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Resumen

En esta tesis se presenta una metodología novedosa para la Animación de Criaturas Vir

tuales Usando Aprendizaje. Estametodología se basa en el uso de un algoritmo de Aprendizaje

por Refuerzo muy conocido, tal como lo es Q-learning (Watkins, 1989), para animar criaturas

virtuales articuladas.

Se presentan dos casos de estudio en los que se aplicó exitosamente esta metodología

novedosa, obteniendo resultados alentadores.

Se utiliza esta experiencia, así como cierto conocimiento previo tal como ecuaciones de

geometría plana, para proponer otra metodología novedosa que provea a nuestra criatura

virtual la capacidad de aprender a dibujar una figura geométrica en un plano z = c, simulando

de esta forma a una persona que está de pie frente a una pizarra dibujando una figura

geométrica en ella. Quizas un maestro de matemáticas impartiendo una clase de geometría

plana.

Se aplica esta nueva metodología a la criatura virtual presentada en nuestro segundo caso

de estudio: El Brazo Humano con Cuatro Grados de Libertad, generando el siguiente Alfabeto
de Movimiento:

__

= { circle, semicircle, quartercircle, hline, vline, sline, bsline }

Este alfabeto es muy importante porque se puede utilizar como entrada de otro algoritmo
de aprendizaje o de planeación (que trabaja en un nivel más alto) para obtener animaciones

más complejas de dicha criatura virtual, tales como escribir en una pizarra o en una hoja de

papel.



Abstract

In this thesis we present a novel methodology for the Animation of Virtual Creatures Using

Learning. Our methodology is based on the use of a well-known Reinforcement Learning

algorithm such as Q-learning (Watkins, 1989), to animate articulated virtual creatures.

We present two case studies in which we have successfully applied our novel methodology,

obtaining encouraging results.

We use this experience, as well as some previous knowledge like plañe geometry equations,

to propose another novel methodology that provides our virtual creature with the capability
of learning to draw geometric figures in a plañe z = c, simulating in this way a person who is

standing in front of a blackboard drawing a geometric figure on it. Perhaps a math teacher

giving a plañe geometry's lecture.

We apply this new methodology to the virtual creature presented in our second case

study: The Human Arm with Four Degrees of Freedom, generating the following Alphabet of
Movement:

E = { circle, semicircle, quartercircle , hline, vline, sline, bsline }

This alphabet is very important because it can be used as input to another learning or

planning algorithm (working in a higher level) to obtain more complex animations of such

virtual creature, like writing on a blackboard or on a sheet of paper.
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Chapter 1

Introduction

In this chapter we aim to introduce the reader to the problem: Animation of Virtual Creatures

Using Learning. First we present the problem description, then we present the thesis objective

and finally, in the last section, we present the thesis structure.

1.1 Problem Description

One of the great challenges of our time is to créate virtual characters that can reason, feel,

learn and react as if they were real living creatures. The design of these virtual characters

has been a motivating task for researchers of different áreas like Robotics, Virtual Reality,

Artificial Intelligence, Computer Graphics and Computer Animation.

The advances in such research áreas have been impressive but there is still a lot of work

to be done. In the video game industry the users demand everyday more sophisticated video

games in which they can enhance their presence in the virtual environment in which they

navigate, perceive elements and interact with the virtual characters. In the film industry

there exists a growing interest to characterize actors in animated movies in a more realistic

way.

In order to attain this, we propose a novel approach to the animation of virtual characters

or creatures. Our approach is based on the use of Machine Learning algorithms to provide
the virtual creature with the capability of learning a new skill.

1



2 CHAPTER 1. INTRODUCTION

1.2 Thesis Objective

The main objective of this thesis is:

• To propose a methodology for the animation of virtual creatures using a Machine Learn

ing algorithm.

In addition to the main objective, we have some other particular objectives:

• To select a Machine Learning algorithm that fits well the problem of animating virtual

creatures.

• To define at least one case study for the Machine Learning algorithm selected.

• To use the Machine Learning algorithm to provide the virtual creature of our case

study with the capability of learning a new skill.

• To genérate an Alphabet of Movement for the virtual creature of our case study.

1.3 Thesis Structure

This thesis is structured as follows:

• Chapter 2: State of the Art. Presents a revisión of the literature on machine learn

ing approaches, as well as some previous works that apply machine learning methods

to virtual creatures.

• Chapter 3: Proposed Methodology. Presents our proposed methodology for solv

ing the animation of virtual creatures using learning.

• Chapter 4: The Human Arm with Two Degrees of Freedom. Presents our first

case study.

• Chapter 5: The Human Arm with Four Degrees of Freedom. Presents our

second case study.

• Chapter 6: Towards an Alphabet of Movement. Presents a methodology for

generating an alphabet of movement for the virtual creature of our second case study.

• Chapter 7: Conclusions and Future Work. Presents the thesis conclusions and

the future work.



Chapter 2

State of the Art

In this chapter we present the state of the art in: Machine Learning methods applied to

the Animation of Virtual Creatures. First we present some Machine Learning approaches,

then we present some works that apply Machine Learning methods to Virtual Creatures and

finally, in the last section, we present the conclusions.

2.1 Introduction

The problem of: Animation of Virtual Creatures Using Learning, involves many research

áreas like Robotics, Virtual Reality, Artificial Intelligence, Computer Graphics and Computer
Animation among others. Therefore, in order to present a state of the art for this problem,
we proceed in the following manner: first we present some Machine Learning approaches

(section 2.2) and then we present some works in which Machine Learning algorithms are

applied to virtual creatures (section 2.3).

2.2 Machine Learning Approaches

Machine Learning is the study of computer algorithms that improve automatically through

experience. Applications range from datamining programs that discover general rules in large
data sets, to information filtering systems that automatically learn users' interests [12]. In

the following subsections 2.2.1 to 2.2.6 we present some Machine Learning approaches.

3



4 CHAPTER 2. STATE OF THE ART

2.2.1 Genetic Algorithms

Genetic algorithms (GAS) provide a learning method motivated by an analogy to biolog

ical evolution. Rather than search from general-to-specific hypotheses, or from simple-to-

complex, GAS genérate successor hypotheses by repeatedly mutating and recombining parts

of the best currently known hypotheses. At each step, a collection of hypotheses called the

current population is updated by replacing some fraction of the population by offspring of

the most fit current hypotheses. The process forms a generate-and-test beam-search of hy

potheses, in which variants of the best current hypotheses are most likely to be considered

next [12].

