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Abstract

In this work we analyze the individual behavior of the eigenvalues of two families of large

tridiagonal Hermitian Toeplitz matrices with certain perturbations in the corners.

The first family are n × n Hermitian Toeplitz matrices with entries 2, −1, 0, . . ., 0,

−α in the first column. We prove that, if |α| ≤ 1, then the eigenvalues belong to [0, 4] and

are asymptotically distributed as the function g(x) = 4 sin2(x/2) on [0, π]. The situation

changes drastically when |α| > 1 and n tends to infinity; we prove that, in this case, the

two extreme eigenvalues (the minimal and the maximal one) lay out of [0, 4] and converge

exponentially to certain limits determined by the value of α, whilst all others belong to

[0, 4] and are asymptotically distributed as g.

The second family are n× n Laplacian matrices of the cyclic graph with one weighted

edge, whose weight we denote by α. We prove that, if 0 ≤ α ≤ 1, then the eigenvalues

belong to [0, 4] and are asymptotically distributed as the function g(x) = 4 sin2(x/2) on

[0, π]. For the case α < 0, the extreme minimal eigenvalue lies out [0, 4] and converge

exponentially to certain limit determined by the value α, whilst all others belong to [0, 4]

and are asymptotically distributed as g. In the case α > 1, the outlier is the extreme

maximal eigenvalue.

In the analysis of both matrix families, we localize the eigenvalues in disjoint intervals,

then transform the characteristic equation to a form convenient to solve by numerical

methods, and derive asymptotic formulas for the eigenvalues, as n tends to infinity.
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Resumen

En este trabajo analizamos el comportamiento individual de los valores propios de dos fa-

milias de matrices grandes hermitianas tridiagonales de Toeplitz con ciertas perturbaciones

en las esquinas.

La primer familia son las matrices hermitianas de Toeplitz de tamaño n × n con

componentes 2, −1, 0, . . ., 0, −α en la primera columna. Demostramos que, si |α| < 1,

entonces los valores propios pertenecen a [0, 4] y están asintóticamente distribuidos como la

función g(x) = 4 sin2(x/2) sobre [0, π]. La situación cambia drásticamente cuando |α| > 1

y n tiende a infinito; para este caso probamos que, los dos valores propios extremos (el

mı́nimo y el máximo) se encuentran fuera de [0, 4] y convergen exponencialmente a ciertos

ĺımites determinados por el valor de α, mientras que todos los demás pertenecen a [0, 4] y

se encuentran asintóticamente distribuidos como la función g.

La segunda familia son las matrices laplacianas de tamaño n× n del grafo ćıclico con

peso en un vértice, dicho peso se denota por α. Demostramos que, si 0 ≤ α ≤ 1, entonces

los valores propios pertenecen a [0, 4] y están asintóticamente distribuidos como la función

g(x) = 4 sin2(x/2) sobre [0, π]. Para el caso α < 0, el valor propio mı́nimo se encuentra

afuera de [0, 4] y converge exponencialmente a cierto ĺımite determinado por el valor de α,

mientras que todos los otros pertenecen a [0, 4] y están asintóticamente distribuidos como

la función g. En el caso α > 1, el valor propio máximo es el aislado.

En el análisis de ambas familias de matrices, localizamos los valores propios en intervalos

disjuntos, luego transformamos la ecuación caracteŕıstica a una forma conveniente para

resolver por medio de métodos numéricos, y derivamos fórmulas asintóticas para los valores

propios, cuando n tiende a infinito.
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Introduction

Objects of study and historical background

In this work we investigate the individual behaviour of the eigenvalues of n× n matrices

Aα,n and Lα,n of the following form:

Aα,6 =



2 −1 0 0 0 −α
−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

−α 0 0 0 −1 2


, Lα,6 =



1 + α −1 0 0 0 −α
−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

−α 0 0 0 −1 1 + α


,

notice these matrices depend on the complex parameter α.

Matrices of the form Aα,n may appear in the study of one-dimensional shift-invariant

models on a finite interval, with some special interactions between the extremes of the

interval. This matrix family belongs simultaneously to three matrix classes:

· periodic Jacobi matrices (in this case, with constant diagonals);

· Hermitian Toeplitz matrices; notice that the generating symbol of Aα,n is the following

Laurent polynomial depending on the parameters α and n:

−αt−n+1 − t−1 + 2− t− αtn−1; (1)

· tridiagonal Toeplitz matrices, with values −1, 2,−1 on the diagonals and perturba-

tions in the off-diagonal corners (n, 1) and (1, n).

If α is real, then the matrices Lα,n are the Laplacian matrices of the cyclic graph with one

weighted edge. These matrices may appear in the study of electric flow, network dynamics,
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Introduction

and many other physical phenomena. This matrix family belongs simultaneously to the

matrix classes of tridiagonal Toeplitz matrices with values −1, 2, −1 on the diagonals

and perturbations in the four corners, and periodic Jacobi matrices.

Periodic Jacobi matrices were studied by Ferguson, da Fonseca, and other authors [15,

16]. In particular, they found formulas for the characteristic polynomial and analyzed the

inverse eigenvalue problem.

Laplacian matrices are matrix representation of graphs; general theory of this subject

is explained in [24]. Recently, the characteristic polynomial, spectrum localization, and

eigenvalues of particular cases of Laplacian matrices have been studied by Arenas Velilla

and Rocha Hernández in their M.Sc. thesis [2, 27].

Toeplitz matrices are naturally associated to discrete truncated shift-invariant models.

The general theory of such matrices is explained in the books and reviews [8, 9, 10, 14,

20, 21]. Explicit formulas for the determinants of banded symmetric Toeplitz matrices

were found in [30]. The determinants, minors, cofactors, and components of eigenvectors

of banded Toeplitz matrices were recently expressed in terms of skew Schur polynomials,

see [1, 22]. These formulas are not needed in the present work, but may be useful in the

study of pentadiagonal Toeplitz matrices with perturbations on the corners.

The individual behavior of the eigenvalues of Hermitian Toeplitz matrices was investi-

gated in [3, 5, 6, 7, 13].

Determinants of non-singular Toeplitz matrices with low-rank perturbations were

studied in [8]. The eigenvalues and eigenvectors of tridiagonal Toeplitz matrices with some

special perturbations on the diagonal corners are computed in [11, Section 1.1] and [17, 26].

The determinants and inverses of a family of non-symmetric tridiagonal Toeplitz matrices

with perturbed corners are computed in [32].

The theorem of Szegő has many implications on the localization and asymptotic

distribution of eigenvalues of Toeplitz matrices, see [19, 29, 31, 33] for results in this

direction; although some of these works apply to this thesis, we obtain, by elementary but

not easy computations, the localization and asymptotic distribution of the eigenvalues.

The localization of the eigenvalues of a family of non-Hermitian Jacobi matrices (which

can be viewed as a family of tridiagonal Toeplitz matrices with perturbation in the position

(n, n− 1)) was studied in [18].

Yueh and Cheng [34] considered the tridiagonal Toeplitz matrices with four perturbed

corners. Using the techniques of finite differences they derived the characteristic equation

2



Introduction

into a trigonometric form and formulas for the eigenvectors in terms of the eigenvalues.

Unlike the present work, [34] deals with arbitrary complex coefficients, but does not

contain the analysis of the localization of the eigenvalues nor approximate formulas for

the eigenvalues.

For α = 0, the matrix Aα,n is the well studied tridiagonal Toeplitz matrix with the

symbol

g(x) := 4 sin2(x/2).

The characteristic polynomial of A0,n is det(λIn − A0,n) = Un((λ − 2)/2), where Un is

the nth Chebyshev polynomial of the second type. Directly from the trigonometric form

of the Chebyshev polynomials we obtain that the eigenvalues of A0,n are g(jπ/(n+ 1)),

1 ≤ j ≤ n.

Objectives of the thesis

The objective of this work is the individual study of eigenvalues of matrices Aα,n and Lα,n,

including the localization of eigenvalues in disjoint intervals, an equation derived from

the characteristic equation comfortable to solve by numerical methods, and asymptotic

expansions for the eigenvalues. Most of the results in this direction seems to be new,

although they are based in well-known ideas.

In a certain way, in this thesis we try to generalize for Aα,n and Lα,n the procedure

described above for A0,n.

Structure of the thesis

In Chapter 1 we study the characteristic polynomial and the eigenvectors of tridiago-

nal symmetric Toeplitz matrices with values −1, 2, −1 on the diagonals and arbitrary

perturbations in the corners (1, 1), (n, 1), (1, n) and (n, n). We denote these matrices

by Sn. We first review some properties of the Chebyshev polynomials, then expand by

cofactors det(λIn− Sn) and obtain an expression of the characteristic polynomial in terms

of Chebyshev polynomials (Proposition 1.13). Using standard methods for solving linear

recurrences we find in terms of Chebyshev polynomials formulas for the eigenvectors

(Proposition 1.16). This approach is different and relatively simpler than in [34], where

the authors used techniques of the ring of sequences [12]. The characteristic polynomial
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Introduction

of Sn can also be found with methods from [16]. We conclude this chapter by proving in

Proposition 1.21 that, given a tridiagonal Toeplitz matrix with arbitrary values on the

diagonals and arbitrary perturbations in the four corners, then this matrix is similar to a

matrix of the form Sn. Due to Proposition 1.21, there is no loss of generality in studying

only the eigenvalues of matrices Sn.

Recall that the eigenvalues of the tridiagonal Toeplitz matrices A0,n belong to the

interval [0, 4]. The same holds for Aα,n and Lα,n for some values of α; in this situation we

speak about “weak perturbations”. For other values of α and n large enough, some of the

eigenvalues do not belong to [0, 4], and we refer this case as “strong perturbations”.

In Chapter 2 we study the individual behaviour of the eigenvalues of matrices Aα,n.

By applying the general formula for the characteristic polynomial (Proposition 1.13), we

write the characteristic polynomial of Aα,n in terms of Chebyshev polynomials of the

second kind (Proposition 2.1). We find that, if |α| < 1 (“weak perturbation”), then the

eigenvalues belong to the interval [0, 4] and are asmyptotically distributed as the function

g (Theorem 2.6). If 1 < |α| (“strong perturbation”) and n is sufficiently big, the first and

last eigenvalues lay out of [0, 4], while the intermediate eigenvalues behave as in the case

|α| < 1 (Theorem 2.7). Then we apply the trigonometric and hyperbolic representation of

the Chebyshev polynomials to the characteristic equation, transforming it to a form that

can be solved by the fixed point iteration (Theorems 2.11 and 2.18). This leads to the

main result of the chapter, the asymptotic expansions of the eigenvalues (theorems 2.15

and 2.22). The ideas in the asymptotic expansions in this and in next chapter are based on

the paper [3]. We have found explicit formulas for the eigenvalues of Aα,n only for |α| = 1.

In Chapter 3 we study the individual behaviour of the eigenvalues of matrices Lα,n. By

applying the Proposition 1.13, we write the characteristic polynomial of Lα,n in terms of

Chebyshev polynomials (Proposition 3.1). We realized that the characteristic polynomial

of Lα,n does not depend on the imaginary part of α; this is the reason why we consider

Im(α) = 0 troughout the chapter. The analysis of the characteristic equation threw

that, if 0 < α < 1 (“weak perturbation”), then the eigenvalues belong to the interval

[0, 4] and are asymptotically distributed as the function g (Theorem 3.7). If α < 0 (“left

strong perturbation”) or 1 < α (“strong perturbation”) and n is sufficiently big, then

the first or, respectively, the last eigenvalue lay out of [0, 4], whilst the n− 1 remaining

eigenvalues behave as in the case of weak perturbations (Theorems 3.8 and 3.9). Similarly

to Chapter 2, we transform the characteristic equation to a form that can be solved by the
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fixed point iteration (Theorems 3.16, 3.23 and 3.28), and obtain asymptotic expansions

for the eigenvalues of Lα,n (Theorems 3.20, 3.26 and 3.34). We have found explicitly the

eigenvalues of Lα,n only for α = 0 and α = 1.

In Chapters 2 and 3 we prove that the eigenvalues of Aα,n and Lα,n can be obtained

by solving some equation via the fixed iteration point, or by computing their asymp-

totic expansions. We programmed in Sagemath these numerical approximations; in the

Appendices B and C we write the main sections of the programs.

5



Chapter 1

Chebyshev polynomials and

tridiagonal Toeplitz matrices with

corner perturbations

In this chapter we study some relations between Chebyshev polynomials and the character-

istic equation and eigenvectors of tridiagonal Toeplitz matrices with corner perturbations.

In Section 1.1 we review the definition and some properties of Chebyshev polynomials.

In Section 1.2 we study the characteristic polynomials of tridiagonal Toeplitz matrices

Sn with values −1, 2, −1 on the diagonals and arbitrary complex perturbations in the

corners (1, 1), (n, 1), (1, n) and (n, n). We express the characteristic equation in terms of

Chebyshev polynomials.

In Section 1.3, with the aid of Chebyshev polynomials, we develop some formulas for

the eigenvectors of matrices of the form Sn.

Finally in Section 1.4, we give a method of transforming an arbitrary tridiagonal

Toeplitz matrix with corner perturbations to a matrix of the form Sn.

1.1 Chebyshev polynomials

The incoming definitions and propositions can be found in the book [23].

Definition 1.1 (Chebyshev polynomials of the first kind). The Chebyshev polynomials of

6



Chapter 1. Chebyshev polynomials

the first kind Tn are defined by the following recurrence relation with two initial conditions:

T0(t) := 1,

T1(t) := t,

Tn(t) := 2tTn−1(t)− Tn−2(t) (n ≥ 2).

Definition 1.2 (Chebyshev polynomials of the second kind). The Chebyshev polynomials

of the second kind Un are defined by the following recurrence relation with two initial

conditions:
U0(t) := 1,

U1(t) := 2t,

Un(t) := 2tUn−1(t)− Un−2(t) (n ≥ 2).

Definition 1.3 (Chebyshev polynomials of the third kind). The Chebyshev polynomials of

the third kind Vn are defined by the following recurrence relation with two initial conditions:

V0(t) :=1,

V1(t) :=2t− 1,

Vn(t) :=2tVn−1(t)− Vn−2(t) (n ≥ 2).

Definition 1.4 (Chebyshev polynomials of the fourth kind). The Chebyshev polynomials

Wn of the fourth kind are defined by the following recurrence relation with two initial

conditions:
W0(t) :=1,

W1(t) :=2t+ 1,

Wn(t) :=2tWn−1(t)−Wn−2(t) (n ≥ 2).

7



Chapter 1. Chebyshev polynomials

Proposition 1.5. For every n in N0 and every x in (0, π),

Tn(cos(x)) = cos(nx), Tn(− cos(x)) = (−1)nTn(cos(x)),

Un(cos(x)) =
sin((n+ 1)x)

sin(x)
, Un(− cos(x)) = (−1)nUn(cos(x)),

Vn(cos(x)) =
cos
((
n+ 1

2

)
x
)

cos x
2

, Vn(− cos(x)) = (−1)nWn(cos(x)),

Wn(cos(x)) =
sin
((
n+ 1

2

)
x
)

sin x
2

, Wn(− cos(x)) = (−1)nVn(cos(x)).

Proof. We give a proof by induction for the assertion related to the Chebyshev polynomials

of the second kind, the remaining can be demonstrated in similar way.

Fix x in (0, π). For n = 0,

sin(x)

sin(x)
= 1 = U0(cos(x)).

For n = 1,
sin(2x)

sin(x)
=

2 sin(x) cos(x)

sin(x)
= 2 cos(x) = U1(cos(x)).

For n = 2,

sin(3x)

sin(x)
=

sin(2x) cos(x) + cos(2x) sin(x)

sin(x)

= 2 cos(x)2 cos(x)− 1.

By Definition 1.2 this expression equals U2(cos(x)). Suppose the conclusion for n− 1, then

sin((n+ 1)x)

sin(x)
=

sin(nx) cos(x) + sin(x) cos(nx)

sin(x)

= 2 cos(x)
sin(nx)

sin(x)
+

sin(x) cos(nx)− sin(nx) cos(x)

sin(x)

= 2 cos(x)
sin(nx)

sin(x)
− sin((n− 1)x)

sin(x)

= 2 cos(x)Un−1(cos(x))− Un−2(cos(x)).

The conclusion follows from the recurrence relation of Definition 1.2.

8



Chapter 1. Chebyshev polynomials

Corollary 1.6. For every n in N0,

Tn(1) = 1, Tn(−1) = (−1)n1,

Un(1) = n+ 1, Un(−1) = (−1)n(n+ 1),

Vn(1) = 1, Vn(−1) = (−1)n(2n+ 1),

Wn(1) = 2n+ 1, Wn(−1) = (−1)n.

By de Moivre’s formula, the Proposition 1.5 is generalized to the complex plane, then

the following propositions hold.

Proposition 1.7. For every n in N0 and x in R,

Tn(cosh(x)) = cosh(nx), Tn(− cosh(x)) = (−1)nTn(cosh(x)),

Un(cosh(x)) =
sinh((n+ 1)x)

sinh(x)
, Un(− cosh(x)) = (−1)nUn(cosh(x)),

Vn(cosh(x)) =
cosh

((
n+ 1

2

)
x
)

cosh x
2

, Vn(− cosh(x)) = (−1)nWn(cosh(x)),

Wn(cosh(x)) =
sinh

((
n+ 1

2

)
x
)

sinh x
2

, Wn(− cosh(x)) = (−1)nVn(cosh(x)).

Proposition 1.8. For every n in N0 and z in C,

Tn

(
z + z−1

2

)
=
zn + z−n

2
,

Un

(
z + z−1

2

)
=
zn+1 − z−n−1

z − z−1
,

Vn

(
z2 + z−2

2

)
=
z2n+1 + z−2n−1

z + z−1
,

Wn

(
z2 + z−2

2

)
=
z2n+1 − z−2n−1

z − z−1
.

We conclude the section listing some properties of the Chebyshev polynomials.

Proposition 1.9. For every n in N0, the following statements hold.

1) Un(−t) = (−1)nUn(t).

9



Chapter 1. Characteristic polynomial of Sn

2) 2Un(t)Tn+1(t) = U2n+1(t).

3) 2T 2
n(t) = 1 + T2n(t).

4) 2(1− t2)U2
n−1(t) = 1− T2n(t).

5) U2n(t) = tU2n−1(t) + T2n(t).

6) U2n(t) = 2tUn−1(t)Tn(t) + 2T 2
n(t)− 1.

7) U2n(t) = 2tUn−1(t)Tn(t) + 1− 2(1− t2)U2
n−1(t).

8) Wn(t) = (−1)nVn(t).

9) U2n(t) = Wn(t)Vn(t).

10) T2n+1(t) = (1 + t)V 2
n (t)− 1.

11) U2n+1(t) = tWn(t)Vn(t) + T2n+1(t).

12) U2n+1(t) = tWn(t)Vn(t) + (1 + t)V 2
n (t)− 1.

13) tUn−1(t)− Tn(t) = Un−2(t).

14) Un−1(t)Tn−1(t)− Tn(t)Un−2(t) = 1.

15) Tm(t)Un−m(t)− Tn+1−m(t)Um−1(t) = Un−2m(t), 0 < 2m < n+ 1 .

1.2 Characteristic polynomial of Sn

A Toeplitz matrix is a n× n matrix of the form:
a0 a−1 a−2 · · ·
a1 a0 a−1 · · ·
a2 a1 a0 · · ·
· · · · · · · · · · · ·

 , (1.1)

that is to say, these matrices are characterized by the property of being constant along

the parallels to the main diagonal.

Let a : T→ C be the function defined by

a(t) :=
n∑

k=−n

ant
n (t ∈ T), (1.2)

where the coefficients ak’s are the entries of the Toeplitz matrix (1.1). Then we can say

that the Toeplitz matrix (1.1) is generated by a, we denoted this matrix by Mn(a) and a

is referred to be the symbol of the matrix.

10



Chapter 1. Characteristic polynomial of Sn

In this thesis we are concern with corner perturbed tridiagonal Toeplitz matrices of

order n, with values −1, 2 , −1 on the diagonals and complex numbers −α, −β, −γ, −δ,
respectively in the corners (1, 1), (1, n), (n, 1), (n, n). Denote by Sn the matrix defined by

these rules. For example, if n = 6,

S6 :=



−α −1 0 0 0 −β
−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

−γ 0 0 0 −1 −δ


. (1.3)

If α = δ = −2 and β = γ = 0, we have the case of tridiagonal Toeplitz matrix, whose

generating symbol is the function

a(θ) := −e−iθ + 2− eiθ = 2− 2 cos(θ) (θ ∈ [0, 2π]). (1.4)

Fix n ≥ 3 and p, q in {1, . . . , n}, let Ep,q be the n × n matrix with 1 in the position

(p, q) and 0 elsewhere. Observe that we can express the matrix Sn as follows

Sn = Mn(a)− (2 + α)E1,1 − βE1,n − γEn,1 − (2 + δ)En,n.

Denote by Dn(λ) the characteristic polynomial of Sn, i.e., Dn(λ) := det(λIn − Sn).

Recall that Un is the Chebyshev polynomial of the second kind (Definition 1.2).

Proposition 1.10. Let n ≥ 1, then the characteristic polynomial of the Toeplitz matrix

Mn(a) generated by the symbol (1.4) is

det(λIn −Mn(a)) = Un

(
λ− 2

2

)
. (1.5)

Proof. We prove (1.5) by induction.

Put λ = 2t + 2. For n = 1, D1(2t + 2) = 2t, and by Definition 1.2 this equals U1(t).

For n = 2, we easily obtain D2(2t+ 2) = 4t2 − 1, and again by Definition 1.2 this equals

U1(t). Let n > 2 and suppose (1.5) for all natural lesser than n. Expand Dn by cofactors

11



Chapter 1. Characteristic polynomial of Sn

along the first row

Dn(2t+ 2) = 2t

∣∣∣∣∣∣∣∣∣∣
2t 1 0 0 · · ·
1 2t 1 0 · · ·
0 1 2t 1 · · ·
0 0 1 2t · · ·
· · · · · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣∣
n−1

−

∣∣∣∣∣∣∣∣∣∣
1 1 0 0 · · ·
0 2t 1 0 · · ·
0 1 2t 1 · · ·
0 0 1 2t · · ·
· · · · · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣∣
n−1

.

The first determinant on the right side of last equality is Dn−1. Expand by cofactors the

second determinant along the first column and get Dn−2(2t+ 2). Then

Dn(2t+ 2) = 2tDn−1(2t+ 2)−Dn−2(2t+ 2).

By the induction hypothesis Dn−1(2t+ 2) = Un−1(t) and Dn−2(2t+ 2) = Un−2(t); and so,

by Definition 1.2 we get (1.5).

Corollary 1.11. Let n ≥ 1. Then the eigenvalues of Mn(a) are

λj = 2− 2 cos
jπ

n+ 1
(1 ≤ j ≤ n). (1.6)

Proof. From Proposition 1.10,

det(λIn −Mn(a)) = Un

(
λ− 2

2

)
.

We do the change of variable λ = 2− 2 cos(x), x ∈ [0, π]. Then by Proposition 1.5,

det((2− 2 cos(x))In −Mn(a)) = Un (− cos(x)) = (−1)n+1 sin((n+ 1)x)

sin(x)
.

Note that x = 0 and x = π are not zeros of the last expression, and the only zeros on [0, π]

are the numbers jπ/(n+ 1), with 1 ≤ j ≤ n. Hence, the correspondent numbers λj (1.6)

are n different eigenvalues of Mn(a). Since the order of the matrix Mn(a) is n, we have

found all the eigenvalues.

