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Introduction

The study of Toeplitz operators is a vast and active area of research in mathematics
that involves many branches of mathematics and even of mathematical physics. These
operators owe their name to Otto von Toeplitz, who approached the following problem:

when does the infinite matrix

apg a—1 Qa_o
aq Qo a_q

gy a_q Qo

defines a bounded linear operator in ly(Z,)? This problem seems to have been
completely solved in 1954 by Hartman and Wintner: the above matrix defines a
bounded linear operator if and only if there is a bounded function f in T such that

ar = f(k), where f is the discrete Fourier transform.

This result turns out to be rather simple when one adopts the "right" viewpoint.
Indeed, consider the (one-dimensional) Hardy space H? of functions in Ly(T, do), where
o is the invariant measure of T, such that f(n) = 0 whenever n is negative. H is a
closed space since it is the intersection of the kernels of the continuous functionals
defined by f f(n) Let P: Lo(T,do) — H? be the orthogonal projection (which, by
the way, is called the Szegd projection) and let ¢ € Loo(T,do). We define the Toeplitz
operator with symbol ¢, denoted T, as the compression to H? of the multiplication

by ¢, that is,
T‘Pf:P(SOf)a feH

Then, in this context, the Toeplitz matrix above is just the matrix representation of

the operator T,,, where a,, = ¢(n).

Taking this setting as a model, one can define and study Toeplitz operators in many
other spaces. One usually considers spaces of "nice" functions in order to obtain "nice"

structures. An example of this (which, by the way, arises naturally from quantum
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mechanics), is the class of analytic functions. In this thesis we work with to well-known
spaces of analytic functions: the Bergman space and the Fock space (see sections 1.4
and 1.5). Throughout the years there has been a lot of research about the behavior of

Toeplitz operators in these spaces.

A natural and difficult problem that arises in the study of Toeplitz operators on
Bergman spaces is to determine under which conditions one obtains commutative
operator algebras. As a matter of example and contrary to the case of the one-
dimensional Hardy space H?, there are several non-trivial commutative algebras
generated by Toeplitz operators defined on the weighted Bergman space on the unit
disc A\(D). A great step in this direction is the work of N. Vasilevski, S. Grudsky
and A. Karapetyants, who proved at the beginning of the 21st century, that there
are classes of symbols, geometrically defined, such that the C*-algebras generated by
Toeplitz operators with these symbols are commutative on every weighted Bergman

space.

Later, N. Vasilevski, S. Grudsky and R. Quiroga Barranco, proved the converse in
[5]. A equivalent reformulation (for more details see Preliminaries) of the main result
in this paper reads as follows: assuming some natural condition on the "richness" of
the symbol set, the C*-algebra generated by Toeplitz operators is commutative on each
weighted Bergman space if and only if there is a maximal commutative subgroup of the
Mdébius transformation such that the symbols of the Toeplitz operators are invariant

under the action of this subgroup.

R. Quiroga Barranco and N. Vasilevski extended this fact from the unit disk of
C to the unit ball of C" in [10] and [11]. They uased a classification of the maximal
subgroups of automorphisms of B™ and proved that, given one of these subgroups, the
C*-algebra generated by Toeplitz operators with symbols invariant under the action
of it is commutative on every weighted Bergman space. The maximal commutative
subgroups of automorphisms are the quasi-elliptic group, the quasi-parabolic group, the

quasi-hyperbolic group, the nilpotent group and the quasi-nilpotent group.

As N. Vasilevski wrote in [15], it was firmly expected that the above algebras exhaust
all possible algebras of Toeplitz operators on the unit ball which are commutative on
each weighted Bergman space. However, as it usually happens when one generalizes a
problem arisen in a one-dimensional setting, the multidimensional case turned out to
be much more interesting. In fact, inspired by [20], N. Vasilevski presented in [15] a
new class of symbols whose induced Toeplitz operators generate commutative operator

algebras on each weighted Bergman space. This idea was later applied in [18], where
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he presented another classes of symbols subordinated to one of the model classes of
the above maximal commutative subgroups (except for the nilpotent group) such that
the corresponding operator algebras are commutative. All these algebras are Banach.
They collapse into C*-algebras when the dimension is the "trivial' one and, otherwise,

the corresponding extended C*-algebra is non-commutative.

Being commutative (non-C*) Banach algebras, they represent a rich and interesting
mathematical object. Natural problems regarding the structure of these algebras arise,
such as to determine their respective maximal ideal spaces, Gelfand transforms, radicals,
etc. In this regard, the algebra which has been best understood so far, thanks to a
series of papers of N. Vasilevski and W. Bauer ([1], [2], [3]), is the one subordinated to
the quasi-elliptic group.

This thesis is a further step in this direction. Following the principal ideas that were
used for the elliptic case, we approach the task of describing the commutative Banach
algebra subordinated to the quasi-parabolic group for the lowest non-trivial dimension
n = 3. As in [1], these results are expected to reveal some important features which

would be useful to understand the higher dimensional case n > 3.

Throughout the thesis we will denote this algebra by 7 (\), where X\ stands for
the weight parameter used to define the Bergman space Ay (Ds3) (for more details, see
Preliminaries). One of the results states that 7 (\) is generated by two subalgebras:
Ty and T,, where T, is the algebra generated by Toeplitz operators with parabolic
(2)-quasi-radial symbols and 7 is the algebra generated by the single operator Ty,

where ¢ is the simplest quasi-homogeneous function given by

. 2122
212 + [z

¢(2, 2n)

where (2, z,) € D3 and 2’ = (21, 22).

The thesis is divided into four chapters, the contents of which can be described as
follows. The first chapter presents the necessary tools so that this work is self-contained.
We introduce some well-known results about commutative Banach algebras theory and
some others regarding Toeplitz operators. In particular, we present the main results of
[1], inasmuch as some results of the parabolic case follow (although not directly) from

these ones.

In Chapter 2 we represent the Bergman space as a direct integral of weighted Fock
spaces. This representation will be crucial to prove the main results of the thesis. As a

matter of example, we can mention the generalized Berezin transform, which, inspired
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by [1], was used to characterize some elements of the maximal ideal space of T ()).
There is not a natural way of extrapolating the methods of [1] to the present work and

the direct integral of Fock spaces turned out to be very useful.

The main result in this chapter is the existence of an operator
R La(Dyodis) = [ FR(C)de,

(where D,, stands for the Siegel domain) onto a direct integral of Fock spaces (see
Preliminaries for the notation) that maps Lo(D,,, duy) onto fﬂgi F3(C*1)dg, such that

the restriction

Rlazp,): A —>/ ¢ (C"h)de

is an isometric isomorphism and such that for every essentially bounded function a on

D,, that depends only on z’ and Im z,, we have

RTWR = [ 1t 3

Ry

where (261
2
ag(?') = L e XA (Y v — |2 P)dv
()= [ orpe e - P

Note that each function belonging to one of the classes of symbols defined on the
Siegel domain and invariant under the action of one of the above maximal abelian
subgroup depends only on 2z’ and Im z,. Therefore we can apply the results of Chapter
2 and thus, as a corollary of the above representation, we diagonalize the Toeplitz
operators defined by these symbols. That is, we give an alternative proof of the main

results of [10].

Chapter 4 contains the main results of the thesis. We study the structure of the
commutative Banach algebra 7(\). As we already mentioned, we reduce the set of

generators and study separately the algebras 7, and 7j.

In the first two sections we analyse the algebra 7,.. We show that its maximal ideal
space is some compactification of Z, x R, and we analyse the behavior of the points

"at infinity".

In Sections 3, 4 and 5 we study the algebra 7; and analyse how this algebra and
the previous one act together. Among other things, we prove that, as in the elliptic
case, the algebra T () is generated by Toeplitz operators with parabolic quasi-radial

quasi-homogeneous symbols and the single operator 7.
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In Sections 7, 8 and 9 we present some technical results that are necessary to
characterize the maximal ideal space of 7 (X). We use the direct integral representation
of the Bergman space and Dirac sequences to show how to extend some multiplicative

linear functionals.

The main results are presented in Section 10. Theorem 4.10.4 characterizes the

maximal ideal space of 7 (). This theorem reads as follows:

The compact set M (T (\)) of maximal ideals of the algebra 7 () has the form
— 1
M(T(V) = (Zs xRy x {0}) U (MOO,M(A) x D(0, 2)) .

1. The Gelfand image of the algebra 7 (\) is isomorphic to 7(A)/Rad 7 ()) and

coincides with the algebra

AqT U [C(MOO7R+)®GOO<(E(O ))]a

)
which is identified with the set of all pairs

1

(’Y? f) € AQT X [C(MOO,R+)®eCa(E<Ov 5))]

satisfying the following compatibility condition v(u) = f(u,0), for all u €
My, (N).

2. The Gelfand transform is generated by the following mapping:

Vao (K, ), if (k,£,0) € Z x Ry x {0},

> T, T8 — )
p=0 Z;n:() P)/ap(:u)cpa if (,U, C) € MOO,R+ X D(07 5)

M r, represents those points 'at infinity" of the maximal ideal space of 7, that can
be reached by nets of the form {(k,, &)} such that k, — oo.

Finally, we use these results to prove in Section 11 that 7 (\) is a inverse-closed
algebra and, therefore, that the spectrum of an operator in 7 (\) as an element of this

Banach algebra coincides with its spectrum as an element of .Z (A, (D3)).






Chapter 1
Preliminaries

In this Chapter we introduce those objects and results which will be used later. Some

of them are well-known and can be consulted in many books and papers

For the theory of commutative Banach algebras we used [6], [4] and [8]. A general

reference for Dirac sequences and their basic properties, which are not difficult to proof,

could be [7].

For Toeplitz operators on Bergman and Fock spaces there are many references. A
general treatment can be consulted in [13], [21] and [22]. The study of C*-algebras
generated by Toeplitz operators commutative on each weighted Bergman space and
maximal subgroups of automorphisms of the unit ball is developed mainly in [5], [10]
and [11]. The commutative Banach algebras subordinated to these maximal subgroups
of automporhisms are introduced and, for the elliptic case, deeply analysed in [14], [15],
[16], [17], [1], [2], [3] and [18].

1.1 Commutative Banach Algebras

We mention without proof some very well-known results concerning commutative

Banach algebras. All algebras will be assumed to be unital.

Let A be a commutative Banach algebra. The set of multiplicative linear functionals
of A, denoted by M(A) is called the mazimal ideal space of A. By Banach-Alaoglu

theorem, M(A) is a compact Hausdorff space. The following result justifies its name.

1.1.1 Proposition. Let A be a commutative Banach algebra. Then there is a bijection

between the maximal ideal space of A and the set of maximal ideals of A given by

o kerp, pe M(A).
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1.1.2 Definition. Let A be a Banach algebra and a € A.

o The spectrum of a (with respect to A) is the set

o4(a) ={X € C: A — a is not invertible}.

o The spectral radius of an element a € A is the (always finite) number

r(a) = sup{[Al: A € ga(a)}.

We also recall the Gelfand-Beurling norm for the spectral radius:

1.1.3 Proposition. Let A be a Banach algebra and a € A. Then

1 n||l/n
(@) = lim [la”] ",

When A is a C*-algebra of bounded operators on some Hilbert space, o.4(T") is just
the spectrum of the operator T' € A. In this case we will write sp(T") = o.4(T).

1.1.4 Definition. Given a commutative Banach algebra A, the function
I A— CM((A)

given by
[(a)(9) = ¢(a), ¢ € M(A),

is a homomorphism called the Gelfand map. For an element a € A, the function I'(a)

is called the Gelfand transform of a.

1.1.5 Proposition. Let A and I' as above. Then the following properties hold:
1. oa(a) =T(a)(M(A)), for every a € A.
2. T is norm-decreasing.

3. T is isometric if and only if ||al|® = ||a®||, for alla € A

We note that the Gelfand map is not necessarily injective or surjective. However, it
completely characterizes (unital) commutative C*-algebras, as the following well-known

result shows:
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1.1.6 Proposition. Let A be a commutative C*-algebra. Then the Gelfand map
T A= C(M(A))

s a *-isomorphism.

1.1.7 Definition. Let A be a commutative Banach algebra. The radical of A, Rad(A),

is the intersection of all maximal ideals. That is,
Rad(A) = [{ker¢: ¢ € M(A)}.

The algebra A is called semisimple if Rad(A) = {0} and radial if Rad(A) = A.

1.1.8 Corollary. Let A be a Banach algebra. Then a € Rad(A) if and only if a is
topologically nilpotent, that is, if and only if

lim """ = 0.
n—oo

1.2 Compactifications

Given a topological space S, we denote by C'B(S) the algebra of bounded continuous
complex-valued functions on S. The algebra C'B(S) turns out to be a commutative

C*-algebra with the norm
1flls = sup [f(s)|
seS

and the involution
fr=r
By Proposition 1.1.6, CB(S) and any of its C*-subalgebras is of the form C(S5"), for

some compact Hausdorff space S’. We will see that this space is in fact related to S.

1.2.1 Definition. A compactification of the topological space S is a compact Hausdorff

space X and a continuous one-to-one function 7 of S onto a dense subset 7(5) of X.

We often identify s € S with 7(s) € X. Under this identification, every compactifi-
cation X of S determines, by restricting the functions of C'(X) to S, a closed separating
self-adjoint subalgebra A of C'B(S) which contains the constants.

9
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The converse also holds. That is, if A is a C*-subalgebra of C'B(S), then the

maximal ideal space of A, M(A), is a compactification of S.

We have thus the following proposition:

1.2.2 Proposition. Let S be a topological space. There is a bijective correspondece
between compactifications X of S and closed separating self-adjoint subalgebras A of
CB(S) which contain the constants. The algebra A associated with the compactifi-
cation X consists of the functions in CB(S) which extend continuously to X. The

compactification X associatd with A is the maximal ideal space of A.

1.3 Dirac Sequences

We introduce a useful tool that we will need later.

1.3.1 Definition. A Dirac sequence on R™ is a sequence of real-valued continuous

functions ()72, satisfying the following properties:
1. p>0forall £ > 1.

2. For all £ > 1 we have

/gpk(az)d;ﬂ = 1.

3. Given g, > 0 there exists kq such that

/ or(x)dr < €,
|z|=6

for all £ > k.

A Dirac sequence can be used to approximate a function as the following results

shows.

1.3.2 Proposition. Let f be a bounded measurable function on R™. Let K be a
compact set on which f is continuous. Let ()52, be a Dirac sequence. Then gy, * f

converges uniformly to f on A.
Here, g x f denotes the usual convolution given by
9 f(z) = [ g(®)f(x —tyat.
Among other properties, this operation is bilinear and commutative.

10
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Note that, in particular, if f is continuous on a point x € R", then
lim f*p(z) = f(x).
k—o00

1.3.3 Proposition. Let (py)32, a Dirac sequence. Let 1 < p < oo and f € L,(R).
Then
| f*oe— fll, =0, k— oo.

1.4 Bergman Spaces

Now we introduce the spaces we will be working with. Let B" be the unit ball of C"

and fix A > —1. Consider the weighted Lebesgue measure duy, defined by
i\ (2) = (1 = |2 dv (2),

where

Fn+A+1)

o= ————"
AT DA+ 1)

is a normalizing constant so that dy’ is a probability measure on B".

The weighted Bergman space, denoted by A3 (B"), is the subspace of Lo(B", d})
of holomorphic functions. This space turns out to be a reproducing kernel Hilbert

space. Its kernel, called the weighted Bergman kernel, is given by

1
(1 — . Z)n+/\+1

K]B”,)\(Za g) -

and the Bergman projection Bgn ) of Ly(B", 1)) onto A3 (B") has the form

(L —I¢h*

(1 —z.)ntrtl

(Benaf(2)) = - f(Q) exdv(Q).

