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Resumen

En esta tesis, definimos y estudiamos la función zeta local asociada a un gráfico simple-
finito. Este es un nuevo objeto matemático que se construye en el marco de funciones zeta
multivariadas, definidas por Loeser en [33]. La continuación meromórfica de la función zeta
local de un gráfico como función racional se desprende del trabajo de Loeser. Aqúı nos
centramos en métodos expĺıcitos para calcular esta función zeta. Nuestro resultado principal
es un algoritmo recursivo para el cálculo de dichos objetos. Los resultados de este trabajo se
utilizaron en el art́ıculo. [49], escrito en colaboración con mis asesores, el Dr. Wilson Zúñiga
Galindo y el Dr. Edwin León Cardenal. En este art́ıculo, estudiamos las transiciones de fase
para gases log-Coulomb usando funciones zeta locales. Por otro lado, toda la programación
en Python de los algoritmos presentados en esta tesis fue realizada únicamente por el autor.
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Abstract

In this thesis, we define and study the local zeta function attached to a finite, simple graph.
This is a new mathematical object that is constructed in the framework of multivariate zeta
functions, defined by Loeser in [33]. The meromorphic continuation of the local zeta function
of a graph as a rational function follows from the work of Loeser. Here we focus on explicit
methods of computing this zeta function. Our main result is a recursive algorithm for the
computation of such objects. The results of this work were used in the article [49], which was
written in collaboration with my advisors, Dr. Wilson Zúñiga Galindo and Dr. Edwin León
Cardenal. In this article, we study phase transitions for log-Coulomb gases using local zeta
functions. On the other hand, all the programming in Python of the algorithms presented
in this thesis was carried out solely by the author.
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Overview

Let K be a local field, for instance R,C,Qp, and let f(x) ∈ K[x1, . . . , xn] be a non-constant
polynomial and let φ(x) be a test function. The local zeta function attached to the pair
(f(x), φ(x)) is defined as

Zφ(s, f) =

∫
Kn\f−1(0)

φ(x) |f(x)|sK d
nx, Re(s) > 0,

where |·|K denotes the absolute value of K, s ∈ C, and dnx denotes a normalized Haar
measure of the topological group (Kn,+). These integrals give rise to holomorphic functions
of s in the half-plane Re(s) > 0.

The main motivation to study local zeta functions was that the meromorphic continuation of
Archimedean local zeta functions implies the existence of fundamental solutions (i.e. Green
functions) for differential operators with constant coefficients. It is important to mention
here, that in the p-adic framework, the existence of fundamental solutions for pseudodif-
ferential operators is also a consequence of the fact that the Igusa local zeta functions, i.e.
when K = Qp, admit a meromorphic continuation (see e.g. [47, Theorem 5.5.1]).

In the middle 60s, Weil initiated the study of local zeta functions, in the Archimedean and
non-Archimedean settings, in connection with the Poisson-Siegel formula [44]. In the 70s,
Igusa developed a uniform theory for local zeta functions over local fields of characteristic zero
[20], [22]. Later, Loeser introduced in [33] the multivariate zeta functions, which constitute
a generalization of the Zφ(s, f).

In the last thirty-five years there has been a strong interest on p-adic models of quantum field
theory, which is motivated by the fact that these models are exactly solvable. There is a large
list of p-adic type Feynman and string amplitudes that are related with local zeta functions of
Igusa-type, and it is interesting to mention that it seems that the mathematical community
working on local zeta functions is not aware of this fact (see e.g. [30], [47], [48], [29], and the
references therein).

Let (Qp, |·|p) denote the field of p-adic numbers. A test function ϕ(x) on Qn
p is a locally

constant function with compact support, see Section 1.2. Given G a finite, simple graph and
ϕ(x) a test function, the local zeta function attached to G, ϕ(x) is defined as

Zϕ(s;G) =

∫
Q|V (G)|
p

ϕ (x)
∏

u,v∈V (G)
u∼v

|xu − xv|s(u,v)p

∏
v∈V (G)

dxv,

where s = (s (u, v)) for u, v ∈ V (G) for u ∼ v, s (u, v) is a complex variable attached to
the edge connecting the vertices u and v, and

∏
v∈V (G)dxv is a Haar measure of the locally

compact group (Q|V (G)|
p ,+). The integral converges for Re(s (u, v)) > 0 for any (u, v).

The integral Zϕ(s;G) is a particular case of a multivariate local zeta function, and it is
known that they admit meromorphic continuations as rational function to the whole space
C|V (G)|, see [33, Theorem 1.1.4].
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There exists a large family of zeta functions attached to finite graphs, which can be considered
as discrete analogues of the Riemann zeta function, see [42] and the references therein. There
are also zeta functions attached to infinite graphs, see e.g. [5], [14], [16], and attached to
hypergraphs [23].

The graph zeta functions that are studied in this work are related to the p-adic Feynman
integrals, worked out by Lerner and Missarov in [31]. In [49], we use the integrals Zϕ(s;G)
to study log-gases on a network (given by a graph G) confined in a bounded subset of a
local field (i.e. R, C, Qp the field of p-adic numbers). In this gas, a log-Coulomb interaction
between two charged particles occurs only when the sites of the particles are connected by
an edge of the network. The partition functions of such gases turn out to be a particular
class of multivariate local zeta functions attached to the network and a test function which
is determined by the confining potential. The methods and results of the theory of local zeta
functions allow us to establish that the partition functions admit meromorphic continuations
in the parameters.

In the case of p-adic fields the meromorphic continuations of the partition functions are ra-
tional functions in the parameters. We give an Algorithm ZetaFunctionGraph for computing
such rational functions, see Section 3.3.

From a physical perspective, the study of models over ultrametric spaces started in the
80s with the works of Frauenfelder, Parisi, Stein, among others, see e.g. [11], [13], [38], see
also [24], [25], [47], and the references therein. The Ising models over ultrametric spaces
have been studied intensively, see e.g. [12], [15], [26], [32], [36], [35], [37], and the references
therein.

We now describe in detail the results and contributions presented in this thesis. In Chapter
1 we present the essential aspects of p-adic analysis, including the definitions of the field
of p-adic numbers and the Bruhat-Schwartz space. We also define the integration over Qn

p

and the change of variables theorem. Chapter 2 contains an introduction to local zeta
functions, including a sketch of the proof of its meromorphic continuation. We also show a
relation between local zeta functions and Poincaré series. Finally, we present the definition
of multivariate zeta functions, which is the main object of this thesis.

Chapter 3 is the core of this work. We present a review of graph theory in Section 3.1,
we also define vertex coloring, see Definition 14, and chromatic function, see Definition
18. They are essential to computing Z(s;G). Vertex coloring, notion introduced here, is
different from classical colorings for graph, since we use the first one to get some subgraphs
of a fixed graph G while, the second is used to find independent subsets of V (G). Despite
this, they are related by Proposition 1. Additionally, we define the set Indgraphs(G), see
Definition 17, which provide a relation between poles of Z(s;G) and subgraphs of G. We
define the local zeta function for a graph G in Section 3.2, where we show that this zeta
function is invariant by isomorphism of graphs, i.e., if G are H are isomorphic graphs, then
Z(s;G) = Z(s;H), see Lemma 3. We also show some examples where we exhibit the use of
vertex coloring and chromatic function to calculate Z(s;G) for some graphs. Finally, Section
3.3 contains the main results, which are Theorem 7 and Proposition 2. Theorem 7 contains
a recursive formula to calculate Z(s;G) for connected graphs. This result also provide a list
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of possible set of poles Z(s;G). Proposition 2 presents a relation between poles of Z(s;G)
and subgraphs H in Indgraphs(G). Along this chapter, we present examples of the new
objects introduced to clarify these notions.

Chapter 4 contains closed formulas of Z(s;G) for some graphs. In Section 4.3 we use
Algorithm ZetaFunctionGraph to get the irreducible factors of the denominator of Z(s;G)
for some well-known graphs.

In order to facilitate the understanding of Algorithm ZetaFunctionGraph, we have included
after the theoretical developments, the corresponding subroutines. These subroutines are
then incorporated in ZetaFunctionGraph.

In appendix B, we present the implementation ZetaFunctionGraph.py of Algorithm Zeta-
FunctionGraph.

The development of the implementation ZetaFunctionGraph.py , in the Python language, has
taken advantage of the potential given by the classes and methods of the SymPy library,
which were very useful in the development of the program since symbolic calculations were
already implemented.

SymPy (https://www.sympy.org/en/index.html) is a Python library for symbolic math-
ematics. It aims to become a full-featured computer algebra system (CAS) while keeping
the code as simple as possible in order to be comprehensible and easily extensible. SymPy
is written entirely in Python.

V
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Chapter 1

Essential aspects of p-adic analysis

In this document, p will be a fixed prime number. In this chapter, we present some important
results about of p-adic numbers. For an in-depth review of p-adic analysis, the reader may
consult [28], [1], and the references therein.

1.1 The field of p-adic numbers

Given x a nonzero rational number, we can represent x as pra/b where p does not divide a
neither b. We define r = ordp(x),to be the p-adic order of x. We also set ordp(0) :=∞.

The p-adic norm, define in Q is defined as

|x|p =

{
0 if x = 0
p−ordp(x) if x 6= 0.

Th norm |·|p is non-archimedean, i.e., for every x and y, rational numbers, |x+ y|p ≤
max{|x|p , |y|p}. This implies, for instance, that for any integer number a, |a|p ≤ 1.

The metric space (Q, |·|p) is not a complete space, its completion (Qp, |·|p) is called the field
of p-adic numbers.

Any nonzero p-adic number x has a representation as a power series of the form

pordp(x)
∞∑
i=0

xip
i,

where xi ∈ {0, . . . , p− 1} and x0 6= 0.

The p-adic numbers satisfying |x|p ≤ 1 are called p-adic integers. The set of p-adic integers
is denoted as Zp. Furthermore, Zp is a discrete valuation ring with maximal ideal pZp. The
group of units Z×p consists of the p-adic numbers x with |x|p = 1. The residue field Zp/pZp
of Zp is the field with p elements, Fp.
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1.1.1 The topology of Qp

We present some general definitions and results about the topology of Qp. For further details,
the reader may consult [43, Section 1.3] and [1, Section 1.8].

We define the ball with center a and radius pr as

Br(a) = {x ∈ Qp; |x− a|p ≤ pr},

and the sphere with center a and radius pr as

Sr(a) = {x ∈ Qp; |x− a|p = pr}.

When the center of a ball or a sphere is 0, we use Br and Sr instead of Br(0) and Sr(0),
respectively. Note that B0 = Zp and S0 = Z×p .

The following assertions provide the main properties of the topology of Qp.

1.
(
Qp, |·|p

)
is a separable, complete, ultrametric space, with dense sub-space Q.

2. For every a ∈ Qp and r ∈ Z, Br(a) is a compact set of
(
Qp, |·|p

)
. This implies that

a sub-set A of Qp is compact if and only if A is closed and bounded in Qp. Thus(
Qp, |·|p

)
is a locally compact topological space.

3. Qp is a totally disconnected space, i.e., a subset A of Qp is connected if and only if
A = {x} for some x ∈ Qp or A = ∅.

4. For every a, a′ ∈ Qp and r, r′ ∈ Z, either Br(a) ∩ Br′(a
′) = ∅ or one of the balls is

contained in the other one.

5. For every a ∈ Qp and l ∈ Z, Bl(a) = a+ p−lZp and Sl(a) = a+ p−lZ×p .

6. Zp =
⊔p−1
i=0 (i+ pZp).

1.1.2 The topology of Qn
p

We will review some topological properties of Qn
p .

For this, we extend the p-adic norm to Qn
p by taking

‖(x1, . . . , xn)‖p = max{|x1|p , . . . , |xn|p}.