The popularity of GAS is motivated by a number of factors including:

• Evolution is known to be a successful, robust method for adaptation within biological

systems.

• GAS can search spaces of hypotheses containing complex interacting parts, where the

impact of each part on overall hypothesis fitness may be difficult to model.

• Genetic algorithms are easily parallelized and can take advantage of the decreasing
costs of powerful computer hardware.

2.2.2 Learnable Evolution Model

The Learnable Evolution Model [11] or LEM is a new class of evolutionary computation pro

cesses. In contrast to Darwinian-type evolution that relies on mutation, recombination, and

selection operators, LEM employs machine learning to genérate new populations. Specifi

cally, in Machine Learning mode, a learning system seeks reasons why certain individuáis

in a population (or a collection of past populations) are superior to others in performing
a designated class of tasks. These reasons, expressed as inductive hypotheses, are used to

genérate new populations.

A remarkable property of LEM is that it is capable of quantum leaps ( "insight jumps" ) of

the fitness function, unlike Darwinian-type evolution that typically proceeds through numer

ous slight improvements. In our early experimental studies, LEM significantly outperformed

evolutionary computation methods used in the experiments, sometimes achieving speed-ups
of two or more orders of magnitude in terms of the number of evolutionary steps [11].

LEM has a potential for a wide range of applications, in particular, in such domains as

complex optimization or search problems, engineering design, drug design, evolvable hard

ware, software engineering, economics, data mining, and automatic programming [11].
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2.2.3 Learning Classifier Systems

Learning classifier systems are a Machine Learning paradigm introduced by John Holland in

1978. In learning classifier systems an agent learns to perform a certain task by interacting

with a partially unknown environment from which the agent receives feedback in the form

of numerical reward. The incoming reward is exploited to guide the evolution of the agent's

behavior which, in learning classifier systems, is represented by a set of rules, the classifiers. In

particular, temporal difference learning is used to estimate the goodness of classifiers in terms

of future reward; genetic algorithms are used to favour the reproduction and recombination

of better classifiers [8] .

2.2.4 Collaborative Logic-based Learning

Collaborative logic-based learning is a method for implementing adaptability (a fundamental

property of any intelügent system) in multi-agent systems. This method is based on two

building blocks: (1) a set of operations centred around inductive logic programming for gen-

eralizing agents' observations into sets of rules, and (2) a set of communication strategies for

sharing acquired knowledge among agents in order to improve the collaborative learning pro

cess. Using these modular building blocks, several learning algorithms can be constructed

with different trade-offs between the quality of learning, computation and communication

requirements, and the disclosure of agent's private information. The method has been imple
mented as a modular software component that can be integrated into the control loop of an

intelligent agent. The method has been evaluated on a simulated logistic scenario, in which

teams of trading agents learn the properties of the environment in order to optimize their

operation [9].

2.2.5 Incremental Learning

Incremental learning is a novel approach to the motion-planning problem that can learn

incrementally on every planning query and effectively manage the learned roadmap as the

process goes on. This planner is based on previous work on probabilistic roadmaps and uses

a data structure called Reconfigurable Random Forest (RRF), which extends the Rapidly-

exploring Random Tree (RRT) structure proposed in the literature. The planner can account

for environmental changes while keeping the size of the roadmap small. The planner removes

invalid nodes in the roadmap as the obstacle configurations change. It also uses a tree-pruning

algorithm to trim RRF into a more concise representation. Our experiments show that the

planner is flexible and efficient [10].
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2.2.6 Reinforcement Learning

Reinforcement learning addresses the question of how an autonomous agent that senses and

acts in its environment can learn to choose optimal actions to achieve its goals. This very

generic problem covers tasks such as learning to control a mobile robot, learning to optimize

operations in factories, and learning to play board games. Each time the agent performs
an action in its environment, a trainer may provide a reward or penalty to indicate the

desirability of the resulting state. For example, when training an agent to play a game the

trainer might provide a positive reward when the game is won, negative reward when it is

lost, and zero reward in all other states. The task of the agent is to learn from this indirect,

delayed reward, to choose sequences of actions that produce the greatest cumulative reward

[12].

Reinforcement learning is a computational approach to understanding and automating

goal-directed learning and decision-making. It is distinguished from other computational

approaches by its emphasis on learning by the individual from direct interaction with its en

vironment, without relying on exemplary supervisión or complete models of the environment.
In our opinión, reinforcement learning is the first field to seriously address the computational
issues that arise when learning from interaction with an environment in order to achieve

long-term goals [16].

Reinforcement learning uses a formal framework defining the interaction between a learn

ing agent and its environment in terms of states, actions, and rewards. This framework is

intended to be a simple way of representing essential features of the artificial intelligence

problem. These features include a sense of cause and effect, a sense of uncertainty and

nondeterminism, and the existence of explicit goals [16].

The concepts of valué and valué functions are the key features of the reinforcement

learning methods. We take the position that valué functions are essential for efficient search

in the space of policies. Their use of valué functions distinguishes reinforcement learning
methods from evolutionary methods that search directly in policy space guided by scalar

evaluations of entire policies [16].

2.3 Machine Learning Approaches to Virtual Creatures

Here we present some works that apply Machine Learning methods to Virtual Creatures.

In [7] ,
Reinforcement Learning Algorithms are applied for the generation of Autonomous

Intelligent Virtual Robots, that can learn and enhance their task performance in assisting
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humans in housekeeping. For the control system architecture of the virtual agents, two

algorithms, based onWatkins' Q(A) Learning and the Zeroth-Level Classifier System (ZLCS),
are incorporated with Fuzzy Inference Systems(FIS). Performance of these algorithms is

evaluated and compared. A 3D application of a Virtual Robot whose task is to interact

with Virtual Humans and offer optimal services on everyday in-house needs is designed and

implemented. The learning systems are incorporated in the decision-making process of the

Virtual Robot Servant to allow itself to understand and evalúate the fuzzy valué requirements

and enhance its performance.

In [14], the potential for instructing animated agents through collaborative dialog in a

simulated environment is described. The abilities to share activity with a human instructor

and employ both verbal and nonverbal modes of communication allow the agent to be taught

in a manner natural for the instructor. A system that uses such shared activity and instruc

tion to acquire the knowledge needed by an agent is described. This system is implemented in

STEVE, an embodied agent that teaches physical tasks to human students. STEVE begins

learning about a task through a process of programming by demonstration (Cypher 1993).
The human instructor tells STEVE to observe his actions, and then performs the task by

manipulating objects in the simulated world. As the agent watches, it learns both necessary

information about the environment and the procedural knowledge associated with the task.

