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Introduction

The study of Toeplitz operators is a vast and active area of research in mathematics
that involves many branches of mathematics and even of mathematical physics. These
operators owe their name to Otto von Toeplitz, who approached the following problem:
when does the infinite matrix 

a0 a−1 a−2 · · ·
a1 a0 a−1 · · ·
a2 a−1 a0 · · ·
... ... ... . . .


defines a bounded linear operator in l2(Z+)? This problem seems to have been
completely solved in 1954 by Hartman and Wintner: the above matrix defines a
bounded linear operator if and only if there is a bounded function f in T such that
ak = f̂(k), where f̂ is the discrete Fourier transform.

This result turns out to be rather simple when one adopts the "right" viewpoint.
Indeed, consider the (one-dimensional) Hardy space H2 of functions in L2(T, dσ), where
σ is the invariant measure of T, such that f̂(n) = 0 whenever n is negative. H is a
closed space since it is the intersection of the kernels of the continuous functionals
defined by f 7→ f̂(n). Let P : L2(T, dσ) → H2 be the orthogonal projection (which, by
the way, is called the Szegő projection) and let φ ∈ L∞(T, dσ). We define the Toeplitz
operator with symbol φ, denoted Tφ, as the compression to H2 of the multiplication
by φ, that is,

Tφf = P (φf), f ∈ H.

Then, in this context, the Toeplitz matrix above is just the matrix representation of
the operator Tφ, where an = φ̂(n).

Taking this setting as a model, one can define and study Toeplitz operators in many
other spaces. One usually considers spaces of "nice" functions in order to obtain "nice"
structures. An example of this (which, by the way, arises naturally from quantum
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mechanics), is the class of analytic functions. In this thesis we work with to well-known
spaces of analytic functions: the Bergman space and the Fock space (see sections 1.4
and 1.5). Throughout the years there has been a lot of research about the behavior of
Toeplitz operators in these spaces.

A natural and difficult problem that arises in the study of Toeplitz operators on
Bergman spaces is to determine under which conditions one obtains commutative
operator algebras. As a matter of example and contrary to the case of the one-
dimensional Hardy space H2, there are several non-trivial commutative algebras
generated by Toeplitz operators defined on the weighted Bergman space on the unit
disc Aλ(D). A great step in this direction is the work of N. Vasilevski, S. Grudsky
and A. Karapetyants, who proved at the beginning of the 21st century, that there
are classes of symbols, geometrically defined, such that the C∗-algebras generated by
Toeplitz operators with these symbols are commutative on every weighted Bergman
space.

Later, N. Vasilevski, S. Grudsky and R. Quiroga Barranco, proved the converse in
[5]. A equivalent reformulation (for more details see Preliminaries) of the main result
in this paper reads as follows: assuming some natural condition on the "richness" of
the symbol set, the C∗-algebra generated by Toeplitz operators is commutative on each
weighted Bergman space if and only if there is a maximal commutative subgroup of the
Möbius transformation such that the symbols of the Toeplitz operators are invariant
under the action of this subgroup.

R. Quiroga Barranco and N. Vasilevski extended this fact from the unit disk of
C to the unit ball of Cn in [10] and [11]. They uased a classification of the maximal
subgroups of automorphisms of Bn and proved that, given one of these subgroups, the
C∗-algebra generated by Toeplitz operators with symbols invariant under the action
of it is commutative on every weighted Bergman space. The maximal commutative
subgroups of automorphisms are the quasi-elliptic group, the quasi-parabolic group, the
quasi-hyperbolic group, the nilpotent group and the quasi-nilpotent group.

As N. Vasilevski wrote in [15], it was firmly expected that the above algebras exhaust
all possible algebras of Toeplitz operators on the unit ball which are commutative on
each weighted Bergman space. However, as it usually happens when one generalizes a
problem arisen in a one-dimensional setting, the multidimensional case turned out to
be much more interesting. In fact, inspired by [20], N. Vasilevski presented in [15] a
new class of symbols whose induced Toeplitz operators generate commutative operator
algebras on each weighted Bergman space. This idea was later applied in [18], where
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he presented another classes of symbols subordinated to one of the model classes of
the above maximal commutative subgroups (except for the nilpotent group) such that
the corresponding operator algebras are commutative. All these algebras are Banach.
They collapse into C∗-algebras when the dimension is the "trivial" one and, otherwise,
the corresponding extended C∗-algebra is non-commutative.

Being commutative (non-C∗) Banach algebras, they represent a rich and interesting
mathematical object. Natural problems regarding the structure of these algebras arise,
such as to determine their respective maximal ideal spaces, Gelfand transforms, radicals,
etc. In this regard, the algebra which has been best understood so far, thanks to a
series of papers of N. Vasilevski and W. Bauer ([1], [2], [3]), is the one subordinated to
the quasi-elliptic group.

This thesis is a further step in this direction. Following the principal ideas that were
used for the elliptic case, we approach the task of describing the commutative Banach
algebra subordinated to the quasi-parabolic group for the lowest non-trivial dimension
n = 3. As in [1], these results are expected to reveal some important features which
would be useful to understand the higher dimensional case n > 3.

Throughout the thesis we will denote this algebra by T (λ), where λ stands for
the weight parameter used to define the Bergman space Aλ(D3) (for more details, see
Preliminaries). One of the results states that T (λ) is generated by two subalgebras:
Tqr and Tϕ, where Tqr is the algebra generated by Toeplitz operators with parabolic
(2)-quasi-radial symbols and Tϕ is the algebra generated by the single operator Tϕ,
where ϕ is the simplest quasi-homogeneous function given by

ϕ(z′, zn) = z1z2

|z1|2 + |z2|2
,

where (z′, zn) ∈ D3 and z′ = (z1, z2).

The thesis is divided into four chapters, the contents of which can be described as
follows. The first chapter presents the necessary tools so that this work is self-contained.
We introduce some well-known results about commutative Banach algebras theory and
some others regarding Toeplitz operators. In particular, we present the main results of
[1], inasmuch as some results of the parabolic case follow (although not directly) from
these ones.

In Chapter 2 we represent the Bergman space as a direct integral of weighted Fock
spaces. This representation will be crucial to prove the main results of the thesis. As a
matter of example, we can mention the generalized Berezin transform, which, inspired
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by [1], was used to characterize some elements of the maximal ideal space of T (λ).
There is not a natural way of extrapolating the methods of [1] to the present work and
the direct integral of Fock spaces turned out to be very useful.

The main result in this chapter is the existence of an operator

R : L2(Dn, dµλ) →
∫ ⊕

R+
F 2

2ξ(Cn−1)dξ,

(where Dn stands for the Siegel domain) onto a direct integral of Fock spaces (see
Preliminaries for the notation) that maps L2(Dn, dµλ) onto

∫⊕
R+
F 2

2ξ(Cn−1)dξ, such that
the restriction

R|A2
λ

(Dn) : A2
λ(Dn) →

∫ ⊕

R+
F 2

2ξ(Cn−1)dξ

is an isometric isomorphism and such that for every essentially bounded function a on
Dn that depends only on z′ and Im zn, we have

RT (λ)
a R∗ =

∫ ⊕

R+
T

(ξ)
ãξ
dξ,

where
ãξ(z′) =

∫
R+

(2ξ)λ+1

Γ(λ+ 1)e
−2ξvvλa(z′, v − |z′|2)dv.

Note that each function belonging to one of the classes of symbols defined on the
Siegel domain and invariant under the action of one of the above maximal abelian
subgroup depends only on z′ and Im zn. Therefore we can apply the results of Chapter
2 and thus, as a corollary of the above representation, we diagonalize the Toeplitz
operators defined by these symbols. That is, we give an alternative proof of the main
results of [10].

Chapter 4 contains the main results of the thesis. We study the structure of the
commutative Banach algebra T (λ). As we already mentioned, we reduce the set of
generators and study separately the algebras Tqr and Tϕ.

In the first two sections we analyse the algebra Tqr. We show that its maximal ideal
space is some compactification of Z+ × R+ and we analyse the behavior of the points
"at infinity".

In Sections 3, 4 and 5 we study the algebra Tϕ and analyse how this algebra and
the previous one act together. Among other things, we prove that, as in the elliptic
case, the algebra T (λ) is generated by Toeplitz operators with parabolic quasi-radial
quasi-homogeneous symbols and the single operator Tϕ.
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In Sections 7, 8 and 9 we present some technical results that are necessary to
characterize the maximal ideal space of T (λ). We use the direct integral representation
of the Bergman space and Dirac sequences to show how to extend some multiplicative
linear functionals.

The main results are presented in Section 10. Theorem 4.10.4 characterizes the
maximal ideal space of T (λ). This theorem reads as follows:

The compact set M(T (λ)) of maximal ideals of the algebra T (λ) has the form

M(T (λ)) = (Z+ × R+ × {0}) ∪
(
M∞,R+(λ) ×D(0, 1

2)
)
.

1. The Gelfand image of the algebra T (λ) is isomorphic to T (λ)/Rad T (λ) and
coincides with the algebra

Aqr ∪ [C(M∞,R+)⊗̂eCα(D(0, 1
2))],

which is identified with the set of all pairs

(γ, f) ∈ Aqr × [C(M∞,R+)⊗̂eCα(D(0, 1
2))]

satisfying the following compatibility condition γ(µ) = f(µ, 0), for all µ ∈
M∞,R+(λ).

2. The Gelfand transform is generated by the following mapping:

m∑
p=0

TapT
p
ϕ 7→

γa0(k, ξ), if (k, ξ, 0) ∈ Z × R+ × {0},∑m
p=0 γap(µ)ζp, if (µ, ζ) ∈ M∞,R+ ×D(0, 1

2).

M∞,R+ represents those points "at infinity" of the maximal ideal space of Tqr that can
be reached by nets of the form {(kα, ξα)} such that kα → ∞.

Finally, we use these results to prove in Section 11 that T (λ) is a inverse-closed
algebra and, therefore, that the spectrum of an operator in T (λ) as an element of this
Banach algebra coincides with its spectrum as an element of L (Aλ(D3)).
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Chapter 1

Preliminaries

In this Chapter we introduce those objects and results which will be used later. Some
of them are well-known and can be consulted in many books and papers

For the theory of commutative Banach algebras we used [6], [4] and [8]. A general
reference for Dirac sequences and their basic properties, which are not difficult to proof,
could be [7].

For Toeplitz operators on Bergman and Fock spaces there are many references. A
general treatment can be consulted in [13], [21] and [22]. The study of C∗-algebras
generated by Toeplitz operators commutative on each weighted Bergman space and
maximal subgroups of automorphisms of the unit ball is developed mainly in [5], [10]
and [11]. The commutative Banach algebras subordinated to these maximal subgroups
of automporhisms are introduced and, for the elliptic case, deeply analysed in [14], [15],
[16], [17], [1], [2], [3] and [18].

1.1 Commutative Banach Algebras

We mention without proof some very well-known results concerning commutative
Banach algebras. All algebras will be assumed to be unital.

Let A be a commutative Banach algebra. The set of multiplicative linear functionals
of A, denoted by M(A) is called the maximal ideal space of A. By Banach-Alaoglu
theorem, M(A) is a compact Hausdorff space. The following result justifies its name.

1.1.1 Proposition. Let A be a commutative Banach algebra. Then there is a bijection
between the maximal ideal space of A and the set of maximal ideals of A given by

φ 7→ kerφ, φ ∈ M(A).

7
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1.1.2 Definition. Let A be a Banach algebra and a ∈ A.

• The spectrum of a (with respect to A) is the set

σA(a) = {λ ∈ C : λ− a is not invertible}.

• The spectral radius of an element a ∈ A is the (always finite) number

r(a) = sup{|λ| : λ ∈ σA(a)}.

We also recall the Gelfand-Beurling norm for the spectral radius:

1.1.3 Proposition. Let A be a Banach algebra and a ∈ A. Then

r(a) = lim
n→∞

∥an∥1/n.

When A is a C∗-algebra of bounded operators on some Hilbert space, σA(T ) is just
the spectrum of the operator T ∈ A. In this case we will write sp(T ) = σA(T ).

1.1.4 Definition. Given a commutative Banach algebra A, the function

Γ: A → C(M(A))

given by
Γ(a)(ϕ) = ϕ(a), ϕ ∈ M(A),

is a homomorphism called the Gelfand map. For an element a ∈ A, the function Γ(a)
is called the Gelfand transform of a.

1.1.5 Proposition. Let A and Γ as above. Then the following properties hold:

1. σA(a) = Γ(a)(M(A)), for every a ∈ A.

2. Γ is norm-decreasing.

3. Γ is isometric if and only if ∥a∥2 = ∥a2∥, for all a ∈ A

We note that the Gelfand map is not necessarily injective or surjective. However, it
completely characterizes (unital) commutative C∗-algebras, as the following well-known
result shows:

8
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1.1.6 Proposition. Let A be a commutative C∗-algebra. Then the Gelfand map

Γ: A → C(M(A))

is a ∗-isomorphism.

1.1.7 Definition. Let A be a commutative Banach algebra. The radical of A, Rad(A),
is the intersection of all maximal ideals. That is,

Rad(A) =
⋂

{kerφ : φ ∈ M(A)}.

The algebra A is called semisimple if Rad(A) = {0} and radial if Rad(A) = A.

1.1.8 Corollary. Let A be a Banach algebra. Then a ∈ Rad(A) if and only if a is
topologically nilpotent, that is, if and only if

lim
n→∞

∥an∥1/n = 0.

1.2 Compactifications

Given a topological space S, we denote by CB(S) the algebra of bounded continuous
complex-valued functions on S. The algebra CB(S) turns out to be a commutative
C∗-algebra with the norm

∥f∥S = sup
s∈S

|f(s)|

and the involution
f ∗ = f.

By Proposition 1.1.6, CB(S) and any of its C∗-subalgebras is of the form C(S ′), for
some compact Hausdorff space S ′. We will see that this space is in fact related to S.

1.2.1 Definition. A compactification of the topological space S is a compact Hausdorff
space X and a continuous one-to-one function τ of S onto a dense subset τ(S) of X.

We often identify s ∈ S with τ(s) ∈ X. Under this identification, every compactifi-
cation X of S determines, by restricting the functions of C(X) to S, a closed separating
self-adjoint subalgebra A of CB(S) which contains the constants.

9
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The converse also holds. That is, if A is a C∗-subalgebra of CB(S), then the
maximal ideal space of A, M(A), is a compactification of S.

We have thus the following proposition:

1.2.2 Proposition. Let S be a topological space. There is a bijective correspondece
between compactifications X of S and closed separating self-adjoint subalgebras A of
CB(S) which contain the constants. The algebra A associated with the compactifi-
cation X consists of the functions in CB(S) which extend continuously to X. The
compactification X associatd with A is the maximal ideal space of A.

1.3 Dirac Sequences

We introduce a useful tool that we will need later.

1.3.1 Definition. A Dirac sequence on Rn is a sequence of real-valued continuous
functions (φk)∞

k=1 satisfying the following properties:

1. φ ≥ 0 for all k ≥ 1.

2. For all k ≥ 1 we have ∫
φk(x)dx = 1.

3. Given ε, δ > 0 there exists k0 such that∫
|x|≥δ

φk(x)dx < ε,

for all k ≥ k0.

A Dirac sequence can be used to approximate a function as the following results
shows.

1.3.2 Proposition. Let f be a bounded measurable function on Rn. Let K be a
compact set on which f is continuous. Let (φk)∞

k=1 be a Dirac sequence. Then φk ∗ f
converges uniformly to f on A.

Here, g ∗ f denotes the usual convolution given by

g ∗ f(x) =
∫
R
g(t)f(x− t)dt.

Among other properties, this operation is bilinear and commutative.

10
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Note that, in particular, if f is continuous on a point x ∈ Rn, then

lim
k→∞

f ∗ φk(x) = f(x).

1.3.3 Proposition. Let (φk)∞
k=1 a Dirac sequence. Let 1 ≤ p < ∞ and f ∈ Lp(R).

Then
∥f ∗ φk − f∥p → 0, k → ∞.

1.4 Bergman Spaces

Now we introduce the spaces we will be working with. Let Bn be the unit ball of Cn

and fix λ > −1. Consider the weighted Lebesgue measure dµ′
λ defined by

dµ′
λ(z) = cλ(1 − |z|2)λdν(z),

where
cλ = Γ(n+ λ+ 1)

n!Γ(λ+ 1)
is a normalizing constant so that dµ′ is a probability measure on Bn.

The weighted Bergman space, denoted by A2
λ(Bn), is the subspace of L2(Bn, dµ′

λ)
of holomorphic functions. This space turns out to be a reproducing kernel Hilbert
space. Its kernel, called the weighted Bergman kernel, is given by

KBn,λ(z, ζ) = 1
(1 − z · ζ)n+λ+1

and the Bergman projection BBn,λ of L2(Bn, µ′
λ) onto A2

λ(Bn) has the form

(BBn,λf(z)) =
∫
Bn
f(ζ) (1 − |ζ|)λ

(1 − z · ζ)n+λ+1 cλdv(ζ).

Sometimes it is easier to work with the unbounded realisation of the unit ball, that
is, with the Siegel domain Dn. This domain is defined as follows:

Dn = {z = (z′, zn) ∈ Cn−1 × C : Im zn − |z′|2 > 0}.

We note that, for n = 1, Dn is just the upper half-plane, which is the biholomorphic
image, by means of the (inverse) Cayley transform, of the unit disk of C. The Cayley
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transform for the Siegel domain Dn is the function ω given by ζ = ω(z), where

ζk = i
zk

1 + zn
, k = 1, . . . , n− 1,

ζn = i
1 − zn
1 + zn

.

It is well known (and easy to check directly) that ω maps biholomorphically Bn to Dn.

The inverse transform z = ω−1(ζ) is given by

zk = − 2iζk
1 − iζn

, k = 1, . . . , n− 1, (1.1)

zn = 1 + iζn
1 − iζn

. (1.2)

Denote by dν(z) = dx1dx2 · · · dxndyn, where zm = xm + iym, m = 1, . . . , n, the
standard Lebesgue measure in Cn, and introduce the following one-parameter family
of weighted measures

dµλ(z) = cλ
4 (Im zn − |z′|2)λdν(z)

1.5 Fock Spaces

We introduce now the weighted Fock space on Cn. Given a (weight) parameter α ∈ R+

consider L2(Cn, dvα), where

dvα(z) =
(
α

π

)n
e−α|z|2dv(z), z ∈ Cn.

The Fock space F 2
α(Cn) is the subspace of L2(Cn, dvα) which consists of analytic

functions. As the Bergman space, the Fock space turns out to be a reproducing kernel
Hilbert space. Its reproducing kernel is given by

Kw(z) = eαz·w.

The orthogonal projection Pα : L2(Cn, dvα) → F 2
α(Cn) is called the Bargmann

projection and, using the reproduncing kernel, it is easy to see that Pα is given by the
integral operator

Pαf(z) =
∫
Cn
f(w)eαz·wdvα(w).

The monomials ep(z) = zp
√
p! , p ∈ Zn+, form an orthonormal basis for the Fock space.

12
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1.6 Toeplitz Operators

We define Toeplitz operators, as always, as the compression of a multiplication operator.
That is, let H be some Hilbert space L2(X,µ), (who X and µ are is not really important
at the moment), let K be a closed subspace of H and P : H → K the orthogonal
projection (in this thesis K will be either a Bergman space or a Fock space and P its
corresponding Bergman or Bargmann projection). For a bounded measurable function
φ, define the Toeplitz operator Tφ by the rule

Tf = P (φf), f ∈ K.