Sometimes it is easier to work with the unbounded realisation of the unit ball, that

is, with the Siegel domain D,,. This domain is defined as follows:

D,={z=(¢,2,) €C"!' xC: Imz, — ||* > 0}.

We note that, for n = 1, D,, is just the upper half-plane, which is the biholomorphic
image, by means of the (inverse) Cayley transform, of the unit disk of C. The Cayley

11
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transform for the Siegel domain D, is the function w given by ¢ = w(z), where

2k

=7 k=1,....n—1

Ck Zl—}-zn’ ) I )
11—z,
Cn—zlJrzn-

It is well known (and easy to check directly) that w maps biholomorphically B" to D,,.

The inverse transform z = w™!({) is given by

2iCk
= — 1,....n—1 1.1
2k ]._ch’ ) y 9 ( )
1+1C,
= . 1.2
T (12)

Denote by dv(z) = dzidxs - - - dx,dy,, where z,, = X, + Yy, m = 1,...,n, the
standard Lebesgue measure in C", and introduce the following one-parameter family
of weighted measures

c /
dpia(z) = 7 (Im 2 — [/ (2)

1.5 Fock Spaces

We introduce now the weighted Fock space on C". Given a (weight) parameter v € Ry
consider Ly(C™, dv,,), where

dv,(z) = <a> e du(z), zeC™
T

The Fock space F2(C") is the subspace of Ly(C",dv,) which consists of analytic
functions. As the Bergman space, the Fock space turns out to be a reproducing kernel

Hilbert space. Its reproducing kernel is given by
Ky(z) = e**™,

The orthogonal projection P,: Lo(C" dv,) — F2(C") is called the Bargmann
projection and, using the reproduncing kernel, it is easy to see that P, is given by the

integral operator

Pof(z) = / F(w)e® P dug (w).

n

The monomials e,(z) = \%, p € Z7, form an orthonormal basis for the Fock space.

12
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1.6 Toeplitz Operators

We define Toeplitz operators, as always, as the compression of a multiplication operator.
That is, let H be some Hilbert space Lo( X, ), (who X and p are is not really important
at the moment), let K be a closed subspace of H and P: H — K the orthogonal
projection (in this thesis K will be either a Bergman space or a Fock space and P its
corresponding Bergman or Bargmann projection). For a bounded measurable function
¢, define the Toeplitz operator T, by the rule

Tf=Plpf), feK.

The function ¢ is called the symbol of the Toeplitz opertor 7.

One can easily deduce from the definition some elementary properties:

1. The application ¢ — T, is linear and preserves involutions, i. e., Tz = T7. (This

application is, in general, not multiplicative).

2. Tl < llelloo-

One general task in the study of Toeplitz operators is to study the operator algebras
which they generate in terms of their symbols. This is quite a difficult problem for

arbitrary symbols and one usually restricts attention to special classes of symbols.

1.7 Commutative C*-Algebras (Generated by
Toeplitz Operators

A natural question that arises in the study of Toeplitz operators on Bergman spaces
is when do Toeplitz operators commute or under which conditions do we obtain
commutative operator algebras of Toeplitz operators. Indeed, commutative algebras
are more manageable, inasmuch as we have the Gelfand theory; otherwise one cannot
say too much about an operator algebra. Moreover, as we already mentioned, the
commutativity of algebras of Toeplitz operators on Bergman spaces, contrary to the
case of the one-dimensional Hardy space, is not trivial.

In the context of Bergman spaces on the unit disc I, it was discovered by S.
Grudsky, A. Karapetyants and N. Vasilevski that there are special classes of symbols

such that the respective C*-algebras generated by Toeplitz operators are commutative

13
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on every weighted Bergman space. These classes of symbols can be defined in terms of

the geometric properties of the unit disc.

S. Grudsky, R. Quiroga Barranco and N. Vasilevski proved in [5] that, discarding
the trivial case of the C*-algebra generated by the identity and a self-adjoint Toeplitz
operator, the above classes are the only possible sets of symbols which might generate
the commutative C*-algebras of Toeplitz operators on each weighted Bergman space.
The main result states that, assuming only some natural conditions on the "richness"
of the symbol set, the C*-algebra generated by Toeplitz operators is commutative on
each weighted Bergman space if and only if there is a pencil of hyperbolic geodesics such

that the symbols of the Toeplitz operators are constant on the cycles of this pencil.

This result admits the following equivalent reformulation: assuming some natural
condition on the "richness" of the symbol set, the C*-algebra generated by Toeplitz
operators is commutative on each weighted Bergman space if and only if there is a
maximal commutative subgroup of the Mobius transformation such that the symbols of

the Toeplitz operators are invariant under the action of this subgroup.

Using this reformulation, R. Quiroga Barranco and N. Vasilevski extended this
result from the unit disc of C to the unit ball of C". They proved in [10] that each
maximal abelian subgroup of automorphisms of the unit ball induces a commuta-
tive C*-algebra of Toeplitz operators on each weighted Bergman space. Moreover,
they explicitly constructed, for each case, a unitary operator that diagonalizes the
corresponding Toeplitz operator and gave explicit expressions for the corresponding

eigenvalue functions.

The following list classifies five essentially different types of commutative subgroups
of biholomorphisms of the unit ball B”, or its unbounded realisation, the Siegel domain
D,,. In the second part of the paper, [11], R. Quiroga Barranco and N. Vasilevski
proved that these subgroups are maximal commutative subgroups of biholomorphisms
and that each maximal commutative subgroup of biholomorphisms is conjugate to one

from the list, while neither two from the list are conjugate.

¢ Quasi-elliptic group of biholomorphisms of the unit ball B” if isomorphic to T"

with the following action:
t:z=1(z1,...,20) EB"—tz = (t121,...,tnz,) € B",
for each t = (ty,...,t,) € T™.

14
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e Quasi-parabolic group of biholomorphisms of the Siegel domain D,, is isomor-

phic to T" ! x R with the following group action:
(t,h): (2, 2,) € Dy — (t2', 2, + h) € D,

for each (¢t,h) € T" ! x R.

e Quasi-hyperbolic group of biholomorphisms of the Siegel domain D,, is isomor-

phic to T x R, with the following group action:
(t,7): (¢, 20) € Dy — (r'%t2 r2,) € Dy,

for each (t,7) € T" ' x R;.

« Nilpotent group of biholomorphisms of the Siegel domain D, is isomorphic to
R ! xR

(b,h): (¢, 20) € Dy — (2 + b, 2, + h +2i2 -b+i|b|*) € D,

for each (b,h) € R" ! x R.

e Quasi-nilpotent group of biholomorphisms of the Siegel domain D,, is isomor-
phic to TF x R "1 x R, 0 < k < n — 1, with the following group action:

(t,b,h): (2,2, 2,) € Dy (t2', 2" 4+ b, 2, + h+ 2i2" - b+ i|b|*) € D,,
for each (t,b,h) € TF x R %1 x R.

In Chapter 3 we give another proof of this diagonalization for the quasi-parabolic
group, the hyperbolic group, the nilpotent group and the quasi-nilpotent group. Since
we do not really use these eigenvalue functions until that chapter, we do not present

them here.

1.8 Commutative Banach Algebras Generated by
Toeplitz Operators

Surprisingly, it turned out that, for n > 1 there exist many other, not geometrically
defined, classes of symbols which generate commutative Toeplitz operator algebras

on each weighted Bergman space. These classes of symbols were always subordinated

15
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to one of the model classes of the maximal commutative subgroups we cited in the
previous section (with the exception of the nilpotent subgroup). The corresponding
commutative operator algebras were Banach, and being extended to C* they became

non-commutative.

1.8.1 Elliptic case

W. Bauer and N. Vasilevski studied in a series of papers the case of the commutative
Banach algebra generated by Toeplitz operators with quasi-radial quasi-homogeneous
symbols (i.e. an algebra subordinated to the quasi-elliptic group). They started from
the lowest dimensional case n = 2 in [1] and studied the general dimension case in [2]

and [3]. The general aim was to develop the Gelfand theory of these algebras.

For a general dimension n, the definition of this algebra is similar to the corre-
sponding definition in the parabolic case, which will be introduced in the next section.

Therefore, we present here only the particular case n = 2

For n = 2, W. Bauer and N. Vasilevski were able to give explicit descriptions of
the maximal ideal space, the Gelfand transform and the radical. The corresponding
(unique) commutative Toeplitz operator algebra is Banach (not C*!). Since this algebra
only appears explicitly in this section we keep the notation of [1] and denote this algebra

by T(A). For the rest of the thesis we will use this notation just for the parabolic case.

The algebra 7(\) can be described as follows: Let H := A%(B?) be the weighted
Bergman space over B? with parameter A > —1, and write 7,44(A) for the commutative
C*-subalgebra of Z(H) generated by all Toeplitz operators T, with radial bounded

measurable symbols a on B? (i.e. a(z) = a(|z])).

For a bounded measurable function a(r) we have
T.2% = vax(la))z®,  a=(a,a9) € Zi,

where, using the usual multi-index notation, |a| = a3 + ay and

_ T(jo] + A +3)
fya,)\<|a‘) - F()\ + 1)F(‘o¢’ —+ 2)

/01 a(v/r)(1 — r) et

We denote by D, the multiplication operator with symbol v. The C*-algebra
Traa(A) can be identified with a certain subalgebra of slowly oscillating sequences. We
denote it by SO(M).

16
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Let M (Traa(N)) be the compact set of maximal ideals of 7,,4(\). By Proposition

1.2.2, M(Traa(N)) is some compactification of Z,. Therefore we can decompose
M(Traa(N) = Z U M),

Further, we denote by 7, the unital Banach algebra generated by a single generator

T,, where ¢ is the “simplest” quasi-homogeneous symbol on B? given by:

21722 (1,0)7(0,1)
)=— = 5
¢ ) |Z1|2 + |Z2|2 < C

where ¢ = z/|z| € §%

The operator Ty acts on the basic elements (normalized monomials) of A3 (B?),

T(la] +A+4) ,
alZ) = 4, €77,
ea(2) J W) S YEn
by the following rule:
(a1 + 1)y
T - >1
Tiea =1{ 2+ (atbedr G225
0, otherwise.
More generally, let ¢, = ¢P. Then
042(042— 1)---(a2 —p+1)
€(a ,0—p)s [0 2 D,
Ty, eq = p+1+lal) (24 |a|) (a1+p,az—p) 2
0, otherwise.

By Corollary 4.3 from [15], for any bounded measurable function a(r) and p € Z
we have
Taqu = Td’pTa = TGT‘%‘

As a consequence, the algebra T (), generated by Toeplitz operators with radial
symbols and the Toeplitz operators Ty, , is a commutative Banach algebra and is
generated by the operators Ty, with a € Ly[0,1) and T}, p € Z,.. Moreover, Corollary
3.5 from [1] states that 7 () is generated just by Toeplitz operators T, with bounded

measurable radial symbols a(r) and the single Toeplitz operator T.

We mention two of the main results of [1]:

17
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1.8.1 Theorem ([1, Theorem 3.6]). The Banach algebra T, is isomorphic via the

Gelfand transform to the algebra C,(D(0, %)), which consists of all functions analytic

in D(0,3) and continuous on D(0, 3).

1.8.2 Theorem ([1, Theorem 5.4]). The compact set M(T (X)) of mazximal ideals of
the algebra T (X) has the form

M(T(N) = Z x {0} U Mo (X) x D0, ;).

(i) The Gelfand image of the algebra T (\) is isomorphic to T (\)/RadT(\) and

coinides with the algebra

SO\ U |C(Myo(N)®:Co(D(0, ;))

satisfying the following compatibility condition ~(u) = f(u,0), for all p € My ()
Here ®. denotes the injective tensor product, and we identify (i) with the value
of the functional p € My (X) on the element v € SO(N).

(i) The Gelfand transform is generated by the following mapping of elements of D()\),
the dense set of all finite sums of finite products of elements of T (A =

Yo(k), if (k,0) € Z4 x {0},
0o ()¢, if (1,¢) € Muo(X) x D(0, 3).

Z Dwsz — {
=0

1.8.2 Parabolic case

We first recall some facts from [14] which are also consequence from the results of [10].

Fix a weight parameter A > —1.

There is a surjective operator
R: Ly(Dy, i) — 1o(Z77", Ly(Ry))
such that the restriction onto the Bergman space A3 (D,,)
Rlz: AX(Dn) = B(Z7", La(Ry))

18
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is an isometric isomorphism. The adjoint
R*: (277", Lay(Ry)) — Lo(Dy,, fi)
is an isometric isomorphism.
Furthermore,
RR* =1:1,(Z%", La(Ry)) — (2771, La(R4))

R*R = Bp, »: Lo(Dy, i) = A3(D»),

where Bp, ) is the Bergman projection on the Siegel domain D,,.

The general aim of this thesis is to study the parabolic case for the simplest case

n = 3. We describe how these algebras are constructed for a general n > 2.

In what follow we will use the standard multi-index notation. That is, for a

.. n—1,
multi-index o = (a1, 9, ..., 1) € Z

lal =a1 +as+ -+ g,

al = 061!062! cee Oénfl!,
o 0] 02 Qn—1
z — 21 22 AR anl .

Two multi-indices o and 3 are called orthogonal,av L 3, if
a-B=afi+afo+ -+ an16,-1 =0.

Let k = (k1,...,kn) be a tuple of positive integers with ky +--- + k,, =n — 1. We

rearrange the n — 1 coordinates of z € C"! in m groups, each one of which has k;,

j =1,...,m, entries and introduce the notation
Z(l) == (21,17"'721,161)7 Z(2) = (22,17"'722,162)7 ceey Z(m) = (Zm,la"'7zm,km)-
We represent then each z(;) = (2,1, - - ., 2jx,) € C" in the form

2(j) = 1G()

, where r; = \/’Zj7]_|2 + -+ |zjk,]? and () € S = OB
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A bounded measurable function a = a(w), w € D,,, will be called parabolic k-quasi-
radial if it depends only on rq,...,r,, and y, = Imw,. We denote by R, the set of
k-quasi-radial functions.

We will always assume first, that k; < ko < --- < k,,,, and second, that

2171 = Z1, 2172 = Z9,... 7zl,k1 = Zkl, 2271 = zk1+17 ey
227].32 = Z_/{il + k‘g, ey zm,km = Zn—1-
We use the representations z(;y = r;(s;), j = 1,...,m, to define the vector

¢ = (Cays (@) s Comy) €SP x S™ x - x SP

Let p,q € Z'7" be a pair of orthogonal (p L ¢) multi-indices. A function ¢ €
Lo (D,,) is called parabolic quasi-homogeneous (or parabolic k-quasi-homogeneous)

function if it has the form

(;D(Z) = 90(2(1)7 2(2)y - 7Z(m)) = a(rla re, ..y 'm, yn)gpzqa (13)

where a(ry, 79, ..., 7m,Yn) € Ri. We will call the pair (p,q) the quasi-homogeneous
degree of the parabolic k-quasi-homogeneous function

a(ri, o, -« oy T, Yn)CPC.

As it was shown in [14], we can construct commutative Banach algebras generated
by Toeplitz operators with parabolic quasi-radial quasi-homogeneous symbols satisfying

certain conditions as follows.

To avoid the repetition of the unitary equivalent algebras and to simplify the
classification of the (non-unitary equivalent) algebras we rearrange the variables z; and
correspondingly the components of multi-indices in p and ¢ so that

(i) for each j with k; > 1, we have
Py = (pj,la"'7pj,hj707"'a0>7 qi4) = (07'"7Oan,hj+17"'7Qj,k’j>; (14)

(11) if kj/ = kj// with j/ < j//, then hj/ < hj//.