In [3], two well-known Reinforcement Learning algorithms (Q-Learning and TD-Learning)
are applied to a virtual environment as a behavioral engine for exploration, learning and

visiting a virtual environment. Therefore, contrary to the use of reinforcement learning algo

rithms, our interest here lies more in learning than in the exploitation of this learning. Thus,

it is indeed the learning rather than the optimization that allows us to simúlate the behav

ior of Autonomous Virtual Agents (AVAs) and this constitutes a new use of reinforcement

learning.

In [4] , an approach based on the multi-sensory integration of the standard theory of neu

roscience, where signáis of a single object coming from distinct sensory systems are combined,
is presented. The acquisition steps of signáis, filtering, selection and simplification interven-

ing before proprioception, active and predictive perception are integrated into virtual sensors

and a virtual environment. This research is focused on two aspects: 1) the assignment prob
lem: determining which sensory stimuli belong to the same virtual object and (2) the sensory

recoding problem: recoding signáis in a common format before combining them. Three novel

methodologies to map the information coming from the virtual sensors of visión, audition

and touch as well as that of the virtual environment in the form of a 'cognitive map' were

developed.

In [5], a new integration approach to simúlate an Autonomous Virtual Agent's cogni-
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tive learning of a task for interactive Virtual Environment applications is proposed. This

research is focused on the behavioural animation of virtual humans capable of acting inde

pendently. Its contribution is important because it presents a solution for fast learning with

evolution. The concept of a Learning Unit Architecture that functions as a control unit of

the Autonomous Virtual Agent's brain is proposed. Although this technique has proved to

be effective in a case study, there is no guarantee that it will work for every imaginable Au

tonomous Virtual Agent and Virtual Environment. The results are illustrated in a domain

that requires effective coordination of behaviours, such as driving a car inside a virtual city.

In [6], a new integration approach for simulation and behaviour in the learning con

text that is able to coherently manage the shared virtual environment for the simulation of

autonomous virtual agents is proposed. This low-level learning technique has proved fast,

simple and robust. It is also able to automatically learn behavioural models for difficult

tasks. Thus, it is believed that it will be more useful to the computer graphics community

than a technique based on the classical Q-learning approach. The results are illustrated in

two case studies that require effective coordination of behaviours.

In [17], the architecture of the ANIMUS framework is described. This framework fa-

cilitates the creation of synthetic characters that convey the illusion of being alive. The

components of ANIMUS are inspired by observations made in biological organisms, and pro
vide means for creating autonomous agents that mimic awareness of their environment, of

other agents, and of human audience. They also show particular roles, personality, and emo

tions, active and reactive behavior, automatic reflexes, and selective attention; use temporal

memory and learning capabilities to evolve in their dynamic virtual worlds, and express their

thought and emotions with a flexible animation system while they interact with the user in

immersive 3D environments. ANIMUS creatures follow artistic conceptual designs and con

straints that determine the way they behave, react and interact with other creatures and the

user, allowing the designer to créate meaningful and interesting characters. The framework

can be applied to complex immersive environments like CAVE systems or other interactive

applications like video games and advanced man-machine interfaces, providing high level

tools for creating a new generation of responsive believable agents.

In [13], different approaches of reinforcement learning in terms of their applicability in

humanoid robotics are discussed. Methods can be coarsely classified into three different cate

gories, i.e., greedy methods, 'vanilla' policy gradient methods, and natural gradient methods.

The greedy methods are not likely to scale into the domain humanoid robotics as they are

problematic when used with function approximation. 'Vanilla' policy gradient methods on

the other hand have been successfully applied on real-world robots including at least one

humanoid robot. These methods can be significantly improved using the natural policy gra
dient instead of the regular policy gradient. A derivation of the natural policy gradient
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is provided, proving that the average policy gradient of Kakade is indeed the true natural

gradient. A general algorithm for estimating the natural gradient, the Natural Actor-Critic

algorithm, is introduced. This algorithm converges to the nearest local minimum of the cost

function with respect to the Fisher information metric under suitable conditions. The algo

rithm outperforms non-natural policy gradients by far in a cart-pole balancing evaluation,

and for learning nonlinear dynamic motor primitives for humanoid robot control. It offers a

promising route for the development of reinforcement learning for truly high-dimensionally

continuous state-action systems.

In [18], reinforcement learning methods are applied to learn domain-specific heuristics

for job shop scheduling. A repair-based scheduler starts with a critical-path schedule and

incrementally repairs constraint violations with the goal of finding a short conflict-free sched

ule. The temporal difference algorithm TD(A) is applied to train a neural network to learn a

heuristic evaluation function over states. This evaluation function is used by a one-step looka-

head search procedure to find good solutions to new scheduling problems. This approach is

evaluated on synthetic problems and on problems from a NASA space shuttle payload pro

cessing task. The evaluation function is trained on problems involving a small number of

jobs and then tested on larger problems. The TD scheduler performs better than the best

known existing algorithm for this task-Zweben's iterative repair method based on simulated

annealing. The results suggest that reinforcement learning can provide a new method for

constructing high-performance scheduling systems.

2.4 Conclusions

After reviewing the literature, we have decided to use a Reinforcement Learning algorithm,
in particular we have decided to use the well-known Q-learning algorithm (Watkins, 1989)
as a key algorithm to approach a solution for solving the objective presented in this thesis.

In the following chapter we present in detail our proposed methodology for solving the

problem: Animation of Virtual Creatures using Learning.



Chapter 3

Proposed Methodology

In this chapter we present our proposed methodology for solving the problem: Animation of

Virtual Creatures Using Learning. This methodology consists in five steps as we can see in

Figure 3.1. Each one of these steps is explained in detail in sections 3.1 to 3.5.

a3<^~v
I

. SKELETON DEFINITION

Bones, joints and end-effectors

Degrees of freedom

Available movements

2. LEARNING TASK DEFINITION

k
3. THE REINFORCEMENT LEARNING TASK

The State Set

The Action Set

/>**(«,-, =«',r,-i =r|«,,o,). 4. THE MARKOV DECISIÓN PROCESS

5. THE Q-LEARNING ALGORITHM

• The Action Selection Rule
* The Reward Function

Figure 3.1: The five-step methodology.
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3.1 Skeleton Definition

This is the first step of our proposed methodology. Here we have to completely define the

skeleton's structure of the virtual creature that we aim to animate. By completely define we

mean:

• defining the number of bones and joints, their ñames and relations,

• defining the number of end-efFectors and their locations in the skeleton,

• defining the number of degrees of freedom assigned to each joint, and finally

• defining the set of available movements for the virtual creature depending on the

number of degrees of freedom previously defined.

