 − x2|,

(B2) the functions f : [0, T ]× Rk × R× Rd → R and g : Rk → R satisfy

(a) g is continuous and has polynomial growth.

(b) f is jointly continuous and there exist constants non-negative real constants K and γ such that

|f(t, x, 0, 0)| ≤ K(1 + |x|γ), for all (t, x) ∈ [0, T ]× Rk. (2.38)

(c) f is Lipschitz continuous with respect to (y, z) uniformly in (t, x); this implies that for any
(t, x) ∈ [0, T ]× Rk, and for any (y1, z1), (y2, z2) ∈ R× Rd, we have

|f(t, x, y1, z1)− f(t, x, y2, z2)| ≤ C(|y1 − y2|+ |z1 − z2|)

where C is a fixed constant.

BSDEs vs PDEs. Let us consider the parabolic second order semilinear PDE
−∂v
∂t

(t, x)− Lv(t, x)− f(t, x, v, σTDxv) = 0 (t, x) ∈ [0, T )× Rk,

v(T, x) = g(x) x ∈ Rk,

(2.39)

where L is the infinitesimal generator associated to the diffusion in (2.36), whose nature is as follows

Lϕ(t, x) =
1

2
Tr
[(
σ.σT

)
(t, x)D2

xxϕ(t, x)
]

+ b(t, x)TDxϕ(t, x) ∀ ϕ ∈ C1,2([0, T ]× Rk). (2.40)

In the expression above, Tr(.) represents the trace of a square matrix and, AT is the transpose of a matrix A.
For notational convenience, sometimes we write (∂t + L)ϕ(t, x) instead of ∂tϕ(t, x) + Lϕ(t, x).

Next, given a solution v ∈ C1,2([0, T )× Rk) of the PDE (2.39), which is continuous on [0, T ]× Rk, then
the process (Y t,xs , Zt,xs )t≤s≤T , defined by

Y t,xs := v(s,Xt,x
s ) and Zt,xs := σTDxv(s,Xt,x

s ),
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provides a solution for a BSDE with data (f, g(XT )). This assertion is straightforward by just applying Itô’s
formula to v(s,Xt,x

s ), and using the fact that v is solution of (2.39). Further details can be seen in [45].
We now focus on the converse; that is, a solution of the BSDE with data (f, g(XT )) provides a solution

of PDE (2.39). For this purpose, first note that for a fixed t ∈ [0, T ] we can consider the unique solution
(Xt,x

s )t≤s≤T of the FSDE (2.36) —that in fact do exist because of our former assumptions—, then it is not
difficult to obtain a unique solution (Y t,x, Zt,x) of the BSDE with data (f(s,Xt,x

s , y, z), g(Xt,x
T )). Moreover,

in virtue of the Markovian framework of the forward dynamics, it can be proved that the solution (Y t,x, Zt,x)
is adapted to the filtration generated by (Bs −Bt)t≤s≤T and thus Y t,xt is deterministic (see, Proposition 4.2
in [23]). This fact allows us to define the deterministic function

u(t, x) := Y t,xt . (2.41)

We point out that under the assumption imposed to f , this latter function is continuous, but not necessarily
twice continuously differentiable and thus it could not be a classical solution of (2.39). The following definition
clarifies in which sense the function u can be a solution of (2.39).

Definition 2.4. Let v ∈ C([0, T ]× Rk) be a continuous function satisfying u(T, x) = g(x), x ∈ Rk. Then v
is called a viscosity subsolution (resp. viscosity supersolution) of PDE (2.39) if, for any (t0, x0) ∈ [0, T ]× Rk
and ϕ ∈ C1,2([0, T ]× Rk), under which (t0, x0) is a minimum (resp. maximum) of ϕ− v, it verifies

−∂tϕ(t0, x0)− Lϕ(t0, x0)− f(t0, x0, ϕ(t0, x0),
(
σTDx

)
ϕ(t0, x0)) ≤ 0

(resp.
−∂tϕ(t0, x0)− Lϕ(t0, x0)− f(t0, x0, ϕ(t0, x0),

(
σTDx

)
ϕ(t0, x0)) ≥ 0).

Moreover, v is said to be a viscosity solution of (2.39), if it is both, a viscosity subsolution and supersolution.

The link from BSDE to PDE is then as follows.

Theorem 2.14. Under the Assumptions (B1) and (B2), the function u(t, x) defined in (2.41) belongs to
C([0, T ] × Rk) and it is viscosity solution of (2.39). If we suppose in addition that, for each R > 0, there
exists a continuous function mR : R+ → R+ such that mR(0) = 0 and

|f(t, x1, y, z)− f(t, x2, y, z)| ≤ mR(|x1 − x2|(1 + |z|)),

for all t ∈ [0, T ], |x1|, |x2| ≤ R, |z| ≤ R, z ∈ Rd, then u is the unique viscosity solution of (2.39) in the space
of continuous functions of polynomial growth.

Sketch of the proof. The arguments used to prove the continuity property can be seen in [48], whereas the
uniqueness property is proved by methods from viscosity solutions, see for instance, [11]. Then we focus just
on the existence inspired by references [25, 48]. More specifically, we shall briefly show that u(t, x) = Y t,xt is a
viscosity subsolution of (2.39). The viscosity supersolution property is analogous, so we will omit it from
our analysis. Indeed, take ϕ ∈ C1,2([0, T ]× Rk) and (t0, x0) ∈ [0, T )× Rk such that ϕ− u has a minimum at
(t0, x0) with ϕ(t0, x0) = u(t0, x0). Suppose by contradiction that

−∂tϕ(t0, x0)− Lϕ(t0, x0)− f(t0, x0, ϕ(t0, x0),
(
σTDx

)
ϕ(t0, x0)) > 0.

Since (t0, x0) is a local minimum of ϕ− u and in virtue of the continuity of f , ϕ, and the derivatives of this
latter function, there exist both h > 0 and ε > 0 such that

u(t, x) ≤ ϕ(t, x) and − ∂tϕ(t, x)− Lϕ(t, x)− f(t, x, ϕ(t, x),
(
σTDx

)
ϕ(t, x)) > 0 (2.42)

for all (t, x) ∈ [t0, t0 + h]× [x0 − ε, x0 + ε]. We now consider the stopping time

θ := inf
{
s ≥ t0 :

∣∣Xt0,x0
s − x0

∣∣ ≥ ε} ∧ (t0 + h).
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Applying Itô’s formula to ϕ(s,Xt0,x0
s ), it can be seen that(
ϕ(s,Xt0,x0

s ),
(
σTDx

)
ϕ(s,Xt0,x0

s ); t0 ≤ s ≤ θ
)

is the solution of the BSDE with coefficient − (∂s + L)ϕ(s, x), terminal time θ and terminal value ϕ(θ,Xt0,x0

θ )
The next step is to compare this BSDE with the solution (Y t0,x0

s )t0≤s≤θ of the BSDE with coefficient f
and terminal condition Y t0,x0

θ = u(θ,Xt0,x0

θ ). Note that by definition of θ and from inequalities in (2.42), we
have

u(θ,Xt0,x0

θ ) ≤ ϕ(θ,Xt0,x0

θ ) and f(t,Xt0,x0

t , ϕ(t,Xt0,x0

t ), (σTDx)ϕ(t,Xt0,x0

t )) < −(∂t + L)ϕ(t,Xt0,x0

t )

thus by (strict) comparison Theorem 2.7, we get u(t0, x0) < ϕ(t0, x0), that is a contradiction. Hence, u turns
out a subsolution of the PDE (2.39).

RBSDEs vs PDEs. In the same way, the solutions of a RBSDE in this Markovian framework can be
linked to the following variational inequality (VI),

min
{
v(t, x)− h(t, x); −∂tv(t, x)− Lv(t, x)− f(t, x, v(t, x), σTDxv(t, x))

}
= 0;

v(T, x) = g(x),

(2.43)

where L is the infinitesimal generator in (2.40) associated to (Xt,x
s )t≤s≤T and h : [0, T ]× Rk → R is a jointly

continuous function satisfying polynomial growth, i.e., there exist two non-negative real constants K and γ
such that |h(t, x)| ≤ K(1 + |x|γ), for all (t, x) ∈ [0, T ] × Rk. Moreover, we assume that h(T, x) ≤ g(x), for
x ∈ Rk.

Next, given a solution v of (2.43), the processes defined by

Ys := v(s,Xs),

Zs := σT(s,Xs)Dxv(s,Xs), and

Ks :=

∫ s

0

−∂sv(r,Xr)− Lv(r,Xr)− f(r,Xr, v(r,Xr), σ
TDxv(r,Xr)) dr.

(2.44)

are solution of a RBSDE (2.9) with data (f(t,Xt, y, z), g(XT ), h(t,Xt)). (In this direction we can consider
t = 0 and omit the superscripts t and x in X.) Indeed, plugging (2.44) into the equality in (2.9), simplifying
and then using Itô’s formula to v(s,Xs), with terminal condition g(XT ), it is straightforward that the equality
is satisfied. The barrier condition Ys ≥ h(s,Xs) is obtained directly from expression of (2.43). Finally, note
that (Ks)0≤s≤T is an increasing process and K0 = 0. Moreover, considering the stopping time

τ = inf{s ≥ 0 : Ys = h(s,Xs)} ∧ T,

we have Ys > h(s,Xs), for s ∈ [0, τ ], which implies that

−∂sv(s,Xs)− Lv(s,Xs)− f(s,Xs, v(s,Xs), σ
TDxv(s,Xs)) = 0,

in other words, Ks = 0, for s ∈ [0, τ ], and then∫ τ

0

(Yt − h(t,Xt))dKt = 0.

We now focus on the converse, that is, the solution of a RBSDE provides a solution of a VI of type (2.43).
As before, we fix t and consider the unique solution Xt≤s≤T of (2.36) with b and σ satisfying (B1). The
assumption on f and g imply, by Theorem 2.9, that the RBSDE (2.37) has a unique solution (Y t,xs , Zt,xs ,Kt,x

s ).
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Therefore, this Markovian framework implies that Y t,xt is deterministic which allows to define the deterministic
function

u(t, x) := Y t,xt . (2.45)

In this section we will define an alternative definition of viscosity solution related to the VI (2.43) that uses
the concept of subjet and superjet. Before we give such alternative definition, we define the latter concepts.

Definition 2.5. Let u ∈ C([0, T ]×Rk) and (t0, x0) ∈ [0, T )×Rk. We denote by P2,+u(t0, x0) (the “parabolic
superjet” of u at (t0, x0)) the set of triples (p, q,X) ∈ R×Rk ×S(k), where S(k) is the set of symmetric k× k
matrices, such that

u(s, y) ≤ u(t0, x0) + p(s− t0) + q · (y − x0) +
1

2
(y − x0)TX(y − x0) + o(|s− t0|+ |y − x0|2).

Similarly, we denote by P2,−u(t0, x0) (the “parabolic subjet” of u at (t0, x0)) the set of triples (p, q,X) ∈
R× Rk × S(k) such that

u(s, y) ≥ u(t0, x0) + p(s− t0) + q · (y − x0) +
1

2
(y − x0)TX(y − x0) + o(|s− t0|+ |y − x0|2)

We have arrived to the definition of viscosity solution of the VI (2.43) that is given in terms of both
superjet and subjet.

Definition 2.6. (a) We say that v ∈ C([0, T ]× Rk) is a viscosity subsolution of (2.43) if v(T, x) ≤ g(x),
x ∈ Rk, and at any point (t0, x0) ∈ [0, T )× Rk, for any (p, q,X) ∈ P2,+v(t0, x0),

min
{
v(t0, x0)− h(t0, x0); −p− 1

2
Tr(σσTX)− b · q − f(t0, x0, v(t0, x0), σT(t0, x0)q)

}
≤ 0.

In other words at any point (t0, x0) where v(t0, x0) > h(t0, x0),

−p− 1

2
Tr(σσTX)− b · q − f(t0, x0, v(t0, x0), σT(t0, x0)q) ≤ 0.

(b) We say that v ∈ C([0, T ]× Rk) is a viscosity supersolution of (2.43) if v(T, x) ≥ g(x), x ∈ Rk, and at
any point (t0, x0) ∈ [0, T )× Rk, for any (p, q,X) ∈ P2,−v(t0, x0),

min
{
v(t0, x0)− h(t0, x0); −p− 1

2
Tr(σσTX)− b · q − f(t0, x0, v(t0, x0), σT(t0, x0)q)

}
≥ 0

In other words at any point (t0, x0) where v(t0, x0) ≥ h(t0, x0) and

−p− 1

2
Tr(σσTX)− b · q − f(t0, x0, v(t0, x0), σT(t0, x0)q) ≥ 0.

c) v ∈ C([0, T ]×Rk) is said to be a viscosity solution of (2.43) if it is both a viscosity sub- and supersolution.

The following theorem is borrowed from [25].

Theorem 2.15. Consider the assumptions (B1), (B2) and that h(T, x) ≤ g(x), for x ∈ Rk. Then, the
function u(t, x) = Y t,xt , defined in (2.45), is a viscosity solution of the obstacle problem (2.43). Moreover, if
for each R > 0, there exists a continuous function mR : R+ → R+ such that mR(0) = 0 and

|f(t, x1, y, z)− f(t, x2, y, z)| ≤ mR(|x1 − x2|(1 + |z|)),

for all t ∈ [0, T ], |x1|, |x2| ≤ R, |y| ≤ R, z ∈ Rd, then u is the unique viscosity solution of (2.43) in the class
of continuous functions of polynomial growth.
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Sketch of the proof. As in the case of standard BSDEs we show only the existence of sub- and supersolution
property. As for the continuity of the function u and the uniqueness property, we refer the reader to [25] and
[11], respectively. Moreover, from the continuity of u and the terminal condition of the BSDE, it is clear that
u(T, x) = g(x), for x ∈ Rk.

Let us then prove the existence of a solution: To this end, we are going to use the penalized method for
the RBSDE, which was introduced in the proof of Theorem 2.9. Namely, for each (t, x) ∈ [0, T ] × Rk and
n ∈ N, we let (Y n, Zn) be the solution of the standard BSDE

Y n,t,xs = g(Xt,x
T ) +

∫ T

s

f(r,Xt,x
r , Y n,t,xr , Zn,t,xr ) + n(Y n,t,xr − Sr)−dr −

∫ T

s

Zn,t,xr dBr,

which exists since fn(t, x, y, z) := f(t, x, y, z)+n(y−h(t, x))− and g(Xt,x
T ) satisfies (A1) and (A2), respectively.

Therefore, by Theorem 2.14 we have that

un(t, x) = Y n,t,xt , 0 ≤ t ≤ T, x ∈ Rk

is continuous and is a viscosity solution of the parabolic PDE
−∂tun(t, x)− Lun(t, x)− fn(t, x, un(t, x), σTDxu

n(t, x)) = 0, 0 ≤ t ≤ T, x ∈ Rk

un(T, x) = g(x), x ∈ Rk.

Moreover, as in the convergence (2.17) in the proof of Theorem 2.9, we can see that, for each 0 ≤ t ≤ T ,
x ∈ Rk,

un(t, x)↗ u(t, x) as n→∞. (2.46)

Since un and u are continuous, it follows from Dini’s Theorem that the above convergence is uniform on
compact sets of [0, T ]× Rk.

We now show that u is a subsolution of (2.43). Let us choose a point (t, x) for which u(t, x) > h(t, x), and
let (p, q,M) ∈ P2,+u(t, x). From Lemma 6.1 in [11], there exist sequences

nj →∞, (tj , xj)→ (t, x), (pj , qj ,Mj) ∈ P2,+unj (tj , xj),

such that
(pj , qj ,Mj)→ (p, q,M).

But for any j,

−pj −
1

2
Tr(σσTMj)− b · qj − f(tj , xj , u

nj (tj , xj), σ
T(tj , xj)qj)− nj(unj (tj , xj)− h(tj , xj))

− ≤ 0.

From the assumption that u(t, x) > h(t, x) and the uniform convergence of un, for j large enough, it follows
that unj (tj , xj) > h(tj , xj); hence, taking the limit as j →∞ in the above inequality we get

−p− 1

2
Tr(σσTM)− b · q − f(t, x, u(t, x), σT(t, x)q) ≤ 0.

and we have proved that u is a subsolution of (2.43).
We conclude the proof by showing that u is a supersolution of (2.43). Let (t, x) be an arbitrary point in

[0, T ]× Rk, and (p, q,M) ∈ P2,−u(t, x). We already know that u(t, x) ≥ h(t, x). By the same argument as
above, there exist sequences:

nj →∞, (tj , xj)→ (t, x), (pj , qj ,Mj) ∈ P2,−unj (tj , xj),

such that
(pj , qj ,Mj)→ (p, q,M).
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However, for any j,

−pj −
1

2
Tr(σσTMj)− b · qj − f(tj , xj , u

nj (tj , xj), σ
T(tj , xj)qj)− nj(unj (tj , xj)− h(tj , xj))

− ≥ 0.

Hence

−pj −
1

2
Tr(σσTMj)− b · qj − f(tj , xj , u

nj (tj , xj), σ
T(tj , xj)qj) ≥ 0,

and taking the limit as j →∞, the above inequality yields

−p− 1

2
Tr(σσTM)− b · q − f(t, x, u(t, x), σT(t, x)q) ≥ 0.

and we have proved that u is a supersolution of (2.43). �

DRBSDEs vs PDEs. Finally, let us see the relation of the solution of a DRBSDE and a min-max PDE of
the type

min
{
v(t, x)− L(t, x),max

[
v(t, x)− U(t, x),−(∂t + L)v(t, x)

−f(t, x, v(t, x), σTDxv(x, t))
]}

= 0,

v(T, x) = g(x),

(2.47)

where L and U are given functions, which are called the lower and upper obstacles, respectively. In this
Markovian framework, consider the unique solution (Y t,x, Zt,x,Kt,x,+,Kt,x,−) of a DRBSDE associated to
both, the process (Xt,x

s )0≤s≤T , where the data (f, U, L, g(Xt,x
T )), with f and g satisfying assumptions (B1)

and (B2), and L and U are assumed to be completely separated, i.e., Lt < Ut, for all t ∈ [0, T ]. The existence
and uniqueness of this aforementioned solution is given by Theorem 3.7 in Hamadène and Hassani [28].

As in previous analysis, the part Y of this DRBSDE defines a deterministic function

u(t, x) := Y t,xt , (2.48)

which provides a viscosity solution for (2.47), as will be established in Theorem 2.16. The definition of viscosity
solution for the system (2.47) is as follows.

Definition 2.7. Let v be a function in C([0, T ]× Rk). This function is called a viscosity:

(i) subsolution of (2.47) if v(T, x) ≤ g(x) and for any ϕ ∈ C1,2([0, T ]× Rk) and any minimum point (t0, x0) ∈
(0, T )× Rk of ϕ− v, we have

min
{
v(t0, x0)−L(t0, x0), max

[
v(t0, x0)−U(t0, x0), −(∂t+L)ϕ(t0, x0)−f(t0, x0, (t0, x0), σTDxϕ(t0, x0))

]}
≤ 0

(ii) supersolution of (2.47) if v(T, x) ≥ g(x), and for any ϕ ∈ C1,2([0, T ] × Rk) and any maximum point
(t0, x0) ∈ (0, T )× Rk of ϕ− v, we have

min
{
v(t0, x0)−L(t0, x0), max

[
v(t0, x0)−U(t0, x0), −(∂t+L)ϕ(t0, x0)−f(t0, x0, v(t0, x0), σTDxϕ(t0, x0))

]}
≥ 0

(iii) solution of (2.47) if it is both a viscosity subsolution and supersolution

The following result ensures the existence and uniqueness of viscosity solutions associated to (2.47). We
will only give the main ideas of the proof. For further details, the reader is referred to the paper [28].



2.4. MARKOVIAN FRAMEWORK AND PARTIAL DIFFERENTIAL EQUATIONS (PDES) 31

Theorem 2.16. Under assumptions (B1), (B2) and LT < g(Xt,x
T ) < UT , the function u(t, x) = Y t,xt , defined

in (2.48), is a continuous viscosity solution of the obstacle problem (2.47). Moreover, if for each R > 0, there
exists a continuous function mR : R+ → R+ such that mR(0) = 0 and

|f(t, x1, y, z)− f(t, x2, y, z)| ≤ mR(|x1 − x2|(1 + |z|)),

for all t ∈ [0, T ], |x1|, |x2| ≤ R, |y| ≤ R, z ∈ Rd, then u is the unique viscosity solution of (2.47) in the space
of continuous functions of polynomial growth.

Sketch of the proof. The part ensuring the continuity of u(t, x) = Y t,xt on [0, T ]×Rk follows by showing that
u is the limit of both an increasing sequence of continuous functions and decreasing sequences of continuous
functions. Indeed, let (Y n,t,x, Zn,t,x,Kn,t,x) (resp. (Ȳ n,t,x, Z̄n,t,x, K̄n,t,x)) be the solution of one lower (resp.
upper) barrier penalized RBSDE, i.e., for all t ≤ s ≤ T ,

Y ns = g(Xt,x
T ) +

∫ T

s

f(r,Xt,x
r , Y n,t,xr , Zn,t,xr )dr − n

∫ T

s

(U(r,Xt,x
r )− Y n,t,xs )−dr + (Kn,t,x

T −Kn,t,x
s )−

∫ T

t

Zn,t,xs dBr,

Y n,t,xs ≥ L(s,Xt,x
s ),∫ T

t

(Y n,t,xr − Lr)dKn,t,x
r = 0.

(resp.

Ȳ ns = g(Xt,x
T ) +

∫ T

s

f(r,Xt,x
r , Ȳ n,t,xr , Z̄n,t,xr )dr + n

∫ T

s

(L(r,Xt,x
r )− Ȳ n,t,xs )+dr + (K̄n,t,x

T − K̄n,t,x
s )−

∫ T

t

Z̄n,t,xs dBr

Ȳ n,t,xs ≤ U(s,Xt,x
s )∫ T

t

(Ȳ n,t,xr − Ur)dK̄n,t,x
r = 0.)

Therefore, by Theorem 2.15, the deterministic functions un(t, x) := Y n,t,xt (resp. ūn(t, x) := Ȳ n,t,xt ) is a
continuous viscosity solution of the variational inequality

min
{
v(t, x)− L(t, x); −(∂t + L)v(t, x)− f(t, x, v(t, x), σTDxv(t, x)) + n(U(t, x)− v(t, x))−

}
= 0;

v(T, x) = g(x),

(2.49)
(resp.

max
{
v(t, x)− U(t, x); −(∂t + L)v(t, x)− f(t, x, v(t, x), σTDxv(t, x))− n(L(t, x)− v(t, x))+

}
= 0;

v(T, x) = g(x)).

Moreover, by comparison theorem for RBSDEs (Theorem 2.10), the sequence Y
n,t,x

(resp. Y n,t,x) is decreasing
(resp. increasing) and moreover it converges in S2

c to Y t,x. In particular, for any (t, x) ∈ [0, T ]× Rk,

un(t, x)↗ u(t, x) as n→∞ (resp. ūn(t, x)↘ u(t, x) as n→∞),

and thus u is both lower and upper semicontinuous, which yields the continuity of u, yielding also that the
convergence of (un)n≥0 and (un) is uniform on compact subsets of [0, T ]× Rk.
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It remains to prove that the function u is a viscosity subsolution of (2.47). Namely, since u(T, x) = g(x)
and L(t, x) ≤ u(t, x) ≤ U(t, x), it is sufficient to prove that for any ϕ ∈ C1,2([0, T ])×Rk) and for any minimum
point (t, x) ∈ (0, T )× Rk of ϕ− u such that u(t, x) > L(t, x), we have

−∂tϕ(t, x)− Lϕ(t, x)− f(t, x, v(t, x), σTDxϕ(t, x)) ≤ 0.

Let (tn, xn) be a sequence of local minimum points of ϕ − un such that (tn, xn) converges to (t, x) (the
existence of such a sequence follows from the uniform convergence of un to u (see e.g. [39], pp.117)). Note
that for n large enough we have un(tn, xn) > L(tn, xn) then, using the fact that un is a viscosity solution of
(2.49) we have,

−∂tϕ(tn, xn)− Lϕ(tn, xn)− f(tn, xn, u
n(tn, xn), σTDxϕ(tn, xn)) ≤ −n(U(tn, xn)− un(tn, xn))− ≤ 0.

Now the continuity of the functions and the uniform convergence yields the desired result. In a similar way
we can show that u is also a viscosity supersolution. �



3

Switching control problems and systems of RBSDEs: con-
tinuous costs

In this chapter we give a review of some known results related to the theory of optimal switching problems
when the switching costs are continuous. From a probabilistic point of view, these optimal problems can
be studied by combining both, martingale approach (via Snell envelopes), and the theory of BSDEs. In
the Markovian framework, we also review the link between switching problems and systems of variational
inequalities with interconnected obstacles or the so-called Hamilton-Jacobi-Bellman equations for switching
problems.

3.1 Optimal switching problem formulation

Let I = {1, · · · , q} be a finite set, and consider the stochastic processes ψi ∈ H2, i ∈ I, and gik ∈ S2
c , i ∈ I

and k ∈ I−i, together with a sequence
S =

(
(τn, ξn)

)
n≥0

(3.1)

of non-decreasing stopping times (with respect to the filtration F) τn, and random variables ξn, which are
Fτn -measurable with values in I = {1, . . . , q}, such that τ0 = t, ξ0 = i for some initial state (t, i) ∈ [0, T ]× I.

Let us fix an initial state (t, i) ∈ [0, T ]× I and define the next payoff function

J it (S) = E

[ ∞∑
n=0

∫ τn+1

τn

ψξns ds−
∞∑
n=1

gξn−1ξn
τn 1[τn<T ]

∣∣∣Ft] , (3.2)

with ψξn := ψj , when ξn = j; and the same reasoning applies to gξn−1,ξn , i.e., gξn−1,ξn = gi,k if ξn−1 = i and
ξn = k. The processes ψi and gik are usually called the payoff rate per unit of the time and the switching
cost, respectively.