Moreover, this norm is also a non-archimedean norm.

We denote the ball with center a and radius pr as

Bn
r (a) = {x ∈ Qn

p ; ‖x− a‖p ≤ pr},

and the sphere with center a and radius pr as

Snr (a) = {x ∈ Qn
p ; ‖x− a‖p = pr}.
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We set, Bn
r (0) := Br and Snr (0) := Snr .

Properties (1-4) of Section 1.1.1 also hold in Qn
p . For any a = (a1, . . . , an) ∈ Qn

p we have
Bn
r (a) = Br(a1)× · · · ×Br(an), this implies that the product topology of Qn

p is equal to the
topology induced by the norm ‖·‖p.

The reader may find a proof of these assertions in [1, Section 1.8] and [43, Section 1.3].

1.2 The Bruhat-Schwartz space

A complex-valuated function φ : Qn
p → C is called locally constant, if for any x ∈ Qn

p there
exists l(x) ∈ Z such that:

φ(y) = φ(x); y ∈ Bn
l(x)(x).

A Bruhat-Schwartz function or test function φ : Qn
p → C is a locally constant function with

compact support. Since φ has compact support there exists l ∈ Z such that for any x ∈ Qn
p ,

φ(y) = φ(x), for any y ∈ Bn
l (x).

We define the set of test functions as D(Qn
p ).

Example 1. The characteristic function 1A(x) of a open and compact subset A ⊆ Qn
p is test

function.

1.3 Integration over Qn
p

We now review Haar’s theorem for locally compact topological groups, which allow us to
develop an integration theory over Qn

p . For further details, the reader may consult [43,
Chapter 4] and [1, Chapter 3].

Theorem 1. ( [18, Thm B. Sec.58]) Let (G,+) be a locally compact topological group.
There exists a Borel measure dx, unique up to multiplication by a positive constant, such
that

∫
U
dx > 0 for every non empty Borel open set U , and

∫
x+E

dx =
∫
E
dx, for every Borel

set E.

The measure dx is called a Haar measure of G. Since (Qp,+) is a locally compact topological
group, by Theorem 1, it has a Haar measure dx. We normalize this measure using the
condition

∫
Zp dx = 1.

In the n-dimensional case, we denote by dnx the product measure dx · · · dx︸ ︷︷ ︸
n−times

. This measure

satisfies that dn(x+ a) = dnx, for a ∈ Qn
p , and

∫
Znp
dnx = 1.

Example 2. 1.
∫
pZp dx = p−1. Indeed,

1 =

∫
Zp
dx =

∫
⊔p−1
i=0 i+pZp

dx =

p−1∑
i=0

∫
i+pZp

dx =

p−1∑
i=0

∫
pZp

dx = p

∫
Zp
dx.
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2.
∫
Bn−1

dnx = p−n.

3.
∫
Sn−1

dnx = (1− p−n), this formula is obtained as follows:

∫
Sn−1

dnx =

∫
Znp\Bn−1

dnx =

∫
Znp
dnx−

∫
Bn−1

dnx = 1− p−n.

4.
∫
Bnr (a)

dnx = prn.

5.
∫
Snr (a)

dnx = pr(1− p−n).

6. Set s ∈ C with Re(s) > 0, then∫
a+plZp

|x|s−1p dx =

{
p−ls

(
1−p−1

1−p−s

)
if a ∈ plZp

p−l |a|s−1p if a /∈ plZp.
(1.3.1)

Indeed,

if a /∈ plZp, by changing variables as x 7→ y − a we have∫
a+plZp

|x|s−1p dx =

∫
plZp
|−a+ y|s−1p dy = |a|s−1p

∫
plZp

dy = p−l |a|s−1p .

If a ∈ plZp then a+ plZp = plZp, by changing variables as x 7→ ypl we have∫
a+plZp

|x|s−1p dx = p−l
∫
Zp

∣∣ply∣∣s−1
p

dy = p−ls
∫
Zp
|y|s−1p dy

= p−ls
∞∑
k=0

∫
Sk

|y|s−1p dy = p−ls
∞∑
k=0

p−k(s−1)p−k(1− p−1)

= p−ls(1− p−1)
∞∑
k=0

p−ks = p−ls
1− p−1

1− p−s
.

1.3.1 Change of variables

In order to establish the change of variables theorem for p-adic integrals we first introduce
the notion of analytic function, following Igusa’ book [22, Section 2.4].

For i = (i1, . . . , in) ∈ Nn, we set xi = xi11 · · ·xinn .

Definition 1. 1. Let f : U → Qp be a function in U , an open subset of Qn
p . We say that

f is an analytic function, if for all a ∈ U there exists l ∈ Z and a convergent power
series

∑
i∈Nn bix

i in Bn
l (a) ⊆ U , such that f(x) =

∑
i∈Nn bix

i for all x ∈ Bn
l (a). In this

case, ∂
∂xj
f(x) =

∑
i∈Nn bi

∂
∂xj
xi.

2. A function F : U ⊆ Qn
p → Qm

p is called an analytic function, if every fi in F =

(f1, . . . , fm) is an analytic function. If n = m, we denote ∂F (x)
∂x1···∂xn the determinant of

the Jacobian matrix,
(
∂fi(x)
∂xj

)
1≤i,j≤n

, x ∈ U .
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Theorem 2. ( [22, Proposition 7.4.1]) Let K1, K2 ⊆ Qn
p be compact open subsets, and let

F = (f1, . . . , fn) : K2 → K1 a bi-analytic map such that

∂F (y)

∂y1 · · · ∂yn
6= 0, for any y ∈ K2.

If φ is a continuous function on K1, then∫
K1

φ(x) dnx =

∫
K2

φ(F (y))

∣∣∣∣ ∂F (y)

∂y1 · · · ∂yn

∣∣∣∣
p

dny, (x = F (y)) .
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Chapter 2

Local zeta functions

In this chapter, we review some well-known results about local zeta functions, the Poincaré
series attached to a polynomial with p-adic integer coefficients. For an in-depth discussion
of the classical aspects of the local zeta functions, we recommend [10], [33], [22], [29].

Definition 2. Let f(x) be a non-constant polynomial in Qp[x1, . . . , xn] and let φ be a test
function. The Igusa local zeta function attached to the pair (f, φ) is

Zφ(s, f) =

∫
Qnp\f−1(0)

φ(x) |f(x)|sp d
nx,

for s ∈ C and Re(s) > 01. In the case φ = 1Znp , we use the notation Z(s, f) instead of
Zφ(s, f).

Remark 1. By using the fact that for Re(s) > 0 the function φ(x) |f(x)|sp is continuous
with compact support, and the fact that the Haar measure of any compact set is finite, one
immediately obtains that the integral Zφ(s, f) converges for Re(s) > 0.

Lemma 1. ( [22, Lemma 5.3.1]) Let (X,µ) denote a measure space, U a nonempty open
subset of C, and f a C−valued measurable function on X × U . Assume that the following
properties hold:

1. If C is any compact subset of U , there exists an integrable function φC ≥ 0 on X,
satisfying

|f(x, s)| ≤ φC(x),

for all (x, s) ∈ X × C.

2. f(x, ·) is a holomorphic function on U for every x ∈ X.

Then

F (s) =

∫
X

f(x, s)dµ(x),

defines a holomorphic function F on U .

1For a > 0 and s ∈ C, we set as = es ln(a).
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Corollary 1. The integral Zφ(s, f) is a holomorphic function in s in the half-plane Re(s) >
0.

Proof. Let X = Qn
p and g(x, s) = φ(x) |f(x)|sp which is a continuous function on X × U

where U = {s ∈ C | Re(s) > 0}. Take C ⊆ U a compact set, note that g(x, s) has compact
support on X ×C, so there exists AC ∈ R+ such that |g(x, s)|p ≤ AC for all (x, s) ∈ X ×C.
We take φC(x) = AC1Supp(φ)(x). By using that g(x, s) is a holomorphic function for any
fixed x ∈ X, it follows from Lemma 1 that Zφ(s, f) is a holomorphic function in s in the
half-plane Re(s) > 0.

2.1 Meromorphic continuation of Zφ(s, f )

In the middle of the seventies, Igusa proved that for every non-constant polynomial f(x) ∈
Qp[x1, . . . , xn]and any test function φ(x1, . . . , xn), the local zeta function Zφ(s, f) attached
to (f, φ) has a meromorphic continuation to the whole complex plane as a rational function
of p−s, see [22, Theorem 5.4.1].

The proof given by Igusa depends on Hironaka’s resolution of singularities theorem, which
is a profound result in algebraic geometry. For further details the reader may consult [46],
[19], [20], [22].

The following definitions and results are based on [22, Section 2].

Definition 3. Let X be a Hausdorff space and n a fixed non-negative integer. A pair (U, φU),
where U is a nonempty open subset of X and φU : U → φU(U) ⊆ Qn

p is a homeomorphism, is
called a chart. For a variable point x ∈ U , the local coordinates of x are φU(x) = (x1, . . . , xn).

A set of charts {(U, φU)} is called an atlas, if X equals the union of all U and for every U ,
U ′ with U ∩ U ′ 6= ∅ the map

φU ′ ◦ φ−1U : φU (U ∩ U ′)→ φU ′ (U ∩ U ′)

is an analytic function.

Two atlases are considered equivalent if their union is also an atlas. Any equivalence class
is called a n-dimensional p-adic analytic structure on X. If {(U, φU)} is an atlas in the
equivalence class, we say that X is a n-dimensional p-adic analytic manifold, and we write
n = dim(X).

Theorem 3. (Implicit Function Theorem, [22, Theorem 2.1.1])

Take F (x, y) = (F1(x, y), . . . , Fm(x, y)) an analytic function, such that Fi(0, 0) = 0 for all i,
and

∂F (0, 0)

∂x1 · · · ∂xn
6= 0.

Then there exists a unique f(x) = (f1(x), . . . , fm(x)), analytic function, satisfying Fi(x, f(x)) =
0 for all i. Furthermore, if a is near 0 in Qn

p , then f(a) is near 0 in Qm
p ; and if (a, b) is near

(0, 0) in Qn
p ×Qm

p and F (a, b) = 0, then b = f(a).
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Definition 4. Let X be a p-adic manifold of dimension n, with defining atlas (U, φU). Take
m a positive integer with 0 < m ≤ n. Suppose further that Y is a nonempty closed subset of
X and that (U, φU) can be chosen with the following properties:

If φU(x) = (x1, . . . , xn) and U ′ = Y ∩ U 6= ∅, then there exists a p-adic analytic function
F = (F1, . . . , Fm) on U such that firstly U ′ becomes the set of all x in U satisfying F1(x) =
· · · = Fm(x) = 0, and secondly,

∂F (a)

∂x1 · · · ∂xm
6= 0 at every a in U ′.

Then by Theorem 3 the mapping x 7→ (F1(x), . . . , Fm(x), xm+1, . . . , xn) is a bi-analytic map-
ping from a neighborhood of a in U to its image in Qn

p . If we denote by V the intersec-
tion of such neighborhood of a and Y , and put ψV (x) = (xm+1, . . . , xn) for every x in V ,
then {(V, ψV )} gives an atlas on Y . Therefore Y becomes a p-adic analytic manifold with
dim(Y ) = n−m. We call Y a closed submanifold of X of codimension m.

Definition 5. Let X be a p-adic analytic manifold with an atlas {(U, φU)}.

1. Let V be a open subset of X and F : V → Qn
p . We say F is p-adic analytic, if

F ◦ φ−1U : φU(V ∩ U)→ Qn
p is analytic for all U with U ∩ V 6= ∅.