The function φ is called the symbol of the Toeplitz opertor Tφ.

One can easily deduce from the definition some elementary properties:

1. The application φ 7→ Tφ is linear and preserves involutions, i. e., Tφ = T ∗
φ. (This

application is, in general, not multiplicative).

2. ∥Tφ∥ ≤ ∥φ∥∞.

One general task in the study of Toeplitz operators is to study the operator algebras
which they generate in terms of their symbols. This is quite a difficult problem for
arbitrary symbols and one usually restricts attention to special classes of symbols.

1.7 Commutative C∗-Algebras Generated by
Toeplitz Operators

A natural question that arises in the study of Toeplitz operators on Bergman spaces
is when do Toeplitz operators commute or under which conditions do we obtain
commutative operator algebras of Toeplitz operators. Indeed, commutative algebras
are more manageable, inasmuch as we have the Gelfand theory; otherwise one cannot
say too much about an operator algebra. Moreover, as we already mentioned, the
commutativity of algebras of Toeplitz operators on Bergman spaces, contrary to the
case of the one-dimensional Hardy space, is not trivial.

In the context of Bergman spaces on the unit disc D, it was discovered by S.
Grudsky, A. Karapetyants and N. Vasilevski that there are special classes of symbols
such that the respective C∗-algebras generated by Toeplitz operators are commutative
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on every weighted Bergman space. These classes of symbols can be defined in terms of
the geometric properties of the unit disc.

S. Grudsky, R. Quiroga Barranco and N. Vasilevski proved in [5] that, discarding
the trivial case of the C∗-algebra generated by the identity and a self-adjoint Toeplitz
operator, the above classes are the only possible sets of symbols which might generate
the commutative C∗-algebras of Toeplitz operators on each weighted Bergman space.
The main result states that, assuming only some natural conditions on the "richness"
of the symbol set, the C∗-algebra generated by Toeplitz operators is commutative on
each weighted Bergman space if and only if there is a pencil of hyperbolic geodesics such
that the symbols of the Toeplitz operators are constant on the cycles of this pencil.

This result admits the following equivalent reformulation: assuming some natural
condition on the "richness" of the symbol set, the C∗-algebra generated by Toeplitz
operators is commutative on each weighted Bergman space if and only if there is a
maximal commutative subgroup of the Möbius transformation such that the symbols of
the Toeplitz operators are invariant under the action of this subgroup.

Using this reformulation, R. Quiroga Barranco and N. Vasilevski extended this
result from the unit disc of C to the unit ball of Cn. They proved in [10] that each
maximal abelian subgroup of automorphisms of the unit ball induces a commuta-
tive C∗-algebra of Toeplitz operators on each weighted Bergman space. Moreover,
they explicitly constructed, for each case, a unitary operator that diagonalizes the
corresponding Toeplitz operator and gave explicit expressions for the corresponding
eigenvalue functions.

The following list classifies five essentially different types of commutative subgroups
of biholomorphisms of the unit ball Bn, or its unbounded realisation, the Siegel domain
Dn. In the second part of the paper, [11], R. Quiroga Barranco and N. Vasilevski
proved that these subgroups are maximal commutative subgroups of biholomorphisms
and that each maximal commutative subgroup of biholomorphisms is conjugate to one
from the list, while neither two from the list are conjugate.

• Quasi-elliptic group of biholomorphisms of the unit ball Bn if isomorphic to Tn

with the following action:

t : z = (z1, . . . , zn) ∈ Bn 7−→ tz = (t1z1, . . . , tnzn) ∈ Bn,

for each t = (t1, . . . , tn) ∈ Tn.

14
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• Quasi-parabolic group of biholomorphisms of the Siegel domain Dn is isomor-
phic to Tn−1 × R with the following group action:

(t, h) : (z′, zn) ∈ Dn 7−→ (tz′, zn + h) ∈ Dn,

for each (t, h) ∈ Tn−1 × R.

• Quasi-hyperbolic group of biholomorphisms of the Siegel domain Dn is isomor-
phic to Tn−1 × R+ with the following group action:

(t, r) : (z′, zn) ∈ Dn 7−→ (r1/2tz′, rzn) ∈ Dn,

for each (t, r) ∈ Tn−1 × R+.

• Nilpotent group of biholomorphisms of the Siegel domain Dn is isomorphic to
Rn−1 × R

(b, h) : (z′, zn) ∈ Dn 7−→ (z′ + b, zn + h+ 2iz′ · b+ i|b|2) ∈ Dn,

for each (b, h) ∈ Rn−1 × R.

• Quasi-nilpotent group of biholomorphisms of the Siegel domain Dn is isomor-
phic to Tk × Rn−k−1 × R, 0 < k < n− 1, with the following group action:

(t, b, h) : (z′, z′′, zn) ∈ Dn 7−→ (tz′, z′′ + b, zn + h+ 2iz′′ · b+ i|b|2) ∈ Dn,

for each (t, b, h) ∈ Tk × Rn−k−1 × R.

In Chapter 3 we give another proof of this diagonalization for the quasi-parabolic
group, the hyperbolic group, the nilpotent group and the quasi-nilpotent group. Since
we do not really use these eigenvalue functions until that chapter, we do not present
them here.

1.8 Commutative Banach Algebras Generated by
Toeplitz Operators

Surprisingly, it turned out that, for n > 1 there exist many other, not geometrically
defined, classes of symbols which generate commutative Toeplitz operator algebras
on each weighted Bergman space. These classes of symbols were always subordinated

15
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to one of the model classes of the maximal commutative subgroups we cited in the
previous section (with the exception of the nilpotent subgroup). The corresponding
commutative operator algebras were Banach, and being extended to C∗ they became
non-commutative.

1.8.1 Elliptic case

W. Bauer and N. Vasilevski studied in a series of papers the case of the commutative
Banach algebra generated by Toeplitz operators with quasi-radial quasi-homogeneous
symbols (i.e. an algebra subordinated to the quasi-elliptic group). They started from
the lowest dimensional case n = 2 in [1] and studied the general dimension case in [2]
and [3]. The general aim was to develop the Gelfand theory of these algebras.

For a general dimension n, the definition of this algebra is similar to the corre-
sponding definition in the parabolic case, which will be introduced in the next section.
Therefore, we present here only the particular case n = 2

For n = 2, W. Bauer and N. Vasilevski were able to give explicit descriptions of
the maximal ideal space, the Gelfand transform and the radical. The corresponding
(unique) commutative Toeplitz operator algebra is Banach (not C∗!). Since this algebra
only appears explicitly in this section we keep the notation of [1] and denote this algebra
by T (λ). For the rest of the thesis we will use this notation just for the parabolic case.

The algebra T (λ) can be described as follows: Let H := A2
λ(B2) be the weighted

Bergman space over B2 with parameter λ > −1, and write Trad(λ) for the commutative
C∗-subalgebra of L (H) generated by all Toeplitz operators Ta with radial bounded
measurable symbols a on B2 (i.e. a(z) = a(|z|)).

For a bounded measurable function a(r) we have

Taz
α = γa,λ(|α|)zα, α = (α1, α2) ∈ Z2

+,

where, using the usual multi-index notation, |α| = α1 + α2 and

γa,λ(|α|) = Γ(|α| + λ+ 3)
Γ(λ+ 1)Γ(|α| + 2)

∫ 1

0
a(

√
r)(1 − r)λr|α|+1dr.

We denote by Dγ the multiplication operator with symbol γ. The C∗-algebra
Trad(λ) can be identified with a certain subalgebra of slowly oscillating sequences. We
denote it by SO(λ).
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Let M(Trad(λ)) be the compact set of maximal ideals of Trad(λ). By Proposition
1.2.2, M(Trad(λ)) is some compactification of Z+. Therefore we can decompose

M(Trad(λ)) = Z+ ∪M∞(λ).

Further, we denote by Tϕ the unital Banach algebra generated by a single generator
Tϕ, where ϕ is the “simplest” quasi-homogeneous symbol on B2 given by:

ϕ(z) = z1z2

|z1|2 + |z2|2
= ζ(1,0)ζ

(0,1)
,

where ζ = z/|z| ∈ S2.

The operator Tϕ acts on the basic elements (normalized monomials) of A2
λ(B2),

eα(z) =

√√√√Γ(|α| + λ+ 4)
α!Γ(λ+ 3) zα, α ∈ Z2

+,

by the following rule:

Tϕeα =


√

(α1 + 1)α2

2 + |α|
e(α1+1,α2−1), α2 ≥ 1,

0, otherwise.

More generally, let ϕp = ϕp. Then

Tϕpeα =


α2(α2 − 1) · · · (α2 − p+ 1)
(p+ 1 + |α|) · · · (2 + |α|) e(α1+p,α2−p), α2 ≥ p,

0, otherwise.

By Corollary 4.3 from [15], for any bounded measurable function a(r) and p ∈ Z+

we have
Taϕp = TϕpTa = TaTϕp .

As a consequence, the algebra T (λ), generated by Toeplitz operators with radial
symbols and the Toeplitz operators Tϕp , is a commutative Banach algebra and is
generated by the operators Ta, with a ∈ L∞[0, 1) and Tϕp , p ∈ Z+. Moreover, Corollary
3.5 from [1] states that T (λ) is generated just by Toeplitz operators Ta with bounded
measurable radial symbols a(r) and the single Toeplitz operator Tϕ.

We mention two of the main results of [1]:
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1.8.1 Theorem ([1, Theorem 3.6]). The Banach algebra Tϕ is isomorphic via the
Gelfand transform to the algebra Cα(D(0, 1

2)), which consists of all functions analytic
in D(0, 1

2) and continuous on D(0, 1
2).

1.8.2 Theorem ([1, Theorem 5.4]). The compact set M(T (λ)) of maximal ideals of
the algebra T (λ) has the form

M(T (λ)) = Z+ × {0} ∪M∞(λ) ×D(0, 1
2).

(i) The Gelfand image of the algebra T (λ) is isomorphic to T (λ)/RadT(λ) and
coinides with the algebra

SO(λ) ∪
[
C(M∞(λ))⊗̂ϵCα(D(0, 1

2))
]

satisfying the following compatibility condition γ(µ) = f(µ, 0), for all µ ∈ M∞(λ)
Here ⊗̂ϵ denotes the injective tensor product, and we identify γ(µ) with the value
of the functional µ ∈ M∞(λ) on the element γ ∈ SO(λ).

(ii) The Gelfand transform is generated by the following mapping of elements of D(λ),
the dense set of all finite sums of finite products of elements of T (λ =

n∑
j=0

Dγj
T jϕ 7−→

γ0(k), if (k, 0) ∈ Z+ × {0},∑n
j=0 γj(µ)ζj, if (µ, ζ) ∈ M∞(λ) ×D(0, 1

2).

1.8.2 Parabolic case

We first recall some facts from [14] which are also consequence from the results of [10].
Fix a weight parameter λ > −1.

There is a surjective operator

R : L2(Dn, µ̃) → l2(Zn−1
+ , L2(R+))

such that the restriction onto the Bergman space A2
λ(Dn)

R|A2
λ

: A2
λ(Dn) → l2(Zn−1

+ , L2(R+))

18



1. CHAPTER. PRELIMINARIES

is an isometric isomorphism. The adjoint

R∗ : l2(Zn−1
+ , L2(R+)) → L2(Dn, µ̃)

is an isometric isomorphism.

Furthermore,

RR∗ = I : l2(Zn−1
+ , L2(R+)) → l2(Zn−1

+ , L2(R+))

R∗R = BDn,λ : L2(Dn, µ̃) → A2
λ(Dn),

where BDn,λ is the Bergman projection on the Siegel domain Dn.

The general aim of this thesis is to study the parabolic case for the simplest case
n = 3. We describe how these algebras are constructed for a general n ≥ 2.

In what follow we will use the standard multi-index notation. That is, for a
multi-index α = (α1, α2, . . . , αn−1) ∈ Zn−1

+ :

|α| = α1 + α2 + · · · + αn−1,

α! = α1!α2! · · ·αn−1!,
zα = zα1

1 zα2
2 · · · zαn−1

n−1 .

Two multi-indices α and β are called orthogonal,α ⊥ β, if

α · β = α1β1 + α2β2 + · · · + αn−1βn−1 = 0.

Let k = (k1, . . . , km) be a tuple of positive integers with k1 + · · · + km = n− 1. We
rearrange the n − 1 coordinates of z ∈ Cn−1 in m groups, each one of which has kj,
j = 1, . . . ,m, entries and introduce the notation

z(1) = (z1,1, ..., z1,k1), z(2) = (z2,1, ..., z2,k2), . . . , z(m) = (zm,1, ..., zm,km).

We represent then each z(j) = (zj,1, . . . , zj,kj
) ∈ Ckj in the form

z(j) = rjζ(j)

, where rj =
√

|zj,1|2 + · · · + |zj,kj
|2 and ζ(j) ∈ Skj := ∂Bk.
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A bounded measurable function a = a(w), w ∈ Dn, will be called parabolic k-quasi-
radial if it depends only on r1, . . . , rm and yn = Imwn. We denote by Rk the set of
k-quasi-radial functions.

We will always assume first, that k1 ≤ k2 ≤ · · · ≤ km, and second, that

z1,1 = z1, z1,2 = z2, . . . , z1,k1 = zk1 , z2,1 = zk1+1 , ...,

z2,k2 = z−k1 + k2, . . . , zm,km = zn−1.

We use the representations z(j) = rjζ(j), j = 1, . . . ,m, to define the vector

ζ = (ζ(1), ζ(2), ..., ζ(m)) ∈ Sk1 × Sk2 × · · · × Skm .

Let p, q ∈ Zn−1
+ be a pair of orthogonal (p ⊥ q) multi-indices. A function φ ∈

L∞(Dn) is called parabolic quasi-homogeneous (or parabolic k-quasi-homogeneous)
function if it has the form

φ(z) = φ(z(1), z(2), . . . , z(m)) = a(r1, r2, . . . , rm, yn)ζpζq, (1.3)

where a(r1, r2, . . . , rm, yn) ∈ Rk. We will call the pair (p, q) the quasi-homogeneous
degree of the parabolic k-quasi-homogeneous function
a(r1, r2, . . . , rm, yn)ζpζq.

As it was shown in [14], we can construct commutative Banach algebras generated
by Toeplitz operators with parabolic quasi-radial quasi-homogeneous symbols satisfying
certain conditions as follows.

To avoid the repetition of the unitary equivalent algebras and to simplify the
classification of the (non-unitary equivalent) algebras we rearrange the variables zl and
correspondingly the components of multi-indices in p and q so that

(i) for each j with kj > 1, we have

p(j) = (pj,1, . . . , pj,hj
, 0, . . . , 0), q(j) = (0, . . . , 0, qj,hj+1 , . . . , qj,kj

); (1.4)

(ii) if kj′ = kj′′ with j′ < j′′, then hj′ ≤ hj′′ .

Now, given k = (k1, . . . , km), we start with a m-tuple h = (h1, . . . , hm), where
hj = 0 if kj = 1 and 1 ≤ hj ≤ kj − 1 if kj ≥ 1; in the last case, if kj′ = kj′′ with j′ < j′′,
then hj′ ≤ hj′′ .
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We denote by Rk(h) the linear space generated by all parabolic k-quasi-radial
quasi-homogeneous functions a(r1, r2, . . . , rm, yn)ζpζq, where
a(r1, r2, . . . , rm, yn) ∈ Rk, and the components p(j) and q(j), j = 1, 2, . . . ,m, of the
multi-indices p and q are of the form (1.4) with

pj,1 + · · · + pj,hj
= qj,hj+1 + · · · + qj,kj

,

pj,1, . . . , pj,hj
, qj,hj+1 , . . . , qj,kj

∈ Z+.

1.8.3 Lemma ([14, Lemma 3.1]). Given a parabolic quasi-radial function a = a(r1, . . . , rm, yn),
we have

RTaR
∗ : {cα(ξ)}α∈Zn−1

+
7−→ {γa,k(α, ξ)cα(ξ)}α∈Zn−1

+
,

where

γa,k(α, ξ) = 1
Γ(λ+ 1)Πm

j=1(kj − 1 + |α(j))!

×
∫
Rm+1

+

a

(√
r1

2ξ , · · · ,
√
rm
2ξ ,

v + r1 + · · · + rm
2ξ

)

× vλe−(v+r1+···+rm)dv
m∏
j=1

r
|α(j)|+kj−1
j drj, ξ ∈ R+.

For each α ∈ Zn−1
+ , we denote by êα = {δα,β}β∈Zn−1

+
the α’s element of the standard

orthonormal basis in l2(Zn−1
+ ). Given c(ξ) ∈ L2(R+) let

êα(c(ξ)) = êα ⊗ c(ξ) = {δα,βc(ξ)}β∈Zn−1
+

be the corresponding one-component element of l2(Zn−1
+ , L2(R+)).

1.8.4 Lemma ([14, Lemma 3.2]). Given a parabolic k-quasi-radial quasi-homogeneous
symbol of the form (1.3), we have

RTφR
∗ : êα(c(ξ)) 7−→

0, if there exists lsuch thatαl + pl − ql < 0
γ̃a,k,p,q(α, ξ)êα+p−q(c(ξ)), if ∀l α1 + pl − ql ≥ 0,
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where

γ̃a,k,p,q(α, ξ) = 2m(α + p)!√
α!(α + p− q)!Γ(λ+ 1)

m∏
j=1

1
(kj − 1 + |α(j) + p(j))!

×
∫
Rm+1

+

a

(
r1√
2ξ , · · · , rm√

2ξ ,
v + r2

2ξ

)

× vλe−(v+r2)dv
m∏
j=1

r
2|α(j)|+|p(j)|−|q(j)|+2kj−1
j drj, ξ ∈ R+.

According to Corolary 4.6 and its remarks in [14], the Banach algebra generated by
Toeplitz operators with symbols in Rk(h) is commutative on every weighted Bergman
space A2

λ(Dn), λ > −1. For n = 2 these algebras collapse to the single C∗-algebra
generated by Toeplitz operators with quasi-parabolic symbols and for n > 2 these
algebras are just Banach and, extending them to C∗-algebras, they become non
commutative.

In this thesis we will study the simplest case n = 3 and k = (2). This implies that
h = (1) = 1 and thus the symbols we will work with are of the form a(r, y)ζ(p,0)ζ

(0,p). We
denote by T (λ) the Banach algebra generated by the Toeplitz operators T

a(r,y)ζ(p,0)ζ
(0,p) ,

where a = a(r, Im z3) ∈ L∞(D3), r =
√

|z1|2 + |z1|2, and p ∈ Z+.
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Chapter 2

Bergman Space Representation

2.1 Bergman Space Representation

We denote by Dn the Siegel in Cn defined by

Dn = {z = (z′, zn) ∈ Cn−1 × C : Im zn − |z′|2 > 0}. (2.1)

Let D = Cn−1 × R × R+. The mapping

κ : (z′, u, v) ∈ D 7−→ (z′, u+ iv + i|z′|2) ∈ Dn (2.2)

is a diffeomorphism between D and Dn with inverse

κ : (z′, zn) 7−→ (z′,Re zn, Im zn − |z′|2).

