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Abstract

In this work we'll use Mayer-Vietoris sequences to compute the multigraded
Betti numbers of squarefree monomial ideals in a polynomial ring. This also
allows us to compute the Betti numbers of non-squarefree monomial ideals,
by methods like polarization, or others, without computing the entire free
resolutions of such ideals.

Mayer-Vietoris sequences also allow us, when adding some combinatorial
tools to the mix, to give algorithms and simple formulas for the computations
of the Betti numbers of the edge ideals of some graphs, like forests and cycles.
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Resumen

En este trabajo usaremos sucesiones de Mayer-Vietoris para calcular los
números de Betti multigraduados de ideales monomiales libres de cuadrados
en un anillo de polinomios. Esto también nos permite calcular los números de
Betti de ideales monomiales no libres de cuadrados, por métodos como polar-
ización y otros, sin calcular completamente las resoluciones libres minimales
de dichos ideales.

Las sucesiones de Mayer-Vietoris también nos permiten, al añadir algunas
herramientas combinatoriales a la mezcla, dar algoritmos y fórmulas simples
para el cálculo de los números de Betti de los ideales de aristas de algunos
grafos, como bosques y ciclos.
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Introduction

A broad interest for us in this work is to compute the multigraded Betti
numbers of monomial ideals. In particular, we're interested in �nding a
recursive way to compute the multigraded Betti numbers of some families of
monomial ideals. Computing these are a �rst step in computing minimal free
resolutions, which give us important information about the ideal, and about
its associated variety.

We'll be using algebraic-topological methods to compute these, using
Hochster's formula as a �rst step with the upper Koszul complex, and then
we'll deepen using other tools, like all the Mayer-Vietoris sequences we can as-
sociate to each monomial ideal, using the fact that the upper Koszul complex
behaves appropiately with respect to the lattice structure of the monomial
ideals. There are some methods which allow us to consider only squarefree
ideals. A well known method for this is called polarization, but we won't
need it: For a monomial ideal we'll be able to compute the upper Koszul
complex X, and by taking the complements of the facets of such complex
we'll get a squarefree ideal having X as its upper Koszul complex, therefore
sharing one Betti number with the original ideal.

We'll use these tools to simplify the computations of the Betti numbers of
the edge ideals of some families of graphs, going through stars, complete bi-
partite graphs, cones, graphs with isolated edges, forests, paths and cycles in
that order. We'll also be talking about Alexander duality (The lower Koszul
complex) since some homologies can be computed easier in the Alexander
dual complex of a simplicial complex.

Lastly, we'll conclude talking about how we can �nd other simplicial
complexes which homology also give us the Betti numbers of G. The methods
used in this work will be used to get some preliminary results about these
complexes.
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Objectives

The objectives for this work are, at short term, to compute the Betti numbers
and similar invariants of a broad family of squarefree monomial ideals, and at
large term, to use these results, and other combinatorial properties of these
ideals to be able to compute minimal free resolutions of them.
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Chapter 1

Preliminaries

In this chapter we're concerned about giving an introduction to some topics
needed later. We assume the reader has a basic knowledge in basic algebra
(Groups, rings and modules) and general topology. We'll start with Cate-
gories and Functors (This might not be absolutely necessary but since there
are a lot of categories and functors later, it's a good way to start).

1.1 Categories and Functors

In this section we give the basics of category theory needed for this work. You
can use [3], [8], or any other book on homological or commutative algebra,
to get deepen in those topics.

Let Sets denote the class of all sets (Later in this section we'll rede�ne
it).

De�nition 1.1.1. A Category C consists in:

1. A class ob C of sets called objects.

2. A function homC : C × C → Sets denoted by hom. The elements of
the images of hom are called morphisms, and f ∈ hom(A,B) will be

denoted by f : A→ B or A
f→ B.

3. For objects A,B,C of C, a function

hom(A,B)× hom(B,C)→ hom(A,C)

denoted by (f, g) 7→ gf .

5
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such that

1. For (A,B) 6= (C,D) ∈ C × C, hom(A,B) ∩ hom(C,D) = ∅.

2. For A ∈ C, there exists an element 1A ∈ hom(A,A). such that f1A = f
and 1Bf = f for every f : A→ B.

3. If we have
A

f→ B
g→ C

h→ D

then (hg)f = h(gf).

If, for A,B ∈ Sets we de�ne homSets(A,B) = BA then Sets becomes a
category. So are the categories Groups , Rings ,k−Vect , R−Mod , of
groups, rings, k−vector spaces and R−modules, where k is a �eld and R is
a ring. We can also talk about the category Graph of all graphs: A graph
is a pair (V,E), where V is called the vertex set of G and E ⊆ ℘(V ), called
the edge set of G is a set such that |e| = 2 for any e ∈ E. A graph can be
shown with a drawing:

1

2
3

4

5

6
7

8

A morphism f : G→ H between graphs is just a map f : VG → VH between
their vertex sets such that f(e) ∈ EH for any e ∈ EG.

When there is risk of ambiguity, as just now, we'll use homC instead of
just hom, and for the category of R−modules and other algebraic structures
we'll use Hom. The morphisms will also be called just maps, so, for example,
a map of R−modules will be a homomorphism, instead of just a function.

De�nition 1.1.2. For categories C,D, a covariant functor F : C → D con-
sists on:

1. A map F : ob C → obD.

2. For A,B ∈ ob C a map F : hom(A,B)→ hom(FA, FB)
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such that

1. F (gf) = F (g)F (f) for f : A→ B, g : B → C and A,B,C ∈ ob C.

2. F (1A) = 1FA for A ∈ obC.

De�nition 1.1.3. For categories C,D, a contravariant functor F : C → D
consists on:

1. A map F : ob C → obD.

2. For A,B ∈ ob C a map F : hom(A,B)→ hom(FB,FA)

such that

1. F (gf) = F (f)F (g) for f : A→ B, g : B → C and A,B,C ∈ ob C.

2. F (1A) = 1FA for A ∈ obC.

The induced morphisms F (f) will often by denoted by f ∗ or f∗.

1.2 Hom and Tensor

Here we'll talk about some results about the functors Hom and ⊗ which we'll
be using. These two functors have some nice properties, but calculations
involving both of them can become cumbersome, which makes, among other
things, the Betti numbers of a module hard to compute normally. This is an
issue we want to be addressing in this work.

Let R be a commutative ring.

De�nition 1.2.1. For a (possibly �nite) sequence (C, φ) of R−modules Ci
and homomorphisms φi:

C : · · · φ−1← C−1
φ0← C0

φ1← C1
φ2← · · ·

we say that C is a chain complex if φi ◦ φi+1 = 0 for all i. If, in fact,
kerφi = imφi−1 for some i, then C is said to be exact at the homological
degree i. If it's exact at all the homological degrees, then we say it's an exact
sequence. An exact sequence

0→ L→M → N → 0
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is said to be a short exact sequence. In this case, this is equivalent to the
fact that L → M is a monomorphism, M → N is an epimorphism and
ker(M → N) = im(L → M). Sequences 0 → L → M → 0 and 0 → L → 0
are also called short exact sequences.

We'll use the notations C•, (C, φ) or simply C for a chain complex, de-
pending on the need to di�erentiate two of them, or state the maps φi.

Proposition 1.2.1. For a �xed R−module A,

Hom(A,−) : R−Mod→ R−Mod

is a covariant functor and

Hom(−, A) : R−Mod→ R−Mod

is a contravariant functor.

Proof. For φ ∈ Hom(M,N) there is an induced morphism

φ∗ ∈ Hom(Hom(A,M),Hom(A,N))

de�ned by φ∗(f) = φf . For 1 ∈ Hom(M,M), we have that

1∗ ∈ Hom(Hom(A,M),Hom(A,M))

satis�es 1∗(f) = 1f = f we have 1∗ is the identity map of Hom(A,M)
onto itself. Also (φψ)∗(f) = φψf = φ(ψf) = φ∗ψ∗(f). So Hom(A,−) is a
covariant functor. Similarly when, for φ : M → N , we de�ne the transpose
map φ∗ : Hom(N,A)→ Hom(M,A) by φ∗(f) = fφ, we get that Hom(−, A)
is a contravariant functor. �

Proposition 1.2.2. If (C, φ) is a chain complex of R−modules, then for
any R−module J , the sequence (Hom(C, J), φ∗) is also a chain complex. In
particular, the dual (C∗, φ∗) is a chain complex, where C∗ = Hom(C,R).

It also holds that (Hom(J,C), φ∗) is a chain complex.

Proof. To prove the �rst part, note that if 0 : M → N is such that 0(m) = 0
for all m ∈ M , then 0∗ : Hom(N, J) → Hom(M,J) satis�es 0∗(f)(x) =
f0(x) = 0 for any f ∈ N∗ and x ∈ N . The result follows from this and the
de�nition of chain complex.

The second part is similar. The map 0∗ : Hom(J,M) → Hom(J,N)
satis�es 0∗(f) = 0f = 0, so the result follows. �
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Proposition 1.2.3. If 0 → L
α→ M

β→ N is a short exact sequence of
R−modules, and J is an R−module, then the sequence

0→ Hom(J, L)
α∗→ Hom(J,M)

β∗→ Hom(J,N)

is also exact.
Similarly, if L

α→M
β→ N → 0 is exact then

0→ Hom(N, J)
β∗→ Hom(M,J)

α∗→ Hom(L, J).

Proof. First consider the sequence 0→ L→M → N . We �rst have to proof
that α∗ is injective. Indeed, suppose f : J → L is such that α∗(f) = αf = 0.
Then for every j ∈ J , αf(j) = 0. Since α is injective, we have f(j) = 0
for every j, so f = 0. Now we have to prove that ker β∗ = imα∗. By the
proposition 1.2.2 we have imα ⊆ ker β, so take g : J →M such that βg(j) =
0 for every j ∈ J . Then, for each j there is lj ∈ L such that α(lj) = g(j).
De�ne f : J → L as f(j) = lj. See that f is a homomorphism. Indeed, for
j = j′ ∈ J , g(j) = g(j′) and since α(lj) = α(lj′) = g(j) then lj = lj′ . Also
for any j, j′ ∈ J we have f(j + j′) = lj+j′ = lj + lj′ since both l = lj + lj′
and l′ = lj+j′ satisfy α(l) = α(l′) = g(j + j′) = g(j) + g(j′). Furthermore
for any j ∈ J , αf(j) = g(j) by construction, so indeed g = α∗(f). Therefore
ker β∗ = imα∗.

Now, consider an exact sequence L→M → N → 0. First we prove β∗ is
injective. Let f : N → J be such that β∗(f) = fβ = 0. Then fβ(m) = 0 for
every m ∈M . Since β is surjective, this means that f = 0. So β∗ is injective.
Now we want to prove that kerα∗ = im β∗. Let f : M → J be such that
α∗(f) = fα = 0. Then, for any l ∈ L, fα(l) = 0. Let g : N → J be de�ned
by g(n) = f(mn) where β(mn) = n. This is a homomorphism. Indeed, if

n = n′ ∈ N then for any choice of mn,mn′ we have mn −mn′
β→ 0. Thus,

there exists l ∈ L such that α(l) = mn−mn′ . So f(mn)−f(mn′) = fα(l) = 0,
therefore g(n) = f(mn) = f(mn′) = g(n′). Also for any n, n′ ∈ N we have

mn +mn′
β→ n+ n′ and

g(n+ n′) = f(mn +mn′) = f(mn) + f(mn′) = g(n) + g(n′).

And by construction f = β∗(g) = gβ. Therefore kerα∗ = im β∗, from which
the result follows. �

There is a sort of converse:
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Proposition 1.2.4. If L
α→M

β→ N is such that

Hom(N, J)
β∗→ Hom(M,J)

α∗→ Hom(L, J)

is exact for every R−module J then L→M → N is exact.

Proof. The trick lies in taking appropiate choices for J . First take J = N .
Then the sequence is

Hom(N,N)
β∗→ Hom(M,J)

α∗→ Hom(L, J).

For the identity map 1N we have 0 = α∗β∗(1N) = βα1N = βα, so L→M →
N is a chain complex.

To �nish proving the exactness, take J = cokerα = M/ imα. Then, for
π : M → cokerα the canonical map, we have α∗(π) = πα = 0, so there exists
g : N → J such that β∗(g) = gβ = π. Therefore ker β ⊆ kerπ = imα, from
which the result follows. �

De�nition 1.2.2. A tensor product of R−modules M,N is a pair (T,�)
where

1. T (M,N) is an R−module.

2. � : M × N → T (M,N) is bilinear, i.e. both restrictions �|M×{n} :
M → T (M,N),�|{m}×N : N → T (M,N) are homomorphisms for any
m ∈M,n ∈ N .

3. For any R−module U and any bilinear map β : M × N → U , there
exists a unique homomorphism Sβ : T (M,N)→ U such that β = S�.

The property 3. in the de�nition is called the universal property of the
tensor product.

Proposition 1.2.5. If two tensor products (T1,�), (T2,⊗) of M,N exist,
then there exists an isomorphism φ : T1 → T2 such that φ� = ⊗.

Proof. Since ⊗ : M × N → T2 is bilinear, then there exists a unique ho-
momorphism φ : T1 → T2 such that ⊗ = φ�. Also there exists a unique
isomorphism ψ : T2 → T1 such that � = ψ⊗. Therefore ψφ : T1 → T1 is
such that ψφ� = �. Since 1T1 also satis�es 1T1� = �, by uniqueness of such
map in the de�nition, ψφ = 1T1 . Analogously, φψ = 1T2 . Therefore, φ is an
isomorphism such that φ� = ⊗. �
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Proposition 1.2.6. For R−modules M,N there exists a tensor product
(M ⊗R N,⊗). When there is no risk of ambiguity, such tensor product will
be denoted by M ⊗N .

Proof. Consider the free R−module F = RM×N , and Z the submodule gen-
erated by all the elements of the form:

(m+m′, n)− (m,n)− (m′, n),

(m,n+ n′)− (m,n)− (m,n′),

(rm, n)− r(m,n)

(m, rn)− r(m,n)

form,m′ ∈M,n, n′ ∈ N, r ∈ R. LetM⊗N = F/Z and, for (m,n) ∈M×N ,
m⊗n = (m,n) +Z. Then M ⊗N is a tensor product, the tensor product of
M and N . Indeed,M⊗N is an R−module, ⊗ is bilinear by construction, and
every bilinear map β : M ×N → U extends uniquely to an homomorphism
F → U which factors through Z to the desired homomorphism Sβ : M⊗N →
U . �

There are many natural properties of tensor products: For example, for
any R−modules L,M,N we have M ⊗ N ∼= N ⊗ M , (L ⊗ M) ⊗ N ∼=
L⊗ (M ⊗N). There is a �rst special one:

Proposition 1.2.7. Tensor product is a bit more than a functor, i.e. for
R−module M,M ′, N,N ′, and homomorphisms αM → M ′, β : N → N ′,
there exists an induced map α⊗ β : M ⊗N →M ′ ⊗N ′ such that:

1. For β = 1N : N → N , and γ : M ′ → M ′′ we have (βα) ⊗ 1N =
(β ⊗ 1N)(α⊗ 1N). Similarly 1N ⊗ (βα) = (1N ⊗ β)(1N ⊗ α).

2. 1M ⊗ 1N = 1M⊗N .

Proof. It follows from the de�nition: The induced map α ⊗ β is given by
α⊗β(m⊗n) = α(m)⊗β(n) and it's a well de�ned homomorphism since the
map α× β : M ×N →M ′ ⊗N ′ is bilinear. �

Lemma 1.2.8. For R−modules M,N, J we have

Hom(M ⊗N, J) ∼= Hom(M,Hom(N, J)).
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Proof. It's not hard to prove that the map

φ : Hom(M ⊗N, J)→ Hom(M,Hom(N, J))

given by f 7→ f̃ is an isomorphism, where f̃(m)(n) = f(m⊗ n) for (m,n) ∈
M × N . The linearity of ⊗ in N implies that f̃(m) ∈ Hom(N, J) for every
m and the linearity of ⊗ in M implies that f̃ ∈ Hom(M,Hom(N, J)). Also

f̃ + g(m)(n) = (f + g)(m⊗n) = f(m⊗n) + g(m⊗n) = f̃(m)(n) + g̃(m)(n),

so φ is a homomorphism. The fact that every map f : M → Hom(N, J) can
be seen as a bilinear map M × N → J means that φ is surjective. If f̃ = 0
this means that f̃(m)(n) = 0 for every m,n, thus f(m ⊗ n) = 0 for every
m,n, so f = 0. Therefore φ is an isomorphism. �

The isomorphism from the previous lemma is natural in the sense that
for R−modules M,M ′, N, J and a map α : M → M ′ it makes the following
diagram commute:

Hom(M ′ ⊗ J,N) Hom(M ⊗ J,N)

Hom(M,Hom(J,N))Hom(M ′,Hom(J,N))

(α⊗ 1)∗

α∗

φMφM ′

Indeed, for f : M ′ ⊗ J → N , we have

φM((α⊗ 1)∗(f)) = φM(f(α⊗ 1)).

Furthermore,
α∗(φM ′(f)) = φM ′(f)α.

For m ∈M, j ∈ J , we have

φM(f(α⊗ 1)(m)(j)) = f(α⊗ 1)(m⊗ j) = f(α(m)⊗ j)

and

(φM ′(f)α)(m)(j) = φM ′(f)(α(m))(j) = f̃(α(m))(j) = f(α(m)⊗ j).
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Proposition 1.2.9. The tensor product functor is an right-exact functor.
This is, given an exact sequence

L
α→M

β→ N → 0

and a module J , the induced sequence

L⊗ J α⊗1→ M ⊗ J β⊗1→ N ⊗ J → 0

is also exact.

Proof. It's easy to prove that β ⊗ 1 is surjective, every element of N ⊗ J
is a sum of elements of the form n ⊗ j, n ∈ N, j ∈ J which themselves can
bee seen as β ⊗ 1(m ⊗ j) for m ∈ M such that β(m) = n. It's also easy to
prove that the induced sequence is a chain complex, but we'll take a di�erent
approach, since the exactness is somewhat problematic.

So, we start with the sequence

L→M → N → 0

and we get, for any R−module U , an induced exact sequence

0→ Hom(N,Hom(J, U))→ Hom(M,Hom(J, U))→ Hom(L,Hom(J, U)).

By the natural isomorphism we get the exact sequence:

0→ Hom(N ⊗ J, U)→ Hom(M ⊗ J, U)→ Hom(L⊗ J, U)

for any U . Therefore, the sequence

L⊗ J →M ⊗ J → N ⊗ J

is exact. Since we already proved that β ⊗ 1 is surjective, the sequence

L⊗ J →M ⊗ J → N ⊗ J → 0

is exact. �



CHAPTER 1. PRELIMINARIES 14

1.3 Simplicial Homology and Cohomology

Here we'll cover a topological invariant for simplicial complexes: Their homol-
ogy. Some of the results here can be generalized adding some small technical
hypothesis.

De�nition 1.3.1. An n−simplex is just a topological space homeomorphic
to

∆n = {(t0, . . . , tn) ∈ Rn+1
≥0 :

n∑
i=0

ti = 1}.

We de�ne a face σ ⊆ ∆n by taking a subset Aσ ⊆ {0, . . . , n} and de�ning

σ = {(t0, . . . , tn) ∈ ∆n | (∀i ∈ Aσ), ti = 0}.

We then say that σ is a n− |Aσ|−face of ∆n. In this case, it's also clear that
σ is a n− |Aσ|−simplex for |Aσ| ≤ n+ 1.

We de�ne ∆−1 = ∅.
De�nition 1.3.2 (Simplicial Complex). A simplicial complex ∆ is a topo-
logical space, with a family of simplices S ⊆ {σ ⊆ ∆} such that

∆ =
⋃
S

and also for every σ, τ ∈ S we have that σ ∩ τ is a face of both σ and τ . We
say that ρ is a face of ∆ if it's a face of some simplex of ∆.

Remark. By the previous de�nition we have that every simplex σ ∈ S is
determined by its 0−faces, i.e. vertices. Otherwise, if there were σ 6= τ
both with the same vertices, this would mean σ ∩ τ is a face of σ (resp. τ),
having all its vertices, which can only be σ (since it would correspond to the
face of the simplex ∆n corresponding to the set A = ∅,which is ∆n), thus
σ = τ ∩ σ = τ .