2. Fix a ∈ X. If V, V ′ are neighborhoods of a, and f, g are p-adic analytic functions
respectively on V, V ′ such that f |W = g|W for some neighborhood W ⊆ V ∩ V ′ of a,
then we say that f and g are equivalent at a.

An equivalence class is said to be a germ of analytic functions at a. The set of germs
of analytic functions at a form a local ring denoted by Oa.

Definition 6. Take X a p-adic analytic manifold with atlas {(U, φU)}. Set α a differential
form of degree n = dim(X) on X; then α|U has an expression of the form

α(x) = fU(x)dx1 ∧ · · · ∧ dxn,

where fU is an analytic function on U . We denote by µn the normalize n-dimensional Haar
measure of Qn

p , this meas that

µn(B) =

∫
B

dnx

for a Borel subset B ⊆ Qn
p . For A an open and compact subset of X contained in U , we

define

µα(A) =

∫
A

dµn(φU(x)) =
∑
e∈Z

p−eµn
(
φU
(
f−1U (peZ×p ∩ A

))
.

The above series is convergent because fU(A) is a compact subset of Qp. The measure µα
is independent of the chosen chart. Notice that if X = U ⊆ Qn

p is an open subset, and
α = dx1 ∧ · · · ∧ dxn, then µα = µn.

Theorem 4. (Hironaka, [22, Theorem 3.2.1])
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Take f(x) a nonconstant polynomial in Qp[x1, . . . , xn], and put X = Qn
p . Then there exists

an n-dimensional p-adic analytic manifold Y , a finite set T = {E} of closed submanifolds of
Y of co-dimension 1 with a pair of positive integers (NE, vE) assigned to each E ∈ T , and
a p-adic analytic proper mapping h : Y → X satisfying the following conditions:

1. h is the composition of a finite number of monoidal transformations each one with a
smooth center2.

2. (f ◦ h)−1 (0) =
⋃
E∈T E and h induces a p-adic bi-analytic map Y \h−1(Singf (Qp))→

Qn
p \ Singf (Qp). Where Singf (Qp) is the set of singular points of f on Qp.

3. At every point b ∈ Y , if E1, . . . , Em are all E ∈ T containing b with local equations
y1, . . . , ym around b and (Ni, vi) = (NE, vE) for E = Ei, there exist local coordinates of
Y around b which has the form (y1, . . . , yn) such that

(f ◦ h)(y) = ε(y)
m∏
i=1

y
NEi
i , h∗

(
n∧
i=1

dxi

)
= η(y)

(
m∏
i=1

y
vEi−1
i

)
n∧
i=1

dyi,

on some neighborhood of b, in which ε(y), η(y) are units in the local ring Ob of b in Y 3.

Theorem 5. (Igusa, [22, Theorem 5.4.1])

Let f(x) be a non-constant polynomial in Q[x1, . . . , xn], s ∈ C with Re(s) > 0 and φ(x1, . . . , xn)
be a test function. Then exist a finite number of pairs (NE, vE) ∈ N \ {0} × · · · × N \ {0},
E ∈ T , such that

Zφ(s, f) =
M(p−s)∏

E∈T (1− pvE−NEs)
,

where M(p−s) ∈ Qp[p
−s].

Sketch of the proof. We will denote by |
∧n
i=1 dxi| the measure induced by the differential

form
∧n
i=1 dxi. Let h be the p-adic analytic proper mapping given by Hironaka’s theorem.

By Theorem 1.3.1 we have that

Zφ(s, f) =

∫
Y \h−1(f−1(0))

φ(h(y)) |f(h(y))|sp |h
∗ (∧ni=1dxi) (y)| .

Since φ(x) is a test function and h(x) is proper, φ ◦ h has compact support. We take a
covering {Ui}i∈N of h−1(Suppφ), such that each Ui is contained in a chart (U, ψU) and all the
formulas in the third part of Theorem 4 are valid. In addition, we may assume that each Ui
is sufficiently small so that

1. There exists a finite number of Ui in the chart. Moreover, their union cover h−1(Supp(φ)).

2. (φ ◦ h) |Ui = φ(h(b)), |ε(y)|p |Ui = |ε(b)|p, and |η(y)|p |Ui = |η(b)|p for some b ∈ Ui.

2A monomial transformation or blow up can be interpreted as a special change of variables between p-adic
analytic manifolds. For a formal definition, the reader may consult [22, Section 3.1].

3h∗ is the pull-back of the differential form dx1 ∧ · · · ∧ dxn through h. For a formal definition consult [22,
Section 2.4].
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3. φUi(Ui) = a+ pmZnp , for some a ∈ Qn
p .

In consequence, we have

Zφ(s, f) =
∑
i

φ(h(bi)) |ε(bi)|p |η(bi)|p
n∏
j=1

∫
aj+pmZp

|yi|Nis+vi−1p dyi.

Now the Theorem follows by using Formula 1.3.1.

2.2 Poincaré series

Definition 7. Let f(x) ∈ Zp[x1, . . . , xn] and f(x) 6≡ 0 (mod p). The Poincaré series of f(x)
is defined as

Pf (t) =
∞∑
i=0

Nip
−inti,

where N0 = 1, Ni = |{(a1, . . . , an) ∈ Z/piZ; f(a1, . . . , an) ≡ 0 (mod pi)}|, for i =≥ 1, and
|t| < 1.

Notation 1. For a finite subset A, we denote by |A| its cardinality.

Lemma 2. Let f(x) ∈ Zp[x1, . . . , xn]. Then

Z(s, f) = Pf (t)− t−1(Pf (t)− 1),

where t = p−s.

Proof. Let Ai = {(x1, . . . , xn) ∈ Zp; |f(x1, . . . , xn)|p ≤ p−m}, we have that

Z(s, f) =
∞∑
i=0

∫
Ai\Ai−1

|f(x)|sp d
nx =

∞∑
i=0

p−is
(∫

Ai

dnx−
∫
Ai−1

dnx

)
=

∞∑
i=0

p−is
(
Nip

−in −Ni−1p
(−i−1)n) = Pf (t)− t−1 (Pf (t)− 1) .

In [4] Borevich and Shafarevich conjectured Pf (t) is a rational function of t. Igusa proved
this conjecture as a corollary of the meromorphic continuation of Zφ(s, f).

2.3 Multivariate Igusa zeta function

The multivariate local zeta functions are generalizations of the Igusa zeta functions intro-
duced by F. Loeser in [33]. As we will see in the rest of this document, they constitute the
main object of study of the present dissertation.
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Definition 8. Let f1, . . . , fl be nonconstant polynomials in Qp[x1, . . . , xn]\Qp and φ(x1, . . . , xn)
a test function. The multivariate Igusa zeta function attached to (f1, . . . , fl, φ) is defined as
the integral

Zφ(s1, . . . , sl, f1, . . . , fl) =

∫
Qnp\∪li=1f

−1
i (0)

φ(x)
l∏

i=1

|fi(x)|sip d
nx,

for (s1, . . . , sl) ∈ Cl and Re(si) > 0 for i = 1, . . . , l.

Remark 2. This integral defines a holomophic function in the subspace of Cl defined by
Re(si) > 0, i = 1, . . . , l.

Theorem 6. (F. Loeser, [33, Theorem 1.1.4])

The multivariate zeta function Zφ(s1, . . . , sl, f1, . . . , fl) attached to (f1, . . . , fl, φ) admits a
meromorphic continuation to Cl as a rational function in the variables p−si, i = 1, . . . , l,
more precisely,

Zφ(s1, . . . , sl, f1, . . . , fl) =
Pφ(s1, . . . , sl)∏

i∈T

(
1− p−N0−

∑l
i=1Nisi

) , (2.3.1)

where T is a finite set, the N0, Ni are non-negative integers, and Pφ(s1, . . . , sl) is a polynomial
in the variables {p−si}.

Remark 3. Theorem 5 and Theorem 6 yield in general to very big list of candidate poles.
However, due to intrincated cancellations, usually many of these candidates are not poles.
Thus identifying the poles of Zφ(s, f) and Zφ(s1, . . . , sl, f1, . . . , fl) is a difficult open problem,
for an in-depth discussion the reader may consult [10] and [33].
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Chapter 3

Zeta functions for graphs

In this Chapter, we introduce the main object of study of the present thesis, which is a
multivariate zeta function attached to a finite simple graph. We give its definition in Section
3.2 and study some of its properties in the subsequent sections. But before this, we give
a quick review of graph theory. We also provide in Section 3.3 the pseudocode of an algo-
rithm to compute the zeta function of a finite and simple graph. This algorithm has been
implemented in Python and the full code is available in Appendix B.

3.1 Graphs

We review quickly some basic aspects of graph theory, including the chromatic polynomial
and chromatic function. For details the reader may consult [2].

Definition 9. A graph is an ordered triple G = (V (G), E(G), iG), where V (G) is a nonempty
set, E(G) is a set disjoint from V (G), and iG is an incidence relation that associates each
element of E(G) an unordered pair of distinct elements of V (G). The elements of V (G) are
called the vertices of G, and the elements of E(G) are called the edges of G.

Let G be a graph. Given l ∈ E(G), we use the notation iG(l) = {u, v} or the notation u ∼ v,
where u, v ∈ V (G) are the vertices of the edge l. From now on we only work with finite,
simple graphs G, i.e. graphs with no loops and no multiple edges, see e.g. [2, Definition
1.2.4].

Remark 4. Due to technical reasons, we consider the empty set as a graph and we will
denote it as ∅.

Example 3. 1. Complete graphKn. V (Kn) = {v1, · · · , vn} and E(Kn) = {{vi, vj} ; 1 ≤
i < j ≤ n}.
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Figure 3.1: Graph K4.

2. Path graph An. V (An) = {v1, · · · , vn} and E(An) =

{{v1, v2}, {v2, v3}, · · · , {vn−1, vn}}

Figure 3.2: Graph A4.

3. Circle graph Cn. V (Cn) = {v1, · · · , vn} and

E(Cn) = {{v1, v2}, {v2, v3}, · · · , {vn−1, vn}, {vn, v1}}

Figure 3.3: Graph C5.

4. Star graph. Sn. V (Sn) = {v1, · · · , vn} and E(Sn) = {{v1, v2}, {v1, v3}, · · · , {v1, vn}}

Figure 3.4: Graph S5.

We recall that a graph H is called a subgraph of G if V (H) ⊂ V (G), E(H) ⊂ E(G). If
E(H) 6= ∅, iH is the restriction of iG to E(H). If E(H) = ∅, H consists of a subset of
vertices of G without edges, and thus iH is the empty function.
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Definition 10. Let G be a graph and I be a non-empty subset of V (G). We denote by GI

(or G [I]) the subgraph induced by I, which is the subgraph defined as V (GI) = I,

E(GI) = {l ∈ E(G); iG (l) = {v, v′} for some v, v′ ∈ I} ,

and iGI = iG |E(GI). If I = ∅, by definition GI = ∅.

Example 4. Take G = K4 as in Figure 3.1, and set I = {v1, v2, v3}. Then K4[I] is the red
graph in Figure 3.5. Note that K4[I] is isomorphic to K3.

Figure 3.5: Graph K4[I].

Definition 11. Let G be a graph. Two vertices u and v of G are said to be connected if there
is a path subgraph An in G with u, v ∈ V (An). The relation “connected” is an equivalence
relation in V (G). Let V1, . . . , Vr be the equivalence classes. The subgraphs G[V1], . . . , G[Vr]
are called the components of G. If r = 1, the graph G is connected; otherwise, the graph G
is disconnected.

There is a simple algorithm to determine if a given graph G is connected or not. The
algorithm is based on the BSF algorithm which is described in Appendix A, see [9, Section
22].

Algorithm 1: Connected graph.

