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Resumen

Estudiamos de manera general la caminata aleatoria de Sinai, es decir, teoremas clási-

cos, su comportamiento asintótico y resultados sobre como recuperar el ambiente dada

una trayectoria de la caminata, resultado del cual propusimos una mejora. El análi-

sis de la caminata de Sinai, nos dió la pauta a proponer un modelo parsimonioso

para fijar el precio de un derivado financiero, incorporando la existencia de ambiente

aleatorio. Tal construcción puede pensarse como una extensión del modelo Cox-Ross-

Rubinstein (CRR). Mencionamos las dificultades de aplicar el modelo de Sinai al in-

tentar usarlo en el procedimiento CRR. Además, presentamos algunas simulaciones y

un experimento numérico. Mostramos algunos resultados sobre el comportamiento de

el modelo propuesto y así como ocurre con la caminata de Sinai, proporcionamos un

método para conectar los sitios más visitados de el modelo con los puntos mínimos de

una cierta función del ambiente. Por último, a manera de conjetura propusimos como

obtener información en el problema de recuperación de el ambiente para el caso de el

nuevo modelo.
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Summary

We study in a general way the Sinai’s random walk, i.e., classical theorems, its asymp-

totic behaviour and results about recovering the environment given a trajectory of the

walk, where we propose some refinements of an algorithm to recover the environment.

The analysis about the Sinai’s walk gave us the guideline to propose a parsimonious

model for financial pricing that incorporates the existence of a random environment,

and such construction can be thought as an extension of the Cox-Ross-Rubinstein

(CRR) model. We mention the difficulty of applying Sinai’s model if we try to use

it for the CRR procedure. In addition, we present some simulations and a numerical

experiment. We prove some results about the behaviour of the proposed model, and

as it was done with the Sinai’s walk, we also provide a method to connect the most

visited sites of the model with the minimum points of a certain function of the envi-

ronment. Finally, in a conjecture we provide how we can obtain information of the

problem about recovering environment for the case of the new model.
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Introduction

A random walk in a random environment (it is abbreviated by RWRE) is a stochastic

process with double randomness, that is, the randomness induced by the environment

and the randomness by the walk itself, which produces that its behaviour differs sub-

stantially from the classical random walk. This kind of models emerged from prob-

lems in mathematical physics, and eventually they were applied in problems of DNA

replication. The models in random environment present many interesting phenom-

ena. In general, we realise that each environment affects the position of the particle.

Roughly speaking, we can think in Sinai’s random walk as a walk where each time

that the particle reaches a state x, it goes up a unit with probability αx or goes down

a unit with probability 1−αx, when the environment (in this case, such probabilities

αx) is fixed.

Figure 1: Dynamic of Sinai’s walk.

Sometimes we have a trajectory of the walk, but we do not know the environment

that implicitly produced such trajectory. Hence to obtain a procedure to recover the

environment is a relevant task, which was studied in (Andreoletti, 2011) for the case

of the Sinai walk. It is our motivation to study in a general way the Sinai walk, its

asymptotic behaviour and Andreoletti’s algorithm to recover the environment given

a trajectory. Such survey gave us the guideline to propose other model in random

15
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environment which is applied in Chapter 2 and studied with more detail in Chapter 3.

In the field of financial mathematics, when we study valuation of options we think

that it is possible to suggest the existence of a random medium. For that we propose

a model different of the Sinai walk, but that it saves its spirit. We are not claiming

that behind the price of an underlying asset there is a fixed environment throughout

the life of the asset. But it could happen that the environment behind the price of the

asset is changing more slowly than the fluctuation of prices. In this thesis, it is not

our intention to compare and measure which model is better, we only want to present

our model as a first approximation maybe closer to the reality for modelling financial

series and asset pricing.

In Chapter 1, we introduce the Sinai walk described in (Sinai, 1982) and sum-

marise some important results. For instance, the Theorem 1.2.10 about recurrence

we explain the proof with detail and clearly using the Chung-Fuchs theorem. We ex-

plain about the asymptotic behaviour in a more intuitive way and the relation between

the most visited sites by the walk and the potential associated to the environment.

Moreover, we study the problem of recovering the environment given that we know a

trajectory of the Sinai walk in a finite time window. Mainly we review the first ideas

of (Andreoletti, 2011) using only the local time. Also, we propose some refinements

of the algorithm of Andreoletti to improve the results under certain situations. My

contributions in this chapter are mainly two, on hand I give a proof clearly and com-

plete of the recurrence theorem and on the other hand I propose some refinements of

the algorithm to recover the environment.

In Chapter 2, we make a new proposal in the context of financial pricing that

incorporates the existence of a random environment. Such construction can be though

as an extension of the Cox-Ross-Rubinstein (CRR) model proposed in (Cox et al.,

1979). For that, we consider the essence of the Sinai walk to present a new model in

a random environment to apply it for option pricing; in fact, we mention the difficulty

of applying exactly the Sinai model if we try to use it for the CRR procedure. For such

reason, the proposed model is of different nature. Furthermore, we provide a way to

connect the most visited sites of the model with the minimum points of a function of

the environment, in a similar way as the connection between the Sinai walk and the

potential. We present some simulations and a numerical experiment to bring a new

perspective. In conclusion, my contribution in this chapter is not just to give a new

model for financial series and pricing, but I consider that I am actually proposing a

new paradigm that helps to understand financial markets.

Finally, in Chapter 3 we study some aspects of the model presented in Chapter
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2. For instance, asymptotic behaviour, the relation between the environment and its

effect in the trajectories of the walk. Also, we explore the possibility to obtain a

procedure to recover information about the environment using only the local time,

and then, after discarding the implementation of the algorithm of Andreoletti for such

model, we propose a conjecture. In summary, my contributions here are three; I give

results regarding the recurrence of the new model, I build the concept of "potential"

for the new model to study favourite sites, and I set a conjecture for the problem of

recovering the environment.

Throughout this work, we show figures made in the software Geogebra and Xfig.

All simulations were programmed in the software R. We write the pseudo-codes at the

end of each chapter.
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Chapter 1

Random walk in a random
environment

For this Chapter, we focus in the Sinai walk (Xn)n>1, which is a discrete model, but it

is important to know that there is an extensive study about random walks in random

environment for continuous time, we refer the reader to (Brox, 1986) for more details.

The first studies in the literature about random walks in random environment were

presented by Temkin (1972) in the field of metallurgy (from here the reference to use

the words quenched or annealed to call to certain probabilities as we will see later)

and Chernov (1967) with a model of DNA replication. Afterwards, Solomon, Kesten,

Golosov, Sinai, Kozlov and Spitzer were the pioneers in this area of probability.

In 1982, Sinai proved that under certain conditions, the model presented unusual

properties. Sinai demonstrated how the order of Xn is about (logn)2. Observe that

this order is much slower than
√

n, the usual order of the symmetric random walk. It

turns out that the presence of the random environment forces to the RWRE to stay for

long periods of time in certain zones, called valleys. Furthermore, he proved that the

process σ2Xn
(logn)2 converges in law to a non-degenerated random variable. Later in 1986,

independently (Kesten, 1986) and (Golosov, 1986) described such a law explicitly.

1.1 Sinai’s random walk

After introducing the definition of a random walk in a random environment, we are

going to present the Sinai model. The main goal in this chapter will be to prove the

recurrence theorem (Solomon, 1975) with detail and clearly using the Chung-Fuchs

theorem in its proof. Later, we are going to prove that Sinai’s walk remains bounded

uniformly. Then, we will present the localization theorem (Sinai, 1982). Finally, we

19



20 1.1. SINAI’S RANDOM WALK

are going to explain an interesting procedure that provide us information about the

environment for a given trajectory of Sinai’s walk (Andreoletti, 2011). At the end

of the chapter, the appendix A has some results that we need for the proofs. In the

appendix B, we give the algorithm of the simulations presented along this chapter.

Let Z be the set of all integer numbers, i.e., Z= {. . . ,−2,−1,0,1,2, . . .}. We con-

sider α = {αi : i ∈ Z} a sequence of independent and identically distributed random

variables (i.i.d) taking values in (0,1) on a probability space (Ω,F,P). Each realiza-

tion is called an environment. That is, for each ω ∈Ω, α = {αi(ω)}i∈Z is a bi-infinite

string of numbers between 0 and 1.

For every fixed sequence α , we define the random walk in the environment α as

the Markov chain {Xn : n > 0} taking values in Z with associated probability space

(Ω1,F1,Pα) where X0 = 0, and the transition probabilities are the following:

Pα(Xn+1 = y | Xn = x) =


αx if y = x+1,

1−αx if y = x−1,

0 otherwise.

(1.1.1)

In other words, for each point x in the state space Z, there is a transition-probability

associated αx. Then, the particle moves one unit to the right with probability αx or it

moves one unit to the left with probability 1−αx as we can see in the Figure 1.1. We

can say that a random walk in a random environment (RWRE) evolves with double

randomness: the environment we call it the extrinsic randomness, and the one coming

from Pα we call it intrinsic randomness.

x+1

α1− α x

x−1 x

x

Figure 1.1: Transition probabilities in Sinai’s walk.

Usually the probability measure Pα is referred as the quenched law. We use the nota-

tion Pα
x (·) for the quenched probability such that X0 = x, and Eα

x for the expectation

associated to Pα
x . Also we denote by E, the expectation associated to the measure P.

In addition, we are interested in the average of the quenched laws over all possible

environments. We denote by Px such law, and it is defined as

Px(A) := E Pα
x (A) =

∫
Ω

Pα(ω)
x (A) P(dω) for all A ∈ F1. (1.1.2)
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The measure Px is called the annealed law. Observe that in general the RWRE is not

a Markov chain under the annealed law, because the history of the RWRE modifies

beforehand the law on the environment. In other words, the best way to approximate

Pα
x (A) is by the law of large numbers, i.e., we run many repetitions of the experi-

ment (that is, different environments) and the more often it reaches a state j ∈ Z, the

more information we have to approximate α j depending the past of the walk in each

experiment.

In fact, if the RWRE has a property A almost surely (a.s) with respect to (w.r.t) Pα
x

(i.e., Pα
x (A) = 1) and for almost all environments (i.e., ω ∈ Ω̃, where P(Ω̃) = 1), then

the property A is true almost surely w.r.t Px.

As before, we consider α = {αi : i∈Z} to be a sequence of i.i.d random variables.

In addition, if the environment satisfies the following three conditions:

C.1 E
(

log
1−α0

α0

)
= 0,

C.2 0 < σ2 = E
(

log 1−α0
α0

)2
< ∞,

C.3 There is a constant 0 < β < 1/2 such that β < α0 < 1−β , P-a.s,

then the process (Xn)n>0 is called Sinai’s walk. The first condition is necessary to

prove that the RWRE is a recurrent process. The second condition excludes the

symmetric random walk, because when σ2 = 0 and the condition C.1 is true, then

P(α0 =
1
2) = 1. Furthermore, the condition σ2 < ∞ is necessary to apply the strong

law of large numbers in some proofs. The condition C.3 is called the ellipticity con-

dition and it helps to control the fluctuations on the environment.

Note that the condition C.3 implies that the random variable log 1−α0
α0

is bounded

P-a.s, because ∣∣∣∣log
1−α0

α0

∣∣∣∣< log
1−β

β
P-a.s. (1.1.3)

1.2 About recurrence

First, we recall some basic definitions, see (Durrett, 1999) for instance. Let {Yn}n>0

be a Markov chain on a state space S. Let x,y ∈ S, we assume that Y0 = x. Denote by

Ty =

{
inf{n> 1 | Yn = y,}
+∞, if such n does not exit,

(1.2.1)

the first time that the Markov chain arrives to y given that it starts at the state x.
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Definition 1.2.1. Consider the following statements.

a) A state x is said to communicate with the state y if

Px(Ty < ∞)> 0.

b) We say two states x and y are intercommunicated if and only if x communicates

with the state y, and y communicates with the state x.

c) If there is only one communication class, then the chain is called irreducible.

d) A state x is called transient if

Px(Yn = x for infinitely many n) = 0.

e) A state x is called recurrent if

Px(Yn = x for infinitely many n) = 1.

f) We say that an irreducible Markov chain is recurrent (transient) if all states of this

chain are recurrent (transient).

Lemma 1.2.2. (Durrett, 1999)[p. 12-20]

Let {Y0,Y1,Y2 . . .} be a Markov chain with state space S. The following statements are

equivalent.

i. The state x is recurrent.

ii. Px(Tx < ∞) = 1,

iii. Px(Yn = x for infinitely many n) = 1,

iv. ∑
∞
n=1 Px(Yn = x) = ∞.

Now, let us consider the simple symmetric random walk Yn on Z,

Yn = Y0 +
n

∑
i=1

ξi,

where Y0 = x, and (ξi : i> 1) is a sequence of i.i.d random variables that taking values

in {1,−1} with P(ξ1 = 1) = 1/2 = P(ξ1 =−1). It is well known that the symmetric

random walk Yn is a recurrent process. Then, it is natural to ask ourselves if the

Sinai walk is also a recurrent process. Indeed, Solomon (1975) gave the necessary

conditions to prove the result of recurrence.

First, we are going to present a required definition for the study of the Sinai walk.
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Definition 1.2.3. For every fixed α , we define the potential associated to the random

environment α as

V (x) =



x

∑
i=1

log
1−αi

αi
, if x = 1,2, . . .

0, if x = 0

−
0

∑
i=x+1

log
1−αi

αi
, if x =−1,−2, . . .

(1.2.2)

The potential V (x) for a given environment α will be used to prove the recurrence.

As well it is indispensable to analyse the asymptotic behaviour of the Sinai walk. This

function was proposed and used in (Solomon, 1975).

Remark 1.2.4. By hypothesis {α j} j∈Z are i.i.d random variables and we know that

the map y 7→ logy is a measurable function, and log 1−αo
αo
∈ L1 by (1.1.3). Then, the

sequence {log 1−α j
α j
} j∈Z are i.i.d random variables with mean zero by the condition

C.1 and finite variance by the condition C.2. Therefore, V (x) is really a two-sided

random walk.

It is important to note that the presence of the random environment forces the

RWRE to stay for a long time in certain zones called valleys.

