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Abstract

Optimal transport theory plays nowadays an important role in optimisation– finite
dimensional or infinite dimensional–. In this thesis we study three topics related to
optimal transport. To set the stage, we introduce the Monge-Kantorovich problem,
and give sufficient conditions for the solvability of the problem, and several char-
acteristics and implication associated to the solution: First, we focused in static
potential games with infinitely-many players, combining the ideas presented in the
works of Robert J. Aumann, and Morderer & Shapley. We outline the results due to
Adrien Blanchet and Guillaume Carlier, associating an optimal transport plan to a
potential function, where it is proved that minimizers of the potential are Cournot-
Nash equilibria for such game. We provide a detailed proof that –for some sequence
of classical N-Games– the limit of Nash equilibria converges to a Cournot-Nash
equilibria, when the number of players tends to infinity; second, we deduce that the
optimal trajectories of a set of discrete-time non-linear control systems are given
by sequences of optimal transport plans associated to a non linear map; finally,
we briefly sketch the links between population games and displacement interpola-
tion–the time-depended version of optimal transport–, that provides a natural and
intrinsic characterisation of the population dynamics associated to a gradient flow
over a space of probabilities.
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Resumen

En esta tesis estudiamos tres temas relacionados al transporte óptimo. Para es-
tablecer las bases de la teoŕıa con la cual estaremos trabajando, introducimos el
problema de Monge-Kantorovich y damos condiciones suficientes para la solución
de este, además de diferentes caracterizaciones asociadas a dicha solución: Primero,
estudiamos la relación de la teoŕıa del transporte con juegos estáticos no coopera-
tivos cuando el número de jugadores es infinito, esto, basándonos en las ideas pre-
sentadas en los trabajos de Robert J. Aumann y Monderer & Shapley. Detallamos
los resultados de Adrien Blanchet y Guillaume Carlier acerca de cómo asociar un
transporte óptimo a una función potencial, donde se prueba que los minimizadores
de dicha función son equilibrios de Cournot Nash para el juego. Damos una prueba
detallada acerca de cómo ciertas sucesiones de equilibrios de Nash, en el sentido
clásico, convergen a equilibrios de Cournot-Nash, cuando el número de jugadores
tiende a infinito; Segundo, deducimos que las trayectorias óptimas de conjuntos de
sistemas de control no lineales a tiempo discreto están caracterizadas por planes de
transporte óptimo asociados a un mapa no lineal; finalmente, damos un bosquejo de
los v́ınculos entre juegos poblacionales y la versión del problema del transporte de-
pendiente del tiempo, inter-polación desplazada, la cual provee una caracterización
natural e intŕınseca de cómo relacionar dinámicas poblacionales con flujos gradientes
sobre espacios de probabilidad.
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Notation

The following is some notation and terminology used throughout the thesis.

Id will denote the identity mapping, whatever the space. If A is a subset of a
space X, then the function IA is the indicator function of the set A: IA(x) = 1 if
x ∈ A, and 0 otherwise.

The functions ΠX : X × Y → X and ΠY : X × Y → Y stand for the projec-
tion functions over the spaces X and Y, respectively, defined as ΠX(x, y) = x and
ΠY(x, y) = y for each (x, y) ∈ X×Y.

N is the set of positive integers. A sequence of elements in X is written {xn}k∈N
or {xn}∞k=1. R is the set of real numbers, and R+ denote the set of non-negative real
numbers, i.e., [0,∞). Rn is the n−dimensional Euclidean space.

Let X be a topological space. Then C(X) and Cb(X) denote the set of all con-
tinuous and real valued functions, and the set of all bounded continuous real valued
functions, respectively. We set Ct(X), as the set of differentiable functions indexed
by t, with value in X.

Let (X,F) be measurable space, with X a topological space, and F the corre-
sponding σ−algebra. Then:

• the space of probability measures on X is denoted by P(X), the space of all
finite measures is denoted by M+(X), and the set of all signed measures is
denoted by M(X);

• if µ is a measure on X, then a subset A ⊂ X is said to be µ−negligible, if
there exist a set B ∈ F such that A ⊂ B and µ(B) = 0;

• a measure µ on X is said to be concentrated on C if X \ C is µ−negligible;

• the smallest closed set where µ is concentrated, is called the support of µ and
we write Spt {µ}.

• if (Y,G) is a Borel measurable space,µ is a Borel measure on X and T : X→ Y
is a Borel map, then T#µ stands for the image measure of µ by T , defined by

(T#µ)[A] := µ[T−1(A)],

for every A ∈ G;
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• if (Ω,O,P) is a probability space, and X : Ω→ R a random variable, then the
measure induce by X (also known by law of X) is X#P. Thar is (X#P)[A] =
P(X−1(A)), A ∈ B(R)

In particular, we will assume throughout the thesis that P(X) comes from a Polish
space X, which is a complete, separable metric space, equipped with the Borel
σ−algebra.



Introduction

Optimal transport –also known as the mass transportation problem– is nowadays
one of the most prolific areas in mathematics. It was originally introduced by G.
Monge [51] in 1781 and was reformulated as a linear programming problem by Kan-
torovich [31] in 1942. It originated in an old mathematical optimisation problems
as an allocation of resources problem between mines and factories, and the problem
of digging and filling pits [37]. It encompasses several theoretical areas such as real
analysis [49, 27], functional analysis [47], Euclidean geometry [37, 31]. and differ-
ential topology [1, 49, 43]. Currently, it embraces a wide range of applications to,
let us say, econometrics [26, 25], evolutionary dynamics [40], networks optimisation
[14, 10, 24, 13, 51], risk theory [9], machine learning [48], etc.

In this work we are particularly concerned in the implementation of optimal
transport in problems involving systems with an infinity of agents and dynamical
systems. In specific, systems with infinitely-many agents have occupied a distin-
guished position in economics and game theory during the last five decades, since
Robert J. Aumann proposed a model of competitive markets with a continuum of
traders [2, 3]; and, Larsry and Lyons [34] introduced the notion of mean field games
that are somewhat reminiscent of the classical mean field approaches in statistical
mechanics and physics or in quantum mechanics and quantum chemistry. Several
ideas and results developed in these works have established the framework for sev-
eral contemporary research topics which we have taken as a starting point. For a
general approach to mean field techniques in physics see [45].

In order to illustrate the relevance of the theory, let us consider the holidays
choice problem: suppose that we wish to analyse a system with a huge amount of
agents, each of them is supposed to behave rationally, in other words, each agent
seeks welfare which is not supposed to be dependent only in the strategy taken by
itself, but the strategies taken by the other agents. Likewise, suppose that if one
agent changes his/her strategy then the outcomes of the system will not be affected
at all, thus, the actions taken by a ”small” set of agents are negligible to the system.
For example, consider a population of agents whose location is distributed according
to some Borel probability measure µ over a compact space X ⊂ R2. These agents
have to choose their holiday destination among all possible destinations in the set
Y, that is also a compact space. The commuting cost from x to y is given by
c(x, y). In addition to the commuting cost, agents incur costs resulting from inter-
actions with other agents represented by the map ν 7→ V [ν], where ν will represent
the distribution of the population over all holiday locations, that could encode the

1
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aversion to congestion, in other words, the more crowded location results in more
disutility for the agents. Some interesting questions could be: How does the pop-
ulation distributed among all destination places? What is the average cost for the
population? How does the population behave if we take a time-dependent version
of this problem? Later on, based on the results of A. Blanchet[8], we will relate the
holidays choice problem with the optimal transport problem.

In Chapter 2, – based on the works of F. Santambrogio [47], C. Villani [49] and
I. Ekeland [22] – we formally introduce the optimal transport problem and give a
global characterisation of the solution.

The study of games mainly relies on finding equilibrium structures to determine
optimal strategies for the players. Several structures of equilibria have been explored
in games, in order to get closer to reality. Several example of different approaches
in game theory could be found in literature, for instance we refer to [50, 38, 39].

”An equilibrium is not always an optimum; it might not even be good. This may
be the most important discovery of game theory.”

Ivar Ekeland (2016)

In Chapter 3, we look more closely to the holidays choice problem: we review
some basic aspects of game theory; we describe the general problem of games with
infinitely many players, and finally, we outline the proofs of the main results: [8,
Theorem 3.3] establishes that under certain assumptions the notion of equilibrium is
directly related to and characterised by the notion of optimal transport (see lemma
2.2.4), and [7, Theorem 4.1], which concludes that the notion of equilibria in games
with a continuous set of players can be obtained as a limit of Nash equilibria of
games with N players (see 2.1.1 for the formal definition of Nash equilibria), when
N tends to infinity (see Theorems 2.3.1 and 2.3.2). These notions of limits of Nash
equilibria are based on the extrapolation of mean field techniques in the seminal
work of mean field games of Cardialaguet [11, Section 2], and also in the work of A.
Blanchet and G. Carlier [7].

”The study of a n-person game for which the accepted ethics of fair play imply
non-cooperative playing is, of course, an obvious application for game theory. The
complexity of the mathematical work needed for a complete investigation increases
rather rapidly, however, with increasing complexity of the game; so only be feasible
using approximate computational methods”

John Nash [38, p.294]

Despite there is a fundamental existence theorem for Nash-equilibria [39], in
practice, the calculation of those equilibria can be a very challenging task, even
for computers. However, the study of potential games has established a framework
for finding those equilibria by solving one optimisation problem associated to a po-
tential function [36]. Thus, in Chapter 4, we study certain classes of discrete-time
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optimal control problems. The aim of the chapter is to give a first notion of dy-
namical systems and how optimal transport naturally arises at describing how the
optimal controls must behave, and to find Nash-equilibria for a game associated to
the control problem. We describe when a system can be ”controlled” (see Proposi-
tion 3.1.3), and we show that an optimal control exists (see Theorem 3.2.1) and is
associated to a sequence of optimal transport problems. This chapter is based on
the work of K. Elamvazhuthi, P. Grover, and S. Berman [23].

In Chapter 5, we establish the relation between the theory of population games
with a time-dependent version of optimal transport known as displacement interpo-
lation [49, Chapter 7]. We study population games with a discrete strategy set in
such a way that the evolutionary (mean) dynamics on the discrete set possesses the
same connection as that of mean field games and displacement interpolation: we
describe the state of the game with a probability measure over the set of strategies,
and then, we endow the probability space with a Wasserstein metric (see Definitions
1.2.1 and 4.1.3), in such a way that the space can be seen as a Riemannian man-
ifold [1]. It can be proved that the evolutionary dynamics can be described by a
Fokker-Planck equation and also can be viewed as a gradient flow of free energies in
the probability Riemannian manifold [40, 17, 16, 52]. However, this topic exceeds
the scope of this thesis, therefore, for the proof of theorem 4.1.4 we refer the reader
to [18].

Finally, to make this thesis as self-contained as possible, Appendix A contains
a summary of some results of real analysis, functional analysis, and other areas of
mathematics.



4 CONTENTS



Chapter 1

Optimal Transport

The aim of this chapter is to set the stage for the rest of the thesis by formally in-
troducing the optimal transport problem. Some main results about the qualitative
picture of the solution to the mass transportation problem are accompanied by their
proofs, but some other proofs exceed the scope of this thesis. Therefore, we refer C.
Villani [49], F. Santambrogio [47], González-Hernández et al. [28] and Ivar Ekeland
[22] for the bigger picture about optimal transport theory.

In 1781 – as we have mentioned in the introduction– Gaspard Monge introduced
the problem of mass transportation; he asked himself about the optimal way to
transport certain amount of a homogeneous good from N source points in the set
X, to M destination points in the set Y, minimising the average distance traveled.
In this case Monge supposed that the demand is finite and equal to the production.
For example, X could be the set of mines near a village, and Y could be the set
of forges in the village, then, the total production (and demand) among all mines
(respectively forges) is given by a discrete probability density µ (respectively ν) with
support in the set of mines (respectively forges). Here µ({j}) represents the propor-
tion of the demand that is satisfied by the mine j ∈ X and ν({k}) the proportion
of the production demanded by the forge k ∈ Y , and dj,k represents the distance

between the mine j and the forge k. We look for a matrix π = [πj,k]
N,M
j=1,k=1, – where

πj,k represents the proportion demanded by forge k, covered by mine j– in such a
way that

∑
j∈X πj,k = ν({k}), for all k ∈ Y,

∑
k∈Y πj,k = µ({j}), for all j ∈ X,

and
∑

j∈X,k∈Y πj,kdj,k is as small as possible. Note that this is a linear problem, and
can be solved by any method of linear programming. It was firstly introduced as a
linear programming problem by Kantorovich [31].

The restriction over the matrix π inspired the next definition:

Definition 1.0.1. Let (X,F , µ) and (Y,G, ν) be two probability spaces. We say that
two random variables X and Y , on some probability space (Z,H, π), is a coupling
if law (X) = µ and law (Y ) = ν. We also say that the pair (X, Y ) is a coupling of
(µ, ν). Additionally, we define Π(µ, ν) as the set of π ∈P(X×Y) whose marginals
are µ and ν, respectively.

Remark. If µ and ν are the only measures involved in the problem, we can consider
Z = X×Y and H = F ⊗ G, then the set of couplings is equivalent to Π(µ, ν).

5



6 CHAPTER 1. OPTIMAL TRANSPORT

Figure 1.1: The conditioned measure by the point x ∈ X, given a coupling (X, Y )
for (µ, ν)

We could interpret this as follows: if A ∈ G and x ∈ X, then π(Y ∈ A|X = x)
represents the probability of transporting a homogeneous unit of mass from one
source point x to a measurable subset A.

Based on these definitions, we can observe that the existence, or the absence, of
the coupling for any pair of probability spaces must depend on several characteristics
of such spaces. So, firstly, let us suppose that all the information about the value of
the random variable Y is given by the value of the random variable X, i.e., Y is a
function of X. This motivates the following definition:

Definition 1.0.2. A coupling (X, Y ) for (µ, ν) is said to be deterministic if there
exist a measurable function T : X→ Y such that Y = T (X).

Informally, one can say that T transports the mass given by the measure µ, to
the mass given by the measure ν, so T is commonly called a transport map.

Let us suppose that there exists a cost function c : X × Y → R that can be
interpreted as the work needed to move one unit of mass from location x to location
y – just as in the example of mines and forges –. Let us also suppose that there
exists at least one coupling π ∈ Π(µ, ν), then the cost associated to that coupling is
given by ∫

X×Y
c(x, y)dπ(x, y).

Naturally, we aim to find a coupling for (µ, ν) that minimises the total transportation
cost given by c.

Definition 1.0.3. Let (X,F , µ), (Y,G, ν) be two probability spaces, and c : X×Y →
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R the cost function. The Monge-Kantorovich minimisation problem is given by

Minimise

∫
X×Y

c(x, y)dπ(x, y)

subject to π ∈ Π(µ, ν)

All couplings of (µ, ν) are called transference plans, and those achieving the infimum
are called optimal transference plans.