Lemma 1.12. Let α = −2, β = γ = 0 and δ be an arbitrary complex number, and let

12



Chapter 1. Characteristic polynomial of Sn

n ≥ 2. Then

Dn(λ) = Un

(
λ− 2

2

)
+ (2 + δ)Un−1

(
λ− 2

2

)
. (1.7)

Proof. Put λ = 2 + 2t. Expand Dn(2 + 2t) by cofactors along the last row

Dn(2 + 2t) = (2 + 2t+ δ)

∣∣∣∣∣∣∣∣∣∣
2t 1 0 0 · · ·
1 2t 1 0 · · ·
0 1 2t 1 · · ·
0 0 1 2t · · ·
· · · · · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣∣
n−1

−

∣∣∣∣∣∣∣∣∣∣
· · · · · · · · · · · · · · ·
· · · 2t 1 0 0

· · · 1 2t 1 0

· · · 0 1 2t 0

· · · 0 0 1 1

∣∣∣∣∣∣∣∣∣∣
n−1

.

By (1.5) the first determinant on the right of last equality is Un−1(t). Expand by cofactors

the second determinant along the last column∣∣∣∣∣∣∣∣∣∣∣∣

· · · · · · · · · · · · · · ·
· · · 2t 1 0 0

· · · 1 2t 1 0

· · · 0 1 2t 0

· · · 0 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣
n−1

= 1×

∣∣∣∣∣∣∣∣∣∣
· · · · · · · · · · · ·
· · · 2t 1 0

· · · 1 2t 1

· · · 0 1 2t

∣∣∣∣∣∣∣∣∣∣
n−2

.

By (1.5) this is Un−2(t). Hence

Dn(2t+ 2) = (2 + 2t+ δ)Un−1(t)− Un−2(t).

In order to obtain (1.7) we just apply to the last expression the Definition 1.2.

Proposition 1.13. Let α, β, γ and δ in C, and n ≥ 3. Then

Dn(λ) = Un

(
λ− 2

2

)
+ (4 + α+ δ)Un−1

(
λ− 2

2

)
+ (4 + 2(α+ δ) + αδ− βγ)Un−2

(
λ− 2

2

)
+ (−1)n+1(β+ γ).

(1.8)

13



Chapter 1. Characteristic polynomial of Sn

Proof. Put λ = 2 + 2t. Expand Dn(2 + 2x) by cofactors along the first row

Dn(2 + 2t) = (2 + 2t+ α)

∣∣∣∣∣∣∣∣∣∣
2t 1 · · · 0 0

1 2t · · · 0 0

· · · · · · · · · · · · · · ·
0 0 · · · 2t 1

0 0 · · · 1 2 + 2t+ δ

∣∣∣∣∣∣∣∣∣∣
n−1

−

∣∣∣∣∣∣∣∣∣∣
1 1 · · · 0 0

0 2t · · · 0 0

· · · · · · · · · · · · · · ·
0 0 · · · 2t 1

γ 0 · · · 1 2 + 2t+ δ

∣∣∣∣∣∣∣∣∣∣
n−1

+ (−1)n+1β

∣∣∣∣∣∣∣∣∣∣
1 2t · · · 0 0

0 1 · · · 0 0

· · · · · · · · · · · · · · ·
0 0 · · · 1 2t

γ 0 · · · 0 1

∣∣∣∣∣∣∣∣∣∣
n−1

.

In last expression apply (1.7) to the first determinant on the right, for the second and

third determinants expand by cofactors along the first column, use (1.5) and (1.7), then

Dn(2 + 2t) = (2 + 2t+ α) (Un−1(t) + (2 + δ)Un−2(t))

− (Un−2(t) + (2 + δ)Un−3(t)) + (−1)n+1γ

+ (−1)n+1β− βγUn−2(t).

By the recurrence relation 2tUn−2(t)− Un−3(t) = Un−1(t),

Dn(2 + 2t) = (4 + 2t+ α+ δ)Un−1(t)− Un−2(t)

+ (4 + 2(α+ δ) + αδ− βγ)Un−2(t) + (−1)n+1(β+ γ).
(1.9)

Finally, (1.8) follows by applying 2tUn−1(t)− Un−2(t) = Un(t).

Observe that, the expression for the determinant (1.8) has three Chebyshev polynomials

of distinct grades, for some purposes the formula (1.9), written below in terms of λ

Dn(λ) = (2 + λ+ α+ δ)Un−1

(
λ− 2

2

)
+ (4 + 2(α+ δ) + αδ− βγ)Un−2

(
λ− 2

2

)
+ (−1)n+1(β+ γ),

could be more convenient, since it has only two Chebyshev polynomials.
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Chapter 1. Eigenvectors of Sn

1.3 Eigenvectors of Sn

Over all this section Sn is the n× n matrix defined in (1.3), where α, β, γ and δ are fixed

complex numbers and n ≥ 3. Also λ will denote an eigenvalue of Sn and v = [vk]
n
k=1 the

correspondent eigenvector.

Let z be a solution of ω2 + (λ− 2)ω + 1 = 0, i.e., z satisfies

λ = −z−1 + 2− z. (1.10)

The aim of this section is to prove that the eigenvector v can be constructed by the

rule

vk = C1z
k + C2z

−k (1 ≤ k ≤ n), (1.11)

where C1 and C2 are some complex constants.

From now on we suppose that λ satisfies (1.10) and that the components of v satis-

fies (1.11).

Denote λIn − Sn by Bn,λ, then for every w in Cn

(Bn,λw)1 = (λ+ α)w1 + w2 + βwn,

(Bn,λw)k = wk−1 + (λ− 2)wk + wk+1 (2 ≤ k ≤ n− 1),

(Bn,λw)n = γw1 + wn−1 + (λ+ δ)wn.

(1.12)

Note that for every eigenvector associate to λ, every equation in (1.12) equals zero.

Proposition 1.14. Let C1 and C2 in C and n ≥ 3. Then (Bn,λv)k = 0 for every

2 ≤ k ≤ n− 1, where the components of v are given by (1.11).

Proof. By (1.11) and (1.12),

(Bn,λv)k = vk−1 + (λ− 2)vk + vk+1

= C1z
k−1 + C2z

−(k−1) + C1(λ− 2)zk + C2(λ− 2)z−k + C1z
k+1 + C2z

−(k+1)

=
(
C1z

k + C2z
−k) (z−1 + (λ− 2) + z

)
= 0.

Now, we proceed to determine C1 and C2 such that (Bn,λv)1 = 0 and (Bn,λv)n = 0.

Denote (C1 + C2)/2 and (C1 − C2)/2 by x and y respectively, then (Bn,λv)1 = 0 and

15



Chapter 1. Eigenvectors of Sn

(Bn,λv)n = 0 transform into

(
(λ+ α)(z + z−1) + z2 + z−2 + β(zn + z−n)

)
x +

+
(
(λ+ α)(z − z−1) + z2 − z−2 + β(zn − z−n)

)
y = 0,(

γ(z + z−1) + zn−1 + z−(n−1) + (λ+ δ)(zn + z−n)
)
x +

+
(
γ(z − z−1) + zn−1 − z−(n−1) + (λ+ δ)(zn − z−n)

)
y = 0.

We use the representation of the Chebyshev polynomials given in Proposition 1.8 on

previous equations, converting them in

aα,β,nx+ bα,β,ny = 0,

cγ,δ,nx+ dγ,δ,ny = 0,
(1.13)

where

aα,β,n := (2 + α)(z + z−1)− 2 + 2βTn

(
z + z−1

2

)
,

bα,β,n := (z − z−1)
(

2 + α+ βUn−1

(
z + z−1

2

))
,

cγ,δ,n := γ(z + z−1) + 2(2 + δ)Tn

(
z + z−1

2

)
− 2Tn+1

(
z + z−1

2

)
,

dγ,δ,n := (z − z−1)
(
γ+ (2 + δ)Un−1

(
z + z−1

2

)
− Un

(
z + z−1

2

))
.

(1.14)

Suppose (1.14) are not all zero simultaneously, then in order to obtain non trivial solutions

of (1.13) we must have ∣∣∣∣∣aα,β,n bα,β,n

cγ,δ,n dγ,δ,n

∣∣∣∣∣ = 0. (1.15)

Recall that det(λIn − Sn) is denoted by Dn(λ).

Lemma 1.15. Let α, β, γ, δ ∈ C and n ≥ 3. Then

(−1)n
aα,β,ndγ,δ,n − bα,β,ncγ,δ,n

2(z − z−1)
= Dn(2− (z + z−1)). (1.16)
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Chapter 1. Eigenvectors of Sn

Proof. By the statements of Proposition 1.9,

ad− bc

2(z − z−1)
= Un

(
z + z−1

2

)
− (4 + α+ δ)Un−1

(
z + z−1

2

)
+ (4 + 2(α+ δ) + αδ− βγ)Un−2

(
z + z−1

2

)
− (β+ γ).

From Proposition 1.9, for every m in N0, Um(−t) = (−1)mUm(t). Use this fact after

substitute z + z−1 = −(λ − 2)/2 in last equation. Then multiply by (−1)n. The result

now equals the characteristic polynomial (1.8).

In next proposition we use the convention that U−1(t) := 0 and the fact that every

eigenvalue of Sn can be written in the form (1.10).

Proposition 1.16. Let α, β, γ, δ ∈ C, n ≥ 3 and λ an eigenvalue of Sn. If aα,β,n 6= 0

or bα,β,n 6= 0, then the vector v = [vk]
n
k=1 with components

vk := Uk−1

(
2− λ

2

)
− (2 + α)Uk−2

(
2− λ

2

)
+ βUn−k−1

(
2− λ

2

)
(1 ≤ k ≤ n) (1.17)

is an eigenvector of Sn associated to λ. If cγ,δ,n 6= 0 or dγ,δ,n 6= 0, then the vector v = [vk]
n
k=1

with components

vk := γTk−1

(
λ− 2

2

)
+ (2 + δ)Tn−k

(
λ− 2

2

)
− Tn+1−k

(
λ− 2

2

)
(1 ≤ k ≤ n) (1.18)

is an eigenvector of Sn associated to λ.

Proof. Since λ is an eigenvalue of Sn, then Dn(λ) = 0, moreover formula (1.10) holds. By

Lemma 1.15 the equation (1.15) holds. So, if at least one of the coefficients (1.14) is not

zero, then the system (1.13) has non trivial solutions for x and y. This implies that the

components of v can be constructed by the formula (1.11) with C1 = x+ y and C2 = x− y.

If aα,β 6= 0 or bα,β 6= 0, put x = bα,β/2 and y = −aα,β/2, then

C1 =
bα,β,n − aα,β,n

2
= 1− (2 + α)z−1 − βz−n,

C2 =
bα,β,n + aα,β,n

2
= −1 + (2 + α)z + βzn.
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Chapter 1. Eigenvectors of Sn

Now, for every 1 ≤ k ≤ n, (1.11) converts in

v′k := zk − z−k − (2 + α)(zk−1 − z−(k−1)) + β(zn−k − z−(n−k)). (1.19)

Hence the vector with components v′k (1 ≤ k ≤ n), turns to be an eigenvector associated

to λ. Any constant multiple of v is again an eigenvector, so, divide (1.19) by z − z−1 and

from the definition of the Chebyshev polynomials of the second kind (Definition 1.2) this

is (1.17).

If cγ,δ,n 6= 0 or dγ,δ,n 6= 0, put x = cγ,δ,n/2 and y = −dγ,δ,n/2- We obtain (1.18) by

proceeding in the same manner as in the previous case.

If aγ,δ,n = bγ,δ,n = cγ,δ,n = dγ,δ,n = 0, then we can take any non zero value on x and

any other number on y or vice versa, in other words, we can take any non zero value on

C1 and any other number on C2 or vice versa, and so, construct an eigenvector associated

to λ similar to (1.17) or (1.18).

In next chapters we use Proposition 1.17 for describing the eigenvectors of the matrices

we study in this thesis. For now, we apply this result for the tridiagonal Toeplitz matrix

Mn(a) generated by the symbol (1.4).

Corollary 1.17. Let n ≥ 1 and Mn(a) be the Toeplitz matrix generated by the symbol (1.4).

Then for every 1 ≤ j ≤ n, the vector vj = [vkj ]nk=1 with components

vkj = sin
kjπ

n+ 1
(1 ≤ k ≤ n) (1.20)

is an eigenvector associated to the eigenvalue λj given by equation (1.6).

Proof. The matrix Mn(a) is a particular case of the family matrices of the form (1.3) with

α = δ = −2 and β = γ = 0. Hence, we can apply Proposition 1.17.

By Corollary 1.11, every eigenvalue of Mn(a) is of the form (1.6). So, for 1 ≤ j ≤ n,

the correspondent eigenvalue λj can be written as in (1.10), thus

λj = 2− eijπ/(n+1) − e−ijπ/(n+1).

Hence

a−2,0,n = −4 cos2
jπ

n+ 1
+ 2 cos

2jπ

n+ 1
= −2 6= 0.
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Chapter 1. Schmidt-Spitzer matrix transformation

So, by Proposition 1.16 for every k with 1 ≤ k ≤ n we can use the formula (1.17).

Multiply (1.17) by sin(jπ/(n+ 1)),

vk = 2 cos
jπ

n
sin

(k − 1)jπ

n
− sin

(k − 2)jπ

n
.

Apply to vk the trigonometric identities of the sum of the arguments, then (1.20) follows.

1.4 Schmidt-Spitzer matrix transformation

In this section we show that, given an arbitrary tridiagonal Toeplitz matrix with arbitrary

perturbations in corners, then it is possible to transform it to a matrix of the form (1.3).

See [9] for the procedure of the transformation explained here. We start by showing

that this is true for tridiagonal Toeplitz matrices without corner perturbations. Let

b−1, b0, b1 ∈ C and n ≥ 3. Denote by Mn(b) the n× n tridiagonal Toeplitz generated by

the symbol

b(ϑ) := b−1e
−iϑ + b0 + b1e

iϑ. (1.21)

For example if n = 4

M4(b) =


b0 b−1 0 0

b1 b0 b−1 0

0 b1 b0 b−1

0 0 b1 b0

 . (1.22)

For every ρ ∈ Cn define the n × n matrix diag(ρ) by the diagonal matrix with entries

(diag(ρ))j,j = ρj and (diag(ρ))j,k = 0 if j 6= k. For example if n = 4

diag(ρ) :=


ρ1 0 0 0

0 ρ2 0 0

0 0 ρ3 0

0 0 0 ρ4

 . (1.23)
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Chapter 1. Schmidt-Spitzer matrix transformation

Note that, if ρj 6= 0 for every j = 1, . . . , n, then diag(ρ)−1 exist, moreover, (diag(ρ)−1)j,j =

ρ−1j and (diag(ρ)−1)j,k = 0 if j 6= k. For example if n = 4

diag(ρ)−1 :=


ρ−11 0 0 0

0 ρ−12 0 0

0 0 ρ−13 0

0 0 0 ρ−14

 . (1.24)

Proposition 1.18. Let n ≥ 3, b−1, b0, b1 ∈ C \ {0} and ρ :=
√
b−1/b1. Then

diag(ρ)Mn(b) diag(ρ)−1 =


b0

√
b−1b1 0 · · ·√

b−1b1 b0
√
b−1b1 · · ·

0
√
b−1b1 b0 · · ·

· · · · · · · · · · · ·

 , (1.25)

where ρ := [ρ, ρ2, . . . , ρn] and b is defined by (1.21).

Proof. We first compute diag(ρ)Mn(b), thus

diag(ρ)Mn(b) =


ρ 0 0 · · ·
0 ρ2 0 · · ·
0 0 ρ3 · · ·
· · · · · · · · · · · ·



b0 b−1 0 · · ·
b1 b0 b−1 · · ·
0 b1 b0 · · ·
· · · · · · · · · · · ·



=


ρb0 ρb−1 0 · · ·
ρ2b1 ρ2b0 ρ2b−1 · · ·

0 ρ3b1 ρ3b0 · · ·
· · · · · · · · · · · ·

 .
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Now

diag(ρ)Mn(b) diag(ρ)−1 =


ρb0 ρb−1 0 · · ·
ρ2b1 ρ2b0 ρ2b−1 · · ·

0 ρ3b1 ρ3b0 · · ·
· · · · · · · · · · · ·



ρ−1 0 0 · · ·
0 ρ−2 0 · · ·
0 0 ρ−3 · · ·
· · · · · · · · · · · ·



=


b0 ρ−1b−1 0 · · ·
ρb1 b0 ρ−1b−1 · · ·
0 ρb1 b0 · · ·
· · · · · · · · · · · ·

 .

By the assumption on ρ

ρb1 =

√
b−1
b1
b1 =

√
b−1b1 =

√
b1/b−1b−1 = ρ−1b−1.

Then (1.25) follows.

Proposition 1.19. Let n ≥ 3, and Mn(a), Mn(b) the Toeplitz matrices generated by (1.4)

and (1.22), respectively. Then

Mn(a) = − 1√
b1b−1

diag(ρ)
(
Mn(b)−

(
2
√
b1b−1 + b0

)
In

)
diag(ρ)−1, (1.26)

or equivalently

Mn(b) = diag(ρ)−1
(
−
√
b1b−1Mn(a) +

(
2
√
b1b−1 + b0

)
In

)
diag(ρ), (1.27)

where ρ :=
√
b−1/b1 and ρ := [ρ, ρ2, . . . , ρn].

Proof. By the fact that diag(ρ) diag(ρ)−1 = In,

diag(ρ)
(
Mn(b)−

(
2
√
b1b−1 + b0

)
In

)
diag(ρ)−1 = diag(ρ)Mn(b) diag(ρ)−1

− diag(ρ)(2
√
b1b−1 + b0)In diag(ρ)−1

= diag(ρ)Mn(b) diag(ρ)−1

−
(

2
√
b1b−1 + b0

)
In.
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Now, (1.26) follows by applying (1.25).

Corollary 1.20. Let n ≥ 3, and Mn(a), Mn(b) the Toeplitz matrices generated by (1.4)

and (1.22), respectively. Then for every eigenvalue λ of Mn(a),
√
b1b−1(2 − λ) − b0 is

eigenvalue of Mn(b).

Proof. The conclusion follows from (1.27).

Now, we consider the n × n tridiagonal Toeplitz matrix Mn generated by the sym-

bol (1.21) with complex numbers −φ, −χ, −ψ, −ω, respectively in the corners (1, 1),

(1, n), (n, 1), (n, n). For example if n = 6

M6 :=



−φ b1 0 0 0 −χ
b1 b0 b−1 0 0 0

0 b1 b0 b−1 0 0

0 0 b1 b0 b−1 0

0 0 0 b1 b0 b−1

−ψ 0 0 0 b1 −ω


. (1.28)

Proposition 1.21. Let b−1, b0, b1,φ,χ,ψ,ω ∈ C, b−1, b1 6= 0 ρ :=
√
b−1/b1, n ≥ 3

and let Mn be the matrix of the form (1.28). Let Sn be the matrix defined by (1.3)

where α = −2 − (φ + b0)/
√
b1b−1, β = −ρ−(n−1)χ/

√
b1b−1, γ = −ρn−1ψ/

√
b1b−1 and

δ = −2− (ω+ b0)/
√
b1b−1. Then

Sn = − 1√
b1b−1

diag(ρ)
(
Mn − (2

√
b1b−1 + b0)In

)
diag(ρ)−1; (1.29)

equivalently

Mn = diag(ρ)−1
(
−
√
b1b−1Sn +

(
2
√
b1b−1 + b0

)
In

)
diag(ρ) (1.30)

where ρ := [ρ, ρ2, . . . , ρn].

Proof. The proof is similar to the proof of Proposition 1.19.
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Corollary 1.22. Under the assumptions of Proposition 1.21, for every eigenvalue λ of

Sn,
√
b1b−1(2− λ)− b0 is eigenvalue of Mn.

Proof. The conclusion follows from (1.30).
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Chapter 2

Tridiagonal Toeplitz matrices with

perturbations in the off diagonal

corners

In this Chapter we study the individual behaviour of the eigenvalues of the Toeplitz matrix

generated by the function

aα,n(t) = −αt−n+1 − t−1 + 2− t− αtn−1,

where α is a complex number and n is a natural number greater than 3, this matrix will

be denoted over all the chapter by Aα,n. For example, if n = 6,

Aα,6 =



2 −1 0 0 0 −α
−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

−α 0 0 0 −1 2


.

This family matrices are a particular case of the matrix (1.3), in the notation of Section 1.2

α = δ = −2, β = −α and γ = −α.

The matrices Aα,n are Hermitian, hence their eigenvalues are real and we enumerate
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them in the ascending order:

λα,n,1 ≤ λα,n,2 ≤ · · · ≤ λα,n,n.

In section 2.1 we study the characteristic polynomial of Aα,n. We obtain that for

weak perturbations (|α| < 1) the eigenvalues are on the interval [0, 4], and for strong

perturbations (1 < |α|) with n sufficiently big λα,n,1 is negative and λα,n,n is greater than

4, whereas the intermediate eigenvalues lie on the interval [0, 4].

In Section 2.2 we do an analytic analysis of the characteristic equation of Aα,n with

weak perturbations. We show that it is possible to determine numerically by iteration of

fixed point the eigenvalues. We give asymptotic expansions of the eigenvalues.

In Section 2.3 we focus on the extreme eigenvalues λα,n,1 and λα,n,n of Aα,n with

strong perturbations. We show that as n tends to infinity they converge exponentially to

determined values depending only on α, and prove that we can find them by iteration of

fixed point.

We write also formulas of eigenvectors for both types of perturbations.

Finally in Section 2.4, we give exact formulas for the eigenvalues and eigenvectors of

Aα,n with |α| = 1.

Observe that if α = 0, then A0,n is the tridiagonal Toeplitz matrix without corner

perturbation. The eigenvalues and eigenvectors of this matrix are given Corollaries 1.11

and 1.17, respectively. We omit this case through the chapter.

2.1 Characteristic equation and eigenvalues localiza-

tion of Aα,n

Through all the chapter Dα,n(λ) represents det(λIn − Aα,n) and Un the Chebyshev poly-

nomial of the second kind (Definition 1.2).

Proposition 2.1. For every α, λ in C and n ≥ 3,

Dα,n(λ) = Un

(
λ− 2

2

)
− |α|2Un−2

(
λ− 2

2

)
− 2(−1)n Re(α). (2.1)

Proof. In the notation of Proposition 1.13 we have for the matrix Aα,n that α = δ = −2,

β = α and γ = α. Then equation (1.8) transforms directly in (2.1).
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In order to solve the characteristic equation for λ, we are going to do some change of

variables, namely we are choosing for λ to be one of the functions:

g(x) := 4 sin2 x

2
, g−(x) := −4 sinh2 x

2
, g+(x) := 4 + 4 sinh2 x

2
. (2.2)

Later we see that the choice of the change of variables depends on whether α is or not in

the unitary disc.

Proposition 2.2. Let α ∈ C and n ≥ 3. Then

Dα,n(0) = (−1)n
(
n(1− |α|2) + |α− 1|2

)
, (2.3)

Dα,n(4) = n(1− |α|2) + |1− (−1)nα|2, (2.4)

and for 1 ≤ j ≤ n− 1,

Dα,n

(
g

(
jπ

n

))
= (−1)n+j

∣∣α− (−1)j
∣∣2 . (2.5)

Furthermore,

lim
λ→−∞

((−1)nDα,n(λ)) = +∞, lim
λ→+∞

Dα,n(λ) = +∞. (2.6)

Proof. Formulas (2.6) are obvious since the leading term of the polynomial Dα,n(λ) is λn.

