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1 Introduction and technical
preliminaries

1.1 Introduction

Evolutionary games form a class of noncooperative games in which the in-
teraction of strategies is studied using evolutionary ideas from two different
approaches, static and dynamic. The static approach captures evolutionary
concepts through defining and studying equilibrium terms. The dynamic ap-
proach, on the other hand, studies the interaction of strategies as a dynamical
process determined by a system of differential equations. This manuscript
concerns the dynamic approach with a specific dynamical system known as
the replicator dynamics. We are particularly interested in the stability of the
replicator dynamics for evolutionary games in which the strategy set is a mea-
surable set or, more precisely, a separable metric space.

An evolutionary game is said to be symmetric if there are two players only
and, furthermore, they have the same strategy sets and the same payoff func-
tions. This type of games models interactions of strategies of a single popula-
tion, and form part of the so-called population games. On the other hand,
asymmetric evolutionary games, also known as multipopulation games, are
games in which there is a finite set of players (or populations) each of which
has a different set of strategies and different payoff functions.

Game models with strategies in general measurable spaces are important
because they include essentially all the models that appear in theory and ap-
plications, from games with finite strategy sets to games with strategies in
metric spaces such as some models in oligopoly theory, international trade
theory, war of attrition, and public goods, among others. With our proposed
model we can introduce an evolutionary dynamics in games where the strategy
set is a Borel space (that is, a Borel subset of a complete and separable metric
space). We have consequently that the dynamical system lives in a Banach
space, which in our case is a space of finite signed measures. In particular, if
the strategy set is finite, then the dynamical system is in Rm, where m is the
number of strategies of a player for symmetric games, or the total number of
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1 Introduction and technical preliminaries

strategies of all players for asymmetric games.
The main objective of this work is to present a general, unified framework to

study the existence of solutions and the stability of the replicator dynamics for
games with metric strategy sets. This means that, first, we establish conditions
for the existence of solutions to the replicator dynamics for asymmetric games,
and also conditions that ensure the stability of the system in this asymmetric
case. Bomze and Potscher [18] suggest an approach (similar to Selten’s [92] for
the case with finite strategy sets) in which asymmetric games are reduced to
the symmetric case; for details see section 3.2 below. This approach, however,
has some disadvantages. For instance, the relationship between Nash equilibria
and the replicator dynamics is unclear. It is also unclear how to extend stability
concepts and results to the asymmetric case. In contrast, with our proposed
model is it easy to see the relationship between a Nash equilibrium and the
replicator dynamics (see section 3.4) and, in addition, stability concepts have
a natural construction from the symmetric case to the asymmetric situation
(see Section 3.5).

Second, for symmetric games we study stability criteria in a fairly general
context, with respect to different topologies and metrics on a space of measures.
We can thus, for instance, relate the Nash equilibria of a certain normal form
game with the stability of the replicator dynamics under different metrics (see
section 4.4 below), and similarly for strongly uninvadable strategies (section
4.3), a refinement of Nash equilibria. We can also obtain quite general, and at
the same time precise results on the approximation of the replicator dynamics
by different approximating models, which include finite-dimensional dynamic
systems (section 4.5).

Third, we study the replicator dynamic as a limit of a sequence of Markov
processes (see chapter 5), and where each Markov process describe a stochastic
interaction among the characteristics (genotypes or actions) of the individuals.
This stochastic-interaction can be studied by a determinist dynamic under
some hypotheses (when the mass-population is enough, for example.)

Concerning some related literature, conditions for the existence of solutions
to the replicator dynamics in measure spaces in the symmetric case are given
by several authors, including Bomze [17], Oechssler and Riedel [74], and more
generally (including dynamics different from the replicator equation) by Cleve-
land and Ackleh [25]. In section 3.3 we present conditions for the existence of
solutions to the replicator dynamics in measure spaces in the asymmetric case
and some other important results.

Similarly, conditions for stability have been developed with respect to dif-
ferent topologies, as in for instance Bomze [16], Oechssler and Riedel [74], [75],
Eshel and Sansone [36], Veelen and Spreij [98], Cressman and Hofbauer [31].
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1.1 Introduction

In section 3.5, below, we present stability results for the replicator dynamics
in the asymmetric case. In section 4.3, we present a brief review of stabil-
ity results in the symmetric case. Also in section 4.3 we establish a result
that characterizes the stability of the replicator dynamics with respect to the
Wasserstein metric, which is analogous to Theorem 2 of Bomze [16], and is also
an approximation to answer the conjecture proposed by Oechssler and Riedel
[75].

An important issue in evolutionary games is to study the replicator dynam-
ics as a limit of a sequence of Markov process describing interactions among
individuals in a population. These stochastic interactions describe the evolu-
tion of the species. There are many references on this issue when the strategy
space is finite, for instance, to name a few, Benaim and Weibull [11], Corradi
and Sarin [26], Sandholm [91], [90]. However, a more general mathematical
structure is needed if the strategy set is a measurable space, which is what we
propose in this chapter 5.

On the other hand, in the theory of evolutionary games there are several
interesting dynamics, such as, the imitation dynamics, the monotone-selection
dynamics, the best-response dynamics, the Brown-von Neumann-Nash dynam-
ics, and so forth (see Hofbauer and Sigmund [50], [51], Sandholm [91], among
others). Some of these evolutionary dynamics have been extended to games
with strategies in a space of probability measures. For instance, Hofbauer,
Oechssler and Riedel [49] extend the Brown-von Neumann-Nash dynamics;
Lahkar and Riedel [64] extend the logit dynamics. Moreover, Cheung proposes
a general theory for pairwise comparison dynamics [24] and for imitative dy-
namics [23]. M. Ruijgrok and T. Ruijgrok [87] extend the replicator dynamics
with a mutation term. Among all these dynamics, we selected the replica-
tor dynamics partly because it is the most studied for games with strategies in
metric spaces, and partly because it has many interesting properties, as can be
seen in Cressman [27], Hofbauer and Weibull [52], and many other references.
In particular, with the replicator dynamics it is not difficult to construct a
proof of the existence of Nash equilibria and, moreover, when the strategy set
is finite, we can give a geometric characterization of the set of Nash equilibria;
see Harsanyi [44], Hofbauer and Sigmund [50], Ritzberger [83].

Finally, it is noteworthy that today, the evolutionary games have many ap-
plications in different areas. For example, genetics and biology [50], modeling
cancer [102],[40], [53], spread of epidemics[10], [105], forest management [93],
economic development[5], [1], combat money laundering [4], finance [2],[3],
among others. We selected the examples in chapter 2 because most of them
are classical models in the literature of game theory and, in addition, the cor-
responding strategy sets are metric spaces. This allows us to relate some of
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1 Introduction and technical preliminaries

our main theoretical results to interesting particular applications.

1.2 Summary

The remainder of the manuscript is organized as follows. Section 1.3 presents
notation and technical requirements.

Chapter 2 introduces a normal form game and presents important related
concepts. Also in the section 2.2, we show examples that will be used in rest
of this work.

Chapter 3 introduces an evolutionary dynamics for asymmetric games. Sec-
tion 3.1 shows a heuristic approximation to the replicator dynamics for the
asymmetric case. Section 3.2 describes the asymmetric evolutionary game and
the replicator dynamics. Section 3.3 establishes conditions for the existence
of a solution to the system of differential equations describing the replica-
tor dynamics, and gives some characterizations of the solution. Section 3.4
establishes a relationship between Nash equilibria and the replicator dynam-
ics. Section 3.5 introduces conditions to establish the stability of the replicator
equations. Section 3.6 proposes examples to illustrate our results. We conclude
the chapter in section 3.7 with some general comments on possible extensions.

Chapter 4 introduces an evolutionary dynamics for symmetric games. Sec-
tion 4.1 describes the replicator dynamics and its relation to evolutionary
games. Some important technical issues are also summarized. Section 4.2
establishes the relation between the replicator dynamics and a normal form
game using the concepts of Nash equilibria and strongly uninvadable strategies.
Section 4.3 presents a brief review of stability results for the replicator dynam-
ics. Section 4.4 establishes an important relationship between Nash equilibria
and the critical points of the replicator dynamics. Section 4.5 proposes ap-
proximation schemes for the replicator dynamics in measure spaces, including
the approximation by dynamical systems in finite-dimensional spaces. Section
4.6 proposes examples to illustrate our results. Finally, we conclude in section
4.7 with some general comments on possible extensions of our results.

Chapter 5 studies the replicator dynamics as a limit of a sequence of Markov
processes. Section 5.1 presents notation and technical requirements. Section
5.2 shows a technique proposed by Kolokoltsov [55],[56] to approximate a se-
quence of pure jumps models of binary interaction (in a Banach space), through
deterministic dynamical system. Section 5.3 use techniques of section 5.2 to es-
tablish conditions under which the replicator dynamics is a limit of a sequence
of Markov processes.

Chapter 6 presents a summary of contributions and future perspectives.
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1.3 Technical preliminaries

Finally, Appendix A contain facts on metrics on spaces of probability measures,
and the proof of some technical results.

1.3 Technical preliminaries

1.3.1 Spaces of signed measures

Consider a separable metric space A and its Borel σ-algebra B(A). Let M(A)
be the Banach space of finite signed measures µ on B(A) endowed with the
total variation norm

‖µ‖ := sup
‖f‖≤1

∣∣∣∣∫
A

f(a)µ(da)

∣∣∣∣ = |µ|(A), (1.1)

where |µ| = µ+ +µ− denotes the total variation of µ, and µ+, µ− stand for the
positive and negative parts of µ, respectively. The supremum in (1.1) is taken
over functions in the Banach space B(A) of real-valued bounded measurable
functions on A, endowed with the supremum norm

‖f‖ := sup
a∈A
|f(a)|. (1.2)

Consider the subset CB(A) ⊂ B(A) of all real-valued continuous and bounded
functions on A. Consider the dual pair (CB(A),M(A)) given by the bilinear
form 〈·, ·〉 : CB(A)×M(A)→ R

〈g, µ〉 =

∫
A

g(a)µ(da). (1.3)

We consider the weak topology on M(A) (induced by CB(A)), i.e., the topol-
ogy under which all elements of CB(A), when regarded as linear functionals
〈g, ·〉 on M(A) are continuous. In this topology a neighborhood of a point
µ ∈M(A) is of the form

VHε (µ) :=
{
ν ∈M(A) : |〈g, ν − µ〉| < ε ∀g ∈ H

}
(1.4)

for ε > 0 and H a finite subset of CB(A).

Definition 1.1. A sequence of measures µn ∈ M(A) is said to be weakly
convergent if there exists µ ∈M(A) such that

lim
n→∞

∫
A

g(a)µn(da) =

∫
X

g(a)µ(da) (1.5)

for all g in CB(A). If M(A) is the space P(A) of probability measures on A,
sometimes we say that µn converges in distribution to µ.
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1 Introduction and technical preliminaries

1.3.2 Metrics on P(A)

There are many metrics that metrize the weak topology. The following metrics
are particularly useful. (For details see, for instance, Shiryaev [94], Billingsley
[12] or Villani [101]). This subsection will be used in chapter four, the reader
can skip this section and come back later.

Let A be a separable metric space with a metric ϑ, and P(A) the set of
probability measure on A. For any µ, ν ∈ P(A) we define the following metrics
on P(A).
i) The Prokhorov metric rp, defined as

rp(µ, ν) := inf{α > 0 : µ(E) ≤ ν(Eα) + α and ν(E) ≤ µ(Eα) + α}, (1.6)

where, for α > 0, Eα := {a ∈ A : ϑ(a,E) < α} if E 6= φ. Here φ is the empty
set, and

ϑ(a,E) := inf{ϑ(a, a′) : a′ ∈ E}.

ii) The bounded Lipschitz metric rbl, defined as

rbl(µ, ν) := sup
f∈LB(A)

{∫
A

f(a)µ(da)−
∫
A

f(a)ν(da) : ‖f‖BL ≤ 1

}
, (1.7)

where (LB(A), ‖ · ‖BL) is the space of bounded, continuous and real-valued
functions on A that satisfy the Lipschitz condition

‖f‖L := sup
|f(a)− f(b)|

ϑ(a, b)
<∞, (1.8)

where the supremum is over all a 6= b. For any f ∈ LB(A), the norm ‖f‖BL is
defined as

‖f‖BL := ‖f‖+ ‖f‖L. (1.9)

iii) The Kantorovich-Rubinstein metric rkr, defined as

rkr(µ, ν) := sup
f∈L(A)

{∫
A

f(a)µ(da)−
∫
A

f(a)ν(da) : ‖f‖L ≤ 1

}
, (1.10)

where (L(A), ‖ · ‖L) is the space of continuous real-valued functions on A
that satisfy the Lipschitz condition (1.8). Let a0 a fixed point in A. Then
the Kantorovich-Rubinstein metric rkr can be extended as a norm on M(A)
defined as

‖µ‖kr := |µ(A)|+ sup
f∈L(A)

{∫
A

f(a)µ(da) : ‖f‖L ≤ 1, f(a0) = 0

}
, (1.11)
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1.3 Technical preliminaries

for any µ in M(A) (see Bogachev [15], chapter 8). Note that for any µ, ν ∈ P(A)
rkr(µ, ν) = ‖µ− ν‖kr, since

sup
f∈L(A)

{∫
A

f(a)µ(da)−
∫
A

f(a)ν(da) : ‖f‖L ≤ 1

}

= sup
f∈L(A)

{∫
A

(
f(a)− f(a0)

)
µ(da)−

∫
A

(
f(a)− f(a0)

)
ν(da) : ‖f‖L ≤ 1

}
= sup

g∈L(A)

{∫
A

g(a)µ(da)−
∫
A

g(a)ν(da) : ‖g‖L ≤ 1, g(a0) = 0

}
iv) Let us suppose that the separable metric space A is also complete (that

is, a so-called Polish space), and let a0 be a fixed point in A. For each p with
1 ≤ p <∞, we define the space Pp(A) as

Pp(A) :=

{
µ ∈ P(A) :

∫
A

[ϑ(a, a0)]pµ(da) <∞
}
.

The Lp-Wasserstein distance rwp between µ and ν in Pp(A) is defined by

rwp(µ, ν) :=

[
inf
π∈Π

∫
A

∫
A

ϑ(a, b)π(da, db)

] 1
p

, (1.12)

where Π is the set of probability measures on A× A with marginals µ and ν.
In particular, when p = 1 we write the L1-Wasserstein distance rw1 as rw
and in addition we have that rw = rkr on P(A).

Remark 1.2. In the rest of this work we will denote by rw∗ any metric that
metrizes the weak topology on P(A) (not to be confused with the notation
rw of the L1-Wasserstein distance). Moreover, we denote by r any metric on
P(A) that is either the total variation norm (1.1) or any distance that metrizes
the weak topology. An open ball in the metric space (P(A), r) is defined in the
classical form

Vrα(µ) :=
{
ν ∈ P(A) : r(ν, µ) < α

}
(1.13)

where α > 0.

Remark 1.3. Let A be a separable metric space, and rw∗ any distance that
metrizes the weak topology τw∗ in P(A). Let µ be any measure in P(A), and
consider the family VH(µ) of neighborhoods VHε (µ) of the form (1.4). In addi-
tion, consider the family Vrw∗ (µ) of the open balls Vrw∗α (µ) of the form (1.13).
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Both families VH(µ) and Vrw∗ (µ) are neighborhood basis for µ in the space
(P(A), τw∗). For details see Pedersen [78], chapters I-II.

Moreover, a neighborhood VHε (µ) for µ is contained in some open ball Vrw∗α (µ)
with center µ. The inverse is also true, i.e., any open ball Vrw∗α (µ) is contained
in some neighborhood VHε (µ).

1.3.3 Product Spaces

Consider two separable metric spaces X and Y with their Borel σ-algebras
B(X) and B(Y ). We denote by σ[X × Y ] the σ-algebra on X × Y generated
by the Cartesian product B(X) × B(Y ). For µ ∈ M(X) and ν ∈ M(Y ), we
denote their product by µ× ν ∈M(X × Y ).

Proposition 1.4. For µ ∈M(X) and ν ∈M(Y ), it holds that

‖µ× ν‖ ≤ ‖µ‖‖ν‖. (1.14)

As a consequence, µ× ν is in M(X × Y ).

Proof. See Heidergott and Leahu [46], Lemma 4.2. �
Now consider a finite family of metric spaces {Xi}ni=1 and their σ-algebras
B(Xi), as well as the Banach spaces M(Xi). For i = 1, ..., n, let µi ∈ M(Xi).
Consider the elements µ = (µ1, µ2, ..., µn) in the product space M(X1) ×
M(X2)× ...×M(Xn) for which

‖µ‖∞ = ‖(µ1, ..., µn)‖∞ := max
1≤i≤n

‖µi‖ <∞. (1.15)

These elements form a Banach space with ‖ · ‖∞ as a norm. We call it the
direct product of the Banach spaces M(Xi).

1.3.4 Differentiability

Definition 1.5. Let A be a separable metric space. We say that a mapping
µ : [0,∞)→ M(A) is strongly differentiable if there exists µ′(t) ∈ M(A) such
that, for every t > 0,

lim
ε→0

∥∥∥∥µ(t+ ε)− µ(t)

ε
− µ′(t)

∥∥∥∥ = 0. (1.16)

Note that, by (1.1), the left-hand side in (1.16) can be expressed as

lim
ε→0

sup
‖g‖≤1

∣∣∣∣1ε
[∫

A

g(a)µ(t+ ε, da)−
∫
A

g(a)µ(t, da)

]
−
∫
A

g(a)µ′(t, da)

∣∣∣∣ .
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1.4 Comments

The strong derivative µ′(t) ∈M(A) is also called a Fréchet derivative in the
Banach space M(A). (For weak differentiability, see Remark 4.23.)

1.4 Comments

This chapter presented a general introduction and summary of the manuscript.
In addition, some technical preliminaries to be used in the following chapters
were presented. The only remaining information to be included are some
references that address evolutionary games in an explicit and comprehensive
manner. Firths, we mention references for evolutionary games with finite strat-
egy spaces. Webb [103] and Weibull [104] are two good introductory books;
Hofbauer and Sigmund [50], and ,Sandholm [91], are two books that addresses
a larger number of topics for the evolutionary games; Cressman [28] uses tech-
niques based on subgame decompositions of extensive form games to analyze
convergence results for evolutionary dynamics.

Regarding books that deal with evolutionary game with measurable strat-
egy spaces we only can to mention Bomze[18]. Unfortunately, this book was
written in 1989 and does not address several subsequent results that have been
developed in this theory. Other references on theoretical advances of this topic
are mentioned in the introduction. However, most of them only touch theoret-
ical aspects, and there are few bibliographies about applications, for example
oligopoly theory [80], public goods models [80] and preferences economic the-
ory [73], [47].
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2 Normal form games

A game is a mathematical model that describes the confrontation of a set
of decision makers (call players) who choose a strategy to face his opponent
and receive a payment as a result of this confrontation. A normal form game
(also known as a game in strategic form) is a game which is played one time,
and where each player know the strategies and payoffs of her opponents. The
solution of a normal form games was proposed by Nash [71].

Section 2.1 introduces a normal form game and presents important related
concepts. The following sections show examples that will be used in rest of this
work. The most of them are classical models in the literature of game theory
and, in addition, the corresponding strategy sets are metric spaces. This allows
us to relate some of our main theoretical results (in evolutionary games given
in the following chapters) to interesting particular applications.

Section 2.2 shows a linear-quadratic model that can be appliqued in a lot
of situations, particularity, in oligopoly theory, international tarted models, or
public good games. Section 2.3 show the strategy of commons model which is
a classical game used to describe the extraction and use of natural resources.
Section 2.4 present the poverty traps model that describe the possible causes
of economic underdevelopment of a country. Section 2.5 shows the classical
Bertrand game. Sections 2.6 and 2.7 present the Graduate risk model and
war attrition game, respectively. These games describe a situation where the
players compete for a recurs.

2.1 Normal form games

In this section we introduce normal form games and define the concept of Nash
equilibrium as a solution of shuch games.

Consider a set I := {1, 2, ..., n} of players. For each player i ∈ I, let Ai be the
set of pure strategies, which is a separable metric space. Let B(Ai) be the Borel
σ-algebra of Ai, and P(Ai) the set of probability measures on Ai, also known
as the set of mixed strategies. For every i ∈ I and every vector a := (a1, ..., an)
in the Cartesian product A := A1 × ... × An, we write a as (ai, a−i) where
a−i := (a1, ..., ai−1, ai+1, ..., an) is in A−i := A1 × ... × Ai−1 × Ai+1 × ... × An.
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2 Normal form games

Finally, for each player i we assign a payoff function Ji : P(A1)×...×P(An)→ R
that explains the interrelation with other players, and which is defined as

Ji(µ1, ..., µn) :=

∫
A1

...

∫
An

Ui(a1, ..., an)µn(dan)...µ1(da1), (2.1)

where Ui : A1× ...×An → R is a given measurable function, sometimes we cal
Ui a utility or payoff function.

For every i ∈ I and every vector µ := (µ1, ..., µn) in P(A1) × ... × P(An),
we sometimes write µ as (µi, µ−i), where µ−i := (µ1, ..., µi−1, µi+1, ..., µn) is in
P(A1)× ...× P(Ai−1)× P(Ai+1)× ...× P(An).

If δ{ai} is a Dirac probability measure concentrated at ai ∈ Ai, the vector
(δ{ai}, µ−i) is written as (ai, µ−i), and so

Ji(δ{ai}, µ−i) = Ji(ai, µ−i). (2.2)

It is convenient to rewrite (2.1) as

I(µ1,...,µn)Ui :=

∫
A1

...

∫
An

Ui(a1, ..., an)µn(dan)...µ1(da1). (2.3)

Hence (2.2) becomes

Ji(ai, µ−i) =

∫
A−i

Ui(ai, a−i)µ−i(da−i) (2.4)

= I(µ1,...,µi−1,µi+1,...,µn)Ui(ai).