De�nition 1.3.3. For a n−simplex σ, we de�ne its dimension by dimσ = n.
For a simplicial complex ∆ we de�ne its dimension by dim ∆ = max{dimσ :
σ ∈ S}.
De�nition 1.3.4. For a simplicial complex ∆ we can de�ne its face poset
F (∆) as the set of all its faces ordered by inclusion. It has a graded structure,
by taking

F (∆) = F0 t · · · t Fdim ∆.

where Fi = {σ ∈ F (∆) : dim σ = i}.
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Remark. A simplicial complex ∆ remains unchanged if we replace S with
F (∆). So we can add an extra condition for S: That every τ ⊆ σ is also in
S for any σ ∈ S. This means that a all the faces of a simplicial complex are
determined by its maximal faces; its facets. This also gives us a recipe for
the next de�nition.

De�nition 1.3.5 (Abstract Simplicial Complex). An abstract simplicial
complex ∆ on the vertex set V = ∆0 is a collection of subsets of V such
that if σ ∈ ∆ and τ ⊆ σ then τ ∈ ∆. The i−faces of ∆ are the elements of
∆ with i + 1 elements. This way we de�ne the dimension of both the faces
of ∆ and ∆ as above. We de�ne ∆i as the set of all the i−faces of ∆.

Remark. For a simplicial complex ∆, the face poset F (∆) is an abstract
simplicial complex on the vertex set F0. Conversely, if ∆ 6= ∅ is instead an
abstract simplicial complex, we get a simplicial complex T (∆) by replacing
all i−faces of ∆ by i−simplices, in a way they intersect according to their
intersections in ∆.

This way, the empty space ∅ corresponds to the irrelevant (abstract)
simplicial complex {∅}. The empty abstract simplicial complex ∅ does not
correspond to a simplicial complex.

Given an i−face σ = {vj0 , . . . , vji} ∈ ∆ such that jl ≤ jm for l ≤ m, we
shall denote it as σ = [vj0 , . . . , vji ].

De�nition 1.3.6 (Skeleton). Let ∆ be a simplicial complex. The simplicial
complex given by all the faces of dimension ≤ i ∈ N of ∆ is called the
i−skeleton of ∆.

De�nition 1.3.7 (Euler Characteristic). For a simplicial complex ∆, de�ne
the Euler characteristic of χ(∆) as χ(∆) = ρ− ι− 1 where ρ is the number
of faces of even dimension and ι is the number of faces of odd dimension
(counting the empty −1−face).

De�nition 1.3.8 (Chain complex of a simplicial complex and its homology).
For an abstract simplicial complex ∆ on a vertex set V (It's analogous for a
simplicial complex using its face poset) and a commutative ring with unity
R, we de�ne, for every −1 ≤ i ≤ dim ∆, Ci(∆;R) = R∆i formally, i.e. the
free R−module generated by ∆i, or more explicitly, the R−module of all the
formal sums of the form

∑
σ∈∆i

ασσ. We also de�ne boundary maps

∂i : Ci(∆;R)→ Ci−1(∆;R)
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by

∂i([vj0 , . . . , vji ]) =
i∑
l=0

(−1)l([vj0 , . . . , v̂jl , . . . , vji ])

where v̂jl means that component is removed. If we have some matrix

(aσσ′)σ∈∆i,σ′∈∆i−1

representing ∂, this means that

∂(σ) =
∑

σ′∈∆i−1,σ′⊆σ

aσσ′σ
′.

Since σ − σ′ consists in a single vertex k, we'll de�ne sgn(k, σ) as aσσ′ . This
also means that for σ = [vj0 , . . . , vji ] and k = vjl ∈ σ we have sgn(k, σ) =
(−1)l. We de�ne the simplicial homology of ∆ with coe�cients in R as
H̃i(∆;R) = ker ∂i/ im ∂i+1. The elements of Zi(∆;R) = ker ∂i are called
cycles, and the elements of Bi(∆;R) = im ∂i+1 are called boundaries.

When there is no risk of ambiguity we'll omit R in the notation, so
C•(∆;R) will be C•(∆) and every module is an R−module.

Example 1.3.1. A simplicial complex (abstract or not) can be represented
by a drawing. For example, consider the abstract simplicial complex ∆ de-
�ned on the vertex set ∆0 = {1, . . . , 6} determined by the facets

{1, 2, 4}, {1, 3, 5}, {2, 3, 6}.

This simplicial complex has the drawing:

1

2 3

4 5

6
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Computing its homology is not hard, but the calculations are a bit cumber-
some. We have to compute the chain modules:

C2(∆;R) = R[1, 2, 4]⊕R[1, 3, 5]⊕R[2, 3, 6],

C1(∆;R) = R[1, 2]⊕R[1, 3]⊕R[2, 3]⊕R[1, 4]⊕R[2, 4]⊕R[1, 5]⊕R[3, 5]

⊕R[2, 6]⊕R[3, 6],

C0(∆;R) =
6⊕
i=1

R[i],

C−1(∆;R) = R∅.

The boundary maps are also given by the following matrices (with respect
to the given bases and considering the vectors of Ci as columns):

∂2 =



1 0 0
0 1 0
0 0 1
−1 0 0
1 0 0
0 −1 0
0 1 0
0 0 −1
0 0 1


, ∂1 =


−1 −1 0 −1 0 −1 0 0 0
1 0 −1 0 −1 0 0 −1 0
0 1 1 0 0 0 −1 0 −1
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1



and ∂0 = 1 where 1 is the 1 × 6 vector with 1s as its entries. now we have
to compute the kernel and image of the three maps. We'll then have that
H̃2(∆;R) ∼= ker ∂2, H̃1(∆;R) ∼= ker ∂1/ im ∂2 and H̃0(∆;R) ∼= ker ∂0/ im ∂1.
To solve the system

∂2

xy
z

 =

0
0
0


we observe that, in particular, by computing the products with the �rst three
rows, that x = y = z = 0, so H̃2(∆;R) ∼= ker ∂2 = 0. To compute im ∂2 we
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see that for x, y, z ∈ R,

1 0 0
0 1 0
0 0 1
−1 0 0
1 0 0
0 −1 0
0 1 0
0 0 −1
0 0 1



xy
z

 =



x
y
z
−x
x
−y
y
−z
z


= x



1
0
0
−1
1
0
0
0
0


+ y



0
1
0
0
0
−1
1
0
0


+ z



0
0
1
0
0
0
0
−1
1


so im ∂2 is generated by those three vectors which are clearly a basis for it.

Now we solve the system
−1 −1 0 −1 0 −1 0 0 0
1 0 −1 0 −1 0 0 −1 0
0 1 1 0 0 0 −1 0 −1
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1




x1

x2
...
x8

x9

 =


0
0
0
0
0
0


which in particular, implies that x8 = −x9, x6 = −x7 and x4 = −x5. We also
get the relations

x2 + x3 − x7 − x9 = x1 − x3 − x5 − x8 = −(x1 + x2 + x4 + x6) = 0

which translate into

x2 + x3 + x6 − x9 = x1 − x3 + x4 + x9 = x1 + x2 + x4 + x6 = 0,

which are associated to the kernel of the 3× 6 matrix1 1 0 1 1 0
0 1 1 0 1 −1
1 0 −1 1 0 1


which can be reduced further by (carefully made) elementary row operations:1 1 0 1 1 0

0 1 1 0 1 −1
1 0 −1 1 0 1

 ∼
1 1 0 1 1 0

0 1 1 0 1 −1
0 −1 −1 0 −1 1


∼

1 1 0 1 1 0
0 1 1 0 1 −1
0 0 0 0 0 0

 ∼
1 0 −1 1 0 1

0 1 1 0 1 −1
0 0 0 0 0 0
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So x1 = x3 − x4 − x9, x2 = −x3 − x6 + x9. Therefore any vector u in the
kernel must have the form

u =



x3 − x4 − x9

−x3 − x6 + x9

x3

x4

−x4

x6

−x6

−x9

x9


= x3



1
−1
1
0
0
0
0
0
0


+ x4



−1
0
0
1
−1
0
0
0
0


+ x6



0
−1
0
0
0
1
−1
0
0


+ x9



−1
1
0
0
0
0
0
−1
1


.

These four vectors u1, u2, u3, u4 make a basis, so this submodule of R9 is
isomorphic to R4. We also see that u2, u3 and u4 + u1 are in im ∂2, which
means that u2 + im ∂2 = u3 + im ∂2 = 0 and u1 + im ∂2 = −u4 + im ∂2. So
H̃1(∆;R) is generated by u1 + im ∂2. Since no multiple of u1 is in im ∂2, we
get H̃1(∆;R) ∼= R.

Lastly, ker ∂0 : R6 → R consists on all the vectors

v =


x1

x2

x3

x4

x5

x6


such that x1 + x2 + x3 + x4 + x5 + x6 = 0, which means that

v =


x1

x2

x3

x4

x5

−x1 − x2 − x3 − x4 − x5



= x1


1
0
0
0
0
−1

+ x2


0
1
0
0
0
−1

+ x3


0
0
1
0
0
−1

+ x4


0
0
0
1
0
−1

+ x5


0
0
0
0
1
−1

 ,



CHAPTER 1. PRELIMINARIES 20

so ker ∂0 is generated by those �ve vectors v1, v2, v3, v4, v5. The image of ∂1

is just the submodule of all vectors v of the form

v =


−1 −1 0 −1 0 −1 0 0 0
1 0 −1 0 −1 0 0 −1 0
0 1 1 0 0 0 −1 0 −1
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1





x1

x2

x3

x4

x5

x6

x7

x8

x9



=


−x1 − x2 − x4 − x6

x1 − x3 − x5 − x8

x2 + x3 − x7 − x9

x4 + x5

x6 + x7

x8 + x9


Each of the vi's is in there, it can be checked making the following matrix
products for each vector, so that we can see that H̃0(∆;R) = 0:

∂1



0
−1
0
0
0
0
0
0
−1


=


1
0
0
0
0
−1

 , ∂1



0
0
0
0
0
0
0
−1
0


=


0
1
0
0
0
−1

 , ∂1



0
0
0
0
0
0
0
0
−1


=


0
0
1
0
0
−1

 , ∂1



0
0
0
1
0
−1
1
0
−1


=


0
0
0
1
0
−1
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and lastly

∂1



0
0
0
0
0
0
1
0
−1


=


0
0
0
0
1
−1

 .

The calculations above are very cumbersome, even when R is a �eld (in
which case they're still simpli�ed a lot because of theorems like rank-nullity
and other properties of the dimension of �nite dimensional vector spaces).
But there are other tools to help us make these calculations in an easier way;
two of them are the long exact sequence of homology and the Mayer-Vietoris
sequence.

Proposition 1.3.2. The sequence

C•(∆;R) : 0← C−1(∆;R)
∂0← C0(∆;R)

∂1← · · ·

is indeed a chain complex.

Proof. It's very straighforward. Let σ = [v0, . . . , vn] ∈ Cn(∆). Then

∂n(σ) =
n∑
i=0

(−1)i(σ − vi)

and

∂n−1∂n(σ) =
∑
j<i

(−1)j(−1)i(σ − vi − vj) +
∑
j>i

(−1)j−1(−1)i(σ − vi − vj)

=
∑
j<i

(−1)j(−1)i(σ − vi − vj) +
∑
j<i

(−1)i−1(−1)j(σ − vi − vj)

=
∑
j<i

(−1)j(−1)i(σ − vi − vj)−
∑
j<i

(−1)i(−1)j(σ − vi − vj)

= 0

�
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This can be generalized a bit.

De�nition 1.3.9 (Homology of chain complex). For a chain complex

C : · · · ∂i−1← Ci−1
∂i← Ci

∂i+1← Ci+1
∂i+2← · · ·

we de�ne the homology of C, denoted Hi(C) as ker ∂i/ im ∂i+1. When the
chain complex comes from a simplicial complex, we'll denote Hi(∆;R), if
we take C−1(∆;R) = 0 or H̃i(∆;R) if we consider C−1(∆;R) = R. In the
second case the notation C will be replaced by C̃ and H̃ will be called reduced
homology. The elements of the set Zi(C) = ker ∂i will be called cycles and
the elements of the set Bi(C) = im ∂i+1 will be called boundaries.

De�nition 1.3.10. A homomorphism φ : C → D of two chain complexes
(C, ∂), (D, δ) is just a sequence of maps φ = (φi : Ci → Di)i such that the
following diagram commutes (i.e. the rectangle in the diagram commutes for
every i):

· · · Ci−1 Ci · · ·

· · · Di−1 Di · · ·

∂i−1 ∂i ∂i+1

δi−1 δi δi+1

φi−1 φi

De�nition 1.3.11. A chain complex (resp. exact sequence) of chain com-
plexes is just a sequence (Ai, φi)i∈Z:

· · · φi−1← Ai−1
φi← Ai

φi+1← Ai+1
φi+2← · · ·

such that for every i ∈ Z, Ai is a chain complex, φi is a homomorphism of
chain complexes and the sequence:

· · · φi−1,j← Ai−1,j
φi,j← Ai,j

φi+1,j← Ai+1,j
φi+2,j← · · ·

is a chain complex (resp. exact) for every j. I In particular,

0→ A→ B → C → 0

is a short exact sequence of chain complexes if

0→ Aj → Bj → Cj → 0

is a short exact sequence of modules for every j.
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Theorem 1.3.3 (Long exact sequence of homology). If there is a short exact
sequence of chain complexes:

0→ A
α→ B

β→ C → 0

for chain complexes (A, γ), (B, δ), (C, ε)then there is a long exact sequence:

· · ·
β∗i+1→ Hi+1(C)

∂i+1→ Hi(A)
α∗i→ Hi(B)

β∗i→ Hi(C)
∂i→ Hi−1(A)

α∗i−1→ · · ·

where the homomorphisms α∗i , β
∗
i , ∂i are to be de�ned in the proof.

Proof. We have the following commutative mesh with exact rows:

0 Ai Bi Ci 0

0 Ai−1 Bi−1 Ci−1 0

0 Ai+1 Bi+1 Ci+1 0

...
...

...

...
...

...

αi+1 βi+1

αi−1 βi−1

αi βi

γi+1

γi

δi+1

δi

εi+1

εi

First we want to de�ne the maps α∗, β∗, ∂ of the sequence. To de�ne α∗i
consider αi : Ai → Bi. Since α is a chain complex homomorphism then
αi : Ai → Bi maps ker γi into ker δi and im γi+1 into im δi+1. So �rst we can
take α′i = αi|ker γi : ker γi → ker δi. Thus, there is a unique map α∗i : Hi(A)→
Hi(B) such that the following diagram commutes:

ker γi ker δi

Hi(A) Hi(B)

α′i

α∗i

πAi
πBi
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where πAi
, πBi

are the canonical maps. So that's how α∗ and β∗ are de�ned.
About how ∂ is de�ned, we'll focus on the following part of the mesh:

Bi Ci 0

0 Ai−1 Bi−1 Ci−1 0
αi−1 βi−1

βi

δi εi

So, take [z] ∈ Hi(C) for z ∈ ker εi (a cycle) so that εi(z) = 0. Since βi is
surjective, then there exists some b ∈ Bi such that z = βi(b). But since
εiβi = βi−1δi, then δi(b) ∈ ker βi−1 = imαi−1. So there is a ∈ Ai−1 such
that αi−1(a) = δi(b). But also αi−2γi−1 = δi−1αi−1, so since δi−1αi−1(a) =
δi−1δi(b) = 0, we get αi−2γi−1(a) = 0, and since αi−1 is injective this means
γi−1(a) = 0 so a ∈ ker γi−1 and [a] ∈ Hi−1(A). So just de�ne ∂i([z]) = [a]. So
we have just gone backwards through the mesh

Bi Ci

Ai−1 Bi−1

αi−1

βi

δi

zb

δi(b)a

just to �nd a. This choice of a might a priori be dependent on the choice
of the representative z of [z] and on the choice of b, so we must prove these
choices don't a�ect the homology class of a, by showing that ∂i is a well
de�ned map.

To do that, suppose [z] = [z′] so that z − z′ ∈ im εi+1, and we'll do the
process of �nding a, a′ for both of the representatives z, z′. Take b, b′ ∈ B such
that βi(b) = z, βi(b

′) = z′, so βi(b− b′) = z − z′. Also, since z − z′ ∈ im εi+1,
take c such that εi+1(c) = z−z′. Since βi+1 is surjective there exists b

′′ ∈ Bi+1

such that βi+1(b′′) = c, so, since the diagram
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Bi+1 Ci+1

Bi Ci
βi

βi+1

δi+1 εi+1

commutes, we have εi+1βi+1(b′′) = βiδi+1(b′′) = z − z′. Thus

βi(b− b′ − δi+1(b′′)) = 0.

This means that there is a′′ ∈ Ai such that αi(a
′′) = b− b′ − δi+1(b′′). Now,

δi(b− b′ − δi+1(b′′)) = δi(b)− δi(b′) = δiδi+1(b′′) = δ(b)− δ(b′).

If we take a, a′ such that αi−1(a) = δi(b), αi−1(a′) = δi(b
′) then

αi−1(a− a′) = δi(b)− δi(b′) = δi(b− b′ − δi+1(b′′)) = δiαi(a
′′).

So, since the diagram

Ai Bi

Ai−1 Bi−1αi−1

αi

γi δi

commutes, we have

αi−1γi(a
′′) = δiαi(a

′′) = αi−1(a− a′),

so since αi−1 is a monomorphism, we get get γi(a
′′) = a − a′. So a − a′ is a

boundary (lies in the image of γi) and [a− a′] = [a]− [a′] = 0, thus [a] = [a′],
therefore ∂i([z]) = ∂i([w]), so ∂i is indeed a well de�ned function.

To check it's a homomorphism, note that if you take cycles z, w ∈ Ci,
and b, b′ such that βi(b) = z, βi(b

′) = w, and then a, a′ such that αi−1(a) =
δi(b), αi−1(a′) = δi(b

′) then αi−1(a + a′) = δi(b + b′) and βi(b + b′) = z + w.
So ∂([z + w]) = [a+ a′] = [a] + [a′] = ∂([z]) + ∂([w]).

Now we only have to prove that the new sequence is exact. Start with a
cycle a such that α∗i ([a]) = 0 so that αi(a) is a boundary in Bi. So βiαi(a) is a
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boundary in Ci, therefore [βiαi(a)] = β∗i α
∗
i ([a]) = 0. Conversely suppose that

[b] is such that β∗i ([b]) = 0, so that c = βi(b) is a boundary in Ci. So there
is some c′ ∈ Ci+1 such that εi+1(c′) = c. Also since βi+1 is surjective there is
b′′ ∈ Bi+1 such that βi+1(b′′) = c′. Set b′ = δi+1(b′′). Then βi(b

′) = βi(b) = c.
Thus βi(b− b′) = 0, so there is some a ∈ Ai such that αi(a) = b− b′. But b is
a cycle and b′ is a boundary, so since the diagram above commutes we have

αi−1γi(a) = δiαi(a) = δi(b− b′) = 0,

but since αi−1 is injective, this means that γi(a) = 0, and a is a cycle. So
α∗i ([a]) = [b− b′] = [b], therefore ker β∗i = imα∗i .

Now, we need to prove that ker ∂i = im β∗i . Take a cycle z of Ci such
that ∂i([z]) = 0. This means that, for b ∈ Bi such that βi(b) = z we have
0 = δi(b), so b is a cycle in Bi and βi(b) = z, which means that β∗i ([b]) = [z].
Conversely if we take a cycle b then ∂i(β

∗
i ([b])) = 0 since δi(b) = 0 and αi−1

is injective.
Lastly, to prove that kerα∗i = im ∂i+1, suppose �rst that we take a cycle

a such that α∗i ([a]) = 0. Then αi(a) is a boundary in Bi and there is b ∈
Bi+1 such that δi+1(b) = αi(a). Let z = βi+1(b). Then z is a cycle in
Ci+1 since εi+1(z) = βi(αi(a)) = 0. Also, by the construction of ∂ we have
∂i+1([z]) = [a]. Conversely, if we take cycles z ∈ Ci+1 and a ∈ Ai+1 such that
∂i+1([z]) = [a] then αi(a) is a boundary, thus α∗i ∂i+1([z]) = 0. Therefore, the
sequence is exact, which is the desired result. �

We can learn two important things from this long and convoluted, but
easy proof. First we'll talk about relative homology.

De�nition 1.3.12 (Relative homology). For a simplicial complex ∆ and a
subcomplex A ⊆ ∆ (A subspace of ∆ which is a simplicial complex with all its
simplices being faces of ∆), de�ne Ci(∆, A) = Ci(∆)/Ci(A) and H̃i(∆, A) =
Hi(C(∆, A)).