Formulas (2.3) and (2.4) follow easily from (2.1) using the values of the polynomial Un at

the points 1 and −1 given in Corollary 1.6.

Let us verify (2.5):

Dα,n

(
g

(
jπ

n

))
=

(−1)n

sin jπ
n

(
sin

(
jπ +

jπ

n

)
− |α|2 sin

(
jπ − jπ

n

)
− 2 Re(α) sin

jπ

n

)
= (−1)n

(
(−1)j + |α|2(−1)j − 2 Re(α)

)
= (−1)n+j

∣∣α− (−1)j
∣∣2 .

Proposition 2.2 yields the following conclusions about the localization of the eigenvalues.

1. Let |α| ≤ 1, α 6= ±1, and 1 ≤ j ≤ n. Then the characteristic polynomial changes its

sign in the interval

In,j :=

(
(j − 1)π

n
,
jπ

n

)
. (2.7)
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Hence, Aα,n has an eigenvalue in this interval.

2. Let |α| < 1, then 0 and 4 are not eigenvalues of Aα,n.

3. Let α ∈ C, α /∈ {−1, 1}, then the points g(jπ/n), 1 ≤ j ≤ n− 1, are not eigenvalues

of Aα,n.

4. Let |α| > 1 and 2 ≤ j ≤ n− 1. Then the characteristic polynomial changes its sign

in the interval In,j, and Aα,n has an eigenvalue in this interval.

5. Let |α| > 1. Then

lim
λ→−∞

((−1)nDα,n(λ)) = +∞, (−1)nDα,n

(
g
(π
n

))
< 0.

So, there is an eigenvalue in (−∞, g(π/n)).

6. Let |α| > 1. Then

Dα,n

(
g

(
(n− 1)π

n

))
< 0, lim

λ→+∞
Dα,n(λ) = +∞.

So, there is an eigenvalue in (g((n− 1)π/n),+∞).

For |α| > 1, the conclusions are sufficient to enumerate the eigenvalues, but it is not

clear if λα,n,1 and λλ,n,n belong to [0, 4] or not. We are going to provide the correspondent

criteria. For every α in C with |α| 6= 1, we define

N1(α) :=
|α− 1|2

||α|2 − 1|
, N2(α) :=

|α + 1|2

||α|2 − 1|
, N3(α) := max{N1(α), N2(α)}. (2.8)

Proposition 2.3 (Criteria for first eigenvalue). Let α ∈ C, |α| > 1, n ≥ 3.

1) If n < N1(α), then 0 < λα,n,1 < g(π/n).

2) If n = N1(α), then λα,n,1 = 0.

3) If n > N1(α), then λα,n,1 < 0.

Proof. We determine the sign of (−1)nDα,n(0) using (2.3).

1. If n < N1(α), then

(−1)nDα,n(0) > 0, (−1)nDα,n(g(π/n)) < 0,

and (−1)nDα,n(λ) changes its sign on (0, g(π/n)).
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2. If n = N1(α), then (−1)nDα,n(λ)(0) = 0.

3. If n > N1(α), then

(−1)nDα,n(0) < 0, lim
λ→−∞

(−1)nDα,n(λ) = +∞,

and (−1)nDα,n changes its sign on (−∞, 0).

Hence, the sentences 1), 2) and 3) hold.

Proposition 2.4 (Criteria for last eigenvalue n even). Let α ∈ C, |α| > 1, n ≥ 3.

1) If n < N1(α), then g
(

(n−1)π
n

)
< λα,n,n < 4.

2) If n = N1(α), then λα,n,n = 0.

3) If n > N1(α), then 4 < λα,n,n.

Proof. We determine the sign of (−1)nDα,n(4) using (2.4).

1. If n < N1(α), then

(−1)nDα,n(4) > 0, (−1)nDα,n

(
g

(
(n− 1)π

n

))
< 0,

and (−1)nDα,n changes its sign on
(
g
(

(n−1)π
n

)
, 4
)

.

2. If n = N1(α), then (−1)nDα,n(4) = 0.

3. If n > N1(α), then

(−1)nDα,n(4) < 0, lim
λ→∞

(−1)nDα,n(λ) = +∞,

and (−1)nDα,n changes its sign on (−∞, 0).

Hence, the sentences 1), 2) and 3) hold.

Proposition 2.5 (Criteria for last eigenvalue n odd). Let α ∈ C, |α| > 1, n ≥ 3.

1) If n < N2(α), then g
(

(n−1)π
n

)
< λα,n,n < 4.

2) If n = N2(α), then λα,n,n = 0.

3) If n > N2(α), then 4 < λα,n,n.
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Proof. The proof is similar to the proof of Proposition 2.4.

We now prove the main results of this section, the eigenvalues localization.

Theorem 2.6 (localization of the eigenvalues for weak perturbations). Let α ∈ C, |α| ≤ 1,

α /∈ {−1, 1}, and n ≥ 3. Then the matrix Aα,n has n different eigenvalues belonging to

(0, 4). More precisely, for every 1 ≤ j ≤ n,

g

(
(j − 1)π

n

)
< λα,n,j < g

(
jπ

n

)
. (2.9)

Proof. Proposition 2.2 implies that for |α| < 1 and n ≥ 3, the numbers Dα,n(g(jπ/n)),

0 ≤ j ≤ n are nonzero, and their signs alternate. By the intermediate value theorem, this

yields the result (2.9).

Theorem 2.7 (localization of the eigenvalues for strong perturbations). Let α ∈ C,

|α| > 1, and n ≥ 3.

1) If n > N1(α), then λα,n,1 < 0, else 0 ≤ λα,n,1 < g(π/n).

2) If n is odd and n > N1(α), or n is even and n > N2(α), then λα,n,n > 4. In the

other case, g((n− 1)π/n) < λα,n,n ≤ 4.

3) For 2 ≤ j ≤ n− 1, the eigenvalues λα,n,j belong to (0, 4) and satisfy (2.9).

Proof. Proposition 2.3 implies 1, Propositions 2.4 and 2.5 implies 2, and Proposition 2.2

implies 3 (this case is similar as Theorem 2.6).

Theorem 2.6 implies immediately that for every |α| < 1 and for every v in R,

lim
n→∞

#{j ∈ {1, . . . , n} : λα,n,j ≤ v}
n

=
µ ({x ∈ [0, π] : g(x) ≤ v})

π
, (2.10)

i.e., the eigenvalues of Aα,n are asymptotically distributed as the function g on [0, π]. For

every |α| > 1, Theorem 2.7 implies a similar conclusion for all the eigenvalues except for

the extreme ones. We see in Section 2.3 that λα,n,1 and λα,n,n converge to determined

values as n tends to infinity, hence there is a determined gap between the sets {λα,n,1},
{λα,n,n} and {λα,n,j : j ∈ {2, . . . , n− 1}} as n tends to infinity.
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Now we give a trigonometric expression for the characteristic equation, using for this

the change of variable λ = g(x).

Define

kα :=
1− |α|2

|1 + α|2
, lα :=

|1− α|
|1 + α|

. (2.11)

Proposition 2.8. Let α ∈ C, α /∈ {−1, 1}, n ≥ 3, x ∈ (0, π). Then

Dα,n(g(x)) =
(−1)n+1|α + 1|2

(
tan2 nx

2
− 2kα cot(x) tan nx

2
− l2α

)
1 + tan2 nx

2

. (2.12)

Proof. We start with (2.1), write λ as 2− 2 cos(x), use the parity or imparity of Un and

the trigonometric formula in 1.5. Then

Dα,n(g(x)) =
(−1)n

sin(x)

(
sin((n+ 1)x)− |α|2 sin((n− 1)x)− 2 Re(α) sin(x)

)
. (2.13)

Applying the trigonometric identities

sin((n± 1)x) = sin(nx) cos(x)± cos(nx) sin(x),

sin(nx) =
2 tan nx

2

1 + tan2 nx
2

, cos(nx) =
1− tan2 nx

2

1 + tan2 nx
2

, (2.14)

and regrouping the summands, we get

Dα,n(g(x)) =
(−1)n+1

1 + tan2 nx
2

×

×
(
|α + 1|2 tan2 nx

2
− 2(1− |α|2) cot(x) tan

nx

2
− |α− 1|2

)
,

(2.15)

which is equivalent to (2.12).

If |α| < 1, the Theorem 2.6 and Proposition 2.8 motivates the change of variable

λ = g(x). In next section we write asymptotic formulas for the eigenvalues of Aα,n by

finding the roots of (2.12). If |α| > 1 and n is sufficiently big, by Theorem 2.7 there are

only n− 2 eigenvalues in (0, 4), hence it is convenient to do the same change of variable

λ = g(x). However we prove in Section 2.3 that for the remaining eigenvalues, namely
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λα,n,1 and λα,n,n, we require to do λ = g−(x) and g+(x), respectively. Knowing this, we

show below the characteristic polynomial after doing these changes of variable.

Observe that for x in (−∞,∞), we have the relations

g(ix) = g−(x), g(π + ix) = g+(x). (2.16)

It is evident that for x = 0 these relations turn into g(0) and g(π) respectively, both values

Dα,n(g(0)) and Dα,n(g(π)) were already analyzed in 2.2. Furthermore the functions g± are

even, so, we just study only the case when x is in the open ray (0,∞).

Proposition 2.9. Let α ∈ C, α /∈ {−1, 1}, n ≥ 3, x > 0. Then

Dα,n(g−(x)) =
(−1)n

1− tanh2 nx
2

(
|α + 1|2 tanh2 nx

2

− 2(|α|2 − 1) tanh
nx

2
coth(x) + |α− 1|2

)
,

(2.17)

and

Dα,n(g+(x)) =
1

1− tanh2 nx
2

(
|α + (−1)n|2 tanh2 nx

2

− 2(|α|2 − 1) tanh
nx

2
coth(x) + |α− (−1)n|2

)
.

(2.18)

Proof. The proof is similar to the proof of Proposition 2.8.

2.2 Eigenvalues and eigenvectors of Aα,n with weak

perturbations |α| < 1

Let |α| < 1 and n ≥ 3. In this section we are interested in solving (2.12). Motivated

by (2.9), we use the function g (2.2) as a change of variable in the characteristic equation

and put ϑα,n,j := g−1(λα,n,j). Note that inequality (2.9) is equivalent to

(j − 1)π

n
< ϑα,n,j <

jπ

n
(1 ≤ j ≤ n). (2.19)
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For |α| 6= 1 and j in Z, we define uα,j : (0, π)→ R by

uα,j(x) := kα cot(x) + (−1)j+1
√
k2α cot2(x) + l2α. (2.20)

The first derivative of uα,j is

u′α,j(x) = − kα
sin2(x)

(
1 +

(−1)j+1kα cot (x)√
k2α cot2 (x) + l2α

)
, (2.21)

if |α| < 1, u′α,j is negative and positive if |α| > 1. For x in (0, π), different from the points

jπ/n, the expression (−1)n+1|α+1|2
1+tan2 nx

2
takes finite nonzero values. Omitting this factor, we

consider the right-hand side of (2.12) as a quadratic polynomial in tan nx
2

, with coefficients

depending on α and x. The roots of this quadratic polynomial are uα,1(x) and uα,2(x). So,

the characteristic equation Dα,n(g(x)) = 0 is equivalent to the disjunction of the equations

tan
nx

2
= uα,1(x), tan

nx

2
= uα,2(x). (2.22)

Recall that In,j is the interval defined by (2.7).

Proposition 2.10. Let |α| < 1, n ≥ 3, and 1 ≤ j ≤ n. Then the equation

tan
nx

2
= uα,j(x) (2.23)

has a unique solution in In,j that coincides with ϑα,n,j and the correspondent value g(ϑα,n,j)

is λα,n,j.

Proof. By the intermediate value theorem the first of the equations in (2.22) has solution

in each interval In,j with j odd, and the second one has solution in each interval In,j with j

even. The uniqueness of the solutions follows from Theorem 2.6, but it can also be verified

directly, since the first derivative of uα,j is negative.

See in Figure 2.1 a graph of both sides of (2.23). This figure confirm that, if |α| < 1,

then for every 1 ≤ j ≤ n there exist a solution of (2.23) in the interval In,j; and if |α| > 1

and n is sufficiently big, then (2.23) does not have solution in In,1 nor in In,n.
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0
π

−1

1

uα,2

uα,1

tan nx
2

0
π

−1

1

uα,2

uα,1

tan nx
2

Figure 2.1: Functions of (2.23) for α = 0.7 + i0.6 and n = 8 (left) and for α = 2 + i and n = 8 (right).

Theorem 2.11 (characteristic equation for weak perturbations). Let α ∈ C, |α| ≤ 1,

α /∈ {−1, 1}, n ≥ 3, and 1 ≤ j ≤ n. Then the number ϑα,n,j satisfies

ϑα,n,j = −
2 arctan

((
(−1)j+1kα cot (ϑα,n,j) +

√
k2α cot2 (ϑα,n,j) + l2α

)(−1)j)
n

+
jπ

n
. (2.24)

Proof. Equality (2.24) is equivalent to (2.23).

Motivated by (2.24), for every α in C with α /∈ {−1, 1} and every integer j we define

the function ηα,j : [0, π]→ R by

ηα,j(x) := −2 arctan

((
(−1)j+1kα cot (x) +

√
k2α cot2 (x) + l2α

)(−1)j
)
, (2.25)

where the constants are defined by (2.11) In fact, ηα,j depends only on α and on the

parity of j. Thus, for every α there are only two different functions: ηα,1 and ηα,2. These

functions take values in [−π, 0]. See a couple of examples in Figures 2.2 and 2.3 for some

|α| < 1 and |α| > 1.
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0 π

−π

ηα,2

ηα,1

0 π

−π

ηα,2

ηα,1

Figure 2.2: Function (2.25) for α = −0.3 + 0.5i (left) and α = 0.7 + i0.6 (right).

0 π

−π

ηα,2

ηα,1

0 π

−π

ηα,2

ηα,1

Figure 2.3: Function (2.25) for α = 2 + i (left) and α = 0.8− i0.7 (right).

A straightforward computation yields

η′α,j(x) = −
2kα

(
1 + (−1)j+1kα cot(x)√

k2α cot2(x)+l2α

)
(1 + cot2(x))

1 +
(

(−1)j+1kα cot(x) +
√
k2α cot2(x) + l2α

)2 . (2.26)

Equivalently,

η′α,j(x) = −
2kα

(
1 + (−1)j+1kα sign(tan(x))√

k2α+l
2
α tan2(x)

)
(1 + tan2(x))

tan2(x) +
(

(−1)j+1kα sign(tan(x)) +
√
k2α + l2α tan2(x)

)2 . (2.27)

Recall that the constants N1(α), N2(α) and N3(α) are defined by (2.8).
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Proposition 2.12. Let α ∈ C, |α| 6= 1, j ∈ Z. Then each derivative of ηα,j is a bounded

function on (0, π). In particular,

sup
0<x<π

|η′α,j(x)| = N3(α). (2.28)

Proof. Case I: (−1)j+1kα tan(x) > 0, i.e., (−1)j+1kα sign(tan(x)) = |kα|. Let us denote

tan2(x) by t. Then (2.27) simplifies to

η′α,j(x) = −
2kα

(
1 + t+ |kα| (1+t)√

k2α+l
2
αt

)
2k2α + (1 + l2α)t+ 2|kα|

√
k2α + l2αt

. (2.29)

Since lα ≥ |kα|, k2α + l2αt ≥ k2α(1 + t), and 1 + l2α ≥ 2k2α,

|η′α,j(x)| ≤ 2|kα| (1 + t+
√

1 + t)

2k2α (1 + t+
√

1 + t)
=

1

|kα|
= N1(α).

Case II: (−1)j+1kα tan(x) < 0, i.e. (−1)j+1kα sign(tan(x)) = −|kα|. Denote again tan2(x)

by t. Then, using the identity(√
k2α + l2αt− |kα|

)(√
k2α + l2αt+ |kα|

)
= l2αt,

we transform (2.27) to

η′α,j(x) = − 2kαl
2
α(1 + t)(

1 + l2α + (1−l2α)|kα|√
k2α+l

2
αt

)
(k2α + l2αt)

. (2.30)

Since k2α + l2αt ≥ k2α(1 + t),

|η′α,j(x)| ≤ 2l2α
|kα|
· 1

1 + l2α + (1−l2α)|kα|√
k2α+l

2
αt

. (2.31)

Denote by R(t) the expression in the right-hand side of (2.31). If lα ≥ 1, then R decreases,

and

sup
0<t<+∞

R(t) = lim
t→0+

R(t) =
2l2α
|kα|
· 1

2
= N2(α).
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If lα < 1, then R increases, and

sup
0<t<+∞

R(t) = lim
t→+∞

R(t) ≤ 2l2α
|kα|
· 1

1 + l2α
<

1

|kα|
= N1(α).

In both cases I and II, the inequality ≤ in (2.28) is proven.

The limit values of |η′α,j| at the points 0 and π can be computed by applying (2.29)

and (2.30), and coincide with N1(α) and N2(α), or vice versa, depending on the sign of

(−1)j+1kα. This implies the inverse inequality ≥ in (2.28).

For the higher derivatives of ηα,j , the explicit estimates are too tedious, and we propose

the following argument. By (2.26), η′α,j is analytic in a neighborhood of x, for any x

in (0, π). Moreover, formulas (2.29) and (2.30) show that η′α,j has an analytic extension

in some neighborhoods of the points 0 and π. Hence, η′α,j has an analytic extension to

a certain open set in the complex plane containing the segment [0, π]. Therefore, this

function and all their derivatives are bounded on (0, π).

For every α in C with α /∈ {−1, 1}, n ≥ 3 and 1 ≤ j ≤ n we define the function fα,n,j

on [0, π] by

fα,n,j(x) :=
jπ + ηα,j(x)

n
. (2.32)

Proposition 2.13. Let |α| < 1, n > N3(α), and 1 ≤ j ≤ n. Then fα,n,j defined by (2.32)

is contractive on [0, π], and its fixed point belongs to In,j, evenmore, coincides with ϑα,n,j.

Proof. Since the function ηα,j takes values in [−π, 0] and its derivative is bounded by (2.28),

it is easy to see that fα,n,j(x) ∈ [0, π] for every x in [0, π], and

|f ′α,n,j(x)| ≤ N3(α)

n
< 1.

Moreover, the assumption |α| < 1 implies that ηα,j(0) = 0 and ηα,j(π) = −π. Therefore

fα,n,j(0) > 0, fα,n,j(π) < π.

We have proved that fα,n,j is contractive on [0, π]. By Theorem A.4 this implies that fα,n,j

has a unique fixed point, by Theorem 2.11 it coincides with ϑα,n,j.

In order to compute the eigenvalues, the previous proposition justifies the implementa-

tion of the fixed point iteration method.
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We use the notation λgenα,n,j, for the eigenvalues computed in Sagemath by general

algorithms, with double-precision arithmetic; and λfpα,n,j denote the eigenvalues computed

by formulas of Theorem 2.11, i.e. solving the equation (2.24) by the fixed point iteration;

these computations are performed in high-precision arithmetic with 3322 binary digits.

We have constructed a large series of examples with random values of α and n, see

the Codes B.2 and B.3 for the main parts of the developed program. For example with

α = 1/3 and n = 64 we run the Code B.3 in the command window and get the Code 2.1.

In all these examples, we have obtained

max
1≤j≤n

|λgenα,n,j − λ
fp
α,n,j| < 2 · 10−13. (2.33)

Code 2.1: Test eigenvalues approximation by fixed point iteration

sage: load(’Off weak test eigenvalues by fixed point.sage’)

sage: max error eigenvalues gen minus fp(1/3, 64, 3322)

7.993605777301127e−15

In [3] Barrera, Bötcher, Grudsky and Maximenko develop asymptotic expansions of

the eigenvalues of certain symmetric pentadiagonal Toeplitz matrix, we use these ideas in

next proposition and theorem.

Proposition 2.14. Let α ∈ C, |α| < 1. Then there exists C1(α) > 0 such that for n large

enough and 1 ≤ j ≤ n,

ϑα,n,j =
jπ

n
+
ηα,j

(
jπ
n

)
n

+
ηα,j

(
jπ
n

)
η′α,j

(
jπ
n

)
n2

+ rα,n,j, (2.34)

where |rα,n,j| ≤ C1(α)
n3 .

Proof. Theorem 2.6 assures the initial approximation ϑα,n,j = jπ/n+O(1/n). Substitute

it into the right-hand side of (2.24) and expand ηα,j by Taylor’s formula around jπ/n

ϑα,n,j =
jπ + ηα,j

(
jπ
n

+O
(
1
n

))
n

=
jπ

n
+
ηα,j

(
jπ
n

)
n

+Oα

(
1

n2

)
.
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Iterate once again in (2.24),

ϑα,n,j =

jπ + ηα,j

(
jπ
n

+
ηα,j( jπn )

n
+Oα

(
1
n2

))
n

.

Expanding ηα,j around jπ/n with two exact terms and estimating the residue term with

Proposition 2.12 we obtain the desired result.

For every α in C with |α| 6= 1 and 1 ≤ j ≤ n, define on [0, π] the function

Λα,n,j(x) := g(x) +
g′(x)ηα,j(x)

n
+
g′(x)ηα,j(x)η′α,j(x) + 1

2
g′′(x)η2α,j(x)

n2
. (2.35)

For every 1 ≤ j ≤ n, define λasympt
α,n,j by

λasympt
α,n,j := Λα,n,j

(
jπ

n

)
. (2.36)

Note that this asymptotic expansion

Theorem 2.15 (asymptotic expansion of the eigenvalues for weak perturbations). Let

α ∈ C, |α| ≤ 1. Then there exists C2(α) > 0 such that for n large enough and 1 ≤ j ≤ n,

|λα,n,j − λasympt
α,n,j | ≤

C2(α)

n3
. (2.37)

Proof. The conclusion follows from Proposition 2.14: we just evaluate g at the expres-

sion (2.34) and expand it by Taylor’s formula around jπ/n.

For Theorem 2.15 we have computed the errors

Rα,n,j := λasympt
α,n,j − λ

fp
α,n,j,

and their maximums ‖Rα,n‖∞ = max1≤j≤n |Rα,n,j|, with both λasympt
α,n,j and λfpα,n,j com-

puted in high-precision arithmetic with 3322 binary digits, see the Codes B.4 and B.5 for

the main part of the written program. For example for α = 1/3 + i1/5 and n = 64 we

execute the Code B.5 in the command window and get the Code 2.2.
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Code 2.2: Test eigenvalues approximation by asymptotic expansion

sage: load(’Off weak test eigenvalues by asymp.sage’)

sage: max error eigenvalues asymp minus fp(1/3+i∗1/5, 64, 3322)

test eigenvalues by asymptotic expansion

n = 64

al = 1/5∗I + 1/3

maximal error = 1.538e−04

normalized error = 4.032e+01

Tables 2.1 show that these errors indeed can be bounded by C2(α)/n3, and C2(α) has

to take bigger values when |α| is close to 1.

Table 2.1: Values of ‖Rα,n‖∞ and n3‖Rα,n‖∞ for some |α| < 1.