Denote by dν(z) = dx1dx2 · · · dxndyn, where zm = xm + iym, m = 1, . . . , n, the
standard Lebesgue measure in Cn, and introduce the following one-parameter family
of weighted measures

dµλ(z) = cλ
4 (Im zn − |z′|2)λdν(z)

where the normalizing constant is given by

cλ = Γ(n+ λ+ 1)
πnΓ(λ+ 1) . (2.3)

Denote by A2
λ(Dn) the weighted Bergman space being the (closed) subspace of

L2(Dn, dµλ) which consists of analytic functions. It is well known that the weighted
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Bergman projection BDn,λ
of L2(Dn, dµλ) onto the Bergman space A2

λ(Dn) is given by

(BDn,λ
f)(z) =

∫
Dn

f(ζ)(
zn−ζn

2i − z′ · ζ ′
)n+λ+1dµλ(ζ).

Return now to the domain D = Cn−1 ×R×R+ and introduce the space L2(D, dηλ)
where the measure dηλ is given by the formula

dηλ(w) = ηλ(w) = cλ
4 v

λdν(z), λ > −1,

and the constant cλ is given by (2.3).

The operator U0 : L2(Dn, dµλ) 7−→ L2(D, dηλ), defined by

(U0f)(w) = f(κ(w)),

where the mapping κ is given by (2.2), is obviously unitary.

The image A0 = U0(A2
λ(Dn))) coincides with the set of all L2(D, dηλ)-functions

that satisfy the equations(
∂

∂u
+ i

∂

∂v

)
φ = 0 and

(
∂

∂zk
− i

∂

∂u
zk

)
φ = 0, k = 1, . . . , n− 1.

We introduce the unitary operator U1 = I ⊗ F ⊗ I acting on
L2(D, dηλ) = L2(Cn−1, dvλ) ⊗ L2(R) ⊗ L2(R+, dηλ), where

(Ff)(ξ) = 1√
2π

∫
R
f(u)e−iξudu

is the Fourier transform on L2(R).

Then the image A1(D) = U1(A0(D)) consists of all L2(D, dηλ)-functions of the form

φ(z′, ξ, v) = χR+(ξ)ψ(z′, ξ)e−|ξ|v, (2.4)

where a functions ψ has to satisfy the equations(
∂

∂zk
+ ξzk

)
ψ(z′, ξ) = 0, k = 1, . . . , n− 1. (2.5)
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We introduce now the weighted Fock space on Cn−1. Given a (weight) parameter
α ∈ R+ consider L2(Cn−1, dvα), where

dvα(z′) =
(
α

π

)n−1
e−α|z′|2dv(z′), z′ ∈ Cn−1.

Then the Fock space F 2
α(Cn−1) is the closed subspace of L2(Cn−1, dvα) which

consists of analytic functions. We denote by Pα the orthogonal Bargmann projection
of L2(Cn−1, dvα) onto F 2

α(Cn−1).

For each ξ ∈ R, we introduce the operator

(Vξf)(z′) =
(

2|ξ|
π

)− n−1
2

e|ξ||z′|2f(z′) (2.6)

which maps unitarily L2(Cn−1) onto L2(Cn−1, dv2|ξ|).

Note that if f ∈ L2(Cn−1, dv2|ξ|), then

(V −1
ξ f)(z′) =

(
2|ξ|
π

)n−1
2

e−|ξ||z′|2f(z′).

So, for each ξ ∈ R+ and f ∈ L2(Cn−1, dv2ξ), we have

(
∂

∂zk
+ ξzk

)
(V −1

ξ f)(z′) =
(

2ξ
π

)n−1
2
(

−ξzke−ξ|z′|2f(z′) + e−ξ|z′|2 ∂f

∂zk
(z′) + ξzke

−ξ|z′|2f(z′)
)

=
(

2ξ
π

)n−1
2

e−ξ|z′|2 ∂f

∂zk
(z′).

Thus,

Vξ

(
∂

∂zk
+ ξzk

)
V −1
ξ = ∂

∂zk
, k = 1, . . . , n− 1. (2.7)

It is convenient to represent L2(D, dηλ) in the form

L2(D, dηλ) = L2(R) ⊗ L2(R+, ηλ) ⊗ L2(Cn−1) = L2(R+, ηλ) ⊗
∫ ⊕

R
L2(Cn−1, dv2ξ)dξ.

Using this representation we define the operator

V = I ⊕
∫ ⊕

R
Vξdξ,
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which maps unitarily

L2(R+, ηλ) ⊗
∫ ⊕

R
L2(Cn−1)dξ onto L2(R+, ηλ) ⊗

∫ ⊕

R
L2(Cn−1, dv2|ξ|)dξ.

Using (2.4), if we take a function φ(z′, ξ, v) = χR+(ξ)ψ(z′, ξ)e−ξv in A1(D), we have

V φ(z′, ξ, v) = χR+(ξ)e−ξvψ′(z′, ξ),

where ψ′(z′, ξ) =
(

2|ξ|
π

)− n−1
2 e|ξ||z′|2ψ(z′, ξ) and, by Fubini’s Theorem,

∥V φ∥2 =
∫
R+

(∫
R+
e−2ξv∥ψ′(·, ξ)∥2dξ

)
cλ
4 v

λdv

=
∫
R
h(ξ)2∥ψ′(·, ξ)∥2dξ

=
∫
R

∥h(ξ)ψ′(·, ξ)∥2dξ.

(2.8)

where h(ξ)2 =
∫
R+
e−2ξv cλ

4 v
λdv.

Since
(
∂

∂zk
+ ξzk

)
ψ = 0, by (2.7), the function ψ′ is analytic. Moreover, by (2.8),

we see that the function (z′, ξ) 7→ h(ξ)ψ′(z′, ξ) belongs to
∫⊕
R L2(Cn−1, dv2ξ)dξ.

Thus, if we let c(ξ) = h(ξ)−1, we can write

φ(z′, ξ, v) = χR+c(ξ)e−ξv(h(ξ)ψ′(z′, ξ, v)).

This proves that AV = V (A1(D)) consists of all functions of the form

φ(z′, ξ, v) = χR+(ξ)c(ξ)e−ξvψ(ξ, z′), (2.9)

where ∥φ∥ = ∥ψ∥.
Since ∫

R+
e−2ξvvλdv = Γ(λ+ 1)

(2ξ)λ+1 ,

we can summarize the previous lines in the following result.

2.1.1 Lemma. The unitary operator U = V U1U0 maps the Bergman space A2
λ(Dn)

onto the space AV which is the closed subspace of

L2(R+, dηλ) ⊗
∫ ⊕

R
L2(Cn−1, dv2ξ)dξ
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and consists of all functions of the form

φ(z′, ξ, v) = χR+(ξ)
(

4(2ξ)λ+1

cλΓ(λ+ 1)

) 1
2

e−ξvψ(ξ, z′),

where
ψ(ξ, z′) ∈

∫ ⊕

R+
F 2

2ξ(Cn−1)dξ.

Introduce now the isometric embedding

R0 :
∫ ⊕

R+
F 2

2ξ(Cn−1)dξ → L2(R+, dηλ) ⊗
∫ ⊕

R
L2(Cn−1, dv2ξ)dξ

by the rule

R0 : ψ(ξ, z′) 7−→ χR+(ξ)
(

4(2ξ)λ+1

cλΓ(λ+ 1)

) 1
2

e−ξvψ(ξ, z′),

where the function ψ(ξ, z′) is extended by zero for ξ ∈ R\R+ for each z′ ∈ Cn−1.

Since, by Fubini’s Theorem,

⟨R0ψ, φ⟩ =
∫
R

∫
R+

∫
Cn−1

χR+(ξ)c(ξ)e−ξvψ(ξ, z′)φ(z′, ξ, v)cλ4 v
λdv2|ξ|dvdξ

=
∫
R+

∫
Cn−1

ψ(ξ, z′)
(∫

R+
c(ξ)e−ξvφ(z′, ξ, v)cλ4 v

λdv

)
dv2|ξ|dξ

=
∫
R+

⟨ψ(ξ, ·), φ′(ξ, ·)⟩L2(Cn−1,dv2ξ)dξ

=
∫
R+

⟨ψ(ξ, ·), P2ξφ
′(ξ, ·)⟩L2(Cn−1,dv2ξ)dξ

= ⟨ψ, (P2ξ ⊗ I)φ′⟩,

where
φ′(ξ, z′) =

∫
R+
c(ξ)e−ξvφ(z′, ξ, v)cλ4 v

λdv,

we conclude that

R∗
0 : f 7−→

∫
R+

(
4(2ξ)λ+1

cλΓ(λ+ 1)

) 1
2

e−ξv(I ⊗ P2ξ)f(v, ξ, z′)cλ4 v
λdv (2.10)

Since R0 is isometric, we have

R∗
0R0 = I :

∫ ⊕

R+
F 2

2ξ(Cn−1)dξ →
∫ ⊕

R+
F 2

2ξ(Cn−1)dξ.
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Moreover, R∗
0 is surjective, sinceR0 is injective, and by (2.9), R0 maps

∫⊕
R+
F 2

2ξ(Cn−1)dξ
onto AV . This implies that the image of R0R

∗
0 is AV . Also, (R0R

∗
0)2 = R0R

∗
0 and

(R0R
∗
0)∗ = R0R

∗
0, therefore we conclude that

R0R
∗
0 = PV : L2(R+, dηλ) ⊗

∫ ⊕

R
L2(Cn−1, dv2|ξ|)dξ → AV ,

where PV is the orthogonal projection of

L2(R+, dηλ) ⊗
∫ ⊕

R
L2(Cn−1, dv2|ξ|)dξ

onto AV .
Thus finally we have

2.1.2 Theorem. The operator R = R∗
0U maps L2(Dn, dµλ) onto

∫⊕
R+
F 2

2ξ(Cn−1)dξ, and
the restriction

R|A2
λ

(Dn) : A2
λ(Dn) →

∫ ⊕

R+
F 2

2ξ(Cn−1)dξ

is an isometric isomorphism.
The adjoint operator

R∗ = U∗R0 :
∫ ⊕

R+
F 2

2ξ(Cn−1)dξ → A2
λ(Dn) ⊂ L2(Dn, dµλ)

is the isometric isomorphism of
∫⊕
R+
F 2

2ξ(Cn−1)dξ onto the subspace A2
λ(Dn) of L2(Dn, dµλ),

Furthermore

RR∗ = I :
∫ ⊕

R+
F 2

2ξ(Cn−1)dξ →
∫ ⊕

R+
F 2

2ξ(Cn−1)dξ,

R∗R = BDn,λ
: L2(Dn, dµλ) → A2

λ(Dn),

where BDn,λ
is the Bergman projection of L2(Dn, dµλ) onto A2

λ(Dn).

2.2 Toeplitz operators

Consider a function a ∈ L∞(Dn, dµλ). Let Ma : L2(Dn, dµλ) 7−→ L2(Dn, dµλ) be the
multiplication operator with symbol a and T (λ)

a = BDn,λ
Ma|A2

λ
(Dn) the Toeplitz operator

with symbol a.
Then, since BDn,λ

= R∗R and I = RR∗, we have

RT (λ)
a R∗ = R((R∗R)Ma)R∗ = RMaR

∗ = R∗
0V U1U0MaU

∗
1V

∗R0.
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Note that for every f ∈ L2(D, dηλ),

U0MaU
∗
0 f = U0(a · (f ◦ κ−1)) = (a ◦ κ)f = Ma0f,

where Ma0 is the multiplication operator in L2(D, dηλ) with symbol a0 = a ◦ κ.

Suppose now that a does not depend on Re zn, that is,

a(z′, zn) = a(z′, zn + t), t ∈ R. (2.11)

In this case, a0 doesn’t depend on u and we can write a0 = a0(z′, v) ∈ L∞(Cn−1 ×R+).

This implies that, for every f ∈ L2(D, dηλ) ∩ L1(D, dηλ),

(Ma0U
∗
1 f)(z′, u, v) = 1√

2π

∫
R
a0(z′, v)f(t)eiutdt

= a0(z′, v) 1√
2π

∫
R
f(t)eiutdt

= a0(z′, v)(F ∗f)(z′, u, v)

and then

(U1Ma0U
∗
1 f)(z′, u, v) = 1√

2π

∫
R
a0(z′, v)(F ∗f)(z′, t, v)e−iutdt

= a0(z′, v) 1√
2π

∫
R
(F ∗f)(z′, t, v)e−iutdt

= a0(z′, v)(FF ∗f)(z′, t, v)
= a0(z′, v)f(z′, t, v).

This proves that U1Ma0U
∗
1 = Ma0 .

Furthermore, for every f ∈ L2(D, dηλ) = L2(R+, dηλ) ⊗
∫⊕
R L2(Cn−1, dv2ξ)dξ we

have

VMa0V
∗ : f 7−→

(
2|ξ|
π

)− n−1
2

e|ξ||z′|2f(z′, ξ, v)

7−→ a0(z′, v)
(

2|ξ|
π

)− n−1
2

e|ξ||z′|2f(z′, ξ, v)

7−→ a0(z′, v)f(z′, ξ, v),

which implies VMa0V
∗ = Ma0 .
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Thus, we conclude that

R∗TaR = R∗
0V U1(U0MaU

∗
1 )V ∗R0

= R∗
0V (U1Ma0U

∗
1 )V ∗R0

= R∗
0(VMa0V

∗)R0

= R∗
0Ma0R0.

We take now ψ ∈
∫⊕
R+
F 2

2ξ(Cn−1)dξ and see how R∗
0Ma0R0 acts on it. It’s clear that

(Ma0R0ψ)(v, ξ, z′) = a0(z′, v)χR+(ξ)
(

4(2ξ)λ+1

cλΓ(λ+ 1)

) 1
2

e−ξvψ(ξ, z′), (2.12)

where ψ is extended as before.

Recall that the Bargmann projection P2|ξ| of L2(Cn−1, dv2|ξ|) onto F 2
2|ξ|(Cn−1) is

given by the integral operator

P2|ξ|f(z) =
∫
Cn−1

f(w′)e2|ξ|z′w′
dv2|ξ|(w′), f ∈ L2(Cn−1, dv2|ξ|),

where Kw′(z′) = K(z′, w′) = e2|ξ|z′w′ is the reproducing kernel of F 2
2|ξ|(Cn−1).

It follows that if f ∈ L2(R+, dηλ) ⊗
∫⊕
R L2(Cn−1, dv2|ξ|)dξ, fixing ξ,

(I ⊗ P2|ξ|)f(v, ξ, z′) =
∫
Cn−1

f(v, ξ, w′)K(z′, w′)dv2|ξ|(w′).

From (2.12) we obtain

(I⊗P2|ξ|)(Ma0R0)ψ(v, ξ, z′)

=
∫
Cn−1

a0(w′, v)χR+(ξ)c(ξ)e−ξvψ(ξ, w′)K(z′, w′)dv2|ξ|(w′)

= χR+(ξ)c(ξ)e−ξv
∫
Cn−1

a0(w′, v)ψ(ξ, w′)K(z′, w′)dv2|ξ|(w′)
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Finally, using (2.10), (2.12) and Fubini’s Theorem, we have

(R∗
0Ma0R0ψ)(ξ, z′)

=
∫
R+
χR+(ξ)c(ξ)2e−2ξv

(∫
Cn−1

a0(w′, v)ψ(ξ, w′)K(z′, w′)dv2|ξ|(w′)
)
cλ
4 v

λdv

=
∫
Cn−1

(∫
R+
χR+(ξ)c(ξ)2e−2ξva0(w′, v)cλ4 v

λdv

)
ψ(ξ, w′)K(z′, w′)dv2|ξ|(w′)

=
∫
Cn−1

ãξ(w′)ψ(ξ, w′)K(z′, w′)dv2|ξ|(w′)

= T
(ξ)
ãξ

(z′),

where

ãξ(z′) =
∫
R+

(
4(2ξ)λ+1

cλΓ(λ+ 1)

)
e−2ξva0(z′, v)cλ4 v

λdv

=
∫
R+

(2ξ)λ+1

Γ(λ+ 1)e
−2ξvvλa0(z′, v)dv

=
∫
R+

(2ξ)λ+1

Γ(λ+ 1)e
−2ξvvλa ◦ κ(z′, u, v)dv (2.13)

and T
(ξ)
ãξ

is the Toeplitz operator with symbol ãξ acting on F 2
2ξ(Cn−1).

We conclude that
RT (λ)

a R∗ =
∫ ⊕

R+
T

(ξ)
ãξ
dξ. (2.14)

2.3 The symbol ãξ
Recall that

ãξ(z′) =
∫
R+

(2ξ)λ+1

Γ(λ+ 1)e
−2ξvvλa0(z′, v)dv.

2.3.1 ∥ãξ∥∞ and ∥a∥∞

If a0(z′, v) = b1(z′)b2(v), for some functions b1 ∈ L∞(Cn−1), b2 ∈ L∞(R+), then

ãξ(z′) = b1(z′)
∫
R+

(2ξ)λ+1

Γ(λ+ 1)e
−2ξvvλb2(v)dv.

Since ∫
R+
vse−tvdv = Γ(s+ 1)

ts+1 , (2.15)
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we have ãξ(z′) = b1(z′) when b2(v) = 1. In this case ∥ãξ∥∞ = ∥a0∥∞.

Let α ≥ 0, β > 0 and suppose b2(v) = vαe−βv. Then we have b′
2(v) = (αv−1 −

β)vαe−βv, so that b2 has a maximum at v = α/β. Therefore

∥b2∥∞ = b2(α/β) = ( α
βe

)α

and
∥a0∥∞ = ∥b1∥∞∥b2∥∞ = ∥b1∥∞( α

βe
)α.

Also, by (2.15),

ãξ(z′) = b1(z′) (2ξ)λ+1

Γ(λ+ 1)

∫
R+
vλ+αe−(2ξ+β)vdv

= b1(z′) (2ξ)λ+1

Γ(λ+ 1)
Γ(λ+ α + 1)
(2ξ + β)λ+α+1 .

Then in general ∥aξ∥∞ ̸= ∥a0∥∞.
However, we always have

|ãξ(z′)| ≤ (2ξ)λ+1

Γ(λ+ 1)

∫
R+
vλe−2ξv∥a0∥∞dv = ∥a0∥∞,

which implies ∥ãξ∥ ≤ ∥a∥∞.

2.3.2 Limits at 0 and at ∞

Suppose a0(z′, v) = b1(z′)b2(v) such that

b2(t) → A, t → ∞,

b2(t) → B, t → 0+.

Note that, applying the change of variable y = 2ξv,

ãξ(z′) = b1(z′) (2ξ)λ+1

Γ(λ+ 1)

∫
R+
e−2ξvvλb2(v)dv

= b1(z′)
Γ(λ+ 1)

∫
R+
e−yyλb2(

y

2ξ )dy.

Since
|e−vvλb2(

v

2ξ )| ≤ ∥b2∥∞|e−vvλ|,
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where the last function is integrable and independent of ξ, by Lebesgue’s dominated
convergence theorem we have

lim
ξ→0+

ãξ(z′) = A
b1(z′)

Γ(λ+ 1)

∫
R+
e−yyλdy = Ab1(z′), z′ ∈ Cn−1

and
lim
ξ→∞

ãξ(z′) = B
b1(z′)

Γ(λ+ 1)

∫
R+
e−yyλdy = Bb1(z′), z′ ∈ Cn−1.

2.3.3 Continuity

Consider the logarithmic metric ρ on R+ defined by

ρ(x, y) = | ln(x) − ln(y)|, x, y ∈ R+.