Function IsConnected(G):
input : Let G be a graph.
output: True if G is a connected graph. False otherwise.
Let s ∈ V (G)
BFS(G,s) // See Algorithm 10 for BSF function.

if V (Tree(s)) 6= V (G) then
return False

end
else

return True
end

Example 5. 1. For all N ∈ N, the graphs KN , AN , CN , and SN , in Example 3, are
connected graphs.

2. The graph G in Figure 3.7 is not a connected graph.
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3. Tree graph. A tree is a connected graph without cycles.

Figure 3.6: Tree with 6 vertices.

Remark 5. Let G be a graph. We use the notation G = G1# · · ·#Gk to mean that
G1, . . . , Gk are all the distinct connected components of G.

Algorithm 2 below gives a list of the connected components of a graph G. This algorithm
uses the BFS algorithm 10 to find the connected equivalence classes, Definition 11, of the
set V (G).

Algorithm 2: Connected components.

Function GetComponents(G):
input : Let G be a graph.
output: A list of connected components of G.
Ans = [ ] the empty list
A = ∅
while A 6= V (G) do

v ∈ V (H) \ A
BFS(G,v) // See Algorithm 10 for BSF function.

A = A ∪ V (Tree(v))
G′ = G[V (Tree(v))]
add G′ to Ans

end
return Ans

Example 6. Let G be the following graph:

Figure 3.7: Graph G.

The graph G is not connected. Its connected components are G1 = G[{v1, v2, v3}] and G2 =
G[{v4, v5}].
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Definition 12. Let G be a graph and let I be a nonempty subset of V (G). Suppose that

GI = G
(1)
I # · · ·#G(m)

I . If G
(j)
I = {v}, we say that v is an isolated vertex of GI . We denote

by Giso
I the set of all the isolated vertices of GI . Then

GI = Gred
I

⊔
Giso
I ,

where Gred
I := G

(i1)
I # · · ·#G(il)

I and
∣∣∣G(ik)

I

∣∣∣ > 1 for k = 1, . . . , l. We call Gred
I the reduced

subgraph of GI . We adopt the convention that if I = ∅, then Gred
I = Giso

I = ∅.

Example 7. Take G the graph depicted in Figure 3.7 and put I = {v1, v2, v3, v4}, then GI

is the following graph

Figure 3.8: Graph GI .

In this case, Gred
I is the graph G[{v1, v2, v3}], which is colored in red in Figure 3.8. We also

have that Giso is the graph G[v4] = v4, which is colored in blue in Figure 3.8.

Definition 13. Let G be a graph and let v ∈ V (G). The number of incident edges at v in G
is called the degree of the vertex v in G and is denoted by dG(v), or d(v) when no confusion
can arise.

3.1.1 Vertex Colorings and Chromatic Functions

In this section, we will introduce the definitions of a vertex coloring and chromatic functions.
For this section we fix a simple and finite connected graph G.

Vertex colorings

We color graphs using p colors, more precisely, we attach to every element of {0, 1, . . . , p− 1}
(which we identify with an element of Fp) a color.

Definition 14. A vertex coloring of G is a mapping C : V (G)→ Fp. If v is a vertex of G,
then C(v) is its color. We denote by Colors(G), the set of all possible vertex-colorings of G.

Notice that any coloring C is given by a vector a = (av)v∈V (G) ∈ F|V (G)|
p with C(v) = av for

v ∈ V . We will identify C with a. Our notion of vertex coloring is completely different from
the classical one which requires that adjacent vertices of G receive distinct colors of Fp, see
e.g. [2, Section 7.2].
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Definition 15. Given a pair (G,C), we attach to it a colored graph GC defined as follows:
V (GC) = V (G),

E(GC) = {l ∈ E(G);C(u) = C(v) where iG(l) = {u, v}}

and iGC = iG |E(GC).

We note that if GC
1 , · · · , GC

r , with r = r(C), are all the connected components of GC , then
C |GCk is constant for k = 1, . . . , r. If C is identified with a we use the notation Ga. Definition
15 tell us how to color the edges of a graph if we have already assigned colors to the vertices
of the graph. To an edge having its two vertices colored with the same color we assign the
color of its vertices, in other case, we discard the edge.

Example 8. Take G = K4, see Figure 3.1, and p = 3. Define the vertex coloring C of G as
C(v1) = 0, C(v2) = 1, C(v3) = C(v4) = 2. Then GC is the graph

Figure 3.9: Graph KC
4 .

We represent 0, 1, and 2 with black, yellow, and red, respectively.

In this case, r(C) = 3 and GC
1 = {v1}, GC

2 = {v2}, and V (GC
3 ) = {v3, v4} and E(GC

3 ) =
{v3 ∼ v4}.

Definition 16. We set Colored(G) :=
{
GC ;C ∈ Colors(G)

}
, and Subgraphs(G, |G|) to be

the set of all graphs H such that V (H) = V (G), E(H) ⊂ E(G), and if E(H) 6= ∅, iH is the
restriction of iG to E(H). We define

F : Colored(G)→ Subgraph(G, |G|)

as follows: F
(
GC
)

= H if and only if V (H) = V (GC), E(H) = E(GC) and iH = iGC . We
set SubgraphF(G, |G|) = F (Colored(G)).

The family Colored(G) is formed by all the possible colored versions of G, the operation
‘forgetting the coloring’ F assigns to an element of Colored(G) a subgraph of G having the
same vertices as G. Any graph in Subgraphs(G, |G|) is obtained from G by deleting one
or more edges, ‘but keeping’ the corresponding vertices. The pseudocode for computing
SubgraphF(G, |G|) is given below in Algorithm 3.

This algorithm uses the fact that each subgraph H in Subgraphs(G, |G|) is obtained by
deleting edges from G, and it is not connected. To determine whether or not H is connected,
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we use Algorithm 1.

Algorithm 3: Colored graphs of G.

Function Coloredgraphs(G):
input : Let G be a connected graph.
output: A set A such that SubgraphF(G, |G|) \ {G} ⊆ A.
Ans = ∅
for A ⊆ E(G) do

H = (V (G), E(G) \ A) the graph obtained from G deleting the edges in A.
if IsConnected(H) = False then

Add H to Ans
end

end
return Ans

Example 9. Put G = K3 and assume that p ≥ 3. Then Subgraphs(G, |G|) is the set of
graphs:

{G,G1, G2, G3, G4, G5, G6, G7} given in Figure 3.10. Then SubgraphF(G, |G|) is the collec-
tion {G4, G5, G6, G7, G}, where

Figure 3.10: Subgraphs(G, |G|).

Definition 17. We define Indgraphs(G) to be the set of all connected graphs H such that
there exists a coloring C, with GC = GC

1 # · · ·#GC
r , and H = GC

i for exactly one index i.

By Definition 10, we have

Indgraphs(G) = {G [I] ;∅ 6= I ⊂ V (G) and G [I] is connected} ,

where G [I] denotes the subgraph induced by I.

The pseudocode for computing Indgraphs(G) is given in Algorithm 4. This algorithm uses
the fact that each subgraph H in Indgraphs(G) is connected and has the form G[I] for some
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I, nonempty subset of V (G).

Algorithm 4: The set Indgraphs(G).

Function GetIndgraphs(G):
input : Let G be a graph.
output: The set Indgraphs(G).
Ans = ∅
for ∅ 6= A ⊆ V (G) do

if IsConnected(G[A]) = True then
Add G[A] to Ans

end

end
return Ans

Example 10. Take G = K3. In this case, we have that Indgraphs(G) consists of the
following graphs:

Figure 3.11: Indgraphs(K3).

Chromatic Functions

We will introduce the chromatic function, which is part of the zeta function attached to a
fixed simple connected graph G, and its relation with the chromatic polynomial.

Definition 18. Given H in Subgraphs(G, |G|), we define its chromatic function as

C(p;H) =
∣∣{GC ∈ Colored(G);F

(
GC
)

= H
}∣∣ .

Notice that if G is connected, then C(p;G) = p. Indeed, if we use at least two colors then GC

has at least two connected components, and thus F(GC) 6= G. So we can use only constant
colorings to have F(GC) = G.

Definition 19. Given u, v ∈ V (G), we denote by d(u, v) the length of the shortest path in
G joining u and v. Given H, W subgraphs of G, we set

d(H,W ) = min
u∈V (H), v∈V (W )

d(u, v) ∈ N.
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Let H,W be subgraphs of a fixed graph G. The pseudocode for computing the distance
between H and W is given by Algorithm 5. This algorithm uses the BFS algorithm 10
to find the distance between vertices u and v of H and W , respectively, and returns the
minimum of these distances.

Algorithm 5: Distance of graphs.

Function disGraph(G,H,W):
input : Let G be a graph and H,W sub-graphs of G.
output: The distances from H to W in G, d(H,W ).
ans = [ ] The empty list
for u ∈ V (H) do

BSF(G,u) // See Algorithm 10 for BSF function.

for v ∈ V (W ) do
Add d(u, v) to ans

end

end
return mina∈ans(a)

Example 11. In this example, we compute the chromatic function C(p;H), where H is in
Subgraphs(G, |G|), with G and H as in Figure 4.1.

Figure 3.12: Graphs G and H.

In this case H = H1# · · ·#H4, where Hi = {xi} is the vertex xi, for i = 1, 2, 3, 4. Set
C(Hi) = ai, for i = 1, 2, 3, 4. There are three different types of conditions (colorings)
coming from F(GC) = H: 

a1 6= a2, a1 6= a3, a2 6= a3, a3 6= a4;

a1 6= a4, a2 6= a4;
(3.1.1)


a1 6= a2, a1 6= a3, a2 6= a3, a3 6= a4;

a1 = a4.
(3.1.2)


a1 6= a2, a1 6= a3, a2 6= a3, a3 6= a4;

a2 = a4.
(3.1.3)
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Consequently

C(p,H) = p(p− 1)(p− 2)(p− 3) + 2p(p− 1)(p− 2),

for any prime number p.

Remark 6. Suppose that H = H1# · · ·#Hr. The condition F
(
GC
)

= H implies that
C|Hi = ai ∈ Fp for i = 1, . . . , l. Now if d(Hi, Hj) = 1, then ai 6= aj. If d(Hi, Hj) ≥ 2, the
colors ai, aj may be equal. We now define

D1(H) := D1 = {{Hi, Hj} ;Hi, Hj are connected components of H, d(Hi, Hj) = 1} ,

and

D2(H) := D2 = {{Hi, Hj} ;Hi, Hj are connected components of H, d(Hi, Hj) ≥ 2} .

We set Π1 : A × B → A, respectively Π2 : A × B → B, for the canonical projections, and
define D̃ = Π1D2 ∪ Π2D2. Any coloring C satisfying F

(
GC
)

= H is determined by a set

conditions of the following form. There exists a partition P
(
D̃
)

=
{
D̃1, . . . , D̃k

}
, with∣∣∣D̃i

∣∣∣ ≥ 1 for i = 1, . . . , k, such that

{C(Hi) 6= C(Hj) for d (Hi, Hj) = 1; (3.1.4)

{
C(Hi) = C(Hj) = bl ∈ Fp, for any {Hi, Hj} ∈ D̃i,
with bl 6= bm if l 6= m, for l,m ∈ {1, . . . , k} . (3.1.5)

The set of conditions (3.1.4)-(3.1.5) defines a relative closed subset of the affine space FMp ,
for a suitable M , and the solution set of these conditions corresponds to the colorings
defined by conditions (3.1.4)-(3.1.5).

Definition 20. Let G be a graph and let k be a positive integer. A proper k-coloring of the
vertices of G is a function f : V (G) → {0, . . . , k − 1} such that f−1 (j) is an independent
set, i.e. for any u,v ∈ f−1 (j) there is no edge in E(G) joining them.

Let P(k;G) denotes the number of proper k-colorings of G. P(k;G) is called the chromatic
polynomial of G.