α = −0.3 + 0.5i, |α| ≈ 0.58

n ‖Rα,n‖∞ n3‖Rα,n‖∞
16 4.89× 10−3 20.05

32 1.05× 10−3 34.48

64 1.76× 10−4 46.05

128 2.49× 10−5 52.13

256 3.29× 10−6 55.12

512 4.22× 10−7 56.58

1024 5.34× 10−8 57.31

2048 6.71× 10−9 57.67

4096 8.42× 10−10 57.84

8192 1.05× 10−10 57.93

α = 0.7 + 0.6i, |α| ≈ 0.92

n ‖Rα,n‖∞ n3‖Rα,n‖∞
16 2.83× 10−2 116.25

32 5.72× 10−3 187.54

64 1.02× 10−3 266.71

128 1.59× 10−4 333.02

256 2.24× 10−5 376.61

512 2.99× 10−6 401.28

1024 3.86× 10−7 414.29

2048 4.90× 10−8 420.94

4096 6.17× 10−9 424.30

8192 7.75× 10−10 425.99

Let n ≥ 3. For every α in C and 1 ≤ j ≤ n define the next functions on [0, π]

d0(x) :=g(x),

d1,α,n,j(x) :=
g′(x)ηα,j(x)

n
,

d2,α,n,j(x) :=
g′(x)ηα,j(x)η′α,j(x) + 1

2
g′′(x)η2α,j(x)

n2
.

(2.38)

It is evident that

Λα,n,j(x) = d0(x) + d1,α,n,j(x) + d2,α,n,j(x).

See in Figure 2.4 the behaviour of the asymptotic expansion (2.35). There the dots in

blue and red are respectively the pairs (jπ/n, λα,n,j) and (jπ/n, λasympt
α,n,j ); the first pair of
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numbers were computed with general algorithms and the last ones computed with one,

two and three terms of the asymptotic expansion, respectively to each figure. The curves

are the functions d0, d0 + d1,α,j and d0 + d1,α,n,j + d2,α,n,j , respectively to each figure. These

figures confirm that, if we take more terms of the asymptotic expansion, then we obtain a

better approximation for the eigenvalues.

0 π

4

d0

jπ/n

λα,n,j

λasympt
α,n,j

0 π

4

d0+d1,1 d0+d1,2

jπ/n

λα,n,j

λasympt
α,n,j

0 π

4

d0+d1,1+d2,1 d0+d1,2+d2,2

jπ/n

λα,n,j

λasympt
α,n,j

Figure 2.4: One, two and three terms of the function (2.35) for α = −0.3 + 0.5i and n = 8 (we omitted
the subscripts α and n in the functions).

Proposition 2.16 (the eigenvectors for weak perturbations). Let α ∈ C, |α| < 1, n ≥ 3,
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1 ≤ j ≤ n. Then the vector vα,n,j =
[
vα,n,j,k

]n
k=1

with components

vα,n,j,k := sin(kϑα,n,j) + α sin((n− k)ϑα,n,j) (1 ≤ k ≤ n) (2.39)

is an eigenvector of the matrix Aα,n associated to the eigenvalue λα,n,j.

Proof. Let 1 ≤ j ≤ n, and let b−2,−α,n be the constant defined here (1.14), there z = eiϑα,n,j .

Then

b−2,−α,n = −2iα sin(nϑα,n,j).

Since ϑα,n,j 6= jπ/n, then b−2,−α,n(ϑα,n,j) 6= 0. So, by Proposition 1.16 the vector v′ with

components

v′k =
sin(kϑα,n,j) + α sin((n− k)ϑα,n,j)

sin(ϑα,n,j)
(1 ≤ k ≤ n)

is an eigenvector associated to λα,n,j. Since every constant multiple of v′ is also an

eigenvector, then formula (2.39) follows by multiplying v′k by sin(ϑα,n,j).

Motivated by (2.39), for every |α| < 1, n ≥ 3 and 1 ≤ j ≤ n, we define for every x in

[0, 16] the function:

wα,n,j(x) := sin(xϑα,n,j) + α sin((n− x)ϑα,n,j). (2.40)

Observe that for every 1 ≤ j ≤ n and for every 1 ≤ k ≤ n, wα,n,j(k) equals (2.39). Observe

that if −1 < α < 1, then (2.40) can be written as

wα,n,j(x) = Pα,n,j(sin(ϑα,n,jx+ ωα,n,j)) (2.41)

where

Pα,n,j :=
√

1− 2α cos(nϑj) + α2, ωα,n,j := arctan
α sin(nϑα,n,j)

1− α cos(nϑα,n,j)
.

Hence wα,n,j is a sinusoidal function, where the amplitude Pα,n,j, the angular frequency

ϑα,n,j and the phase shift ωα,n,j depend on α and n and do not depend on x. Let α = −0.3

and n = 16. See in Figure 2.5 the function wα,n,j for some values of j. The dots in red are

the pairs (k, wα,n,j(k)).
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0

1

−1
k n

j = 1

0

1

−1

k n

j = 4

0

1

−1

k n

j = 8

0

1

−1

k n

j = 12

0

1

−1

k

n

j = 16

Figure 2.5: Function (2.40) for α = −0.3, n = 16 and different values of j.

2.3 Eigenvalues and eigenvectors of Aα,n with strong

perturbations |α| > 1

Let |α| > 1 and n ≥ 3. By Theorem 2.7, for 2 ≤ j ≤ n− 1, the eigenvalues λα,n,j of Aα,n

behave as in the case of weak perturbations and can be approximated by the methods of

Section 2.2. Hence, in this section we are only interested in solving (2.17) and (2.18).

Recall some notation. The functions g, g+ and g− are defined by (2.2). The function

Dα,n(λ) is the characteristic polynomial of Aα,n. The constant N3(α) is defined by (2.8).

Define the constant N4(α) by

N4(α) :=
20 log(|α|+ 1)− 4 log(log(|α|))

log |α|
. (2.42)
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Proposition 2.17. Let α ∈ C, |α| > 1. For x > 0 and λ = g−(x), the equation

Dα,n(g−(x)) = 0 is equivalent to

tanh(x) =
2(|α|2 − 1) tanh nx

2

|α + 1|2 tanh2 nx
2

+ |α− 1|2
. (2.43)

For x > 0 and λ = g+(x), the equation Dα,n(g+(x)) = 0 is equivalent to

tanh(x) =
2(|α|2 − 1) tanh nx

2

|α + (−1)n|2 tanh2 nx
2

+ |α− (−1)n|2
. (2.44)

Proof. The expression (2.17) for the characteristic polynomial yields (2.43). The proof

of (2.44) is analogous.

Theorem 2.18 (characteristic equations for strong perturbations). Let α ∈ C, |α| > 1,

and n > max{N3(α), N4(α)}. Then

λα,n,1 = g−(ϑα,n,1), λα,n,n = g+(ϑα,n,n),

where ϑα,n,1 is the unique positive solution of the equation

x = arctanh
2(|α|2 − 1) tanh nx

2

|α + 1|2 tanh2 nx
2

+ |α− 1|2
, (2.45)

and ϑα,n,n is the unique positive solution of the equation

x = arctanh
2(|α|2 − 1) tanh nx

2

|α + (−1)n|2 tanh2 nx
2

+ |α− (−1)n|2
. (2.46)

For 2 ≤ j ≤ n− 1, λα,n,j = g(ϑα,n,j), where ϑα,n,j can be found as in Theorem 2.11.

Proof. For λα,n,1 and λα,n,n the conclusion follows directly from Proposition 2.17, for λα,n,j

with 2 ≤ j ≤ n− 1 the conclusion follows similar to proof of Proposition 2.13.

In what follows, we restrict ourselves to the analysis of the equation (2.43), be-

cause (2.44) is similar. Remark, in formula (2.15), tan nx
2

is rapidly oscillating and cot(x)

is much slower, therefore we solve (2.15) for tan nx
2

. The situation in (2.17) is different: if
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x is separated from zero and n is large enough, then tanh nx
2

is almost a constant, and we

prefer to solve (2.17) for tanh(x).

Define ψα : [0, 1]→ [0,+∞) by

ψα(t) :=
2(|α|2 − 1)t

|α + 1|2t2 + |α− 1|2
. (2.47)

Notice that

ψα(1) =
2(|α|2 − 1)

|α + 1|2 + |α− 1|2
=
|α|2 − 1

|α|2 + 1
= tanh(log |α|). (2.48)

See in Figure 2.6 a graph of both sides of (2.43), there we see that, from a certain

point the function ψα(tanh(nx/2)) behaves as a constant, hence we are going to construct

explicitly a left neighborhood of 1 where the values of ψα are close enough to tanh(log |α|).

0
2 log(|α|)

1

ψα(tanh(nx/2))

tanh(x)

Figure 2.6: Function (2.43) for α = 2 + i and n = 8.

Lemma 2.19. Let |α| > 1. Then for every t with

1− |α| − 1

(|α|+ 1)3
≤ t ≤ 1, (2.49)

the following inequalities hold:

|ψ′α(t)| ≤ 1, (2.50)

tanh
log |α|

2
≤ ψα(t) ≤ tanh

3 log |α|
2

, (2.51)

1− ψ2
α(t) ≥ 2

(|α|+ 1)3
. (2.52)
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Proof. Assumption (2.49) implies that

1− t2 ≤ 2(|α| − 1)

(|α|+ 1)3
, |α + 1|2t2 + |α− 1|2 ≥ 2(|α|3 + |α|2 + 2)

|α|+ 1
.

With these estimates we obtain (2.50). After that, the mean value theorem and (2.48)

provide (2.51). Inequality (2.52) follows from (2.51).

Define the segment

Sα :=

[
log |α|

2
,
3 log |α|

2

]
. (2.53)

We define ϕα,n on Sα as the right-hand side of (2.45),

ϕα,n(x) := arctanh
2(|α|2 − 1) tanh nx

2

|α + 1|2 tanh2 nx
2

+ |α− 1|2
.

Proposition 2.20. Let α ∈ C, |α| > 1, and n > max{N3(α), N4(α)}. Then ϕα,n is

contractive on Sα, and its fixed point coincides with ϑα,n,1.

Proof. We represent ϕα,n as the following composition,

ϕα,n(x) = arctanh
(
ψα

(
tanh

nx

2

))
.

For x in Sα, denote tanh nx
2

by t. Then

1− t ≤ 2e−nx ≤ 2e−N2(α)
log |α|

2 <
|α| − 1

(|α|+ 1)3
.

Therefore, by (2.52) we have ψα(tanh nx
2

) < 1, and the definition of ϕα,n makes sense.

By (2.51), ϕα,n takes values in Sα. Estimate from above the derivative of ϕα,n using (2.52),

(2.50), and the elementary inequality ue−u ≤ 1/e:

|ϕ′α,n(x)| ≤ |ψ′α(t)|
1− ψ2

α(t)
· n

2 cosh2 nx
2

≤ (|α|+ 1)3ne−nx

≤ (|α|+ 1)3ne−
n log |α|

2 = (|α|+ 1)3ne−
n log |α|

4 e−
n log |α|

4

≤ (|α|+ 1)3 · 4

log |α|
· log |α|

(|α|+ 1)5
=

4

(|α|+ 1)2
< 1.
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We have proved that ϕα,n is a contraction on Sα. By Theorem A.4 this implies that ϕα,n

has a unique fixed point, and by Theorem 2.18 it coincides with ϑα,n,1.

For Proposition 2.20 we have constructed a large series of examples with random

values of α and n, denote by λfpα,n,1 and λfpα,n,n the eigenvalues obtained by iteration of

fixed point with high-precision arithmetic with 3322 binary digits,λgenα,n,1 and λgenα,n,n the

eigenvalues obtained by general algorithms with double-precision arithmetic. We also

tested the eigenvalues approximation by fixed point iteration for the 2 ≤ j ≤ n− 1. For

all these numerical experiments we obtained

max
j=1,...,n

|λgenα,n,j − λ
fp
α,n,j| < 2 · 10−13. (2.54)

See the Codes B.6 and B.7 for the main part of the written program for the extreme

eigenvalues computations, for example in Code 2.3 we tested this program with parameters

α = 2 and n = 64.

Code 2.3: Test extreme eigenvalues computation by fixed point iteration

sage: load(’Off strong test extreme eigvalues by fixed point.sage’)

sage: max error extreme eigenvalues gen minus fp(2,64,3322)

test extreme eigenvalues by fixed point iteration

n = 64

al = 2

maximal error = 3.553e−15

Proposition 2.21. Let |α| > 1, then exist C3(α) positive constant such that for all

n > max{N3(α), N4(α)}

∣∣ϑα,n,1 − log |α|
∣∣ ≤ C3(α)

|α|n
, |ϑα,n,n − log |α|| ≤ C3(α)/|α|n. (2.55)

Proof. For brevity, put x = ϑα,n,1. Apply the mean value theorem to ψα, taking into

account (2.50):

∣∣tanh(x)− tanh(log |α|)
∣∣ =

∣∣∣ψα (tan
nx

2

)
− ψα(1)

∣∣∣ ≤ 1− tan
nx

2
≤ 2e−nx.
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On the other hand, apply the mean value theorem to tanh:

| tanh(x)− tanh(log |α|)| ≥
∣∣x− log |α|

∣∣
cosh2 3 log |α|

2

≥ 2

|α|3
∣∣x− log |α|

∣∣.
From this chain of inequalities,

|x− log |α|| ≤ |α|3e−nx. (2.56)

We already know from Proposition 2.20 that x ≥ log |α|
2

. Thus,

x ≥ log |α| − |α|3e−
n log |α|

2 .

Using the elementary inequality ue−u ≤ 1/e we get

nx ≥ n log |α| − |α|3 ne−
n log |α|

2 ≥ n log |α| − |α|3

log |α|
. (2.57)

By (2.56) and (2.57), inequality (2.55) holds. In a similar manner we prove the second

equation in (2.55).

In order to describe the asymptotic behavior of the extreme eigenvalues λα,n,1 and

λα,n,n, we introduce the following notation:

sα := |α| − 2 +
1

|α|
, i.e. sα =

(|α| − 1)2

|α|
=

(√
|α| − 1√

|α|

)2

. (2.58)

For every |α| > 1 and n ≥ 3 we define:

λasympt
α,n,1 := −sα, λasympt

α,n,n := 4 + sα. (2.59)

Theorem 2.22 (asymptotic expansion of the eigenvalues for strong perturbations). Let α ∈
C, |α| > 1. As n tends to infinity, the extreme eigenvalues of Aα,n converge exponentially
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to λasympt
α,n,1 and λasympt

α,n,n , respectively:

|λα,n,1 − λasympt
α,n,1 | ≤

C4(α)

|α|n
, (2.60)

|λα,n,n − λasympt
α,n,n | ≤

C4(α)

|α|n
. (2.61)

Here C4(α) is a positive constant depending only on α. For 2 ≤ j ≤ n− 1, the eigenvalues

λα,n,j satisfy the asymptotic formulas (2.37).

Proof. Since the derivatives of g− and g+ are bounded on
[
0, 3

2
log |α|

]
, by the mean value

theorem we get

|λα,n,1 + sα| = |g−(ϑα,n,1)− g−(log |α|)| ≤
∣∣∣∣g′−(3

2
log |α|

)∣∣∣∣ |ϑα,n,1 − log |α|| ,

using the first equation in (2.55) we obtain (2.60) with C4(α) := C3(α)g′−(3 log(|α|)/2). In

a similar manner we prove (2.61).

For Theorem 2.22, we have computed the errors

Rα,n,j := λasympt
α,n,j − λ

fp
α,n,j (2 ≤ j ≤ n− 1),

and their maximums ‖Rα,n‖∞ = max1≤j≤n |Rα,n,j|, with both λasympt
α,n,j and λfpα,n,j where

computed in high-precision arithmetic with 3322 binary digits, the main parts of the code

we used are similar to the Codes B.4 and B.5. Tables 2.2 show that these errors indeed can

be bounded by C2(α)/n3, and C2(α) has to take bigger values when |α| is close to 1. We

also tested (2.60) and (2.61). As n grows, |α|n|Rα,n,1| and |α|n|Rα,n,n| approach rapidly

the same limit value depending on α. For example, we execute the Code B.9 and get

for α = 2 + i, lim
n→∞

(|α|n|Rα,n,1|) ≈ 2.86,

for α = 0.8− 0.7i; lim
n→∞

(|α|n|Rα,n,1|) ≈ 1.12 · 10−2.

Proposition 2.23 (the eigenvectors for strong perturbations). Let α ∈ C, |α| > 1,

n > max{N3(α), N4(α)}. Then the vectors vα,n,1 := [vα,n,1,k]
n
k=1 and vα,n,n := [vα,n,n,k]

n
k=1
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Table 2.2: Values of ‖Rα,n‖∞ and n3‖Rα,n‖∞ for some |α| > 1.

α = 2 + i, |α| ≈ 2.23

n ‖Rα,n‖∞ n3‖Rα,n‖∞
64 1.55× 10−4 40.59

128 2.15× 10−5 45.18

256 2.82× 10−6 47.33

512 3.60× 10−7 48.36

1024 4.55× 10−8 48.86

2048 5.72× 10−9 49.10

4096 7.16× 10−10 49.22

8192 8.97× 10−11 49.29

α = 0.8− 0.7i, |α| ≈ 1.06

n ‖Rα,n‖∞ n3‖Rα,n‖∞
64 2.19× 10−4 57.51

128 2.19× 10−5 45.90

256 1.40× 10−5 235.36

512 2.99× 10−6 401.90

1024 4.55× 10−7 488.25

2048 6.16× 10−8 528.84

4096 7.98× 10−9 548.04

8192 1.01× 10−9 557.32

with components

vα,1,n,k = sinh(kϑα,n,1) + α sinh((n− k)ϑα,n,1) (1 ≤ k ≤ n), (2.62)

vα,n,n,k = (−1)k sinh(kϑα,n,n)) + (−1)k+n α sinh((n− k)ϑα,n,n) (1 ≤ k ≤ n), (2.63)

are the eigenvectors of the matrix Aα,n associated to the eigenvalues λα,1,n and λα,n,n,

respectively. For 2 ≤ j ≤ n − 1, the vector vα,n,j defined by (2.39) is an eigenvector of

Aα,n associated to the eigenvalue λα,n,j.

Proof. From Theorem 2.18 we have

λα,n,1 = 2− (eϑα,n,1 + e−ϑα,n,1).

Let b−2,−α,n be the constant defined here (1.14), there z = eϑα,n,1 , so

b−2,−α,n = −2α sinh(nϑα,n,1).

Since ϑα,n,1 6= 0, then b−2,−α,n 6= 0. So by Proposition 1.16 the vector v′ with components

v′k =
sinh(kϑα,n,1) + α sinh((n− k)ϑα,n,1)

sinh(ϑα,n,1)
(1 ≤ k ≤ n),

is an eigenvector associated to λα,n,j. Since every constant multiple of v′ is also an

eigenvector, then formula (2.62) follows by multiplying v′k by sinh(ϑα,n,1). In similar

manner (2.63) is proven. For 2 ≤ j ≤ n− 1 the proof is the same as in 2.16.
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Motivated by (2.62), for every |α| > 1, n > max{N3(α), N4(α)}, we define for every x

in [0, 16] the function:

wα,n,1(x) := sinh(xϑα,n,1) + α sinh((n− x)ϑα,n,1). (2.64)

Let α = 3/2 and n = 16. See in Figure 2.7 the function wα,n,1 normalized by ‖vα,n,1‖. The

dots in red are the pairs (k, wα,n,1(k)/‖vα,n,1‖).

0

1

−1

k n

Figure 2.7: Function (2.64) normalized by ‖vα,n,1‖, for α = 3/2 1 n = 16, scale 0.5 (x axis) to 1.0 (y axis).

2.4 Eigenvalues and eigenvectors of Aα,n with |α| = 1

Finally we present the computations for the eigenpairs of Aα,n with |α| = 1. Unlike the

cases of weak and strong perturbations, we give exact formulas for the eigenvalues of Aα,n

that are easily derived from the characteristic equation.

Proposition 2.24. Let α ∈ C, |α| = 1, α 6= ±1, n ≥ 3, and 1 ≤ j ≤ n. Then

λα,n,j = g(ϑα,n,j) is an eigenvalue of Aα,n, where

ϑα,n,j =
jπ

n
− 2

n
arctan

(
l(−1)

j

α

)
. (2.65)

Furthermore, ϑα,n,j ∈ In,j, and the vector with components (2.39) is an eigenvector of Aα,n

associated to λα,n,j.

Proof. The condition about α implies that kα = 0. In this case, the functions ηα,1 and

ηα,2 are just constants

ηα,j(x) = −2 arctan
(
l(−1)

j

α

)
,
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Chapter 2. Eigenvalues and eigenvectors of Aα,n with |α| = 1

and the characteristic equation (2.24) simplifies to the direct formula (2.65).

Since α 6= ±1 then lα 6= 0 nor lα 6= ∞, so ϑα,n,j 6= jπ/n. Then the same proof of

Proposition 2.16 applies for the eigenvectors of this case.

Proposition 2.25. Let α = 1, n ≥ 3, and 1 ≤ j ≤ n. Then λ1,n,j = g(ϑ1,n,j), where

ϑ1,n,j =

(
j − 1− (−1)j

2

)
π

n
=


2qπ

n
, j = 2q,

2qπ

n
, j = 2q + 1.

(2.66)

The vector v1,n,j = [v1,n,j,k]
n
k=1 with components

v1,n,j,k := sin

(
kϑ1,n,j +

(1− (−1)j)π

4

)
=


sin

2kqπ

n
, j = 2q,

cos
2kqπ

n
, j = 2q + 1,

(2.67)

is an eigenvector of A1,n associated to λ1,n,j.

Proof. The numbers ϑ1,n,j can be found by passing to the limit α → 1− in (2.24). The

equalities A1,nv1,n,j = λ1,n,jv1,n,j are easy to verify directly.

Proposition 2.26. Let α = −1, n ≥ 3, and 1 ≤ j ≤ n. Then λ−1,n,j = g(ϑ−1,n,j), where

ϑ−1,n,j =

(
j − 1 + (−1)j

2

)
π

n
=


(2q − 1)π

n
, j = 2q − 1,

(2q − 1)π

n
, j = 2q.

(2.68)

The vector v−1,n,j = [v−1,n,j,k]
n
k=1 with components

v−1,n,j,k := sin

(
kϑ−1,n,j +

(1 + (−1)j)π

4

)
=


sin

k(2q − 1)π

n
, j = 2q − 1,

cos
k(2q − 1)π

n
, j = 2q,

(2.69)

is an eigenvector of A−1,n associated to λ−1,n,j.

Proof. Similar to the proof of Proposition 2.25.
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Chapter 3

Laplacian matrix of the cyclic graph

with one weighted edge

In this chapter we study the individual behaviour of the eigenvalues of n × n matrices

Lα,n, depending on the real parameter α, of the following form:

Lα,7 =



1 + α −1 0 0 0 0 −α
−1 2 −1 0 0 0 0

0 −1 2 −1 0 0 0

0 0 −1 2 −1 0 0

0 0 0 −1 2 −1 0

0 0 0 0 −1 2 −1

−α 0 0 0 0 −1 1 + α


. (3.1)

This family matrices are a particular case of the matrix (1.3), in the notation of Section 1.2

α = δ = −(1 + α), β = γ = −α.

The matrix Lα,n is Hermitian, their eigenvalues are real, and we enumerate them in

the ascending order:

λα,n,1 ≤ λα,n,2 ≤ · · · ≤ λα,n,n.

By definition of the Laplacian matrix of a simple undirected graph, the entries (j, k)

and (k, j), for j 6= k, are equal to the weight of the edge {j, k} with the opposite sign.