Definition 3.1. A sequence S = ((τn, ξn))n≥0 defined as in (3.1) is called a strategy or switching control
policy for the controller. Furthermore, we say that a strategy S is admissible if it satisfies the following
condition:

P [τn < T, ∀n ≥ 0] = 0.

For each i ∈ I, we denote by Ait, the set of admissible strategies with the property, of τ0 = t and ξ0 = i.

Given an admissible strategy ((τn, ξn))n≥0, we define the indicator process (ut)0≤t≤T of the system at
time t by

u(t) = ξ01[0,τ1)(t) +

∞∑
n=1

ξn1[τn,τn+1)(t), for all t ∈ [0, T ]. (3.3)

33
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It is clear that we can use indistinctly either a strategy

((τn, ξn))n≥0

or (u(t))0≤t≤T . Thus, when we refer to an admissible policy, we shall use sometimes one or the other. Thus,
using the indicator u, the payoff (3.2) is written as

J it (u) = E

[∫ T

0

ψu(s)
s ds−

∞∑
n=1

gu(τn−1),u(τn)
τn 1[τn<T ]

∣∣∣Ft] . (3.4)

We will impose a condition on the switching cost processes gik, i ∈ I, k ∈ I−i that will be considered
throughout this chapter.

(C) There exists a constant γ > 0 such that for each i, j ∈ I, gikt ≥ γ P-a.s. for any 0 ≤ t ≤ T .

Switching control problem: Find an admissible sequence S∗ = ((τ∗n, ξ
∗
n))n≥0 in Ait such that

J it (S∗) = ess sup
S∈Ait

J it (S), (3.5)

where J is the functional defined in (3.2). The expression in the right-hand side of (3.5) is called the value
function of the switching problem, and S∗, when it exists, it is referred to as an optimal control or strategy.
In the particular case when t = 0, we have

J i(S∗) = sup
S∈Ai

J i(S), (3.6)

where J i := J i0 and Ai := Ai0.
The next results have been studied previously in the literature. For self-contained purposes they are

mentioned with their respective rigorous proofs. The reader is referred for more details to [4, 9, 16, 21, 33, 36].

3.2 Verification theorem and existence results

Let us introduce the so-named probabilistic verification theorem for the switching problem that consists to
characterize the value function as a process that satisfy a given system of interconnected Snell envelopes.
Such a result uses as ancillary source of the martingale approach via Snell envelope theory (recall Proposition
2.5). For further details, we quote Theorem 1 in [16].

Theorem 3.1. Assume that there exist q processes (Y it := (Y it )0≤t≤T )i=1...,q in S2
c such that for all i ∈ I,

t ≤ T and P-a.s.,

Y it = ess sup
τ≥t

E
[∫ τ

t

ψisds+ max
k∈I−i

(
Y kτ − gikτ

)
1[τ<T ]

∣∣∣Ft]. (3.7)

Then, for every initial state (t, i) ∈ [0, T ]× I,

Y it = ess sup
S∈Ait

J it (S), a.s. (3.8)

In particular, when t = 0 we have
Y i0 = sup

S∈Ai
J i(S).

Furthermore the strategy Si,∗t = ((τ∗n, ξ
∗
n))n≥0 defined as follows:

(i) τ∗0 := t, τ∗1 := inf

{
s ≥ t : Y is = max

k∈I−i

(
Y ks − gi,ks

)}
∧ T
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and, for n ≥ 2,

(ii) τ∗n := inf

{
s ≥ τ∗n−1 : Y

ξn−1
s = max

k∈I−ξn−1

(
Y ks − g

ξn−1,k
s

)}
∧ T

where

• ξ∗0 := i, ξ∗1 = arg max
k∈I−i

{
Y kτ∗1 − g

i,k
τ∗1

}
,

and for n ≥ 2,

• ξ∗n = arg max
k∈I−ξn−1

{
Y kτ∗n − g

ξn−1,k
τ∗n

}
,

is optimal.

Sketch of the proof. It can be shown using assumption (C) that strategy ((τ∗n, ξ
∗
n))n≥0 is admissible (see

Proposition 5.3 in [33]). We will show first that, by iterating the expression in (3.7) along with the strategy
((τ∗n, ξ

∗
n))n≥0 and using repeatedly the Proposition 2.5 (iii), the expression in (3.7) will take the form of (3.4).

Indeed, at time t the expression Y i can be rewritten as, for any t ≤ s ≤ T ,

Y it +

∫ t

0

ψisds = ess sup
τ≥t

E
[ ∫ τ

0

ψisds+ max
k∈I−i

(
Y kτ − gikτ

)
1[τ<T ]

∣∣∣Ft].
By Proposition 2.5 (iii), τ∗1 is optimal after t and thus

Y it +

∫ t

0

ψisds = E
[ ∫ τ∗1

0

ψisds+ max
k∈I−i

(
Y kτ∗1 − g

i,k
τ∗1

)
1[τ∗1<T ]

∣∣∣Ft] = E
[ ∫ τ∗1

0

ψisds+
(
Y
ξ∗1
τ∗1
− gi,ξ

∗
1

τ∗1

)
1[τ∗1<T ]

∣∣∣Ft]
which yields

Y it = E
[ ∫ τ∗1

t

ψisds+
(
Y
ξ∗1
τ∗1
− gi,ξ

∗
1

τ∗1

)
1[τ∗1<T ]

∣∣∣Ft]. (3.9)

Next, we point out that P-a.s. for every τ∗1 ≤ s ≤ T ,

Y
ξ∗1
s = ess sup

τ≥s
E
[ ∫ τ

s

ψ
ξ∗1
s ds+ max

k∈I−ξ
∗
1

(
Y kτ − g

ξ∗1 ,k
τ

)
1[τ<T ]

∣∣∣Fs]. (3.10)

We do not prove this claim, but we refer the interested reader to [16] (page 2757). Therefore, from (3.10), the
definition of τ∗2 , and again Proposition 2.5 (iii), we have

Y
ξ∗1
τ∗1

= E
[ ∫ τ∗2

τ∗1

ψ
ξ∗1
s ds+ max

k∈I−ξ
∗
1

(
Y kτ∗2 − g

ξ∗1 ,k
τ∗2

)
1[τ∗2<T ]

∣∣∣Fτ∗1 ] = E
[ ∫ τ∗2

τ∗1

ψ
ξ∗1
s ds+

(
Y
ξ∗2
τ∗2
− gξ

∗
1 ,ξ
∗
2

τ∗2

)
1[τ∗2<T ]

∣∣∣Fτ∗1 ].
Inserting this back into (3.9) and noting both 1[τ∗1<T ] is Fτ∗1 -measurable and [τ∗2 < T ] ⊂ [τ∗1 < T ], it follows
that

Y it = E
[ ∫ τ∗1

t

ψisds+

∫ τ∗2

τ∗1

ψ
ξ∗1
s ds− gi, ξ

∗
1

τ∗1
1[τ∗1<T ] − g

ξ∗1 ,ξ
∗
2

τ∗2
1[τ∗2<T ] + Y

ξ∗2
τ∗2

1[τ∗2<T ]

∣∣∣Ft].
Repeating this procedure n times, we have

Y it = E
[ ∫ τ∗n

t

ψu
∗(s)
s ds−

n∑
k=1

g
ξ∗k−1,ξ

∗
k

τ∗k
1[τ∗k<T ] + Y

ξ∗n
τ∗n

1[τ∗n<T ]

∣∣∣Ft],
where u∗ is the indicator process of ((τ∗n, ξ

∗
n)n≥0). Since the (τ∗n)n≥0 is admissible control, then letting n→∞

Y it = E
[ ∫ T

t

ψu
∗(s)
s ds−

∞∑
k=1

g
ξ∗k−1,ξ

∗
k

τ∗k
1[τ∗k<T ]

∣∣∣Ft]. (3.11)
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It remains to show that u∗ = (τ∗n, ξ
∗
n) is optimal, i.e., J it (u∗) ≥ J it (u), for all u ∈ Ait. Indeed, let u =

((τn, ξn))n≥0 in Ait arbitrary. Since

Y it = ess sup
τ≥t

E
[∫ τ

t

ψisds+ max
k∈I−i

(
Y kτ − gikτ

)
1[τ<T ]

∣∣∣Ft],
then iterating over u as we previously did with u∗, with inequality instead of equality, we have that after n
steps we obtain

Y it ≥ E
[ ∫ τn

t

ψu(s)
s ds−

n∑
k=1

gξk−1,ξk
τk

1[τk<T ] + Y ξnτn 1[τn<T ]

∣∣∣Ft].
Finally, using the Dominated Convergence Theorem, we can take limit as n→∞, to obtain

Y it ≥ E
[ ∫ τn

t

ψu(s)
s ds−

n∑
k=1

gξk−1,ξk
τk

1[τk<T ]

∣∣∣Ft]. (3.12)

From (3.11) and (3.12) we have that J it (u∗) ≥ J it (u), i.e., u∗ is optimal and Y it is the value function of the
switching problem at the initial state (t, i). In particular, for t = 0, we deduce that J i(u∗) ≥ J i(u), for all
u ∈ Ai. �

In the previous theorem the existence of the processes (Y i)i∈I is assumed. Now we are going to briefly
show how these processes can be constructed. The idea is to prove that such a processes can be obtained as
limit of the following recursive sequence: for i ∈ I, and any 0 ≤ t ≤ T , define (Y i,nt )n≥0 as

Y i,0t = E

[∫ T

0

ψisds|Ft

]
−
∫ t

0

ψisds, (3.13)

and for n ≥ 1,

Y i,nt = ess sup
τ≥t

E
[∫ τ

0

ψisds+ max
k∈I−i

(
Y k,n−1
τ − gi,kτ )

)
1[τ<T ]

∣∣∣Ft]− ∫ t

0

ψisds. (3.14)

The next result was borrowed from Djehiche et al [16] and it is presented next.

Proposition 3.2. Assume that for each i, k ∈ I, ψi ∈ H2 and gi,k ∈ S2
c . Then,

(i) Increasing and bounded sequences: for each n ≥ 0, the processes Y 1,n, . . . , Y q,n belong to S2
c , and verify

for each i ∈ I and t ≤ T ,

Y i,nt ≤ Y i,n+1
t ≤ E

[ ∫ T

t

max
k∈I
|ψks |ds

∣∣Ft].
(ii) Limit processes: there exist q processes Y 1, . . . , Y q in S2

c such that for any i ∈ I and t ≤ T ,

(a) The sequence converges: for all n ≥ 0,

lim
n→∞

Y i,nt ↗ Y it and E
[

sup
s≤T
|Y i,ns − Y is |2

]
→ 0 as n→ +∞.

(b) The limit processes satisfy the verification theorem: the q processes Y 1, . . . , Y q hold

Y it = ess sup
τ≥t

E
[∫ τ

t

ψisds+ max
k∈I−i

(
Y kτ − gi,kτ

)
1[τ<T ]|Ft

]
.



3.3. SYSTEMS OF RBSDES WITH CONTINUOUS BARRIERS 37

Sketch of the proof. (i) We proceed by induction on n to show that for any i ∈ I, Y i,n ∈ S2
c , for all n ∈ N.

If n = 0, then we can see that Y i,0 is the sum of a continuous martingales w.r.t the Brownian filtration minus
a continuous process of finite variation. Moreover, since ψis ∈ H2, then by using Doob’s inequality we have
that Y i,0 ∈ S2

c . Now assume that for n ≥ 0, Y i,n ∈ S2
c . Note that

Y i,n+1
t = ess sup

τ≥t
E
[∫ τ

0

ψisds+ max
k∈I−i

(
Y k,nτ − gi,kτ )

)
1[τ<T ]|Ft

]
−
∫ t

0

ψisds. (3.15)

Therefore, let us analyze the continuity of [maxk∈I−i
(
Y k,ns − gi,ks )

)
1[s<T ]]0≤s≤T in [0, T ) and its jump at T .

By the induction hypothesis Y k,n is continuous on [0, T ] and Y k,nT = 0. On the other hand, since the processes
gi,k are continuous on [0, T ] and that there exist a constant γ > 0 such that gi,k > γ, then it is clear that the
process [maxk∈I−i

(
Y k,ns − gi,ks )

)
1[s<T ]]0≤s≤T is continuous on [0, T ) and has a positive jump at T , which

implies by Proposition 2.5 (iii) that the first part in the right side on (3.15) is continuous, and it is clear that
the second integral is continuous too. Hence using again Doob’s inequality we can deduce Y i,n+1 ∈ S2

c . Let
us now see that the sequence (Y i,n)n≥0 is increasing. Note that each iteration in the sequence produces a
switching, i.e., if Ai,nt = {u ∈ Ait : u0 = i, τ1 ≥ t, and τn+1 = T}, then we have that

Y i,nt = ess sup
u∈Ai,nt

E
[ ∫ τn

t

ψu(s)
s ds−

n∑
k=1

gξk−1,ξk
τk

1[τk<T ]

∣∣∣Ft]. (3.16)

Therefore, since from step n to step n+ 1 one switching arises, then Ai,nt ⊂ Ai,n+1 and thus by continuity of
Y i,n, we have that P-a.s. for all t ∈ [0, T ], Y i,nt ≤ Y i,n+1

t . Moreover, from representation (3.16) and taking
into account that for i, j ∈ I, gi,j ≥ γ > 0, we have that for any i ∈ I, t ∈ [0, T ],

Y i,nt ≤ Y i,n+1
t ≤ E

[ ∫ T

t

max
k∈I
|ψks |ds

∣∣Ft]. (3.17)

(ii) The last inequality implies that for any i ∈ I, the sequences (Y i,n)n≥0 converges. Letting Y it :=

limn→∞ Y i,nt for t ≤ T , inequality (3.17) implies that Y i satisfies for t ≤ T

Y i,0t ≤ Y it ≤ E
[ ∫ T

t

max
k∈I
|ψks |ds

∣∣Ft].
Note that for any i ∈ I, (Y it )0≤t≤T is a càdlàg supermartingale as it is the limit of the next increasing sequence
of the continuous supermartingale (Y i,nt +

∫ t
0
ψisds)0≤t≤T (see e.g. [17], page 473). Actually, the continuity

of the switching costs along with the hypothesis (C), yield for any i ∈ I, (Y it )0≤t≤T are continuous —for
further details of this last assertion, we refer the reader to Theorem 2 in [16]. Hence, by Dini’s Theorem and
Lebesgue Dominated Convergence Theorem, the convergence is also uniformly, i.e.,

E
[

sup
s≤T
|Y i,ns − Y is |2

]
→ 0 as n→∞.

The part (ii)-(b) follows from Proposition 2.5 (iv).

3.3 Systems of RBSDEs with continuous barriers

In this section we introduce the theory of systems of RBSDEs that are a powerful tool to give optimality
solutions for switching control problems. As we will see later, under suitable conditions, a solution that verifies
this type of systems, will coincide with the value function associated to a switching control problems.

The theory illustrated in here will be studied with a high degree of generality. As a special case we will be
able to link this theory with optimal switching control problems.
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The rest of this section is devoted to the study of existence and uniqueness of the system of RBSDEs
(3.18). For self-containedness purposes, we will include the main ideas of the proofs same that were inspired
from references [10, 33].

Consider the following system of RBSDEs, for all i ∈ I and all 0 ≤ s ≤ T ,

Find
(
Y i· , Z

i
· ,K

i
·
)
∈ S2

c ×H2,d × S2
c such that :

Y is = hi(XT ) +

∫ T

s

f i(r,Xr, Y
1
r , . . . , Y

q
r , Z

i
r)dr +Ki

T −Ki
s −

∫ T

s

ZirdBr;

Y is ≥ max
k∈I−i

{
Y ks − gi,k(s,Xs)

}
;∫ T

0

(
Y ir − max

k∈I−i

{
Y kr − gi,k(r,Xr)

})
dKi

r = 0,

(3.18)

where Ki
· is non-decreasing and Ki

0 = 0.
Note that in this system the coefficient f i depends on the other solutions (Y k)k∈I−i . Existence and

uniqueness of solutions of this type of systems are guaranteed under the next set of assumptions.

Assumption H.

(H1) : The stochastic process (Xt)t≥0 belongs to S2,k
c

(H2) : For any i ∈ I, the function f i : [0, T ]× Rk × Rq × Rd → R verifies:

(i) (t, x) 7→ f i
(
t, x, y1, . . . , yq, z

)
is continuous uniformly with respect to (y1, . . . , yq, z);

(ii) f i is Lipschitz continuous with respect to (y1, . . . , yq, z) uniformly on [0, T ] × Rk, i.e., for some
C ≥ 0, ∣∣f i(t, x, y1, . . . , yq, z)− f i(t, x, ȳ1, . . . , ȳq, z̄)

∣∣ ≤ C (∣∣y1 − ȳ1
∣∣+ · · ·+ |yq − ȳq|+ |z − z̄|

)
.

(iii) The mapping (t, x) 7→ f i(t, x, 0, . . . , 0) is of polynomial growth.

(iv)monotonicity : For all i ∈ I, for all k ∈ I−i, the mapping yk 7→ f i(t, x, y1, . . . , yk−1, yk, yk+1, . . . , yq, z)
is non-decreasing whenever the other components (t, x, y1, . . . , yk−1, yk+1, . . . , yq, z) are fixed.

(H3) :

(i) For each i, j ∈ I, the function gij : [0, T ]× Rk → R is bounded from below; i.e. there exists a real
constant γ > 0 such that, gij ≥ γ. Furthermore it is jointly continuous and of polynomial growth
in x.

(ii) Non-free loop property : For any loop of length N − 1, i.e., a sequence {i1, . . . , iN} in I with N − 1
distinct elements such that i1 6= i2, . . . , iN−1 6= iN , iN = i1, we have for all (t, x) ∈ [0, T ]× Rk,

N−1∑
j=1

gj,j+1(t, x) > 0 P-a.s.

(H4) : Consistency : For each i ∈ I, the function hi : Rk → R is continuous of polynomial growth and satisfies

∀x ∈ Rk hi(x) ≥ max
j∈I−i

(
hj(x)− gij(T, x)

)
.

We begin by introducing an optimal control switching problem associated with a particular BSDEs. This
allows us to give a switching representation for a solution (Y,Z,K) of the system (3.18).
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Given a state (t, i) ∈ [0, T ]× I, let Dit be the following set of strategies:

Dit :=
{
u = (θn, κn)n≥0 : θ0 = t, κ0 = i and E[(CuT )2] <∞

}
where Cur , r ≤ T , is the following cumulative costs up to time r, i.e.,

Cur :=

∞∑
n=1

gκn−1,κn(θn, Xθn)1[θn≤r] for r < T and CuT = lim
r→T

Cur , P-a.s.

Therefore for any admissible strategy u ∈ Dit we have:

CuT =

∞∑
n=1

gκn−1,κn(θn, Xθn)1[θn<T ]. (3.19)

Given a solution (Y i, Zi,Ki)i∈I of (3.18), we denote Y = (Y i, . . . , Y q). For any u = (θn, κn)n≥0 ∈ Dit, let
(Pus , Q

u
s )s≤T be the solution of the following BSDE

Pu· is càdlàg and E
[

sups≤T |Pus |
2 ]

<∞, Qu· ∈ H2,d;

P
u(s)
s = hu(T )(XT ) +

∫ T

s

fu(r)(r,Xr, (Y−u(r), Pu(r)
r ), Qu(r)

r )dr − (CuT − Cus )−
∫ T

s

Qu(s)
r dBr, s ≤ T,

(3.20)
where (Y−i, P i) := (Y 1, · · · , Y i−1, P i, Y i+1, · · · , Y q), and

hu(T )(x) = hκn(x)1[θn<T≤θn+1] and

fu(r)(r, x, v1, . . . , vq, z) :=

∞∑
n=0

fκn(r, x, v1, . . . , vq, z)1[θn≤r<θn+1).

Making the change of variable P̄u· := Pu· − Cu· , the equation in (3.20) is transformed in a standard BSDE.
Since Cu is adapted and E[(CuT )2] <∞, we easily deduce the existence and uniqueness of the process (Pu· , Q

u
· ).

Now we are in conditions to present the following characterization of the solutions of the system (3.18).
Details of the proof of this result, can be consulted in [33].

Theorem 3.3. Suppose there exists a solution (Y j , Zj ,Kj)j∈I to the system of RBSDEs (3.18). Then, for
every initial state (t, i) ∈ [0, T ]× I,

Y it = ess sup
u(·)∈Dit

[P
u(·)
t − C

u(·)
t ],

where Cu· and Pu· are defined in the previous lines.

Sketch of the proof. Let us denote Y = (Y 1, . . . , Y q). Now, given an initial state (t, i) ∈ [0, T ] × I, we
know that

Y it = hi(XT ) +

∫ T

t

f i(s,Xs,Ys, Z
i
s)ds+Ki

T −Ki
t −

∫ T

t

ZisdBs.

Given u ∈ Dit, consider the first switching τ1 and the associated state u(τ1) of this strategy, then we get

Y it = hi(XT ) +

∫ τ1

t

f i(s,Xs,Ys, Z
i
s)ds+

∫ T

τ1

f i(s,Xs,Ys, Z
i
s)ds+Ki

T −Ki
τ1 +Ki

τ1 −K
i
t

−
∫ τ1

t

ZisdBs −
∫ T

τ1

ZisdBs.

= Y iτ1 +

∫ τ1

t

f i(s,Xs,Ys, Z
i
s)ds+Ki

τ1 −K
i
t −

∫ τ1

t

ZisdBs

≥ Y
u(τ1)
τ1 − gi,u(τ1)

τ1 +

∫ τ1

t

f i(s,Xs,Ys, Z
i
s)ds−

∫ τ1

t

ZisdBs,

(3.21)
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where in the last inequality we use both that the process Ki is non-decreasing, and Y i ≥ maxj∈I−i(Y
i,j−gi,j).

Next, note that

Y u(τ1)
τ1 = hu(τ1)(XT ) +

∫ T

τ1

fu(τ1)(s,Xs,Ys, Z
u(τ1)
s )ds+K

u(τ1)
T −Ku(τ1)

τ1 −
∫ T

τ1

Zu(τ1)
s dBs.

and this considering the next switching (τ2, u(τ2)) and writing an analogous procedure as in (3.21), we have
that

Y u(τ1)
τ1 ≥ Y u(τ2)

τ2 − gu(τ1),u(τ2)
τ2 +

∫ τ2

τ1

fu(τ1)(s,Xs,Ys, Z
u(τ1)
s )ds−

∫ τ2

τ1

Zu(τ1)
s dBs

Inserting this back into (3.21) we see that

Y it ≥ Y u(τ2)
τ2 −

2∑
n=1

gu(τn−1),u(τn)
τn +

2∑
n=1

∫ τn

τn−1

fu(τn−1)(s,Xs,Ys, Z
u(τn−1)
s )ds−

2∑
n=1

∫ τn

τn−1

Zu(τn−1)
s dBs.

Iterating N times, we obtain

Y it ≥ Y u(τN )
τN +

N∑
n=1

gu(τn−1),u(τn)
τn +

N∑
n=1

∫ τn

τn−1

fu(τn−1)(s,Xs,Ys, Z
u(τn−1)
s )ds−

N∑
n=1

∫ τn

τn−1

Zu(τn−1)
s dBs.

Since the control strategy u is finite, we can let N →∞ to obtain

Y it ≥ Y
u(T )
T +

∞∑
n=1

gu(τn−1),u(τn)
τn +

∞∑
n=1

∫ τn

τn−1

fu(τn−1)(s,Xs,Ys, Z
u(τn−1)
s )ds−

∞∑
n=1

∫ τn

τn−1

Zu(τn−1)
s dBs.

Taking into account that Y u(T )
T = hu(T )(XT ) as well as (3.19), the last expression can be rewritten as

Y it ≥ hu(T )(XT ) + CT +

∫ T

t

fu(s)(s,Xs,Ys, Z
u(s)
s )ds−

∫ T

t

Zu(s)
s dBs.

We denote the right side of this last inequality as Y u. Note that Y u and Pu − Cu coincide since they have the
same data hu(T ) and fu. Therefore, we have

Y it ≥ Put − Cut ,

and this implies
Y it ≥ ess sup

u∈Dit
(Put − Cut ).

To show the equality, we define the following strategy u∗ = (τ∗n, ξ
∗
n)n≥0 ∈ Dit given by

τ∗n := inf
{
s ≥ τ∗n−1 : Y

ξ∗n−1
s = max

k∈I−ξ
∗
n−1

(
Y ks − g

ξ∗n−1,k
s

)}
∧ T, for n ≥ 1,

and
ξ∗0 := i, ξ∗n = arg max

k∈I−ξn−1

{
Y kτ∗n − g

ξn−1,k
τ∗n

}
, for n ≥ 1.

Proceeding as above and taking into account that Kξn−1

τ∗n
−Kξn−1

s = 0 for τ∗n−1 ≤ s < τ∗n, we can deduce

Y it = Pu
∗

t − Cu
∗

t

Hence u∗ is optimal, which proves the desired result. �

We now give an existence result of the solution of the system (3.18), whose extended proof can be seen in
[33].
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Theorem 3.4. Assume that for any i, j ∈ I, the data f i, gi,j and hi,j satisfy the Assumption H. Then, there
exists ((Y i, Zi,Ki))i=1,...,q a unique solution of the system (3.18).

Sketch of the Proof. The idea is to construct a monotone sequence of stochastic processes {(Y 1,n, Y 2,n,
· · · , Y q,n)}n≥0 such that its limit denoted by (Y 1, Y 2, · · · , Y q) coincides with of the solution of (3.18). As
for the existence for the remaining part (Z,K), the arguments are based on the so-named Peng’s Monotonic
Limit Theorem (see [46]).