After having completely defined the structure of the skeleton, we have to implement such

structure with Java 3D [2].

3.2 Learning Task Definition

This is the second step of our proposed methodology. Here we have to define as clear as

possible the task that our virtual creature aims to learn. In this step is also very important

to specify which extremities (if not all) the virtual creature is allowed to use in order to learn

such task.

3.3 The Reinforcement Learning Task

This is the third step of our proposed methodology. Here we have to transíate the learning
task formally defined in the preceding step into a Reinforcement Learning Task. By
transíate we mean defining the state and action sets that every Reinforcement Learning
Task well defined must have.

3.3.1 The State Set

Here we represent a state s as a n-tuple (joMovementAng0, j oMovementAngx ,
. . .

,

joMovementAngn_1), where:
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• joMovementAng, e {0o, 10°, 20°, UpperBound¡} is the angle assigned to the move

ment Movement of the joint jo, and

• n is the total number of degrees of freedom of the whole skeleton.

Therefore, the state set is

• «S = {0o. 10°, 20° UpperBoundo) x {0°, 10°, 20°, ... , UpperBound_) x . . . x

{0o, 10°, 20°. ... , UpperBmmdn-i), and

• |-S| = |{0°, 10°, 20°, ... , UpperBoundo}\ • |{0°, 10°, 20°, . . .

, UpperBound_}\ • . . .
•

¡{0°, 10°, 20°, ... , UpperBound*-_}\.

3.3.2 The Action Set

Here we have to transíate the set of available movements into the set of actions of the

Reinforcement Learning Task. Thus, each movement is translated into two actions:

1. to increase the angle related to such movement in ten degrees.

2. to decrease the angle related to such movement in ten degrees.

Therefore, the action set is

• A = {joMovement+0, joMovement— t,
. . .

, joMovement+2n_2, joMovement—2n_1},
where:

—

joMovement-l-,: increase angle joMovementAng in ten degrees.

—

joMovement— ¡+1: decrease .angle joMovementAng in ten degrees.

—

n: total number of degrees of freedom of the whole skeleton.

• And, |_4| = 2n.

3.4 The Markov Decisión Process

This is the fourth step of our proposed methodology. Here we have to verify if the Reinforce

ment Learning Task defined in step 3 (section 3.3) is a finite Markov decisión process (finite

MDP).
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Finite MDPs are particularly important to the theory of reinforcement learning; they are

all you need to understand 90% of modern reinforcement learning [16].

First we have to check if the state signal defined in step 3 (section 3.3.1) has the Markov

property. In that case, the whole Reinforcement Learning Task is also said to have the Markov

property and therefore it is called a Markov decisión process, or MDP Furthermore, if its

state and action sets defined in step 3 (section 3.3) are finite, then it is called a finite Markov

decisión process (finite MDP).

3.5 The Q-learning Algorithm

This is the fifth and last step of our proposed methodology. Here we have to solve the

Reinforcement Learning Task defined in step 3 (section 3.3) using a Reinforcement Learning

Algorithm.

We propose the use of a well-known Reinforcement Learning Algorithm such as Q-learning

(Watkins, 1989). Its simplest form, one-step Q-learning, is defined by

Q(sua_) <- Q(st,a_) + a rw + 7maxQ(.(+1)o) -Q(st,a_)
a

We propose to set the valúes of a and 7 to 0.5.

In this algorithm, the learned action-valué function, Q, directly approximates Q*, the

optimal action-value function, independent of the policy being followed. The policy still has

an effect in that it determines which state-action pairs are visited and updated. However,

all that is required for correct convergence is that all pairs continué to be updated. This is

a minimal requirement in the sense that any method guaranteed to find optimal behavior in

the general case must require it. Under this assumption and a variant of the usual stochastic

approximation conditions on the sequence of step-size parameters, Qt has been shown to

converge with probability 1 to Q* The Q-learning algorithm is shown in procedural form in

Figure 3.2 [16].

We propose to implement the Q-learning algorithm with Java [1].

3.5.1 The Action Selection Rule

Here we have to define an action selection rule for the Q-learning algorithm. We propose to

balance exploration and exploitation by choosing an (.-greedy method. However, instead of
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Initialize Q(s.a) arbitrarily

Repeat (for each episode):
Initialize 5

Repeat (for each step of episode):
Choose a from s using policy derived

Take action a, observe r, s'

from Q (e-g- , e-greedy)

Q(s, a) «- Q(s, a) + a [r -t- 7max„
Q 4— «'•

Q(s \a!) -Q(s, o)]

until s is terminal

Figure 3.2: The Q-learning algorithm in procedural form.

assigning e a constant valué during the whole algorithm's execution (as in most cases), in

this particular case we propose to reduce e over time to try to get the best of both high and

low valúes. In other words, we propose to initialize e with the real valué of 1.0 and at the

beginning of each episode to decrease it in the following manner:

/ elapsed episodes\

\ total episodes )

Therefore, we propose to update the valué of e in a way inversely proportional to the

number of elapsed episodes in the algorithm's execution.

3.5.2 The Reward Function

Here we have to define a reward function for the Q-learning algorithm. The reward function

is one of the most important components of every Reinforcement Learning Algorithm because

it defines the purpose or goal of the agent in a Reinforcement Learning Task.

Therefore, we need to define a reward function that closely represents the goal of the

agent in our Reinforcement Learning Task.

3.6 Conclusions

In this chapter we have presented our five-step methodology for solving the problem: Anima

tion of Virtual Creatures Using Learning. Notice that step five (The Q-learning Algorithm),
is a key step in our methodology because there, we have to define a reward function that
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closely represents the learning task defined in step two. Therefore, our results depend on

how well such reward function was defined.

In the following two chapters, we present two case studies in which we applied this method

ology successfully and we obtained encouraging results.



Chapter 4

The Human Arm with Two Degrees
of Freedom

In this chapter we present our first case study: The Human Arm with Two Degrees of Freedom.