Now, given k = (ki,...,kn), we start with a m-tuple h = (hq,...,h,,), where
h; =0if k; =1and 1 < h; < k; —1if k; > 1; in the last case, if k; = k;» with j' < j”,
then hj/ S hj”'
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We denote by Ry(h) the linear space generated by all parabolic k-quasi-radial

. . —q
quasi-homogeneous functions a(ry,r, ..., Tm, Yn)CPC", where

a(ri,re, ...y "'m, Yn) € Ry, and the components p(j) and ¢q(j), j = 1,2,...,m, of the

multi-indices p and ¢ are of the form (1.4) with
pj’l +e +pj7hj = qj9hj+1 +o +qj7kj7

Dids ey Pihys Gihjars - Diky € Loy

1.8.3 Lemma ([14, Lemma 3.1]). Given a parabolic quasi-radial function a = a(ry, . . .

we have
RTR": {ca(§)}aeznr > {Van(@, €)cal€) aczn—1s
where
1
Yak(@:8) = F(/\+1 k—1+|a )!

rm v+ + S A
Rm+1

1t ) |Gy -k =
x e Wt de ! drj, EeR,.
7=1

”]"m7 yn)7

For each o € Z"!, we denote by &, = {50[7/3}/362171 the a’s element of the standard

orthonormal basis in l(Z% ). Given c(£) € Ly(Ry) let

éa(c(l)) =éa®c(é) = {504,,30(5)}%21*1

be the corresponding one-component element of Iy(Z", Ly(R,)).

1.8.4 Lemma ([14, Lemma 3.2]). Given a parabolic k-quasi-radial quasi-homogeneous

symbol of the form (1.3), we have

0, if there exists lsuch thatoy +p — q < 0

RT,R": é,(c(§)) —
Yakpa( ) earpq(c(§)), UVl ar+p—q >0,
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where

2™ (a+ p)! i 1
1 (k= 1+ Jag) +p)!

ﬁa,kz, s (a/ag) =
i alla+p—q)T\+1) j=
y / r T U472
a 77 T ) 77 Y
R\ /28 V2E 2%
% ve~ ) gy ﬁ Tj?\%')|+\P(j)|*\f1<j)|+2kr1drj7 £cR,.

J=1

According to Corolary 4.6 and its remarks in [14], the Banach algebra generated by
Toeplitz operators with symbols in Ry (h) is commutative on every weighted Bergman
space A3(D,), A > —1. For n = 2 these algebras collapse to the single C*-algebra
generated by Toeplitz operators with quasi-parabolic symbols and for n > 2 these
algebras are just Banach and, extending them to C*-algebras, they become non

commutative.

In this thesis we will study the simplest case n = 3 and k = (2). This implies that
h = (1) = 1 and thus the symbols we will work with are of the form a(r, y)¢ O e
denote by T (A) the Banach algebra generated by the Toeplitz operators Ta

where a = a(r,Im z3) € Loo(D3), r = y/|21]? + |21/|?, and p € Z,.

(ry) (OO
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Chapter 2

Bergman Space Representation

2.1 Bergman Space Representation
We denote by D,, the Siegel in C" defined by

D,={z=(¢,2,) €C" ' xC: Imz, — |¢]* > 0}. (2.1)

Let D =C"! x R x R,. The mapping
k: (2, u,v) € Dr— (2, u+iv+i|l|?) € D, (2.2)
is a diffeomorphism between D and D,, with inverse

k(2 2,) — (7, Re zp, Im 2, — |2/]?).

Denote by dv(z) = dxidxy - - - dx,dy,, where z,, = x, + iym, m = 1,...,n, the
standard Lebesgue measure in C", and introduce the following one-parameter family

of weighted measures

C !
dpa(2) = (1 z, — |2/12)do(2)

where the normalizing constant is given by

_Tn+A+1)
C\ — m (23)

Denote by A3(D,,) the weighted Bergman space being the (closed) subspace of
Lo(D,,, dpy) which consists of analytic functions. It is well known that the weighted

23



2. CHAPTER. BERGMAN SPACE REPRESENTATION

Bergman projection Bp, , of Ly(Dy,djuy) onto the Bergman space A3 (D,) is given by

f©)
gt =T

n+Ai+1 d'u)‘(C) :

(Bo,./)() = [
K

Return now to the domain D = C"! x R x R, and introduce the space Ly(D, dny)

where the measure dn, is given by the formula

dny(w) = nx(w) = %\vkdu(z), A > —1,
and the constant c, is given by (2.3).

The operator Uy: Lo(D,,, dpy) — Lo(D, dny), defined by
(Uof)(w) = f(r(w)),

where the mapping & is given by (2.2), is obviously unitary.

The image Ay = Up(A3(D,))) coincides with the set of all Ly(D, dny)-functions
that satisfy the equations

o .0 0 .0
(wﬂ&))@_o and (%_Z&sz>¢_o’ k=1,....,n—1.

We introduce the unitary operator U; = I ® F'® I acting on
Ly(D,dny) = La(C" 1, dvy) @ La(R) ® Lo(R+, dny), where

(FINE == [ fwe

is the Fourier transform on Lo(R).

Then the image A; (D) = Uy (Ao(D)) consists of all Ly(D, dn,)-functions of the form

p(2,€,v) = xr, (O)P(Z, €)e™ (2.4)

where a functions 1 has to satisfy the equations

)
<82k—|—§zk> w(2,€) =0, k=1,....,n— 1L (2.5)
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We introduce now the weighted Fock space on C"~!. Given a (weight) parameter
a € Ry consider Ly(C" 1, dv,,), where

n—1
dvg(2') = (a) e Pdu(z), 2 eCm
7T

Then the Fock space F2(C"!) is the closed subspace of Lo(C"! dv,) which

consists of analytic functions. We denote by P, the orthogonal Bargmann projection
of Ly(C" 1, dv,) onto F2(C"1).

For each £ € R, we introduce the operator

™

’ 2 f _nT_l 2! 2 /
wer)) = (%) 7 )
which maps unitarily L(C" ') onto Ly(C™" 1, dugyg|).

Note that if f € Ly(C"!, dvg), then

Mﬁmw—<¥02€*wﬁw»

So, for each £ € Ry and f € Ly(C" !, dvye), we have

n—1

<27§) | (‘fzke“"zf () + €5|Z/|23£(2,) - fz’“eﬂleQf(ZI))

(;;+€%>@QVN5)

_ (26 7 e OF L
_<7T> et %k(z)

It is convenient to represent Lo(D, dn),) in the form

@
Ly(D,dny) = La(R) ® Ly(Ry, 1)) @ Lo(C™ 1) = Ly(Ry, my) ®/R Ly (C"1, dugg ) dE.

Using this representation we define the operator

(5]
V:]@/ Vidt,
R
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which maps unitarily
© n—1 @ n—1
Ly(Ry, 1) ®/R Ly(C")dE  onto  Lo(Ry,my) ®/R Ly(C™, dugjg) )dE.
Using (2.4), if we take a function ¢(2/,&,v) = xr, ()Y (2, €)e " in A;(D), we have

V(2,6,0) = xz. (e (2, ),

where ¢/ (2, £) = (%) T el " (2, €) and, by Fubini’s Theorem,

WVelr= [ (/R I ORdE) St

= [ h(EI (- )| dg (28)
A LGSR
where h(£)? = [p, e” S0 dv.

Since <08 + fzk> 1 =0, by (2.7), the function ¢’ is analytic. Moreover, by (2.8),

we see that the function (2/,€) — h(&)y'(2',€) belongs to [i Lo(C"~Y, duge )dE.
Thus, if we let ¢(§) = h(£)™!, we can write

p(2, € 0) = xr (€)™ (MY (2, €, v)).
This proves that Ay = V(A;(D)) consists of all functions of the form
(2,6, v) = xz, (E)c(§)e™Y(€, 2), (2.9)

where [l = [[¢]].

Since
C(A+1)

—2&v, A o
Jo, 7w = T

we can summarize the previous lines in the following result.

2.1.1 Lemma. The unitary operator U = VU,Uy maps the Bergman space A3(D,,)
onto the space Ay which is the closed subspace of

&)
Lo(Ry, diy) ® /R Lo(C™Y, duge )de
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and consists of all functions of the form

4N
)) (e, ),

(2, €,v) = xr, (&) (W

where

! @ 2 n—1
V(e 2) e [ R(C e,
R
Introduce now the isometric embedding
@ 2 n—1 @ n—1
RO:/R F(C )d§—>L2(R+,dn,\)®/R Lo(CY, duge )de
+

by the rule
4(2€)>\+1

Ro: (6, ') — v, (€) (w) Tt ),

where the function (€, 2’) is extended by zero for £ € R\R, for each 2’ € C" 1.

Since, by Fubini’s Theorem,

(Rovg) = [ [ [ e, (©e(@e 0(E, #)p(& € u) 3 v dusgdude

= /R+ /Cn_l w@,z')(/]m C(f)e_gvsﬁ(Z’,f,v)i‘ijdv) dvoje dE

= [ (6216 Mraertamorde
= R, <¢(§7 ')7 PQ&QO/(& ')>L2(C"717dv25)d§

= (U, (P @ I)¢'),

where

P62 = [ @ (.6 0) v,

+

we conclude that

4(2 A+1 %
Ry: f+— /R+ (%) eI ® ng)f(v,ﬁ,z')%\v’\dv

Since Ry is isometric, we have
@ @
R:iRy = I: / FL(CY)dg — / F(CM1)de.
R, R,

27
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Moreover, Rj is surjective, since Ry is injective, and by (2.9), Ry maps fﬂgi F3(C"1)de
onto Ay. This implies that the image of RoR} is Ay. Also, (RoRf)?* = RoRj and
(RoRy)* = RoRg, therefore we conclude that

D
RoR: = Py: Lo(Ry, dijy) ®/R Lo(C™, dvgje))dE — Ay,

where Py is the orthogonal projection of

[S>)
Ly(Ry, dny) ®/R Ly(C", dvgjg))d€

onto Ay .
Thus finally we have

2.1.2 Theorem. The operator R = R{U maps Lo(D,,, duy) onto fﬂgi F3(C1)dE, and
the restriction .
Rlgp,: A3(Da) [ FR(EC)dg
+

is an isometric isomorphism.

The adjoint operator
®
R* = U"Ry: /R FZ(C")d¢ — A2(D,) C Lo(Dy, dy)
+

is the isometric isomorphism Offxgi F3(C"1)d¢ onto the subspace A5(Dy) of Ly(Dn, dpy),

Furthermore
52} S
RR =1 [ Fa(C)dg — [ FE(C™ ),
Ry Ry

R*R = Bp, ,: La(Dy, dpy) — A3(D,),

where Bp, , is the Bergman projection of Ly(Dy,, dpuy) onto A3(Dy).

2.2 Toeplitz operators

Consider a function a € L>®°(D,,,duy). Let M,: Lo(D,,duy) — Lo(D,,duy) be the
multiplication operator with symbol a and Ty‘) = Bp, , M,| A2 (D) the Toeplitz operator
with symbol a.

Then, since Bp, , = R*R and I = RR*, we have

RTYR* = R(R*R)M,)R* = RM,R* = R}VU,UyM,U; V" Ry.
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Note that for every f € Lo(D,dn)),
UoMUg f = Us(a- (for™)) = (aok)f = M,f,

where M, is the multiplication operator in Ls(D, dny) with symbol ag = a o k.

Suppose now that a does not depend on Re z,, that is,
a(z,z,) =a( 2, +1), teR. (2.11)

In this case, ag doesn’t depend on u and we can write ag = ag(2’,v) € Loo(C" x R).

This implies that, for every f € Lyo(D,dny) N Ly(D, dn,),
(Moo UT (2, u,v)

ao 2 ) f(t)e™dt

zut dt

and then

(UlMaOUikf)(z’7u’U) = \/12_71_/Ra'()(zl,'U)(F*f)(zl,t,l))e_iutdt

= ap(z (#,t,v)e " dt

\/_
= ao(2,v)(FF*f)(Z,t,v)

= ao(2',v) f(Z,t,v).
This proves that Uy M, Uy = M,,.

Furthermore, for every f € Ly(D,dny) = La(Ry,dny) ® fg La(C1, dvge)dE we
have

o1\~ T
VMCLOV*: f H <,|T§>|> e|£HZ/|2f(Z/7£7 U)
o1\~
—anlo) (2E1) T (0
7
L aO(Zlu U)f(Z/, 57 U)a
which implies V M, V* = M,,.
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Thus, we conclude that

R*'T,R = R{VU(UsM,U{)V™ Ry
= RV (Ui M, Uy )V* Ry
= Ry(V Mo, V) Ro
= RiMy,Ro.

We take now ¢ € fi F3:(C"")d¢ and see how RjM,, Ry acts on it. It’s clear that

4(2£)>\+1)>2 6—§vw(£’ Z/), (2.12)

(MayRoth) (0,€, 2') = o[+, 0)xe, (€) <m+1

where 1) is extended as before.

Recall that the Bargmann projection Paje of Ly(C" ', dugyg) onto F (C"') is

given by the integral operator

Py f(2) :/ f(w/)emzlwdvmg\(w/), f € Ly(C* 1 dugygy),

Cn—1

where Ko (2') = K(2',w') = ¢2€="*" is the reproducing kernel of Fe(C*h).

It follows that if f € La(Ry,dny) @ [ La(C"1, dugpe))d, fixing &,

(I & P2|§|)f(vv 57 Z,) = / f(’U, 57 w/)K(Z,, w/)dv2\§|(w/)'

Cn—1

From (2.12) we obtain

(1@ Pajg))(Mag Ro)¥o(v, €, 2')
= ao(w', v)xe. (§)e(€)e™ (€, W) K (2, w')dvyg (w')

Cn—1
= X (@™ [ ao(u!, 0} (&, w) K (' w)dvyg ()

Cn-—1
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Finally, using (2.10), (2.12) and Fubini’s Theorem, we have

(RoMay Ro) (8, %)
- /th XR, (6)c(&)2e Y (/(Cnl ao(w', v)(€, w’)K(z’,w’)dvg|§|(w’)) %’\v)‘dv

= Jens (/R+ XR, (5)0(5)262£”ao(w’,v)2‘v’\dv> Y&, w' ) K (2, w')dvgje (w')
= 6§(w/)1/1(§, w')K (2, w/)dvma (w')

cn-1
=T,
where
WAL S
:/ F(Qf :rll 20 ag (2, v)dv
:/ F(2§:L1l 20 o k(2 u,v)dv (2.13)

and Ta%) is the Toeplitz operator with symbol @ acting on F3(C"').

We conclude that
RTMR* = T(g)dg (2.14)

Ry

2.3 The symbol a;

Recall that

N ) 2 A+1 B .
ae(2') = N Ig(f\)me 202 a0 (2, v)dv.

2.3.1 ||ae]|oo and |[ja]|

If ag(2',v) = by(2')be(v), for some functions by € Lo (C"1), by € Loo(R, ), then

(26))\+1 —2£U b

ry DA+ 1) (v)dv.

ag(z') = bi(2')

Since

r 1
/ vie dy = Dls+1) (2.15)
R

ts+1 ’
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we have @¢(2') = by(2') when by(v) = 1. In this case ||G¢|lco = ||a@0]|co-

Let a > 0, 3 > 0 and suppose by(v) = v®e~?". Then we have by(v) = (av™! —

B)v*e=PY, so that by has a maximum at v = a//3. Therefore

ol = batr/8) = ()"
and
(0%
laoll = 11l I lloc = 1l )"

Also, by (2.15),

ag(2') =0 (z')i(%>A+1 / pMree (2B gy,
¢ NITON+1) Jre

OM T(A+a+1)

=0T e § gy

Then in general ||agl/oo # ||a@0]] -

However, we always have

2 A+1
S [ gl = ol
R+

= (
|ag(2")] < O+ 1)

which implies ||| < [|a||oo-

2.3.2 Limits at 0 and at o~

Suppose ag(2',v) = b1(2')by(v) such that
ba(t) = A, t— o0,

bo(t) = B, t—07.