Indeed, let us define

fmax(s, y, z) := max
i∈I

[f i](s,Xs, y, . . . , y, z) and fmin(s, y, z) := min
i∈I

[f i](s,Xs, y, . . . , y, z)

and
hmax := max

i∈I
[hi] and hmin := min

i∈I
[hi]

Therefore, since the data f i, and hi hold Assumption H, then the data (fmax, hmax) and (fmin, hmin) in turn
satisfy assumption (A1) and (A2), then a simple application of Theorem 2.6 ensures the existence of solutions
(Y , Z) and (Y , Z) of the standard BSDEs

Y t = hmax(XT ) +

∫ T

t

fmax(s,Xs, Y s, Zs)ds−
∫ T

t

ZsdBs for all t ∈ [0, T ], a.s.

and

Y t = hmin(XT ) +

∫ T

t

fmin(s,Xs, Y s, Zs)ds−
∫ T

t

ZsdBs for all t ∈ [0, T ], a.s.

Next, consider the following sequences of RBSDEs defined recursively by : for any i ∈ I, Y i,0 = Y and for
n ≥ 1 and s ≤ T ,

Y i,n· ,Ki,n
· ∈ S2 and Zi,n· ∈ H2,d; Ki,n

· is non-decreasing with Ki
0 = 0,

Y i,ns = hi +

∫ T

s

f i(r,Xr, (Y−i,n−1
r , Y i,nr ), Zi,nr )dr +Ki,n

T −K
i,n
s −

∫ T

s

Zi,nr dBr

Y i,ns ≥ max
k∈I−i

{
Y k,n−1
s − gik(s,Xs)

}
, for all 0 ≤ s ≤ T,

∫ T

0

(
Y i,nr − max

k∈I−i

{
Y k,n−1
r − gik(r,Xr)

})
dKi,n

r = 0,

(3.22)

where (Y−i,n−1, Y i,n) denote the situation when all the components other than i are fixed at n− 1 and the
i-th component is considering at the iteration n. Therefore, by Theorem 2.9 and an induction argument,
for any n ≥ 0, there exist (Y i,n.Zi,n,Ki,n) solution of (3.22). Thus by using the comparison theorem for
standard BSDEs, Theorem 2.7, we have that Y i,0 ≤ Y i,1, for any i ∈ I. On the other hand, since f i satisfies
the monotonicity property and combined with the comparison theorem for RBSDEs, Theorem 2.10, we get by
induction that for n ≥ 0 and i ∈ I

Y i,n ≤ Y i,n+1.

On the other hand, the q processes ((Y ,Z,K := 0))i∈I are solutions of the system of RBSDEs with data
(fmax, hmax,maxk∈I−i(Y − gi,k)). Then, by the monotonicity property of f i and the comparison Theorem
2.10, we have for all for any i, j ∈ I,

Y i,n ≤ Y for all n ≥ 0.

Hence, for each i ∈ I, the sequence (Y i,n)n≥0 is bounded and monotone and thus a simple use of Peng’s
Monotonic Limit Theorem [46] yield that there exist (Y i, Zi,Ki)i∈I ∈ S2 ×H2,d × S2 such that (Y i,n)↗ Y i

pointwisely, Zi,n → Zi weakly in H2,d and (Ki,n)→ Ki is a càdlàg square-integrable increasing process.
Finally, to prove that the limit processes (Y i, Zi,Ki)i∈I verifies (3.18), we refer the reader to Theorem

3.2 in [35].
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3.4 Markovian framework and systems of PDE’s with continuous obstacles

In this section we illustrate some results about the connection of special systems of RBSDEs related with
other systems of PDE’s. As a by-product, we will also be able to link this latter relation with a certain
switching optimal control problems. The most part of the analysis is based on the references [16, 21].

Let us then consider the following special cases of some mathematical objects introduced in previous
sections. For any i, j ∈ I, we will assume that f i does not depend on Y i, gi,j does not depend on X and
hi(XT ) = 0. Other type of data as well as other assumptions on the data have been also studied. We
encourage the reader to check the references [10, 26, 33, 35, 36] for further details.

As we mentioned in Chapter 2, when randomness comes from a diffusion process (Xt,x
s )t≤s≤T as in (2.36),

solutions of RBSDEs provide a deterministic functions which in turn they become solutions of PDE’s (3.23);
the same happens when we want to extend this property for interconnected systems as we will show later on.
Another important feature is that the switching problem is related with the viscosity solution of the following
system of PDE’s or variational inequalities (VI)

min
{
vi(t, x)− max

k∈I−i

(
vk(t, x)− gik(t)

)
; −∂tvi(t, x)− Lvi(t, x)− f i(t, x)

}
= 0;

vi(T, x) = 0 for all i ∈ 1, · · · , q.
(3.23)

Let us first recall the following estimates of the process (Xt,x)t≤s≤T defined in (2.36), whose proof is given in
[49, 40].

Proposition 3.5. (i) There exist a constant C > 0 such that

E
[

sup
0≤s≤T

|Xt,x
s |2

]
≤ C(1 + |x|2)

(ii) There exists a constant C > 0 such that for all (t, x), (t′, x′) in [0, T ]× Rk

E
[

sup
0≤s≤T

|Xt,x
s −Xt′,x′

s |2
]
≤ C(1 + |x|2)(|x− x′|2 + |t− t′|).

We now focus on showing that there exist deterministic functions (vi)i∈I such that for each i ∈ I and
t ≤ s ≤ T ,

Y i,t,xs = vi(s,Xt,x
s ), (3.24)

where Y i,t,x is the solution of the RBSDE with data (f i(s,Xt,x
s ), 0,maxj∈I−i{Y i,t,xs − gij(s)}). Note that

for any i ∈ I, the barriers (resp. obstacle) of the system of RBSDEs (3.18) (resp. PDE (3.23)), depend on
the processes (Y j)j∈I−i (resp. on the functions (vj)j∈I−i), i.e., both systems are interconnected just in the
barrier (resp. in the obstacle). As a consequence, we cannot use the same argument provided in Chapter 2 to
determine the relation (3.24).

Let (Y i,n)n≥0 be the sequence defined in (3.13)–(3.14), with f i(s, x) rather than ψ. Note that for n = 0,
we can repeat the same argument in the proof of Theorem 2.6 to show the existence of a process Zi,0,t,x such
that (Y i,0,t,x, Zi,0,t,x) is solution of a standard BSDE with data (f i, 0). Therefore there exist a deterministic
function vi,0 (see (2.41) and Theorem 2.14), such that

Y i,0,t,xs = vi,0(s,Xt,x
s ).

Now, for n ≥ 1, we have from Proposition 5.1 in [25] that there exist unique (Zi,n,t,x,Ki,n,t,x) such that
(Y i,n,t,x, Zi,n,t,x,Ki,n,t,x) is solution of the RBSDE with data (f i, 0,maxk∈I−i(Y

k,n−1,t,x − gi,k)) and thus in
this Markovian framework there exist deterministic function vi,n (see (2.45) and Theorem 2.15), such that

Y i,n,t,xs = vi,n(s,Xt,x
s ).
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Therefore, by virtue of Proposition 3.2, the sequence Y i,n,t,x is non decreasing in n and bounded above by its
limit Y i,n,t,x. As a consequence, the sequence vi,n is also non-decreasing and bounded above by Y i,n,t,x too.
Thus, evaluating at the inital point t, we obtain

vi,n(t, x) ≤ Y i,t,xt ≤ E
[ ∫ T

t

max
j∈I
|f j(s,Xt,x

s )|ds
∣∣∣Ft].

Taking expectation in both sides of the above expression, and taking into account that vi,n(t, x) is deterministic
as well as the iterated conditional expectation property, we get

vi,n(t, x) ≤ E
[ ∫ T

t

max
j∈I
|f j(s,Xt,x

s )|ds
]
.

Therefore, for any i ∈ I, the sequence (vi,n)n≥0 converges pointwisely to a deterministic function vi which
has also the polynomial growth property because f i has the same property at the variable x and by using
Proposition 3.5 -(i). As a consequence this limit is not infinite.

Furthermore, by uniqueness of the limit, for any (t, x) ∈ [0, T ]× Rk we have

Y i,t,xs = vi(s,Xt,x
s ), t ≤ s ≤ T, (3.25)

in particular Y i,t,xt = vi(t, x). Note that by Proposition 3.2 (ii)-(b) we have that

Y i,t,xt = vi(t, x) = sup
τ≥t

E
[∫ τ

t

f i(s,Xt,x
s )ds+ max

k∈I−i

(
Y k,t,xτ − gi,kτ

)
1[τ<T ]

]
.

= sup
u∈Ait

E

[ ∞∑
n=0

∫ τn+1

τn

fξn(s,Xt,x
s )ds−

∞∑
n=1

gξn−1ξn
τn 1[τn<T ]

]
,

(3.26)

where the last equality is by verification Theorem 3.1.

Remark 3.1. (a) The relation (3.26) shows a bridge between systems of RBSDEs, systems of PDE’s, and
switching control problems.

(b) Note also that the variable t in this analysis has a different meaning to that t in the verification Theorem
3.1. Indeed, the one used here represents the current time, whereas that in the aforementioned theorem
represents a future stage.

It only remains to show that (v1, · · · , vq) is a viscosity solution of the system (3.23). To this end, let us
give the definition of viscosity solution of the system (3.23).

Definition 3.2. (a) A continuous function (v1, . . . , vq) : [0, T ] × Rk → Rq is said to be a viscosity sub-
solution of (3.23) if for any i ∈ I, for any (t0, x0) ∈ [0, T )×Rk and any (φ1, . . . , φq) ∈ (C1,2([0, T ]×Rk))q,
with φi(t0, x0) = vi(t0, x0) and φi − vi attaining its minimum at (t0, x0), then we have

min
{
vi(t0, x0)− max

k∈I−i
(vk(t0, x0)− gik(t0)); −∂tφi(t0, x0)− Lφi(t0, x0)− f i

(
t0, x0

)}
≤ 0.

vi(T, x0) = 0

In this case, if vi(t0, x0) > maxk∈I−i
(
vk(t0, x0)− gik(t0)

)
, then

−∂tφi(t0, x0)− Lφi(t0, x0)− f i
(
t0, x0

)
≤ 0.
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(b) A continuous function (v1, . . . , vq) : [0, T ]× Rk → Rq is said to be a viscosity super-solution of (3.23) if
for all (t0, x0) ∈ [0, T )×Rk , i ∈ I and any (φ1, . . . , φq) ∈ (C1,2([0, T ]×Rk))q with φi(t0, x0) = vi(t0, x0)
and φi − vi attaining its maximum at (t0, x0), then we have

min
{
vi(t0, x0)− max

k∈I−i

(
vk(t0, x0)− gik(t0)

)
; −∂tφi(t0, x0)− Lφi(t0, x0)− f i

(
t0, x0

)}
≥ 0

vi(T, x0) = 0.

Consequently, we have both vi(t0, x0) ≥ maxk∈I−i
(
vk(t0, x0)− gik(t0)

)
and

−∂tφi(t0, x0)− Lφi(t0, x0)− f i(t0, x0) ≥ 0.

(c) We say that (v1, . . . , vq) is viscosity solution of (3.23) if it is both a viscosity sub- and super-solution of
(3.23).

Theorem 3.6. Under the Assumption H, the deterministic functions vi, i = 1, · · · , q which satisfy (3.25) are
continuous viscosity solutions of the system of PDE’s (3.23).

Sketch of the proof. The part concerned to the continuity of (t, x) 7→ v(t, x) was rigorously analyzed in
[16]. The key idea is to show that the following convergence is true

E
[

sup
0≤r≤T

|Y i,t,xr − Y i,t
′,x′

r |2
]
→ 0 as (t, x)→ (t′, x′) for any i ∈ I. (3.27)

where Y i,t,xs comes from the verification theorem (Theorem 3.1), for any i ∈ I, s ∈ [0, T ], and (t, x) ∈ [0, T ]×Rk;
i.e.,

Y i;t,xs = ess sup
u∈Ais

E
[ ∫ T

s

fu(r)(r,Xt,x
r )dr −

∑
j≥1

gu(τj−1),u(τj)(τj)1[τj<T ]

∣∣∣Fs],
with Ais being the set of finite strategies such that τ1 ≥ s, P-a.s., and u(0) = i.

In virtue of the inequality

|Y i,t
′,x′

s′ − Y i,t,xs |2 ≤ 2|Y i;t
′,x′

s′ − Y i,t,xs′ |
2 + 2|Y i,t,xs′ − Y i,t,xs |2 ≤ 2 sup

0≤r≤T

(
|Y i,t

′,x′

r − Y i;t,xr |2
)

+ |Y i;t,xs′ − Y i;t,xs |2,

it follows that, for any i ∈ I, the function (s, t, x) → Y i;t,xs from [0, T ]2 × Rk into L2(Ω) is continuous in
the mean square after taking expectations in both sides of last expression and using the convergence in
(3.27). Finally, doing s = t, the continuity of (t, t, x)→ Y i;t,xt is straightforward, which shows that vi is also
continuous in (t, x).

The argument that shows that the functions v1, . . . , vq are viscosity solutions of the system of PDEs (3.23)
follows by Theorem 2.15, because the barriers are already known and due that the functions vi, i ∈ I are
continuous of polynomial growth.



4

Switching control problems and systems of RBSDEs: dis-
continuous costs

This chapter is inspired from the content of Chapter 3. Namely, we begin this material by providing a
probabilistic verification theorem for a switching problem when the switching cost is discontinuous in time.
Next, the analysis is focused to show a general result that guaranties the existence and uniqueness of a system
of RBSDEs with interconnected coefficients and barriers and càdlàg barriers. This degree of generality forces
us to use other tools different to those used in Chapter 3. The last part of the chapter deals with the relation
of systems of RBSDEs with càdlàg barriers and systems of PDE’s with interconnected discontinuous obstacles.
This latter system is proved to contain a weak viscosity solution because the obstacles are not necessarily
continuous. All this material has been also analyzed in reference [29].

4.1 The statement of the problem

Use again the set I = {1, · · · , q}, and consider the stochastic processes ψi ∈ H2, i ∈ I but, in contrast to
Chapter 3, assume now that the switching costs gik are in S2, i ∈ I and k ∈ I−i, and satisfy condition (C).
Now assume the existence of the sequence

S = (τn, ξn)n≥0 (4.1)

of non-decreasing stopping times (with respect to filtration F) τn, and random variables ξn which are
Fτn -measurable with values in I, such that τ0 = 0, ξ0 = i for some i ∈ I.

Define the functional J by

J i(S) = E

[ ∞∑
n=0

∫ τn+1

τn

ψξns ds−
∞∑
n=1

gξn−1ξn
τn 1[τn<T ]

]
, (4.2)

with ψξn := ψj , when ξn = j; similarly, gξn−1ξn is such that gξn−1ξn = gik if ξn−1 = i and ξn = k.

Remark 4.1. For simplicity, the statement of this switching problem is posed for the case when the initial
time is t = 0 (compare to the switching problem in Chapter 3). However the proofs below are given in a
general framework that also cover the cases when the initial time is t ≥ 0.

Let us define now the concept of admissibility of controls or strategies that were also defined in a similar
way in Chapter 3.

Definition 4.1. A sequence S = (τn, ξn)n≥0 defined as in (4.1) is called a strategy or switching control policy
for the controller. Furthermore, we say that a strategy S is admissible if it satisfies the following condition:

P [τn < T, ∀n ≥ 0] = 0.

45
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Denote by Ai the set of admissible strategies with the property of τ0 = 0 and ξ0 = i, for i = 1, . . . , q.

As in the previous chapter, the processes ψi and gik are called the payoff rate per unit of the time and the
switching cost, respectively.

Switching control problem: A finite horizon switching control problem with q-modes and initial
configuration ξ0 = i for i ∈ I, consists in finding an admissible sequence S∗ = (τ∗n, ξ

∗
n)n≥0 ∈ Ai such that

J i(S∗) = sup
S∈Ai

J i(S), (4.3)

where J is the functional defined in (4.2).
There is also a weaker formulation of what we understand for optimal strategy, namely, we say that

S∗ ∈ Ai is ε-optimal strategy if for all ε > 0, we have

J i(S∗) ≥ sup
S∈Ai

J i(S)− ε.

4.2 Verification theorem and existence of results

In this section we prove the existence of certain processes that are connected with the cost function (4.2) and
its optimal value. To this end, we first provide an existence result of q-interconnected processes, which will be
useful later on.

Theorem 4.1. Consider q processes ψi ∈ H2, i ∈ I and q(q − 1) processes gik ∈ S2, i ∈ I, k ∈ I−i.
Then, under Assumption (C), there exist q R−valued càdlàg processes

(
Y i· := (Y it

)
t≤T , i = 1, . . . , q) ∈ (S2)q

satisfying: for all i ∈ I

Y it = ess sup
τ≥t

E
[ ∫ τ

t

ψisds+ max
k∈I−i

(
Y kτ − gikτ

)
1[τ<T ]

∣∣∣Ft] P− a.s., 0 ≤ t ≤ T. (4.4)

Proof. For i ∈ I, and any 0 ≤ t ≤ T , use the sequence (Y i,nt )n≥0 defined by:

Y i,0t = E
[ ∫ T

t

ψisds
∣∣∣Ft],

and for n ≥ 1,

Y i,nt = ess sup
τ≥t

E
[ ∫ τ

t

ψisds+ max
k∈I−i

(
Y k,n−1
τ − gikτ

)
1[τ<T ]

∣∣∣Ft]. (4.5)

First note that the process (Y i,0t )t≤T is continuous for all i ∈ I. Next since the process gik is càdlàg, (Y i,1t )t≤T
is also a càdlàg process, and thus by an induction procedure we have that for all n ≥ 1, Y i,nt is càdlàg too.

Let us prove now that, for i ∈ I, the sequence (Y i,n· )n≥0 converges increasingly and pointwisely P-a.s.
for any 0 ≤ t ≤ T and in the norm H2 to a càdlàg process Y i· . To begin with, for any n ≥ 1 let us define
Ai,nt = {S = (τm, ξm)m≥0 : ξ0 = i, τ0 = t and τn+1 = T}, and let us prove that for N fixed, Y i,N· can be
characterized by

Y i,Nt = ess sup
S∈Ai,Nt

E

[
N∑
j=0

∫ τj+1

τj

ψξjs ds−
N−1∑
j=0

gξjξj+1
τj+1

1[τj+1<T ]

∣∣∣∣Ft
]
. (4.6)

Since the processes gik for i, k ∈ I are càdlàg, it is not obvious to use the same procedure as given in Djehiche.
et al. [16] Proposition 3-(ii) (see also Chapter 3). In contrast, we shall consider the sequence of ε-stopping
times (τεn)n≥0 given by follows: τε0 := t,

τε1 := inf
{
s ≥ t : Y i,Ns ≤ max

k∈I−i

(
Y k,N−1
s − giks

)
+
ε

2

}
∧ T
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and for 2 ≤ n ≤ N ,

τεn := inf
{
s ≥ τεn−1 : Y

ξ̂n−1,N−n+1
s ≤ max

k∈I−ξ̂n−1

(
Y k,N−ns − gξ̂n−1k

s

)
+ ε

2n

}
∧ T.

τεN+1 := T,

where

• ξ̂0 := i, ξ̂1 := arg max
k∈I−i

{
Y k,N−1
τε1

− gikτε1
}
,

and for n ≥ 2,

• ξ̂n = arg max
k∈I−ξ̂n−1

{
Y k,N−nτεn

− gξ̂n−1k
τεn

}
.

Note that by (4.5) the process (Y i,Ns +
∫ s
t
ψirdr)t≤s≤τε1 is a super-martingale. Hence, its Doob-Meyer

decomposition is given by (Ms −Ks)t≤s≤τε1 (recall that M is a martingale and K a non-decreasing process),
then by definition of τε1 , we have that Ks = 0 on s ∈ [t, τε1 ], i.e., (Y i,Ns +

∫ s
t
ψirdr)t≤s≤τε1 is a martingale.

Therefore,

Y i,Nt = E
[
Y i,Nτε1 +

∫ τε1

t

ψirdr
∣∣∣Ft]

≤ E
[

max
k∈I−i

(
Y k,N−1
τε1

− gikτε1
)
1[τε1<T ] + ε

2 +

∫ τε1

t

ψirdr
∣∣∣Ft]

= E
[(
Y ξ̂1,N−1
τε1

− giξ̂1τε1
)
1[τε1<T ] + ε

2 +

∫ τε1

t

ψirdr
∣∣∣Ft]

= E
[ ∫ τε1

t

ψirdr − g
iξ̂1
τε1

1[τε1<T ] + Y ξ̂1,N−1
τε1

1[τε1<T ]

∣∣∣Ft]+
ε

2
.

(4.7)

Analogously, taking:

τε2 = inf
{
s ≥ τε1 , Y ξ̂1,N−1

s ≤ max
k∈I−ξ̂1

(
Y k,N−2
s − gξ̂1ks

)
+
ε

4

}
∧ T

we have again that (Y ξ̂1,N−1
s +

∫ s
τε1
ψξ̂1r dr)τε1≤s≤τε2 is a martingale. Arguing similarly as above, we have

Y ξ̂1,N−1
τε1

= E
[
Y ξ̂1,N−1
τε2

+

∫ τε2

τε1

ψξ̂1r dr
∣∣∣Fτε1 ]

≤ E
[

max
k∈I−ξ̂1

(
Y k,N−2
τε2

− gξ̂1kτε2
)
1[τε2<T ] + ε

4 +

∫ τε2

τε1

ψξ̂1r dr
∣∣∣Fτε1 ]

= E
[(
Y ξ̂2,N−2
τε2

− gξ̂1ξ̂2τε2

)
1[τε2<T ] + ε

4 +

∫ τε2

τε1

ψξ̂1r dr
∣∣∣Fτε1 ]

= E
[ ∫ τε2

τε1

ψξ̂1r dr − g
ξ̂1ξ̂2
τε2

1[τε2<T ] + Y ξ̂2,N−2
τε2

1[τε2<T ]

∣∣∣Fτε1 ]+
ε

4
.

(4.8)

Plugging (4.8) into (4.7), rearranging terms and since that [τε2 < T ] ⊂ [τε1 < T ], we see that

Y i,Nt ≤ E

[
1∑
j=0

(∫ τεj+1

τεj

ψξ̂jr dr − g
ξ̂j ξ̂j+1

τεj+1
1[τεj+1<T ]

)
+ Y ξ̂2,N−2

τε2
1[τε2<T ]

∣∣∣∣Ft
]

+
ε

2
+
ε

4
.
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Repeating this procedure N times, we obtain

Y i,Nt ≤ E

[
N−1∑
j=0

(∫ τεj+1

τεj

ψξ̂js ds− g
ξ̂j ξ̂j+1

τεj+1
1[τεj+1<T ]

)
+ Y ξ̂N ,0τεN

1[τεN<T ]

∣∣∣∣Ft
]

+ ε

(
N∑
i=1

1

2i

)
. (4.9)

But

Y ξ̂N ,0τεN
= E

[ ∫ T

τεN

ψξ̂Ns ds
∣∣∣FτN]. (4.10)

Plugging (4.10) into (4.9), and noting that
(∑n

i=1
1
2i

)
< 1, we deduce

Y i,Nt ≤ E

[
N∑
j=0

∫ τεj+1

τεj

ψξ̂js ds−
N−1∑
j=0

g
ξ̂j ξ̂j+1

τεj+1
1[τεj+1<T ]

∣∣∣∣Ft
]

+ ε for all ε > 0.

Since (τεn, ξ̂n)0≤n≤N+1 belongs to Ai,Nt , we can take the essential supremum over S ∈ Ai,Nt and then let ε→ 0
to obtain

Y i,Nt ≤ ess sup
S∈Ai,Nt

E

[
N∑
j=0

∫ τj+1

τj

ψξ̂js ds−
N−1∑
j=0

gξ̂j ξ̂j+1
τj+1

1[τj+1<T ]

∣∣∣∣Ft
]
. (4.11)

Now we derive the inverse inequality. Let S = (τn, ξn) ∈ Ai,Nt be an arbitrary strategy. Since τ1 ≥ t, P-a.s.,
and ξ0 = i, then from (4.5) we have

Y i,Nt = ess sup
τ≥t

E
[ ∫ τ

t

ψisds+ max
k∈I−i

(
Y k,N−1
τ − gikτ

)
1[τ<T ]

∣∣∣Ft]

≥ E
[ ∫ τ1

t

ψisds+ max
k∈I−i

(
Y k,N−1
τ1 − gikτ1

)
1[τ1<T ]

∣∣∣Ft]

≥ E
[ ∫ τ1

t

ψisds+
(
Y ξ1,N−1
τ1 − giξ1τ1

)
1[τ1<T ]

∣∣∣Ft].
(4.12)

In the same way, since τ2 ≥ τ1 and τ1 is also Fτ2 - measurable, then

Y ξ1,N−1
τ1 = ess sup

τ≥τ1
E
[ ∫ τ

τ1

ψξ1s ds+ max
k∈I−ξ1

(
Y k,N−2
τ − gξ1kτ

)
1[τ<T ]

∣∣∣Fτ1]

≥ E
[ ∫ τ2

τ1

ψξ1s ds+ max
k∈I−ξ1

(
Y k,N−2
τ2 − gξ1kτ2

)
1[τ2<T ]

∣∣∣Fτ1]

≥ E
[ ∫ τ2

τ1

ψξ1s ds+
(
Y ξ2,N−2
τ2 − gξ1ξ2τ2

)
1[τ2<T ]

∣∣∣Fτ1].
Plugging this last inequality into (4.12), rearranging terms and using that [τ2 < T ] ⊂ [τ1 < T ] ∈ Fτ1 , we see
that

Y i,Nt ≥ E

[
1∑
j=0

(∫ τj+1

τj

ψξjs ds− gξjξj+1
τj 1[τj+1<T ]

)
+ Y ξ2,N−2

τ2 1[τ2<T ]

∣∣∣∣Ft
]
.

Iterating this procedure, we have

Y i,Nt ≥ E

[
N−1∑
j=0

(∫ τj+1

τj

ψξjs ds− gξjξj+1
τj+1

1[τj+1<T ]

)
+ Y ξN ,0τN 1[τN<T ]

∣∣∣∣Ft
]
.
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But again, since Y ξN ,0τN = E
[ ∫ T
τN
ψξns ds

∣∣FτN ], we get

Y i,Nt ≥ E

[
N∑
j=0

∫ τj+1

τj

ψξjs ds−
N−1∑
j=0

gξjξj+1
τj+1

1[τj+1<T ]

∣∣∣∣Ft
]

for all S ∈ Ai,Nt .