The diagonal entry (j, j) is the sum of the weights of the edges {j, k}. It follows from this

definition that the Laplacian matrix is symmetric, and the sum of the entries in each row
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Chapter 3. Laplacian matrix of the cyclic graph with one weighted edge

1

2

3

4

5

6

7

1

1

1

1

1

1

α

Figure 3.1: Cycle with one weighted edge

is 0. In other words, every Laplacian matrix has eigenvalue 0 associated to the eigenvector

[1, . . . , 1]>, see [24] for more information of this matrices.

Denote by Gα,n the cyclic graph of order n, where one of the edge has weight α real,

and all others have weight 1, from previous definition is clear that, Lα,n is the Laplacian

matrix of the graph in Figure 3.1.

In Section 3.1 we study the characteristic polynomial of Lα,n, we extract from it some

properties that allow us to determine that, for weak perturbations (0 < α < 1) the

eigenvalues are on the interval [0, 4], and for strong left or right perturbations (α < 0 or

1 < α), respectively the eigenvalue λα,n,1 or λα,n,n lies outside [0, 4].

Forward in Section 3.2, we prove that the eigenvalues of Lα,n with weak perturbations

can be computed by iteration of fixed point, moreover we write asymptotic expansions for

them.

In Sections 3.3 and 3.4 we study the extreme eigenvalues of Lα,n with strong per-

turbations, we show that these eigenvalues can be obtained by the fixed point iteration;

moreover we show that as n tends to infinity they converge to some values determined

only on α.

Finally in Section 3.5 we give extact formulas for the eigenvalues of the particular

matrix L0,n.

For all cases of perturbations we give formulas for eigenvectors of Lα,n.

Remark. Let α in C, we define Lα,n as before but with values (1 +α) and −α, respectively
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Chapter 3. Characteristic equation and eigenvalues localization of Lα,n

in the entries (1, 1) and (n, 1). In Proposition 3.1 we prove that the characteristic equation

only depends of Re(α), this implies that even for α complex, all the eigenvalues of Lα,n

are real. This is the reason why in almost every result and reasoning concerning to the

eigenvalues we think α as a real number, and if we want to extend the forward analysis to

the complex plane we just need to replace Re(α) instead of α where needed.

Remark. The formulas we provide for the eigenvectors of Lα,n in Propositions 3.22, 3.27

and 3.35 are considered with α real; this is because, in the analysis performed for the

eigenvalues we consider only α real. However, these propositions can easily be generalized

to the case of α complex, by just replacing α in the correspondent formula.

3.1 Characteristic equation and eigenvalues localiza-

tion of Lα,n

Through all the chapter Dα,n(λ) represents det(λIn − Lα,n) and Tn, Un, Vn and Wn the

Chebyshev polynomials defined in Section 1.1.

Recall that if α is a complex number, then we define Lα,n as before, but with values

(1 + α) and −α, respectively in the entries (1, 1) and (n, 1). For example if n = 7

Lα,7 =



1 + α −1 0 0 0 0 −α
−1 2 −1 0 0 0 0

0 −1 2 −1 0 0 0

0 0 −1 2 −1 0 0

0 0 0 −1 2 −1 0

0 0 0 0 −1 2 −1

−α 0 0 0 0 −1 1 + α


.

Proposition 3.1. For every α, λ in C and n ≥ 3,

Dα,n(λ) = (λ− 2 Re(α))Un−1

(
λ− 2

2

)
− 2 Re(α)Un−2

(
λ− 2

2

)
+ 2(−1)n+1 Re(α).

(3.2)

Proof. Under the assumptions of Proposition 1.13 we have for the matrix Lα,n that
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Chapter 3. Characteristic equation and eigenvalues localization of Lα,n

α = −1− α, δ = −1− α, β = α and γ = α, then equation (1.8) transforms directly in

Dα,n(λ) = Un

(
λ− 2

2

)
+ 2(1− Re(α))Un−1

(
λ− 2

2

)
+ (1− 2 Re(α))Un−2

(
λ− 2

2

)
+ 2(−1)n+1 Re(α).

Substitute in last expression the recurrence relation

Un

(
λ− 2

2

)
= (λ− 2)Un−1

(
λ− 2

2

)
− Un−2

(
λ− 2

2

)
,

then the conclusion follows.

From now onward we consider α to be only a real number.

For every α in R and every n ≥ 3 we define on R the functions:

Eα,n(λ) :=


2λUn

2
−1

(
λ− 2

2

)
, if n is even,

λVn−1
2

(
λ− 2

2

)
, if n is odd.

(3.3)

Fα,n(λ) :=


(1− α)Tn

2

(
λ− 2

2

)
− α4− λ

2
Un

2
−1

(
λ− 2

2

)
, if n is even,

(1− α)Wn−1
2

(
λ− 2

2

)
+ αVn−1

2

(
λ− 2

2

)
, if n is odd.

(3.4)

Proposition 3.2. Let α, λ ∈ R and n ≥ 3. Then

Dα,n(λ) = Eα,n(λ)Fα,n(λ). (3.5)

Proof. For simplicity put λ = 2 + 2t. Suppose n = 2m. Apply the recurrence relation

U2m−2(t) = −U2m(t) + 2tU2m−1(t) to (3.2),

Dα,2m(2t+ 2) = 2 [αU2m(t) + (t+ 1− α− 2αt)U2m−1(t)− α] .
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Chapter 3. Characteristic equation and eigenvalues localization of Lα,n

Substitute in last expression the relations:

U2m−1(t) = 2Um−1(t)Tm(t),

U2m(t) = 2tUm−1(t)Tm(t) + 2T 2
m(t)− 1,

then

Dα,2m(2t+ 2) = 4
[
(t+ 1)(1− α)Um−1(t)Tm(t) + α(T 2

m − 1)
]
.

Equation (3.5) follows after applying T 2
m(t)− 1 = (t2 − 1)U2

m−1(t).

Now suppose n = 2m − 1. Use the recurrence relation U2m−3(t) = −U2m−1(t) +

2tU2m−2(t) on (3.2),

Dα,2m−1(2 + 2t) = 2
[
(t+ 1− α− 2αt)U2m−2(t) + αU2m−1(t) + α

]
.

Equation (3.5) follows after substitute the relations:

U2m−2(t) = Wm−1(t)Vm−1(t),

U2m−1(t) = tWm−1(t)Vm−1(t) + (1 + t)V 2
m−1(t)− 1.

Now, the problem of obtaining the roots ofDα,n transforms in obtaining in independently

fashion the roots of Eα,n and Fα,n.

Recall that g, g− and g+ are the functions defined by (2.2).

Proposition 3.3. Let α in R and n ≥ 3, then

Eα,n(0) = 0, (3.6)

Eα,n

(
g

(
jπ

n

))
= 0 (1 ≤ j ≤ n− 1, even). (3.7)

Proof. Notice that, independently of the parity of n, λ is a factor of Eα,n, then (3.6)

follows.

Using the trigonometric formulas in 1.5 we can see that jπ/n, with j even, are zeros

of Un
2
−1(− cos(x)) and of Vn−1

2
(− cos(x)), respectively if n is even or odd. Then (3.7)

follows.
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Chapter 3. Characteristic equation and eigenvalues localization of Lα,n

Corollary 3.4. Let α in R, n ≥ 3 and 1 ≤ j ≤ n− 1, where j is even. Then the numbers

0 and g(jπ/n) are eigenvalues of Lα,n.

Proof. By Proposition 3.3, the numbers of the hypothesis are zeros of Dα,n,, hence eigen-

values of Lα,n.

Unlike Eα,n, the zeros of the polynomial Fα,n are not trivial. In order to obtain these

zeros in later sections we study the method of fixed iteration point on functions that are a

slightly variation of the polynomial Fα,n. For now, we can derive the following propositions.

Proposition 3.5. Let α ∈ R and n ≥ 3. If n is even and 1 ≤ j ≤ n− 1, then

Fα,n

(
g

(
jπ

n

))
= (1− α)(−1)

n+j
2 (j even), (3.8)

Fα,n

(
g

(
jπ

n

))
=
α
(
1 + cos jπ

n

)
sin jπ

n

(−1)
n+j−1

2 (j odd), (3.9)

(−1)n/2Fα,n(0) = (1− α) + αn, Fα,n(4) = 1− α. (3.10)

Proof. Let 1 ≤ j ≤ n− 1. If we evaluate Fα,n at the points g(jπ/n), then one of the terms

in (3.4) is always zero. So,

Fα,n

(
g

(
jπ

n

))
= (1− α)Tn

2

(
− cos

jπ

n

)
(j even),

Fα,n

(
g

(
jπ

n

))
= −α

(
1 + cos

jπ

n

)
Un

2
−1

(
− cos

jπ

n

)
(j odd).

Hence, (3.8) and (3.9) follows by Proposition 1.5. Moreover,

Fα,n(0) = (1− α)Tn
2
(−1)− 2αUn

2
−1(−1),

Fα,n(4) = (1− α)Tn
2
(1).

Therefore, (3.10) follows from Corollary 1.6.
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Chapter 3. Characteristic equation and eigenvalues localization of Lα,n

Proposition 3.6. Let α ∈ R and n ≥ 3. If n is odd and 1 ≤ j ≤ n− 1, then

Fα,n

(
g

(
jπ

n

))
=

1− α
cos jπ

2n

(−1)
n+j−1

2 (j even), (3.11)

Fα,n

(
g

(
jπ

n

))
=

α

sin jπ
2n

(−1)
n+j−2

2 (j odd), (3.12)

(−1)(n−1)/2Fα,n(0) = 1− α + αn, Fα,n(4) = (1− α)n+ α. (3.13)

Proof. Recall that for every t and m, Wm(t) = (−1)mVm(−t). Let 1 ≤ j ≤ n− 1, then

Fα,n

(
g

(
jπ

n

))
= (1− α)Wn−1

2

(
− cos

jπ

n

)
(j even),

Fα,n

(
g

(
jπ

n

))
= αVn−1

2

(
− cos

jπ

n

)
(j odd).

So, (3.11) and (3.12) follows by Proposition 1.5. Moreover,

(−1)(n−1)/2Fα,n(0) = (1− α)Wn−1
2

(−1) + αVn−1
2

(−1),

Fα,n(4) = (1− α)Wn−1
2

(1) + αVn−1
2

(1).

Hence, (3.13) follows from Corollary 1.6.

Let In,j be the interval defined by (2.7), and define for every α 6= 0,

κα :=
1− α
α

. (3.14)

We have the relations

0 < κα <∞ if 0 < α < 1,

−∞ < κα < −1 if α < 0,

−1 < κα < 0 if 1 < α.

(3.15)

We refer to these cases as weak, left strong and right strong perturbations, respectively.

Theorem 3.7 (eigenvalues localization for weak perturbations). Let α ∈ R, 0 < α < 1,

and n ≥ 3. Then the matrix Lα,n has n different eigenvalues belonging to [0, 4]. More
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precisely, for every j with 1 ≤ j ≤ n,

λα,n,j = g

(
(j − 1)π

n

)
(j odd), (3.16)

g

(
(j − 1)π

n

)
< λα,n,j < g

(
jπ

n

)
(j even). (3.17)

Proof. Let 1 ≤ j ≤ n. If j is odd, then (3.16) follows by Corollary 3.4.

From propositions 3.5 and 3.6 we obtain that, Fα,n change of sign in the intervals

In,j, 1 ≤ j ≤ n − 1 even. Therefore, if j is even, by the intermediate value theorem we

have (3.17).

Theorem 3.8 (localization of eigenvalues for strong left perturbations). Let α ∈ R, α < 0,

and n ≥ 3.

1) If n < |κα|, then λα,n,1 = 0 and 0 < λα,n,2 < g
(
π
n

)
.

2) If n = |κα|, then λα,n,1 = λα,n,2 = 0.

3) If n > |κα|, then λα,n,1 < 0 and λα,n,2 = 0.

Furthermore, for every j such that 3 ≤ j ≤ n,

λα,n,j = g

(
(j − 1)π

n

)
(j odd), (3.18)

g

(
(j − 2)π

n

)
< λα,n,j < g

(
(j − 1)π

n

)
(j even). (3.19)

Proof. From propositions 3.5 and 3.6 we obtain the following sentences.

1. If n < |(1− α)/α|, then Fα,n change of sign in the interval In,1

2. If n is even and satisfies n = |(1− α)/α|, then Fα,n(−1) = 0.

3. If |(1− α)/α| < n then change of sign in the interval (−∞,−1).

Hence, the sentences 1), 2) and 3) hold.

If 3 ≤ j ≤ n, the conclusions follows as in the proof of Theorem 3.7

Theorem 3.9 (Localization of eigenvalues for strong right perturbations). Let α ∈ R,

α > 1, n ≥ 3.
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Chapter 3. Characteristic equation and eigenvalues localization of Lα,n

1) If n < 1/|κα| odd, then g
(

(n−1)π
n

)
< λα,n,n < g(π) = 4.

2) If n = 1/|κα| odd, then λα,n,n = 1/|κα|.
3) If n even or if odd and n > 1/|κα|, then 4 < λα,n,n.

Furthermore λn,1 = 0, and for every j such that 2 ≤ j ≤ n− 1,

, λα,n,j = g

(
jπ

n

)
(j even), (3.20)

g

(
(j − 1)π

n

)
< λα,n,j < g

(
jπ

n

)
(j odd). (3.21)

Proof. From propositions 3.5 and 3.6 we obtain the following sentences.

1. If n is odd and satisfies n < |α/(1− α)|, then Fα,n change of sign in In,n.

2. If |α/(1− α)| < n, then Fα,n change of sign in the interval (1,∞).

3. If n is odd and satisfies n = |(1 − α)/α|, then Fα,n(1) = 0, hence λ = 4 is an

eigenvalue of Lα,n.

Hence, the sentences 1), 2) and 3) hold.

If 1 ≤ j ≤ n− 1, the conclusion follows as in the proof of Theorem 3.7.

Theorem 3.7 implies immediately that for every 0 < α < 1 and for every v in R,

lim
n→∞

#{j ∈ {1, . . . , n} : λα,n,j ≤ v}
n

=
µ ({x ∈ [0, π] : g(x) ≤ v})

π
, (3.22)

i.e., the eigenvalues of Lα,n are asymptotically distributed as the function g on [0, π]. For

every α < 0 (α > 1), Theorem 3.8 (Theorem 3.9) implies a similar conclusion for all the

eigenvalues except for the minimal one λα,n,1 (maximal λα,n,n). We see in Section 3.3

(Section 3.4) that λα,n,1 (λα,n,n) converge to a determined value as n tends to infinity, hence,

there is a determined gap between {λα,n,1} ({λα,n,n}) and {λα,n,j : j ∈ {2, . . . , n− 1}} as

n tends to infinity.

Motivated by (3.17), (3.19) and (3.21), if λα,n,j is in [0, 4], then we use the function

g as a change of variable in the characteristic equation and put ϑα,n,j := g−1(λα,n,j). For
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Chapter 3. Characteristic equation and eigenvalues localization of Lα,n

example, inequalities (3.17) and (3.16), respectively, are equivalent to

ϑα,n,j =
(j − 1)π

n
(j odd), (3.23)

(j − 1)π

n
< ϑα,n,j <

jπ

n
(j even). (3.24)

In similar fashion, by Theorem 3.8, if α < 0 and λα,n,1 < 0, then we put ϑα,n,1 := g−1− (λαn,1).

Analogously, by Theorem 3.9, if α > 1 and λα,n,n > 4, then we put ϑα,n,n := g−1+ (λαn,n).

By Corollary 3.4, the function Eα,n yields the ”half” of the eigenvalues of Lα,n. The

other half are going to be obtained by solving Fα,n. With this in mind, we now make the

change of variable λ = g(x).

Proposition 3.10. Let α ∈ R, n ≥ 3 and x ∈ (0, π). Then

Fα,n(g(x)) = (−1)n/2 cot
x

2
cos

nx

2

(
α tan

nx

2
− (α− 1) tan

x

2

)
if n is even,

Fα,n(g(x)) =
(−1)(n−1)/2 cos nx

2

sin x
2

(
α tan

nx

2
− (α− 1) tan

x

2

)
if n is odd.

(3.25)

Proof. Write λ as g(x) = 2− 2 cos(x). Then, by Propositions 1.5 and 1.9 the polynomial

Fα,n (3.4) transforms in (3.25).

Proposition 3.11. Let α ∈ R, n ≥ 3, and x ∈ (0, π). Then

Dα,n(g(x)) =
4(−1)n+1 tan nx

2

1 + tan2 nx
2

(
α tan

nx

2
− (α− 1) tan

x

2

)
, (3.26)

and

Dα,n(g(x)) =
2(−1)n

sin(x)

(
sin(nx)(1− cos(x))(α− 1)− α sin(x)(1− cos(nx))

)
. (3.27)

Proof. Write λ as g(x) = 2− 2 cos(x). By (3.5)

Dα,n(g(x)) = Eα,n(g(x))Fα,n(g(x)).
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Supoose n is even. From Propositions 1.5, 1.9 and 3.10

Dα,n(g(x)) = 2(−1)n+1 sin(nx)
(
α tan

nx

2
− (α− 1) tan

x

2

)
. (3.28)

Hence, (3.26) follows by applying the identity

sin(nx) =
2 tan nx

2

1 + tan2 nx
2

.

If n is odd the proof is similar.

Finally, (3.27) follows by applying to (3.28) the identities

tan
nx

2
=

1− cos(nx)

sin(nx)
, tan

x

2
=

1− cos(x)

sin(x)
.

Due to Proposition 3.10, equation Fα,n(g(x)) = 0 is equivalent to

tan
nx

2
= −κα tan

x

2
. (3.29)

See in Figure 3.2 a graph of both sides of (3.29) for some α in (0, 1). From this figure

we confirm that the Theorem 3.7 really yields the intervals where the intersections take

place. On the other hand in the graphs of Figure 3.3 where α is not in (0, 1), is evident

that the sign and direction of κα tan(x/2) has changed, and as the theorems 3.8 and 3.9

pointed out, we see that there is no solution of (3.29) in the extreme intervals In,1, In,n,

respectively.

0
π

−1

1

−κα tan x
2

tan nx
2

Figure 3.2: Functions in (3.29) for α = 0.7 and n = 8, scale 1.5 (x axis) to 1(y axis).
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0
π

−10

10

−κα tan x
2

tan nx
2

0
π

−10

10

−κα tan x
2

tan nx
2

Figure 3.3: Functions in (3.29) for α = −2 and n = 8 (left) and α = 2 and n = 8 (right), scale 1.5 (x axis)
to 0.1 (y axis).

If α < 0 or α > 1, then Theorem 3.8, respectively Theorem 3.9, say that, for n

sufficiently big, using the change of variable λ = g(x) is not enough to find all eigenvalues

of Lα,n. We now make the changes of variable λ = g−(x) and λ = g+(x), where x is in

(0,∞).

Proposition 3.12. Let α ∈ R, n ≥ 3, x ∈ (0,∞). Then

Fα,n(g−(x)) =
(−1)n/2 cosh nx

2

tanh x
2

(
α tanh

nx

2
− (α− 1) tanh

x

2

)
(n even),

Fα,n(g−(x)) =
(−1)(n−1)/2 cosh nx

2

sinh x
2

(
α tanh

nx

2
− (α− 1) tanh

x

2

)
(n odd),

(3.30)

and

Fα,n(g+(x)) = cosh
nx

2
tanh

x

2

(
α tanh

nx

2
+ (1− α) coth

x

2

)
(n even),

Fα,n(g+(x)) =
cosh nx

2

sinh x
2

(
(1− α) tanh

nx

2
+ α tanh

x

2

)
(n odd).

(3.31)

Proof. The proof is similar to proof of Proposition 3.10.

Proposition 3.13. Let α ∈ R, n ≥ 3 and x > 0. Then

Dα,n(g−(x)) =
4(−1)n tanh nx

2

1− tanh2 nx
2

(
α tanh

nx

2
+ (1− α) tanh

x

2

)
, (3.32)
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and

Dα,n(g+(x)) =
4 tanh nx

2

1− tanh2 nx
2

(
α tanh

nx

2
+ (1− α) coth

x

2

)
(n even),

Dα,n(g+(x)) = 4 coth
x

2
cosh2 nx

2

(
(1− α) tanh

nx

2
+ α tanh

x

2

)
(n odd).

(3.33)

Proof. The proof is similar to proof of Proposition 3.11.

By (3.30), we note that finding the zero of Fα,n(g−(x)) is a problem of finding the

number x for which the next equation have solution

tanh
nx

2
= −κα tanh

x

2
. (3.34)

Analogously, to get the zero of Fα,n(g+(x)), by (3.31), we just need to look for the number

x such that one of the next equations hold

tanh
nx

2
= −κα coth

x

2
, tanh

nx

2
= − 1

κα
tanh

x

2
, (3.35)

respectively if n is even or odd.

For every α in R \ [0, 1], define

ρα := log |2α− 1|. (3.36)

See in Figure 3.4 a graph of both sides of (3.34) for some α < 0, and in Figure 3.5 the

graphs of both sides of the two equations in (3.35) for α > 1. In these figures the drawn

curves intersect just once, even more, the point x that satisfies (3.34) or (3.35) is close to

ρα. This is not a mere coincidence since we prove later that as n is bigger the point x gets

closer to ρα.

0
2 log(5)log(5)

1
tanh nx

2

−κα tanh x
2

Figure 3.4: Left and right functions of (3.34) for α = −2 and n = 8.
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0
2 log(3)log(3)

1

tanh nx
2

− tanh x
2

κα

0
2 log(3)log(3)

1
tanh nx

2

− tanh x
2

κα

Figure 3.5: Left and right functions of (3.35) for α = 2 and n = 8 (left), n = 9 (right).

The localization given in Theorems 3.8 and 3.9 for the extreme eigenvalues that are

outside [0, 4], is kind of coarse. To have a more precise localization, we start with the idea

that tanh(nx/2) increases faster from 0 to 1 than tanh(x/2), then we can in certain way

omit this factor in (3.34) and (3.35), i.e., replace tanh(nx/2) by 1, and then solve for x

the equations

tanh
x

2
=

1

|κα|
(α < 0), tanh

x

2
= |κα| (1 < α). (3.37)

Taking into consideration the relations given of κα (3.15), direct computations shows that

the solutions for (3.37) are respectively ρα (3.36).

Proposition 3.14. Let α < 0 and n > |κα|. Then g−(ρα) < λα,n,1 < 0.

Proof. Since ρα is solution of (3.37), then for every x > ρα

tanh
nx

2
< 1 = −κα tanh

ρα
2
< −κα tanh

x

2
.

By Theorem 3.8, ϑα,n,1 is solution of (3.34). Hence, by last inequality we must have

ϑα,n,1 < ρα.

Proposition 3.15. Let α > 1 and n ≥ 3. If n is even, then g+(ρα) < λα,n,n and, if n is

odd and satisfies n > 1/|κα|, then 4 < λα,n,n < g+(ρα).

Proof. Let n be even. Since ρα is solution of (3.37), then for every x < ρα

tanh
nx

2
< 1 = −κα coth

ρα
2
< −κα coth

x

2
.

By Theorem 3.9, ϑα,n,n is solution of the first equation in (3.35). Hence, by last inequality

we must have ρα < ϑα,n,n.
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Let n be odd and n > 1/|κα|. Since ρα is solution of (3.37), then for every x > ρα

−κα coth
x

2
< −κα coth

ρα
2

= 1 < coth
nx

2
.