This states implicitly that Ci(∆, A) is a chain complex. We must wonder
how are the boundary maps de�ned, but this is not a problem:

δi : Ci(∆, A)→ Ci−1(∆, A)

is the only map making the following diagram commute
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Ci(∆)Ci−1(∆)

Ci(∆, A)Ci−1(∆, A)

∂i

δi

πiπi−1

This map is well de�ned since ∂i sends Ci(A) into Ci−1(A). This can easily be
made explicit: A basis for Ci(∆, A) is given by all the faces σ = [v0, . . . , vi] ∈
∆i − Ai, so

δi(σ) =
i∑

j=0

uσ,j(−1)j(σ − {vj}).

where uσ,j = 1 i� σ − {vj} /∈ A, otherwise uσ,j = 0. This can be written as
follows:

δi(σ) =
∑
v∈σ

σ−{v}/∈A

sgn(v, σ)(σ − {v}).

Proposition 1.3.4. There is a long exact sequence:

· · ·
β∗i+1→ H̃i+1(∆, A)

∂i+1→ H̃i(A)
α∗i→ H̃i(∆)

β∗i→ H̃i(∆, A)
∂i→ H̃i−1(A)

α∗i−1→ · · ·

Proof. There is a short exact sequence

0→ C(A)
α→ C(∆)

β→ C(∆, A)→ 0

where α is induced by the direct image of the inclusion A ↪→ ∆ on its
faces (So it becomes the inclusion C(A) ↪→ C(∆)), and β is the canonical
projection. �

Proposition 1.3.5 (Mayer-Vietoris sequence). For a simplicial complex X,
and A,B subcomplexes such that X = A∪B, there is a long exact sequence:

· · · ∂i+1→ H̃i(A ∩B)
α∗i→ H̃i(A)⊕ H̃i(B)

β∗i→ H̃i(X)
∂i→ H̃i−1(A ∩B)

α∗i−1→ · · ·

Proof. There is a natural short exact sequence:

0→ C(A ∩B)
α→ C(A)⊕ C(B)

β→ C(X)→ 0,

for α = (ιA,−ιB), β = ι′A+ι′B where ιA, ιB, ι
′
A, ι
′
B are induced by the inclusions

given by the following diagram:
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A ∩B

AB

X

ιIιJ

ι′Iι′J

�

For the Mayer-Vietoris sequence, it's really easy to make the homomor-
phism ∂ : H̃i(X)→ H̃i(A ∩B) explicit. Take a cycle

z =
∑
σ∈Ai

rσσ +
∑

σ∈Bi−Ai

rσσ ∈ Zi(X).

Since it's a cycle, its boundary is 0, and if we take

x =
∑
σ∈Ai

rσσ ∈ Ci(A), y =
∑

σ∈Bi−Ai

rσσ ∈ Ci(B),

we get
∂(x) = −∂(y),

so ∂(x) ∈ Ci−1(A ∩ B). So, just de�ne ∂([z]) = [∂(x)], since α(∂(x)) =
(∂(x),−∂(x)) = (∂(x), ∂(y)).(i)

Proposition 1.3.6 (Euler Characteristic). For a simplicial complex of di-
mension n,

χ(∆) =
n∑
i=0

rankHi(∆,Z).

By the fundamental theorem for �nitely generated abelian groups every
abelian group Q can be decomposed as

Q = Zn ⊕ T
(i)Here we're abusing the notation by letting lots of ∂s have the same name, making

it tacit that when we say ∂([z]) we're talking about ∂i : H̃i(X) → H̃i(A ∩ B), where

the i is determined by the location of [z], and when we say ∂(x) we're talking about

∂i : Ci(A)→ Ci−1(A) where A, i are determined by the location of x.
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where T is a torsion subgroup. As used in the previous proposition, the rank
of the abelian group Q will be de�ned as n. Similarly, for a free R−module
Rn over a ring R, its rank will be n. A similar de�nition can be given more
generally over principal ideal domains.

Proof of 1.3.6. Consider a chain complex (C, φ) denote Hi(C) by Hi and by
Zi, Bi the cycles and boundaries of C respectively.

Then, for each i, we have an exact sequence

0→ Bi → Zi → Hi → 0,

and one
0→ Zi → Ci → Bi−1 → 0.

Then it's easy to check that

rankZi = rankBi + rankHi

and
rankCi = rankZi + rankBi−1.

So, rankCi = rankBi + rankHi + rankBi−1, which means that∑
i

(−1)i rankCi =
∑
i

(−1)i(rankBi + rankBi−1) +
∑
i

(−1)i rankHi.

Since
∑

i(−1)i(rankBi + rankBi−1) = 0, we get∑
i

(−1)i rankCi =
∑
i

(−1)i rankHi.

Applying it to the chain complex C = C(∆;Z), and since rankCi = |∆i| and
(−1)i = 1 i� i is even and −1 otherwise, we have the result. �

De�nition 1.3.13 (Chain homotopy). We say a map α : C → D are chain-
null-homotopic if there is a sequence of maps hi : Ci → Di+1 such that given
the following diagram:

· · · Ci−1 Ci Ci+1 · · ·

· · · Di−1 Di Di+1 · · ·

∂i+2∂i−1 ∂i ∂i+1

δi+2δi−1 δi δi+1

hihi−1αi−1 αi αi+1
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we have hi−1∂i + δi+1hi = αi for every i. We say two maps α, β : C → D
are chain-homotopic if α− β is chain-null-homotopic. The map h is called a
chain homotopy, and we say α ' β or α 'h β when the map h is relevant.

Proposition 1.3.7. If a map α : C → D is chain-null-homotopic then the
induced homomorphisms in homology are 0.

Proof. As in the proof of the long exact sequence of homology, α maps cycles
into cycles and boundaries into boundaries so it induces maps α∗i : Hi(C)→
Hi(D) by α∗i ([z]) = [αi(z)] for z ∈ Zi(C). Since α is chain-null-homotopic
we have

αi(z) = hi−1∂i(z) + δi+1hi(z) = δi+1(hi(z))

which is clearly a boundary of D so its homology class is 0. Therefore α∗i = 0
for every i. �

Corollary 1.3.8. If α, β : C → D are chain-homotopic then they induce the
same homomorphisms in homology.

De�nition 1.3.14. Given two chain complexes C,D, then we say they are
chain-homotopically equivalent if there are maps α : C → D and β : D → C
such that βα ' 1C and αβ ' 1D.

Proposition 1.3.9. If two chain complexes C,D are chain-homotopically
equivalent then they have the same homology.

Proof. Since there are maps α : C → D and β : D → C such that βα ' 1C
and αβ ' 1D then (βα)∗i = β∗i α

∗
i : Hi(C) → Hi(C) and (αβ)∗i = α∗iβ

∗
i :

Hi(D) → Hi(D) are identity maps, therefore α∗i , β
∗
i are isomorphisms for

every i. �

We'll use these results to give a convoluted proof of an elementary fact:
That a simplex has trivial homology. This can be proven using the fact that
a simplex is contractible, and that homology remains invariant under defor-
mations. We haven't introduced deformations, but we can use the argument
behind their validity to make it work here.

Example 1.3.10. Let ∆ be the full simplex on V = {1, . . . , n}, i.e. ∆ =
℘(V ). We'll show that the complexes C(∆) and C(1) are homotopically
equivalent. The candidate map c : C(1) → C(∆) is just the induced map
1 7→ k for a �xed k ∈ V . This one induces an inclusion C0(1)→ C0(∆), the
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identity map C−1(1) → C−1(∆) and the zero map everywhere else. For its
homotopical inverse we'll take the map induced by sending every x ∈ V into 1.
This map induces the C−1(1)← C−1(∆), a kind of projection C0(1)← C0(∆)
and the zero map everywhere else. By a composition of these two maps and
a di�erence with the identity we have a new map f : C(∆) → C(∆), which
�ts into the following diagram:

· · ·C0(∆) C1(∆)C−1(∆)

C−1(∆)

0

0 · · ·C0(∆) C1(∆)

∂0 ∂1

∂1∂0

∂2

∂2

f1f0f−1

There, f0 is just the map induced by v 7→ v − 1 (This di�erence is formal)
for every v ∈ V , f−1 = 0 and fi = 1Ci(∆) for i > 0. We want to prove that f
is chain-null-homotopic. A chain-null-homotopy h is given by

hi(σ) = σ ∪ {1}

if 1 /∈ σ and 0 if 1 ∈ σ, for i ≥ 0 and σ ∈ ∆i. For i = −1 just de�ne h−1 = 0.
Now we prove that, for every i,

∂i+1hi + hi−1∂i = fi.

First suppose that i = −1. Then since h−1(∅) = 0 we get that ∂0h−1 = 0 =
f−1. For i = 0, and a vertex v ∈ V we have h0(v) = [1, v] and ∂1h0(v) =
v − 1 = f0(v). Since h−1 = 0 then the result holds. Now, for i > 0, consider
σ ∈ ∆i. If 1 ∈ σ then hi(σ) = 0, so that ∂i+1hi(σ) = 0. Furthermore ∂i(σ)
is a linear combination of faces σ′ such that exactly one of them does not
contain 1. The coe�cient in such σ′ is (−1)0 = 1, so hi−1(∂i(σ)) = hi−1(σ′) =
σ′ ∪ {1} = σ. If, otherwise, 1 /∈ σ = {v0, · · · , vi}, then not a single such face
σ′ contains 1, so

hi−1(∂i(σ)) =
i∑
l=0

(−1)l((σ − {vl}) ∪ {1})
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Also hi(σ) = σ ∪ {1} and

∂i+1(hi(σ)) = (−1)0σ +
i+1∑
l=1

(−1)l((σ ∪ {1})− {vl−1})

= σ +
i+1∑
l=1

(−1)l((σ − {vl−1}) ∪ {1})

= σ +
i∑
l=0

(−1)l+1((σ − {vl}) ∪ {1})

= σ −
i∑
l=0

(−1)l((σ − {vl}) ∪ {1})

= σ − hi−1(∂i(σ))

Therefore, as expected, we have

∂i+1hi + hi−1∂i = fi,

for every i. The composition g : C(1) → C(1) in the remaining order is
just the identity map, so there is nothing to prove here. This means the
chain complex of a n−simplex is chain-homotopically-equivalent to the chain
complex of a 0−simplex, which has trivial homology. We're thus done.

De�nition 1.3.15. We say a simplicial complex ∆ is connected if and only if
for any two vertices x, y, there is a x− y−path, i.e. a path in the 1−skeleton
of ∆ connecting x and y.

This means that ∆ is connected i� its 1−skeleton is connected.

Proposition 1.3.11. If ∆ is a connected simplicial complex over the vertex
set V = {v1, · · · vn} then H̃0(∆) = 0.

Proof. We need to prove that ker ∂0 = im ∂1. We already have that im ∂1 ⊆
ker ∂0. So let

s =
n∑
i=1

αivi ∈ ker ∂0
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so that
n∑
i=1

αi = 0

Fix a vertex v ∈ V and take a v − vi−path τi = {e1i, . . . , erii} for each i.
Consider τi as the 1−chain

τi =

ri∑
j=1

eji

so that by a telescopic property, ∂1(τi) = vi − v. Let

t =
n∑
i=1

αiτi.

Then

∂1(t) =
n∑
i=1

αivi −
n∑
i=1

αiv =
n∑
i=1

αivi = s

since
n∑
i=1

αiv = v
n∑
i=1

αi = 0.

Therefore, ker ∂0 = im ∂1 and H̃0(∆) = 0. �

With all this we can compute lots of homologies!

Proposition 1.3.12. Let X = A t B for simplicial complexes A,B. Then,
for all i ≥ 1,

H̃i(X) ∼= H̃i(A)⊕ H̃i(B).

For i = 0 we have H̃i(X) ∼= H̃i(A)⊕ H̃i(B)⊕R.
Proof. In the Mayer-Vietoris sequence for X = A ∪ B, we have A ∩ B = ∅,
so for i ≥ 0, H̃i(A ∩ B) = 0. But H̃−1(A ∩ B) = R. Therefore the sequence
divides into the short exact sequences:

0→ H̃i(A)⊕ H̃i(B)→ H̃i(X)→ 0

for each i ≥ 1 and

0→ H̃0(A)⊕ H̃0(B)→ H̃0(X)→ R→ 0.

But a short exact sequence of this kind always splits: since H̃0(X) → R is
surjective �nding a section is just �nding a preimage of 1 ∈ R. Therefore
H̃0(X) ∼= H̃0(A)⊕ h0(B)⊕R. �



CHAPTER 1. PRELIMINARIES 34

Proposition 1.3.13. Let X = A ∨ B, for simplicial complexes A,B. This
is, A∩B consists in a single vertex. Then H̃i(X) ∼= H̃i(A)⊕ H̃i(B) for all i.

Proof. In the Mayer-Vietoris sequence for A∪B = X, H̃i(A∩B) = 0 for all
i. �

The space A ∨B is called the wedge sum of A,B.

Example 1.3.14. Remember the simplicial complex of example 1.3.1:

1

2 3

4 5

6

If A,B,C are the simplices {1, 2, 4}, {2, 3, 6}, {1, 3, 5}, then X = (A∪B)∪C.
The Mayer-Vietoris sequence for this union is

· · · → H̃i(1 t 2)→ H̃i(A ∪B)⊕ H̃i(C)→ H̃i(X)→ · · · .

Since A ∪ B is the wedge of A and B, and A,B,C are simplices we have,
H̃i(A∪B) = H̃i(C) = 0 for all i. Thus, the Mayer-Vietoris sequence separates
in sequences

0→ H̃i(X)→ 0

for i > 1,
0→ H̃1(X)→ H̃0(1 t 2)→ 0

and 0→ H̃0(X)→ 0. For i < 0, everything is already 0.
Therefore, H̃i(X) = 0 for i 6= 1 and H̃1(X) ∼= H̃0(1 t 2) = R. With all

our theory these calculations became a lot simpler.

We're interested in one more result from algebraic topology. It is a par-
ticular case of the Universal Coe�cient Theorem for cohomology.

For a simplicial complex ∆ and its associated chain complex C•(∆;R) we
can de�ne its dual complex C•; its homology will be called the cohomology
of ∆ with coe�cients in R.



CHAPTER 1. PRELIMINARIES 35

De�nition 1.3.16. For a simplicial complex ∆ de�ne C•(∆;R) as

C•(∆;R)∗ = Hom(C•(∆;R), R).

The homology ker ∂∗i+1/ im ∂∗i of C•(∆;R) will be called the cohomology of
∆ with coe�cients in R and denoted by H i(∆;R). The elements of the
set Zi(∆;R) = ker ∂∗i+1 will be called cocycles, and the elements of the set
Bi(∆, R) = im ∂i will be called coboundaries.

The boundary maps of the cochain complex C•, called coboundary maps
can easily be made explicit: If we take φ ∈ Cj(∆;R) then, for

τ = [v0, · · · , vn+1] ∈ Cj+1(∆;R)

we have

∂∗j+1(φ)(τ) = φ ◦ ∂j+1(τ) =

j+1∑
i=0

(−1)iφ(τ − {vi}).

In particular, for the basis ∆j of Cj(∆;R) and σ ∈ ∆j if we take the
maps fσ : Cj(∆;R) → R (These maps form a basis for Cj(∆)) determined
by

fσ(σ′) = δσσ′

where δ is the Kronecker delta, then this means that

∂∗j+1(fσ)(τ) =

j+1∑
i=0

(−1)ifσ(τ − {vi})

so that
∂∗j+1(fσ) =

∑
v 6∈σ

σ∪v∈∆

sgn(v, σ ∪ {v})fσ∪{v}

since fσ(τ − {v}) 6= 0 if and only if τ − {v} = σ, i.e. when τ = σ ∪ {v}, in
which case fσ(τ − {v}) = 1; and since vi is the i−th element of τ .

We were unexpectedly ready to prove the following weak version of the
Universal Coe�cient theorem for cohomology, with just the de�nition of
cohomology (And a bit of linear algebra):

Theorem 1.3.15 (Universal Coe�cient Theorem for Cohomology). Let k
be a �eld. Then there exists an isomorphism:

h : H i(∆; k)→ Homk(Hi(∆; k), k).
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Proof. Take [f ] ∈ H i(∆; k) for a cocycle f , i.e. a linear map f : Ci(∆; k)→ k
such that ∂∗i+1(f) = f∂i+1 = 0. We can restrict f to Zi(∆; k), and since
f∂i+1 = 0 this means that f |Bi(∆;k) = 0. Thus, there exists a unique linear

map f̃ : Hi(∆; k)→ k such that the following triangle commutes

Zi(∆; k)

Hi(∆; k)

k

π

f

f̃

where π is the canonical map. So just de�ne h([f ]) = f̃ . Since this choice
might depend on the choice of representative [f ] we must �rst prove that
h is a well de�ned function. Let f, f ′ be cocycles such that [f ] = [f ′], i.e.
f − f ′ ∈ Bi(∆; k), so that there exists g such that ∂∗i (g) = g∂i = f − f ′.
Then, for x ∈ Zi(∆; k) we have

(f − f ′)(x) = g∂i(x) = g(0) = 0.

So, while f and f ′ may be di�erent maps, their restrictions to Zi(∆; k) are
the same: The induced maps f̃ , f̃ ′ are the same one. So this is indeed
a well de�ned function. It's clearly surjective: If you take a linear map
q : Hi(∆; k) → k, then, for π : Ci(∆, k) → Hi(∆, k), the map f = qπ is a
well de�ned linear functional on Ci(∆; k) such that for all

∂∗i+1f(c) = f∂i+1(c) = qπ∂i+1(c) = q(0) = 0,

thus f is a cocycle and h([f ]) = q. Therefore, h is indeed surjective.
It's also a homomorphism. Indeed, if we take f, f ′ representatives of

[f ], [f ′] ∈ H i(∆; k) then, for any cycle z ∈ Zi(∆; k) we have

f̃ + f ′([z]) = (f + f ′)(z) = f(z) + f ′(z) = f̃([z]) + f̃ ′([z]),

therefore h([f ] + [f ′]) = h([f ]) + h([f ′]) and h is a homomorphism. Now we
must prove that h is injective. Suppose f is such that h([f ]) = 0. This means
that f(z) = 0 for every z ∈ Zi(∆, k). We must build some g ∈ Ci−1(∆; k)
such that ∂∗i (g) = g∂i = f . Since k is a �eld this is easy. Take a basis B of
∂i(Zi(∆; k)), a basis E of Bi−1(∆; k) extending B and a basis F of Ci−1(∆; k)
extending E . For every b ∈ B de�ne g(b) = 0. For every b = ∂i(c) ∈ E − B
de�ne g(b) = f(c). For every b ∈ F − E de�ne g(b) arbitrarily. If we prove
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that the value of g(b) does not depend on the choice of the preimage c then
we can extend g by linearity to all Ci−1(∆; k). So consider c, c′ such that
∂i(c) = ∂i(c

′) = b. Then ∂i(c − c′) = 0 so c − c′ is a cycle and f(c − c′) =
f(c) − f(c′) = 0, so f(c) = f(c′). Thus g becomes a well de�ned linear
map Ci−1(∆; k) → k, and by construction f(x) = g(∂i(x)) for every x, i.e.
f = ∂∗i g. This means that, f is a coboundary and [f ] = 0. Therefore h is
injective, and an isomorphism. �

The strategy for the proof is purely linear algebra, but it's not a coin-
cidence. We didn't use the fact that k is a �eld until we wanted to prove
the injectiveness of h. We didn't even use much the ring structure of k as
the codomain of the cocycles and maps Hi(∆; k) → k. In the more general
case, for a Principal Ideal Domain R and an R−module N , the proof shows
h : H i(∆;N)→ HomR(Hi(∆;R), N) is an epimorphism, so there is an exact
sequence of the form

H i(∆;N)→ HomR(Hi(∆;R), N)→ 0.

The idea of the complete form of the Universal Coe�cient Theorem is to
discover the structure of the module M = kerh, which �ts into the following
short exact sequence:

0→M → H i(∆;N)→ HomR(Hi(∆;R), N)→ 0.

In our case, this module will be 0 thanks to the fact that every k−vector space
V has a basis, and every linearly independent set of V is contained in a basis.
In the Principal Ideal Domain case, we won't have a longer exact sequence
because free resolutions are short enough (submodules of free modules are
free). We'll talk about free resolutions soon.

This also means that when a simplicial complex has a �nite number of
simplices of each dimension, the homology and cohomology groups will be
(non-naturally) isomorphic.

1.4 Homological Algebra

Here we'll talk about the fundamentals of homological algebra needed to give
a proof of Hochster's formula. Once we do that, surprisingly, we won't need
many of the results given here; using Hochster's formula and Mayer-Vietoris
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sequences we'll be able to prove many things in a more arithmetical and
combinatorial way.