Suppose that λ ≥ 0 and a(z′, v) = b1(z′)b2(v). Then ξ 7→ ãξ(z′) is uniformly
continuous with respect to the metric ρ for every z′ ∈ Cn−1.

Indeed, reasoning as in [19, Theorem 4.4], we can assume, without loss of generality,
that ξ2 > ξ1. Then

(2ξ1)λ+1vλe−2ξ1v ≥ (2ξ2)λ+1vλe−2ξ2v iff ξλ+1
1 e−2ξ1v ≥ ξλ+1

2 e−2ξ2v

iff (λ+ 1) ln ξ1 − 2ξ1v ≥ (λ+ 1) ln ξ2 − 2ξ2v

iff v ≥ (λ+ 1)
2

1
ξ2 − ξ1

ln ξ2

ξ1
:= v0

Thus we have∣∣∣∣∣
∫
R+

(2ξ1)λ+1vλe−2ξ1vb2(v)dv −
∫
R+

(2ξ2)λ+1vλe−2ξ2vb2(v)dv
∣∣∣∣∣

≤ ∥b2∥∞

∫
R+

|(2ξ1)λ+1vλe−2ξ1v − (2ξ2)λ+1vλe−2ξ2v|dv

= ∥b2∥∞

(∫ ∞

v0
(2ξ1)λ+1vλe−2ξ1vdv −

∫ ∞

v0
(2ξ2)λ+1vλe−2ξ2vdv

+
∫ v0

0
(2ξ2)λ+1vλe−2ξ2vdv −

∫ v0

0
(2ξ1)λ+1vλe−2ξ1vdv

)
.
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Applying in each integral the change of variables y = 2ξ1v or y = 2ξ2v, respectively,
the sum inside parenthesis equals

∫ ∞

2ξ1v0
yλe−ydy −

∫ ∞

2ξ2v0
yλe−ydy +

∫ 2ξ2v0

0
yλe−ydy −

∫ 2ξ1v0

0
yλe−ydy

= 2
∫ 2ξ2v0

2ξ1v0
yλe−ydy ≤ 4Mλ(ξ2 − ξ1)v0 = 2Mλ(λ+ 1) ln ξ2

ξ1

= 2Mλ(λ+ 1)ρ(ξ2, ξ1),

where
Mλ = sup

y∈R+

yλe−y = λλe−λ, if λ > 0,

and
M0 = 1.

Therefore, we conclude that

|ãξ1(z′) − ãξ2(z′)| ≤ 2Mλ
λ+ 1

Γ(λ+ 1) |b1(z′)|∥b2∥∞ρ(ξ2, ξ1)

≤ 2Mλ
λ+ 1

Γ(λ+ 1)∥b1∥∞∥b2∥∞ρ(ξ2, ξ1).

Doing a similar analysis for −1 < λ < 0 we conclude the following result.

2.3.1 Lemma. Let t > −1 and r1, r2 > 0. Then∫
R+0

|(r1)t+1vte−r1v − (r2)t+1vte−r2v|dv ≤ 2tte−t(t+ 1)| log(r1/r2)|.
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Chapter 3

Commutative C∗-Algebras

For every α > 0 introduce now the linear operator

Rα : F 2
1 (Cn−1) → F 2

α(Cn−1),

given by
Rαf(z′) = f(α1/2z′), z′ ∈ Cn−1.

It follows from the Change of Variables Theorem that Rα is a unitary operator
with R∗

α = R−1
α = Rα−1 .

3.0.1 Lemma. If φ ∈ L∞(Cn−1) then

R∗
αT

α
φRα = T 1

φ◦τα
,

where τα(z′) = α−1/2z′ and Tαφ and T 1
φ◦τα

denote the Toeplitz operators with symbols φ
and φ ◦ τα acting on F 2

α(Cn−1) and F 2
1 (Cn−1), respectively.
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Proof. We have, by a change of variables,

R∗
αT

α
φRα = R∗

αPαMφRα : f 7−→ f(α1/2z′)
7−→ φ(z′)f(α1/2z′)

7−→
∫
Cn−1

φ(w′)f(α1/2w′)eαz′w′
(
α

π

)n−1
e−α|w′|2dν(w′)

=
∫
Cn−1

φ(α−1/2w′)f(w′)eα1/2z′w′ e−|w′|2

πn−1 dν(w′)

7−→
∫
Cn−1

φ(α−1/2w′)f(w′)ez′w′ e−|w′|2

πn−1 dν(w′)

= T 1
φ◦τα

.

3.1 Quasi-parabolic case

We will call a function a(z), z ∈ Dn, quasi-parabolic if a(z) = a(r, yn) = a(r1, . . . , rn−1, Im zn).
Note that such a satisfies condition (2.11) and a0(z′, v) = a(κ(z′, v)) = a(z′, v + |z′|2).
Thus we can write a0 = a0(r, v) = a(r, v + |r|2).

Then (2.14) holds and by (2.13) we have

ãξ(z′) = ãξ(r) = (2ξ)λ+1

Γ(λ+ 1)

∫
R+
e−2ξvvλa(r, v + |r|2)dv. (3.1)

We will show that the operator T (λ)
a is unitarily equivalent to a specific multiplication

operator.
Let us first recall some facts about radial operators. A function φ ∈ L∞(C) is

called radial if there is some function ψ ∈ L∞(R+) such that φ(z) = ψ(|z|).
It is well known (see, for example, [9]) that if φ ∈ L∞(C) is a radial function, then

the Toeplitz operator Tφ with symbol φ acting on the one-dimensional Fock space
F 2(C) is diagonal with respect to the orthonormal basis consisting of the normalized
monomials ek(z) = zk/

√
k!, n ∈ Z+, with eigenvalues

γφ(x) = 1
n!

∫
R+
a(

√
r)e−rrndr, n ∈ Z+. (3.2)

We extend this result to the Fock space F 2
α(Cm).
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3.1.1 Lemma. Let φ ∈ L∞(Cm) a function such that φ(z) = φ(r1, . . . , rm) and Tαφ the
Toeplitz operator with symbol φ acting on F 2

α(Cm). Then Tαφ is diagonal with respect to

the orthonormal basis consisting of the monomials ep(z) =

√√√√α|p|

p! z
p, p ∈ Zm+ and the

eigenvalues are given by

γ(α)
φ (p) = α|p|+m

p!

∫
Rm

+

φ(
√
r)e−α(r1+···+rm)rpdr, p ∈ Zm+ , (3.3)

where
√
r = (√r1, . . . ,

√
rm).

Proof. It is well known that the monomials ep(z) = zp/
√
p! form an orthonormal

basis for the space F 2
1 (Cm). Then the functions Rαep(z) =

√√√√α|p|

p! z
p, p ∈ Zm+ , form an

orthonormal basis por F 2
α(Cm) and, by Lemma 3.0.1, the operator Tαφ is diagonal with

respect to this basis if and only if T 1
φ◦τα

is diagonal with respect to the monomials
{ep}p∈Zm

+
.

Thus, we only need to prove the result for the case α = 1. Let P1 and P be
the Bargmann projection in L2(Cm, dv1) and L2(C, dg), respectively, where dg(z) =
1
π
e−|z|2dA(z), and note that

P1f(z) =
∫
Cm

f(w)ezwdv1(w) = (P ⊗ · · · ⊗ P )f(z).

This also implies that F 2
1 (Cm) = F 2(C) ⊗ · · · ⊗ F 2(C).

Now let φ = φ1 ⊗ · · · ⊗ φm ∈ L∞(C) ⊗ · · · ⊗ L∞(C), where each φk is a radial
function. Then

T 1
φ = P1Mφ = (P ⊗ · · · ⊗ P )(Mφ1 ⊗ · · · ⊗Mφm) = Tφ1 ⊗ · · · ⊗ Tφm ,

where Tφk
denotes the Toeplitz operator with (radial) symbol φk acting on F 2(C).

Using the facts stated before the lemma we see that for every k = 1, . . . ,m, Tφk
is

unitarily equivalent to the operator γφk
I, acting on L2(Z+).

Therefore T 1
φ is unitarily equivalent to the multiplication operator

γφ1I ⊗ · · · ⊗ γφmI = γφI,
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acting on L2(Zm+ ), where γφ = γφ1 ⊗ · · · ⊗ γφm . That is,

γφ(p) = 1
p!

∫
Rm

+

φ(√r1) · · ·φn−1(
√
rm)e−(r1+···+rm)rpdr1 · · · drm

= 1
p!

∫
Rm

+

φ(
√
r)e−(r1+···+rm)rpdr,

where
√
r = (√r1, . . . ,

√
rm). This proves the formula for α = 1.

For a general α we simply replace φ with φ ◦ τα and apply the Change of Variables
Theorem to obtain the desired result.

Returning to the original problem, for every ξ > 0 introduce the linear operator
Qξ : F 2

2ξ(Cn−1) → l2(Zn−1
+ ) defined as the unitary operator such that Qξ(R2ξep) =

(δq,p)q∈Zn−1
+

and define Q =
∫ ⊕

R+
Qξdξ. Note that by the preceding lemma, if φ =

φ(r1, . . . , rn−1) ∈ L∞(Cn−1), then QξT
2ξ
φ Q

∗
ξ is the multiplication operator γ(2ξ)

φ I acting
on l2(Zn−1

+ ), where γ(2ξ)
φ is given by this Lemma.

Using this, we give an alternative proof to Theorem 10.2 in [10].

3.1.2 Theorem. Let a = a(r, yn) be a bounded measurable quasi-parabolic function.
Then the Toeplitz operator T (λ)

a acting on A2
λ(Dn) is unitary equivalent to the mul-

tiplication operator γaI = QRT (λ)
a R∗Q∗ acting on l2(Zn−1

+ ) ⊗ L2(R+). The sequence
γa = {γa(p, ξ)}p∈Zn−1

+
, ξ ∈ R+, is given by

γa(p, ξ) = (2ξ)|p|+λ+n

p!Γ(λ+ 1)

∫
Rn

+

a(
√
r, v + r1 + · · · + rn−1)rpe−2ξ(v+r1+···+rn−1)vλdrdv.

Proof. By the remarks at the beginning of the section we have R∗T (λ)
a R =

∫⊕
R+
T

(ξ)
ãξ
dξ,

where ãξ es given by (3.1).

Since ãξ = ãξ(r1, . . . , rn−1), we have

QRT (λ)
a R∗Q∗ =

∫ ⊕

R+
QξT

(ξ)
ãξ
Q∗
ξdξ =

∫ ⊕

R+
γ

(2ξ)
ãξ

Idξ,
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which is the multiplication operator γaI acting on
∫⊕
R+
l2(Zn−1

+ )dξ = l2(Zn−1
+ ) ⊗L2(R+),

where, by (3.3) and (3.1),

γa(p, ξ) = γ
(2ξ)
ãξ

(p) = (2ξ)|p|+n−1

p!

∫
Rn−1

+

ãξ(
√
r)e−2ξ(r1+···+rn−1)rpdr

= (2ξ)|p|+n−1

p!

∫
Rn−1

+

(
(2ξ)λ+1

Γ(λ+ 1)

∫
R+
e−2ξvvλa(

√
r, v + r1 + · · · + rn−1)dv.

)
· e−2ξ(r1+···+rn−1)rpdr

= (2ξ)|p|+λ+n

p!Γ(λ+ 1)

∫
Rn

+

a(
√
r, v + r1 + · · · + rn−1)rpe−2ξ(v+r1+···+rn−1)vλdrdv.

3.2 Nilpotent case

We will call a function a(z), z ∈ Dn, nilpotent if a(z) = a(y′, Im zn − |z′|2), with
y′ = (Im z1, . . . , Im zn−1). Note that such an a satisfies condition (2.11) and a0(z′, v) =
a(κ(z′, v)) = a(z′, v + |z′|2). Thus we can write a0 = a0(y′, v) and (2.14) holds.

We will show that the operator T (λ)
a is unitarily equivalent to a specific multiplication

operator. We make use of the following facts (see [18]):

A function φ ∈ L∞(Cn−1) is said to be horizontal if for every h ∈ Rn−1

φ(z − ih) = φ(z), for almost all z ∈ Cn−1.

A function φ ∈ L∞(Cn−1) is horizontal if and only if there exists ψ ∈ L∞(Rn−1)
such that

φ(z) = ψ(Re z), a. e. z′ ∈ Cn−1.

A Toeplitz operator T 1
φ with horizontal symbol φ acting on the Fock space F 2

1 (Cn−1)
is unitarily equivalent to the multiplication operator γφI acting on L2(Rn−1).

It turns out that a similar result holds for any function φ ∈ L∞(Cn−1) such that,
for every h in a Lagrangian plane L ⊂ R2(n−1),

φ(z − h) = φ(z), for almost all z ∈ Cn−1.

In the case L = Rn−1 × {0}, we have φ(z − h) = φ(z), h ∈ Rn−1, and we say that
φ is vertical. There exists a unitary operator Q1 : F 2

1 (Cn−1) → L2(Rn−1) such that for
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every vertical function φ ∈ L∞(Cn−1) we have

Q1T
1
φQ

∗
1 = γφI,

φ(z) = φ(Im z1, . . . , Im zn−1) and thus the Toeplitz operator T 1
φ is unitarily equivalent

to the multiplication operator γφI acting on L2(Rn−1) with

γφ(x) = π− n−1
2

∫
Rn−1

φ

(
− y√

2

)
e−|x−y|2dy, x ∈ Rn−1.

Moreover, let α > 0. If φ ∈ L∞(Cn−1) is vertical then φ ◦ τα is also vertical and, by
Lemma 3.0.1, the Toeplitz operator Tαφ acting on F 2

α(Cn−1) is unitarily equivalent to
the multiplication operator

Q1R
∗
αT

α
φRαQ

∗
1 = Q1T

1
φ◦τα

Q∗
1 = γφ◦ταI = γ(α)

φ I,

acting on Ł2(Rn−1), where

γ(α)
φ (x) = π− n−1

2

∫
Rn−1

φ

(
− y√

2α

)
e−|x−y|2dy, x ∈ Rn−1. (3.4)

Returning to the original problem, for every ξ > 0 introduce the unitary operator
Qξ = Q1R

∗
2ξ : F 2

2ξ(Cn−1) → L2(Rn−1) and define Q =
∫ ⊕

R+
Qξdξ. Note that by the

preceding lemma, if φ = φ(y′) ∈ L∞(Cn−1), then QξT
2ξ
φ Q

∗
ξ is the multiplication

operator γ(2ξ)
φ I acting on L2(Rn−1), where γ(2ξ)

φ is given by the preceding Lemma.

Using this, we give an alternative proof to Theorem 10.3 in [10].

3.2.1 Theorem. Let a = a(y′, Im zn − |z′|2) be a bounded measurable nilpotent func-
tion. Then the Toeplitz operator T (λ)

a acting on A2
λ(Dn) is unitary equivalent to the

multiplication operator γaI = QRT (λ)
a R∗Q∗ acting on L2(Rn−1)⊗L2(R+). The function

γa = γa(x′, ξ), where x′ ∈ Rn−1 and ξ ∈ R+, is given by

γa(x′, ξ) = (2ξ)λ+1

π
n−1

2 Γ(λ+ 1)

∫
Rn−1×R+

a( 1
2
√
ξ

(−x′ + y′), v)e−2ξv−|y′|2vλdy′dv

Proof. Reasoning as in the quasi-parabolic case, we have

QRT (λ)
a R∗Q∗ =

∫ ⊕

R+
QξT

(ξ)
ãξ
Q∗
ξdξ =

∫ ⊕

R+
γ

(2ξ)
ãξ

Idξ,
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which is the multiplication operator γaI acting on
∫⊕
R+
L2(Rn−1)dξ = L2(Rn−1)⊗L2(R+),

where, by (2.13), (3.4) and a change of variables,

γa(x′, ξ) = γ
(2ξ)
ãξ

(x′) = π−(n−1)/2
∫
Rn−1

ãξ

(
y′

2
√
ξ

)
e−|x′−y′|2dy′

= (2ξ)λ+1

π
n−1

2 Γ(λ+ 1)

∫
Rn−1×R+

a(− y′

2
√
ξ
, v)e−2ξv−|x′−y′|2vλdy′dv

= (2ξ)λ+1

π
n−1

2 Γ(λ+ 1)

∫
Rn−1×R+

a( 1
2
√
ξ

(−x′ + y′), v)e−2ξv−|y′|2vλdy′dv.

3.3 Quasi-nilpotent case

For an integer 1 ≤ k ≤ n − 2, we use the notation z = (z′, w′, zn) for points of Dn,
where z′ ∈ Ck and w ∈ Cn−k−1. We will call a function a(z), z ∈ Dn, quasi-nilpotent
if a(z) = a(r, y′, Im zn − |w′|2), where r = (r1, . . . , rk), rl = |zl| and y′ = Imw′. Using
this notation we also have

κ(z′, w′, u, v) = (z′, w′, u+ iv + i|z′|2 + i|w′|2),

(z′, w′, u, v) ∈ D.

Note that such an a satisfies condition (2.11), a0(z′, v) = a(κ(z′, v)) = a(r, y′, v +
|z′|2) and (2.14) holds.

Using the facts about Toeplitz operators with radial and vertical symbols stated in
the preceding sections we can give an alternative proof to Theorem 10.4 in [10].

3.3.1 Theorem. Let a = a(r, y′, Im zn − |w′|2) be a measurable quasi-nilpotent func-
tion. Then the Toeplitz operator T (λ)

a acting on A2
λ(Dn) is unitary equivalent to the

multiplication operator γaI acting on l2(Zk+) ⊗ L2(Rn−k−1 × R+).
The sequence γa = {γa(p, x′, ξ)}p∈Zk

+
, (x′, ξ) ∈ Rn−k−1 × R+, is given by

γa(p, x′, ξ) =π− n−k−1
2

(2ξ)|p|+λ+k+1

p!Γ(λ+ 1)

·
∫
Rk

+×Rn−k−1×R+
a(

√
r,

1
2
√
ξ

(−x′ + y′), v + r1 + · · · + rk)

· rpe−2ξ(v+r1+·+rk)−|y′|2vλdrdy′dv,
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where
√
r = (√r1, . . . ,

√
rk).

Proof. It suffices to show the result for the case a(r, y′, v+ |z′|2) = b1(r, v+ |z′|2)⊗b2(y′).
By (2.13), we have

ãξ(z′, w′) =
(∫

R+

(2ξ)λ+1

Γ(λ+ 1)e
−2ξvvλb1(r, v + |z′|2)dv

)
· b2(y′)

= b′
1 ⊗ b2(r, y′),

where
b′

1(r) =
∫
R+

(2ξ)λ+1

Γ(λ+ 1)e
−2ξvvλb1(r, v + |z′|2)dv.

Reasoning as in the proof of Lemma 3.1.1, we have

F 2
2ξ(Cn−1) = F 2

2ξ(Ck) ⊗ F 2
2ξ(Cn−k−1)

and
T

(ξ)
ãξ

= Tb′
1

⊗ Tb2 ,

where Tb′
1

and Tb2 are the Toeplitz operators with symbols b′
1 and b2 acting on the Fock

spaces F 2
2ξ(Ck) and F 2

2ξ(Cn−k−1), respectively.

Since b′
1 = b′

1(r1, . . . , rk) we can apply the remarks before Theorem 3.1.2 with k

instead of n− 1. Thus, there is a unitary operator

Q1
ξ : F 2

2ξ(Ck) → l2(Zk+)

such that Q1Tb′
1
(Q1)∗ = γ1I, where, by (3.3),

γ1(p) = (2ξ)|p|+k

p!