There is a simple algorithm to determine the chromatic polynomial of a graph G. Algorithm
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6 is based in [2, Theorem 7.9.2].

Algorithm 6: Chromatic Polynomial of G.

Function ChromaticPoly(G,x):
input : Let G be a graph and x ∈ N.
output: The Chromatic Polynomial P(G, x).
Put e ∈ E(G)
G− e is the graph obtained from G deleting the edge e.
G ◦ e is the graph obtained from G contracting the edge e.
if E(G) = ∅ then

return x|V (G)|

end
if |V (G)|+ |E(G)| = 3 then

return x(x− 1)
end
else

return ChromaticPoly(G− e, x)− ChromaticPoly(G ◦ e, x)
end

Remark 7. There exists a polynomial P(x;G), with integer coefficients, satisfying

P(x;G) |x=k= P(k;G) for any positive integer k, see e.g. [2, Theorem 7.9.2].

In the following examples we present closed formulae for the chromatic polynomials of some
families of graphs. See [2, Section 7.9] and [3, Section 5.1] for the proofs of these results.

Example 12. 1. P(x;KN) = x(x− 1) · · · (x− (N − 1)).

2. P(x;TN) = x(x− 1)N−1.

3. P(x;CN) = (x− 1)N + (−1)N(x− 1).

Definition 21. Let H be a subgraph in Subgraphs(G, |G|), such that H = H1# · · ·#Hr,
where the His are the different connected components of H. We attach to H the graph G∗H
defined as follows:

V (G∗H) = {H1, · · · , Hr} , E(G∗H) = {{Hi, Hj} ; d (Hi, Hj) = 1} ,

and

iG∗H ({Hi, Hj}) = {Hi, Hj}; ∀{Hi, Hj} ∈ E(G∗H). (3.1.6)

Let H be a subgraph of a fixed graph G with connected components H1, . . . , Hr. There
is a simple algorithm to obtain the graph G∗H . Algorithm 7 uses Algorithm 5 to find the
distances between the graphs Hi and Hj for 1 ≤ i < j ≤ r and get the edges of the graph
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G∗H .

Algorithm 7: The graph GH .

Function GetGraphGH(G,H):
input : Let G be a graph and H a sub-graph of G.
output: The graph GH .
Ans=the empty graph
Components=GetComponents(H)
for A ∈ Components do

Add A to V (Ans)
for B ∈ Components do

if disGraph(G,A,B) = 1 then
Add {A,B} to E(Ans)

end

end

end
return ans

Proposition 1. For any H in Subgraphs(G, |G|), C(p;H) = P(x;G∗H) |x=p.

Proof. We assume that H = H1# · · ·#Hr as in Definition 21. The result follows by estab-
lishing a bijection between the following two sets:

A
(
GC , H

)
:=
{
C ∈ Colors(G);F

(
GC
)

= H
}
,

B (G∗H) := {p-colorings of G∗H} .

Given a coloring C ∈ A
(
GC , H

)
, we define

C∗ : V (G∗H) → {0, . . . , p− 1}
Hi → C (Hi) .

Now, if C1, C2 ∈ A
(
GC , H

)
and C1 6= C2, then there exists j ∈ {1, . . . , r} such that

C1|Hj 6= C2|Hj which implies that C∗1 6= C∗2 .

Given a p-coloring C∗ of G∗H , we define

C : V (G) → {0, . . . , p− 1}
v → C∗(Hi),

for any v ∈ Hi. Then C ∈ A
(
GC , H

)
. Indeed, by the definition of C, GC = H1# · · ·#Hr =

H, with C|Hi = ai ∈ Fp for i = 1, . . . , r. Then V (GC) = V (H). Additionally, an edge

l ∈ E
(
GC
)

is and edge of G, say iG(l) = {u, v}, satisfying C(u) = C(v). Then u, v ∈ V (Hi),
and l ∈ E(Hi), i.e. E(GC) ⊂ E(H). Conversely, given l ∈ E(Hi), with iH(l) = {u, v}, we
have C(u) = C(v) = C∗(Hi), and thus l ∈ V (GC).
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Example 13. Using the notation given in Example 9, we obtain that G∗G4
, G∗G5

, and G∗G6

are isomorphic to the complete graph K2. And G∗G7
is isomorphic to the complete graph K3.

Using Proposition 1 and Example 12, we have

C(p;G4) = C(p;G5) = C(p;G6) = p(p− 1),

and
C(p;G7) = p(p− 1)(p− 2).

3.2 Zeta function for a graph

This section is dedicated to the study of the function Zϕ(s;G), see Definition 23. This
function admits a meromorphic continuation as a rational function in the variables p−s(u,v),
see Corollary 2.

Definition 22. Let G be a graph. To each vertex v ∈ V we attach a p-adic variable xv, and
to each edge l ∈ E we attach a complex variable s (l). We also use the notation s (u, v) if
u ∼ v. We set x := {xv}v∈V , s := {s (l)}l∈E.

Given l ∈ E, with iG (l) = {u, v}, we set

Fl (xu, xv, s (l)) := |xu − xv|s(l)p

and
FG (x, s) :=

∏
l∈E

Fl (xu, xv, s (l)) =
∏
u,v∈V
u∼v

|xu − xv|s(u,v)p . (3.2.1)

Remark 8. (i) If V (G) 6= ∅ and E(G) = ∅, then G consists of a finite set of vertices
without edges connecting them, thus incidence relation is the empty function. In this case
we set FG (x, s) := 1. Due to technical reasons, we set F∅ (x, s) := 1.

Example 14. 1. For the graph A4 of Figure 3.2, its function FA4 (x, s) is

|xv1 − xv2|
s(v1,v2)
p |xv2 − xv3|

s(v2,v3)
p |xv3 − xv4|

s(v3,v4)
p .

2. For S5, Figure 3.4, its function FS5 (x, s) is

|xv1 − xv2|
s(v1,v2)
p |xv1 − xv3|

s(v1,v3)
p |xv1 − xv4|

s(v1,v4)
p |xv1 − xv5|

s(v1,v5)
p .

Notation 2. We denote by Dsym
(
QN
p

)
the C-vector space of symmetric test functions, i.e.

all the complex-valued test functions satisfying ϕ (x1, . . . , xN) = ϕ
(
xπ(1), . . . , xπ(N)

)
for any

permutation π of {1, 2, . . . , N}.

Let G and H be graphs. By a graph isomorphism σ : G→ H, we mean a pair of mappings
{σE, σV }, where σV : V (G) → V (H), σE : E(G) → E(H) are bijections, with the property
that iG (l) = {u, v} if and only if iH (σE (l)) = {σV (u) , σV (v)}. In the case of simple
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graphs, σE is completely determined by σV . For the sake of simplicity, we will denote the
pair {σE, σV } as σ, see e.g. [2, Sections 1.2.9, 1.2.10].

We denote by Aut(G) the automorphism group ofG. Let σ : G→ H be a graph isomorphism.
Assume that the cardinality of |V (G)| = |V (H)| = N . Let xu, u ∈ V (G), be p-adic variables
as before. Then the mapping

σ∗ : QN
p → QN

p

xv → xσ(v)
(3.2.2)

is a p-adic analytic isomorphism that preserves the Haar measure of QN
p , see (1.3.1).

Definition 23. Given ϕ ∈ Dsym
(
Q|V (G)|
p

)
, the p-adic zeta function attached to (G,ϕ) is

defined as

Zϕ(s;G) =

∫
Q|V (G)|
p

ϕ (x)FG (x, s)
∏

v∈V (G)

dxv, (3.2.3)

for Re(s (l)) > 0 for every l ∈ E, where
∏

v∈V (G)dxv denotes the normalized Haar measure

on
(
Q|V (G)|
p ,+

)
. If ϕ is the characteristic function of Z|V (G)|

p , we use the notation Z(s;G).

Lemma 3. Let G and H be graphs. If σ : G→ H is a graph isomorphism, then

Zϕ({s (l)}l∈E(G) ;G) = Zϕ({s (l)}l∈E(H) ;H).

Furthermore, for any σ = (σV , σE) ∈Aut(G), it holds true that

Z({s (l)}l∈E(G) ;G) = Z({s (σE (l))}l∈E(G) ;G), (3.2.4)

where the integrals exist.

Proof. By using that

Zϕ(s;G) =

∫
Q|V (G)|
p

ϕ
(
{xv}v∈V (G)

) ∏
u,v∈V (G)
u∼v

|xu − xv|s(u,v)p

∏
v∈V (G)

dxv,

and changing variables as σ∗ : QN
p → QN

p , xv 7→ xσ(v), see (3.2.2), we have

ϕ
(
{xv}v∈V (G)

)
= ϕ

({
xσ(v)

}
v∈V (G)

)
= ϕ

(
{xv′}v′∈V (H)

)
,

because the list {xv′}v′∈V (H) is a permutation of the list {xv}v∈V (G). In addition,∏
u,v∈V (G)
u∼v

|xu − xv|s(u,v)p =
∏

σ(u),σ(v)
u,v∈V (G)
u∼v

∣∣xσ(u) − xσ(v)∣∣s(σ(u),σ(v))p

=
∏

u′,v′∈V (H)
u′∼v′

|xu′ − xv′ |s(u
′,v′)

p ,
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and by using that σ∗ preserves the Haar measure,∏
v∈V (G)

dxv =
∏

v∈V (G)

dxσ(v) =
∏

v′∈V (H)

dxv′ .

Consequently Zϕ({s (l)}l∈E(G) ;G) = Zϕ({s (l)}l∈E(H) ;H).

Example 15. 1. The p-adic zeta function, Z(s;A4), attached to
(
A4, 1Z4

p

)
, see Figure

3.2, is ∫
Z4
p

|xv1 − xv2|
s(v1,v2)
p |xv2 − xv3|

s(v2,v3)
p |xv3 − xv4|

s(v3,v4)
p dxv1dxv2dxv3dxv4 .

2. The p-adic zeta function, Z(s;S5), attached to
(
S5, 1Z5

p

)
, see Figure 3.4, is∫

Z5
p

|xv1−xv2|
s(v1,v2)

p
|xv1−xv3|

s(v1,v3)

p
|xv1−xv4|

s(v1,v4)

p
|xv1−xv5 |

s(v1,v5)

p
dxv1dxv2dxv3dxv4dxv5 .

Corollary 2. The zeta function Zϕ(s;G) admits a meromorphic continuation to C|E(G)| as
a rational function in the variables p−s(l), l ∈ E (G), more precisely,

Zϕ(s;G) =
Pϕ(s)∏

i∈T

(
1− p−N i

0−
∑
l∈E(G)N

i
l s(l)
) , (3.2.5)

where T is a finite set, the N i
0, N

i
l are non-negative integers, and Pϕ(s) is a polynomial in

the variables
{
p−s(l)

}
l∈E(G)

.

Proof. The results follows from Theorem 6.

Example 16. We use all the notation introduced in Example 11. We now explain the
connection between chromatic functions and the computation of certain p-adic integrals. Set

FG (x, s) = |x1 − x2|s12p |x1 − x3|
s13
p |x2 − x3|

s23
p |x3 − x4|

s24
p ,

and

I(s,a) =

∫
a+pZ4

p

FG(x, s)
4∏
i=1

dxi,

where a = (a1, a2, a3, a4) ∈ F4
p. Assume that a is a coloring of one the types (3.1.1)-(3.1.3),

i.e. a is a solution of exactly one of the conditions systems (3.1.1)-(3.1.3), then by using
that

|a1 − a2 − p (x1 − x2)|s12p |a1 − a3 − p (x1 − x3)|s13p |a2 − a3 − p (x2 − x3)|s23p ×
|a3 − a4 − p (x3 − x4)|s24p = 1, for any x1, x2, x3, x4,
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we have I(s,a) = p−4. Now notice that∣∣{a ∈ F4
p; I(s,a) = p−4

}∣∣ = C(p,H) for any prime number p.