Consider the map π 7→ Cc(π) :=
∫
X×Y cdπ, where c : X × Y → R is a fixed

measurable function. In particular if c is continuous, then, by definition of weak
convergence, Cc – also written as a bi-linear form 〈c, π〉 – is continuous over the
space P(X ×Y). We are specially interested in the properties of Cc when c is as
below:

Definition 1.0.4 (Semi-continuity). If Z is metric space. A function c : Z →
R ∪ {∞} is said to be lower semi-continuous if

lim inf
z→z0

c(z) ≥ c(z0)

for each z0 ∈ Z, and upper semi-continuous if

lim sup
z→z0

c(z) ≤ c(z0)

for each z0 ∈ Z.

Remark. Is well-known that c is lower semi-continuous if and only if the set {z ∈
Z : c(z) ≤ α} is closed for each α ∈ R.

Lemma 1.0.5. Let X and Y be two Polish spaces, and c : X×Y → R∪ {∞} be a
nonnegative lower semi-continuous cost function. Then the mapping π 7→ Cc(π) is
lower semi-continuous with respect to the weak topology.

Proof. By lemma A.0.4 in Appendix A, c can be written as the point-wise limit of
a non-decreasing sequence {cn}∞n of continuous bounded functions. By monotone
convergence, ∫

X×Y
cdπ = lim

n→∞

∫
X×Y

cndπ.

As for each n ∈ N, cn ≤ c and cn is bounded and continuous, then, by definition of
weak convergence∫

X×Y
cdπ ≤ lim

k→∞

(
lim
n→∞

∫
X×Y

cndπk

)
= lim inf

k→∞

∫
X×Y

cdπk.

Hence, the map π 7→ Cc(π) is lower semi-continuous.

Remark. Note that if c : X×Y → R is lower semi-continuous, and is bounded below
by an upper semi-continuous function ĉ. Then the function c − ĉ is a nonnegative
lower semi-continuous function, then Lemma 1.0.5 applies.
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It just remains to introduce the concept of tightness in order to solve the Monge-
Kantorovich problem.

Definition 1.0.6. A subset Q ⊂P(X) is said to be tight if, for every ε > 0, there
exists a compact subset K ⊂ X such that µ(X \K) < ε for every µ ∈ Q.

Lemma 1.0.7 (Tightness of the transference plans). Let X and Y be two Polish
spaces. Let P ⊂ P(X) and Q ⊂ P(Y) be tight, as in Definition 1.0.6. Then the
set Π(P,Q) := {π ∈P(X×Y) : ΠX#π ∈ P,ΠY#π ∈ Q} is tight in P(X×Y).

Proof. As P and Q are tight, for each ε > 0, there exist compact sets Kε and Lε in
X and Y, respectively, such that

(∀µ ∈ P ) µ(X \Kε) <
ε

2
and (∀ν ∈ Q) ν(Y \ Lε) <

ε

2
.

Then

(∀π ∈ Π(P,Q)) π(X×Y \Kε × Lε) ≤ µ(X \Kε) + ν(Y \ Lε) < ε.

This complete the proof.

”The first good thing about optimal couplings, is that they exist.”

C. Villani [49, Chapter 4]

Theorem 1.0.8. Let X and Y be Polish space, µ ∈ P(X), ν ∈ P(Y) and c :
X×Y → [0,∞) lower semi-continuous. Then the Monge-Kantorovich minimisation
problem admits a solution.

Proof. Since X and Y are Polish spaces, µ and ν are regular measures, then tight. By
Lemma 1.0.7 Π(µ, ν) is tight, and by Prohorov’s theorem [6] is also a pre-compact set.
Now, let us take a sequence {πn}∞n=1 ⊂ Π(µ, ν), weakly converging to π ∈P(X,Y),
and take an arbitrary φ ∈ Cb(X). Then we have for each k ∈ N that∫

X×Y
φ(x)dπnk

(x, y) =

∫
X

φdµ

and passing to the limit when k →∞ we have∫
X×Y

φ(x)dπ(x, y) =

∫
X

φdµ.

Since φ ∈ Cb(X) was arbitrary, it follows that ΠX#π = µ. Analogously ΠY#π = ν.
Therefore Π(µ, ν) in fact is a compact set. Finally, by Lemma 1.0.5, we have a
lower semi-continuous function π 7→ Cc(π) on a compact set, the desired conclusion
follows from Theorem A.0.5
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1.1 Duality

Kantorovich, in his seminal work ”On the Translocation of Masses” [31], expressed
the problem of optimal transport as an infinite dimensional linear programming
problem. Moreover, he applies the concept of duality to the problem and defines the
potentials –so-called Kantorovich potentials–for the Monge-Kantorovich problem.

In this section we introduce the Dual Monge-Kantorovich problem, we give suf-
ficient conditions for the solvability of the problem and we discuss some geometrical
properties of the problem.

Definition 1.1.1. Define B(X,Y) as the set of all bijection between X and Y. We
say that ξ ∈ B(X,Y) is optimal for c if

(∀ξ′ ∈ B(X,Y))
∑
x∈X

c(x, ξ(x)) ≤
∑
x∈X

c(x, ξ′(x)).

Proposition 1.1.2. If B(X,Y) is nonempty and finite, then ξ ∈ B(X,Y) is optimal
for c if and only if, for every set, {x0, . . . , xN = x0} ⊂ X, n ∈ N, we have:

N−1∑
n=0

[c(xn, ξ(xn))− c(xn, ξ(xn+1))] ≥ 0. (1.1.1)

Proof. (Sufficiency)
Let us take ξ ∈ B(X,Y) satisfying (1.1.1), and ζ ∈ B(X,Y) arbitrary. Choosing
an arbitrary x0 ∈ X and denoting y1 := ζ(x0). There is a unique x1 ∈ X such that
ξ(x1) = y1. We denote y2 := ζ(x1). There is a unique x2 ∈ X such that ξ(x2) = y2 =
ζ(x1). Inductively we denote yn+1 := ζ(xn), and xn ∈ X, such that ξ(xn+1) = ζ(xn).
As there are a finite number of elements, we can take N := inf{n ∈ N : x0 = xN}.
Note that any other pair of elements in S1 := {x1, . . . , xN} is equal but x0 and xN .
Then, by hypothesis, we have

N−1∑
n=0

[c(xn, ξ(xn))− c(xn, ξ(xn+1))] =
∑
x∈S1

[c(x, ξ(x))− c(x, ζ(x))] ≥ 0.

If S1 = X, then we have finished. If not, let us take x′0 ∈ X \ S1, and repeat the
procedure to obtain S2. Let us take an arbitrary x ∈ S1, then there is an integer m
such that xm = x, using the above procedure and his uniqueness N −m times, we
got the same last N −m element in S1, then as xN = x0 we continue the procedure.
If we apply the same procedure for any x ∈ S1, then we will get the same set S1.
Thus, S1 and S2 are disjoint, if S1∪S2 6= X, then we continue. As there are as most
disjoint sets S1, S2, . . . , as elements in X, X = ∪Kk=1Sk, for some K ∈ N. Therefore

K∑
k=1

∑
x∈Sk

[c(x, ξ(x))− c(x, ζ(x))] =
∑
x∈X

[c(x, ξ(x))− c(x, ζ(x))] ≥ 0.

(Necessity)
Let ξ ∈ B(X,Y) be optimal, and let S = {x0, . . . xN = x0} ⊂ X. Define the map
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ζ : X → Y such that for 0 ≤ n ≤ N − 1, ζ(xn) := ξ(xn+1), and for x 6∈ S,
ζ(x) := ξ(x). Then ζ ∈ B(X,Y), and using that ξ is optimal we have that

N∑
n=0

c(xn, ξ(xn)) =
∑
x∈S

c(x, ξ(x)) ≥
∑
x∈S

c(x, ζ(x)) =
N−1∑
n=0

c(xn, ξ(xn+1)).

Based on this property we give the next definition, that will be of relevance in the
concept of duality and will describe several characteristics for the optimal transport
under suitable assumptions.

Definition 1.1.3 (Cyclical monotonicity). Let X and Y be arbitrary sets, and c :
X×Y → R a given function. A subset Γ ⊂ X×Y is said to be c-cyclical monotone
if, for any N ∈ N, and any family (x0, y0) . . . (xN , yN) of points in Γ, it holds that

N∑
j=0

c(xj, yj) ≤
N∑
j=0

c(xj, yj+1), (1.1.2)

where yN+1 := y0. Also we say that a transference plan is c-cyclical monotone if it
is concentrated on a c-cyclical monotone set.

On the one hand, let us suppose that we aim to optimally transport a homoge-
neous good between two different sets of location, X and Y. On the other hand,
suppose that there is a third person who is expert in the area of transportation, and
he offers to do the transportation instead of us. The expert could find cheaper ways
of doing the transportation and in this case, we only are going to interact with this
third person and not with the owner of the other set of source places. Let us suppose
that he cost of one unit of the good in location x ∈ X, is given by ψ(x), after the
transportation the good is sold at some location y ∈ Y at a price φ(y), so the actual
cost of transportation between the locations x and y is given by φ(y)−ψ(x), instead
of the original cost c(x, y). As the expert needs to competitively set up prices, the
next inequality holds:

(∀(x, y) ∈ X×Y) φ(y)− ψ(x) ≤ c(x, y). (1.1.3)

As in the Monge-Kantorovich problem we aim to minimise our cost, whereas in
the dual problem the expert aims to maximise his profits.

Definition 1.1.4 (Dual Monge-Kantorovich Problem). Let (X, µ), (Y, ν) be two
probability spaces, and c : X×Y → R+ a cost function. The dual Monge-Kantorovich
problem is

sup

{∫
Y

φ(y)dν(y)−
∫
X

ψ(x)dµ(x) : ψ ∈M (X), φ ∈M (Y), and φ− ψ ≤ c

}
.

(1.1.4)

Later on, it will be imposed that ψ ∈ L1(µ) and φ ∈ L1(ν).
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Remark. By monotonicity of the integral and taking π ∈ Π(µ, ν), we get from
(1.1.3) that∫
X×Y

(φ(y)−ψ(x))dπ(x, y) =

∫
Y

φ(y)dν(y)−
∫
X

ψ(x)dµ(x) ≤
∫
X×Y

c(x, y)dπ(x, y).

Since φ, ψ and π are arbitrary, we have

sup
φ−ψ≤c

{∫
Y

φ(y)dν(y)−
∫
X

ψ(x)dµ(x)

}
≤ inf

π∈Π(µ,ν)

{∫
X×Y

c(x, y)dπ(x, y)

}
. (1.1.5)

Definition 1.1.5. For any two functions ψ : X→ R and φ : Y → R we define the
c−transform ψc : Y → R of ψ, and the c̄−transform φc̄ : X→ R of φ as

(∀y ∈ Y) ψc(y) := inf
x∈X
{ψ(x) + c(x, y)}, (1.1.6)

(∀x ∈ X) φc̄(x) := sup
y∈Y
{φ(y)− c(x, y)}, (1.1.7)

The c-sub-differential set of ψ is defined by

∂cψ := {(x, y) ∈ X×Y : ψc(y)− ψ(x) = c(x, y)} , (1.1.8)

and at the point x ∈ X,

∂cψ(x) := {y ∈ Y : (x, y) ∈ ∂cψ} . (1.1.9)

We say that the functions ψ and φ are tight with respect to c if ψ = φc̄ and φ = ψc.

Definition 1.1.6 (c−convexity). Let (X,F , µ) and (Y,G, ν) be two probability
spaces, and c : X×Y → R+. A function ψ : X→ R ∪ {∞} is said to be c−convex
if it is not identically ∞ and there exists ζ : Y → R ∪ {±∞} such that ψ = ζ c̄.
Analogously φ : Y → R∪{∞} is said to be c−concave if its not identically −∞ and
there exists γ : X→ R ∪ {±∞} such that φ = γc.

Proposition 1.1.7. Let ψ : X → R ∪ {∞}, then ψ is c−convex if and only if
ψ = (ψc)c̄.

Proof. (Necessity)
If ψ is c−convex, then there exist φ : Y → R ∪ {∞} such that ψ = φc̄. Let us now
define

(∀x, x̂ ∈ X)(∀y, ŷ ∈ Y) φ̂(x̂, ŷ, x, y) := φ(x̂)− c(x̂, ŷ) + c(x̂, y)− c(x, y).

It is clear that (∀x ∈ X) ((φc̄)c)c̄(x) = supy∈Y inf x̂∈X supŷ∈Y{φ̂(x̂, ŷ, x, y)}. Then if
we set ŷ = y and take the supremum, we have that φc̄ ≤ ((φc̄)c)c̄. Then if we set
x̂ = x and take the infimum we have that φc̄ ≥ ((φc̄)c)c̄. Hence ψ = (ψc)c̄. Moreover.
for any φ : Y → R+, φ

c̄ = ((φc̄)c)c̄.
(Sufficiency)
If ψ = (ψc)c̄, then by taking φ = ψc, we have by definition that ψ is c−convex.
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Theorem 1.1.8 (Monge-Kantorovich Duality in Cb). Let (X, µ) and (Y, ν) be two
Polish probability spaces, and let c : X×Y → R+ be a bounded and continuous cost
function. Then there is duality

min
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y)

= sup
(ψ,φ)∈Cb(X)×Cb(Y);φ−ψ≤c

(∫
Y

φ(y)dν(y)−
∫
X

ψ(x)dµ(x)

)
.

Proof. First, let us take the particular case when µ and ν are measures with finite
support –both of them with the same numbers of elements–, i.e., for some n ∈ N

µ =
1

n

n∑
i=1

δxi , ν =
1

n

n∑
j=1

δyj .

Where {xj}nj=1 ⊂ X and {yj}nj=1 ⊂ Y. In this particular case the Monge-Kantorovich
problem becomes

Minimise
∑

aijc(xi, yj)

s.t. aij ≥ 0 (∀i, j ∈ {1, . . . , n}),
n∑
i=1

aij = 1 (∀j ∈ {1, . . . , n}),

n∑
j=1

aij = 1 (∀i ∈ {1, . . . , n}).

By Theorem 1.0.8, there exists at least one optimal transport plan

π =
1

n

n∑
i,j=1

aijδ(xi,yj),

with support S ⊂ X × Y where (xi, yj) ∈ S, if and only if, ai,j > 0. Sup-
pose that S is not c-cyclically monotone, then there exist N ∈ N and a sequence
{(xi1 , yj1), . . . , (xiN , yjN )} ⊂ S such that

c(xi1 , yj2) + c(xi2 , yj3) + · · ·+ c(xiN , yj1)) < c(xi1 , yj1) + · · ·+ c(xiN , yjN ). (1.1.10)

Let us define a := min(ai1,j1 , . . . , aiN ,jN ). Define a new transference plan π̂ by the
formula

π̂ :=
1

n

n∑
i,j=1

aijδ(xi,yj) +
a

n

N∑
l=1

(δ(xil ,yjl )
− δ(xil ,yjl+1

)).

Intuitively, the second term of the above sum redistributes a proportion a of the
mass 1

n
from the set {(xi1 , yj1), . . . , (xiN , yjN )} to the set {(xi1 , yj2), . . . , (xiN , yj1)} ⊂

X × Y. Thus, by (1.1.10), the cost associated with π̂ is strictly less that the cost
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associated with π. This is a contradiction for the optimal transport plan π. Therefore
S is c-cyclically monotone.