Remark 1.2.5. Let us explore the idea behind a "valley". Observe that with the Defi-

nition 1.2.3 about the potential associated to an environment α , it is possible to write

the values of αx for any x ∈ Z, explicitly as

αx =
e−(V (x)−V (x−1))

e−(V (x)−V (x−1))+1
. (1.2.3)

For i > 0, we can calculate

e−(V (i)−V (i−1))

e−(V (i)−V (i−1))+1
=

e−(∑
i
x=1 log( 1−αx

αx )−∑
i−1
x=1 log( 1−αx

αx ))

e−(∑
i
x=1 log( 1−αx

αx )−∑
i−1
x=1 log( 1−αx

αx )) +1

=
e−
(

log
(

1−αi
αi

))
e−
(

log
(

1−αi
αi

))
+1

=

(
1−αi

αi

)−1

(
1−αi

αi

)−1
+1

=

αi
1−αi

αi+1−αi
1−αi

= αi.
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However, the same expression can be used for the case i6 0, because

e−(V (i)−V (i−1))

e−(V (i)−V (i−1))+1
=

eV (i−1)−V (i)

eV (i−1)−V (i)+1

=
e−∑

0
x=i log( 1−αx

αx )−(−∑
0
x=i+1 log( 1−αx

αx ))

e−∑
0
x=i log( 1−αx

αx )−(−∑
0
x=i+1 log( 1−αx

αx )) +1

=
e− log 1−αi

αi

e− log 1−αi
αi +1

= αi.

This is interesting because it tells us that

αx >
1
2
⇐⇒

2e−(V (x)−V (x−1)) > e−(V (x)−V (x−1))+1⇐⇒

e−(V (x)−V (x−1)) > 1⇐⇒

V (x−1)−V (x) > 0.

In other words, when the potential decreases is because the probabilities are

greater than 1
2 , i.e., the random walk tends to go to the right. Similarly, we can obtain

that αx <
1
2 ⇐⇒ V (x− 1) < V (x), that is, when the potential increases, the random

walk tends to go to the left.

Due to Solomon, we have a complete criterion for describing when the RWRE is

transitory or recurrent, for this section only analyse the recurrent case.

Theorem 1.2.6. (Solomon, 1975)

1. If E(log(1−α0
α0

))< 0 then Xn is transitory (P0−a.s.) and limn→∞ Xn =+∞.

2. If E(log(1−α0
α0

))> 0 then Xn is transitory (P0−a.s.) and limn→∞ Xn =−∞.

3. If E(log(1−α0
α0

)) = 0 then Xn is recurrent (P0− a.s.) and limsupn→∞ Xn = +∞,

liminfn→∞ Xn =−∞.

Assume a,x,b ∈ Z such that a < x < b. Henceforth, we denote by

Pα
x (Ta > Tb),

the quenched probability of paths that start at x and they arrive to b before reaching

the state a. Respectively,

Pα
x (Ta < Tb)

denotes the quenched probability of paths that start at x and they arrive to a before

reaching the state b.
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Lemma 1.2.7. We can compute explicitly such probabilities:

Pα
x (Ta > Tb) =

x−1

∑
i=a

exp(V (i)−V (a))

b−1

∑
i=a

exp(V (i)−V (a))

, (1.2.4)

Pα
x (Ta < Tb) =

b

∑
i=x+1

exp(V (i)−V (b))

b

∑
i=a+1

exp(V (i)−V (b))

(1.2.5)

Proof. Define g(x) := Pα
x (Ta > Tb). Indeed by the law of total probability, we are

going to solve the following boundary value problem difference equation

g(x) = αxg(x+1)+(1−αx)g(x−1), a < x < b (1.2.6)

g(a) = 0 (1.2.7)

g(b) = 1 (1.2.8)

We multiply by αx +(1−αx) on the left side of (1.2.6), and we obtain

αxg(x)+(1−αx)g(x) = αxg(x+1)+(1−αx)g(x−1).

That allows us to acquire the recurrence

g(x+1)−g(x) =
1−αx

αx
(g(x)−g(x−1)).

By taking x = a+1 and the initial condition of (1.2.7) in the above equation,

g(a+2)−g(a+1) =
1−αa+1

αa+1
(g(a+1)−g(a))

=
1−αa+1

αa+1
g(a+1).

Later, for x = a+2,

g(a+3)−g(a+2) =
1−αa+2

αa+2
(g(a+2)−g(a+1))

=
1−αa+2

αa+2

1−αa+1

αa+1
g(a+1).

So on and so forth until x = b−1,

g(b)−g(b−1) =
1−αb−1

αb−1
(g(b−1)−g(b−2))

=
1−αb−1

αb−1
· · · 1−αa+1

αa+1
g(a+1).
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Thereupon using the final condition in (1.2.8), we have

1−g(b−1) = g(a+1)
b−1

∏
j=a+1

1−α j

α j
.

Adding in the previous calculations on both sides, the left side is a telescopic sum and

therefore we obtain

1−g(a+1) = g(a+1)
b−1

∑
i=a+1

i

∏
j=a+1

1−α j

α j
, (1.2.9)

or equivalently

1 = g(a+1)

(
b−1

∑
i=a+1

i

∏
j=a+1

1−α j

α j
+1

)
.

That is1

g(a+1) =

(
b−1

∑
i=a

i

∏
j=a+1

1−α j

α j

)−1

. (1.2.10)

In general, when we add from a+1 to x, we write the recurrence as

g(x)−g(a+1) = g(a+1)
x−1

∑
i=a+1

i

∏
j=a+1

1−α j

α j
.

Therefore,

g(x) = g(a+1)

(
x−1

∑
i=a+1

i

∏
j=a+1

1−α j

α j
+1

)

=
∑

x−1
i=a ∏

i
j=a+1

1−α j
α j

∑
b−1
i=a ∏

i
j=a+1

1−α j
α j

by (1.2.10),

=
∑

x−1
i=a exp(∑i

j=a+1 log 1−α j
α j

)

∑
b−1
i=a exp(∑i

j=a+1 log 1−α j
α j

)
using exponential and logarithmic functions,

=
∑

x−1
i=a exp(V (i)−V (a))

∑
b−1
i=a exp(V (i)−V (a))

by definition of the potential V (x).

Analogously we can deduce a formula for Pα
x (Ta < Tb). �

For each fixed α , at first sight the Sinai walk is an irreducible Markov chain. In

accordance with the Definition 1.2.1, it is enough to prove that the state x = 0 is

recurrent to prove that the Sinai walk is a recurrent process.

1For any sequence of real numbers (y j) j, it is defined the empty product
a

∏
j=a+1

y j := 1 and the empty

sum
a

∑
j=a+1

y j := 0.
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Definition 1.2.8. We have the following statements.

a. A right (left) excursion from a site x is defined as a random walk in which the first

step is to the right (left).

b. We say that a process is right (left) recurrent if for any excursion to the right (left)

of x, the particle returns to x with probability 1.

Now we present the recurrent theorem, and we provide a proof based on the one in

(Hughes, 1996) where we have incorporated the so-called Chung-Fuchs theorem.

Theorem 1.2.9. Chung-Fuchs (Durrett, 2019)[p. 252-253]

Consider Sn a random walk in dimension 1, Sn = X1 +X2 + · · ·+Xn, where X1,X2, . . .

are i.i.d random variables. If Sn/n→ 0 in probability, then Sn is recurrent.

Theorem 1.2.10. Recurrence.

If E
(

log 1−α0
α0

)
= 0, then the Sinai walk Xn is recurrent P0−a.s.

Proof. Let α be a fixed environment. Then, by the law of total probability

Pα
0 (T0 < ∞) = α0Pα

1 (T0 < ∞)+(1−α0)Pα
−1(T0 < ∞). (1.2.11)

Consequently

Pα
0 (T0 < ∞) = 1 ⇐⇒ Pα

1 (T0 < ∞) = 1 and Pα
−1(T0 < ∞) = 1.

In other words by Lemma 1.2.2, Xn is quenched-recurrent if and only if Xn is right

recurrent and left recurrent with the quenched law. Hence, if the recurrence is a

quenched property for almost environment α , then it is annealed-recurrent a.s.

In what follows, we focus to prove that

E
(

log
1−α0

α0

)
> 0 ⇐⇒ Xn is right recurrent with the quenched law. (1.2.12)

Consider a = 0, x = 1 and b > 1 in the equation (1.2.4), i.e.,

1−Pα
1 (T0 < Tb) = Pα

1 (T0 > Tb)

=
1

b−1

∑
i=0

exp(V (i))

.

This implies that Xn is right recurrent with the law quenched if and only if

Pα
1 (T0 < Tb)→ 1 as b→ ∞⇐⇒

b−1

∑
i=0

exp(V (i))→ ∞ as b→ ∞. (1.2.13)
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Notice that
b−1

∑
i=0

exp(V (i)) = 1+
b−1

∑
i=1

eV (i). (1.2.14)

As we have said in the Remark 1.2.4, the potential V (x) is a two-sided random walk. In

particular, V (x) for x> 1 is a random walk. Then, by the strong law of large numbers

we know that

1
i
V (i) =

1
i

i

∑
j=1

log
1−α j

α j
→ E

(
log

1−α0

α0

)
as i→ ∞, P− a.s.

Indeed, if we first assume

E
(

log
1−α0

α0

)
> 0, (1.2.15)

then we consider the i−th term of the sum given in (1.2.14), ai = eV (i) = e(
1
i V (i))i, and

we use the root test for convergence of series2. We calculate

L = lim
i→∞

e
V (i)

i = eE(log 1−α0
α

) > 1;

this enables us conclude that

b−1

∑
i=1

eV (i)→ ∞ as b→ ∞.

However, if we now assume

E
(

log
1−α0

α0

)
= 0.

By the strong law of large numbers, we have that

1
i
V (i)→ 0 as i→ ∞ P− a.s.,

and therefore such convergence is true also in probability. Then, by the Theorem 1.2.9,

V (x) is recurrent, and as a consequence V (x) visits infinitely many times both sides of

the starting site with probability 1. For that reason V (x)> 0 for infinitely many x, and

consequently
b−1

∑
i=1

eV (i)→ ∞ as b→ ∞.

2Theorem. Let ∑an be a series with positive terms, and let L = limn→∞
n
√

an.

i. If L < 1, then the series converges.

ii. If L > 1, then the series diverges.

iii. If L = 1, then the root test is inconclusive.
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Thus by (1.2.13), we deduce that Pα
1 (T0 < Tb)→ 1 as b→ ∞. In this way, we have

shown that E
(

log 1−α0
α0

)
> 0 implies that Xn is right recurrent with the quenched law

for almost all environments.

Now, we must to prove that if Xn is right recurrent with the quenched law then

E
(

log 1−α0
α0

)
> 0, we use a proof by contraposition. We assume that E

(
log 1−α0

α0

)
<

0, then by the strong law of large numbers and the root test for convergence of series,

we know that

E
(

log
1−α0

α0

)
< 0⇒

b−1

∑
i=1

eV (i) < ∞ as b→ ∞,

so by (1.2.13), Pα
1 (T0 < Tb) 6 →1, in other words Xn is not right recurrent, which con-

cludes the statement (1.2.12).

On the other hand, if the first step is to the left, we can write the proof analogously

and deduce that E
(

log 1−α0
α0

)
6 0 if and only if Xn is left recurrent with the quenched

law for almost all environments.

Finally, we have proved that E
(

log α0
1−α0

)
= 0 if and only if Xn is right recurrent

and left recurrent with the quenched law for almost all environments, thus Xn is recur-

rent with the quenched law for almost all environments. Consequently, Xn is recurrent

P0− a.s. �

One can see in the Figure 1.2 a trajectory of Sinai’s walk after n-steps time, with

n = 500,000. In the Appendix B, we will present the algorithm to run the simulation,

which has been programmed in the software R Studio (Core et al., 2013). For such

simulation, we consider the quenched case with the environment αx such that

αx =

 1/4 with probability 1/2,

3/4 with probability 1/2.
(1.2.16)

1.3 Asymptotic behaviour

Let us to see the heuristic argument given in (Révész, 2005) about the order of Sinai’s

walk. Let α be a fixed environment. In accordance with the Lemma 1.2.7, we calculate

for b > 1

Pα
1 (T0 > Tb) =

(
b−1

∑
i=0

exp(V (i))

)−1

.
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Figure 1.2: Simulation of a trajectory of Sinai’s walk.

Aforementioned in the Remark 1.2.4, V (x) is a two-sided random walk, where the

typical size3 of | V (x) | is O(
√

x). If we define υ := Pα
1 (T0 > Tb), then for b large

enough

υ ≈ exp(−
√

b). (1.3.1)

Let N be the random variable which counts the number of visits of Sinai’s walk to the

state 0 before visiting the state b given that it starts at 1. Then

Eα
1 (N) =

∞

∑
j=1

j ·Pα
1 (N = j)

=
∞

∑
j=1

jυ(1−υ) j

= υ(1−υ)
∞

∑
j=1

j(1−υ) j−1

= υ(1−υ)
1

(1−υ)2

=
1−υ

υ
.

In addition, by using (1.3.1) we deduce that4

1−υ

υ
∼ exp(

√
b).

Hence

Eα
1 (N)∼ exp(

√
b).

3We say that x(n) = O(y(n)) if there exist C > 0 and n0 such that for all n> n0, | x(n) |6Cy(n).
4Let us recall that x(n) and y(n) have the same order, denote by x(n)∼ y(n), if limn→∞

x(n)
y(n) = 1.
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In other words, for n large the Sinai walk takes at least e
√

n-steps reaches the state n

by first time. That allows us to say that the displacement after n-steps does not exceed

(logn)2.

The asymptotic behaviour of this random walk was described in (Sinai, 1982),

where he demonstrated how Xn ≈ (logn)2. Indeed that order is slower than
√

n, the

usual order of the symmetric random walk. The idea of Sinai to analyse the asymptotic

behaviour of Xn was to approach the random walk V (x) with the Brownian motion in

order to study typical behaviour. Let us now present some essential ideas of this

procedure.

For a given environment α and n> 1, one defines the scaled potential as follows

V n(t) =



1
logn ∑

[(logn)2t]
i=0 log 1−αi

αi
if t = 1

log2 n
, 2

log2 n
, . . .

0 if t = 0

− 1
logn ∑

0
i=[(logn)2t+1] log 1−αi

αi
if t = −1

log2 n
, −2

log2 n
, . . .

(1.3.2)

and by linear interpolation we extend V n(t) for all t ∈ R. Due to the time-space scal-

ing, the Donsker invariance principle tell us that the process (V n(t) : t ∈R) converges

weakly to a two-sided Brownian motion.

For each n> 1 and a,x,b∈Z such that a < x < b, we can rewrite the Lemma 1.2.7

to obtain the equations in terms of V n(t) as

Pα
x (Ta > Tb) =

x−1

∑
i=a

exp(logn[V n(i · log−2 n)−V n(a · log−2 n)])

b−1

∑
i=a

exp(logn[V n(i · log−2 n)−V n(a · log−2 n)])

, (1.3.3)

Pα
x (Ta < Tb) =

b

∑
i=x+1

exp(logn[V n(i · log−2 n)−V n(b · log−2 n)])

b

∑
i=a+1

exp(logn[V n(i · log−2 n)−V n(b · log−2 n)])

. (1.3.4)

Definition 1.3.1. For each n > 1 and given a fixed environment α . We call to the

triplet {An,bn,Cn} a valley if

V n(An) = max
An6t6bn

V n(t),

V n(Cn) = max
bn6t6Cn

V n(t),

V n(bn) = min
An6t6Cn

V n(t).
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The depth of the valley {An,bn,Cn} is defined as

d([An,Cn]) := min{V n(An)−V n(bn),V n(Cn)−V n(bn)}.