∫
Rk

+

b′
1(

√
r)e−2ξ(r1+···+rk)rpdr

= (2ξ)|p|+λ+k+1

p!Γ(λ+ 1)

∫
Rk

+×R+
b1(

√
r, v + r1 + · · · + rk)e−2ξ(v+r1+···+rk)rpvλdrdv,

p ∈ Zk+.

On the other hand, we have b2 = b2(y′), so that b2 is a vertical symbol. Thus,
applying the remarks before Theorem 3.2.1 with n− k − 1 instead of n− 1, there is a
unitary operator

Q2
ξ : F 2

2ξ(Cn−k−1) → L2(Rn−k−1)
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such that Q2Tb2(Q2)∗ = γ2I, where, by (3.4),

γ2(x′) = π− n−k−1
2

∫
Rn−k−1

b2(−
y′

2
√
ξ

)e−|x′−y′|2dy′

= π− n−k−1
2

∫
Rn−k−1

b2(
−x′ + y′

2
√
ξ

)e−|y′|2dy′, x′ ∈ Rn−k−1.

Therefore, if we put Qξ = Q1
ξ ⊗Q2

ξ , we have

QξT
(λ)
ãξ
Q∗
ξ = γ1I ⊗ γ2I = (γ1 ⊗ γ2)I,

where

γ1 ⊗ γ2(p, x′) =π− n−k−1
2

(2ξ)|p|+λ+k+1

p!Γ(λ+ 1)

·
∫
Rk

+×Rn−k−1×R+
b1(

√
r, v + r1 + · · · + rk)b2(

1
2
√
ξ

(−x′ + v′))

· rpe−2ξ(v+r1+·+rk)−|y′|2vλdrdy′dv,

=π− n−k−1
2

(2ξ)|p|+λ+k+1

p!Γ(λ+ 1)

·
∫
Rk

+×Rn−k−1×R+
a(

√
r,

1
2
√
ξ

(−x′ + y′), v + r1 + · · · + rk)

· rpe−2ξ(v+r1+·+rk)−|y′|2vλdrdy′dv.

As in the preceding cases, to conclude the proof, we only need to consider the
unitary operator Q =

∫⊕
R+
Qξdξ which maps

∫⊕
R+
F 2

2ξ(Cn−1)dξ onto

∫ ⊕

R+
l2(Zk+) ⊗ L2(Rn−k−1)dξ = l2(Zk+) ⊗ L2(Rn−k−1 × R+).
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Chapter 4

The Banach Algebra T (λ)

In this chapter we study the structure of the commutative Banach algebra generated
by Toeplitz operators with parabolic quasi-radial quasi-homogeneous symbols T (λ) for
the case n = 3. This algebra was introduced in Preliminaries (1.8.2).

4.1 Parabolic (2)-quasi-radial symbols

First we study operators with parabolic (2)-quasi-radial symbols. According to Lemma
1.8.3, for a parabolic (2)-quasi-radial function a(r, y) we have RTaR∗ = γaI, where

γa(|α|, ξ) = 1
Γ(λ+ 1)(|α| + 1)!

∫
R2

+

a

(√
r

2ξ ,
v + r

2ξ

)
vλe−(v+r)r|α|+1dvdr

= 1
Γ(λ+ 1)(|α| + 1)!

∫
R2

+

a
(√

r, v + r
)

(2ξ)λ+|α|+3vλe−2ξ(v+r)r|α|+1dvdr,

(4.1)
and R is the operator from L2(D3, dµλ) onto l2(Z2

+, L2(R+)) defined in Preliminaries
(1.8.2) whose restriction R|A2

λ
(Dn) is a unitary operator (and coincides with the operator

RQ|A2
λ

(Dn) defined in Section 3.1). Let Tqr be the Banach algebra generated by Toeplitz
operator with parabolic (2)−quasi-radial symbols.

In order to simplify the notation, we will write T̃φ for the operator RTφR∗, T̃ (λ)
for the Banach algebra RT (λ)R∗ and, in general, Ã = RAR∗ for a given algebra
A ⊂ T (λ). Thus, T̃qr is the algebra generated by the multiplication operators γaI.
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Fix a ∈ L∞(R+) and let |α| ∈ Z+, ξ1, ξ2 ∈ R+. Note that

|γa(|α|, ξ1) − γa(|α|, ξ2)|

≤ C
∫
R2

+

|(2ξ1)λ+|α|+3vλe−2ξ1(v+r)r|α|+1 − (2ξ2)λ+|α|+3vλe−2ξ2(v+r)r|α|+1|dvdr

≤ C

(∫
R+

(2ξ1)λ+1vλe−2ξ1vdv
∫
R+

|(2ξ1)|α|+2r|α|+1e−2ξ1r − (2ξ2)|α|+2r|α|+1e−2ξ2r|dr

+
∫
R+

(2ξ2)|α|+2r|α|+1e−2ξ2vdr
∫
R+

|(2ξ1)λ+1vλe−2ξ1v − (2ξ2)λ+1vλe−2ξ2v|dv
)

= ∥a∥∞

(
1

(|α| + 1)!

∫
R+

|(2ξ1)|α|+2r|α|+1e−2ξ1r − (2ξ2)|α|+2r|α|+1e−2ξ2r|dr

+ 1
Γ(λ+ 1)

∫
R+

|(2ξ1)λ+1vλe−2ξ1v − (2ξ2)λ+1vλe−2ξ2v|dv
)
,

where C = ∥a∥∞

Γ(λ+ 1)(|α| + 1)! .

By Lemma 2.3.1 we have

|γa(|α|, ξ1) − γa(|α|, ξ2)| ≤ ∥a∥∞

(
|α||α|e−|α|

(|α| + 1)! + λλe−λ

(λ+ 1)!

)
ρ(ξ2, ξ1).

Therefore, for all sufficiently large integers |α| (independently of a), by Stirling’s
formula, there is some constant C such that

|γa(|α|, ξ1) − γa(|α|, ξ2)| ≤ C
√

|α|ρ(ξ2, ξ1).

That is, fixing |α| ∈ Z+, ξ 7→ γa(|α|, ξ) turns out to be a very slowly oscillating function.

On the other hand, let ξ ∈ R+ and k1, k2 ∈ Z+ with k2 ≥ k1. We have, by (4.1),

|γa(k1, ξ) − γa(k2, ξ)| ≤ ∥a∥∞

Γ(λ+ 1)

∫
R2

+

∣∣∣∣∣ rk1+1

(k1 + 1)! − rk2+1

(k2 + 1)!

∣∣∣∣∣ vλe−(v+r)dvdr

= ∥a∥∞

∫
R+

∣∣∣∣∣ rk1+1

(k1 + 1)! − rk2+1

(k2 + 1)!

∣∣∣∣∣ e−rdr

= 2∥a∥∞

∫ r0

0

(
rk1+1

(k1 + 1)! − rk2+1

(k2 + 1)!

)
e−rdr,
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where

r0 =
(

(k2 + 1)!
(k1 + 1)!

) 1
k2−k1

.

Integrating by parts k2 − k1 we get

∫ r0

0

rk2+1

(k2 + 1)!e
−r = − rk2+1

0
(k2 + 1)!e

−r0 − rk2
0
k2!

e−r0 − · · · − rk1+2
0

(k1 + 2)!e
−r0 +

∫ r0

0

rk1+1

(k1 + 1)!e
−rdr

and, substituting,

|γa(k1, ξ) − γa(k2, ξ)| ≤ 2∥a∥∞

(
rk2+1

0
(k2 + 1)!e

−r0 + rk2
0
k2!

e−r0 + · · · + rk1+2
0

(k1 + 2)!e
−r0

)
.

Since
sup
t∈R+

rje−r = jje−j,

using Stirling’s approximation we obtain a constant C > 0 such that for all sufficiently
large k1 (independently of a),

rk2+1
0

(k2 + 1)!e
−r0 + rk2

0
k2!

e−r0 + · · · + rk1+2
0

(k1 + 2)!e
−r0 ≤ C

1√
k2 + 1

+ · · · + 1√
k1 + 2

≤ C

2

∫ k2+1

k1+1

1√
x

≤ C

2

∫ k2

k1

dx√
x

= C(
√
k2 −

√
k1).

We conclude that

|γa(k1, ξ) − γa(k2, ξ)| ≤ C(
√
k2 −

√
k1).

Thus, fixing ξ ∈ R+, k 7→ γa(k, ξ) is a square-root-slowly oscillating function.

Moreover, it follows from the inequalities above that for arbitrary (k1, ξ1), (k2, ξ2) ∈
Z+ × R+ we have

|γa(k1, ξ1) − γa(k2, ξ2)| ≤ C
(√

min(k1, k2)ρ(ξ1, ξ2) + |
√
k2 −

√
k1|
)
. (4.2)

In particular, γa is continuous at every point of Z+ × R+ and, since γa ≤ ∥a∥∞,
we can identify T̃qr with a subalgebra Aqr of CB(Z+ × R+), the Banach algebra of
bounded continuous functions on Z+ × R+.
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Let us analyse this algebra by means of some special symbols. First consider the
bounded function ψ(r, y) = e

− y

y−r2 +1.

We calculate γψ(|α|, ξ). Since ψ(
√

r
2ξ ,

v+r
2ξ ) = e−( r

v
), we have

γψ(|α|, ξ) = γ̂ψ(|α|) = 1
Γ(λ+ 1)(|α| + 1)!

∫
R2

+

e−( r
v

)vλe−(v+r)r|α|+1dvdr

= 1
Γ(λ+ 1)

∫
R+

(
1 + 1

v

)−(|α|+2)
vλe−vdv.

The first factor inside the last integral is always less than 1, thus it is dominated by
the integrable function v 7→ vλe−v. Therefore, by Lebesgue’s dominated convergence
theorem we have

lim
|α|→∞

γ̂ψ(|α|) = 0.

Moreover, γ̂ψ(|α|) is strictly decreasing since

(
1 + 1

v

)−(|α|+2)
<
(

1 + 1
v

)−(|β|+2)

whenever |α| > |β|. Therefore, this function separates the points of Z+ and, by Stone-
Weierstrass theorem, it generates (together with the identity) the whole C∗ algebra of
convergent sequences c.

Since γψ = γ̂ψ ⊗ 1 ∈ CB(Z+ × R+), by the preceding remarks we conclude that the
single operator T̃ψ generates the C∗-algebra of multiplication operators of the form
{γ(|α|) ⊗ 1}α∈Z2

+
.

For each α ∈ Z2
+ , we denote by êα = {δα,β} ∈ Z2

+ the α’s element of the standard
orthonormal basis in l2(Z2

+). Given c(ξ) ∈ L2(R+), let

êα(c(ξ)) = êα ⊗ c(ξ) = {δα,βc(ξ)}β∈Z2
+

(4.3)

be the corresponding one-component element of l2(Z2
+, L2(R+)).

For each k ∈ Z+, we denote by Hk the following subspace of l2(Zn−1
+ , L2(R+)):

Hk = span{êα(c(ξ)) : |α| = k, c ∈ L2(R+)}. (4.4)

Let Pk be the orthogonal projection from l2(Zn−1
+ , L2(R+)) onto Hk. Note that

Pk = {δ|α|,k ⊗ 1}α∈Z2
+
I.

We summarize the preceding remarks:
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4.1.1 Corollary. Let γ ∈ c. Then {γ(|α|) ⊗ 1}α∈Z2
+
I is an element of T̃ (λ). In

particular, Pk ∈ T̃ (λ), for every k ∈ Z+.

We can also obtain continuous functions depending only on ξ as follows. Let
ψ2(r, y) = χR+(y − r2)e−y−r2 . Then

γψ2(|α|, ξ) = 1
Γ(λ+ 1)(|α| + 1)!

∫
R2

+

e− v
2ξ r|α|+1vλe−(v+r)dvdr

= 1
Γ(λ+ 1)

∫
R+
vλe−(1+ 1

2ξ
)vdv

=
(

1 + 1
2ξ

)−(λ+1)

.

Note that ξ 7→
(
1 + 1

2ξ

)−(λ+1)
is a real-valued strictly decreasing function with finite

limits at 0 and ∞. Again by Stone-Weierstrass theorem, this function, together with
the identity, generates the whole C∗-algebra of continuous functions on [0,∞].

These function we have just analyzed separate the points of Z+ × R. Thus, the
algebra Aqr also separates them and, by Theorem 8.1 in [4] we conclude that Aqr

∼=
C(X), where X (i.e., the maximal ideal space M(Tqr) of Tqr) is some compactification
of Z+ × R+. We identify Z+ × R+ with the evaluation functionals in the usual way.

Let M∞(λ) = X\ (Z+ × R+). Since Z+ × R+ is dense in X, for every µ ∈ M∞(λ)
there is a net (kα, ξα)α∈Ω that converges to µ. If we denote by ψµ the multiplicative
functional associated with µ, we have

γa(µ) = φµ(γa) = lim
α∈Ω

γa(kα, ξα),

for every γa ∈ Aqr.

Note that |kα| → ∞ or |ξα| → ∞, otherwise there would be a subnet converging to
a point in Z+ × R+, which must be µ.

Replacing (kα, ξα) by a subnet if necessary and by a similar argument as the given
above, we can assume that one of the following (mutually exclusive) cases holds:

1. kα = k0 and ξ → ∞, for some k0 ∈ Z+,

2. k → ∞ and ξ → ξ0, for some ξ0 ∈ R+,
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3. k → ∞ and ξ → ∞.

This implies that ψµ(γa) = 0, for every γa such that limα γa(kα, ξα) = 0.

Conversely, if (k0, ξ0) ∈ Z+ × R+, for every net (kα, ξα) that tends to infinity in
some of the ways described above, there is a function γa ∈ Aqr such that γa(kα, ξα) → 0
and ψ(k0,ξ0)(γa) = γa(k0, ξ0) ̸= 0.

Accordingly, we define the following sets:

1. Mk,∞: the set of all multiplicative functionals ψ such that ψ(γa) = 0 for every
γa ∈ A with γa(k, ξ) → ∞ as ξ → ∞,

2. M∞,ξ: the set of all multiplicative functionals ψ such that ψ(γa) = 0 for every
γa ∈ A such that γa(k, ξ′) → 0 as k → ∞ and ξ′ → ξ,

3. M∞,∞ the set of all multiplicative functionals ψ such that ψ(γa) = 0 for every
γa ∈ A such that γa(k, ξ) → 0 as k → ∞ and ξ → ∞.

By the preceding remarks we can decompose M∞(λ) as the disjoint union

M∞(λ) =
 ⊔
k∈Z+

Mk,∞

⊔ ⊔
ξ∈R+

M∞,ξ

⊔M∞,∞. (4.5)

We will denote

M∞,R+(λ) =
 ⊔
ξ∈R+

M∞,ξ

⊔M∞,∞.

4.2 The set M∞,∞

We study more deeply the set M∞,∞. Let µ ∈ M∞,∞. By construction there is a net
{(kα, ξα)}α∈Λ converging to µ and such that kα → ∞ and ξα → ∞.

Consider the symbol a1(r, y) = e−r2 we used in the previous section. We have

γ1(k, ξ) =
(

1 + 1
2ξ

)−k−2

.

Since
γ1(µ) = lim

α∈Λ
γ1(kα, ξα)
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is some positive real number,

log(γ1(µ)) = − lim
α∈Λ

(kα + 2) log
(

1 + 1
2ξα

)

is either a positive real number or ∞.

The series
log

(
1 + 1

2ξ

)
=
∑
n=1

(−1)n+1
(

1
2ξ

)n 1
n

converges uniformly with respect to ξ for sufficiently large values. Thus we can write

(kα + 2) log
(

1 + 1
2ξα

)
= kα + 2

2ξα

1 −
(

1
2ξα

)
1
2 +

(
1

2ξα

)2 1
3 + · · ·

 .
Since ∑

n=2

(
1
2ξ

)n−1 1
n
<
∑
n=2

(
1
2ξ

)n−1

,

where the last series converges to zero uniformly as ξ → ∞, it follows that the limit

lim
α∈Λ

kα + 2
2ξα

exists and, therefore,
lim
α∈Λ

kα + 2
ξα

= lim
α∈Λ

kα
ξα

also exists and is equal to an element of [0,∞].

Hence there is a unique θµ such that

tan(θµ) = lim
α∈Λ

kα
ξα

and we can decompose
M∞,∞ =

⊔
θ∈[0,π

2 ]
Mθ,

where
Mθ = {µ ∈ M∞,∞ : θµ = θ}.

Note that, writing (kα, ξα) in polar coordinates, that is,

ξα = rα cos θα,
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kα = rα sin θα,

where rα =
√
k2
α + ξ2

α and θα = arctan kα

ξα
, we have

θµ = lim
α∈Λ

θα.

Moreover, writing two elements of Z+ × R+ in polar coordinates (r1, θ1), (r2, θ),
the inequalities obtained in (4.2) become

|γa(r1, θ1) − γa(r2, θ2)| ≤ C
(√

min(r1 cos θ1, r2 cos θ2)ρ(sin θ1, sin θ2)

+ |
√
r1 cos θ1 −

√
r2 cos θ2|

)
,

for all sufficiently large r1, r2.

In particular, fixing r, the function θ 7−→ γa(r, θ) is uniformly continuous with
respect to the metric (θ1, θ2) 7→ ρ(sin θ1, sin θ2) + |

√
cos θ1 −

√
cos θ2|.

On the other hand, fixing θ the function r 7−→ γa(r, θ) is square-root-slowly
oscillating. Discarding the limit cases θ = 0 and θ = π/2, one expects that a point in
Mθ can be reached by some net with constant angle θ. Thus the sets Mθ seem to be
homeomorphic, since they induce the same function algebras.

This can be proved as follows. We will show that all sets Mθ are homeomorphic
among them for any θ ∈ (0, π2 ).

Let t ≥ 0 and define the function

Φt : Z+ × R+ → Z+ × R+

by
Φt(k, ξ) = (k, tξ).

Φt is clearly a bijection with inverse Φt−1 . We can extend Φt to the compactification
X of Z+ × R+ as follows.

Suppose {(kα, ξα)}α∈Ω is a net in Z+×R+ that converges to some X. Then γa(kα, rα)
converges to γa(µ) for every symbol a ∈ L∞(R+ × R+).

In particular, γt(kα, ξα) must be convergent, for every symbol a, where we define

at(x, y) = a

(
x√
t
,
y

t

)
.
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By (4.1), γt is given by

γt(k, ξ) = 1
Γ(λ+ 1)(k + 1)!

∫
R2

+

a

(√
r

2tξ ,
v + r

2tξ

)
vλrk+1e−(v+r)dvdr

= γa(k, tξ) = γa(Φt(k, ξ)).

Therefore, γa(Φt(kα, ξα)) is convergent for every a ∈ L∞(R+ × R+). Since X is
compact, there is some ν ∈ X such that (kα, ξα) → ν. We can thus define Φt(µ) = ν.

The extension Φt : X → X is continuous since, by similar arguments,

γa(Φt(kα, ξα)) → γa(Φt(µ))

for every γa ∈ A and every net (kα, ξα) in X converging to µ ∈ X. Since its inverse
Φt−1 can be extended the same way, Φt is indeed a homeomorphism.

Fix θ ∈ (0, π2 ) and let µ ∈ Mθ and (kα, ξα) a net converging to µ. Then we have

θΦt(µ) = arctan lim
α

kα
tξϕ

= arctan(tan θ
t

).