In particular, (2.1) yields

Ji(µi, µ−i) :=

∫
Ai

Ji(ai, µ−i)µi(dai). (2.5)

Finally, a normal form game Γ can be described as

Γ :=
[
I,
{
P(Ai)

}
i∈I
,
{
Ji(·)

}
i∈I

]
, (2.6)

where

i) I = {1, 2, ...n} is the set of players,

ii) for each player i ∈ I we specify a set of actions (or strategies) P(Ai) and
a payoff function Ji : P(A1)× ...× P(An)→ R.
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2.2 A quadratic-linear model

Definition 2.1. Let Γ be a normal form game. A vector µ∗ in P(A1) × ... ×
P(An) is called ε-equilibrium (ε > 0) if for all i ∈ I

Ji(µ
∗
i , µ

∗
−i) ≥ Ji(µi, µ

∗
−i)− ε ∀µi ∈ P(Ai).

If the inequality is true when ε = 0, then µ∗ is called a Nash equilibrium.

We can obtain from (2.6) a symmetric normal form game with two players
when I = {1, 2}, and the sets of actions and payoff functions are the same
for both players, i.e., P(A) = P(A1) = P(A2) and J(µ1, µ2) = J1(µ1, µ2) =
J2(µ2, µ1) for all µ1, µ2 ∈ P(A). Hence, we can describe a two-players symmet-
ric normal form game as

Γs :=
[
I = {1, 2}, P(A), J(·)

]
. (2.7)

For symmetric normal form games Γs can express a symmetric Nash equilib-
rium (µ∗, µ∗) in terms of the strategy µ∗ ∈ P(A), as follows.

Definition 2.2. We say that µ∗ ∈ P(A) is a Nash equilibrium strategy (NES)
if the pair (µ∗, µ∗) is a Nash equilibrium for Γs. That is,

J(µ∗, µ∗) ≥ J(µ, µ∗) ∀µ ∈ P(A). (2.8)

2.2 A quadratic-linear model

In this subsection we consider games in which we have two players with the
following payoff functions:

U1(x, y) = −a1x
2 − b1xy + c1x+ d1y, (2.9)

U2(x, y) = −a2y
2 − b2yx+ c2y + d2x, (2.10)

with a1, a2, b1, b2, c1, c2 > 0 and d1, d2 any real numbers. Consider the strategy
sets A1 = [0,M1] and A2 = [0,M2] for M1,M2 > 0 and large enough.

This class of games could represent a Cournot duopoly or models of inter-
national trade with linear demand and linear cost (see Bagwell and Wolinsky
[6]). It can also represent some models of public good games (see Mas-Colell,
Whinston and Green [67]).

If the numbers

(2a2c1 − b1c2), (2a1c2 − b2c1), (4a1a2 − b1b2)

are all positive, then we have an interior Nash equilibrium

(x∗, y∗) =

(
2a2c1 − b1c2

4a1a2 − b1b2

,
2a1c2 − b2c1

4a1a2 − b1b2

)
. (2.11)
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2 Normal form games

2.3 The tragedy of the commons

The tragedy of commons is a game where the payoff of each player depends of
the use of a environmental resource, for example, fish stock in the ocean, tree
stocks on a forest area; or any other non-regulated resource, for example, an
office refrigerator. The following example comes from Gibbons [41].

Consider a set of farmers I := {1, 2, .., n} in a ville and suppose that each
farmer i ∈ I owns xi goats. Let x̂ := x1 + ...+ xn. Each goat needs at least a
certain amount of grass to survive, then there is a maximum number of goats
that can be grazed on the green x̄. The value of each goat is given by a function
v : [0, x̄]→ R such that

i) v(x̂) > 0 for 0 ≤ x̂ < x̄ and v(x̂) = 0 for x̄ ≤ x̂,

ii) v(·) is a concave function with the following proprieties v′(x̂) < 0 and
v′′(x̂) < 0 for x̂ ∈ [0, x̄]

Let Ai := [0, x̄] be the space of pure strategies of player i. The cost of the
farmer i to care a goat is ci, and the payoff of farmer i is given by

Ui(xi, x−i) = xiv(x1 + ...+ xi + ...+ xn)− cixi. (2.12)

where x−i = (x1, ..., xi−1, xi+1, ..., xn).
Note, that v(·) is strictly concave (since v′′ < 0). Then for each i in I

and fixed x′−i, the map xi 7→ v(x′1 + ... + xi + ... + x′n) is strictly concave.
Consequently, the map xi 7→ Ui(xi, x

′
−i) is also strictly concave. Since for each

i in I, Ai is convex and compact, then there exist a unique Nash Equilibrium
(x∗1, ..., x

∗
n) for the game (see Rosen [85]).

This Nash equilibrium must maximize Ui(·, x∗−i) for each i in I and satisfies
the first-order condition

v(x∗1 + ...+ xi + ...+ x∗n) + xiv
′(x∗1 + ...+ xi + ...+ x∗n)− ci = 0. (2.13)

The social optimum, denoted by x̂∗∗, solves

max
x̂∈[0,x̄]

{x̂v(x̂)− x̂k},

where k = min{c1, ..., cn}. Then the social optimum x̂∗∗ satisfies the first-order
condition

v(x̂) + x̂v′(x̂)− k = 0. (2.14)
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2.4 Poverty traps model

Let x̂∗ = x∗1 + ... + x∗n. If x̂∗ ≤ x̂∗∗ and since v′ < 0 and v′′ < 0, then
0 < v(x̂∗∗) ≤ v(x̂∗) and v′(x̂∗∗) ≤ v′(x̂∗) < 0. Since x∗i ≤ x̂∗∗ then the left-hand
side of (2.13) is strictly greter than the left-hand side of (2.14), which is a
contradiction. Therefore, comparing (2.13) to (2.14) shows that x̂∗ > x̂∗∗, i.e.,
the common resource is over-utilized in the Nash equilibrium.

2.4 Poverty traps model

This is an abbreviated version of the model proposed by Accinelli and Sanchez-
Carrera [1]. Consider an economy with two populations, workers and firms.
Each firm has two possible strategies: to be a modern firm (m) or a traditional
firm (τ). A modern firm is a technological company that needs specialist
workers to work in optimal conditions.

Similarly, each worker have two possibles strategies: to be a specialist worker
(s) or to be an artisan worker (a). A specialist worker has to spend e > 0 by
concept of education.

The modern company pays wm > 0 by finished product to any type of
worker and a premium p > e to specialist workers. On the other hand, a
traditional firm pays wτ < wm by finished product. The income of each firm is
determined by the workers’ productivity. We will denote by If,w, the income
of firm type f ∈ {m, τ} that employs workers type w ∈ {s, a}. Assume that
Is,m − Is,τ > wm + p− wτ and wm − wτ > Ia,m − Ia,τ .

In addition, suppose that each company uses a unique type of worker and
each worker is employed in one type of firm only. The payoffs for the game are
in the following table.

Worker\Firm m τ
s wm + p− e, Is,m − wm − p wτ − e, Is,τ − wτ
a wm, Ia,m − wm wτ , Ia,τ − wτ

(2.15)

Under the above hypotheses we have two pure Nash equilibria (s,m), (a, τ)
and one Nash equilibrium in mixed strategies (µ∗, ν∗) where

µ∗(s) =
e

p
(2.16)

and

ν∗(m) =
(wm − wτ )− (Ia,τ − Ia,m)

(Is,m − Is,τ )− (wm + p− wτ )
. (2.17)
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2 Normal form games

2.5 A sales model as a Bertrand game

This example is a Bertrand-duopoly model of sales (proposed by Varian [99]),
where each firm (or store) has zero marginal cost and a fixed cost k > 0.
We will suppose that each consumer desires to purchase, at most, one unit of
the homogeneous good produced by the duopoly market and the maximum
price that any consumer will pay for the good (consumer’s price reservation)
is r > 0.

We suppose that there are two types of consumers: the uninformed con-
sumers which choose any store randomly, and the informed consumers which
know the whole distribution of prices, i.e., they know the lowest available price.
Let I be the number of informed consumers, V the number of uninformed con-
sumers and T the total number of consumers T = I + V . We assume that the
demand curve facing each firm, is given by

q(p, z) =

{
I + V

2
, if p < z

V
2
, if z ≤ p

(2.18)

where p is the price of the firm and z is the price of the opponent firm.

Given the demand curve (2.18), each firm maximizes its payoff function

U(p, z) =

{
p
[
I + V

2

]
− k, if 0 ≤ p < z ≤ r

pV
2
− k, if 0 ≤ z ≤ p ≤ r.

(2.19)

Varian [99], [100] shows that this game has not a Nash equilibrium in pure
strategies, and that there exists a symmetric Nash equilibrium in mixed strate-
gies given by

dµ∗(p)

dp
=

{[
rV
2I

]
p−2, if p̄ ≤ p ≤ r

0, other case
, (2.20)

where p̄ = rV
2I+V

.

2.6 Graduated risk game

The graduated risk game is a symmetric game (proposed by Maynard Smith
and Parker [97]), where two players compete for a resource of value v > 0. Each
player selects the “level of aggression” for the game. This “level of aggression”
is captured by a probability distribution x ∈ [0, 1], where x is the probability
that neither player is injured, and 1

2
(1 − x) is the probability that player one
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2.7 War of attrition game

(or player two) is injured. If the player is injured its payoff is v − c (with
c > 0), and hence the expected payoff for the player is

U(x, y) =

{
vy + v−c

2
(1− y) if y > x,

v−c
2

(1− x) if y ≤ x,
(2.21)

where x and y are the “levels of aggression” selected by the player and her
opponent, respectively.

If v < c, this game has the NES with the density function

dµ∗(x)

dx
=
α− 1

2
x
α−3
2 , (2.22)

where α = c
v
. Moreover, if c ≤ v, this games has the NES (see Maynard Smith

and Parker [97], and Bishop and Cannings [13])

µ∗ = δ{0}. (2.23)

2.7 War of attrition game

The war of attrition game was proposed by Maynard Smith [96]. In this two-
players symmetric game, each player competes for a reward of value v > 0.
Each player has a number m > 0 of resources for the war, and decides how
much resources to spend to win this reward v. If a player is willing to risk
more resources than the other player, then he wins the reward v and pays only
the resources that the other player spends. Otherwise, the player loses the
resources used during the war.

For x, y in the strategy set A = [0,m] (with v ≤ m), the payoff function is

U(x, y) =

{
v − y if y < x,
−x if y ≥ x,

(2.24)

where x and y are the number of resources spent by the player and her oppo-
nent, respectively.

This game has a NES µ∗ with the density function

dµ∗(x)

dx
=

[
1

1− e−m/v

]
1

v
e−x/v. (2.25)

2.8 Comments

This chapter introduced a normal form game and important related concepts.
Also, showed examples that will be used in the rest of this work to relate
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2 Normal form games

our theoretical results on evolutionary games to these interesting applications.
Only remains to give information about references of normal form games.
There exists several books that introduce the normal form games, to men-
tion someones Kolokoltsov and Malafeyev [57], Myerson [70], Osborne and
Rubinstein [76], Gibbons [41], and Fudenberg and Tirole [38].

Other references on theoretical advances that deal with normal form games
with measurable strategy spaces and discontinuous payoff functions we can to
mention some classical papers Glicksberg [43], Dasgupta and Maskin [33],[34],
Simon [95], Reny [82]. Some recent references on the subject are Carmona and
Podczeck[22], Prokopovych and Yannelis [79], Barelli and Meneghe [8],arbonell-
Nicolau [20], McLennan, Monteiro and Tourky [68], and Carmona[21].
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3 Evolutionary games: the
asymmetric case

The theory of evolutionary dynamics in asymmetric games (or of several pop-
ulations) has been developed for games where the strategy set of each player is
finite, as in Balkenborg and Schlag [7], Ritzberger and Weibull [84], Samuelson
and Zhang [88], Selten [92]. Nevertheless, there are well-known cases where
the sets of strategies are metric spaces, such as oligopoly models and Nash
bargaining games (Cressman [30]).

In this chapter we introduce an evolutionary dynamics model for asymmetric
games where the strategy sets are measurable spaces (separable metric spaces).
Under this hypothesis the replicator dynamics is in a Banach Space. We specify
conditions under which the replicator dynamics has a solution. Furthermore,
under suitable assumptions, a critical point of the system is stable. Finally,
an example illustrates our results.

Section 3.1 shows a heuristic approach to the replicator dynamics in the
asymmetric case. Section 3.2 describes the asymmetric evolutionary game and
the replicator dynamics. Section 3.3 establishes conditions for the existence
of a solution to the system of differential equations (replicator dynamics),
and gives some characterizations of the solution (see Theorems 3.5 and 3.6
respectively). Section 3.4 establishes a relationship between the replicator
dynamics and a normal form game using the concepts of Nash equilibrium and
strongly uninvadable profile (see Theorems 3.9 and 3.12). Section 3.5 introduces
conditions to establish the stability of the replicator dynamics (see Theorem
3.14). Section 3.7 proposes examples to illustrate our results. We conclude the
chapter in section 3.8 with some general comments on possible extensions.

3.1 A heuristic approach to the replicator
dynamics

Let I := {1, 2, ..., n} be the set of different species (or players). Each individual
of the species i ∈ I can choose a single element ai in a set of characteristics
(strategies or actions) Ai, which is a separable metric space. For every i ∈ I
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3 Evolutionary games: the asymmetric case

and every vector a := (a1, ..., an) in the Cartesian product A := A1 × ...×An,
we write a as (ai, a−i) where a−i := (a1, ..., ai−1, ai+1, ..., an) is in

A−i := A1 × ...× Ai−1 × Ai+1 × ...× An.

For each i ∈ I, let B(Ai) be the Borel σ-algebra of Ai, and P(Ai) the set
of probability measures on Ai, also known as the set of mixed strategies. For
each i ∈ I, let Ni ∈ M be a positive measure such that for each Ei in B(Ai),
Ni(Ei) assigns the “number” (or mass) of individuals using pure strategies ai
in Ei. Then the total population of the species i is Ni(Ai) and the proportion
of individuals using strategies in Ei is

µi(Ei) :=
Ni(Ei)

Ni(Ai)
. (3.1)

Indeed, when the set Ai of characteristics of the specie i is not finite, it is
convenient to consider the population size not as a “number of individuals”
but a measure Ni ∈ M(Ai). Then for i ∈ I, we can introduce a probability
measure µi ∈ P(Ai) as in (3.1) that assigns a population distribution over the
action set Ai.

For each species i we assign a payoff function Ji : P(A1)× ...× P(An)→ R
that explains the interrelation with the population of other species, and which
is defined as in (2.1).

For each i in I, let γ1
i , γ

2
i be the background per capita birth and death rates

in the population i. The background per capita net birth rate γi := γ1
i − γ2

i is
modified by the payoff Ji(ai, ·) for using strategy ai ∈ Ai. The rate of change
of the number of individual of the species i for every Ei ∈ B(Ai), is

N ′i(t, Ei) = γiNi(t, Ei) +Ni(t, Ai)

∫
Ei

Ji(ai, µ−i(t))µi(t, dai) ∀Ei ∈ B(Ai)

(3.2)
with some initial positive measure Ni(0) in M(Ai). The notation N ′i(t, Ei)
represents the Fréchet derivative of Ni(t) in the Banach space M(Ai) (see
Definition 1.5) valued at Ei ∈ B(Ai) and µi is a probability measure defined
as in (3.1).

For each t in [0,∞) and i in I, the term
∫
Ei
Ji(ai, µ−i(t))µi(t, dai) in (3.2)

values the efficiency of the strategies in the set Ei of the species i when the
other species have a distribution µ−i(t). Note that if Ji(·, ·) ≡ 0, the solution
of (3.2) is Ni(t, Ei) = Ni(0, Ei)e

γit for all Ei ∈ B(Ai) and t ≥ 0.
Using (3.1) we have that

N ′i(t, Ei) = Ni(t, Ai)µ
′
i(t, Ei) +N ′i(t, Ai)µi(t, Ei)
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3.2 Asymmetric evolutionary games

for every Ei ∈ B(Ai) and t ≥ 0. Then for each species i

µ′i(t, Ei) =
N ′i(t, Ei)

Ni(t, Ai)
− N ′i(t, Ai)µi(t, Ei)

Ni(t, Ai)
(3.3)

for evey Ei ∈ B(Ai) and t ≥ 0. Hence, using (3.2) in (3.3), for each i in I, we
obtain,

µ′i(t, Ei) =

∫
Ei

[
Ji(ai, µ−i(t))− Ji(µi(t), µ−i(t))

]
µi(t, da) (3.4)

for each Ei in B(Ai) and t ≥ 0. The system of equations (3.4) is known as the
replicator dynamics for the asymmetric case.

3.2 Asymmetric evolutionary games

In an evolutionary game, the dynamics of the strategies is determined by the
solution of a system of differential equations of the form

µ′i(t) = Fi(µ1(t), ..., µn(t)) ∀ i ∈ I, t ≥ 0, (3.5)

with some initial condition µi(0) = µi,0 for each i ∈ I. The notation µ′i(t)
represents the Fréchet derivative of µi(t) in the Banach space M(Ai) (see Def-
inition 1.5). For each i ∈ I, Fi(·) is a mapping

Fi : P(A1)× ...× P(An)→M(Ai).

Let
F : P(A1)× ...× P(An)→M(A1)× ...×M(An),

where F (µ) := (F1(µ), ..., Fn(µ)), and consider the vector

µ′(t) := (µ′1(t), ..., µ′n(t)).

Then the system (3.5) can be expressed as

µ′(t) = F (µ(t)), (3.6)

and we can see that the system lives in the Cartesian product of signed mea-
sures

M(A1)× ...×M(An),

which is a Banach space with norm as in (1.15), i.e.

‖µ‖∞ = ‖(µ1, ..., µn)‖∞ := max
i∈I
‖µi‖.

25



3 Evolutionary games: the asymmetric case

More explicitly, we may write (3.5) as

µ′i(t, Ei) = Fi(µ(t), Ei) ∀ i ∈ I, Ei ∈ B(Ai), t ≥ 0, (3.7)

where µ′i(t, Ei) and Fi(µ(t), Ei) are the signed-measures µ′i(t) and Fi(µ(t))
valued at Ei ∈ B(Ai).

We shall be working with a special class of asymmetric evolutionary games
which can be described as[

I,
{
P(Ai)

}
i∈I
,
{
Ji(·)

}
i∈I
,
{
µ′i(t) = Fi(µ(t))

}
i∈I

]
, (3.8)

where

i) I = {1, ..., n} is the finite set of players;

ii) for each player i ∈ I we have a set of mixed actions P(Ai) and a payoff
function Ji : P(A1)× ...× P(An)→ R (as in (2.1)); and

iii) the replicator dynamics Fi(µ(t)), where

Fi(µ(t), Ei) :=

∫
Ei

[
Ji(ai, µ−i(t))− Ji(µi(t), µ−i(t))

]
µi(t, dai). (3.9)

3.2.1 The symmetric case

We can obtain from (3.8) a symmetric evolutionary game (see Chapter 4)
when I := {1, 2} and the sets of actions and payoff functions are the same
for both players, i.e., A = A1 = A2 and U(a, b) = U1(a, b) = U2(b, a), for
all a, b ∈ A. As a consequence, the sets of mixed actions and the expected
payoff functions are the same for both players , i.e., P(A) = P(A1) = P(A2)
and J(µ, ν) = J1(µ, ν) = J2(ν, µ), for all µ, ν ∈ P(A) . This kind of model
determines the dynamic interaction of strategies of a unique species through
the replicator dynamics µ′(t) = F (µ(t)), where F : P(A)→M(A) is given by

F (µ(t), E) :=

∫
E

[
J(a, µ(t))− J(µ(t), µ(t))

]
µ(t, da) ∀E ∈ B(A). (3.10)

Finally, as in (3.8), we can describe a symmetric evolutionary games as

[I = {1, 2}, P(A), J(·), µ′(t) = F (µ(t))] . (3.11)
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3.2.2 Another approximation to asymmetric games

Bomze and Pötscher [18] suggest an approach in which asymmetric games are
reduced to symmetric ones. They construct a new strategy set Ā and a new
payoff function J : Ā× Ā→ R. The strategy set Ā decomposes into mutually
disjoint sets Ai, that is Ā := ∪i∈IAi, where Ai is the set of strategies of the
species i ∈ I. Then any measurable set E ⊂ Ā may be expressed as a union
of mutually disjoint sets Ei, that is E = ∪i∈IEi, where Ei = E ∩ Ai. Then
µ(E) =

∑
i∈I µ(Ei) =

∑
i∈I µi(E)µ(Ai), where

µi(E) := µ(E|Ai) =
µ(E ∩ Ai)
µ(Ai)

. (3.12)

The new payoff function is given by

J(µ, ν) =
∑
i∈I

µ(Ai)Ji(µi, ν−i),

where ν−i := (ν1, ..., νi−1, νi+1, ..., νn) and νj as in (3.12) and Ji(µi, ν−i) as in
(2.1).

The replicator dynamics is constructed as in the symmetric case (3.10), with

F (µ(t), E) :=
∑
i∈I

µ(Ai)

∫
Ei

[
Ji(ai, µ−i(t))− µ(Ai)Ji(µi(t), µ−i(t))

]
µi(t, dai).

3.3 Existence

In this section we introduce conditions for the existence and uniqueness of
solutions to the differential system (3.4). For this purpose we give conditions
under which the operator F in (3.5) (3.6) is Lipschitz, when this operator is
defined as in (3.9).