Now, let us suppose that µ and ν are any Borel probability measures on (X,F),
respectively, (Y,G). Then there exist probability spaces (ΩX,PX) and (ΩY,PY), on
which there are independent random variables {Xj}∞j=1, respectively {Yj}∞j=1, with
values in X, respectively Y, and law (Xj) = µ, respectively law (Yj) = ν, for every
j ∈ N. By Theorem A.0.12, we have

µn :=
1

n

n∑
j=1

δXj(ωX) ⇀ µ, νn :=
1

n

n∑
j=1

δYj(ωY) ⇀ ν,

for PX−almost every ωX, respectively PY−almost every ωY, as n→∞. Note that,
by Theorem A.0.9, {µj}∞j=1 and {νj}∞j=1 are tight.

For each n ∈ N, let πn be a c−cyclically monotone transference plan between
µn and νn. By Lemma 1.0.7, {πk}∞k=1 is tight, and by Theorem A.0.9, there is a
subsequence, still denoted by {πk}∞k=1, which converges weakly to some probability
measure π ∈ Π(µ, ν).
Let us take an arbitrary N ∈ N. For each n ∈ N, the product measure π⊗Nn :=⊗N

k=1 πn is concentrated on the set C(N) of all ((x1, y1), . . . , (xN , yN)) ∈ (X×Y)N

satisfying (1.1.1). Since c is continuous, C(N) is a closed set, by Portmanteau Theo-
rem [6, Section 2, Theorem 2.1], π⊗N is also concentrated on C(N). Let Γ = Spt {π} .
Then ΓN = Spt {π}N = Spt

{
π⊗N

}
⊂ C(N). Since this holds for each N ∈ N, Γ is

c−cyclically monotone.

Let us redefine Γ := Spt {π}.Let us take any (x0, y0) ∈ Γ and define

ψ(x) := sup
m∈N

sup {[c(x0, y0)− c(x1, y0)] + [c(x1, y1)− c(x2, y1)]

+ · · ·+ [c(xm, ym)− c(x, ym)] : {(xj, yj)}mj=1 ⊂ Γ
}
,

for each x ∈ X. Since ψ is the supremum of ψm lower semi-continuous functions,
ψ is lower semi-continuous. In particular ψ is measurable. On the one hand
ψ(X0) ≥ [c(x0, y0) − c(x0, y0)] = 0. On the other hand, by c-cyclically monotonic-
ity of the transference plan π, ψ(x0) is the supremum over nonpositive quantities
[c(x0, y0) − c(x1, y0)] + [c(x1, y1) − c(x2, y1)] + · · · + [c(xm, ym) − c(x0, ym)]. Hence,
ψ(x0) = 0.

For each y ∈ ΠY(Γ), denote

ζ(y) := sup {[c(x0, y0)− c(x1, y0)] + [c(x1, y1)− c(x2, y1)]

+ · · ·+ c(xm, y) : m ∈ N, {(x1, y1), . . . , (xm, y)} ⊂ Γ} ,

with ζ(y) = −∞ when y 6∈ ΠY(Γ). Then

ψ(x) sup
y∈Y
{ζ(y)− (̧x, y)}.
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Thus ψ is a c−convex function. Let (x̂, ŷ) ∈ Γ. Then

ψ(x) ≥ sup
m∈N

sup {[c(x0, y0)− c(x1, y0)] + [c(x1, y1)− c(x2, y1)]

+ · · ·+ [c(x̂, ŷ)− c(x, ŷ)] : {(xj, yj)}m−1
j=1 ⊂ Γ

}
= ψ(x̂) + c(x̂, ŷ)− c(x, ŷ).

In particular, ψ(x) + (̧x, ŷ) ≥ ψ(x̂) + (̧x̂, ŷ). Taking the infimum over x ∈ X in the
left-hand side, it follows that

ψc(ŷ) ≥ ψ(x̂) = c(x̂, ŷ) ≥ ψc(ŷ).

Hence, Γ ⊂ ∂cψ. Set C := sup(x,y)∈X×Y c(x, y). We define φ := ψc. Since ψ is
measurable, φ is measurable. Let (x0, y0) ∈ ∂cψ be such that ψ(x0) < ∞– then
φ(y0) > −∞. Then, for any c ∈ X, by reapplying the inequalities,

ψ(x) = sup
y∈Y
{φ(y)− c(x, y)} ≥ φ(y0)− c(x, y0) ≥ φ(y0)− C,

φ(y) = inf
x∈X
{ψ(x) + c(x, y)} ≤ ψ(x0) + c(x0, y) ≤ ψ(x0) + C.

Moreover,

ψ(x) = sup
y∈Y
{φ(y)− c(x, y)} ≤ sup

y∈Y
{ψ(x0) + C − c(x, y)} ≤ ψ(x0) + C,

φ(y) = inf
x∈X
{ψ(x) + c(x, y)} ≥ inf

x∈X
{φ(y0)− C + c(x, y)} ≥ φ(y0)− C.

So both ψ and φ are bounded and measurable, and therefore∫
X×Y

[φ(y)− ψ(x)]dπ(x, y) =

∫
Y

φ(y)dν(y)−
∫
X

ψ(x)dµ(x)

is well defined. Since φ(y)− ψ(x) = c(x, y) on the support of π, it follows∫
Y

φ(y)dν(y)−
∫
X

ψ(x)dµ(x) = Cc(π).

Hence, there is duality.

Remark. Indeed, in Theorem 1.1.8, we have shown that there is strong duality, i.e.,
there exist (ψ, φ) ∈ Cb(X)× Cb(Y) such that the supremum in (1.1.4) is reached.

Theorem 1.1.9 (Monge-Kantorovich Duality). Let (X, µ) and (Y, ν) be two Polish
probability spaces, and let c : X×Y → R+ be a lower semi-continuous cost function.
Then there is duality:

min
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y)

= sup
(ψ,φ)∈Cb(X)×Cb(Y);φ−ψ≤c

(∫
Y

φ(y)dν(y)−
∫
X

ψ(x)dµ(x)

)
.
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Proof. Since c is lower semi-continuous, by Theorem A.0.4, there exists an increasing
subsequence of bounded and continuous functions {ck}∞k=0, such that limn→∞ cn(x, y) =
c(x, y) for every (x, y) ∈ X × Y. By Theorem 1.1.8, for each k ∈ N, we can find
ψk ∈ Cb(X), φk ∈ Cb(Y) and πk ∈ Π(µ, ν), such that ψk is a ck−convex function,
φk = (ψk)

ck , and∫
X×Y

ck(x, y)dπk(x, y) =

∫
Y

φk(y)dν(y)−
∫
X

ψk(x)µ(x).

Since, for each k ∈ N, φk − ψk ≤ ck ≤ c, (ψk, φk) are admissible plans for the dual
problem with cost c.

By Lemma 1.0.7, Π(µ, ν) is weakly sequentially compact. Thus, up to extractions
of a sequence, we can assume that {πk}∞k=1 converges to some π ∈ Π(µ, ν). On the
one hand, we have ∫

X×Y
cldπ = lim

k→∞

∫
X×Y

cldπk

≤ lim sup
k→∞

∫
X×Y

ckdπk

= lim sup
k→∞

(∫
Y

φkdν −
∫
X

ψkdµ

)
.

On the other hand, by monotone convergence,∫
X×Y

cdπ = lim
l→∞

∫
X×Y

cldπ.

Then

inf
π̂∈Π(µ,ν)

∫
X×Y

cdπ̂ ≤
∫
X×Y

cdπ ≤ lim sup
k→∞

(∫
Y

φkdν −
∫
X

ψkdµ

)
≤ inf

π̂∈Π(µ,ν)

∫
X×Y

cdπ̂.

Hence, there is duality.

Remark. Theorem 1.1.9 can be generalised to lower semi-continuous functions
c : X×Y → R, such that, for each (x, y) ∈ X×Y, c(x, y) ≥ a(x) + b(y), for some
upper semi-continuous functions a ∈ L1(µ) and b ∈ L1(ν). Just by applying the The-
orem 1.1.9 to the nonnegative lower semi-continuous function ĉ := c− a− b. More-
over if c is bounded from above and the optimal total cost is finite, then the Monge
Kantorovich problem is solvable (there is strong duality). See [49, Section 5,Theo-
rem 5.10] for more properties about the Monge Kantorovich problem.

As an almost straightforward application of the Monge Kantorovich duality, the
next theorem follows.

Theorem 1.1.10 (Stability). Let X and Y be Polish spaces, and let c be a con-
tinuous cost function, with inf c > −∞. Let {ck}∞k=1 be a sequence of continuous
function that uniformly converge to c. Let {µk}∞k=1, and {νk}∞k=1 be a sequence of
probability measures on X and Y, respectively. Assume that µk ⇀ µ and νk ⇀ ν.



16 CHAPTER 1. OPTIMAL TRANSPORT

For each k ∈ N, let πk be an optimal transport transference plan between µk and νk.
If

(∀k ∈ N)

∫
X×Y

ckdπk <∞,

then, up to the extraction of a sub-sequence, {πk}∞k=1 converges to some c-cyclically
monotone transference plan π ∈ Π(µ, ν). Moreover, if

lim inf
k∈N

∫
X×Y

ckdπk <∞,

then the optimal total transport C(µ, ν) between ν and µ is finite, and π is an optimal
transference plan.

For the proof we refer the reader to [49, Chapter 5, Theorem 5.20].

1.2 Wasserstein distances

In many problems it is important to know whether or not it exits a metric that
induces a fixed topology for the given space. The space of finite Borel measures
on a Polish space is not the exception; we wish to find a metric that induces the
weak topology in P(X). There are several metrics satisfying this condition. See [6,
Section 6]. Here, to solve this problem we are interested in the next approach:

Definition 1.2.1 (Wasserstein distances). Let (X, d) be a Polish space, and let
p ∈ [1,∞). For any two probability measures µ and ν, the Wasserstein metric of
order p between µ and ν is defined by the formula

Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
X2

d(x, y)pdπ(x, y)

) 1
p

= inf
{

[Ed(X, Y )p]
1
p ; law (X) = µ, law (Y ) = ν

}
.

When d = 1, W1 is also commonly called the Kantorovich-Rubinstein distance.

For the proof of next Lemma see [49, Section 1]

Lemma 1.2.2 (Gluing). Let (X, µ), (Y, ν) and (Z, γ) be Polish probability spaces.
If (X, Y ) is a coupling of (µ, ν) and (Y, Z) is a coupling of (ν, γ). Then there exists
a triple of random variables (X̂, Ŷ , Ẑ) such that (X̂, Ŷ ) has the same law as (X, Y )
and (Ŷ , Ẑ) has the same law as (Y, Z).

Theorem 1.2.3. If X is a Polish space The Wasserstein distance is a metric over
P(X).

Proof. Let us take µ and ν in P(X). Then

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X2

d(x, y)pdπ(x, y)

) 1
p

=

(
inf

π∈Π(ν,µ)

∫
X2

d(y, x)pdπ(y, x)

) 1
p

=Wp(ν, µ).
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Now take µ1, µ2 and µ3 in P(X).Then by Theorem 1.1.9 there exist an optimal cou-
pling (X1, X2) for (µ1, µ2) and an optimal coupling (X2, X3) for (µ2, µ3). By Lemma
1.2.2 there exist the random vector (Z1, Z2, Z3) with law (Z1, Z2) = law (X1, X2) and
law (Z2, Z3) = law (X2, X3), then law (Z1) = µ1 and law (Z3) = µ3. Hence (Z1, Z3)
is a coupling of (µ1, µ3) and

Wp(µ1, µ3) ≤ E [d(Z1, Z3)p]
1
p

using Minkowski’s inequality for Lp(P) spaces;

E [d(Z1, Z3)p]
1
p ≤ E [d(Z1, Z2) + d(Z2, Z3)p]

1
p ≤ E [d(Z1, Z2)p]

1
p + E [d(Z2, Z3)p]

1
p

= E [d(X1, X2)p]
1
p + E [d(X2, X3)p]

1
p =Wp(µ1, µ2) +Wp(µ2, µ3).

Finally assume that Wp(µ, ν) = 0 for µ and ν in P(X). Then for some π ∈ Π(µ, ν)
such that d(x, y) = 0 if and only if x = y π-almost surely, then there is at least one
transfer plan that it is concentrated at the set {(x, x), x ∈ X} ⊂ X2, so ν = Id#µ =
µ. Conversely Wp(µ, µ) = 0, just by taking the product measure µ⊗ µ.

Definition 1.2.4. Let (X, d) be a Polish space, and let p ∈ [1,∞). We define the
Wasserstein space of order p as

Pp(X) :=

{
µ ∈P(X);

∫
X

d(x0, x)pµ(x) <∞
}
,

here, x0 ∈ X is arbitrary.

Remark. It can be proved that Pp does not depend on x0.

Theorem 1.2.5. Let (X, d) be a Polish space, and let p ∈ [1,∞). Then for any µ
and ν in Pp(X), Wp(µ, ν) <∞.

Proof. Let us take π ∈ Π(µ, ν) then using that

d(x, y)p ≤ 2p−1[d(x, x0)p + d(x0, y)p],

the result follows by taking the integral with respect to π.

Now that we have a metric, what can we say about the topology in Pp(X)?

Definition 1.2.6 (Weak convergence in Pp(X)). Let (X, d) be a Polish space, and
p ∈ [1,∞). Let {µk}∞k=1 be a sequence of probability measures in Pp(X), and µ ∈
Pp(X). Then {µk}∞k=1 is said to converge weakly to µ in Pp(X) if any of the following
equivalent properties is satisfied for some- and then any - x0 ∈ X:

i) µk ⇀ µ and

∫
X

d(x0, x)pdµk(x)→
∫
X

d(x0, x)pdµ(x);

ii) µk ⇀ µ and lim sup
k→∞

∫
X

d(x0, x)pdµk(x) ≤
∫
X

d(x0, x)pdµ(x);

iii) µk ⇀ µ and lim
R→∞

lim sup
k→∞

∫
{x∈X;d(x,x0)≥R}

d(x0, x)pdµk(x) = 0;
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iv) For all continuous functions ψ with |ψ(x)| ≤ C(1 + d(x0, x)p), C ∈ R, one has∫
X

ψ(x)dµk(x)→
∫
X

ψ(x)dµ(x).

Now we state a very useful theorem –by which we refer for the proof to [49,
Chapter 6,Theorem 6.9]–, with two straightforward implications.

Theorem 1.2.7 (Wp metrizes Pp). Let (X, d) be a Polish space, and p ∈ [1,∞).
Then the Wasserstein distance Wp metrizes the weak convergence in Pp(X),i.e., if
{µk}∞k=1 is a sequence in Pp(X) and µ in P(X) then {µk}∞k=1 converges weakly to µ
in Pp(X) if and only in Wp(µ, µk)→ 0.

Corollary 1.2.8 (Continuity of Wp). Let (X, d) be a Polish space, and p ∈ [1,∞);
then the Wasserstein distance Wp is continuous in Pp(X).