By Theorem 3.9, ϑα,n,n is solution of the second equation in (3.35), hence, by last inequality

we must have ϑα,n,n < ρα

For every α in R \ [0, 1], define

sα :=
4α2

|2α− 1|
, (3.38)

then we have
g−(ρα) = −sα (α < 0),

g+(ρα) = sα (α > 1).
(3.39)

3.2 Eigenvalues and eigenvectors of Lα,n with weak

perturbations 0 < α < 1

Let 0 < α < 1 and n ≥ 3. As before, define In,j by (2.7) and κα by (3.14). In this section

we are interested in solutions of (3.29). By the Theorem of localization 3.7 we know that,

if j is even and satisfies 1 ≤ j ≤ n, then there exist ϑα,n,j (3.24) in In,j solution to (3.29).

Theorem 3.16 (characteristic equation for weak perturbations). Let α ∈ R, 0 < α < 1,

n ≥ 3, and 1 ≤ j ≤ n, where j is even. Then the number ϑα,n,j satisfies

ϑα,n,j = − 2

n
arctan

(
κα tan

ϑα,n,j
2

)
+
jπ

n
. (3.40)

Proof. The localization theorem for weak perturbations (Theorem 3.7) assures the existence

of ϑα,n,j in In,j . By Proposition 3.10 ϑα,n,j is solution to (3.29); this is equivalent to (3.40).

Motivated by (3.40) we define the next functions. For every α in R \ {0}, we define

the function ζα : [0, π]→ R by

ζα(x) := −2 arctan
(
κα tan

x

2

)
. (3.41)
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For every α in R \ {0}, n ≥ 3 and 1 ≤ j ≤ n, we define the function fα,n,j : [0, π]→ R by

fα,n,j(x) :=
jπ + ζα(x)

n
. (3.42)

The function ζα takes values in [−π, 0] or in [0, π], depending on the sign of κα. Therefore,

fα,n,j takes values in ((j − 1)π/n, jπ/n) or in (jπ/n, ((j + 1)π/n)), respectively. See the

graphs of ζα in Figure 3.6 for two different values of α.

0 π

−π
0

π

π

Figure 3.6: Function ζα (3.41) for α = 0.7 (left) and for α = −2 (right).

A straightforward computation yields the derivative of ζα:

ζ ′α(x) = −
κα(1 + tan2 x

2
)

1 + κ2α tan2 x
2

= −
κα(1 + cot2 x

2
)

κ2α + cot2 x
2

, (3.43)

hence

f ′α,n,j(x) =
ζ ′α(x)

n
. (3.44)

For every α in R, put

K(α) := max

{
|κα|,

1

|κα|

}
. (3.45)

Proposition 3.17. Let α ∈ R. Then each derivative of ζα is a bounded function on (0, π).

In particular,

‖ζ ′α‖∞ = K(α). (3.46)

Proof. In order to prove (3.46), we start by expressing (3.43) as follows

ζ ′α(x) = − 1

κα

(
1 +

κ2α − 1

1 + κ2α tan2 x
2

)
. (3.47)
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Since tan2(x/2) increases from 0 to ∞ as x goes from 0 to π, then (3.47) increases or

decreases from ζ ′α(0) = −κα to ζ ′α(π) = −1/κα depending on whether κα > 1/κα or

κα < 1/κα.

For the higher derivatives of ζα,j , the explicit estimates are too tedious, and we purpose

the following argument. By (3.43), ζ ′α is analytic in a neighborhood of x, for any x in

(0, π). Even more, ζ ′α has an analytic extension in some neighborhoods of the points 0

and π. Hence, ζ ′α,j has an analytic extension to a certain open set in the complex plane

containing the segment [0, π]. Therefore, this function and all their derivatives are bounded

on (0, π).

Observe that (3.40) can be written as ϑα,n,j = fα,n,j(ϑα,n,j).

Proposition 3.18. Let α ∈ R, with 0 < α < 1, n ≥ 3 with n > K(α), and 1 ≤ j ≤ n,

where j is even. Then fα,n,j is contractive in clos(In,j). Its fixed point belongs to In,j and

coincides with ϑα,n,j.

Proof. Since the function ζα takes values in [−π, 0], for every x in clos(In,j)

(j − 1)π

n
≤ jπ + ζα(x)

n
≤ jπ

n
,

i.e. fα,n,j(x) lies in clos(In,j). Since ζ ′α is bounded by K(α), then by Proposition 3.17

|fα,n,j(x)| ≤ K(α)

n
< 1.

We have proved that fα,n,j is a contractive function on clos(In,j). By Theorem A.4, this

implies that fα,n,j has a unique fixed point, and by Theorem 3.16 it coincides with ϑα,n,j

and belongs to In,j.

We use the notation λgenα,n,j, for the eigenvalues computed by general algorithms, with

double-precision arithmetic; and λfpα,n,j denote the eigenvalues computed by formulas

of Theorem 3.16, i.e., solving the equation (3.40) by the fixed point iteration; these

computations are performed in high-precision arithmetic with 3322 binary digits.

We have constructed a large series of examples with random values of α and n, see

the Codes C.1, C.2 and C.3 for the main part of the program, for example we ran the
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program C.3 with parameters α = 7/8 and n = 64 and got Code 3.1. In all these numerical

tests we obtained

max
1≤j≤n

|λgenα,n,j − λ
fp
α,n,j| < 10−12.

Code 3.1: Test eigenvalues approximation by fixed point iteration

sage: load(’L weak test eigenvalues by fixed point.sage’)

sage: max error eigenvalues gen minus fp(7/8, 64, 3322)

test eigenvalues by fixed point iteration

n = 64

al = 7/8

maximal error = 1.554e−14

Proposition 3.19. Let α ∈ R, 0 < α < 1. Then there exists C3(α) > 0 such that for n

large enough and 1 ≤ j ≤ n with j even,

ϑα,n,j =
jπ

n
+
ζα
(
jπ
n

)
n

+
ζα
(
jπ
n

)
ζ ′α
(
jπ
n

)
n2

+ rα,n,j, (3.48)

where |rα,n,j| ≤ C3(α)
n3 .

Proof. The proof is similar to the proof of Proposition 2.14.

For every α in R \ {0}, define on [0, π] the function

Λα,n(x) := g(x) +
g′(x)ζα(x)

n
+
g′(x)ζα(x)ζ ′α(x) + 1

2
g′′(x)ζ2α(x)

n2
. (3.49)

For every α in R with 0 < α < 1, and 1 ≤ j ≤ n even, define λasympt
α,n,j by

λasympt
α,n,j := Λα,n

(
jπ

n

)
. (3.50)

Remark that Λα,n does not depend on the parameter j (1 ≤ j ≤ n), however we use this

function only for the case where j is even. The idea behind this reasoning is that, for j

odd the values g((j − 1)π/n) are eigenvalues of Lα,n (Theorem 3.7), so, in this case there

is no need to find an expression like (3.50).
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Theorem 3.20 (asymptotic expansion of the eigenvalues for weak perturbations). Let

α ∈ R, 0 < α < 1. Then there exists C1(α) > 0 such that for n large enough and j even

with 1 ≤ j ≤ n,

|λα,n,j − λasympt
α,n,j | ≤

C1(α)

n3
. (3.51)

Proof. The proof is similar to the proof of Theorem 2.15.

For Theorem 3.20 we have computed the errors

Rα,n,j := λasympt
α,n,j − λ

fp
α,n,j

and their maximums ‖Rα,n‖∞ = max1≤j≤n |Rα,n,j|, these computations where performed in

high-precision arithmetic with 3322 binary digits, see the Codes C.4 and C.5 for the main

part of the written program, for example we ran in the command window the Code C.5

with parameters α = 7/9 and n = 64 and got the Code 3.2. Tables 3.1 show that these

errors indeed can be bounded by C1(α)/n3.

Table 3.1: Values of ‖Rα,n‖∞ and n3‖Rα,n‖∞ for some α with 0 < α < 1.

α = 1/3

n ‖Rα,n‖∞ n3‖Rα,n‖∞
16 2.67× 10−3 10.93

32 3.37× 10−4 11.04

64 4.23× 10−5 11.10

128 5.31× 10−6 11.14

256 6.65× 10−7 11.15

512 8.32× 10−8 11.16

1024 1.04× 10−8 11.16

2048 1.30× 10−9 11.17

4096 1.63× 10−10 11.17

8192 2.03× 10−11 11.17

α = 0.9

n ‖Rα,n‖∞ n3‖Rα,n‖∞
16 2.17× 10−2 88.71

32 3.67× 10−3 120.36

64 5.52× 10−4 144.77

128 7.63× 10−5 160.07

256 1.00× 10−5 168.58

512 1.29× 10−6 173.05

1024 1.63× 10−7 175.33

2048 2.05× 10−8 176.49

4096 2.58× 10−9 177.07

8192 3.23× 10−10 177.36

Let n ≥ 3. For every α in C define the next functions on [0, π]

d0(x) :=g(x),

d1,α,n(x) :=
g′(x)ζα(x)

n
,

d2,α,n(x) :=
g′(x)ηα,j(x)ζ ′α(x) + 1

2
g′′(x)ζ2α(x)

n2
.

(3.52)

70



Chapter 3. Eigenvalues and eigenvectors of Lα,n with weak perturbations 0 < α < 1

It is evident that

Λα,n,j(x) = d0(x) + d1,α,n(x) + d2,α,n(x).

See in Figure 3.7 the behaviour of the asymptotic expansion (3.49). There the dots in

blue and red are respectively the pairs (jπ/n, λα,n,j) and (jπ/n, λasympt
α,n,j ) for j even; the

first pair of numbers were computed with general algorithms and the last ones computed

with one, two and three terms of the asymptotic expansion (3.50), respectively to each

figure. The curves are the functions d0, d0 + d1,α and d0 + d1,α,n + d2,α,n, respectively to

each figure. These figures confirm that, if we take more terms of the asymptotic expansion,

then we obtain a better approximation for the eigenvalues.

Code 3.2: Test eigenvalues approximation by fixed asymptotic expansion

sage: load(’L weak test eigenvalues by asymp.sage’)

sage: max error eigenvalues gen minus fp(7/9, 64, 3322)

test eigenvalues by asymptotic expansion

n = 64

al = 7/9

maximal error = 2.433e−04

normalized error = 6.379e+01

Proposition 3.21. Let α ∈ R and n ≥ 3. Then the vector [1, . . . , 1]> is an eigenvector

of the matrix Lα,n associated to the eigenvalue λ = 0.

Proof. By Corollary 3.4, λ = 0 is an eigenvalue of Lα,n. The conclusion follows by the fact

that for every 1 ≤ j ≤ n the sum of the entries of the j-th row of Lα,n equals zero.

Proposition 3.22 (eigenvectors of Lα,n with weak perturbations). Let 0 ≤ α ≤ 1 and

n ≥ 3. Then the vector [1, . . . , 1]> is an eigenvector of the matrix Lα,n associated to the

eigenvalue λα,n,1 = 0; and for every j with 2 ≤ j ≤ n, the vector vα,n,j = [vα,n,j,k]
n
k=1 with

components

vα,n,j,k := sin(kϑα,n,j)−(1−α) sin((k−1)ϑα,n,j)+α sin((n−k)ϑα,n,j) (1 ≤ k ≤ n), (3.53)

is an eigenvector of Lα,n associated to λα,n,j.

Proof. The first conclusion follows by Proposition 3.21.
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0 π

4

d0

jπ/n

λα,n,j

λasympt
α,n,j

0 π

4

d0+d1

jπ/n

λα,n,j

λasympt
α,n,j

0 π

4

d0+d1+d2

jπ/n

λα,n,j

λasympt
α,n,j

Figure 3.7: One, two and three terms of the function (3.49) for α = 0.8 and n = 8 (we omitted the
subscripts α and n in the functions).

By (3.16) for j ≥ 3 odd, the number λα,n,j = g(ϑα,n,j), with ϑα,n,j = (j − 1)π/n, is an

eigenvalue of Lα,n. Let b−1−α,α,n be the constant defined in (1.14), there z = eiϑα,n,j , so

b−1−α,α,n = 2i sin(ϑα,n,j)(1− α) 6= 0.

Hence, by Proposition 1.16 the vector v′ with components

v′k =
sin(kϑα,n,j)− (1− α) sin((k − 1)ϑα,n,j) + α sin((n− k)ϑα,n,j)

sin(ϑα,n,j)
(1 ≤ k ≤ n)
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is an eigenvector associated to λα,n,j. Since every constant multiple of v′ is also an

eigenvector associated to λα,n,j, in order to obtain (3.53) just multiply v′k by sin(ϑα,n,j).

By (3.17), for j ≥ 2 even, the correspondent ϑα,n,j such that λα,n,j = g(ϑα,n,j) is an

eigenvalue, lies in the open interval ((j − 1)π/n, jπ/n). Therefore, if a−1−α,α,n = 0 and

b−1−α,α,n = 0, the constants defined in (1.14), then

(1−α) cos(ϑα,n,j) = 1−α cos(nϑα,n,j) & (α− 1) sin(ϑα,n,j) = α sin(nϑα,n,j). (3.54)

The left equation in (3.54) implies

(α− 1)(1− cos(ϑα,n,j)) = α(1− cos(nϑα,n,j)).

So, (3.27) transforms in

Dα,n(g(x)) =
2(−1)n

sin(ϑα,n,j)
α(1− cos(nϑα,n,j))(sin(nϑα,n,j)− sin(ϑα,n,j)),

since ϑα,n,j 6= jπ/n, then necessarily sin(nϑα,n,j) − sin(ϑα,n,j) = 0. The right equation

in (3.54) implies α − 1 = α, but this cannot occur. Hence, at least one of a−1−α,α,n

and b−1−α,α,n is different from zero. Then we can proceed in the same way as before to

obtain (3.53).

Motivated by (3.53), for every 0 < α < 1, n ≥ 3 and 2 ≤ j ≤ n, we define for every x

in [0, 16] the function:

wα,n,j(x) := sin(xϑα,n,j)− (1− α) sin((x− 1)ϑα,n,j) + α sin((n− x)ϑα,n,j). (3.55)

Observe that for every 2 ≤ j ≤ n and for every 1 ≤ k ≤ n, wα,n,j(k) equals (2.39). This

function can be expressed in a similar manner as (2.41). Let α = 7/9 and n = 16. See

in Figure 3.8 the function wα,n,j for some values of j. The dots in red are the pairs

(k, wα,n,j(k)).
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0
.1

−.1

k n

j = 4, scale 0.5 (x axis) to 3.0 (y axis)

0

.5

−.5

k n

j = 8, scale 0.5 (x axis) to 2.0 (y axis)

0

1

−1

k n

j = 12, scale 0.5 (x axis) to 1.0 (y axis)

0

2.0

−2.0

k n

j = 16

Figure 3.8: Function (3.55) for α = 7/9, n = 16 and different values of j.

3.3 Eigenvalues and eigenvectors of Lα,n with strong

left perturbations α < 0

Let α < 0 and n ≥ 3. By Theorem 3.8, for 2 ≤ j ≤ n, the eigenvalues λα,n,j of Lα,n

behave as in the case of weak perturbations and can be approximated by the methods of

Section 3.2. Hence, in this section we are only interested in solving (3.34).

Recall some notation. Functions g and g− are defined by (2.2). Constants κα, ρα and
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K(α) are defined respectively by (3.14), (3.36) and (3.45); in specific ρα = log(2|α|+ 1)

and K(α) = |κα|.

Theorem 3.23 (characteristic equations for strong left perturbations). Let α ∈ R, α < 0,

and n > |κα|. Then

λα,n,1 = g−(ϑα,n,1),

where ϑα,n,1 is the unique positive solution of the equation

x = 2 arctanh

(
tanh nx

2

|κα|

)
. (3.56)

For j even with 4 ≤ j ≤ n, the number ϑα,n,j = g−1(λα,n,j) satisfies

ϑα,n,j =
(j − 2)π + ζα(ϑα,n,j)

n
. (3.57)

Proof. Under the asumptions of Theorem 3.8 we can conclude that there is a unique

solution in (0,∞), to (3.34), namely ϑα,n,1, rephrasing, ϑα,n,1 satisfies (3.56).

The proof of (3.57) is similar to the proof of (3.40).

Recall that by Proposition 3.14 we have that ϑα,n,1 belongs to the interval (0, ρα).

Motivated by (3.56) , for every α < 0 and every n ≥ max{3, K(α) + 1} we define the

mapping ϕα,n : [0,∞)→ R by

ϕα,n(x) := 2 arctanh

(
tanh nx

2

|κα|

)
= 2 arctanh

(
tanh nx

2

K(α)

)
. (3.58)

A straightforward computation yields

ϕ′α,n(x) =
n|κα|

(|κα|2 − tanh2 nx
2

) cosh2 nx
2

=
n|α|(1 + |α|)

α2 + (1 + 2|α|) cosh2 nx
2

. (3.59)

Proposition 3.24. Let α < 0 and n ≥ max{3, K(α) + 1}. Then ϕα,n is a contraction on

[ϑα,n,1, ρα] and its fixed point coincides with ϑα,n,1.

Proof. Since ϑα,n,1 is a fixed point of ϕα,n (see Theorem 3.23) and ϕα,n is an increasing
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function (by (3.59)), therefore for every x in [ϑα,n,1, ρα]

ϑα,n,1 = ϕα,n(ϑα,n,1) ≤ ϕα,n(x) ≤ 2 arctanh

(
tanh nρα

2

|κα|

)
< 2 arctanh

(
1

|κα|

)
= ρα,

so ϕα,n([ϑα,n,1, ρα]) ⊂ [ϑα,n,1, ρα].

By the mean value theorem there exists ξα,n in (0, ϑα,n,1) that satisfies ϕ′α,n(ξα,n) = 1.

Since ϕ′α,n decreases, for every x in [ϑα,n,1, ρα]

ϕ′α,n(x) ≤ ϕ′α,n(ϑα,n,1) < ϕ′α,n(ξα,n) = 1.

By Theorem A.4 this implies that ϕα,n has a unique fixed point, so, it coincides with

ϑα,n,1.

For Proposition 3.24 we have constructed a large series of examples with random

values of α and n, denote by λfpα,n,1 the eigenvalue obtained by iteration of fixed point

with high-precision arithmetic with 3322 binary digits,λgenα,n,1 the eigenvalue obtained by

general algorithms with double-precision arithmetic, see the Codes C.6 and C.7 for the

main part of the program; for example, we executed this code with parameters α = −3/2

and n = 64, obtaining the Code 3.3. We also tested the eigenvalues approximation by

fixed point iteration for the 2 ≤ j ≤ n by running similar codes to the ones written in

Section C.1. For all these numerical experiments we obtained

max
j=1,n

|λgenα,n,j − λ
fp
α,n,j| < 2 · 10−13.

Code 3.3: Test eigenvalues approximation by fixed point iteration

sage: load(’L strong test extreme eigenvalues by fixed point.sage’)

sage: max error eigenvalues gen minus fp(−3/2,64,3322)

test eigenvalues by fixed point iteration

n = 64

al = −3/2

maximal error = 1.332e−15

We remark that ρα is likely the best choice for the evaluation in the fixed iteration

method, this because ϑα,n,1 converges exponentially to it as n tends to ∞. We prove this

convergence in the proposition below.
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Proposition 3.25. Let α < 0 and n be large enough. Then

|ϑα,n,1 − ρα| ≤
4 cosh2 ρα

2

|κα|
e

8 cosh2
ρα
2

ρα|κα| e−nρα . (3.60)

Proof. We apply the mean value theorem to tanh(x/2) on [ϑα,n,1, ρα], and that ϑα,n,1 is

the fixed point for ϕα,n, thus

ρα − ϑα,n,1 ≤ 2 cosh2 ρα
2

(
tanh

ρα
2
− tanh

ϑα,n,1
2

)
=

2 cosh2 ρα
2

|κα|

(
1− tanh

nϑα,n,1
2

)
≤

4 cosh2 ρα
2

|κα|
e−nϑα,n,1 .

By Lemma A.5, ϑα,m,1 < ϑα,n,1 if m < n. Then for n > n0 := [|κα|] + 1

4 cosh2 ρα
2

|κα|
e−nϑα,n,1 ≤

4 cosh2 ρα
2

|κα|
e−nϑα,n0,1 .

So, ϑα,n,1 > ρα/2 for n large enough, hence

ϑα,n,1 ≥ ρα −
4 cosh2 ρα

2

|κα|
e−nρα/2.

Using the elementary inequality ue−u ≤ 1/e < 1 we get

nϑα,n,1 ≥ nρα −
8 cosh2 ρα

2

ρα|κα|
nρα

2
e−nρα/2 ≥ nρα −

8 cosh2 ρα
2

ρα|κα|
,

the conclusion now follows.

Recall that sα was defined here (3.38), define now

λasympt
α,n,1 := −sα. (3.61)

Theorem 3.26 (asymptotic expansion of the eigenvalues for left strong perturbations).

Let α ∈ R, α < 0. As n tends to infinity, the extreme eigenvalue λα,n,1 of Lα,n converges
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exponentially to λasympt
α,n,1 ,

|λα,n,1 − λasympt
α,n,1 | ≤ C3(α)e−nρα , (3.62)

here C3(α) is a positive constant depending only on α. For even j with 4 ≤ j ≤ n, the

eigenvalue λα,n,j of Lα,n satisfies the asymptotic formula (3.49), but with

λasympt
α,n,j := Λα,n

(
(j − 2)π

n

)
. (3.63)

Proof. (3.62) follows by Proposition 3.25 and the mean value theorem applied to g−. The

proof of (3.63) is similar to the proof of Theorem 3.20.

For Theorem 3.26 we have computed the errors

Rα,n,j := λasympt
α,n,j − λ

fp
α,n,j

and their maximums ‖Rα,n‖∞ = max1≤j≤n |Rα,n,j|, both where computed in high-precision

arithmetic with 3322 binary digits, for 2 ≤ j ≤ n the written code is similar to the ones

written in the Section C.1. Tables 3.2 show that these errors indeed can be bounded by

C3(α)/n3.

Table 3.2: Values of ‖Rα,n‖∞ and n3‖Rα,n‖∞ for some α with α < 0.

α = −2

n ‖Rα,n‖∞ n3‖Rα,n‖∞
16 3.23× 10−3 13.25

32 4.11× 10−4 13.45

64 5.10× 10−5 13.37

128 6.35× 10−6 13.32

256 7.93× 10−7 13.30

512 9.90× 10−8 13.29

1024 1.24× 10−8 13.28

2048 1.55× 10−9 13.28

4096 1.93× 10−10 13.28

8192 2.41× 10−11 13.28

α = −1/3

n ‖Rα,n‖∞ n3‖Rα,n‖∞
16 3.00× 10−3 12.27

32 3.67× 10−4 12.02

64 4.52× 10−5 11.85

128 5.60× 10−6 11.75

256 6.97× 10−7 11.70

512 8.70× 10−8 11.67

1024 1.09× 10−8 11.66

2048 1.36× 10−9 11.65

4096 1.70× 10−10 11.65

8192 2.12× 10−11 11.65

We have also tested (3.62), see the Codes C.8 and C.9 for the main section of the

program used. As n grows, |2α− 1|n|Rα,n,1| approach rapidly to a value depending on α.
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For example,

for α = −2, lim
n→∞

(|2α− 1|n|Rα,n,1|) ≈ 23.04;

for α = −1/3, lim
n→∞

(|2α− 1|n|Rα,n,1|) ≈ 1.14.