Thus, taking the essential supremum on Ai,Nt , we get

Y i,Nt ≥ ess sup
S∈Ai,Nt

E

[
N∑
j=0

∫ τj+1

τj

ψξjs ds−
N−1∑
j=0

gξjξj+1
τj+1

1[τj+1<T ]

∣∣∣∣Ft
]
.

This last inequality together with (4.11), yield the characterization (4.6).

Since Ai,nt ⊂ A
i,n+1
t , we have Y i,nt ≤ Y i,n+1

t , P-a.s. for all t ∈ [0, T ]. On the other hand, by assumption (C),
we obtain for each i ∈ I,

Y i,nt ≤ E
[ ∫ T

t

max
[i=1,...,q]

∣∣ψis∣∣ ds∣∣∣Ft] for all t ≤ T and n ≥ 0

and hence the sequence (Y i,nt )n≥1 is convergent. We now let Y it := limn→∞ Y i,nt for t ≤ T . Note that the
process Y i· satisfies

Y i,0t ≤ Y it ≤ E
[ ∫ T

t

max
[i=1,...,q]

∣∣ψis∣∣ ds∣∣∣Ft] for all t ≤ T. (4.13)

Besides, Y i· is also càdlàg process. Indeed, from (4.5) the process (Y i,nt +
∫ t

0
ψisds)0≤t≤T is a càdlàg super-

martingale for all i ∈ I and n ≥ 1. Thus its limit process (Y it +
∫ t

0
ψisds)0≤t≤T is càdlàg, as it is a limit

of increasing sequence of càdlàg super-martingales (see Dellacherie and Meyer [[14], p. 86]), which gives
the desired càdlàg property of Y i. . Moreover, from (4.13), the L2-properties of ψi and by Doob’s maximal
inequality, for each i ∈ I, we have

E
[

sup
0≤t≤T

∣∣Y it ∣∣2 ] <∞,
and hence by the Lebesgue Dominated Convergence Theorem, the sequence (Y i,n· )n≥0 converges to Y i· in H2.
Thus, by Snell envelope properties (see Proposition 2.5-(iv)), the càdlàg processes Y 1

· , . . . , Y
q
· satisfy (4.4).

Let us show now some properties of the ε-strategy introduced in Theorem 4.1.

Proposition 4.2. The ε-strategy Sε = (τεn, ξ
ε
n)n≥0 defined as follows:

• τε0 := 0, τε1 := inf
{
s ≥ 0 : Y is ≤ max

k∈I−i

(
Y ks − giks

)
+ ε

2

}
∧ T ,

and, for n ≥ 2,

• τεn := inf
{
s ≥ τεn−1 : Y

ξεn−1
s ≤ max

k∈I−ξ
ε
n−1

(
Y ks − g

ξεn−1k
s

)
+ ε

2n

}
∧ T ,

and the sequence (ξεn) given by

• ξε0 := i, ξε1 = arg max
k∈I−i

{
Y kτε1 − g

ik
τε1

}
,

and for n ≥ 2,

• ξεn = arg max
k∈I−ξn−1

{
Y kτεn − g

ξ̂n−1k
τεn

}
,

is admissible.
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Proof. We proceed by a reductio ad absurdum argument. Suppose that Sε is not admissible, that is,
P[τεn < T, for all n ≥ 1] > 0. Then, by definition of τεn we have

P
[
Y
ξεn−1

τεn
≤ Y ξ

ε
n

τεn
− gξ

ε
n−1ξ

ε
n

τεn
+

ε

2n
, ξεn ∈ I−ξ

ε
n−1 ,∀n ≥ 1

]
> 0.

If the event B = {ω ∈ Ω : τεn(ω) < T, ∀n ≥ 1} has positive probability, then there is a state i1 ∈ I, a loop
i1, i2 . . . , ik (with i1 = ik) of elements of I (recall that I is a finite set), and a subsequence τεn, . . . , τ εn+k

corresponding to this configuration such that

P
[
Y ilτεn+l

≤ Y il+1

τεn+l
− gil,il+1

τεn+l
+

ε

2n
, l = 1, . . . k − 1, (ik = i1),∀n ≥ 0

]
> 0. (4.14)

Since (τεn)n≥1 is monotone and bounded, then we can define τ := limn→∞ τεn. Taking the limit with respect
to n in (4.14), we obtain

P
[
Y ilτ− ≤ Y

il+1

τ− − gil,il+1

τ− , l = 1, . . . k − 1, (ik = i1)
]
> 0. (4.15)

It is easy to verify that{
Y ilτ− ≤ Y

il+1

τ− − gil,il+1

τ− , l = 1, . . . k − 1, (ik = i1)
}
⊆
{
gi1,i2τ− + · · ·+ g

ik−1,i1
τ− ≤ 0

}
,

then from (4.15) we have

P
[
gi1,i2τ− + · · ·+ gik,i1τ− ≤ 0

]
> 0.

Since gij ≥ γ > 0 P-a.s., we have a contradiction. Therefore, Sε is admissible.
Our next result has to do with a so-called verification theorem for the switching problem (4.3) in the

context of càdlàg cost functions.

Theorem 4.3. The q S2-processes (Y i· :=
(
Y it
)
t≤T , i = 1, . . . , q) in Theorem 4.1 are unique and they have

the following relation with the switching problem (4.3):

(i) For each i ∈ I,
Y i0 = sup

S∈Ai
J i(S). (4.16)

(ii) The ε-strategy Sε defined in Proposition 4.2 forms an ε-optimal strategy, i.e., for Sε = (τεn, ξ
ε
n)n≥0,

J i (Sε) ≥ sup
S∈Ai

J i(S)− ε. (4.17)

Proof.

(i) Assuming that at time t = 0 the system is in mode i, it follows by (4.4) that, for any 0 ≤ t ≤ T ,

Y it +

∫ t

0

ψi(s)ds = ess sup
τ≥t

E
[ ∫ τ

0

ψisds+ max
k∈I−i

(
Y kτ − gikτ

)
1[τ<T ]

∣∣∣Ft].
Since Y i0 is F0-measurable, it is a P-a.s. constant, that is, Y i0 = E

[
Y i0
]
. Now take Sε defined in

Proposition 4.2. Arguing similarly to Theorem 4.1, we can deduce

Y i0 ≤ E
[ ∫ τε1

0

ψisds+ max
k∈I−i

(
Y kτε1 − g

ik
τε1

)
1[τε1<T ]

]
+
ε

2

= E
[ ∫ τε1

0

ψisds+
(
Y
ξε1
τε1
− giξ

ε
1

τε1

)
1[τε1<T ]

]
+
ε

2
.

(4.18)
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The rest of the proof uses the same arguments as in the proof of Theorem 4.1. Namely, for every
τε1 ≤ t ≤ T , we can deduce

Y
ξε1
t = ess sup

τ≥t
E
[ ∫ τ

t

ψ
ξε1
s ds+ max

j∈I−ξ
ε
1

(
Y jτ − g

ξε1j
τ

)
1[τ<T ]

∣∣∣Ft].
Then, from the definition of τε2 and since (Y

ξε1
t +

∫ t
τε1
ψ
ξε1
s ds)τε1≤t≤τε2 is a martingale, we get

Y
ξε1
τε1

≤ E
[ ∫ τε2

τε1

ψ
ξε1
s ds+ max

j∈I−ξ
ε
1

(
Y jτε2 − g

ξε1j
τε2

)
1[τε2<T ]

∣∣∣Fτε1 ]+
ε

4

= E
[ ∫ τε2

τε1

ψ
ξε1
s ds+

(
Y
ξε2
τε2
− gξ

ε
1ξ
ε
2

τε2

)
1[τε2<T ]

∣∣∣Fτε1 ]+
ε

4
.

(4.19)

Plugging (4.19) into (4.18) and noting that 1[τε1<T ] is Fτε1 -measurable, it follows that:

Y i0 ≤ E
[ ∫ τε1

0

ψisds− g
iξε1
τε1

1[τε1<T ]

]

+E
[ ∫ τε2

τε1

ψ
ξε1
s ds+

(
Y
ξε2
τε2
− gξ

ε
1ξ
ε
2

τε2

)
1[τε2<T ]

]
+ ε

(
1

2
+

1

4

)
.

= E

[
1∑
j=0

(∫ τεj+1

τεj

ψ
ξεj
s ds− g

ξεj ξ
ε
j+1

τεj
1[τεj+1<T ]

)
+ Y

ξε2
τε2

1[τε2<T ]

]
+ ε

(
1

2
+

1

4

)
since [τε2 < T ] ⊂ [τε1 < T ]. Repeating this procedure n times, we obtain

Y i0 ≤ E

[
n−1∑
j=0

(∫ τεj+1

τεj

ψ
ξεj
s ds− g

ξεj ξ
ε
j+1

τεj+1
1[τεj+1<T ]

)
+ Y

ξεn
τεn

1[τεn<T ]

]
+ ε

(
1

2
+ · · ·+ 1

2n

)
.

Taking liminf as n→∞ we obtain

Y i0 ≤ E

[ ∞∑
j=0

(∫ τεj+1∧T

τεj ∧T
ψ
ξεj
s ds− g

ξεj ξ
ε
j+1

τεj+1
1[τεj+1<T ]

)]
+ ε. (4.20)

By Proposition 4.2 we can take supremum over all admissible strategies Ai, to obtain

Y i0 ≤ sup
S∈Ai

E

[ ∞∑
j=0

(∫ τj+1∧T

τj∧T
ψξjs ds− gξjξj+1

τj+1
1[τj+1<T ]

)]
+ ε

= sup
S∈Ai

J i(S) + ε.

Letting ε→ 0, it follows that Y i0 ≤ supS∈Ai J
i(S). The inverse inequality is analogous to the previous

Theorem 4.1. Hence, the result follows.

(ii) From part (i), specifically, (4.16) and inequality (4.20), we deduce

sup
S∈Ai

J i(S)− ε ≤ J i(Sε) ≤ sup
S∈Ai

J i(S),

which proves (ii). �
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4.3 Systems of RBSDEs with càdlàg barriers

In this section we will provide the existence as well as uniqueness of the solution of the system of reflected
backward stochastic differential equations (RBSDEs) of type

∀i ∈ I, find
(
Y i· , Z

i
· ,K

i
·
)

such that :

Y i· ,K
i
· ∈ S2 and Zi· ∈ H2,d; Ki

· is non-decreasing and Ki
0 = 0,

Y is = hi(XT ) +

∫ T

s

f i(r,Xr, Y
1
r , . . . , Y

q
r , Z

i
r)dr +Ki

T −Ki
s −

∫ T

s

ZirdBr for all 0 ≤ s ≤ T,

Y is ≥ max
k∈I−i

{
Y ks − γik(s,Xs)

}
for all 0 ≤ s ≤ T,

and if Ki
· = Ki,c

· +Ki,d
· , where Ki,c

· (resp. Ki,d
· ) is the continuous

(resp. purely discontinuous) part of Ki
· , then:∫ T

0

(
Y ir − max

k∈I−i

{
Y kr − γik(r,Xr)

})
dKi,c

r = 0.

∆Ys := Ys − Ys− = −
(

max
k∈I−i

{
Y ks − γik(s,Xs)

}
− Y is

)+

for all 0 ≤ s ≤ T,

(4.21)

in which the associated barriers are càdlàg processes. This system is connected with the previous switching
problem. Actually when (f i)i∈I do not depend on (Y i)i∈I , the system (4.21) is exactly the translation of
the verification Theorem 4.1 in terms of reflected BSDEs as it is well-known that the Snell envelope can be
expressed through reflected BSDEs (see e.g. El Karoui [22] or Hamadène [27]). On the other hand, this
form of system (4.21) allows to consider switching problems when the cost functions are of risk sensitive type
(utility functions) —see El Karoui and Hamadène [24].

To begin with our analysis, we will first introduce the following assumptions related to the items involved
in (4.21): These hypotheses are the same ones as those established in Chapter 3, but here the switching cost
are no longer continuous, just càdlàg, and we repeat them here for easy of reference.

Remark 4.2. We warn the reader that the index k plays a different role here as it is used as a switching
index, whereas in Chapter 3 it was used to denote the dimension of the forward Markov process X· Actually
in this Chapter the dimension of this later Markov process will be denoted by Rr.

Assumption H.

(H1) : The stochastic process (Xt)t≥0 is in H2,r for any r ∈ N.

(H2) : For any i ∈ I, the function f i : [0, T ]× Rr × Rq × Rd → R satisfies:

(i) (t, x) 7→ f i
(
t, x, y1, . . . , yq, z

)
is continuous uniformly with respect to (y1, . . . , yq, z);

(ii) f i is uniformly Lipschitz continuous in the following sense: for some C ≥ 0,∣∣f i(t, x, y1, . . . , yq, z)− f i(t, x, ȳ1, . . . , ȳq, z̄)
∣∣ ≤ C (∣∣y1 − ȳ1

∣∣+ · · ·+ |yq − ȳq|+ |z − z̄|
)
.

(iii) the mapping (t, x) 7→ f i(t, x, 0, . . . , 0) is of polynomial growth.
(iv) monotonicity : For all i ∈ I, for all k ∈ I−i, the mapping yk 7→ f i(t, x, y1, . . . , yk−1, yk, yk+1, . . . , yq, z)

is non-decreasing whenever the other components (t, x, y1, . . . , yk−1, yk+1, . . . , yq, z) are fixed.

(H3) : For each i, k ∈ I, the function γik : [0, T ] × Rr → R is bounded from below, i.e. there exists a real
constant γ > 0 such that, γik ≥ γ. Furthermore it is càdlàg in t, continuous and of polynomial growth
in x.

(H4) : For each i ∈ I, the function hi : Rr → R is continuous with polynomial growth and satisfies

∀x ∈ Rr, hi(x) ≥ max
k∈I−i

(
hk(x)− γik(T, x)

)
.
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Note that in (4.21), the process X does not play a specific role. In later sections, this process will have a
specific dynamic and thus the system (4.21) can be associated to a system PDEs.

Proposition 4.4. Under Assumption H, the system of RBSDEs (4.21) has a solution (Y i· , Z
i
· ,K

i
· )i=1,...,q.

Proof. To begin with, we first consider the following standard BSDEs:(Y ·, Z ·) ∈ S2 ×H2,d ;

Y s = max
i=1,...,q

hi(XT ) +

∫ T

s

[
max
i=1,...,q

f i
]
(r,Xr, Y r, . . . , Y r, Zr)dr −

∫ T

s

ZrdBr, for all s ≤ T,
(4.22)

and(Y ·, Z ·) ∈ S2 ×H2,d ;

Y s = min
i=1,...,q

hi(XT ) +

∫ T

s

[
min

i=1,...,q
f i
]
(r,Xr, Y r, . . . , Y r, Zr)dr −

∫ T

s

ZrdBr, for all s ≤ T.
(4.23)

It is easy to verify that under Assumption H, the data of (4.22) and (4.23) satisfy the conditions of Pardoux
and Peng’s Theorem 2.6, then there exist unique solutions of both (4.22) and (4.23). To solve the system
(4.21), we shall use an iterative method and regard (4.21) as a limit system. To this end, for any i ∈ I, we set
Y i,0· := Y ·, and for n ≥ 1, we seek a triplet (Y i,n· , Zi,n· ,Ki,n

· ) such that, for n ≥ 1:

Y i,n· ,Ki,n
· ∈ S2 and Zi,n· ∈ H2,d; Ki,n

· is non-decreasing with Ki,n
0 = 0,

Y i,ns = hi(XT ) +

∫ T

s

f i(r,Xr, Y
1,n−1
r , . . . , Y i−1,n−1

r , Y i,nr , Y i+1,n−1
r , . . . Y q,n−1

r , Zi,nr )dr

+Ki,n
T −Ki,n

s −
∫ T
s
Zi,nr dBr, for all 0 ≤ s ≤ T ;

Y i,ns ≥ max
k∈I−i

{
Y k,n−1
s − γik(s,Xs)

}
, for all 0 ≤ s ≤ T,

and if Ki,n
· = Ki,n,c

· +Ki,n,d
· , where Ki,n,c

· (resp. Ki,n,d
· ) is the continuous

(resp. purely discontinuous) part of Ki,n
· , then:∫ T

0

(
Y i,nr − max

k∈I−i

{
Y k,n−1
r − γik(r,Xr)

})
dKi,n,c

r = 0 ;

∆Ys := Y i,ns − Y i,ns− = −
(

max
k∈I−i

{
Y k,n−1
s − γik(s,Xs)

}
− Y i,ns

)+

, for all 0 ≤ s ≤ T.

Note that for each k ∈ I the process Y k,0· is given. Then, by letting

f̃ i(s, Y i,1s , Zi,1s ) := f i(s,Xs, Y
1,0
s , . . . , Y i−1,0

s , Y i,1s , Y i+1,0
s , . . . Y q,0s , Zi,1s )

for i ∈ I, the data of the RBSDE associated with (Y i,1· , Zi,1· ,Ki,1
· ) satisfy the assumptions in Hamadène

[27], Theorem 1.4, and hence the processes (Y i,1· , Zi,1· ,Ki,1
· ) do exist. Next, using the comparison theorem of

solutions of BSDEs (see Theorem 2.7), we deduce that for any i ∈ I, Y i,0· ≤ Y i,1· . Besides, as f i satisfies the
monotonicity property (H2)-(iv) and using again the comparison of solutions of RBSDEs with càdlàg barrier
(see Theorem 1.5 in Hamadène [27]), we obtain by induction that:

for all n ≥ 1 and i ∈ I, Y i,n· ≤ Y i,n+1
· . (4.24)

On the other hand, the process (Y ·, Z ·) in (4.22), can be regarded as the triplet ((Y
i

· , Z
i

· , 0))i∈I (i.e. Ki
· = 0),

which is a solution for the system of RBSDEs with data

([ max
i=1,...,q

f i](t,Xt, y
1, . . . , yq, z), γik(t,Xt), max

i=1,...,q
hi(XT )), i, k ∈ I.

Note that
f i(t, Y t, Zt) := f i(t,Xt, Y

1,0
t , . . . , Y t, . . . , Y

q,0
t , Zt)

≤ maxi=1,...,q f
i(t,Xt, Y t, . . . , Y t, . . . , Y t, Zt)

:= maxi=1,...,q f
i(t, Y t, Zt),
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where the above inequalities follow since f i satisfies the monotonicity property (H2)-(iv) and due that, for
each k ∈ I−i (the fixed processes), Y k,0· = Y · ≤ Y ·. Therefore, by comparison Theorem 1.5 in Hamadène [27],
we get that Y i,1· ≤ Y ·. In general, through an induction procedure, we can obtain for all n ≥ 0 and i ∈ I,
Y i,n· ≤ Y · and hence

Y · = Y i,0· ≤ Y i,n· ≤ Y i,n+1
· ≤ Y ·. (4.25)

Arguing as in the last part of Theorem 4.1, we can see that there exists Y i· such that Y i,n· ↗ Y i· and
E
[

sup0≤t≤T
∣∣Y it ∣∣2 ] <∞. Therefore, using Peng’s Monotonic Limit Theorem (see Theorem 2.1 and Theorem

3.6 in Peng [46]), we deduce that for any i ∈ I, the limit process Y i· is a càdlàg process and that there exists
(Zi· ,K

i
· ) ∈ H2,d × S2 with Ki non-decreasing process and Ki

0 = 0 such that: ∀s ≤ T ,Y
i
s = hi(XT ) +

∫ T

s

f i(r,Xr, Y
1
r , . . . , Y

i
r , . . . , Y

q
r , Z

i
r)dr +Ki

T −Ki
s −

∫ T

s

ZirdBr ;

Y is ≥ max
k∈I−i

{
Y ks − γik(s,Xs)

}
.

Now we claim that
(
Y i, Zi,Ki

)
i=1,...,q

is, in fact, the desired solution of (4.21). Indeed, consider the RBSDEs
at the i-th variable and the other variables Y 1, . . . , Y i−1, Y i+1, . . . , Y q fixed, that is to say

∀i ∈ I, find
(
Ỹ i· , Z̃

i
· , K̃

i
·

)
such that :

Ỹ i· , K̃
i
· ∈ S2 and Z̃i· ∈ H2,d; K̃i

· is non-decreasing and K̃i
0 = 0

Ỹ is = hi(XT ) +

∫ T

s

f i(r,Xr, Y
1
r , . . . , Y

i−1
r , Ỹ ir , Y

i+1
r , . . . Y qr , Z

i
r)dr + K̃i

T − K̃i
s −

∫ T

s

Z̃irdBr, for all 0 ≤ s ≤ T ;

Ỹ is ≥ max
k∈I−i

{
Y ks − γik(s,Xs)

}
for all 0 ≤ s ≤ T

and if K̃i
· = K̃i,c

· + K̃i,d
· , where K̃i,c

· (resp.K̃i,d
· ) is the continuous

(resp. purely discontinuous) part of K̃i, then:∫ T

0

(
Ỹ ir − max

k∈I−i

{
Y kr − γik(r,Xr)

})
dK̃i,c

r = 0.

∆Ỹs := Ỹ is − Ỹ is− = −
(

max
k∈I−i

{
Y ks − γik(s,Xs)

}
− Ỹ is

)+

for all 0 ≤ s ≤ T.
(4.26)

The solution of (4.26) do exist by using again Theorem 1.4 in Hamadène [27]. Such a solution Ỹ i· becomes
the smallest f i-supermartingale that dominates maxk∈I−i

{
Y ks − γik(s,Xs)

}
(for more details on this last

assertion, see Peng and Xu [47]). But, the limit process Y i is also a f i-supermartingale dominating the same
barrier and thus Ỹ it ≤ Y it . On the other hand, since Y i,n−1

t ≤ Y it for any i ∈ I and n ≥ 1, we get

max
k∈I−i

{
Y k,n−1
s − γik(s,Xs)

}
≤ max
k∈I−i

{
Y ks − γik(s,Xs)

}
.

Also observe that assumptions (H2)-(iv) yields that

f i(t, x, Y 1,n−1
t , . . . , Ỹ it , . . . , Y

q,n−1
t , Zit) ≤ f i(t, x, Y 1

t , . . . , Ỹ
i
t , . . . , Y

q
t , Z

i
t).

Then using again the comparison theorem for RBSDEs given in Theorem 1.5 in Hamadène [27], we have
Y i,nt ≤ Ỹ it . This implies that Y it ≤ Ỹ it after taking limit n → ∞, and hence Ỹ it = Y it . Moreover, this also
implies that Z̃it = Zit and K̃i

t = Ki
t for any 0 ≤ t ≤ T , P-a.s. This proves the existence of solution for (4.21).

We now provide a representation result for the solutions of system (4.21) and, as a by-product, we obtain
the uniqueness. For later use, let us fix u. :=

(
u1
. , . . . , u

q
.

)
in H2,q and let us consider the following system of
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RBSDEs:

∀i ∈ I, find
(
Y u,i
· , Zu,i

· ,Ku,i
·

)
∈ S2 × S2 ×H2,d such that :

Y u,i
s = hi(XT ) +

∫ T

s

f i(r,Xr,ur, Zu,i
r )dr +Ku,i

T −K
u,i
s −

∫ T

s

Zu,i
r dBr for all 0 ≤ s ≤ T ;

Y u,i
s ≥ max

k∈I−i

{
Y u,k
s − γik(s,Xs)

}
for all 0 ≤ s ≤ T.

and if Ku,i
· = Ku,i,c

· +Ku,i,d
· , where Ki,u,c

· (resp.Ki,u,d
· ) is the continuous

(resp. purely discontinuous) part of Ku,i
· , then:∫ T

0

(
Y u,i
r − max

k∈I−i

{
Y u,k
r − γik(r,Xr)

})
dKi,u,c

r = 0.

∆Y u
s := Y u,i

s − Y u,i
s− = −

(
max
k∈I−i

{
Y u,k
s − γik(s,Xs)

}
− Y u,i

s

)+

for all 0 ≤ s ≤ T.

(4.27)

Observe that f i does not depend on Y 1, . . . , Y q. Let s ≤ T be fixed, i ∈ I and let Dis be the following set of
strategies as in Definition 4.1, such that:

Dis :=
{
α = (θn, κn)n≥0 : θ0 = s, κ0 = i and E[(CαT )2] <∞

}
where Cαr , r ≤ T , is the following cumulative costs up to time r, i.e.,

Cαr :=

∞∑
n=1

γκn−1,κn(θn, Xθn)1[θn≤r] for r < T and CαT = lim
r→T

Cαr , P-a.s.

Therefore and for any admissible strategy α ∈ Dis we have:

CαT =

∞∑
n=1

γκn−1,κn(θn, Xθn)1[θn<T ].

Consider a strategy α = (θn, κn)n≥0 ∈ Dis and let (Pα· , Q
α
· ) := (Pαs , Q

α
s )s≤T be the solution of the following

BSDE P
α
· is càdlàg and E

[
sups≤T |Pαs |

2 ]
<∞, Qα· ∈ H2,d;

Pαs = hα(XT ) +

∫ T

s

fα(r,Xr,ur, Qαr )dr − (CαT − Cαs )−
∫ T

s

Qαr dBr, s ≤ T,
(4.28)

with
hα(x) = hκn(x)1[θn<T≤θn+1] and

fα(r, x, v1, . . . , vq, z) :=
∞∑
n=0

fκn(r, x, v1, . . . , vq, z)1[θn≤r<θn+1).
(4.29)

Making the change of variable P̄α· := Pα· − Cα· , the equation in (4.28) is transformed in a standard BSDE.
Since Cα is adapted and E[(CαT )2] <∞, we easily deduce the existence and uniqueness of the process (Pα· , Q

α
· ).

We then have the following representation for the solution of (4.27).

Proposition 4.5. Assume that for any i, k ∈ I:

(i) f i satisfies (H2)-(ii),(iii);

(ii) γik (resp. hi) satisfies (H3) (resp. (H4)).

