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Universidad Nacional de Colombia

Colombia





Commitee in charge

Dr. Carlos Gabriel Pacheco González
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CIMAT - Zacatecas

Dr. Wilson A. Zúñiga Galindo
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Abstract

In this thesis we develop a Cauchy problem for a parabolic type equation on different ultra-

metric groups which appear as a completion of Q. First, for each finite set S of prime num-

bers there exists a unique completion QS of Q, which is a second countable, locally compact

and totally disconnected topological ring. This topological ring has a natural ultrametric,

‘which its associated tree has bounded ramification’, that allows to define an additive invari-

ant positive selfadjoint pseudodifferential unbounded operator Dα and to study an abstract

heat equation on the Hilbert space L2(QS). The fundamental solution of this equation is a

normal transition function of a Markov process on QS.

Later in this work, a class of additive invariant positive selfadjoint pseudodifferential

unbounded operators on L2(Af), where Af is the ring of finite adéles of the rational numbers,

is considered to state a Cauchy problem of parabolic–type equations. These operators come

from a set of additive invariant non-Archimedean metrics on Af . The fundamental solutions

of these parabolic equations determines normal transition functions of Markov processes on

Af . Using the fractional Laplacian on the Archimedean place, R, a class of parabolic–type

equations on the complete adèle ring, A, is obtained.

The techniques developed here provides a general framework for these kind of problems

on different locally compact abelian groups.

This dissertation is based on the the following articles:

• A Heat Equation on Some Adic Completions of Q and Ultrametric Analysis.

p–Adic Numbers, Ultrametric Analysis and Applications 9, no. 3, 165–182, 2017.

• Pseudodifferential Operators and Markov Processes on Adèles.

p–Adic Numbers, Ultrametric Analysis and Applications 11, no. 2, 89–113, 2019.
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Resumen

En esta tesis se desarrolla el problema de Cauchy para una ecuación de tipo parabólico

sobre diferentes grupos ultramétricos que son una completación de Q. Primero, para cada

conjunto finito de números primos S existe una única completación QS de Q, que es un

anillo topológico segundo contable, localmente compacto y totalmente disconexo. Este anillo

topológico tiene una ultramétrica natural, ‘asociada a un árbol de ramificación acotada’, que

permite definir un operador pseudodiferencial no acotado, positivo y autoadjunto Dα para

estudiar una ecuación abstracta del calor en el espacio de Hilbert L2(QS). La solución

fundamental de esta ecuación es una función de probabilidades de transición de un proceso

de Markov en QS.

Más adelante, en este trabajo, se considera una clase de operadores pseudodiferenciales no

acotados, positivos y autoadjuntos en L2(Af ), donde Af es el anillo de adeles de los números

racionales, para establecer un problema de Cauchy para ecuaciones de tipo parabólico. Estos

operadores provienen de un conjunto de métricas no arquimedianas e invariantes por adición

definidas en Af . La soluciones fundamentales de estas ecuaciones parabólicas determinan

funciones de probabilidades de transición de procesos de Markov en Af . Usando el Lapla-

ciano fraccionario en el lugar arquimediano, R, se obtiene una clase de operadores de tipo

parabólico en el anillo completo de adeles A.

Las técnicas aqúı desarrolladas proporcionan un marco general para este tipo de proble-

mas en diferentes grupos abelianos localmente compactos.

Esta disertación se basa en los siguientes art́ıculos:

• A Heat Equation on Some Adic Completions of Q and Ultrametric Analysis.

p–Adic Numbers, Ultrametric Analysis and Applications 9, no. 3, 165–182, 2017.

• Pseudodifferential Operators and Markov Processes on Adèles.

p–Adic Numbers, Ultrametric Analysis and Applications 11, no. 2, 89–113, 2019.
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Overview

Many of the physical phenomena, whether in fluid dynamics, electricity, magnetism, me-

chanics, optics or heat flow, can be described using partial differential equations and the as-

sociated dynamical systems and stochastic processes. We can then argue that such equations

are fundamental in Mathematical Physics and that their understanding and computational

simulations are of great importance for the development of science and technology.

Through history the mathematical techniques used by physicists have changed according

to their needs. In recent years the p–adic analysis has received a lot of attention and the ring

of the p–adic integers, Zp, and the field of the p−adic numbers, Qp, both have been used in

some models to the modern physics, giving interesting results and expanding the research on

differential equations on Qn
p (see e.g., [63], [41] and [73] and the references therein). The field

of p-adic numbers, Qp, where p is a fixed prime number, extends the arithmetic of rational

numbers in a different way than real numbers and complex numbers do. This extension is

obtained from a different interpretation of the concept of absolute value, | · |p, which allows

to define an ultrametric over Q. Intuitively, two integers numbers are close if their difference

is divisible by a high power of p, the bigger the power the closer the numbers are.

The investigations of ultrametic spaces in physics have been motivated mainly by two

ideas. The first comes from particle physics, in this regard, Roger Penrose mentions (see [22],

Ch. 7): “The view of space-time as forming a continuum would imply that a continuous

nature would persist, no matter how much a system is magnified. But it is not all clear

that continuous description are really appropriate on a scale small enough that continuum

phenomena become important. For example, at a scale of 10−13 cm (approximately the

radius of an elementary particle), the mere attempt at localization of the position of a

particle to that accuracy will, as a consequence of the uncertainly principle, imply the

probable ocurrence of a very large momentum, with the implication that new particles are

created, some of wich may be indistinguishable from the original particle. Thus the concept

of “position”for the original particle becomes oscured. More alarming, moreover, is the

picture presented if we allow ourselves to discuss phenomena at a dimension of the order of

10−33 cm. At such a dimension, the quantum fluctuations in the curvature of space-time (if

both present-day quantum theory and gravitation theory can be accurately extrapoled to

this degree) would be large enough to produce alterations in topology. Thus, the view of

space-time at this dimension would be some kind of chaotic linear superposition on different

1



topologies – a picture in no way resembling a smooth manifold.” The first conjecture is due

to I. Volovich, he surmised that in smaller distances than Planck’s length, spacetime has a

non-Archimedean p–adic structure (see e.g., [64], [65] and [66] and the references therein). In

1989 Yuri Manin conjectured that, on the fundamental level our world is neither real, nor p–

adic, it is adelic (see [44]). In 1999, M. V. Altaisky and B. G. Sidharth affirmed the following

regarding the structure of spacetime (see [6]): “The situation is much like the structure of

Qp, but is not completely identical to it. There is also the question of how distant galaxies of

our present Universe could be related to a non-Archimedean p–adic toy model. The answer

may be as follows. The present state of the Universe is a result of expansion which has

taken place after the Big Bang. Before the Big Bang it might have been only a network

of relations between some primary objects emerged from the primary One. Then, due to

multiplicative processes the number of the objects (particles) increased greatly, but some

of the relations between them were inherited and manifest themselves even in large scale

structures. The distance between different objects, even between galaxies, may therefore be

measured not only by travelling light waves, but also by the level of their common ancestor

in the evolution process.” In this work, they propose to abstract the general characteristics

of Qp to propose a model of spacetime.

The second idea comes from statistical physics, it argues that the not exponential nature

of the relaxation processes in glasses, macromolecules and proteins, is a consequence of the

hierarchical structure of the state space, which can be connected with p-adic structures (see

e.g., [7], [12], [13], [14], [32] y [54] and the references therein).

In addition, ultrametric spaces have been used in finance, particularly in the study of

financial markets (see [18], [23], [24], [45], [46], [48], and the references therein), in data

analysis (see [49], [50] and the references therein) and in taxonomy (see [42], [9] and the

references therein).

One of the subjects that has attracted much of attention is the theory of Markov semi-

groups and pseudodifferential operators over the n–dimensional p–adic space Qn
p or more

general local fields, has been deeply explored by several authors (see e.g., [1, 5, 41, 40, 63, 68,

70, 73, 26] and the references therein). In particular, several analogous heat equations on Qn
p

are now well understood: the fundamental solutions of these equations give rise to transition

functions of Markov processes on Qn
p , which are non–Archimedean counterparts to the clas-

sical Brownian motion. Additionally, the theory of stochastic processes and pseudodifferen-

tial equations on more general second countable locally compact topological groups has also

been studied intensively during the last thirty years (e.g. [10, 31, 51, 56, 69]). In particular,

the research of Markov semigroups and pseudodifferential operators over the ring of adèles

A = R×Af has also attracted considerably attention (see [20, 36, 38, 40, 44, 61, 62, 68, 71, 72]

and the references therein).

This thesis contributes to the study of the pseudodifferential equations and stochastic

processes over ultrametric spaces and locally compact abelian groups.
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The first part of this work deals with the following problem: given any fixed finite set S of

distinct prime numbers, the direct product ring QS =
∏

p∈S Qp is a second countable, locally

compact, totally disconnected, commutative, topological ring which as well is a completion

of Q with respect to non-Archimedean metric. This non-Archimedean metric is not releated

with the maximum non–Archimedean metric on QS but it allows to state the hole analytical

properties of the polyadic ring QS. The ring QS contains, as a maximal compact and open

subring, the direct product ring ZS =
∏

p∈S Zp, where Zp is the ring of p–adic integers. As

a topological group, it has a Haar measure dµ normalised to be a probability measure on

ZS , it is selfdual in the sense of Pontryagin and there exists an additive character χ(·) such

that x 7→ χ(x·) gives an explicit isomorphism. Using this identification, the subgroup ZS

coincides with its own annihilator.

Let us briefly describe the ultrametric of QS: let ψ(n) be the second Chebyshev function

(see Section 2.1.2). This function determines a “symmetric” filtration of QS by open and

closed subgroups:

eψ(m)ZS ⊂ eψ(n)ZS ⊂ ZS ⊂ eψ(−n)ZS ⊂ eψ(−m)ZS (m ≥ n ≥ 1).

There is a unique additive invariant ultrametric d on QS such that it has the filtration above

as the set of balls centred at zero and the Haar measure of any ball is equal to its radius.

The ultrametric d leads to define a pseudodifferential operator Dα on the Hilbert space

L2(QS). The operator −Dα is a positive selfadjoint unbounded operator and it allows to

state an abstract Cauchy problem on L2(QS) for the classical homogeneous heat equation.

This problem is well posed and the normalization property of the ultrametric d allows to

give classical bounds of the heat kernel Z(x, t), using properties of the Archimedean Gamma

function, and to find and explicit solution of this problem.

The main result on the solution of the Cauchy problem reads as follows (see Section 2.3

for details)

Theorem 2.3.9: If f is a complex valued square integrable function on QS , which belongs

to the domain of −Dα, the Cauchy problem




∂u(x,t)
∂t

+Dαu(x, t) = 0, x ∈ QS, t ≥ 0,

u(x, 0) = f(x),

has a classical solution u(x, t) determined by the convolution of f with the heat kernel

Z(x, t). In addition, Z(x, t) is the transition density of a time and space homogeneous

Markov process which is bounded, right–continuous and has no discontinuities other than

jumps.

The second part of this manuscript deals with the following problem: the study of

a certain class of parabolic-type pseudodifferential equations and their associated Markov

stochastic processes on the complete adèle group A of the rational numbers Q. This lo-

cally compact topological ring can be factorised as A = R × Af , where Af is the totally

disconnected part of A and R its connected component at the identity.

3



Let us briefly describe our construction. The ring Af contains, as a maximal compact

and open subring, the complete direct product
∏

p∈S Zp, where Zp is the ring of p–adic

integers and P denotes the set of all prime numbers. By the Chinese remainder theorem,

the product
∏

p∈S Zp is isomorphic to the profinite completion Ẑ of the integers. Starting

with Ẑ, it is possible to recover Af as the inductive limit

Af = lim−→
n∈N

1

n
Ẑ,

which can also be seen to be the ring of fractions of Ẑ with respect to the natural numbers N =

{1, 2, 3, . . .}. Let (eρ(n))∞n=0 be a strictly increasing sequence of natural numbers, beginning

with one, totally order by division and cofinal with the natural numbers. In other words

eρ(0) = 1, eρ(n) < eρ(n+1), eρ(n+1) is divisible by eρ(n), and given any positive integer n,

there exists an ln such that eρ(ln) is divisible by n. This sequence determines a “symmetric”

filtration of Af by open and compact subgroups:

{0} ⊂ eρ(m)Ẑ ⊂ eρ(n)Ẑ ⊂ Ẑ ⊂ e−ρ(n)Ẑ ⊂ e−ρ(m)Ẑ ⊂ Af (m ≥ n ≥ 1).

The intersection of all these subgroups is the trival group and their union is Af . There is

a unique additive invariant ultrametric dρ on Af such that it has the filtration above as

the set of balls centred at zero and such that the Haar measure of any ball is equal to its

radius. It follows that dρ is an additive invariant ultrametric which is also invariant under

multiplications by units of the ring Ẑ. Any of these ultrametrics portrays Af as polyadic

ring ([3, 26, 34, 37]).

The ultrametric dρ leads to define, for each α > 0, a pseudodifferential operator Dα
ρ on

the Hilbert space L2(Af). The operator −Dα
ρ is a positive selfadjoint unbounded operator

and allows us to state an abstract Cauchy problem on L2(Af ), analogue to the classical

homogeneous heat equation. This problem is well–posed and the values chosen for the

ultrametric dρ in giving some bounds of the heat kernel Zα
ρ (x, t) and finding an explicit

solution of this problem.

To conclude, given 0 < β ≤ 2 and the fractional Laplacian, Dβ
∞, in L2(R), a positive self-

adjoint pseudodifferential operator Dα,β
ρ = Dα

ρ +Dβ
∞ on L2(A), is defined. By construction,

any of these operators are invariant under translations. The following theorem encloses the

results of this writing.

Theorem 3.3.3: If f is any complex valued square integrable function on Dom(Dα,β
ρ ),

then the Cauchy problem





∂u(x,t)
∂t

+Dα,β
ρ u(x, t) = 0, x ∈ A, t > 0,

u(x, t) = f(x)

has a solution u(x, t) determined by the convolution of f with the heat kernel Z(x, t).