Corollary 1.2.9 (Metrizability of the weak topology). Let (X, d) be a Polish space,
and p ∈ [0,∞). If d̂ is a bounded distance inducing the same topology as d (i.e., d̂ =
d
d+1

), then the convergence in the Wasserstein sense for the distance d̂ is equivalent
to the weak convergence of probability measures in P(X).

Finally we conclude this chapter with a topological property of the Wassertein
space; for the proof we refer to [49, Chapter 6,Theorem 6.18]

Theorem 1.2.10 (Topology of the Wassertein space). Let X be a Polish space and
p ∈ [1,∞). Then (Pp(X),Wp) is also a Polish space. Moreover, any probability mea-
sure can be approximated by a sequence of probability measures with finite support.

1.3 Displacement Interpolation

In this section we introduce a time-dependent version of optimal transport. This
adaptation will help us to describe the dynamics in some complex systems, and will
link other areas of mathematics with optimal transport in a very straightforward
way.

We shall assume that the initial and final probability measures are defined on the
same Polish space (X, d). The main additional structure is that the cost is associated
with an action, i.e., the cost function between an initial point x ∈ X and a final
point y ∈ X is obtained by minimising the action among paths that go from x to y:

c(x, y) := inf{A(γ); γ0 = x, γ1 = y ; γ ∈ C}. (1.3.1)

Here C is a certain class of continuous curves on which the action functional A is
defined. To give an idea of how these action functionals A would look like, imagine a
smooth surface. Then, given x and y over the surface, c(x, y) could be the infimum
of the length of smooth curves with ending points x and y. It will be useful to
consider an action as a family of functionals parametrized by the initial and the
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final times: so As,t(γ) is a functional on the set of continuous paths [s, t] → X.
Then we let

cs,t(x, y) = inf
{
As,t(γ); γs = x, γt = y ; γ ∈ C([s, t]; X)

}
. (1.3.2)

In words, cs,t is the minimal work needed to complete the action from the point x
at the initial time s, to the point y at the final time t.

For simplicity of notation, throughout this section the curve γ will stand for a
curve γ ∈ C([s, t]; X).

Definition 1.3.1 (Abstract Lagrangian actions). Let (X, d) be a Polish space, ant
let ti, tf ∈ R. A Lagrangian action (A)ti,tf on X is a family of lower semi-continuous
functionals As,t on C([s, t],X) with (ti ≤ s < t ≤ tf ), with respect to the supremum
norm and cost functions cs,t on X×X, such that:

i) ti ≤ t1 < t2 < t3 ≤ tf =⇒ At1,t2 +At2,t3 = At1,t3 ;

ii) (∀x, y ∈ X)

cs,t(x, y) = inf
{
As,t(γ); γs = x, γt = y ; γ ∈ C([s, t]; X)

}
.

iii) For any curve (γt)ti≤t≤tf

Ati,tf (γ) = sup
N∈N

sup
ti=t0≤t1≤···≤tN=tf

{
N−1∑
k=0

ctk,tk+1(γtk , γtk+1
)

}
.

This kind of structures frequently arises in physics and optimal control at the
time of minimising certain cost functions or energies over some dynamical system.
This structure is also related to Hamiltonian equations. For examples and for more
detailed information we refer to [35, 4].

Definition 1.3.2 (Coercive actions). Let (A)0,1 be a Lagrangian action on a Polish
space X, with associated cost functions (cs,t)0≤s<t≤1. For any two times s, t (0 ≤ s <
t ≤ 1), and any two compact sets Ks, Kt ⊂ X, let Γs,tKs→Kt

be the set of minimising
paths starting in Ks at time s, and ending in Kt at time t. The action will be called
coercive if:

i) Is bounded below, in the sense that

inf
0≤s<t≤1

inf
γ∈C([s,t],X)

As,t(γ) > −∞;

ii) If s < t are any two intermediate times, and Ks, Kt are any two compact sets
such that cs,t(x, y) < ∞ for all x ∈ Ks and y ∈ Kt, then the set Γs,tKs→Kt

is
compact and nonempty. In particular, minimising curves between any two fixed
points x, y ∈ X, with c0,1(x, y) < ∞ should always exist and form a compact
set.

Proposition 1.3.3. Let (X, d) be a Polish space and (A)0,1 a coercive Lagrangian
action on X. Then:
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i) For all intermediate times s < t, cs,t is lower semi-continuous on X×X, with
values in R ∪ {∞}.

ii) If a curve γ on [s, t] ⊂ [0, 1] is a minimiser of As,t, then its restriction to
[s′, t′] ⊂ [s, t] is also a minimiser of As′,t′ .

iii) For all times t1 < t2 < t3 in [0, 1], and x1, x3 ∈ X,

ct1,t3(x1, x3) = inf
x2∈X
{ct1,t2(x1, x2) + ct2,t3(x2, x3)};

and if the infimum is achieved at some point x2, then there is a minimising
curve which goes from x1 at time t1 to x3 at time t3, and passes through x2 at
time t2.

iv) A curve γ is a minimiser of A0,1 if and only if, for intermediate times t1 < t2 <
t3 in [0, 1],

ct1,t3(γt1 , γt3) = ct1,t2(γt1 , γt2) + ct2,t3(γt2 , γt3).

v) If the cost functions cs,t are continuous, then the set Γ of all action-minimising
curves is closed in the topology of uniform convergence.

vi) For all times s < t, there is a Borel map Ss→t : X×X→ C([s, t],X), such that
for all x, y ∈ X, Ss→t(x, y) belongs to Γs,tx→y.

Proof. i) Let us take {xk}∞k=1 and {yk}∞k=1, sub-sequences of X converging to x
and y, respectively. Then Ks := {xk}∞k=1 ∪ {x} and Kt := {yk}∞k=1 ∪ {y} are
compact. By hypothesis there is a minimising curve γk ∈ C([s, t],X) joining xk
to yk for each k ∈ N, therefore γk ∈ Γs,tKs→Kt

which is also compact. Then there
is a sub-sequence of {γk}∞k=1 converging uniformly to a minimising curve γ that
joins x to y. Thus lower semi-continuity of As,t implies

cs,t(x, y) ≤ As,t(γ) ≤ lim inf
k→∞

As,t(γk) ≤ As,t(γ) ≤ lim inf
k→∞

cs,t(xk, yk).

ii) Let us take a minimising curve γ for As,t given the fixed points x and y. Denote
x′ := γs′ and y′ := γt′ . If the restriction is not optimal for As′,t′ , then there is
an optimal curve γ′ joining x′ and y′. Therefore As′,t′(γ′) < As′,t′(γ). Hence the
curve obtained by the restriction of γ in [s, s′], γ′ in [s′, t′] and γ in [t′, t] has a
strictly lower action in As,t than γ, which is impossible.

iii) Let us take an arbitrary point x ∈ X. Denote γ1 the minimising curve joining
x1 and x2, at times t1 and t2, and γ2 the minimising curve joining x2 and x3, at
time t2 and t3. Set γx by concatenating the curves γ1 and γ2, in the point x2

at time t2. Then by definition 1.3.1 of Lagrangian actions,

ct1,3(x1, x3) ≤ At1,t3(γx) = At1,t2(γ1) +At2,t3(γ2) = ct1,2(x1, x2) + ct2,3(x2, x3).

The equality follows by taking the infimum over all x2 ∈ X and using the
property ii) and splitting the minimising curve for ct1,t3(x1, x3) at point t2.
Moreover, if there is equality at some point x2 ∈ X then γx is the minimising
curve and it passes through x2 at time t2.
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iv) Since property iii) holds true and any restriction to the sets [t1, t2] and [t2, t3] is
minimising, it is easily seen that any minimising curve should satisfy property
iv). Conversely, let γ be a curve satisfying property iv). We now proceed by
induction, that implies that for any subdivision 0 = t0 < t1 < · · · < tN = 1, of
the interval [0, 1]

c0,1(γ0, γ1) =
n∑
k=0

ctk,tk=1(γtk , γtk+1
).

By property iii) in the definition 1.3.1 of Lagrangian actions, γ minimises A.

v) Let us take 0 ≤ t1 < t2 < t3 ≤ 1, and denote by Γ(t1, t2, t3) the set of curves
satisfying property iv). Then, as all functions cs,t are continuous and uniform
convergence implies point-wise convergence, Γ(t1, t2, t3) is closed for any fixed
times t1, t2 and t3. Then Γ = ∩0≤t1<t2<t3≤1Γ(t1, t2, t3) is closed.

vi) Given the fixed times s < t, denote by Γs,t the set of all action-minimising
curves defined over [s, t], and let Es,t : Γ→ X×X be the end-point map defined
as Es,t(γ) := (γs, γt). By hypothesis Es,t is surjective. Then, by definition of
coercive actions, the pre-image of a compact set in X×X is compact. Therefore
Es,t is a continuous function between Polish spaces. In particular, for each x and
y in X, E−1

s,t (x, y) is compact. By [19, Theorem 40], there exists a measurable
right-inverse function Ss→t joining x and y with a minimising curve.

Let c be the cost associated with the Lagrangian action, and let µ0, µ1 ∈P(X).
Introduce an optimal coupling (X0, X1) of (µ0, µ1), and a random action-minimizing
path {Xt}0≤t≤1 joining X0 to X1. Then we sat that {Xt}0≤t≤1 is an interpolation of
µ0 and µ1. This procedure is called displacement interpolation.

Definition 1.3.4 (Dynamical Coupling). Let (X, d) be a Polish space. A dynamical
transference plan Π is a probability measure on the space C([0, 1],X). A dynamical
coupling of two probability measures µ0, µ1 ∈P(X) is a random curve γ : [0, 1]→ X
such that law (γ0) = µ0 and law (γ1) = µ1

Definition 1.3.5 (Optimal Dynamical Coupling). Let (X, d) be a Polish space,
(A)0,1 a Lagrangian action on X, c the associated costs, and Γ the set of action-
minimising curves. A dynamical optimal transport transference plan is a probability
measure Π on Γ such that

π0,1 := (e0, e1)#Π

is an optimal transference plan between µ0 and µ1. Equivalently, Π is the law of a
random action-minimizing curve whose endpoints constitute and optimal coupling of
µ0 and µ1, where et will stand for the evaluation functional at time t: et(γ) = γt.

For the proof of the following theorem we refer to [49, Theorem 7.21].

Theorem 1.3.6 (Displacement Interpolation). Let (X, d) be a Polish space, (A)0,1 a
Lagrangian action on X, with continuous cost functions cs,t. Whenever 0 ≤ s < t ≤
1, denote Cs,t(µ, ν) the optimal transport cost between µ and ν with cost function
cs,t; write c := c0,1 and C = C0,1. Let µ0, µ1 ∈ P(X) be such that the optimal
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transport cost C(µ0, µ1) is finite. Then, given a continuous path {µt}0≤t≤1, the
following properties are equivalent:

i) For each t ∈ [0, 1], µt = law (γt), where (γt)0≤t≤1 is a dynamical optimal coupling
for (µ0, µ1)

ii) For any three intermediate times 0 ≤ t1 < t2 < t3 ≤ 1

Ct1,t2(µt1 , µt2) + Ct2,t3(µt2 , µt3) = Ct1,t3(µt3 , µt3);

iii) The path (µt)0≤t≤1 is a minimizing curve for the coercive action functional de-
fined on P(X) by

As,t(µ) = sup
N∈N

sup
ti=t0≤t1≤···≤tN=tf

{
N−1∑
k=0

Ctk,tk+1(µtk , µtk+1
)

}
(1.3.3)

= inf
γ
E(As,t(γ)), (1.3.4)

where the last infimum is over all random curves γ : [s, t] → X such that the
law (γτ ) = µτ (0 ≤ τ ≤ 1). In that case we say that (µt)0≤t≤1 is a displacement
interpolation between µ0 and µ1. There always exist such curve. Finally, if
K0 and K1 are two compact subsets of P(X), such that C(µ0, µ1) < ∞ for
all µ0 ∈ K0, µ1 ∈ K1, then the set of dynamical optimal transport transference
plans Π with (e0)#Π ∈ K0 and (e1)#Π ∈ K1 is compact.

Theorem 1.3.6 admits an important corollary:

Corollary 1.3.7. With the same assumptions as in Theorem 1.3.6, suppose that

a) there is a unique optimal transport plan π between µ0 and µ1,

b) π−almost surely, x0 and x1 are joined by a unique minimizing curve.

Then there exists a unique displacement interpolation (µt)0≤t≤1 joining µ0 and µ1.

Concluding remarks

In this chapter, we have seen the big descriptive picture of optimal transport. We
gave sufficient conditions for the solvability to the Monge Kantorovich and the dual
Monge Kantorovich problems. We explored the time-depended version of optimal
transport problem. And we endowed the space of Borel probability measures of
a Polish space with an optimal transport based metric, which provided a reach
topological structure to the space of Borel probability measures.

Optimal transport encompasses several areas of application. It is important to
remark that the relevance of its results relies on the generality under the assumptions
for the solvability of the problem. However, this generality in the results leads to
inefficiency of explicitly calculating those optimal transference plans. Just consider
measures with finite support, as in the proof of the duality Theorem, then the
optimal transference plan can be explicitly calculated by finite linear programming
methods. This is not the case when we take into consideration arbitrary Borel
measures. Thus, optimal transport has improved new results in different areas, for
example, partial differential equations.



Chapter 2

Optimal Transport and Game
Theory

A time-honoured approach to study non-cooperative games is via the concept of
Nash equilibrium. Thus, the main objective of this chapter is to briefly introduce
the basic concepts of game theory and its relations with optimal transport.
On the one hand, we introduce the concept of anN−person game which is conformed
of a set of N players, a family of strategy sets, and a set of cost functions. We
formally define a Nash Equilibrium –see Definition 2.1.1– for an N-person game,
and –under suitable assumptions over the elements that conform the game– we
state the Nash equilibria fundamental theorem. On the other hand, we set a model
for games with a continuum of players –also known as non-atomic games–, and we
extrapolated the notion of Nash equilibrium to these games by exploring the limit
of Nash equilibria when the number of players tends to infinity (see Theorems 2.3.1
and 2.3.2).
Finally, we characterise Cournot Nash equilibria-see Definition 2.2.1— for an specific
family of non-atomic games with an unique optimal transport plan (see Lemma
2.2.8).

2.1 Nash Equilibria

Let us consider a set of N players i ∈ {1, . . . , N}. Each player i has a strategy
space Xi. and a cost function Ji : X → R, where X := ΠN

i=1Xi. Then, the triple
({1, . . . , N},X, {Ji}Ni=1) is known as an N -person game.

Remark. x = (x1, . . . , xN) ∈ X, is also expressed as x = (xi|x−i) ∈ X, where
x−i = (x1, . . . , xj−1, xj+1 . . . , jN) ∈ X−i := Πj 6=iXj.

A Nash equilibrium is defined as follow:

Definition 2.1.1 (Nash equilibrium). A Nash equilibrium is an element x̄ :=
(x̄1, . . . , x̄N) = (x̄i|x̄−i) ∈ X such that, for every i ∈ {1, . . . , N}

Ji(x̄i, x̄−i) ≤ Ji(xi, x̄−i),

for each xi ∈ Xi.