For n large enough, one may consider

• Cn
0 := min{t = k

(logn)2 , k ∈ Z+ : V n(t)> 1},

• An
0 := max{t = k

(logn)2 , k ∈ Z− : V n(t)> 1},

• bn
0 such that V n(bn

0) = minAn
06t6Cn

0
V n(t).

The triplet

{An
0,b

n
0,C

n
0} (1.3.5)

is a valley with depth greater than or equal to 1. We also define the right refinement

operation as follows. First, we consider the segment [bn
0,C

n
0 ] and seek two times Cn

1

and bn
1 such that

V n(Cn
1)−V n(bn

1) = max
bn

06t16t26Cn
0

{V n(t1)−V n(t2)}.

Now, it is possible to obtain a second right refinement seeking two times Cn
2 , bn

2 such

that

V n(Cn
2)−V n(bn

2) = max
bn

06t16t26Cn
1

{V n(t1)−V n(t2)}.

Successively, we can construct by r-right refinement operations the set of maxima and

minima points

C+r := {bn
0, Cn

r , bn
r , . . . ,C

n
2 , bn

2, Cn
1 , bn

1, Cn
0}.

Observe the Figure 1.3 to see an example of the right refinement operation. If we

denote by δ0 :=V n(Cn
0)−V n(bn

0), δ1 :=V n(Cn
1)−V n(bn

1),. . .,δr :=V n(Cn
r )−V n(bn

r ),

it is clear the relation

δ0 > δ1 > · · ·> δr > 0.

Analogously we define the left refinement operation. Given the segment [An
0,b

n
0]

we seek two times b̃n
1 and An

1 such that

V n(An
1)−V n(b̃n

1) = max
An

06t16t26bn
0

{V n(t2)−V n(t1)}.

In a similar way, we construct by r̃-left refinement operations the set of maxima and

minima points

C−r̃ := {An
0, b̃n

1, An
1, . . . , b̃

n
r̃ , An

r̃ ,b
n
0}.
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Figure 1.3: Example of a right refinement.

In what follows, we present the main ideas to prove how Sinai’s walk, on a time

window, stays trapped in a certain range described. The proof of the next lemma

is based on a strong invariance principle for sum of independent random variables

(Einmahl, 2009) and certain known results about the Brownian motion. The proof

will be explain in Appendix A1.

Lemma 1.3.2. Given η > 0, there exists n0 large enough such that for all n > n0,

there exists a set Cn ⊂ Ω such that P(Cn) > 1−η and the following happens. For

any choice ω ∈Cn, the corresponding valley {An
0,b

n
0,C

n
0} described in (1.3.5) admits

a finite number of r-right and r′-left refinements such that it exits the so-called basic
valley {M̃0,m0,M0} with the following properties:

i) 0 ∈ [M̃0,M0],

ii) d([M̃0,M0])> 1+δ , for some δ > 0 small enough.

iii) For any other refinement {M̃′0,M′0} of the valley {M̃0,M0}, then d([M̃′0,M
′
0]) <

1−δ .

iv) mint1,t2∈[M̃0,M0]
t1 6=t2

|V n(t1)−V n(t2) |> δ .

v) | M̃0 |+ |M0 |6 K, for some K > 0.

Now, let us explain know the process remains inside a certain range.
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Theorem 1.3.3. Given η > 0. Under the assumptions of the Lemma 1.3.2, let α =

α(ω) be a realization of the environment with ω ∈Cn and we consider {M̃0,m0,M0}
the basic valley. Then,

Pα
0 (Xk ∈ [M̃0 · (logn)2, M0 · (logn)2] for all 06 k 6 n)→ 1, as n→ ∞.

Proof. Denote by T x
y the first time that the walk arrives to the state y given that it starts

at x, i.e.,

T x
y :=


inf{k > 1 : Xk = y, given X0 = x},

+∞, such k does not exist.

Hereafter, for brevity we write t ′ = t · (logn)2 for all t = k/(logn)2, k ∈ Z. Then,

Pα
0 (Xk ∈ [M̃0 · (logn)2,M0 · (logn)2] for all 06 k 6 n)

= Pα
0

(
n⋂

k=0

{Xk ∈ [M̃0 · (logn)2,M0 · (logn)2]}

)

= Pα
0

(
n⋂

k=0

{Xk ∈ [M̃′0,M
′
0]}

)
.

Observe that
n⋂

k=0

{Xk ∈ [M̃′0,M
′
0]} =

{
n⋂

k=0

{Xk ∈ [M̃′0,M
′
0]},T 0

m′0
6 n

}⋃{ n⋂
k=0

{Xk ∈ [M̃′0,M
′
0]},T 0

m′0
> n

}

⊇

{
n⋂

k=0

{Xk ∈ [M̃′0,M
′
0]},T 0

m′0
6 n

}
⊇ {T m′0

M̃′0−1∧T m′0
M′0+1 > n}\{{T 0

M̃′0−1 < T 0
m′0
}∪{T 0

M′0+1 < T 0
m′0
}}.

Thereby

Pα
0

(
n⋂

k=0

{Xk ∈ [M̃′0,M
′
0]}

)
>Pα

m′0
(T m′0

M̃′0−1∧T m′0
M′0+1 > n)−Pα

0 (T 0
M̃′0−1 <T 0

m′0
)−Pα

0 (T 0
M′0+1 <T 0

m′0
).

(1.3.6)

Here, without loss of generality one can assume m0 < 0 and consequently

Pα
0 (T 0

M̃′0−1 < T 0
m′0
) = 0. (1.3.7)

Now, by (1.3.3) we obtain

Pα
0 (T 0

M′0+1 < T 0
m′0
) =

−1

∑
i=m′0

exp(logn[V n(i · log−2 n)−V n(m′0 · log−2 n)])

M′0

∑
i=m′0

exp(logn[V n(i · log−2 n)−V n(m′0 · log−2 n)])

.



CHAPTER 1. RANDOM WALK IN A RANDOM ENVIRONMENT 35

Notice that all the terms in the denominator are non-negative and therefore

M′0

∑
i=m′0

exp(logn[V n(i · log−2 n)−V n(m′0 · log−2 n)])

> exp(logn[V n(M′0 · log−2 n)−V n(m′0 · log−2 n)]),

i.e.,
1

∑
M′0
i=m′0

exp(logn[V n(i · log−2 n)−V n(m′0 · log−2 n)])

6
1

exp(logn[V n(M′0 · log−2 n)−V n(m′0 · log−2 n)])
.

Thus,

Pα
0 (T 0

M′0+1 < T 0
m′0
) 6 exp(− logn[V n(M′0 · log−2 n)−V n(m′0 · log−2 n)]) (1.3.8)

·
−1

∑
i=m′0

exp(logn[V n(i · log−2 n)−V n(m′0 · log−2 n)])

=
−1

∑
i=m′0

exp(− logn[V n(M′0 · log−2 n)−V n(m′0 · log−2 n)] (1.3.9)

+ logn[V n(i · log−2 n)−V n(m′0 · log−2 n)])

=
−1

∑
i=m′0

exp(− logn[V n(M′0 · log−2 n)−V n(i · log−2 n)])

6 | m′0 | max
m′06i6−1

{exp(− logn[V n(M′0 · log−2 n)−V n(i · log−2 n)])}

6 | m′0 | exp(−δ logn) (1.3.10)

6 K(logn)2 1
nδ

. (1.3.11)

For the inequality (1.3.10) we use that according to the Lemma 1.3.2, the smallest

difference is larger than δ . Also by the part v) of the same Lemma, it follows (1.3.11).

Thus

Pα
0 (T 0

M′0+1 < T 0
m′0
)→ 0, as n→ ∞.

Moreover by (1.3.6) and (1.3.7), we now only need to prove that

Pα

m′0
(T m′0

M̃′0−1∧T m′0
M′0+1 > n)→ 1, as n→ ∞. (1.3.12)

Denote by T x→x
1 the first return time to x, T x→x

1 := T x
x and for j > 2, T x→x

j the j-th

return time i.e.,

T x→x
j :=


inf{k > T x→x

j−1 : Xk = x},

+∞, such k does not exist.
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Define τx
1 := T x→x

1 and for j > 2, τx
j := T x→x

j −T x→x
j−1 , in this way, ∑

n
j=1 τx

j is the time

that the walk takes to return n-times to x. Hence

Pα

m′0
(T m′0

M̃′0−1∧T m′0
M′0+1 > n) = Pα

m′0
(T m′0

M̃′0−1∧T m′0
M′0+1 > n,

n

∑
j=1

τ
m′0
j > n) (1.3.13)

> Pα

m′0
(T m′0

M̃′0−1∧T m′0
M′0+1 >

n

∑
j=1

τ
m′0
j ) (1.3.14)

=
(

Pα

m′0

(
T m′0

M̃′0−1∧T m′0
M′0+1 > T m′0

m′0

))n
(1.3.15)

=
(

1−Pα

m′0

(
T m′0

M̃′0−1∧T m′0
M′0+1 < T m′0

m′0

))n
,

where the equality (1.3.13) is true because the event {∑n
j=1 τ

m′0
i > n} has probability

1, and we have (1.3.15) by the strong Markov property.

In addition, by applying the law of total probability we can obtain that

Pα

m′0
(T m′0

M̃′0−1∧T m′0
M′0+1 < T m′0

m′0
) = αm′0

Pα

m′0+1(T
m′0+1

M′0+1 < T m′0+1
m′0

)

+ (1−αm′0
)Pα

m′0−1(T
m′0−1

M̃′0−1 < T m′0−1
m′0

).

Furthermore by (1.3.3), we compute

Pα

m′0+1(T
m′0+1

M′0+1 < T m′0+1
m′0

) =
1

∑
M′0
i=m′0

exp(logn[V n(i · log−2 n)−V n(m′0 · log−2 n)]

6
1

elogn[V n(M′0·log−2 n)−V n(m′0·log−2 n)]

6
1

n1+δ
. (1.3.16)

Let us explain (1.3.16). Using Lemma 1.3.2 part ii), we can bound the depth of the

valley,

V n(M′0 · log−2 n)−V n(m′0 · log−2 n) > d([M̄0,M0])

> 1+δ ,

whereby

exp(logn[V n(M′0 · log−2 n)−V n(m′0 · log−2 n)]) > exp((1+δ ) logn)

=
1

n1+δ
.
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On the other hand, in a similar way but using now (1.3.4) we obtain the bound

Pα

m′0−1(T
m′0−1

M̃′0−1 < T m′0−1
m′0

) =
1

∑
m′0
i=M̃′0

exp(logn[V n(i · log−2 n)−V n(m′0 · log−2 n)]

6
1

elogn[V n(M̃′0·log−2 n)−V n(m′0·log−2 n)]

6
1

n1+δ
.

This yields

Pα

m′0
(T m′0

M̃′0−1∧T m′0
M′0+1 > T m′0

m′0
) 6 αm′0

(
1

n1+δ

)
+(1−αm′0

)

(
1

n1+δ

)
=

1
n1+δ

.

Therefore (
1−Pα

m′0
(TM̃′0−1∧TM′0+1 > T m′0

m′0
)
)n
>

(
1− 1

n1+δ

)n

.

By using the inequality

(1− x)n > 1−nx, for all 06 x6 1 and n> 1,

we obtain that (
1− 1

n1+δ

)n

> 1−n
1

n1+δ

= 1− 1
nδ

.

That enables us to conclude (1.3.12).

�

In 1982, Sinai proved the so-called localization theorem, which shows that the asymp-

totic behaviour of the normalized process converges in P0-probability to a non-degenerated

random variable.

Theorem 1.3.4. (Sinai, 1982) Assume the conditions C.1, C.2 and C.3. Then, there

exists a random variable mn = mn(α) of the random environment such that for any

δ > 0,

lim
n→∞

P0

(∣∣∣∣ σ2Xn

(logn)2 −mn

∣∣∣∣< δ

)
= 1.

Moreover, mn has a limit distribution i.e.,

lim
n→∞

P(mn 6 x) = G(x).
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Consequently the distribution of σ2Xn/(logn)2 converges to the same distribution

G(x) under P0.

The following idea is an interpretation of the Theorem 1.3.4. Given an environ-

ment α and a trajectory of the Sinai walk in a window time [0,n], the random variable

mn which depends only on the environment α (specifically on the potential). It can be

interpreted as the location of the bottom of the deepest valley in the sites of the state

space where the Sinai walk has visited until the time n.

Remark 1.3.5. Consider the Theorem 1.3.4. We assume that we have information

about the trajectory of the Sinai walk. We know that the Sinai walk will spend much

time around the deepest valley, that is, if the trajectory at time n is visiting any another

state (for instance, another minimum of the potential) we know that it is likely that in

the near future the walk reaches the state where is the deepest valley.

Afterwards (Kesten, 1986) and (Golosov, 1986) proved independently that the

previous limit coincides with the distribution of a certain functional of the standard

Brownian motion, with density function

G′(x) =
2
π

∞

∑
k=0

(−1)k

2k+1
exp
(
−(2k+1)2π2

8
| x |
)
.

1.4 Recovering the random environment

In what follows, we describe an algorithm that allows us to recover the environment α

from samples of the paths. First we introduce the definition of local time for stochastic

processes in discrete time.

Definition 1.4.1. The local timeL at k (k∈Z) within time window [1,T ] of the random

walk Xn is defined as

L(k,T ) =
T

∑
i=1

1{Xi=k}.

In other words, the local time in the site k is the number of times that the pro-

cess crosses the site k in a finite time window. Furthermore, we need to consider the

following definitions:

L∗(n) = max
k∈Z

(L(k,n)),

Fn = {k ∈ Z : L(k,n) = L∗(n)},

k∗n = inf{| k |: k ∈ Fn}.
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We say that L∗(n) is the maximum number of times that the walk visits the same

state within time window [0,n]. On the other hand, the set Fn is called the set of the

favourite sites. Moreover k∗n is the smallest favourite site in absolute value, thereby in

according with the Definition 1.2.1, Tk∗n denotes the first time that the walk Xn reaches

the state k∗n.

1.4.1 The procedure of Andreoletti

Consider k, l ∈ Z and c0 > 0. Define for each n > 1,

V n
k,l = 1− 1

logn
(V (k)−V (l)), (1.4.1)

V̂ n
k =

log(L(k,n))
logn

, (1.4.2)

un =
c0 log(log(log(n)))

logn
,

Lγ
n =

l ∈ Z :
n

∑
j=Tk∗n

1{X j=l} > (logn)γ

 .