Then the solution of system of RBSDEs (4.27) exists, it is unique and satisfies:

Y u,i
s = ess sup

α∈Dis
{Pαs − Cαs } ∀s ≤ T, ∀i ∈ I. (4.30)
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Proof. Since f i does not depend on variables Y 1
· , . . . , Y

q
· , then, it trivially satisfies (H2)-(iv). Then,

by hypothesis (i) and (ii), and Proposition 4.4, the solution (Y u,i
· , Zu,i

· ,Ku,i
· ) of the system (4.27) exists.

Therefore, proceeding as in the proof of Theorem 3.3, we can plug an arbitrary strategy α ∈ Dis in (4.27) to
obtain

Y u,i
s ≥ hα(XT ) +

∫ T

s

fα(r,Xr,ur, Zαr )dr + K̃α
T − CαT −

∫ T

s

Zαr dBr. (4.31)

with hα and fα as in (4.29), and,

K̃α
T = (Ku,i

θ1
−Ku,i

s ) +

∞∑
n=1

(Ku,κn
θn+1

−Ku,κn
θn

) and Zαr =

∞∑
n=0

Zu,κn
r 1[θn≤r<θn+1),∀r ≤ T. (4.32)

Adding Cαs from both sides of (4.31) and taking into account that K̃α
T ≥ 0, we have

Y u,i
s + Cαs ≥ hα(XT ) +

∫ T

s

fα(r,Xr,ur, Zαr )dr − (CαT − Cαs )−
∫ T

s

Zαr dBr

= Pαs .

Therefore, we have
Y u,i
s ≥ ess sup

α∈Dis
{Pαs − Cαs } , ∀α ∈ Dis. (4.33)

Next let αε = (θεn, κ
ε
n)n≥0 be the strategy defined recursively as follows (compare to the ε-strategy Sε in

Proposition 4.2): θε0 = 0, κε0 = i and for n ≥ 0,

θεn+1 = inf

{
s ≥ θεn : Y

u,κεn
s ≤ max

k∈I−κεn

(
Y u,k
s − γκ

ε
n,k(s,Xs)

)
+

ε

2n+1

}
∧ T

and
κεn+1 = arg max

k∈I−κεn

{
Y u,k
θεn+1
− γκ

ε
n,k(θεn+1, Xθεn+1

)
}
.

In a similar manner as in the proof of Proposition 4.2, we can ensure that αε ∈ Dis satisfies that P [θεn <
T, ∀n ≥ 0] = 0. Let us prove now that E

[
(Cα

ε

T )2
]
<∞ and that αε is ε-optimal in Dis for the problem (4.30).

Following the strategy αε and since (Y u,i)i∈I solves the RBSDE (4.27), it turns out that,

Y u,i
s ≤ Y u,κεn

θεn
+

∫ θεn

s

fα
ε

(r,Xr,ur, Zα
ε

r )dr − Cα
ε

θεn
−
∫ θεn

s

Zα
ε

r dBr + ε

n∑
i=1

1

2i
, ∀n ≥ 1 (4.34)

since Ku,κεn
r −Ku,κεn

θεn
= 0 for θεn ≤ r < θεn+1. Taking now the limit with respect to n in (4.34) we get:

Y u,i
s ≤ hα

ε

(XT ) +

∫ T

s

fα
ε

(r,Xr,u, Zα
ε

r )dr − Cα
ε

T −
∫ T

s

Zα
ε

r dBr + ε, (4.35)

and thus

Cα
ε

T ≤ |Y u,i|+ |hα
ε

(XT )|+
∫ T

s

|fα
ε

(r,Xr,u, Zα
ε

r )|dr +

∫ T

s

|Zα
ε

r |dBr + ε. (4.36)

Using the assumptions (H4) and (H2)-(ii),(iii) applied for hi and f i respectively, and since u ∈ H2,q,
Zα

ε ∈ H2,d, and (Y 1,u
· , . . . , Y q,u· ) ∈ (S2)q, we deduce from (4.36) that E[(Cα

ε

T )2] < ∞. The last assertion
together with the admisibility of αε show that αε ∈ Dis. On the other hand, from (4.35), we have

Y u,i
s ≤ hαε(XT ) +

∫ T

s

fα
ε

(r,Xr,u, Zα
ε

r )dr − Cα
ε

T −
∫ T

s

Zα
ε

r dBr + ε

= Pα
ε

s − Cα
ε

s + ε.

(4.37)
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Taking supremum over all α ∈ Dis, and next letting ε → 0 we deduce that Y u,i
s ≤ ess supα∈Dis {P

α
s − Cαs }.

This last fact together with (4.33) yield (4.30). Therefore, we obtain that the solution of (4.27) is unique.
Next for u := (u1, . . . , uq) ∈ H2,q let us define

Φ(u) := (Y u,1
· , . . . , Y u,q

· ),

where (Y u,i
· , Zu,i

· ,Ku,i
· )i=1,...,q is the solution of system (4.27) which exists and is unique under the assumptions

of Proposition 4.5. Note that the processes (Y u,i
· , . . . , Y u,q

· ) belong to (S2)q ⊆ H2,q. Hence, Φ is a mapping
from H2,q to H2,q.

We introduce the norm defined on H2,q by

∥∥(u1, . . . , uq)
∥∥2

β
:= E

[∫ T

0

eβs

(
q∑
i=1

∣∣uis∣∣2
)
ds

]
.

Note that ‖w‖H2,q ≤ ‖w‖β ≤ eβT ‖w‖H2,q , for all w ∈ H2,q, implies that these norms are equivalent. For sake
of completeness, we present the following result, established in Chassagneux et al. [10], which ensures that Φ
is a contraction on the Banach space (H2,q, ‖·‖β).

Proposition 4.6. Assume that for any i, j ∈ I the following hypotheses are in force:

(i) f i verifies (H2)-(ii),(iii);

(ii) γij (resp. hi) verifies (H3) (resp. (H4)).

Then, there exists β0 ∈ R such that the mapping Φ is a contraction operator on (H2,q, ‖·‖β0
). Therefore Φ has

a fixed point (Y 1
· , . . . , Y

q
· ) which belongs to (S2)q and which provides a unique solution for system (4.21).

Proof. Let u,v ∈ H2,q and consider the respective images under Φ, Y u,i
· := Φ(u) and Y v,i

· := Φ(v).
Besides, let us introduce the following “auxiliary dominating” RBSDE, for i ∈ I:

Y̌ is = hi(XT ) +
∫ T
s
f̌ i(r,Xr, Ž

i
r)dr + Ǩi

T − Ǩi
s −

∫ T
s
ŽirdBr for all 0 ≤ s ≤ T,

Y̌ is ≥ max
k∈I−i

{
Y̌ ks − γik(s,Xs)

}
for all 0 ≤ s ≤ T,∫ T

0

(
Y̌ is − max

k∈I−i

{
Y̌ ks − γik(s,Xs)

})
dǨi,c

s = 0.

∆sY̌
i
· := Y̌ is − Y̌ is− = −

(
max
k∈I−i

{
Y̌ ks − γik(s,Xs)

}
− Y̌ is

)+

for all 0 ≤ s ≤ T

(4.38)

where f̌ i(s,Xs, z
i) = max{f i(s,Xs,ur, zi), f i(s,Xs,vr, zi)}, and Ǩi,c

· and Ǩi,d
· are the continuous and

discontinuous parts of Ǩi. Note that by Proposition 4.5 a unique solution (Y̌ i· , Ž
i
· , Ǩ

i
· ) exists for (4.38).

For s ∈ [0, T ] fixed, and for any α ∈ Dis, denote by (Uα· , Z
α
· ),(Ūα· , Z̄α· ) and (Ǔα· , Ž

α
· ) the respective solutions

of the following one-dimensional BSDEs: ∀s ≤ T ,

Uαs = hα(XT ) +
∫ T
s
fα(r,Xr,ur, Zαr )dr − (CαT − Cαs )−

∫ T
s
Zαr dBr,

Ūαs = hα(XT ) +
∫ T
s
fα(r,Xr,vr, Z̄αr )dr − (CαT − Cαs )−

∫ T
s
Z̄αr dBr,

Ǔαs = hα(XT ) +
∫ T
s
f̌α(r,Xr, Ž

α
r )dr − (CαT − Cαs )−

∫ T
s
Žαr dBr.

We deduce from Proposition 4.5 that

Y u,i
s = ess sup

α∈Dis
{Uαs − Cαs } , Y v,i

s = ess sup
α∈Dis

{
Ūαs − Cαs

}
, Y̌ is = ess sup

α∈Dis

{
Ǔαs − Cαs

}
. (4.39)

Besides, note that for an ε-optimal strategy αε ∈ Dis, we have

Y̌ is ≤ Ǔα
ε

s − Cα
ε

s + ε. (4.40)
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Using a comparison argument, we easily check that Ǔα· ≥ Uα· ∨ Ūα· for any strategy α ∈ Dis, and hence, by
(4.39) we get that Y̌ is ≥ Y u,i

s ∨ Y v,i
s . Therefore, taking into account the last two inequalities and (4.40), we

get that

Uα
ε

s − Cα
ε

s ≤ Y u,i
s ≤ Y̌ is ≤ Ǔα

ε

s − Cα
ε

s + ε and Ūα
ε

s − Cα
ε

s ≤ Y v,i
s ≤ Y̌ is ≤ Ǔα

ε

s − Cα
ε

s + ε.

This implies ∣∣Y u,i
s − Y v,i

s

∣∣ ≤ ∣∣∣Ǔαεs − Uαεs ∣∣∣+
∣∣∣Ǔαεs − Ūαεs ∣∣∣+ 2ε,

and by using the inequality (a+ b+ c)2 ≤ 4a2 + 4b2 + 2c2, we have∣∣Y u,i
s − Y v,i

s

∣∣2 ≤ 4
∣∣∣Ǔαεs − Uαεs ∣∣∣2 + 4

∣∣∣Ǔαεs − Ūαεs ∣∣∣2 + 4ε2. (4.41)

Now, applying Itô’s formula to eβs
∣∣Ǔαεs − Uαεs ∣∣2, using the inequality |x ∨ y − y| ≤ |x− y| and the fact that

fαε is Lipschitz, taking expectation, to obtain: ∀s ≤ T ,

E
[
eβs
∣∣Ǔαεs − Uαεs ∣∣2 +

∫ T
s
eβr
∣∣Žαεr − Zαεr ∣∣2 dr] ≤ −E[ ∫ Ts βeβr

∣∣Ǔαεr − Uαεr ∣∣2 dr]
+2CE

[ ∫ T
s
eβr
∣∣Ǔαεr − Uαεr ∣∣ (|vr − ur|+

∣∣Žαεr − Zαεr ∣∣) dr].
The inequalities 2ab ≤ βa2 + 1

β b
2 and (a+ b)2 ≤ 2a2 + 2b2 also imply

E
[
eβs
∣∣Ǔαεs − Uαεs ∣∣2 ]+ E

[ ∫ T
s
eβr
∣∣Žαεr − Zαεr ∣∣2 dr] ≤ −E[ ∫ Ts βeβr

∣∣Ǔαεr − Uαεr ∣∣2 dr]
+E
[ ∫ T

s

{
βeβr

∣∣Ǔαεr − Uαεr ∣∣2 + 2C2

β eβr |vr − ur|2 + 2C2

β eβr
∣∣Žαεr − Zαεr ∣∣2 }dr].

Rearranging terms, we obtain:

E
[
eβs
∣∣∣Ǔαεs − Uαεs ∣∣∣2 ]+

(
1− 2C2

β

)
E
[ ∫ T

s

eβr
∣∣∣Žαεr − Zαεr ∣∣∣2 dr] ≤ 2C2

β
E
[ ∫ T

s

eβr |vr − ur|2 dr
]
.

Taking β ≥ 2C2, we get

E
[
eβs
∣∣∣Ǔαεs − Uαεs ∣∣∣2 ] ≤ 2C2

β
E
[ ∫ T

0

eβr |vr − ur|2 dr
]
.

Now, an analogous procedure to eβs
∣∣Ǔαεs − Ūαεs ∣∣2 lead to similar result, namely

E
[
eβs
∣∣∣Ǔαεs − Ūαεs ∣∣∣2 ] ≤ 2C2

β
E
[ ∫ T

0

eβr |vr − ur|2 dr
]
.

Combining these two inequalities with (4.41), we deduce

E
[
eβs
∣∣Y u,i
s − Y v,i

s

∣∣2 ] ≤ 16C2

β
E
[ ∫ T

0

eβr |vr − ur|2 dr
]

+ 4ε2eβT .

By integrating with respect to s and summing up over i both sides of the last inequality and taking into
account the fact that such inequality holds true for any i = 1, . . . , q and for all s ∈ [0, T ], we get

‖Φ(Y u)− Φ(Y v)‖β ≤ 4C
√
Tqβ−1 ‖u− v‖β + 2ε

√
TqeβT .

Finally, choosing β0 > max
(
16C2Tq, 2C2

)
and taking ε→ 0, we see that this mapping is a contraction. This

contraction property also gives the existence and uniqueness of the system of RBSDEs (4.21).
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4.4 Markovian framework and systems of PDE’s with càdlàg obstacles

In this section we will provide more specifications to the process X· treated in previous sections. Namely, we
will assume now that this process has a Markovian evolution described by means of a stochastic differential
equation (diffusion process) as in (4.44) below. Under this framework our previous analysis can be reduced to
study a system of partial differential equations with obstacles (quasi-variational system). Among the main
results of this section we can highlight the characterization of both the optimal function (4.3) and the solution
of the system of RBSDEs (4.21) as a viscosity solution in a weak sense (see Theorem 4.12 below). We will
start to introduce the following functions:{

b : (t, x) ∈ [0, T ]× Rr 7→ b(t, x) ∈ Rr;
σ : (t, x) ∈ [0, T ]× Rr 7→ σ(t, x) ∈ Rr×d,

satisfying the following hypotheses:

The functions b and σ are jointly continuous and Lipschitz continuous with respect to x uniformly in t, that
is, there exists a constant C ≥ 0 such that for any t ∈ [0, T ] and x, x′ ∈ Rr

|b(t, x)− b(t, x′)|+ |σ(t, x)− σ(t, x′)| ≤ C |x− x′| . (4.42)

Note that continuity and (4.42) imply that b and σ are of linear growth, i.e., there exists a constant C such
that:

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|), ∀(t, x). (4.43)

It is well known that under (4.42)-(4.43), there exists a unique Markov process (Xt,x
s )s≤T , for (t, x) ∈ [0, T ]×Rr,

that is a (strong) solution of the following standard stochastic differential equation:{
dXt,x

s = b(s,Xt,x
s )ds+ σ(s,Xt,x

s )dBs for all t ≤ s ≤ T ;

Xt,x
s = x for all 0 ≤ s ≤ t,

(4.44)

satisfying the following estimates: For any p ≥ 2, x, x′ ∈ Rr and s ≥ t

E
[

sup
s≤T

∣∣Xt,x
s

∣∣p ] ≤ C (1 + |x|p) , E[ sup
r∈[t,s]

|Xt,x
r − x|p] ≤Mp(s− t)(1 + |x|p)] and (4.45)

E[ sup
r∈[t,s]

|Xt,x
r −Xt,x′

r − (x− x′)|p] ≤Mp(s− t)|x− x′|p

for some constant Mp (one can refer to Karatzas and Shreve [40] or Revuz and Yor [49], for more details).
Recall that the associated infinitesimal generator to (Xt,x

s )s≤T is given by :

Lφ(t, x) =
1

2
Tr
[(
σ.σT

)
(t, x)D2

xxφ(t, x)
]

+ b(t, x)TDxφ(t, x)

for φ in C1,2([0, T ]× Rr) (Tr(.) is the trace of a square matrix and, AT is the transpose of a matrix A).

Now let (t, x) ∈ [0, T ]× Rr be fixed and let ((Y i,t,xs , Zi,t,xs ,Ki,t,x
s )t≤s≤T )i=1,...,q be the unique solution of

system (4.21) when the process X is taken to be equal to Xt,x of (4.44), i.e., the solution associated with
(f i(s,Xt,x

s , y1, . . . , yi, . . . yq, zi), hi(Xt,x
T ), gik(s,Xt,x

s )) (gik are the switching costs and they satisfy the same
assumptions as γik in Assumption H) with yi ∈ R and zi ∈ Rd.

Assume now that Assumption H is satisfied. Since we are in the Markovian framework then there exist
deterministic functions ui, i ∈ I, with polynomial growth such that for any (t, x)

Y i,t,xs = ui(s,Xt,x
s ), i ∈ I, P− a.s., ∀s ∈ [t, T ].

Note that we also have

ui(t, x) = Y i,t,xt , for (t, x) ∈ [0, T ]× Rr and i ∈ I. (4.46)
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On the other hand the polynomial growth of ui stems from the polynomial growths of the data assumed in
Assumption H and the BSDEs (4.22), (4.23) as well.

Notation: For a sake of simplicity of notation, hereafter we sometimes denote by (ψ)k=1,...,q := (ψ1, . . . , ψq),
for some generic function or vector ψ.

Remark 4.3. From now on we will assume that f i is non-decreasing w.r.t yk for any k = 1, ..., q and not
only w.r.t y1, ..., yi−1, yi+1, ..., yq (as precised in (H2)-(iv)). This assumption is not really restrictive since by
considering the system of RBSDEs verified by (eαtY it )t≤T , we obtain new generators f i given by

f i(t, y1, ..., ym, zi) := eαtf i(t, x, e−αty1, ..., e−αtym, e−αtzi)− αyi

which have the same properties as (f i)i=1,...,q. Moreover, with an appropriate choice of α, those new generators
are non-decreasing w.r.t yk for any k = 1, . . . , q, i.e., they fulfill the property we are requiring for (f i)i=1,...,q

(one can see Hamadène and Morlais [33], for more details on this transform).

Our main interest will be to show that the function (ui)i=1,...,q : (t, x) ∈ [0, T ]×Rr 7→ (ui(t, x))i=1,...,q ∈ Rq
is a solution in a weak viscosity sense for the Hamilton-Jacobi-Bellman system of PDEs associated with the
switching problem. This type of systems is also regarded as a system of quasi-variational inequalities (QVIs).
In the case when the functions gij and hi, i, j ∈ I, are continuous, this system reads as: for all i ∈ I,

min{vi(t, x)− max
k∈I−i

(
vk(t, x)− gik(t, x)

)
; −∂tvi(t, x)− Lvi(t, x)−

−f i(t, x,
(
v1, . . . , vi, . . . , vq

)
(t, x), σT(t, x)Dxv

i(t, x))} = 0;

vi(T, x) = hi(x).

(4.47)

and it is shown that (ui)i=1,...,q is the unique viscosity solution of system (4.47) —see Hamadène and Morlais
[33]. But in our framework the functions gij , i, j ∈ I, are no longer continuous w.r.t t, therefore the definition
should be adapted. We are going to show that (ui)i=1,...,q is a viscosity solution in a weak sense for the HJB
system of PDEs (4.47), associated with the switching problem. This definition is inspired by Ishii’s works
[37, 38], and also by the paper of Barles and Perthame [1].

To this end, we recall that for a locally bounded R-valued function v(t, x), (t, x) ∈ [0, T ]× Rr (r ≥ 1), the
lower (resp. upper) semi-continuous envelope v∗ (resp. v∗) of v is next: For any (t, x) ∈ [0, T ]× Rr,

v∗(t, x) := lim sup
(t′,x′)→(t,x), t′<T

v(t′, x′) (resp. v∗(t, x) := lim inf
(t′,x′)→(t,x), t′<T

v(t′, x′)).

Note that the function v∗ can also be seen as the smallest upper semi-continuous (usc) function which is
greater than v. Similarly, the function v∗ can also be seen as the largest lower semi-continuous (lsc) function
which is smaller than v. On the other hand, the following properties of the semi-continuous envelopes of
functions will be useful later.

Lemma 4.7. Let (t, x) ∈ [0, T ] × Rr and ϕi(t, x), i = 1, 2, be two locally bounded R-valued functions. We
then have:

(i) If ϕ1 is continuous then (ϕ1 + ϕ2)∗ = ϕ1 + (ϕ2)∗ and (ϕ1 + ϕ2)∗ = ϕ1 + (ϕ2)∗.

(ii) (−ϕ1)∗ = −(ϕ1)∗.

(iii) (ϕ1 ∧ ϕ2)∗ = (ϕ1)∗ ∧ (ϕ2)∗ and (ϕ1 ∨ ϕ2)∗ = (ϕ1)∗ ∨ (ϕ2)∗.

(iv) If ϕ1 is continuous then (ϕ1 ∧ ϕ2)∗ = ϕ1 ∧ (ϕ2)∗ and (ϕ1 ∨ ϕ2)∗ = ϕ1 ∨ (ϕ2)∗.

Proof. (i) Obviously we have ϕ1 + ϕ2 ≥ ϕ1 + (ϕ2)∗ and then (ϕ1 + ϕ2)∗ ≥ ϕ1 + (ϕ2)∗ since this latter is lsc.
On the other hand (ϕ1 + ϕ2)∗ − ϕ1 ≤ ϕ2 and then (ϕ1 + ϕ2)∗ − ϕ1 ≤ (ϕ2)∗ since (ϕ1 + ϕ2)∗ − ϕ1 is lsc. This
completes the proof of the claim as the other property can be obtained similarly.

Parts (ii) and (iii) are rather obvious.
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(iv) First note that (ϕ1 ∧ ϕ2)∗ ≤ ϕ1 ∧ (ϕ2)∗. Next let ((tn, xn))n be a sequence such that (ϕ2(tn, xn))n →
(ϕ2)∗(t, x) as n → ∞. As ϕ1 is continuous then ϕ1(tn, xn) ∧ ϕ2(tn, xn) → ϕ1(t, x) ∧ (ϕ2)∗(t, x) as n → ∞.
Therefore, by definition of the usc envelope, (ϕ1 ∧ϕ2)∗(t, x) ≥ ϕ1(t, x)∧ (ϕ2)∗(t, x) which completes the proof
of the first claim. The proof of the other one is similar.

Next for i = 1, ..., q, let us denote by f i the non-linearity which defines the i-th equation in (4.47), i.e.,

f i(t, x, (yj)j=1,...,q, r, p,X) = min
{
yi − max

k∈I−i
(yk − gik(t, x)); Gi(t, x, (yj)j=1,...,q, r, p,X)

}
(4.48)

where

Gi(t, x, (yj)j=1,...,q, ri, pi, Xi) = −ri −
1

2
Tr(σσTXi)− bTpi − f i(t, x, (yj)j=1,...,q, σ

Tpi). (4.49)

Note that by Assumption H on f i and (4.42), the function Gi is jointly continuous in its arguments. Therefore,
taking into account the results of Lemma 4.7, for any i = 1, . . . , q, the semi-continuous envelopes of f i (in all
arguments) are given by:

(f i)∗(t, x, (yj)j=1,...,q, r, p,X) = min
{
yi − ( max

k∈I−i
(yk − gik(t, x)))∗; G

i(t, x, (yj)j=1,...,q, r, p,X)
}

and

(f i)∗(t, x, (y
j)j=1,...,q, r, p,X) = min

{
yi − ( max

k∈I−i
(yk − gik(t, x)))∗; Gi(t, x, (yj)j=1,...,q, r, p,X)

}
.

We are now ready to precise the definition of the viscosity solution of HJB system associated with the
switching problem. As noticed previously it is inspired by the papers [1, 37, 38]. On the other hand, the
discontinuities of the functions (ui)i=1,...,q generated by the ones of (gij)i,j∈I make that the terminal condition
at time t = T is not the same as in (4.47), but should be adapted as well to this weak sense (see e.g. [4]).

Definition 4.2. Let v := (v1, . . . , vq) be a locally bounded function from [0, T ]× Rr into Rq.

(1) We say that v is a viscosity subsolution of (4.47) if for any i ∈ I, and x0 ∈ Rr,

(a) vi∗ verifies the following inequality at point (T, x0):

min
{
vi∗(T, x0)− hi(x0); ui∗(T, x0)− max

j∈I−i

(
vj∗ − gij

)∗
(T, x0)

}
≤ 0. (4.50)

(b) Moreover, at (t0, x0) ∈ [0, T )× Rr, the function vi is such that, for any φ ∈ C1,2([0, T ]× Rr) with
φ(t0, x0) = vi∗(t0, x0) and φ− vi∗ attaining its minimum at (t0, x0), we have

(F i)∗(t0, x0, (v
j∗(t0, x0))j=1,...,q, ∂tφ(t0, x0), Dxφ(t0, x0), D2

xxφ(t0, x0))

= min

{
vi∗(t0, x0)− max

k∈I−i

(
vk∗ − gik

)∗
(t0, x0);

− (∂t + L)φ(t0, x0)− f i(t0, x0, (v
j∗(t0, x0))j=1,...,q, (σ

TDx)φ(t0, x0))

}
≤ 0.

(2) In the same manner, v is said to be a viscosity supersolution of (4.47) if for any i ∈ I, and x0 ∈ Rr,

(a) vi∗ verifies at (T, x0) the following:

min
{
vi∗(T, x0)− hi(x0); vi∗(T, x0)−

(
max
j∈I−i

(
vj∗ − gij

) )
∗(T, x0)

}
≥ 0. (4.51)
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(b) Similarly, at (t0, x0) ∈ [0, T ) × Rr, vi satisfies the next: for any φ ∈ C1,2([0, T ] × Rr) with
φ(t0, x0) = vi∗(t0, x0) and φ− vi∗ attaining its maximum at (t0, x0), we have

(F i)∗(t0, x0, (v
j
∗(t0, x0))j=1,...,q, ∂tφ(t0, x0), Dxφ(t0, x0), D2

xxφ(t0, x0))

= min

{
vi∗(t0, x0)− ( max

k∈I−i

(
vk∗ − gik

)
)∗(t0, x0);

− (∂t + L)φ(t0, x0)− f i(t0, x0, (v
j
∗(t0, x0))j=1,...,q, (σ

TDx)φ(t0, x0))

}
≥ 0.