Moreover, Z(x, t) is the transition density of a time and space homogeneous Markov process

which is bounded, right–continuous and has no discontinuities other than jumps.
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The techniques developed here are different from the well known ones for Qn
p since they

have a more geometrical point of view. For this reason, the method carried out here applies

in the general case of a selfdual, second countable, locally compact, Abelian, topological

group G with a selfdual filtration {Hn}n∈Z by compact and open subgroups, such that the

indices [Hn : Hn−1] are uniformly bounded. At the end of this work it is shown how to

construct many examples of these groups. (See chapter 4 for details.)

It should be pointed out that numerous descriptions of pseudodifferential equations and

Markov processes have been defined and elaborated on other locally compact topological

groups related to Q, such as the finite adèle ring Af and the complete adèle ring A, as

documented in [20], [38], [73] and [72], among others.

In [20], Samuel Estala and Manuel Cruz introduces several rotation and additive in-

variant ultrametrics on the finite adèle ring Af of the rational numbers Q. With these

non-Archimedean metrics at hand they define a wide class of rotation and additive invariant

Markov processes on Af . In [72], Markov processes on the ring of adeles are constructed,

as the limits of Markov chains on some countable sets consisting of subsets of the direct

product of real and p-adic fields. In both articles they developed the technique presented in

[4], where Albeverio and Karwowski gave a construction of p–adic valued Markov processes

associated to any sequence ap(M)M∈Z of non-negative numbers satisfying

ap(M) ≥ ap(M + 1) for every M ∈ Z

and

lim
M→∞

ap(M) = 0.

It is performed by constructing Markov chains on the set of p–adic balls of each fixed radius,

and take limits of the chains as the radius gets to 0. However, in this thesis, the fundamental

solutions of parabolic equations determines normal transition functions of Markov processes

on QS, Af and A.

In [38], A.Y. Khrennikov and Y.V. Radyno define an operator of a multiplication on

almost everywhere finite measurable function |ξ|α:

Mα : L2(Af )→ L2(Af ) : ϕ(ξ) 7→ |ξ|
αϕ(ξ),

where ξ = (ξ2, ξ3, ..., ξp, ...) ∈ Af , α = (α2, α3, ..., αp, ...) ∈ R∞ and

|ξ|α =
∏

p

|ξp|
αp
p .

In this thesis, for α > 0, we consider the pseudodifferential operator

Dα
ρ : Dom(Dα

ρ ) ⊂ L2(Af)→ L2(Af)

defined by the formula

Dα
ρφ(x) = F

−1
ξ→x[‖ξ‖

α
ρFx→ξ[f ]],

5



every ultrametric (see section 3.1.1)

dρ(x, y) = e−ρ(ordρ(x−y))

induces a function given by

‖x‖ρ = e−ρ(ordρ(x)) (x ∈ Af).

In [61], Sergii Torba and Wilson Zuñiga introduce a metric in Af as follows: they define

a function

‖x‖ :=

{
‖x‖0 if x ∈

∏
p Zp

‖x‖1 if x /∈
∏

p Zp

for arbitrary x ∈ Af , where

‖x‖0 := max
p

|xp|p
p

and

‖x‖1 := max
p
|xp|p.

So the metric in Af is the function

ρ(x, y) := ‖x− y‖, x, y ∈ Af .

The range of values of the function ρ coincides with the set {0} ∪ {pj : p is prime, j ∈

Z \ {0}}. In their work, the following calculations are obtained

B(0, 1/2) =
∏

p

Zp and vol

(
∏

p

Zp

)
= 1.

In this thesis, we use a set of non-Archimedean metrics on Af , defined in [20], that have

the following properties:

• They are invariant under translations and multiplication by units. In particular, the

group of translations of Af acts transitively on the set of balls of the same radius.

• The maximal compact and open subring
∏

p Zp coincides with the unit ball centred at

zero.

• If the Haar measure on Af is normalized to be a probability measure on
∏

p Zp, then

the diameter of any ball is equal to its Haar measure.

The range of values of these metrics coincides with (ρ(n))∞n=0, a sequence defined by a

strictly increasing sequence of natural numbers (eρ(n))∞n=0, which is totally ordered by division

and cofinal with the natural numbers, and with eρ(0) = 1.

In both writings, a class of additive invariant positive selfadjoint pseudodifferential un-

bounded operators on L2(Af), where Af is the ring of finite adéles of the rational numbers,

is considered to state a Cauchy problem of parabolic–type equations. These operators come

from a set of non-Archimedean metrics on Af . The set {0} ∪ {pj : p is prime, j ∈ Z \ {0}}

cannot be defined by one of such sequences (eρ(n))∞n=0, so the two investigations are different.

6



Chapter 1

Preliminaries

In this chapter, we review some basic elements of the theory of p–adic numbers Qp as well

as the relevant function spaces defined on Qp and some aspects of the Fourier analysis on

this space. For a comprehensive introduction to these subjects we quote [63].

1.1 The field of p–adic numbers

Let N = {1, 2, . . .} be the set of natural numbers and let P be the set of prime numbers. Fix

a prime number p ∈ P. If x is any nonzero rational number, it can be written uniquely as

x = pk
a

b
, with p not dividing the product ab and k ∈ Z. The function

|x|p :=




p−k if x 6= 0,

0 otherwise,

is a non–Archimedean absolute value on Q. The field of p–adic numbers Qp is defined as the

completion of Q with respect to the distance induced by |·|p.

Any nonzero p–adic number x has a unique representation of the form

pγ
∞∑

i=0

aip
i,

where γ = γ(x) ∈ Z, ai ∈ {0, 1, . . . , p − 1} and a0 6= 0. The value γ, with γ(0) = +∞, is

called the p–adic order of x. Any series of the above form converges in the topology induced

by the p–adic metric.

The fractional part of a p–adic number x is defined by

{x}p =




pγ
∑−γ−1

i=0 aip
i if γ < 0,

0 if γ ≥ 0.

The field Qp is a locally compact topological field. The unit ball

Zp = { x ∈ Qp : |x|p ≤ 1 }
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is the ring of integers and the maximal compact and open subring of Qp. Denote by dx

the Haar measure of the topological Abelian group (Qp,+) normalized to be a probability

measure on Zp.

The algebraic and topological properties of the ring Zp and the field Qp can be expressed,

respectively, by an inductive and a projective limit

Zp = lim←−
l∈N∪{0}

Zp/p
lZp, Qp = lim−→

l∈N∪{0}

p−lZp. (1.1)

In addition to the limits above, to the ring Zp and the field Qp, there correspond, respec-

tively, an infinite rooted tree T (Zp) and an extended tree T (Qp), both trees with constant

ramification index p. The endspaces of these trees are Zp and Qp ∪ {∞}, respectively.

1.1.1 Bruhat-Schwartz space.

A function φ : Qp −→ C is locally constant if for any x ∈ Qp, there exists an integer ℓ(x) ∈ Z

such that

φ(x+ y) = φ(x), for all y ∈ Bℓ(x),

where Bℓ(x) is the closed ball with centre at zero and radius pℓ(x).

The set of all locally constant functions of compact support on Qp forms a C–vector

space denoted by D(Qp). The C–vector space D(Qp) is the Bruhat–Schwartz space of Qp and

an element φ ∈ D(Qp) is called a Bruhat–Schwartz function (or simply a test function) on Qp.

If φ belongs to D(Qp) and its not zero everywhere, there exists a largest ℓ = ℓ(φ) ∈ Z

such that, for any x ∈ Qp, the following equality holds

φ(x+ y) = φ(x), for all y ∈ Bℓ.

This number ℓ is called the parameter of constancy of φ.

Denote by Dℓk(Qp) the finite dimensional vector space consisting of functions with pa-

rameter of constancy is greater or equal than ℓ and whose support is contained in Bk.

A sequence (fm)m≥1 in D(Qp) is a Cauchy sequence if there exist k, ℓ ∈ Z and M > 0

such that fm ∈ Dℓk(Qp) if m ≥M and (fm)m≥M is a Cauchy sequence in Dℓk(Qp). That is,

Dℓ(Qp) = lim−→
k

Dℓk(Qp) and D(Qp) = lim−→
ℓ

Dℓ(Qp).

With this topology the space D(Qp) is a complete locally convex topological algebra over

C. It is also a nuclear space because Dℓ(Qp) is the inductive limit of countable family of

finite dimensional algebras and D(Qp) is the inductive limit of countable family of nuclear

spaces Dℓ(Qp).

For each compact set K ⊂ Qp, let D(K) ⊂ D(Qp) be the subspace of test functions whose

support is contained in K. The space D(K) is dense in C(K), the space of complex–valued

continuous functions on K.

8



1.1.2 Fourier Analysis on Qp.

An additive character of the field Qp is defined as a continuous function χ : Qp −→ C

such that χ(x + y) = χ(x)χ(y) and |χ(x)| = 1, for all x, y ∈ Qp. The function χp(x) =

exp(2πi{x}p) defines a canonical additive character of Qp which is trivial on Zp and not

trivial outside Zp. In fact, all characters of Qp are given by χp,ξ(x) = χp(ξx) with ξ ∈ Qp.

The Fourier transform of a test function φ ∈ D(Qp) is given by the formula

Fp[φ](ξ) = φ̂(ξ) =

∫

Qp

φ(x)χp(ξx)dx, (ξ ∈ Qp).

The Fourier transform is a continuous linear isomorphism of the space D(Qp) onto itself

and the inversion formula holds:

φ(x) =

∫

Qp

φ̂(ξ)χp(−xξ)dξ (φ ∈ D(Qp)).

The Parseval – Steklov equality reads as:
∫

Qp

φ(x)ψ(x)dx =

∫

Qp

φ̂(ξ)ψ̂(ξ)dξ, (φ, ψ ∈ D(Qp)).

Remark 1.1.1. From expressions (1.1) or the description of Qp as collection of endpoints

of the tree T (Qp), it follows that the Hilbert space L2(Qp) has a denumerable Hilbert base,

which is an analogous of a wavelet base, and therefore it is a separable Hilbert space (see e.g.

[5]).

Remark 1.1.2. The extended Fourier transform F : L2(Qp) −→ L2(Qp) is an isometry of

Hilbert spaces and the Parseval – Steklov identity holds on L2(Qp).

1.2 The finite adèle ring Af

The prevailing definition of the finite adèle ring Af of the rational numbers Q is given by

the restricted direct product of the fields Qp, with respect to the maximal compact and open

subrings Zp. That is to say,

Af =

{
(xp)p∈P ∈

∏

p∈P

Qp | xp ∈ Zp for all but finitely many primes p ∈ P

}
.

The restricted direct product topology on Af is described as follows. Let S ⊂ P be a

finite set of prime numbers. The space of S–adèles of the rational numbers Q is the product

ring

AS =
∏

p∈S

Qp ×
∏

p/∈S

Zp.

The ring AS with the Tychonoff product topology is a second countable locally compact

topological ring and contains
∏

p∈S Zp as a maximal, compact and open subring. For each
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finite set of primes S, AS is a subring of Af and Af =
⋃
S AS, where the union is taken

over all finite subsets S of P. The restricted direct product topology on the ring Af is the

topology of the inductive limit

Af = lim−→
S⊂P

|S|<∞

AS,

which essentially states that AS is open in Af . A fundamental system of compact and open

neighbourhoods of zero for the restricted direct product topology of Af is given by

∏

p∈S

Up ×
∏

p/∈S

Zp,

where S is a finite subset of P and Up is a compact and open subset in Qp which contains

0 ∈ Qp, for all p ∈ S. It follows that a base for the topology of Af is the family of compact

and open subsets

N =

{
x+ y

∏

p∈S

Zp | x, y ∈ Af and y invertible

}
.

In summary, Af , with the restricted direct product topology, is a second countable and

totally disconnected locally compact topological ring. The subring
∏

p∈S Zp is the maximal,

compact and open subring of Af . The Haar measure dµ of Af is usually normalized to be

a probability measure on
∏

p∈S Zp, i.e., dµ =
∏

p∈P dxp. The ring Af is the smallest locally

compact topological ring which contains each Qp.

There is an additive character χ(x) on the totally disconnected Abelian group Af , which

is trivial on Ẑ and not trivial outside Ẑ, given by

χ(x) =
∏

p

χp(xp),
(
x = (x2, . . . , xp, . . .) ∈ Af

)
,

where χp(xp) is the canonical character of Qp which is trivial on Zp and not trivial outside

Zp. Recall that these characters are given by χp(xp) = e2πi{xp}p , where {xp}p is the p–adic

fractional part of xp. Since Qp is selfdual, it follows that Af is also selfdual.

Remark 1.2.1. It is worth to notice that

χ(x) = e2πi{x},

where {x} =
∑

p∈P{xp}p is the unique rational number in [0, 1) such that x−{x} ∈
∏

p∈S Zp.
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Chapter 2

A Heat Equation on some Adic

Completions of Q and Ultrametric

Analysis

This chapter introduces the ringQS and an ultrametric onQS invariant under translations by

elements of QS and under multiplication by units of ZS. We will describe QS as topological

ring itself, that allows to define an additive invariant positive selfadjoint pseudodifferential

unbounded operators Dα and to study an abstract heat equation on the Hilbert space

L2(QS). The fundamental solution of this equation is a normal transition function of a

Markov process on QS.

2.1 The S–adic ring of Q

2.1.1 The adic ring QS

Fix a finite subset S ⊂ P and define QS as the direct product

QS =
∏

p∈S

Qp.

The Tychonoff topology and the componentwise operations provide QS with a structure

of a topological ring. The topological ring QS is commutative, second countable, locally

compact and totally disconnected. The maximal compact and open subring of QS is the

direct product ring ZS =
∏

p∈S Zp.

The additive group (QS,+) is a locally compact Abelian group and therefore it has a

Haar measure dµ which can be normalized to be a probability measure on ZS . The measure

dµ can be expressed in terms of the measures dxp on the groups (Qp,+) as the direct product

measure

dµ =
∏

p∈S

dxp.
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With regard to characters, there is a canonical additive character χ on QS, which is

trivial on ZS and not trivial outside ZS, given by

χ(x) =
∏

p∈S

χp(xp),
(
x = (xp)p∈S ∈ QS

)
,

where χp(xp) is the canonical character of Qp. Recall that these characters are given by

χp(xp) = e2πi{xp}p, where {xp}p is the p–adic fractional part of xp.