So Z(s;G) can now be calculated directly using Lemma 6 or Lemma 7 below.

Corollary 3. The following functional equations hold true:

Pϕ({s (l)}l∈E(G))∏
i∈T

(
1− p−N i

0−
∑
l∈E(G)N

i
l s(l)
) =

Pϕ({s (σE (l))}l∈E(G))∏
i∈T

(
1− p−N

i
0−

∑
σE(l)∈E(G)N

i
σE(l)

s(σE(l))
) ,

for any σ = (σV , σE) ∈Aut(G).

Proof. The results follows from (3.2.4) by using the fact (3.2.5) gives an equality between
functions in an open set containing {Re(s(l)) > 0; l ∈ E(G)}.

Example 17. Let K2 be the complete graph with two vertices, v0, v1. We denote the corre-
sponding edge as l. Then FK2 (x, s) = |xv0 − xv1|

s(l)
p and

Z(s;K2) =

∫
Z2
p

|xv0 − xv1|
s(l)
p dxv0dxv1 =

∫
Zp

{∫
Zp
|xv0 − xv1|

s(l)
p dxv0

}
dxv1 .

By changing variables as y = xv0 − xv1, z = xv1, we have

Z(s;K2) =

∫
Zp

{∫
Zp
|y|s(l)p dy

}
dz =

∫
Zp
|y|s(l)p dy =

1− p−1

1− p−1−s(l)
.

Remark 9. If G = G1# · · ·#Gk, then FG (x, s) =
∏k

i=1FGi (x, s) and

Z(s;G) =
∏k

i=1Z(s;Gi).

Notice that Z(s;Gi) = 1, if Gi consists of only one vertex.

3.3 Rationality and recursive formulas

We provide a recursive algorithm for computing Z(s;G). The algorithm uses vertex colorings
and chromatic polynomials. This algorithm allows us to describe the possible poles of Z(s;G)
in terms of the subgraphs of G, see Theorem 7 and Corollary 4.

Theorem 7. Let G be a connected graph. Then, for any prime number p, Z (s;G) satisfies:

(i)

Z(s;G) =

∑
H∈SubgraphsF (G,|G|)

H 6=G

p−|V (G)|−
∑
l∈E(H) s(l)C(p;H)Z (s;H)

1− p1−|V (G)|−
∑
l∈E(G) s(l)

. (3.3.1)
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(ii) Z (s;G) admits a meromorphic continuation to C|E(G)| as a rational function of{
p−s(l); l ∈ E (G)

}
. More precisely,

Z (s;G) =
M
({
p−s(l); l ∈ E (G)

})∏
H∈Indgraphs(G)
|V (H)|≥2

(
1− p1−|V (H)|−

∑
l∈E(H) s(l)

) , (3.3.2)

where M
({
p−s(l); l ∈ E (G)

})
denotes a polynomial with rational coefficients in the variables{

p−s(l)
}
l∈E(G)

.

Proof. (i) We attach to a = {av}v∈V (G) ∈ F|V (G)|
p a color C defined as C(v) = av, for

v ∈ V (G). We set

I (s;a) :=

∫
a+pZ|V (G)|

p

FG (x, s)
∏

v∈V (G)

dxv,

then
Z (s;G) =

∑
a∈F|V (G)|

p

I (s;a) .

Now

I (s;a) = p−|V (G)|
∫

Z|V (G)|
p

FG (a + px, s)
∏

v∈V (G)

dxv,

where

FG (a + px, s) =
∏

l∈E(G)
iG(l)={v,u}

|av − au + pxv − pxu|s(l)p

=
∏

l∈E(G)
iG(l)={v,u}


1 if C(v) 6= C(u)

p−s(l) |xv − xu|s(l)p if C(v) = C(u).

By attaching to I (s;a) the colored graph GC =
(
GC
)
red

#
(
GC
)iso

, and using GC
red =

(
GC
)
red

by simplicity, we have

FG (a + px, s) = p
−

∑
l∈E(GCred)

s(l) ∏
l∈E(GCred)
iG(l)={v,u}

|xv − xu|s(l)p ,

and

I (s;a) = p
−|V (G)|−

∑
l∈E(GCred)

s(l)

Z
(
{s (l)}l∈E(GCred)

, {xv}v∈V (GCred)

)
.

Therefore

Z (s;G) =
∑

GC , C∈Colors(G)

p
−|V (G)|−

∑
l∈E(GCred)

s(l)

Z
(
s;GC

red

)
.

28



By fixing a graph H in SubgraphsF(G, |G|), we have

∑
F(GC)=H

p
−|V (G)|−

∑
l∈E(GCred)

s(l)

Z
(
s;GC

red

)
= (3.3.3)

p−|V (G)|−
∑
l∈E(H) s(l)C(p;H)Z (s;H) ,

and consequently

Z (s;G) =
∑

H∈SubgraphsF (G,|G|)

p−|V (G)|−
∑
l∈E(H) s(l)C(p;H)Z (s;H) (3.3.4)

By taking H = G, C(p;H) = p, in (3.3.3), we get∑
F(GC)=G

p−|V (G)|−
∑
l∈E(G) s(l)Z

(
s;GC

)
= p1−|V (G)|−

∑
l∈E(G) s(l)Z (s;G)

and thus from (3.3.4),

Z(s;G) =

∑
H∈SubgraphsF (G,|G|)

H 6=G

p−|V (G)|−
∑
l∈E(H) s(l)C(p;H)Z (s;H)

1− p1−|V (G)|−
∑
l∈E(G) s(l)

. (3.3.5)

Now, takingH = H1# · · ·#Hr(H)#H
iso, where theHis are different graphs in Indgraphs(H),

we have

Z (s;H) =
∏r(H)

j=1
Z(s;Hj). (3.3.6)

By using recursively (3.3.5)-(3.3.6), and the formula for Z(s;K2), we obtain (3.3.2). Notice
that at the beginning of any iteration of the formulas (3.3.5)-(3.3.6), with |Hj| ≥ 2 for
j = 1, . . . , r(H), we have

∏r(H)

j=1
Z(s;Hj) =

A(s;H1, . . . , Hr(H))∏r(H)
j=1

(
1− p

1−|V (Hj)|−
∑
l∈E(Hj)

s(l)
) ,

where all the factors in the denominator are different since Hj ∩Hi = ∅ if j 6= i.

Algorithm 8 computes the local zeta function of a connected graph using Formula 3.3.1. This
algorithm returns a list with Formula 3.3.1, the possible set of poles, and a dictionary1 with

1A dictionary in Python can be understood as a set of key/value pairs, see [17, Section 5.5].
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(
H, p−|V (G)|−

∑
l∈E(H) s(l)C(p;H)Z (s;H)

)
pairs, for every H ∈ SubgraphsF(G, |G|), H 6= G.

Algorithm 8: The Zeta Function Z(s, G).

Function ZetaFunctionGraph(G):
input : Let G be a connected graph.
output: A list with components Z(s, G),

∏
T∈Indgraphs(G) 1− p1−|V (T )|−

∑
l∈E(T ) s(l), a

set with the possible poles of Z(s, G), and a dictionary AddedGraphs with
key word H and item p−|V (G)|−

∑
l∈E(H) s(l)C(p,H)Z(s, H) for every

H ∈ SubgraphsF(G, |G|) and H 6= G.
Begin

Put N = |V (G)|
Put ZG = 0
Put AddedGraphs the empty dictionary
for l ∈ E(G) do

Put p−s(l) as variable
end
if N = 1 then

return [1, ∅, AddedGraphs]
end
if N = 2 then

Put AddedGraphs [{u}#{v}] := 1− p−1 // Where u and v are the

vertices of G

return
[
1− p−1/1− p−1−s(l), {1− p−1−s(l)}, AddedGraphs

]
end
else

for H ∈ Coloredgraphs(G)// See Algorithm 3

do
Put G∗H = GetGraph(G,H) // See Algorithm 7

Put C(p,H) = ChromaticPoly(G∗H , p) // See Algorithm 6

Put FactH = p−N

for l ∈ E(H) do
FactH = FactH × p−s(l)

end
Put ZH = 1
for H ′ ∈ GetComponents(H)// See Algorithm 2

do
ZH = ZH × ZetaFunctionGraph(H ′)

end
ZG = ZG + (FactH × C(p,H)× ZH)
AddedGraphs[H] := FactH × C(p,H)× ZH

end

end
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Put DG = p1−N ;
Put PossiblePoles = ∅;
for l ∈ E(G) do

DG = DG × p−s(l)

Put DG = 1−DG;
for T ∈ GetIndgraphs(G)// See Algorithm 4

do
Put DT = p1−|V (T )|;
for l ∈ E(T ) do

DT = DT × p−s(l)

Put DT = 1−DT ;
Add DT to PossiblePoles

return [ZG/DG, PossiblePoles, AddedGraphs]

Proposition 2. (i) Set s (l) = γ ∈ C for any l ∈ E(G), and define ZG,p (γ) := Z (s;G)|s(l)=γ.
Then the integral ZG,p (γ) converges for

Re(γ) ≥ max
H∈Indgraphs(G)
|V (H)|≥2

1− |V (H)|
|E(H)|

=: γ0.

More generally, for G and p fixed, ZG,p (γ) is an analytic function in γ for Re(γ) ≥ γ0.

(ii) Let G = KN be the complete graph with N vertices. Then ZG,p (γ) is an analytic
function in γ for Re(γ) ≥ −2

N
.

(iii) Let M
({
p−s(l); l ∈ E (G)

})
be the polynomial defined in (3.3.2). Then the following

functional equations hold true:

M
({
p−s(l); l ∈ E (G)

})
= M

({
p−s(σE(l)); l ∈ E (G)

})
for any σ = (σV , σE) ∈Aut(G).

Proof. (i) It follows directly from Theorem 7-(ii), by using the properties of the geometric
series. (ii) It follows from the fact that any induced subgraph H of KN is complete, say

H = Kl, |V (H)| = l, |E(H)| = l(l−1)
2

for l = 2, . . . , N . Then

γ0 = max
2≤l≤N

−2

l
=
−2

N
.

(iii) It follows from Theorem 7-(ii) and Corollary 3 by using the fact that any isomorphism
of G induces a permutation on the set {H ∈ Indgraphs(G); |V (H)| ≥ 2}.

Corollary 4. (i) Let GI be an Indgraph of G generated by I ⊂ V (G). Then

Z(s;GI) = Z(s;G) | s(l)=0
l /∈E(GI)

.
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(ii) If lims(l)→al Z(s;GI) =∞, then

lim
s(l)→al
l∈E(GI)

lim
s(l)→0
l /∈E(GI)

Z(s;G) =∞.

(iii) Let l0 ∈ E(G) and let K2 be the corresponding induced graph. Then

lim
s(l)→0

l∈E(GI)r{l0}

lim
s(l0)→ −1

Z(s;G) =∞.

Proof. (i) It follows from Theorem 7-(i). (ii) It follows from (i). (iii) It follows from (ii) by
using the formula for Z(s,K2).

3.4 Universal zeta functions for graphs

Let G be a graph as before. Let L, X l for l ∈ E(G) be indeterminates. We set X =
{X l}l∈E(G). We denote by Zloc [L] the localization of Z [L] with respect to the multiplicative

system
{
Lk; k ∈ N

}
. We denote by Zloc [L]

(
{X l}l∈E(G)

)
the field of rational function in the

indeterminates {X l}l∈E(G) with coefficients in Zloc [L].