23
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Definition 2.1.2 (Quasi-convex). A real valued function f over a convex space S
is quasi-convex if for all x, y ∈ S and λ ∈ [0, 1] we have

f(λx+ (1− λ)y) ≤ max(f(x), f(y)).

The fundamental theorem of Nash states the following existence result for Nash
equilibria:

Theorem 2.1.3 (Existence of Nash equilibria). Let Xi be a convex compact subset
of some locally convex Hausdorff topological vector space. Let Ji be continuous on
X for every i ∈ {1, . . . , N}. And let J(·, x−i) be a quasi-convex function on Xi for
every x−i ∈ X−i. Then, there exist at least one Nash equilibrium.

Because the restriction about convexity in the above, Theorem 2.1.3 excludes
important cases of study, for example, when the spaces of strategies are finite; Nash
also introduced the concept of mixed strategy:

Definition 2.1.4 (Mixed strategies). A mixed strategy of player i is a probabil-
ity measure πi ∈ P(Xi). Given a mixed strategy N−vector π = (π1, . . . , πN) ∈
ΠN
n=1P(Xi), the cost of player i associated to π is given by

J̄i(π1, . . . , πN) :=

∫
X

Ji(x1, . . . , xN)⊗Nn=1 πj(dxj).

Remark. It is easy to check that a convex combination of mixed strategies, remains
a mixed strategy. Therefore, the sets of mixed strategies is convex.

Theorem 2.1.5. A game with compact metric strategy spaces and continuous cost
functions has at least one Nash equilibrium in mixed strategies. In particular, finite
games admit Nash equilibria in mixed strategies.

2.2 Cournot-Nash and Optimal Transport

Our aim is to analyse a system with a huge amount of agents, each of which is
characterized by a type x (for example, the socio-economical status, income, etc.)
belonging to some compact metric space X. This space is endowed with a Borel
probability measure µ ∈P(X), which gives the distribution of the population over
the types. Each agent takes an strategy y from the strategy space Y, which is also
a compact metric space. For each agent, his cost will not depend only on his type or
the strategies he takes, it will also depend the strategies taken by the other agents,
which is encoded by a probability distribution ν ∈P(Y). More formally the cost is
given by some function F ∈ C(X×Y ×P(Y)), where P(Y) is endowed with the
weak-∗ topology. Here the notion of an equilibrium is given by a joint probability
measure on X ×Y, whose marginals are consistent with the type distribution and
the cost-minimising behaviour of the agents. This leads to the following definition:

Definition 2.2.1 (Cournot-Nash equilibrium). A Cournot-Nash equilibrium for F
and µ is a γ ∈P(X×Y) such that the first marginal of γ is a probability measure
ΠX#γ = µ and γ gives the full mass to cost-minimising strategies:

γ

({
(x, y) ∈ X×Y : F (x, y, ν) = min

y′∈Y
F (x, y′, ν)

})
= 1,
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where ν denotes the second marginal of γ: ΠX#γ = ν.

If γ is Cournot-Nash Equilibrium for F , and ν := ΠY#γ is of the form ν = T#µ,
for some measurable function T : X→ Y, we say that the γ is a pure Cournot-Nash
equilibrium. This also can be interpreted as: agents with the same type use the
same strategy.

Theorem 2.2.2 (Existence of Cournot-Nash equilibria). If F ∈ C(X×Y×P(Y)),
where P(Y) is endowed with the weak-∗ topology, then there exists at least one
Cournot-Nash equilibrium.

An application of optimal transport arises in the calculation of Cournot-Nash
Equilibria, when we take into consideration a particular class of functions F in
Definition 2.2.1. Taking the assumptions of the above problems, i.e., model that
consist of a compact metric type space X, with a Borel probability measure µ ∈
P(X), a compact metric action space Y, and also here will be needed a non-
negative reference measure µ0. In the sequel, we will restrict ourselves to the case
where F (x, y, ν) = c(x, y) + V [ν](y), where c and V are continuous. We set a social
cost associated to γ by

SC[γ] : =

∫
X×Y

F (x, y, ν)dγ(x, y)

=

∫
X×Y

c(x, y)dγ(x, y) +

∫
Y

V [ν](y)dν(y),

where ν = ΠY#γ.
As c is continuous over a compact space, it is bounded, and so

∫
X×Y c(x, y)dγ(x, y)

is finite, for every γ ∈ P(X ×Y). However, for SC[γ] to be finite, we require that
second marginal ν –also known as action marginal – belongs to the set

D :=

{
ν ∈P(Y) : ν � µ0,

∫
Y

|V [ν]|dν <∞
}
. (2.2.1)

Let us define φ(x) := miny′∈Y F (x, y′, ν), for some ν ∈ D, then if γ is a Cournot-
Nash equilibrium for F (x, y, ν) = c(x, y)+V [ν](y), φ(x) ≤ c(x, y)+V [ν](y) ν−almost
every y and φ(x) = c(x, y)+V [ν](y) γ−almost every (x, y). Taking into consideration
the reference measure µ0, we state another Cournot-Nash definition:

Definition 2.2.3. γ ∈ P(X) ×P(Y) is a µ0-Cournot-Nash equilibria, if its first
marginal is µ, its second marginal, ν, is in D, and there exist φ ∈ C(X) such that

c(x, y) + V [ν](y) ≥ φ(x) for all x ∈ X, and µ0−a.e- y with equality γ−a.e..

We also say that γ is pure whenever it is of the form γ = (Id, T )#µ for some
measurable map T : X→ Y.

Suppose that we have a Cournot-Nash equilibrium γ for the function F . Let ν be
his marginal over (Y ). Then ν must minimizes V ,furthermore, γ must be an optimal
transport between µ and ν, otherwise, γ is not and Cournot-Nash Equilibria. Inspire
by this straight forward observation Carlier and Blanchet [8] give the next lemma.
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Lemma 2.2.4. Let γ be a Cournot-Nash equilibrium for F , and set ν := ΠY#γ.
Then γ is an optimal transport between µ and ν.

Proof. Let us take φ as in Definition 2.2.3, and η ∈ Π(µ, ν). One the one hand, we
have that ∫

X×Y
c(x, y)dγ(x, y) =

∫
X

φ(x)dµ(x)−
∫
Y

V [ν](y)dν(y),

and on the other hand, we have

c(x, y) ≥ φ(x)− V [ν](y)

for every x ∈ X and ν−a.e.y. Then integrating with η one has∫
X×Y

c(x, y)dη(x, y) ≥
∫
X×Y

(φ(x)− V [ν](y))dη(x, y)

=

∫
X

φ(x)dµ(x)−
∫
Y

V [ν](y)dν(y)

=

∫
X×Y

c(x, y)dγ(x, y).

Hence γ is a minimizer.

Our problem reduces to find such a ν that simultaneously minimises V [ν] and the
map ν 7→ infγ∈Π(µ,ν)

∫
X×Y c(x, y)dγ(x, y). Note that a ν that minimizes V [ν] must

not be the marginal of a Cournot-Nash equilibrium. Then –in analogy to the ideas
in the seminal work of Monderer and Shapley [36] on potential games– A. Blanchet
and G. Carlier [8] gave a variational approach to Cournot Nash equilibria that could
be obtained by minimizing some potential function over the set of Borel probability
measures. The main idea is to suppose that V is, in some sense, the first variation
of some function E .

Definition 2.2.5 (Blanchet-Carlier Differential). Let D be defined as in (2.2.1).
We say that the map ν 7→ V [ν] ∈ C(Y) for ν ∈ D is a differential on D if D is
convex and there exist E : D → R such that for every ρ and ν in D, V [ν] ∈ L1(ρ)
and

lim
ε→0+

E [(1− ε)ν + ερ]− E [ν]

ε
=

∫
Y

V [ν]d(ρ− ν).

In this case V [ν] is a differential on D of E and we denote V [ν] =
δE
δν
.

To clear ideas and illustrate how does E would look like, let us consider one
example.

Example 2.2.6. Suppose that

V [ν](y) :=

∫
Y

φ(y, z)dν(z),
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for some function φ ∈ C(Y ×Y). Then it is natural to define

E [ν] =
1

2

∫
Y

∫
Y

φ(y, z)dν(y)dν(z).

As φ is continuous over a compact space, it is bounded. Moreover

2E [(1− ε)ν + ερ] =

∫
Y

∫
Y

φ(x, y)d[(1− ε)ν + ερ](x)d[(1− ε)ν + ερ](y)

=

∫
Y

∫
Y

φ(x, y)[dν(x)dν(y) + ε2dν(x)dν(y) + ε2dρ(x)dρ(y)]

+ ε

∫
Y

∫
Y

φ(x, y)[dν(x)dρ(y) + dρ(x)dν(y)− 2dν(x)dν(y)]

− ε2
∫
Y

∫
Y

φ(x, y)[dν(x)dρ(y) + dρ(x)dν(y)].

Then

E [(1− ε)ν + ερ]− E [ν]

ε
=
ε

2

∫
Y

∫
Y

φ(x, y)[dν(x)dν(y) + dρ(x)dρ(y)− dν(x)dρ(y)− dρ(x)dν(y)]

+
1

2

∫
Y

∫
Y

φ(x, y)[dν(x)dρ(y) + dρ(x)dν(y)− 2dν(x)dν(y)].

Letting ε tend to 0+, we have that

lim
ε→0+

E [(1− ε)ν + ερ]− E [ν]

ε
=

1

2

∫
Y

∫
Y

φ(x, y)[dν(x)dρ(y) + dρ(x)dν(y)− 2dν(x)dν(y)]

=
1

2

∫
Y

∫
Y

φ(x, y)[dν(x)d(ρ(y)− ν(y)) + dν(y)d(ρ(x)− ν(x))]

=
1

2

∫
Y

∫
Y

(φ(x, y) + φ(y, x))[dν(y)d(ρ(x)− ν(x))].

If φ is symmetric, one finally has

δE
δν

(y) =

∫
Y

φ(x, y)dν(x).

Now we state a lemma that according to which the optimal cost

Wc(µ, ν) := inf
γ∈Π(µ,ν)

∫
X×Y

c(x, y)dγ(x, y)

has a differential on D in the sense of Definition 2.2.5.

Lemma 2.2.7. Assume that Y is a compact metric space, X := Ω̄ where Ω is
an open bounded connected subset of Rd with µ(∂Ω) = 0, that µ is equivalent to
the Lebesgue measure on X. Moreover for every y ∈ Y c(·, y) is differentiable with
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gradient5xc bounded on X×Y, and let ν ∈P(Y), then there exist a Kantorovich
potential, unique up to addition of constants, φ between µ and ν and for every
ρ ∈P(Y) one has

lim
ε→0+

Wc(µ, ν − ε(ν − ρ))−Wc(µ, ν)

ε
=

∫
Y

φcd(ρ− ν).

Proof. We refer [13, Proposition 6.1] for the proof of existence and uniqueness of
the Kantorovich potential.
From Theorem 1.1.9, there is one c-convex function φ such that

Wc(µ, ν) =

∫
Y

φc(y)dν(y)−
∫
X

φ(x)dµ(x).

Moreover φ = C is optimal for any constant C. Then, choosing one reference point
x0 ∈ X, we choose C such that φ(x0) = 0. As φ is c-convex, but might not be
optimal for Wc(µ, νε), where νε := ν − ε(ν − ρ), we have

Wc(µ, νε) ≥
∫
Y

φc(y)dνε(y)−
∫
X

φ(x)dµ(x)

=

∫
Y

φc(y)dν(y) + ε

∫
Y

φc(y)dρ− ε
∫
Y

φc(y)dν −
∫
X

φ(x)dµ(x).

Hence,
Wc(µ, νε)−Wc(µ, ν)

ε
≥
∫
Y

φcd(ρ− ν).

Similarly, for every ε ∈ [0, 1] let φε, with φε(x0) = 0, be the Kantorovich potential
between µ and νε. Then we have

Wc(µ, νε)−Wc(µ, ν)

ε
≤
∫
Y

φcεd(ρ− ν).

As c is uniformly continuous and bounded, there is a modulus of continuity (a
positive non decreasing function with ω(0) = 0) ω : R→ R, such that

|c(x, y)− c(x′, y′)| ≤ ω(‖x− x′‖+ ‖y − y′‖).
Then, by the definition of c-convexity, we have that

|φε(x)− φε(x′)| ≤ ω(‖x− x′‖)

for each ε ∈ (0, 1). Hence {φε}ε∈[0,1] is bounded and equicontinuous, and applying
the Arzela Ascoli Theorem, up to sub-sequence of functions it convergence uniformly
to some continuous function φ̄. Then by Theorem 1.1.10 we know that ν 7→ Wc(µ, ν)
is continuous with respect the weak convergence. Then for an arbitrary α > 0, there
exist ε∗ > 0 such that, for every x ∈ X,

−α + φ̄(x) < φε(x) < α + φ̄(x),

whenever 0 < ε < ε∗. Given an arbitrary y ∈ Y, one has

(∀x ∈ X) − α + φ̄(x) + c(x, y) < φε(x) + c(x, y) < α + φ̄(x) + c(x, y).
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Taking the infimum over all x in the latter inequality we conclude that

(∀y ∈ Y) − α + inf
x∈X

(φ̄(x) + c(x, y)) < φcε(y) < α + inf
x∈X

(φ̄(x) + c(x, y)).

In other words, up to a subsequence, {φcε}ε∈[0,1] converges uniformly to (φ̄)c. Then
by Dominated Convergence we have

Wc(µ, ν) = lim sup
ε→0+

Wc(µ, νε) = lim sup
ε→0+

(∫
Y

φcε(y)dνε(y)−
∫
X

φε(x)dµ(x)

)
=

(∫
Y

φ̄c(y)dν(y)−
∫
X

φ̄(x)dµ(x)

)
.

Then it is observed that φ̄ is a Kantorovich Potential, with φ̄(x0) = 0, so by the
uniqueness of φ, φε converges uniformly to φ as ε→ 0+. This implies that

lim sup
ε→0+

Wc(µ, νε)−Wc(µ, ν)

ε
≤
∫
Y

φcd(ρ− ν).

Finally if we assume that V [ν] := δE
δν

, on D, we can consider the variational
problem

inf
ν∈D
Jµ[ν], (2.2.2)

where Jµ[ν] :=Wc(µ, ν) + E [ν].
We now state one of the main results of Carlier and Blanchet [8, Theorem 3.2].

Theorem 2.2.8. Assume that V is the differential of E (in the sense of Definition
2.2.5), and all the assumptions in Lemma 2.2.7 hold true. If ν solves the variational
equation (2.2.2), and γ is an optimal transport plan between µ and ν, then γ is a
Cournot-Nash equilibrium.

Proof. Let ν be a minimizer of equation (2.2.2) and let us take ρ ∈ D and ε ∈ (0, 1).
Then we have

Jµ[ν + ε(ρ− ν)]− Jµ[ν]

ε
≥ 0.

Furthermore, by Lemma 2.2.7,∫
Y

(φc + V [ν])dρ ≥
∫
Y

(φc + V [ν])dν.