For l fixed, k 7→V n
k,l is a function that only depends on the environment, because the

potential V (k) depends only on α . In the paper (Andreoletti, 2011), it was proposed

V̂ n
k as a good estimator for the function V n

k,mn
and un as an error function. The author

explains how the algorithm works on the set Lγ
n, which is a random subset of Z that

contains the sites where the local time after the instant Tk∗n is large enough.

Here we present his main result.

Theorem 1.4.2. (Andreoletti, 2011)

Assume the conditions C.1, C.2 and C.3. There exists constants c0,c1,c2 and c3 such

that for all γ > 6, there exists n0 such that for all n > n0, there exists Gn ⊂ Ω1 with

P(Gn)> 1−φ1(n) and

inf
α∈Gn

Pα
0

 ⋂
k∈Lγ

n

{| V̂ n
k −V n

k,mn
|< un}

> 1−φ2(n), (1.4.3)

where

φ1(n) =
c1γ log(logn)

logn
,

φ2(n) =
c2(log(logn))2

(logn)γ/2−2 +
c3(log(logn))8

(logn)γ−6 .
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The theorem tell us that there exists a subset of environments Gn with large proba-

bility, where we can approximate (with large probability) to V n
k,mn

through the estima-

tor V̂ n
k on the states sufficiently visited by the Sinai walk, i.e., the states that belong to

Lγ
n.

However to run the algorithm given by (Andreoletti, 2011), the author explains

that it is possible to approximate mn with k∗n, which only depends on the local time.

Consequently, we can program the algorithm with k∗n instead of mn.

We programmed such algorithm in the statistical software R (Core et al., 2013)

and we have written the pseudo-code in the Appendix B1. For instance, we took the

trajectory of the Figure 1.2. Such path shows at first sight two sites frequently visited,

around of the state x = 7 and x = 50. In addition, can see in Figure 1.4 the potential

V (x) given by the Definition 1.2.2 associated with the environment α with which was

generated the trajectory. In fact, we observe that the potential have a deeper minimum

around of the state x = 7.
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0
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8

Graphic of the potential

State space 

V

Figure 1.4: Potential V (x) associated to the environment α as in (1.2.16), with which

was generated the trajectory shown in Figure 1.2.

Once we have the trajectory of the Sinai walk, we apply the procedure of Andreo-

letti, which result is showed in Figure 1.5. In Appendix B1, we denoted by Vnke,

Vnk and un instead of V n
k,k∗n

, V̂ n
k and un, respectively.

In the practice, when we have a trajectory of Sinai’s walk. We wish to recover the

potential and to know where it will be more likely to find the random walk for a larger

time window. In the paper (Andreoletti, 2011) the author makes the comment about

when it is possible to recover the potential. He explains that if 0 ∈ Lγ
n, i.e., 0 has local

time large enough, we can obtain explicitly from the function of the potential

V̂ n
k ≈V n

k,k∗n
= 1− 1

logn
(V (k)−V (k∗n)), (1.4.4)
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Figure 1.5: Simulation of Andreoletti’s algorithm given a trajectory of Sinai’s random

walk.

substituting k = 0 and by definition V (0) = 0, then

V (0)−V (k∗n) = logn[1−V n
0,k∗n

]

−V (k∗n) ≈ logn[1−V̂ n
0 ]

V (k∗n) ≈ − logn
(

1− log(L(0,n))
logn

)
= log(L(0,n))− logn. (1.4.5)

Therefore thanks to the differences in (1.4.4) and (1.4.5), we can approximate the

value of V (k) for k ∈ Lγ
n as

V (k) ≈ logn
(

1− log(L(k,n))
logn

)
+V (k∗n)

= logn− log(L(k,n))+ log(L(0,n))− logn

= log
(
L(0,n)
L(k,n)

)
. (1.4.6)

For the preceding example, the trajectory that we have considered makes sufficient

visits to the state x = 0. So, we can apply the previous algorithm to recover the poten-

tial and it is a good estimation as we can see in Figure 1.6, where we have denoted to

V (k) as Vk given by (1.4.6).

When we have a trajectory of Sinai’s random walk in a time window [0,n], using
only the local time, if the state 0 ∈Lγ

n, we can give a good estimation of the potential
associated with the environment which was generated the trajectory.
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Figure 1.6: Recovered potential using (1.4.6).

Remark 1.4.3. But what happens outside of Lγ
n? Probably the trajectory of the Sinai

walk presents other sites frequently visited, but not enough to belong to Lγ
n. (Andreo-

letti, 2011) also comments on the case where 0 /∈ Lγ
n, with this drawback we can not

recover V (k∗n) with the mentioned argument. However, using the expression (1.2.3)

and the Definition 1.2.3, it is possible to recover the environment and therefore the

potential for states near to k∗n. The problem is that while the states are far from k∗n, its

approximation will be worse and therefore the sum that appears in the potential V (x)

will accumulate probably lots of errors.

Let us to explain with detail previous remark. From the equation (1.4.1), we know

the approximated value of the differences once we have the values of V̂ n
k thanks to the

local time, i.e.,

V (k)−V (k∗n) = (logn)(1−V̂ n
k ). (1.4.7)

Then we can calculate for all i ∈ Z by (1.2.3) the values

αi =
e−(V (i)−V (i−1))

e−(V (i)−V (i−1))+1

=
e−(V (i)−V (k∗n))+(V (i−1)−V (k∗n))

e−(V (i)−V (k∗n))+(V (i−1)−V (k∗n))+1
. (1.4.8)

The analysis of Andreoletti tell us that the differences (1.4.7) are good when k ∈
Lγ

n, and therefore the value of αk given by (1.4.8) will be a good estimation when k is

enough visited. Finally we can recover the potential. But if k is far from k∗n, the value

of αk is not a good estimator of the original environment. Then by the definition of

the potential, V (x) will accumulate lots of errors. Thereby we could conclude a false

behaviour of Sinai’s random walk given that environment α .
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1.4.2 Refinement of Andreoletti’s algorithm

In what follows, we will explore another example of Sinai’s random walk. In Figure

1.7 the trajectory does not have enough visits to the origin, its favourite site in the time

window [0,500000] is the state k∗n = 96, which is far from the origin.
−

50
0
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10

0
15

0

Trajectory 2 of Sinai’s walk

Time

 

0 100000 200000 300000 400000 500000

Figure 1.7: Second trajectory of Sinai’s walk.

If we apply the mechanism to recover the potential in the same way as we did it for

the Figure 1.2, we obtain the following approximation showed in Figure 1.8, which

leads to lots of errors. For instance, when we see the recovered potential, we could

believe that the minimum around the state x = 20 is deeper than the minimum around

the state x = 100, and to conclude a false interpretation for the behaviour for other

trajectories with that potential.
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Figure 1.8: Recovered potential when we use Andreoletti’s procedure in accordance

with (1.4.6), but k∗n is far from the origin.
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On the other hand, we apply the mechanism of recovering of the potential in ac-

cordance with the Remark 1.4.3 and we can observe the result in Figure 1.9. Maybe

the approximation is not the best because there are sites j where the local time is

small, then we do not have enough information to recover α j and neither the potential.

However, this approximation respects the position where occurs the minimum of the

original potential.
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Figure 1.9: Potential generated by the recovery of each α j through the formula (1.4.8).

In this subsection, we focus on improving the algorithm of Andreoletti. Let us ex-

plain this using the information obtained in Figure 1.7. Hereafter we use the following

notation:

n = 500000

(Xk)k=0,...,n = the trajectory of Sinai’s walk given in Figure 1.7

S = the states visited by(Xk)k=0,...,n

T100 = min{k : Xk = 100}

n2 = n−T100

(X ′k)k=0,...,n2 = (Xk)k=T100,...,n

(Yk)k=0...n2 = (X ′k)k=0,...,n2−100

S′ = the states visited by (Yk)k=0,...,n2

We have considered the time window [0,n] in two parts [0,T100−1] and [T100,n]. For

that reason the trajectory (Yk)k=0,...,n2 is such that

Y0 = X ′0−100 = XT100−100 = 100−100 = 0.
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This is, we cut a part of the original trajectory and we translate it to the origin. There-

fore as we mentioned before the favourite site of (Xk)k=0,...,n is k∗n = 96, and now

we have calculated that k∗n2
= −4 is the smallest favourite site in absolute value of

(Yk)k=0,...,n2 . For both trajectories, we know explicitly the sets

S = {−57,−56, . . . ,160},

S′ = {−40,−39, . . . ,60}.

It is also possible to calculate the local time for each trajectory in its corresponding

time window. We denote it by

L(k,n) = the local time of k ∈ S, for (Xk)k=0,...,n

L′(k,n2) = the local time of k ∈ S′, for (Yk)k=0,...,n2.

When we apply the procedure of Andreoletti, we recall that he proposed the esti-

mator V̂ n
k as an approximation of the function of the environment V n

k,k∗n
. This is,

log(L(k,n))
logn

≈ 1− 1
logn

(V (k)−V (k∗n)) (1.4.9)

in accordance with (1.4.1) and (1.4.2). Moreover we remember that it is possible to

compare the estimator V̂ n
k versus the function of the environment V n

k,k∗n
thanks to know

initially the potential V (k) for all k ∈Z or for the case of our pseudo code, it is enough

k ∈ S (see Appendix B1).

The main idea is to improve the recovered potential. We are going to propose two

ideas which give us a better numerical approximation.

Proposal 1 From the fact that the trajectory Xn spends a lot of time around the

state x = 100 we can hope that the minimum of the potential in that site is deeper than

any other point.

Let us add a special feature, as we have assumed that the trajectory (Yk)k=0,...,n2

begins in 0, we are going to consider that the potential V begins in that origin. We

know beforehand the environment α then it is not difficult to program the construction

of the potential V with the values αi associated with those states. To avoid creating a

a misunderstanding, we denote V2 that potential.

We apply Andreoletti’s algorithm to the trajectory (Yk)k=0,...,n2 , i.e., for the time

window [0,n2] and k∗n2
=−4.

V2(k) ≈ (logn2)

(
1− log(L′(k,n2))

logn2

)
+V2(k∗n2

)

= logn2− log(L′(k,n2)+V2(k∗n2
). (1.4.10)
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For this trajectory the value of k∗n2
is near to the new origin, then it is possible to take

the approximation of V2(k∗n2
) with the local time L′(k,n2) as

V2(k∗n2
)≈ log(L′(0,n2))− logn2. (1.4.11)
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Figure 1.10: Recovered potential by (1.4.10) and (1.4.11) in the states S′.

Therefore we recover the potential V2 for the states S′ as we can observe in Figure

1.10, however we are interested in the original potential V . For that reason, we pro-

pose to move down the depth V2(k∗n2
)≈−3.2406 on the recovered values initially by

the methodology (1.4.6) in the states S′+ 100 = {60,61, . . . ,160}. We can see such

movement in Figure 1.11.
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Figure 1.11: Recovered potential by (1.4.6) in the states S and moved down (1.4.11)-

units on the states S′+100
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Although we do not have enough information in the states [26,59], because the

original trajectory has few visits in those states and then, the local time gives us little

information. But with the previous procedure we only join the approximation for the

states [−57,25] with [60,160] concatenating with the segment of the approximated

trajectory by the algorithm of Andreoletti in the states [26,59]. The result is shown

in Figure 1.12, it is far to be a good estimation when compared with the original

potential. However it is closer to reality if initially we do not know the environment.
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Figure 1.12: The trajectory of the segments moved and concatenated.

Proposal 2 As a continuation of the previous idea, we know that the depth in the

state k∗n = 96 should be large than the depth in any other state, specially deeper than

other minima of the potential V .

We heuristically propose to make use only of the local time, we sum the depth

obtained by V2(k∗n2
) in (1.4.11) plus the depth given by Andreoletti’s procedure V (k∗n)

in (1.4.5). We denote such length as Ṽ (k∗n) := V2(k∗n2
)+V (k∗n). Then the recovered

potential by Andreoletti’s procedure (1.4.6) on the states S′+ 100, it is move down

Ṽ (k∗n)-units. Explicitly we know for the trajectories (Xk)k=0,...,n and (Yk)k=0,...,n2 , the

values

Ṽ (k∗n) ≈ (−3.2406)+(−4.45554)

= −7.69614 (1.4.12)

In the same way that the procedure of the Proposal 1, we join the approximation

for the states [−57,25] with [60,160] concatenating with the segment of the approxi-

mated trajectory of Andreoletti’s method. It is possible to observe the result of such

approximation to the potential in Figure 1.13.
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Figure 1.13: Original potential and the Proposal 2 using (1.4.12).

Summarise
It is essential the information about the environment α to know the behaviour of

the random walk for the quenched case. Because thanks to the potential associated to

the environment we can predict in which states the random walk spends a lot of time

or which they will be little visited.

We assume (Xk)k=0,...,n a trajectory of Sinai’s random walk in a time window [0,n].

By the behaviour of the trajectory, we can possibly observe the following scenarios:

i) the random walk has the smallest favourite site k∗n near to the origin. In this case,

the mentioned procedure in (Andreoletti, 2011) works satisfactorily to recover

the potential. Also if the random walk visits sufficiently other minimum, as we

had seen applying the Remark 1.4.3 it is possible to recover the environment in

a larger number of states. Thus we will have recovered a good estimation of the

potential for a greater number of states.

ii) the smallest favourite site k∗n is far from the origin, but we can observe other

site frequently visited near to the state x = 0 (as in the presented case in Figure

1.7). That site do not belong to Lγ
n, however we can make a cut in the path and a

translation to the origin, then to count the local time in a new time window [0,n2]

on the new visited states. Therefore we could apply the analogous to the Proposal

1 or Proposal 2 to improve the approximation of the original potential.

iii) other case, the smallest favourite site k∗n is far from the origin and there is not

another minimum frequently visited in the time window [o,n], or if there is, it is
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even further away. For that case, the algorithm given by (Andreoletti, 2011) does

not provide a good estimation of the environment, and it is not feasible either

apply a cut of the path and count the local time of the new path because the

information about the environment is limited near to the origin, therefore by the

Definition (1.2.3) is more difficult obtained a good estimation of the potential by

this methodologies.

iv) finally, it is possible that the favourite site k∗n is not in a valley sufficiently depth,

and maybe there are two o more states visited by the random walk in a short

time, i.e., the walk moves in short periods of time between those minima, see for

example Figure 1.14. Then it is not a good idea to apply the procedure to cut

the path and count the local time of the new path. However, the approximation

with the local time given by (Andreoletti, 2011) is not bad in accordance with the

simulations carried out. We can observe in Figure 1.15 the result of the procedure

of Andreoletti, i.e., we apply (1.4.6) to recover the potential associated to the

environment, which we generated the trajectory in Figure 1.14.
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Figure 1.14: Example of a trajectory of Sinai’s random walk.
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Figure 1.15: Original potential and recovered potential using (1.4.6).