For ξ ∈ QS , the application

χξ(x) = χ(ξ · x) =
∏

p∈S

χp(ξpxp),
(
ξ = (ξp)p∈S ∈ QS

)
,

defines a character on QS. Moreover, since QS is a direct product of some p-adic fields, any

arbitrary character on QS has the form χξ, for some ξ ∈ QS. Therefore QS is a selfdual

group with isomorfism given by ξ 7→ χξ.

Recall that the annihilator of a compact and open subgroup H of QS is the set of

characters that are trivial in H . From the expression of the characters on QS, the relation

AnnQS(Bn) = B−n,

where AnnQS(Bn) is the annihilator of Bn in QS, holds. In particular, ZS coincides with its

own annihilator.

Remark 2.1.1. For the scope of this work the relevant properties of QS are that is a topo-

logical ring which is second countable, locally compact, and totally disconnected. In addition,

as a topological group, QS is selfdual.

2.1.2 An ultrametric on QS

Let us introduce an ultrametric d on QS compatible with its topology, making (QS, d) a

complete ultrametric space. The set of rational numbers Q is diagonally embedded in QS

with dense image. In this sense, the ring QS can be thought of as an S–completion of Q

(see [16] for a description of this topology on the ring of integer numbers Z).

We start by defining two arithmetical functions which are related to the set S and similar

to the second Chebyshev and von Mangoldt functions (see e.g., [8]). For any natural number

n, write

Λ(n) = ΛS(n) =




log p if n = pk for some p ∈ S and integer k ≥ 1,

0 otherwise.

Likewise, let ψ(n) denote the function implicitly given by

eψ(n) = eψS(n) = lcm
{
pl ≤ n : p ∈ S, l ∈ N ∪ {0}

}
(n ∈ N).
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These arithmetical functions are related by the equations

ψ(n) =

n∑

k=1

Λ(k) and eψ(n) =

n∏

k=1

eΛ(k) (n ∈ N).

For any integer number n, define

ψ(n) =





n
|n|
ψ(|n|) if n 6= 0,

0 if n = 0,

and

Λ(n) =




Λ(n) if n > 0,

Λ(|n− 1|) = Λ(|n|+ 1) if n ≤ 0.

The relations between these functions on the natural numbers extend to the integers in

the following way: for any integers n > m

ψ(n)− ψ(m) =
n∑

k=m+1

Λ(k) and eψ(n)/eψ(m) =
n∏

k=m+1

eΛ(k).

The collection {eψ(n)ZS}n∈Z of compact and open subgroups is a neighbourhood base of

zero for the Tychonoff topology on QS and determines a filtration

{0} ⊂ · · · ⊂ eψ(n)ZS ⊂ · · · ⊂ ZS ⊂ · · · ⊂ eψ(m)ZS ⊂ · · · ⊂ QS

(
n > 0 > m

)
,

satisfying the properties:

⋂

n∈Z

eψ(n)ZS = {0} and
⋃

n∈Z

eψ(n)ZS = QS.

Remark 2.1.2. From the properties of the above filtration, the topology of the ring QS is

expressed by the inductive and projective limits

QS = lim−→
n∈N

eψ(−n)ZS, ZS = lim←−
n∈N

ZS/e
ψ(n)ZS.

In addition, we have the identity

eψ(n)ZS =
∏

p∈S

pordp(e
ψ(n))Zp,

where ordp(·) is the p–adic order function on Qp.

For any element x ∈ QS define the order of x as:

ord(x) :=




max

{
n : x ∈ eψ(n)ZS

}
if x 6= 0,

∞ if x = 0.

Notice that this order satisfies the following properties:
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• ord(x) ∈ Z ∪ {∞} and ord(x) =∞ if and only if x = 0,

• ord(x+ y) ≥ min{ord(x), ord(y)} and

• it takes the values

SZ =
{
−pl : l ∈ N and p ∈ S

}
∪
{
pl − 1 : l ∈ N and p ∈ S

}
∪ {∞} .

The nonnegative function d : QS ×QS −→ R+ ∪ {0} given by

d(x, y) = e−ψ
(
ord(x−y)

)

is an ultrametric on QS. This ultrametric d takes values in the set {eψ(n)}n∈Z∪{0}, any ball

Bn centred at zero with radius eψ(n) is precisely the subgroup

Bn = B(0, eψ(n)) = e−ψ(n)ZS (n ∈ Z),

and any sphere centred at zero and radius eψ(n) is

Sn = S(0, eψ(n)) = Bn\Bn−1.

The norm induced by this ultrametric is given by

‖x‖ = e−ψ(ord(x))

and ‖x‖ = eψ(n) if and only if x ∈ Sn.

It is worth to notice that the radius of any ball on QS is equal to its Haar measure:
∫

Bn+y

dx =

∫

Bn

dx =

∫

e−ψ(n)ZS

dx = eψ(n) (y ∈ QS, n ∈ Z).

Using this fact, the area of any sphere is given by
∫

Sn+y

dx =

∫

Sn

dx = eψ(n) − eψ(n−1) (y ∈ QS, n ∈ Z).

Remark 2.1.3. If eψ(n) < eψ(n+1), Bn+1 is strictly contained in Bn; otherwise, if e
ψ(n) =

eψ(n+1), Bn+1 = Bn. This behaviour is controlled by the function Λ(n) and there exists a

unique increasing bijective function ρ : Z −→ SZ, such that eψ(ρ(n)) is a strictly increasing

function with eψ(ρ(0)) = 1. For this reason, in the sequel, we suppose that eψ(n) < eψ(n+1) for

any integer number n.

2.2 Function spaces and pseudodifferential operators

on QS

The relevant spaces of test functions as well as the basic facts of Fourier analysis on QS are

described in this section. It also introduces a pseudodifferential operator Dα on QS. The

description made here follows closely the account made in [20] for the finite adèle ring of Q.

A second point of view is obtained by looking at the product structure of QS .

The reader can consult these topics in the excellent books [63], [5], [35]. The theory of

general topological vector spaces can be found in [57].
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2.2.1 Bruhat–Schwartz test functions on QS

The Bruhat–Schwartz space D(QS) is the space of locally constant functions on QS with

compact support. Being QS a totally disconnected space, D(QS) has a natural topology

which can be described by two inductive limits, given any filtration by compact and open

sets in QS.

Let us describe the topology of D(QS) using the ultrametric d. If φ ∈ D(QS), there

exists a smallest ℓ = ℓφ ∈ Z such that, for every x ∈ QS,

φ(x+ y) = φ(x), for all y ∈ Bℓ = e−ψ(ℓ)ZS.

This number ℓ is called the parameter of constancy of φ. The set of all locally constant

functions on QS with common parameter of constancy ℓ ∈ Z and support in Bk forms

a finite dimensional complex vector space of dimension eψ(ℓ)/eψ(k). Denote this space by

Dℓk(QS). The topology of D(QS) is expressed by the inductive limits

Dℓ(QS) = lim−→
k

Dℓk(QS) and D(QS) = lim−→
ℓ

Dℓ(QS),

which essentially states that every finite dimensional vector space Dℓk(QS) is open in D(QS).

Therefore, D(QS) is a complete locally convex topological algebra over C and a nuclear

space.

Finally, for each compact subset K ⊂ QS, let D(K) ⊂ D(QS) be the subspace of test

functions with support on a fixed compact subset K. The space D(K) is dense in C(K), the

space of complex valued continuous functions on K. The space D(QS) is dense in L2(QS).

Bruhat–Schwartz test functions as a tensor product

Since the Tychonoff topology on QS is the box topology, any function φ ∈ D(QS) can be

written as a finite linear combination of elementary functions of the form

φ(x) =
∏

p∈S

φp(xp),
(
x = (xp)p∈S ∈ QS

)
,

where each factor φp(xp) belongs to the space of test functions D(Qp).

Moreover, from the finite group identification

Bl/Bk =
∏

p∈S

Bp
ℓp
/Bp

kp
,

where ℓp = ordp(e
ψ(l)) and kp = ordp(e

ψ(k)), the following identity between finite dimensional

spaces holds:

Dℓk(QS) =
⊗

p∈S

D
ℓp
kp
(Qp).

Commuting the induced limits with the tensor products, it is possible to show that

Dℓ(QS) corresponds to the algebraic and topological tensor product of nuclear spaces
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{Dℓ(Qp)}p∈S, that is to say

Dℓ(QS) =
⊗

p∈S

Dℓp(Qp).

Furthermore, D(QS) corresponds to the algebraic and topological tensor product of nuclear

spaces {D(Qp)}p∈S, that is,

D(QS) ∼=
⊗

p∈S

D(Qp).

2.2.2 The Fourier transform on QS

The Fourier transform of φ ∈ D(QS) is defined by

F [φ](ξ) = φ̂(ξ) =

∫

QS

φ(x)χ(ξx)dx, (ξ ∈ QS).

In particular, the Fourier transform of any elementary function φ =
∏

p∈S φp is given by

F [φ](ξ) =
∏

p∈S

∫

Qp

φp(xp)χp(ξpxp)dxp,

(
φ(x) =

∏

p∈S

φp(xp), ξ = (ξp)p∈S ∈ QS

)
.

The following two integrals are of main importance for the properties of the Fourier

transform on the Bruhat-Shwartz space, D(QS).

Lemma 2.2.1.
∫

Bn

χ(−ξx)dx =




eψ(n) if ‖ξ‖ ≤ e−ψ(n),

0 if ‖ξ‖ > e−ψ(n).

Proof. This follows from the equality, AnnQS(Bn) = B−n and the fact that in any compact

topological group, the integral of a nontrivial character over the group is zero.

Lemma 2.2.2. For any n ∈ Z,

∫

Sn

χ(−ξx)dx =





eψ(n) − eψ(n−1) if ‖ξ‖ ≤ e−ψ(n),

−eψ(n−1) if ‖ξ‖ = e−ψ(n−1),

0 if ‖ξ‖ ≥ e−ψ(n−2).

Proof. The integral can be decomposed as

∫

Sn

χ(−ξx)dx =

∫

Bn

χ(−ξx)dx−

∫

Bn−1

χ(−ξx)dx,

and the last proposition provides the result.

Remark 2.2.3. From the well known computations of analogous integrals on Qp, another

proof of the last lemmas can be derived directly.
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From lemmas 2.2.1 and 2.2.2, definitions of the spaces Dℓk(QS) and Fourier transform, it

follows

F : Dℓk(QS) −→ D
−k
−ℓ (QS).

Moreover, the Fourier transform F is a continuous linear isomorphism from D(QS) into

itself. It is worth to notice that this property of the Fourier transform follows directly by

construction, because AnnQS(Bn) = B−n.

Remark 2.2.4. Recall that, in the case of Qp, the Fourier transform Fp sends Dℓk(Qp) into

D−k
−ℓ (Qp) and the identification of Dℓk(QS) with the tensor product, ⊗p∈SD

ℓp
kp
(Qp), of finite

dimension spaces. Therefore, F : Dℓk(QS) −→ D
−k
−ℓ (QS) and the Fourier transform gives

and isomorphism D(QS) ∼= D(QS).

From the description of QS and ZS, respectively, as an inductive and a projective limit

or from the description of QS ∪{∞} as the endspace of a regular infinite tree it follows that

the Hilbert space L2(QS) has a numerable Hilbert base which is a counterpart of a wavelet

bases. Therefore, L2(QS) is a separable Hilbert space. In addition, the Fourier transform

F : L2(QS) −→ L2(QS)

is an isometry.

Remark 2.2.5. Notice that L2(QS) ∼=
⊗

p∈S L
2(Qp), where the tensor denotes the Hilbert

tensor product, because each L2(Qp) is a separable Hilbert space, then

F : L2(QS) −→ L2(QS)

is an isometry.

2.2.3 Lizorkin space of test functions on QS

Another space of test functions which is useful in the study of the heat equation is the

following: Let Ψ(QS) be the space of test functions which vanish at zero

Ψ(QS) = { f ∈ D(QS) : f(0) = 0 } .

This means that for any element f ∈ Ψ(QS) there exists a ball Bn with centre at zero

and radius eψ(n) such that f|Bn ≡ 0. The image of Ψ(QS) under the Fourier transform is the

space

Φ(QS) = { g : g = F [f ], f ∈ Ψ(QS) } ⊂ D(QS)

called the Lizorkin space of test functions of the second kind. The space Φ(QS) is nontrivial

and, as a subspace of D(QS), it has the subspace topology which makes it a complete

topological vector space.
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2.2.4 Pseudodifferential operators on QS

For any α > 0 consider the function ‖·‖α : QS −→ R≥0. The pseudodifferential operator,

Dα : Dom(Dα) ⊂ L2(QS) −→ L2(QS), defined by the formulae

Dαf = F−1
ξ→x[‖ξ‖

αFx→ξ[f ]],

for any f in the dense domain

Dom(Dα) =
{
f ∈ L2(QS) : ‖ξ‖

α f̂ ∈ L2(QS)
}
,

is called a pseudodifferential operator with symbol ‖ξ‖α.

In other words, if we consider the multiplicative operator mα : Dom(mα) ⊂ L2(QS) −→

L2(QS) given by

mα(f)(ξ) = ‖ξ‖α f(ξ),

with (dense) domain

Dom(mα) =
{
f ∈ L2(QS) : ‖ξ‖

α f ∈ L2(QS)
}
,

the unbounded operator Dα with domain Dom(Dα) is the unique unbounded operator such

that the diagram

L2(QS)
F
−−−→ L2(QS)

Dα

y
ymα

L2(QS)
F
−−−→ L2(QS)

(2.1)

commutes.

Therefore, several properties of Dα can be translated into the multiplicative operator

mα: Dα is a positive selfadjoint unbounded operator. Moreover, the commutative property

of the diagram above means that Dα is diagonalized by the unitary Fourier transform F

(F is surjective and preserves the inner product). Since Dα is a positive and selfadjoint

operator, its spectrum is contained in [0,∞). The characteristic equation

Dαf = λf
(
f ∈ L2(QS) \ {0}

)

is solved by applying it the Fourier transform and solving the resulting equation, (mα−λ)f̂ =

0, or

(‖ξ‖α − λ)f̂(ξ) = 0.