A chain complex

M• : 0←M0
φ1←M1

φ2←M2 ← · · ·

of R−modules is said to be a free resolution of an R−module M if M is
exact everywhere except in the homological degree 0, and M ∼= cokerφ1 =
M0/ imφ1. Analogously,M is a free resolution if the sequence

M′
• : 0←M

φ0←M0
φ1←M1

φ2←M2 ← · · ·

is exact everywhere, where φ0 is the projection (since M ∼= cokerφ1). We'll
name both M and M′ as M and use one or the other according to the
context.

The following proposition can be generalized to projective resolutions,
but since we'll be working over a polynomial ring we'll have enough with free
ones.

Proposition 1.4.1. Any two free resolutions (M, φ), (N , ψ) of a R−module
M are chain-homotopically equivalent.

Proof. We'll construct the maps α :M→N , β : N →M inductively. Then
we'll similarly build the appropiate chain homotopies. First, we start with
the following commutative tree with the directed paths exact:

M0 N0

M

0

φ0 ψ0

Take a basis B of M0. Then φ0(B) ⊆M , and for each b ∈ B0 there is c ∈ N0

such that ψ0(c) = φ0(b). Make some choice cb of such c and de�ne α0(b) = cb.
Now we have the following diagram
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M0 N0

M1 N1

M

0

φ0 ψ0

φ1 ψ1α0

and by exactness of the free resolutions (After augmenting them with M),
the boundaries in M0 are sent into boundaries in N0 by α0.

Inductively, we want to build αi with the assumptions that we have been
able to build αi−1, αi−2 (For i = 1 we say α−1 = 1M) making the diagram

Mi−2 Ni−2

Mi−1 Ni−1

φi−1 ψi−1

αi−2

αi−1

commute. So, as before, we take a basis B of Mi, which is sent into Mi−1 by
φi and then into Ni−1 by αi−1. Because of the diagram above, adn since the
images of B in Mi−1 are mapped onto 0 in Mi−2 by φi−1, αi−1(φi(B)) is also
mapped onto 0 in Ni−2 by ψi−1, so by exactness U = αi−1(φi(B)) ⊆ imψi.
Make some choice of preimages of U in Ni and de�ne αi by mapping B into
this choice. By construction, αi makes the diagram

Mi−1 Ni−1

Mi Ni

φi ψi

αi−1

αi

commute. De�ne β : N → M the same way. Now, to prove that βα ' 1M
we take γ :M→M = βα − 1M and we'll prove γ is chain-null-homotopic.
First, γ−1 = 0, so we can de�ne, for i ≤ −1, hi : Mi →Mi+1 as 0.

Now, γ0 makes the diagram:

M M

M0 M0

φ0 φ0

0

γ0
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commute. Since 0φi = φiγ0 = 0, then im γ0 ⊆ imφ1. Choose a basis B forM0,
and make a choice of preimages inM1 of γ0(B). De�ne h0 : M0 →M1 to map
B into this choice. Then φ1h0 = γ0 and since h−1 = 0 then γ0 = φ1h0+h−1φ0.

So, now suppose we've been able to de�ne the part hj of the chain-
homotopy for −1 ≤ j < i and we want to de�ne hi.

In the diagram

Mi−2 Mi−2

Mi−1 Mi−1

Mi Mi

φi φi
γi−1

γi

φi−1 φi−1

γi−2

hi−2

hi−1

we have γi−1 = φihi−1 + hi−2φi−1. We want to de�ne hi : Mi → Mi+1 such
that γi = hi−1φi + φi+1hi, or which is the same, that γi − hi−1φi = φi+1hi.

Note that

φiγi = γi−1φi = φihi−1φi + hi−2φi−1φi = φihi−1φi

so
φi(γi − hi−1φi) = 0.

Therefore, by exactness im(γi−hi−1φi) ⊆ imφi+1. So, taking a basis B ofMi,
we can make a choice of preimages in Mi+1 of (γi − hi−1φi)(B), and de�ne
hi to map B into this choice. This assures us that φi+1hi = γi − hi−1φi,
as desired. Therefore γ = βα − 1M is chain-null-homotopic and βα ' 1M.
Analogously αβ ' 1N . ThereforeM' N . �

Now we're interested in giving a de�nition of Tor suitable to our purposes.
This is, our ring is S = k[x1, . . . , xn, every module is a S−module, and we
will only be working with free resolutions instead of projective ones. This, as
many things in the previous sections, can be generalized a lot, nonetheless,
and many proofs are very similar. For the sake of keeping it as simple as
possible, we won't generalize it. In the previous sections we proved that ⊗
is a right-exact functor, i.e. a sequence

L→M → N → 0
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of S−modules gives rise to an induced sequence

L⊗ J →M ⊗ J → N ⊗ J → 0

for any S−module J . We want to �nd some functorial construction of
S−modules Fi(−, J) such that we have a long exact sequence

· · · → Fi(L, J)→ Fi(M,J)→ Fi(N, J)→ · · ·
→ F1(N, J)→ L⊗ J →M ⊗ J → N ⊗ J → 0.

De�nition 1.4.1 (Tor). We de�ne Tor(M,J) = Hi(M⊗ J) whereM is a
free resolution of M .

Proposition 1.4.2. The de�nition above makes sense. This is, Tor(M,N)
does not depend on the choice of the free resolution.

Proof. Consider free resolutionsM,N ofM . ThenM,N are homotopically
equivalent, i.e. there exist α : M → N and β : N → M such that βα '
1M, αβ ' 1N . Let h : Mi →Mi+1 the homotopy between βα and 1M.

Now, when tensoring with J we have the maps βα⊗1J and h⊗1J . We shall
prove that h⊗1J is a chain-homotopy between βα⊗1J and 1M⊗1J = 1M⊗J .
This is purely arithmetical.

Check that for an element of the form m⊗ j ∈Mi ⊗ J we have

(βiαi ⊗ 1J − 1M ⊗ 1J)(m⊗ j) = βiαi(m)⊗ j −m⊗ j = (βiαi(m)−m)⊗ j.

so for any i βiαi ⊗ 1J − 1M ⊗ 1J = (βiαi − 1M) ⊗ 1J . Since βiα − 1M =
hi−1φi + φi+1hi and as above,

(hi−1φi + φi+1hi)⊗ 1J = (hi−1 ⊗ 1J)(φi ⊗ 1J) + (φi+1 ⊗ 1J)(hi ⊗ 1J),

we have that

(βiαi − 1M)⊗ 1J = (hi−1 ⊗ 1J)(φi ⊗ 1J) + (φi+1 ⊗ 1J)(hi ⊗ 1J).

This means that (βiαi) ⊗ 1J ' 1M ⊗ 1J , and by similar means we get that
αiβi⊗1J ' 1N ⊗1J , therefore α⊗1J :M⊗J → N ⊗J is a chain-homotopy
equivalence, soM⊗ J and N ⊗ J have the same homology. �

Now we observe that Tor(M,J) can also be computed by using a free
resolution of J . An elementary proof can be found in [8].

Proposition 1.4.3 (Theorem 6.32, [8]). Let J be a free resolution of J .
Then Tor(M,J) ∼= Hi(M ⊗ J ).
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1.5 Hypergraphs and Their Ideals

The ideals described here will be the ones we'll be mostly working on. There
is a lot of theory about these ideals given in [10] or [4], but most of it won't
be needed for our work here.

De�nition 1.5.1. A hypergraph G is a pair (V,E) where V = V (G) is a set
(called vertex set) and E = E(G) is a set of nonempty subsets of V (called
edge set).

Note that when every e ∈ E satis�es |e| = 2, then G is a graph. When
for any e ∈ E and f ⊆ e we have f ∈ E then G is a simplicial complex.

De�nition 1.5.2. Let k be a �eld and G be a hypergraph on a vertex set
V = {v1, . . . , vn}. For a set of indeterminates (Which may as well be V )
{x1, . . . , xn} de�ne x(vi) = xi for all i. The ideal

I = IG =

(∏
v∈e

x(v) | e ∈ E

)
⊆ k[x1, . . . , xn]

is called the edge ideal of G.

If G is a hypergraph with vertex set {1, . . . , n} this can be rewritten as

IG =

(∏
i∈e

xi | e ∈ E

)
.

Furthermore, if G is a graph this can be rewritten further as

IG = (xixj | {i, j} ∈ E).

For a graph we'll use the notation vw for the edge {v, w}. A subgraph H
of a graph G is a graph such that V (H) ⊆ V (G) and E(H) ⊆ E(G). H
is an induced subgraph if E(H) = {e ∈ E(G) | e ⊆ V (H)}; this de�nition
can be generalized to de�ne induced subhypergraph or induced simplicial
subcomplex.

We say a cycle C in a graph G is a subgraph such that if V (C) =
{v1, . . . , vr} then E(C) = {v1v2, v2v3, . . . , vr−1vr, v1vr}. We also de�ne the
cycle and path Cn, Pn: Cn is the graph with n vertices which is an induced
cycle in itself, and Pn is the graph resulting from Cn after removing an edge.
A path in a graph G is said to be a subgraph isomorphic to Pn for some n.
A graph G is said to be connected if between any two vertices of G there is a
path containing both. A graph without cycles is called a forest. A connected
graph without cycles is called a tree.
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Hochster's Formula

Here we'll talk about Hochster's formula. This formula shows that the Betti
numbers of a monomial ideal can be computed by instead computing the
homology of a family of simplicial complexes. Its proof is very convoluted,
but it's fair enough, since it allows us to avoid giving even more convoluted
proofs of many other results. It's fundamental for this work.

2.1 Minimal Free Resolutions

Our �rst ingredient for computing the Betti numbers of an ideal is a minimal
free resolution of it.

De�nition 2.1.1 (Minimal free resolution). Let S = k[x1, . . . , xn] be the
polynomial ring in n variables,

m = (x1, . . . , xn),

M a S−module, andM = (Mi, φi) a free resolution of M . We say thatM
is minimal if imφi ⊆ mMi−1 for all i ≥ 1. The same de�nition will do when
(S,m) is instead a local ring.

Remark. Equivalently, M is minimal i� M⊗S k is a complex with null
morphisms, where k = S/m.

Lemma 2.1.1. Let M be a S−module and m as before. Then there is an
isomorphism

ψ : M ⊗S k →M/mM.

43
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Proof. Consider the exact sequence:

0→ m→ S → k → 0,

where the two nonzero morphisms are, from left to right, the inclusion and
canonical projection. By the exactness of the tensor product the induced
sequence:

m⊗S M → S ⊗S M → k ⊗S M → 0

is exact. Furthermore, S⊗M ∼= M by the isomorphism m 7→ 1⊗m. By this
isomorphism, the submodule mM is given by m⊗S M , therefore

M/mM ∼= S ⊗S M/m(S ⊗S M) ∼= k ⊗S M.

�

Proof of the Remark. By the lemma, for every i,

Mi/mMi
∼= k ⊗S Mi

by the map m + mMi 7→ 1 ⊗ m, with inverse r ⊗ m 7→ rm for r ∈ S. So,
M is minimal if for every i, φi ⊗ 1 = 0 i�, for every i,m, φi(m)⊗ 1 = 0, i�
for every i,m, φi(m) + mMi−1 = 0, i� for every i,m, φi(m) ∈ mMi−1, i� for
every i, imφi ⊆ mMi−1. �

This means that if all the free modules of the free resolution are �nitely
generated (as in Hilbert's Syzygy Theorem), any matrix representing some
φi has all its entries in M .

The following about free resolutions can generalized to projective resolu-
tions over any commutative ring with unity.

Now, suppose that everything is Nn−graded, so that a free graded module
M of �nite rank has a direct sum decomposition

M = S(−a1)⊕ · · · ⊕ S(−ar)

for some ai ∈ Nn, with grading given by S(−ai)s ∼= Ss−ai
for s ∈ Nn such that

s− ai ∈ Nn. Also a graded free resolutionM will be a free resolution given
by free graded modules with boundary maps of degree 0, i.e. φ(Ms) = φ(M)s
for a boundary map φ ofM and a module M in the resolution.

De�nition 2.1.2. A monomial matrix is a matrixM ∈Mn×n(k) with labels
ap, aq in its pth column and qth row, and entries λqp such that λqp = 0 unless
ap − aq ∈ Nn.
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The previously stated condition is equivalent to xap

xaq being a well-de�ned
polynomial or xaq | xap .

Remark. The S−homomorphism⊕
p

S(−ap)→
⊕
q

S(−aq)

determined by the monomial matrix (λqp)q,p is just given by matricial product
with the matrix (λqpx

ap−aq)q,p.

De�nition 2.1.3. A monomial matrix is minimal if λqp = 0 for ap = aq.

Remark. Given a free resolution ofM given by minimal monomial matrices,
then the free resolution is in fact minimal, since all the entries of the matrices
are in m. Conversely, if a minimal free resolution has a representation of its
morphisms by monomial matrices, they must be minimal, because all of its
entries must lie in m.

In a free graded module
⊕

p S(−ap), each ap may appear more than once,
in such case we can instead use the notation⊕

a∈Nn

S(−a)βa .

In a minimal free resolution (Mi, φi) of a module M , with

Mi =
⊕
a∈Nn

S(−a)βi,a

each βi,a is called the ith Betti number of M in degree a.
We can also de�ne the Betti numbers by computing the derived functors

TorS(−, k) of −⊗S k(i). If we do so, it'll follow that the Betti numbers can,
in theory, be computed without having a minimal free resolution, so that we
can be content with any free resolution.

Remark. In the graded case, we have an isomorphism⊕
a∈Nn

S(−a)βa ⊗ k ∼=
⊕
a∈Nn

k(−a)βa .

(i)The functors Tor are computed by taking any projective resolution, in particular, free

ones, tensoring with k and computing homology.
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Lemma 2.1.2. The ith Betti number of an Nn−graded module M in degree
a equals the vector space dimension dimk TorSi (k,M)a.

Proof. Take a minimal free resolution

M : 0← · · · ←
⊕
a∈Nn

S(−a)βi,a ←
⊕
a∈Nn

S(−a)βi+1,a ← · · · ← 0.

When tensoring with k, we get the complex

M⊗ k : 0← · · · ←
⊕
a∈Nn

k(−a)βi,a ←
⊕
a∈Nn

k(−a)βi+1,a ← · · · ← 0,

with all maps zero. Thus,

H̃i(M⊗ k) ∼=
⊕
a∈Nn

k(−a)βi,a

and
βi,a = dimk TorSi (k,M)a.

�

2.2 Hochster's Formula

Here every ideal is supposed to be monomial, i.e. generated by monomials.

De�nition 2.2.1 (Koszul Complex). Consider the simplex ∆n−1 consisting
on all the subsets of {x1, . . . , xn}. In every matrix (aij)i,j of the exact se-
quence C̃•(∆

n, S), consider it as a monomial matrix, with labels in rows and

columns given by χσ for faces σ generating the free summands of S(n
i) in

homological degree i + 1. Then, renumber the homological degrees so that
the empty face ∅ is in homological degree 0. The resulting complex K• is
called the Koszul complex.

This is just done by taking the reduced chain complex of ∆n and adjusting
the morphisms so that they become graded.

Proposition 2.2.1. The Koszul complex is a minimal free resolution of k.
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Proof. Since the boundary maps of the Koszul complex are given by consid-
ering the matrices of the boundary maps of C̃•(∆

n, S) as monomial matrices,
then every one of the maps in the Koszul complex are monomial. Also since
every entry of every one of these matrices is zero unless the face associated to
the row is strictly contained in the face associated to the column, the maps
of the Koszul complex are in fact minimal.

To prove the Koszul complex is a resolution, we must prove it's exact
everywhere except in homological degree 0. So, restricting the Koszul com-
plex to some degree d ∈ Nn, we get a subcomplex of k−vector spaces, which
we want to prove is (isomorphic to) the reduced complex C̃(∆dimd, k) where
dimd is just the number of variables of d minus one. For degree d = 0
we get the complex 0 → k → 0, which is not exact. Otherwise, since a
summand of each homological degree of the Koszul complex is 6= 0 in de-
gree d i� it's has the form S(−d′) = Sxd′ for d′ ≤ d, we get the complex

0 ← k ← ks ← k(s
2) ← · · · ← k( s

s−2) ← ks ← k ← 0, where, in each

homological degree i, k(s
i) is considered as the direct sum⊕

d′≤d,dimd′=i−1

kxd

and s = dimd + 1. And given that,

∂(xded′) =
∑

d′′≤d′,dimd′′=i−2

αd′d′′x
ded′′

where αd′d′′ is the d
′d′′ entry of the matrix of the map ∂ in C̃(∆dimd, k). This

means than when we restrict to degree d in K•, the resulting map is just the
boundary map of the reduced chain complex of ∆dimd with coe�cients in k,
which is what we expected.

Then, since every non-irrelevant simplex is contractible, this complex has
null homology for d 6= 0, from which it follows thatK• also has null homology
except in the homology degree 0, on which the homology is k. It follows that
K• is a free resolution of k. �

De�nition 2.2.2 (Upper Koszul Complex). For a monomial ideal I and a
degree b ∈ Nn, de�ne

Kb(I) = {τ ∈ {0, 1}n : xb−τ ∈ I}

to be the (upper) Koszul simplicial complex of I in degree b.
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Theorem 2.2.2 (Hochster's Formula). Given a vector b ∈ Nn, the Betti
numbers of I in degree b can be expressed as

βi,b(I) = dimk H̃i−1(Kb(I); k).

From now on, when we talk about the homology of a simplicial complex
X, it will be the homology over k, unless stated otherwise.

Proof. The proof is similar to the proof of the minimality of the Koszul
complex as a resolution of k. First, to compute βi,b(I), we can do it by
taking a free resolution of I, tensoring with k and computing homologies.
But we can also compute it by taking a minimal free resolution of k, i.e. the
Koszul complex, tensoring it with I and computing homologies. We'll do
that.

Let K• be the Koszul complex and take the chain complex K•(I) =
K• ⊗S I. We'll restrict the complex to the degree b, then we'll show that
K•(I)b is basically the reduced chain complex of Kb(I) over k. Remember
that (K•)b is the chain complex of a simplex ∆ = ∆dimb with dimb + 1
vertices, over k. So, since K•(I)b is a subcomplex of (K•)b, it will be the
chain complex of a subcomplex of ∆. So we only have to see which faces of
∆ contribute to nonzero vectors in K•(I)b.

Taking a vector τ ∈ {0, 1}n, the summand of K• associated to τ is a cyclic
S−module S(−τ). Thus I ⊗S S(−τ) is I(−τ), and since

I(−τ)b = Ib−τ

, then I(−τ)b 6= 0 if and only if Ib−τ is nonzero i.e. xb−τ ∈ I.
Therefore, the faces of the subcomplex of ∆ having as chain complex

K•(I)b are precisely the ones in Kb(I). We're done. �

We can de�ne another simplicial complex:

Kb(I) = {τ ∈ {0, 1}n : xb−1+τ /∈ I},

and an interesting result, which will be presented in the section 2.4, is that
the dimensions in its homology (In fact, the cohomology, but because of the
universal coe�cient theorem they're the same) also give the Betti numbers
of I. More precisely:

βi,b(I) = dimk H̃n−i−2(Kb(I)).
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2.3 Properties of Kb(I).

The operator Kb has some nice properties with respect to the order structure
of the monomial ideals S. It's known that the monomial ideals of S form a
lattice, ordered by inclusion, with + and ∩ being the lattice operations. It
will be proven that Kb preserves this structure.

Here I = (m1, . . . ,mr), J = (m′1, . . . ,m
′
s) are monomial ideals of S.

Proposition 2.3.1. Kb(I + J) = Kb(I) ∪Kb(J).

Proof. We have

Kb(I + J) = {τ ∈ {0, 1}n : xb−τ ∈ I + J}
= {τ ∈ {0, 1}n : (∃i ∈ [r]);mi | xb−τ o (∃j ∈ [s]);m′j | xb−τ}
= {τ ∈ {0, 1}n : (∃i ∈ [r]);mi | xb−τ}
∪ {τ ∈ {0, 1}n : (∃j ∈ [s]);m′j | xb−τ}
= Kb(I) ∪Kb(J).

�

Proposition 2.3.2. Kb(I ∩ J) = Kb(I) ∩Kb(J).