Note that, applying the change of variable y = 2&wv,
N 2§)A+1 3
N — b ! ( / 2&v )\b d
() = gy gy [ )

_ _h(@) v p( Y
T+ D) /Rf yAbQ(zg)dy'

Since

_ v _
e ba( )] < [b2llocle™ 0,
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where the last function is integrable and independent of &, by Lebesgue’s dominated

convergence theorem we have

L bi(2') - _
N — Yo A — / / n—1
51i>%l+ ag(2') Aif()\—i—l) /R+e yrdy = Abi(2), 2 eC
and by(/)
. ~ n o __ 1 ¥ —y A _ /! / n—1
5hﬂlrgoa,g(z)—BF(/\_Fl)/Hhe y dy = Bb(2'), 2 eC' .

2.3.3 Continuity

Consider the logarithmic metric p on R, defined by

p(z,y) =[In(z) —In(y)[, z,y€Ry.

Suppose that A > 0 and a(2’,v) = by(2')b2(v). Then & — a¢(2') is uniformly

continuous with respect to the metric p for every 2’ € C* 1.

Indeed, reasoning as in [19, Theorem 4.4], we can assume, without loss of generality,
that & > &. Then

(2£1))\+1U/\672£1v > (252))\%&,0)\672521) iff gi\+1672£1v > €§\+1672£2v
iff ()\ + 1) In 51 - 2511} 2 ()\ + 1) ln£2 - 262’(}
A+1) 1 &

1 =7

iff > 22 .=
BoiET & —& nf1

Thus we have

/ (251)’\“11%_251%2(0)611)—/ (26) M vt e 220, (v) du
Ry R,

< HbQHOO/ (26 ote 267 (26, MLt e 20| gy
R
= bl ([ 8 e — [T Rep e
() 0

+ / 0(252))\+1UA6—2520dv_/0(261)>\+1,U)\e—2§1vdv).
0 0
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Applying in each integral the change of variables y = 2&1v or y = 2w, respectively,

the sum inside parenthesis equals

o0 A — oo A - 28200 N — 2&1v0 -
/ yre Ydy — yeydy+/ yeydy—/ ye Ydy
2&1v0 28210 0 0
2820
=2 o yre Vdy < AM, (& — &)vo = 2My(A + 1) In &
1Y0 1

= 2M\(A + 1) p(&2, &),

where
M, = sup y'e ¥ = Xe ™, if A >0,
yeR
and
MO - 1
Therefore, we conclude that
_ - A+1
e, (2') — ag, ()] < 2Mxm|b1(2’)|||b2|loop(§2, &1)
A+1
< 2My——— 61|00 || 02 || 0 J&1).
< 20 Il el (2. 61

Doing a similar analysis for —1 < A < 0 we conclude the following result.

2.3.1 Lemma. Lett > —1 and ri,ro > 0. Then

/ |(r) T ole ™™ — (rg) T ote ™Y |dv < 2t'e T (t 4 1)|log (11 /12)]|.
R0
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Chapter 3

Commutative C*-Algebras

For every a > 0 introduce now the linear operator
Ry: FX(C') = F2(C"Y),

given by
Rof(?) = f(al?2), 2 ecCr

It follows from the Change of Variables Theorem that R, is a unitary operator
with RY = R;! = R,-1.

3.0.1 Lemma. If p € Lo(C"!) then

* o _ 1
RTSR, =T

©OTq )

where 7,(2') = a=22" and Ty and Téom denote the Toeplitz operators with symbols

and ¢ o 7, acting on F2(C"™ 1) and FE(C"'), respectively.
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Proof. We have, by a change of variables,

RiTSR, = R PaMyRy: f— f(a!/?2)
— () (7?2

= [ plam ) fu)e T ()
[l ) e ()
= Tpor,
O
3.1 Quasi-parabolic case
We will call a function a(z), z € D,,, quasi-parabolic if a(z) = a(r,y,) = a(ry, ..., m-1,Im 2,).

Note that such a satisfies condition (2.11) and ao(2’,v) = a(k(2',v)) = a(',v + ||?).

Thus we can write ag = ao(r,v) = a(r,v + |r|?).

Then (2.14) holds and by (2.13) we have

At
ag(2') = ag(r) = F(?f)m /R+ e 2 a(r, v+ |r[})dv. (3.1)

We will show that the operator 7'V is unitarily equivalent to a specific multiplication
operator.

Let us first recall some facts about radial operators. A function ¢ € L (C) is
called radial if there is some function ¢ € L (R;) such that ¢(z) = ¢(|z]).

It is well known (see, for example, [9]) that if ¢ € L (C) is a radial function, then
the Toeplitz operator T,, with symbol ¢ acting on the one-dimensional Fock space
F?(C) is diagonal with respect to the orthonormal basis consisting of the normalized

monomials e;(z) = 2*/VE!, n € Z,, with eigenvalues

10@) = o [ alymeidn ez, 32

ol

We extend this result to the Fock space F2(C™).
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3.1.1 Lemma. Let p € Loo(C™) a function such that p(z) = p(r1,...,7m) and T the
Toeplitz operator with symbol ¢ acting on F2(C™). Then Ty is diagonal with respect to

a|P|
the orthonormal basis consisting of the monomials ey(z) = —'z”, p € ZT' and the
\ p!

etgenvalues are given by

Ip|+m

e o —a(ri+-+rm m

’Y<(p '(p) = ol /Rm o(\/r)e et trmlp Py g € 7, (3.3)
: +

where /1 = (\/T1, ... ,\/Tm)-

Proof. 1t is well known that the monomials e,(z) = 2#/4/p! form an orthonormal

Q‘P|

basis for the space FZ(C™). Then the functions R,e,(z) = —2", p € Z', form an
\ p!

orthonormal basis por F2(C™) and, by Lemma 3.0.1, the operator 17 is diagonal with

respect to this basis if and only if T; is diagonal with respect to the monomials

OTw

{ep}peZT-

Thus, we only need to prove the result for the case a« = 1. Let P, and P be
the Bargmann projection in Ly(C™, dv;) and L*(C,dg), respectively, where dg(z) =
%e"zﬁdA(z), and note that

PG = [ f)eTdunw) = (P@-- 0 P)f(2).

Cm

This also implies that F?(C™) = F*(C)® --- ® F?(C).

Now let p = 1 ® -+ @, € Loo(C) ® -+ ® Loo(C), where each ¢y is a radial

function. Then
Té:Plez(P®"'®P)(Mw1®“'®M¢m):Tw1®"'®T¢m>

where T, denotes the Toeplitz operator with (radial) symbol ¢, acting on F?(C).
Using the facts stated before the lemma we see that for every £ = 1,...,m, T,, is

unitarily equivalent to the operator v,, I, acting on Lo(Z. ).

Therefore Tq} is unitarily equivalent to the multiplication operator

Yor I & -+ @ Y L = Y1,
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3. CHAPTER. COMMUTATIVE C*-ALGEBRAS

acting on Lo(Z7), where v, = 75, ® - -+ ®7,,,. That is,

1 s
%P(p) = H /]R{m 90(\/ 7’1) T (pn71<\/ rm>€ (ratea m)rpdT1 <o dry,
CURy
1
= L oyt oy
p! Jr

where \/r = (\/T1,...,/Tm). This proves the formula for oo = 1.

For a general a we simply replace ¢ with ¢ o 7, and apply the Change of Variables
Theorem to obtain the desired result. O

Returning to the original problem, for every £ > 0 introduce the linear operator
Q¢: F3(C"™) — I5(Z") defined as the unitary operator such that Q¢(Rxce,) =

@

(5q7p)qezifl and define Q) = / Qedé. Note that by the preceding lemma, if ¢ =
Ry

@(r1, ..., Tn1) € Leo(C™h), then Q:T2Q¢ is the multiplication operator 7291 acting

on lr(Z1™1), where 7&25) is given by this Lemma.

Using this, we give an alternative proof to Theorem 10.2 in [10].

3.1.2 Theorem. Let a = a(r,y,) be a bounded measurable quasi-parabolic function.
Then the Toeplitz operator TN acting on A3(D,,) is unitary equivalent to the mul-
tiplication operator v,1 = QRTNR*Q* acting on Iy(Z") @ Ly(Ry). The sequence
Yo = {7a(p: )} pezn—1, € € Ry, ds given by

(2€>\pl+>\+n

Ya(p,§) = DT ET)

/ a(\T, 0+ 11 4 - g )rPe” B ET- D A dr .
.

Proof. By the remarks at the beginning of the section we have R*TM R = fﬁi TE(? dg,
where @ es given by (3.1).

Since ag = ag(ry,...,mp—1), we have
N ey [F A © s e
QRTVR'Q = [ QT9qQus = |+ 1de,
R+ ag ]R+ ag
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which is the multiplication operator 7,/ acting on fﬂgi L(Z71)de = P2 ) @ LA(Ry),
where, by (3.3) and (3.1),

|p|+n—
(. €) = 12 () = ZT [ ey,

ag pl :szl

(2£)|P\+n71 / (2§)>\+1 / P
_ )7 \es) v ooy )d.

p! R \[(A+1) R, va(yr ot o)y

e 26 A 1) P g

2£)Ipl+A+n
— ](D'Ié;)(AJrl) /Ri a(\T v Ay e Ty )rPe” B A ey

]

3.2 Nilpotent case

We will call a function a(z), z € D, nilpotent if a(z) = a(y’,Im z, — |2'|*), with
y' = (Imz,...,Imz, ;). Note that such an a satisfies condition (2.11) and ag(2’,v) =

a(k(2',v)) = a(z',v + |Z'|?). Thus we can write ag = ag(y’,v) and (2.14) holds.

We will show that the operator 7'V is unitarily equivalent to a specific multiplication

operator. We make use of the following facts (see [18]):

A function ¢ € Lo (C" 1) is said to be horizontal if for every h € R*!
©(z —ih) = p(2), for almost all z € C"*.

A function ¢ € Lo (C"!) is horizontal if and only if there exists ¢ € Lo (R"™ 1)
such that
o(z) =9(Rez), a. e 2 eC"

A Toeplitz operator T} with horizontal symbol ¢ acting on the Fock space Ff'(C"')
is unitarily equivalent to the multiplication operator v, acting on La(R"™1).
It turns out that a similar result holds for any function ¢ € Lo (C"!) such that,

for every h in a Lagrangian plane £ C R~
©(z —h) = p(2), for almost all ze C" '

In the case £ = R"™ x {0}, we have o(z — h) = p(2), h € R""! and we say that
¢ is vertical. There exists a unitary operator Q: FZ(C"™') — Ly(R" 1) such that for
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every vertical function ¢ € Lo,(C"!) we have
QIT:;QT - 7@17

©(z) = ¢(Imzy,...,Im z, ;) and thus the Toeplitz operator T; is unitarily equivalent

to the multiplication operator ,I acting on Lo(R" 1) with
Vo(z) = T © Y e Py, ze RV
Rn—1 \/5

Moreover, let a > 0. If ¢ € L,,(C"!) is vertical then ¢ o 7, is also vertical and, by
Lemma 3.0.1, the Toeplitz operator T} acting on F2(C"~') is unitarily equivalent to
the multiplication operator

QlR:TgRan Ql gpoTan ’Vgaom = 7()(004)[,
acting on Ly(R"1), where

n—1

@) (g) = 75 _ Y ) el n-1
Y () =7 2/]1{”190( m)e dy, zeR"". (3.4)

Returning to the original problem, for every £ > 0 introduce the unitary operator
®
Qe = Q1R5c: F5.(C"') — Ly(R"") and define Q = / QedE. Note that by the
R
preceding lemma, if ¢ = @(y) € Loo(C"), then Q:TXQ; is the multiplication
operator 72T acting on Ly(R™!), where 7% is given by the preceding Lemma.

Using this, we give an alternative proof to Theorem 10.3 in [10].

3.2.1 Theorem. Let a = a(y’,Im z, — |2’|?) be a bounded measurable nilpotent func-
tion. Then the Toeplitz operator TW) acting on A3(D,) is unitary equivalent to the
multiplication operator v,1 = QRTW R*Q* acting on Ly(R"1)® Ly(R,.). The function
Yo = Va2, €), where ' € R"1 and £ € Ry, is given by

(26))\4—1

o(2',6) = n—l—/ x + =260y A dy)/ dy
Yal2', €) IO D) S, (2\/—( y) e y

Proof. Reasoning as in the quasi-parabolic case, we have
@
QRTVRQ = [ QeTOquie = [ 42914
R
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which is the multiplication operator v,/ acting on fg, Ly(R"')d€ = Ly(R™ )@ L*(R,),
where, by (2.13), (3.4) and a change of variables,

/
Yol@, &) =129 (a') = w12 /Rn_l g <2y¢5> el gy

2 A+1 / .,
= nfl <) / a(—L,v)e*%“*‘x VP dy'dv
T T T\ +1) JRe-ixry  2V/€
(2€>/\+1 / 1 ! ! —26v—|y'12, A 7,/
= — a(—=(—2' + '), v)e" XA dy dv.
TETOLD) Je e (2\/5( y)v) y
m
3.3 Quasi-nilpotent case
For an integer 1 < k < n — 2, we use the notation z = (2/,w’, z,) for points of D,,,

where 2’ € CF and w € C" %=1, We will call a function a(z), z € D,,, quasi-nilpotent
if a(z) = a(r,y’,Im z, — |w'|?), where r = (r,...,71), 1 = |z and ¥ = Imw’. Using

this notation we also have
k(2w u,v) = (2w, u+ v+ il 2| +iw'[?),

(2, w',u,v) € D.

Note that such an a satisfies condition (2.11), ag(2’,v) = a(k(2',v)) = a(r,y’,v +
2'|?) and (2.14) holds.

Using the facts about Toeplitz operators with radial and vertical symbols stated in

the preceding sections we can give an alternative proof to Theorem 10.4 in [10].

3.3.1 Theorem. Let a = a(r,y’,Im z, — |w'|?) be a measurable quasi-nilpotent func-
tion. Then the Toeplitz operator T™ acting on A3(D,) is unitary equivalent to the
multiplication operator v,I acting on ly(Z%) @ Lo(R"™ 1 x R,).

The sequence v, = {va(p, xlaf)}pezi; (2,€) e R"FL x R, | is given by

) Ip|+ A+k+1
nokor (26)7
plI(A+1)
]' / !
a(\/F,Q\/E( 4y v4ri -+ )

_ . 14712
. P28 (vtrit ) —[y| v)‘drdy’dv,

’7a<p7 1'/, 5) =T

/]R{ﬁ xRP—k—1xR
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where /1 = (\/T1, ... ,\/Tk)-

Proof. Tt suffices to show the result for the case a(r,y’, v+|2'|?) = by(r,v+|2'|?) @b (v/').
By (2.13), we have
2£) 1
65(217 w/) = ( RJr 15()5\)—’_1)6261)/0)\61(70, v + ‘ZIIQ)d’U) * b2<y/)

- bll ® b2(7’, y/)a

where

b/ _ <2€)>\+1 —2¢v )\b 12 d
(r) = A 7I‘(/\—|—1)6 v by (r,v + |27 dv.
+

Reasoning as in the proof of Lemma 3.1.1, we have
F3e(C1) = FR(CF) @ Fy(C 1)

and
LY =Ty @ T,

where Ty, and Ty, are the Toeplitz operators with symbols b} and by acting on the Fock
spaces Fy.(C*) and F3,(C"*1), respectively.