For each i ∈ I and t ≥ 0, let

βi(ai|µ(t)) := Ji(ai, µ−i(t))− Ji(µi(t), µ−i(t)). (3.13)

Hence, by (3.9), βi(·|µ(t)) is the Radon-Nikodym density of Fi(µ(t)) with re-
spect to µi(t), i.e.,

Fi(µ(t), Ei) =

∫
Ei

βi(ai|µ(t))µi(t, dai) ∀Ei ∈ B(Ai). (3.14)
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3 Evolutionary games: the asymmetric case

Remark 3.1. i) We will use the usual notation µ << ν to indicate that µ is
absolutely continuous respect to ν (i.e. for every set E ∈ B(A) with ν(E) = 0
we have µ(E) = 0).

ii) Let A be a separable metric space with Borel σ-algebra B(A). Suppose
that ν, η ∈ M(A) and c1, c2 ≥ 0, and let µ = c1η + c2ν. If there exists a
positive measure κ ∈M(A) such that ν << κ and η << κ , then also µ << κ.
Moreover, the Radon-Nikodym densities

ϕνκ =
dν

dκ
and ϕηκ =

dη

dκ
,

are such that

ϕµκ =
dµ

dκ
= c1ϕηκ + c2ϕνκ.

Lemma 3.2. Let ν, η, µ, κ and ϕµκ be as in Remark 3.1 Then the total varia-
tion norm of µ is given by

‖µ‖ =

∫
A

|ϕµκ(a)|κ(da).

In particular, the distance between the signed measures ν and η is given by

‖ν − η‖ =

∫
A

|(ϕνκ − ϕηκ)(a)|κ(da).

The following proposition extends to our context some results by Bomze
[17](Lemma 1) and Oechssler and Riedel [74](Lemma 3) in the case of sym-
metric evolutionary games.

Theorem 3.3. Suppose that, for each i ∈ I, the function βi(·|µ) in (3.13)
satisfies:

i) there exists Ci ≥ 0 such that |βi(ai|µ)| ≤ Ci for each ai ∈ Ai and ‖µ‖∞ ≤
2;

ii) there is a constant Di > 0, such that

sup
ai∈Ai

|βi(ai|η)− βi(ai|ν)| ≤ Di‖η − ν‖∞

for each ν, η with ‖η‖∞, ‖ν‖∞ ≤ 2.

Then there exists a bounded Lipschitz map

G : M(A1)× ...×M(An)→M(A1)× ...×M(An),

which coincides with F on P(A1)× ...× P(An).
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Proof. For each i ∈ I and ν, η with ‖η‖∞, ‖ν‖∞ ≤ 2, let µi = |ηi|+|νi|
2

. Then
‖µi‖ ≤ 2, ηi << µi and νi << µi. Whence there exist the Radon-Nikodym
densities dηi

dµi
= ϕηiµi and dνi

dµi
= ϕνiµi . Using (3.14) and Lemma 3.2 we have

that

‖Fi(η)− Fi(ν)‖

=

∫
Ai

∣∣∣βi(ai|η)ϕηiµi(ai)− βi(ai|ν)ϕνiµi(ai)
∣∣∣ µi(dai)

≤
∫
Ai

∣∣∣βi(ai|η)− βi(ai|ν)
∣∣∣∣∣∣ϕηiµi(ai)∣∣∣µi(dai)

+

∫
Ai

∣∣∣βi(ai|ν)
∣∣∣∣∣∣ϕηiµi(ai)− ϕνiµi(ai)∣∣∣µi(dai)

≤
∫
Ai

∣∣∣βi(ai|η)− βi(ai|ν)
∣∣∣|ηi|(dai)

+

∫
Ai

∣∣∣βi(ai|ν)
∣∣∣∣∣∣ϕηiµi(ai)− ϕνiµi(ai)∣∣∣µi(dai)

≤ 2Di max
j∈I
‖ηj − νj‖+ Ci‖ηi − νi‖

≤ Ki‖η − ν‖∞,

where Ki := max{2Di, Ci}. Therefore

‖F (η)− F (ν)‖ = max
i∈I
‖Fi(η)− Fi(ν)‖ ≤ K‖η − ν‖∞,

for all η, ν with ‖η‖∞, ‖ν‖∞ ≤ 2, with K := max{Ki : i ∈ I}. Hence, F is
Lipschitz continuous on the subset of M(A1)×...×M(An) with norm ‖·‖∞ ≤ 2.

Let us now consider the function

G(µ) := (2− ‖µ‖∞)+F (µ), (3.15)

with (2− ‖µ‖∞)+ := max{0, 2− ‖µ‖∞}. It is clear that G(·) is bounded and
coincides with F (·) on P(A1) × ... × P(An). It remains to show that G(·) is
Lipschitz.

Consider η and ν in M(A1)× ...×M(An). If ‖η‖∞, ‖ν‖∞ ≥ 2, then G(η) =
G(ν) = 0 and there is nothing to prove. Now, if ‖η‖∞ > 2 ≥ ‖ν‖∞, then

‖G(η)−G(ν)‖∞ = (2− ‖ν‖∞)‖F (ν)‖∞,

and

‖F (ν)‖∞ = max
j∈I

∫
Aj

∣∣∣βj(aj|ν)
∣∣∣|νj|(daj) ≤ max

j∈I
Cj‖νj‖ ≤ C‖ν‖∞
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3 Evolutionary games: the asymmetric case

where C = maxj∈I{Cj}. Hence

‖G(η)−G(ν)‖∞ ≤ (2− ‖ν‖∞)C‖ν‖∞
≤ 2C(‖η‖∞ − ‖ν‖∞) ≤ 2C‖η − ν‖∞. (3.16)

Finally, if ‖η‖∞, ‖ν‖∞ ≤ 2, then

‖G(η)−G(ν)‖∞

= ‖(2− ‖η‖∞)F (η)− (2− ‖ν‖∞)F (ν)‖∞
≤ (2− ‖η‖∞)‖F (η)− F (ν)‖∞ + ‖F (ν)‖∞ |‖ν‖∞ − ‖η‖∞|
≤ 2K‖η − ν‖∞ + 2C‖ν − η‖∞. (3.17)

Using (3.16) and (3.17) we see that, for any η, ν ∈ M(A1) × ... ×M(An), we
have

‖G(η)−G(ν)‖∞ ≤ 2(K + C)‖η − ν‖∞. �

The following proposition is an extension to our asymmetric games of Lemma
4 of Oechssler and Riedel [74] for symmetric games.

Proposition 3.4. Let i ∈ I. If the payoff function Ui(·) is bounded, then
βi(·|µ) satisfies the conditions i) and ii) of Theorem 3.3.

Proof. Suppose that ‖µ‖∞ ≤ 2 and let i ∈ I. Since Ui(·) is bounded, there
exists C ′i > 0 such that |Ui(a)| ≤ C ′i for all a ∈ A. Then, by Proposition 1.4,

|βi(ai|µ)| =

∣∣∣∣∫
A−i

Ui(ai, a−i)µ−i(da−i)−
∫
A

Ui(a)µ(da)

∣∣∣∣
≤

∣∣∣∣∫
A−i

Ui(ai, a−i)µ−i(da−i)

∣∣∣∣+

∣∣∣∣∫
A

Ui(a)µ(da)

∣∣∣∣
≤ C ′i‖µ1 × ...× µi−1 × µi+1...× µn‖+ C ′i‖µ1 × ...× µn‖
≤ 2n−1C ′i + 2nC ′i.

Letting Ci := C ′i(2
n−1 + 2n), the condition i) follows.

To prove the condition ii) in Theorem 3.3, note that for any η and ν with
‖η‖∞, ‖ν‖∞ ≤ 2, using the notation in (2.3), and substracting and adding
terms, we obtain, for every i ∈ I,∣∣∣∣∫

A

Ui(a)η(da)−
∫
A

Ui(a)ν(da)

∣∣∣∣
≤ |I(η1,η2,...,ηn)Ui − I(ν1,η2,...,ηn)Ui|
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+|I(ν1,η2,η3,...,ηn)Ui − I(ν1,ν2,η3,...,ηn)Ui|
+ ...

+|I(ν1,...,νn−2,ηn−1,ηn)Ui − I(ν1,...,νn−2,νn−1,ηn)Ui|
+|I(ν1,...,νn−1,ηn)Ui − I(ν1,...,νn−1,νn)Ui|

≤ ‖Ui‖‖η2 × ....× ηn‖‖η1 − ν1‖
+‖Ui‖‖ν1 × η3 × ...× ηn‖‖η2 − ν2‖
+ ...

+‖Ui‖‖ν1 × ...× νn−2 × ηn‖‖ηn−1 − νn−1‖
+‖Ui‖‖ν1 × ....× νn−1‖‖ηn − νn‖

≤ 2n−1‖Ui‖ max
j∈I
‖ηj − νj‖. (3.18)

Similarly, for every i ∈ I,∣∣∣∣∫
A−i

Ui(a)ν−i(da−i)−
∫
A−i

Ui(a)η−i(da−i)

∣∣∣∣ ≤ 2n−2‖Ui‖ max
j 6=i
‖ηj−νj‖. (3.19)

Then by (3.18) and (3.19)

|βi(ai|η)− βi(ai|ν)| =

∣∣∣∣∫
A−i

Ui(a)η−i(da−i)−
∫
A

Ui(a)η(da)

−
∫
A−i

Ui(a)ν−i(da−i) +

∫
A

Ui(a)ν(da)

∣∣∣∣
≤

∣∣∣∣∫
A−i

Ui(a)η−i(da−i)−
∫
A−i

Ui(a)ν−i(da−i)

∣∣∣∣
+

∣∣∣∣∫
A

Ui(a)ν(da)−
∫
A

Ui(a)η(da)

∣∣∣∣
≤ 2n‖Ui‖ max

j∈I
‖ηj − νj‖.

To conclude, the latter inequality yields

sup
ai∈Ai

|βi(ai|η)− βi(ai|ν)| ≤ Di‖η − ν‖∞,

with Di = 2n‖Ui‖. �
By Theorem 3.3, the differential equation

µ′(t) = G(µ(t)), (3.20)
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3 Evolutionary games: the asymmetric case

with G as in (3.15) has a unique solution in the space M(A1) × ... ×M(An)
(see Lang [65], chapter IV). If µ(t) is a solution to (3.20) and

µ(t) ∈ P(A1)× ...× P(An) ∀t ≥ 0,

then µ(t) is also a solution of the differential equation (3.6), and it is unique
since F (·) is Lipschitz in the open ball

V2(0) = {µ ∈M(A1)× ...×M(An) : ‖µ‖∞ < 2}.

Let µ(·) be a solution of (3.20) (or (3.6)). We say that a set C ⊂ M(A1)×
...×M(An) is an invariant set for (3.20) (or (3.6)), if µ(t) is in C for all t > 0
when µ(0) is in C.

The following proposition ensures that the set P(A1) × ... × P(A2) is an
invariant set for (3.20). Therefore the replicator dynamics has a solution.

Theorem 3.5. If µ(t) is a solution to (3.20), with initial condition µ(0) in
P(A1) × ... × P(An), then µ(t) remains in P(A1) × ... × P(An) for all t > 0.
Moreover, µ(t) is also the unique solution to the replicator dynamics (3.6) with
F (·) as in (3.9).

Proof. First, note that

dµi(t, Ei)

dt
= µ′(t, Ei) ∀i ∈ I, Ei ∈ B(Ai), t ≥ 0. (3.21)

Indeed,∣∣∣∣dµi(t, Ei)dt
− µ′i(t, Ei)

∣∣∣∣
= lim

ε→0

∣∣∣∣µi(t+ ε, Ei)− µi(t, Ei)
ε

− µ′i(t, Ei)
∣∣∣∣

= lim
ε→0

∣∣∣∣1ε
[∫

Ai

1Ei(ai)µi(t+ ε, dai)−
∫
Ai

1Ei(ai)µi(t, dai)

]
−
∫
Ai

1Ei(ai)µ
′
i(t, dai)

∣∣∣∣
≤ lim

ε→0

∥∥∥∥µi(t+ ε)− µi(t)
ε

− µ′i(t)
∥∥∥∥ = 0.

Now, if µ(t) is a solution to (3.20), then by (3.21) and (3.15), for each i ∈ I,
Ei ∈ B(Ai) and t ≥ 0, we have
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dµi(t, Ei)

dt
= (2− ‖µ(t)‖∞)+

[ ∫
Ei

Ji(ai, µ−i(t))µi(t, dai)

− Ji(µi(t), µ−i(t))µi(t, Ei)
]
. (3.22)

In particular, for every i ∈ I,

dµi(t, Ai)

dt
= (2− ‖µ(t)‖∞)+[1− µi(t, Ai)]Ji(µi(t), µ−i(t)). (3.23)

We can express (3.23) as a system of differential equations in Rn, say

dµi(t, Ai)

dt
= fi(t, µi(t, Ai)) for i = 1, ..., n,

where we can see the vector [fi(t, µi(t, Ai))]i∈I as a function f : [0,∞)×Rn →
Rn with

f(t, µ1(t, A1), ..., µn(t, An)) = [fi(t, µi(t, Ai))]i∈I .

The system (3.23) has a critical point if µi(t, Ai) = 1 for i = 1, ..., n.,
(i.e., f(t, µ1(t, A1), ..., µn(t, An)) = 0). Then if µi(0, Ai) = 1, we have that
µi(t, Ai) = 1 for all t ≥ 0 and i ∈ I. Hence the set

B := {µ ∈M1 × ...×Mn : µi(Ai) = 1 ∀i ∈ I} ,

is an invariant set for (3.20). Moreover, if Ei ∈ B(Ai), t
′ ≥ 0 and µi(t

′, Ei) = 0,
then by (3.22), µi(t, Ei) = 0 for all t ≥ t′. In particular for each Ei ∈ B(Ai)
and i ∈ I,

|µi(t, Ei)− µi(s, Ei)| ≤ ‖µi(t)− µi(s)‖ ∀t, s ≥ 0. (3.24)

Since for each i in I the map t 7→ µi(t) is continuous, then by (3.24) so is the
map t 7→ µi(t, Ei) for each Ei ∈ B(Ai). Therefore, if µi(0, Ei) ≥ 0, then we
have µi(t, Ei) ≥ 0 for all t > 0 and Ei ∈ B(Ai). It follows that,

P(A1)× ...× P(An) ⊂ B

is an invariant set for the system of differential equations (3.20).
Finally, if µ(t) is a solution to (3.20) and µ(0) is in P(A1)× ...×P(An), then

µ(t) is a solution to (3.6), and since F is Lipschitz for all µ with ‖µ‖∞ ≤ 2,
this solution is unique. �

Theorem 3.6. Suppose that the conditions i) and ii) of Theorem 3.3 are
satisfied. If µ(t) is a solution to (3.6) with the initial condition µ(0) in P(A1)×
...× P(A1), then:
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3 Evolutionary games: the asymmetric case

i) for every i ∈ I and t > 0, if µi is in P(Ai), then µi(0) << µi(t) and
µi(t) << µi(0), with Radon-Nikodym density

dµi(t)

dµi(0)
(ai) = e

∫ t
0
βi(ai|µ(s))ds. (3.25)

ii) In particular, for every i ∈ I and t > 0, if νi is a probability measure
satisfying that νi << µi(t) whenever νi << µi(0), then

log
dνi
dµi(t)

(ai) = log
dνi

dµi(0)
(ai)−

∫ t

0

βi(ai|µ(s))ds. (3.26)

Proof. The following proof is an adaptation of Ritzberger [83] (lemma 2) and
Bomze [17] (lemma 2). Let µ(t) be the solution to (3.6), with µ(0) ∈ P(Ai)
and

ϕi(t, ai) := e
∫ t
0
βi(ai|µ(s))ds ≥ 0 ∀i ∈ I. (3.27)

In addition, let

µ̃i(t, Ei) :=

∫
Ei

ϕi(t, ai)µi(0, dai) ∀Ei ∈ B(Ai),

and, by (3.14),

Fi(µ̃i(t), Ei) =

∫
Ei

βi(ai|µ(t))µ̃i(t, dai).

We will prove that

‖µ̃′(t)− F (µ̃(t))‖∞ = 0,

where µ̃′(t) = (µ̃′1(t), ..., µ̃′n(t)) and F (µ̃(t)) = (F1(µ̃(t)), ..., Fn(µ̃(t)).

Let i ∈ I and fix t > 0. Then

‖µ̃′i(t)− Fi(µ̃(t))‖

= lim
h→0

sup
‖g‖≤1

∣∣∣∣1h
∫
Ai

g(ai)[ϕi(t+ h, ai)− ϕi(t, ai)]µ(0, dai)

−
∫
Ai

g(ai)βi(ai|µ(t))ϕ(t, ai)µi(0, dai)

∣∣∣∣
≤ lim

h→0

∫
Ai

∣∣∣∣1h [ϕi(t+ h, ai)− ϕi(t, ai)]− βi(ai|µ(t))ϕi(t, ai)

∣∣∣∣µi(0, dai)

34



3.4 Nash equilibrium and the replicator equation

which, by (3.27),

≤ sup
ai∈Ai

∣∣∣e∫ t0 βi(ai|µ(s))ds
∣∣∣ lim
h→0

∫
Ai

∣∣∣∣∣e
∫ t+h
t

βi(ai|µ(s))ds − 1

h
− βi(ai|µ(t))

∣∣∣∣∣µi(0, dai)
≤ sup

ai∈Ai

∣∣etCi∣∣ ∫
Ai

∣∣∣∣∣limh→0

e
∫ t+h
t

βi(ai|µ(s))ds − 1

h
− βi(ai|µ(t))

∣∣∣∣∣µi(0, dai) = 0,

where the latter equality follows from the conditions i) and ii) of Theorem 3.3
together with the dominated convergence theorem. To conclude

‖µ̃′(t)− F (µ̃(t))‖∞ = 0 ∀t > 0.

By the uniqueness in Corollary 1.7, pag. 72 of Lang [65] we thus get (3.25),
and therefore

µi(t) << µi(0) ∀i ∈ I.

By the condition ii) of Theorem 3.3, for each i ∈ I and t > 0, there exists
Ci ≥ 0 such that −tCi ≤

∫ t
0
βi(ai|µ(s)) ≤ tCi . Therefore

0 < e−tCi ≤ e
∫ t
0
βi(ai|µ(s)) ≤ etCi .

Hence, by (3.25),∫
Ei

e−tCiµi(0, dai) ≤
∫
Ei

[
e
∫ t
0
βi(ai|µ(s))

]
µi(0, dai) = µi(t, Ei);

thus µi(0) << µi(t).
The assertion ii) follows from i) and an application of the chain rule for

Radon-Nikodym densities (see Bartle [9] chapter 8). �

3.4 Nash equilibrium and the replicator equation

In this section we consider a normal form game Γ as in (2.6), and an asym-
metric evolutionary game as in (3.8). We wish to study the relation between a
Nash equilibrium of the normal form game Γ and the replicator equation (see
Theorem 3.9 below). We also introduce the concept of strongly uninvadable
profile (Definition 3.10), and its relation with ε-equilibrium (Definition 2.1).

The following proposition states an important fact about probability mea-
sures on separable metric spaces.
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Proposition 3.7. Let A be a separable metric space and µ in P(A). Then there
is a unique closed set S ⊂ A (called the support of µ, in symbols S=Supp(µ))
such that µ(A − S) = 0 and µ(O ∩ S) > 0 for every open set O for which
O ∩ S 6= φ.

Proof. : See Royden [86], pag. 408. �

Lemma 3.8. Supposes that µ∗ = (µ∗1, ..., µ
∗
n) is a Nash equilibrium of Γ, and

let Si be the support of µ∗i for some i ∈ I. Then Ji(ai, µ
∗
−i) = Ji(µ

∗, µ∗−i) for
all ai ∈ Si, i.e., Ji(µ

∗
i , µ

∗
−i) = Ji(ai, µ

∗
−i) µ

∗
i -a.s.

Proof. Using Proposition 3.7 , the proof is similar to the case when the strategy
sets are finite (see, e.g., Webb [103]). �

The following theorem gives an important property, namely the relation
between a Nash equilibrium of a normal form game and the replicator equation.

Theorem 3.9. Suppose that µ∗ = (µ∗1, ..., µ
∗
n) is a Nash equilibrium of Γ .

Then µ∗ is a critical point of (3.6), i.e., F (µ∗) = 0, when F (·) is described by
the replicator dynamics (3.9).

Proof. First note that any vector of Dirac measures δa′ = (δa′1 , ..., δa′n) (some-
times called a profile of pure strategies) is a critical point of (3.6), since for
every Ei ∈ B(Ai) and i ∈ I:

Fi(δ
′
a, Ei) =

∫
Ei

[
Ji(ai, δa′−i)− Ji(δa′i , δa′−i)

]
δa′i(dai) = 0.

Then if µ∗ is a pure Nash equilibrium, i.e., µ∗ = δa∗ , the theorem holds.
Suppose now that the Nash equilibrium µ∗ is not pure, and let S∗i be the

support of µ∗i for i ∈ I. By Lemma 3.8, for all ai ∈ S∗i , Ji(ai, µ∗−i) = Ji(µ
∗
i , µ

∗
−i).

Therefore, for any Ei ∈ B(Ai),

Fi(µ
∗, Ei) =

∫
Ei

[
Ji(ai, µ

∗
−i)− J(µ∗i , µ

∗
−i)
]
µ∗i (da)

=

∫
Ei∩S∗i

[
Ji(ai, µ

∗
−i)− J(µ∗i , µ

∗
−i)
]
µ∗i (da) = 0. �

The following definition is an extended version of strongly uninvadable strate-
gies of symmetric games (for details see Bomze [17]).

Definition 3.10. A vector µ∗ ∈ P(A1)×P(A2)× ...×P(An) is called a strong
uninvadable profile (SUP) in a set C if µ∗ is in C and the followings holds.
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There exists ε > 0 such that for any µ ∈ C with ‖µ − µ∗‖∞ < ε, and every
i ∈ I, Ji(µ

∗
i , µ−i) > Ji(µi, µ−i) if µi 6= µ∗i . In particular if

C = P(A1)× P(A2)× ...× P(An),

µ∗ is simply called a strong uninvadable profile (SUP). In either case, we call
ε the global invasion barrier.