We start by giving a description of the problem and a definition of the task to solve, then

we give a representation of the task as a Reinforcement Learning Task. Once we have this

representation, we proceed to the implementation of the task with a Q-learning algorithm
and finally, in the last section, we show the simulation of this task and the obtained results.

4.1 Problem Description

The case study proposed in this chapter consists in a virtual creature simulating a human

baby who is learning to move his superior extremities in a coordinated way. This with the

objective of satisfying a basic physiological necessity such as eating a chicken soup in a proper
manner using a spoon.

At first sight this problem may appear to be simple, however after a deep analysis we

realized that it could be subdivided into at least five sepárate complex tasks:

1. Learning to move the arm to reach the spoon.

2. Learning to grasp the spoon.

3. Learning to carry the spoon into the soup bowl.

4. Learning to take a little of soup with the spoon.

5. Learning to carry the spoon to the mouth without dropping the soup.

17
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As our first approximation to this problem, we decided to solve the first complex task,

the one which aims learning to move the arm to reach the spoon.

In order to solve this complex task, we used the methodology presented in chapter 3. The

results of applying such methodology to this complex task are presented in sections 4.2 to

4.6.

4.2 Skeleton Definition

For simplicity, we focused only on the virtual creature's left arm, which is composed of two

bones: humerus and forearm, and two joints: shoulder and elbow. The arm's end-

effector is considered to be the forearm's end. Figure 4.1 shows the implementation of this

virtual creature in Java 3D [2].

r \

FOREARM

HUMERUS *,^^

END-EFFECTOR

ELBOW

SHOULDER

\^ )

Figure 4.1: Skeleton's structure for The Human Arm with Two DOF

The available movements for this arm depend on the number of degrees of freedom as

signed to each joint. As this is our first case study, we considered two degrees of freedom,
one of them assigned to the shoulder and the other one assigned to the elbow. Therefore,
the available movements for this arm are:

• For the shoulder:

- Pitch (up or down).

• For the elbow:

- Pitch (up or down).

Figure 4.2 shows the available movements for the arm in Java 3D [2].
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SHOULDER

/

ELBOW

■\ r

j v

Figure 4.2: Available movements for The Human Arm with Two DOF

4.3 Learning Task Definition

The task consists in learning to move the virtual creature's left arm from an initial position

Ixy (end-effector s initial position) to a goal position Gxy (end-effector's goal position).

Figure 4.3 shows a representation of this learning task.

Figure 4.3: Learning task for The Human Arm with Two DOF.

4.4 The Reinforcement Learning Task

In the preceding section we formally defined our learning task. Now we need to transíate

this learning task into a Reinforcement Learning Task.

4.4.1 The State Set

As we stated before, for this learning task we have considered two degrees of freedom. There

fore, it is useful to represent a state s as a 2-tuple (shPitchAng, elPitchAng), where:
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• shPitchAng G {0o, 10°, 20°, . . .
, 180°} is the shoulder's pitch angle.

• elPitchAng G {OA 10°, 20°, . . .

, 180°} is the elbow's pitch angle.

Therefore, the state set is

• S = {0o, 10°, 20°, . . .

, 180°} x {OA 10°, 20°, . . .

, 180°}, and

• \S\ = 19 x 19 = 361.

4.4.2 The Action Set

The action set must represent all the available movements of the arm considered in this

learning task.

Therefore, the action set is

• A = { shPitchUp, shPitchDown, elPitchUp, elPitchDown }, where:

—

shPitchUp: pitch up the shoulder ten degrees.
— shPitchDown: pitch down the shoulder ten degrees.

-

elPitchUp: pitch up the elbow ten degrees.
- elPitchDown: pitch down the elbow ten degrees.

• And, \A\ = 4.

4.5 The Markov Decisión Process

We assume here that the state signal defined in section 4.4.1 has the Markov property. There

fore, the whole Reinforcement Learning Task defined in section 4.4 is also said to have the

Markov property.

Now, as this Reinforcement Learning Task satisfies the Markov property, then it is called

a Markov decisión process, or MDP. Furthermore, as its state and action sets defined in

section 4.4 are finite, then it is called a finite Markov decisión process (finite MDP).

In order to completely define this finite MDP, we only need to define the one-step dynamics
of its environment. Given any state and action, s and a, the probability of each possible next

state, s\ is
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Pss> = Pr i3t+i = s'\st = s,at
= a}

Similarly, given any current state and action, s and o, together with any next state, s',

the expected valué of the next reward is

^°_' = E irt+i \st = s,at
=

a, st+i
= s'}

4.6 The Q-learning Algorithm

In order to solve this Reinforcement Learning Task, we chose a well-known Reinforcement

Learning Algorithm such as one-step Q-learning, defined by the following action-value func

tion:

Q(suat) «- Q(st,at) + a \rt+i+jmaxQ(st+i,a) -Q(st,a_)^
The valúes of a and 7 were set to 0.5.

4.6.1 The Action Selection Rule

In order to balance exploration and exploitation we chose an e-greedy method. However,

instead of assigning e a constant valué during the whole algorithm's execution (as in most

cases), in this particular case we reduce e over time to try to get the best of both high and

low valúes. In other words, e is initialized with the real valué of 1.0 and at the beginning of

each episode it is decreased in the following manner:

f elapsed episodes\

\ total episodes )

Therefore, the valué of e is updated in a way inversely proportional to the number of

elapsed episodes in the algorithm's execution.

4.6.2 The Reward Function

The reward function is one of the most important components of every Reinforcement Learn

ing Algorithm because it defines the purpose or goal of the agent in a Reinforcement Learning
Task.
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Therefore, we need to define a reward function that closely represents the goal of the

agent in our Reinforcement Learning Task.

As our first approximation, we defined our reward function TZ as the Euclidean distance

between Cxy (end-effector 's current position) and Gx,y (end-effector's goal position). Thus,

the goal of our Reinforcement Learning Task is to minimize the Euclidean distance between

Cx,y and Gx,y. In other words, to minimize the total reward received in the long run.

Although this is a good approximation, there is a little problem, the goal of every Re

inforcement Learning Algorithm is to maximize the total reward received in the long run

which is exactly the opposite of the goal of our Reinforcement Learning Task.

In order to fix this problem, we simply used the Euclidean distance as a negative

reward. Therefore, we finally defined our reward function TZ : <S x A x S —> R- as:

TZ(s, a, s') = -yJ(cx- g^)2 + (c,
-

gj,)2

So far, we have correctly defined our reward function. However, Cx>y is unknown and

needs to be calculated from s' That is, at each time step, we need to calcúlate the end-

effector's current position CXiy, given the arm's current state s' This problem is known as

The Forward Kinematics Problem [15] and will be discussed in the following section.