Definition 24. We define the universal zeta function of G recursively as follows: if |E(G)| ≥
2,

Z(X;G) =

∑
H∈SubgraphsF (G)

H 6=G

L−|V (G)|C(L;H)
(∏

l∈E(H)X l

)
Z(X;H)

1−L1−|V (G)|∏
l∈E(G) X l

.

If |E(G)| = 1, i.e. G = K2, then Z(X;K2) = 1−L−1

1−L−1X
. When G is a graph with just one

vertex, then Z(X;G) = 1.

Theorem 8. Let G, W be simple, finite, connected graphs. Then the function Z(X;G)
satisfies the following:

(i) Z(X;G) ∈ Zloc [L]
(
{X l}l∈E(G)

)
;

(ii) for p = p(G) sufficiently large,

Z(X;G) |L=p, Xl=p−s(l)= Z({s (l)}l∈E(G) ;G);

Proof. (i) It follows from the recursive definition of Z(X;G) by using the reasoning given
in the proof of Theorem 7-(i) and Proposition 2.

(ii) It follows from Theorem 7-(i) and Proposition 2, by using the definition of Z(X;G).
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Chapter 4

Local zeta functions of some specific
graphs

In this chapter, we compute the local zeta functions for some specific graphs. In all the
graphs considered here, we determine the actual poles of the corresponding zeta functions.
As we already mentioned, in general, this is a difficult task.

4.1 Zeta function for tree and tree-like graphs

4.1.1 Star graphs

Lemma 4. Let SN be a star graph. Denote by xv1 = x1, xvi = xi, and si = s(v1, vi) for
i = 2, . . . , N . Then

Z (s, SN) =
(1− p−1)N−1∏N
i=2 1− p−1−si

.

Proof. Note that FSN (x, s) =
∏N

i=2 |x1 − xi|
si
p . By changing variables as z1 = x1, zi = x1−xi

for i = 2, · · · , N , we obtain that

Z (s, SN) =

∫
ZNp

N∏
i=2

|x1 − xi|sip
N∏
i=1

dxi =

∫
Zp

(∫
ZN−1
p

N∏
i=2

|x1 − xi|sip
N∏
i=2

dxi

)
dx1

=

(∫
Zp
dz1

)(∫
ZN−1
p

N∏
i=2

|zi|sip
N∏
i=2

dzi

)
=

N∏
i=2

1− p−1

1− p−1−si
=

(1− p−1)N−1∏N
i=2 1− p−1−si

.
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4.1.2 Path graphs

Lemma 5. Let AN be a path graph, we denote by si = s(vi, vi+1) and xvi = xi for i =
1, · · · , N . Then

Z (s, AN) =
(1− p−1)N−1∏N−1
i=1 1− p−1−si

.

Proof. We have that FAN (x, s) =
∏N−1

i=1 |xi − xi+1|sip . By using the change of variables
z1 = x1 and zi = xi − xi+1 for i = 1, · · · , N − 1 we obtain the result.

Remark 10. With these two examples, we can see that the reciprocal of Lemma 3 is not
true since SN and AN are not isomorphic for N > 2 but its zeta functions are the same.

4.1.3 Tree graphs

Lemma 6. Let TN any tree graph as in Definition 3-(3) with M = |E(TN)|. Then

Z (s, TN) =
(1− p−1)M∏

l∈E(TN ) 1− p−1−s(l)
.

Proof. The proof follows by induction over N , the number of vertices of TN . If N = 2 note
that T2 = A2 and

Z(s, T2) =
(1− p−1)

1− p−1−s(l)
,

so the assertion is true. Now, suppose that

Z (s, Tj) =
(1− p−1)|E(Tj)|∏
l∈E(Tj)

1− p−1−s(l)
, for any j < N.

Define D1 as the set of vertices v in G with degree 1, see Definition 13. Take T ′ to be the
subgraph of G induced by the set V (G) \D1, see Definition 10. Note that T ′ is a tree, since
G is a tree. By the induction hypothesis, we have∫

Z|V (TN )\D1|
p

∏
u,v∈V (TN )\D1

u∼v

|xu − xv|s(u,v)p

∏
v∈V (TN )\D1

dxv =
(1− p−1)M−|D1|∏
l∈E(T ′) 1− p−1−s(l)

. (4.1.1)

On the other hand,

FTN (x, s) =

 ∏
u,v∈V (TN )\D1

u∼v

|xu − xv|s(u,v)p


 ∏
v∈V (TN )\D1;u∈D1

u∼v

|xu − xv|s(u,v)p

 (4.1.2)

and
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Z (s, TN) =

∫
ZNp

∏
u,v∈V (TN )\D1

u∼v

|xu − xv|s(u,v)p

∏
v∈V (TN )\D1;u∈D1

u∼v

|xu − xv|s(u,v)p

∏
v∈V (TN )

dxv.

we may assume without loss of generality that D1 = {1, . . . , k}. Denote by x1, . . . , xk, the
variables associated to the elements of D1. By definition of D1 and the fact that TN is
connected, there is only one vertex vk in V (TN) \ D1 connected with each element of D1.
Denote by xv1 , . . . , xvk the variables corresponding to these vk. Then

Z (s, TN) =

∫
ZNp

∏
u,v∈V (TN )\D1

u∼v

|xu − xv|s(u,v)p

k∏
i=1

|xi − xv1|
s(i,vi)
p

∏
v∈V (TN )

dxv.

By changing variables as {
zi = xi − xvi for i = 1, . . . , k
zi = xi for i = k + 1, . . . , N,

(4.1.3)

we get that

Z (s, TN) =

∫
ZNp

∏
u,v∈V (TN )\D1

u∼v

|zu − zv|s(u,v)p

k∏
i=1

|zi|s(i,vi)p

∏
v∈V (TN )

dzv. (4.1.4)

Note that the Jacobian matrix of the change of variables (4.1.3) has the form[
Ik ∗
0 IN−k

]
, (4.1.5)

since TN is connected and it has no cycles xvj 6= xi for every j = 1, . . . , k and any i = 1, . . . , k.

By using 4.1.4 and 1.3.1, we have

Z(s, TN) =(
k∏
i=1

∫
Zp
|zi|s(i,vi)p dzi

)∫
Z|V (TN )\D1|
p

∏
u,v∈V (TN )\D1

u∼v

|zu − zv|s(u,v)p

∏
v∈V (TN )\D1

dzv =

(
k∏
i=1

1− p−1

1− p−1−s(i,vi)

)
(1− p−1)M−|D1|∏
l∈E(T ′) 1− p−1−s(l)

.

Finally, since every u ∈ D1 has degree 1, we have

k∏
i=1

1− p−1−s(i,vi)
∏

l∈E(T ′)

1− p−1−s(l) =
∏

l∈E(TN )

1− p−1−s(l).

Remark 11. Note that Lemma 4 and Lemma 5 are particular cases of the Lemma 6, since
SN and AN are trees.
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4.2 Graph K3

Lemma 7. If we denote the graph K3 as in the figure

Figure 4.1: Graph K3.

Then

Z(s, K3) =
p−2(p− 1) (L1(s) + L2(s) + L3(s) + L4(s))

(1− p−1−s(l1)) (1− p−1−s(l3)) (1− p−1−s(l2)) (1− p−2−s(l1)−s(l3)−s(l2))
,

where

L1(s) = p−s(l1)
(
1− p−1−s(l3)

) (
1− p−1−s(l2)

)
,

L2(s) = p−s(l3)
(
1− p−1−s(l1)

) (
1− p−1−s(l2)

)
,

L3(s) = p−s(l2)
(
1− p−1−s(l3)

) (
1− p−1−s(l1)

)
,

L4(s) = (p− 2)
(
1− p−1−s(l1)

) (
1− p−1−s(l3)

) (
1− p−1−s(l2)

)
.

Moreover, the polynomials
(
1− p−1−s(l1)

)
,
(
1− p−1−s(l3)

)
,
(
1− p−1−s(l2)

)
, and(

1− p−2−s(l1)−s(l3)−s(l2)
)

do not divide L1(s) + L2(s) + L3(s) + L4(s).

Proof. The announced formula for Z(s, K3) follows from Examples 11, 9, and 10, and 3.3.1.

Now, We only have to see that each factor of its denominator does not divide the numerator.

First, note that

L1(s)+L2(s)+L3(s)+L4(s) ≡ p−s(l1)
(
1− p−1−s(l3)

) (
1− p−1−s(l2)

)
6≡ 0

(
mod 1− p−1−s(l1)

)
.

So, without loss of generality,
(
1− p−1−s(l1)

) (
1− p−1−s(l3)

) (
1− p−1−s(l2)

)
does not divide

the numerator of Z(s, K3), since
(
1− p−1−s(l1)

)
,
(
1− p−1−s(l3)

)
, and

(
1− p−1−s(l2)

)
are irre-

ducible polynomials in Q[p−s(l1), p−s(l2), p−s(l3)].

Second, note that the coefficient of p−s(l1)−s(l2)−s(l3) in the numerator of Z(s, K3) is(
3p−2 − p−3(p− 2)

)
(p− 1)p−2
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and its constant coefficient is p−2(p − 1)(p − 2). Then, if
(
1− p−2−s(l1)−s(l3)−s(l2)

)
divides

the numerator of Z(s, K3), it has the form M
(
1− p−2−s(l1)(l1)−s(l3)−s(l2)

)
with M ∈ Q, this

implies that M = 2p−2(p−1 + 1) and M = p−2(p − 1)(p − 2). But this is impossible,
consequently

(
1− p−2−s(l1)−s(l3)−s(l2)

)
do not divide the numerator of Z(s, K3).

4.3 More examples

We now compute the irreducible factors of the denominator of Z(s, G) for some well known
small graphs, see [45] for a list of small graphs. The calculation in this section were made
using Program ZetaFunctionGraph.py in Appendix B. We denote p−s(vi,vj) as zij.

1. Barbell Graph:

Figure 4.2: Barbell graph with 6 vertices.

Irreducible factors:

1− z12
p , 1− z13

p , 1−
z23
p , 1− z34

p , 1−
z45
p , 1− z46

p , 1− z56
p ,

1− z12z13z23
p2 , 1− z45z46z56

p2 , 1− z12z13z23z34z45z46z56
p5 .

2. Book Graph:

Figure 4.3: Book graph with 8 vertices.

Irreducible factors:
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1− z12
p , 1− z14

p , 1− z23
p , 1− z34

p , 1− z36
p , 1− z37

p , 1− z45
p ,

1− z48
p , 1− z56

p , 1− z78
p , 1− z12z14z23z34

p3 , 1− z34z36z45z56
p3 ,

1− z34z37z48z78
p3 , 1− z12z14z23z36z45z56

p5 , 1− z12z14z23z37z48z78
p5 ,

1− z36z37z45z48z56z78
p5 , 1− z12z14z23z34z36z45z56

p5 ,

1− z12z14z23z34z37z48z78
p5 , 1− z34z36z37z45z48z56z78

p5 ,

1− z12z14z23z34z36z37z45z48z56z78
p7 .

3. Gear Graph:

Figure 4.4: Gear graph with 7 vertices.

Irreducible factors:

1− z12
p , 1− z17

p , 1− z23
p , 1− z34

p , 1− z37
p , 1− z45

p , 1− z56
p , 1−

z57
p , 1− z12z17z23z37

p3 , 1− z34z37z45z57
p3 , 1− z12z17z23z34z37z45z57

p5 .