Lemma 3.11. Let µ, ν ∈ P1(A)× · · · × P(An) and δ > 0. Then there exists α
in (0, 1) such that ‖γ − µ‖∞ ≤ δ if γ = αν + (1− α)µ.

Proof. Let 0 < α < δ
‖ν−µ‖∞ . Then

‖γ − µ‖∞ = ‖αν + (1− α)µ− µ‖∞ = α‖ν − µ‖∞ < δ. �

As usual, the open neighborhood with center µ∗ and radius ε > 0 is defined
as

Vε(µ
∗) := {µ ∈ P(A1)× ...× P(An) : ‖µ− µ∗‖∞ < ε}. (3.28)

The following theorem gives the relation between an ε-equilibrium (or Nash
equilibrium) and strong uninvadable profiles.

Theorem 3.12. Suppose that the payoff function Ui(·) in (2.1) is bounded for
all i ∈ I. Let µ∗ be a SUP in a set C with global invasion barrier ε1 > 0. If the
set C∩Vε1(µ∗) has a convex and nonempty interior, then µ∗ is an ε2-equilibrium
of Γ, where ε2(·) > 0 is a function of ε1 . Moreover, if µ∗ is a SUP, then µ∗ is
a Nash equilibrium and the boundedness hypothesis on Ui is not required.

Proof. Suppose that µ∗ is not an ε2-equilibrium of Γ for any ε2 > 0. Then for
ε2 > 0, there exists i ∈ I and ν ∈ P(A1)× · · · × P(An) such that

Ji(νi, µ
∗
−i)− ε2 > J(µ∗i , µ

∗
−i). (3.29)

By hypothesis, C ∩ Vε1(µ∗) has a convex and nonempty interior. Hence,
by Lemma 3.11, there exist α1, α2 ∈ [0, 1] such that ‖η − µ∗‖ < ε1, where
η ∈ C and η := (1 − α1)µ∗ + α1[(1 − α2)ν + α2κ] for some κ in the interior
of C ∩ Vε1(µ∗). Since µ∗ is a SUP in the set C, Ji(µ∗i , η−i) > Ji(ηi, η−i), which
implies (see Appendix A.1).

(1− α2)(1− α1)n−1Ji(µ
∗
i , µ

∗
−i) + [(1− α2)α1]n−1Ji(µ

∗
i , ν−i)

+ [α2α1]n−1Ji(µ
∗
i , κ−i)]

> (1−α2)(1−α1)n−1Ji(νi, µ
∗
−i)
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− α2(1− α1)n−1
[
Ji(µ

∗
i , µ

∗
−i)− Ji(κi, µ∗−i)

]
+O(α1). (3.30)

Let ε∗2 =
(

α2

1−α2

)
Lε1, where L = 2n−1 max

i∈I
‖Ui‖. By (3.18)

|Ji(µ∗i , µ∗−i)− Ji(κi, µ∗−i)| < Lε1 ≤ ε2

(
1− α2

α2

)
∀ ε2 ≥ ε∗2.

Then

(1−α2)(1−α1)n−1Ji(µ
∗
i , µ

∗
−i)

+ [(1− α2)α1]n−1Ji(µ
∗
i , ν−i) + [α2α1]n−1Ji(µ

∗
i , κ−i)]

> (1− α2)(1− α1)n−1[Ji(νi, µ
∗
−i)− ε2] +O(α1). (3.31)

If (3.29) is true, there exists α1 in (0, 1) sufficiently close to 0, such that
the equation (3.31) is violated. So we have that µ∗ is an ε2-equilibrium (for
ε2 ≥ ε∗2).

Now, suppose that µ∗ is a SUP and not a Nash equilibrium of Γ. Then
there exists i ∈ I and ν ∈ P(A1) × · · · × P(An) such that (3.29) is true with
ε2 = 0. By the Lemma 3.11 there exist α ∈ [0, 1] such that ‖η − µ∗‖ < ε1
where η = (1 − α)µ∗ + αν. Since µ∗ is a SUP, Ji(µ

∗
i , η−i) > Ji(ηi, η−i). Then

(see Appendix A.1)

(1− α)n−1Ji(µ
∗
i , µ

∗
−i) + (α)n−1 [Ji(µ

∗
i , ν−i)]

> (1− α)n−1
[
Ji(νi, µ

∗
−i)]
]

+O(α). (3.32)

If µ∗ is not a Nash equilibrium, then for α in (0, 1) sufficiently small (3.32) is
violated. So we have that µ∗ is a Nash equilibrium. �

3.5 Stability

In this section we are interested in the stability of the differential system (3.6)
(see Definition 3.13). To this end, we establish that uninvadable profiles (Def-
inition 3.10) have some type of stability.

Definition 3.13. Let µ∗ be a critical point of (3.6), i.e., F (µ∗) = 0.

i) µ∗ is called Lyapunov stable if for every ε > 0 there exists δ > 0 such
that if ‖µ(0)− µ∗‖∞ < δ, then ‖µ(t)− µ∗‖∞ < ε for all t > 0.
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3.5 Stability

ii) µ∗ is called weakly attracting if it is Lyapunov stable and, in addition,
there exists δ > 0 such that if ‖µ(0) − µ∗‖∞ < δ, then as t → ∞,
µi(t)→ µ∗i weakly for all i ∈ I.

The following proposition is an extension to asymmetric evolutionary games
of Theorem 3 in Oechssler and Riedel [74].

Theorem 3.14. Suppose that the conditions i) and ii) of Theorem 3.3 hold.
Let δa∗ = (δa∗1 , ..., δa∗n) be a vector of Dirac measures, and C an invariant set for
the differential equation (3.6). If δa∗ is a SUP in the set C, then there exists
ε > 0 such that the set

C ∩ Vε(δa∗),

is invariant for (3.6). Moreover, suppose that for all i in I, the map µ 7→
βi(a

∗
i |µ) is weakly continuous and the set of strategies Ai is a compact set. If

C is a closed set and µ(0) is in C ∩ Vε(δa∗), then as t → ∞, µ(t) → δa∗ in
distribution.

Proof. First note that the vector of Dirac measures δa∗ = (δa∗1 , ..., δa∗n) is a
critical point of (3.6) (see the proof of Theorem 3.9). Then if µ(0) = δa∗ , we
have that µ(t) = δa∗ for all t > 0 and the theorem holds.

Since δa∗ is a SUP in the set C, there exists ε > 0 such that for every µ ∈ C
with ‖µ− δa∗‖∞ < ε and every i ∈ I, Ji(δa∗i , µ−i) > Ji(µi, µ−i) if µi 6= δa∗i .

Suppose that µ(0) 6= δa∗ and that µ(0) is in C ∩ Vε(δa∗). By (3.14), for each
i ∈ I and t ≥ 0,

µ′i(t, {a∗i }) =

∫
Ai

1{a∗}(ai)β(ai|µ(t))µi(t, dai) = β(a∗i |µ(t))µi(t, {a∗i }). (3.33)

Assume that for each i in I,

µ′i(0, {a∗i }) = β(a∗i |µ(0))µi(0, {a∗i }) > 0,

and define
ti,0 := inf{t ≥ 0 : µ′i(t, {a∗i }) = 0}. (3.34)

For each i in I, the function βi(a
∗
i |µ(t)) is Lipschitz in µ(t), and µ(t) is con-

tinuous in t; hence the map t → βi(a
∗
i |µ(t)) is continuous. Also µi(t, {a∗i }) is

continuous in t. Then by (3.33) the map t 7→ µ′i(t, {a∗i }) is continuous. So for
each i ∈ I the set {t ≥ 0 : µ′i(t, {a∗i }) = 0} is closed and µ′i(ti,0, {a∗i }) = 0. By
(3.34), for any i in I

µ′i(s, {a∗i }) = βi(a
∗
i |µ(s))µi(s, {a∗i }) > 0 ∀ 0 ≤ s < t0, (3.35)
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3 Evolutionary games: the asymmetric case

where t0 := min{t1,0, ..., tn,0}. As a consequence of (3.35) we obtain

µi(s, {a∗i }) > µi(0, {a∗i }) > 0 ∀ 0 ≤ s < t0, i ∈ I. (3.36)

Note that for any µi ∈ P(Ai)

‖µi − δa∗i ‖ = 2(1− µi({a∗i })) ∀ i ∈ I. (3.37)

If ‖µ(0)− δa∗‖∞ < ε, then by (3.36) and (3.37) we have

‖µ(s)− δa∗‖∞ < ε ∀ 0 ≤ s < t0.

By continuity of µ(t) and (3.36) we obtain

µi(t0, {a∗i }) ≥ µi(0, {a∗i }) > 0 ∀ 0 ≤ s < t0, i ∈ I, (3.38)

and by (3.37) and (3.38)

‖µi(t0)− δa∗i ‖∞ ≤ ‖µ(0)− δa∗‖∞ < ε ∀ i ∈ I. (3.39)

Since C is an invariant set, by (3.39) we see that µ(t0) ∈ C ∩ Vε(δa∗) and so
βi(a

∗
i |µ(t0)) > 0 because δa∗ is a SUP in the set C. Then by (3.38)

µ′i(t0, {a∗i }) = βi(a
∗
i |µ(t0))µi(t0, {a∗i }) > 0 ∀i ∈ I,

so t 7→ µi(t, {a∗i }) is increasing for each i in I and, moreover,

µ(t) ∈ C ∩ Vε(δa∗) ∀ t ≥ 0. (3.40)

By hypothesis, Ai is compact for each i ∈ I, so P(Ai) is compact in the weak
topology (see pag. 186, Corollary 5.7.6 in Bobrowski [14]) for all i ∈ I. Then
C ∩ P(A1)× ...× P(An) is compact in the product topology.

On the other hand, δa∗ is a SUP in the set C and, by (3.40), βi(a
∗
i |µ(t)) > 0

for all t > 0 and i in I. Moreover, by Theorem 3.6,

µi(t, {a∗i }) = µi(0, {a∗i })e
∫ t
0
βi(a

∗
i |µ(s))ds ≤ 1 ∀ i ∈ I, t ≥ 0;

hence

lim
t→∞

βi(a
∗
i |µ(t)) = 0 ∀ i ∈ I.

Finally, let v = (v1, ..., vn) ∈ C ∩ P(A1) × ... × P(An) be an accumulation
point of the trajectory µ(t) = (µ1(t), ..., µn(t)). By (3.40) the distance from
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v to δa∗ is at most ε. Since δa∗ is a SUP in C and the map µ 7→ βi(a
∗
i |µ) is

weakly continuous, if v is such that

βi(a
∗
i |v) = Ji(a

∗
i , v−i)− Ji(vi, v−i) = 0 ∀ i ∈ I,

yields that δa∗ = v, which proves that µi(t) → δa∗i in distribution for all i in
I. �

If the vector δa∗ in Theorem 3.14 is a SUP, then we obtain the following
corollary, taking C = P(A1)× ...× P(An).

Corollary 3.15. Suppose that the conditions i) and ii) of Theorem 3.3 hold.
Let δa∗ = (δa∗1 , ..., δa∗n) be a vector of Dirac measures, and suppose that it is
a SUP. Then δa∗ is Lyapunov stable for the replicator dynamics. Moreover,
if the map µ 7→ βi(a

∗
i |µ) is weakly continuous and the set of strategies Ai is

compact for all i ∈ I, then δa∗ is weakly attracting.

Remark 3.16. Note that if for each i in I the payoff function Ui(·) in (2.1)
is continuous, then the map µ 7→ βi(a

∗
i |µ) is weakly continuous. This fact is

of relevance because many games satisfy that Ui(·) in (2.1) is continuous.

3.6 Examples

Suppose a game in which it is not assumed that players are “strictly rational”
or that they don’t have perfect information game (i.e., they do not know the
payments and strategy games of his opponents). Then the players could not
select the best strategy, and the profile of the game could not be a NE of a
Normal form game Γ (2.6).

In evolutionary games (3.8) we assume that the players choose their strate-
gies through an evolutionary dynamics (3.5)-(3.6) which explain the interaction
among them. Therefore, the solution of the game is explicated by a trajectory
µ(t) (solution of (3.5)-(3.6)) which depend of a initial profile µ0. Under some
conditions (see Theorem (3.4)), the trajectory µ(t) is very closed to a “special”
NE (solution of Γ). In this “special” NE the strategy of each player satisfies
certain condition of dominance, and this NE is call SUP (see Definition 3.10
and Theorem (3.12)). Therefore, for each player the replicator dynamics search
and select strategies with certain dominance.

In this section we consider the examples of a quadratic-linear model, the
tragedy of commons, and poverty traps model of the sections 2.2, 2.3 and 2.4
repetitively. In each example we prove that the NE of the game is also a SUP.
Thus, under the replicator dynamics if the initial profile µ0 is closed to the NE
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3 Evolutionary games: the asymmetric case

(which is a SUP), then the players select a profile µ(t) very closed to the NE
for every t > 0.

3.6.1 A quadratic-linear model

Consider the game in Section 2.2. We will prove that the Nash equilibrium
(2.11) is a SUP for the game. Let U1(x, y) and U2(x, y) as in (2.9) and (2.10),
respectively. Let

C1 := {(µ, ν) ∈ P(A1)× P(A2) : µ(x∗,M1] = ν(y∗,M2] = 0} ,

C2 := {(µ, ν) ∈ P(A1)× P(A2) : µ[0, x∗) = ν[0, y∗) = 0} ,

and C = C1 ∪ C2. The set C is invariant for the replicator dynamics (3.6) and
(δx∗ , δy∗) is in C. On the other hand, let

x̄µ :=

∫
A1

xµ(dx), ȳµ :=

∫
A2

yµ(dy).

If (µ, ν) is in C1, then by Jensen’s inequality

J1(δx∗ , ν) =

∫
A2

U1(x∗, y)ν(dy) = U1(x∗, ȳν) > U1(x̄µ, ȳν) ≥ J1(µ, ν)

J2(µ, δy∗) =

∫
A1

U2(x, y∗)µ(dx) = U2(x̄µ, y∗) > U2(x̄µ, ȳν) ≥ J2(µ, ν).

This is also true if (µ, ν) is in C2. Hence, for any ε > 0, the vector δ(x∗,y∗) =
(δx∗ , δy∗) is a SUP in the set C. Therefore, by Theorem 3.14, for ε > 0 the set
C ∩Vε(δ(x∗,y∗)) is invariant for (3.6). Moreover, since for every i in I, the payoff
functions Ui(·) are continuous and the sets of strategies Ai are compact sets,
we conclude by Theorem 3.14 and Remark 3.16 that if µ(0) ∈ C ∩ Vε(δ(x∗,y∗)),
then µ(t)→ δ(x∗,y∗) in distribution.

3.6.2 The tragedy of the commons

In section 2.3, we saw that there is a unique Nash equilibrium (x∗1, ..., x
∗
n) for

the “tragedy of the commons”. We will prove that it is also a SUP for the
game.

For each player i in I, we define the following sets:

H1
i := {xi ∈ Ai : xi ≤ x∗i }, H2

i := {xi ∈ Ai : xi ≥ x∗i },

42



3.6 Examples

C1 := {(µ1, ...µn) ∈ P(Ai)× ...× P(An) : µi(H
1
i ) = 1 ∀i ∈ I},

C2 := {(µ1, ...µn) ∈ P(Ai)× ...× P(An) : µi(H
2
i ) = 1 ∀i ∈ I}.

Let (x1, ..., xn) be a profile such that xi ≤ x∗i for all i in I with strictly
inequality for some player i. Let x̂ := x1+...+xn, and x̂∗ := x∗1+...+x∗j+...+x

∗
n,

then x̂ < x̂∗.
For all i in I, let Ui be has (2.12) and consider the left-hand side of (2.13).

Since v′ < 0 and v′′ < 0, then we have 0 < v(x̂∗) < v(x̂) and v′(x̂∗) < v′(x̂) < 0.
Therefore for each i in I

∂Ui(xi, x−i)

∂xi
= v(x̂) + xiv

′(x̂)− ci > v(x̂∗) + x∗i v
′(x̂∗)− ci = 0.

Thus the map xi 7→ Ui(xi, x−i) is increasing in [0, x∗i ], and

Ui(x
∗
i , x−i) > Ui(xi, x−i) ∀xi ∈ H1

i , x−i ∈ H1
−i, (3.41)

where H1
−i = H1

1 × ...×H1
i−1 ×H1

i+1 × ...×H1
n.

Similarly, if (x1, ..., xn) is a profile such that xi ≥ x∗i for all i in I with strict
inequality for son player i. Then the map xi 7→ Ui(xi, x−i) is decreasing in
[x∗i , x̄], where x̄ is the maximum number of goats that can be in the garden.
Hence

Ui(x
∗
i , x−i) > Ui(xi, x−i) ∀xi ∈ H2

i , x−i ∈ H2
−i, (3.42)

where H2
−i = H2

1 × ...×H2
i−1 ×H2

i+1 × ...×H2
n.

Let C = C1 ∪ C2. If µ ∈ C, then by (3.41) and (3.42)

Ji(δx∗ , µ−i) > Ji(µi, µ−i) ∀i ∈ I.

Hence, for any ε > 0, the vector δx∗ = (δx∗1 , ..., δx∗n) is a SUP in the set C.
By Theorem 3.14, the set C ∩Vε(δx∗) is invariant for (3.6). Moreover, since for
every i in I, the payoff functions Ui(·) are continuous and the sets of strategies
Ai are compact sets, we conclude by Remark 3.16 that if µ(0) ∈ C ∩ Vε(δx∗),
then µ(t)→ δx∗ in distribution.

3.6.3 Poverty traps

In section 2.4, we saw that there are three Nash equilibria for the game de-
scribed by the table (2.15). We will prove that the pure Nash equibribria
δ(s,m) = (δs, δm) and δ(a,τ) = (δa, δτ ) are SUPs. To this end, consider the Nash
equilibrium (µ∗, ν∗) described by (2.16) and (2.17) respectively.
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3 Evolutionary games: the asymmetric case

Let k1 = max{µ∗(s), ν∗(m)} and k2 = max{1 − µ∗(s), 1 − ν∗(m)}. Note
that the sets of pure strategies for workers and firms are Aw = {s, a} and
Af = {m, τ}, respectively. Consider the sets

C1 := {(µ, ν) ∈ P(Aw)× P(Af ) : k1 < µ(s), k1 < ν(m)}

C2 := {(µ, ν) ∈ P(Aw)× P(Af ) : k2 < µ(a), k2 < ν(τ)}.

Its is easy to check that for any (µ, ν) ∈ C1,

Jw(δs, ν) > Jw(µ, ν) and Jf (µ, δm) > Jf (µ, ν),

where Jw and Jf are the expected payoffs described by (2.1) of the workers
and firms respectively. Similarly, if (µ, ν) ∈ C2, then

Jw(δa, ν) > Jw(µ, ν) and Jf (µ, δτ ) > Jf (µ, ν),

Let ε1 = 1 − k1 and ε2 = 1 − k2. Note that ‖δw − µ‖ = 1 − µ(w) and
‖δf−ν‖ = 1−ν(f) for any w ∈ Aw and f ∈ Af . Then open balls Vε1(δ(s,m)) and
Vε2(δ(s,m)) (introduced in 3.28) satisfy that Vε1(δ(s,m)) = C1 and Vε2(δ(s,m)) = C2.
This prove that δ(s,m) and δ(a,t) are SUPs with barriers ε1 and ε2 respectively.

Hence, the conditions of Corollary 3.15 are satisfied, and so δ(s,m) and δ(a,t)

are Lyapunov stable for the replicator dynamics. Moreover, since the action
spaces Aw and Af are finite sets, then the replicator dynamics is in Rn (n = 4
in this case) and the maps (µi, µ−i) 7→ Ji(ai, µ−i(t)) − Ji(µi(t), µ−i(t)) are
continuous for i = w, f . Therefore, δ(s,m) and δ(a,t) are weakly attracting.

3.7 Comments

In this chapter, we introduced a model of asymmetric evolutionary games
with strategies in measurable spaces. The model can be reduced, of course,
to the particular case of evolutionary games with finite strategy sets. We
established conditions under which the replicator dynamics has a solution and
we also characterized that solution (Theorem 3.6). Then stability conditions
were established, and finally we gave three examples. The first one may be
applicable to oligopoly models, theory of international trade, and public good
models. The second and third examples deal with the tragedy of commons
game and a model of poverty traps.

There are many questions, however, that remain open. For instance, in
symmetric evolutionary games with continuous strategy spaces, there are sta-
bility conditions with different metrics and topologies. Are these conditions
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satisfied in the asymmetric case? On the other hand, normal form games with
continuous strategies can be approximated by games with discrete strategies.
Hence, it would be interesting to investigate if the replicator dynamics with
continuous strategies in the asymmetric case can be approximated, in some
sense, by games with discrete strategies. (This is true for the symmetric case;
see section 4.7.)
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case

In section 3.2.1 we saw how we can obtain a symmetric evolutionary game (3.8)
of a asymmetric evolutionary game (3.5). In this chapter we provide a general
framework to study the of the replicator dynamics for symmetric evolutionary
games in which the strategy set is a separable metric space. In this case, the
replicator dynamics evolves in a space of signed measures. The space of signed
measures (particularity the probability spaces) is a very studied mathematical
spaces. This allows us to study stability criteria with respect to different
topologies and metrics on a space of probability measures, and to establish
a relation between symmetric Nash equilibria (of a two-players normal form
game (2.7)) and the stability of the replicator dynamics in different metrics.