4.6.3 The Forward Kinematics Problem

In order to solve this Forward Kinematics Problem, we used the Denavit-Hartenberg con

vention (D-H convention) [15] to select the frames attached to each link in a systematic

way.

We first establish the joint coordinate frames using the D-H convention as shown in Figure
4.4. The link parameters are shown in Table 4.1.

Table 4.1: DH parameters for The Human Arm with Two DOF.

Link CH Oíi a\ Oí

1

2

ai

a.2

0

0

0

0

0i

02

The corresponding A-matrices are
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Y. X
M,

*■ Z,

Y,

Figure 4.4: DH coordinate frame assignment for The Human Arm with Two DOF

A_ =

cos 6i — sin #i 0 ai cos 0i

sin#i cos#i 0 ai sin ^i

0 0 10

0 0 0 1

A2 =

COS #2 —Sin #2 0 (22 COS #2

sin #2 COS 02 0 02 sin ^2

0 0 10

0 0 0 1

The T-matrices are thus given by

T° = AiA2 =

cos(0i + 02)
-

sin(0i + 02 ) 0 aiCOS0i + a2cos(0i-|-02)

sin(0i + 02) cos(0i + 02 ) 0 ai sin 0i + a2 sin(0i + 02)
0 0 1 0

0 0 0 1

Therefore the forward kinematics of the Human Arm with Two DOF is described by
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7? = A_A_

where:

7-11 TU 0 cx

'

r2l

0

T_2

0

0

1

Cy

0

0 0 0 1

cx = ai COS 01 + Ü2 cos(0i + 02)

Cy
= ai sin 0i + a2 sin(0i + 02).

(4.1)

4.7 Conclusions

In this chapter we have successfully applied our five-step methodology (chapter 3) to our

first case study: The Human Arm with Two Degrees of Freedom. The kind of movements we

obtained from this case study are movements in 2D. Although the animation of this virtual

creature was in a 3D environment, the kind of movements it performs are in a 2D plañe, due

to the number of degrees of freedom.

After running several experiments with this case study, we realized that our learning

algorithm performed pretty well and the resulting animation of this virtual creature was very

real. A key fact of our learning algorithm was defining the reward function correctly.

Although this case study may seem to be small, actually it was very helpful to our research

work because it opened the path for future research.

Once we have successfully applied our methodology to this case study, our new goal is

to propose a new case study which represents a greater challenge for our methodology and

where we can obtain movements much more complex. In order to attain this, we should

increase the complexity of our virtual creature, that is, we should increase its number of

degrees of freedom.

In the following chapter, we present our second case study: The Human Arm with Four

Degrees of Freedom, we apply our five-step methodology to such case study.



Chapter 5

The Human Arm with Four Degrees
of Freedom

In this chapter we present our second case study: The Human Arm with Four Degrees of
Freedom. We start by giving a description of the problem and a definition of the task to

solve, then we give a representation of the task as a Reinforcement Learning Task. Once

we have this representation, we proceed to the implementation of the task with a Q-learning

algorithm and finally, in the last section, we show the simulation of this task and the obtained

results.

5.1 Problem Description

The case study proposed in this chapter consists in a virtual creature simulating a human

baby who is learning to move his superior extremities in a coordinated way. This with the

objective of satisfying a basic physiological necessity such as eating a chicken soup in a proper

manner using a spoon.

At first sight this problem may appear to be simple, however after a deep analysis we

realized that it could be subdivided into at least five sepárate complex tasks:

1. Learning to move the arm to reach the spoon.

2. Learning to grasp the spoon.

3. Learning to carry the spoon into the soup bowl.

4. Learning to take a little of soup with the spoon.

25
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5. Learning to carry the spoon to the mouth without dropping the soup.

As our first approximation to this problem, we decided to solve the first complex task,

the one which aims learning to move the arm to reach the spoon.

In order to solve this complex task, we used the methodology presented in chapter 3. The

results of applying such methodology to this complex task are presented in sections 5.2 to

5.6.

5.2 Skeleton Definition

For simplicity, we focused only on the virtual creature's left arm, which is composed of two

bones: humerus and forearm, and two joints: shoulder and elbow. The arm's end-

effector is considered to be the forearm's end. Figure 5.1 shows the implementation of this

virtual creature in Java 3D [2] .

(mI "I

J^^ft -4— SHOULDER

WM L HUMERUS

I ■**— ELBOW

>■ FOREARM

V
¥

V. ^ END-EFFECTOR./

Figure 5.1: Skeleton's structure for The Human Arm with Four DOF.

The available movements for this arm depend on the number of degrees of freedom as

signed to each joint. As this is our second case study, we considered four degrees of

freedom, three of them assigned to the shoulder and the other one assigned to the elbow.

Therefore, the available movements for this arm are:

• For the shoulder:

- Roll (left or right).
- Yaw (left or right).
— Pitch (up or down).
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• For the elbow:

- Pitch (up or down).

Figure 5.2 shows the available movements for the arm in Java 3D [2].

27

SHOULDER ELBOW

Figure 5.2: Available movements for The Human Arm with Four DOF.

5.3 Learning Task Definition

The task consists in learning to move the virtual creature's left arm from an initial position

Ix,y,z (end-effector's initial position) to a goal position Gxyz (end-effector's goal position).

Figure 5.3 shows a representation of this learning task.

Figure 5.3: Learning task for The Human Arm with Four DOF

5.4 The Reinforcement Learning Task

In the preceding section we formally defined our learning task. Now we need to transíate

this learning task into a Reinforcement Learning Task.
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5.4.1 The State Set

As we stated before, for this learning task we have considered four degrees of freedom. There

fore, it is useful to represent a state s as a 4-tuple (shRollAng, shYawAng, shPitchAng,

elPitchAng), where:

• shRollAng G {OA 10A 20°, . . .

, 90°} is the shoulder's roll angle.

• shYawAng G {0o, 10°, 20°, . . .

, 180°} is the shoulder's yaw angle.

• shPitchAng G {0A 10°, 20° ,
. . .

, 240°} is the shoulder's pitch angle.

• elPitchAng G {0A 10°, 20° ,
. . .

, 150°} is the elbow's pitch angle.

Therefore, the state set is

• S = {0o, 10°, 20°, . . .