4. Prism Graph

Figure 4.5: Prism graph with 6 vertices.
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Irreducible factors:

1− z12
p , 1− z13

p , 1− z14
p , 1− z23

p , 1− z25
p , 1− z36

p , 1− z45
p ,

1− z46
p , 1− z56

p , 1− z12z13z23
p2 , 1− z45z46z56

p2 , 1− z12z14z25z45
p3 ,

1 − z13z14z36z46
p3 , 1 − z23z25z36z56

p3 , 1 − z12z13z25z36z56
p4 , 1 −

z12z14z23z36z46
p4 , 1 − z12z14z25z46z56

p4 , 1 − z13z14z23z25z45
p4 , 1 −

z13z14z36z45z56
p4 , 1− z23z25z36z45z46

p4 , 1− z12z13z14z23z25z45
p4 , 1−

z12z13z14z23z36z46
p4 , 1− z12z13z23z25z36z56

p4 , 1− z12z14z25z45z46z56
p4 ,

1− z13z14z36z45z46z56
p4 , 1− z23z25z36z45z46z56

p4 ,

1− z12z13z14z23z25z36z45z46z56
p5 .

5. Wheel Graph

Figure 4.6: Wheel graph with 5 vertices.

Irreducible factors:

1 − z12
p , 1 − z14

p , 1 − z15
p , 1 − z23

p , 1 − z25
p , 1 − z34

p ,

1− z35
p , 1− z45

p , 1− z12z15z25
p2 , 1− z14z15z45

p2 , 1− z23z25z35
p2 ,

1− z34z35z45
p2 , 1− z12z14z23z34

p3 , 1− z12z14z25z45
p3 , 1− z12z15z23z35

p3 ,

1 − z14z15z34z35
p3 , 1 − z23z25z34z45

p3 , 1 − z12z14z15z25z45
p3 , 1 −

z12z15z23z25z35
p3 , 1 − z14z15z34z35z45

p3 , 1 − z23z25z34z35z45
p3 , 1 −

z12z14z15z23z25z34z35z45
p4 .
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Chapter 5

Conclusions

Since this is a mathematical thesis, we usually do not
have conclusions from our work.
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Appendix A

Breadth first search algorithm

In this section, we discuss the implementation of the Breadth First Search algorithm (BFS )
in Python. For an in-depth review of this algorithm, the reader may consult [9, Section 22.2].

Definition 25. A Queue is a dynamic set in which the element removed from the set by
Delete operation is prespecified. In this case, the element deleted is always the one that has
been in the set for the longest time. We call the INSERT operation on a queue ENQUEUE,
and we call the DELETE operation DEQUEUE.

Definition 26. Let G be a graph and u a vertex of G. A subgraph Gu of G is a breadth-first
tree if V (Gu) consists of the vertices reachable from u and, for all v ∈ V (Gu), the subgraph
Gu contains a unique path from u to v that is also a shortest path from u to v in G.
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Algorithm 9: Breadth First Search.

Function BFS(G,s):
input : Let G be a graph and s ∈ V (G).
output: A list with the distances from s to each vertex v ∈ V (G) and the

breadth-first tree Gs.
for u ∈ V (G); u 6= s do

color(u) = white
d(u) =∞
π(u) = Nan

end
color(s) = gray
d(s) = 0
π(s) = Nan
Enqueue(A, s)
while A 6= ∅ do

u =Dequeue(A)
for v ∈ Γ(u) do

if color(v) = white then
color(v) = gray
d(v) = d(u) + 1
π(v) = u
Enqueue(A,v)

end

end
color(u) = black

end

Remark 12. To keep track of progress, breadth-first search colors each vertex withe, gray,
or black. All vertices star out white and may later become gray and then black. A vertex
is discovered the first time it is encountered during the search, at which time it becomes
nonwhite. Gray and black vertices, therefore, have been discovered, but breadth-first search
distinguishes between them to ensure that the search proceeds in a breadth-first manner. If
{u, v} ∈ E(G) and vertex u is black, then vertex v is either gray or black; that is, all vertices
adjacent to black vertices have been discovered. Gray vertices may have some adjacent white
vertices; they represent the frontier between discovered and undiscovered vertices.
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Figure A.1: The operation of BFS on the graph C5. Tree edges are shown with the dotted
lines as they are produced by BFS.
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Appendix B

Implementation

In this section, we present an implementation of Algorithm ZetaFunctionGraph in Python
language. For this, we will use the following conventions. First, for all graphs G, we set
V (G) = {1, . . . , N} for some N ∈ N. Second, we set p−s(i,j) = zij if i ∼ j.

B.1 Class graph

In the class graph, we have implemented the graph’s properties which we use to calculate
the zeta function, using in Theorem 7.

from itertools import chain , combinations

def powerset(iterable):

s = list(iterable)

return chain.from_iterable(combinations(s, r) for r in ←↩
range(len(s)+1))

class Graph(object):

def __init__(self , Vertices , Edges):

self.Vertices=Vertices

self.Edges=Edges

def getVertices(self):

return self.Vertices.copy()

def getEdges(self):

return self.Edges [:]

def getNeighborhood(self ,v):

A=[]

for u in self.getVertices ():

if {u,v} in self.getEdges ():

A.append(u)
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return set(A)

def addVertex(self ,x):

V=self.getVertices ()

V.add(x)

return Graph(V,self.getEdges ())

def addEdge(self ,x):

E=self.getEdges ()

if type(x)!=set:

raise("Invalit value.")

else:

if x.issubset(self.Vertices):

if not(x in self.Edges):

E.append(x)

return Graph(self.getVertices (),E)

def DeletingEdge(self ,e):

E=self.getEdges ()

if e in self.Edges:

E.remove(e)

return Graph(self.getVertices (),E)

def DeletingVertex(self ,v):

V=self.getVertices ()

if v in self.getVertices ():

V.discard(v)

E=self.getEdges ()

for e in self.getEdges ():

if v in e:

E.remove(e)

return Graph(V,E)

def getDegree(self ,v):

return len( self.getNeighborhood(v))

def Induced(self ,S):

if S.issubset(self.getVertices ()):

E_S =[]

for a in self.getEdges ():

if a.issubset(S):

E_S.append(a)

return Graph(S,E_S)

else: raise("Invalit value")
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def joindVertices(self ,x,y):

if {x,y} in self.getEdges ():

v1=min(x,y)

v2=max(x,y)

J_Edges=self.getEdges ()

J_Vertices=self.getVertices ()

J_Vertices.discard(v2)

for u in self.getNeighborhood(v2):

J_Edges.remove ({u,v2})

if u!=v1 and not({u,v1} in J_Edges):

J_Edges.append ({u,v1})

return Graph(J_Vertices ,J_Edges)

else:

return Graph(self.getVertices (),self.getEdges ())

def joindEdge(self ,e):

E=list(e)

return self.joindVertices(E[0],E[1])

def BFS(self ,s):

V=self.getVertices ()

color ={}

dis ={}

pred ={}

for u in V:

if u!=s:

color[u]=’white’

dis[u]=0

pred[u]=None

color[s]=’gray’

dis[s]=0

pred[s]=None

A=[s]

while A!=[]:

u=A.pop(0)

for v in self.getNeighborhood(u):

if color[v]==’white ’:

color[v]=’gray’

dis[v]=dis[u]+1

pred[v]=u

A.append(v)

color[u]=’black’

E_S =[]
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V_S={s}

for u in V:

if dis[u]>0:

V_S.add(u)

E_S.append ({u,pred[u]})

return (Graph(V_S ,E_S),dis)

def disVertices(self ,x,y):

if {x,y} in self.getEdges ():

return 1

else:

tree_x , dis=self.BFS(x)

if y in tree_x.getVertices ():

return dis[y]

else:

return None

def disGraph(self ,H,W):

ans =[]

for u in H.getVertices ():

for v in W.getVertices ():

if self.disVertices(u,v)==None:

return None

else:

ans.append(self.disVertices(u,v) )

return min(ans)

def IsConnected(self):

if self.getVertices ()==set():

return True

else:

s=self.getVertices ().pop()

tree=self.BFS(s)[0]

if self.getVertices ()==tree.getVertices ():

return True

else:

return False

def getComponents(self):

ans =[]

A=set()

V=self.getVertices ()

while A != V:

s=(V-A).pop()

Tree_s=self.BFS(s)[0]

A=A|Tree_s.getVertices ()

G1=self.Induced(Tree_s.getVertices ())

ans.append(G1)
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return ans

def DeletingsetEdges(self ,A):

G=self

for e in A:

G=G.DeletingEdge(e)

return G

def ColoredGraphs(self):

ans =[]

E=self.getEdges ()

for A in powerset(E):

if not(A==()):

A1=list(A)

H=self.DeletingsetEdges(A1)

if not(H.IsConnected ()):

ans.append(H)

return ans

def getGraphGH(self ,H):

V_GH=set()

E_GH =[]

Com_H=H.getComponents ()

l=len(Com_H)

for i in range(l):

V_GH.add(i+1)

for j in range(i+1,l):

if self.disGraph(Com_H[i],Com_H[j])==1:

E_GH.append ({i+1,j+1})

return Graph(V_GH ,E_GH)

def ChromaticPoly(self ,x):

V=self.getVertices ()

E=self.getEdges ()

if E==[]:

return x**len(V)

elif not(self.IsConnected ()):

Poly=1

for H in self.getComponents ():

Poly=Poly*H.ChromaticPoly(x)

return Poly

elif len(V)+len(E)==3:

return x*(x-1)

else:

s=E.pop()
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return self.DeletingEdge(s).ChromaticPoly(x) - ←↩
self.joindEdge(s).ChromaticPoly(x)

def getIndgraphs(self):

ans =[]

V1=list(self.getVertices ())

for A in powerset(V1):

if len(A) >1:

A1=set(A)

H=self.Induced(A1)

if H.IsConnected ():

ans.append(H)

return ans

def __eq__(self ,other):

return (self.getVertices ()==other.getVertices ()) and ←↩
(self.getEdges ()== other.getEdges ())

def __str__(self):

return ’V=’+ str(self.Vertices) +’, ’+ ’ E=’+str(self←↩
.Edges)

Listing B.1: Class Graph.

B.2 Zeta function computation

Here we give an implementation of the recursive procedure given in Theorem 7 for comput-
ing the zeta function for a connected graph. We use the SymPy library to do symbolical
calculations.

import sympy

from Class_Graph import *

p=sympy.symbols(’p’, integer=True)

def getVariables(G):

Var =[]

E=G.getEdges ()

for e in E:

e1=list(e)

e1.sort()

z=’z’+str(e1[0])+str(e1[1])

w=sympy.symbols(z)

Var.append(w)

return Var

def ZetaFunctionGraph(G):
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N=len(G.getVertices ())

Z_G=0

AddedGraphs ={}

Variables_G=getVariables(G)

if N==1:

return [1,set() ,{}]

elif N==2:

l=G.getEdges ()[0]

H=G.DeletingEdge(l)

z=Variables_G [0]

AddedGraphs[H.__str__ ()]=1-p**(-1)

return [(1-p**(-1))/(1-p**(-1)*z) ,{1-p**( -1)*z},←↩
AddedGraphs]

else:

for H in G.ColoredGraphs ():

G_H=G.getGraphGH(H)

C_H=G_H.ChromaticPoly(p)

Fact_H=p**(-N)

for z in getVariables(H):

Fact_H=Fact_H*z

Z_H=1

for T in H.getComponents ():

Z_H=Z_H*ZetaFunctionGraph(T)[0]

Z_G+= Fact_H*C_H*Z_H

AddedGraphs[H.__str__ ()]= Fact_H*C_H*Z_H

D_G=p**(1-N)

PossiblePoles=set()

for z in Variables_G:

D_G=D_G*z

D_G=1-D_G

PossiblePoles.add(D_G)

for T in G.getIndgraphs ():

D_T=p**(1-len(T.getVertices ()))

for z in getVariables(T):

D_T=D_T*z

D_T=1-D_T

PossiblePoles.add(D_T)

return [Z_G/D_G ,PossiblePoles ,AddedGraphs]

Listing B.2: Zeta Function Computation.
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