That is, Φt(Mθ) ⊂ Marctan( tan θ
t

) and, indeed, Φt(Mθ) = Marctan( tan θ
t

), as can be seen by
applying Φt−1 to the elements of Marctan( tan θ

t
).

Therefore, the restriction Φt|Mθ
: Mθ → Marctan( tan θ

t
) is a homeomorphism and,

varying t ∈ (0,∞), we obtain what we claimed.

4.3 Quasi-Homogeneous Symbols

For every p ∈ N we denote by ϕp the function ϕp(ζ) = ζ(p,0)ζ
(0,p); we simply write ϕ

for ϕ1.

Using Lemma 1.8.4 we have

T̃ϕp = RTϕpR
∗ : ê(α1,α2)(c(ξ)) 7−→

0, if a2 − p < 0,
γ̃ϕp(α, ξ)ê(α1+p,α2−+)(c(ξ)), if a2 − p ≥ 0,

(4.6)
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where

γ̃ϕp(α, ξ) = 2(α1 + p)!α2!
(|α| + p+ 1)!

√
α1!α2!(α1 + p)!(α2 − p)!Γ(λ+ 1)

×
∫
R2

+

vλe−(v+r2)r2(|α|+1)+1dvdr

= (α1 + p)!α2!
(|α| + p+ 1)!

√
α1!α2!(α1 + p)!(α2 − p)!

∫
R+

2e−r2
r2(|α|+1)+1dr

= (α1 + p)!α2!(|α| + 1)!
(|α| + p+ 1)!

√
α1!α2!(α1 + p)!(α2 − p)!

= (|α| + 1)!
(|α| + p+ 1)!

√
(a1 + 1) · · · (a1 + p)(a2 − p+ 1) · · · (a2 − 1)a2.

In particular, we have

γ̃ϕ(α, ξ) =

√
(α1 + 1)α2

|α| + 2 .

Applying this formula several times we get

T̃ pϕ = RT pϕR
∗ : ê(α1,α2)(c(ξ)) 7−→

0, if a2 − p < 0,
γ̃

(p)
ϕ (α, ξ)ê(α1+p,α2−p)(c(ξ)), if a2 − p ≥ 0,

(4.7)

where

γ̃
(p)
ϕ (α, ξ) =

√
(a1 + 1) · · · (a1 + p)(a2 − p+ 1) · · · (a2 − 1)a2

(|α| + 2)p . (4.8)

By comparing the action of RT pϕR∗ and RTϕpR
∗ we find that

γ̃
(p)
ϕ = (|α| + p+ 1)!

(|α| + 1)!(|α| + 2)p γ̃ϕp .

That is,
T̃ϕp = D

d̃p
T̃ pϕ , (4.9)

where D
d̃p

= {d̃p(|α|) ⊗ 1}α∈Z2
+
I,

d̃p = (|α| + 2)p
(|α| + p+ 1)(p)

,

and (x)(p) = x(x− 1) . . . (x− p+ 1) is a kind of Pochhammer symbol (compare with
[1]).
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We note that d̃p(|α|) → 1 as |α| → ∞, so by Corollary 4.1.1, we have analogous
results to those in [1]:

4.3.1 Theorem. For each p ∈ N, the Toeplitz operator Tϕp belongs to the unital algebra
generated by the operators Tψ and Tψ2.

4.3.2 Corollary. The Banach algebra T (λ) is generated, in fact, just by Toeplitz
operators Ta with bounded measurable symbols a(r, y) and the single Toeplitz operator
Tϕ.

4.4 Invariant Subspaces

We have
l2(Z2

+, L2(R+)) =
∞⊕
k=0

Hk,

where Hk is the subspace defined in (4.4).

Each subspace Hk is invariant for all operators from T̃ (λ). From (4.7) we observe
that the operator T̃ϕ restricted to Hk is nilpotent:

(T̃ϕ|Hk
)k+1 = 0.

This implies that, for all p ∈ N,

p−1⊕
k=0

Hk ⊂ ker T̃ pϕ . (4.10)

Reasoning as in [1] we conclude that the algebra T (λ) is not semi-simple:

4.4.1 Lemma. The algebra T (λ) is not semi-simple. The radical Rad T̃ (λ) contains,
in particular, all operators of the form A = DγT̃ϕp, where Dγ = {γ(|α|) ⊗ 1}α∈Z2I,
γ ∈ c0 and p ∈ N.

Proof. It suffices to show that this kind of operators is topologically nilpotent and, by
(4.9), is sufficient to prove this for the case p = 1.

Recall that the orthogonal projections Pk and the operator Dγ belong to the
commutative algebra T̃ (λ). Since I − (P0 + · · · + Pk) ∈ T̃ (λ) is a projection and the
image of P0 + · · · + Pk is a subset of ker T̃ pϕ we have

Ak = Dk
γ T̃

k
ϕ = Dk

γ T̃
k
ϕ (I − (P0 + · · · + Pk−1)) = [Dγ(I − (P0 + · · · + Pk−1)]kT̃ kϕ .

55



4. CHAPTER. THE BANACH ALGEBRA T (λ)

Note that

({γ(|α|) ⊗ 1}α∈Z2I)(I − (P0 + · · · + Pk−1)) = {γk(|α|) ⊗ 1}α∈Z2
+
I,

where

γk(|α|) =

0, |α| ≤ k,

γ(|α|), |α| ≥ k.

Thus,
∥({γ(|α|) ⊗ 1}α∈Z2I)(I − (P0 + · · · + Pk−1))∥ = sup

l≥k
|γ(l)|

and
∥Ak∥

1
k ≥ ∥Dγ(I − (P0 + · · · + Pk))∥∥T̃ϕ∥ = sup

l≥k
|γ(l)|∥T̃ϕ∥ → 0.

Since γ ∈ c0, we have ∥Ak∥ 1
k → 0 as k → ∞.

4.5 The algebra Tϕ
In this section we study the unital Banach algebra generated by the single operator Tϕ.
Let Tϕ be this algebra and, as before, T̃ϕ = RTϕR∗.

Note that the closed linear span of the elements êα(c(ξ)), which were defined in
(4.3), is l2(Z2

+, L2(R+)). By (4.7) and (4.8) we have

∥T̃ pϕ(êα(c(ξ))∥ ≤ ∥γ̃(p)
ϕ ∥∞∥êα(c(ξ))∥.

Hence ∥T̃ pϕ∥ ≤ ∥γ̃(p)
ϕ ∥∞

The elementary inequality

|α| + 2 > α1 + α2 + 1
= (α1 + k) + (α2 − k + 1)

≥ 2
√

(α1 + k)(α2 − k + 1)

implies

|γ̃(p)
ϕ (α, ξ)| =

∣∣∣∣∣∣
√

(α1 + 1) · · · (α1 + p)(α2 − p+ 1) · · · (α2 − 1)α2

(|α| + 2)p

∣∣∣∣∣∣ ≤ 2−p.
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That is, ∥T̃ pϕ∥ ≤ 2−p. Moreover, taking α1 = α2 and making |α| → ∞ we have
|γ̃(p)
ϕ (α, ξ)| → 2−p. Hence, using the same sequence, we have

∥T̃ p(ê(α1,α2)(c(ξ))∥ → 2−p∥ê(α1,α2)(c(ξ))∥.

This proves that ∥T pϕ∥ = 2−p and, therefore, the spectral radius of T̃ϕ is equal to 1
2 .

By the results of [10], there is a unitary operator

Uλ : L2(B3, µλ) → L2(D3, µ̃λ)

that maps A2
λ(B3) onto A2

λ(D3). Moreover, we have UλTϕUλ = Tϕ◦ω−1 , for some
bijective function ω. Therefore,

D(0, 1
2) = Imϕ ◦ ω−1 ⊂ ess-spTϕ

and thus
D(0, 1

2) ⊂ ess-sp T̃ϕ ⊂ sp T̃ϕ ⊂ D(0, 1
2).

This proves that sp T̃ϕ = D(0, 1
2). Furthermore, the maximal ideal space M(T̃ϕ)

of the commutative Banach algebra T̃ϕ coincides with the spectrum of T̃ϕ, i. e.,
M(T̃ϕ) = D(0, 1

2)

4.5.1 Theorem. The Banach algebra T̃ϕ is isomorphic via the Gelfand transform
to the algebra Cα(D(0, 1

2)), which consists of all functions analytic in D(0, 1
2) and

continuous on D(0, 1
2).

Proof. The operators T̃ϕp act on êα(c(ξ)) almost the same way they do in the case of
the Banach algebra of Toeplitz operators with quasi-radial quasi-homogeneous symbols
(see Section 1.8.1).

More precisely, we have
T̃ϕ = Tϕ ⊗ I,

where Tϕ acts on l2(Z2
+) exactly the same way the operator Tϕ, presented in section

1.8.1, acts on the basic vectors of A2
λ(B2).

Tϕ clearly generates the same Banach algebra as T̃ϕ, and this last one generates the
same Banach algebra as Tϕ by considering the application T̃ϕ = Tϕ ⊗ I 7−→ Tϕ.
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4.6 Dense Subalgebra in T (λ)

We denote by D(λ) the dense (non-closed) subalgebra of T̃ (λ) formed by finite sums
of finite products of its generators: operators from Tqr and the single operator T̃ϕ. An
operator A from D̃(λ) has the form

A =
m∑
p=0

(γpI)T̃ pϕ .

For arbitrary multiplication operators γpI the above representation is not unique.
We describe this ambiguity as follows.

Given a function γ defined on Z+ × R+ we define the operator Kγ(p) as the
multiplication operator such that

Kγ(p){cα(ξ)}α∈Z2
+

=

γ(|α|, ξ){cα(ξ)}α∈Z2
+
, |α| ≤ p− 1

0, |α| ≥ p.

We note that Kγ(0) = 0.

Using this operators we can state the following result, similar to the one given in
[1].

4.6.1 Lemma. We have
m∑
p=0

(γpI)T̃ pϕ = 0 (4.11)

if and only if γpI = Kγp(p), for each p = 0, 1, . . . ,m.

Proof. Note that

ImKγp(p) ⊂
p−1⊕
k=0

Hk ⊂ ker T̃ pϕ , p = 0, . . . ,m. (4.12)

The "if" part follows from this.

On the other hand, suppose (4.11) holds. By the calculations from Section 4.3 we
have

T̃ pϕ êα(c(ξ)) = τp(α)ê(α1,α2)(c(ξ)),

where τp(α) ̸= 0 if α2 − p ≥ 0, α ∈ Z2
+.
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Let n ≥ m. By hypothesis we have

0 =
m∑
p=0

(γpI)T̃ pϕ ê(0,n)(c(ξ)) =
m∑
p=0

γp(n, ξ)τp(0, n)ê(p,n−p)(c(ξ)).

Since τp(0, n) ̸= 0, it follows that

γp(n, ξ) = 0, p = 1, . . . ,m

and, in particular, γmI = Kγm(m). Therefore, by (4.12) and (4.11),

m−1∑
p=0

(γpI)T̃ pϕ = 0.

Repeating the above arguments m times we conclude the proof.

4.7 Finitely Generated Subalgebras of Aqr

We recall some known facts and definitions. Let A = A(x1, . . . , xn) be a unital
commutative Banach algebra generated by the elements x1, . . . , xn, and let M(A)
denote is maximal ideal space.

The joint spectrum σ(x1, . . . , xn) of x1, . . . , xn is the set

σ(x1, . . . , xn) = {(m(x1), . . . ,m(xn) : m ∈ M(A)}

and it is homeomorphic to M(A) via

m ∈ M(A) 7−→ (m(x1), . . . ,m(xm)) ∈ σ(x1, . . . , xn).

We also have

σ(x1, . . . , xn) = {(µ1, . . . , µn) : J(x1 − µ1e, . . . , xn − µne) ̸= A},

where e ∈ A is the unit element and J(x1 − µ1e, . . . , xn − µne) denotes the smallest
ideal of A containing the elements xj − µje, j = 1, . . . , n.

Let γ1, . . . , γm ∈ Aqr and let A∗
D(γ1, . . . , γm) denote the C∗ algebra generated by

the elements of D = (γ1, . . . , γn).
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Let (µ1, . . . , µm) ∈ σ(γ1, . . . , γm). Then

γ = (γ1 − µ1)(γ1 − µ1) + . . .+ (γn − µn)(γn − µn)
= |γ1 − µ1|2 + . . .+ |γn − µn|2

belongs to the ideal J(x1 − µ1, . . . , xn − µn). Thus γ is not invertible in A∗
D.

The algebra Aqr can be identified with the subalgebra of L (A2
λ(D3)) of multipli-

cation operators with symbols in Aqr and, being this one a C∗ algebra, it is inverse
closed. Since γ ∈ A∗

D ⊂ Aqr, γ is not invertible in L (A2
λ(D3)).

A bounded multiplication operator is not invertible if and only if its symbol is not
bounded away from zero. Hence we have

4.7.1 Corollary. Either there is (k, ξ) ∈ Z+ ×R+ such that γj(k, ξ) = µj, j = 1, . . . , n
or there is a sequence (kl, ξl) in Z∗

+ × R+ such that

lim
l→∞

γj(kl, ξl) = µj, j = 1, . . . , n.

We mention that, if ψ ∈ M∞,R+(λ) then

(ψ(γ1), . . . , ψ(γn)) = (µ1, . . . , µn) ∈ σ(γ1, . . . , γn)

and we can always assume that the second option in Corollary 4.7.1 holds and that
the respective sequence is such that kl → ∞.

Indeed, let (γ0(k)) be a real-valued decreasing sequence such that γ0(k) → 0. By
the conclusions from Section 4.1 we have γ0 ⊗ 1 ∈ Aqr and, by definition, ψ(γ0 ⊗ 1) = 0.
Thus (0, µ1, . . . , µn) ∈ σ(γ0⊗1, γ1, . . . , γn) and, applying Corollary 4.7.1 to the elements
γ0 ⊗ 1, γ1, . . . , γn, we obtain a sequence with the required properties, since γ0 ⊗ 1 can
only achieve 0 by means of a sequence (kl, ξl) such that kl → ∞.

4.8 Integral representation and Fock spaces

In order to proceed with the analysis of the algebra T (λ) we need some preliminary
considerations on the Berezin transform with respect to certain subspaces of the Fock
space F 2

2ξ(C2).

As it was shown in Sections 2.1 and 2.2, there is a unitary operator

S : A2
λ(D3) →

∫ ⊕

R+
F 2

2ξ(C2)dξ,
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such that for any bounded function a ∈ L∞(D3), a = a(z1, z2, Im z3), we have

STaS
∗ =

∫ ⊕

R+
T

(ξ)
ãξ
dξ,

where T (ξ)
ãξ

is the Toeplitz operator acting on the Fock space F 2
2ξ(C2) whose symbol is

given by

ãξ(z) = (2ξ)λ+1

Γ(λ+ 1)

∫
R+
a(z, iv + i|z|2)e−2ξvvλdv.

As was already remarked in the proof of Lemma 3.1.1, for every ξ > 0 the family
{e(2ξ)

α }α∈Z2
+

of funcions in F 2
2ξ(C2) given by

e(2ξ)
α (z) =

√
(2ξ)|α|

α! zα

is an orthonormal basis for this space.

We also recall a known equality, which will be used later. Let dS be the (not
normalized) surface measure of the unit sphere S2 and α, β ∈ Z2

+. Then

∫
S2
ζαζ

β
dS(ζ) = δα,β

2π2α!
(|α| + 1)! . (4.13)

Let us examine how Toeplitz operators with quasi-parabolic (2)-quasi radial quasi-
homogeneous symbols act in

∫⊕
R+
F 2

2ξ(C2)dξ. In the proof of Theorem 3.1.2 we established
an isomorphism between A2

λ(D3) and l2(Z2
+, L2(R+)) using the direct integral repre-

sentation and obtaining the same expressions for the eigenvalue functions we used in
the previous sections. One could therefore predict the action of the algebra T̃ (λ) on∫⊕
R+
F 2

2ξ(C2)dξ. We do this calculations explicitly, though.

Let a = a(r, y3) ∈ L∞(D3) be a parabolic (2)-quasi-radial function. Since ãξ

depends only on r =
√
r2

1 + r2
2, by Lemma 3.1.1, we have

T
(ξ)
ãξ
e(2ξ)
α = γ

(2ξ)
ãξ

(α)e(2ξ)
α , α ∈ Z2

+.
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Note that, by integration in polar coordinates,

γ
(2ξ)
ãξ

(α) = ⟨T (ξ)
ãξ
e(2ξ)
α , e(2ξ)

α ⟩ = ⟨ãξe(2ξ)
α , e(2ξ)

α ⟩

= (2ξ)λ+|α|+3

π2α!Γ(λ+ 1)

∫
C2×R+

a
(√

r2
1 + r2

2, v + r2
2 + r2

2

)
vλe−2ξ(|z|2+v)|zα|2dV (z)dv

= (2ξ)λ+|α|+3

π2α!Γ(λ+ 1)

∫
R2

+

a
(
r, v + r2

)
e−2ξ(r2+v)r3+2|α|vλdrdv

∫
ζ∈S2

|ζα|dS(ζ)

= (2ξ)λ+|α|+3

Γ(λ+ 1)(|α| + 1)!

∫
R2

+

2a
(
r, v + r2

)
e−2ξ(r2+v)r3+2|α|vλdrdv

= (2ξ)λ+|α|+3

Γ(λ+ 1)(|α| + 1)!

∫
R2

+

a
(√

r, v + r
)
e−2ξ(r+v)r|α|+1vλdrdv = γa(|α|, ξ),

where γa is the function obtained in (4.1) we have been working with.

Hence,

(STaS∗){e(2ξ)
α }ξ∈R+ =

(∫ ⊕

R+
T

(ξ)
ãξ
dξ

)
{e(2ξ)

α }ξ∈R+ = {γ(|α|, ξ)e(2ξ)
α }ξ∈R+ ,

as we would expect.

Consider now STϕpS
∗, p ∈ N, where ϕp is the quasi-homogeneous symbol used in

the previous sections:

ϕp(z) = ζp1ζ2
p = zp1z2

p

(|z1|2 + |z2|2)p
, z ∈ D3.

By (2.13),

ϕ̃pξ(z
′) = (2ξ)λ+1)

Γ(λ+ 1)

∫
R+
ϕp(z′, iv + i|z′|2)e−2ξvvλdv

= ζp1ζ2
p (2ξ)λ+1)

Γ(λ+ 1)

∫
R+
e−2ξvvλdv

= ζp1ζ2
p
.

Due to this, we will write simply ϕp for ϕ̃pξ.
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Integrating in polar coordinates, for α, β ∈ Z2
+ we have

⟨T (ξ)
ϕ̃pξ

e(2ξ)
α , e

(2ξ)
β ⟩ = ⟨ϕ̃pξe

(2ξ)
α , e

(2ξ)
β ⟩

=

√√√√(2ξ)|α|+|β|

α!β!

(
2ξ
π

)2 ∫
C2

zp1z2
p

(|z1|2 + |z2|2)p
zαzβe−2ξ|z|2dV (z)

=

√√√√(2ξ)|α|+|β|

α!β!

(
2ξ
π

)2 ∫
R+
r3+|α|+|β|e−2ξr2

dr
∫
ζ∈S2

ζ(α1+p,α2)ζ
β1,β2+p

dS(ζ).