(3) We say that v is viscosity solution of (4.47) if it is both a viscosity sub- and supersolution.

To proceed we are going to show that the functions (ui)i=1,...,q defined in (4.46) are a viscosity solution of
the system (4.47) in a weak sense, i.e., according to Definition 4.2. However we need some preliminary results
which we give as lemmas hereafter. From now Bη(t0, x0) is the open ball of radius η and center (t0, x0).

Lemma 4.8. Under the Assumption (H2), the mapping

(t, x) 7−→ f i
(
t, x,

(
v1∗, . . . , vq∗

)
(t, x),

(
σTDx

)
φ(t, x)

)
is usc. for any φ ∈ C1,2([0, T ]× Rr).

Proof. Let (t0, x0) ∈ [0, T ]× Rr. Since vk∗ is usc for k = 1, . . . , q, then for all ε > 0 there exists ηε > 0 such
that for all (t, x), satisfying ‖(t, x)− (t0, x0)‖ < ηε, we have

vk∗(t0, x0) ≥ vk∗(t, x)− ε for all k = 1, . . . , q.

Next, by monotonicity and Lipschitz properties of f i, for all (t, x) ∈ Bηε(t0, x0) we get

f i
(
t0, x0,

(
vk∗
)
k=1,...,q

(t0, x0),
(
σTDx

)
φ(t0, x0)

)
≥ f i

(
t0, x0,

(
vk∗(t, x)− ε

)
k=1,...,q

,
(
σTDx

)
φ(t0, x0)

)
≥ f i

(
t0, x0,

(
vk∗(t, x)

)
k=1,...,q

,
(
σTDx

)
φ(t0, x0)

)
− Cε = f i(t, x,

(
vk∗(t, x)

)
k=1,...,q

,
(
σTDx

)
φ(t, x))− Cε+

+
{
f i
(
t0, x0,

(
vk∗(t, x)

)
k=1,...,q

,
(
σTDx

)
φ(t0, x0)

)
− f i(t, x,

(
vk∗(t, x)

)
k=1,...,q

,
(
σTDx

)
φ(t, x))

}
,

where C is the Lipschitz constant of f i. By continuity of f i with respect to (t, x) and Lipschitz in zi

(Assumptions (H2)-(i)-(ii)), the quantity inside the brackets goes to zero as (t, x)→ (t0, x0). Therefore, taking
a suitable ηε > 0, we obtain

f i
(
t0, x0,

(
vk∗(t0, x0)

)
k=1,...,q

,
(
σTDx

)
φ(t0, x0)

)
≥ f i(t, x,

(
vk∗(t, x)

)
k=1,...,q

,
(
σTDx

)
φ(t, x))− C ′ε

for all (t, x) ∈ Bηε(t0, x0) and for some other constant C ′ and the claim follows.

Lemma 4.9. Let φ ∈ C1,2([0, T ]× Rr), (t0, x0) ∈ [0, T )× Rr and φ(t0, x0) = vi∗(t0, x0). If

φ(t0, x0) = vi∗(t0, x0) > max
k∈I−i

(
vk∗ − gik

)∗
(t0, x0) (4.52)

and
− (∂t + L)φ(t0, x0) > f i(t0, x0, (v

k∗)k=1,...,q(t0, x0), (σTDx)φ(t0, x0)), (4.53)

then there exist ε and a ball Bηε(t0, x0) such that for all (t, x) ∈ Bηε(t0, x0) we have:

φ(t, x) ≥ max
k∈I−i

(
vk∗(t, x)− gik(t, x)

)
+ ε (4.54)

and
− (∂t + L)φ(t, x) ≥ f i

(
t, x, (vk∗)k=1,...,q(t, x), (σTDx)φ(t, x)

)
+ ε. (4.55)
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Proof : By (4.52) and the continuity of φ there exist ε and a ball Bηε(t0, x0) such that

φ(t, x) ≥ max
k∈I−i

(
vk∗(t0, x0)− gik(t0, x0)

)∗
+ 2ε (4.56)

for all (t, x) ∈ Bηε(t0, x0). Next, by the usc property, there exists η
′

ε such that for all (t, x) ∈ Bη′ε(t0, x0) we
have

max
k∈I−i

(
vk∗(t0, x0)− gik(t0, x0)

)∗ ≥ max
k∈I−i

(
vk∗(t, x)− gik(t, x)

)∗ − ε
≥ max
k∈I−i

(
vk∗(t, x)− gik(t, x)

)
− ε

(4.57)

where in the last inequality we use that the usc envelope of a function is greater or equal to the function itself.
Therefore, from (4.56), (4.57) and assuming , without loss of generality, that ηε ≤ η

′

ε we have

φ(t, x) ≥ max
k∈I−i

(
vk∗(t, x)− gik(t, x)

)
+ ε (4.58)

for all (t, x) ∈ Bηε(t0, x0).
As for the second inequality we can do a similar procedure since (∂t + L)φ is continuous and (t, x) 7→

f i(t, x, (vk∗)k=1,...,q(t, x), (σTDx)φ(t, x)) is usc. Namely, there exist ε
′
and η

′′

ε such that for each (t, x) ∈
Bη′′ε (t0, x0) we have

− (∂t + L)φ(t, x) ≥ f i
(
t, x, (vk∗)k=1,...,q(t, x), (σTDx)φ(t, x)

)
+ ε′. (4.59)

Now, supposing, without loss of generality, that ε ≤ ε′ and ηε ≤ η
′′

ε , we have that inequalities (4.54) and
(4.55) hold true for all (t, x) ∈ Bηε .

Remark 4.4. In a similar manner, it is possible to obtain a parallel result as in Lemmas 4.8 and 4.9 for vi∗
in lieu of vi∗. Namely, it can be proved that under Assumption (H2) the mapping

(t, x) 7−→ f i
(
t, x, (vk∗ )k=1,...,q(t, x),

(
σTDx

)
φ(t, x)

)
is lsc, and if

− (∂t + L)φ(t0, x0) < f i(t0, x0, (v
k
∗ )k=1,...,q(t0, x0), (σTDx)φ(t0, x0)), (4.60)

then there exists ε > 0 and ηε such that for all (t, x) ∈ Bηε(t0, x0):

− (∂t + L)φ(t, x) ≤ f i
(
t, x, (vk∗ )k=1,...,q(t, x),

(
σTDx

)
φ(t, x))− ε.

The proofs are very similar as the proofs given in the aforementioned lemmas, so shall omit them.

Finally, we recall two comparison results for BSDEs and RBSDEs that we have borrowed from Lemma 19
and Proposition 20, in Dumitrescu et al. [20].

Lemma 4.10. Fix t0 ∈ [0, T ] and let θ be a stopping time with values in [t0, T ]. Consider two random variables
ξ1 and ξ2 ∈ L2(Fθ) and two drivers (a.k.a generators) f1, f2 such that f2 satisfies (H2) with Lipschitz
constant C > 0. For i = 1, 2, let (Y it , Z

i
t) be the solution in S2 ×H2 of the BSDE with associated data (f i, ξi),

and terminal time θ. In this case, f i and ξi represent the driver and terminal condition, respectively. Suppose
that for some ε > 0 we have

1{t0≤t≤θ}(t)f
1(t, Y 1

t , Z
1
t ) ≥ 1{t0≤t≤θ}(t)f

2(t, Y 1
t , Z

1
t ), dt⊗ dP− a.e. and ξ1 ≥ ξ2 + ε, P− a.s.

Then we have Y 1
t ≥ Y 2

t + εe−CT , P-a.s. for each t ∈ [t0, θ].
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Lemma 4.11 (A comparison result between a BSDE and a RBSDE). Fix t0 ∈ [0, T ] and let θ be a stopping
time on [t0, T ]. Consider the random variable ξ1 ∈ L2(Fθ) and a driver f1. Let (Y 1

t , Z
1
t ) be the associated

BSDE solution with driver f1, terminal time θ and terminal condition ξ1. Consider also g2(·) ∈ S2 and let f2

be a driver satisfying (H2) with Lipschitz constant C > 0. Assume the existence of the solution Y 2
t of the

associated RBSDE with driver f2, terminal time θ and obstacle g2, and assume that

1{t0≤t≤θ}(t)f
1(t, Y 1

t , Z
1
t ) ≥ 1{t0≤t≤θ}(t)f

2(t, Y 1
t , Z

1
t ), dt⊗ dP− a.e.

and

1{t0≤t≤θ}(t)Y
1
t ≥ 1{t0≤t≤θ}(t)(g

2(t) + ε),∀t ≥ 0,P− a.s.

where ε is a positive constant. Then, we have Y 1
t ≥ Y 2

t + εe−CT , P− a.s., for each t ∈ [t0, θ].

We now give the main result of this section.

Theorem 4.12. The function u := (u1, . . . , uq), where for each i = 1, . . . , q, ui is defined as in (4.46), is a
weak viscosity solution of the system (4.47).

Proof. Step 1: Viscosity sub-solution property on [0, T )× Rr.

Let φ ∈ C1,2([0, T ]× Rr) and (t0, x0) ∈ [0, T )× Rr be such that φ(t, x) ≥ ui∗(t, x), for all (t, x) ∈ [0, T )× Rr
and φ(t0, x0) = ui∗(t0, x0). Without loss of generality, we can assume that the minimum of φ− ui∗ attained
at (t0, x0) is strict. We need to show that if

φ(t0, x0) = ui∗(t0, x0) > max
k∈I−i

(
uk∗(t0, x0)− gik(t0, x0)

)∗ (4.61)

then
− (∂t + L)φ(t0, x0)− f i

(
t0, x0, (u

k∗)k=1,...,q(t0, x0), (σTDx)φ(t0, x0)
)
≤ 0. (4.62)

We proceed by contradiction; i.e. we shall assume

− (∂t + L)φ(t0, x0)− f i
(
t0, x0, (u

k∗)k=1,...,q(t0, x0), (σTDx)φ(t0, x0)
)
> 0,

then by Lemma 4.9 there exists ε > 0 and ηε > 0 such that, for all (t, x) ∈ Bηε(t0, x0), we have both

φ(t, x) ≥ max
k∈I−i

(
uk∗(t, x)− gik(t, x)

)
+ ε ≥ max

k∈I−i

(
uk(t, x)− gik(t, x)

)
+ ε, (4.63)

since uk∗ ≥ uk, and

− (∂t + L)φ(t, x)− f i(t, x, (uk∗)k=1,...,q(t, x),
(
σTDx

)
φ(t, x)) ≥ ε. (4.64)

By definition of ui∗, there exists a sequence (tm, xm)m≥0 in Bηε(t0, x0), such that (tm, xm) → (t0, x0) and
ui(tm, xm)→ ui∗(t0, x0). Now let us fix m and take the associated state process Xtm,xm defined in (4.44) and
define the stopping time θm as

θm := (t0 + ηε) ∧ inf
{
s ≥ tm :

∣∣Xtm,xm
s − x0

∣∣ ≥ ηε} . (4.65)

Applying Itô’s lemma to φ(s,Xtm,xm
s ), it can be seen that(

φ(s,Xtm,xm
s ),

(
σTDx

)
φ(s,Xtm,xm

s ); tm ≤ s ≤ θm
)

is the solution of the BSDE with coefficient − (∂s + L)φ(s, x), terminal time θm and terminal value
φ(θm, Xtm,xm

θm ). The idea is to compare this BSDE with the solution (Yi,tm,xms )tm≤s≤θm of the RBSDE
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with coefficient f i, barrier maxk∈I−i{uk − gik} and terminal condition ui∗(θm, Xtm,xm
θm ). Note that by

definition of θm and inequality (4.64), we have

− (∂s + L)φ
(
s,Xtm,xm

s

)
≥ f i

(
s,Xtm,xm

s , (uk∗)k=1,...,q(s,X
tm,xm
s ), (σTDx)φ(s,Xtm,xm

s )
)

+ ε

≥ f i
(
s,Xtm,xm

s , (uk)k=1,...,q(s,X
tm,xm
s ), (σTDx)φ(s,Xtm,xm

s )
)

+ ε

for each tm ≤ s ≤ θm, where to reach the last inequality we use that u∗ ≥ u, the monotonicity property
(H2)-(iv) and the Remark 4.3. It remains to compare the solution φ(s,Xtm,xm

s ) of the BSDE with the barrier
maxk∈I−i{uk(s,Xtm,xm

s ) − gik(s,Xtm,xm
s )}1[s<θm] + ui∗(s,Xtm,xm

s )1[s=θm] of the RBSDE for tm ≤ s ≤ θm.
From inequality (4.63) and definition of θm we derive that

φ(s,Xtm,xm
s ) ≥ max

k∈I−i

(
uk∗(s,Xtm,xm

s )− gik(s,Xtm,xm
s )

)
+ ε

≥ max
k∈I−i

(
uk(s,Xtm,xm

s )− gik(s,Xtm,xm
s )

)
+ ε for tm ≤ s < θm.

(4.66)

On the other hand, to show that the inequality holds at θm, we recall that the minimum (t0, x0) is strict and
hence there exists a constant γε such that

φ(t, x)− ui∗(t, x) ≥ γε on [0, T ]× Rr \Bηε(t0, x0).

In particular, we have
φ(θm, Xtm,xm

θm ) ≥ ui∗(θm, Xtm,xm
θm ) + γε. (4.67)

Therefore, from (4.66), (4.67) and letting δε := min(ε, γε), we get

φ(s,Xtm,xm
s ) ≥ max

k∈I−i

(
uk(s,Xtm,xm

s )− gik(s,Xtm,xm
s ) + δε

)
1[s<θm] +

(
ui∗(θm, Xtm,xm

θm ) + δε
)
1[s=θm]

for tm ≤ s ≤ θm a.s.. Thus, by the comparison result in Lemma 4.11, we have

φ(s,Xtm,xm
s ) ≥ Yi,tm,xms + δεK for tm ≤ s ≤ θm

where K is a positive constant which only depends on T and the Lipschitz constant of f i. In particular, for
t = tm, we have

φ(tm, xm) ≥ Yi,tm,xmtm + δεK.

Now, since ui(tm, xm)→ ui∗(t0, x0) and φ is continuous with φ(t0, x0) = ui∗(t0, x0), for m sufficiently large
we have both

|ui(tm, xm)− ui∗(t0, x0)| ≤ 1

4
δεK (4.68)

and
|ui∗(t0, x0)− φ(tm, xm)| ≤ δεK

4
, (4.69)

whence |φ(tm, xm)− ui(tm, xm)| ≤ 1
2δεK, and hence

ui(tm, xm) ≥ Yi,tm,xmtm +
1

4
δεK. (4.70)

But ui∗(θm, Xtm,xm
θm ) ≥ ui(θm, Xtm,xm

θm ), then by comparison theorem ui(s,Xtm,xm
s ) = Y i,tm,xms ≤ Yi,tm,xms

for tm ≤ s ≤ θm. Thus, for s = tm, we get ui(tm, xm) ≤ Yi,tm,xmtm that produces a contradiction with (4.70).
Therefore (4.62) holds true and then also the viscosity subsolution property in [0, T )× Rr.

Step 2: Viscosity super-solution property on [0, T )× Rr.

Let (t0, x0) ∈ [0, T )× Rr and φ ∈ C1,2([0, T ]× Rr) be such that φ(t0, x0) = ui∗(t0, x0) and φ(t, x) ≤ ui∗(t, x),
for all (t, x) ∈ [0, T ]× Rr. As stated above, we can suppose that the maximum is strict in (t0, x0). Since by
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construction ui ≥ maxk∈I−i
(
uk − gik

)
, then it is easy to see that ui∗(t0, x0) ≥ (maxk∈I−i(u

k
∗ − gik))∗(t0, x0).

Now, we show that

− (∂t + L)φ(t0, x0)− f i
(
t0, x0, (u

k
∗)k=1,...,q(t0, x0),

(
σTDx

)
φ(t0, x0)

)
≥ 0.

Similar to the subsolution case, we shall proceed by contradiction, namely, suppose that

− (∂t + L)φ(t0, x0)− f i
(
t0, x0, (u

k
∗)k=1,...,q(t0, x0),

(
σTDx

)
φ(t0, x0)

)
< 0,

then by Remark 4.4 there exists ε > 0 and ηε > 0 such that, for all (t, x) ∈ Bηε(t0, x0), we have

− (∂t + L)φ(t, x)− f i
(
t, x, (uk∗)k=1,...,q(t, x),

(
σTDx

)
φ(t, x)

)
≤ −ε. (4.71)

Let (tm, xm)m≥1 be a sequence in Bηε(t0, x0) such that (tm, xm)→ (t0, x0) and ui(tm, xm)→ ui∗(t0, x0). We
introduce the state process Xtm,xm and define the stopping time θm as in (4.65). Next, we apply Itô’s formula
to φ(s,Xtm,xm

s ) in order to obtain(
φ(s,Xtm,xm

s ),
(
σTDx

)
φ(s,Xtm,xm

s ); tm ≤ s ≤ θm
)

is the solution of the BSDE associated with terminal time θm, terminal value φ(θm, Xtm,xm
θm ) and driver

(− (∂t + L)φ(s,Xtm,xm
s ))s∈[tm,θm]. Then by definition of θm and inequality (4.71), we get

− (∂t + L)φ (s,Xtm,xm
s ) ≤ f i

(
s,Xtm,xm

s , (uk∗)k=1,...,q(s,X
tm,xm
s ), (σTDx)φ(s,Xtm,xm

s )
)
− ε

≤ f i
(
s,Xtm,xm

s , (uk)k=1,...,q(s,X
tm,xm
s ), (σTDx)φ(s,Xtm,xm

s )
)
− ε

(4.72)

for tm ≤ s ≤ θm a.s., where to reach the last inequality we use the monotonicity property (H2)-(iv) and
Remark 4.3 and that uj ≥ uj∗ for j = 1, . . . , q. It remains to compare the terminal conditions of the BSDEs
with coefficients − (∂t + L)φ and f i respectively. Since the maximum (t0, x0) is strict, there exists γε (which
depends on ηε) such that ui∗(t, x) ≥ φ(t, x) + γε on [0, T ]× Rr \Bηε(t0, x0), which implies

φ(θm, X
tm,xm
θm ) ≤ ui∗(θm, X

tm,xm
θm )− γε.

Thus using inequality (4.72) and the comparison result for BSDEs, Lemma 4.10, we derive that

φ(s,Xtm,xm
s ) ≤ Ȳ i,tm,xms , for tm ≤ s ≤ θm

and therefore, in s = tm, we have φ(tm, xm) ≤ Ȳ i,tm,xmtm . As above mentioned, we can assume that m is
sufficient large so that |φ(tm, xm)− ui(tm, xm)| ≤ δεK

2 . We thus get

ui(tm, xm)− γεK

2
≤ φ(tm, xm) ≤ Ȳ i,tm,xmtm

and hence
ui(tm, xm) < Ȳ i,tm,xmtm . (4.73)

But ui∗(θm, X
tm,xm
θm ) ≤ ui(θm, Xtm,xm

θm ), then by Lemma 4.10 we get Ȳ i,tm,xms ≤ Y i,tm,xms = ui(s,Xtm,xm
s ) for

tm ≤ s ≤ θm, and thus Ȳ i,tm,xmtm ≤ ui(tm, xm), which is a contradiction with (4.73). Therefore the viscosity
supersolution property in [0, T )× Rr holds true.

Step 3: Subsolution property at (T, x).

We now show that for any i = 1, ...,m,

min
{
ui∗(T, x0)− hi(x0); ui∗(T, x0)− max

j∈I−i

(
uj∗ − gij)

)∗
(T, x0)

}
≤ 0.
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We follow here the same idea as in Bouchard [4] (see also Theorem 1 in Hamadène and Morlais [33]). We
reason by contradiction, namely, we assume that

min
{
ui∗(T, x0)− hi(x0); ui∗(T, x0)− max

j∈I−i

(
uj∗ − gij

)∗
(T, x0)

}
= 2ε > 0. (4.74)

Let (tk, xk) be a sequence in [0, T )× Rr such that

(tk, xk)→ (T, x0) and ui(tk, xk)→ ui∗(T, x0) as k →∞. (4.75)

Since ui∗ is usc and of polynomial growth, we can find a sequence (ϕn)n≥0 of functions of C1,2([0, T ]× Rr)
and neighborhood Bn of (T, x0) such that ϕn → ui∗, and hence from the inequality (4.74) we have

min
{
ϕn(t, x)− hi(x); ϕn(t, x)− max

j∈I−i

(
uj∗ − gij

)∗
(t, x)

}
≥ ε for all (t, x) ∈ Bn, (4.76)

for n large enough. On the other hand, after possibly passing to a sub-sequence of (tk, xk)k≥1 we can assume
that the previous inequality holds on Bkn := [tk, T ]×B(xk, δ

k
n) for some δkn ∈ (0, 1) small enough in such a

way that Bkn ⊂ Bn. Since ui∗ is locally bounded (recall it has polynomial growth), there exists ζ > 0 such
that

∣∣ui∗∣∣ ≤ ζ on Bn. We can then assume that ϕn ≥ −2ζ on Bn. Next we define

ϕ̃nk (t, x) := ϕn(t, x) +
4ζ |x− xk|2

(δkn)2
+
√
T − t.

Note that ϕ̃nk ≥ ϕn and (
ui∗ − ϕ̃nk

)
(t, x) ≤ −ζ for (t, x) ∈ [tk, T ]× ∂B(xk, δ

k
n). (4.77)

Since ∂t(
√
T − t)→ −∞ as t→ T , we can choose tk close enough to T to ensure that

− (∂t + L) ϕ̃nk (t, x) ≥ 0 on Bkn. (4.78)

Next let us consider the following stopping times

θkn := inf{s ≥ tk : (s,Xtk,xk
s ) ∈ Bk

c

n } ∧ T (4.79)

and
ϑεk := inf{s ≥ tk, ui(s,Xtk,xk

s ) ≤ max
j∈I−i

(uj(s,Xtk,xk
s )− gij(s,Xtk,xk

s )) +
ε

4
} ∧ T (4.80)

where Bk
c

n is the complement of Bkn.
First note that for a subsequence {k}, P[ϑεk > tk] = 1. Actually from (4.74), we have

ui∗(T, x0) ≥ max
j∈I−i

(
uj∗ − gij

)∗
(T, x0) + 2ε

≥ max
j∈I−i

(
uj − gij

)∗
(T, x0) + 2ε.

Therefore taking into account of (4.75), at least for a subsequence, for any k ≥ 1,

ui∗(tk, xk) ≥ max
j∈I−i

(
uj − gij

)
(tk, xk) + ε.

Now let us stick to this subsequence. If P[ϑεk = tk] > 0, then by the càdlàg property of the processes which
define ϑεk we have ui(tk, xk) ≤ maxj∈I−i(u

j(tk, xk)−gij(tk, xk))+ ε
4 , which contradicts the previous inequality

and then the claim is valid.
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On the other hand the property which characterizes the jumps of Y i in the definition (4.21), implies that
on [tk, ϑ

ε
k] the process Y i is continuous and dKi

s = 0 for s ∈ [tk, ϑ
ε
k]. Applying now Itô’s formula to the

process (ϕ̃nk (s,Xs))s∈[tk,θkn∧ϑεk] and taking expectation, we obtain

ϕ̃nk (tk, xk) = E
[
ϕ̃nk (θkn ∧ ϑεk, X

tk,xk
θkn∧ϑεk

)−
∫ θkn∧ϑ

ε
k

tk

(∂t + L) ϕ̃nk (s,Xtk,xk
s )ds

]
≥ E

[
ϕ̃nk (θkn, X

tk,xk
θkn

)1[θkn≤ϑεk] + ϕ̃nk (ϑεk, X
tk,xk
ϑεk

)1[θkn>ϑ
ε
k]

]
by (4.78)

= E
[{
ϕ̃nk (θkn, X

tk,xk
θkn

)1[θkn<T ] + ϕ̃nk (θkn, X
tk,xk
θkn

)1[θkn=T ]

}
1[θkn≤ϑεk] + ϕ̃nk (ϑεk, X

tk,xk
ϑεk

)1[θkn>ϑ
ε
k]

]
≥ E

[{(
ui∗(θkn, X

tk,xk
θkn

) + ζ
)
1[θkn<T ] +

(
hi(T,Xtk,xk

T ) + ε
)
1[θkn=T ]

}
1[θkn≤ϑεk]

+
{

max
j∈I−i

(
uj∗ − gij

)∗
(ϑεk, X

tk,xk
ϑεk

) + ε
}
1[θkn>ϑ

ε
k]

]
by (4.77) and (4.76)

≥ E
[{(

ui(θkn, X
tk,xk
θkn

) + ζ
)
1[θkn<T ] +

(
hi(T,Xtk,xk

T ) + ε
)
1[θkn=T ]

}
1[θkn≤ϑεk]

+
{

max
j∈I−i

(
uj(ϑεk, X

tk,xk
ϑεk

)− gij(ϑεk, X
tk,xk
ϑεk

)
)

+ ε
}
1[θkn>ϑ

ε
k]

]

≥ E
[{(

ui(θkn, X
tk,xk
θkn

) + ζ
)
1[θkn<T ] +

(
hi(T,Xtk,xk

T ) + ε
)
1[θkn=T ]

}
1[θkn≤ϑεk]

+
{
ui(ϑεk, X

tk,xk
ϑεk

) + 3ε
4

}
1[θkn>ϑ

ε
k]

]
by (4.80)

≥ E
[
ui(θkn ∧ ϑεk, X

tk,xk
θkn∧ϑεk

)
]

+
(
ζ ∧ 3ε

4

)
= E

[
ui(tk, xk)

]
− E

[ ∫ θkn∧ϑ
ε
k

tk

f i(s,Xtk,xk
s , (uk)k=1,...,q(s,X

tk,xk
s ), Zi,tk,xks )ds

]
+

(
ζ ∧ 3ε

4

)
(4.81)

where the last equality is due to the fact that the process Y i. = ui(·, X.), stopped at time θkn ∧ ϑk, solves a
RBSDE system of the type (4.21) with data given by ((f i)i∈I , (h

i)i∈I , (g
ij)i∈I), and the last inequality is

obtained by monotonicity property of f i and since uj∗ ≥ uj for j ∈ I−i. Besides, note that by definition of
θkn ∧ ϑk we have dKi,t,x = 0 on [tk, ϑ

ε
k]. Next, we have that both (uj)j=1,...,m and (t, x)→

∥∥Zi,t,x·
∥∥
H2,d(t, x)

are of polynomial growth. Thus by Assumption (H2)-(i),(iii) and inequality (4.45) we deduce that

lim
k→∞

E
[ ∫ θkn∧ϑ

ε
k

tk

f i(s,Xtk,xk
s , (uk)k=1,...,q(s,X

tk,xk
s ), Zi,tk,xks )ds

]
= 0, (4.82)

and hence taking the limit in both hand sides of the inequality (4.81) as k →∞ yields

ϕn(T, x0) = lim
k→∞

[
ϕn(tk, xk) +

√
T − tk

]
= lim
k→∞

ϕ̃nk (tk, xk)

≥ lim
k→∞

ui(tk, xk) +
(
ζ ∧ 3ε

4

)
= ui∗(T, x0) +

(
ζ ∧ 3ε

4

)
.