1.5 Appendix A1

In order to explain why it is possible to obtain a space of probability large enough

described in the Lemma 1.3.2, we present a summary of some results. For such a

task, we sketch out the following proposition about the sum of random variables i.i.d.,

which is taken from (Einmahl, 2009); Corollary 2.2 for one-dimension.

Proposition 1.5.1. Let Y,Y1,Y2, . . . be i.i.d mean zero random variables on a prob-

ability space (Ω,F,P). Assume that σ2 := E|Y |2 < ∞. Let Z(0) = 0 be and for

k > 1, Z(k) = ∑
k
i=1Yi. For each n > 1, define the partial sum process sequence

Zn = {Zn(t)}06t61, this is, Zn : Ω→ (C([0,1]),d) given by

Zn(t) =

{
Z(k) if t = k

n , 06 k 6 n,

linearly interpolated otherwise.
(1.5.1)

Assume the following statements:

Hypothesis 1. For a sequence cn such that cn/
√

n is eventually non-increasing.

Hypothesis 2. ∑
∞
n=1 P{| Y |> cn}< ∞.

Hypothesis 3. There exist a γ ∈ (1/3,1) such that cn/nγ is eventually non-decreasing.

Then a construction is possible such that

d
(

1
cn

Zn,
σ

cn
W̃ n
)

P→ 0, n→ ∞, (1.5.2)

where (W (t), t > 0) denote the Brownian motion and W̃ n(t) = W (nt), 0 6 t 6 1, P→
stand for convergence in probability, and d is the metric induced by the sup-norm on

C([0,1]).
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Therefore we can apply the Proposition 1.5.1 to obtain the following. Given ε > 0

and δ > 0, there exist N such that if n> N, then

P

(
ω ∈Ω : sup

06t61

∣∣∣∣ 1
cn

Zn(t)− σ

cn
W̃ n(t)

∣∣∣∣< ε

)
> 1−δ . (1.5.3)

In other words, there exist a subset of Ω large enough such that the trajectories of

the rescaled walk approximates to trajectories of the rescaled Brownian motion. Of

course as mentioned by (Einmahl, 2009) when cn =
√

n, it follows the well-known

Donsker’s theorem.

Furthermore when defining the partial sum process sequence Zn : Ω→ (C([0,1]),d),
the space C([0,1]) may be replaced with C([0,T ]) for any T > 0 (consequently also

with C([−T,T ]), and even with C([0,∞)) through the locally uniform convergence and

therefore on C(R).
Let us explain with more detail. We shall show that we can apply the potential

V n(t) defined by (1.3.2) to obtain the result of the Proposition 1.5.1.

First we write the definition described in (1.3.2) as

V n(t) =



1
logn ∑

k
i=0 log 1−αi

αi
if t = k

log2 n
, k = 1,2 . . .

0 if t = 0

− 1
logn ∑

0
i=k+1 log 1−αi

αi
if t = k

log2 n
, k =−1,−2 . . .

linearly interpolated otherwise.

We want to apply the Proposition 1.5.1. With that mindset we propose cn = logn.

Thereby we take the random walk V n(t) with the spatial rescaling factor cn and a

scaling factor in the time 1
(logn)2 . Now, we will prove that the hypothesis for the

Proposition 1.5.1 are true.

Hypothesis 1. The sequence cn/
√

n (the spatial scaling factor between the square root

of the reciprocal of the scaling factor in the time) is eventually non-increasing. In fact,

we have the quotient
logn√
(logn)2

= 1,

for all n ∈ N.

Hypothesis 2. We know that the variable log 1−α0
α0

is bounded P-a.s by (1.1.3), that is,∣∣∣∣log
1−α0

α0

∣∣∣∣< log
1−β

β
,
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for some 0 < β < 1/2. Note that for such β fixed, there exist N0 large enough such

that

log
1−β

β
< logN0.

Therefore

P
(∣∣∣∣log

1−α0

α0

∣∣∣∣> logn
)
= 0 for all n> N0.

As a consequence
∞

∑
n=1

P
(∣∣∣∣log

1−α0

α0

∣∣∣∣>√n
)

=
N0−1

∑
n=1

P
(∣∣∣∣log

1−α0

α0

∣∣∣∣>√n
)
+

∞

∑
n=N0

P
(∣∣∣∣log

1−α0

α0

∣∣∣∣>√n
)
< ∞.

Hypothesis 3. If we choose γ = 1/2 ∈ (1/3,1), the quotient of the spatial scaling

factor between the reciprocal of the scaling factor in the time is a sequence non-

increasing. Indeed
logn

((logn)2)γ
= 1,

for all n ∈ N.

Therefore we have the main result of the Proposition 1.5.1, i.e., given ε > 0 and

δ > 0, there exist N large enough such that if n> N. Then

P(Ωn)> 1−δ , (1.5.4)

where Ωn = {ω ∈Ω : d
(

V n(t), σ

lognW̃ n(t)
)
< ε , and (W (t), t ∈R) denote a two-sided

Brownian motion, W̃ n(t) =W ((logn)2t), and d is the metric defined on C(R) as

d( f ,g) =
n

∑
i=1

1
2n min(1, max

−n6t6n
| f (t)−g(t) |).

Finally, we know some results for the Brownian motion (we refer the reader to

(Mörters and Peres, 2010; Peres et al., 2001)), which we can apply on a space of

probability large enough to the trajectories of the scaling potential in accordance with

the inequality (1.5.4).

Lemma 1.5.2. Define τ = {t > 0 : |W (t) |= 1}. Then with probability 1, τ < ∞.

Lemma 1.5.3. Given two disjoint closed time intervals, the maxima of Brownian mo-

tion on them are different almost surely.

In other words, in the space of probability mentioned in (1.5.4), the trajectories of

the scaling potential have certain properties refereed in the Lemma 1.3.2 as follow: the

properties i) to iii) are true by construction of the valleys, while iv) is due to Lemma

1.5.3, i.e., the minima constructed in each refinement are different a.s. and v) is a

consequence of the Lemma 1.5.2.
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Appendix B1

Here we set forth the following algorithm in R Studio (Core et al., 2013) to obtain

a trajectory of the Sinai walk for a given environment. We will use the symbol # to

introduce comments.

Algorithm 1 Simulation of a trajectory of Sinai’s random walk Xk
Step 1. We define the variable.

n=number of steps time.

# We first fix an environment, which we call it alphaE. To do this we use the

instruction sample, which allows us to generate a sample of the specified size (we

chose 2n− 1) from a data set (we have chosen {1/4, or 3/4}), either with or

without replacement (with replacement for this case), where one can specify the

probability weights for obtaining the elements of the vector being sampled.

alphaE<-sample(c(1/4,3/4),2*n-1, replace=T,

prob=c(0.5,0.5))

# We are going to define the function g to associate the vector alphaE with the

state Space Z restricted to the set {-(n-1),. . . ,-2,-1,0,1,2,. . . ,n-1}.

g<-function(x){x+n}
Step 2. We generate the trajectory of Sinai’s random walk. For that we use an aux-

iliary function, it denoted by aux1, which takes a value 1 or−1 depending of the

probability weights assigned by the environment alphaE. Finally, X represents

the trajectory of the Sinai walk.

aux1<-numeric(n)

X<-numeric(n+1)

X[1]<-0

for(i in 1:n)

{
aux1[i]<-sample(c(1,-1), 1, prob=c(alphaE[g(X[i])],

1-alphaE[g(X[i])]))

X[i+1]<-X[i]+aux1[i]

}
Step 3. We plot the trajectory that we have generated.

plot(c(0:n), X, type="l", col="black",

xlim=range(c(0:n)),lwd=2,xlab="time")

title(main = "Trajectory of the Sinai walk after

n-steps ")
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Algorithm 2 Andreoletti’s algorithm
Step 1. We assume that we have a trajectory of the Sinai walk Xk. The first step

is calculate the local time in each x in the state space. We shall be aware that such

a task is not easy, the computational time is large, because we are counting how

many times Xk reaches the state x in the finite time window t = 0,1, . . . ,n. Note

that we had generated an environment alphaE truncated down until the state

−(n−1) and at the top until the state (n−1), this is, we need to run the algorithm

of the local time (2n− 1)-times. For that reason, one prefers run the algorithm

only on the states visited by Xk. Here, we call Lkn to the value L(k,n).
M=max(X)

m=min(X)

S=c(m:M)

# S denotes the visited states by the random walk X.

L=length(S)

Lkn<-numeric(L)

for(j in 1:L)

{
indicatiorFunction<-numeric(length(c(2:(n+1))))

for(i in 2:(n+1)

{
if(X[i]==S[j]){indicatiorFunction[i]<-1}

else {indicatiorFunction[i]<-0}

}
Lkn[j]<-sum(indicatiorFunction)

}
Step 2. We use the notation Len= L∗(n), ke= k∗n and Tke= Tk∗n in accordance

with the definitions given in the Subsection 1.4

Len<-max(Lkn)

aux2<-which(Lkn==Len)

Fn=S[aux2]

if(min(Fn)>0){ke=min(abs(Fn))}

if(min(Fn)<0){ke=-min(abs(Fn))}

Tke<-(min(which(X==ke)))-1
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Step 3. We seeking which states belongs to the set Lγ
n, which we denote

by Lngam and gam instead of γ for the pseudo code.

aux3<-numeric(L)

indicatiorFunction2<-numeric(length(c((Tke+1):(n+1))))

for(j in 1:L)

{
for(i in (Tke+1):(n+1))

{
if(X[i]==S[j]){indicatorFunction2[i]<-1}
else{indicatorFunction2[i]<-0}
}

aux3[j]<-sum(indicatorFunction2)

}
gam=7

Lngam<-which(aux3>=((log(n)) ∧ gam))
Step 4. We define the function of the potential V (x) and the estimator defined by

Andreoletti. We use the notation Vnke, Vnk and un instead of V n
k,k∗n

, V̂ n
k and un,

respectively.

V=numeric(length(L))

# V denotes the potential only for the visited states.

z<-which(S==0)

V[z]=0

if(M>0){

for(i in c(1:M)){

suma1<-0

for(j in 1:i){

suma1<-suma1+log((1-E[g(j)])/E[g(j)])

}

V[i+z]<-suma1

}}

if(m<0){

for(i in c(m:(-1))){

suma2<-0

for(j in (i+1):0){

suma2<-(suma2-log((1-E[g(j)])/E[g(j)]))

}
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V[i+z]<-suma2

}}

Vnke<-numeric(L)

for(i in 1:L)

{
Vnke[i]<-1-(1/(log(n)))*(V[i]-V[which(S==ke)])

}
Vnk<-numeric(L)

for(j in 1:L)

{
Vnk[j]<-(log(Lkn[j]))/(log n)

}
un<-(log(log(log(n))))/(log n)

Step 5. We plot the graphic that shows the function of the potential Vnke and the

estimator Vnk+un, Vnk-un.

plot(S, Vnke, type="l",col="black",xlim=range(S),lwd=2,

xlab="States visited", ylab=" ")

title(main = "Andreoletti’s approximation",col.main =

"black",cex.main = 1.1, font.main = 1)

legend(S[1],-0.5,legend=c("Vnke","Vnk±un"),
col=c("black","gray"), lwd=2, text.width = NULL)

lines(S, Vnk+un, col="gray")

lines(S, Vnk-un, col="gray")

# In accordance with ?? from the Andreoletti’s procedure we can recover de poten-

tial through:

Vk=numeric(L)

for(i in 1:L)

{
Vk[i] = log ( Lkn[which(S==0)]/Lkn[i] )

}
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Algorithm 3 Recover the potential in accordance with the Subsection 1.4.2
# We denote by T100= T100, n2= n2, Xprime= X ′, Y= Yk and Sprime= S′

T100=which(X==100)[1]

n2=n-T100

Xprime=X[T100:(n+1)]

Y=Xprime-100

mprime=min(Y)

Mprime=max(Y)

Sprime<-c(mprime:Mprime)

# We use the algorithm 2 to apply Andreoletti’s procedure.

Lprime=length(Sprime)

Lknprime<-numeric(Lprime)

for(j in 1:Lprime)

{
indicatiorFunction3<-numeric(length(c(2:n2)))

for(i in 2:n2)

{
if(Y[i]==Sprime[j]){indicatiorFunction3[i]<-1}

else {indicatiorFunction3[i]<-0}

}
Lknprime[j]<-sum(indicatiorFunction3)

}
# We denote by Vapprox the approximation given in (??).

Vapprox=numeric(L)

for(k in min(Sprime+100):max(Sprime+100))

{
ktilde[k]=k-100

Vapprox[k]=log((n2/n)*(Lkn[z+0]/Lknprime[(ktilde[k])]))

}
# We plot the graphic that shows the original potential, the approximated potential

by Andreoletti’s procedure and the approximation for the states [60,160].

plot(L,V,col="black",lwd=3,type="l",

xlab="State space",ylab=" ",cex.axis=0.85,xlim=range(L))
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lines(L[1:which(L==25)],Vk[1:which(L==25)],

col="azure4",lwd=3)

lines(Lprime+100, Vapprox, col="azure4", lwd=3)

legend(-52, -12, legend=c("Original potential",

"Potential approximated with Andreoletti’s procedure",

"Potential approximated by (??)", col=c("black",

"gray", "azure4"), lwd=3:3 ,cex=0.7)



Chapter 2

Option pricing and random
environments

As a motivation, in Chapter 1 we have studied the case of Sinai’s random walk (Sinai,

1982), which is a random walk in random environment with certain conditions. The

crux of that model is to observe how each realization of the environment modifies the

trajectories of the walk. Such process showed very interesting properties and quite

different behaviour of the symmetric random walk, because it evolves with double

randomness: the environment and the intrinsic randomness.

Moreover in 1979, Cox, Ross and Rubinstein (Cox et al., 1979) presented one of

the most useful methodologies in discrete-time option pricing: the binomial model.

As is known, for a European call or put option this procedure yields in the limit the

well-known Black-Scholes formula. The binomial model assumes (besides other hy-

potheses) that the movements of the stock price take one of only two possible values

at each time period. In other words, the paths of the movements of the underlying

asset are modelled with a usual random walk, which makes it easy to implement nu-

merically.