, 90°} x {0A 10°, 20°, . . .

, 180°} x {0A 10°, 20°, . . .

, 240°} x

{0o, 10°, 20°,..., 150°}, and

• \S\ = 10 x 19 x 25 x 16 = 76000.

5.4.2 The Action Set

The action set must represent all the available movements of the arm considered in this

learning task.

Therefore, the action set is

• A = { shRollLeft , shRollRight, shYawLeft, shYawRight, shPitchUp,

shPitchDown, elPitchUp, elPitchDown }, where:

— shRollLeft: roll left the shoulder ten degrees.
-

shRollRight: roll right the shoulder ten degrees.
— shYawLeft: yaw left the shoulder ten degrees.
-

shYawRight: yaw right the shoulder ten degrees.
-

shPitchUp: pitch up the shoulder ten degrees.
- shPitchDown: pitch down the shoulder ten degrees.
-

elPitchUp: pitch up the elbow ten degrees.
— elPitchDown: pitch down the elbow ten degrees.

• And, |.4| = 8.
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5.5 The Markov Decisión Process

We assume here that the state signal defined in section 5.4.1 has the Markov property. There

fore, the whole Reinforcement Learning Task defined in section 5.4 is also said to have the

Markov property.

Now, as this Reinforcement Learning Task satisfies the Markov property, then it is called

a Markov decisión process, or MDP. Furthermore, as its state and action sets defined in

section 5.4 are finite, then it is called a finite Markov decisión process (finite MDP).

In order to completely define this finiteMDP, we only need to define the one-step dynamics

of its environment. Given any state and action, s and a, the probability of each possible next

state, s', is

Vassi = Pr {st+i = s'\St = s,at
= a}

Similarly, given any current state and action, s and a, together with any next state, s',

the expected valué of the next reward is

7£"s* = E {rt+i \st = s,at
=

a, st+i
= s'}

5.6 The Q-learning Algorithm

In order to solve this Reinforcement Learning Task, we chose a well-known Reinforcement

Learning Algorithm such as one-step Q-learning, defined by the following action-value func

tion:

Q(st,at) «- Q(st,a_) + a rt+i + -ymaxQ(sM, a) -Q(st,a_)
L o.

The valúes of a and 7 were set to 0.5.

5.6.1 The Action Selection Rule

In order to balance exploration and exploitation we chose an e-greedy method. However,

instead of assigning e a constant valué during the whole algorithm's execution (as in most

cases) ,
in this particular case we reduce e over time to try to get the best of both high and
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low valúes. In other words, e is initialized with the real valué of 1.0 and at the beginning of

each episode it is decreased in the following manner:

_

/ elapsed episodes\

\ total episodes )

Therefore, the valué of e is updated in a way inversely proportional to the number of

elapsed episodes in the algorithm's execution.

5.6.2 The Reward Function

The reward function is one of the most important components of every Reinforcement Learn

ing Algorithm because it defines the purpose or goal of the agent in a Reinforcement Learning

Task.

Therefore, we need to define a reward function that closely represents the goal of the

agent in our Reinforcement Learning Task.

As our first approximation, we defined our reward function TZ as the Euclidean dis

tance between Cxyz (end-effector's current position) and GXjyjZ (end-effector's goal posi

tion). Thus, the goal of our Reinforcement Learning Task is to minimize the Euclidean

distance between CX!y,z and Gx,yiZ. In other words, to minimize the total reward received

in the long run.

Although this is a good approximation, there is a little problem, the goal of every Re

inforcement Learning Algorithm is to maximize the total reward received in the long run

which is exactly the opposite of the goal of our Reinforcement Learning Task.

In order to fix this problem, we simply used the Euclidean distance as a negative
reward. Therefore, we finally defined our reward function TZ : S x A x <S —* M.~ as:

TZ(s,a,s') = -^/(cx
-

gx)2 + (cy
-

gy)2 + (c_
-

gz)2.

So far, we have correctly defined our reward function. However, Cxyz is unknown and

needs to be calculated from s'. That is, at each time step, we need to calcúlate the end-

effector's current position Cxyz, given the arm's current state s'. This problem is known as

The Forward Kinematics Problem [15] and will be discussed in the following section.
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5.6.3 The Forward Kinematics Problem

In order to solve this Forward Kinematics Problem, we used the Denavit-Hartenberg con

vention (D-H convention) [15] to select the frames attached to each link in a systematic

way.

We first establish the joint coordinate frames using the D-H convention as shown in Figure
5.4. The link parameters are shown in Table 5.1.

te-

i 9

m*-z.

fX.

.

—U

Y. X

Figure 5.4: DH coordinate frame assignment for The Human Arm with Four DOF

Table 5.1: DH parameters for The Human Arm with Four DOF.

Link Oi Cti di 0*

1 0 90 0 0i

2 0 90 0 02

3 ai 0 0 03

4 a-2 0 0 Ox

The corresponding A-matrices are
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Ai

cos 0i 0 sin 0i 0

sin 0i 0 -

cos 0i 0

0 10 0

0 0 0 1

A2

A3

Ai

cos 02 0 sin 02 0

sin 02 0 —cos 02 0

0 10 0

0 0 0 1

cos 03 —sin 03 0 ai cos 03

sin 03 cos 03 0 ai sin 03

0 0 10

0 0 0 1

cos 04 — sin 04 0 a2 cos 04

sin 04 cos 04 0 a2sin04

0 0 10

0 0 0 1

The T-matrices are thus given by

r2ü = AiA2 =

"

cos 0i cos 02 sin 0i

sin 0i cos 02 —

cos 0i

102 0sin 02

0 0

cos 0i sin 02 0

sin 0i sin 02 0

—

cos 02 0

0 1

A3A4

cos(03 + 04)
-

sin(03 -)- 04) 0 aiCOS03 + a2COs(03 + 04)

sin(03 + 04) cos(03 + 04) 0 aiSÍn03 + a2sin(03-|-04)
0 0 1 0

0 0 0 1

Therefore the forward kinematics of the Human Arm with Four DOF is described by

T'O rp0rp2
4

—

*í2i4
—

m rí2 ru cx

r2i r22 r23 cy

r3i r32 r33 c2

0 0 0 1
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where:

:
= cos 0i cos02[ai cos 03 + a2 cos(03 + 04)] + sin0i[ai sin03 + 02 sin(03 + 64)]

_„
= sin 0i cos02[ai cos03 + a2 cos(03 + 04)]

-

cos0i[ai sin03 + a2 sin(03 + 04)]

cz = sin 02 [ai cos 03 + a2 cos(03 + 04)].