Since b} = b\ (r1,...,rx) we can apply the remarks before Theorem 3.1.2 with k

instead of n — 1. Thus, there is a unitary operator
Qg Fie(CH) — Io(Zh)

such that Q'Ty, (Q")* = 11, where, by (3.3),

2£)Ipl+k

n(p) = B2 5)1 / L (et ey
p! 1N
(25)\p|+,\+k+1

B p!T'(A+1) /Rk R bi(vVrvo+ri+-+ Tk)6_2£(U+T1+"'+rk)7”pUAd7"dU;
. +>< +

k
pEZLL.

On the other hand, we have by = by(y'), so that by is a vertical symbol. Thus,
applying the remarks before Theorem 3.2.1 with n — k — 1 instead of n — 1, there is a
unitary operator

Qz: Fi(C"F1) = Ly(R™H)
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such that Q*T;,(Q?)* = y2I, where, by (3.4),

/
n—k—1

N — Y el P gy
Yo(x') =77 2 /Rn—kfle( 2\/2)6 dy

! /
_ 71-7”7]2671 / . b2( A + y )ei‘yllzdy/’ x/ e Rnfkfl.
Rn—k—

2v¢€
Therefore, if we put Q¢ = Q¢ ® QF, we have
Q&Tg(;\)Qz =1l @1l = (11 @),

where

R (25)\p|+)\+k+1

pl'(A+ 1)

Y1 ® Ya(p, a') =n

bi(v/ryv+ri -+ Tk)bz(2\1/g(—$, + "))

/RixR”klxﬂh_
_ . 14712

P28 (vt try) — Y| v’\drdy’dv,
o1 (28)IPIHATRAL

Lo (26)

plI(A+1)

1 P
/Rﬁxmnklxﬂg+ a(Vr, 2\/5( Ty vt )

) rpe—Zé(v+7"1+~+7"k)—|y’|2U)\drdy/dv_

As in the preceding cases, to conclude the proof, we only need to consider the
unitary operator Q = fg Qedé which maps fg, F5(C"~')d¢ onto

@
| 0(25) @ L )dg = b(Z5) ® LR x R,).
+
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Chapter 4

The Banach Algebra 7 (\)

In this chapter we study the structure of the commutative Banach algebra generated
by Toeplitz operators with parabolic quasi-radial quasi-homogeneous symbols T (\) for

the case n = 3. This algebra was introduced in Preliminaries (1.8.2).

4.1 Parabolic (2)-quasi-radial symbols

First we study operators with parabolic (2)-quasi-radial symbols. According to Lemma

1.8.3, for a parabolic (2)-quasi-radial function a(r,y) we have RT, R* = ~,I, where

1 A W RS S
Ya(lal, &) = ()\+1)(\04\+1)!/Ria<\/;’ 26 >ve )l dudr

1

(

FOt Dl 1 1) /Ri a (\/7_“, v+ 7") (26)MlelF3A e =28 (v plal L gy,
(4.1)
and R is the operator from Ly(Dj3,dpy) onto lo(Z%, Lo(Ry)) defined in Preliminaries
(1.8.2) whose restriction R|42(p,) is a unitary operator (and coincides with the operator
RQ)| A2 (D) defined in Section 3.1). Let 7, be the Banach algebra generated by Toeplitz

operator with parabolic (2)—quasi-radial symbols.

—~—

In order to simplify the notation, we will write fp for the operator RT,R*, T ()
for the Banach algebra RT(A\)R* and, in general, A = RAR* for a given algebra
A C T(XN). Thus, 7’; is the algebra generated by the multiplication operators v,1.
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Fix a € Lo(Ry) and let |a| € Z, &,& € Ry. Note that

Mallerl €1) = 7alledl, &)

< C/Ri ‘<2£1))\+\a|+3v)\672£1(v+r)r|a\+1 _ (252))\+|a|+3v)\672§2(v+r),r,|a|+1’dvdr
<C (/ (251)’\Hv’\e’251”dv/ (26|l 2plal+g=26r _(9¢ lal+2plal+1 26| g
- Ry Ry

I (252)|a\+2r|a\+1672£2vdr/

A A |(2£1))\+1U)\€72£1’U - (252))\+1U)‘€2£2U|d1}>
+ +

= |la|ls o 28, lelH2plal+ 1o =20 _ (9¢, lal+2 laltl g =26r) g,
(lof +1)! Jry

1

+ F(/\ " 1) /R |(2£1)>\+1U)\6—2§1v . (2§Q)>\+1U>\6_2§2U|dv> ’
+

lalloo

FA+ D (Jo| + 1)

where C' =

By Lemma 2.3.1 we have

|a||a‘67‘a| )\)\67)\
+
(lof + 1)1 (A+1)

Palal. &) = lal. )1 < ol ol

Therefore, for all sufficiently large integers |a| (independently of a), by Stirling’s

formula, there is some constant C' such that

ha(lal, &) = va(lal, &)] < Cy/lalp(E, &).

That is, fixing |a| € Z,, & — v.(]a|, &) turns out to be a very slowly oscillating function.

On the other hand, let £ € R, and kq, ko € Z" with ky > k. We have, by (4.1),

i §) =l )] < G [T = oAy
TS T S = PO 1) ez (e + 1)) (R 1 1)!
ki1+1 ko+1

r r

- ||“||O°/R+ it D! (ks t 1)
T0 rkl‘f‘l Tk2+1
e — —Td
2ol [ Qm+n!<m+n06 .
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(kD
m‘(@a+nJ '

Integrating by parts ko — k1 we get

where

0 ko+1 k2+1 ko k142 k’1+1
/ r om0 (m_@%4tﬂn_4ﬁgffm+/4———%ﬁm
0 (ko +1)! (k2 +1)! ko! (k1 +2)! +1)!
and, substituting,
T§2+1 k2 rg1+2
o(k1,€) = Valk2,§)| < 2]l 7#0-1- et e
Pt €)= 2wl ) < 2l (e + 75 )

Since
sup e = jle,
teR
using Stirling’s approximation we obtain a constant C' > 0 such that for all sufficiently

large k; (independently of a),

ﬂ"“0+ k2 —TO+..._|_£6—TO<C 1 -4 1

(kg +1)! k?2! (k1 +2)! - \/IQT ki +2
<C/ﬁ11<c/d
-2 N N3
— C(y/ks — k).

We conclude that

(1, €) = Yalka, )] < C(hs — /).

Thus, fixing £ € Ry, k — 7,(k, &) is a square-root-slowly oscillating function.

Moreover, it follows from the inequalities above that for arbitrary (ki, &), (k2, &) €

Z, x Ry we have

Falln,€1) = (i, ©)] < C (min(h ko) p(6, &) + e = yial). (42

In particular, v, is continuous at every point of Z, x R, and, since 7, < [|a||co,
we can identify 7;: with a subalgebra A, of Cg(Z, x R, ), the Banach algebra of

bounded continuous functions on Z, x R,.
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Let us analyse this algebra by means of some special symbols. First consider the

bounded function ¢ (r,y) = e et

We calculate v, (||, §). Since w(\/%, o) = e~ (), we have

Wl §) = wlla) = ST T

1 1\ —(lal+2)
= —— 1+ - Ae™d.
F()\+1)/R+(+v> vie Tav

The first factor inside the last integral is always less than 1, thus it is dominated by

/ e~ Gpre A plalHL gy
R2

the integrable function v — v*e~". Therefore, by Lebesgue’s dominated convergence
theorem we have

lim 4u(Ja]) 0.
|ar|] =00
Moreover, 4, (|a) is strictly decreasing since

1\ ~(al+2) 1\ ~(181+2)
(1+) <(1+7)
v v

whenever |«a| > |3|. Therefore, this function separates the points of Z, and, by Stone-
Weierstrass theorem, it generates (together with the identity) the whole C* algebra of

convergent sequences c.

Since vy =4y ® 1 € Cp(Z4 x R,), by the preceding remarks we conclude that the

single operator ip generates the C*-algebra of multiplication operators of the form
{r(lal) ® 1}aezz -

For each o € Z% | we denote by é, = {d,8} € Z2 the o’s element of the standard
orthonormal basis in l5(Z3 ). Given ¢(&) € Lo(Ry), let

€a(c(€)) = a @ (&) = {0a,pc(§) } perz (4.3)

be the corresponding one-component element of 15(Z2, Lo(R4)).

For each k € Z, , we denote by H}, the following subspace of Io(Z} ", Ly(Ry)):

Hy = span{é,(c(§)): |a| = k,c € Ly(Ry)}. (4.4)

Let P, be the orthogonal projection from Io(Z" ", Ly(R,)) onto Hy. Note that
Py = {0a16 ® L}aez2 1.

We summarize the preceding remarks:
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—_~—

4.1.1 Corollary. Let v € c. Then {y(|a|) ® 1}aez2 1 is an element of T(A). In

—_—~—

particular, P, € T(\), for every k € Z..

We can also obtain continuous functions depending only on ¢ as follows. Let
Po(r,y) = xr, (y — 72)e™v""". Then

1 v
— ~a2¢ la|+1, A —(v—i—r)d d
1 A —(14+3)v
= - ¢/ d
Ot /R+v e v

1 —(>\+1)
=1+ — .
( *25)

—(A+1
Note that & — (1 + 2—15) - is a real-valued strictly decreasing function with finite

limits at 0 and co. Again by Stone-Weierstrass theorem, this function, together with

the identity, generates the whole C*-algebra of continuous functions on [0, oo].

These function we have just analyzed separate the points of Z, x R. Thus, the
algebra A, also separates them and, by Theorem 8.1 in [4] we conclude that A, =
C(X), where X (i.e., the maximal ideal space M (7y,) of 7,,) is some compactification
of Z, x R,. We identify Z, x R, with the evaluation functionals in the usual way.

Let Moo(A) = X\ (Z4+ x R;). Since Z; x Ry is dense in X, for every u € My (N)
there is a net (ka,&s)acq that converges to p. If we denote by 1, the multiplicative

functional associated with p, we have

/ya(/“'b) = SDM(%) = Eenfll 7&(1{;@7604)7

for every v, € A

Note that |k,| — 0o or |{,| = o0, otherwise there would be a subnet converging to

a point in Z, x Ry, which must be pu.
Replacing (kq,&,) by a subnet if necessary and by a similar argument as the given
above, we can assume that one of the following (mutually exclusive) cases holds:

1. ko = ko and & — oo, for some kg € Z,

2. k— oo and £ — &g, for some & € R,
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3. k— o0 and £ — oo.

This implies that ¢,(v,) = 0, for every v, such that lim, v,(ka,&s) = 0.

Conversely, if (ko,&) € Z, x Ry, for every net (k,,&,) that tends to infinity in
some of the ways described above, there is a function v, € Ay, such that v,(kq,&s) — 0

and w(ko,ﬁo) (P)/a) = ’Ya(k(h 50) 7& 0.

Accordingly, we define the following sets:

1. My oo the set of all multiplicative functionals ¢ such that v(y,) = 0 for every
Yo € A with v,(k, &) — 00 as & — oo,

2. M ¢: the set of all multiplicative functionals 1 such that ¢(v,) = 0 for every
Ya € A such that v,(k,£') — 0 as k — oo and { — &,

3. My~ the set of all multiplicative functionals ¢ such that ¢ (v,) = 0 for every
Ya € A such that v,(k,£) — 0 as k — 0o and £ — 0.

By the preceding remarks we can decompose M, (\) as the disjoint union
My (\) = ( | ] Mkm) | ] ( L] Moo,g) | | Mo oo (4.5)
kEZ ¢ERy

We will denote

= (1 e

§ERy

4.2 The set My

We study more deeply the set My o. Let p € My, . By construction there is a net
{(ka,&a) }aca converging to u and such that k, — oo and &, — oc.

Consider the symbol a;(r,y) = e we used in the previous section. We have

1 —k—2

Since

4! (M) = lim '71(]{70“ ga)

aEA
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is some positive real number,

1
lo8(1 (1)) = — lim(kx + 2)log (1 ' 25)

is either a positive real number or oo.

The series

o) 2 ()

converges uniformly with respect to £ for sufficiently large values. Thus we can write
1 ko + 2 1\1 1\°1
ko +2)log |1+ — | = l—=—=]=z+(=—) =+ ].
e+ >Og< +25a> %, ( <2fa>2+<25a> 37" )

Since - -
1 1 1
Sle) <2l

where the last series converges to zero uniformly as & — oo, it follows that the limit

exists and, therefore,
ko +2 k

lim = lim —
ach &, a€eh &,

also exists and is equal to an element of [0, oc].

Hence there is a unique 6, such that

. ka
tan(6,) = ilgl\ .

and we can decompose

Moo,oo - |_| My,
]

0€l0,5

where
My = {,u c Moo,oo: 0# = 0}

Note that, writing (k4, &) in polar coordinates, that is,
é.a = T'q COS 9047
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ko = 1o sinf,,
where 1, = \/k2 + &2 and 0, = arctan ’g—“, we have

0, = [11151\ 0.

Moreover, writing two elements of Z, x R, in polar coordinates (rq,61), (r2,6),

the inequalities obtained in (4.2) become

1Va(r1, 01) — Ya(re, 02)| < C (\/min(rl cos 0, 15 cos B9 p(sin Oy, sin 6;)

+ |\/7“1 cosf; — \/7“2 00802|> ,

for all sufficiently large rq, rs.

In particular, fixing 7, the function 6 — ~,(r,#) is uniformly continuous with
respect to the metric (61, 6,) — p(sin 0y, sin ) + |\/cos O — v/cos b5

On the other hand, fixing 6 the function r —— ~,(r,0) is square-root-slowly
oscillating. Discarding the limit cases § = 0 and 6 = 7/2, one expects that a point in
My can be reached by some net with constant angle 6. Thus the sets My seem to be

homeomorphic, since they induce the same function algebras.

This can be proved as follows. We will show that all sets My are homeomorphic

among them for any 6 € (0, 7).

Let ¢ > 0 and define the function

(bt:Z+XR+—>Z+XR+

q)t(ka 5) = (k7 tf)

®, is clearly a bijection with inverse ®;-:. We can extend ®; to the compactification
X of Z, x R, as follows.

Suppose {(ka, &) }acq is anet in Z, xR that converges to some X. Then v,(kq, 7a)
converges to v,(u) for every symbol a € L(Ry x Ry).

In particular, v;(kq, {,) must be convergent, for every symbol a, where we define

Ty
a(z,y) =a <\/Z’ t> :
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By (4.1), 7; is given by

_ 1 TV Nkl (otr)
%(kjg)_F()\%—l)(ls—{—l)!/n{ia(\/;’ 2te )vr“e ) dudr
= Ya(k, t8) = 7Ya(Pi(K,€)).

Therefore, 7, (P4 (ka,&s)) is convergent for every a € Lo (Ry x Ry). Since X is
compact, there is some v € X such that (k,,&,) — v. We can thus define ®;(p) = v.

The extension ®;: X — X is continuous since, by similar arguments,

Va((pt(kav fa)) — Wa(q)t(u))

for every 7, € A and every net (k,,&,) in X converging to u € X. Since its inverse

®,-1 can be extended the same way, @, is indeed a homeomorphism.

Fix 0 € (0,%) and let € My and (k,,&,) a net converging to p. Then we have

tan 6

).

. ke
s, = arctanlim e = arctan
RN

That is, ®;(My) C M,

arctan

(tzn0y and, indeed, O, (My) = M,

arctan(@y as can be seen by

applying ®,-1 to the elements of Marctan(m )
t

Therefore, the restriction @]y, : My — Marctan(%) is a homeomorphism and,

varying t € (0, 00), we obtain what we claimed.