Note that, by (4.13), the last expression equals 0 unless β = (α1 + p, α2 − p). In
particular, T (ξ)

ϕ̃pξ

e(2ξ)
α = 0 if α2 − p < 0.

Assuming β = (α1 + p, α2 − p) we have

⟨T (ξ)
ϕ̃pξ

e(2ξ)
α , e

(2ξ)
β ⟩ = (2ξ)|α|+2(α1 + p)!α2!√

α1!α2!(α1 + p)!(α2 − p)!(|α| + p+ 1)!

∫
R+

2r3+2|α|e−2ξr2
dr

= (2ξ)|α|+2(α1 + p)!α2!√
α1!α2!(α1 + p)!(α2 − p)!(|α| + p+ 1)!

∫
R+
r|α|+1e−2ξrdr

= (α1 + p)!α2!(|α| + 1)!√
α1!α2!(α1 + p)!(α2 − p)!(|α| + p+ 1)!

= γ̃ϕp(α)

(4.14)

Note that this is the same expression we obtained in Section 4.3. In particular, it
does not depend on the weight parameter 2ξ.

It follows from these relations that (T (ξ)
ϕ̃pξ

)∗ acts by the following rule

(T (ξ)
ϕ̃pξ

)∗(e(2ξ)
α ) =

0, if a1 < p

γ̃ϕp((α1 − p, α2 + p)), if a1 ≥ p

Furthermore, doing a similar calculation one obtains

T
(ξ)

ϕ̃pϕqξ

(e(2ξ)
α ) =

0, if α1 + (p− q) < 0 or α2 − (p− q) < 0
γ̃ϕpϕq

(α), if α1 + (p− q) ≥ 0 and α2 − (p− q) ≥ 0,
(4.15)
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where

γ̃ϕpϕq
(α) = (α1 + p)!(α2 + q)!√

α1!α2!(α1 + (p− q))!(α2 − (p− q))!
(|α| + 1)!

(|α| + p+ q + 1)! (4.16)

4.9 Berezin Transform and Dirac Sequences

We introduce now the generalized Berezin transform.

Let ξ > 0 and S ⊂ Z2
+. We denote by HS the following closed subspace of F 2

2ξ(C2):

HS = span{e(2ξ)
α : α ∈ S}

and let K(2ξ)
S (z, w) =

∑
α∈S

e
(2ξ)
α (w)e(2ξ)

α (z) be its reproducing kernel.

We have ∥K(2ξ)
S (·, w)∥2 = K

(2ξ)
S (w,w).

4.9.1 Definition. Let C be a bounded operator in F 2
2ξ(C2). We define the Berezin

transform of C with respect to HS as the function B
(2ξ)
S [C] defined on C and given by

B
(2ξ)
S [C](w) = 1

∥K(2ξ)
S (·, w)∥2

⟨CK(2ξ)
S (·, w), K(2ξ)

S (·, w)⟩.

In the case of a bounded function ψ we write B(2ξ)
S [ψ] = B

(2ξ)
S [Tψ], where Tψ is the

Toeplitz operator with symbol ψ acting on F 2
2ξ(C2).

Now let (gn), gn : R → R+, be a Dirac sequence (see Preliminaries). We recall that

f(x) = lim
n→∞

(gn ∗ f)(x),

for every f ∈ L∞(R) continuous in x.

In particular, for a bounded continuous function γ(α, ξ) defined on Z2
+ × R+ and

ξ0 > 0 we have

lim
n→∞

∫
R
gn(ξ0 −t)(γa(α, t)χR+(t))dt = lim

n→∞

∫
R+
gn(ξ0 −ξ)γa(α, ξ)dξ = γa(α, ξ0), (4.17)

where we define γa(α, t) = 0 for t < 0.

Let (g(ξ0)
n ) be the sequence of functions defined by g(ξ0)

n (t) =
√
gn(ξ0 − t)χR+(t). We

can consider each g(ξ0)
n defined only on R+ and we have g(ξ0)

n ∈ L2(R+), with ∥g(ξ0)
n ∥ = 1.
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Moreover, (4.17) implies

lim
n→∞

⟨γ(α, ·)g(ξ0)
n , g(ξ0)

n ⟩ = lim
n→∞

∫
R+

(g(ξ0)
n (ξ))2γ(α, ξ)dξ

= lim
n→∞

∫
R+
gn(ξ0 − ξ)γ(α, ξ)dξ = γ(α, ξ0).

(4.18)

Let γ be a continuous bounded function on Z+ × R+ and suppose that there is a
sequence ((νk, ξk))∞

k=1 such that

γ(νk, ξk) → η ∈ C.

For such a sequence we define

Sk = {α ∈ Z2
+ : |α| = νk}.

Since γ is continuous and bounded, for every k ∈ N we have

γ(νk, ξk) = lim
n→∞

∫
R+

(g(ξk)
n (ξ))2γ(νk, ξ)dξ.

Thus, by the diagonal method, we can construct a sequence (ξ(ξk)
n(k))∞

k=1 such that

µ = lim
k→∞

γ(νk, ξk) = lim
k→∞

∫
R+

(g(ξk)
n(k)(ξ))2γ(νk, ξ)dξ. (4.19)

Given γ as above and considering its associated sequences we have just constructed,
for every w ∈ C2 we define the sequence (f (w)

k )∞
k=1 given by

f
(w)
k =

g(ξk)
n(k)(ξ)

K
(2ξ)
Sk

(·, w)
∥K(2ξ)

Sk
(·, w)∥


ξ∈R+

∈
∫ ⊕

R+
F 2

2ξ(C2)dξ. (4.20)

Note that f (w)
k is a unitary vector:

∥f (w)
k ∥2 =

∫
R+

(g(ξk)
n(k)(ξ))2

⟨K(2ξ)
Sk

(·, w), K(2ξ)
Sk

(·, w)⟩F 2
2ξ

(C2)

∥K(2ξ)
Sk

(·, w)∥2
dξ = 1

4.9.2 Theorem. Let a = a(r, y3) ∈ L∞(D3) be a (2)-quasi-radial quasi-parabolic
function and γa ∈ Aqr its associated eigenvalue function. Suppose there is a sequence
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(νk, ξk) in Z+ × R+ such that γ(νk, ξk) → η ∈ C. Then, for every w ∈ C2,

lim
k→∞

⟨STaS∗f
(w)
k , f

(w)
k ⟩ = η,

where f (w)
k is given by (4.20).

Proof. We have

STaS
∗f

(w)
k =

(∫ ⊕

R+
T

(ξ)
ãξ
dξ

)g(ξk)
n(k)(ξ)

K
(2ξ)
SK

(·, w)
∥K(2ξ)

SK
(·, w)∥


ξ∈R+

=
 g

(ξk)
n(k)(ξ)

∥K(2ξ)
SK

(·, w)∥
T

(ξ)
ãξ

(K(2ξ)
SK

(·, w))

ξ∈R+

,

Since

T
(ξ)
ãξ
K

(2ξ)
SK

(z, w) =
∑

|α|=νk

e
(2ξ)
α (w)T (ξ)

ãξ
(e(2ξ)
α (z))

=
∑

|α|=νk

e
(2ξ)
α (w)e(2ξ)

α (z)γa(|α|, ξ),

we get

⟨T (ξ)
ãξ
K

(2ξ)
SK

(·, w), K(2ξ)
SK

(·, w)⟩F 2
2ξ

(C2) =
∑

|β|,|α|=νk

e
(2ξ)
α (w)e(2ξ)

β (w)⟨T (ξ)
ãξ
e(2ξ)
α , e

(2ξ)
β ⟩F 2

2ξ
(C2)

=
∑

|α|=νk

|e(2ξ)
α (w)|2γa(|α|, ξ)

= γa(νk, ξ)
∑

|α|=νk

|e(2ξ)
α (w)|2

= γa(νk, ξ)∥K(2ξ)
Sk

(·, w)∥2

Therefore,

⟨STS∗f
(w)
k , f

(w)
k ⟩ =

∫
R+

(g(ξk)
n(k)(ξ))2

∥K(2ξ)
Sk

(·, w)∥2
⟨T (ξ)

ãξ
K

(2ξ)
SK

(·, w), K(2ξ)
SK

(·, w)⟩F 2
2ξ

(C2)

=
∫
R+

(g(ξk)
n(k))2γ(νk, ξ)dξ → η,

by (4.19).
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4.9.3 Theorem. Let w ∈ C2\{0} and (νk)∞
k=1 be a sequence such that νk → ∞ as

k → ∞. If φ is a bounded continuous function on C2 such that φ(λz) = φ(z), for
every λ ∈ C\{0} and z ∈ C2, then

B
(2ξ)
Sk

[φ](w) = B
(1)
Sk

[φ](w) → φ(w),

where B(2ξ)
SK

is the generalized Berezin transform in F 2
2ξ(C2) and

Sk = {α ∈ Z2
+ : |α| = νk}.

Proof. Note that, by the multinomial theorem

K
(2ξ)
Sk

(z, w) =
∑

|α|=νk

(2ξ)νk

α! wαzα = (2ξ)νk

νk!
⟨z, w⟩νk .

In particular,

|K(2ξ)
Sk

(z, w)|2

∥K(·, w)∥2 =
|K(2ξ)

Sk
(z, w)|2

K
(2ξ)
Sk

(w,w)
= (2ξ)νk

|⟨z, w⟩|2νk

νk!|w|2νk

Thus, by a simple change of variable,

B
(2ξ)
Sk

[φ](w) = 1
K

(2ξ)
Sk

(w,w)
⟨φK(2ξ)

Sk
(·, w), K(2ξ)

Sk
(·, w)⟩

= (2ξ)νk+2
∫
C2
φ(z) |⟨z, w⟩|2νk

νk!|w|2νk

e−2ξ|z|2

π2 dV (z)

=
∫
C2
φ( 1√

2ξ z)
|⟨z, w⟩|2νk

νk!|w|2νk

e−|z|2

π2 dV (z)

=
∫
C2
φ(z) |⟨z, w/|w|⟩|2νk

νk!|w|2νk

e−|z|2

π2 dV (z)

= B
(1)
Sk

[φ](w/|w|),

which proves that the Berezin transform doesn’t depend on ξ and that it suffices to
consider the case B(1)

Sk
[φ](ζ) → φ(ζ), for ζ ∈ S2.

Let ω = φ(ζ) and ϵ > 0. Since φ is continuous there exists a δ > 0 such that

|φ(ζ) − ω| < ε, |z − ζ| < δ.
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Define the sets
Oζ = {λζ : λ ∈ T}

and
Oδ = {z ∈ C2\{0} : d(z/|z|, Oζ) < δ}.

Note that if z ∈ Oδ, then there is some λ ∈ T such that |ζ − λ−1(z/|z|)| =
|λζ − z/|z|| < δ and hence

|ω − φ(z)| = |ω − φ(λ−1(z/|z|))| < ε/(2∥φ− ω∥∞).

Moreover, if z /∈ Oδ and z ̸= 0 then, for every λ ∈ T, |z/|z| − λζ| ≥ δ. That is,

1 − 2 Re(λ⟨z/|z|, ζ⟩) + 1 ≥ δ2, ∀λ ∈ T.

Taking λ = ⟨z, ζ⟩
|⟨z, ζ⟩|

this inequality becomes

|⟨z, ζ⟩| ≤ |z|(1 − δ2).

Note that this inequality also holds for the case z = 0.

Integrating in polar coordinates we get

1
π2

∫
Oc

δ

|φ(z) − ω| |⟨z, ζ⟩|
2νk

νk!
e−|z|2dV (z) ≤ (1 − δ2)νk

νk!
∥φ− ω∥∞

π2

∫
C2

|z|2νke−|z|2dV (z)

= ∥φ− ω∥∞
(1 − δ2)νk

νk!

∫ ∞

0
2r2νk+3e−r2

dr

= ∥φ− ω∥∞(νk + 1)(1 − δ2)νk → 0,

as νk → ∞. Thus there is N ∈ N such that the last member of the equality is less
than ε/2 for νk ≥ N and

|B(1)
Sk

[φ](ζ) − ω| = |B(1)
Sk

[φ− ω](ζ)|

=
∫
Oδ

|φ(z) − ω| |⟨z, ζ⟩|
2νk

νk!
e−|z|2

π2 dV (z)

+
∫
Oc

δ

|φ(z) − ω| |⟨z, ζ⟩|
2νk

νk!
e−|z|2

π2 dV (z)

< ε.
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4.9.4 Corollary. Let a = a(r, y3) be a (2)-quasi-radial quasi-parabolic function and
γa ∈ Aqr its associated eigenvalue function. Let w ∈ C2 and suppose there is a sequence
(νk, ξk) such that νk → ∞ and γa(νk, ξk) → ω ∈ C. If φ = ϕpϕq, for any p, q ≥ 0 then
we have

⟨STφTaS∗f
(w)
k , f

(w)
k ⟩ → φ(w)ω, k → ∞.

In particular, we also have

⟨S(Tϕ)pTaS∗f
(w)
k , f

(w)
k ⟩ → ϕ(ζ)pω.

Proof. We have

⟨STφTaS∗f
(w)
k , f

(w)
k ⟩ =

∫
R+

(g(ξk)
n(k)(ξ))2B

(2ξ)
Sk

[T (ξ)
φ̃ξ
T

(ξ)
ãξ

](w)dξ

and

B
(2ξ)
Sk

[T (ξ)
φ̃ξ
T

(ξ)
ãξ

](w) = 1
∥KSk

(·, w)∥2

∑
|β|,|α|=νk

e
(2ξ)
α (w)e(2ξ)

β (w)⟨T (ξ)
φ̃ξ
T

(ξ)
ãξ

(e(2ξ)
α ), e(2ξ)

β ⟩

= 1
∥KSk

(·, w)∥2

∑
|β|,|α|=νk

e
(2ξ)
α (w)e(2ξ)

β (w)γa(|α|, ξ)⟨T (ξ)
φ̃ξ

(e(2ξ)
α ), e(2ξ)

β ⟩

= γa(νk, ξ)B(2ξ)
Sk

[φ](w).

Therefore, by Theorems 4.9.2 and 4.9.3,

⟨STφTaS∗f
(w)
k , f

(w)
k ⟩ =

∫
R+

(g(ξk)
n(k)(ξ))2γa(νk, ξ)B(2ξ)

Sk
[φ](w)dξ

= B
(1)
Sk

[φ](w)
∫
R+

(g(ξk)
n(k)(ξ))2γa(νk, ξ)dξ

→ φ(w)ω,

as k → ∞.

The second assertion follows immediately from this and the fact that (T̃ϕp) =
({d̃p(|α|) ⊗ 1}α∈Z2

+
I)T̃ pϕ , where d̃p(|α|) → 1, as |α| → ∞.
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4.10 Gelfand Theory of T (λ)

Let M(T (λ)) be the maximal ideal space of the commutative Banach algebra T (λ).
We note that, by Corollary 4.3.2, T (λ) is generated by the algebras Tqr and Tϕ. Hence
(see [1]), we have a continuous injection

κ : ψ ∈ M(T (λ)) 7−→ (ψ1, ψ1) ∈ M(Tqr) ×M(Tϕ),

where ψ1 = ψ|Tqr and ψ2 = ψ|Tϕ
.

As it was shown in Sections 4.1 and 4.5, we have M(Tqr) = (Z+ ×R+)∪M∞(λ) and
M(Tϕ) = D(0, 1

2), where M∞(λ) denotes those multiplicative functionals defined on
Tqr that map to zero those functions which, in some sense, converge to zero at infinity.

Therefore, we identify M(T (λ)) with a subset of

((Z+ × R+) ∪M∞(λ)) ×D(0, 1
2).

4.10.1 Lemma. None of the points of the set(Z+ × R+)
⋃ ⊔

k∈Z+

Mk,∞

× (D(0, 1
2)\{0})

belongs to M(T (λ)), where Mk,∞ is the set defined at the end of section 4.1.

Proof. If there is a point ψ = (k, ξ, ζ) ∈ Z+ × R+ × D(0, 1
2), then for the operator

A = PkT̃ϕ ∈ T̃ (λ), where Pk is the orthogonal projection defined in section 4.1, we
have ψ(A) = 1 · ζ ̸= 0. We have ψ(A) ∈ sp(A). However, by Lemma 4.4.1, A belongs
to the radical of the algebra T̃ (λ), which is a contradiction.

Similarly, if ψ = (µ, ζ) ∈ Mk,∞ ×D(0, 1
2), for some k, then there is a net (k, ξα) such

that (k, ξα) → µ. Thus, using the same A as above, we have ψ(A) = limα(k, ξα, ζ)(A) =
ζ ̸= 0, from where it follows the same conclusion.

4.10.2 Lemma. The set Z+ × R+ × {0} belongs to M(T (λ)).

Proof. Let ψ = (k0, ξ0, 0) ∈ Z+ × R+ × {0}. Denote by ψ(k0,ξ0) the multiplicative
functional defined on T̃qr by ψ(k0,ξ0)(γaI) = γa(k0, ξ0).
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We define ψ on the dense subalgebra D̃(λ) by

ψ(A) = γ0(k0, ξ0),

where A = ∑m
p=0(γpI)T̃

p
ϕ . By Lemma 4.6.1, ψ(A) = 0 implies γ0 = 0, so ψ is well-

defined.

We extend this functional as follows. Let (gn) a sequence in L2(R+) such that
∥gn∥2 = 1 and

lim
n→∞

⟨γa(k0, ·)gn, gn⟩L2(R+) = γa(k0, ξ0).

(We constructed such a gn in section 4.9).

Define the sequence (fn) in l2(Z2
+, L2(R+)) by

fn = ê(k0,0)(gn(ξ)) = {δα,(k0,0)gn(ξ)}α∈Z2
+
.

Note that
∥fn∥2 =

∑
α∈Z+

δα,(k0,0)∥gn∥2 = ∥gn∥2 = 1.

Since T̃ pϕ(ê(k0,0)) = 0 for every p > 0 (because α2 − p = −p < 0), for an operator
A = ∑m

p=0(γpI)T̃ pϕ ∈ D̃(λ) we have

⟨Afn, fn⟩ = ⟨γ0Ifn, fn⟩ =
∑
α∈Z2

+

⟨γ0(|α|, ·)gn, gn⟩δα,(k0,0) = ⟨γ0(k0, ·)gn, gn⟩.

Thus the functional ψ = (k0, ξ0, 0) is defined on the dense subalgebra of operators
of the form A = ∑m

p=0(γpI)(T̃ pϕ) by

lim
n→∞

⟨Afn, fn⟩ = γ0(k0, ξ0) = ψ(A). (4.21)

Finally, we have

|ψ(A)| = | lim
n→∞

⟨Afn, fn⟩| ≤ lim sup
n→∞

∥A∥∥fn∥2 = ∥A∥.

Therefore, ψ is multiplicative and continuous on a dense subalgebra of T̃ (λ) so that
it extends to a multiplicative functional on T̃ (λ).

4.10.3 Lemma. The set
M∞,R+(λ) ×D(0, 1

2)
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belongs to M(T (λ)).

Proof. Let (µ, ζ) ∈
((⊔

ξ∈R+ M∞,ξ

)⊔
M∞,∞

)
×D(0, 1

2).

We define ψ = (µ, ζ) on the dense subalgebra ˜cD(λ) as

ψ(A) =
m∑
p=0

γp(µ)ζp,

for A = ∑m
p=0(γpI)T̃

p
ϕ . It is well defined since, by Lemma 4.6.1, ψ(A) = 0 implies

that γp(k, ξ) = 0 for k ≥ p and so γp(µ) = 0, p = 1, . . . ,m. Note also that ψ is
multiplicative.