If λ ∈ {eαψ(n)}n∈Z, the characteristic function of the sphere Sn, ∆Sn , is a solution of the

characteristic equation of the multiplicative operator mα. Otherwise, if λ /∈ {eαψ(n)}n∈Z, the

function ‖ξ‖α − λ is bounded from below and λ is in the resolvent set of the multiplica-

tive operator. Since the Fourier transform is unitary, the point spectrum of Dα is the set

{eαψ(n)}n∈Z, with corresponding eigenfunctions {F−1(∆Sn)}n∈Z. Finally, {0} forms part of

the spectrum as a limit point. Each eigenspace is infinite dimensional and there exist a well

defined wavelet base which is also made of eigenfunctions (see [3]) .
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2.3 A heat equation on QS

This section presents the analysis of the homogeneous heat equation on QS related to the

pseudodifferential operatorDα introduced in Section 2.2.4. This study is done by treating the

heat equation as an evolution equation on the Hilbert space L2(QS, dµ) of square integrable

complex valued functions on QS. The properties of general evolution equations on Banach

spaces can be found in [52] and [30].

For any function f(x) ∈ Dom(Dα), the pseudodifferential equation of the form




∂u(x,t)
∂t

+Dαu(x, t) = 0, x ∈ QS, t > 0,

u(x, 0) = f(x),
(2.2)

is a non–Archimedean counterpart to the Archimedean homogeneous heat equation.

In the L2(QS) context, a function u : QS × R −→ C is called a classical solution of the

Cauchy problem if:

a. u : [0,∞) −→ L2(QS) is a continuously differentiable function,

b. u(x, t) ∈ Dom(Dα), for all t ≥ 0, (in particular f ∈ Dom(Dα)) and,

c. u(x, t) is a solution of the initial value problem.

This problem is called here an abstract Cauchy problem and will be referred as problem

(2.2). This problem is well posed and its concept of solution is well understood from the

theory of semigroups of linear operators. This solution is described in the following section.

2.3.1 Semigroup of operators

From the Hille–Yoshida Theorem, to the positive selfadjoint operator−Dα there corresponds

a strongly continuous contraction semigroup

S(t) = exp(−tDα) : L2(QS) −→ L2(QS) (t ≥ 0),

with infinitesimal generator −Dα.

It follows that {S(t)}t≥0 has the following properties

• as a function of t, S(t) is strongly continuous,

• for t ≥ 1, S(t) is a bounded operator with operator norm less than one,

• S(0) is the identity operator in L2(QS), i.e. S(0)(f) = f , for all f ∈ L2(QS),

• it has the semigroup property: S(t) · S(s) = S(t + s) ,

• if f ∈ Dom(−Dα), then S(t)f ∈ Dom(−Dα) for all t ≥ 0, the L2 derivative d
dt
S(t)f

exists, is continuous for t ≥ 0, and is given by

d

dt
S(t)f

∣∣∣
t=t+0

= −DαS(t)f = −S(t)Dαf (t0 ≥ 0).
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All these means that S(t)f is a classical solution of the heat equation (2.2) with initial

condition f ∈ Dom(Dα). For any initial data f ∈ Dom(Dα), the Fourier transform can

be applied to equation (2.2), in the spatial variable x, in order to get the abstract Cauchy

problem: 


ût(ξ, t) + ‖ξ‖

α û(ξ, t) = 0, ξ ∈ QS, t ≥ 0,

û(ξ, 0) = f̂(ξ), (f̂ ∈ Dom(mα)).
(2.3)

The classical solution of this problem is the strongly continuous contraction semigroup

exp(−tmα) : L2(QS) −→ L2(QS) given by

f(ξ) 7→ f(ξ) exp(−t ‖ξ‖α).

Furthermore, from the commutative diagram (2.1), definitions of the infinitesimal gen-

erators of S(t) and exp(−tmα) and the abstract Cauchy problems (2.2), (2.3) and the fact

that the Fourier transform is unitary, for t ≥ 0, the diagram

L2(QS)
F
−−−→ L2(QS)

S(t)

y
yexp(−tmα)

L2(QS)
F
−−−→ L2(QS)

commutes. That is to say,

S(t) = F−1 exp(−tmα)F .

Therefore,

F−1[exp(−t ‖ξ‖α)F [f ](ξ)]

is a classical solution of the heat equation (2.2) with initial condition f ∈ Dom(Dα).

2.3.2 The heat kernel

The theoretical solution of the heat equation shown above can be found explicitly by intro-

ducing heat kernel:

Z(x, t) = F−1
(
exp(−t ‖ξ‖α)

)
=

∫

QS

χ(−xξ) exp(−t ‖ξ‖α)dξ.

We estimate the heat kernel using some properties of the Archimedean Gamma function

Γ(z). Recall that Γ(z) is a meromorphic function on the complex plane with simple poles at

the nonpositive integers, satisfies the functional equation Γ(z + 1) = zΓ(z) and admits the

integral representation

Γ(z) =

∫ ∞

0

sz−1e−sds,

in the halfplane Re(z) > 0.
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Putting the integral representation of the Archimedean Gamma function into its func-

tional equation, we obtain

Γ(z + 1) = z

∫ ∞

0

sz−1e−sds

=

∫ ∞

0

e−s
1/z

ds,

which is convergent in the halfplane Re(z) > 0.

The first estimate of the heat kernel is given in the following:

Lemma 2.3.1. For any t > 0 and α > 0, the function ξ 7−→ exp(−t ‖ξ‖α) is integrable over

QS and consequently Z(x, t) is well defined for any t > 0 and x ∈ QS . Furthermore, for any

t > 0 and α > 0, the heat kernel Z(x, t) satisfies the inequality

|Z(x, t)| ≤ Ct−1/α, (x ∈ QS),

where C is a constant depending on α.

Proof. Since the Haar measure of any ball is equal to its radius, we obtain

∫

QS

exp(−t ‖ξ‖α)dξ =
∞∑

n=−∞

∫

Sn

exp(−t ‖ξ‖α)dξ

=
∞∑

n=−∞

exp(−teαψ(n))
(
eψ(n) − eψ(n−1)

)

<

∫ ∞

0

exp(−tsα)ds

= t−1/αΓ(1/α+ 1).

Since Z(x, t) =
∫
QS
χ(−xξ) exp(−t ‖ξ‖α)dξ, this also proves the second assertion with C =

Γ(1/α + 1).

Proposition 2.3.2. The heat kernel Z(x, t) is a positive function for all x and t > 0. In

addition

Z(x, t) =
∑

n∈Z
eψ(n)≤‖x‖−1

eψ(n)
{
exp(−teαψ(n))− exp(−teαψ(n+1))

}
.

21



Proof. Using Proposition 2.2.2, if ‖x‖ = e−ψ(m), then

Z(x, t) =

∞∑

n=−∞

∫

Sn

χ(−xξ) exp(−t ‖ξ‖α)dξ

=

∞∑

n=−∞

exp(−teαψ(n))

∫

Sn

χ(−xξ)dξ

=

m+1∑

n=−∞

exp(−teαψ(n))

∫

Sn

χ(−xξ)dξ

= − exp(−teαψ(m+1))eψ(m) +
m∑

n=−∞

exp(−teαψ(n))(eψ(n) − eψ(n−1))

=
m∑

n=−∞

eψ(n)
{
exp(−teαψ(n))− exp(−teαψ(n+1))

}

=
∑

n∈Z
eψ(n)≤‖x‖−1

eψ(n)
{
exp(−teαψ(n))− exp(−teαψ(n+1))

}
.

This implies that Z(x, t) is a positive function for all x and t > 0.

Remark 2.3.3. It is important to notice that the expression of the heat kernel in Proposition

2.3.2 does not depend on the algebraic structure of QS: it depends only on the values of the

second Chebyshev function related to S.

Lemma 2.3.4. For any t > 0, α > 0 and x ∈ QS, the heat kernel Z(x, t) is positive and

satisfies the inequality

Z(x, t) ≤ Ct ‖x‖−α−1 , (x ∈ QS, t > 0),

where C is a constant depending on S and α.

Proof. In order to prove the second assertion we proceed as follows. From the inequality

1− e−s ≤ s, valid for s ≥ 0, it follows the inequality

Z(x, t) ≤ ‖x‖−1
∑

n∈Z
eψ(n)≤‖x‖−1

{
exp(−teαψ(n))− exp(−teαψ(n+1))

}

≤ ‖x‖−1 (1− exp(−teαψ(m+1))
)
≤ t ‖x‖−1 eαψ(m+1)

= teαψ(m)eαΛ(m+1)eψ(m)

= te(α+1)ψ(m)eαΛ(m+1)

= t ‖x‖−α−1 eαΛ(m+1).

As a result

Z(x, t) ≤ Ct ‖x‖−α−1 , (x ∈ QS, t > 0),

where C = maxp∈S{pα}.
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Remark 2.3.5. The constant involved in the last result depends on the growing behaviour

of the group index |Bn/Bn−1| of two consecutive balls centred at zero, which is a uniformly

bounded quantity.

The following proposition exhibits the relevant heat kernel estimate.

Proposition 2.3.6. (Heat kernel estimates) For each α > 0,

Z(x, t) ≤ Ct(t1/α + ‖x‖)−α−1, (x ∈ QS , t > 0).

Proof. This is a straight consequence of Lemma 2.3.1 and Lemma 2.3.4.

Proposition 2.3.7. The heat kernel satisfies the following properties:

• It is the distribution of a probability measure on QS, i.e. Z(x, t) ≥ 0 and
∫

QS

Z(x, t)dx = 1,

for all t > 0.

• It converges to the Dirac distribution as t tends to zero:

lim
t→0

∫

QS

Z(x, t)f(x)dx = f(0),

for all f ∈ D(QS).

• It has the Markovian property:

Z(x, t + s) =

∫

QS

Z(x− y, t)Z(y, s)dy.

Proof. From Proposition 2.3.6, it follows that Z(x, t) is in L1(QS), for any t > 0. Indeed,
∫

QS

Z(x, t)dx =

∫

ZS

Z(x, t)dx+

∫

QS\ZS

Z(x, t)dx

≤ C1 + C2

∫

QS\ZS

1

‖x‖1+α
dx

≤ C1 + C2

∫ ∞

1

1

s1+α
ds.

Being exp(−t ‖ξ‖α) a continuous function on ξ, the Fourier inversion formula implies
∫

QS

Z(x, t)dx = 1.

Using this equality, the fact that f ∈ D(QS) is a locally constant function of compact

support and Proposition 2.3.6, we conclude that

lim
t→0

∫

QS

Z(x, t)f(x)dx = f(0).
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Finally,

Z(x, t+ s) = F−1
(
exp(−(t + s) ‖ξ‖α)

)

= F−1
(
exp(−t ‖ξ‖α) exp(−s ‖ξ‖α)

)

= F−1
(
Ẑ(x, t)Ẑ(x, s)

)

= Z(x, t) ∗ Z(x, s)

=

∫

QS

Z(x− y, t)Z(y, s)dy.

Proposition 2.3.8. For any t > 0 and α, β > 0, the function

ξ 7−→ ‖ξ‖β exp(−t ‖ξ‖α)

is integrable over QS. Therefore, Z(x, t) is smooth with respect to t and the derivative

d

dt
Z(x, t) = −

∫

QS

‖ξ‖α χ(−xξ) exp(−t ‖ξ‖α)dξ (t > 0)

is convergent. Furthermore, Z(x, t) is uniformly continuous on t,

i.e. Z(x, t) ∈ C
(
(0,∞), C(QS)

)
.

Proof. The proof is similar to the one in Lemma 2.3.1:
∫

QS

‖ξ‖β exp(−t ‖ξ‖α)dξ =

∫

ZS

‖ξ‖β exp(−t ‖ξ‖α)dξ +

∫

QS\ZS

‖ξ‖β exp(−t ‖ξ‖α)dξ

< C +

∞∑

n=1

eβψ(n) exp(−teαψ(n))
(
eψ(n) − eψ(n−1)

)

≤ C +

∫ ∞

0

sβe−ts
α

ds

≤ C +
Γ(β+1

α
)

αt
β+1
α

.

For the second part, suppose that t < t′. By the mean value theorem

exp(−t′ ‖ξ‖α)− exp(−t ‖ξ‖α) = −‖ξ‖α (t′ − t) exp(−t0 ‖ξ‖
α),

where t < t0 < t′. Then

Z(x, t′)− Z(x, t)

t′ − t
=

1

t′ − t

∫

QS

χ(−xξ)[exp(−t′ ‖ξ‖α)− exp(−t ‖ξ‖α)]dξ

= −
1

t′ − t

∫

QS

χ(−xξ)[−‖ξ‖α (t′ − t) exp(−t0 ‖ξ‖
α)]dξ

= −

∫

QS

‖ξ‖α χ(−xξ) exp(−t0 ‖ξ‖
α)dξ.
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A similar argument shows that these equalities are also valid for t′ < t. Hence

d

dt
Z(x, t) = lim

t′→t

Z(x, t′)− Z(x, t)

t′ − t

= lim
t′→t
−

∫

QS

‖ξ‖α χ(−xξ) exp(−t0 ‖ξ‖
α)dξ

= −

∫

QS

‖ξ‖α χ(−xξ) exp(−t ‖ξ‖α)dξ.

Finally, suppose that t < t′. By the mean value theorem

exp(−t′ ‖ξ‖α)− exp(−t ‖ξ‖α) = −‖ξ‖α (t′ − t) exp(−t0 ‖ξ‖
α),

where t < t0 < t′. Then

|Z(x, t)− Z(x, t′)| =

∣∣∣∣
∫

QS

χ(−xξ)[exp(−t′ ‖ξ‖α)− exp(−t ‖ξ‖α)]dξ

∣∣∣∣

= |t′ − t|

∣∣∣∣
∫

QS

‖ξ‖α χ(−xξ) exp(−t0 ‖ξ‖
α)dξ.

∣∣∣∣

≤ |t′ − t|

∫

QS

‖ξ‖α exp(−t0 ‖ξ‖
α)dξ

≤ |t′ − t|

(
C +

Γ(α+1
α

)

αt
α+1
α

)
.