Set M := ess inf
y∈Y
{φc(y) + V [ν](y)} (with respect measure ν), then the next equality

will hold ν a.e.

φc + V [ν] = inf
ρ∈D

∫
Y

(φc + V [ν])dρ = M.

Since γ is an optimal transport, we have that φc + φ = c γ a.e. and φc + φ ≥ c
pointwise. We thus have{

c(x, y) + V(y)[ν] ≥M + φ(x) for all x ∈ X and µ0-a.e. y ∈ Y;

c(x, y) + V(y)[ν] = M + φ(x) for all γ − (x, y).



30 CHAPTER 2. OPTIMAL TRANSPORT AND GAME THEORY

2.3 From Nash to Cournot-Nash

This section deals with the notion of limits of classical Nash equilibria, when the
number of payers tends to infinity. Most of the Section is based on the approach by
Larsly and Lions [34] and its generalization by Carlier and Blanchet [7].

Let X and Θ be compact metric spaces with corresponding distances dX and dΘ,
and let ΘN := {θ1, . . . , θN} be a finite subset of the type space Θ. As the number
of agents is finite we only are interested in their types. Also note that some agents
could belong to the same type. We are going to consider a N - person game where
all the agents have the same strategy space X. We assume that the cost of agent i,
depends on his type θi ∈ ΘN , his strategy x ∈ X, and his symmetry with respect to
the others agents strategies x−i, that is,

JNi (xi, x−i) = JN(θi, xi, x−i) = JN(θi, xi, (xσ(j))j 6=i) for every σ ∈ SN−1
i ,

where SN−1
i denotes the set of permutations of {1, . . . , N} \ {i}. Moreover, we will

to assume that there exists a modulus of continuity ω such that for every N , every
(θi, θj) ∈ ΘN ×ΘN , every (xi, x−i) and (yi, y−i) in XN , we have

|JN(θi, xi, x−i)− JN(θj, yi, y−i)| ≤ ω(dΘ(θi, θj)) + ω(dX(xi, yi))

+ω

(
W1

(
1

N − 1

∑
j 6=i

δθxj ,
1

N − 1

∑
j 6=i

δθyj

))
,

where W1 denotes the 1-Wasserstein metric. Note that

W1

(
1

N − 1

∑
j 6=i

δθxj ,
1

N − 1

∑
j 6=i

δθyj

)
= min

σ∈SN−1

1

N − 1

∑
j 6=i

dX(xj, yσ(j)).

As we want to construct Cournot-Nash equilibria by taking a limit, we need to
be congruent about the dimension where the objects of study are defined, so we
need to extend JN to Θ×X×P(X), through the cost FN given by

FN(θ, x, ν) := inf
(x−i,θi)∈XN−1×ΘN

{
JN(θi, x, x−i) + ω(dΘ(θi, θ)) + ω

(
W1

(
ν,

1

N − 1

∑
j 6=i

δxj

))}
.

This is known as the classical McShane construction, and it extends the cost function
to Θ ×X ×P(X) and it preserves the Nash equilibria for the N-game. Moreover,
FN is a sequence of uniformly equicontinuous functions on Θ×X×P(X).

Theorem 2.3.1 (Pure Nash equilibria converge to Cournot-Nash equilibria). Let
x̄N = (xN1 , . . . , x

N
N) be a Nash equilibrium for the game above, and define

µN :=
1

N

N∑
i=1

δθi , νN :=
1

N

N∑
i=1

δxNi , and γN :=
1

N

N∑
i=1

δ(θi,xNi ).

In addition, assume that, up to the extraction of subsequences,

µN
∗
⇀ µ, νN

∗
⇀ ν, γN

∗
⇀ γ and FN → F ∈ Cb(Θ×X×P(X)).

Then γ is a Cournot-Nash equilibrium for F and µ.
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Proof. First, we set

ν̄Ni :=
1

N − 1

∑
j 6=i

δxNj .

Now, we estimate the distance between νN and ν̄Ni ;

W1(νN , ν̄Ni ) = inf
λ∈Π(νN ,ν̄Ni )

∫
X×X

dX(x, y)dλ(x, y).

In particular, note that the product measure generated by νN and ν̄Ni is in Π(νN , ν̄Ni )
as dX(·, ·) ≥ 0 we can use the Tonelli’s theorem to obtain

inf
λ∈Π(νN ,ν̄Ni )

∫
X×X

dX(x, y)dλ(x, y) ≤
∫
X

∫
X

dX(x, y)dνN(x)dν̄Ni (y) =
1

N(N − 1)

N∑
k=1

∑
j 6=i

dX(xj, xk).

There are at least N − 1 terms in the sum that are 0 and for every x, y in X,
dX(x, y) ≤ Diam (X) / Therefore

W1(νN , ν̄Ni ) ≤ Diam (X)

N
.

As x̄N is a Nash equilibrium we have

(∀y ∈ X) FN(θi, x
N
i , ν̄

N
i ) ≤ FN(θi, y, ν̄

N
i ),

Hence, we obtain

(∀y ∈ X) FN(θi, x
N
i , ν

N) ≤ FN(θi, y, ν
N) + εN ,

where εN = 2ω(Diam (X) /N). Summing over i and dividing by N , we have∫
Θ×X

FN(θ, x, νN)dγN(θ, x) ≤
∫

Θ

min
y∈X

FN(θ, y, νN)dµN(θ) + εN .

Because the equicontinuity of FN and the existence of the limit in Cb(Θ,X,P(X)),
letting N →∞, we obtain∫

Θ×X
F (θ, x, ν)dγ(θ, x) ≤

∫
Θ

min
y∈X

F (θ, y, ν)dµ(θ).

As γ has marginals µ and ν, we have deduced that γ is a Cournot-Nash equilibrium,
for F and µ.

As it was mentioned in Section 3.1, the conditions that allow the existence of
pure Nash equilibria are strong, and do not include some interesting cases of study.
This is why we now consider the mixed strategy extension which allows, in this case,
the existence of Nash equilibria.
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Theorem 2.3.2. If the assumption about modulus of continuity holds for ω(t) = Kt,
then the conclusion of Theorem 2.3.1 applies to the extension in mixed strategies with
the extended cost

J̄N(θi, πi, π−i) :=

∫
XN

JN(θi, x, x−i)dπi(x)⊗Nj 6=i dπj(xj).

Proof. Take θi and θj in Θ. By hypothesis,

|JN(θi, xi, x−i)− JN(θj, xi, x−i)| ≤ KdΘ(θi, θj).

Integration of above equation yields

|J̄N(θi, πi, π−i)− J̄N(θj, πi, π−i)| ≤ KdΘ(θi, θj).

Let us take ηi, πi ∈P(X), and let Γ ∈ Π(ηi, πi) be such that

W1(πi, ηi) =

∫
X×X

dX(x, y)dΓ(x, y).

Then, by definition, we have∣∣J̄N(θi, πi, π−i)− J̄N(θi, ηi, π−i)
∣∣

=

∣∣∣∣∫
XN−1

(∫
X

JN(θi, x, π−i)dπi(x)−
∫
X

JN(θi, y, π−i)dηi(y)

)
⊗j 6=i dπj(xj)

∣∣∣∣
=

∣∣∣∣∫
XN−1

∫
X×X

(
JN(θi, x, π−i)dπi(x)− JN(θi, y, π−i)

)
dπi(x)dηi(y)⊗j 6=i dπj(xj)

∣∣∣∣
≤
∫
XN−1

∫
X×X

∣∣JN(θi, x, π−i)dπi(x)− JN(θi, y, π−i)
∣∣ dπi(x)dηi(y)⊗j 6=i dπj(xj).

As Γ has marginals πi and ηi, it follows that

∣∣J̄N(θi, πi, π−i)− J̄N(θi, ηi, π−i)
∣∣

≤
∫
XN−1

∫
X×X

∣∣JN(θi, x, π−i)dπi(x)− JN(θi, y, π−i)
∣∣ dΓ(x, y)⊗j 6=i dπj(xj)

≤
∫
XN−1

∫
X×X

KdX(x, y)dΓ(x, y)⊗j 6=i dπj(xj)

=

∫
XN−1

W1(πi, ηi)⊗j 6=i dπj(xj) = KW1(πi, ηi).

Let us take σ ∈ SN−1
i and Γj ∈ Π(πj, ησ(j)) for j 6= i in such a way that

W1(πj, ησ(j)) =

∫
X×X

dX(x, y)dΓj(x, y).

Then, by symmetry,∣∣J̄N(θi, πi, π−i)− J̄N(θi, πi, η−i)
∣∣ =

∣∣J̄N(θi, πi, π−i)− J̄N(θi, πi, {ησ(j)}j 6=i)
∣∣

=

∣∣∣∣∫
XN

JN(θi, xi, x−i)dπi(xi)⊗j 6=i dπj(xj)−
∫
XN

JN(θi, xi, y−i)dπi(xi)⊗j 6=i dησ(j)(yj)

∣∣∣∣
=

∣∣∣∣∫
XN−1

∫
XN

JN(θi, xi, x−i)dπi(xi)⊗j 6=i dπj(xj)⊗j 6=i dησ(j)(yj)

−
∫
XN−1

∫
XN

JN(θi, xi, y−i)dπi(xi)⊗j 6=i dησ(j)(yj)⊗j 6=i dπj(xj)
∣∣∣∣ .
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By Fubini’s theorem, we have

=

∣∣∣∣∫
XN−1

∫
XN

JN(θi, xi, x−i)− JN(θi, xi, y−i)dπi(xi)⊗j 6=i dπj(xj)⊗j 6=i dησ(j)(yj)

∣∣∣∣
≤
∫
XN−1

∫
XN

∣∣JN(θi, xi, x−i)− JN(θi, xi, y−i)
∣∣ dπi(xi)⊗j 6=i dπj(xj)⊗j 6=i dησ(j)(yj),

≤
∫
XN−1

∫
XN

∣∣JN(θi, xi, x−i)− JN(θi, xi, y−i)
∣∣ dπi(xi)⊗j 6=i {dπj(xj)× dησ(j)(yj)},

since, for j 6= i, Γj has marginals πj and ηj, respectively,

=

∫
XN−1

∫
XN

∣∣JN(θi, xi, x−i)− JN(θi, xi, y−i)
∣∣ dπi(xi)⊗j 6=i dΓj(xj, yj)

≤
∫
XN−1

∫
XN

K

N − 1

∑
j 6=i

dX(xj, yσ(j))dπi(xi)⊗j 6=i dΓj(xj, yj)

≤ K

N − 1

N∑
j 6=i,j=1

W1(πj, ησ(j)).

Because σ is arbitrary, we have

∣∣J̄N(θi, πi, π−i)− J̄N(θi, πi, η−i)
∣∣ ≤ K min

σ∈SN−1
i

1

N − 1

N∑
j 6=i,j=1

W1(πj, ησ(j)).

We conclude with the observation that∣∣J̄N(θi, πi, π−i)− J̄N(θj, ηi, η−i)
∣∣ ≤ KdΘ(θi, θj) +KW1(πi, ηi)

+K min
σ∈SN−1

i

1

N − 1

N∑
j 6=i,j=1

W1(πj, ησ(j)).

That is the extension of J still satisfies the equi-continuity assumption, with the
same modulus of continuity, so we can apply Theorem 2.3.1.

Concluding remarks

In this chapter we have founded suitable assumption under a Cournot-Nash equi-
librium is given in terms of an optimal transference plan. This variational approach
is due to A. Blanchet and G. Carlier. Also we remark that this notion of limit of
Nash equilibria is reminiscent of the work of P. Lions [34]. In this thesis we work
with a more general model, when we take into consideration the type variable, this
approach is due to G. Carlier and A. Blanchet [7].

As we have mentioned in the previous chapter, in applications, is relevant to know
whether or not there exists a Nash equilibrium for a given game G. Moreover, is of
high relevancy to explicitly calculate that equilibrium for such game. Nevertheless,
the complexity of calculating those equilibria grows exponentially. In particular,
2.3.1 and 2.3.2 ensemble with 2.2.8 give us a bidirectional way for calculating those
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equilibria, i.e., given a gameG withN ∈ N players, with a sufficiently largeN , then a
Nash equilibrium for the game G can be approximated by a Cournot-Nash equilibria
for the limit game, vice-versa, if we can find a suitable sequence of N−person games,
with N ∈ N, then the Cournot-Nash equilibria is given by the limit of Nash equilibria
for the N−person game.



Chapter 3

Optimal Transport and Optimal
Control

In this chapter, we address a different –but not to apart from the traditional –
approach for solving optimal control problems, which mainly consist of a set of ad-
missible actions U , a set of states X, and a non linear dynamic T–which describes
the evolution of the state through time and the actions taken–. We concern to
minimise the total cost associated to a sequence of actions taken. We aim to give
this optimal sequence of actions in terms of optimal tranference plans. For the big
picture about discrete-time optimal control see [32, 30, 29].

Section 1 deals with the analysis of a dynamical system, i.e., we analyse if a
dynamical system could be control through the time to a given fixed structure, in
literature this is known as the controllability analysis. Section 2 gives an approach
for solvability to the discrete-time optimal control problem; given a suitable dynam-
ical system, we find an optimal path of actions that the controller must follow in
order to optimize his objective function. This optimal path is given in term of a
sequence of optimal transport plans.

3.1 Controllability

Let X be a finite-dimensional manifold. For the purpose of this thesis it suffices to
consider, for example,X = Rd, Let U denote the set of actions. We will assume that
U is a compact subset of a metric space. A measurable function V := X → U is
called feedback –or deterministic Markov– control law.

Definition 3.1.1. a) For a set M ⊂ X and p ∈ N, we define the set

Dp
M :=

{
p∑

k=1

ckδyk ; {yk}pk=1 ⊂M, {ck}pk=1 ⊂ [0, 1],

p∑
k=1

ck = 1

}
. (3.1.1)

We will also define DM = ∪∞p=1D
p
M .

b) We define Y(X, U) the sets of maps K : X × B(U) → R , where K(·, A) is
a B(X) measurable function for each A ∈ B(U) and K(x, ·) ∈ P(U) for each

35
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x ∈ X. A map K ∈ Y(X, U) is called a stochastic–or randomised– feedback law.

Now, let us consider the nonlinear discrete time control system{
xn+1 = T (xn, un) (∀n ∈ N)

x0 ∈ X,
(3.1.2)

where {xn}∞n=0 ⊂ X, {un}∞n=0 ⊂ U , and T : X× U → X is a continuous map. Then
there is an induced control system over the probability measures in P(X), given by{

µn+1 = T (·, un)#µn (∀n ∈ N),

µ0 ∈P(X).
(3.1.3)

Inspired by the Monge problem, our aim here is to find some deterministic path,
i.e., to find a sequence of feedback laws vn : X → U , n ∈ {0, 1, . . . , N − 1}, such
that, given some N ∈ N and a target measure µf ∈P(X), the system satisfies{

µn+1 = T (·, vn(x))#µn n ∈ {0, 1, . . . , N − 1},
µN = µf .