In two-players normal form game the Symmetric Nash equilibrium can be
rewrite in terms of a strategy call NES (see Definition 2.2). In the same
form the symmetric SUP can be rewrite in terms of a strategy call strongly
uninvadable strategies (see Definition 3.4). This particular fact, allows obtain
more stability criteria than the asymmetric case.

In this chapter, we also provide conditions to approximate the replicator
dynamics on a space of measures by means of a sequence of dynamical systems
on finite spaces. Finally, examples illustrate our results.

This chapter is organized as follows. Section 4.1 describes the replicator dy-
namics and its relation to evolutionary games (compare with sections 3.1-3.2).
Some important technical issues are also summarized. Section 4.2 establishes
the relation between the replicator dynamics and a normal form game using
the concepts of Nash equilibria and strongly uninvadable strategies. Section
4.3 presents a brief review of results on the stability of the replicator dynam-
ics. Different stability criteria with respect to various metrics and topologies
are standardized in the sense that the results (Theorems 4.10, 4.11, 4.12) are
expressed in terms of a suitable general metric on a space of probability mea-
sures. (For instance, in some cases the metric is required to metrize the weak
topology.)

Section 4.5 establishes an important relationship between Nash equilibria
and the critical points of the replicator dynamics (Theorem 4.17 and Remarks
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4.18 and 4.19). Section 4.6 proposes approximation schemes for the replicator
dynamics in measure spaces, including the approximation by dynamical sys-
tems in finite-dimensional spaces. Section 4.7 proposes examples to illustrate
our results. Finally, we conclude in section 4.8 with some general comments
on possible extensions of our results.

In this chapter we use the technical preliminary of chapter 1, particularity
section 1.3.2.

4.1 The Model

4.1.1 Symmetric evolutionary games

Consider a population of individuals of a single species. Each individual of
this species can choose a single element a in a set of characteristics (the set
of pure strategies or pure actions) A, which is a separable metric space. Let
B(A) be the Borel σ-algebra of A, and P(A) the set of probability measures
on A, also known as the set of mixed strategies.

Finally, we also consider a payoff function J : P(A)×P(A)→ R that explain
the interrelation between the population, and which is defined as

J(µ, ν) :=

∫
A

∫
A

U(a, b)ν(db)µ(da), (4.1)

where U : A × A → R is a given measurable function. If δ{a} is a probability
measure concentrated at a ∈ A, the vector (δ{a}, µ) is written as (a, µ), and
then

J(δ{a}, µ) = J(a, µ)

In particular, (4.1) yields

J(µ, ν) :=

∫
A

J(a, ν)µ(da). (4.2)

In an evolutionary game, the strategies’ dynamics is determined by a differ-
ential equation of the form

µ′(t) = F (µ(t)) t ≥ 0, (4.3)

with some initial condition µ(0) = µ0. The notation µ′(t) represents the
Fréchet derivative of µ(t) (see Definition 1.5), and F (·) is a mapping F :
P(A)→M(A). More explicitly we write (4.3) as

µ′(t, E) = F (µ(t), E) ∀E ∈ B(A), (4.4)
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where µ′(t, E) and F (µ(t), E) are the measures µ′(t) and F (µ(t)) valued at
E ∈ B(A).

We shall be working with a special class of so-called symmetric evolutionary
games which can be described as a quadruple (compare with (3.11))[

I = {1, 2}, P(A), J(·), µ′(t) = F (µ(t))
]
, (4.5)

where

i) I = {1, 2} is the set of players;

ii) for each player i = 1, 2 we have a set P(A) of mixed actions and a payoff
function J : P(A)× P(A)→ R (as in (4.1)); and

iii) the dynamics (4.3) is described by the replicator equation (compare with
(3.10)), where for each E in B(A),

F (µ(t), E) :=

∫
E

[
J(a, µ(t))− J(µ(t), µ(t))

]
µ(t, da). (4.6)

To obtain an heuristic approach to the replicator dynamics (4.3) with F (·)
as in (4.6) you can see section 3.2. and deduce the approach to the symmetric
case.

4.1.2 Technical issues on the replicator dynamics

For a greater understanding in the reading, the following Theorem summarizes
conditions for the existence of a unique solution to the differential equation
(4.3) (with F (·) as in (4.6)) and important properties of this solution; see
Theorems 3.5 and 3.6, respectively. These technical issues of chapter 3 were
rewrote to the symmetric case, and will be use in the rest of the chapter.

For each t ≥ 0, let

β(a|µ(t)) := J(a, µ(t))− J(µ(t), µ(t)), (4.7)

which is the integrand of (4.6). Hence, by (4.7), β(·|µ(t)) is the Radon-
Nikodym density of F (µ(t)) with respect to µ(t), i.e.,

F (µ(t), E) =

∫
E

β(a|µ(t))µ(t, da) ∀E ∈ B(A).

Theorem 4.1. Suppose that the function β(·|µ) in (4.7) satisfies:
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i) there exists C ≥ 0 such that

|β(a|µ)| ≤ C ∀a ∈ A and ‖µ‖ ≤ 2,

ii) there is a constant D > 0, such that

sup
a∈A
|β(a|η)− β(a|ν)| ≤ D‖η − ν‖ ∀ν, η with ‖η‖, ‖ν‖ ≤ 2.

Then there exists a unique solution to the replicator dynamics (4.3). Moreover,
if µ(t) is a solution of (4.3) with initial condition µ(0) in P(A), then µ(0) <<
µ(t) and µ(t) << µ(0) for all t > 0, with Radon-Nikodym density

dµ(t)

dµ(0)
(a) = e

∫ t
0
β(a|µ(s))ds. (4.8)

In particular, for every t > 0, if ν is a probability measure satisfying that
ν << µ(t) whenever ν << µ(0), then

log
dν

dµ(t)
(a) = log

dν

dµ(0)
(a)−

∫ t

0

β(a|µ(s))ds. (4.9)

4.2 The replicator dynamics, NESs and SUSs

In this section we consider symmetric evolutionary games as in (4.5) and com-
pare them with two-players symmetric normal form games (2.7). We wish to
study the relation between a Nash equilibrium of a normal form game and the
replicator dynamics (Proposition 4.2) . We also define the important concept
of strongly uninvadable strategy (Definition 4.3), and analyze its relation to a
Nash equilibrium (Proposition 4.6).

For the rest of the Chapter, we consider the two-players symmetric normal
form game Γs described as (2.7), and the concept of Nash equilibrium strategy
(NES) defined in Chapter 2 (see Definition 2.2).

Proposition 4.2. Let µ∗ be a NES for Γs. Then µ∗ is a critical point of (4.3)
(i.e., F (µ∗) = 0) when F (·) is described by the replicator dynamics (4.6).

Proof. See Theorem 3.9. (Also see Mendoza-Palacios and Hernández-Lerma
[69], Theorem 5.4.) �

The following definition is a slightly modified version of the strongly unin-
vadable strategies used in Bomze [17].
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4.2 The replicator dynamics, NESs and SUSs

Definition 4.3. Let r be a metric on P(A) as in Remark 1.2. A measure
µ∗ ∈ P(A) is called an r-strongly uninvadable strategy (r-SUS) if there exists
ε > 0 such that for any µ with r(µ, µ∗) < ε, it follows that J(µ∗, µ) > J(µ, µ).
We call ε the global invasion barrier.

When r is the Prokhorov metric rp, Oechssler and Riedel [75] name a rp-SUS
as an evolutionary robust strategy. If rw∗ is any metric that metrizes the weak
topology (recall Remark 1.2), Cressman and Hofbauer [31] call a rw∗-SUS a
locally superior strategy.

We use the notation ‖ · ‖-SUS when the metric on P(A) is given by the total
variation norm (1.1).

Proposition 4.4. Let rw∗ be a distance that metrizes the weak convergence on
P(A). If a measure µ∗ ∈ P(A) is rw∗-SUS, then it is ‖ · ‖-SUS.

Proof. Let µ be in the open ball V
‖·‖
ε (µ∗) defined in (1.13). Then there is some

open neighborhood VHε (µ∗) of the form (1.4) such that µ ∈ VHε (µ∗) and, by
Remark 1.3, there is some open ball Vrw∗α (µ∗) such that µ ∈ Vrw∗α (µ∗). Thus
the proposition follows. �

The next lemma is a key fact to provide a general framework to the different
stability criteria.

Lemma 4.5. Let rw∗ be a distance that metrizes the weak convergence on
P(A). For every µ, ν ∈ P(A) and ε > 0, there exist α and α′ in (0, 1) and
η, γ ∈ P(A) such that

i) rw∗(η, µ) < ε if η = αν + (1− α)µ,

ii) ‖γ − µ‖ < ε if γ = α′ν + (1− α′)µ.

Proof. Let αn be a sequence in (0, 1) such that αn → 0, and let ηn := αnν +
(1− αn)µ. If f ∈ CB(A) then

lim
n→∞

∫
A

f(a)ηn(da) = lim
n→∞

αn

∫
A

f(a)ν(da) + lim
n→∞

(1− αn)

∫
A

f(a)µ(da)

=

∫
A

f(a)µ(da).

Hence, by Propositions A.1 and A.2 in the Appendix A.2, part i) follows.
On the other hand, let 0 < α′ < ε

‖ν−µ‖ . Then

‖γ − µ‖ = ‖α′ν + (1− α′)µ− µ‖ = α′‖ν − µ‖ < ε,

and ii) holds. �
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4 Evolutionary games: symmetric case

The following proposition shows that a strongly uninvadable strategy is also
a Nash equilibrum strategy. In other words, the concept of SUS is a refinement
of NES.

Proposition 4.6. Let r be a metric on P(A) as in Remark 1.2. If µ∗ is a
r-SUS, then µ∗ is a NES of Γs.

Proof. Suppose that µ∗ is not a NES of Γs. Then there exists ν ∈ P(A) such
that

J(ν, µ∗) > J(µ∗, µ∗). (4.10)

By Lemma 4.5, there exists η := αν + (1 − α)µ∗ for some α ∈ (0, 1), with
r(η, µ∗) < ε. Since µ∗ is r-SUS, J(µ∗, η) > J(η, η) and so

αJ(µ∗, ν) + (1− α)J(µ∗, µ∗) > ααJ(ν, ν) + (1− α)αJ(ν, µ∗)

+(1− α)αJ(µ∗, ν)

+(1− α)(1− α)J(µ∗, µ∗).

Hence

αJ(µ∗, ν) + (1− α)J(µ∗, µ∗) > αJ(ν, ν) + (1− α)J(ν, µ∗). (4.11)

If (4.10) is true, then there exists α > 0 sufficiently small such that (4.11) is
violated. Thus µ∗ is a NES for Γs. �

Now, we define the following sets:

i) N := {µ∗ ∈ P(A) : µ∗ is a NES of Γs},
C := {µ∗ ∈ P(A) : µ∗ is a critical point of (4.3)}.

ii) If r is a metric on P(A) as in Remark 1.2,

r − SUS := {µ∗ ∈ P(A) : µ∗ is r − SUS }.

We can summarize Propositions 4.2 and 4.6 as follows:

Corollary 4.7. Let A be a separable metric space and assume the conditions
i) and ii) of Theorem 4.1. If r is a metric on P(A) as in Remark 1.2, then we
have:

r − SUS ⊂ N ⊂ C.

An improvement of this result is presented in Section 4.4 (see Theorem 4.15).
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4.3 Stability of SUSs

4.3 Stability of SUSs

This section present a review of results on the stability of a SUS in the repli-
cator dynamics. These results include different stability criteria with respect
to various metrics and topologies in the space of probability measures.

4.3.1 The Kullback-Leibler distance

Assume that ν << µ. We define the cross entropy or Kullback-Leibler distance
of ν with respect to µ as

K(µ, ν) :=

∫
A

log

[
dν

dµ
(a)

]
ν(da). (4.12)

From Jensen’s inequality it follows that 0 ≤ K(µ, ν) ≤ ∞ and K(µ, ν) = 0 if
and only if µ = ν. The Kullback-Leibler distance is not a metric, since it is
not symmetric, i.e., K(µ, ν) 6= K(ν, µ).

Given µ∗ ∈ P(A), ε > 0, and a strictly increasing function ϕ : [0,∞) →
[0,∞), we define the set

Wϕ(ε)(µ
∗) :=

{
µ ∈ P(A) : K(µ, µ∗) < ϕ(ε)

}
. (4.13)

Theorem 4.8. Suppose that A is a separable metric space, and that the con-
ditions i) and ii) of Theorem 3.1 hold. Let µ∗ be a ‖ · ‖-SUS with global
invasion barrier ε > 0, and µ(·) the solution of the replicator dynamics. If

µ(0) ∈ Wϕ(ε)(µ
∗), with ϕ(ε) =

[
ε
2

]2
, then:

i) µ(t) ∈ Wϕ(ε)(µ
∗) for all t ≥ 0;

ii) ‖µ(t)− µ∗‖ < ε for all t ≥ 0;

iii) for all t ≥ 0, µ(t) is in some open ball Vrw∗α (µ∗) as in (1.13), where rw∗
is any distance that metrizes the weak topology.

iv) Moreover, if A is compact and the map µ → J(µ∗, µ) − J(µ, µ) is con-
tinuous in the weak topology, then rw∗(µ(t), µ∗)→ 0,.

v) Furthermore, parts i) to iv) are also true with the hypothesis that µ∗ is
rw∗-SUS.

Proof. Parts i), ii) and iv) are proved in Bomze [16] 1. Part iii) is a conse-
quence of ii) and Remark 1.3. Finally, v) follows from Proposition 4.4. �.

1Bomze [16] proves a more general case for part iv), where any topology τ on P(A) is
considered. He only requires that P(A) be a τ -compact set and the map µ→ J(µ∗, µ)−
J(µ, µ) be τ -continuous.
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4 Evolutionary games: symmetric case

4.3.2 The L1-Wasserstein metric

The following theorem characterizes the stability of the replicator dynamics
with respect to the L1-Wasserstein metric rw in (1.12). This distance metrizes
the weak topology and has important relationships with other distances that
also metrize the weak topology (see Proposition A.2). Furthermore, the L1-
Wasserstein is closely related to the variation norm (1.1) and the Kullback-
Leibler distance (4.12); see Propositions A.3 and A.4. The following two propo-
sitions give better approximations to parts iii) and iv) of Theorem 4.8.

Theorem 4.9. Suppose that A is a compact Polish space (with diameter C >
0), and the conditions i) and ii) of Theorem 4.1 hold. Let µ∗ be a rw-SUS with
global invasion barrier ε > 0, and µ(·) the solution of the replicator dynamics.

If µ(0) ∈ Wϕ′(ε)(µ
∗), with ϕ′(ε) =

[
ε

2C

]2
, then

i) µ(t) ∈ Wϕ′(ε)(µ
∗) for all t ≥ 0;

ii) ‖µ(t)− µ∗‖ < ε
C

for all t ≥ 0;

iii) rw(µ(t), µ∗) < ε for all t ≥ 0.

iv) Moreover, if the map µ → J(µ∗, µ) − J(µ, µ) is continuous in the weak
topology, then rw(µ(t), µ∗)→ 0.

v) Furthermore, parts i) to iv) are also true with the hypothesis that µ∗ is
‖ · ‖-SUS, with barrier ε

C
.

Proof. i) If µ(0) is inWϕ′(ε)(µ
∗), then by Theorem 4.1 we know that µ∗ << µ(t)

and so K(µ(t), µ∗) is well defined for all t ≥ 0. Using Theorem 4.1 and Fubini’s
theorem,

K(µ(t), µ∗)−K(µ(0), µ∗) = −
∫
A

[∫ t

0

β(a|µ(s))ds

]
µ∗(da)

= −
∫ t

0

J(µ∗, µ(s))− J(µ(s), µ(s))ds.(4.14)

By the condition ii) of Theorem 4.1 there exists D > 0 such that, for any
a ∈ A and µ, η ∈ P(A)

|β(a|η)− β(a|ν)| ≤ D‖η − ν‖.

So∣∣∣[J(µ∗, η)− J(η, η)]− [J(µ∗, ν)− J(ν, ν)]
∣∣∣ =

∣∣∣∣∫
A

[β(a|η)− β(a|ν)]µ∗(da)

∣∣∣∣
≤ D‖η − ν‖. (4.15)
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4.3 Stability of SUSs

By (4.15) and since µ(s) is continuous in s, the map s → [J(µ∗, µ(s)) −
J(µ(s), µ(s))] is continuous. Therefore, the time derivative of K(µ(t), µ∗) ex-
ists and since µ∗ is a rw-SUS,

dK(µ(t), µ∗)

dt
= −[J(µ∗, µ(t))− J(µ(t), µ(t))] ≤ 0. (4.16)

Hence K(µ(t), µ∗) is nonincreasing in t, and i) holds.
Proof of ii), iii). By Proposition A.3 and (4.14),

rwl(µ(t), µ∗) ≤ C‖µ(t)− µ∗‖ ≤ 2C[K(µ(0), µ∗)]
1
2 < ε. (4.17)

Therefore ii) and iii) hold.
iv) Since K(µ(t), µ∗) is a nonincreasing function in t and by (4.14), the map

t→
∫ t

0

[
J(µ∗, µ(s))− J(µ(s), µ(s))

]
ds

is increasing and

lim
t→∞

∫ t

0

[
J(µ∗, µ(s))− J(µ(s), µ(s))

]
ds <∞.

Moreover, since the map s → [J(µ∗, µ(s)) − J(µ(s), µ(s))] is continuous, we
have lim

s→∞
[J(µ∗, µ(s))− J(µ(s), µ(s))] = 0.

Since A is compact, the space P(A) is compact in the weak topology (see
Bobrowski [14]), and the distance rw metrizes this topology (Proposition A.2).
Suppose now that µ̂ is an accumulation point of the trajectory µ(·). By
(4.17), the rw-distance from µ̂ to µ∗ is at most ε, and since that µ∗ is rw-SUS,
J(µ∗, µ̂) > J(µ̂, µ̂) if µ̂ 6= µ∗. By hypothesis, the map µ → J(µ∗, µ) − J(µ, µ)
is weakly continuous. If µ̂ is such that J(µ∗, µ̂) − J(µ̂, µ̂) = 0, then µ̂ = µ∗,
which proves that rw(µ(t), µ∗)→ 0.
v) Finally if µ∗ is ‖ · ‖-SUS with barrier ε

C
then, by (4.17), parts i) to iv)

follow. �.

4.3.3 Stability of a pure-SUS

The next theorem characterizes the stability of the replicator dynamics for a
SUS that is also a Dirac measure.

Theorem 4.10. Let A be a separable metric space and suppose that the con-
ditions i) and ii) of Theorem 4.1 hold. Let δa∗ be a Dirac measure and r any
metric on P(A) as Remark 1.2. Let us suppose that δa∗ is r-SUS , µ(·) is a
solution of the replicator dynamics, and ‖µ0 − δa∗‖ < ε for some small ε > 0.
Then
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4 Evolutionary games: symmetric case

i) ‖µ(t)− δa∗‖ < ε for all t ≥ 0;

ii) for all t ≥ 0, µ(t) is in some open ball Vrw∗α (µ∗) as in (1.13), where rw∗
is any distance that metrizes the weak topology;

iii) if A is a compact Polish space (with diameter C > 0), then for all t ≥ 0,
rw(µ(t), δa∗) < Cε;

iv) if A is a compact metric space (not necessary a Polish space) and the
map µ → J(δa∗ , µ) − J(µ, µ) is continuous in the weak topology, then
rw∗(µ(t), µ∗)→ 0, where rw∗ is any distance that metrizes the weak topol-
ogy.

Proof. Parts i) and iv) follow from Theorem 3.14 and Corollary 3.15 (See also
Mendoza-Palacios and Hernández-Lerma [69] Theorem 6.2). Part ii) follows
for Proposition 4.4. Finally, Part iii) follows from Proposition A.2. �

Theorem 4.10 is also proved by Oechssler and Riedel [74] with slight changes
in the definition of ‖ ‖-SUS.

4.3.4 Related stability results

The following conjecture was proposed by Oechssler and Riedel in [75], when
rw∗ is a distance that metrizes the weak topology.

Conjecture 4.11. Let r be any metric on P(A) and rw∗ any distance that
metrizes the weak topology. Suppose that A is a separable metric space, and
that the conditions i) and ii) of Theorem 4.1 hold. Let µ∗ be a r-SUS and µ(·)
the solution of the replicator dynamics. Then

i) for ε > 0 there exist δ > 0 such that if r(µ(0), µ∗) < δ, we have that
r(µ(t), µ∗) < ε for all t ≥ 0;

ii) moreover, if part i) is satisfied, and the map µ → J(µ∗, µ) − J(µ, µ) is
continuous in the weak topology and µ∗ << µ(0), then rw∗(µ(t), µ∗)→ 0.

Remark 4.12. A double symmetric game (named a potential game by Cress-
man and Hofbauer [31]) is a game where J(µ, ν) = J(ν, µ) for any µ, ν ∈ P(A).
Let rw∗ be any distance that metrizes the weak topology. Oechssler and Riedel
[75] prove that if A is a compact set and µ∗ is rw∗-SUS, then for double sym-
metric games, µ∗ satisfies part i) of Conjecture 4.11. Cressman and Hofbauer
[31] prove that if part i) is satisfied, then ii) follows for any symmetric game.

56
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Oechssler and Riedel [75] prove that a rw∗-SUS satisfies other static evolu-
tionary concepts such as evolutionary stable strategy (ESS), continuously stable
strategy (CSS), and neighborhood invader strategy (NIS), which characterize
dynamic stability in the weak topology for the replicator dynamics. Eshel and
Sansone [36], Cressman [29], Cressman, Hofbauer and Riedel [32], use these
evolutionary concepts and different hypotheses on the payoff function (4.2) to
guarantee dynamic stability. Norman [72] establishes the dynamic stability in
terms of strategy sets.