Thus, Z(x, t) is Lipschitz continuous. Therefore, Z(x, t) is uniformly continuous on t.

2.3.3 The classical solution of the heat equation

Given t > 0 define the operator T(t) : L2(QS) −→ L2(QS) by the convolution with the Heat

kernel

T(t)f(x) = Z(x, t) ∗ f(x), (f ∈ L2(QS)),

and let T(0) be the identity operator. From Proposition 2.3.7 and Young’s inequality the

family of operators {T(t)}t≥0 is a C0–semigroup, that is, the family of operators {T(t)}t≥0

has the following properties

• T(0) = I (the identity operator),

• T(t + s) = T(t)T(s),

• limt→0+ T(t) = I.

Let us show that the semigroup {T(t)}t≥0 gives the solution of the heat equation (2.2)

with initial data f ∈ Φ(QS). Recall that, for any f ∈ Φ(QS) ⊂ Dom(Dα), we have f̂(ξ) ∈
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Ψ(QS) ⊂ Dom(−mα). Notice that the abstract cauchy problem (2.3), with initial data

f̂(ξ) ∈ Ψ(QS), has a unique solution û(ξ, t), such that û(·, t) belongs to Ψ(QS) for any

t ≥ 0, given by

û(ξ, t) = f̂(ξ) exp(−t ‖ξ‖α).

Therefore, there is a unique solution to the heat equation (2.2) with initial condition

f ∈ Φ(QS), such that u(·, t) ∈ Φ(QS) for t ≥ 0, given by

u(x, t) = F−1
(
f̂(ξ) exp(−t ‖ξ‖α)

)

=

∫

QS

f̂(ξ) exp(−t ‖ξ‖α)χ(−xξ)dξ

= Z(x, t) ∗ f(x).

The main theorem of the diffusion equation is the following.

Theorem 2.3.9. Let α > 0 and let S(t) be the C0–semigroup generated by the operator −Dα.

The operator S(t) coincides for each t ≥ 0 with the operator T(t) given above. In other words,

the solution of the abstract Cauchy problem (2.2) is given by u(x, t) = Z(x, t) ∗ f(x), for

t ≥ 0 and f ∈ Dom(Dα). Furthermore, the heat kernel Z(x, t) is the transition density of a

time and space homogeneous Markov process which is bounded, right–continuous and has no

discontinuities other than jumps.

Proof. As has been said before, for f ∈ Φ(QS), u(x, t) = Z(x, t) ∗ f(x) is a classical solution

to the heat equation (2.2). Also, u(x, t) ∈ Φ(QS) ⊂ Dom(Dα) for any t ≥ 0. Since

Φ(QS) is dense in L2(QS), the operator S(t) = T(t) for each t ≥ 0 and the function

u(x, t) = Z(x, t) ∗ f(x) is a solution of the Cauchy problem for any f ∈ Dom(Dα). The

last result follows from Lemma 2.3.6 and the fact that QS is a second countable and locally

compact ultrametric space (see [29], Theorem 3.6).

2.4 Cauchy problem for parabolic type equations on

QS

In this section two other classical formulations of the Cauchy problem on QS are described.

2.4.1 Homogeneous equation with values in L2

Recall that a C0 semigroup exp(tL), with infinitesimal generator L, is smooth if for any

t > 0 and any f ∈ L2(QS), the element exp(tL)f of L2(QS) belongs to the domain of L.
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Theorem 2.4.1. The C0 semigroup S(t) is smoothing. In other words, if f is any square

integrable function on QS, the Cauchy problem





∂u(x,t)
∂t

+Dαu(x, t) = 0, x ∈ QS, t > 0,

u(x, 0) = f(x),

has a unique solution

u(x, t) =

∫

QS

f(x− y)Z(y, t)dy.

Proof. From Proposition 2.3.8, it follows that the C0 semigroup given by

f(ξ) 7−→ exp(t ‖ξ‖α)f(ξ) (t ≥ 0),

is smooth. Since the Fourier transform is unitary, the C0 semigroup S(t) is also smooth.

27



28



Chapter 3

Pseudodifferential operators and

Markov processes on Adéles

In this chapter a class of Markov processes on the ring of finite adéles of the rational numbers

are introduced. A class of non–Archimedean metrics on Af are chosen in order to describe

this ring as a general polyadic ring and to introduce a family of pseudodifferential operators

and parabolic–type equations on L2(Af). The fundamental solutions of these parabolic

equations determine transition functions of time and space homogeneous Markov processes

on Af which are invariantunder multiplication by units. Considering the infinite place R,

we extend these results to the complete ring of adèles.

3.1 Ultrametrics on finite adèles

This section portriaits the ring of finite adèles, Af , as a completion of the rational numbers

with respect to certain additive invariant ultrametrics. For a detailed description of these

results we quote [3] and [20].

3.1.1 Ultrametrics on Af

Let
(
ρ(n)

)∞
n=0

be a sequence defined by a strictly increasing sequence of natural numbers

(eρ(n))∞n=0, which is totally ordered by division and cofinal with the natural numbers, and

with eρ(0) = 1.

The function ρ(n) = log(eρ(n)) can be defined to any integer number n, as

ρ(n) =





n
|n|
ρ(|n|) if n 6= 0,

0 if n = 0.

For any integer n define τ(n) implicitly by the equation

eτ(n) =
eρ(n)

eρ(n−1)
.
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Then, for any integers n > m, there is a relation

ρ(n)− ρ(m) =
n∑

k=m+1

τ(k) or equivalently eρ(n)/eρ(m) =
n∏

k=m+1

eτ(k).

The collection {eρ(n)Ẑ ⊂ Af}n∈Z is a neighborhood base of zero for the restricted prod-

uct topology on Af formed by open and closed subgroups. Additionally, it satisfies the

properties: ⋂

n∈Z

eρ(n)Ẑ = 0, and
⋃

n∈Z

eρ(n)Ẑ = Af .

For any element x ∈ Af the ρ–adelic order of x is given by:

ordρ(x) :=




max{n | x ∈ eρ(n)Ẑ } if x 6= 0,

∞ if x = 0.

This function satisfies the following properties:

• ordρ(x) ∈ Z ∪ {∞} and ordρ(x) =∞ if and only if x = 0.

• ordρ(x+ y) ≥ min{ ordρ(x), ordρ(y) }.

The non–Archimedean metric, dρ : Af × Af −→ R+ ∪ {0}, given by

dρ(x, y) = e−ρ(ordρ(x−y)),

defines the restricted product topology and therefore (Af , dρ) is a complete second countable

ultrametric space.

Every non–zero finite adèle x ∈ Af has a unique series representation of the form

x =

∞∑

l=γ

xle
ρ(l), (xl ∈ {0, 1, . . . , e

τ(l+1) − 1})

with xγ 6= 0 and γ = ordρ(x) ∈ Z. This series is convergent in the ultrametric of Af and the

numbers xl appearing in the representation of x are unique. The value γ, with γ(0) = +∞

is the ρ–adelic order of x.

The ring of adelic integers coincides with the unit ball

Ẑ = { x ∈ Af : ‖x‖ρ ≤ 1 }

which is the maximal compact and open subring of Af as well.

From Remark 1.2.1, the fractional part of a finite adèle x ∈ Af is the unique rational

number {x} ∈ [0, 1) such that x − {x} ∈ Ẑ, i.e. {x} is equal to x minus its integral part.

Then, it is also given by

{x} :=





−1∑

k=γ(x)

ake
ρ(k) if γ(x) < 0,

0 if γ(x) ≥ 0.
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Denote by dx the Haar measure of the topological Abelian group (Af ,+) normalised

such that the Haar measure of Ẑ is equal to one.

Note that the ultrametric dρ takes values in the set {eρ(n)}n∈Z∪{0} and the balls centred

at zero Bρ
n are the sets {eρ(n)Ẑ ⊂ Af}n∈Z, that is,

Bρ
n := Bρ(0, eρ(n)) = e−ρ(n)Ẑ.

We denote the sphere centred at zero and radius eρ(n) as Sρn, i.e.

Sρn := Sρ(0, eρ(n)) = Bρ
n\B

ρ
n−1.

Remark 3.1.1. Every ultrametric induces a function given by

‖x‖ρ = e−ρ(ordρ(x)) (x ∈ Af),

where ‖x‖ρ = eρ(n) if and only if x ∈ Sρn.

A function φ : Af −→ C is locally constant if for any x ∈ Af , there exist an open set

Ux ⊂ Af , such that

φ(y) = φ(x), for all y ∈ Ux.

Let D(Af) denote the C–vector space of all locally constant functions with compact support

on Af . The vector space D(Af) is called Bruhat–Schwartz space of Af and an element

φ ∈ D(Af) a Bruhat–Schwartz function (or simply a test function) on Af ([17], [3]).

Considering each ultrametric dρ, if φ : Af −→ C is locally constant, there exists an

integer ℓρ(x) ∈ Z such that

φ(y) = φ(x), for all y ∈ Bρ
ℓρ(x)

(x),

where Bρ
ℓρ(x)

(x) is the closed ball with centre at x and radius eρ(ℓρ(x)).

If φ belongs to D(Af) and φ(x) 6= 0 for some x ∈ Af , there exists a largest ℓρ = ℓρ(φ) ∈ Z,

which is called the parameter of constancy of φ with respect to dρ, such that, for any x ∈ Af ,

we have

φ(x+ y) = φ(x), for all y ∈ Bρ
ℓρ
.

Denote by Dρℓ,k(Af) the finite dimensional vector space consisting of functions whose

parameter of constancy is greater than or equal to ℓ and whose support is contained in Bρ
k .

The topology on D(Af), given by the inductive limit

D(Af) = lim−→
ℓ≤k

Dρℓ,k(Af ),

is independent of the choice of dρ and with this topology D(Af) is a complete locally convex

topological vector space over C. It is also a nuclear space because it is the inductive limit

of the countable family of finite dimensional vector spaces {Dρℓ,k(Af)}. A sequence (fm)m≥1

in D(Af) is a Cauchy sequence if there exist k, ℓρ ∈ Z and M > 0 such that fm ∈ D
ρ
ℓ,k(Af )

if m ≥M and (fm)m≥M is a Cauchy sequence in Dρℓ,k(Af ).
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For each compact set K ⊂ Af , let D(K) ⊂ D(Af) be the subspace of test functions whose

support is contained in K. The space D(K) is dense in C(K), the space of complex–valued

continuous functions on K.

An additive character of the field Af is defined as a continuous function χ : Af −→ C such

that χ(x+y) = χ(x)χ(y) and |χ(x)| = 1, for all x, y ∈ Af . The function χ(x) = exp(2πi{x})

defines a canonical additive character of Af , which is trivial on Ẑ and not trivial outside Ẑ,

and all characters of Af are given by χξ(x) = χ(ξx), for some ξ ∈ Af . The Fourier transform

of a test function φ ∈ D(Af) is given by the formula

Fφ(ξ) = φ̂(ξ) =

∫

Af

φ(x)χ(ξx)dx, (ξ ∈ Af ).

The Fourier transform is a continuous linear isomorphism of the space D(Af) onto itself and

the following inversion formula holds:

φ(x) =

∫

Af

φ̂(ξ)χ(−xξ)dξ
(
φ ∈ D(Af)

)
.

Additionally, the Parseval – Steklov equality reads as:

∫

Af

φ(x)ψ(x)dx =

∫

Af

φ̂(ξ)ψ̂(ξ)dξ,
(
φ, ψ ∈ D(Af)

)
.

Last but not least, the Hilbert space L2(Af) is a separable Hilbert space and the extended

Fourier transform F : L2(Af) −→ L2(Af) is an isometry of Hilbert spaces. Moreover, the

Fourier inversion formula and the Parseval – Steklov identity hold on L2(Af).

Remark 3.1.2. The Haar measure of any ball is equal to its radius:

∫

y+Bρn

dξ =

∫

Bρn

dξ =

∫

e−ρ(n)Ẑ

dξ = eρ(n) (y ∈ Af , n ∈ Z),

and the area of a sphere is given by

∫

y+Sρn

dξ =

∫

Sρn

dξ = eρ(n) − eρ(n−1) (y ∈ Af , n ∈ Z).

Moreover, for any n ∈ Z the following formulae hold:

•
∫

Bρn

χ(−ξx)dx =




eρ(n) if ‖ξ‖ρ ≤ e−ρ(n),

0 if ‖ξ‖ρ > e−ρ(n).

•

∫

Sρn

χ(−ξx)dx =





eρ(n) − eρ(n−1) if ‖ξ‖ρ ≤ e−ρ(n),

−eρ(n−1) if ‖ξ‖ρ = e−ρ(n−1),

0 if ‖ξ‖ρ ≥ e−ρ(n−2).
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Figure 3.1: The decomposition of Ẑ by the filtration {eψ(n)Ẑ}

Example 3.1.3. The sequence ((n + 1)!)∞n=0 is a strictly increasing sequence of natural

numbers, beginning with one, totally order by division and cofinal with the natural numbers.

The filtration determined by this sequence is given by

{Un =
(
(|n|+ 1)!

)n/|n|
Ẑ}n∈Z.

Example 3.1.4. Let ψ(n) denote the second Chebyshev function (see [8]) defined by the

relation

eψ(n) = lcm(1, 2, . . . , n), (n ∈ N),

where lcm(1, 2, . . . , n) is the smallest positive integer that is divisible by 1, 2, 3, . . . , n.

Each subgroup Un = eψ(n)Ẑ ⊂ Ẑ is the intersection of all normal subgroups of Ẑ which has

index less than or equal to n. In this example, if n = pα is a prime power, then eψ(p
α) =

peψ(p
α−1) and Upα = pUpα−1. Otherwise, if n is not a prime power, then eψ(n) = eψ(n−1). The

elements of the set {eψ(n)}∞n=1∪{0} form an increasing sequence (eρ(n))∞n=0 which is a strictly

increasing sequence of natural numbers, beginning with one, totally order by division and

cofinal with the natural numbers (see figure 3.1). The filtration determined by this sequence

is given by

{Un =
(
eψ(|n|+1)

)n/|n|
Ẑ}n∈Z.