An interesting variant would be to ask if there exist a model in which a random

walk in random environment can be applied naturally in conjunction with the Cox,

Ross, and Rubinstein mechanism? We are going in that direction, and we will present

a model that combines both ideas. In the articles (Ganikhodjaev, 2013; Xiaoping,

2014) the authors worked a model with a random binary environment i.e., two envi-

ronments. However, the idea of the Sinai model is totally different, and we find this

idea more convenient for financial modelling because it helps to associate directly the

environment to the behaviour of the process. For instance, suppose for a moment that

we know or infer some information on the environment, then we might be able to use

59
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this information to produce some forecast about the movements of the process. This

kind of way of thinking is what makes Sinai’s random walk special, and we wish to

translate this way of thinking to the financial modelling.

2.1 Binomial model

As we have mentioned in the Introduction, Cox, Ross and Rubinstein (Cox et al.,

1979) presented a discrete-time model for valuation of options. The construction of

such a model is straightforward, and it makes possible to employ an efficient numerical

algorithm. Before proceeding to present our model, we will describe the main ideas

of the CRR model.

In the financial markets, a derivative security is a contract whose value depends

on another asset called the underlying asset. Let us focus in the European call option,

which is a contract where the holder gets the right, but not the obligation to buy the

underlying asset (we consider a non-dividend-paying stock) at maturity date T , for a

specific price K (it called strike price). Let S(t) be the underlying asset price at time

t. In this way, we only know S(0). Therefore the payoff for the call option is the

max(S(T )−K,0). The main goal is to give a fair price C that the holder should pay at

time t = 0 for the option.

There are certain hypothesis one needs to assume.

a. There are not transaction costs.

b. The players are allowed to perform the so-called short sells.

c. It is possible to buy or sell any amount of shares.

First, we divide the time T in N discrete periods, tk = kT
N , k = 0,1, . . . ,N. The binomial

model assumes that the underlying asset at any period of time takes two possible

values, it goes up with a multiplicative factor u with probability p, or it goes down

with a multiplicative factor d with probability 1− p, where 0 < d < 1 < u. We obtain

a binomial tree that represents the possible movements of the prices after N periods.

In order to price the call option, we set up a hedging strategy that can help us to

achieve the same return over the time. To do this, we construct a portfolio H with two

stocks:

i. The risk-free bond B(t) with compounded risk-free interest rate r, and

ii. the underlying asset S(t).
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This portfolio must be self-financing and replicate the cash flow of the call option

under all possible scenarios. Self-financing means that one is not allowed to with-

draw or put more money during the life of the portfolio, but we can just reallocate its

composition.

Moreover, it is often desirable that u and d are constant through time and such that

ud = 1. However the method of replicating portfolio works even if these conditions

fail. The extreme case could be when u and d are not the same constant over time and

they also depend on the branch of the tree. More exactly, if S( j,k) denotes the price

of the underlying asset at the node ( j,k), then it follows the movements

S(2 j,k+1) = u(k)j S( j,k)

S( j,k)
α
(k)
j
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1−α
(k)
j

))

S(2 j+1,k+1) = d(k)
j S( j,k),

(2.1.1)

where k = 0,1, . . . ,N−1 is the period and j = 0,1, . . . ,(2k−1) is the branch in each

period. The price S( j,k) goes up a multiplicative factor u(k)j with probability α
(k)
j , or it

goes down a multiplicative factor d(k)
j with probability 1−α

(k)
j . It is possible to have a

sample space of 2N paths for the tree of prices. The construction of the self-financing

replicating portfolio is described as follows. First of all, let V ( j,k) be the value of the

portfolio at the node ( j,k), then at time N it should hold that

V ( j,N) = max(S( j,N)−K,0) for all j = 0,1, . . . ,2N−1.

Then we adjust the portfolio at each node and we work the backward induction to

obtain the price for the replicating portfolio at time t0. To do this, we must find h and

b from the equations

h u(k)j S( j,k)+b R = V (2 j,k+1),

h d(k)
j S( j,k)+b R = V (2 j+1,k+1),

for each k =N−1, . . . ,1,0 and j = 0,1, . . . ,(2k−1), where R= B(t1) is the bond price

at time t1. Consequently we obtain the solution

h =
V (2 j,k+1)−V (2 j+1,k+1)

(u(k)j −d(k)
j )S( j,k)

, (2.1.2)

b =
V (2 j,k+1)(u(k)j −d(k)

j −1)+V (2 j+1,k+1)

R(u(k)j −d(k)
j )

.
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Therefore, we set up a portfolio of h shares of underlying asset and b dollars in risk-

free bond. Thus the value of these operations is

V ( j,k) = h S( j,k)+b. (2.1.3)

In order to apply this methodology, a fundamental requirement is that the model

should be free of arbitrage. It means that is not possible to construct a trading strategy

that begins without money at time t0, and it has a positive probability of making money

at time T . It turns out that such property holds if and only if d(k)
j < R < u(k)j , k =

0,1, . . . ,N−1 and j = 0,1, . . . ,k. In particular if the factors u and d are constants over

time, then d < R < u is a condition of no arbitrage. When we have this condition the

price of both financial assets, the call option and the portfolio H, must be equal at time

t0, i.e.,

C =V (0,0).

Remark 2.1.1. Notice that it is ok if the tree obtained through binomial model does

not join its nodes as in the case of the constant factors u and d. Because each node

and its two next branches are a simple representation of binomial model itself.

2.1.1 Predicament: why it is not possible to use the Sinai model
for option pricing?

The methodology described above gives rise to powerful formula to price contingent

claims. In the end, if u and d are constant through time and d = 1/u, the price of the

option is given by

C =
1

erT

N

∑
i=0

(
N
i

)
(p∗)i(q∗)N−i max(uidN−iS(0)−K,0), (2.1.4)

with p∗= R−d
u−d and q∗= u−R

u−d . It is well-know that when u= eσ

√
T
N and d = 1/u, where

σ denotes the volatility (constant), the price under this model converges to the price

given by the Black-Scholes formula. The striking paradigm of this formulation is the

conclusion that C is actually an expectation under a new probability measure specified

by p∗,i.e., C = E∗(G(ST )
erT ), where G(ST ) = max(ST −k,0) is the payoff function. For a

general reference about options one can see (Hull, 2009; Pliska, 1997).

In accordance with the solutions given by (2.1.2), the probabilities α
(k)
j described

in (2.1.1) does not play any role. Indeed, if we try to use Sinai’s model for the move-

ments of the prices with random probabilities α
(k)
j , the solutions in (2.1.2) are still the
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same, i.e., the randomness of the probabilities to go up or down would be obsolete. In

other words, it is ok that different investors consider different probabilities to go up

or down in the movements of the stock price because that probability p does not play

any role in the price for the option.

2.2 The new model

Our goal is to propose a model which is capable to produce a fair price using the

binomial CRR scheme, and at the same time that it incorporates the concept of a

random environment presented in the market. An effort of this kind was proposed by

(Ganikhodjaev, 2013), and then by (Xiaoping, 2014) where they worked a model with

a random binary environment, i.e., two environments.

However it turns out that such a model has a different nature than Sinai’s walk and

than our model. Indeed the main feature of Sinai’s walk is that always uses the same

previously fixed probability every time it goes through the same site. This means that

once the environment is given, the walk moves using a fixed probability αx at each

site x. That is important because this feature is what brings the new phenomena in the

random walk. The idea of our proposal is to give a random walk whose upwards or

downwards movements are itself random. We could say that for some environments

and for some sites the position would move upwards with a greater step than the step

going downwards, and for the other sites the other way round.

Let us describe it precisely. Given ∆ > 0, we define the lattice Z∆ as

Z∆ := {. . . ,−2∆,−∆,0,∆,2∆, . . .}.

We consider α = {αx : x ∈ Z∆} a collection of i.i.d random variables

αx =

∆ with probability q,

−∆ with probability 1−q,
(2.2.1)

with q∈ [0,1]. We call any realization of α a random environment. For each α fixed

and x ∈ Z∆, we define the random walk in the random environment α as the Markov

chain {Xn : n> 0} with state space Z∆ on a probability space (Γα ,Gα ,Pα), which we

are going to describe in subsection 3.2. We consider X0 = 0 and the movements under

Pα are the following

(Xn+1 | Xn = x) =

 x+αx with probability p,

x−βαx with probability 1− p,
(2.2.2)
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where β ∈ N and p ∈ (0,1) is fixed. Notice that β tells us if the jump to the left or

to the right is longer or shorter, whereas αx tells us exactly towards which direction

such a jump is indeed longer. Observe that if we consider the parameters p = 1/2

and β = 1 in the description of the model (2.2.2), we recover the symmetric random

walk. In Figure 2.1, we can observe the behaviour of the walk Xn each time that visits

a state x ∈ Z∆, given an environment α . We can say that for each x ∈ Z∆, there exists

a random variable αx. If αx = ∆, then the particle moves one step of length ∆ to the

right with probability p or it moves β−steps of length ∆ to the left with probability

1− p. If the random variable αx = −∆, then the particle moves β−steps of length ∆

to the right with probability 1− p or it moves one step to the left with probability p.

Figure 2.1: Dynamic of a particle given an environment α at any x ∈ Z∆.

In Figure 2.2, we can see one simulation of each one of the three different models: The

symmetric random walk, Sinai’s model and our model (all of them with n = 500,000

time steps and on a lattice Z∆, ∆ = 0.05 ).

The features of each model are the following:

(i) For the symmetric walk, we consider the parameters that we have mentioned

p = 1/2 and β = 1.

(ii) For Sinai’s walk, X0 = 0, Pα(Xn+1 = x+∆ | Xn = x) = αx = 1−Pα(Xn+1 =

x− ∆ | Xn = x) for n > 1 and x ∈ Z∆. Here we consider the environment α

defined by (1.2.16).

(iii) Lastly, for our model we use the description in (2.2.2) with the parameters p =

1/2 and β = 2.
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Figure 2.2: Simulation of paths from different random walks.

Notice that our model has a different erratic behaviour than the symmetric walk.

In fact such behaviour resembles Sinai’s walk, however, its growth is not too slow as

the Sinai model.

2.2.1 Connection between the environment and a quenched path

Now we would ask ourselves if there is a tool as the so-called potential, that we de-

scribed above in the Chapter 1 for Sinai’s random walk. It turns out that it is possible

to have such a tool. To achieve that, we propose a two-sided random walk W ′ as fol-

lows. Given an environment α , let W ′ be the following function on the state space

Z∆:

W ′(x) =



x

∑
i=∆

αi if x = ∆,2∆,3∆, . . .

0, if x = 0

−
0

∑
i=x+∆

αi, if x =−∆,−2∆,−3∆ . . .

(2.2.3)

We discovered numerically that the minima of W ′ tell us where the walk spends more

time. Somehow, W ′ may play a similar role than W for the Sinai walk.

In Figure 2.2, we have observed that the path of our model stays more time around

the states −8 and −14, marked with little arrows on the left side. On the other hand,

we can observe in Figure 2.3 that W ′ has a minimum around of the states −8 (i.e.,

−160∆) and −14 (i.e., −280∆).

Therefore given an environment α , we can study the behaviour of the two-sided

random walk W ′ and, try to infer the behaviour of the random walk Xn in the random

environment α .
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Figure 2.3: Two-sided random walk W ′ associated to the environment α .

2.2.2 Probability measures on paths

For each environment α fixed, it would be natural to define the quenched and annealed

probability in an analogous way as it has been defined for Sinai’s walk. However it is

important to highlight the fact that the model (2.2.2) associates to each environment

α a different space of paths Γα . In Subsection 2.3.1 we have an example to visualize

this phenomenon.

In fact for our purpose, we will consider the random walk in random environment

Xn on a finite time window T := {0,1,2, . . . ,N} for some N > 0. Thereby, we equipped

Γα with the discrete σ -algebra denoted by Gα . Furthermore it will be sufficient to

truncate the sequence of the environment α , because the walk {Xn}n∈T visits only a

finite number of states. To do this, we define

Z2N∆ := {−2N∆, . . . ,−2∆,−∆,0,∆,2∆, . . . ,2N∆} (2.2.4)

and from now on we take the finite sequence of random variables α = {αx}x∈Z2N∆
on

the probability space (Ω, F, P).

In accordance with the notation used in Subsection 1.1, we also call Pα
x (·) the

quenched probability such that X0 = x, Eα
x the expectation with respect to Pα

x and

E the expectation associated to the measure P. This enables us to take the average

over the quenched probabilities with respect to the environment distribution to obtain

the annealed probability denoted by Px. To define it explicitly, we first consider the

space of all trajectories of length N, denoted by X=∪αΓα , and we provide it with the

discrete σ -algebra σ(X). Therefore we can calculate for any set A ∈ σ(X),

Px(A) :=
∫

Ω

Pα(ω)
x (A) P(dω) = E Pα

x (A). (2.2.5)

Remark 2.2.1. Our proposed model is not a Markov chain with the annealed measure.
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2.3 Valuation

At this moment we are in position to describe the pricing methodology using our

model. We will focus on a call option.

For each fixed environment α , we generate a discrete tree of prices based on the

walk Xn given by the model (2.2.2). As it is usually the case, we consider

S(n) = S(0)exp(Xn), n = 0,1, . . . ,N (2.3.1)

as the model for prices. Thus, at any time period S(n) takes two possible values

depending the environment α . This tree has a special feature: at each step time the

nodes may or may not join into another node, in contrast to the classical binomial

model. However, as we have mentioned in Remark 2.1.1, that does not represent a

problem for applying the CRR procedure.

In the CRR model we construct a hedging strategy with a self-financing portfolio

with two stocks: a risk-free bond B(t) with compounded risk-free interest rate r and

the underlying asset S(t) by the model (2.3.1). Then, we look for the portfolio that

replicates the payoff of the call option over all possible scenarios. This enables us to

compute the value of the call option for that environment α , which is the value of the

replicating portfolio. Hereafter we can call it the quenched price Cα . In other words,

if we would know the environment that moves market’s prices, the quenched price will

be the correct price of the option.

The following lemma helps us to ensure the existence of Cα .

Lemma 2.3.1. If the following condition is true, then the quenched model (2.3.1) is

free arbitrage:

exp(−∆)< R < exp(∆), (2.3.2)

where R = B(T
N ).

Proof. The condition (2.3.2) implies directly

exp(−2∆)< exp(−∆)< R < exp(∆)< exp(2∆).

This is, for any value that the underlying asset takes in each period with the model

(2.3.1)-(2.2.2), it is possible to apply an argument of arbitrage (similarly to the classi-

cal binomial model).

However, when we do not know the random environment that is behind the real

prices of the underlying asset, we may find an annealed expectation

C =
∫

Ω

Cα(ω) P(dω), (2.3.3)

in order to explore what the price of the option could be.
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2.3.1 Numerical exercise

This Subsection summarises the idea of the model through the following exercise.

We consider a risk asset such that S(0) = 100 dollars. Fix ∆ = 0.02 and we generate

an environment α . The Figure 2.4 shows the binomial tree associated to α with all

possible scenarios of Xn after 5 periods.