4.4 NESs and stability

In this section we introduce a general definition of dynamic stability for the
replicator dynamics (see Definition 4.13), and prove that any stable critical
point of the replicator dynamics is a NES of Γs (see Proposition 4.14). More-
over, in Theorem 4.15 and Remarks 4.16 and 4.17 we relate the stability of
the differential equation (4.3), and the static evolutionary concepts NES and
SUS.

Consider µ, ν ∈ P(A). By Propositions A.2, A.3 and A.4 in the Appendix
A.2, below, we know that if µ and ν are close with respect to the Kullback-
Leibler distance K, then they are close in the total variation norm ‖ · ‖, and
consequently they are close in the weak topology. This argument is not true
in the opposite direction. Hence we say that the Kullback-Leibler distance
is “stronger than” the total variation norm, and the total variation norm is
“stronger than” any distance that metrizes the weak topology.

Definition 4.13. Let A be a separable metric space, and r1 and r2 the Kullback-
Leibler distance or some metric in P(A) where r1 is equal to or “stronger than”
r2. A critical point µ∗ of the replicator dynamics (4.3) is said to be

i) [r1, r2]-stable (in symbols: [r1, r2]-S) if for any ε > 0 there exists δ > 0
such that if r1(µ(0), µ∗) < δ, then r2(µ(t), µ∗) < ε for all t > 0. If
r1 = r2 = r∗ then we only say that µ∗ is r∗-stable (in symbols: r∗-S).

ii) [r1, r2]-asymptotically weakly stable if it is [r1, r2]-stable and lim
t→∞

µ(t) =

µ∗ in the weak topology.

Consider the Kullback-Leibler distance K, the total variation norm ‖ · ‖,
and any distance rw∗ that metrizes the weak topology. The following diagram
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4 Evolutionary games: symmetric case

gives the natural implications between the different concepts of stability.

K − S ⇒ [K, ‖ · ‖]− S ⇒ [K, rw∗ ]− S
⇑ ⇑

‖ · ‖ − S ⇒ [‖ · ‖, rw∗ ]− S
⇑

rw∗ − S

(4.18)

These implications are easy to deduce. For example, if the critical point

µ∗ is ‖ · ‖-S, and the initial condition µ0 satisfies that K(µ0, µ
∗) <

(
ε
2

)2
for a

small ε > 0, then by Proposition A.3 ‖µ0 − µ∗‖ < ε, hence µ∗ is also [K, ‖ · ‖]-
S. On the other hand, µ∗ is ‖ · ‖-S, and the initial condition µ0 is such that
‖µ(t) − µ∗‖ < δ for all t > 0 and some δ > 0, then by Remark 1.3 for any
rw∗-metric, µ(t) ∈ Vrw∗α for some small α > 0. Hence µ∗ is also [‖ · ‖, rw∗ ]-S.

Van Veelen and Spreij [98] study other relationships among the different
concepts of stability in diagram (4.18). They also study relationships between
static evolutionary concepts and asymptotic evolutionary stability.

The concept the support of a probability measure on a separable metric space
is used in the following proposition. See Proposition 3.7 for details.

Proposition 4.14. Let A be a separable metric space, and r1, r2 the Kullback-
Leibler distance or some metric in P(A) where r1 is equal to or “stronger than”
r2. Suppose that the conditions i) and ii) of Theorem 4.1 are satisfied, and let
µ∗ be a critical point of (4.3) with F (·) as (4.6). If µ∗ is [r1, r2]-stable, then
µ∗ is a Nash equilibrium strategy (NES) of Γs.

Proof. If µ∗ is a critical point of (4.3) with F (·) as (4.6), then

J(a, µ∗)− J(µ∗, µ∗) = 0 µ∗ − a.s.

Suppose that µ∗ is not a NES of Γs. Then there exist a′ in the support of µ∗

such that

J(a′, µ∗)− J(µ∗, µ∗) > κ > 0, (4.19)

for some κ. By the condition ii) of Theorem 4.1 we have that for any µ, η ∈
P(A)

|β(a′|η)− β(a′|ν)| ≤ D‖η − ν‖,

and so the map µ→ J(a′, µ)−J(µ, µ) is continuous. Hence, by (4.19), for any
µ ∈ P(A) near µ∗ in some r1 distance

J(a′, µ)− J(µ, µ) > κ. (4.20)
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Let ε > 0 and µ0 := λεδa′ + (1 − λε)µ
∗ be the initial condition, where

λε ∈ (0, 1) and µ0 ∈ Wϕ(ε)(µ
∗), with ϕ(ε) = ε2. The number λε indeed exists

since

K(µ0, µ
∗) =

∫
Supp(µ∗)

log

[
dµ∗

dµ0

(a)

]
µ∗(da) = log

(
1

1− λε

)
,

and the logarithmic function is continuous, and by Propositions A.3 and A.4,
µ0 is near µ∗ in the r1-distance.

By (4.20) and Theorem 4.1 we have

µ(0, {a′})eκt ≤ µ(0, {a′})e
∫ t
0
β(a′|µ(s))ds = µ(t, {a′}),

for all t > 0. Thus µ(t, {a′}) is increasing if the initial condition is µ0 and
the trajectory µ(t) is not close to µ∗ in the r2-distance. So µ∗ is not [r1, r2]-
stable. �

Now, let r1 and r2 be the Kullback-Leibler distance or some metric on P(A),
where r1 is equal to or “stronger than” r2. We define the following set:

[r1, r2]− S := {µ∗ ∈ P(A) : µ∗ is [r1, r2]− S}.

Theorem 4.15. Let A be a separable metric space, and consider the conditions
i) and ii) of Theorem 4.1. Let r1 be a metric on P(A), and let r2 be the
Kullback-Leibler distance or some metric on P(A) equal to or “stronger than”
r1. Consider the sets r1 − SUS, N and C as in Corollary 4.7. Then we have:

r1 − SUS ⊂ [K, r2]− S ⊂ N ⊂ C.

Proof. This is a consequence of Theorem 4.8 and Propositions 4.2 and 4.14.
�

Remark 4.16. Suppose the hypotheses of Theorem 4.15 and let A be a compact
Polish space. Then by Theorem 4.9 and Propositions A.2, A.3, we can obtain
the implications in Theorem 4.15 with a specific value for the barrier ε > 0,
for the metrics ‖ · ‖, rp, rbl, rw, rkr.

Remark 4.17. Let r1 and r2 be the total variation norm (1.1) or some metric
that metrizes the weak topology on P(A). By Theorem 4.10 and Propositions
4.2, 4.14, we have the following implications if a Dirac measure δa∗ is a r1-SUS.

δa∗ ∈ r1 − SUS ⇒ δa∗ ∈ [‖ ‖, r2]− S ⇒ δa∗ ∈ N ⇒ δa∗ ∈ C.
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4.5 Finite dimensional approximation

An infinite-dimensional dynamical system, as our proposed model, is not a
computable model. To solve this problem, we can introduce some approxima-
tion schemes. Oechssler and Riedel [75] propose two approximation theorems.
The first theorem establishes the proximity of two paths generated by two dif-
ferent dynamical systems (the original model and a discrete approximation of
the model) with the same initial condition. The second theorem establishes the
proximity of two paths each with different initial conditions and these paths
satisfy the same differential equation (4.3) with F (·) as (4.6).

We propose here two approximation results with hypotheses less restrictive
than those by Oechssler and Riedel [75]. Our two approximation theorems
extend the results in [75] because we establish the proximity of two paths
generated by two different dynamical systems (the original model and a dis-
crete approximation model) with different initial conditions. We will need the
following fact.

Lemma 4.18. Let A be a separable metric space. If the map µ : [0,∞) →
M(A) is strongly differentiable, then

d‖µ(t)‖
dt

≤ ‖µ′(t)‖.

Proof. see Apendix A.1.1 �.
To obtain a discrete approximation of the infinite-dimensional model (4.3)

with F (·) as (4.6) we can apply the following Theorems 4.19 and 4.24 to a
discrete approximation of the payoff function U and the initial probability
measure µ0. For some examples of approximation techniques, see Bishop and
Cannings [13], Simon [95]. Oechssler and Riedel [75] propose a finite approx-
imation for a game where A = [0, 1], and U is a bounded function. They

consider the partition Pk := {Ai}2k−1
i=0 , where Ai := [ai, ai+1), ai = i

2k
, for

i = 0, 1, ..., 2k − 2 and A2k−1 := [a2k−1, 1]. They propose the discrete approxi-
mation to U given by the function

Uk(x, y) = U(ai, aj), if (x, y) ∈ Ai × Aj, for i, j = 0, 1, ..., 2k − 1.

Also, we can proximate a probability measure µ0 ∈ P(A) by a discrete
probability distribution µ0

k on the partition set Pk. Then we can approximate

(4.3) (with F (·) as (4.6)) by a system of differential equation in R2k :

µ′k(t, Ai) =
[
Jk(ai, µk(t))− Jk(µk(t), µk(t))

]
µk(t, Ai), i = 0, 1, ..., 2k − 1,
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with initial condition {µ0
k(Ai)}2k−1

i=0 and where

Jk(ai, µk(t)) =

2k−1∑
j=0

U (ai, aj)µk(t, Aj),

Jk(µk(t), µk(t)) =

2k−1∑
i=0

Jk (ai, µk(t))µk(t, Ai).

Theorem 4.19. Let A be a separable metric space and let U,Uε : A×A→ R
be two bounded functions such that ‖U − Uε‖ < ε. Consider the replicator
dynamics in (4.3) with F (·) as (4.6) induced by U and Uε, i.e.,

µ′(t, E) =

∫
E

[
J(a, µ(t))− J(µ(t), µ(t))

]
µ(t, da), (4.21)

ν ′(t, E) =

∫
E

[
Jε(a, ν(t))− Jε(ν(t), ν(t))

]
ν(t, da), (4.22)

for each E in B(A) and t ≥ 0, where J(a, b) = U(a, b), Jε(a, b) = Uε(a, b), for
all a, b in A. If µ(·) and ν(·) are solutions of (4.21) and (4.22), respectively,
with initial conditions µ(0) = µ0 and ν(0) = ν0, then for T <∞

sup
t∈[0,T ]

‖µ(t)− ν(t)‖ < ‖µ0 − ν0‖eQT + 2ε

(
eQT − 1

Q

)
. (4.23)

where Q = 5‖U‖.

Proof. For each t ≥ 0, let (as in (4.7))

β(a|µ) := J(a, µ)− J(µ, µ), βε(a|ν) := Jε(a, ν)− Jε(ν, ν),

and (as in (4.6))

F (µ,E) :=

∫
E

β(a|µ)µ(da), Fε(ν, E) :=

∫
E

βε(a|ν)ν(da).

Since U is bounded, the conditions i) and ii) of Theorem 4.1 hold, and so there
exists Q > 0 such that

‖F (ν)− F (µ)‖ ≤ Q‖ν − µ‖ ∀µ, ν ∈ P(A). (4.24)

Actually, Q = 5‖U‖; see Mendoza-Palacios and Hernández-Lerma [69] or
Oechssler and Riedel [74]. We also have that, for all ν ∈ P(A),

‖Fε(ν)− F (ν)‖ =

∫
A

|β(a|ν)− βε(a|ν)|ν(da) ≤ 2‖Uε − U‖ < 2ε. (4.25)
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4 Evolutionary games: symmetric case

By Lemma 4.18 and (4.24)-(4.25) we have

d‖ν(t)− µ(t)‖
dt

≤ ‖ν ′(t)− µ′(t)‖

= ‖Fε(ν(t))− F (µ(t))‖
≤ ‖Fε(ν(t))− F (ν(t))‖+ ‖F (ν(t))− F (µ(t))‖
< 2ε+Q‖ν(t)− µ(t)‖

Then
d‖ν(t)− µ(t)‖

dt
−Q‖ν(t)− µ(t)‖ < 2ε.

Multiplying by e−Qt we get

d‖ν(t)− µ(t)‖e−Qt

dt
< 2εe−Qt,

and integrating in the interval [0, t], where t ≤ T , we get

‖µ(t)− ν(t)‖e−Qt − ‖µ0 − ν0‖e−Q0 < 2ε

(
1− e−Qt

Q

)
.

Then for all t ∈ [0, T ]

‖µ(t)− ν(t)‖ < ‖µ0 − ν0‖eQt + 2ε

(
eQt − 1

Q

)
≤ ‖µ0 − ν0‖eQT + 2ε

(
eQT − 1

Q

)
,

which yields (4.23). �

Corollary 4.20. Let us assume the hypotheses of Theorem 4.19, and, in ad-
dition, suppose that there exist sequences of functions {Uεn}∞n=1 and probability
measures {νn}∞n=1 such that ‖Uεn − U‖ → 0 and ‖νn0 − µ0‖ → 0. If µ(·) and
νn(·) are solutions of (4.21) and (4.22), respectively, with initial conditions
µ(0) = µ0 and νn(0) = νn0 , then for T <∞,

lim
n→∞

sup
t∈[0,T ]

‖νn(t)− µ(t)‖ → 0.

The next approximation theorem establishes the proximity of two paths gen-
erated by two different dynamical systems (the original model and a discrete
approximation model) with different initial conditions, under the weak topol-
ogy. To this end we use the Kantorovich-Rubinstein norm ‖ · ‖kr on M(A) and
the L1-Wasserstein distance rw on P(A).
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4.5 Finite dimensional approximation

Remark 4.21. Let A be a separable metric space. We say that a mapping
µ : [0,∞) → M(A) is weakly differentiable if there exists µ′(t) ∈ M(A) such
that, for every t > 0 and g ∈ CB(A)

lim
ε→0

1

ε

[∫
A

g(a)µ(t+ ε, da)−
∫
A

g(a)µ(t, da)

]
=

∫
A

g(a)µ′(t, da). (4.26)

If ‖·‖k,r is the Kantorovich-Rubinstein norm (1.11), then (4.26) can be written
as

lim
ε→0

∥∥∥∥µ(t+ ε)− µ(t)

ε
− µ′(t)

∥∥∥∥
kr

= 0.

Moreover if µ′(t) is the strong derivative of µ(t), then it is also the weak
derivative of µ(t). Conversely, if µ′(t) is the weak derivative of µ(t), and µ(t)
is continuous in t with the norm (1.1), then it is the strong derivative of µ(t).
See Heidergott, Hordijk and Leahu [45].

Lemma 4.22. Let A be a separable metric space. If the map µ : [0,∞) →
M(A) is strongly differentiable, then

d‖µ(t)‖kr
dt

≤ ‖µ′(t)‖kr.

Proof. See Appendix A.3.2 �
Let (A, ϑ) be a bounded separable metric space (with diameter C > 0), and

ν ∈ P(A). If ‖f‖L ≤ 1 and f(a0) = 0, then for any a in A

f(a)

C
≤ sup

a∈A

|f(a)− f(a0)|
C

≤ sup
a,b∈A

|f(a)− f(b)|
ϑ(a, b)

= ‖f‖L = 1.

Therefore,

sup
‖f‖L≤1

f(a0)=0

∫
A

f(a)ν(da) ≤ C. (4.27)

Lemma 4.23. Consider a bounded separable metric space (A, ϑ) (with diam-
eter C > 0), and the product space (A× A, ϑ∗), where

ϑ∗((a, b), (c, d)) = max{ϑ(a, b), ϑ(c, d)}

for any a, b, c, d in A. Let F (·) be described as in (4.6). Suppose that the payoff
function U(·) in (4.1) is bounded and satisfies that ‖U‖L < ∞. Then there
exits Q > 0 such that

‖F (ν)− F (µ)‖kr ≤ Q‖ν − µ‖kr ∀µ, ν ∈ P(A), (4.28)

where Q := 2‖U‖+ 3C‖U‖L

63



4 Evolutionary games: symmetric case

Proof. See Appendix A.3.3 �

Theorem 4.24. Let A be a compact Polish space (with diameter C > 0), and
let U,Uε : A × A → R be two bounded functions such that ‖U − Uε‖ < ε.
Suppose that ‖U‖L < ∞ and consider the replicator dynamics induced by U
and Uε, as in (4.21) and (4.22). If µ(·) and ν(·) are solutions of (4.21) and
(4.22), respectively, with initial conditions µ(0) = µ0 and ν(0) = ν0, then for
T <∞

sup
t∈[0,T ]

rw(µ(t), ν(t)) < rw(µ0, ν0)eQT + 2Cε

(
eQT − 1

Q

)
. (4.29)

with Q = 2‖U‖+3C‖U‖L as in (4.28), and rw is the L1-Wasserstein distance.

Proof. For each t ≥ 0, let (as in (4.7))

β(a|µ) := J(a, µ)− J(µ, µ), βε(a|ν) := Jε(a, ν)− Jε(ν, ν),

and (as in (4.6))

F (µ,E) :=

∫
E

β(a|µ)µ(da), Fε(ν, E) :=

∫
E

βε(a|ν)ν(da).

Since ‖U‖L <∞, by Lemma 4.23 there exists Q = 2‖U‖+ 3C‖U‖L > 0 such
that

‖F (ν)− F (µ)‖kr ≤ Q‖ν − µ‖kr ∀µ, ν ∈ P(A). (4.30)

We also have that for each ν ∈ P(A),

‖Fε(ν)− F (ν)‖kr = sup
‖f‖L≤1

f(a0)=0

∫
A

f(a)|β(a|ν)− βε(a|ν)|ν(da)

≤ 2‖Uε − U‖ sup
‖f‖L≤1

f(a0)=0

∫
A

f(a)ν(da)

< 2Cε. (4.31)

By Lemma 4.22, and (4.30)-(4.31) we have

d‖ν(t)− µ(t)‖kr
dt

≤ ‖ν ′(t)− µ′(t)‖kr
= ‖Fε(ν(t))− F (µ(t))‖kr
≤ ‖Fε(ν(t))− F (ν(t))‖kr + ‖F (ν(t))− F (µ(t))‖kr
< 2Cε+Q‖ν(t)− µ(t)‖kr.
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Then
d‖ν(t)− µ(t)‖kr

dt
−Q‖ν(t)− µ(t)‖kr < 2Cε.

Multiplying by e−Qt we get

d‖ν(t)− µ(t)‖kre−Qt

dt
< 2Cεe−Qt,

and integrating in the interval [0, t], with t ≤ T , we get

‖µ(t)− ν(t)‖kre−Qt − ‖µ0 − ν0‖kre−Q0 < 2Cε

(
1− e−Qt

Q

)
.

Then, by Proposition A.3, for all t ∈ [0, T ]

dw(µ(t), ν(t)) < dw(µ0, ν0)eQt + 2Cε

(
eQt − 1

Q

)
≤ dw(µ0, ν0)eQT + 2Cε

(
eQT − 1

Q

)
,

which is equivalent to (4.29). �

Corollary 4.25. Let us assume the hypotheses of Theorem 4.24, and in ad-
dition suppose that there exist sequences of functions {Uεn}∞n=1 and probability
measures {νn}∞n=1 such that ‖Uεn − U‖ → 0 and dw(νn0 , µ0) → 0. If µ(·) and
νn(·) are solutions of (4.21) and (4.22), respectively, with initial conditions
µ(0) = µ0 and νn(0) = νn0 , then for t ∈ [0, T ], with T <∞,

lim
n→∞

sup
t∈[0,T ]

dw(νn(t), µ(t))→ 0.

4.6 Examples

In this section we consider the examples of a quadratic-linear model, a sales
model as a Bertrand game, graduate risk game and Ward of attrition game of
the sections 2.2, 2.5, 2.6, and 2.7 respectively.

In each example we prove that the NES of the game is also a SUS. Thus,
under the replicator dynamics if the initial strategy µ0 is closed to the NES
(which is a SUS), then the player select a strategy µ(t) very closed to the NES
for every t > 0. In other words, under the replicator dynamics the player
searches and selects strategies that have certain dominance as the SUS.
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4 Evolutionary games: symmetric case

4.6.1 A linear-quadratic model

In this section we consider the symmetric case game in section 2.2. Then we
can rewrite the payoff functions (2.9) and (2.10) as

U(x, y) = −ax2 − bxy + cx+ dy,

with a, b, c > 0 and d any real number.
Let A = [0,M ] for M > 0, be the strategy set. If 2c(a − b) > 0 and

4a2 − b2 > 0, then we have an interior Nash equilibrium strategy (NES)

x∗ =
2c(a− b)
4a2 − b2

.

The function U(x∗, y)− U(y, y) has a minimum value of 0 at y = x∗ and is
strictly concave. So

U(x∗, y)− U(y, y) > 0 ∀y ∈ A, y 6= x∗,

which implies

J(x∗, µ)− J(µ, µ) > 0 ∀µ ∈ P(A), µ 6= δx∗ .

Then for any metric r on P(A), the strategy δx∗ is r-SUS. Hence by Theorem
4.10 if ‖µ0 − δx∗‖ = 2(1− µ0({x∗})) < ε, then

‖µ(t)− δx∗‖ = 2(1− µ(t, {x∗})) < ε, rw(µ(t), δx∗) < Mε ∀t ≥ 0.

Moreover, since the payoff function U(·) is continuous and the set of strategies
A is compact, we conclude that µ(t)→ δx∗ in distribution.

4.6.2 A sales model as a Bertrand game

Consider the sales model in section 2.5. We would prove that the NES (2.20)
is a r-SUS for any r-metric in P(A) (with A = [0, r]). Let U(p, z) be the
payoff function defined in (2.19) and we suppose that k > rαT

2
, which implies

that the firm has a loss if the opponent firm captures the demand of informed
consumer.