3.2 Parabolic–type equations on Af

This section introduces a positive selfadjoint pseudodifferential unbounded operator Dα
ρ on

L2(Af ) related to each ultrametric dρ, the Hilbert space of square integrable functions on

Af , and solves the abstract Cauchy problem for the homogeneous heat equation on L2(Af )

related to Dα
ρ . The properties of general evolution equations on Banach spaces can be found
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in [30], [19] and [52]. The reader can consult these and more topics in the excellent books

[35], [5], [63] and [73].

3.2.1 Pseudodifferential operators on Af

For any α > 0, consider the pseudodifferential operatorDα
ρ : Dom(Dα

ρ ) ⊂ L2(Af) −→ L2(Af)

defined by the formula

Dα
ρφ(x) = F

−1
ξ→x[‖ξ‖

α
ρ Fx→ξ[f ]],

for any φ in the domain

Dom(Dα
ρ ) :=

{
f ∈ L2(Af ) : ‖ξ‖

α
ρ f̂(ξ) ∈ L

2(Af)
}
.

This operator is a pseudodifferential operator with symbol ‖ξ‖αρ . It can be seen that the

unbounded operator Dα
ρ , with domain Dom(Dα

ρ ), is a positive selfadjoint operator which

is diagonalized by the (unitary) Fourier transform. In other words, the following diagram

commutes:

L2(Af)
F
−−−→ L2(Af)

Dαρ

y
ymαρ

L2(Af)
F
−−−→ L2(Af),

(3.1)

where mα
ρ : L2(Af) −→ L2(Af) is the multiplicative operator given by f(ξ) 7−→ ‖ξ‖αρ f(ξ),

with (dense) domain

Dom(mα
ρ ) :=

{
f ∈ L2(Af) : ‖ξ‖αρ f(ξ) ∈ L

2(Af )
}
.

As a result, several properties of Dα
ρ , depending only on the inner product of L2(Af),

can be translated into analogue properties of the multiplicative operator mα
ρ . In particular,

the characteristic equation Dα
ρ f = λf with f ∈ L2(Af) \ {0} can be solved by applying the

Fourier transform. In fact, if λ ∈ {eαρ(n)}n∈Z, the indicator or characteristic function 1Sρn, of

the sphere Sρn, is a solution of the characteristic equation, (‖ξ‖αρ − λ)f̂(ξ) = 0, of the multi-

plicative operator mα
ρ . Otherwise, if λ /∈ {eαρ(n)}n∈Z, the function ‖ξ‖

α
ρ − λ is bounded from

below and λ is in the resolvent set of mα
ρ . Since the Fourier transform is unitary, the point

spectrum of Dα
ρ is the set {eαρ(n)}n∈Z, with corresponding eigenfunctions {F−1(1Sρn)}n∈Z. It

follows that, {0} forms part of the spectrum as a limit point. Consequently, Dα
ρ 6= Dα

ρ′, if

the ultrametric dρ is not equal to the ultrametric dρ′. Finally, it is worth to mention that

each eigenspace is infinite dimensional and there exists a well defined wavelet base which is

also made of eigenfunctions.

Remark 3.2.1. The operator Dα
ρ is derived from the chosen double sequence

(
eρ(n)

)
n∈Z

.

Any operator Dα
ρ can be considered a finite adelic analogue of the Vladimirov operator on

Qp.
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3.2.2 A Cauchy problem on L2(Af)

For f(x) ∈ Dom(Dα
ρ ) ⊂ L2(Af ), consider the abstract Cauchy problem





∂u(x,t)
∂t

+Dα
ρu(x, t) = 0, x ∈ Af , t ≥ 0

u(x, t) = f(x).
(3.2)

This problem will be pointed as abstract Cauchy problem (3.2). Notice that for each in-

variant pseudodifferential operator Dα
ρ , the abstract Cauchy problem above is a finite adelic

counterpart of the Archimedean abstract Cauchy problem for the homogeneous heat equa-

tion.

The abstract Cauchy problem (3.2) is considered in the sense of the Hilbert space L2(Af ),

that is to say, a function u : Af × [0,∞) −→ C is called a solution if:

a. u : [0,∞) −→ L2(Af) is a continuously differentiable function,

b. u(x, t) ∈ Dom(Dα
ρ ), for all t ≥ 0 and,

c. u(x, t) satisfies the initial value problem (3.2).

The abstract Cauchy problem (3.2) is well–posed and its solution is well understood from

the theory of semigroups of linear operators over Banach spaces. This solution is described

in the following section.

3.2.3 Semigroup of operators

From the Hille–Yoshida Theorem, to the positive selfadjoint operator Dα
ρ , there corresponds

a strongly continuous contraction semigroup

Sαρ (t) = exp(−tDα
ρ ) : L

2(Af ) −→ L2(Af) (t ≥ 0),

with infinitesimal generator −Dα
ρ . It follows that {S

α
ρ (t)}t≥0 has the following properties:

• For any t ≥ 0, Sαρ (t) is a bounded operator with operator norm less or equal to one.

• The application t 7−→ Sαρ (t) is strongly continuous for t ≥ 0.

• Sαρ (0) is the identity operator in L2(Af), i.e. S
α
ρ (0)(f) = f , for all f ∈ L2(Af ),

• It has the semigroup property: Sαρ (t) ◦ S
α
ρ (s) = Sαρ (t+ s).

• If f ∈ Dom(−Dα
ρ ), then S

α
ρ (t)f ∈ Dom(−Dα

ρ ) for all t ≥ 0, the L2 derivative d
dt
Sαρ (t)f

exists, it is continuous for t ≥ 0, and is given by

d

dt
Sαρ (t)f

∣∣∣
t=t+0

= −Dα
ρS

α
ρ (t0)f = −Sαρ (t0)D

α
ρ f (t0 ≥ 0).
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All this means that Sαρ (t)f is a solution of the Cauchy problem (3.2) with initial condition

f ∈ Dom(Dα
ρ ).

On the other hand, for f(ξ) ∈ Dom(mα
ρ ) ⊂ L2(Af), consider the abstract Cauchy problem





∂u(ξ,t)
∂t

+mα
ρu(ξ, t) = 0, ξ ∈ Af , t ≥ 0

u(ξ, t) = f(ξ).
(3.3)

The solution of this problem is given by the strongly continuous contraction semigroup

exp(−tmα
ρ ) : L

2(Af) −→ L2(Af) given by

f(ξ) 7→ f(ξ) exp(−t ‖ξ‖αρ ),

which is the semigroup that corresponds to the positive selfadjoint multiplicative operator

mα
ρ , under the Hille–Yoshida Theorem and whose infinitesimal generator is equal to −mα

ρ .

In fact, since the function

(ξ, t) 7→ exp(−t ‖ξ‖αρ )

is uniformly bounded by 1 for any t and x ∈ Af , Equation (3.3) gives a C0-semigroup which

coincides with e−tm
α
in the set of continuous functions of compact support, because the

solution of the Heat Equation (3.3) is unique in the set of continuous functions of compact

support on Af . From the fact that the Fourier transform is an isometry on L2(Af) and

converts the abstract Cauchy problem (3.2) into (3.3), the commutative diagram (3.1),

and corresponding definitions of the infinitesimal generators of Sαρ (t) and exp(−tmα
ρ ), the

following diagram commutes

L2(Af)
F
−−−→ L2(Af)

Sαρ (t)

y
yexp(−tmαρ )

L2(Af)
F
−−−→ L2(Af).

3.2.4 A heat kernel

In order to describe the theoretical solution given by the Hille–Yosida Theorem we introduce

the heat kernel:

Zα
ρ (x, t) = F

−1
(
exp(−t ‖ξ‖αρ )

)
=

∫

Af

χ(−xξ) exp(−t ‖ξ‖αρ )dξ.

The first estimate of the heat kernel is given in the following :

Lemma 3.2.2. For any t > 0, α > 0, and x ∈ Af , Z
α
ρ (x, t) is well defined. Furthermore,

for any t > 0 and α > 0, the heat kernel Zα
ρ (x, t) satisfies the inequality

∣∣Zα
ρ (x, t)

∣∣ ≤ Ct−1/α, (x ∈ Af),

where C is a constant depending on α.
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Proof. Since the Haar measure of any ball is equal to its radius, we obtain

∣∣Zα
ρ (x, t)

∣∣ ≤
∫

Af

exp(−t ‖ξ‖αρ )dξ <

∫ ∞

0

exp(−tsα)ds = t−1/αΓ(1/α + 1),

where Γ denotes the Archimedean gamma function. Therefore, Zα
ρ (x, t) is well defined and

the second assertion holds with C = Γ(1/α + 1).

Proposition 3.2.3. The heat kernel Zα
ρ (x, t) is a positive function for all x and t > 0. In

addition

Zα
ρ (x, t) =

∑

n∈Z
eρ(n)≤‖x‖−1

ρ

eρ(n)
{
exp(−teαρ(n))− exp(−teαρ(n+1))

}
.

Proof. From Remark 3.1.2, if ‖x‖ρ = e−ρ(m), then

Zα
ρ (x, t) =

∞∑

n=−∞

∫

Sρn

χ(−xξ) exp(−t ‖ξ‖αρ )dξ

=

∞∑

n=−∞

exp(−teαρ(n))

∫

Sρn

χ(−xξ)dξ

=

m+1∑

n=−∞

exp(−teαρ(n))

∫

Sρn

χ(−xξ)dξ

= − exp(−teαρ(m+1))eρ(m) +

m∑

n=−∞

exp(−teαρ(n))(eρ(n) − eρ(n−1))

=
m∑

n=−∞

eρ(n)
{
exp(−teαρ(n))− exp(−teαρ(n+1))

}

=
∑

n∈Z
eρ(n)≤‖x‖−1

ρ

eρ(n)
{
exp(−teαρ(n))− exp(−teαρ(n+1))

}
.

This implies that Zα
ρ (x, t) is a positive function for all x and t > 0.

Remark 3.2.4. It is important to notice that the expression of the heat kernel in Proposition

3.2.3 does not depend on the algebraic structure of Af . As a matter of fact, Zα
ρ (x, t) depends

only on α > 0, the values of the double sequence (eρ(n))n∈Z and the ultrametric structure

defined by this sequence on Af .

Corollary 3.2.5. The heat kernel is the distribution of a probability measure on Af , i.e.

Zα
ρ (x, t) ≥ 0 and ∫

Af

Zα
ρ (x, t)dx = 1,

for all t > 0.
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Proof. From Proposition 3.2.3 it follows that

∫

Af

Zα
ρ (x, t)dx =

∞∑

l=−∞

∫

Sρl

Zρ(x, t)dx

=
∞∑

l=−∞

Zα
ρ (e

ρ(l), t)
(
eρ(l) − eρ(l−1)

)

=

∞∑

l=−∞




∑

n∈Z
eρ(n)≤e−ρ(l)

eρ(n)
{
exp(−teαρ(n))− exp(−teαρ(n+1))

}


(
eρ(l) − eρ(l−1)

)

=

∞∑

n=−∞

(
eρ(n)

{
exp(−teαρ(n))− exp(−teαρ(n+1))

})
(

−n∑

l=−∞

(
eρ(l) − eρ(l−1)

)
)

=

∞∑

n=−∞

{
exp(−teαρ(n))− exp(−teαρ(n+1))

}

= 1.

Lemma 3.2.6. For any t > 0, α > 0 and x ∈ Af , the heat kernel Zρ(x, t) is positive and

satisfies the inequality

Zα
ρ (x, t) ≤ ‖x‖

−1
ρ

(
1− exp(−teαρ(m+1))

)
, (3.4)

where ‖x‖ρ = e−ρ(m).

Proof. This follows from the inequality

Zα
ρ (x, t) ≤ ‖x‖

−1
ρ

∑

n∈Z
eρ(n)≤‖x‖−1

ρ

{
exp(−teαρ(n))− exp(−teαρ(n+1))

}

≤ ‖x‖−1
ρ

(
1− exp(−teαρ(m+1))

)
.

Proposition 3.2.7. The heat kernel satisfies the following properties:

• It is the distribution of a probability measure on Af , i.e. Z
α
ρ (x, t) ≥ 0 and

∫

Af

Zα
ρ (x, t)dx = 1,

for all t > 0.

• It converges to the Dirac distribution as t tends to zero:

lim
t→0

∫

Af

Zα
ρ (x, t)f(x)dx = f(0),

for all f ∈ D(Af).
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• It has the Markovian property:

Zα
ρ (x, t+ s) =

∫

Af

Zα
ρ (x− y, t)Z

α
ρ (y, s)dy.

Proof. From Corollary 3.2.5, Zα
ρ (x, t) is in L

1(Af) for any t > 0 and

∫

Af

Zα
ρ (x, t)dx = 1.

Using this equality, the fact that f ∈ D(Af) is a locally constant function with compact

support and Lemma 3.2.6, we conclude that

lim
t→0

∫

Af

Zα
ρ (x, t)

(
f(x)− f(0)

)
dx = 0.

The Markovian property follows from the Fourier inversion formula and the related property

of the exponential function.

Remark 3.2.8. It is worth mentioning that the heat kernel associated to the isotropic Lapla-

cian of the ultrametric space (Af , dρ), with the Haar measure of Af as speed measure, and

distribution function e1/r, is equal to (see [15] for the definitions):

∑

n∈Z
eρ(n)≤‖x‖−1

ρ

eρ(n)
{
exp(−teαρ(n−1))− exp(−teαρ(n))

}
.

This kernel differs from Zα
ρ (x, t) only by a term. However this one is very important when

considering bounds 3.2.6.

3.2.5 The solution of the heat equation

Given t > 0 define the operator T αρ (t) : L
2(Af) −→ L2(Af) by the convolution with the heat

kernel

T αρ (t)f(x) = Zα
ρ (x, t) ∗ f(x), (f ∈ L2(Af)),

and let T αρ (0) be the identity operator on L2(Af ). From Proposition 3.2.7 and Young’s

inequality the family of operators {T αρ (t)}t≥0 is a strongly continuous contraction semigroup.

The main theorem of the diffusion equation on the ring Af is the following.