Proof. Using the previous proposition, and the fact that

Kb(mi) ∩Kb(m′j) = {τ ∈ {0, 1}n : mi | xb−τ} ∩ {τ ∈ {0, 1}n : m′j | xb−τ}
= {τ ∈ {0, 1}n : mi | xb−τ y m′j | xb−τ}
= {τ ∈ {0, 1}n : lcm(mi,m

′
j) | xb−τ}

= Kb(lcm(mi,m
′
j)),

we have

Kb(I) ∩Kb(J) =

⋃
i∈[r]

Kb(mi)

 ∩
⋃
i∈[r]

Kb(mi)


=

⋃
(i,j)∈[r]×[s]

Kb(mi) ∩Kb(m′j)

=
⋃

(i,j)∈[r]×[s]

Kb(lcm(mi,m
′
j))

= Kb((lcm(mi,m
′
j) : (i, j) ∈ [r]× [s]))

= Kb(I ∩ J).
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�

2.4 Duality

Here we'll talk about some dual objects of simplicial complexes which inherit
the properties of the original objects. The homology of the dual of a simplicial
complex will be, up to some permutation of the indexes, the same as the
homology of the original complex.

De�nition 2.4.1. Let ∆ be the simplex with vertex set {1, . . . , n}. Then we
can de�ne a duality map ι : ∆→ ∆ given by σ 7→ σc for every σ ∈ ∆. This
map is just set complementation and is of course an involution, i.e. ι2 = 1∆.

So we can de�ne the Alexander dual of a simplicial complex:

De�nition 2.4.2. For a simplicial complex X with vertex set {1, . . . , n} we
de�ne the Alexander dual X∨ of X as:

X∨ = {ι(σ) : σ /∈ X} = {σ : ι(σ) /∈ X}.

Since the set of all the non-faces of X has a dual property to the one of
the simplicial complexes (Every set containing a non-face is a non-face) and
complementation reverses inclusions this makes clear that X∨ is a simplicial
complex. We also have the following fact:

Proposition 2.4.1. For a simplicial complex X we have X∨∨ = X.

Proof. A face σ is in X∨∨ if and only if ι(σ) /∈ X∨, which happens if and
only if ι2(σ) = σ ∈ X. �

We, then, have the following four related structures:

X

X∨

ν(X)

ι(X)

∨

ν

ι

ν

∨
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where ν(X) is the simplicial cocomplex (A fancy name for an upper set under
the inclusion relation) given by ι(X∨); the set of all the nonfaces of X.

The following proof of the Simplicial Alexander duality theorem is due
to Anders Björner and Martin Tancer in [1]. For every face σ of a simplicial
complex X with vertex set V = {1, . . . , n}, de�ne

p(σ) =
∏
i∈σ

(−1)i−1.

Lemma 2.4.2 (Lemma 2.1,[1]). Let k ∈ σ ⊂ {1, . . . , n}. Then

sgn(k, σ)p(σ − {k}) = sgn(k, ι(σ) ∪ {k})p(σ).

Proof. We have that sgn(k, σ) = (−1)j where k is the j−th element of σ, i.e.

sgn(k, σ) =
∏
i∈σ
i<k

(−1).

Also
sgn(k, ι(σ) ∪ {k}) =

∏
i/∈σ
i<k

(−1)

and
p(σ) =

∏
i∈σ

(−1)i−1

Therefore, we have

p(σ)p(σ − {k}) = (−1)k−1
∏

i∈σ−{k}

(−1)i−1
∏

i∈σ−{k}

(−1)i−1 = (−1)k−1

and

sgn(k, ι(σ) ∪ {k}) sgn(k, σ) =
∏
i/∈σ
i<k

(−1)
∏
i∈σ
i<k

(−1) =
∏
i<k

(−1) = (−1)k−1.

Therefore
p(σ)p(σ − {k}) = sgn(k, ι(σ) ∪ {k}) sgn(k, σ)

Since all the factors in the expressions above are in {−1, 1}, they are involu-
tive in R, therefore multiplying at both sides by p(σ) sgn(k, σ) we have

sgn(k, σ)p(σ − {k}) = sgn(k, ι(σ) ∪ {k})p(σ)

which is the desired result. �
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Theorem 2.4.3 (Alexander Duality). Let X be a simplicial complex over
the vertex set V = {1, . . . , n}. Then

H̃i(X) ∼= H̃n−i−3(X∨).

Proof. First, if we take the simplex ∆ on V , by the long exact sequence of
homology we have an exact sequence

· · · → H̃i+1(∆)→ H̃i+1(∆, X)→ H̃i(X)→ H̃i(∆)→ H̃i(∆, X)→ · · · ,

but since a simplex has no homology, this sequence breaks into short se-
quences of the form

0→ H̃i+1(∆, X)→ H̃i(X)→ 0

for every i, which means the maps

H̃i+1(∆, X)→ H̃i(X)

are isomorphisms.
Now we must stablish an isomorphism

H̃i+1(∆, X)→ H̃n−i−3(X∨).

We'll do that by establishing an appropiate chain complex isomorphism
between the complexes C•(∆, X) and C•(X∨). De�ne φi : Ci(∆, X) →
Cn−i−2(X∨) by

φi(σ) = p(σ)fι(σ)

for σ ∈ ∆i − Xi. This is a well de�ned map, since if σ ∈ ∆i − Xi then
ι(σ) ∈ X∨n−i−2, thus fι(σ) ∈ Cn−i−2(X∨). This also sends the standard basis
of Ci(∆, X) into the (up to signs) standard basis of Cn−i−2(X∨), so it's an
isomorphism at each dimension. The only thing left to prove is that it's a
chain complex isomorphism, so that it makes the following diagram commute
for each i:

Ci(∆, X)Ci−1(∆, X)

Cn−i−2(∆, X)Cn−i−1(∆, X)

δi

φiφi−1

∂∗n−i−1
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But this is straighforward, for σ ∈ ∆i −Xi:

φi−1δi(σ) = φj−1

 ∑
v∈σ

σ−{v}/∈X

sgn(k, σ)(σ − {v})


=

∑
v∈σ

σ−{v}/∈X

sgn(k, σ)p(σ − {v})fι(σ−{v})

=
∑
v∈σ

σ−{v}/∈X

p(σ) sgn(k, ι(σ) ∪ {v})fι(σ−{v})

=
∑
v∈σ

σ−{v}/∈X

p(σ) sgn(k, ι(σ) ∪ {v})fι(σ)∪{v}

= ∂∗n−i−1(p(σ)fι(σ))

= ∂∗n−i−1φi(σ)

which is the desired result. Therefore, since the chain complexes above are
isomorphic, they have the same homology. Therefore, for each i,

H̃i(X) ∼= H̃i+1(∆, X) ∼= H̃n−i−3(X∨).

�

Corollary 2.4.4 (Alexander Duality). Let X be a simplicial complex over
the vertex set V = {1, . . . , n} and k a �eld. Then

dimk H̃i(X; k) = dimk H̃n−i−3(X∨; k).

Proof. It follows from the universal coe�cient theorem and the fact that
X and X∨ have a �nite number of faces of each dimension: Since in each
(topological) dimension, the cohomology is the dual of the homology, and
the homology is a �nite dimensional k−vector space, they have the same
dimension. �

De�nition 2.4.3 (Lower Koszul complex). Let b ∈ Nn and I a monomial
ideal of the polynomial ring S in n variables. De�ne the lower Koszul complex
of I as

Kb(I) = {τ ∈ {0, 1}n | τ ≤ b,xb−1+τ /∈ I}
where 1 = Suppb.
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Theorem 2.4.5 (Hochster's formula, dual version). Given a vector b ∈ Nn

such that xb ∈ I, the Betti numbers of I in degree b can be expressed as

βi,b(I) = dimk H̃n−i−2(Kb(I); k).

Proof. A face τ is in Kb(I) i� τ ≤ b and xb−1+τ /∈ I. This means that no
generating monomial of I divides xb−1+τ . So, a nonface τ of Kb(I) with
respect to the simplex {τ ∈ {0, 1}n | τ ≤ b} is a squarefree vector such
that xb−1+τ ∈ I which is the same as saying xb−(1−τ) ∈ I, which means
that 1 − τ ∈ K1(I). Since the complement of τ is 1 − τ , this means that
K1(I) = K∨1 (I). The result follows from Alexander's duality. �
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Using Hochster's Formula

Recursively

Hochster's formula is made to compute Betti numbers of ideals. For example,
consider the edge ideal IG of the graph

x1

x2

x3

x4

x5

i.e. the ideal IG = (x1x2, x1x3, x2x3, x3x5, x3x4, x4x5). We'll start by com-
puting K1(IG). Since a vector abcde := (a, b, c, d, e) ∈ {0, 1}5 ∈ K1(IG) i�
x1−abcde ∈ I, we'll clearly have the vectors 00111, 01011, 10011, 11010, 11001
and 11100 in K1(IG) since they are the complements of the exponents of the
generators of IG. They can also be written as x3x4x5, x2x4x5, x1x4x5, x1x2x4,
x1x2x5 and x1x2x3. A quick check shows these are all the posible 2−faces of
K1(IG). Also we can see there are no i−faces for i ≥ 3 since for such a face
τ we'd have that x1−τ ∈ IG but x1−τ has less than 1 variables so it cannot
be in IG. We can also see by any method (Like checking the subsets of the
2−faces) that all the posible 1−faces for the vertex set {x1, x2, x3, x4, x5} are
in K1(IG) so its 1−skeleton is isomorphic to K5. Drawing the faces we get
the following:

55
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x1 x2

x4

x5

x3

Considering K1(IG) as a CW−complex, and using the proposition 0.17 from
[5], we get, by computing Xi = Xi−1/Ai−1 sequentially, �rst for X0 = K1(G)
and A0 = x1x2x3, then A1 = x4x5, and then A2 = x123x45 (The strip resulting
from contracting x1x2x3 and then x4x5 to points x123, x45). So, X3 ' K1(IG)
but X3

∼= S2/{a,−a} for some point a ∈ S2. This is a sphere with two points
identi�ed, and using the long exact sequence for homology we get H2(X3) ∼=
H2(S2) ∼= k and H1(X3) ∼= H0(S0) = k (where S0 is the 0−dimensional
sphere, a two-point space). Being a bit more careful we can check that
K1(IG) has the homotopy type of S2 ∨ S1 which gives the same result.

Of course these tools used are strongly topological. We're interested in
�nding tools to compute Betti numbers which don't rely so much in the
topology of Kb, but in the algebra and combinatorics behind it. The Mayer-
Vietoris sequences which arise here are a �rst example of such a tool.

3.1 Mayer-Vietoris Sequences

Since Kb preserves intersections, and transforms + into ∪, it would be a
shame not to make use of this to build Mayer-Vietoris sequences. We have
the inclusions:

Kb(I ∩ J)

Kb(I)Kb(J)

Kb(I + J)

ιIιJ

ι′Iι′J
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so, if b ∈ Nn is such that xb ∈ Kb(I∩J), then there is a long exact sequence:

H̃i(K
b
I∩J) H̃i(K

b
I )⊕ H̃i(K

b
J ) H̃i(K

b
I+J)· · · ∂ α∗ β∗

H̃i−1(Kb
I∩J) H̃i−1(Kb

I )⊕ H̃i−1(Kb
J ) H̃i−1(Kb

I+J) · · ·

∂

α∗ β∗ ∂

where Kb
∗ = Kb(∗), α = (ιI ,−ιJ), β = ι′I + ι′J and the maps α∗, β∗ are

the induced maps. In particular, if we take I ′ = (m1, . . . ,mr−1) and I ′′ =
(lcm(m1,mr), . . . , lcm(mr−1,mr)), then for b such that xb ∈ I ′′ there is a
long exact sequence:

H̃i(K
b
I′′) H̃i(K

b
I′)⊕ H̃i(K

b
mr

) H̃i(K
b
I )· · · ∂

H̃i−1(Kb
I′′) H̃i−1(Kb

I′)⊕ H̃i−1(Kb
mr

) H̃i−1(Kb
I ) · · ·

∂

∂

so if we can compute H̃i(K
b(I ′′)), H̃i(K

b(I ′)), H̃i(K
b(mr)) then we'll have a

lot of information of H̃i(K
b(I)). In particular, maybe we'll have in this in-

formation the numbers dimk H̃i(K
b(I)), from which we'd be able to compute

the Betti numbers of I recursively. This is a reason this will be called a recur-
sive Mayer-Vietoris sequence of I (A sequence gotten from decomposing the
ideal into the sum of a principal ideal and of another ideal). These sequences
are used extensively in [9]. By an application of a recursive Mayer-Vietoris
sequence we have the following result:

Proposition 3.1.1. Let I = (m1, . . . ,mr) and m = lcm(m1, . . . ,mr) = xa.
Then H̃i(K

b(I)) = 0 for all i and a < b.

Proof. By induction on r. For such b, we can take Mayer-Vietoris sequence:

H̃i(K
b
I′′) H̃i(K

b
I′)⊕ H̃i(K

b
mr

) H̃i(K
b
I )· · · ∂

H̃i−1(Kb
I′′) H̃i−1(Kb

I′)⊕ H̃i−1(Kb
mr

) H̃i−1(Kb
I ) · · ·

∂

∂
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By induction hypothesis, and the base case in which Kb(mr) will be a sim-
plex, H̃i(K

b(I ′)), H̃i(K
b(mr)), H̃i−1(Kb(I ′′)) are all 0, so H̃i(K

b(I)) is 0.
The proof will only be complete if we prove the base case, where I is princi-
pal.

If I = (xa) is principal then I is a free S−module, so the minimal free
resolution of I is just 0→ Sxa → 0, so the only Betti number is β0,a = 1 =
dimk H̃−1(Ka(xa)). Therefore, for b > a, H̃i(K

b(xa)) = 0. �

Using recursive Mayer-Vietoris sequences is a natural way to do induction
proofs on the number of generating monomials, since both the ideals I ′′ and
I ′ have less generating monomials than I. But the underlying decomposition
of I is not unique, and it's not always the most useful we can use. An example
of this is in order.

Example 3.1.2. Remember the ideal

I = (x1x2, x1x3, x2x3, x3x4, x3x5, x4x5).

We wanted to compute Hi(K
1(I)). Also remember that K1(B) has a topo-

logical representation as:

x1 x2

x4

x5

x3

Another method to compute its homology is to use (by a topological reason-
ing) a Mayer-Vietoris sequence for X = K1(I) = A ∪B where

A ∼= ∂∆3 ∼= S2 = {x1x2x4, x1x2x5, x1x4x5, x2x4x5}

and
B ' {x3} = {x1x2x3, x3x4x5}.

Also note that A ∩ B ' {x1, x4} = {x1x2, x4x5}, in the Mayer-Vietoris
sequence we have the same sequences we got before

0→ H̃1(X)→ H̃0(A ∩B)→ 0
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and
0→ H̃2(A)→ H̃2(X)→ 0

which mean that H̃2(X) ∼= H̃2(∂∆3) ∼= k and H̃1(X) ∼= H̃0(A∩B) ∼= k. The
rest of (reduced) homologies of X are zero. But we can do this without using
so many homotopical equivalence arguments.

First, note that K1(x1x2) = {x3x4x5} and K1(x4x5) = {x1x2x3}, so
K1(x1x2, x4x5) = B. Also we know that

H̃i(K
1(x1x2, x4x5)) = 0

for every i since lcm(x1x2, x4x5) = x1x2x4x5 6= x1x2x3x4x5. Also

K1(x1x3, x2x3, x3x4, x3x5) = A,

and
A ∩B = K1(x1x2x3, x3x4x5),

so H̃0(A ∩B) = k and 0 elsewhere. Now, A = K1(x1, x2, x4, x5) ∩K1(x3).
So we can now refer to the Mayer-Vietoris sequence of the ideal m. In

this sequence everything is 0 except h3(K1(m)) ∼= k since a minimal free
resolution of m is just the Koszul complex snipping the �rst S. So

H̃2(A) ∼= H̃3(K1(m)) ∼= k.

While this decomposition works, there are some more general decompo-
sitions of I which we're interested in. The following lemma can be proven by
other means but we'll use Mayer-Vietoris sequences to prove it.

Lemma 3.1.3. Let I = (m1, . . . ,mr) ⊆ k[x1, . . . , xn] be a monomial ideal
and I ′ = (m1, . . . ,mr) ⊆ k[x1, . . . , xn, y]. Then, for a degree b ∈ {0, 1}n+1

such that y | xb we have βi,b(I ′) = 0 for all i. Additionally, for b ∈ {0, 1}n+1

such that y - xb, βi,b(I ′) = βi,b′(I), where b′ = (bi)
n
i=1.

Proof. We'll start with the last part. We know that

βi,b(I ′) = dimk H̃i−1(Kb(I ′))

and
βi,b′(I) = dimk H̃i−1(Kb′(I)).

But for b such that y - xb and τ ∈ {0, 1}n+1, we have xb−τ ∈ I ′ i� xb′−τ ′ ∈ I.
Thus, the inclusion τ ′ 7→ τ induces an isomorphism Kb(I ′) ∼= Kb′(I) of
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simplicial complexes (They're just the same except for a last coordinate in
each face which is 0). For b such that y | xb we'll prove βi,b(I ′) = 0 by
induction on r. If xb /∈ I there is nothing to prove. So we suppose xb ∈ I.

By an induction argument, suppose r = 1, then sincem1 | xb butm1 6= xb

we have that Kb(I ′) is a nontrivial simplex and therefore has trivial reduced
homology. Now suppose r > 1 and that for every ideal I ′′ generated by less
than r monomials in the variables x1, . . . , xn and b such that y | xb, we have
βi,b(I ′′) = 0.

If I ′ is such that there is only one generating monomial, say, mr such
that mr | xb then Kb(I) = Kb(mr) which is already known to have trivial
reduced homology. So we can suppose there are at least two monomials
mr,mr−1 such that mr,mr−1 | xb. So, for I ′′ = (m1, . . . ,mr−1) and I ′′′ =
(m1mr, . . . ,mr−1mr) there is a Mayer-Vietoris sequence

· · · → H̃i(K
b(I ′′′))→ H̃i(K

b(I ′′))⊕ H̃i(K
b(mr))

→ H̃i(K
b(I ′))→ H̃i−1(Kb(I ′′′))→ · · ·

By induction hypothesis, all the homologies in the exact sequence, except
for H̃i(K

b)(I ′) are zero, so by exactness H̃i(K
b)(I ′) is also zero for every i.

We're, thus, done. �

From this, it follows that if we have the edge ideal IG of a graph G, then
for a squarefree degree b 6= 1 and every i, H̃i(K

b(IG)) ∼= H̃i(K
1′(IG′)) where

G′ is the subgraph induced by the vertices which characteristic vector is b
and 1′ is the vector �lled with 1s in {0, 1}|G′| and IG′ ⊆ k[V (G′)]. It also
follows that this number does not depend on the number of the variables (as
long as there are as many as ones in b).

Proposition 3.1.4. Let I = (m1, . . . ,mr) be a monomial ideal of the ring
k[x1, . . . , xn, y], and suppose that for all the monomials mi such that y | mi,
there is some variable xj ∈ Supp(m1, . . . ,mr) such that xj - mi, and that
I ′ = (mi : y | mi) 6= I. Then, for I ′′ = (mi : y - mi), I

′′′ = I ′ ∩ I ′′, and any
b ∈ Nn+1 such that xb ∈ I ′′′ there is an isomorphism:

H̃i(K
b(I))→ H̃i−1(Kb(I ′′′)).

For b such that xb ∈ I ′ − I ′′ there is an isomorphism

H̃i(K
b(I ′))→ H̃i(K

b(I)).
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For b such that xb ∈ I ′′ − I ′ there is an isomorphism

H̃i(K
b(I ′′))→ H̃i(K

b(I)).

Proof. For b such that xb /∈ I ′′′ we have Kb(I) = Kb(mi : mi | xb). If
xb ∈ I ′ − I ′′ this means that the monomials mi such that mi | xb are in the
generating set of I ′, so

Kb(mi : mi | xb) = Kb(I ′).

If, otherwise xb ∈ I ′′ − I ′ then similarly Kb(mi : mi | xb) = Kb(I ′′). So,
suppose that xb ∈ I ′′′. This means that, in particular, xb is divisible by two
generating monomials mi,mi′ of I, such that y | mi, y - mi′ , which means
that y | xb. Also there is some other variable xj such that xj | xb and
xj /∈ Supp I ′. Therefore for all i, H̃i(K

b(I ′)) ∼= H̃i(K
b(I ′′)) ∼= 0 and in

the Mayer-Vietoris sequence associated to this decomposition we'll �nd the
desired isomorphism. �

The conditions for the proposition 3.1.4 seem to be harsh, but are not so
much. This Mayer-Vietoris sequence will be called an incomplete star Mayer-
Vietoris sequence. This is because when we have an edge ideal of a graph,
the condition is equivalent to the graph having a vertex not being adyacent
to every other vertex of G.