Note that the formulation above stated presents the same limitations as in Monge
problem; we can not split one Dirac delta into two Dirac deltas with a measurable
map. Hence, inspire by the relaxation of Monge Problem, introduced in Chapter
1 by the name of Monge-Kantorovich problem, our aim is to find some stochastic
feedback laws instead of searching deterministic ones. So, given some N ∈ N and a
target measure µf ∈P(X), determine if there are ,or not, a sequence of stochastic
feedback laws Kn ∈ Y(X, U), n ∈ {0, 1, . . . , N − 1}, such that the system satisfies{

µn+1 = T cl,n# µn n ∈ {0, 1, . . . , N − 1},
µN = µf ,

(3.1.4)

where, for each A ∈ B(X) and n ∈ {0, 1, . . . , N − 1},

T cl,n# µn(A) :=

∫
X

∫
U

1A(T (x, u))Kn(x, du)dµn(x). (3.1.5)

Definition 3.1.2 (Reachable states). For some x ∈ X, let Rx
1 := {T (x, u);u ∈ U}

be the set of reachable states in one step from x. Then inductively we define the set

Rx
m = ∪y∈Rx

m−1
{T (y, u);u ∈ U},

of reachable states from x in m steps, with m ≥ 2.

Now instead of proving that there is always a {Kn}N−1
n=0 ⊂ Y(X, U) that satisfies

(3.1.4), we will consider to look forN−1 measures νn ∈P(X×U), n ∈ {0, 1, . . . , N−
1}, such that, given an initial measure µ0 ∈P(X) and a target measure µf ∈P(X),
the measures {νn}N−1

n=0 satisfy

µn+1 = T#νn, n ∈ {0, 1, . . . , N − 1}, (3.1.6)

with νn(A× U) = µn(A) for all A ∈ B(X) and µN = µf .
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Proposition 3.1.3. Let µ0 = δx0 for some x0 ∈ X. Let µf ∈ Dp
M for a compact

subset M ⊂ X, some p ∈ N, such that the Spt
{
µf
}
⊂ Rx0

N . Then there exist a

sequence of measures, {νn}N−1
n=0 ∈P(X× U) such that

µn+1 = T#νn, n ∈ {0, 1, . . . , N − 1},

with νn(A× U) = µn(A) for all A ∈ B(X) and µN = µf .

Proof. Let µf :=
∑p

i=1 ciδyi as in (3.1.1), and note that Spt
{
µf
}

:= {y1, . . . yp},
so by hypothesis, for each i ∈ {1, 2, . . . , p}, there exist {uin}N−1

n=0 ⊂ U , that sat-
isfy (3.1.2), with xi0 = x0 and xiN = yi. Let us define, for each i ∈ {1, 2, . . . , p},
νin := δ(xin−1,u

i
n). Note that T#ν

i
n = δxin . Then setting νn :=

∑p
i=1 ciν

i
n, for all n ∈

{0, 1, . . . , N−1}. Hence, we have that T#νn =
∑p

i=1 ciT#ν
i
n =

∑p
i=1 ciδxin = µn+1 for

all n ∈ {0, 1, . . . , N − 1} and T#νN−1 =
∑p

i=1 ciT#ν
i
N−1 =

∑p
i=1 ciδyi = µf . Finally

νn(A× U) =

p∑
i=1

ciδ(xin−1,u
i
n)(A× U) =

p∑
i=1

ciδxin−1
(A)δuin(U) = µn,

for n ∈ {0, 1, . . . , N − 1} and every A ∈ B(X)

Lemma 3.1.4. Let µ0 ∈ Dp
A, and µf ∈ Dq

A, with A a compact subset of X and
some p, q ∈ Z+, such that Spt

{
µf
}
⊂ Rx

N for each x ∈ Spt {µ0} . Then there exists

a sequence of measures, {νn}N−1
n=0 ∈P(X× U) such that

µn+1 = T#νn, n ∈ {0, 1, . . . , N − 1},

with νn(A× U) = µn(A) for all A ∈ B(X) and µN = µf .

Proof. Let µ0 :=
∑p

i=1 ciδyi as in (3.1.1), then, by proposition 3.1.3, there exist
for each i ∈ {1, 2, . . . , p} measures νin ∈ P(X × U) such that if we set ηi0 := δyi
they satisfy (3.1.2), with νin(A × U) = ηin(A) for n ∈ {0, 1, . . . , N − 1} and every
A ∈ B(X), and ηiN = µf . So if we set νn :=

∑p
i=1 ciν

i
n for n ∈ {0, 1, . . . , N − 1} the

result follows.

Proposition 3.1.5. Let µ0, µf ∈P(X) with compact supports, such that the Spt {µf} ⊂
Rx
N for each x ∈ Spt {µ0} . Then there exists a sequence of measures {νn}N−1

n=0 ∈
P(X× U) such that

µn+1 = T#νn, n ∈ {0, 1, . . . , N − 1},

with νn(A× U) = µn(A) for all A ∈ B(X) and µN = µf .

Proof. LetAm := ∪x∈Spt{µ0}R
x
m. ForN = 1 note thatA1 = {T (x, u);x ∈ Spt {µ0} , u ∈

U}. As the image of compact sets of continuous functions is compact, A1 is compact.
In general, if we suppose that An is compact, then An+1 := {T (x, u);x ∈ An, u ∈ U}
is compact. In particular AN is compact. From Theorem A.0.11 there exist {µn0}∞n=1

and {µnf}∞n=1 subsets of DAN
such that µn0 ⇀ µ0 and µnf ⇀ µf . Then, by Lemma

3.1.4, there exist {νnk }N−1
k=0 ⊂P(X) such that

µnk+1 = T#ν
n
k , k ∈ {0, 1, . . . , N − 1},
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with νnk (A × U) = µk(A) for all A ∈ B(X) and µnN = µnf , for every n ∈ Z+. Since
the map T is continuous, by Theorem A.0.8, there is a limit measure νk such that
T#ν

n
k ⇀ νk, for k ∈ {0, 1, . . . , N − 1}. Then the result follow by the continuity of

T .

Theorem 3.1.6. Let µ0, µf ∈ P(X) with compact supports, and such that the
Spt {µf} ⊂ Rx

N for each x ∈ Spt {µ0} . Then there exist a sequence of stochastic
feedback laws {Kn}N−1

n=0 ⊂ Y(X, U) such that (3.1.4) is satisfied. Hence µf is a
reachable measure from µ0.

Proof. Note that X and U are separable spaces, so B(X) ⊗ B(U) = B(X × U).
Then given ν ∈ P(X × U), by the disintegration theorem, there exist a measure
µ ∈P(X) and a stochastic feedback law K ∈ Y(X, U) such that∫

A×B
dν(x, u) =

∫
A

∫
B

K(x, du)dµ(x)

for all A ∈ B(X) and B ∈ B(U). Then applying Proposition 3.1.5 to get {νn}N−1
n=0

as in (3.1.6), we can apply the disintegration theorem to each νn to obtain Kn with
their corresponding µn for each n ∈ {0, 1, . . . , N − 1}.

3.2 Optimal Control

Suppose that c : X× U → R is a continuous function. Given a final time N ∈ Z+,
an initial measure µ0 ∈P(X) and a target measure µf ∈P(X), our aim is to find
a solution for the optimization problem

min
{{µm+1}N−1

m=0⊂P(X),{Kn}N−1
n=0 ⊂Y(X,U)}

N−1∑
n=0

∫
X

∫
U

c(x, u)Kn(x, du)dµn(x) (3.2.1)

subject to the constrains{
µn+1 = T cl,n# µn n ∈ {0, 1, . . . , N − 1},
µN = µf .

(3.2.2)

This can be interpreted as to minimise over all admissible paths of measures, that
have initial and final measures µ0 and µf , respectively. The existence of an admis-
sible path will depend, as in previous section, on the fact that µf is reachable from
µ0 in N steps.

Note that instead of searching those Kn ∈ Y(X, U), n ∈ {0, 1, . . . N}, one can
convexify the problem (3.2.1) and try to solve in the space P(X× U);

min
{{µm}N−1

m=0⊂P(X),{νn}N−1
n=0 ⊂P(X,U)}

N−1∑
n=0

∫
X×U

c(x, u)dνn(x, u) (3.2.3)
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subject to the constrains
µn+1 = T cl,n# νn n ∈ {0, 1, . . . , N − 1},
ΠX#νn = µn

µN = µf .

(3.2.4)

Now we are ready to state the main theorem of the chapter:

Theorem 3.2.1. Let µ0, µf ∈ P(X) with compact support, and such that the
Spt {µf} ⊂ Rx

N for each x ∈ Spt {µ0} . Then the optimisation problem (3.2.3),(3.2.4)
has a solution {(µn+1, νn)}N−1

n=0 .

Proof. From Theorem 3.1.6 we know that the set of measures that satisfy (3.2.4) is
not empty. Then, as shown in the proof of Proposition 3.1.5, Am := ∪x∈Spt{µ0}R

x
m

is compact, so no matter what the choice of νn, the support of the sequence of
measures is contained in a compact set. Moreover Spt {νn} ⊂ An × U for every
n ∈ {0, 1, . . . N − 1}. Since c is continuous, is bounded over An × U . In par-
ticular,

∑N−1
k=0

∫
X×U c(x, u)dνk(x, u) is bounded from below in the set of admissi-

ble sequences of measures. Thus, by definition of infimum, there is a sequence of
{(νkn, µkn+1)N−1

n=0 }∞k=1 such that

inf
{{µm}N−1

m=0⊂P(X),{νn}N−1
n=0 ⊂P(X,U)}

N−1∑
n=0

∫
X×U

c(x, u)dνn(x, u) = lim
k→∞

N−1∑
n=0

∫
X×U

c(x, u)dνkn(x, u),

and for each k ∈ Z+, (ν
k
n, µ

k
n+1)N−1

n=0 satisfy the restriction (3.2.4). Set the compact
set A := ∪Nn=0R

x
n. Then for every n ∈ {0, 1 . . . , N −1} and every ε > 0, νn(A×U) =

1 > 1− ε and µn(A) = 1 > 1− ε. Thus {(νkn, µkn+1)N−1
n=0 }∞k=1 is tight. Therefore, there

exists a subsequence {(νkjn , µkjn+1)N−1
n=0 }∞j=1 that weakly converges to some sequence

{ν∗n, µ∗n+1}N−1
n=0 . Then by definition of weak convergence

inf
{{µm}N−1

m=0⊂P(X),{νn}N−1
n=0 ⊂P(X,U)}

N−1∑
n=0

∫
X×U

c(x, u)dνn(x, u) =
N−1∑
n=0

∫
X×U

c(x, u)dν∗n(x, u).

Finally, by continuity of the map T , {ν∗n, µ∗n+1}N−1
n=0 still satisfy the restriction (3.2.4).

Concluding remarks

Although the chapter is called optimal transport and optimal control, we have not
used any reference from Chapter 1. This is because, we have proved Theorem 3.2.1
by the same techniques of the Theorem 1.0.8. In fact, we can consider νn as a
collection of optimal transference plan, but instead of taking the condition over the
second marginal we ask for the condition that the map T cl,n push the measure νn to
µn+1. Since T cl,n is not linear, Theorem 1.0.8 can not be applied inductively to find
a solution the optimisation problem (3.2.3), (3.2.4).
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Chapter 4

Optimal Transport and Population
Games

In this chapter we retake the framework of displacement interpolation stated in
Chapter 1. We aim to analysis systems with infinitely many agents from a dynamical
approach. We suppose a system where the agents are characterised only by the
strategies they are taking. Actions taken by a finite sets of agents are negligible for
the system. Therefore, a state at the time t is given by a probability measures over
the set of strategies. Intuitively, the measure of a set A represents the proportion of
the population (the set of agents). that are taking strategies in A. Here, each player
is assumed to make decision according to a stochastic process instead of making
one shot decision–as in Chapter 2–. In this case, we consider a discrete strategy set
S = {0, 1, . . . n}.

Note that when we consider the discrete topology, the space of probabilities
P(S) is a simplex:

P(S) =

{
(pk)

n
k=0 ∈ Rn;

n∑
k=0

pk = 1, pk ≥ 0, k ∈ S

}
. (4.0.1)

Definition 4.0.1. The interior of P(S) will be denoted by P(S)o, so

Po(S) :=

{
(pk)

n
k=0 ∈ Rn;

n∑
k=0

pk = 1, pk > 0, k ∈ S

}
.

The players are influenced at the hour of taking strategies by the utility perceived
by the population– when we consider the average utility, the dynamic is known as
the replicator dynamic–, thus, the payoff function is independent of the identity
of the player. These population games are called autonomous. For every k ∈ S,
Fk : P(S) → R will represent the gain of taking strategy k, given the state of the
game p ∈P(S). For every k ∈ S, Fk is assumed to be continuous with respect the
weak topology in P(S) and the usual topology in R.

Definition 4.0.2 (Population Games Nash Equilibria). A population state p∗ ∈
P(S) is a Nash equilibrium for the population game if for given k ∈ S

p∗k > 0 ⇒ (∀j ∈ S) Fk(p
∗) ≥ Fj(p

∗). (4.0.2)

41
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We also define de noisy payoff function F̄k(p) := Fk(p)− β log pk, k ∈ S.

Intuitively, the noisy payoff function models the risk-taking of the players; the
fewer players currently select strategy k, the more likely a player is willing to take
risk by switching to strategy k.

This chapter mainly focus on the Fokker-Planck equation. For each x ∈ Rd, it
has the form

∂

∂t
ρ+5(̇f(x)ρ) = β 5 (̇AAT 5 ρ),

where AAT = A(x)A(x)T is a nonnegative definite (diffusion) matrix and f(x) ∈ Rd

is a (drift) vector function on x. Here, for each t ≥ 0, the unknown is the probability
density ρ(t, x). Indeed, the Fokker-Planck equation describes the evolution of the
transition probability of the solution to the stochastic differential equation

dXt = f(Xt)dt =
√

2βA(Xt)dWt,

where Wt is a d−dimensional standard Wiener process (so-called Brownian motion)∫
A

ρ(t, x)dx; =

∫
A

P(Xt ∈ dx|X0),

for each x ∈ Rd, t > 0 and A ∈ B(Rd)(the Borel σ−algebra of Rd).

4.1 Gradient Flows

In this section, in analogy to the 2-Wasserstein distanceW2(µ, ν), for µ, ν in P(Rd),
we aim to construct a metric over P(S) that will help us to describe the dynamics
of the population. This time-dependent metric will help us to relate the optimal
transport with the Fokker-Planck equation. We have mentioned in previous chap-
ters that the notion of potential games is important to approach new optimization
problems, and here is not the exception;

Definition 4.1.1. A population game is named a potential game, if there exist a
differentiable function F : P(S)→ R, such that ∂

∂pk
F(p) = Fk(p) for all k ∈ S and

p ∈P(S). In this case F is called a potential function.