Proposition 3.27 (eigenvectors of Lα,n with strong left perturbations). Let α ∈ R, α < 0

and n > |κα|. Then the vector [1, . . . , 1]> is an eigenvector associated to the eigenvalue

λα,n,2 = 0; and the vector vα,n,1 = [vα,n,1,k]
n
k=1 with components

vα,n,1,k := sinh(kϑα,n,1)

− (1− α) sinh((k − 1)ϑα,n,1) + α sinh((n− k)ϑα,n,1) (1 ≤ k ≤ n),
(3.64)

is an eigenvector associated to λα,n,1, and for every 3 ≤ j ≤ n the vector vα,n,j = [vα,n,j,k]
n
k=1

with components (3.53) is an eigenvector associated to λα,n,j.

Proof. By Theorem 3.8 we know that λα,n,1 = g−(ϑα,n,1) is an eigenvalue of Lα,n, where

0 < ϑα,n,1. Let b−1−α,α,n be the constant defined in (1.14), there z = eϑα,n,1 . So

b−1−α,α,n = 2[(1− α) sinh(ϑα,n,1) + α sinh(nϑα,n,1)] > 0.

Therefore, by Proposition 1.16 the vector v′ with components

v′k =
sinh(kϑα,n,1)

sinh(ϑα,n,1)
− (1− α)

sinh((k − 1)ϑα,n,1)

sinh(ϑα,n,1)
+ α

sinh((n− k)ϑα,n,1)

sinh(ϑα,n,1)
(1 ≤ k ≤ n),

is an eigenvector associated to λα,n,1. Since every constant multiple of v′ is also an

eigenvector, in order to obtain (3.53) just multiply v′k by sinh(ϑα,n,1).

For the case j = 2, the conclusion follows from Proposition 3.21. For 3 ≤ j ≤ n, the

proof is similar to the proof given in Proposition 3.22.

3.4 Eigenvalues and eigenvectors of Lα,n with strong

right perturbations α > 1

Let α > 1 and n ≥ 3. By Theorem 3.9, for 1 ≤ j ≤ n− 1, the eigenvalues λα,n,j of Lα,n

behave as in the case of weak perturbations and can be approximated by the methods of

Section 3.2. Hence, in this section we are only interested in solving (3.35).
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Recall some notation. Functions g and g− are defined by (2.2). Constants κα, ρα and

K(α) are defined respectively by (3.14), (3.36) and (3.45); in specific K(α) = 1/|κα| and

ρα = log(2α− 1).

Theorem 3.28 (characteristic equations for strong right perturbations). Let α ∈ R,

α > 1, and n > 1/|κα|. Then

λα,n,n = g+(ϑα,n,n),

where ϑα,n,n is the unique positive solution of the equation

x = 2 arctanh

(
|κα|

[
tanh

nx

2

](−1)n+1
)
. (3.65)

For each odd j with 3 ≤ j ≤ n− 1, the number ϑα,n,j = g−1(λα,n,j) satisfies

ϑα,n,j =
(j − 1)π + ζα(x)

n
. (3.66)

Proof. Under the assumptions of Theorem 3.9, we can conclude that there is a unique

solution of (3.35) in (0,∞), and (3.35) is equivalent to (3.65). The proof of (3.66) is

similar to the proof of (3.40).

Motivated by (3.65), for every α > 1 and n ≥ max{3, K(α) + 1} we define the function:

ϕα,n(x) :=


2 arctanh

(
|κα| coth

nx

2

)
, x ∈ [ρα,∞) and n even,

2 arctanh
(
|κα| tanh

nx

2

)
, x ∈ (0, ρα] and n odd.

(3.67)

In both cases (n even or odd), the domain of ϕα,n could be larger than the proposed

intervals, but by Proposition 3.15 these are sufficient because they contain the fixed point.

Proposition 3.29. Let α > 1, n ≥ max{3, K(α) + 1} odd. Then λα,n,n = 4− λ1−α,n,1.

Proof. Indeed, for these values of α and n, K(α) = K(1 − α) and ρα = ρ1−α. By the

assumption that n is odd,

ϕα,n(x) = 2 arctanh

(
tanh nx

2

K(α)

)
.
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The last expression agrees with (3.58) , so, ϕα,n = ϕ1−α,n. Recall that the last eigenvalue

is computed as g+(ϑα,n,n) where ϑα,n,n is solution of (3.65). Then λα,n,n = g+(ϑα,n,n) =

4− g−(ϑ1−α,n,1) = 4− λ1−α,n,1.

The subsequent Propositions 3.30 and 3.31 can be viewed as corollaries of Proposi-

tions 3.24 and 3.25, respectively.

Proposition 3.30. Let α > 1 and n ≥ max{K(α) + 1, 3} odd. Then ϕα,n is a contraction

on [ϑα,n,n, ρα] and its fixed point that coincides with ϑα,n,n.

Proposition 3.31. Let α > 1 and n large enough and odd. Then

|ϑα,n,n − ρα| ≤ 4|κα| cosh2 ρα
2
e

8|κα| cosh2
ρα
2

ρα e−nρα . (3.68)

Now we consider that n is even. A straightforward computation gives

ϕ′α,n(x) = − n(α− 1)α

(2α− 1) cosh2 nx
2
− α2

. (3.69)

It is easy to verify that ϕ′α,n is negative on [ρα,∞). Hence, ϕα,n decreases and

ρα < ϕα,n(x) <∞ (x > ρα). (3.70)

For every α > 1 we define

M(α) := max

{
2 log(2α/ρα)

ρα
,

2 log(2α)

ρα
, K(α)

}
. (3.71)

For every α > 1 and n > M(α) even, we put µα,n := ϕα,n(ρα). By (3.70) ρα < µα,n.

Proposition 3.32. Let α > 1, n > M(α) even. Then ϕα,n is a contraction on [ρα, µα,n]

and its fixed point coincides with ϑα,n,n.

Proof. That ϑα,n,n is a fixed point follows from Theorem 3.9. Since ρα < ϑα,n,n and ϕα,n

decreases,

ρα < ϑα,n,n = ϕα,n(ϑα,n,n) < ϕα,n(ρα) = µα,n,
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i.e., ϑα,n,n belongs to [ρα, µα,n]. Even more, for every x in this interval,

ρα < ϕα,n(µα) ≤ ϕα,n(x) ≤ ϕα,n(ρα) = µα,n,

so, ϕα,n([ρα, µα,n]) ⊆ [ρα, µα,n].

From (3.69) we know that ϕ′α,n is negative and |ϕ′α,n| decreases in [ρα, µα]. Hence,

|ϕ′α,n(x)| ≤ |ϕ′α,n(ρα)| for every x in [ρα, µα,n].

By the assumptions, n > M(α) ≥ 2 log(2α)/ρα. Then 4α2e−nρα < 1. So,

|ϕ′α,n(ρα)| = 4n(α− 1)αe−nρα

(2α− 1)(1 + e−nρα)2 − 4α2e−nρα

≤ 4n(α− 1)αe−nρα

(2α− 1) · 1− 1
= 2nαe−nρα .

Using the inequality ue−u ≤ 1/e we get

|ϕ′α,n(ρα)| ≤ 2nαe−nρα/2e−nρα/2 ≤ 4αe−nρα/2

eρα
≤ 2αe−nρα/2

ρα
.

Now we apply the assumption n > 2 log(2α/ρα)/ρα and conclude that |ϕ′α,n(ρα)| < 1. So,

we have proved that ϕα,n is a contraction on [ρα, µα,n]. By Theorem A.4, this implies

that ϕα,n has a unique fixed point in [ρα, µα,n], and by Theorem 3.28, it coincides with

ϑα,n,n.

We define µα := µα,[M(α)]+1 = ϕα,[M(α)]+1(ρα).

Next proposition says that ρα is indeed a good first approximation for ϑα,n,n.

Proposition 3.33. Let α > 1 and n > M(α) even. Then

|ϑα,n,n − ρα| ≤
16(α− 1)α cosh2 µα

2

4α2 − 1
e−nρα . (3.72)

Proof. First notice that ϕα,n(x) ≤ ϕα,[M(α)]+1(x) for every n ≥ [M(α)] + 1 and x ≥ ρα. In

particular this holds for x = ρα, then µα,n ≤ µα, hence [ρα, µα,n] ⊂ [ρα, µα].

Apply the mean value theorem to tanh(x/2) on [ρα, µα], and the fact that ϑα,n,n is the
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fixed point for ϕα,n, thus

ϑα,n,n − ρα ≤ 2 cosh
µα
2

(
tanh

ϑα,n,n
2
− tanh

ρα
2

)
= 2 cosh2 µα

2

(
|κα| coth

nϑα,n,n
2

− |κα|
)

= 2|κα| cosh2 µα
2

(
coth

nϑα,n,n
2

− 1

)
= 4|κα| cosh2 µα

2

(
e−nρα

1− e−nρα

)
.

Now, (3.72) follows by applying the inequality n > M(α) ≥ 2 log(2α)/ρα in the denomina-

tor.

Recall that sα is defined by (3.38). Define now

λasympt
α,n,n := sα. (3.73)

Theorem 3.34 (asymptotic expansion of the eigenvalues for right strong perturbations).

Let α ∈ R, α > 1. As n tends to infinity, the extreme eigenvalue λα,n,n of Aα,n converges

exponentially to λasympt
α,n,n thus

|λα,n,n − λasympt
α,n,n | ≤ C4(α)e−nρα , (3.74)

here C4(α) is a positive constant depending only on α. For 1 ≤ j ≤ n− 1, the eigenvalue

λα,n,j satisfies the asymptotic formula (3.49), but with

λasympt
α,n,j := Λα,n

(
(j − 2)π

n

)
. (3.75)

Proof. Inequality (3.74) follows from Propositions 3.31 and 3.33. The proof of (3.63) is

similar to the proof of Theorem 3.20.

We have constructed a large series of examples with random values of α and n, denote

by λfpα,n,n the eigenvalue obtained by iteration of fixed point with high-precision arithmetic

with 3322 binary digits,λgenα,n,n the eigenvalue obtained by general algorithms with double-

precision arithmetic. We also tested the eigenvalues approximation by fixed point iteration
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for the 1 ≤ j ≤ n− 1. For all these numerical experiments we obtained

max
j=1,n

|λgenα,n,j − λ
fp
α,n,j| < 2 · 10−13.

The main parts of the program used are similar to the codes written in the Section C.1.

For Theorem 3.34 we have computed the errors

Rα,n,j := λasympt
α,n,j − λ

fp
α,n,j

and their maximums ‖Rα,n‖∞ = max1≤j≤n |Rα,n,j|, these computations where performed

in high-precision arithmetic with 3322 binary digits. The main pieces of the program used

are similar to the codes written in the Section C.2. Tables 3.3 show that these errors

indeed can be bounded by C4(α)/n3.

Table 3.3: Values of ‖Rα,n‖∞ and n3‖Rα,n‖∞ for some α with 1 < α.

α = 2

n ‖Rα,n‖∞ n3‖Rα,n‖∞
16 4.06× 10−3 16.65

32 8.68× 10−4 28.43

64 1.31× 10−4 34.30

128 1.76× 10−5 37.01

256 2.28× 10−6 38.28

512 2.90× 10−7 38.89

1024 3.65× 10−8 39.18

2048 4.58× 10−9 39.33

4096 5.73× 10−10 39.41

8192 7.17× 10−11 39.44

α = 3/2

n ‖Rα,n‖∞ n3‖Rα,n‖∞
16 2.54× 10−3 10.42

32 9.89× 10−4 32.42

64 1.77× 10−4 46.27

128 2.53× 10−5 53.03

256 3.35× 10−6 56.21

512 4.30× 10−7 57.74

1024 5.45× 10−8 58.49

2048 6.85× 10−9 58.85

4096 8.59× 10−10 59.04

8192 1.08× 10−10 59.13

We have also tested (3.62), see the Code C.9 for a similar piece of program used. As n

grows, |2α− 1|n|Rα,n,1| approach rapidly to a value depending on α. For example,

for α = 3/2, lim
n→∞

(|2α− 1|n|Rα,n,1|) ≈ 2.25;

for α = 2, lim
n→∞

(|2α− 1|n|Rα,n,1|) ≈ 7.11.

Proposition 3.35 (eigenvectors of Lα,n with strong right perturbations). Let α ∈ R,

α > 1, n > 1/|κα|. Then the vector [1, . . . , 1]> is an eigenvector of the matrix Lα,n
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associated to the eigenvalue λα,n,1 = 0; and the vector vα,n,n = [vα,n,n,k]
n
k=1 with components

vα,n,n,k := (−1)k−1 [(−1)nα sinh((n− k)ϑα,n,n)

+(1− α) sinh((k − 1)ϑα,n,n) + sinh(kϑα,n,n)] (1 ≤ k ≤ n),
(3.76)

is an eigenvector associated to λα,n,n, and for every 2 ≤ j ≤ n − 1 the vector vα,n,j =

[vα,n,j,k]
n
k=1 with components (3.53) is an eigenvector of Lα,n associated to λα,n,j.

Proof. The first conclusion follows from Proposition 3.21.

By Theorem 3.28 we know that λα,n,n = g+(ϑα,n,n) is an eigenvalue of Lα,n, where

0 < ϑα,n,n,. Let b−1−α,α,n be the constant defined in (1.14), there z = −eϑα,n,n . So

b−1−α,α,n = −2[(1− α) sinh(ϑα,n,n) + (−1)nα sinh(nϑα,n,n)] 6= 0. (3.77)

Therefore, by Proposition 1.16 the vector v′ with components

v′k =
(−1)k−1 sinh(kϑα,n,n)

sinh(ϑα,n,n)
− (1− α)(−1)k−2

sinh((k − 1)ϑα,n,n)

(ϑα,n,n)

+ α(−1)n−k−1
sinh((n− k)ϑα,n,n)

sinh(ϑα,n,n)
(1 ≤ k ≤ n),

is an eigenvector associated to λα,n,n. Since every constant multiple of v′ is also an

eigenvector, in order to obtain (3.76) just multiply v′k by sinh(ϑα,n,n).

For the remaining eigenvectors the proof is similar to the proof of Proposition 3.22

3.5 Eigenvalues and eigenvectors of Lα,n with α = 0

Recall that Dα,n denote the characteristic polynomial of Lα,n, and Un the n-th Chebyshev

polynomial of the second kind.

Remark that for α = 1 it is clear that L1,n is the particular case A1,n studied in

Section 2.4. So, we now focus on the analysis of the eigenvalues and eigenvectors of L0,n.

Proposition 3.36. For α, λ in R with α = 0 and n ≥ 3,

D0,n(λ) = λUn−1

(
λ− 2

2

)
. (3.78)

Proof. Substitute α = 0 in (3.2), then (3.78) follows.
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Recall that g is the function defined in (2.2).

Proposition 3.37. Let α = 0 and n ≥ 3. Then the eigenvalues of L0,n are

λ0,n,j = g

(
(j − 1)π

n

)
(1 ≤ j ≤ n). (3.79)

Proof. It is evident that λ = 0 is a zero of (3.78). And after the change of variable λ = g(x)

we get from 1.5 that the numbers (j − 1)π/n, where 2 ≤ j ≤ n, are zeros of Un−1, so

these are zeros of (3.78). We have found n different zeros of (3.78), then the conclusion

follows.

Proposition 3.38 (eigenvectors of Lα,n with α = 0). Let α = 0 and n ≥ 3. Then the

vector [1, . . . , 1]> is an eigenvector of the matrix L0,n associated to the eigenvalue λ0,n,1 = 0;

and for every 2 ≤ j ≤ n, the vector v0,n,j = [vα,n,j,k]
n
k=1 with components

v0,n,j,k := cos

((
k − 1

2

)
(j − 1)π

2n

)
(1 ≤ k ≤ n), (3.80)

is an eigenvector of L0,n associated to λ0,n,j.

Proof. That [1, . . . , 1]> is an eigenvector associated to the eigenvalue λ0,n,1 = 0 follows

from Proposition 3.21.

For j ≥ 2, by (3.79), λ0,n,j = 2− eiϑ0,n,j − e−iϑ0,n,j with ϑ0,n,j = (j − 1)π/n. Recall that

b0,n is defined in (1.14), there z = eiϑ0,n,j , so

b0,n = 2i sin(ϑ0,n,j) 6= 0.

Similar to the proof of Proposition 3.22, the conclusion follows by Proposition 1.16.
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Conclusion

In this thesis we considered the problem of finding asymptotic expansions for the eigenvalues

of tridiagonal toeplitz matrices with corner perturbations, and solved this problem for two

particular families of matrices, Aα,n and Lα,n.

For each of these two families, we understood the localization of the eigenvalues of

these matrices, i.e., we divided the real line into n disjoint intervals containing exactly one

eigenvalue, and successfully developed asymptotic expansions for the eigenvalues of Aα,n

and Lα,n, as α is fixed and n tends to infinity. However, these asymptotic expansions are

not uniform with respect to the parameter α.

We realized that the Chebyshev polynomials play an important role in the study of

the spectrum of the matrices Aα,n and Lα,n. In particular, the characteristic polynomial

and eigenvectors are expressed in terms of these polynomials. Moreover, after writing the

Chebyshev polynomials in terms of trigonometric or hyperbolic functions, we transformed

the characteristic equation to a form convenient to solve by the fixed point iteration

method.

We also showed that the eigenvectors of tridiagonal Toeplitz matrices with arbitrary

corner perturbations can be found as linear combinations of geometric progressions; this

approach is different from the methods found in literature.

Here are some natural goals for future investigations on this theme:

· prove that the characteristic equation, written in an appropriate form, can be solved

by the Newton method, providing precise sufficient conditions and simple upper

estimates for the convergence;

· understand the localization and find asymptotic expansions of the eigenvalues of

tridiagonal Toeplitz matrices with four arbitrary perturbed corners or with block

corner perturbations.
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Appendix A

Some classical theory

The following propositions are part of the classic theory in real analysis, cf. [4, 25, 28].

Theorem A.1. Let T a contraction from a metric space in itself, 0 ≤ τ < 1

d(T (x), T (y)) ≤ τd(x, y)

then, T has a unique fixed point. Moreover if x0 is any point in the space, and it is defined

the following sequence (xn) by xn = T (xn−1), then

limxn = x̄

and

d(x̄, xn) ≤ τ

1− τ
d(xn−1, xn) ≤ τn

1− τ
d(x0, x1)

Theorem A.2 (Intermediate Value Theorem). If f is continuous on [a, b] and f(a) >

c > f(b), then there is some x in [a, b] such that f(x) = c.

Theorem A.3 (Mean Value Theorem). If f is continuous on [a, b] and differentiable on

(a, b), then there is a number x in (a, b) such that

f ′(x) =
f(b)− f(a)

b− a
.
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Proposition A.4 (fixed point for differentiable functions). If f is continuous on [a, b]

and differentiable on (a, b), with f([a, b]) ⊂ [a, b] and ‖f ′‖∞ < 1, then f is a contraction

on [a, b] and has a unique fixed point.

Proof. From the Mean Value Theorem A.3 we have that, for every x < y in [a, b] there

exists z in (x, y), such that the following holds

|f(y)− f(x)| = |f ′(z)||y − x| ≤ ‖f ′‖∞ < |y − x|.

This implies that f is a contraction on [a, b], and by the Theorem A.1 there exists a unique

fixed point for f .

Lemma A.5. Let f1 and f2 be contractive functions on [a, b] such that f1(x) < f2(x) for

every x in [a, b]. If x1 and x2 are the correspondent fixed points of f1 and f2, then x1 < x2.

Proof. Let 0 ≤ L2 < 1 be the Lipschitz constant of f2. Since f1(x) < f2(x) for every x in

[a, b], then x1 6= x2. Suppose x1 > x2, then

L2(x1 − x2) ≥ f2(x1)− f2(x2) > f1(x1)− x2 = x1 − x2.

This is a contradiction, so x1 < x2.
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Programs of numerical experiments

for the eigenvalues approximations of

Aα,n

In this appendix we write the main codes developed for the numerical experiments on the

eigenvalues approximations of the matrix Aα,n studied in Chapter 2.

Note that the codes in Sections B.1 and B.2 should belong to the same directory. We

remark some notations and issues on the codes:

· the variable “al” denote the perturbation α of the matrix Aα,n;

· the variable ’n’ denote the dimension of the matrix Aα,n;

· if x approaches π from the left, then cot(x) decreases rapidly to −∞, this could

imply computation overflow, so we decided to compute ηα,j (2.25) in terms of tan

when x is greater than π/2;

· for the same overflow reasons we compute tanh nx
2

as 1− 2e−nx/(1 + e−nx),

· the parameter ’prec’ denotes the precision in bits used for computations;

· at the top of each code we type the name of the file.

B.1 Eigenvalues approximation of Aα,n with weak per-

turbations

Over all this section we suppose |α| < 1.
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Appendix B. Eigenvalues approximation of Aα,n with weak perturbations

The code B.1 has the next functions:

· “my matrix” returns the matrix Aα,n in double-precision complex field;

· “eigenvalues general alg” returns the eigenvalues of Aα,n, sorted in ascending order

and computed by general algorithm with double-precision arithmetic.

Code B.1: Eigenvalues of Aα,n computed by general algorithm.

# File name: Off eigenvalues by general algorithm.sage

def my matrix(al, n):

v = vector(CDF, n)

w = vector(CDF, n−1)

v[0] = 2

v[1] = −1

v[n−1] = CDF(−al)

w[0] = −1

w[n−2] = CDF(−conjugate(al))

return matrix.toeplitz(v, w, CDF)

def eigenvalues general alg(al, n):

A = my matrix(al, n)

eigvals = A.eigenvalues()

eigvals1 = sorted(eigvals)

return vector(CDF, n, eigvals1)

The code B.2 has the next functions:

· “g” returns the function g defined in (2.2);

· “myparams” returns a list with entries α and the constants (2.11);

· “eta” returns the function ηα,j (2.25);

· “eta fixed point” returns the value ϑα,n,j that satisfies (2.24) computed with precision

determined by the precision of α;

· “la fixed point” returns the j-th eigenvalue of Aα,n computed by fixed iteration point,

this algorithm is valid due to Proposition 2.13;

· “eigenvalues fixed point” returns the vector with components the eigenvalues of Aα,n

computed by fixed iteration point.
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Appendix B. Eigenvalues approximation of Aα,n with weak perturbations

Code B.2: Eigenvalues of Aα,n computed by iteration fixed point.

# File: Off weak eigenvalues by fixed point.sage

def g(x):

return 4∗(sin(x/2))∗∗2

def myparams(al):

abs al = abs(al)

abs al plus 1 = abs(al+1)

abs al min 1 = abs(al−1)

coef k = (1−abs al∗∗2)/abs al plus 1∗∗2

coef l = abs al min 1/abs al plus 1

return [al, coef k, coef l]

def eta(params,j,x):

[al, coef k, coef l] = params

if x > al.parent()(pi/2):

coef k tan x = tan(x)/coef k

sgnj = (−1)∗∗(j)

expr = sqrt(1+(coef l∗coef k tan x)∗∗2)

expr1 = (−(sgnj+expr)/coef k tan x)∗∗sgnj

return −2∗arctan(expr1)

else:

coef k cotx = coef k ∗ cot(x)

sgnj = (−1)∗∗(j)

expr = sqrt(coef k cotx∗∗2+coef l∗∗2)−sgnj∗coef k cotx

expr1 = expr∗∗sgnj

return −2∗arctan(expr1)

def tht fixed point(params, n, j):

F = params[0].parent()

tht0 = F(j∗pi/n)

thttemp = tht0

er = F.epsilon()∗16

while (er>F.epsilon()∗8) :

thtprev = thttemp

thttemp = F(tht0+eta(params,j,thttemp)/n )

er = abs(thttemp−thtprev)

return thttemp
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Appendix B. Eigenvalues approximation of Aα,n with weak perturbations

def la fixed point(params,n, j):

return g(tht fixed point(params, n, j))

def eigenvalues fixed point(al, n, prec):

al = ComplexField(prec)(al)

params = myparams(al)

eigvals = [la fixed point(params,n, j+1) for j in range(n)]

return vector(al.parent(), n, eigvals)

The code B.3 has the function ”max error eigenvalues gen minus fp” that tests Propo-

sition 2.13, it prints on the command window the maximal error of the difference between

the eigenvalues computed by general algorithms and the fixed iteration point.