3.2 Stars, Complete Bipartite Graphs, Cones

Here we'll study some families of ideals for which the Betti numbers can be
computed rather easily. The �rst one of them is the family of the edge ideals
of the complete bipartite graphs. Let G = (V,E) = Kn,m be the complete
bipartite graph with bipartition H = {x1, . . . , xn}, K = {y1, . . . , yn} and

I = IG ⊆ k[x1, . . . , xn, y1, . . . , ym]

its edge ideal. For a �xed vertex, which we can, by a permutation of A,B
or y1, . . . , ym declare to be ym, we can say I = Im + I ′m where Im = (e ∈ E :
ym ∈ e) and I ′m = (e ∈ E : ym /∈ e). Given this, for m = 1 we can use a trick
to compute the Betti numbers of I.
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Proposition 3.2.1. If G = Kn,1 is a star with vertex set {x1, . . . , xn, y1}, if
b ∈ {0, 1}n+1 is such that xb ∈ IG, we have

βi,b(IG) = dimk H̃i−1(Kb)(IG) = dimk H̃i(K
b(m)) = βi+1,b(m),

for m = (x1, . . . , xn, y1).

Proof. Take y = y1 and I = IG. Since xb ∈ I then we can assume by a
permutation σ ∈ Sn that xny | xb. So, since I = (x1, . . . , xn) ∩ (y), we have,
for I ′ = (x1, . . . , xn), a Mayer-Vietoris sequence:

· · · → H̃i(K
b(I))→ H̃i(K

b(I ′))⊕ H̃i(K
b(y))

→ H̃i(K
b(m))→ H̃i−1(Kb(I))→ · · ·

Because of the lemma 3.1.3 we have that H̃i(K
b(I ′)), H̃i(K

b(y)) are both 0
for all i, therefore H̃i(K

b(m)) ∼= H̃i−1(Kb(I)) for all i. The result follows. �

From the previous proposition we can easily compute the Betti numbers
of the star Kn,1. We know that the Koszul complex K• is a minimal free
resolution of k = S/m, so when we remove the S corresponding to the empty
face from it, it becomes a minimal free resolution K ′• of m. Suppose that
b is squarefree (otherwise its Betti number would be 0) and take r = |b|.
Then xb appears exactly once as a generator in homological degree r − 1,
and doesn't appear elsewhere in K ′•. So

βi,b(IG) = βi+1,b(m) =

{
1 if i = r − 2
0 otherwise.

It's no surprise if we can then compute the Betti numbers of the ideal IG of
the complete bipartite graph G = Kn,m.

Proposition 3.2.2. Let G = Kn,m and I = IG ⊆ k[x1, . . . , xn, y1, . . . , ym].
Then, for b such that xb ∈ I,

βb,i(I) = dimk H̃i−1(Kb(I)) =

{
1 if i = nb +mb − 2
0 otherwise.

where nb = |{xi : xi | xb}|,mb = |{yj : yj | xb}|.
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Proof. For b < 1 we have Kb(I) = Kb(IKnb,mb
) so we only have to prove

the result for b = 1. If m or n equals 1 then we're done: our graph is a star.
So suppose that m,n > 1. Since no vertex is adjacent to every other vertex,
the incomplete star Mayer-Vietoris sequence with respect to the the vertex
ym gives an isomorphism:

H̃i(K
1(I)) ∼= H̃i−1(K1(I1))

where
I1 = (xiyjym : 1 ≤ i ≤ n, 1 ≤ j ≤ m) = IG−yn ∩ IΣ(ym)

where Σ(ym) is the star of ym. We can repeat the process, since not every
generating monomial is divisible by ym−1. So, this way we �nd a decreasing
sequence Is, s ∈ N of ideals such that I0 = I, In+m−2 = (x1 . . . xny1 . . . ym),
and

H̃i(Is) ∼= H̃i−1(Is+1).

Therefore, H̃n+m−3(I) ∼= H̃−1(In+m−2) = k. �

For these cases, Alexander duality is specially powerful. The Lower
Koszul Complex K1(IG) is just the disjoint union of two simplexes, one corre-
sponding to the stable set of the variables x, and other corresponding to the
stable set of the variables y. It's reduced homology is clearly 0 everywhere
besides at dimension 0, on which we have H̃0(K1(IG)) = k. This is exactly the
same result. One can go even further. For a graph G which is the join of two
graphs H,K (The graph resulting from taking the disjoint union of H and K,
and adding all the possibleH−K−edges), the Lower Koszul ComplexK1(IG)
is the disjoint union K1′(IH)tK1′′(IK), where 1′ = χ(V (H)),1′′ = χ(V (K)).
Thus, for every dimension but 0, the homology of K1(G) is the direct sum of
the homologies of K1′(H) and K1′′(K). In dimension 0, it's the direct sum
of K1′(H), K1′′(K) and k.

Now we're interested in generalizing some of the ideas in the proof above.
One of them is, given a monomial ideal

I = (m1, . . . ,mr) ⊆ k[x1, . . . , xn, y]

such that for all i ∈ {1, . . . , r}, y - mi, computing the Betti numbers of

I ′ = (m1, . . . ,mr, y).

Using a recursive Mayer-Vietoris sequence this is equivalent to computing
the Betti numbers of I ′′ = (m1y, . . . ,mry). Ideals like I ′′ appear often when
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using incomplete star Mayer-Vietoris sequences, so it would be useful if we
could compute these Betti numbers in terms on the Betti numbers of I. These
ideals appear in the sequence of ideals in the proof above, for example.

Other ideas are to compute the Betti numbers of the cone of a graph, i.e.
a graph with a vertex adyacent to every other one, and to compute the Betti
numbers of the graph resulting from duplicating a vertex of a given graph.

Proposition 3.2.3. Let I = (m1, . . . ,mr) be an ideal of k[x1, . . . , xn, y] not
using the variable y. Then, for I ′ = I+(y) and b ∈ Nn+1 such that y | xb ∈ I
we have

βi+1,b(I ′) = βi,b′(I).

Proof. For any other b, we have

Kb(I ′) = Kb(I) ∪Kb(y).

We can characterize Kb(y) as the simplex of all the faces τ ≤ b such that
y - xτ . Also since I does not use the variable y, we see that

Kb(I) ={τ = (t1, . . . , tn, q) ∈ {0, 1}n+1 : xb−τ ∈ I}
={τ = (t1, . . . , tn, 0) ∈ {0, 1}n+1 : xb−τ ∈ I}
∪ {τ = (t1, . . . , tn, 1) ∈ {0, 1}n+1 : xb−τ ∈ I}

so Kb(I) is just the simplicial complex of all the subfaces of the faces of

T1 = {τ = (t0, . . . , tn, 1) ∈ {0, 1}n+1 : xb−τ ∈ I}.

This means that

Kb(I) ∩Kb(y) = {τ = (t1, . . . , tn, q) ∈ Kb(I) : q = 0}
= K(b′,0)(I)

where b′ ∈ Nn is such that b = (b′, 1). Therefore, by a recursive Mayer-
Vietoris sequence,

H̃i(K
b(I ′)) ∼= H̃i−1(Kb(I ∩ (y))) ∼= H̃i−1(K(b′,0)(I))

as desired. �
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We can also compute all the remaining Betti numbers of the ideal in the
previous proposition:

For b such that y - xb we have Kb(I ′) = Kb(I) so βi,b(I ′) = βi,b(I).
Also if xb /∈ I we have Kb(I ′) = Kb(y) so βi(K

b(I ′)) = δi0 where δij is the
Kronecker delta.

We can also compute the Betti numbers of the cone of a graph:

Proposition 3.2.4. Let G be a graph with vertex set {x1, . . . , xn}, and
κ = C(G, y) the cone of G with y being the new vertex. Then

βn−1,1(Iκ) = βn−2,1′(IG) + 1,

where 1 = (1′, 0). Furthermore βi,1(Iκ) = βi,1′(IG) for every i 6= n− 1

Proof. Here we take the Mayer-Vietoris sequence relative to the complete star
Σ(y) of y. We know that H̃i(K

1(IΣ(y))) ∼= k i� i = n−2. Also H̃i(K
1(IG)) =

0 for every i since G does not use the variable y and H̃n−2(K1(I ′)) = 0 where
I ′ = IG ∩ IΣ(y). So, we've got the following short exact sequence:

0→ H̃n−2(K1(IΣ(y)))→ H̃n−2(Iκ)→ H̃n−3(K1(I ′))→ 0

and isomorphisms H̃i(K
1(I))→ H̃i−1(I ′) for every i 6= n− 2. Therefore

dim H̃n−2(K1(Iκ)) = dim H̃n−2(K1(IΣ(y))) + dim H̃n−3(K1(I ′))

= 1 + dim H̃n−3(K1(I ′)).

The trick lies, then, in disclosing the identity of K1(I ′). Since I ′ 6= 1 then
1 /∈ K1(I ′). Also K1(IΣ(y)) is the n−2−skeleton of the simplex with vertices
x1, . . . , xn: The set of all the faces with n − 1 vertices. So, with the same
reasoning as the one in the proposition 3.2.3, the only thing we're doing when
intersecting is removing the faces of K1(IG) containing y. As in the analysis
of the proposition 3.2.3, we end up with K(1′,0)(I). So, replacing it in the
equation above and replacing it all with Betti, we get

βn−1,1(Iκ) = 1 + βn−2,1′(IG),

which is what we wanted to prove. �

Of course, we're also able to compute the remaining Betti numbers of
κ, given. For y | xb we have the Betti numbers of the cone of an induced
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subgraph of G, from which we can apply the previous proposition, and for
y - xb we have the same Betti numbers as G. This, in particular, gives us
another way to compute all the Betti numbers of any complete graph, since
it's the consecutive application of the cone operator to an edge.

The following proposition is clearly related to the proposition 3.2.3; it's a
sort of generalization of it and it can be generalized further, but for the sake
of simplicity we'll state it as follows.

Proposition 3.2.5. Let I = (m1, . . . ,mr−1) be a monomial ideal of S =
k[x1, . . . , xn] and suppose mr = xaxb, a 6= b ∈ {1, . . . , n} such that

Supp(mr) ∩ Supp(m1, . . . ,mr−1) = ∅(i)

Let I ′ = I + (mr). Then

βi+1,b(I ′) = βi,b′(I)

where b′i = (1− δia)(1− δib)bi, i.e. b′ is the result of letting the entries of b
corresponding to xa, xb be zero.

Proof. By a permutation of the variables suppose mr = xn−1xn. As before,
if b is such that xb is not divisible by mr we have βi,b(I ′) = βi,b(I). If xb is
divisible only by mr then βi,b(I) = βi,b(mr). So, suppose xb is divisible by
both mr and some other mi. Then

Kb(I) ={τ ∈ {0, 1}n : xb−τ ∈ I}
={τ = (t1, . . . , tn−2, 0, 0) ∈ {0, 1}n : xb−τ ∈ I}
∪ {τ = (t1, . . . , tn−2, tn−1, tn) ∈ {0, 1}n : xb−τ ∈ I, (tn−1, tn) 6= 0}.

Also Kb(mr) is the simplex on the vertex set x1, . . . , xn−2. Therefore

Kb(I ∩ (mr)) = {τ = (t1, . . . , tn−2, 0, 0) ∈ {0, 1}n : xb−τ ∈ I} = Kb′(I).

Using the isomorphism arising from the recursive Mayer-Vietoris sequence of
I ′ with respect to mr we get the result. �

(i)If I = IG, this means that G is disconnected being the edge mr = xaxb one of the

connected components.
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3.3 Forests, Paths and Cycles

With the results of the previous section, we're able to compute the Betti
numbers of a few more families of ideals. For example, edge ideals of forests.
This has already been done in [6], but the approach used there is di�er-
ent, and the results are given to compute their graded Betti numbers. In
counterpart, our result gets a simpler formula and algorithm to compute the
multigraded Betti numbers. It also uses less terminology so it has a simpler
proof.

Lemma 3.3.1. Let T be a forest without isolated vertices. Let xn be a leaf
of T with xn−1 being its only neighbor. Then

H̃i(K
1(IT )) ∼= H̃i−dT (xn−1)(K

1′(IT−NT [xn−1]))

for 1′ = χ(V (T −NT [xn−1])).

Proof. If T is a tree with vertex set V = {x1, . . . , xn}, then we can suppose
by a permutation of V that xn is a leaf, and that xnxn−1 ∈ E(T ), so that
IT = (m1, . . . ,mu, xnxn−1). Then, since xn is only adjacent to xn−1, there is
an isomorphism

H̃i(K
1(IT ))→ H̃i−1(K1(I ′))

where I ′ = IT−xn ∩ (xnxn−1).
We can split E(T − xn) in two sets E1, E2, where E1 consists in all the

edges in T − xn incident to xn−1 or its neighbors, and E2 consists in the
remaining edges. By a permutation of the mi, suppose that there is some
k ∈ {0, . . . , u} such that E2 = {m1, . . . ,mk} and E1 = {mk+1, . . . ,mu}. We
can deal with the edges in E1 as follows:

IE1 = (lcm(mi, xn−1xn) : xn−1 | mi)

since every other edge in E1 has the form xrxs where xs is adjacent to
xn−1, so lcm(xrxs, xn−1xn) = xrxsxn−1xn which is divisible by xsxn−1xn =
lcm(xsxn−1, xn−1xn). We can then reorder the edges in E1 in such a way
that there is some l ∈ {k + 1, u} such that xn−1 | mi for k + 1 ≤ i ≤ l and
xn−1 - mi for l < i ≤ u. So, with this,

I ′ = (m1xn−1xn, . . . ,mkxn−1xn,mk+1xn, . . . ,mlxn)
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After this we can go back and see that

H̃i(K
1(IT )) ∼= H̃i(K

1(I ′T ))

where I ′T = (m1, . . . ,mk, xmk+1
, . . . , xml

, xn−1xn) for xmi
= mi

xn−1
. Now, since

no generating monomial of I ′T besides xn−1xn is divisible by xn−1 or xn, we
can use the proposition 3.2.5:

H̃i(K
1(I ′T )) ∼= H̃i−1(K1′(I ′′))

where I ′′ = (m1, . . . ,mk, xmk+1
, . . . , xml

) and 1′ = (1, . . . , 1, 0, 0). Now,
there is no generating monomial of I ′′ such that there is some variable in
{xmk+1

, . . . , xml
} dividing it, because E2 consists in the edges of T not ad-

jacent to xn−1 or any of its neighbors (The variables xmk+1
, . . . , xml

are the
neighbors of xn−1). So, for all i ∈ {1, . . . , k}, mi is not divisible by any of the
variables xmk+1

, . . . , xml
. Then, by an iterative application of the proposition

3.2.3 we have
H̃i−1(K1′(I ′′)) ∼= H̃i−dT (xn−1)(K

1′′(Ĩ))

where 1′′ results from 1′ by making all the entries of 1′ corresponding to
the variables xmk+1

, . . . , xml
zero and Ĩ = (m1, . . . ,mk). But Ĩ is the edge

ideal of a subforest T ′ of T , with less vertices than T . The identity of the
subforest T ′ is clear: Its edges are just the edges not incident to xn−1 or any
of its neighbors, i.e. it's (T −NT (xn−1))− xn−1. The result follows. �

Example 3.3.2. Let T be the following graph:

1

2

3

4

5

6

7
8

Then by the previous lemma H̃i(K
1(IT )) ∼= H̃i−4(K1′(IT ′)), where T

′ is as
follows:

6

7 8
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An isolated vertex means the ideal IT ′ doesn't use the variable associated to
6, which means H̃i(K

1′(IT ′)) = 0 for all i. Therefore H̃i(K
1(IT )) is also 0

for all i. This can be veri�ed. K1(T ) is generated by the facets

{3, 4, 5, 6, 7, 8}
{2, 3, 4, 6, 7, 8}
{1, 2, 3, 4, 6, 8}
{2, 3, 5, 6, 7, 8}
{2, 4, 5, 6, 7, 8}
{1, 2, 3, 4, 7, 8}
{1, 2, 3, 4, 5, 6}

which can be saved as a .sim �le from a text editor, e.g. UpperKoszul.sim,
and running the command homsimpl UpperKoszul.sim with CHOMP, we get
the following result:

HOMSIMPL, ver. 0.01, 11/09/04. Copyright (C) 1997-2013

by Pawel Pilarczyk.

This is free software. No warranty. Consult 'license.txt'

for details.

[Tech info: simpl 4, chain 12, addr 4, intgr 2.]

Reading simplices to X from 'UpperKoszul.sim'... 7 simplices

read.

Collapsing faces in X... ..... 184 removed, 1 left.

Note: The dimension of X decreased from 5 to 0.

Creating the chain complex of X... Done.

Time used so far: 0.01 sec (0.000 min).

Computing the homology of X over the ring of integers...

H_0 = Z

Total time used: 0.02 sec (0.000 min).

Thank you for using this software. We appreciate your

business.

since this is an unreduced homology, it's the same result we got.
This can also be computed in Macaulay, using the command (without the

line breaks)

load "SimplicialComplexes.m2";
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R = ZZ[a..e];

X = simplicialComplex{c*d*e*f*g*h,b*c*d*f*g*h,a*b*c*d*f*h,

b*c*e*f*g*h,b*d*e*f*g*h,a*b*c*d*g*h,a*b*c*d*e*f};

C = chainComplex X

prune HH X

which gives us the reduced homology of the simplicial complex:

i1 : load "SimplicialComplexes.m2";

i2 :

R = ZZ[a..h];

i3 :

X = simplicialComplex{c*d*e*f*g*h,b*c*d*f*g*h,

a*b*c*d*f*h,b*c*e*f*g*h,b*d*e*f*g*h,a*b*c*d*g*h,

a*b*c*d*e*f};

i4 :

C = chainComplex X

1 8 28 53 57 32 7

o4 = ZZ <-- ZZ <-- ZZ <-- ZZ <-- ZZ <-- ZZ <-- ZZ

-1 0 1 2 3 4 5

o4 : ChainComplex

i5 :

prune HH X

o5 = -1 : 0

0 : 0
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1 : 0

2 : 0

3 : 0

4 : 0

5 : 0

o5 : GradedModule

The following example has nonzero homology:

Example 3.3.3. Let T be the following graph:

1

2

3

4

5

6

7
8

9

With the same process as before, H̃i(K
1(IT )) ∼= H̃i−4(K1(IT ′)) where T ′ is

the following graph:

6

7
8

9

Then, using the proposition 3.2.5, we get that H̃i(K
1(IT )) ∼= H̃i−5(K1(IT ′′))

where T ′′ is just an edge, so H̃i(K
1(IT ′′)) ∼= kδi,−1 , i.e. it has nonzero homol-

ogy only at dimension −1, and that homology is k. Therefore K1(IT ) has
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nonzero homology only at dimension 4. Again, this can be veri�ed compu-
tationally: The Upper Koszul complex is just given by

{2, 4, 5, 6, 7, 8, 9}
{1, 2, 3, 4, 6, 8, 9}
{1, 2, 3, 4, 7, 8, 9}
{3, 4, 5, 6, 7, 8, 9}
{2, 3, 4, 6, 7, 8, 9}
{2, 3, 5, 6, 7, 8, 9}
{1, 2, 3, 4, 5, 6, 9}
{1, 2, 3, 4, 5, 7, 8}

CHOMP returns

HOMSIMPL, ver. 0.01, 11/09/04. Copyright (C) 1997-2013

by Pawel Pilarczyk.

This is free software. No warranty. Consult 'license.txt'

for details.

[Tech info: simpl 4, chain 12, addr 4, intgr 2.]

Reading simplices to X from 'UpperKoszul.sim'...

8 simplices read.

Collapsing faces in X... ...... 234 removed, 164 left.

Note: The dimension of X decreased from 6 to 4.

Creating the chain complex of X... .... Done.

Time used so far: 0.02 sec (0.000 min).

Computing the homology of X over the ring of

integers...

Reducing D_4: 0 + 21 reductions made.

Reducing D_3: 32 + 0 reductions made.

Reducing D_2: 21 + 0 reductions made.

Reducing D_1: 3 + 4 reductions made.

H_0 = Z

H_1 = 0

H_2 = 0

H_3 = 0

H_4 = Z

Total time used: 0.03 sec (0.001 min).
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Thank you for using this software.

We appreciate your business.

After a while, Macaulay also returns:

i5 :

prune HH X

o5 = -1 : 0

0 : 0

1 : 0

2 : 0

3 : 0

1

4 : ZZ

5 : 0

6 : 0

o5 : GradedModule

since the calculations become a bit complex computationally to do them
directly using the chain complex (Since CHOMP collapses lots of faces before
creating the chain complex it's a more e�cient software for calculations of
homology).