Theorem 3.2.9. Let α > 0 and let Sαρ (t) be the C0–semigroup generated by the operator

−Dα
ρ . The operators S

α
ρ (t) and T

α
ρ (t) agree for each t ≥ 0. In other words, for f ∈ Dom(Dα

ρ )

and for t > 0 the solution of the abstract Cauchy problem (3.2) is given by the convolution

u(x, t) = Zα
ρ (x, t) ∗ f(x).

Proof. For f ∈ L1(Af )∩L2(Af ), the convolution u(x, t) = Zα
ρ (x, t)∗f(x) is in L

1(Af)∩L2(Af )

because Zα
ρ (x, t) is integrable for t > 0. Then, the Fourier transform Fx→ξu(x, t) is equal to

f̂(ξ) exp(−t ‖ξ‖αρ ).
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From the commutative diagram above and the last equation, Sαρ (t)(f) = T αρ (t)(f). Since

L1(Af) ∩ L2(Af) is dense in L2(Af), S
α
ρ (t)(f) = T αρ (t), for each t ≥ 0. As a consequence,

the function u(x, t) = Zα
ρ (x, t) ∗ f(x) is a solution of the Cauchy problem for any f ∈

Dom(Dα
ρ ).

3.2.6 Markov processes on Af

In this section the fundamental solution of the heat equation, Zα
ρ (x, t), is shown to be the

transition density function of a Markov process on Af . This family of Markov processes are

described for the first time in this writing.

Let B denote the Borel σ–algebra of Af and for B ∈ B write 1B for the characterisctic

or indicator function of B. Define

pαρ (t, x, y) := Zα
ρ (x− y, t) (t > 0, x, y ∈ Af)

and

Pα
ρ (t, x, B) =





∫
B
pαρ (t, x, y)dy if t > 0, x ∈ Af , B ∈ B,

1B(x) if t = 0.

From Theorem 3.2.7, it follows that pαρ (t, x, y) is a normal transition density and

Pα
ρ (t, x, B) is a normal Markov transition function on Af which corresponds to a Markov

process on Af (see [29, Section 2.1], for further detail). Since pαρ (t, x, y) depends only on the

distance dρ(x, y), and this distance is additive invariant, it follows that the corresponding

Markov process is additive invariant.

In order to portray the properties of the path of the associated Markov process we first

state the following:

Lemma 3.2.10. Let k be any integer, then

∫

Af\B
ρ
k

Zα
ρ (x, t) ≤ 1− exp(−teαρ(−k)).
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Proof. Similar to Corollary 3.2.5, we have the following

∫

Af\B
ρ
k

Zα
ρ (x, t)dx =

∞∑

l=k+1

∫

Sρl

Zα
ρ (x, t)dx

=

∞∑

l=k+1

Zα
ρ (e

ρ(l), t)(eρ(l) − eρ(l−1))

=

∞∑

l=k+1




∑

n∈Z
eρ(n)≤e−ρ(l)

eρ(n)
{
exp(−teαρ(n))− exp(−teαρ(n+1))

}

 (eρ(l) − eρ(l−1))

=

−(k+1)∑

n=−∞

(
eρ(n)

{
exp(−teαρ(n))− exp(−teαρ(n+1))

})
(

−n∑

l=k+1

(
eρ(l) − eρ(l−1)

)
)

≤

−(k+1)∑

n=−∞

{
exp(−teαρ(n))− exp(−teαρ(n+1))

}

= 1− exp(−teαρ(−k)).

Proposition 3.2.11. The transition function Pα
ρ (t, y, B) satisfies the following two condi-

tions:

a. For each s ≥ 0 and compact subset B of Af

lim
x→∞

sup
t≤s

Pα
ρ (t, x, B) = 0 (Condition LB).

b. For each k > 0 and compact subset B of Af

lim
t→0+

sup
x∈B

Pα
ρ (t, x,Af \Bk(x)) = 0 (Condition MB).

Proof. Let d(x) := dist(x,B) = eρ(−mx) where mx ∈ Z. From Lemma 3.2.6 it follows that

Zα
ρ (x− y, t) ≤ [d(x)]−1

(
1− exp(−seαρ(mx+1))

)

for any y ∈ B and t ≤ s. Since B is compact and α is positive, d(x)−1 −→ 0 and

eαρ(mx+1) −→ 0, as x→∞. Hence

Pα
ρ (t, x, B) ≤ [d(x)]−1

(
1− exp(−seαρ(mx+1))

)
µ(B) −→ 0

as x→∞. This implies Condition L(B).

Presently, we establish Condition M(B): for y ∈ Af \ B
ρ
k(x), we have ‖x− y‖ρ > eρ(k).

Therefore

Pα
ρ (t, x,Af \B

ρ
k(x)) =

∫

Af\B
ρ
k(x)

Zα
ρ (x− y, t)dy =

∫

Af\B
ρ
k(0)

Zα
ρ (y, t)dy.
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From Lemma 3.2.10,
∫

Af\B
ρ
k

Zα
ρ (y, t)dy ≤ 1− exp(−teαρ(−k)) −→ 0, t→ 0+.

Since Pα
ρ (t, x, B

ρ
k(x)) is invariant under additive traslations, the last equation implies Con-

dition M(B).

Theorem 3.2.12. The heat kernel Zα
ρ (x, t) is the transition density of a time and space

homogeneous Markov process W α
ρ (t) on Af , which is bounded, right–continuous and has no

discontinuities other than jumps.

Proof. The result follows from Proposition 3.2.11 and the fact that Af is a second countable

and locally compact ultrametric space (see [29, Theorem 3.6]).

3.3 Cauchy problem for parabolic type equations on A

In this section an abstract Cauchy problem on L2(A) is presented. First, we recollect several

properties of the ring of adèles A. The abstract Cauchy problem on L2(A) is studied by

considering the fractional Laplacian on the Archimedean completion, R, and the pseudodif-

ferential operator on L2(Af), studied in the previous section.

3.3.1 The ring of adèles A

In the present section, the ring of adèles A ofQ is described as the product of its Archimedean

part with its non–Archimedean component. We first consider the locally compact and com-

plete Archimedean field of real numbers R.

The Archimedean place

Recall that the real numbers R is the unique Archimedean completion of the rational num-

bers. As a locally compact Abelian group, R, is autodual with pairing function given by

χ∞(ξ∞x∞), where χ∞(x∞) = e−2πix∞ is the canonical character on R. In addition, it is a

commutative Lie group. The Schwartz space of R, which we denote here by D(R), consists of

functions ϕ∞ : R −→ C which are infinitely differentiable and rapidly decreasing. D(R) has

a countable family of seminorms which makes it a nuclear Fréchet space. Let dx∞ denote

the usual Haar measure on R. The Fourier transform

F∞[ϕ∞](ξ∞) =

∫

R

ϕ∞(x∞)χ∞(ξ∞x∞)dx∞

is an isomorphism from D(R) onto itself. Moreover, the Fourier inversion formula and the

Parseval–Steklov identities hold on D(R). Furthermore, L2(R) is a separable Hilbert space,

the Fourier transform is an isometry on L2(R), and the Fourier inversion formula and the

Parseval–Steklov identity hold on L2(R).
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Definition 3.3.1. The adèle ring A of Q is defined as A = R× Af .

With the product topology, A is a second countable locally compact Abelian topological

ring. If µ∞ is the Haar (Lebesgue) measure on R and µf denotes the Haar measure on Af ,

a Haar measure on A is given by the product measure µ = µ∞ × µf . Recall that, if χ∞

and χf are the canonical characters on R and Af , respectively, then χ = (χ∞, χf) defines a

canonical character on A. A is a selfdual group in the sense of Pontryagin and we have a

paring χ∞(x∞ξ∞).

Bruhat-Schwartz space

For any ϕ∞ ∈ D(R) and ϕf ∈ D(Af), we have a function ϕ on A given by

ϕ(x) = ϕ∞(x∞)ϕf(xf )

for any adèle x = (x∞, xf). These functions are continuous on A and the linear vector

space generated by these functions is linearly isomorphic to the algebraic tensor product

D(R)⊗D(Af). In the following, we identify these spaces and write ϕ = ϕ∞ ⊗ ϕf .

Since A is a locally compact Abelian topological group the Bruhat–Schwartz space D(A)

has natural topology described as follows. First, recall that for any ultrametric dρ, D
ρ
ℓ,k(Af )

denotes the set functions with support on Bρ
k ⊂ Af and parameter of constancy l related

to dρ. We have the algebraic and topological tensor product of a Fréchet space and finite

dimensional space, given by

D(R)⊗Dρℓ,k(Af)

which represents a well defined class of functions on A. These topological vector spaces are

nuclear Fréchet, since D(R) is nuclear Fréchet and Dρℓ,k(Af) has finite dimension. We have

D(A) = lim−→
l≤k

D(R)⊗Dρℓ,k(Af ).

The space of Bruhat–Schwartz functions on A is the algebraic and topological tensor product

of nuclear space vector spaces D(R) and D(Af), i.e.

D(A) = D(R)⊗D(Af).

The Fourier transform on A

The Fourier transform on D(A) is defined as

F [ϕ](ξ) =

∫

A

ϕ(x)χ(ξx)dx,

for any ξ ∈ A. It is well–defined on D(A) and for any function of the form ϕ = ϕ∞ ⊗ ϕf it

is given by

F [ϕ](ξ) = F∞[ϕ∞](ξ∞)⊗ Ff(ϕf)(ξf) (ξ = (ξ∞, ξf) ∈ A)
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where F∞ and Ff are the Fourier transforms on D(R) and D(Af), respectively. In other

words, we have FA = F∞ ⊗Ff .

The Fourier transform F : D(A) −→ D(A) is a linear and continuous isomorphism. The

inversion formula on D(A) reads as

F−1[ϕ](ξ) =

∫

A

ϕ̂(−ξ)χ(ξx)dξ, (ξ ∈ A),

and Parseval–Steklov equality as
∫

A

ϕ(x)ψ(x)dx =

∫

A

ϕ̂(ξ)ψ̂(ξ)dξ.

The space of square integrable functions L2(A) on A is a separable Hilbert space since

it is the Hilbert tensor product space L2(A) ∼= L2(R) ⊗ L2(Af ). The Fourier transform

F : L2(A) −→ L2(A) is an isometry. The Fourier inversion formula and the Parseval-Steklov

identity hold.

3.3.2 A Cauchy Problem on L2(A)

In this subsection we consider a class of additive invariant positive selfadjoint pseudodifferen-

tial unbounded operators on L2(A) to state a Cauchy problem for parabolic–type equations.

Archimedean heat kernel

Let us recall the theory of the fractional heat kernel on the real line. For a complete review

of this topic the reader may consult [28] and the references therein. For any 0 < β ≤ 2, the

fractional Laplacian Dβ
∞ : Dom(Dβ

∞) ⊂ L2(R) −→ L2(R) is given by

Dβ
∞φ(x∞) = F−1

ξ∞→x∞

[
|ξ|β∞Fx∞→ξ∞ [f ]

]
,

for any φ in the domain

Dom(Dβ
∞) :=

{
f ∈ L2(R) : |ξ|β∞ f̂ ∈ L2(R)

}
.

Similar to the case of the finite adèle ring, the operator Dβ
∞φ(x∞) is diagonalized by the

unitary Fourier transform: if mβ
∞ denotes the multiplicative operator on L2(R) given by

f(ξ) 7−→ |ξ|β∞ f(ξ), with domain Dom(mβ
∞) :=

{
f ∈ L2(R) : |ξ|β∞ f̂(ξ) ∈ L2(R)

}
, then the

following diagram commutes:

L2(R)
F
−−−→ L2(R)

Dβ∞

y
ymβ∞

L2(R)
F
−−−→ L2(R).

(3.5)

The pseudodifferential equation




∂u(x∞,t)
∂t

+Dβ
∞u(x∞, t) = 0, x∞ ∈ R, t ≥ 0;

u(x, t) = f(x), f ∈ Dom(Dβ
∞)

(3.6)
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is an abstract Cauchy problem whose solution is given by the convolution of f with the

Archimedean heat kernel :

Zβ
∞(x∞, t) =

∫

R

χ∞(ξ∞x∞)e−t|ξ∞|βdξ∞ (t > 0).

For 0 < β ≤ 2, the following bound holds

∣∣Zβ
∞(x∞, t)

∣∣ ≤ Ct1/β

t2/β + x2∞
(for t > 0, x∞ ∈ R).

Due to this bound, the Archimedean heat kernel satifies several properties: it is the

distribution of a probability measure on R; it converges to the Dirac delta distribution as

t tends to zero, and it satisfies the Markovian property. Therefore the Archimedean heat

kernel is the transition density of a time and space homogeneous Markov process which is

bounded, right–continuous and has no discontinuities other than jumps (see [28, Section 2]).

In addition, the formula

Sβ∞(f) = f(x∞) ∗ Zβ
∞(x∞, t) (f ∈ L2(R))

defines a strongly continuous contraction semigroup with the unbounded operator
(
Dβ

∞,Dom(Dβ
∞)
)

as infinitesimal generator. Furthermore, there is a commutative diagram

L2(R)
F
−−−→ L2(R)

Sβ∞(t)=exp(−tDβ∞)

y
yexp(−tmβ∞)

L2(R)
F
−−−→ L2(R).

(3.7)

where exp(−tmβ
∞) is the C0–semigroup of contractions whose infinitesimal generator corre-

sponds to the operator −mβ
∞, under the Hille–Yoshida Theorem.

Tensor product of operators

Let us briefly recall the definition of tensor product of operators on the Hilbert space L2(A) =

L2(Af )⊗ L2(R) (see [55, Chapter VIII] for complete detail).

Given two (unbounded) closable operators (A,Dom(A)) and (B,Dom(B)) on L2(Af )

and L2(R), respectively, the algebraic tensor product

Dom(A)⊗ Dom(B) =

{
∑

finite

λiφ
i
f ⊗ φ

i
∞ : φif ∈ Dom(A), φi∞ ∈ Dom(B)

}
⊂ L2(A)

is dense in L2(A), and the operator A⊗B given by

A⊗ B(φf ⊗ φ∞) = A(φf)⊗B(φ∞),

for φf ⊗ φ∞ ∈ Dom(A)⊗ Dom(A), is closable.