Code B.3: Test of the eigenvalues of Aα,n computed by iteration fixed point.

# File name: Off weak test eigenvalues by fixed point.sage

load(’Off weak eigenvalues by fixed point.sage’)

load(’Off eigenvalues by general algorithm.sage’)

def max error eigenvalues gen minus fp(al, n, prec):

eigvals gen = eigenvalues general alg(al, n)

temp eigvals fp = eigenvalues fixed point(al, n, prec)

eigvals fp = vector(CDF,temp eigvals fp)

eigvals dif = eigvals gen−eigvals fp

er = eigvals dif.norm(Infinity)

str er = ’%.3e’ % er

print(’test eigenvalues by fixed point iteration’)

print(’n = ’ + str(n))

print(’al = ’ + str(al))

print(’maximal error = ’ + str er + ’\n’)

The Code B.4 has the next functions:

· “gder1” and “gder1” return the first and second derivative of the function g (2.2);

· “etader” returns the derivative η′α,j (2.26);

· “la asymp” returns the j-th eigenvalue of Aα,n computed by asymptotic expan-

sion (2.36);

· “eigenvalues asymp” return a vector with components the eigenvalues of Aα,n com-

puted by asymptotic expansion.
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Appendix B. Eigenvalues approximation of Aα,n with weak perturbations

Code B.4: Eigenvalues of Aα,n computed by asymptotic expansion.

# File name: Off weak eigenvalues by asmyp.sage

load(’Off weak eigenvalues by fixed point.sage’)

def gder1(x):

return 2∗sin(x)

def gder2(x):

return 2∗cos(x)

def etader(params,j,x):

[al, coef k, coef l] = params

if x>al.parent()(pi/2):

coef l tan x = coef l∗tan(x)

raiz = sqrt(coef k∗∗2+coef l tan x∗∗2)

sgnj = (−1)∗∗(j+1)

num = −2∗coef k∗(1−sgnj∗coef k/raiz)∗(1+tan(x)∗∗2)

den = tan(x)∗∗2+(−sgnj∗coef k+raiz )∗∗2

return num/den

else:

raiz = sqrt((coef k∗cot(x))∗∗2+coef l∗∗2)

sgnj = (−1)∗∗(j+1)

num = −sgnj∗(2/(sin(x)∗∗2))∗(sgnj∗coef k+coef k∗∗2∗cot(x)/raiz)

den = 1+(sgnj∗coef k∗cot(x)+raiz)∗∗2

return num/den

def la asymp(params, n, j):

F = params[0].parent()

thtj = F(j∗pi/n)

c1 = eta(params, j, thtj)

c2 = c1∗etader(params, j, thtj)

g1 = gder1(thtj)

g2 = gder2(thtj)

d0 = g(thtj)

d1 = g1∗c1/n

d2 = (g1∗c2+(1/2)∗g2∗c1∗∗2)/(n∗∗2)

return d0+d1+d2

def eigenvalues asymp(al, n, prec):
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al = ComplexField(prec)(al)

params = myparams(al)

return vector(al.parent(), [la asymp(params,n,j+1) for j in range(n)])

The Code B.5 has the function “max error eigenvalues asymp minus fp” that tests

the Theorem 2.15, it prints on the command window the maximal and normalized errors

of the difference between the eigenvalues of Aα,n computed by fixed point iteration and

asymptotic expansion.

Code B.5: Test of the eigenvalues of Aα,n computed by asymptotic expansion.

# File name: Off weak test eigenvalues by asymp.sage

load(’Off weak eigenvalues by asmyp.sage’)

def max error eigenvalues asymp minus fp(al, n, prec):

eigvals fp = eigenvalues fixed point(al, n, prec)

eigvals asymp = eigenvalues asymp(al, n, prec)

eigvals dif = eigvals fp−eigvals asymp

er = eigvals dif.norm(infinity)

er norm = er∗n∗∗3

str er = ’%.3e’ % er

str norm er = ’%.3e’ % er norm

print(’test eigenvalues by asymptotic expansion’)

print(’n = ’ + str(n))

print(’al = ’ + str(al))

print(’maximal error = ’ + str er)

print(’normalized error = ’ + str norm er + ’\n’)

B.2 Eigenvalues approximation of Aα,n with strong

perturbations

Over all this section we suppose |α| > 1.

The Code B.6 has the next functions:

· “g minus” and “g plus” respectively return the functions g− and g+ defined in (2.2);

· “phi 1” and “phi n” respectively return the functions on the right of (2.45) and (2.46);
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Appendix B. Eigenvalues approximation of Aα,n with strong perturbations

· “tht fixed point 1” and “tht fixed point n” return respectively ϑα,n,1 and ϑα,n,n,

the numbers that satisfies respectively (2.45) and (2.46), computed by fixed point

iteration;

· “la fixed point 1” and “la fixed point n” respectively return the eigenvalues λα,n,1

and λα,n,n of Aα,n computed by fixed point iteration, this algorithm is valid due to

Proposition 2.20;

· “extreme eigenvalues fixed point” return the extreme eigenvalues of Aα,n computed

by fixed point iteration.

Code B.6: Extreme eigenvalues of Aα,n computed by fixed point iteration.

# File name: Off strong extreme eigvalues by fixed point.sage

load(’Off eigenvalues by general algorithm.sage’)

load(’Off weak eigenvalues by fixed point.sage’)

def g minus(x):

return −4∗(sinh(x/2))∗∗2

def g plus(x):

return 4+4∗(sinh(x/2))∗∗2

def phi 1(params, n, x):

[al, coef k, coef l] = params

e min nx = e∗∗(−n∗x)

tanh x = 1−2∗e min nx/(1+e min nx)

num = −2∗coef k∗tanh x

den = tanh x∗∗2+coef l∗∗2

return arctanh(num/den)

def phi n(params, n, x):

[al, coef k, coef l] = params

e min nx = e∗∗(−n∗x)

tanh x = 1−2∗e min nx/(1+e min nx)

sgn n = (−1)∗∗n

abs al plus sign = abs(al+sgn n)

abs al minus sign = abs(al−sgn n)

coef k signed = (1−abs(al)∗∗2)/abs al plus sign∗∗2

coef l signed = abs al minus sign/abs al plus sign
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num = −2∗coef k signed∗tanh x

den = tanh x∗∗2+coef l signed∗∗2

return arctanh(num/den)

def tht fixed point 1(params, n):

al = params[0]

F = al.parent()

thttemp = F(log(abs(al)))

er = F.epsilon()∗16

while (er>F.epsilon()∗8):

thtprev = thttemp

thttemp = F(phi 1(params, n, thttemp))

er = abs(thttemp−thtprev)

return thttemp

def la fixed point 1(params, n):

return g minus(real(tht fixed point 1(params, n)))

def tht fixed point n(params, n):

al = params[0]

F = al.parent()

thttemp = F(log(abs(al)))

er = F.epsilon()∗16

while (er>F.epsilon()∗8):

thtprev = thttemp

thttemp = F(phi n(params, n, thttemp))

er = abs(thttemp−thtprev)

return thttemp

def la fixed point n(params,n):

return g plus(real(tht fixed point n(params, n)))

def extreme eigenvalues fixed point(al, n, prec):

al = ComplexField(prec)(al)

params = myparams(al)

la 1 = la fixed point 1(params, n)

la n = la fixed point n(params, n)

return vector(al.parent(), 2, [la 1,la n])

The Code B.7 has the function “max error extreme eigenvalues gen minus fp” that
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tests the Proposition 2.20, it prints on the command window the maximal error of the

difference between the extreme eigenvalues of Aα,n computed by general algorithm and

fixed point iteration.

Code B.7: Test of the extreme eigenvalues of Aα,n computed by fixed point iteration.

# File name: Off strong test extreme eigvalues by fixed point.sage

load(’Off strong extreme eigvalues by fixed point.sage’)

def max error extreme eigenvalues gen minus fp(al, n, prec):

eigvals gen = eigenvalues general alg(al, n)

extreme eigvals gen = vector(CDF, [eigvals gen[0], eigvals gen[n−1]])

temp extreme eigvals fp = extreme eigenvalues fixed point(al, n, prec)

extreme eigvals fp = vector(CDF, temp extreme eigvals fp)

eigvals dif = extreme eigvals gen−extreme eigvals fp

er = eigvals dif.norm(Infinity)

str er = ’%.3e’ % er

print(’test extreme eigenvalues by fixed point iteration’)

print(’n = ’ + str(n))

print(’al = ’ + str(al))

print(’maximal error = ’ + str er + ’\n’)

The Code B.8 has the function:

· “extreme eigenvalues asymp” return the extreme eigenvalues of Aα,n computed by

the formulas −sα and 4 + sα shown in (2.60) and (2.61), respectively.

Code B.8: Extreme eigenvalues of Aα,n computed by fixed asymptotic expansion.

# File name: Off strong extreme eigvalues by asymp.sage

load(’Off strong extreme eigvalues by fixed point.sage’)

def extreme eigenvalues asymp(al, n, prec):

al = ComplexField(prec)(al)

abs al = abs(al)

x0 = log(abs al)

la 1 = g minus(x0)

la n = g plus(x0)

return vector(al.parent(), 2, [la 1,la n])
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The Code B.9 has the functions “max error extreme eigenvalues asymp minus fp”

that tests Theorem 2.22, it prints on the command window the maximal error of the

difference between the extreme eigenvalues of Aα,n computed by iteration of fixed point

and asymptotic expansion.

Code B.9: Test of the extreme eigenvalues of Aα,n computed by fixed asymptotic expansion.

# File name: Off strong test extreme eigvalues by asymp.sage

load(’Off strong extreme eigvalues by asymp.sage’)

def max error extreme eigenvalues asymp minus fp(al, n, prec):

extreme eigvals fp = extreme eigenvalues fixed point(al, n, prec)

extreme eigvals asymp = extreme eigenvalues asymp(al, n, prec)

eigvals dif = extreme eigvals asymp−extreme eigvals fp

er = eigvals dif.norm(Infinity)

norm er = er∗abs(al)∗∗n

str er = ’%.3e’ % er

str norm er = ’%.3e’ % norm er

print(’test extreme eigenvalues by asymptotic expansion’)

print(’n = ’ + str(n))

print(’al = ’ + str(al))

print(’maximal error = ’ + str er + ’\n’)

print(’normalized error = ’ + str norm er + ’\n’)
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Programs of numerical experiments

for the eigenvalues approximations of

Lα,n

In this appendix we write the main codes developed for the numerical experiments on

eigenvalues approximations of the matrix Lα,n studied in Chapter 3.

Note that the codes in Sections C.1 and C.2 should belong to the same directory. We

remark some notations and issues on the codes:

· the variable “al” denote the perturbation α of the matrix Aα,n;

· the variable ’n’ denote the dimension of the matrix Aα,n

· since tanh nx
2

increases rapidly to 1, in some cases this could imply computation

overflow, so we decided to transform it in the codes to the form 1− 2e−nx/(1 + e−nx).

· the parameter ’prec’ denotes the precision in bits used for computations;

· at the top of each code we type the name of the file.

C.1 Eigenvalues approximation of Lα,n with weak per-

turbations

Over all the section we suppose 0 < α < 1.

The Code C.1 has the next functions:
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· “my matrix” returns the matrix Lα,n;

· “eigenvalues general alg” returns a vector with components the eigenvalues of Lα,n

computed by general algorithm.

Code C.1: Eigenvalues of Lα,n computed by general algorithm.

# File name: L eigenvalues by general algorithm.sage

def my matrix(al, n):

v = vector(CDF, n)

w = vector(CDF, n−1)

v[0] = 2

v[1] = −1

v[n−1] = CDF(−al)

w[0] = −1

w[n−2] = CDF(−conjugate(al))

T = matrix.toeplitz(v, w, CDF)

T[0,0] = CDF(1 + conjugate(al))

T[n−1,n−1] = CDF(1+al)

return T

def eigenvalues general alg(al, n):

A = my matrix(al, n)

eigvals = A.eigenvalues()

eigvals1 = sorted(eigvals)

return vector(CDF, n, eigvals1)

The Code C.2 has the next functions:

· “g” returns the function g defined in (2.2);

· “myparams” returns a list with components, α, Re(α) and κα (3.14);

· “zeta” returns the function ζα,n (3.41);

· “tht fixed point” returns the number ϑα,n,j that satisfies (3.40) computed by fixed

point iteration;

· “la fixed point” returns the j-th eigenvalue of Lα,n computed by fixed point iteration,

this algorithm is valid due to Proposition 3.18;

· “eigenvalues fixed point” returns a vector with components the eigenvalues of Aα,n

computed by fixed point iteration.
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Code C.2: Eigenvalues of Lα,n computed by fixed point iteration.

# File name: L weak eigenvalues by fixed point.sage

def g(x):

return 4∗(sin(x/2))∗∗2

def myparams(al):

al real = real(al)

coef kappa = (1−al real)/al real

return [al, al real, coef kappa]

def zeta(params, j, x):

[al, al real, coef kappa] = params

if mod(j,2) == 1:

return 0

else:

if x>al.parent()(pi):

coef kappa cotx = cot(x/2)/coef kappa

return −pi+2∗arctan(coef kappa cotx)

else:

coef kappa tanx = coef kappa∗tan(x/2)

return −2∗arctan(coef kappa tanx)

def tht fixed point(params, n, j):

F = params[0].parent()

if mod(j,2) == 1:

return F((j−1)∗pi/n)

else:

tht0 = F(j∗pi/n)

thttemp = tht0

er = F.epsilon()∗16

while (er>F.epsilon()∗8) :

thtprev = thttemp

thttemp = F(tht0+zeta(params,j,thttemp)/n)

er = abs(thttemp−thtprev)

return thttemp

def la fixed point(params, n, j):

return g(tht fixed point(params, n, j))
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def eigenvalues fixed point(al, n, prec):

al = ComplexField(prec)(al)

params = myparams(al)

eigvals = [la fixed point(params,n, j+1) for j in range(n)]

return vector(al.parent(), n, eigvals)

The Code C.3 has the next function “max error eigenvalues gen minus fp” that tests

Proposition 3.18, it prints on the command window the maximal error of the difference

between the eigenvalues of Lα,n computed by general algorithm and fixed point iteration.

Code C.3: Test of the eigenvalues of Lα,n computed by fixed point iteration.

# File name: L weak test eigenvalues by fixed point.sage

load(’L eigenvalues by general algorithm.sage’)

load(’L weak eigenvalues by fixed point.sage’)

def max error eigenvalues gen minus fp(al, n, prec):

eigvals gen = eigenvalues general alg(al, n)

temp eigvals fp = eigenvalues fixed point(al, n, prec)

eigvals fp = vector(CDF, temp eigvals fp)

eigvals dif = eigvals gen−eigvals fp

er = eigvals dif.norm(Infinity)

str er = ’%.3e’ % er

print(’test eigenvalues by fixed point iteration’)

print(’n = ’ + str(n))

print(’al = ’ + str(al))

print(’maximal error = ’ + str er + ’\n’)

The Code C.4 has the next functions:

· “gder1” and “gder2” return respectively the first and second derivatives of the

function g (2.2);

· “zetader” returns the derivative ζ ′α,n (3.43);

· “la asymp” returns the j-th eigenvalue of Lα,n computed by asymptotic expan-

sion (3.50);

· “eigvalues asymp” returns a vector with components the eigenvalues of Lα,n computed

by asymptotic expansion.

103



Appendix C. Eigenvalues approximation of Lα,n with weak perturbations

Code C.4: Eigenvalues of Lα,n computed by asymptotic expansion.

# File name: L weak eigenvalues by asymp.sage

load(’L weak eigenvalues by fixed point.sage’)

def gder1(x):

return 2∗sin(x)

def gder2(x):

return 2∗cos(x)

def zetader(params, j, x):

[al, al real, coef kappa] = params

return −coef kappa/(cos(x/2)∗∗2+(coef kappa∗sin(x/2))∗∗2)

def la asymp(params, n, j):

[al, abs al, coef k] = params

F = params[0].parent()

if mod(j,2) == 1:

return F(g((j−1)∗pi/n))

else:

thtj = F(j∗pi/n)

zeta0 = zeta(params, j, thtj)

zeta1 = zetader(params, j, thtj)

c1 = F(g(thtj))

c2 = F(gder1(thtj)∗zeta0/n)

c3 = F(gder1(thtj)∗zeta0∗zeta1/(n∗∗2))

c4 = F((1/2)∗gder2(thtj)∗zeta0∗∗2/(n∗∗2))

return c1+c2+c3+c4

def eigvalues asymp(al, n, prec):

al = ComplexField(prec)(al)

params = myparams(al)

eigvals = [la asymp(params, n, j+1) for j in range(n)]

return vector(al.parent(), eigvals)

The Code C.5 has the next function “max error eigenvalues asymp min fp” that tests

Theorem 3.20, it prints on the command window the maximal and normalized errors of

the difference between the eigenvalues of Lα,n computed by asymptotic expansion and
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fixed iteration point.

Code C.5: Test of the eigenvalues of Lα,n computed by asymptotic expansion.

# File name: L weak test eigenvalues by asymp.sage

load(’L weak eigenvalues by asymp.sage’)

def max error eigenvalues asymp minus fp(al, n, prec):

eigvals fp = eigenvalues fixed point(al, n, prec)

eigvals asymp = eigvalues asymp(al, n, prec)

eigvals dif = eigvals asymp−eigvals fp

er = eigvals dif.norm(Infinity)

er norm = er∗n∗∗3

str er = ’%.3e’ % er

str norm er = ’%.3e’ % er norm

print(’test eigenvalues by asymptotic expansion’)

print(’n = ’ + str(n))

print(’al = ’ + str(al))

print(’maximal error = ’ + str er)

print(’normalized error = ’ + str norm er + ’\n’)

C.2 Eigenvalues approximation of Lα,n with strong

perturbations

On this section we consider α < 0.

The Code C.6 has the next functions:

· “gmin” returns the function g− defined in (2.2);

· “phi 1” returns ϕα,n (3.58);

· “tht fp extreme” returns the number ϑα,n that satisfies (3.56) computed by fixed

point iteration;

· “la extreme 1 fixed point” returns the first eigenvalue computed by iteration of fixed

point, this algorithm is valid due to Proposition 3.24.

Code C.6: Extreme eigenvalue λα,n,1 of Lα,n computed by fixed point iteration.

# File name: L strong extreme eigenvalues by fixed point.sage
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load(’L weak eigenvalues by fixed point.sage’)

def gmin(x):

return 2−2∗cosh(x)

def phi 1(params, n, x):

F = params[0].parent()

[al, al real, coef kappa] = params

abs kappa = abs(coef kappa)

e min nx = e∗∗(−n∗x)

tanh x = 1−2∗e nx/(1+e min nx)

return 2∗arctanh(tanh x/abs kappa)

def tht fp extreme(params, n):

F = params[0].parent()

[al, al real,coef kappa] = params

thttemp = F(log(abs(2∗al real−1)))

cnt = 0

er = F.epsilon()∗16

while (er>F.epsilon()∗8) :

thtprev = thttemp

thttemp = F(phi 1(params, n, thttemp))

er = abs(thttemp−thtprev)

return thttemp

def la extreme 1 fixed point(al, n, prec):

al = ComplexField(prec)(al)

params = myparams(al)

return gmin(tht fp extreme(params, n))

The Code C.7 has the function “max error first eigenvalue gen minus fp” that tests

Proposition 3.24, it prints on the command window the maximal error of the difference

between the first eigenvalue of Lα,n computed by general algorithm and fixed iteration

point.

Code C.7: Test of the extreme eigenvalue λα,n,1 of Lα,n computed by fixed point iteration.

# File name: L strong test extreme eigenvalues by fixed point.sage

load(’L eigenvalues by general algorithm.sage’)
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load(’L strong extreme eigenvalues by fixed point.sage’)

def max error first eigenvalue gen minus fp(al, n, prec):

eigvals gen = eigenvalues general alg(al, n)

extreme 1 eigbal gen = eigvals gen[0]

extreme 1 eigval fp = CDF(la extreme 1 fixed point(al, n, prec))

eigvals dif = extreme 1 eigval gen−extreme 1 eigval fp

er = abs(eigvals dif)

str er = ’%.3e’ % er

print(’test eigenvalues by fixed point iteration’)

print(’n = ’ + str(n))

print(’al = ’ + str(al))

print(’maximal error = ’ + str er + ’\n’)

The Code C.8 has the functions:

· “la extreme asymp” returns the first eigenvalue of Lα,n computed by asymptotic

expansion (3.61).

· “extreme eigenvalue asymp” returns the firs eigenvalue of Lα,n computed by asymp-

totic expansion.

Code C.8: Extreme eigenvalue λα,n,1 of Lα,n computed by asymptotic expansion.

# File name: L strong extreme eigenvalu

es by asymp.sage

load(’L strong extreme eigenvalues by fixed point.sage’)

def la extreme asymp(params, n):

[al, al real, coef kappa] = params

return params[0].parent()((log(abs(2∗al real−1))))

def extreme eigenvalue asymp(al, n, prec):

al = ComplexField(prec)(al)

params = myparams(al)

return gmin(la extreme asymp(params, n))

The Code C.9 has the function “max error eigenvalues gen minus fp” that tests

Theorem 3.26, it prints on the command window the error and normalized error of the
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difference between, the first eigenvalue of Lα,n computed by asymptotic expansion and

fixed point iteration.

Code C.9: Test of the extreme eigenvalue λα,n,1 of Lα,n computed by asymptotic expansion.

# File name: L strong test extreme eigenvalues by asymp.sage

load(’L strong extreme eigenvalues by asymp.sage’)

def max error eigenvalues gen minus fp(al, n, prec):

extreme 1 eigval fp = la extreme 1 fixed point(al, n,prec)

extreme 1 eigval asymp = extreme eigenvalue asymp(al, n, prec)

eigvals dif = extreme 1 eigval asymp−extreme 1 eigval fp

er = abs(eigvals dif)

er norm = er∗abs(2∗al−1)∗∗n

str er = ’%.3e’ % er

str norm er = ’%.3e’ % er norm

print(’test extreme eigenvalue by asymptotic expansion’)

print(’n = ’ + str(n))

print(’al = ’ + str(al))

print(’maximal error = ’ + str er)

print(’normalized error = ’ + str norm er + ’\n’)
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[6] Bogoya, J.M., Böttcher, A., Grudsky, S.M., Maximenko, E.A.: Eigenvalues of Hermi-

tian Toeplitz matrices with smooth simple-loop symbols. J. Math. Anal. Appl. 422,

1308–1334 (2015). doi:10.1016/j.jmaa.2014.09.057.
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