De�nition 3.3.1. Let T be a forest. We say that T is sequentially star-
coverable of class r if there is a sequence of subgraphs Σ0, . . . ,Σr ⊆ T such
that

1. Σj is a star for every j ∈ {0, . . . , r}.

2. For T0 = T and Tj = Tj−1−V (Σj−1) (for j ∈ {1, . . . , r}), Σj is induced
in Tj and Σj contains at least one leaf of Tj di�erent from its center.
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3. V (Σi) ∩ V (Σj) = ∅ for i 6= j.

4. V (T ) =
⋃r
j=1 V (Σj).

Proposition 3.3.4. Let T be a forest. If T is sequentially star-coverable of
class r then

H̃i(K
1(IT )) ∼=

{
k if i = n− r − 2
0 otherwise.

Otherwise H̃i(K
1(IT )) = 0 for every i.

Proof. A repeated use of the previous lemma shows that if T is sequentially
star-coverable of class r then by a counting argument we get the result after
the second-last graph in the process is a star (The last one is the empty one).
Otherwise when we end up with a graph with no edges, independently of
the choice of stars, we'll end up with a graph made up of isolated vertices.
If the second to last graph already had isolated vertices, then we're done.
Otherwise the second to last graph is a tree, of height 3 on which the root
has a neighbor of degree 1, similar to the one in the following picture:

In this case we can change our choice of stars. Removing one of the stars
of a neighbor of the root which does not have degree 1 (If every neighbor
had degree 1 the graph would be a star and T would be sequentially star-
coverable; a contradiction) we isolate the vertex of degree 1, making all the
homologies H̃i(K

1(IT )) become 0. �

The proposition above also shows that the class r of T only depends
on the homology of K1(IT ). So, independently of the choice of stars for a
sequentially star-coverable graph, the number of stars remains constant.

This allows us to increase the number of graphs for which we can compute
their Betti numbers.
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Proposition 3.3.5. Let Pn be the path with n vertices. Then Pn is sequen-
tially star-coverable i� n 6≡ 1 mod 3. If n ≡ 0 mod 3 then its class is r = n

3
,

and if n ≡ 2 mod 3 then its class is r = n+1
3
.

Corollary 3.3.6. Let Pn be the path with n vertices. Then

H̃i(K
1(IPn)) ∼=


k if n ≡ 0 mod 3 and i = 2n−6

3
,

k if n ≡ 2 mod 3 and i = 2n−7
3
,

0 if n ≡ 1 mod 3.

We'll actually be able to use this to compute the Betti numbers of a
something which is totally not a forest. First we'll show two examples:

Example 3.3.7. Let G = C3, i.e. the graph given by the following �gure:

1

2 3

The ideal IG is (x1x2, x2x3, x1x3). The upper Koszul complex K1(IG) is given
by the facet set {{1}, {2}, {3}}. This simplicial complex is a discrete set and
its homology H̃i is k

2 i� i = 0 and 0 otherwise.

Example 3.3.8. Let G = C4, i.e. the graph given by the following �gure:

1 2

34

The ideal IG is (x1x2, x2x3, x3x4, x1x4). The upper Koszul complex K1(IG) is
given by the facet set {{3, 4}, {1, 4}, {1, 2}, {2, 3}}. This simplicial complex
is also C4 and its homology H̃i is k i� i = 1 and 0 otherwise.

Example 3.3.9. Let G = C5, i.e. the graph given by the following �gure:
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1

2

3 4

5

The ideal IG is just

(x1x2, x2x3, x3x4, x4x5, x1x5).

The upper Koszul complex K1(IG) is given by the facet set

{{3, 4, 5}, {1, 4, 5}, {1, 2, 5}, {1, 2, 3}, {2, 3, 4}}.

This simplicial complex can be seen as A ∪B where

A = {{1, 2, 3}, {1, 2, 5}, {1, 4, 5}}

and
B = {{2, 3, 4}, {3, 4, 5}}.

Both A and B have all homologies 0 and

A ∩B = {{2, 3}, {4, 5}},

so that H̃i(A ∩ B) ∼= k if i = 0 and 0 otherwise. Therefore H̃i(K
1(IG)) ∼= k

i� i = 1 and 0 otherwise.

Proposition 3.3.10. Let Cn be the cycle with n vertices x1, . . . , xn. Then

H̃i(K
1(ICn)) ∼=


k2 if n ≡ 0 mod 3 and i = 2n−6

3
,

k if n ≡ 2 mod 3 and i = 2n−7
3
,

k if n ≡ 1 mod 3 and i = 2n−5
3
.

Proof. First suppose that n > 5. We take a recursive Mayer-Vietoris se-
quence as follows:

· · · → H̃i(K
1(I ′))→ H̃i(K

1(IPn))⊕ H̃i(K
1(x1xn))→ H̃i(K

1(ICn))→ · · ·



CHAPTER 3. USING HOCHSTER'S FORMULA RECURSIVELY 77

where

I ′ = IPn ∩ (x1xn)

= (x1x2, x2x3, . . . , xn−2xn−1, xn−1xn) ∩ (x1xn)

= (x1x2xn, x1x2x3xn, . . . , x1xn−2xn−1xn, x1xn−1xn)

= (x1x2xn, x1x3x4xn, . . . , x1xn−3xn−2xn, x1xn−1xn)

= (x2, x3x4, . . . , xn−3xn−2, xn−1) ∩ (x1xn).

We know that for all i,
H̃i(K

1(x1xn)) = 0

and,

H̃i(K
1(Pn)) ∼=


k if n ≡ 0 mod 3 and i = 2n−6

3
,

k if n ≡ 2 mod 3 and i = 2n−7
3
,

0 if n ≡ 1 mod 3,

so the result will also depend on the remainder of n modulo 3. Further-
more for hi(K

1(x2, x3x4, . . . , xn−3xn−2, xn−1)) = 0 for every i, since x1, xn /∈
Supp(x2, x3x4, . . . , xn−3xn−2, xn−1). So we have a second recursive Mayer-
Vietoris sequence:

· · · → H̃i+1(K1(I ′′))→ H̃i(K
1(I ′))→ 0→ H̃i(K

1(I ′′))→ · · ·

where I ′′ = (x2, x3x4, . . . , xn−3xn−2, xn−1, x1xn). For a suitable 1′, we have

H̃i(K
1(I ′′)) ∼= H̃i−3(K1′(Pn−4))

∼=


k if n ≡ 1 mod 3 and i = 2n−5

3
,

k if n ≡ 0 mod 3 and i = 2n−6
3
,

0 if n ≡ 2 mod 3.

Therefore, for all i,

H̃i(K
1(I ′)) ∼= H̃i+1(K1(I ′′)) ∼=


k if n ≡ 1 mod 3 and i = 2n−8

3
,

k if n ≡ 0 mod 3 and i = 2n−9
3
,

0 if n ≡ 2 mod 3.

So, in the �rst Mayer-Vietoris sequence, we know all the homologies,
except for H̃i(K

1(ICn)). Suppose �rst that n ∼= 2 mod 3. In this case the
Mayer-Vietoris sequence divides into sequences:

0→ H̃i(K
1(IPn))→ H̃i(K

1(ICn))→ 0
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In this case
H̃i(K

1(IPn)) ∼= H̃i(K
1(ICn))

for every i.
Suppose, then that n ∼= 1 mod 3. In this case, we have sequences of the

form:
0→ H̃i+1(K1(Cn))→ H̃i(K

1(I ′))→ 0

which means that
H̃i+1(K1(Cn)) ∼= H̃i(K

1(I ′))

for every i.
Lastly, suppose that n ≡ 0 mod 3. Then, the sequence

· · · → H̃i(K
1(I ′))→ H̃i(K

1(IPn))→ H̃i(K
1(ICn))→ · · ·

divides into the sequences

0→ H̃s(K
1(IPn))→ H̃s(K

1(ICn))→ H̃s−1(K1(I ′))→ 0

for s = 2n−6
3

, and

0→ H̃i(K
1(ICn))→ 0

for i 6= s. Then we have the short exact sequence:

0→ k → H̃s(K
1(ICn))→ k → 0

which makes
H̃s(K

1(ICn)) ∼= k2.

Therefore

H̃i(K
1(ICn)) ∼=


k2 if n ≡ 0 mod 3 and i = 2n−6

3
,

k if n ≡ 2 mod 3 and i = 2n−7
3
,

k if n ≡ 1 mod 3 and i = 2n−5
3
.

Since the formula above also holds for n < 5, then we're done. �
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Conclusion - Future Work

There is another simplicial complex which can, heuristically (At least for
now), be used to compute the Betti numbers of an edge ideal. So, let G be a
graph with vertex set V = {x1, . . . , xn} and I = IG its associated ideal. The
upper Koszul complex can be seen as the set of all sets σ ⊆ V of vertices
which are not vertex-covers in G, i.e. there are edges in G non-incident with
any vertex of σ. Indeed, if σ ∈ X = K1(I) then x1−σ ∈ I means that there
is some monomial in I dividing x1−σ, which is the same as the vertices of the
edge associated to that monomial not being vertices in σ.

We also have the complex K1(I) of all the independent sets of G, which
is the Alexander dual of K1(I), so it's homology also gives (after a shifting
and a translation in dimension) the Betti numbers of I.

But analogously we have another simplicial complex which also can be
used for that: The complex K(I) of all the non edge-covers of the graph.
Intuitively, there is no reason why this complex should be able to compute
the Betti numbers of the graph, at least not directly, and even if it did,
since it almost has a higher dimension than K1(I) and K1(I), it should be
expected to have the homologies in di�erent dimensions. This is surprisingly
not the case. In the case of forests, since |E| < |V |, the dimension of this
complex is usually lower, though.

A �rst easy result is that K(G) has the same Euler characteristic ofK1(I).
Next we'll use three examples which show they have the same homology (In
these cases they're even homotopically equivalent). Then we'll show an exam-
ple which shows that it also seems to hold in more general squarefree ideals.
The non edge-covers of hypergraphs are still contained in complements of
stars, and the complements of stars are still non edge-covers, so the maximal

79
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non edge-covers are still along the complements of stars. One example we'll
use is the hypergraph which upper Koszul complex is the projective plane
(since the previous examples lack torsion).

This is normally not a more e�cient way to compute Betti numbers,
since it has almost always more vertices than the Koszul complexes (Since
its vertices are the edges of the graph, instead of the vertices, as in the Koszul
complexes). It would be a new result, nonetheless: This complex does not
appear in the literature of complexes associated to graphs.

In our search for some related simplicial complexes we also came upon the
simplicial complex of the matchings of the graph associated to I. This one
does appear in the literature (See [7]), and its rational homology is known,
but unfortunately does not coincide with the homology of K1(I). It is to
be seen if there is a relationship between them and if some of its topological
information can be translated into the algebraical information of I. We can
also look into the homology of K1(IL(G)), where L(G) is the line graph of G,
i.e. a graph with E as a vertex set and edges ee′ such that e ∩ e′ 6= ∅.

4.1 Complex of non edge-covers

In this section K(G) is the simplicial complex of all the edge sets of G which
don't cover V , where G = (V,E) is a graph with vertex set V = {1, . . . , n}.
Since the complement of a non edge-cover contains a star, and the maximal
non edge-covers are all complements of stars, then

K(G) = K1(IΣ(G))

where Σ(G) is the hypergraph of all the stars of G, i.e. the hypergraph with
vertex set E(G) and edge set {σ1, . . . , σn} for σi = {e ∈ E | i ∈ e}. There
are no issues about leaving in Σ(G) the stars corresponding to not maximal
non edge-covers of G, since for stars σi, σj, if we have that E − σj ⊆ E − σi
then we also have σi ⊆ σj and mi | mj, where for each i, mi is the monomial
in k[E] associated to σi.

Example 4.1.1. Consider the following tree T :
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1
2

3
4

5

6
7

The complex K(T ) is given by the facets:

{2, 3, 4, 5, 6, 7},
{1, 3, 4, 5, 6, 7},
{1, 2, 4, 5, 6, 7},
{1, 2, 3, 4, 6, 7},
{1, 2, 3, 4, 5, 6}.

The three remaining complements of stars were just {5, 6, 7}, {1, 2, 3, 7} and
{1, 2, 3, 4, 5}. According to CHOMP, the homology of this simplicial complex
is given by

HOMSIMPL, ver. 0.01, 11/09/04. Copyright (C) 1997-2013

by Pawel Pilarczyk.

This is free software. No warranty. Consult 'license.txt'

for details.

[Tech info: simpl 4, chain 12, addr 4, intgr 2.]

Reading simplices to X from 'Edgenoncover.sim'... 1

simplices read.

Collapsing faces in X... ..... 62 removed, 1 left.

Note: The dimension of X decreased from 5 to 0.

Creating the chain complex of X... Done.

Time used so far: 0.02 sec (0.000 min).

Computing the homology of X over the ring of integers...

H_0 = Z

Total time used: 0.02 sec (0.000 min).

Thank you for using this software. We appreciate

your business.

We'll develop a method for computing these homologies which will show it
agrees with the homology of K1(IT ), at least for forests. We'll start showing
that the Euler characteristic of both complexes is the same. The way to
prove this is not so direct, so we'll need some results to do it.
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De�nition 4.1.1. For a monomial ideal I ⊆ S, de�ne

µ(I) =
∑

m∈Mon I

m ∈ k[[x1, . . . , xn]]

as the sum of all monomials of I, where the sum above is a formal sum.

We can have some more compact expresions for µ(I) in k((x1, . . . , xn)),
for example, for I = (1) we have

µ(I) =
n∏
i=1

1

1− xi
.

For a principal ideal (m), we have that

µ((m)) = m
n∏
i=1

1

1− xi
.

De�nition 4.1.2. For a subset σ ⊆ N = {1, . . . , n} de�ne

Pσ =
∏
i∈σ

1

1− xi
∈ k((x1, . . . , xn)).

The expression above is really in k(x1, . . . , xn) but its meaning as a series
can only be grasped in k((x1, . . . , xn)).

De�nition 4.1.3. For a monomial ideal I = (m1, . . . ,mr) and a subset
σ ⊆ {1, . . . , r} de�ne

mσ = lcm(mi | i ∈ σ)

De�nition 4.1.4. For a monomial ideal I = (m1, . . . ,mr), we'll de�ne its
lcm-poset as the poset

LI = {mσ | σ ⊆ {1, . . . , r}},

ordered by divisibility. For a monomial q ∈ LI de�ne

WI(q) = {J ⊆ {1, . . . , n} | mJ = q}.

Then de�ne
ωI(q) =

∑
c∈WI(q)

(−1)|c|−1

and Qi = {q ∈ LI | ωI(q) 6= 0}.
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Lemma 4.1.2. For a monomial ideal I generated minimally by

M = {m1, . . . ,mr}

we have
µ(I) =

∑
q∈QI

ωI(q)qPN .

Proof. For σ ⊆ {1, . . . , r} let Aσ = Mon((mσ)), i.e. the set of all the mono-
mials divisible by mσ. So, since ⋂

i∈σ

Ai = Aσ

we have, by the inclusion-exclusion principle applied to the sets Aj, that

µ(I) = µ

(⋃
i∈N

Ai

)
=

r∑
k=1

(−1)k−1
∑
σ∈Nk

µ

(⋂
i∈σ

Ai

)
=

r∑
k=1

(−1)k−1
∑
σ∈Nk

µ(AJ)

=
∑
q∈QI

µ((q))

 ∑
c∈WI(q)

(−1)|c|−1

 =
∑
q∈Qi

ωI(q)µ((q)) =
∑
q∈QI

ω(q)qPN .

where Nk is the set of all the subsets of N with k elements. �

Now, for a graph G with vertex set V = {v1, . . . , vn} and I = IG, consider
the set C(G) as the set of all edge-covers of G. For an induced subgraph H
of G it's clear that

ωG(H) := ωI(q(H)) =
∑

c∈C(H)

(−1)|c|−1,

since WI(q(H)) = C(H), where q(H) = lcm(e|e ∈ E(H)).
Therefore,

µ(G) := µ(IG) =
∑
q∈QI

ω(H)q(H)PN .

Using the previous remark and a Möbius inversion formula it can be proven
that

ω(G) = (−1)n
α(G)∑
k=0

(−1)k−1uk = (−1)nχ(K1(G)).

This can be rewritten as:
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Proposition 4.1.3. For a graph G with n vertices,

χ(K1(IG)) = (−1)n−1χ(K(G)).

There is also a relationship between χ(∆) and χ(∆∨) for any simplicial
complex ∆. First, it's clear that∑

σ∈∆

(−1)|σ|−1 +
∑
σ/∈∆

(−1)|σ|−1 = χ(∆n−1) = 0.

Also ∑
σ/∈∆

(−1)|σ|−1 = (−1)n(−1)n
∑
σ/∈∆

(−1)|σ|−1

= (−1)n
∑
σ/∈∆

(−1)n−|σ|−1

= (−1)n
∑
σ/∈∆

(−1)|∆
n−σ|−1

= (−1)n
∑
σ∈∆∨

(−1)|σ|−1.

= (−1)nχ(∆∨).

Therefore, χ(∆) = (−1)n−1χ(∆∨). So it follows that

Corollary 4.1.4. For a graph G with n vertices,

χ(K(G)) = χ(K1(IG)).

We can go further, getting the following results, ironically, in the opposite
order to the way we got them in the previous chapter.

Theorem 4.1.5. Let G = Cn be the cycle with n vertices. Then

H̃i(K
1(IG)) ∼= H̃i(K(G))

for all i.

Proof. In this case, if V (G) = {v1, . . . , vn} and E(G) = {e1, e2, . . . , en},
where ei = vivi+1 for i < n and en = v1vn, the star ideal of G is

IΣ(G) = (e1e2, e2e3, . . . , en−1en, ene1),

which coincides to the edge ideal of G (up to a change of variables). There-
fore, K(G) = K1(IΣ(G)) = K1(IG). The result follows. �
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Theorem 4.1.6. Let G = Pn be the path with n vertices. Then

H̃i(K
1(IG)) ∼= H̃i(K(G))

for all i.

Proof. In this case, if V (G) = {v1, . . . , vn} and E(G) = {e1, . . . , en−1}, where
for i < n ei = vivi+1, the star ideal of G is

I = IΣ(G) = (e1, e1e2, e2e3, . . . , en−2en−1, en−1).

Since e1 | e1e2 and en | en−1en is not generated minimally, and

I = (e1, e2e3, . . . , en−2en−1, en).

Since e1, en are independent from the remaining monomials generating I, we
have, for all i, that

H̃i(K
1(I)) ∼= H̃i−2(K1′(I ′))

where
I ′ = (e2e3, . . . , en−2en−1)

and 1′ results from removing the entries of 1 associated to e1 and en. This
is, up to a change of variables, the edge ideal of Pn−3. Therefore

H̃i(K(G)) ∼= H̃i−2(K1′)(IPn−3).

Since we already know, by applying the lemma 3.3.1, that

H̃i(K
1(G)) ∼= H̃i−2(K1′)(IPn−3).

the result follows. �

Theorem 4.1.7. Let T be a forest with n vertices and m edges. Then

H̃i(K
1(IT )) ∼= H̃i(K(T ))

for all i.

Proof. First, if T is a star, then K(T ) consists of all the edge-sets except for
{e1, . . . , em}. Therefore K(T ) is the boundary of the simplex with vertex set
e1, . . . , em, i.e. the sphere Sm−2. The homology of K(T ) can be computed
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directly. The chain complex of ∆ = ∆m−1 is an exact sequence of k−vector
spaces

0← C−1(∆)← C0(∆)← C1(∆)← · · · ψ← Cm−2(∆)
φ← Cm−1(∆)← 0

where Cm−1(∆) ∼= k is generated by the full face {e1, . . . , em}. Note that
kerψ = imφ ∼= k. Now, the chain complex of K(T ) is

0← C−1(∆)← C0(∆)← C1(∆)← · · · ψ← Cm−2(∆)← 0

which is exact everywhere except in Cm−2(∆). So, we have

H̃m−2(K(T )) ∼= kerψ ∼= k.(i)

Since stars are connected, then m− 2 = n− 3 and the result follows: When
T is a star we have

H̃i(K(T )) ∼=
{
k if i = m− 2 = n− 3
0 otherwise.