Figure 2.4: Example of a binomial tree given an environment α generated by (2.2.1)

with p = q = 0.5, which can be observed in the ordinate-axis.

We present in Figure 2.5, the tree of prices using the model (2.3.1). To do this we

have considered N = 5, T = 1, r = 0.09, K = 101 and R = 1.018163, and we construct

the replicating portfolio. The value of such portfolio is displayed in Figure 2.6, i.e.,

the quenched price Cα =Vα(0,0).
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Figure 2.5: Tree of prices associated to

the environment α .

Figure 2.6: Tree of prices for the repli-

cating portfolio.

2.4 Empirical studio

Finally, we show an example to valuate a call option. We have taken the historical

prices from the web site (Mexder, 2018) based on the Options Bulletin issued on

April 30, 2018 and we consider options on BMV IPC Futures with the information

presented in Table 2.11.

In Figure 2.7, we simulate three paths of underlying asset using our model (2.3.1)-

(2.2.2) with the parameter ∆ = 0.00347, which was empirically adjusted. Each one

of the paths were generated with its own environment. Also, we can observe the real

trajectory of the underlying asset price during the lifetime of the contract.

Let us carry out our valuation. First we obtain from the data the values T = 0.4

and R = 1.000125. Then to run the algorithm, we consider N = 310 discrete periods

during the lifetime of the contract and the fixed parameter ∆. The program was run

with a sample of 300 random environments. We carried out our program with the

1We obtained the value for the underlying asset on April 30, 2018 from the web site (Investing,
2018) and the approximate value for the compounded risk-free interest rate from the web site (Banxico,
2018).
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Contract Call option

Underlying asset BMV IPC Future

Maturity date September 21, 2018

Strike price K = 57,500

Initial price S0 = 48358.16

TIIE Compounded risk-free interest rate r = 9.7376%

Table 2.1: Information of the contract.
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Lifetime contract
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Path of real prices
Paths of prices with our model

Figure 2.7: Example of paths for the underlying asset with the model (2.3.1)-(2.2.2)

statistical software R-Studio (Core et al., 2013) and we present in the Appendix a

pseudo code of the program. The Table 2.2 describes the results obtained, even the

obtained price by the usual binomial model with the same data T , r, S0, K, N-periods

and taking the implicit volatility σ = 0.13641151.

Min. 111.6467

Median. 115.1538

Mean. 115.1544

Max. 118.5428

Current price in the market 115

Price with the usual binomial model 114.4251

Table 2.2: Summary Data Quenched prices.
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Moreover, we obtain a standard deviation SD= 1.289028. Informally speaking,

one may propose that the theoretical value (2.3.3) belongs to the interval

[114.9628,115.3461]

with 99 per cent of confidence. Because applying for example, the Shapiro-Wilk nor-

mality test we obtained the p-value = 0.2858. In Figure 2.8 we observe the histogram

with the result obtained by the simulations taking independents environment and 310

periods for each path.

Histogram of generated prices

310−periods, 300− Random environment chosen independently
Queched Prices Call−option

D
en

si
ty

112 114 116 118

0.
0

0.
2

0.
4

0.
6

99% confidence interval for the mean

Figure 2.8: Histogram to approximate the theoretical value (2.3.3).

Lastly, we present in Table 2.3 the same experiment with different values for ∆,

we show the result of each interval with 95 per cent of confidence for such ∆-values.

This is, we can observe the sensitivity to parameter variation ∆ in the model 2.2.2.

The simulations took independent environments for each ∆-value and 310 periods

for each path as the presented example with ∆ = 0.00347. Such task took - days in a

computer with the following features: AMD A8-7410 APU processor and 6 GB RAM

memory.

2.5 Appendix A2

Here we present the algorithm in R Studio to obtain a trajectory of the model (2.2.2)

for a given environment.
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∆-values Interval with 99 per cent of confidence

0.00342 [107.5242, 107.9101]

0.00343 [109.0098, 109.3539]

0.00344 [110.4576, 110.8074]

0.00345 [111.9654, 112.3257]

0.00346 [113.3880, 113.7576]

0.00347 [114.9628, 115.3461]
0.00348 [116.5470, 116.9244]

0.00349 [117.9993, 118.4082]

0.00350 [119.7281, 120.0993]

0.00351 [121.2098, 121.5969]

0.00352 [122.7791, 123.1843]

Table 2.3: Summary Data Quenched prices.

Algorithm 4 Simulation of a path of the model (2.2.2).
Step 1. We define the variables.

t = number of steps time.

n = number of states on Z∆ that we will label with the

random variables i.i.d (the environment).

delta = the size of the jump for the walk.

# First we fix an environment, which we call it E. It is a sample of size 2n−1 from

a data set {delta, -delta}.
alphaX<-delta*(2*rbinom((2*n-1),1,0.5)-1)

# We are going to define the function g to associate the vector E with the state

space Z∆ restricted to the following set

{−(n−1)∆, . . . ,−2∆,−∆,0,∆,2∆, . . . ,(n−1)∆}.

Dx<-function(x){alphaX[(x/delta)+n]}
# X denotes the trajectory of the model (2.2.2).

X<-numeric(t+1)

X[1]<-0

aux<-numeric(t)
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for(i in 1:t)

{
aux[i]<-sample(c(Dx(X[i]),-2*Dx(X[i])),1,prob=c(0.5,0.5))

X[i+1]<-X[i]+aux[i]

}
# S denotes the trajectory of the model described by (2.3.1)

S<-numeric(t+1)

for(i in 1:(t+1))

{
S[i]<-S0*exp(X[i])

}

Algorithm 5 Applying the technique of replicating portfolios with random environ-

ments
Step 1. Define the local variables.

Ti = Time of live of the contract.

delta = parameter for the model (2.2.2).

n = number of the random variables described in Step 2.
N = Number of periods during the time [0,Ti]

S0 = Initial price of the underlying asset.

K = Strike price.

r = Compounded risk-free interest rate.

R = Discount factor in each period.

P = Settlement Price.

# Let g be the Payoff for the Call option.

NR = number of sample size of random environments

Step 2. We run the algorithm to obtain a quenched price given each one of NR-

different environments. We will write each price in a coordinate in a vector that

we will denote by Pr.

Pr<-numeric(NR)

for (y in 1:NR) {
# E represents a random environment. As follows: 2*n-1 samples are chosen in-

dependently from Bernoulli variables which it chooses one value between delta

or -delta with probability 1/2.
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Remember we are going to generate random variables from -(n-1) until (n-1)

instead of Z = {...,-n,-(n-1),...,0,...,n-1,n,..}
E<-delta*(2*rbinom((2*n-1),1,0.5)-1)

# Dx assigns to each state x the random variable correspondent from the environ-

ment E.

Dx<-function(x)E[(x/delta)+n]

# Let C be the matrix which save in each column the values generated in the tree

step by step.

We begin with a square matrix 2x2, C[1,1]=X0, C[1,2] and C[2,2] are the

two possible values after one-step, C=0 otherwise.

C<-matrix( 0, nrow = 2, ncol=2)

C[1,1]=0

C[1,2]=Dx(C[1,1])

C[2,2]=-2*Dx(C[1,1])

# Then the following algorithm updates its last column.

# We take l a vector where the i-th coordinate represents the number of rows of

the matrix C in the i-th column.

l<-numeric(N+1)

l[1]=1

l[2]=2

for(j in 3:(N+1))

{
# M is the column vector, which coordinates are the two possible values of the two

last possible generated values by the model given the environment E.

M=matrix(0, nrow = (2*(l[(j-1)])), ncol= 1)

for(i in 1:(l[j-1]))

{
M[(2*i-1),1]=round(C[i,(j-1)]+Dx(C[i,(j-1)]),9)

M[(2*i),1]=round(C[i,(j-1)]-2*Dx(C[i,(j-1)]),9)

}
# B only leaves the values that are not repeated in the vector M.

B=unique(M)

l[j]=length(B)

di=(l[j])-length(C[,(j-1)])

# the variable di tell us how many zeros we need to fill the matrix C.

if(di>0)
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{
Z=matrix(0, nrow =((l[j])-length(C[,(j-1)])),

ncol=(j-1))

C=cbind(rbind(C,Z),B)}
if(di==0){C=cbind(C,B)}
if(di<0)

{
Z=matrix(0,nrow=(length(C[,(j-1)])-l[j]), ncol=1)

C=cbind(C,rbind(B,Z))

}
# rbind: To join two datasets vertically.

# cbind: To join two datasets horizontally.

}
Step 3. Now we are going to apply the usual model S(t) = So ∗ exp(X(t)), i.e.,

we are going to obtain the price tree given the environment E.

S=matrix(0,nrow = nrow(C), ncol=(N+1))

S[1,1]=S0

for(j in 2:(N+1))

{
for(i in 1:(l[j])){
S[i,j]=S0*exp(C[i,j]) }
}

Step 4. Q is the matrix which (i,j)-coordinate is the value of the call-option using

replicating portfolios.

# ncol=N+1, because it is a tree with N-periods, while nrow=l[N+1], it is the

number the rows at the end of N-steps.

Q<-matrix(0, nrow =l[N+1], ncol=(N+1))

for(i in 1:(l[N+1])){
Q[i,N+1]=g(S[i,N+1])}
# we know that the coordinates in the last column are equal to their intrinsic

values.

for(j in N:1){
# Option value calculated at each preceding node.

for(i in 1:(l[j])){
Ma=matrix(0, nrow = 2, ncol=2)

Ma[1,1]=R
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Ma[2,1]=R

Ma[1,2]=S0*exp(C[i,j]+Dx(C[i,j]))

Ma[2,2]=S0*exp(C[i,j]-2*Dx(C[i,j]))

# Ma is the matrix to solve the system of equations in each step. We remember that

the model of self-financing and replicating portfolios work backwards through

each period.

a=which(signif(S[,(j+1)],digits=7)==signif(S0*

exp(C[i,j]+Dx(C[i,j])), digits = 7))

b=which(signif(S[,(j+1)],digits=7)==signif(S0*

exp(C[i,j]-2*Dx(C[i,j])), digits = 7))

# a,b looking for the coordinates produced by the model in each step.

Ve=matrix(0, nrow = 2, ncol=1)

Ve[1,1]=Q[a,(j+1)]

Ve[2,1]=Q[b,(j+1)]

# Ve are the prices for the option in the binomial tree.

W<-solve(Ma,Ve)

# W are the solution for the sistem of equations Ma x = Ve.

Q[i,j]=W[1,1]+W[2,1]*S0*exp(C[i,j])

# Q[i,j] is the value of the portfolio in that node of the tree.

# We need Wi[1,1]-shares of riskless bond and Wi[2,1]-shares of the under-

lying asset for buy or sell depending of the sign.

}
}
# Finally we fill the vector of price for each environment

Pr[y]=Q[1,1]

# Q[1,1] is price for the Call option.

}



Chapter 3

More about the model

3.1 Behaviour of the model

We consider the model (2.2.2) introduced in Chapter 2. We recall that we have defined

it as a Markov chain for a fixed environment α . It is worth investigating, what kind of

Markov chain is it? Given the definition 1.2.1, we will use the next lemma.

Lemma 3.1.1. (Durrett, 1999)[p. 12-20]

Let {Y0,Y2, . . .} be a Markov chain with state space S. The following statements are

equivalent.

i. The state x is transient.

ii. Px(Tx < ∞)< 1,

iii. Px(Yn = x for infinitely many n) = 0,

iv. ∑
∞
n=1 Px(Yn = x)< ∞.

We will explore some unrealistic but informative cases. In what follows, we focus

in a particular case of the environment in the model (2.2.2). Given ∆ > 0, we consider

α = {αx : x ∈ Z∆} such that

αx = ∆ for all x. (3.1.1)

Moreover, we consider the parameters p = 0.5 and β = 2 as before. The random walk

Xn in the environment α is taking the following movements:

(Xn+1 | Xn = x) =

 x+∆ with probability 0.5,

x−2∆ with probability 0.5.
(3.1.2)

77
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Easily we can see that for an environment α as (3.1.1) all trajectories after n-steps

are equally probable. Furthermore the random walk Xn in accordance with (3.1.2)

visits all states with probability strictly positive, i.e., all states in Z∆ are accessible. So

that, the Markov chain is irreducible.

To illustrate that random walk, in Figure 3.1 we can observe the superposition of

all trajectories after 7-steps and a particular trajectory in blue color.

Figure 3.1: Network generated given the environment α described in (3.1.1).

Proposition 3.1.2. Given the environment α as (3.1.1), the random walk Xn is tran-

sient.

Proof. According to the Lemma 3.1.1 because the Markov chain is irreducible, it is

enough to show that ∑
∞
n=1 Pα

x (Xn = x)< ∞ only for one state, for instance x = 0.

First we observe that for n > 0

Pα
0 (Xn = 0) =


0 i f n 6= 3k (k > 1),

> 0 i f n = 3k (k > 1).



CHAPTER 3. MORE ABOUT THE MODEL 79

Then
∞

∑
n=1

Pα
0 (Xn = 0) =

∞

∑
k=1

Pα
0 (X3k = 0).

We calculate explicitly the probability of return in 3k-steps as

Pα
0 (X3k = 0) =

(3k
k

)
23k ,

for k = 1,2,3, . . .. To calculate this formula, we can think the walk as an arrangement,

i.e., for each step to down, we need to up 2-steps. Thus to return to the origin after

3-steps, we can order an arrange (up,down,down) by means of combinations
(3

1

)
. In

general after 3k-steps, exactly
(3k

k

)
trajectories return to the origin of a total of 23k.

By using the Stirling formula1 one can calculate

∞

∑
k=1

Pα
0 (X3k = 0) =

∞

∑
k=1

(3k
k

)
23k

=
∞

∑
k=1

(3k)!
k! (2k)! 23k

=

√
2π(3k) (3k)3k e−3k

√
2πk kke−k

√
2π(2k) (2k)2k e−2k 23k

=

√
3√

4π

∞

∑
k=1

33k
√

k 25k
. (3.1.3)

By the ratio test, we calculate the limit of the following quotient

33(k+1)

25(k+1)
√

k+1
33k

25k
√

k

=
27
32

√
k√

k+1
→ 27

32
< 1, as k→ ∞.

Therefore the serie given by (3.1.3) converges and in consequence, the state x = 0 is

transient under the environment α given by (3.1.1). �

Furthermore for that environment α , we can obtain more information about the

random walk Xn.

Lemma 3.1.3. Given the environment α as (3.1.1), then

lim
n→∞

Xn =−∞ a.s.

1Stirling formula: n!≈
√

2πnnne−n for n large.
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Proof. We know the possible movements of the random walk Xn in accordance with

(3.1.2). Then by the strong law of large numbers,

lim
n→∞

Xn

n
= E(X1) a.s.