Since I is the number of informed consumer, V is the number of uninformed
consumer and T is the number of total of total consumer T = I + V , we may
assume that I = (1 − α)T and V = αT for some α ∈ (0, 1). Then the NES
(2.20) is expressed as
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dµ∗(p)

dp
=

{[
rα

2(1−α)

]
p−2, if p̄ ≤ p ≤ r

0, other case
,

where p̄ = rα
2−α . Then we have

J(µ∗, z)−J(z, z) =

{
k − z

[
αT
2

]
, if 0 ≤ z < p̄

αT
2

[
r
[
log
(
z
p̄

)]
+ αr

1−α

[
log
(
r
p̄

)]
+ 2k

αT
− z
]
, if p̄ ≤ z ≤ r

.

Since k > rαT
2

, is easy to see that the map z 7→ J(µ∗, z)− J(z, z) > 0 for all
z ∈ [0, r]. Then J(µ∗, µ)− J(µ, µ) > 0, for all µ ∈ P(A). This prove that µ∗ is
a r-SUS, for any r-metric in P(A).

Hence, by Theorem 4.9, if K(µ0, µ
∗) < ϕ′(ε) =

(
ε

2m

)2
, then

i) µ(t) ∈ Wϕ′(ε)(µ
∗) for all t ≥ 0;

ii) ‖µ(t)− µ∗‖ < ε
m

for all t ≥ 0;

iii) rw(µ(t), µ∗) < ε for all t ≥ 0;

Let C := {µ ∈ P(A) : µ([p̄), r] = 1}, then C is weakly compact and the
map µ→ J(µ∗, µ)− J(µ, µ) is continuous in C for the weak topology. Hence,
rw(µ(t), µ∗)→ 0 as t→∞, if µ0 ∈ C. (See Theorem 3.14.)

4.6.3 Graduated risk game

Consider the game of section 2.6. Bishop and Cannings [13] show that if v < c
(in the payoff function (2.21)), then the NES (2.22) satisfies that

J(µ∗, µ)− J(µ, µ) > 0 ∀µ ∈ P(A),

i.e., µ∗ is r-SUS for any metric r in P(A).

Hence, by Theorem 4.9, if K(µ0, µ
∗) < ϕ′(ε) =

(
ε

2m

)2
, then

i) µ(t) ∈ Wϕ′(ε)(µ
∗) for all t ≥ 0;

ii) ‖µ(t)− µ∗‖ < ε
m

for all t ≥ 0;

iii) rw(µ(t), µ∗) < ε for all t ≥ 0.
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4 Evolutionary games: symmetric case

Since v < c in the payoff function (2.21) and the NES (2.22) we have that
the equation

J(µ∗, y)− J(y, y) =

[
c− v

2

] [
α− 1

1 + α

]
+

[
αv + c

1 + α

]
y

1+α
2 −

[
c− v

2

]
y,

then the map µ → J(µ∗, µ) − J(µ, µ) is continuous in the weak topology.
Hence, rw(µ(t), µ∗)→ 0 as t→∞, if K(µ0, µ

∗) < ϕ′(ε).
On the other hand, If c < v in (2.21), then the NES (2.23) satisfies that

J(δ{0}, y)− J(y, y) = vy > 0 ∀y ∈ A.

Then
J(δ{0}, µ)− J(µ, µ) > 0 ∀µ ∈ P(A),

i.e., δ{0} also is r-SUS for any metric r in P(A).
Hence, by Theorem 4.10 if ‖µ0 − δ0‖ < ε for some small ε > 0, then

i) ‖µ(t)− δ{0}‖ < ε for all t ≥ 0;

ii) rw(µ(t), δ{0}) < ε for all t ≥ 0;

iv) Since the the map µ → J(δ{0}, µ) − J(µ, µ) is continuous in the weak
topology, A = [0, 1] is compact, then rw∗(µ(t), δ{0}) → 0,, where rw∗ is
any distance that metrizes the weak topology.

4.6.4 War of attrition game

Consider the game in section 2.7. Since v ≤ m in the payoff function (2.24)
and the NES (2.25) we have that the equation

J(µ∗, y)− J(y, y) =

[
1

1− e−m/v

] [
2ve−y/v + (y − v)e−m/v − v

]
+ y

has the positive minimum value[
v

em/v − 1

]
[em/v log(2)− 1] > 0, at y = v log(2),

for m > v
log(2)

.

This implies that J(µ∗, µ)− J(µ, µ) > 0 for all µ in P(A) and µ 6= µ∗. Then
for any metric r on P(A), the strategy µ∗ is r-SUS. Hence, by Theorem 4.9, if

K(µ0, µ
∗) < ϕ′(ε) =

(
ε

2m

)2
, then
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i) µ(t) ∈ Wϕ′(ε)(µ
∗) for all t ≥ 0;

ii) ‖µ(t)− µ∗‖ < ε
m

for all t ≥ 0;

iii) rw(µ(t), µ∗) < ε for all t ≥ 0;

Moreover, since the map µ → J(µ∗, µ) − J(µ, µ) is continuous in the weak
topology, then rw(µ(t), µ∗)→ 0 as t→∞.

4.7 Comments

In this chapter, we introduced a model of symmetric evolutionary games with
strategies in measurable spaces. The model can be reduced, of course, to the
particular case of evolutionary games with finite strategy sets. We provide a
general framework to the replicator dynamics that allows us to analyze dif-
ferent stability criteria, and establish conditions to approximate the replicator
dynamics in a measure space by a sequence of dynamical systems on finite
spaces. We also presented three examples. The first one may be applicable to
oligopoly models, theory of international trade, and public good models. The
second an third examples deal with a graduate risk game and war of attrition
game, respectively.

The replicator dynamics has been studied in other general spaces without
direct applications to game theory. For instance, Kravvaritis et al. [61], [58],
[59] [60], and Papanicolaou and Smyrlis [77] studied conditions for stability
and examples for these general cases. These extensions may be applicable in
areas such as migration, regional sciences, and spatial economics (see Fujita,
Krugman, and Venables [39] chapters 5 and 6).

There are many questions, however, that remain open. For instance, when
the set of pure strategies is finite, Cressman [27] shows that under some con-
ditions the stability of monotone selection dynamics is locally determined by
the replicator dynamics. Is this true for games with strategies on the space
P(A) of probability measures? Another important issue would be to obtain a
stability theorem for several evolutionary dynamics of games with continuous
strategies similar to the result by Hofbauer and Sigmund [51] (Theorem 14)
for games with a finite strategy set A.
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5 The replicator dynamics as a
deterministic approximation

In this chapter we see the replicator dynamics as a limit of a sequence of
Markov process. There are many references (mentioned in section 1.1 ) on this
issue when the strategy space is finite. However, a more general mathematical
structure is needed if the strategy set is a measurable space, which we con-
sider in this chapter. We use a general theorem (Kolokoltsov [55]) in which
an infinite-dimensional kinetic equation (a differential equation on a space of
measures) is a limit of a sequence of jump Markov process.

Section 5.1 presents notation and technical requirements. Section 5.2 shows
a technique proposed by Kolokoltsov [55],[56] to proximate a sequence of pure
jumps models of binary interaction (in a Banach space), by means of a de-
terministic dynamical system. Section 5.3 uses techniques of section 5.2 to
establish conditions under which the replicator dynamics is a limit of a se-
quence of Markov processes. Finally, section 5.4 aggregates comments over
futures perspectives.

5.1 Technical Preliminaries

In this section we summarize some facts about the approximation of ordinary
differential equations by Markov processes and other topics related. For proofs
proofs see e.g. Kallenberg [54], Ethier and Kurtz [37], and and Böttcher,
Schilling and Wang [19].

5.1.1 Markov processes

Let F a Banach space, and L(F ) the set of all linear bound operators form F
into F . A strongly continuous semigroup of linear operators on F is a mapping
T : [0,∞)→ L(F ) such that

i) T (t + s) = T (t)T (s) for all t, s ≥ 0, T (0) = I where I is the identity
operator.
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5 The replicator dynamics as a deterministic approximation

ii) limt→0 T (t)x = x in the strong topology operator.

Definition 5.1. The generator G of a strongly continuous semigroup T (·) is
defined as follows:

D(G) :=

{
f ∈ F : lim

t→0+

[
T (h)− I

h

]
exits

}
,

and for f ∈ D(G)

Gf = lim
t→0+

[
T (h)− I

h

]
f.

The connection of the linear semigroup theory with the Markov processes is
given as follows. Let A be a locally compact metric space. Let x(·) = {x(t) :
t ≥ 0} be a Markov process in A with transition probability P (s, x, t, E), i.e.,

P (s, x, t, E) = P (x(t) ∈ E |x(s) = x).

for all t > s ≥ 0, x ∈ A and E ∈ B(A). Let F the linear real-valued measurable
functions f on [0,∞)× A such that∫

A

|f(s, y)|P (s, x, t, dy) ≤ ∞

for each s, x, t. For each t ≤ 0 and f ∈ F , let Ttf be a function on [0,∞)×A
defined by

Ttf(s, x) :=

∫
A

f(s+ t, y)P (s, x, s+ t, dy).

In this case the operator Tt, t ≥ 0, form a semigroup of operators on F .
Let C∞(A) be the set of functions f such that f ∈ C(A) and for all ε > 0

there exits a compact set K ⊂ A that satisfies supa∈A |f(a)| ≤ ε. A Markov
process is call homogeneous if P (s, x, s + t, E) = P (0, x, t, E) for all s ≥ 0.
A (homogeneous) Markov process in a locally compact metric A is call Feller
process if for any f ∈ C∞(A) we have that Ttf ∈ C∞.

5.1.2 Approximation of pure jump process

A jump Markov process describe a stochastic process in continuous time that,
intuitively, behaves as follows. Consider that the system starts from a point
x(s) = x ∈ A for some time s ≥ 0. It stays there a random length of time τ1

and then “jumps” spontaneously to a new state y 6= x. It stays there a random
length of time τ2 (independent of τ1) and then “jumps” to a new state z 6= y,
and so on.
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By a pure (homogeneous)jump Markov process on A we mean a Markov
process with a generator of the form

Gf(x) =

∫
A

f(y)− f(x)Q(x, dy).

where Q is a transition, that is for every x ∈ A and E ∈ B(A), Q(·, E) is a
real-valued measurable function, and Q(x, ·) is a signed measure on B(A). In
particular for pure jump processes Q satisfies Q(x, x) = 0 and Q(x,A) < ∞
for every x ∈ A.

The following theorem see the solution of ordinary differential equations as
the limit of a sequence of pure jump Markov processes.

Proposition 5.2. Let A ⊂ Rm (endowed with the euclidean norm | · |) and
{x(t)n} a sequence of pure jump Markov process in A such that for every n > 0,
the process xn(·) have generator

Gnf(x) =

∫
A

f(y)− f(x)Qn(x, dy).

and xn(0) = x0. For every n > 0 and x in A, consider the functions

Fn(x) =

∫
A

|x− y|Qn(a, dy) and Hn(x) =

∫
|x−y|>εn

|x− y|Q(x, dy).

Where {εn} is a sequence such that limn→∞ = 0. Consider the differential
equation

x′(t) = G(x(t)), with x(0) = x0. (5.1)

Where G satisfies a Lipschitz condition. Finally, assume the follow

i) supn supx∈A Fn(x) <∞

ii) limn→∞ supx∈AHn(x) = 0.

If Gn(·) converges uniformly to G(·), then the sequence of stochastic processes
xn(t) converges weakly to the solution x(t) of the differential equation 5.1.
Moreover for every ε > 0 and t > 0,

lim
n→∞

P (sup
s≤t
|xn(s)− x(s)| > ε) = 0.

Proof. See Kurtz[62], [63].
This theorem is can see as a particular case of a theorem of convergence of

Feller processes (see Kallenberg [54], chapter 19).
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5 The replicator dynamics as a deterministic approximation

Supposes that Let A be compact metric space, then M(A) (endowed with the
weak topology) is locally compact metric space (see Li [66].) Then under this
condition, we can talk about Markov process with sated spaces in M(A). This
Markov processes are call measure-valued Markov processes. For references of
this general cases see e.g. Li[66], Dynkin [35] and kolokoltsov [56].

Section 5.2 see the replicator dynamics as a limit of a sequence of measure-
valued Markov process.

5.1.3 Notation

Let A be a separable and compact metric space, and consider the Cartesian
products Aj := A × ... × A (j-times) and A∞ := A × A × ... (infinite-times)
with their product topologies. We shall denote by A∪ the disjoint union of the
sets Aj, i.e., A∪ = ∪∞j=1A

j, and which is a compact space in A∞.
For the following Definition we consider the set of the natural numbers N.

Definition 5.3. A measure µ in M(A∞) is call symmetric if for any permu-
tation ρ : N→ N that replaces only finitely many elements, we have

µ(ρE) = µ(E) ∀E ∈ B(A∞),

where

ρE :=
{

(a1, a2, ..., aj, ...) ∈ A∞ : (aρ(1), aρ(2), ..., aρ(j),...) ∈ E
}
.

The set of symmetric measures on A∞ is written as MS(A∞).

Similarity, as in Definition 5.3, we can define define a symmetric measure on
Aj and A∪. The spaces of symmetric measures on Aj and A∪ will be denoted by
MS(Aj) and MS(A∪), respectively. For more details about symmetric measures
see Hewitt and Savage [48], and Bogachev [15] (chapter 10).

Let X be either Aj , A∞ or A∪. The spaces of positive measures, and
symmetric positive measures on X will be denoted by M+(X) and M+

S (X)
respectively.

A function f : A∞ → R is said to be symmetric if for any permutation
ρ : N→ N and (a1, a2, ..., aj, ...) in A∞

f(a1, a2, ..., aj, ...) = f(aρ(1), aρ(2), ..., aρ(j), ...).

Similarity, we can define a real-valued symmetric function on Aj and A∪.
Let X be either Aj, A∞ or A∪. We shall denoted by BS(X) (resp. CS(X)) the
Banach space of symmetric bounded (resp. continuous) real-valued functions
on X.
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5.2 Pure jump Markov processes for binary interacting individuals

On X we, consider the equivalence relation ∼ given by

(a1, a2, ..., aj, ...) ∼ (b1, b2, ..., bj, ...)

if only if there exists a permutation ρ such that bi = aρ(i) for all i = 1, 2, ...
. Let XS be the quotient space (the space of equivalences cases) with the
quotient topology (for details see Pedersen [78] chapter 1). This allows us to
identify e.g., CS(X) = C(XS).

5.2 Pure jump Markov processes for binary
interacting individuals

In this section we see how a sequence of general pure jump Markov processes
converges weakly to the solution of an infinite-dimensional differential equation
(called kinetic equation). For details see Kolokoltsov [55], [56]. In particular we
are interested in pure jump Markov processes that emerge from the interaction
of two particles, in other words, that originate from binary interacting particles.

In game theory, we are interested in the behavior of individuals, which is
why we change the word “particles” (used in physical theory) by “individuals”.

Let A be a separable and compact metric space. The symmetrical laws on Aj

(which are uniquely defined by their projections to AjS) are called exchangeable
systems of j individuals. The elements of M+

S (A∪) and CS(A∪) are called,
respectively, the states and observables for a Markov process Zt on A∪. We
shall denote the elements of A∪ by bold letters, e.g. a,b. A key observation
for the theory of measure-valued limits is the inclusion A∪S to M+(A) given by

a = (a1, ..., al) 7→ hδa1 + ...+ hδal , h > 0 (5.2)

which defines a bijection between A∪S and the space M+
hδ(A) ⊂M+(A) of finite

linear combinations of δ-measures.
For each f ∈ BS(A∪) and a = (a1, ..., aj) ∈ Aj ⊂ A∪, we write f(a) =

f(a1, .., aj), f
+(a) = f+(a1, .., aj) = f(a1)+...+f(aj) and f×(a) = f×(a1, .., aj) =

f(a1) · ... · f(aj). For a finite subset of two elements I = {i1, i2} of a fi-
nite set J = {1, 2, ..., j} we denote by Ic its complement Ic = J − I. Then
for a = (a1, ..., aj) ∈ A∪, aI = (ai1 , ai2) and by aIc = (aic1 , ..., aicm), where
Ic = {ic1, ..., icm), and a = (aI , aIc).

By a pure jump process Zt on A∪ that describe the interaction of two indi-
viduals, we mean a Markov process with a generator of the form

Gf(a) =
∑

I⊂{1,2,..j}

∫
A∪
f(aIc ,b)− f(a)Q(aI , db). (5.3)
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5 The replicator dynamics as a deterministic approximation

Where the binary interaction transition kernel is such that

Q(aI) =

∫
A∪
Q(aI , db) =

∞∑
m=1

∫
Am

Qm(aI , db1 · · · dbm). (5.4)

Changing the state space according to the mapping (5.2) yields the corre-
sponding Markov process Zh

t on M+
hδ(A) The above changing of space leads

(5.3) to the generator Gh defined by (for details see Kolokoltsov [55])

Ghf(hδa)

= h
∑

I⊂{1,2,...,j}

∫
A∪

[
f(hδa − hδaI + hδb)− f(hδa)

]
Q(hδa, aI , db). (5.5)

Using the relation (1.37) in Kolokoltsov [56] (Chapter I) and applying the
operator (5.4) over the linear function

fg(µ) = 〈g, µ〉 =

∫
A

g(a)µ(da) g ∈ C(A), (5.6)

we obtain

Ghfg(hδa)

=
1

2

∫
A∪

∫
A2

[
g+(b)− g+(a1, a2)

]
Q(hδa, (a1, a2), db)hδa(da1)hδa(da2)

− 1

2
h

∫
A∪

∫
A

[
g+(b)− g+(a, a)

]
Q(hδa, (a, a), db)hδa(da)

(5.7)

where g+(b) = g+(b1, b2, ..., bk) = g(b1)+b(2)+...+b(k), similarly for g+(a1, a2).
Assume that the value of h is the scale or genetic relevance of each individual.

This genetic relevance is decreasing for example with respect to the number of
individuals ,i.e., if the population tends to infinity, then h → 0. The genetic
relevance of each individual h is high, e.g., in small populations or endangered
populations. When the scale or genetic relevance of each individual h is small
(e.g. in a huge population) then mass distribution hδa retains this genetic
relevance h. It follows that if h tends to 0 and hδa tends to some distribution
or probability measure µ, the corresponding generator Gh evaluated in (5.6)-
(5.7) tends to
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5.3 The replicator dynamics as a deterministic approximation

Gfg(µ)

=
1

2

∫
A∪

∫
A2

[
g+(b)− g+(a1, a2)

]
Q(µ, (a1, a2), db)µ(da1)µ(da2).

(5.8)

Under some hypotheses (see Kolokoltsov [55]) if µ(t) is solution of the dif-
ferential equation

d

dt
〈g, µ(t)〉 = Gfg(µ(t)) ∀g ∈ C(AS), (with µ(0) = µ0), (5.9)

then there exists a subsequence of stochastic process Zhn(t) (subfamily of
{Zh(t)}h>0 ) with generator (5.6), which converges weakly to µ(t).

5.3 The replicator dynamics as a deterministic
approximation

In this section we specify a Markov game which can be approximated by the
replicator dynamics. This Markov process models a stochastic interaction
between individuals which explain the evolution of the probability distribution
of characteristics in a population.

Suppose that in each stage of the game we select a pair of individuals of
characteristics a1, a2 ∈ A. The agent with characteristic a1 plays against agent
with characteristic a2 and the transition rate to have (m− 1) new agents with
characteristic a1 after this game is given by

Jm(a1, hδa)− Jm(a2, hδa), (5.10)

where

i) hδa is a positive measure on A described by (5.1) and h > 0 is the scale
or the genetic relevance of each individual;

ii) Jm : M+(A) × M+(A) → R is defined similar (4.1), i.e., Jm(a1, a2) =
Um(a1, a2) for any a1, a2 ∈ A. The function Um(·, ·) can be chosen ar-
bitrarily as long as the average change equals a function U(·, ·) ,i.e., for
any a1, a2 ∈ A

U(a1, a2) =

∞∑
m=0

(m− 1)Um(a1, a2). (5.11)
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5 The replicator dynamics as a deterministic approximation

The interaction transition kernels Qm in (5.3) from the generator (5.7) is of
the form

Qm(hδa, (a1, a2), db1 · · · dbm) =
[
Jm(a1, hδa)− Jm(a2, hδa)

]
δa1(db1)...δa1(dbm)

+
[
Jm(a2, hδa)− Jm(a1, hδa)

]
δa2(db1)...δa2(dbm).

(5.12)

Then∫
A∪

[
g+(b)− g+(a1, a2)

]
Q(hδa, (a1, a2), db)

=

∞∑
m=0

(m− 1)
[
g(a1)

[
Jm(a1, hδa)− Jm(a2, hδa)

]
+ g(a2)

[
Jm(a2, hδa)− Jm(a1, hδa)

]]
= g(a1)

[
J(a1, hδa)− J(a2, hδa)

]
+ g(a2)

[
J(a2, hδa)− J(a1, hδa)

]
.(5.13)

Therefore, if h tends to 0 and hδa tends to some probability measure µ, then
(by Fubini theorem and (5.13)) the generator Gh in (5.8) has the form

1

2

∫
A

∫
A

g(a1)
[
J(a1, µ)− J(a2, µ)

]
µ(da1), µ(da2)

+
1

2

∫
A

∫
A

g(a2)
[
J(a2, µ)− J(a1, µ)

]
µ(da2), µ(da1)

=

∫
A

∫
A

g(a1)
[
J(a1, µ)− J(a2, µ)

]
µ(da1), µ(da2)

=

∫
A

g(a)
[
J(a, µ)− J(µ, µ)

]
µ(da).