We show that ψ is continuous. Consider the unital C∗ algebra generated by
γ1, . . . , γp. The restriction of µ to is a multiplicative functional, thus

(γ1(µ), . . . , γm(µ)) ∈ σ(γ1, . . . , γm)

By Corollary 4.7.1 there exists a sequence (νk, ξk) such that νk → ∞ and

γp(νk, ξk) → γp(µ), p = 1, . . . ,m.

We note that every γp together with the sequence (νk, ξk) satisfies our assumptions
in Section 4.9 for the construction of the sequence (f (w)

k ), with ζ = ϕp(w). This
sequence is the same of every γp, since it only depends on the sequence (νk, ξk) and
the point w.

Thus, by Corollary 4.9.4, we have

lim
k→∞

⟨S

 m∑
p=0

TapT
p
ϕ

S∗f
(w)
k , f

(w)
k ⟩ =

m∑
p=0

γp(µ)ζp = ψ(A).

Therefore

|ψ(A)| = lim
k→∞

|⟨S

 m∑
p=0

TapT
p
ϕ

S∗f
(w)
k , f

(w)
k ⟩| ≤ ∥A∥

and we can extend ψ to a multiplicative functional on T̃ (λ).

From Lemmas 4.10.1, 4.10.2, 4.10.3 and the injective tensor product description
from [12], Section 3.2, we conclude:
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4.10.4 Theorem. The compact set M(T (λ)) of maximal ideals of the algebra T (λ)
has the form

M(T (λ)) = (Z+ × R+ × {0}) ∪
(
M∞,R+(λ) ×D(0, 1

2)
)
.

1. The Gelfand image of the algebra T (λ) is isomorphic to T (λ)/Rad T (λ) and
coincides with the algebra

Aqr ∪ [C(M∞,R+)⊗̂eCα(D(0, 1
2))],

which is identified with the set of all pairs

(γ, f) ∈ Aqr × [C(M∞,R+)⊗̂eCα(D(0, 1
2))]

satisfying the following compatibility condition γ(µ) = f(µ, 0), for all µ ∈
M∞,R+(λ).

2. The Gelfand transform is generated by the following mapping:

m∑
p=0

TapT
p
ϕ 7→

γ0(k, ξ), if (k, ξ, 0) ∈ Z × R+ × {0},∑m
p=0 γp(µ)ζp, if (µ, ζ) ∈ M∞,R+ ×D(0, 1

2).

4.11 Inverse closedness

4.11.1 Lemma. Let A = ∑
p=0(γpI)T̃ pϕ an element of the dense subalgebra D̃(λ) and

ψ = (k, ξ, 0) ∈ Z+ × R+ × {0} ⊂ M(T (λ)). If A is invertible in L (l2(Z2
+, L2(R+))),

then ψ(A) ̸= 0.

Proof. Let D∗ be the C∗-algebra generated by D̃(λ).

We extend ψ to D∗ by assigning ψ(T ∗
ϕ) = 0. By (4.21), ψ is defined in D(λ) by

ψ(A) = lim
n→∞

⟨Afn, fn⟩,

where fn is a unitary vector such that T̃ϕ(fn) = 0, p = 1, 2, . . ., and

lim
n→∞

⟨γ(k, ·)gn, gn⟩L2(R+) = γ(k, ξ).
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Consider the dense subset of D∗ defined by all finite linear combinations of products
of operators of the form γI, T̃ϕ and T̃ ∗

ϕ . Since γI commutes with T̃ϕ and T̃ ∗
ϕ , a typical

element of this algebra can be written as

B = γI +
m∑
i=1

Qi(γiI), (4.22)

where Qi is a finite product of T̃ϕ and T̃ ∗
ϕ .

Note that ⟨(T̃ϕ)∗(fn), fn⟩ = ⟨fn, T̃ϕfn⟩ = 0 and thus we have ⟨Qifn, fn⟩ = 0. Which
implies that

⟨Bfn, fn⟩ = ⟨γIgn, gn⟩L2(R+)

and
lim
n→∞

⟨Bfn, fn⟩ = γb(k, ξ).

Since this formula defines a bounded functional, we conclude that ψ can indeed be
extended to D∗.

Being a C∗-algebra, D∗ is inverse closed and we have A−1 ∈ D∗. There is some B
of the form (4.22) such that ∥A−B∥ < 1/(2∥A∥).

Then

1 = lim
n→∞

⟨AA−1fn, fn⟩ = lim
n→∞

⟨ABfn, fn⟩ + lim
n→∞

⟨(AA−1 − AB)fn, fn⟩.

By the Cauchy-Schwarz inequality,

|⟨(AA−1 − AB)fn, fn⟩| ≤ ∥AA−1 − AB∥ ≤ ∥A∥∥A−1 −B∥ < 1/2

and, therefore,

1/2 < lim
n→∞

⟨ABfn, fn⟩ = γa(k, ξ)γb(k, ξ) = ψ(A)ψ(B).

This proves that ψ(A) ̸= 0.

Recall the unitary operator R2ξ : F 2
1 (C2) → F 2

2ξ(C2), given by

R2ξf(z) = f((2ξ)1/2z), z ∈ C2, f ∈ F 2
1 (C2).
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In the last section we remarked that

STϕS
∗ =

∫
R+
T

(ξ)
ϕ̃ξ
dξ,

where ϕ̃ξ doesn’t really depend on ξ and acts just like ϕ. Moreover, it can be easily
seen that, due to this independence, T (ξ)

ϕ̃ξ
= R2ξT (ϕ)R∗

2ξ, where T (ϕ) is the operator

T
(1/2)
ϕ̃1/2

acting on the unweighted Fock space F 2
1 (C2) = F 2(C2).

By the same arguments we have, in general,

STϕpϕ
qS∗ =

∫
R+
R2ξT (ϕpϕq)R∗

2ξdξ,

where T (ϕpϕq) is the corresponding Toeplitz operator acting on the Fock space F 2(C2).

Let K be the space of all operators K of the form

K =
∫
R+
R2ξK0R

∗
2ξdξ, (4.23)

where K0 is a compact operator acting on F 2(C2).

4.11.2 Lemma. Let p, q be non negative integers. Then the semicommutators

S(Tϕpϕ
q − T pϕT

q

ϕ
)S∗ and S(Tϕpϕ

q − T q
ϕ
T pϕ)S∗

belong to K.

Proof. We prove it just for the first operator. The other case is very similar.

Since

S(Tϕpϕ
q − T pϕT

q

ϕ
)S∗ =

∫
R+
R2ξ(T (ϕpϕq) − T (ϕp)T (ϕq))R∗

2ξdξ,

we need to prove that T (ϕpϕq) − T (ϕp)T (ϕq) is compact in F 2(C2)

Suppose that p ≥ q. The case q ≥ p follows from taking adjoints.

We show first prove that T (ϕpϕq)−T (ϕp)T (ϕq) = T (ϕpϕq)−T (ϕp)T (ϕq)∗ is compact.

Let 0 < λ < 1 and consider the sets I1, I2, I3 ∈ Z2
+ given by

I1 = {α ∈ Z2
+ : α1 < q},

I2 = {α ∈ Z2
+ : α1 ≥ |α|λ}\I1,
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I3 = {α ∈ Z2
+ : α1 < |α|λ}\I1,

and let Hi = span{e(1)
α : α ∈ Ii}.

By equations (4.14), (4.15) and (4.16) we have the following relations:

1. (T (ϕpϕq) − T (ϕp)T (ϕq))|I1(eα), α ∈ I1, is 0 if a2 < p − 1. Otherwise, it’s equal
to a basic vector multiplied by

(α1 + 1)!(α2 + 1)!√
α1!α2!(α1 + (p− q))!(α2 − (p− q))!

(|α| + 1)!
(|α| + p+ q + 1)! .

Since a1 < q, the last quantity tends to zero as |α| → ∞. Thus (T (ϕpϕq) −
T (ϕp)T (ϕq))|I1 can be aproximated by finite-rank operators.

2. (T (ϕpϕq) − T (ϕp)T (ϕq))|I2(eα), α ∈ I2, is 0 if a2 < p − 1. Otherwise, it’s equal
to a basic vector multiplied by

(α1 + p)!(α2 + q)!√
α1!α2!(α1 + (p− q))!(α2 − (p− q))!

(|α| + 1)!
(|α| + p+ q + 1)!

·
[

(|α| + p+ q + 1)!(|α| + 1)!
(|α| + p+ 1)!(|α| + q + 1)!

(α1 − q + 1) · · ·α1

(α1 + (p− q) + 1) · · · (α1 + p) − 1
]

Since α1 ≥ |α|λ, we have α1 → ∞ when |α| → ∞. Thus the right factor tends
to zero as |α| → ∞. The left factor is just γ̃ϕpϕq

, which is bounded. Therefore,
the whole expression tends to zero as |α| tends to infinity. This implies that
(T (ϕpϕq) − T (ϕp)T (ϕq))|I2 can be approximated by finite-rank operators.

3. (T (ϕpϕq) − T (ϕp)T (ϕq))|I3(eα), α ∈ I3, is 0 if a2 < p − 1. Otherwise, it’s equal
to a basic vector multiplied by the same quantity as above. In this case, note
that the right factor is bounded (since it tends to zero as α1 → ∞).

On the other hand, the left side is equal to√
(α1 + 1) · · · (α1 + (p− q))(α1 + (p− q) + 1) · · · (α1 + p)

(|α| + 2) · · · (|α| + p+ q + 1)
·
√

(α2 − (p− q) + 1) · · ·α2(α2 + 1) · · · (α2 + q)

≤ M
α

p+q
2

1 α
p+q

2
2

|α|−p−q ,

for some constant M .
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Since α1 < |α|λ, the last quantity tends to zero as |α| → ∞ and, as before,
(T (ϕpϕq) − T (ϕp)T (ϕq))|I3 can be approximated by finite-rank operators.

This proves that T (ϕpϕq) − T (ϕp)T (ϕq) is compact.

Finally, we recall that T (ϕp) acts on the basis of F 2
( C2) as T̃ϕp does on the ele-

ments êα(c(ξ)). Thus, according to (4.9), T (ϕp) − T (ϕ)p is a diagonal operator whose
eigenvalues (depending only on |α|) tend to zero as |α| → ∞. Hence, T (ϕp) − T (ϕ)p

and its adjoint T (ϕp) − T (ϕ)p are a compact operators. It follows from this that
S(Tϕpϕ

q − TϕpTϕq)S∗ is and operator of the form (4.23).

Therefore, we have

S(Tϕpϕ
q − T pϕT

q

ϕ
)S∗ = S(Tϕpϕ

q − TϕpTϕq)S∗ +K1ST
q

ϕ
S∗ + ST pϕS

∗K2,

where K1 and K2 belong to K. This proves what we wanted.

Let ((νk, ξk))∞
k=1 and w ∈ C2 be as considered in section 4.9 and let (f (w)

k )∞
k=1 be

the sequence given by (4.20). That is,

f
(w)
k =

g(ξk)
n(k)(ξ)

K
(2ξ)
Sk

(·, w)
∥K(2ξ)

Sk
(·, w)∥


ξ∈R+

∈
∫ ⊕

R+
F 2

2ξ(C2)dξ.

4.11.3 Lemma. For every ξ > 0 we have

R∗
2ξ

 K
(2ξ)
Sk

(·, w)
∥K(2ξ)

Sk
(·, w)∥

 =
K

(1)
Sk

(·, w)
∥K(1)

Sk
(·, w)∥

.

Proof. By the Multinomial theorem we have

K
(2ξ)
Sk

(z, w)
∥K(2ξ)

Sk
(·, w)∥

=
∑

|α|=νk

(2ξ)νk

α! zαwα(∑
|α|=νk

(2ξ)νk

α! |wα|2
)1/2 = (2ξ)νk/2

√
νk!

⟨z, w⟩νk

|w|νk
.

Since R∗
2ξ maps z to (2ξ)−1/2z we obtain

R∗
2ξ

 K
(2ξ)
Sk

(·, w)
∥K(2ξ)

Sk
(·, w)∥

 (z) = 1√
νk!

⟨z, w⟩νk

|w|νk
=

K
(2ξ)
Sk

(·, w)
∥K(1)

Sk
(·, w)∥

.
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4.11.4 Lemma. The sequence of normalized reproducing kernels given by

K
(1)
Sk

(·, w)
∥K(1)

Sk
(·, w)∥

, k = 1, 2, · · · .

converges weakly to zero.

Proof. It suffices to prove that

⟨
K

(1)
Sk

(·, w)
∥K(1)

Sk
(·, w)∥

, g⟩ → 0, k → ∞

for every g in a total subset A of F 2(C2).
Let A be the orthonormal basis of F 2(C2). Since νk → ∞, for every α ∈ Z2

+ we can
choose an integer N such that νk > |α|, for every k ≥ N . In this case

⟨
K

(1)
Sk

(·, w)
∥K(1)

Sk
(·, w)∥

, eα⟩ = 0, k ≥ N,

and we are done.

4.11.5 Corollary. Let (f (w)
k )∞

k=1 be as before and K ∈ K. Then

∥K(f (w)
k )∥ → 0,

as k → 0.

Proof. We have, by Lemma 4.11.3,

K(f (w)
k ) =

(∫
R+
R2ξK0R

∗
2ξdξ

)
(f (w)
k )

=
g(ξk)

n(k)(ξ)R2ξK0

R∗
2ξ

 K
(2ξ)
Sk

(·, w)
∥K(2ξ)

Sk
(·, w)∥


ξ∈R+

=
g(ξk)

n(k)(ξ)R2ξK0

 K
(1)
Sk

(·, w)
∥K(1)

Sk
(·, w)∥


ξ∈R+

.
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Thus

∥K(f (w)
k )∥2 =

∫
R+

(g(ξk)
n(k)(ξ))2

∥∥∥∥∥∥R2ξK0

 K
(1)
Sk

(·, w)
∥K(1)

Sk
(·, w)∥

∥∥∥∥∥∥
2

dξ

=
∫
R+

(g(ξk)
n(k)(ξ))2

∥∥∥∥∥∥K0

 K
(1)
Sk

(·, w)
∥K(1)

Sk
(·, w)∥

∥∥∥∥∥∥
2

dξ

=
∥∥∥∥∥∥K0

 K
(1)
Sk

(·, w)
∥K(1)

Sk
(·, w)∥

∥∥∥∥∥∥
2

.

Since K0 is compact and, by Lemma 4.11.4, the sequence of normalized reproducing
kernels tends weakly to zero, the last member of the equality tends to zero.

Given D = (a0, . . . , am), with ap a (2)-quasi-radial quasi-parabolic function, p =
0, 1, . . . ,m, let AD be the Banach algebra generated by STa0S

∗, . . . , STamS
∗, STϕS∗

and let A∗
D the C∗-algebra generated by STa0S

∗, . . . , STamS
∗, STϕS∗ and K.

As we did in the proof of Lemma 4.10.3, for every ψ = (µ, ζ) ∈ M∞,R+(λ) ×D(0, 1
2),

we can construct an associated sequence (f (w)
k )∞

k=1 of the form (4.20) and such that
ψ(A), A ∈ AD, can be calculated in terms of this sequence. In particular, we proved
that ψ(Tϕ) = ϕ(w) = ζ and ψ(Tap) = γp(µ).

4.11.6 Lemma. With the notations introduced above, let T ∈ A∗
D. Then the limit

ψ′(T ) = lim
k→∞

⟨Tf (w)
k , f

(w)
k ⟩

always exists and defines a multiplicative functional on A∗
D that extends ψ.

Proof. We first note that the operators STal
S∗ commute with all the other operators

considered. Thus, the algebra A∗
D is the linear span of all operators of the form

QSTal
S∗

and
STanS

∗Q1KQ2,

where Q1, Q1 and Q2 are finite products of operators of the form ST iϕS
∗ and S(T jϕ)∗S∗,

i, j ≥ 0, l, n ∈ {0, 1, . . . ,m}, and K ∈ K.

Since the operators Q1 and Q2 can be written as a direct integral we have Q1KQ2 ∈
K. Moreover, by Lemma 4.11.2, Q = STϕpϕ

qS∗ +K ′, for some K ′ ∈ K.
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Thus, A∗
D is indeed generated by operators of the form

STϕpϕ
qTal

S∗ +K

and
STanS

∗K2,

where K1, K2 ∈ K and l, n ∈ {0, 1, . . . ,m}.

By Cauchy-Schwarz inequality and Corollary 4.11.5,

∥⟨STanS
∗K2f

(w)
k , f

(w)
k ⟩∥ ≤ ∥STanS

∗∥∥K2f
(w)
k ∥ → 0,

as k → ∞.

On the other hand, by an similar argument as above and by Corollary 4.9.4,

lim
k→∞

⟨(STalϕpϕ
qS∗ +K)f (w)

k , f
(w)
k ⟩ = lim

k→∞
⟨(STalϕpϕ

qS∗)f (w)
k , f

(w)
k ⟩

= γl(µ)ϕp(w)ϕq(w)
= ψ(Tal

)ψ(Tϕ)pψ(Tϕ)
q
.

It follows from these relations that the limit exists for every element in this dense
subalgebra of A∗

D, that ψ′ is multiplicative in this subalgebra and that this functional
extends ψ.

Finally, the formula defining ψ′ shows that this functional is continuous and can be
extended to the whole algebra A∗

D, as we wanted to prove.

4.11.7 Corollary. Let ψ = (µ, ζ) ∈ M∞,R+ ×D(0, 1
2) and let A ∈ AD be invertible as

an element of L (A2
λ(D3)). Then ψ(A) ̸= 0.

Proof. The C∗-algebra A∗
D is inversed closed and therefore A−1 ∈ AD. By Lemma

4.11.1 we can extend ψ to a multiplicative functional on AD. Therefore, ψ(A) =
ψ′(A) ̸= 0.

4.11.8 Theorem. The commutative Banach algebra T (λ) is inverse closed and, in
particular, for each A ∈ T (λ),

spT (λ) A = spL (A2
λ

(D3)) A.
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Proof. Let A ∈ T (λ) be invertible as an element of L (A2
λ(D3)).

Choose a sequence (An)∞
n=1 of elements of the form

An =
mn∑
p=0

(Tan,p)T
p
ϕ ,

whit each an,p a (2)-quasi-radial quasi-parabolic function, such that

lim
n→∞

An = A.

Since the group of invertible elements is open, we can assume that An is invertible
for all n ∈ N. Moreover, by the continuity of the inversion we have

A−1 = lim
n→∞

A−1
n

and thus, A−1 will be in T (λ) if each A−1
n is in T (λ).

Fix a An and suppose that

An =
m∑
n=0

TapT
p
ϕ .

Since An is invertible, Ãn is invertible in L (l2(Z2
+, L2(R+))) and, by Lemma 4.11.1,

ψ(An) ̸= 0, for every ψ ∈ Z+ × R+ × {0}.
Moreover, let D = (a1, . . . , am) and let AD and A∗

D as before. Since An is invertible
in AD, by Corollary 4.11.7, ψ(An) ̸= 0, for every ψ ∈ M∞,R+ ×D(0, 1

2).

It follows from Theorem 4.10.4 that ψ(An) ̸= 0 for every ψ ∈ M(T (λ)) and
consequently, An is invertible in T (λ)), as we wanted to prove.
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