(4.83)

Therefore, taking n large enough and recalling that ϕn → ui∗ pointwisely, we get a contradiction. Thus for
any x ∈ Rr and i ∈ I we have

min
{
ui∗(T, x)− hi(x); ui∗(T, x)− max

j∈I−i

(
uj∗ − gij

)∗
(T, x)

}
≤ 0. (4.84)
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which is the claim.

Step 4: Supersolution property at (T, x0).

We are going to show that

min
{
ui∗(T, x0)− hi(x0); ui∗(T, x0)−

(
max
j∈I−i

(
uj∗(T, x0)− gij(T, x0)

) )
∗

}
≥ 0. (4.85)

Let (tk, xk)k≥1 be a sequence in [0, T )× Rr such that

(tk, xk)→ (T, x0) and ui(tk, xk)→ ui∗(T, x0) as k →∞. (4.86)

Since ui(t, x) is deterministic, we have from the definition of ui that

ui(tk, xk) = E
[
hi(Xtk,xk

T ) +

∫ T

tk

f i(s,Xtk,xk
s , (uk)k=1,...,q(s,X

tk,xk
s ), Zi,tk,xks )ds+Ki

T −Ki
tk

]

≥ E
[
hi(Xtk,xk

T ) +

∫ T

tk

f i(s,Xtk,xk
s , (uk)k=1,...,q(s,X

tk,xk
s ), Zi,tk,xks )ds

] (4.87)

where we have used that dKi,t,x ≥ 0 on [tk, T ]. Next taking the limit in both hand sides as k →∞, using
that hi is continuous and arguing similarly to (4.82) we have

ui∗(T, x0) ≥ lim
k→∞

E
[
hi(Xtk,xk

T ) +

∫ T

tk

f i(s,Xtk,xk
s , (uk)k=1,...,q(s,X

tk,xk
s ), Zi,tk,xks )ds

]
= E

[
hi(XT,x0

T )
]

= hi(x0),

that is, ui∗(T, x0) ≥ hi(x0). On the other hand, setting τk = (T + tk)/2, considering the RBSDE (4.21) on
[tk, τk], taking expectation to obtain

ui(tk, xk) ≥ E
[
ui(τk, X

tk,xk
τk

) +

∫ τk

tk

f i(s,Xtk,xk
s , (uk)k=1,...,q(s,X

tk,xk
s ), Zi,tk,xks )ds

]

≥ E
[

max
j∈I−i

(
uj(τk, X

tk,xk
τk

)− gij(τk, Xtk,xk
τk

)
)

+

∫ τk

tk

f i(s,Xtk,xk
s , (uk)k=1,...,q(s,X

tk,xk
s ), Zi,tk,xks )ds

]

≥ E
[
( max
j∈I−i

(
uj∗ − gij)

)
∗(τk, X

tk,xk
τk

) +

∫ τk

tk

f i(s,Xtk,xk
s , (uk)k=1,...,q(s,X

tk,xk
s ), Zi,tk,xks )ds

]
(4.88)

since dKi,t,x ≥ 0 and ui(τk, Xtk,xk
τk

) ≥ max
j∈I−i

(
uj(τk, X

tk,xk
τk

)− gij(τk, Xtk,xk
τk

)
)
. It implies that

lim
k→∞

ui(tk, xk) ≥ lim inf
k→∞

E
[
( max
j∈I−i

(
uj∗ − gij)

)
∗(τk, X

tk,xk
τk

)

+

∫ τk

tk

f i(s,Xtk,xk
s , (uk)k=1,...,q(s,X

tk,xk
s ), Zi,tk,xks )ds

]
≥ E

[
lim inf

k
( max
j∈I−i

(
uj∗ − gij)

)
∗(τk, X

tk,xk
τk

)

+

∫ τk

tk

f i(s,Xtk,xk
s , (uk)k=1,...,q(s,X

tk,xk
s ), Zi,tk,xks )ds

]
≥ ( max

j∈I−i

(
uj∗ − gij)

)
∗(tk, xk).
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The second inequality stems from Fatou’s Lemma while the third one is due to the fact that ( max
j∈I−i

(
uj∗−gij)

)
∗

is lower semicontinuous and by (4.86), at least for a subsequence, ((τk, X
tk,xk
τk

))k → (T, x) P− a.s.. Thus

min
{
ui∗(T, x0)− hi(x0); ui∗(T, x0)−

(
max
j∈I−i

(
uj∗(T, x0)− gij(T, x0)

) )
∗

}
≥ 0 (4.89)

which is the claim. The proof is now complete.

Remark 4.5. If the switching costs gij are continuous, conditions (4.51) and (4.50), read respectively as:

min
{
vi∗(T, x0)− hi(x0); ui∗(T, x0)− max

j∈I−i

(
vj∗ − gij

)
(T, x0)

}
≤ 0

and
min

{
vi∗(T, x0)− hi(x0); vi∗(T, x0)−

(
max
j∈I−i

(
vj∗ − gij

) )
(T, x0)

}
≥ 0.

Therefore vi∗(T, x0) ≥ hi(x0) and by the non free-loop property one deduces that vi∗(T, x0) ≤ hi(x0) which
implies that vi(T, x0) = hi(x0). For more details one can see e.g. Hamadène and Morlais [33].



5

Switching Games

This chapter is about zero-sum switching games whose switching costs associated to each player satisfy a
càdlàg property. We can highlight as the main material the characterization of the value of the game viewed
as a solution of a system of RBSDEs with double càdlàg barriers (verification theorem). We also deduce the
existence of ε-optimal saddle points that turn out a special case of the well-known Nash equilibria in the
context of zero-sum games.

We warn the reader that the attributes “control” and “strategy” used in this chapter have a special meaning
and wont represent the usual meaning that in many works they represent the same thing.

5.1 The game model and main assumptions

Throughout this chapter we shall assume the existence of two players. Player k (k ∈ {1, 2}) chooses his/her
actions over the set Γk = {1, . . . ,mk}, k ∈ {1, 2}, same that represent his/her operating modes. Gathering
these two sets, we let Γ = Γ1 × Γ2 be the product space of operating modes of both players.

Let us define now the type controls for each player.

Definition 5.1. (Individual switching controls). A control for Player 1 is a sequence α = (σn, ξn)n≥0 such
that,

1. For all n ≥ 0, σn ∈ T0 and is such that σn ≤ σn+1, P-a.s., and P({σn < T, ∀n ≥ 0}) = 0.

2. For all n ≥ 0, ξn is an Fσn -measurable Γ1-valued random variable.

3. For n ≥ 1, on {σn < T} we have σn < σn+1 and ξn 6= ξn−1, while on {σn = T} we have ξn = ξn−1.

We will denote by A the set of controls for Player 1. The set B of controls β = (τn, ζn)n≥0 for Player 2, where
the ζn are Γ2-valued, is defined analogously as for the case of Player 1. For each i ∈ Γ1 (resp. j ∈ Γ2) we also
denote by Ait (resp. B

j
t ), the set of controls with the property of σ0 = t, ξ0 = i (resp. τ0 = t and ζn = j).

Given two controls α ∈ A and β ∈ B, let us define the coupled control of α and β under the following
assumption: if both players decide to switch at the same instant, then Player 1’s switch is implemented first.

Definition 5.2 (Coupling of controls). Given controls α ∈ A and β ∈ B, define the coupling control
γ(α, β) = (ρn, γn)n≥0 where ρn ∈ T0 is defined by,

ρn = σrn ∧ τsn ,

with r0 = s0 = 0, r1 = s1 = 1 and for n ≥ 2,

rn = rn−1 + 1{σrn−1
≤τsn−1

}, sn = sn−1 + 1{τsn−1
<σrn−1

},

and γn is a Γ-valued random variable such that γ0 = (ξ0, ζ0) and for n ≥ 1,

71
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γn =


(ξrn , γ

(2)
n−1), on {σrn ≤ τsn , σrn < T}

(γ
(1)
n−1, ζsn), on {τsn < σrn}

γn−1, on {τsn = σrn = T}.

Define the indicator process (ut)0≤t≤T of the system at time t, for all t ∈ [0, T ], by

ut = γ01[ρ0,ρ1](t) +
∑
n≥1

γn1(ρn,ρn+1](t). (5.1)

Note that the coupling γ = (α, β) = (ρn, γn)n≥0 of the controls α ∈ Ais and β ∈ Bjs has the following properties:

• ρ0 = s and for all n ≥ 0 we have ρn ∈ Ts and ρn ≤ ρn+1 P-a.s., and P({ρn < T, ∀n ≥ 0}) = 0;

• γ0 = (i, j) and for all n ≥ 0 the random variable γn is Fρn-measurable, Γ-valued and γn+1 6= γn on
{γn+1 < T}.

Next assume the following: For each (i, j) ∈ Γ, i1, i2 ∈ Γ1, and j1, j2 ∈ Γ2, there exist processes satisfying
f i,j ∈ H2 and hi,j ∈ L2(FT ) and ĝi1,i2 , ǧj1,j2 ∈ S2, where:

• f i,j stands for the running reward paid by player 2 to player 1 and hi,j the terminal reward paid by
player 2 to player 1, when player 1’s (resp. player 2’s) active mode is i (resp. j).

• ĝi1,i2 stands for the non-negative payment from player 1 to player 2 when the former switches from
mode i1 to mode i2.

• ǧj1,j2 stands for the non-negative payment from player 2 to player 1 when the former switches from
mode j1 to mode j2.

• For all (i, j) ∈ Γ and t ∈ [0, T ] we set ĝi,it = ǧj,jt = 0.

With the above ingredients, we then introduce the players’ payoff, with initial condition (s, i, j) ∈ [0, T ]× Γ
by

J i,js (γ(α, β)) = E
[ ∫ T

s

futt dt−
∞∑
n=1

[
ĝ
γ
(1)
n−1,γ

(1)
n

ρn − ǧγ
(2)
n−1,γ

(2)
n

ρn

]
+ huT

∣∣∣Fs] α ∈ Ais, β ∈ Bjs. (5.2)

Let us now define the admissibility of a control in terms of its interaction with the switching costs. Given
α ∈ A (resp. β ∈ B), we denote by CαN (resp. CβN ) the cost of the first N ≥ 1 switchings,

CαN :=

N∑
n=1

ĝξn−1,ξn
σn , (resp. CβN :=

N∑
n=1

ǧζn−1,ζn
τn ).

Note that the limit limN→∞ CαN (resp. limN→∞ CβN ) is well defined.

Definition 5.3. A control α ∈ A for Player 1 is said to be square-integrable if,

E
[
| lim
N→∞

CαN |2
]
<∞.

Let A denote the set of such controls. Similarly, the set B of square-integrable controls for Player 2 consists of
those β ∈ B satisfying,

E
[
| lim
N→∞

CβN |
2
]
<∞.

On the other hand, we denote by Cγ(α,β)
N the joint cumulative cost of the first N switches,

C
γ(α,β)
N =

N∑
n=1

[
ĝ
γ
(1)
n−1,γ

(1)
n

ρn − ǧγ
(2)
n−1,γ

(2)
n

ρn

]
, N ≥ 1.
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Definition 5.4. The coupling γ(α, β) = (ρn, γn)n≥0 of controls α ∈ Ais and β ∈ Bjs is said to be admissible, if

E
[

sup
N≥1
|Cγ(α,β)
N |2

]
<∞.

We denote by Gi,js the set of all these controls.

Note that for every α ∈ A and β ∈ B have limN→∞ C
γ(α,β)
N = limN→∞ CαN − limN→∞ CβN . Using the

triangle inequality, we see that every pair of square-integrable controls (α, β), α ∈ Ais and β ∈ Bjs, satisfies
γ(α, β) ∈ Gi,js .

Similar to the definition of controls, we next introduce the notion of strategies which is crucial in this
chapter.

Definition 5.5. Fix s ∈ [0, T ] and τ ∈ Ts.

(a) Two controls α1, α2 ∈ A with α1 = (σ1
n, ξ

1
n)n≥0 and α2 = (σ2

n, ξ
2
n)n≥0 are said to be equivalent on [s, τ ],

and we denote it as α1 ≡ α2, if we have P–a.s.,

ξ1
01[σ1

0 ,σ
1
1 ](t) +

∞∑
n=1

ξ1
n1(σ1

n,σ
1
n+1](t) = ξ2

01[σ2
0 ,σ

2
1 ](t) +

∞∑
n=1

ξ2
n1(σ2

n,σ
2
n+1](t), s ≤ t ≤ τ.

(b) A non-anticipative strategy for Player 1 is a mapping α : B→ A such that:

(b.1) Non-anticipativity property: for any s ∈ [0, T ], τ ∈ Ts, and β1, β2 ∈ B such that β1 ≡ β2 on [s, τ ],
we have α(β1) ≡ α(β2) on [s, τ ].

(b.2) Square-integrability: for any β ∈ B we have α(β) ∈ A.

Let A and B denote the set of non-anticipative strategies for players 1 and 2 respectively.

Roughly speaking, non-anticipative strategies mean that Player 2 cannot respond differently to equivalent
controls of Player 1. In a similar manner we define non-anticipative strategies for Player 2.

We conclude this section by setting the value functions of the zero-sum switching game under study.

Definition 5.6. The lower and upper values for the switching game related to the payoff (5.2), denoted
respectively by V̌ i,js and V̂ i,js , are defined as follows:

V̌ i,js := ess sup
α∈Ais

ess inf
β∈Bjs

J i,js (γ(α, β))

V̂ i,js := ess inf
β∈Bjs

ess sup
α∈Ais

J i,js (γ(α, β)).

The game is said to have a value at (s, i, j), denoted by V i,js , if

V i,js = V̌ i,js = V̂ i,js a.s. (5.3)

Note from the above definition that V̌ i,js ≤ V̂ i,js a.s. The common value V i,js , when it exists, is referred
to as the value of the game (a.k.a. game’s solution) at (s, i, j). Finally, when s = T we formally set
V̌ i,jT = V̂ i,jT = hi,j .

5.2 Verification theorem

In this section we shall introduce the main tool for showing the existence of the value (5.3) of the zero-sum
optimal switching game. Such existence will in turn be ensured by assuming the existence of solutions related
to the next system of double RBSDEs, introduced in the next definition:
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Definition 5.7. The processes (Y i,j , Zi,j ,Ki,j,+,Ki,j,−)(i,j)∈Γ are solutions of the system of DRBSDEs with
terminal value hi,j ∈ L2(FT ), coefficient f i,j ∈ H2 and switching costs ĝi,i1 and ǧj,j1 in S2 if, for any (i, j) ∈ Γ
and all 0 ≤ s ≤ T ,

(i) (Y i,j , Zi,j ,Ki,j,+,Ki,j,−) ∈ S2 ×H2,d × S2 × S2;

(ii) Y i,js = hi,j +

∫ T

s

f i,jt dt+Ki,j,+
T −Ki,j,+

s − (Ki,j,−
T −Ki,j,−

s )−
∫ T

s

Zi,jt dBt;

(iii) max
i1∈(Γ1)−i

{Y i1,js − ĝ i,i1s } ≤ Y i,js and Y i,js ≤ min
j1∈(Γ2)−j

{Y i,j1
s + ǧj,j1s };

(iv)

∫ T

s

(
Y i,jt− − min

j1∈(Γ2)−j
{Y i,j1

t− + ǧj,j1t− }
)
dKi,j,−

t =

∫ T

s

(
max

i1∈(Γ1)−i
{Y i1,jt− − ĝ i,i1t− } − Y

i,j
t−

)
dKi,j,+

t = 0,

(5.4)
where Ki,j,+ and Ki,j,− are the nondecreasing processes with Ki,j,+

0 = Ki,j,−
0 = 0. Note that in (iv) we are

applying left limit at t on the integrands.

We now give a definition and some assumptions on the switching costs ĝ and ǧ.

Definition 5.8. For N ≥ 2 a loop in Γ of length N − 1 is a sequence {(i1, j1), . . . , (iN , jN )} of elements
in Γ with N − 1 distinct members such that (iN , jN ) = (i1, j1) and either iq+1 = iq or jq+1 = jq for all
q = 1, . . . , N − 1.

We are going to consider the following standard assumptions on the switching and terminal costs.

Assumption G.

(G1) : Non-negativity: min
i1∈Γ1

ĝ i,i1 ≥ 0 and min
j1∈Γ2

ǧ j,j1 ≥ 0 for all i ∈ Γ1, j ∈ Γ2.

(G2) : Consistency:

(i) For all sequences {i1, i2, i3} ∈ Γ1 and {j1, j2, j3} ∈ Γ2 with i1 6= i2, i2 6= i3 and j1 6= j2, j2 6= j3,
we have for all t ∈ [0, T ],

ĝ i1,i3t < ĝ i1,i2t + ĝ i2,i3t P-a.s. and ǧ j1,j3t < ǧ j1,j2t + ǧ j2,j3t P-a.s. (5.5)

(ii) For all (i, j) ∈ Γ we have,

max
i1∈(Γ1)−i

{hi1,j − ĝ i,i1T } ≤ hi,j ≤ min
j1∈(Γ2)−j

{hi,j1 + ǧ j,j1T } P-a.s. (5.6)

(G3) : Non-free loop property: For any loop {(i1, j1), . . . , (iN , jN )} in Γ we have for all t ∈ [0, T ],

N−1∑
q=1

ϕq,q+1
t 6= 0 P-a.s. (5.7)

where ϕq,q+1
t = −ĝiq,iq+1

t 1{iq 6=iq+1} + ǧ
jq,jq+1

t 1{jq 6=jq+1}.

The main goal in this section is to prove the following theorem when the switching costs are càdlàg.

Theorem 5.1. Let the Assumption G holds true. Suppose that there exists a solution (Y i,j , Zi,j ,Ki,j)(i,j)∈Γ

to the system of DRBSDEs (5.4). For every initial state (s, i, j) ∈ [0, T ]× Γ,

(i) Existence of ε-optimal controls: there exists a pair of ε-controls (αε, βε) ∈ Ais×Bjs such that the coupling
control associated γ(αε, βε) belongs to Gi,js and

J i,js (γ(α, βε))− ε ≤ Y i,js ≤ J i,js (γ(αε, β)) + ε for all α ∈ Ais and β ∈ Bjs
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(ii) Existence of value: the switching game has a value with,

Y i,js = V i,js a.s. (5.8)

Before we give the proof of this theorem, we provide a proposition which links a solution of a DRBSDE
and Dynkin’s games. Next, we prove two lemmas which show, on the one hand, that a coupling control related
to two ε-optimal switching controls is admissible, and on the other hand, that the strategies associated to
ε- optimal controls are admissible too. Finally, following the idea in [32], we will be in conditions to prove
Theorem 5.1.

For some generic index m ∈ N, let us define the lower and upper switching operators Li,j : S2,m → S2 and
U i,j : S2,m → S2 as follows: For Y ∈ S2,m,

Li,j(Y) = max
i1∈(Γ1)−i

{Y i1,j − ĝ i,i1},

U i,j(Y) = min
j1∈(Γ2)−j

{Y i,j1 + ǧj,j1}.

Proposition 5.2. Suppose there exists a solution (Y i,j , Zi,j ,Ki,j)(i,j)∈Γ to the DRBSDE (5.4). Then for all
initial state (s, i, j) ∈ [0, T ]× Γ a.s., we have

(a) The part Y i,j of the solution can be represented as follows:

Y i,js = ess inf
τ∈Ts

ess sup
σ∈Ts

J i,js (σ, τ) = ess sup
σ∈Ts

ess inf
τ∈Ts

J i,js (σ, τ),

where,

J i,js (σ, τ) := E
[ ∫ σ∧τ

s

f i,jt dt+ 1{τ<σ}U i,jτ (Y) + 1{σ≤τ,σ<T}Li,jσ (Y) + hi,j1{σ=τ=T}

∣∣∣Fs],
and hi,j, f i,j, Li,j(Y) and U i,j(Y) are the data for the DRBSDE.

(b) Consider the ε-stopping times σi,j,εs ∈ Ts and τ i,j,εs ∈ Ts defined by
σi,j,εs = inf{s ≤ t ≤ T : Y i,jt ≤ Li,jt (Y) + ε} ∧ T,

τ i,j,εs = inf{s ≤ t ≤ T : Y i,jt ≥ U i,jt (Y)− ε} ∧ T.
(5.9)

Then, we have that

J i,js (σ, τ i,j,εs )− ε ≤ J i,js (σi,j,εs , τ i,j,εs ) ≤ J i,js (σi,j,εs , τ) + ε ∀σ ∈ Ts and τ ∈ Ts. (5.10)

That is, (σi,j,εs , τ i,j,εs ) is a ε-Nash equilibrium for a Dynkin game.

Proof. Analogously to [32], the result follows from Proposition 3.1 in [42].

Let us define now the next sequence (ρεn, γ
ε
n)n≥0 so-called ε-coupling switching controls

ρε0 = s, γε0 = (i, j) and for n ≥ 1, (5.11)

ρεn = σ
γεn−1

ρεn−1
,∧τγ

ε
n−1

ρεn−1
, γεn =



(
Lγ

ε
n−1

ρεn
(Y) , γ

(2),ε
n−1

)
, on {σγ

ε
n−1

ρεn−1
≤ τγ

ε
n−1

ρεn−1
, σ

γεn−1

ρεn−1
< T}

(
γ

(1),ε
n−1 , Uγ

ε
n−1

ρεn
(Y)

)
, on {τγ

ε
n−1

ρεn−1
< σ

γεn−1

ρεn−1
}

γεn−1, otherwise,

(5.12)
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where σγ
ε
n−1

ρεn−1
and τγ

ε
n−1

ρεn−1
are defined using (5.9) above, and the operators Lγ

ε
n−1

ρεn
(Y) and Uγ

ε
n−1

ρεn
(Y) are obtained

from the switching selectors, 
Li,jt (Y) ∈ arg max

i1∈(Γ1)−i
{Y i1,jt − ĝi,i1t }

U i,jt (Y) ∈ arg min
j1∈(Γ2)−j

{Y i,j1t + ǧj,j1t }.
(5.13)

The following lemma provides an admissible ε-coupling switching control.

Lemma 5.3. Let (Y i,j , Zi,j ,Ki,j,+,Ki,j,−)(i,j)∈Γ be a solution of the system (5.4). Under Assumption G, for
any initial state (s, i, j) ∈ [0, T ]×Γ, we have that γ(αε, βε) ∈ Gi,js , where αε = (σεn, ξ

ε
n)n≥0 and βε = (τεn, ζ

ε
n)n≥0

are defined as:
σε0 := s, and for n ≥ 1, σεn := inf

{
s ≥ σεn−1 : Y

ξεn−1,γ
(2)
n−1

s ≤ max
i1∈(Γ1)

−ξε
n−1

(
Y
i1,γ

(2)
n−1

s − ĝξ
ε
n−1,i1
s

)
+ ε

2n+1

}
∧ T

τε0 := s, and for n ≥ 1, τ εn := inf
{
s ≥ τεn−1 : Y

γ
(1)
n−1,ζ

ε
n−1

s ≥ min
j1∈(Γ2)

−ζε
n−1

(
Y
γ
(1)
n−1, j1

s + ǧ
ζεn−1, j1
s

)
− ε

2n+1

}
∧ T

and
ξε0 := i, ξεn = arg max

i1∈(Γ1)−ξn−1

{
Y
i1,γ

(2)
n−1

σεn
− ĝξn−1,i1

σεn

}
,

ζε0 := j, ζεn = arg min
j1∈(Γ2)−ζn−1

{
Y
γ
(1)
n−1,j1

τεn
+ ǧ

ζn−1,j1
τεn

}
.

Proof. For easy of notation, we shall omit the variable ε to the coupled control (ρ, γ) associated to the
individual controls (σεn, ξ

ε
n) and (τεn, ζ

ε
n). This proof is divided in two steps:

Step 1. Let us show that αε ∈ Ais and βε ∈ Bjs. Indeed, by Assumption G:

• Since the switching costs satisfy the non-free loop property (G3), then by proceeding as in Proposition
4.2, we have that P({ρn < T, for all n ≥ 0}) = 0. Thus, P({σεn < T, for all n ≥ 0}) = 0 since σεn ≥ ρεn
for n ≥ 0.

• The consistency property (G2)-(i) implies that σεn < σεn+1 on {σεn < T} for n ≥ 1, since it is not optimal
to switch more than once.

On the other hand, since that the filtration F is right continuous, then ξεn is Fσεn -measurable. Hence, αε ∈ Ais
(see Definition 5.1). Similarly, βε ∈ Bjs.