The tensor product of A and B is the closure of the operator A ⊗ B defined on the

algebraic tensor product Dom(A)⊗Dom(B). We denote the closed operator by A⊗B and
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its domain by Dom(A⊗ B). Furthermore, if A and B are selfadjoint, their tensor product

A⊗ B is essentially selfadjoint and the spectrum σ(A⊗ B) of A⊗ B is the closure in C of

σ(A)σ(B), where σ(A) and σ(B) are the corresponding spectrum of A and B.

On the other hand, if A and B are bounded operators, their tensor product A ⊗ B is

bounded with operator norm

‖A⊗B‖L2(A) = ‖A‖L2(Af )
‖B‖L2(R) .

Now, let us recall the definition of the sum of unbounded operators on the Hilbert space

L2(A) = L2(Af)⊗L2(R) given by A+B = A⊗ I + I ⊗B. Once more, the algebraic tensor

product Dom(A)⊗Dom(B) ⊂ L2(A) is dense in L2(A) and the operator A+B = A⊗I+I⊗B

given by

(A+B)(φf ⊗ φ∞) = A(φf )⊗ φ∞ + φf ⊗ B(φ∞),

with φf ⊗ φ∞ ∈ Dom(A) ⊗ Dom(B) is essentially selfadjoint. The sum of A and B is the

closure of the operator A + B defined on Dom(A)⊗Dom(B). We denote by Dom(A+ B)

the domain of the this closed unbounded operator and with abuse of notation we denote

this unbounded operator by A + B. The spectrum of σ(A + B) of A + B is the closure

in C of σ(A) + σ(B), where σ(A) and σ(B) are the corresponding spectrum of A and B,

respectively.

Pseudodifferential operators on A

First, notice that the multiplicative operator m̃α,β
ρ : L2(A) −→ L2(A), given by f(ξ) 7−→

(‖ξf‖
α
ρ + |ξ∞|

β)f(ξ), with (dense) domain

Dom(m̃α,β
ρ ) :=

{
f ∈ L2(A) :

(
‖ξf‖

α
ρ + |ξ∞|

β )f̂(ξ) ∈ L2(A)
}

is selfadjoint and coincides with mα,β
ρ = mα

ρ +m
β
∞ = mα

ρ ⊗I+I⊗m
β
∞ on the set Dom(mα

ρ )⊗

Dom(mβ
∞) ⊂ L2(A). Since mα,β

ρ is essentially selfadjoint on the domain Dom(mα
ρ ) ⊗

Dom(mβ
∞) it follows that mα,β

ρ = m̃α,β
ρ .

For any 0 < α and 0 < β ≤ 2, consider the pseudodifferential operator D̃α,β
ρ : Dom(D̃α,β

ρ ) ⊂

L2(A) −→ L2(A) defined by the formula

D̃α,β
ρ φ(x) = F−1

ξ→x[m
α,β
ρ Fx→ξ[φ]],

for any φ in the domain

Dom(D̃α,β
ρ ) :=

{
f ∈ L2(A) : mα,β

ρ (φ̂) ∈ L2(A)
}
.

This unbounded operator is a positive selfadjoint operator which is diagonalized by the

(unitary) Fourier transform F , i.e. the following diagram commutes:

L2(A)
F
−−−→ L2(A)

D̃α,βρ

y
ymα,βρ =m̃α,βρ

L2(A)
F
−−−→ L2(A).

(3.8)
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Therefore, the operator Dα,β
ρ = Dα

ρ + Dβ
∞ = Dα

ρ ⊗ I + I ⊗ Dβ
∞, which is essentially

selfadjoint over the domain Dom(Dα
ρ )⊗ Dom(Dβ

∞) ⊂ L2(A), is equal to the operator D̃α,β
ρ .

A heat equation on A

For f(x) ∈ Dom(Dα,β
ρ ) ⊂ L2(A), consider the abstract Cauchy problem





∂u(x,t)
∂t

+Dα,β
ρ u(x, t) = 0, x ∈ A, t ≥ 0

u(x, t) = f(x).
(3.9)

As mentioned above, a function u : A × [0,∞) −→ C is called a solution of the abstract

Cauchy problem (3.9) in the Hilbert space L2(A), if:

a. u : [0,∞) −→ L2(A) is a continuously differentiable function on the sense of Hilbert

spaces,

b. u(x, t) ∈ Dom(Dα,β
ρ ), for all t ≥ 0 and,

c. u(x, t) is a solution of the initial value problem.

Furthermore, this abstract Cauchy problem is well posed and its solution is given by a

strongly continuous contraction semigroup. From the Hille–Yoshida theorem, the unbounded

operator −Dα,β
ρ is the infinitesimal generator of a strongly continuous contraction semigroup

SρA(t) = exp(−tDα,β
ρ ). Additionally, to the unbounded operator −mα,β

ρ there corresponds a

strongly continuous contraction semigroup exp(−tmα,β
ρ ) withmα,β

ρ as infinitesimal generator.

From an argument as in Section 3.2.3, there is a commutative diagram:

L2(A)
F
−−−→ L2(A)

exp(−tDα,βρ )

y
yexp(−tmα,βρ )

L2(A)
F
−−−→ L2(A).

(3.10)

In order to describe the solution of problem (3.9), for fixed α > 0 and 0 < β ≤ 2, we

define the adelic heat kernel as

Zα,β
A (x, t, ρ) =

∫

A

χ(−ξx)e
−t(‖ξf‖

α

ρ
+|ξ∞|β)

dξ (t > 0, x, ξ ∈ A),

where ξ = (ξf , ξ∞). That is to say,

Zα,β
A (x, t, ρ) = F−1

A (e
−t(‖ξf‖

α

ρ
+|ξ∞|β)

)

= F−1
∞ (e−t|ξ∞|β)F−1

f (e
−t‖ξf‖

α

ρ )

= Zf(xf , t, ρ)⊗ Z∞(x∞, t).

Proposition 3.3.2. The adelic heat kernel, Zα,β
A (x, t, ρ), satisfies the following properties:
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• It is the distribution of a probability measure on A, i.e. Zα,β
A (x, t, ρ) ≥ 0 and

∫

A

Zα,β
A (x, t, ρ)dx = 1,

for all t > 0.

• It converges to the Dirac distribution as t tends to zero:

lim
t→0

∫

A

Zα,β
A (x, t, ρ)f(x)dx = f(0),

for all f ∈ D(A).

• It has the property:

ZA(x, t + s, ρ) =

∫

A

ZA(x− y, t, ρ)ZA(y, s, ρ)dy.

Proof. From the equality Zα,β
A (x, t, ρ) = Zf (xf , t, ρ)⊗Zβ

∞(x∞, t) it follows that ZA(x, t, ρ) is

in L1(A) for any t > 0, and also
∫

A

Zα,β
A (x, t, ρ)dx = 1.

Using the corresponding properties of the Archimedean heat kernel and the finite adelic heat

kernel, for f ∈ D(A), we have

lim
t→0

∫

A

Zα,β
A (x, t, ρ)

(
f(x)− f(0)

)
dx = 0.

The Markovian property follows from the Fourier inversion formula and the related property

of the exponential function.

Now, for any f ∈ L2(A), define

T ρA(t)(f)(x) =




Zα,β

A (x, t, ρ) ∗ f(x) t > 0,

f(x) t = 0.

From Proposition 3.3.2 and Young’s inequality it follows that {T ρA(t)}t≥0 is a strongly con-

tinuous contraction semigroup. On the other hand, from definition, it follows that

SρA(t)(φf ⊗ φ∞) =
(
Zα
f (xf , t, ρ) ∗ φf

)
⊗
(
Zβ

∞(x∞, t) ∗ φ∞

)
.

Theorem 3.3.3. If f is any complex valued square integrable function on Dom(Dα,β
ρ ), then

the Cauchy problem




∂u(x,t)
∂t

+Dα,β
ρ u(x, t) = 0, x ∈ A, t > 0,

u(x, t) = f(x)

has a classical solution u(x, t) determined by the convolution of f with the heat kernel

Zα,β
A (x, t, ρ). Moreover, Zα,β

A (x, t, ρ) is the transition density of a time and space homo-

geneous Markov process W α,β
ρ (t) on A, which is bounded, right-continuous and has no dis-

continuities other than jumps.
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Proof. Similar to Section 3.2, for f ∈ L1(A)∩L2(A), since the adelic heat kernel is absolute

integral, the convolution Zα,β
A (x, t, ρ) ∗ f(x) is in L1(A) ∩ L2(A) and

Fx→ξ(Z
α,β
A (x, t, ρ) ∗ f(x)) = f̂(ξ) exp(−t ‖ξf‖

α
ρ + |ξ∞|

β).

Therefore T ρA(t) = SρA(t) coincides on a dense set of L2(A). The properties of the Markov

process follow because, the product of two Markov process which satisfy conditions MB and

LB also satisfies those conditions (see [73, Section 4.9]).
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Chapter 4

Final remarks

The theory developed in this work can be applied to more general Abelian topological

groups. In detail, letG be a selfdual, second countable, totally disconnected, locally compact,

Abelian topological group with a filtration by compact and open subgroups {Hn}n∈Z,

{0} ⊂ · · · ⊂ H−n ⊂ · · · ⊂ H0 ⊂ · · · ⊂ Hn ⊂ · · · ⊂ G,

such that:

1. H0 = H is a fixed compact and open subgroup of G,

2. the annihilator, AnnG(Hn), satisfies

AnnG(Hn) = H−n,

for all n ∈ Z, and

3. the following relations are satisfied:

⋂

n∈Z

Hn = {0} and
⋃

n∈Z

Hn = G.

Notice that, since G is autodual, there exist an isomorfism of G with its Pontryagin

dual group Ĝ, i.e. a function ξ 7→ χξ which identifies G and Ĝ as topological groups. This

identification makes expression AnnG(Hn) = H−n, in property (3) above, meaningful.

Normalize the Haar measure µ on G in such a way that µ(H) = 1. This implies that

the measure of any other subgroup Hn of G is given either by the index [H : Hn] or by the

index [Hn : H ]. The group G has a unique G–invariant ultrametric dG such that the balls

centred at zero coincide with the elements of the filtration {Hn}n∈Z and the radius of any

ball equals to its Haar measure. Let λn be the radius and Haar measure of Hn.

The topological and algebraic properties of G are expressed by the projective and induc-

tive limits:

H0 = lim←−
n≤0

H0/Hn G = lim−→
n≥0

Hn.
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To the ultrametric spaces, (H, dH) and (G, d), there correspond, respectively, a tree T (H)

with finite ramification index and endspace H , and an extended tree T (G) with finite ram-

ification index and endspace G ∪ {∞}. Consequently, L2(G) is a separable Hilbert space.

In addition, the topology of the locally constant functions of compact support D(G) is

expressed by the inductive limits

Dℓ(G) = lim−→
k

Dℓk(G) and D(G) = lim−→
ℓ

Dℓ(G)

and D(G) is a locally convex complete topological algebra and a nuclear space.

We have the Fourier transform F(f)(ξ) =
∫
G
f(x)χξ(x)dµ(x) and due to equality AnnG(Hn) =

H−n, it satisfies F : Dℓk(G) −→ D
−k
−ℓ (G) and gives an isomorfism D(G) ∼= D(G) of locally

convex topological linear space. Furthermore, the Fourier transform F : L2(G) −→ L2(G)

is an isometry of Hilbert spaces.

For any α > 0, the function ‖·‖αG = dG(0, ·)α defines the pseudodifferential operator

Dα : Dom(Dα) ⊂ L2(G) −→ L2(G) given by

Dα(f) = F−1
ξ→x[‖ξ‖

α
GFx→ξ[f ]] (f ∈ Dom(Dα)).

The operator Dα is a positive selfadjoint unbounded operator with spectrum {0}∪{λαn}n∈Z.

The heat kernel Z(x, t) = F−1
ξ→x

(
exp(−t ‖ξ‖αG)

)
is a well defined positive function, given by

a formula similar to the one in Proposition 3.2.3 and satisfies the estimate of Proposition

3.2.6.

As a consequence of all that have been said, the following result holds.

Theorem 4.0.1. If f belongs to Dom(−Dα) ⊂ L2(G), the Cauchy problem





∂u(x,t)
∂t

+Dα
ρ u(x, t) = 0, x ∈ G, t ≥ 0,

u(x, 0) = f(x),

has a classical solution u(x, t) determined by the convolution of f with the heat kernel

Zα(x, t). In addition, Zα(x, t) is the transition density of a time and space homogeneous

Markov process W α(t) on G, which is bounded, right–continuous and has no discontinuities

other than jumps.

Examples of these groups can be given as follows:

1. For any fixed positive integer number m, let G be the set of m–adic numbers Qm with

H0 = Zm the maximal compact and open subring. The filtration given byHℓ = mℓ3Zm,

for ℓ ∈ Z leads to the m–adic analysis of Qm (see [26]).

2. Given a sequence (eρ(n))∞n=0, which is totally order by division and begins at one, there

exists a polyadic completion Q(ρ) of the rational numbers (see [34, 37]). A filtration

can be given as {e±ρ(n)Z(ρ)}, where Z(ρ) is the maximal compact and open subring of

Q(ρ) (seee [3]).
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3. Set G the restricted direct product of a countable copies of the fixed topological ring

Af with respect to Ẑ. That is, G =
∏′

n≥1Af and set H0 =
∏

n≥1 Ẑ. Let (e
ρ(n))∞n=0 be

a strictly increasing sequence of natural numbers, beginning with one, totally order

by division and cofinal with the natural numbers. The members of a filtration can be

given as:

• H0 =
∏

n≥1 Ẑ,

• H±1 = e∓ρ(1)Ẑ× Ẑ× · · · ,

• H±2 = e∓ρ(1)Ẑ× e∓ρ(1)Ẑ× Ẑ× · · · ,

• H±3 = e∓ρ(2)Ẑ× e∓ρ(1)Ẑ× Ẑ× · · · ,

• H±4 = e∓ρ(2)Ẑ× e∓ρ(1)Ẑ× e∓ρ(1)Ẑ× Ẑ× · · ·

4. Finite products and restricted direct products of the examples above provides a large

class of groups satisfying the requirements.

53



54



Bibliography
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