So the second case is next: If T is any graph which has an isolated vertex
then K(T ) is the full simplex with E as a vertex set. Therefore H̃i(K(T )) = 0
for all i. For the last case, consider T as any forest with edges and no isolated
vertices. Let v be a leaf of T , e be the only edge incident to v, and S the
star of the only vertex w adjacent to v. Let S1, . . . , Sr the stars of T which
don't share edges with S and Sr+1, . . . , Sn−2, S, e the remaining stars. Then

I = IΣ(T ) = (S1, . . . , Sr, Sr+1, . . . , Sn−2, S, e) = (S1, . . . , Sr, Sr+1, . . . , Sn−2, e)

since IΣ(T ) is not generated minimally. Now, since e is independent from the
remaining monomials generating I, we have

H̃i(K(T )) ∼= H̃i−1(K1′(I ′))

where I ′ = (S1, . . . , Sr, Sr+1, . . . , Sn−2) and 1′ results from removing from 1
the entry corresponding to e. Since T is a forest, the stars Sr+1, . . . , Sn−2

are all independent from each other (Otherwise two of them would share an
edge, making a triangle with their two edges incident to w). Also each of
these stars has at least one edge not being on any of the stars S1, . . . , Sr

(i)This holds for any ring, not only �elds.
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(The edge incident to w). If there is only one remaining star (i.e. r = 0 and
n = 3) then T = P3 and we're done. If, furthermore, we have that r = 0
then T is a star, and we're also done here. So we can suppose this is not
the case, so that there is an edge in S1, . . . , Sr not being in any of the stars
Sr+1, . . . , Sn−2. With this, and a recursive Mayer-Vietoris sequence we have
that

H̃i(K
1′(I ′)) ∼= H̃i−1K

1′(I1)

where

I1 = (lcm(S1, Sn−2), . . . , lcm(Sr, Sn−2), Sr+1Sn−2, . . . , Sn−3Sn−2).

Reversing the process as in the lemma 3.3.1, we have the ideal

I(1) = (lcm(S1, Sn−2)/Sn−2, . . . , lcm(Sr, Sn−2)/Sn−2, Sr+1, . . . , Sn−3)

which appears in a Mayer-Vietoris sequence:

· · · → H̃i(K
1′(I1))→ H̃i(K

1′(I(1)))→ H̃i(K
1′(I(1) + (Sn−2)))→ · · ·

If one of the stars is in fact an edge incident to Sn−2 then

I(1) = (1) = I(1) + (Sn−2)

so, since (1) is principal, H̃i(K
1′(1)) is k i� i = −1 and is 0 otherwise. This

sequence turns into the short exact sequences

0→ H̃i(K
1′(I1))→ 0

for i ≥ 0 and
0→ H̃0(K1′(I1))→ k → k → 0.

Both of these make H̃i(K
1′(I1)) = 0 for all i.

So, analogously, if, for some i > r we have that Si contains a leaf, this
will imply that H̃i(K

1(I)) = 0 for all i. In the context of the lemma 3.3.1,
this means that removing NT [w] leaves an isolated vertex which would make
H̃i(K

1(IT )) = 0 too. So in this case, we're done.
Suppose next that this is not the case, i.e. no star Si contains a leaf for

i > r. Then for each star Si with i > r, every star Sj for j ≤ r contains
an edge ej not being in Si. Furthermore ej is not in Si for any other i > r,
because of the following:
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1. If, for every i > r, Sj does not share edges with Si, then no edge of Sj
is Si for any i > r.

2. If Sj shares edges with Si for exactly one i, then, since Sj must have
another edge, this edge is not in Si′ for any i

′ > r.

3. Sj cannot share edges with Si for more than one i > r, otherwise the
edges

e ∈ E(Sj) ∩ E(Si), e
′ ∈ E(Sj) ∩ E(Si′)

and
e′′ ∈ E(Si) ∩ E(S), e′′′ ∈ E(Si′) ∩ E(S)

make a cycle.

So, in this case, the Mayer-Vietoris sequence above gives an isomorphism
H̃i(K

1′(I ′)) ∼= H̃i(K
1′)(I(1)). We can then repeat the process to build ideals

I(2), . . . , I(dT (w)−1), with the same homology in K1′ , and where

I ′′ = I(dT (w)−1) = (S ′1, S
′
2, . . . , S

′
r, Sr+1, . . . , Sn−2)

and, for each j ≤ r, S ′j is a monomial not sharing any edge variable with any
Si for i > r. Now we can safely remove the stars Si, i > r from I ′′ since these
monomials are independent from each other monomial in I ′′. So,

H̃i(K
1′(I ′)) ∼= H̃i−dT (w)+1(K1′′(I ′′))

where 1′′ results from removing the entries of 1′ associated to the edges of
the removed stars. Therefore

H̃i(K
1(I)) ∼= H̃i−dT (w)K

1′′(I ′′).

But K1′′(I ′′) = K(IT−NT [w]) and I ′′ is the star ideal of T − NT [w], which
means that the homology of K(T ) and K1(IT ) satisfy the same recurrence
relation, and they also satisfy the base cases of such recurrence (stars and
forests with isolated vertices). The result follows. �

With such a strong evidence, what's left to do is to prove that this result
holds for any graph, and even more, for any hypergraph. All our examples
until now are independent of the characteristic of k. The following is an
example in which the homology of K1 does depend on the characteristic of
k.
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Example 4.1.8. Consider the following simplicial structure of RP 2:

1

23

1

2 3

4

5 6

The integer homology of this simplicial complex is given by

H̃i(RP 2;Z) ∼=
{

Z2 if i = 1
0 otherwise.

This complex is associated to the ideal

I = (x1x2x3, x1x5x6, x1x2x6, x1x3x4,x1x4x5, x3x5x6, x2x3x5,

x3x4x6, x2x4x6, x2x4x5).

so that K1(I) = RP 2. The complex K(I) has as facets:

{1, 3, 5, 7, 10},
{1, 2, 4, 5, 6},
{2, 4, 7, 9, 10},
{1, 2, 3, 8, 9},
{3, 4, 6, 7, 8},
{5, 6, 8, 9, 10}.

According to CHOMP, its homology is also Z2.

HOMSIMPL, ver. 0.01, 11/09/04. Copyright (C) 1997-2013

by Pawel Pilarczyk.

This is free software. No warranty.

Consult 'license.txt' for details.

[Tech info: simpl 4, chain 12, addr 4, intgr 2.]

Reading simplices to X from 'edgenoncover.sim'...
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6 simplices read.

Collapsing faces in X... .... 96 removed, 55 left.

Note: The dimension of X decreased from 4 to 2.

Creating the chain complex of X... .. Done.

Time used so far: 0.01 sec (0.000 min).

Computing the homology of X over the ring of integers...

Reducing D_2: 0 + 18 reductions made.

Reducing D_1: 3 + 6 reductions made.

H_0 = Z

H_1 = Z_2

Total time used: 0.02 sec (0.000 min).

Thank you for using this software. We appreciate your business.

When we wonder about the problem of proving that K1(IG) and K(G)
have the same homology, we only need to prove the homologies agree when
the coe�cients lie on a �eld. But they might have the same homology over
every �eld and still have di�erent homology over some other ring. This is
not the case in the examples above, but this is not surprising, since most of
them have no torsion, and when there is no torsion the homology over any
�eld of characteristic zero is enough to compute the integer homology. The
example above is also not surprising, since when the integer homology has
simple torsion we still can build the integer homology from the homology
over a few �elds. The following example is one when the integer homology of
K1 and K is still the same even if this homology is not recovered completely
from their homology over every �eld.

Example 4.1.9. Consider the following simplicial complex X:

1231

2

3

1 2 3 1

2

3

4

5

6

7

8

9
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This is a simplicial structure of a CW -complex generalizing the projective
plane having as integer homology H̃1(X) ∼= Z4 (It's built by taking a circle
and gluing a 2−cell by a map going around the circle four times) and zero
everywhere else. Its homology over Z2 is H̃1(X;Z2) ∼= Z2 and H̃2(X;Z2) ∼=
Z2. It's zero everywhere else. The associated ideal has many generators:

I = (x1x3x4x7x8x9, x2x4x5x6x7x8, x1x2x6x7x8x9, x1x4x5x6x8x9,

x2x4x5x6x7x9, x1x4x5x7x8x9, x3x4x5x6x7x9, x2x4x5x7x8x9,

x3x4x5x6x8x9, x1x5x6x7x8x9, x2x4x6x7x8x9, x3x4x6x7x8x9,

x3x5x6x7x8x9, x1x2x3x5x6x7, x1x3x4x5x6x7, x1x2x3x5x6x9,

x1x2x4x5x6x9, x1x2x3x5x8x9, x1x2x3x7x8x9, x2x3x4x5x8x9,

x1x4x5x6x7x8, x2x3x5x6x7x8).

The complex K(I) has the facets:

{4, 9, 16, 17, 18, 20},
{3, 10, 13, 14, 16, 18, 19, 22},
{1, 3, 11, 12, 19},
{2, 3, 4, 5, 6, 8, 10, 11, 17, 21},
{1, 4, 6, 7, 9, 10, 12, 13, 15, 21},
{1, 6, 8, 18, 19, 20},
{2, 5, 7, 8, 9, 11, 12, 13, 20, 22},
{5, 7, 14, 15, 16, 17},
{2, 14, 15, 21, 22}

and its homology over Z and Z2 are the same as the ones of X(ii).
Over Z:

HOMSIMPL, ver. 0.01, 11/09/04.

Copyright (C) 1997-2013 by Pawel Pilarczyk.

This is free software. No warranty.

Consult 'license.txt' for details.

[Tech info: simpl 4, chain 12, addr 4, intgr 2.]

Reading simplices to X from 'edgenoncover.sim'...

9 simplices read.

(ii)These spaces are called the Eilenberg-Maclane spaces.
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Collapsing faces in X... ......... 3268 removed, 203 left.

Note: The dimension of X decreased from 9 to 2.

Creating the chain complex of X... .. Done.

Time used so far: 0.03 sec (0.000 min).

Computing the homology of X over the ring of integers...

Reducing D_2: 0 + 80 reductions made.

Reducing D_1: 21 + 0 reductions made.

H_0 = Z

H_1 = Z_4

Total time used: 0.04 sec (0.001 min).

Thank you for using this software. We appreciate your business.

Over Z2:

HOMSIMPL, ver. 0.01, 11/09/04.

Copyright (C) 1997-2013 by Pawel Pilarczyk.

This is free software.

No warranty. Consult 'license.txt' for details.

[Tech info: simpl 4, chain 12, addr 4, intgr 2.]

Reading simplices to X from 'edgenoncover.sim'...

9 simplices read.

Collapsing faces in X... ......... 3268 removed, 203 left.

Note: The dimension of X decreased from 9 to 2.

Creating the chain complex of X... .. Done.

Time used so far: 0.03 sec (0.001 min).

Computing the homology of X over Z modulo 2...

Reducing D_2: 0 + 79 reductions made.

Reducing D_1: 18 + 3 reductions made.

H_0 = Z_2

H_1 = Z_2

H_2 = Z_2

Total time used: 0.04 sec (0.001 min).

Thank you for using this software. We appreciate your business.

4.2 Combinatorial Hochster's Formula

For edge ideals of a graph G we're interested in making a combinatorial
construction which helps us compute, not only the Betti numbers of IG, but
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an entire minimal free resolution of it. An idea of such construction goes as
follows.

Consider a minimal vertex-cover c of the graph. Then the vertex set
associated to it is not a face of the simplicial complex K1(IG), but every
proper subset of it is a face. So the boundary of c is a potential element of
C•(K

1(IG)) with nonzero homology. Now consider the subgraph resulting
from G after removing the edges with both end of c, and call it Gc. The
set of all Gc generates an abelian group with symmetric di�erence as its
sum. This is expected to have as its dimension at least the combined dimen-
sion of H̃(K1(IG)). Furthermore it's also expected that this correspondence
preserves the operations of the homology group.
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Appendix

5.1 Java Code

The following code was used to compute the Koszul homology of a graph
given its incidence matrix. The code just computes the facets of both the
edge non-cover complex, and the upper Koszul complex of an edge ideal,
given its incidence matrix. Then it runs the homsimpl command of CHOMP
(Computational Homology Project) to compute both homologies, printing
the output in a JFrame.

package Hedgeideal;

import java.awt.Font;

import java.util.*;

import java.io.*;

import javax.swing.*;

/**

*

* @author dcmol

*/

public class Hedgeideal {

public static <T> Set<Set<T>> powerSet(Set<T> aSet) {

Set<Set<T>> sets = new HashSet<Set<T>>();

if (aSet.isEmpty()) {

95
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sets.add(new HashSet<T>());

return sets;

}

List<T> list = new ArrayList<T>(aSet);

T head = list.get(0);

Set<T> rest = new HashSet<T>(

list.subList(1, list.size()));

for (Set<T> set : powerSet(rest)) {

Set<T> eachSet = new HashSet<T>();

eachSet.add(head);

eachSet.addAll(set);

sets.add(eachSet);

sets.add(set);

}

return sets;

}

public static String Edgenotation(Set edgeset, int v) {

String Ret="";

for (Object e : edgeset) {

Ret=Ret+","+tag((Set)e,v);

}

Ret=Ret.substring(1);

Ret="{"+Ret+"}";

return Ret;

}

public static String nnotation(Set edgeset, int v) {

String Ret="";

for (Object e : edgeset) {

Ret=Ret+","+tag((Set)e,v);

}

return Ret.substring(1);

}

public static String Nnotation(Set set) {

String Ret="";

String S=set.toString();

String E=S.substring(1, S.length()-1);

Ret="{"+E+"}";

return Ret;

}

public static String tomonomial(Set<Integer> edge) {
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String Ret="";

Integer[] EDGE=edge.toArray(new Integer[edge.size()]);

Ret=Ret+"x"+Integer.toString(EDGE[0])+"*"

+"x"+Integer.toString(EDGE[1]);

return Ret;

}

public static String edgeideal(Set edgeset) {

String Ret="";

for (Object edge: edgeset) {

Ret=Ret+","+tomonomial((Set)edge);

}

Ret=Ret.substring(1);

Ret="("+Ret+")";

return Ret;

}

public static String tag(Set<Integer> edge, int v) {

String Ret="";

Set E=new HashSet();

for (int i = 1; i < v; i++) {

for (int j = i+1; j < v+1; j++) {

Set e=new HashSet<Integer>();

e.add(i);

e.add(j);

E.add(e);

}

}

Object[] EE=E.toArray();

for (int i = 0; i < EE.length; i++) {

if (EE[i].equals(edge)) {

Ret=Ret+Integer.toString(i+1);

}

}

return Ret;

}

public static void main(String[] args)

throws IOException {

int e=0;

int v=0;

Set V=new HashSet();
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Set E=new HashSet();

List textread=new ArrayList();

BufferedReader reader;

try {

reader = new BufferedReader(new FileReader(

"IncidenceMatrix.txt"));

/*

You can write the incidence matrix in a text file

removing all brackets, commas and spaces. For

example, you can use the array

1100

1010

1001

0110

0101

0011

for the complete graph with four vertices.

*/

String line = reader.readLine();

while (line != null) {

e++;

v=line.length();

textread.add(line);

line = reader.readLine();

}

reader.close();

} catch (IOException exception) {

System.out.println("Error reading the file.");

}

for (int i = 1; i < v+1; i++) {

V.add(i);

}

for (Object l : textread) {

String ll=(String)l;

Set m=new HashSet<Integer>();

for (int i = 0; i < ll.length(); i++) {

String lu=ll.substring(i, i+1);

int mu=Integer.parseInt(lu);

if (mu!=0) {
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m.add(i+1);

}

}

E.add(m);

}

System.out.println("Vertex set:"+V);

System.out.println("Edge set:"+E);

Set Simp=new HashSet();

for (Object i : V) {

Set notcov=new HashSet();

for (Object q : E) {

Set f=(Set)q;

if (!f.contains(i)) {

notcov.add(f);

}

}

Simp.add(notcov);

}

Set Facets=new HashSet();

for (Object B : Simp) {

Set C=(Set)B;

boolean esmax=true;

for (Object A : Simp) {

Set D=(Set)A;

if (D.containsAll(C)

&&!C.containsAll(D)) {

esmax=false;

}

}

if (esmax) {

Facets.add(C);

}

}

System.out.println("Simp"+Facets);

/*The following is to fix the notation of the complex, to use

it as input for CHOMP*/

Set NFacets=new HashSet();

for (Object o : Facets) {

NFacets.add(Edgenotation((Set)o,v));

}
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System.out.println(NFacets);

String noncoversimp="";

PrintWriter Cod = new PrintWriter("Edgenoncover.sim");

for (Object f : NFacets) {

Cod.println(f);

noncoversimp=noncoversimp+f+","+"<br/>";

}

noncoversimp="{"

+noncoversimp.substring(

0,noncoversimp.length()-6)+"}";

Cod.close();

/*Here we run CHOMP from the command line to compute

homology*/

Process p = Runtime.getRuntime().exec("cmd /c \"homsimpl "

+ "Edgenoncover.sim -g Edgenoncover.txt\"");

BufferedReader stdInput = new BufferedReader(new

InputStreamReader(p.getInputStream()));

BufferedReader stdError = new BufferedReader(new

InputStreamReader(p.getErrorStream()));

PrintWriter Result = new PrintWriter("Edgehomology.txt");

/*Here we create a frame for the output*/

String s = null;

JFrame f = new JFrame();

JPanel pa = new JPanel();

JLabel la = new JLabel();

f.setSize(500, 500);

f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

f.add(pa);

String Outp="The Simplicial Complex of edge non-covers "

+ "is<br/>X="+noncoversimp;

JScrollPane pane = new JScrollPane(pa);

pa.add(la);

f.setContentPane(pane);

f.setVisible(true);

la.setFont(new Font("Arial", Font.PLAIN, 12));

while ((s = stdInput.readLine()) != null) {

System.out.println(s);

Result.println(s);

if (s.contains("Reducing")) {

s=s.substring(0, 13)+s.substring(s.length()-29);
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}

if (s.contains("Collapsing")) {

s=s.substring(0, 21)+s.substring(s.length()-29);

}

if (s.contains("Press")) {

s="";

}

if (s.contains("Thank")) {

s="";

}

if (s.contains("Copyright")) {

s="";

}

if (s.contains("free")) {

s="";

}

if (s.contains("Tech")) {

s="";

}

Outp=Outp+"<br/>"+s;

la.setText("<html>"+Outp+"<br/>CopyRight (C) 1997-2013 "

+ "by Pawel Pilarczyk"+"</html>");

}

Result.close();

while ((s = stdError.readLine()) != null) {

System.out.println(s);

}

Set K=new HashSet();

for (Object q : E) {

Set w=new HashSet<Integer>();

w.addAll(V);

w.removeAll((Set)q);

K.add(w);

}

Set NK=new HashSet();

for (Object k : K) {

NK.add(Nnotation((Set)k));

}

System.out.println("The Upper Koszul Complex is");

Outp=Outp
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+"<br/>The Upper Koszul Complex is<br/> X={";

System.out.println(Nnotation(NK));

PrintWriter Kos = new PrintWriter("UpperKoszul.sim");

for (Object k : NK) {

Outp=Outp+k+",<br/>";

Kos.println(k);

}

Outp=Outp.substring(0, Outp.length()-6)+"}";

la.setText("<html>"+Outp+"<br/>CopyRight (C) 1997-2013 "

+ "by Pawel Pilarczyk"+"</html>");

Kos.close();

Process p2 = Runtime.getRuntime().exec("cmd /c \"homsimpl "

+ "UpperKoszul.sim -g UpperKoszul.txt\"");

BufferedReader stdInput2 = new BufferedReader(new

InputStreamReader(p2.getInputStream()));

BufferedReader stdError2 = new BufferedReader(new

InputStreamReader(p2.getErrorStream()));

PrintWriter Result2 = new PrintWriter("KoszulHomology.txt");

while ((s = stdInput2.readLine()) != null) {

System.out.println(s);

Result.println(s);

if (s.contains("Reducing")) {

s=s.substring(0, 13)

+s.substring(s.length()-29);

}

if (s.contains("Collapsing")) {

s=s.substring(0, 21)

+s.substring(s.length()-29);

}

if (s.contains("Press")) {

s="";

}

if (s.contains("Thank")) {

s="";

}

if (s.contains("Copyright")) {

s="";

}

if (s.contains("free")) {

s="";
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}

if (s.contains("Tech")) {

s="";

}

Outp=Outp+"<br/>"+s;

la.setText("<html>"+Outp+"<br/>CopyRight (C) 1997-2013 "

+ "by Pawel Pilarczyk"+"</html>");

}

Result2.close();

while ((s = stdError.readLine()) != null) {

System.out.println(s);

}

}

}
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