4.3 Quasi-Homogeneous Symbols

For every p € N we denote by ¢, the function ¢,(¢) = ¢ (p70)z(0,p); we simply write ¢
for ¢1.

Using Lemma 1.8.4 we have

~ . . 0, if as —p <0,
Ty, = RTy, R €(ay,00)(c(§)) — § R _
7¢p (Oé, g)e(a1+p7a2—+) (C(f))7 it as — P Z 07
(4.6)
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where

2(aq + p)las!
(Ja| +p+ )y/arlazl(ar + p)!(az — p)IT(A+ 1)

y / e+ 2(lal+ 1)+ gy
2
_ (al + p)'a2‘ / 26—r2r2(|a\+1)+1dr
(la] +p+ 1)!\/a1!a2!(a1 +p)l(ag — p)! R+
(a1 + p)lag!(|al + 1)!

(Jo +p+ Dl/arlag!(ar +p)!(az — p)!

Yo, (@, ) =

(Jof + 1)!
B (|04|+p+1)!\/(a1 +1) (e +p)laz —p+1)- (a2 — 1as.
In particular, we have
= (a1 4+ Day
«, - @@ -
Yo(av, §) a3

Applying this formula several times we get

T 07 ifa, —p < O7
T = RT{R": 8oy 0(c(€) — 1§ )y TP
Vo (@ €)€(ar+p,az-p) (c(§)), if a —p >0,
where
3P (a, €) \/(@1+1)-'~(a1+p)(a2—p+1)~-(a2_1)a2 (4.8)
a,§) = ' ‘
A (ol + 27
By comparing the action of RTJR* and RTy, R* we find that
50 _ (lo] +p+1)! 5
* (lal+D(Ja] +2)7
That is,
Ty, = D3 T3, (4.9)

where D[{p = {Jp(|a|) ® H’aéZiIa

= (Jaf+2)
P (lal+p+ 1)

and () = x(x —1)...(x —p+1) is a kind of Pochhammer symbol (compare with

[1]).
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We note that d,(|a|) — 1 as |a| — oo, so by Corollary 4.1.1, we have analogous

results to those in [1]:

4.3.1 Theorem. For each p € N, the Toeplitz operator Ty, belongs to the unital algebra
generated by the operators Ty, and Ty,.

4.3.2 Corollary. The Banach algebra T (\) is generated, in fact, just by Toeplitz
operators T, with bounded measurable symbols a(r,y) and the single Toeplitz operator
Ty.

4.4 Invariant Subspaces

We have -
ZQ(Zia LZ(R'F)) = @ Hk‘a
k=0

where Hj, is the subspace defined in (4.4).

Each subspace Hj, is invariant for all operators from 7 (\). From (4.7) we observe

that the operator T¢ restricted to Hy is nilpotent:
(T¢|Hk)k+1 =0.

This implies that, for all p € N,
p—1 _
P Hy C ker T}, (4.10)
k=0

Reasoning as in [1] we conclude that the algebra T (\) is not semi-simple:

4.4.1 Lemma. The algebra T () is not semi-simple. The radical Rad T (\) contains,
in particular, all operators of the form A = D,YT%, where D, = {v(|a|) ® 1}aez2],
v € co and p € N.

Proof. 1t suffices to show that this kind of operators is topologically nilpotent and, by
(4.9), is sufficient to prove this for the case p = 1.

Recall that the orthogonal projections P, and the operator D, belong to the

—_~—

commutative algebra 7T (). Since I — (Fy + -+ P;) € T()) is a projection and the
image of Py + ---+ P, is a subset of ker T£ we have

AP = DITF = DETS(I — (Po+ -+ + Pecr)) = [Dy (I — (Po+ -+ + Py |FT.
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Note that

({r(lel) @ taeze D)1 = (Po+ -+ + Peet)) = {(la]) © 1}aez2 1,

where
0, laf <k,
(le]) =
vlal), ol = k.
Thus,
(3 0e) © e DI~ (By -+ Beca)l = sup ()
and
IAIE 2 1D, (1 = (B + -+ BTl = sup Iyl = 0
Since v € ¢, we have ||A¥||x — 0 as k — co. O

4.5 The algebra 7,

In this section we study the unital Banach algebra generated by the single operator Ty.
Let 75 be this algebra and, as before, 735 = RT4R".

Note that the closed linear span of the elements é,(c(€)), which were defined in
(4.3), is 1o(Z%, Ly(Ry)). By (4.7) and (4.8) we have

1T (alc())]] < TP loollEale()].
Hence || T2] < I3 [l

The elementary inequality

|a\—|—2>a1+a2—|—1
= (g +k)+ (az—k+1)
> 2\/(cn + k)(az — k +1)

implies

V@ +1) - (ar +p)(as —p+1) -+ (az — Day

<27
(lal +2) N

38 (e, )] =

26
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That is, ||T£|| < 27P. Moreover, taking a3 = a2 and making |a|] — oo we have

W((f)(a, €)| — 27P. Hence, using the same sequence, we have

1T (a0 (D = 277101 a2 ()]

This proves that ||T}|| = 277 and, therefore, the spectral radius of T} is equal to 3

By the results of [10], there is a unitary operator
Un: La(B®, p12) — La(Ds, fin)

that maps A3(B*) onto A3(D3). Moreover, we have U\TyUy = Tyo,-1, for some
bijective function w. Therefore,
— 1

D(0, 5) =Impow ™ CessspT,

and thus

1 ~ ~ 1
D(0, 5) Cess-spTy CspT, C D(0, 5)
This proves that sp T¢ = D(0, %) Furthermore, the maximal ideal space M (’7;)
of the commutative Banach algebra 7~; coincides with the spectrum of f¢, i. e,

M(Ty) = D(0. 3)

4.5.1 Theorem. The Banach algebra ’f¢ is isomorphic via the Gelfand transform
to the algebra C,(D(0,3)), which consists of all functions analytic in D(0,3) and
continuous on D(0, 3).

Proof. The operators T¢p act on é,(c(§)) almost the same way they do in the case of
the Banach algebra of Toeplitz operators with quasi-radial quasi-homogeneous symbols
(see Section 1.8.1).

More precisely, we have
Ty=Ty®1,
where Ty acts on lZ(Zi) exactly the same way the operator Ty, presented in section

1.8.1, acts on the basic vectors of A3(B?).

T, clearly generates the same Banach algebra as ﬁ,, and this last one generates the
same Banach algebra as Ty by considering the application T, o =Ty — Ty
m
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4.6 Dense Subalgebra in 7 ()\)

—_~—

We denote by D(\) the dense (non-closed) subalgebra of 7 () formed by finite sums
of finite products of its generators: operators from 7, and the single operator fd)- An
operator A from D(\) has the form

m

A= Z(vpl)fg.

p=0

For arbitrary multiplication operators «,I the above representation is not unique.

We describe this ambiguity as follows.

Given a function vy defined on Z; x R; we define the operator K, (p) as the

multiplication operator such that

Ylal,Ofcal@taezz,  laf<p—1

K (p){cal) Yoz = o] > p

We note that K, (0) = 0.

Using this operators we can state the following result, similar to the one given in

1].

4.6.1 Lemma. We have

i(ypf)fgj =0 (4.11)

p=0
if and only if v,I = K, (p), for each p =0,1,...,m.
Proof. Note that
p—1 _
Im K, (p) CEP Hr CkerT}, p=0,...,m. (4.12)
k=0

The "if" part follows from this.

On the other hand, suppose (4.11) holds. By the calculations from Section 4.3 we

have
Thea(c(€)) = Tp(0)(an ) (c(£),

where 7,(a) £ 0if ap —p >0, a € Z2.
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Let n > m. By hypothesis we have

m

0= (%) TFe0m(c(€) = f: (15 €)7p(0, )8 ) ((E))-

p=0 p=0

Since 7,(0,n) # 0, it follows that

fyp(”?f):()? p:17"'7m

and, in particular, v,,/ = K., (m). Therefore, by (4.12) and (4.11),

m—1
Z (vl )Tq’; = 0.
p=0
Repeating the above arguments m times we conclude the proof. O

4.7 Finitely Generated Subalgebras of A,

We recall some known facts and definitions. Let A = A(xy,...,x,) be a unital
commutative Banach algebra generated by the elements w1, ..., z,, and let M(A)

denote is maximal ideal space.

The joint spectrum o(xy,...,x,) of x1,...,x, is the set
o(z1,...,xn) = {(m(xy),...,m(z,): me M(A)}
and it is homeomorphic to M(A) via
m € M(A) — (m(z1),...,m(zn)) € o(z1,...,2,).
We also have
oz, xn) = {1y oy pin): J(x1 — e, ..k, — pne) # A},

where e € A is the unit element and J(z1 — uqe, ..., z, — uye) denotes the smallest

ideal of A containing the elements z; — pje, j =1,...,n.

Let 71,...,vm € Ay and let A% (71, ..., vm) denote the C* algebra generated by
the elements of D = (v1,..., 7).
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Let (ft1y .-y fbm) € 0(V1y- -y Ym). Then

y=O1r =) — 1) + o+ T = ) (Ve — )
=l —ml+ .+ e — el

belongs to the ideal J(zy — p1, ..., 2, — pn). Thus v is not invertible in A%,.
The algebra A, can be identified with the subalgebra of £ (A3(D3)) of multipli-

cation operators with symbols in A, and, being this one a C* algebra, it is inverse
closed. Since v € A}, C A, v is not invertible in .Z(A3(D3)).

A bounded multiplication operator is not invertible if and only if its symbol is not

bounded away from zero. Hence we have

4.7.1 Corollary. Either there is (k,§) € Z xRy such that v;(k, &) = pj, j=1,...,n

or there is a sequence (k;, &) in Z7% x Ry such that

lglglovj(khgl)::uja j:]'J?n

We mention that, if ¢ € M, (A) then

(W), 0(m) = (1, i) € (Y15 -+ V)

and we can always assume that the second option in Corollary 4.7.1 holds and that

the respective sequence is such that k; — oo.

Indeed, let (yo(k)) be a real-valued decreasing sequence such that (k) — 0. By
the conclusions from Section 4.1 we have 7o ® 1 € A, and, by definition, ¢ (7 ®1) = 0.
Thus (0, pt1, .-+, fin) € 0(®1,71,...,7) and, applying Corollary 4.7.1 to the elements
Yo ® 1,7, ...,7, we obtain a sequence with the required properties, since 7y ® 1 can

only achieve 0 by means of a sequence (k;, &) such that k — oo.

4.8 Integral representation and Fock spaces

In order to proceed with the analysis of the algebra 7 (\) we need some preliminary

considerations on the Berezin transform with respect to certain subspaces of the Fock
space Fi(C?).

As it was shown in Sections 2.1 and 2.2, there is a unitary operator
2 © e e
S: A2(Ds) — /R F2(C?)de,
+
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such that for any bounded function a € Lo (D3), a = a(z1, 22, Im z3), we have

®
ST,S* = ng de,

Ry

where Téf) is the Toeplitz operator acting on the Fock space F22§((C2) whose symbol is

given by

(2€)A+1

55(2) = m

/ a(z,iv +i|z|*)e % v dv.
Ry

As was already remarked in the proof of Lemma 3.1.1, for every £ > 0 the family
{6&25)}%21 of funcions in F3,(C?) given by

92 = (QZ)! I

is an orthonormal basis for this space.

We also recall a known equality, which will be used later. Let dS be the (not

normalized) surface measure of the unit sphere S? and «, 5 € Z3. Then

212l

Tl 1 (4.13)

[, €Tas(0) = 0u

Let us examine how Toeplitz operators with quasi-parabolic (2)-quasi radial quasi-
homogeneous symbols act in fﬂgi F3:(C?)d¢. In the proof of Theorem 3.1.2 we established
an isomorphism between A3 (D3) and l5(Z%, Ly(R+)) using the direct integral repre-
sentation and obtaining the same expressions for the eigenvalue functions we used in
the previous sections. One could therefore predict the action of the algebra T'(\) on
fﬂgi F22£((C2)d§ . We do this calculations explicitly, though.

Let a = a(r,y3) € Loo(D3) be a parabolic (2)-quasi-radial function. Since @

depends only on 7 = y/r? + r2, by Lemma 3.1.1, we have

T8 — ’)/»((;25)<Ck)6(2£), a€Z2.

ag @ ¢ @
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Note that, by integration in polar coordinates,

2 ~
19(0) = (L0609, e29) = (@2, o)

3 « «

(26) ol N e
B 7T2cz!F()\—i—1)/(csz+a <\/m,v+7"2 +7"2> v e 2T 220V (2)do

(2£)A+|a|+3

o N\es) 2\ | —2£(r?+v),.3+2]al, A a
- m2all(A+1) /Ria(r,vjtr )e " v drdv/<682 ¢*dS(C)

(2§)A+|a|+3 / ) ey
— 2 £(ro+v) .3+2lal ) A e g
HA+nwn+n!m“@”+r)e rooranaw

) A|al+3
__ ) /Rg a (Vv +r) e 20t A drdy = 4, (Jal, €),
+

FA+ 1) (Jof + 1)!

where 7, is the function obtained in (4.1) we have been working with.

Hence,

Qg

S
(ST.S){el }eer, = ( i T@d&) {eeer, = {1(l] ) Yeen,
+

as we would expect.

Consider now STy, S*, p € N, where ¢, is the quasi-homogeneous symbol used in

the previous sections:

AP

(J21]? + |22]?)P’

Pp(z) = Cf@p = z € Ds.

By (2.13),
_ A1)
el = Ty [ et il
_ pFP <2£)>\+1) —28v, A
= (PG, O D) /&e 20 do
-4

Due to this, we will write simply ¢, for éﬁ;g.
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Integrating in polar coordinates, for a, 5 € Zi we have
2 -~ 2
(T2, e = (Gee. 1)

_ (25)\a|+|ﬁ\ <2£>2/CQ( 2PzP Za§5€_2£|Z|2dV(Z)

(23
al Bl

s |21|% + |22]2)P
(2618l (262 =
_ (S)H (f) / r3+|a|+\6|6—2£r2dr/ ¢lentpa)FRHP g o),
alp! m Rt ¢es?

Note that, by (4.13), the last expression equals 0 unless § = (a1 + p,ag — p). In
particular, Tg) e =0 if ay — p < 0.
v

Assuming 5 = (ay + p, s — p) we have

al+2
(T 20,09 - (2 (c1 + p)las! 12kl 267
Ore \/a1!a2!(a1 +p)l (a2 —p)!(Joo| +p+ 1)! TR+
al+2
_ (25)‘ |+ (OZl +p)'O{2' / 7’|a‘+16_2£Td7”
Verlas!(ar +p)l(az — p)l(Jal + p+ 1)! /2 (4.14)
_ (a1 +p)lag!(ja] +1)!
Janlasl(on +p)(az —p)!(|a] +p+ 1)

=Yg, ()

Note that this is the same expression we obtained in Section 4.3. In particular, it

does not depend on the weight parameter 2£.

It follows from these relations that (Tg) )* acts by the following rule
P

10 (9 = | <
et ’7‘]517((&1 - D, %2 +p)), if a; > p

Furthermore, doing a similar calculation one obtains

7O (29) = 0, ifar+(p—q)<O0oras—(p—q) <0 (4.15)

«

0 Vo,a(@),  ifar+(p—gq)=0and as — (p—q) =0,
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where

(a1 +p) (a2 + q)! (Joof +1)!
\/041!042!(041 +(p—q)(az—(p—q))! (Ja] +p+q+1)!

Vs (@) = (4.16)

4.9 Berezin Transform and Dirac Sequences

We introduce now the generalized Berezin transform.

Let £ > 0 and S C Z7. We denote by Hg the following closed subspace of F3(C?):
Hg =span{e!®: a € S}

and let K é %) (z,w) Z e(2£ (z) be its reproducing kernel.
a€es

We have |[KS9(,w)|? = K& (w, w).