Step 2. Let us show that γ(αε, βε) ∈ Gi,js . Note that by construction of ρ1 and since (Y i,j , Zi,j ,Ki,j,+,Ki,j,−)
is solution of (5.4) we have P-a.s.,

Y i,js = Y i,jρ1 1{ρ1<T} + hi,j1{ρ1=T} +

∫ ρ1

s

f i,jt dt+

∫ ρ1

s

dKi,j,+
t −

∫ ρ1

s

dKi,j,−
t −

∫ ρ1

s

Zi,jt dBt

= Y i,jρ1 1{ρ1<T} + hi,j1{ρ1=T} +

∫ ρ1

s

f i,jt dt−
∫ ρ1

s

Zi,jt dBt,

(5.14)

where in the last equality we use that Ki,j,+
t = Ki,j,−

t = 0, for t ∈ [s, ρ1]. On the other hand, on the event

{ρ1 = σε1} we have Y i,jρ1 = Y i,jσε1 and thus by definition of σε1 we obtain Y i,jρ1 ≤ Y
γ1
ρ1 − ĝ

γ
(1)
0 ,γ

(1)
1

ρ1 + ε
4 . Moreover,

on the event {ρ1 = τεs } we have trivially that Y i,jρ1 ≤ Y
γ1
ρ1 + ǧ

γ
(2)
0 ,γ

(2)
1

ρ1 (see Definition 5.7-(iii)). Therefore, by
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considering the first switch ρ1 for any of the two player we have from (5.14) that

Y i,js ≤ hi,j1{ρ1=T} +

∫ ρ1

s

f i,jt dt+ (Y
γ
(1)
1 ,j

σεs
− ĝi,γ

(1)
1

σεs
)1{σεs<T}1{σεs≤τεs } + (Y

i,γ
(2)
1

τεs
+ ǧ

j,γ
(2)
1

τεs
)1{τεs<σεs}

−
∫ ρ1

s

Zi,jt dBt +
ε

4

= hγ01{ρ1=T} +

∫ ρ1

s

futt dt+ Y γ1ρ1 1{ρ1<T} −
[
ĝ
γ
(1)
0 ,γ

(1)
1

ρ1 − ǧγ
(2)
0 ,γ

(2)
1

ρ1

]
−
∫ ρ1

s

Zutt dBt +
ε

4
.

(5.15)

Proceeding iteratively for n = 1, . . . , N we get

Y i,js ≤
N∑
n=1

hγn−11{ρn=T,ρn−1<T} +

∫ ρN

s

futt dt+ Y γNρN 1{ρN<T} −
N∑
n=1

[
ĝ
γ
(1)
n−1,γ

(1)
n

ρn − ǧγ
(2)
n−1,γ

(2)
n

ρn

]
−
∫ ρN

s

Zutt dBt +

N+1∑
n=2

ε

2n
.

(5.16)

An analogous procedure, by changing the roles of σ’s and τ ’s, yields

Y i,js ≥
N∑
n=1

hγn−11{ρn=T,ρn−1<T} +

∫ ρN

s

futt dt+ Y γNρN 1{ρN<T} −
N∑
n=1

[
ĝ
γ
(1)
n−1,γ

(1)
n

ρn − ǧγ
(2)
n−1,γ

(2)
n

ρn

]
−
∫ ρN

s

Zutt dBt −
N+1∑
n=2

ε

2n
.

(5.17)

Therefore, by combining (5.16) and (5.17), and using the triangle inequality, we have∣∣∣Cγ(αε,βε)
N

∣∣∣ ≤ ∣∣∣∣∣Y i,js +

N∑
n=1

hγn−11{ρn=T,ρn−1<T} +

∫ ρN

s

futt dt+ Y γNρN 1{ρN<T} −
∫ ρN

s

Zutt dBt

∣∣∣∣∣+

N+1∑
n=2

ε

2n

(5.18)
and thus

sup
N≥1

∣∣∣Cγ(αε,βε)
N

∣∣∣ ≤ ∣∣Y i,js ∣∣+ max
(i,j)∈Γ

∣∣hi,j∣∣+

∫ T

s

|futt | dt+ max
(i,j)∈Γ

sup
s≤t≤T

∣∣∣Y i,jt ∣∣∣+ sup
s≤t≤T

∣∣∣∣∫ t

s

Zutt dBt

∣∣∣∣+ ε. (5.19)

Hence, since f i,j ∈ H2, hi,j ∈ L2(FT ) and (Y i,j , Zi,j) ∈ S2 ×H2,d, we conclude that the right-hand side of
(5.19) is a square-integrable random variable, which proves that γ(αε, βε) ∈ Gi,js

Let us define an ε- strategy βε : Ais → Bjs, for Player 2, in the following manner: given α = (σn, ξn)n≥0 ∈ Ais,
we define βε(α) = (τεn, ζ

ε
n)n≥0 in Bjs, such that the coupling control associated to this two controls is given by

ρ0 = s and γ0 = (i, j) (5.20)

and for n ≥ 1,

ρn = σrn ∧ τεn, γn =


(ξrn , γ

(2)
n−1), on {σrn ≤ τεn, σrn < T}

(γ
(1)
n−1, ζ

ε
n), on {τεn < σrn}

γn−1, otherwise.

where ζεn = Uγn−1
ρn is obtained from (5.13), τεn = τ

γn−1
ρn−1 for n ≥ 1, {rn}n≥0 is defined iteratively by r0 = 0,

r1 = 1 and for n ≥ 2,
rn = rn−1 + 1{σrn−1

≤τεn−1}. (5.21)

Similarly, for each β ∈ Bjs we define the control αε(β) ∈ Ais, for player 1, using the switching selector L(Y )
instead of U(Y ) (see (5.13)).
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Lemma 5.4. We have αε ∈ A i
s and βε ∈ Bj

s.

Proof. Let us only show that βε ∈ Bi
s, since αε ∈ A i

s is similar. Note that given a control α ∈ Ais, then the
ε-optimal control βε(α) = βε = (τεn, ζ

ε
n)n≥0 belongs to Bjs (see Step 1 in Lemma 5.3). Hence, the mapping

βε is well defined. Moreover, by construction of βε satisfies the non anticipative property.
On the other hand, given α ∈ Ais we want to see that βε(α) = βε ∈ Bis. To this end, let γ(α, βε) the

coupling strategy associated to α and βε. For notational convenience, we delete the superscript ε but keep
in mind that the control β of player 2 is ε-optimal and the control α of player 1 is arbitrary. Therefore, by
proceeding as in Lemma 5.3 we obtain from (5.14) that P–a.s.,

Y i,js =

∫ ρ1

s

f i,jt dt+ hi,j1{ρ1=T} + Y i,jρ1 1{ρ1<T} +

∫ ρ1

s

dKi,j,+
t −

∫ ρ1

s

dKi,j,−
t −

∫ ρ1

s

Zi,jt dBt,

≥
∫ ρ1

s

f i,jt dt+ hi,j1{ρ1=T} + Y i,jρ1 1{ρ1<T} −
∫ ρ1

s

Zi,jt dBt.

In the last inequality, since α is arbitrary then γ(1) is not necessarily ε-optimal at time ρ1, then the non-negative
term Ki,j,+

t may not be zero on [s, ρ1], but we still have Ki,j,−
t = 0 for s ≤ t ≤ ρ1, by the definition of βε.

Besides, as in Lemma 5.3 we have Y i,jρ1 ≥ L
i,j
ρ1 (Y) ( when ρ1 = σ1) or Y i,jρ1 ≥ Y

γ1
ρ1 + g

j,γ
(2)
1

ρ1 − ε
4 (when ρ1 = τε1 ),

and thus

Y i,js ≥ hi,j1{ρ1=T} +

∫ ρ1

s

futt dt+ Y γ1ρ1 1{ρ1<T} −
[
ĝ
i,γ

(1)
1

ρ1 − gj,γ
(2)
1

ρ1

]
−
∫ ρ1

s

Zutt dBt −
ε

4
.

and iterating for 1, . . . , N it follows

Y i,js ≥
N∑
n=1

hγn−11{ρn=T,ρn−1<T} +

∫ ρN

s

futt dt+ Y γNρN 1{ρN<T} −
N∑
n=1

[
ĝ
γ
(1)
n−1,γ

(1)
n

ρn − ǧγ
(2)
n−1,γ

(2)
n

ρn

]
−
∫ ρN

s

Zutt dBt −
N+1∑
n=2

ε

2n
,

(5.22)

and thus we have
N∑
n=1

ǧ
γ
(2)
n−1,γ

(2)
n

ρn ≤ Y i,js −
N∑
n=1

hγn−11{ρn=T,ρn−1<T} −
∫ ρN

s

futt dt− Y γNρN 1{ρN<T} +

N∑
n=1

ĝ
γ
(1)
n−1,γ

(1)
n

ρn

+

∫ ρN

s

Zutt dBt +

N+1∑
n=2

ε

2n
.

(5.23)

Since P({ρN < T ∀N ≥ 1}) = 0, the limits as N → ∞ on both sides of (5.23) are well defined. As the
switching costs are non-negative we have

0 ≤
∞∑
n=0

ǧ
ζεn−1,ζ

ε
n

τn ≤ Y i,js − huT −
∫ T

s

futt dt+

∞∑
n=0

ĝξn−1,ξn
σn +

∫ T

s

Zutt dBt + ε. (5.24)

Hence, since α ∈ Ais, (Y i,j , Zi,j) ∈ S2 × H2,d, hij ∈ L2(FT ), and f i,j belongs to H2 for all (i, j) ∈ Γ,
the random variable on the right-hand side of (5.24) belongs to L2 and we conclude that the control β is
square-integrable.

5.3 Proof of Theorem 5.1.

(i) We first show that for any arbitrary α ∈ Ais we have,

J i,js (γ(α, βε(α)))− ε ≤ Y i,js , (5.25)
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where βε(α) was introduced in Lemma 5.4. Namely, conditional expectations in (5.22) above we get,

Y i,js ≥ E
[ N∑
n=1

hγn−11{ρn=T, ρn−1<T} +

∫ ρN

s

futt dt+ Y γNρN 1{ρN<T}

−
N∑
n=1

[
ĝ
γ
(1)
n−1,γ

(1)
n

ρn − ǧγ
(2)
n−1,γ

(2)
n

ρn

]∣∣∣Fs]− ε. (5.26)

By Lemma 5.4, we have γ(α, βε(α)) ∈ Gi,js , then taking the limit N → ∞ in (5.26) proves the inequality
(5.25). Similarly, we get

Y i,js ≤ J i,js (γ(αε(β), β)) + ε (5.27)

for each β ∈ Bjs. Therefore, the desired result follows from (5.25) and (5.27).

(ii) Since α ∈ Ais is arbitrary, by taking ess sup over Ais in (5.25), we have that

ess sup
α∈Ais

J i,js (γ(α, βε(α))− ε ≤ Y i,js . (5.28)

Moreover, since β
ε
(α) ∈ Bjs, for each α ∈ Ais, then

ess inf
β∈Bjs

ess sup
α∈Ais

J i,js (γ(α, β))− ε ≤ ess sup
α∈Ais

J i,js (γ(α, βε(α))− ε ≤ Y i,js .

and letting ε→ 0 we get
ess inf
β∈Bjs

ess sup
α∈Ais

J i,js (γ(α, β)) ≤ Y i,js .

Similarly, given β ∈ Bjs and defining αε(β) = (σεn, ξ
ε
n), we obtain that

Y i,js ≤ ess sup
α∈Ais

ess inf
β∈Bjs

J i,js (γ(α, β)).

Thus, combining the last two inequalities we get V̂s ≤ Y i,js ≤ V̌s a.s., which together with V̂ ≥ V̌ yields to the
equality

V̂s = Y i,js = V̌s

and so the game has a value.

5.4 Special cases

In previous sections we are assuming the existence of systems of DRBSDEs (5.4). In this section we show
that under a special structure such systems have indeed a solution.

Case 1. Suppose that for each (i, j) ∈ Γ, the switching costs (ĝi,j) and (ǧi,j) are càdlàg. Besides, for each
(i, j) ∈ Γ, the functions f i,j and hi,j satisfy

f i,j := f i + f j and hi,j := hi + hj . (5.29)

Consider the following two systems of RBSDEs with one interconnected lower (resp. upper) barriers associated
with data ((f i)i∈Γ1 , (hi)i∈Γ1 , (ĝik)i,k∈Γ1)) (resp. ((f j)j∈Γ2 , (hj)j∈Γ2 , (ǧj`)j,`∈Γ2))): for any i ∈ Γ and s ≤ T
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(resp. for any j ∈ Γ and s ≤ T ),

(i) Ys
i

= hi +

∫ T

s

f itdt+K
i

T −K
i

s −
∫ T

s

Z
i

t dBt;

(ii) Y
i

s ≥ max
k∈(Γ1)−i

{Ys
k − ĝ i,ks };

(iii)

∫ T

0

(Yt
i

− − max
k∈(Γ1)−i

{Yt
k

− − ĝ
i,k
t− })dK

i

t = 0.

(5.30)

(resp.

(i) Ys
j

= hj +

∫ T

s

f jt dt− (K
j

T −K
j

s )−
∫ T

s

Z
j

t dBt;

(ii) Ys
j ≤ min

`∈(Γ2)−j
{Ys

`
+ ǧ j,`s };

(iii)

∫ T

0

(Yt
j

− − min
`∈(Γ2)−j

{Yt
`

− + ǧ j,`t− })dK
j

t = 0.)

(5.31)

Since for any i, i1, i2 ∈ Γ1 and j, j1, j2 ∈ Γ2, f i.f j ∈ H2, hi, hj ∈ L2(FT ), ĝi1,i2 , ǧj1,j2 ∈ S2 and along
with Assumption G, then there exist unique solutions (Y

i
, Z

i
,K

i
)i∈Γ1 and (Y

j
, Z

j
,K

j
)j∈Γ2 of the equations

(5.30) and (5.31), respectively (see Proposition 4.6). By using these solutions, we define the processes
(Y

i,j
, Z

i,j
,K

i,j,+
,K

i,j,−
) by the formula: for all (i, j) ∈ Γ

• Y i,j := Y
i
+ Y

j
.

• Zi,j := Z
i
+ Z

j
.

• Ki,j,+
:= K

i
.

• Ki,j,−
:= K

j
.

Then, it is easily seen that the quadruple (Y
i,j
, Z

i,j,+
,K

i,j
,K

i,j,−
) is solution of the following system: for all

(i, j) ∈ Γ and s ≤ T ,

(i) Ys
i,j

= hi,j +

∫ T

s

f i,jt dt+K
i,j,+

T −K i,j,+

s − (K
i,j,−
T −K i,j,−

s )−
∫ T

s

Z
i,j

t dBt;

(ii) max
k∈(Γ1)−i

{Ys
k,j − ĝ i,ks } ≤ Ys

i,j ≤ min
`∈(Γ2)−j

{Ys
i,`

+ ǧ j,`s };

(iii)
∫ T

0

(Yt
i,j

− − U
i,j
t− (Y))dK

i,j,−
t =

∫ T

0

(Yt
i,j

− − L
i,j
t−(Y))dK

i,j,+

t = 0.

Indeed, the equality in (i) is clear. On the other hand, to show part (ii), note that for (i, j) ∈ Γ, s ≤ T ,

max
k∈(Γ1)−i

{Ys
k − ĝ i,ks } ≤ Y is ,

and thus adding Y j in both side of this inequality and using the definition of Y i,j we get for s ≤ T ,

max
k∈(Γ1)−i

{Ys
k,j − ĝ i,ks } ≤ Y i,js .

Similarly the other inequality in (ii) is obtained in the same manner. Finally, item (iii) is directly obtained
from the definition of Y i,j , Ki,j,+ and Ki,j,− for each (i, j) ∈ Γ.
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Case 2. We now assume that T = 1, Γ1 = {1, 2} and Γ2 = {3, 4}, and let us consider the following lower
switching costs, for t ∈ [0, 1],

ĝ12(t) = 1 · 1[0,1/2)(t) + 2 · 1[1/2,1](t)

ĝ21(t) = 4 · 1[0,1/2)(t) + 5 · 1[1/2,1](t)
,

and the upper switching costs ǧ3,4 and ǧ4,3 are assumed semimartingales (e.g. constants).
In order to find processes that are solutions of the system (5.4) with these given switching costs, we start

by considering the following penalization scheme: for n ≥ 0, (i, j) ∈ Γ and s ∈ [0, 1],

Ỹ ij,ns = ξij +

∫ 1

s

f ijt dt+ K̃ij,n
1 − K̃ij,n

s − n
∫ 1

s

(Ỹ ij,nt − (Ỹ il,nt + ǧjlt ))+dt−
∫ 1

s

Z̃ij,nt dBt

Ỹ ij,ns ≥ Ỹ kj,ns − ĝiks∫ 1

0

(
Ỹ ij,nt− − (Ỹ kj,nt− − ĝikt−)

)
dK̃ij,n

t = 0.

(5.32)

Note that for any n ≥ 0 and (i, j) ∈ Γ, the solution (Ỹ ij,n, Z̃ij,n, K̃ij,n) ∈ S2 ×H2 × S2 exists by Proposition
4.6 (see also Proposition 3.1 in [29]). Since the lower switching costs are càdlàg at t = 1/2, then for each
n ≥ 0 and (i, j) ∈ Γ, Ỹ ij,n may also have a negative jump at t = 1/2. Moreover, by comparison theorem we
have that P- a.s.,

Ỹ ij,n ≥ Ỹ ij,n+1 ≥ Ŷ ij

where (Ŷ ij , Ẑij , K̂ij)(i,j)∈Γ is the unique solution of system of reflected BSDEs with upper barriers associated
to the data ((f ij)(i,j)∈Γ, (ξ

ij)(i,j)∈Γ, (ǧjl)j,l∈Γ2) (see the same arguments in the proof of Proposition 3.3. in
[34]). Therefore, taking limit we get Ỹ ij := limn Ỹ

ij,n with Ỹ ij right upper semicontinuous. On the other
hand, by using a similar procedure as in step 2 in Proposition 3.3. in [34], we have that the penalized terms
satisfy the following estimate: for any t ∈ [0, 1], (i, j) ∈ Γ and n ≥ 0,

E
[
n2((Ỹ ij,nt − (Ỹ il,nt + ǧjlt ))+)2

]
≤ C (5.33)

where C is a constant independent of n (unlike Proposition 3.3. in [34], this constant considers the only
possible jump of the processes Ỹ ij,n and Ỹ il,n in (5.33)). Therefore, there exists a subsequence which we still
denote by {n} such that for some φij ∈ H2 the following weak convergence follows

n(Ỹ ij,n − (Ỹ il,n + ǧjl))+ ⇀ φij .

Thus the process defined as k̃ij,−t :=
∫ t

0
φijs ds is continuous, non decreasing and E[(k̃ij,−1 )2] <∞. Moreover,

we have

n

∫ 1

t

(Ỹ ij,n − (Ỹ il,n + ǧjl))+ds ⇀ k̃ij,−1 − k̃ij,−t .

On the other hand, by applying Itô’s formula to (Ỹ ij,n)2 and taking into account (5.33), we have that
sequences (Z̃ij,n)n≥0 and (K̃ij,n)n≥0 are bounded in H2,d and H2, respectively and thus they converge weakly
to a processes Z̃ij and K̃ij in H2,d and H2, respectively. Hence, it follows that

Ỹ ijs = ξij +

∫ 1

s

f ijt dt+ K̃ij,+
1 − K̃ij,+

s −
∫ 1

s

φijt dt−
∫ 1

s

Z̃ijt dBt. (5.34)

Since (K̃ij,+
t )0≤t≤1 is non decreasing process, then for any t, it has both left and right limits. Thus from

(5.34), we also have that the process (Ỹ ijt )0≤t≤1 has both left and right limit since the other terms of the right
hand side of (5.34) are continuous.



82 CHAPTER 5. SWITCHING GAMES

Other other hand, in the interval [1/2, 1] we have continuity of both lower and upper switching costs and
thus, by Theorem 3.6 in [34], there exist unique processes (Y ij , Zij ,Kij,+,Kij,−) such that for any s ∈ [1/2, 1],

(i) Y ijs = ξij +

∫ 1

s

f ijt dt+Kij,+
1 −Kij,+

s − (Kij,−
1 −Kij,−

s )−
∫ 1

s

Zijt dBt

(ii) Y kjs − ĝiks ≤ Y ijs ≤ Y ils + ǧjls

(iii)

∫ 1

s

(Y ijt − (Y kjt − ĝikt ))dKij,+
t =

∫ 1

s

(Y ilt + ǧjlt − Y
ij
t )dKij,−

t = 0,

where Kik,+ and Kij,− are non decreasing processes with Kij,+
1/2 = Kij,−

1/2 = 0.

Next for the interval [0, 1/2], we have again by Theorem 3.6 in [34] that there exist (Y
ij
, Z

ij
,K

ij,+
,K

ij,−
)

such that, for any s ∈ [0, 1/2],

(i) Y
ij

s = θij +

∫ 1/2

s

f ijt dt+K
ij,+

1 −Kij,+

s − (K
ij,−
1 −Kij,−

s )−
∫ 1/2

s

Z
ij

t dBt

(ii) Y
kj

s − ĝiks ≤ Y
ij

s ≤ Y
il

s + ǧjls

(iii)

∫ 1/2

s

(Y
ij

t− − (Y
kj

t− − ĝikt−))dKij,+
t =

∫ 1/2

s

(Y
il

t− + ǧjlt − Y
ij

t−)dK
ij,−
t = 0

where θij is defined by

θij := Y ij1/21[Ỹ ij
1/2−=Y ij

1/2
] + (Ỹ kj1/2− − ĝ

ik
1/2−)1[Ỹ ij

1/2−>Y
ij
1/2

] (5.35)

Finally, we proceed to concatenate to obtain the desired solution. Indeed, let us define the concatenated
solution (Y ij,c, Zij,c,Kij,c,Kij,c) as follows, for any s ∈ [0, 1],

(c1) Y ij, cs := Y
ij

s 1[s<1/2] + Y ijs 1[1/2≤s≤1],

(c2) Zij, cs := Z
ij

s 1[s<1/2] + Zijs 1[1/2≤s≤1],

(c3) Kij,+, c
s := K

ij,+

s 1[s<1/2] + (Kij,+
s + (Ỹ kj1/2− − ĝ

ik
1/2− − Y

ij
1/2)+ +K

ij,+

1/2 )1[1/2≤s≤1],

(c4) Kij,−, c
s := K

ij,−
s 1[s≤1/2] + (Kij,−

s +K
ij,−
1/2 )1[1/2<s≤1].

It is straightforward to show that these processes (Y ij,c, Zij,c,Kij,c,Kij,c) satisfy for each (i, j) ∈ Γ and
s ∈ [0, 1],

(i) Y ij,cs = ξij +

∫ 1

s

f ijt dt+Kij,+,c
1 −Kij,+,c

s − (Kij,−,c
1 −Kij,−,c

s )−
∫ 1

s

Zij,ct dBt

(ii) Y kj,cs − ĝiks ≤ Y ij,cs ≤ Y il,cs + ǧjls

(iii)

∫ 1

s

(Y ij,ct− − (Y kj,ct− − ĝikt−))dKij,+,c
t =

∫ 1

s

(Y il,ct− + ǧjlt − Y
ij,c
t− )dKij,−,c

t = 0.

(5.36)

Hence the system (5.4) has solution to this special case.
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Remark 5.1. In a similar manner we can extend the lower barrier from one to a finite, say 0 < t1 < t2 <
, · · · , < tk < 1, k ≥ 2 number of discontinuities. The idea is to do the analysis in the following backward
reasoning: choose the intervals [tk−1, tk] and [tk, 1]. Then apply the above analysis for the discontinuity tk,
in particular to get a θk as in (5.35) and thus to obtain a solution Y ij on [tk−1, 1]. Next, let us construct
the solution on the intervals [tk−2, tk−1] by giving a terminal condition θk−1 that in turn depends on both
values Y ijtk−1

and Ỹ ijtk−1− —recall that Ỹ ij was defined in (5.34) on the whole interval [0, 1]. In this way, we
can deduce a solution on [tk−1, 1] by concatenating according to the procedures (c1)–(c4). Proceeding in this
way, we can obtain the solution in the whole interval [0, 1].

Remark 5.2. Another interesting example is the one that includes discontinuities affecting both the lower
and the upper switching costs. We think that the above results can be applied only for the case when there is
not a point x ∈ [0, 1] that produces a discontinuity to both costs. This new challenging example deserves
more attention and will be tackled in the near future.
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6

Conclusions and future work

In this thesis we have studied optimal switching control problems and switching games for a general class of
switching cost functions. Our leading motivation was the acquired knowledge of the well-known theory of
BSDEs, specifically the area of systems of inteconnected RBSDEs of one and two càdlàg barriers. We have
given conditions ensuring the existence of optimal control switching strategies by taking advantage of the
richness of the theory of BSDE and the connection with Snell envelopes and the PDEs theory.

More specifically, the first two chapters were the basis for the development of the new original results
proposed in the later two chapters. Among the topics of these two preliminary chapters, we can highlight
results on existence and uniqueness as well as comparison theorems of (1) BSDE, (2) RBSDE, (3) Systems of
inteconected RBSDE with continuous barriers. In turn, these results provide links between the solutions of
these equations and certain systems of PDE’s; the existence of the later systems is also analyzed through the
theory of viscosity solutions. In the meantime, there has been also stipulated a bridge of the aforementioned
systems with the optimal elements of switching control problems for the case of the systems of RBSDE and
stopping times for the case of RSDE.

Next, the idea was then to extend the results of these preliminaries chapters for the cases when (a) a
switching control problem has a switching cost of càdlàg type and (b) a switching game with the same
characteristics on the switching costs for each player. All these extensions were posed and solved in Chapters
4 and 5.

Nevertheless, we want to mention that the results studied in here leave open other interesting lines of
study. For instance:

• The study of switching control problems and games when the time horizon is infinite (i.e., T = ∞).
These later type of problem are very common in applications related to pollution problems, population
growth models, among others.

• Non zero-sum switching because many economic problems need not to have the property that the gain
of one player is the loss of the other. So, the treatment of these type of models combined with our
theory would be so interesting.

• Mixing control problems when the controller (resp. the player) not only controls the switching but also
needs to control the dynamics of the system at every instant of time between switchings. The usefulness
of these problems is vast and generalizes of course our results.
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