Then the kinetic equation (5.8) has the form of the replicator dynamics in the
weak topology

d

dt

∫
A

g(s)µ(t, da) =

∫
A

g(a)
[
J(a, µ(t))− J(µ(t), µ(t))

]
µ(t, da), (5.14)

for g ∈ C(A).
To prove the approximation Theorem 5.4, below, we need the following

concepts:
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5.3 The replicator dynamics as a deterministic approximation

i) Let L a non-negative function in A. We say that the transition kernel is
L-subcritical if for all b in A∪ and µ in M+(A)∫

A∪

[
L+(b)− L+(a1, a2)

]
Q(ν, (a1, a2), db) ≤ 0.

ii) We say that the transition kernel is L+-bounded (L×-bounded) if for all
(a1, a2) in A2 and µ in M+(A) and some c > 0

Q(µ, (a1, a2)) ≤ c[L(a1) + L(a2)]
(
Q(µ, (a1, a2)) ≤ cL(a1) · L(a2)

)
.

iii) We say that the (ND)-condition is satisfied if the number of individuals
that can be created by a single act of interaction is uniformly bounded by
some number m0, and P is 1+-subcritical (where 1 is a constant function).

Theorem 5.4. Let A be a compact separable metric space, and let {Um}∞m=0

and U be bounded functions that satisfy (5.11) and

∞∑
m=0

∫
A

∫
A

|m− 1||Um(a1, a2)|ν(da1)ν(da2) <∞ ∀ν ∈M+(A). (5.15)

In addition, suppose that the mapping (µ, δ(a1,a2))→ Q(µ, (a1, a2), ·) is contin-
uous in the weak topology, where Q is defined by (5.4) and (5.13). If the family
of initial measures hδa converges weakly to some measure µ (as h → 0), then
there exists a subsequence Zhnδa

t of the family of stochastic process {Zhδa
t }h>0

defined with generator (5.6) (with transition kernel as (5.4)-(5.13)) that con-
verge weakly to the solution µ(·) of the replicator dynamics (5.14).

Proof. We will prove that the kernels Q of the generator (5.7) (where Q is de-
fined by (5.4) and (5.13)) satisfy the hypotheses of Theorem 4.2 in Kolokoltsov
[55].

Let L > 0 be an arbitrary (but fixed) positive number. By (5.4), (5.15), we
have∫
A∪

[
L+(b)−L+(a1, a2)

]
Q(hδa, (a1, a2), db)

= L
[
J(a1, hδa)− J(a2, hδa)

]
+ L

[
J(a2, hδa)− J(a1, hδa)

]
= 0. (5.16)
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5 The replicator dynamics as a deterministic approximation

and

Q(µ, (a1, a2)) =

∞∑
m=0

∫
Am

Qm(µ, (a1, a2), db1 · · · dbm)

=

∞∑
m=0

∫
Am

[
Jm(a1, hδa)− Jm(a2, hδa)

]
δa1(db1)...δa1(dbm)

+

∞∑
m=0

∫
Am

[
Jm(a2, hδa)− Jm(a1, hδa)

]
δa2(db1)...δa2(dbm)

=

∞∑
m=0

m
[[
Jm(a1, hδa)− Jm(a2, hδa)

]
+
[
Jm(a2, hδa)− Jm(a1, hδa)

]]
= 0 (5.17)

Then by (5.16) the kernelQ(µ, (a1, a2), db) is L-subcritical and 1-sub-critical.
By (5.17) the transition kernel is (1 + Lα)+-bounded. The (ND) condition is
satisfied since the number of individuals that can be created by a single act of
interaction is equal to 0. Thus the hypotheses of Theorem 4.2 in Kolokoltsov
[55] are satisfied and the assertion is thru. �

Remark 5.5. Under the conditions of Theorem 5.4, and since the payoff func-
tion U is bounded, from Proposition 3.4 and Theorem 4.1 the replicator dynam-
ics in weak form (5.14) is equal to strong form (4.3). Therefore, there exists
a subsequence Zhnδa

t of the family of stochastic process {Zhδa
t }h>0 defined with

generator (5.6) (with transition kernel as (5.4)-(5.13)) that converge weakly to
the solution µ(·) of the replicator dynamics in the to strong form (4.3).

5.4 Comments

In this chapter we considered the replicator dynamics as a limit of a sequence of
measure-valued Markov process. We used a technique proposed by Kolokoltsov
[55],[56] to proximate a sequence of pure jumps models of binary interaction
(in the space of measure), by means of a deterministic dynamical system.

There are many questions, however, that remain open. For instance, Do we
can have numerical approximation for this measure-valued Markov processes?
This is an important issue for the application of this theory. When the set of
pure strategies is finite, there are other evolutionary dynamics that can be saw
as a limit of a sequence of measure-valued Markov process. Is it true for for
games whit strategies in the space of measure?. An finally, Do The replicator
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5.4 Comments

dynamics in the asymmetric case can be also be approximated by a sequence
of stochastic processes?
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6 Conclusions and suggestion for
future research

This work provides a general framework to study the replicator dynamics for
evolutionary games theory in which the strategy set is a separable metric space.
We analyze the asymmetric and symmetric case, and included examples to
illustrate our results.

For games in the asymmetric case we conclude the follow:

i) Under some conditions there exits the solution for the asymmetric repli-
cator equations(Theorem 3.5) and this solution have special characteris-
tics (Theorem 3.6.) In particular, this conditions are satisfied, when the
payoffs of the players are bounded (Proposition 3.4.)

ii) If µ∗ = (µ∗1, ..., µ
∗
n) is a Nash equilibrium of a normal form games Γ, then

mu∗ is a critical point of the replicator dynamics (Theorem 3.9.)

iii) A strong uninvadable profile (SUP) is a Nash equilibrium (Theorem
3.12.) The SUPs are Nash equilibria where the strategy of each player
is dominant in a certain subset of her strategies set.

iv) If µ∗ is a pure Nash equilibrium and is a SUP, then µ∗ is a stable point
for the replicator dynamics (Theorem 3.4.)

v) Finally, the symmetric replicator dynamic can be deduced from the asym-
metric case (see section 3.2.1.) Therefore, i)-to-iv are true for the sym-
metric case.

In two-players normal form game γs the Symmetric Nash equilibrium can be
rewrite in terms of a strategy call Nash equilibrium strategy (NES). In the same
form the symmetric SUP can be rewrite in terms of a strategy call strongly
uninvadable strategies (SUS). This particular fact, allows obtain more stability
criteria than the asymmetric case. In this case, the replicator dynamics evolves
in a space of signed measures. This allows us to study stability criteria for the
replicator dynamics with respect to different topologies and metrics on a space
of probability measures.
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The conclusions iv) is valid for pure NES and in terms of the total variation
norm ‖ · ‖. Let r be any metric on the set of probability measure P(A), and let
r-SUS be a SUS in terms of r (see Definition 4.3.) This is a important point,
a SUS is a strategy with dominance in a certain subset of strategy set. The
“size” of the subset is determined by the metric r.

For games in the symmetric case we conclude the follow:

vi) For any metric r , if µ∗ is a r-SUS, then µ is a NES (Proposition 4.6.)

vii) If µ∗ is a stable point for the replicator dynamics, then µ∗ is a NES
(Proposition 4.14.)

viii) For any metric r, if µ∗ is a r-SUS, then µ∗ is a stable point for the
replicator dynamics (Theorems 4.8,4.9,4.10.)

iv) Let C and S be the set of the critical and stables points of the replicator
dynamics, respectively. Let N be the set of NESs and r − SUS the set
of SUSs. Then we have the follows contentions (Theorem 4.15)

r − SUS ⊂ S ⊂ N ⊂ C.

x) We also analyze the implications between the different concepts of sta-
bility in diagram (4.18).

xi The replicator dynamics in a measure space can be to approximated by
a sequence of dynamical systems on finite spaces (Theorems 4.19, 4.24.)

xii) The replicator dynamics in a measure space can be to approximated by
a sequence of measure-valued Markov processes (Theorem 5.4.)

As future work for evolutionary games we consider several questions.

a) In symmetric evolutionary games with strategies in the space of mea-
sures, there are stability conditions with different metrics and topologies.
Are these conditions satisfied in the asymmetric case?

b) It would be interesting to investigate if the replicator dynamics with
continuous strategies in the asymmetric case can be approximated, in
some sense, by games with discrete strategies. (This is true for the
symmetric case; see section 4.7.)
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c) Sandholm [89] establishes an important relation between the potential
games and evolutionari dynamics for games with finite set of strate-
gies. Under some conditions, the potential of a normal form game is a
Lyapunov function for the evolutionary dynamics. Cheung [24] make an
extension of this results for symmetric games with strategies in the space
of measures. This result are true for the asymmetric case?

d) For normal form games with finte set of strategies, with the replicator
dynamics we can give a geometric characterization of the set of Nash
equilibria; see Harsanyi [44], Hofbauer and Sigmund [50], Ritzberger [83].
Is this geometric characterization true for games with strategies in the
space of measure?.

e) When the set of pure strategies is finite, Cressman [27] shows that under
some conditions the stability of monotone selection dynamics is locally
determined by the replicator dynamics. Is this true for games with strate-
gies on the space P(A) of probability measures?

f) Another important issue would be to obtain a stability theorem for sev-
eral evolutionary dynamics of games with continuous strategies and an-
alyze their relation with the replicator dynamics. See Hofbauer and
Sigmund [51] (Theorem 14) for games with a finite strategy set A.

g) We considered the replicator dynamics as a limit of a sequence of measure-
valued Markov process. Do we can have numerical approximation for
this measure-valued Markov processes? This is an important issue for
the application of this theory.

h) When the set of pure strategies is finite, there are several evolutionary
dynamics that can be saw as a limit of a sequence of measure-valued
Markov process. Is it true for for games whit strategies in the space of
measure?. An finally, Do The replicator dynamics in the asymmetric
case can be also be approximated by a sequence of stochastic processes?

85





A Appendix

A.1 Technical results for Theorem 3.12

We prove the inequality (3.30) under the hypothesis of Theorem 3.12. Let
η1 = (1− α1)µ, η2 = α1(1− α2)ν, η3 = α1α2κ, thus

η := η1 + η2 + η3.

Also note that, for every i in I, η1
i = (1 − α1)µi, η

2
i = α1(1 − α2)νi and

η3
i = α1α2κi. Then

η = (η1, .., ηn) = (η1
1 + η2

1 + η3
1, ..., η

1
n + η2

n + η3
n).

Since µ∗ is a SUP in the set C, J1(µ∗1, η−1) > J1(η1, η−1). Then using the
notation in (2.3) we have the following implications

I(µ1,η2,η3,...,ηn)U1 > I(η1,η2,η3,...,ηn)U1

⇒

I(µ1,η12 ,η3,...,ηn)U1 + I(µ1,η22 ,η3,...,ηn)U1 + I(µ1,η32 ,η3,...,ηn)U1

> I(η11 ,η
1
2η3,...,ηn)U1 + I(η11 ,η

2
2 ,η3,...,ηn)U1 + I(η11 ,η

3
2 ,η3,...,ηn)U1

+I(η21 ,η
1
2 ,η3,...,ηn)U1 + I(η21 ,η

2
2 ,η3,...,ηn)U1 + I(η21 ,η

3
2 ,η3,...,ηn)U1

+I(η31 ,η
1
2 ,η3,...,ηn)U1 + I(η31 ,η

2
2 ,η3,...,ηn)U1 + I(η31 ,η

3
2 ,η3,...,ηn)U1

⇒

I(µ1,η12 ,η3,...,ηn)U1 + I(µ1,η22 ,η3,...,ηn)U1 + I(µ1,η32 ,η3,...,ηn)U1

> (1− α1)
[
I(µ1,η12 ,η3,...,ηn)U1 + I(µ1,η22 ,η3,...,ηn)U1 + I(µ1,η32 ,η3,...,ηn)U1

]
+ α1(1− α2)

[
I(ν1,η12 ,η3,...,ηn)U1 + I(ν1,η22 ,η3,...,ηn)U1 + I(ν1,η32 ,η3,...,ηn)U1

]
+ α1α2

[
I(κ1,η12 ,η3,...,ηn)U1 + I(κ1,η22 ,η3,...,ηn)U1 + I(κ1,η32 ,η3,...,ηn)U1

]
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⇒

I(µ1,η12 ,η3,...,ηn)U1 + I(µ1,η22 ,η3,...,ηn)U1 + I(µ1,η32 ,η3,...,ηn)U1

> (1− α2)
[
I(ν1,η12 ,η3,...,ηn)U1 + I(ν1,η22 ,η3,...,ηn)U1 + I(ν1,η32 ,η3,...,ηn)U1

]
+ α2

[
I(κ1,η12 ,η3,...,ηn)U1 + I(κ1,η22 ,η3,...,ηn)U1 + I(κ1,η32 ,η3,...,ηn)U1

]
⇒

I(µ1,η12 ,η
1
3 ,...,η

1
n)U1 + I(µ1,η12 ,η

2
3 ,...,η

1
n)U1 + ...+ I(µ1,η12 ,η

3
3 ,...,η

3
n)U1 + ...

+I(µ1,η22 ,η
1
3 ,...,η

1
n)U1 + ...+ I(µ1,η22 ,η

2
3 ,...,η

2
n)U1 + ...+ I(µ1,η22 ,η

3
3 ,...,η

3
n)U1 + ...

+I(µ1,η32 ,η
1
3 ,...,η

1
n)U1 + ...+ I(µ1,η32 ,η

3
3 ,...,η

3
n)U1

> (1− α2)
[
I(ν1,η12 ,η

1
3 ,...,η

1
n)U1 + ...+ I(ν1,η12 ,η

3
3 ,...,η

3
3)U1

+ I(ν1,η22 ,η3,...,ηn)U1 + I(ν1,η32 ,η3,...,ηn)U1

]
+ α2

[
I(κ1,η12 ,η

1
3 ,...,η

1
n)U1 + ...+ I(κ1,η12 ,η

3
3 ,...,η

3
n)U1

+ I(κ1,η22 ,η3,...,ηn)U1 + I(κ1,η32 ,η3,...,ηn)U1

]
⇒

I(µ1,η12 ,η
1
3 ,...,η

1
n)U1 + I(µ1,η22 ,η

2
3 ,...,η

2
n)U1 + I(µ1,η32 ,η

3
3 ,...,η

3
n)U1

> (1− α2)I(ν1,η12 ,η
1
3 ,...,η

1
n)U1 + α2I(κ1,η12 ,η

1
3 ,...,η

1
n)U1 +O(α1)

⇒

(1− α1)n−1I(µ1,µ2,µ3,...,µn)U1

+ αn−1
2 (1− α1)n−1I(µ1,ν2,ν3,...,νn)U1 + αn−1

2 αn−1
1 I(µ1,κ2,κ3,...,κ3n)U1

> (1− α2)(1− α1)n−1I(ν1,µ2,µ3,...,µn)U1

+ α2(1− α1)n−1I(κ1,µ2,µ3,...,µn)U1 +O(α1)

⇒

(1− α2)(1− α1)n−1I(µ1,µ2,µ3,...,µn)U1

+ αn−1
2 (1− α1)n−1I(µ1,ν2,ν3,...,νn)U1 + αn−1

2 αn−1
1 I(µ1,κ2,κ3,...,κ3n)U1

> (1− α2)(1− α1)n−1I(ν1,µ2,µ3,...,µn)U1

− α2(1− α1)n−1
[
I(µ1,µ2,µ3,...,µn)U1 − I(κ1,µ2,µ3,...,µn)U1

]
+O(α1),
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and (3.30) follows. The inequality (3.32) is obtain Similarly.

A.2 Technical issues for metrics on P(A)

Proposition A.1. Let (A, r) be a separable metric space. Then the Prokhorov
metric rp and the bounded Lipschitz metric rbl metrize the weak convergence,
i.e., for any sequence {µn} ⊂ P(A), the following statements are equivalent;

i) µn converges in the weak topology,

ii) rp(µn, µ)→ 0,

iii) rbl(µn, µ)→ 0.

Moreover, for any µ and ν in P(A)

1

3
[rp(µ, ν)]2 ≤ rbl(µ, ν) ≤ 2rp(µ, ν).

Proof. See Shiryaev [94] chapter 3. �

Proposition A.2. Let (A, r) be a Polish space and 1 ≤ p < ∞. The Lp-
Wasserstein metric rwp metrizes the weak convergence on Pp(A), i.e., for any
sequence {µn} ⊂ Pp(A) and {µ} ⊂ P(A), the following conditions are equiva-
lents

i) µn converges in the weak topology,

ii) rwp(µn, µ)→ 0.

Moreover, if A is bounded, then the Lp-Wasserstein metric rwp, the Prokhorov
metric rp , the bounded Lipschitz metric rbl and the Kantorovich-Rubinstein
metric rkr all metrize the weak convergence of probability measures in P(A).
Moreover, if p = 1 then

1

3
[rp(µ, ν)]2 ≤ rbl(µ, ν) ≤ rkr(µ, ν) = rw(µ, ν).

Proof. See Shiryaev [94] chapter 3, and Givens and Shortt [42]. �

Proposition A.3. Let A be a separable metric space. Let µ and ν in P(A),
with ν << µ. Then

‖µ− ν‖ ≤ 2[K(µ, ν)]
1
2 .

Moreover, if A is a bounded (with diameter C > 0) Polish space, then

rw(µ, ν) ≤ C‖µ− ν‖ ≤ 2C[K(µ, ν)]
1
2 .
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Proof. See Reiss [81] chapter 3, and Villani [101] chapter 6. �

Proposition A.4. Let (A, r) a separable metric space and 1 ≤ p < ∞. If µ
and ν in P(A), then

rwp(µ, ν) ≤ 2
1
q

[∫
A

[r(a, a0)]p|µ− ν|(dx)

] 1
p

,
1

p
+

1

q
= 1.

In particular, if A is bounded with diameter C > 0, then

rw(µ, ν) ≤ C‖µ− ν‖.

Proof. Villani [101] chapter 6. �

A.3 Proof of Lemmas 4.20, 4.24, 4.25

A.3.1 Proof of Lemma 4.20

We have the following inequalities

d‖µ(t)‖
dt

=
d

dt
sup
‖f‖≤1

∣∣∣∣∫
A

f(a)µ(t, da)

∣∣∣∣
= lim

ε→0

1

ε

[
sup
‖f‖≤1

∣∣∣∣∫
A

f(a)µ(t+ ε, da)

∣∣∣∣− sup
‖f‖≤1

∣∣∣∣∫
A

f(a)µ(t, da)

∣∣∣∣
]

≤ lim
ε→0

sup
‖f‖≤1

∣∣∣∣1ε
[∫

A

f(a)µ(t+ ε, da)−
∫
A

f(a)µ(t, da)

]∣∣∣∣
= ‖µ′(t)‖.

A.3.2 Proof of Lemma 4.24

We have the following inequalities

d‖µ(t)‖kr
dt

=
d

dt
|µ(t, A)|+ d

dt
sup
‖f‖L≤1

f(a0)=0

∫
A

f(a)µ(t, da)

= lim
ε→0

1

ε

[
|µ(t+ ε, A)| − |µ(t, A)|

]
+ lim

ε→0

1

ε

 sup
‖f‖L≤1

f(a0)=0

∫
A

f(a)µ(t+ ε, da)− sup
‖f‖L≤1

f(a0)=0

∫
A

f(a)µ(t, da)
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≤ lim
ε→0

1

ε
|µ(t+ ε, A)− µ(t, A)|

+ lim
ε→0

sup
‖f‖L≤1

f(a0)=0

1

ε

[∫
A

f(a)µ(t+ ε, da)−
∫
A

f(a)µ(t, da)

]
= ‖µ′(t)‖kr (by Remark 4.23).

A.3.3 Proof of Lemma 4.25

For any a, b in A let

‖U(a, ·)‖L := sup
c,d∈A

|U(a, c)− U(a, d)|
ϑ∗((a, c), (a, d))

≤ ‖U‖L, and

‖U(·, b)‖L := sup
c,d∈A

|U(c, b)− U(d, b)|
ϑ∗((c, b), (d, b))

≤ ‖U‖L.

Then
|J(µ, µ)− J(ν, ν)|

≤
∣∣∣∣∫
A

∫
A

U(a, b)µ(da)µ(db)−
∫
A

∫
A

U(a, b)ν(da)µ(db)

∣∣∣∣
+

∣∣∣∣∫
A

∫
A

U(a, b)µ(db)ν(db)−
∫
A

∫
A

U(a, b)ν(db)ν(da)

∣∣∣∣
=

∣∣∣∣‖U(a, ·)‖L
∫
A

∫
A

U(a, b)

‖U(a, ·)‖L
[µ− ν](da)µ(db)

∣∣∣∣
+

∣∣∣∣‖U(·, b)‖L
∫
A

∫
A

U(a, b)

‖U(·, b)‖L
[µ− ν](db)ν(da)

∣∣∣∣
≤ 2‖U‖L‖µ− ν‖kr. (A.1)

Similary

|J(a, µ)− J(a, ν)| ≤ ‖U‖L‖µ− ν‖kr. (A.2)

Using (4.31), (A.1) and (A.2) we have

‖F (µ)− F (ν)‖kr = sup
‖f‖L≤1

f(a0)=0

∫
A

f(a)[F (µ)− F (ν)](da)

≤ sup
‖f‖L≤1

f(a0)=0

∫
A

f(a)|J(a, µ)|[µ− ν](da)
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+ sup
‖f‖L≤1

f(a0)=0

∫
A

f(a)|J(a, µ)− J(a, ν)|ν(da)

+ sup
‖f‖L≤1

f(a0)=0

∫
A

f(a)|J(µ, µ)|[µ− ν](da)

+ sup
‖f‖L≤1

f(a0)=0

∫
A

f(a)|J(µ, µ)− J(ν, ν)|ν(da)

≤ ‖U‖‖µ− ν‖kr + ‖U‖L‖µ− ν‖kr sup
‖f‖L≤1

f(a0)=0

∫
A

f(a)ν(da)

+ ‖U‖‖µ− ν‖kr + 2‖U‖L‖µ− ν‖kr sup
‖f‖L≤1

f(a0)=0

∫
A

f(a)ν(da)

≤
[
2‖U‖+ 3C‖U‖L

]
‖µ− ν‖kr.
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