4.9.1 Definition. Let C' be a bounded operator in Fy;(C?). We define the Berezin
transform of C with respect to Hg as the function Bgf) [C] defined on C and given by

1

(2¢) (26)
W<CKS (w), Kg~' (-, w)).

B [C)(w) =

In the case of a bounded function ¢ we write Bgf) [YV] = Bng) [Ty], where Ty, is the
Toeplitz operator with symbol ¢ acting on F3(C?).

Now let (g,), gn: R — R4, be a Dirac sequence (see Preliminaries). We recall that

fx) = lim (gn * f)(2),

n—o0

for every f € Lo(R) continuous in x.

In particular, for a bounded continuous function y(a, §) defined on Z2 x Ry and
& > 0 we have

lim /gn ’Ya «Q t)XR+( ))dt = lim gn(fo—é)%(a,f)dé = 7a(a7§0)7 (4'17)

n—oo n—oo R+

where we define 7,(a, t) = 0 for ¢ < 0.

Let (g{&)) be the sequence of functions defined by g (t) = \/gn (& — )X, (t). We
can consider each g{%) defined only on R, and we have g{&) € Ly(R,), with ||g\&)|| = 1.
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Moreover, (4.17) implies

lim (y(a, )9\, ') = lim [ (g% (€))*y(ev, §)d¢
o ;- (4.18)
= Jm | 9n(o — §)7(a, §)dE = (e, &)

Let v be a continuous bounded function on Z, x R, and suppose that there is a

sequence ((vx, & ))e2, such that
V(vk, &) = m € C.
For such a sequence we define
Sy ={a €Z%: |a| = }.
Since 7y is continuous and bounded, for every £ € N we have

V(v &) = lim [ (g5 () (v, €)dE.

n—oo RJF
Thus, by the diagonal method, we can construct a sequence (ff(’;))),;“;l such that

p= lim (v, &) = lim [ (91561, €)de. (4.19)

k—oo JR

Given v as above and considering its associated sequences we have just constructed,

for every w € C2 we define the sequence (£{"))%, given by
ko k=1

5]
——k € | Fi(C*de. (4.20)
1K (w)l }5 /R+

n(k)

Note that f,gw) is a unitary vector:

2 2,
<K.g'k§)(7w)7 ék§)<’7w)>F22€((C2)
2
1S9 (-, w)|?

1712 = [ (g5 a =1

4.9.2 Theorem. Let a = a(r,y3) € Loo(D3) be a (2)-quasi-radial quasi-parabolic

unction and vy, € A, its associated eigenvalue function. Suppose there is a sequence
gt q g
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(U, &) in Zy x Ry such that y(vy, &) — n € C. Then, for every w € C?,
: x r(w) w)\ _
]}g{)lJSTaS fo s fe ) =m,

where [ is given by (4.20).

Proof. We have

w_ ([ Kgd (- w)
ST.S" fi” ( / Tgf)d£> {g,%(é) Y
R+ ||K5'K (,IU)H ¢eR,

(&r)
:{‘ﬁwnzgmﬁmm% ,
180wl cer,

Since
HORE o) - mé?(e&%”
o =v,
26)
= Y P @)e® (allal¢),
o=
we get

2 2 2 2 2
(TOKGY (w), Kgd () rgen = D é%w#@wwwwé%%w

«

181 = "
= > [e8(w)a(lel, €)
la|=vy,

=Y, &) D e (w)]?

la|=v

= 7 (v, O KSO (-, w)]|?

Therefore,
x plw w gn k 2 2
(STS" ), f) = /HK> ‘MQWQmwxﬁmM@w>
:/ gnk) 7 (Ve E)dE = 7,
by (4.19).
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4.9.3 Theorem. Let w € C*\{0} and (1), be a sequence such that vy — oo as

k — oo. If ¢ is a bounded continuous function on C* such that (\z) = ¢(z), for
every A € C\{0} and z € C?, then

BGPlel(w) = By [pl(w) > p(w),
where Bgf) is the generalized Berezin transform in Fgg((@) and
Sy ={a €Z2%: |a| = v}

Proof. Note that, by the multinomial theorem

K(%)(Z, w) _ Z (2§)Vkmza B (25)% <27 w)”k,

Sk

| |
o= (0% 4%

In particular,

2 2 v
KGO0l KD G0l o, e wl™
[KC )P~ K w,w) AR

Thus, by a simple change of variable,

1
B () = — (oK), KO
S lpl(w) Kéié)(w,w)@ S (hw), Kg ' (w))

Iz, w>|2Vk e~ 22I?

:(25)%—&-2/@2@(2) AT av(2)
B 1 |{z, w)|** eI
= o g iV

_ [ g\l e
c? v w |2 72

= B [p](w/|wl),

dV(z)

which proves that the Berezin transform doesn’t depend on £ and that it suffices to
consider the case ng) [0](¢) = ¢(¢), for ¢ € S%

Let w = ¢(¢) and € > 0. Since ¢ is continuous there exists a 6 > 0 such that

lp(Q) —w| <e, |z—(| <.
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Define the sets
OC = {)\g A E T}

and

Os5 = {z € C*\{0}: d(2/|z|,0¢) < &}

Note that if z € O, then there is some A € T such that [( — A7(z/]z])| =
A — z/|z|| < ¢ and hence

jw —@(2)] = |w — (A7 (2/I2])] < &/l — wllx).
Moreover, if z ¢ Os and z # 0 then, for every A € T, |z/|z| — A(| > 0. That is,

1—2Re(Nz/|z],¢)) +1>d% VAET.

{z,0)

Taking A =
(2, C)|

this inequality becomes

(2, Q) < |2](1 = 6%).
Note that this inequality also holds for the case z = 0.

Integrating in polar coordinates we get

1 [z O e (L=l = lloo [ o0 ymlaf?
77 Jo 1P2) —wlm e v () < = = /C 2Pe v (2)
1 — 02 poo
:||gp—w||oo( ') / 2236~ g
V! 0

= [l = wlloo(vp + 1)(1 = 6%)" = 0,

as v, — 0o. Thus there is N € N such that the last member of the equality is less
than /2 for v, > N and

1BS[0](¢) — w| = |BY [p — w](C)]
[z, C) [ e

= [ 1ee) = el = v ()
2, Qe e
+ 00— el (2

<eE.
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4.9.4 Corollary. Let a = a(r,ys) be a (2)-quasi-radial quasi-parabolic function and
Yo € Ay its associated eigenvalue function. Let w € C* and suppose there is a sequence
(vk, &) such that v, — oo and va(vk, &) — w € C. If ¢ = ¢,¢,, for any p,q > 0 then
we have

(STLT.S £, 1) = p(w)w, &k — oo.

In particular, we also have
(STTLS ), 1) = o).
Proof. We have

(STLS A A7) = [ (0l BEI T T (w)de
+

Ye  ae
and
(26) &) ()11, — 1 @6, (2 (€ (26)y (26
P R = e 2, o T 7
1 @0,y (2€) )20\ (26)
= ea (w)eg (w)ya (||, E)(TX (en™), e
|’K5k(7w)|’2 |5’|%::,/k ( )B ( ) (’ ‘ )< 90,5( ) B >

2
= (v, €) B ) (w).
Therefore, by Theorems 4.9.2 and 4.9.3,

(STLS 1) = [ (6550l € BS [l (w)de

= BYelw) [, (0, . )
— p(w)w,

as k — oo.

The second assertion follows immediately from this and the fact that (@,p) =
({dp(la]) ® 1y aezz DT, where dy(|a]) — 1, as o] — oo. N
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4.10 Gelfand Theory of 7 ()\)

Let M (T (X)) be the maximal ideal space of the commutative Banach algebra T (\).
We note that, by Corollary 4.3.2, 7(\) is generated by the algebras 7. and 7. Hence

(see [1]), we have a continuous injection
ki € M(T (X)) — (d1,91) € M(Tyr) x M(Ty),

where ¢ = $l7,, and ¢y = ¥|,.

As it was shown in Sections 4.1 and 4.5, we have M (7,.) = (Z+ x Ry ) UM (A) and
M(T3) = D(0,3), where My ()) denotes those multiplicative functionals defined on

T, that map to zero those functions which, in some sense, converge to zero at infinity.
Therefore, we identify M (7 ()\)) with a subset of

1

(Z x R) U ML () x DO, 5)

4.10.1 Lemma. None of the points of the set

k’eZ+

(<Z+ <R ( L] Mk,oo)) x (D(0, )\[0))

belongs to M(T (X)), where My o 1is the set defined at the end of section 4.1.

Proof. Tf there is a point v = (k,&,() € Z, x Ry x D(0, %), then for the operator
A= Pkfd) € 7/'(\>\/), where P is the orthogonal projection defined in section 4.1, we
have ©)(A) =1-¢ # 0. We have (A) € sp(A). However, by Lemma 4.4.1, A belongs
to the radical of the algebra 7/‘(\)\/), which is a contradiction.

Similarly, if ¢ = (1, () € My x D(0, 3), for some k, then there is a net (k, &) such
that (k,&,) — p. Thus, using the same A as above, we have (A) = lim,(k, &,,()(A) =

¢ # 0, from where it follows the same conclusion. O

4.10.2 Lemma. The set Z, x R, x {0} belongs to M(T(N)).

Proof. Let ¢ = (ko,&,0) € Z; x Ry x {0}. Denote by (4, the multiplicative
functional defined on 7~;T bY Y(ko,e0)(Yad) = Ya(ko, &o)-
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We define ¢ on the dense subalgebra 1/?@\/) by

¢(A) = ’Yo(ko,fo)>

where A = Z?:o(Vp[>T£- By Lemma 4.6.1, ¥(A) = 0 implies 79 = 0, so 1 is well-
defined.

We extend this functional as follows. Let (g,) a sequence in L?(R,) such that
lgnl[* =1 and

lim <%(k?0, )gnagn>L2(R+) = ’Ya(k’OafO)'

n—oo

(We constructed such a g, in section 4.9).

Define the sequence (f,,) in l2(Z2, Lo(R4)) by

fn = é(ko,[)) (gn(g)) = {6a,(k0,0)gn<§>}a€Zi'

Note that
1£all? = D" damomllgnll® = llgnll* = 1.

a€Zt

Since Té)(é(ko,O)) = 0 for every p > 0 (because ay — p = —p < 0), for an operator

—_~—

A=3"0(v)TY € D(N) we have

<Afn7fn> = <701fn7fn> = Z <’}/0(’Ck’, ')gmgn>5a,(ko,0) = <70(k07 )gmgn>

2
an+

Thus the functional ¥ = (kg, &, 0) is defined on the dense subalgebra of operators
of the form A = 377" (7,1 )(Tg) by

nhjfolo<Afm fa) =0(ko, &) = Y(A). (4.21)
Finally, we have

[ (A)] = Jim (A S, fu)] < Timsup [|A][| £ul* = [ AJl

—~—

Therefore, v is multiplicative and continuous on a dense subalgebra of 7 (\) so that

it extends to a multiplicative functional on 7 (). O

4.10.3 Lemma. The set
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belongs to M(T(N)).

Proof. Let (u,() € ((I_I&RJr MOO@) L Moo,oo> x D(0, %)
We define ¥ = (11, ¢) on the dense subalgebra cD()) as

vA) =3

for A = Zzlzo(vpl)fg. It is well defined since, by Lemma 4.6.1, ¥(A) = 0 implies
that ,(k,§) = 0 for k > p and so v,(u) = 0, p = 1,...,m. Note also that ¢ is
multiplicative.

We show that ¢ is continuous. Consider the unital C* algebra generated by

Y- -, Y- The restriction of p1 to is a multiplicative functional, thus

(1), vm() € (1, -+ -5 Ym)

By Corollary 4.7.1 there exists a sequence (v, &) such that v, — oo and

Yok &) = (i), p=1,....m.

We note that every =, together with the sequence (v, &) satisfies our assumptions
in Section 4.9 for the construction of the sequence ( f,gw)), with ¢ = ¢,(w). This
sequence is the same of every 7,, since it only depends on the sequence (v, &) and

the point w.

Thus, by Corollary 4.9.4, we have

ggw(zﬂ@m)ﬁﬁ“iﬁbzthM@zwmy
p=0 p=0
Therefore
|wAﬂ:ggﬂS(Zﬁgﬂij#%ﬁmﬂsHM!
p=0
and we can extend 1 to a multiplicative functional on 7/‘()\/) O

From Lemmas 4.10.1, 4.10.2, 4.10.3 and the injective tensor product description

from [12], Section 3.2, we conclude:
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4.10.4 Theorem. The compact set M (T (N)) of mazimal ideals of the algebra T (\)
has the form

M(TO)) = (22 x By x {01 U (M. (3 x D(0,3) )

1. The Gelfand image of the algebra T () is isomorphic to T(X)/Rad T (X\) and
coincides with the algebra

Ay U [C (Moo JECo(D(0. ),

which is identified with the set of all pairs

1
"2

(77 f) € Aqr X [O(MOO,R+)®600¢(E<O ))]

satisfying the following compatibility condition v(n) = f(u,0), for all p €
My r, (N).

2. The Gelfand transform is generated by the following mapping:

’70(]{:75)7 Zf (k7€70) €Z X R-f— X {O},
E;nzo 7p(“><p7 Zf (:ua C) € MOO,R+ X E(()? %)

Z Tap T£ =
p=0

4.11 Inverse closedness

4.11.1 Lemma. Let A = Zp:O(VpI)Tg an element of the dense subalgebra 7/)?)\/) and
Y = (k,&0) € Zy x Ry x {0} € M(T'(N)). If A is invertible in L (1*(Z3, Lo(Ry))),
then ¥(A) # 0.

Proof. Let D* be the C*-algebra generated by 5()\/)
We extend 1 to D* by assigning ¢(T7) = 0. By (4.21), ¢ is defined in D()) by

B(A) = lim (Af,, £,
where f,, is a unitary vector such that f¢(fn) =0,p=1,2,...,and

lim (Y(k, ) Gns 9n) 1o(ry) = V(K. ).

n—oo
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Consider the dense subset of D* defined by all finite linear combinations of products
of operators of the form vI, T, » and T(; Since v commutes with T, » and T(;, a typical

element of this algebra can be written as

B=nl+3 Qunl), (4.22)

i=1
where (); is a finite product of T¢ and T;‘

Note that ((T)*(fn), fn) = (fa, Tyfn) = 0 and thus we have (Q;fn, fn) = 0. Which
implies that

(B fns fn) = (71 gn, gn)Lz(R+)

and

Since this formula defines a bounded functional, we conclude that ¢ can indeed be
extended to D*.

Being a C*-algebra, D* is inverse closed and we have A~! € D*. There is some B
of the form (4.22) such that ||[A — B|| < 1/(2]|A4]]).

Then
1= lim (AA™ fo, fo) = lim (ABfy, fu) + lim ((AA™" = AB) fo, f).
By the Cauchy-Schwarz inequality,
[((AA™" — AB) fu, fa)] < [|AA™" — AB|| < [JA|[|A™ = B|| < 1/2
and, therefore,
1/2 < i (ABf, f) = 7k, €3 (5, €) = 6(A)(B).

This proves that ¢ (A) # 0. O

Recall the unitary operator Rye: F7(C?) — F3(C?), given by

Rocf(2) = f((26)'/?2), 2€C? f € F{(C?).
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In the last section we remarked that

‘. _ ©
ST,S" = | T,

Ry

where (Bg doesn’t really depend on £ and acts just like ¢. Moreover, it can be easily
seen that, due to this independence, Tg) = RocT(¢) R, where T(¢) is the operator
3

Tg/z) acting on the unweighted Fock space F2(C?) = F?(C?).