=
1
2
(∆)+

1
2
(−2∆)

< 0.

Since any realization of Xn(ω) is a sequence of real numbers. We denote lim
n→∞

Xn(ω)

n
=

b < 0, b not necessarily finite. This is, given ε > 0 there exists N ∈N such that for all

n> N ∣∣∣∣Xn(ω)

n
−b
∣∣∣∣< ε.

In other words for all n> N, it follows that

−ε <
Xn(ω)

n
−b < ε,

n(b− ε)< Xn(ω)< n(b+ ε).

By Archimedean property we can find ε such that ε < |b| and so b+ ε < 0.

Hence

lim
n→∞

Xn =−∞ a.s.

�

Opposite to the previous situation, if we assume an environment α = {αx : x ∈ Z∆}
such that

αx =−∆ for all x, (3.1.4)

and we take the parameters p = 0.5 and β = 2. The model of the random walk has the

following displacement

(Xn+1 | Xn = x) =

 x−∆ with probability 0.5,

x+2∆ with probability 0.5.

Using a similar argument as before, it follows the next analogous results.

Proposition 3.1.4. The random walk under the environment α as (3.1.4) is also a

transient Markov chain.

Lemma 3.1.5. Given the environment α described in (3.1.4), then

lim
n→∞

Xn = ∞ a.s.
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Summary
For the two particular environments (3.1.1) and (3.1.4) that we have studied. We

obtained information about transitivity and the behaviour about a random walk in such

environments. It is interesting to know that for the environment (3.1.1) a particle there

will go to −∞ a.s., while a particle given the environment (3.1.4) will go to ∞.

Why do not we calculate explicitly the probability to return to the origin given

the environment (2.2.1)? Because each environment changes the network, we can

not count easily the number of paths that return to the origin after n-steps. On the

other hand, a used technique as in Sinai’s walk about the probability to return to the

origin is complicated because to establish a difference equation with the model (2.2.2)

the coefficients are constant given an environment, however, the jump (grade of the

equation) is random.

It is a further work to find a result about what conditions on the environment allow

us to classify the behaviour of the random walk for the model (2.2.2).

3.2 Connecting the environment and the local time

As a continuation of the section 2.2.1, we remember the definition of the function of

the environment

W ′(x) =



x

∑
i=∆

αi if x = ∆,2∆,3∆, . . .

0, if x = 0

−
0

∑
i=x+∆

αi, if x =−∆,−2∆,−3∆ . . .

It is our purpose to show as this function W ′ has a connection between the environ-

ment and the behaviour of the random walk of the model (2.2.2), because we realized

that the walk spends a lot of local time in the minima of the function W ′.

We begin analysing about what happens when W ′ decreases and then, what hap-

pens when W ′ increasing. It is worth to see how the changes of direction of the func-

tion W ′ represent changes in the environment due to the extrinsic randomness.

First we assume that W ′ decreasing i.e., W ′(x−∆)>W ′(x) for x ∈ Z∆.

For x > 0, if we assume W ′(x−∆)>W ′(x) then

x−∆

∑
i=∆

αi >
x

∑
i=∆

αi

=
x−∆

∑
i=∆

αi +αx,
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which implies by the definition 2.2.1 of αx,

0 > αx⇔ αx =−∆. (3.2.1)

Whereas for x < 0, if W ′(x−∆)>W ′(x) then

−
0

∑
i=x

αi > −
0

∑
i=x+∆

αi

−αx−
0

∑
i=x+∆

αi > −
0

∑
i=x+∆

αi,

that is

−αx > 0⇔ αx < 0⇔ αx =−∆. (3.2.2)

Lastly, if x = 0,

W ′(0−∆)>W ′(0) ⇒−α0 > 0,

i.e., αx =−∆.

That is for any x∈Z∆, the knowledge about increments or decreases in the function

W ′ gives us information on which values take the environment in each state x.

Remark 3.2.1. Assume the model (2.2.2) given an environment α described in (2.2.3).

Let W ′ be the function on the environment α and x,y ∈ Z∆, with x < y. The following

statement are true.

a) W ′ is strictly decreasing in [x,y]⊂ Z∆ if and only if αi =−∆ for all i ∈ [x,y].

b) W ′ is strictly increasing in [x,y]⊂ Z∆ if and only if αi = ∆ for all i ∈ [x,y].

We can explain it as: if an environment α shows a sequence of states xk where their

random variables associated take the values αxk =−∆ and subsequently it shows other

sequence of states yk where their random variable associated take the values αyk = ∆,

then the function of the environment W ′ changes from be decreasing to increasing.

In other words, the changes of the function W generate a phenomenon similar to

the valleys (for the Sinai’s random walk), because with the parameters that we have

considered p = 0.5, q = 0.5 and β = 2, we know that all paths are equally likely.

Therefore we can see in Figure ref mesh3 as a large part of the trajectories is con-

centrated around the state where it occurs the minimum of the function W ′ (that is, in

the change of decreasing to increasing ). This yields that when a random walk passes

through a minimum, the environment makes the walk frequently touches those points

around the minimum.
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Figure 3.2: Network generated by the sequence αxk followed by the sequence αyk .

One may consider the Figure 3.3 as a trajectory of the model (2.2.2) in a time

window [0,500000], where the parameters are ∆ = 0.05, p = 0.5, q = 0.5 and β = 2.

At first sight in that Figure, we can observe that the walk visits frequently two sites in

the state space Z∆, around the site −5 =−100∆ and 13 = 260∆.

As we have already pointed out the function W ′ proposed in (2.2.3) is a good tool

that help us to identify the sites more visited by the random walk with the model

(2.2.2). The simulation presented in Figure 3.4 shows that there is a minimum around

of the states −5 =−100∆ and 13 = 260∆.

According to the Definition 1.4.1 about the local time, we show in Figure 3.5 the

local time of the trajectory given in Figure 3.3 by means of a program in R (Core

et al., 2013). It is possible to observe that precisely the state 13.35 = 267∆ is the most

visited state, with exactly 16764 visits of the random walk with the model (2.2.2).

Which coincides with the information analysed through the function W ′.
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Figure 3.3: Dynamic of a particle given an environment α as (2.2.1).
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Figure 3.4: Function W ′ associated to the environment α , which was generated the

trajectory of the Figure 3.3.
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Figure 3.5: Local time associated to the trajectory showed in Figure 3.3
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3.3 Recovering the environment

For the study of the model (2.2.2) with p ∈ [0,1], i.e.,

(Xn+1 | Xn = x) =

 x+αx with probability p,

x−βαx with probability 1− p,

we want to obtain relevant information about the environment α = {αx : x ∈ Z∆}. In

the same way that the analysis of Sinai’s random walk, if we know the environment,

we can know with high probability the behaviour of the trajectories of the random

walk given that environment.

It is not surprising that the described method in (1.4.6) does not work to recover

the environment of the model (2.2.2), because its features are different of the Sinai

model in spite of both are random walks in random environment.

In Figure 3.6 we can see a trajectory of the model (2.2.2) with the following param-

eters: ∆= 1, p= 0.5, q= 0.5 and β = 2. However we have mentioned that the method

to recover the potential (1.4.6) is far from to be a good estimation of the environment

as we can appreciate in Figure 3.7. It is not enough to consider the logarithm of the

local time of the trajectory, but maybe under certain modification we can improve that

approximation.

−
3
0
0

−
1
0
0

0
1
0
0

Trajectory of model (2.2.2)

Time

P
o

s
it
io

n

0 100000 200000 300000 400000 500000

Figure 3.6: Trajectory of the model (2.2.2) with parameters ∆ = 1, p = 0.5 y q = 0.5
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Figure 3.7: Function W ′ associated to the environment and the method (1.4.6) applied

to the trajectory in Figure 3.6.

When we present in Chapter 2 the Figure 2.2, we observe that the order of the

model (2.2.2) is bigger than the order of the Sinai walk i.e., (logn)2 and smaller than

the order of the symmetric random walk i.e., n
1
2 . Hence we think that it could be useful

the following numerical modification to recover information about the environment.

Remember the methodology described in (1.4.6) for the Sinai walk, that is

V (k)≈ log(L(0,n))− log(L(k,n)),

which we know that it is a good approximation of the potential if the smallest favourite

site in absolute value is near to the origin. Instead of such approximation, we propose

for the model (2.2.2) to apply the local time to recover a sketch of the environment in

the following manner: For each k ∈ Z∆, we take

W ′(k)≈ (logL(0,n))3/2− (logL(k,n))3/2 . (3.3.1)

We have run the simulation in R (Core et al., 2013) applying the local time with the

proposal given in (3.3.1) to the trajectory given in Figure 3.6 and we show the result in

Figure 3.8. The recovered potential is not good for all states, however it could provide

us more information than the obtained in Figure 3.7.
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Figure 3.8: Function W ′ associated to the environment and a numeric proposal given

by (3.3.1).

When we apply this procedure we can deduce that if we consider a random walk in

that environment, the walk will spend a lot of time in the states round 160 = 160∆, and

it is very likely than the walk visit the states round −270 =−270∆ and also spends a

lot of time. We could hope certain behaviour of any walk in that environment.

We remember that originally we proposed the model (2.2.2) with the idea of in-

clude the sense of random environment in an applied problem of valuation of options

(Chapter 2, section 2.3). For that we called quenched price Cα to the price of the

portfolio that replicates the payoff of the call option over all possible scenarios given

the environment α . However, we clarify that since we do not know the environment

behind the real prices of the underlying asset, our idea was to propose an interval of

prices to make a weighting of quenched prices, as we did it in the numerical example

of the section 2.3.1.

We let open the following issue: if we would know the environment that moves the

market’s prices, the quenched price will be the correct price of the option. Therefore

our interest in the search of a mechanism to recover the potential and then, the envi-

ronment, if we assume know a trajectory of the random walk in a random environment

as the model (2.2.2).

3.4 Appendix A3

We give the pseudo code for the applications of the Chapter 3.
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Algorithm 6 Simulation of the proposal described in (3.3.1) to recover information

about the environment.
Step 1. We generated a trajectory X with the model (2.2.2), which we assume in

accordance with the same parameters described in Appendix A2, i.e., the values

t, n, delta, the variables alphaX and the function Dx.

X<-numeric(t+1)

X[1]<-0

aux<-numeric(t)

for(i in 1:t)

{
aux[i]<-sample(c(Dx(X[i]),-2*Dx(X[i])),1,prob=c(0.5,0.5))

X[i+1]<-X[i]+aux[i]

}
Step 2. We calculate the function of the environment W ′ (denote by Wprime)

associated to alphaX.

M=max(Y)

m=min(Y)

S<-c(m:M)

# S denotes the visited states by the random walk X.

L=length(S)

Wprime=numeric(L)

nz<-which(S==0)

if(M>0) {
c1=numeric(M/delta)

for(i in 1:(M/delta)){
c1[i]=i*delta

}
Wprime[nz]=0

for(i in c1){
suma1<-0

for(j in seq(delta,i,by=delta)){
suma1<-(suma1+alphaX[g(j)])

}
Wprime[(i/delta)+nz]<-suma1

}}
if(m<0){
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c2=numeric(abs(m/delta))

for(i in 1:abs(m/delta))

{
c2[i]=m+(i-1)*delta

}
for(i in c2){
suma2<-0

for(j in seq((i+delta),0,by=delta)){
suma2<-(suma2-alphaX[g(j)])

}
V[(i/delta)+nz]<-suma2

}}
Step 3. We count the local time for each state k∈S.

TLoc<-numeric(L)

for(j in 1:L){
indicatiorFunction<-numeric(length(c(2:(t+1))))

for(i in 2:(t+1)){
if(X[i]==S[j]){indicatiorFunction[i]<-1}
else {indicatiorFunction[i]<-0}
}
TLoc[j]<-sum(indicatiorFunction)

}
# We apply the numeric proposal given by (3.3.1)

Wk=numeric(L)

for(i in 1:L){
Wk[i]=(log(TLoc[which(L==0)]))ˆ(1.5)-(log(TLoc[i]))ˆ(1.5)

}
# We plot the graphics of the approximation Wk and the original function Wprima

plot(L,V,col="black",lwd=2,type="l", ylab="",

xlab="State space ", cex.axis=0.85,xlim=range(L),

ylim=range(c(-30:12))), lines(L,Vk, col="gray", lwd=2)
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Conclusions & further research

Chapter 1. In the first part of this work we study the well-known random walk in

a random environment, the Sinai walk. We study its properties, its behaviour and

the essential differences compared with the symmetric random walk. Also we define

the so-called potential associated to an environment, this allowed us to stablish the

relation between the local time of the random walk and the minima of the potential.

We described the procedure of Andreoletti to recover the potential given a trajec-

tory of the Sinai walk using only the local time. We explain why that algorithm is

good when the site k∗n (the smallest favourite site in absolute value) is near to the ori-

gin, and we propose one idea based on the algorithm of Andreoletti to improve the

approximation for the case when k∗n is not near the origin.

We explain possible scenarios of a trajectory of Sinai’s walk and we comment if

Andreoletti’s procedure is recommended to recover the environment or how we can

apply our proposal to recover the environment.

Chapter 2. In this chapter, we propose a new model to incorporate the existence

of a random environment in the financial markets. Such a model allows to price con-

tingent claims using the classical CRR procedure. Our aim is that this new model can

bring new perspective for financial modelling and pricing.

To the best of our knowledge, we are proposing the first ideas and the possibility

to merge the CRR procedure and the concept of the random environment.

A number of open questions and issues for future research are given as follows.

1. There might be different statistical procedures to estimate the parameter ∆, p, q

and β .

2. Notice that the possible price of a contingent claim depends on whether one has

more information of the environment (a quenched price) or one may not have

any information at all (as in the expectation given by (2.3.3)). Actually, one

may try to run a procedure to infer information of the environment based on

the observations of the prices. Such issue was addressed for Sinai’s model in

91
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(Andreoletti, 2011).

In Chapter 3. Here we study the new model (2.2.2) proposed in Chapter 2. We

analyse two unlikely, but informative environments to describe and understand the

behaviour of the random walk in that environments, and we show as for these instances

that the walk is transient.

Also we propose a function W ′ associated to the environment, which works in a

similar way to the potential for the Sinai random walk. Given a trajectory with the

model (2.2.2), the local time in a finite time window is large in the sites where it

occurs the minima of the function W ′.

In addition given a trajectory with the model (2.2.2), and we have study the algo-

rithm of Andreoletti. By comparing the order of the Sinai walk and the symmetric

random walk, we propose a numerical procedure to approximate the environment as-

sociated.

It is a completely open problem to study the existence of an invariance principle

of our model, such as the Donsker theorem for the Brownian motion.
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