Usually, every player in the game is allowed to take any strategy from S, but in
some cases of interest, if one player has taken one strategy j ∈ S, he/she can not
change arbitrarily to other strategy. This information is encoded in one graph, the
strategy graph G := (S,E) where S denotes the set of vertices, and E ⊂ S×S is the
set of edges of the graph, where {i, j} ∈ E means that a player is allowed to switch
from strategy i ∈ S to strategy j ∈ S. Note that the fact that one edge e belongs
to E does not depend on the order of the strategies, i.e., the edges are bidirectional;
thus we are not dealing with directed edges; fenote the neighborhood of j ∈ S by
N(j) := {k ∈ S; {j, k} ∈ E}.

For any given strategy graph G, we can introduce an optimal transport metric
on the simplex P(S).
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Definition 4.1.2. Given a function Φ : S → R, define ∇Φ : S × S → R as

∇Φj,k =

{
Φj − Φk if {j, k} ∈ E;

0 otherwise.
(4.1.1)

We say that a function m := S × S → R is anti-symmetric if mi,j = −mj,i. The
divergence of m, denoted as div(m) : S → R, is defined by

div(m)j = −
∑
k∈N(j)

mj,k, j ∈ S. (4.1.2)

Given a strategy graph G := (S,E), a set of continuous pay off functions Fk :
PS → R, for k ∈ S, and a population state p ∈ P(S). Then we can assign a
weight to each edge e ∈ E with a symmetric function g : E → R defined by

gj,k(p) :=


pk F̄k(p) < F̄j(p);

pj F̄k(p) > F̄j(p);
pk+pj

2
F̄k(p) = F̄j(p).

This functions models the intensity with which an agent changes between strategies
j and k. Indeed, this can be thought as the Q−matrix of a markovian processes.

We can now define the discrete inner product of ∇Φ on Po(S)

〈∇Φ,∇Φ〉p :=
1

2

∑
{j,k}∈E

(Φj − Φk)
2gj,k(p). (4.1.3)

The above inner product provides the following distance on Po(S).

Definition 4.1.3. Given two discrete probability measures p0, p1 ∈ Po(S), the
Wasserstein metric W is defined by:

W(p0, p1) := inf

{∫ 1

0

〈∇Φ,∇Φ〉pdt;
d

dt
p = div(p∇Φ) = 0, p(0) = p0, p(1) = p1, p ∈ Ct(P(S))

}
,

(4.1.4)
where (p∇Φ)j,k = gj,k(p)∇φj,k, for each {j, k} ∈ E.

As the solution for the Fokker-Planck equation it can be seen as conditioned
probability, restriction d

dt
p = div(p∇Φ) = 0, implies that p(t) is a probability density

for each t ∈ [0, 1].
Now we state one of the main theorems of this thesis, this result is due to Shue

Nee, et al [18].

Theorem 4.1.4 (Evolutionary Dynamics). Given a potential game with strategy
graph G = (S,E), potential F(p) ∈ C2(Rn) and a constant β ≥ 0. Then the gradient
flow of free energy

−F(p) + β

n∑
j=1

pj log pi (4.1.5)
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on the Riemannian manifold (Po(S),W) is the Fokker-Planck equation

d

dt
pk =

∑
j∈N(k)

pj max {Fk(p)− Fj(p) + β(log pj − log pk), 0}

−
∑
j∈N(k)

pk max {Fj(p)− Fk(p) + β(log pk − log pj), 0}

for any k ∈ S. In addition, for any initial p0 ∈Po(S), there exist a unique solution
p(t) : [0,∞)→Po(S).

Is worth to remark that d
dt
pk represents how fast the proportion of the population

is changing to strategy k ∈ S. On the one hand, if d
dt
pk is negative, several agents

are leaving strategy k. By the other hand f d
dt
pk is positive, several agents are

taking strategy k. Thus, this intensity in the switching strategies, is modelling
the combination of taking risk of the agents and their search of wellness. Some
interesting question are if the solution of the Fokker Plank equation may converge
to a Nash equilibrium. Indeed it does and is related to fixed point for (4.1.5) and
Gibbs measures. we refer to the reader for the proof of 4.1.4 and for more information
about the relation of Gibbs measures and population games to [52].

Concluding remarks

The results presented in this Chapter have a more geometrical perspective. In par-
ticular the proof of 4.1.4– which we refer the reader for it to [52]– relies on properties
of Riemmanian manifolds about how the gradient flow is completely determined by
the vector space of payoff functions (Fk)k∈S. For a general introduction of differen-
tial geometry approach in optimal transport we refer to [49, Part II] and [1]
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Conclusions

In this thesis we have briefly introduced several problems related to optimal. Thus.
optimal transport seems to be a useful tool in different areas of application. In
specific, we recall that Theorems 1.1.4 and 1.3.6 are of importance. Nevertheless,
the calculation of an optimal transference plan is not easy at all. Several works have
appeared to find explicitly those transference plans. For example, we refer to [47,
Chapter 2], where –under the assumption that the cost function is of the form
c(x, y) = h(‖x − y‖), where h is some differentiable convex function– the optimal
tranference plan is deterministic and is given by a change of variables formula of
other convex function. Another relevant approach was introduced by C. Villani [49,
Part II], where he introduces several notions of differential geometry and using
some variational approaches for finding those plans. Even so, under more general
assumptions no work have been made or are still emerging. We can finally deduce
that the universality of the optimal transport may be of interest as long as more
works about finding or constructing those optimal transference plans arise in liter-
ature.

However optimal transport has established a break-point for probability theory
and is just the the beginning of a number of optimisations problems; some emerging
problems to take on consideration could be:

• Consider a family of probability spaces, (Xj,Fj, µj)Nj=1 and a measurable cost
function c : X := X1× · · · ×XN → R. The aim is to minimized the total cost∫

X

c(x1, . . . , xN)dπ(x1, . . . , xN)

over the set of all probability measures on the measurable space (X,
⊗M

j=1Fj),
such that π have marginals µj in the space Xj, for all j = 1, . . . , N . Future
works may be orientated in this topic, and to its applications to optimal con-
trol. We refer to [41] for a general approach to this problem.

• Under the same assumption for the optimal transport problem (1.0.3), consider
an additional condition for the coupling (X, Y ) of (µ, ν), that E(X|Y ) = X.
This condition is known as the martingale restriction. Thus, the infimum runs
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over all couplings holding the martingale restriction. We refer to [20, 5], for
instance for a formal description to the problem.

• Finally, we can consider the notion of games with infinitely-many players, as
in Chapters 3 and 5. In this case, however, the dynamics of each agent is ruled
by some fixed optimal control problem. This games are known as mean field
games, and they carry with them a system of two differential equations known
in literature as the master equations; one is given by a backwards Hamilton-
Jacobi equation, which describes the flow of the population through a vector
field, and the other is a mass conservation equation, which describes how the
population density evolves in time, with a given initial density and initial
state. The main difficulty is that only rare problems admit classical solutions
to the systems. Moreover, only ”toy” examples admit explicit solutions for the
system. Therefore, a lot of theory for viscosity and distributional solutions for
the systems has been developed in the area. For more information about
mean field games, we refer to [34, 11, 33]. Future works may be oriented to
use the optimal transport approach, in order to solve those systems or to find
numerical solutions for them, see [12] for a picture of the problematic.

We conclude with We fact that optimal transport shares several relation with game
theory and optimal control. Furthermore, we have found approaches for finding so-
lution for different problems, (e.g), the topological properties of optimal transport
–Wasserstain distances– were crucial the analysis of convergence in Theorem 2.3.2

We are aware that more examples in this work may be of help at the time of
understanding the main objects of study, and also for the main results in this thesis
(see Theorems 2.2.8, 1.3.6, 2.2.4, 3.1.6, 3.2.1, and 4.1.4), but for instance we refer
to [9, 26, 13, 48] for Chapter 2 examples, to [7, 14, 15, 8] for Chapter 4 examples,
and to [18, 40, 16, 52] for Chapter 5 examples.



Appendix A

Appendix

Here we state some classical result about real and functional analysis [46, 42], some
notion of [44], and some concepts of probability theory [6].

In this section X will denote a Banach space, X ′ its topological dual space, and
X a Polish space.

Definition A.0.1. A sequence {xn}∞n=0 in X is said to be weakly converging to
x, which we denote xn ⇀ x, if we have 〈ξ, xn〉 → 〈ξ, x〉 , for every ξ ∈ X ′. A

sequence {ξn}∞n=0 ⊂ X ′ is said to be weakly-*converging to ξ, and we denote ξn
∗
⇀ ξ

if 〈ξn, x〉 → 〈ξ, x〉 for every x ∈ X .

Theorem A.0.2. If X is a separable Banach space, and {ξn}∞n=0 is a bounded se-
quence in X ′, then there exists a subsequence {ξnk

}∞k=0 weakly converging to some
ξ ∈ X ′.
Theorem A.0.3 (Riesz representation theorem). Suppose that X is a separable and
locally compact metric space. Let X = C0(X) be the space of continuous functions
on X vanishing at infinity, endowed with the supremum norm, which makes the
space complete. As C0(x) is a Banach space, it is a closed subset of Cb(x). Then
every element of X ′ is represented in a unique way as an element of M (X); for
each ξ ∈ X ′, there is a unique λ ∈M (X) such that 〈ξ, φ〉 =

∫
φdλ; moreover, X ′ is

isomorphic to M (X) endowed with the norm ‖λ‖ := |λ|(X) of total variation.

We denote P(X) as the space of probability measures on X. We restrict our-
selves to Borel probability measures.

For the proof to the next theorem we refer to [47, Chapter 2]

Theorem A.0.4. Let f : X → R be a function bounded from bellow. Then f is
lower semi-continuous if and only if there exist a sequence fk of bounded Lipschitz
functions such that for every x ∈ X, fk(x) converges increasingly to f(x).

Theorem A.0.5 (Weierstrass). If f : X→ R ∪ {∞} is lower semi-continuous and
X is compact, then there exist x ∈ X such that f(x) = min{f(x) : x ∈ X}
Definition A.0.6. We say that {µn}∞n=0 ⊂P(X) weakly converges to µ if, for each
φ ∈ Cb(X)

lim
n→∞

∫
X

φdµn =

∫
X

φdµ,

and we write µn ⇀ µ.
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Remark. Note that when X is a compact space, the weak and weak* convergence
are the same.

Theorem A.0.7. Let µ and ν in P(X) such that, for each φ ∈ Cb(X),∫
X

φdµ =

∫
X

φdν.

Then µ ≡ ν.

Theorem A.0.8. Let {µn}∞n=0, µ in P(X), such that, µn ⇀ µ, and T : X → R a
µ−almost surely continuous function. Then T#µn ⇀ T#µ.

The following theorem gives us a ”characterisation” of compactness, based on
the concept of tightness (see definition 1.0.6), for any family of probability measures,
and will be essential for the structures that will be developed in next chapters. The
proof can be consulted in [6].

Theorem A.0.9 (Prokhorov). Suppose that {µn}∞n=0 ⊂P(X) is tight over a Polish
space X. Then there exists µ ∈P(X) and a subsequence {µnk

}∞k=0 ⊂ {µn}∞n=0 such
that µnk

⇀ µ, (in duality with Cb(X)). Conversely, every sequence {µn}∞n=0 ⊂P(X)
weakly converging to some µ ∈P(X) is tight.

The next theorem is a well known result from functional analysis, and for the
proof we refer to [42], but as an almost straightforward observation, theorem A.0.11
follows and give us a way to construct measures with compact support from limit
of measures with discrete support.

Theorem A.0.10. Consider the Banach algebra C(X), with X a compact Hausdorff
space, equipped with the pointwise algebraic operation and the supremum norm. Let
M(X) represent the Dual space of C(X) and P (X) denote the subset consisting of
those µ in M(X) such that ‖µ‖TV = 1. Then P (X) is a convex, weakly-∗ compact
set, whose extremal points are the Dirac measures δx, x ∈ X, given by δxf = f(x),
for every f ∈ C(X).

Theorem A.0.11. Let X be a locally compact Hausdorff space. Then the set of
elements in P(X) with support contained in a compact set M ⊂ X, is a convex
and weakly-∗ compact set. Additionally, the set of discrete measures with support
contained in M are weakly-∗ dense in the subset of P(X) with support in M .

The next observation and the next result are taken from the book [21, Chap-
ter 11]. This remarks are a generalisation of the convergence of empirical measures
on general metric spaces.
Consider the Polish probability space, (X,F , µ). Then there exists a probability
space (Ω,P) on which there are independent random variables {Xj}∞j=1 with values
in X and law (Xj) = µ for every j ∈ N. Since we can take Ω as a Cartesian prod-
uct of a sequence of copies of X and Xj as coordinates. For n ∈ N, the empirical
measure µn is defined by

µn(A)(ω) :=
1

n

n∑
j=1

δXj(ω)(A),

for each A ∈ F and ω ∈ Ω.
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Theorem A.0.12 (Varadarajan). Let (X,F) be a Polish measurable space and µ
any Borel probability measure on (X,F). Then, the empirical measures {µn}∞n=1

converge to µ, ω−almost surely:

P({ω ∈ Ω : µn(·)(ω) ⇀ µ}) = 1.



50 APPENDIX A. APPENDIX



Bibliography

[1] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and
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Applications. Birkhäuser Boston, Inc., Boston, MA, 1997. With appendices by
Maurizio Falcone and Pierpaolo Soravia.
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[28] J. González-Hernández, J. R. Gabriel, and O. Hernández-Lerma. On solutions
to the mass transfer problem. SIAM J. Optim., 17(2):485–499, 2006.

[29] O. Hernández-Lerma and J. B. Lasserre. Discrete-time Markov control pro-
cesses, volume 30 of Applications of Mathematics (New York). Springer-Verlag,
New York, 1996. Basic optimality criteria.

[30] O. Hernández-Lerma and J. B. Lasserre. Further topics on discrete-time Markov
control processes. Springer-Verlag, New York, 1999.

[31] L. Kantorovitch. On the translocation of masses. C. R. (Doklady) Acad. Sci.
URSS (N.S.), 37:199–201, 1942.

[32] S. S. Keerthi and E. G. Gilbert. Optimal infinite-horizon feedback laws for a
general class of constrained discrete-time systems: stability and moving-horizon
approximations. J. Optim. Theory Appl., 57(2):265–293, 1988.

[33] J.-M. Lasry and P.-L. Lions. Jeux à champ moyen. I. Le cas stationnaire. C.
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Birkhäuser/Springer, Cham, 2015.

[48] L. Vanneschi, W. S. Bush, and M. Giacobini, editors. Evolutionary computa-
tion, machine learning and data mining in bioinformatics. Springer, Heidelberg,
2013.

[49] C. Villani. Optimal transport. Old and. Springer-Verlag, Berlin, 2009.

[50] J. von Neumann and O. Morgenstern. Theory of Games and Economic Behav-
ior. Princeton University Press, Princeton, New Jersey, 1944.

[51] Q. Xia. Motivations, ideas and applications of ramified optimal transportation.
ESAIM Math. Model. Numer. Anal., 49(6):1791–1832, 2015.

[52] H. Zhang, W. L. Li, Z. Z. Li, and Z. H. Ma. Evolutionary dynamics on regular
graphs. J. Lanzhou Univ. Nat. Sci., 45(6):121–124, 2009.