1/2

By the same arguments we have, in general,
ST505" = /R ) Roe T (76" Riede,

where T(¢*¢") is the corresponding Toeplitz operator acting on the Fock space F2(C?).

Let I be the space of all operators K of the form

K= / Rae Ko R de, (4.23)
R4

where Kj is a compact operator acting on F?(C?).

4.11.2 Lemma. Let p,q be non negative integers. Then the semicommutators

S(T

¢p$q—T£Tg)S* and S(T} —Tng}S*

p g
belong to K.

Proof. We prove it just for the first operator. The other case is very similar.

Since
ST —~TETDS = [ Roc(T(&8") = T(&)T(@) R,

we need to prove that T(¢?¢") — T(¢?)T(¢") is compact in F?(C?)
Suppose that p > ¢q. The case ¢ > p follows from taking adjoints.
We show first prove that T(¢?¢") —T ()T (¢9) = T(¢P¢") =T (¢*)T(¢9)* is compact.
Let 0 < A < 1 and consider the sets Iy, Iy, I3 € Z2 given by

]1:{QEZE_IQ1<Q},
_[2 = {Oé € Zi_ (03] Z |Oé|>\}\]1,
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L={a€Z: a < |a*}\]1,
and let H; = span{e(l: a € I;}.

By equations (4.14), (4.15) and (4.16) we have the following relations:

L (T(¢P¢") — T(¢")T (6|1 (ea), a € I, is 0 if ay < p — 1. Otherwise, it’s equal
to a basic vector multiplied by
(a1 + 1)l(ag + 1)! (Jof + 1)!
Jadlasl(ar + (p — )i (az — (p — )t (el +p+a+ 1)

Since a; < g, the last quantity tends to zero as |a| — oo. Thus (T(¢P¢") —
T(6")T(¢"))|1, can be aproximated by finite-rank operators.

2. (T(¢Pd") — T ()T (") |1, (€a), @ € Iy, is 0 if ay < p — 1. Otherwise, it’s equal

to a basic vector multiplied by

(a1 + p)i a2 + q)! (lof +1)!
Vorlasl(ar + (p — @)z — (p — @)t (lal +p+ ¢+ 1)!
.l(|a\+p+q+1)!(|a\+1)! (a1 —g+1)--a .

(lef +p+Diaf + g+ Do +(p—¢q) + 1) (o1 + p)

Since a; > |al?, we have a; — oo when |a| — co. Thus the right factor tends
to zero as |a| — oco. The left factor is just Y,5,> Which is bounded. Therefore,
the whole expression tends to zero as |a| tends to infinity. This implies that
(T(¢"¢") — T(¢P)T(¢"))|1, can be approximated by finite-rank operators.

3. (T(¢7¢") — T(")T(6")|1,(ea), @ € I, is 0 if ay < p — 1. Otherwise, it’s equal
to a basic vector multiplied by the same quantity as above. In this case, note

that the right factor is bounded (since it tends to zero as a; — 00).

On the other hand, the left side is equal to

Vo +1) - (ar+ (p—a) o+ (p—q) + 1)+ (a1 +p)
(Ja[+2)- - (Ja] +p+q+1)

@ = (p—q) + 1) as(as + 1) - (a5 +q)

for some constant M.
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Since a; < |a]}, the last quantity tends to zero as |a] — oo and, as before,
(T(¢7¢") — T(¢*)T(¢"))|1; can be approximated by finite-rank operators.

This proves that T(¢?¢") — T(¢?)T(¢") is compact.

Finally, we recall that T(¢,) acts on the basis of FZC?) as Ty, does on the ele-
ments é,(c(§)). Thus, according to (4.9), T'(¢,) — T'(¢)? is a diagonal operator whose
eigenvalues (depending only on |a|) tend to zero as |a| — co. Hence, T'(¢,) — T'(¢)?
and its adjoint T'(¢,) — T'(¢)? are a compact operators. It follows from this that

S(Typge — TywT52)S™ is and operator of the form (4.23).

Therefore, we have
S(Tdﬂ,gq — Tng)S* = S(Tdﬂ’a‘] — T¢pT$q)S* + KlSTgS* + STgS*Kg,
where K7 and K5 belong to . This proves what we wanted. O

Let ((vg, &), and w € C? be as considered in section 4.9 and let (f{*))22, be
the sequence given by (4.20). That is,

K(Qf)(_ w) o
fk”:{gff’;’ (O Sgb € [ RR(C)de
OENREI ) S o, T

4.11.3 Lemma. For every & > 0 we have

) ( K$9 (- w) ) KS) (-, w)

2 - .
IKSOCw) ) 1KS) (- w)|

Proof. By the Multinomial theorem we have

Kéié) (Z, w) - Z\a|:yk (22!% 2w . (2£>Vk/2 <Z, U)>Vk
2 o v 1/2 v
HKéf)<.7w)H (Z|a\:uk %h{)a’z) / ve!  Jw|vk

Since Rj, maps z to (2£)7*/%z we obtain

2
<Zaw>yk Kékg)(vw)

. 1
_— (Z) = » = .
||Kéif><-,w>||) Vi ol KD (w))|
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4.11.4 Lemma. The sequence of normalized reproducing kernels given by

1

— ok L k=1,2,---.
1 b b b
1S (- w)]|

converges weakly to zero.

Proof. Tt suffices to prove that

<\|Ké?<~,w>u

.9y =0, k— o0

for every g in a total subset A of F?(C?).

Let A be the orthonormal basis of F?(C?). Since v, — 00, for every a € Z3 we can

choose an integer N such that vy, > |a|, for every k > N. In this case

K$ (- w)

<HK§?<-,w>H

ea) =0, k>N,

and we are done. ]

4.11.5 Corollary. Let (fkw))io:1 be as before and K € K. Then
KA =0,

as k — 0.

Proof. We have, by Lemma 4.11.3,

K(f/gw)) = (/R+ R25K0R55d5> (f/gw))

* K(%)('aw)
= {gr(f('?g))(f)Rngo (Rzg (I((Sgkg)
H Sk (7w)|l £ERy

K (,w)
= {gf(’?c))(ﬁ)stKo (f{“)
HKSk (,’UJ)H £eRy
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Thus

(1)
ol phy e _ ) (€)2 | Racry [ L5 )
IEGEDIP = [ (G0 | e O(Hng o)l

|-
IKS) (-, w)l|

Since K is compact and, by Lemma 4.11.4, the sequence of normalized reproducing

kernels tends weakly to zero, the last member of the equality tends to zero. O]

Given D = (ag, ..., an), with a, a (2)-quasi-radial quasi-parabolic function, p =
0,1,...,m, let Ap be the Banach algebra generated by ST,,S*,...,ST,, S*, STyS*
and let A}, the C*-algebra generated by ST,,5%,...,ST,, S*, ST,S* and K.

As we did in the proof of Lemma 4.10.3, for every ¢ = (11,() € Mg, (A) x D(0, 3),
we can construct an associated sequence ( féw))z‘;l of the form (4.20) and such that

W(A), A € Ap, can be calculated in terms of this sequence. In particular, we proved
that (1) = ¢(w) = ¢ and P(T,,) = (1)

4.11.6 Lemma. With the notations introduced above, let T' € A},. Then the limit
W(T) = Jim (TF, f)
k—o0

always exists and defines a multiplicative functional on Aj, that extends 1.
Proof. We first note that the operators ST;,S* commute with all the other operators
considered. Thus, the algebra A3, is the linear span of all operators of the form
QST,,S”
and
ST, ST Q1K Q2,

where (01, ()1 and ()5 are finite products of operators of the form ST;;S *and S (TQZ)*S *,
i,7>0,1,ne{0,1,...,m}, and K € K.

Since the operators ()1 and ()5 can be written as a direct integral we have Q1 K Q)2 €
K. Moreover, by Lemma 4.11.2, Q = ST 55" + K, for some K’ € K.
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Thus, A7}, is indeed generated by operators of the form

STW,EQTGZ S + K

and
ST,, S Ko,

where K1, K, € K and I,n € {0,1,...,m}.

By Cauchy-Schwarz inequality and Corollary 4.11.5,
15T, 8" K fi” ) < 11ST, "B S| = 0,

as k — oo.

On the other hand, by an similar argument as above and by Corollary 4.9.4,

lim (ST, 4508 + K) i, i) = Hm (ST, o S £)

= (1) Pp(w) g (w)
= Q/)(Tal )¢(T¢)p¢(T¢)q-

It follows from these relations that the limit exists for every element in this dense
subalgebra of A}, that ¢’ is multiplicative in this subalgebra and that this functional
extends ).

Finally, the formula defining ¢ shows that this functional is continuous and can be

extended to the whole algebra A},, as we wanted to prove. O

4.11.7 Corollary. Let ¢ = (1,() € Mg, x D(0,3) and let A € Ap be invertible as
an element of £ (A3(D3)). Then (A) # 0.

Proof. The C*-algebra A%, is inversed closed and therefore A~' € Ap. By Lemma

4.11.1 we can extend v to a multiplicative functional on Ap. Therefore, ¥(A) =

V'(A) # 0. O

4.11.8 Theorem. The commutative Banach algebra T (\) is inverse closed and, in
particular, for each A € T (),

8PT(x) A = SP2(a3(Ds)) 4
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Proof. Let A € T()\) be invertible as an element of £ (A3(Dj)).

Choose a sequence (A,,)5°, of elements of the form
A, = Z(Tan,p)T£7

whit each a,, a (2)-quasi-radial quasi-parabolic function, such that

lim A, = A.

n—o0

Since the group of invertible elements is open, we can assume that A, is invertible

for all n € N. Moreover, by the continuity of the inversion we have

Al = lim A

n—oo
and thus, A~ will be in T () if each A, ! is in T(\).

Fix a A, and suppose that
A, = Z T%Tg )
n=0

Since A, is invertible, A, is invertible in ZL(1*(23, Ly(Ry))) and, by Lemma 4.11.1,
P(Ay) # 0, for every ¢ € Z, x Ry x {0}.
Moreover, let D = (ay,...,a,) and let Ap and A%, as before. Since A, is invertible

in Ap, by Corollary 4.11.7, 1(4,,) # 0, for every ¢ € Mo, x D(0,3).
It follows from Theorem 4.10.4 that ¢(A,) # 0 for every ¢» € M(7()\)) and

consequently, A, is invertible in 7 (X)), as we wanted to prove. O

81






Bibliography

[1] Bauer, W. and Vasilevski, N. (2012). On the structure of a commutative banach
algebra generated by toeplitz operators with quasi-radial quasi-homogeneous symbols.
Integr. Equ. Oper. Theory, 74:199-231.

[2] Bauer, W. and Vasilevski, N. (2013). On the structure of commutative banach
algebras generated by toeplitz operators on the unit ball. quasi-elliptic case. i:
Generating subalgebras. Journal of Functional Analysis, 265:2956-2990.

[3] Bauer, W. and Vasilevski, N. (2015). On the structure of commutative banach
algebras generated by toeplitz operators on the unit ball. quasi-elliptic case. ii:
Gelfand theory. Complex Anal. Oper. Theory, 9:593-630.

[4] Gamelin, T. W. (1969). Uniform Algebras. Prentice-Hall, Inc, Englewood Cliffs.

[5] Grudsky, S., Quiroga-Barranco, R., and Vasilevski, N. (2006). Commutative
C*-algebras of toeplitz operators and quantization on the unit disk. Journal of
Functional Analysis, 234(1):1-44.

[6] Kaniuth, E. (2009). A Course in Commutative Banach Algebras. Springer-Verlag.
[7] Lang, S. (1993). Real and Functional Analysis. Springer-Verlag.
[8] Larsen, R. (1973). Banach Algebras. An Introduction. M. Dekker.

[9] Maximenko, E. and Esmeral, K. (2015). Radial toeplitz operators on the fock
space and square-root-slowly oscillating sequences. Complex Analysis and Operator

Theory, 10(7):1655-1677.

[10] Quiroga-Barranco, R. and Vasilevski, N. (2007). Commutative C*-algebras of
toeplitz operators on the unit ball, i. bargmann-type transforms and spectral repre-
sentations of toeplitz operators. Integr. equ. oper. theory, 59:379-419.

[11] Quiroga-Barranco, R. and Vasilevski, N. (2008). Commutative C*-algebras of
toeplitz operators on the unit ball, ii. geometry of the level sets of symbols. Integr.
equ. oper. theory, 60:89-132.

[12] Ryan, R. A. (2002). Introduction to Tensor Products of Banach Spaces. Springer
Verlag.

[13] Vasilevski, N. (2008). Commutative Algebras of Toeplitz Operators on the Bergman
Space. Birkhéuser.

83



BIBLIOGRAPHY

[14] Vasilevski, N. (2009). Parabolic quasi-radial quasi-homogeneous symbols and com-
mutative algebras of toeplitz operators. Operator Theory: Advances and Applications,
202:553-568.

[15] Vasilevski, N. (2010). Quasi-radial quasi-homogeneous symbols and commutative
banach algebras of toeplitz operators. Integr. Equ. Oper. Theory, 66:141-152.

[16] Vasilevski, N. (2012a). Banach algebras of commuting toeplitz operators on the unit
ball via the quasi-hyperbolic group. Operator Theory: Advances and Applications,
218:155-175.

[17] Vasilevski, N. (2012b). Commutative toeplitz banach algebras on the ball and
quasi-nilpotent group action. Integr. Equ. Oper. Theory, 72:223-240.

[18] Vasilevski, N. and Esmeral, K. (2015). C*-algebra generated by horizontal toeplitz
operators on the fock space. Boletin de la Sociedad Matemdtica Mexicana, 3.

[19] Yanez, C. H., Maximenko, E., and Vasilevski, N. (2013). Vertical toeplitz operators
on the upper half-plane and very slowly oscillating functions. Integr. Equ. Oper.
Theory, 77:149-166.

[20] Zhou, Z.-H. and Dong, X.-T. (2009). Algebraic properties of toeplitz operators
with radial symbols on the bergman space of the unit ball. Integr. equ. oper. theory,
64:137-154.

[21] Zhu, K. (1985). Operator Theory in Function Spaces. American Mathematical
Society.

[22] Zhu, K. (2012). Analysis on Fock Spaces. Springer US.

84



	Contents
	1 Preliminaries
	1.1 Commutative Banach Algebras
	1.2 Compactifications
	1.3 Dirac Sequences
	1.4 Bergman Spaces
	1.5 Fock Spaces
	1.6 Toeplitz Operators
	1.7 Commutative C*-Algebras Generated by Toeplitz Operators
	1.8 Commutative Banach Algebras Generated by Toeplitz Operators
	1.8.1 Elliptic case
	1.8.2 Parabolic case


	2 Bergman Space Representation
	2.1 Bergman Space Representation
	2.2 Toeplitz operators
	2.3 The symbol a"0365a
	2.3.1 "026B30D a"0365a"026B30D  and "026B30D a"026B30D 
	2.3.2 Limits at 0 and at 
	2.3.3 Continuity


	3 Commutative C*-Algebras
	3.1 Quasi-parabolic case
	3.2 Nilpotent case
	3.3 Quasi-nilpotent case

	4 The Banach Algebra T()
	4.1 Parabolic (2)-quasi-radial symbols
	4.2 The set M,
	4.3 Quasi-Homogeneous Symbols
	4.4 Invariant Subspaces
	4.5 The algebra T
	4.6 Dense Subalgebra in T()
	4.7 Finitely Generated Subalgebras of Aqr
	4.8 Integral representation and Fock spaces
	4.9 Berezin Transform and Dirac Sequences
	4.10 Gelfand Theory of T()
	4.11 Inverse closedness

	Bibliography