Substituting 62 by (90° + 02) into (5.1) yields:

V.y
V.4JO V

_ _Ui_ BILL _

_
~T l*"¿ Olll^iy-j ^ \I l_

Cj = COS02[ai COS 03 -I- a2 COS(03 + 04)].

Multiplying all the equations in system (5.2) by —1 yields:

c

cv

c

Interchanging cy and cz into (5.3) yields:

;
= cos 0i sin 02 [ai cos 03 + a2 cos(03 + 04)]

— sin 0i [ai sin 03 + a2 sin(03 + 04)]

,
= —

cos 02[ai cos 03 + a2 cos(03 + 04)]
= sin 0i sin02[ai cos 03 + 02 cos(03 + 04)] + cos0i[ai sin 03 + a2 sin(03 + 04)].

(5.1)

^ = sin 0i [ai sin 03 + 02 sin(03 + 04)]
-

cos0i sin02[ai cos 03 + a¡ cos(63 + 04)]

c¡,
= -

cos 0i [ai sin 03 +a2sin(03 + 04)]
-

sin0i sin02[ai cos 03 + a2cos(03 +04)] (5.2)
.O^fl- _1_ fl.M

= cos 0i sin 02 [ai cos 03 + 02 cos(03 + 04)]
— sin 0i [ai sin 03 + 02 sin(03 + 04)]

.j,
= sin0isin02[ai cos 03 + a2cos(03 + 04)] + cos 0i [ai sin 03 + a2sin(03 + 04)] (5.3)

:_
= —

COS02[ai cos 03 + Ü2 cos(03 + 04)].

(5.4)

5.7 Conclusions

In this chapter we have successfully applied our five-step methodology (chapter 3) to our

second case study: The Human Arm with Four Degrees of Freedom. The kind of movements

we obtained from this case study are movements in 3D. These movements are much more

complex than those obtained from the previous case study. That is because, in this second

case study we increased the number of degrees of freedom from two to four. Actually, the

movements we obtained from this case study are very cióse to the movements performed by

the left arm of a real human being.

After running several experiments with this case study, we realized that our learning

algorithm performed pretty well and the resulting animation of this virtual creature was very

real. A key fact of our learning algorithm was defining the reward function correctly.
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In the following chapter we present a methodology for generating an Alphabet ofMovement

for The Human Arm with Four Degrees of Freedom.



Chapter 6

Towards an Alphabet of Movement

In this chapter we present a methodology for generating an Alphabet of Movement for the

virtual creature presented in our second case study: The Human Arm with Four Degrees

of Freedom. We start by giving a brief introduction, then we present our methodology and

finally, in the last section, we show the experimental results obtained.

6.1 Introduction

In the preceding chapters 4 and 5 we presented two case studies. Now we use the experience

obtained in such case studies to define a methodology for generating an Alphabet ofMovement

for the virtual creature presented in our second case study: The Human Arm with Four

Degrees of Freedom.

In order to define such methodology, first we present some important definitions and

previous knowledge.

6.1.1 Definition of an Alphabet of Movement

By Alphabet of Movement we mean:

• a set of basic movements of a virtual creature which are stored in a Knowledge Base

for later use.

Generating this Alphabet ofMovement is very important because it can be used as input

to another learning or planning algorithm (working in a higher level) to obtain more complex

animations of a virtual creature.
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6.1.2 Previous Knowledge

Here we present some previous knowledge useful for defining our methodology:

1. The learning task of our second case study: The Human Arm with Four Degrees of

Freedom. The task consists in learning to move the avatar's arm from an initial posi

tion Ix,y,z (end-effector's initial position) to a goal position GXjyjZ (end-effector's goal

position).

2. Geometric figures such as plañe curves with their respective equations (some of them

expressed in parametric form).

6.1.3 Definition of a New Learning Task

Here we use the previous knowledge mentioned in section 6.1.2 to define a new learning task.

Thus, our new learning task consists in:

• The Human Arm with Four Degrees of Freedom learning to draw geometric figures in

a plañe z — c.

This new learning task aims to emulate a person who is standing in front of a blackboard

drawing a geometric figure on it. Perhaps a math teacher giving a plañe geometry's lecture.

6.2 A Methodology for Generating an Alphabet of

Movement

Based on the new learning task defined in section 6.1.3 and taking into account the previous

knowledge mentioned in section 6.1.2, we propose the following methodology for generating
an Alphabet of Movement:

1. Use the equation of a geometric figure to trace a path of n vértices in the perimeter of

that figure.

2. For each pair of consecutive vértices vt and u¡+_, cali the learning task of our second case

study to find a solution for those vértices. In other words, for each pair of consecutive

vértices v¿ and vi+i, learn to move the avatar's arm from an initial position Ix,yjZ = v{

(end-effector's initial position) to a goal position GX!y?z = vi+i (end-effector's goal

position).
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3. Merge all those particular n
— 1 solutions to get one general solution for the figure.

For a better understanding, we present a flow diagram of our methodology in Figure 6.1.

Select a geometric fig.
and define the number

of vértices n

-*<r for 1=1 ton ^>

Genérate v

-K^ for 1=1 to n-1 J>

G = V

Learning Task

solution += sol,

I - solution

Figure 6.1: A Methodology for Generating an Alphabet of Movement.

If we repeat this methodology for all the different geometric figures we wish to draw, then

we would get an Alphabet ofMovement like the following:

£ = {geometricFigure1,geometricFigure2, . . . ,geometricFiguren}.

In the following section we present the result of applying our methodology to seven ge

ometric figures. The Alphabet of Movement obtained from such geometric figures is also

presented.

6.3 Experimental Results

Here we present the result of applying the methodology presented in section 6.2 to the

following seven geometric figures:
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1. Circle

2. Semicircle

3. A quarter of a circle

4. Horizontal line

5. Vertical line

6. Slash line

7. Backslash line

The results obtained for each one of these geometric figures is explained in detail in

sections 6.3.1 to 6.3.7. Afterwards, we present in section 6.3.8 the Alphabet of Movement

obtained from such geometric figures.

6.3.1 Circle

In order to genérate this geometric figure, we applied the methodology presented in section

6.2 with the following two parameters:

1. Equation of a circle in parametric form:

• í X =

rC0Sf where: r = 65 and 0o < 0 < 360°

(^ y
= r sin 0

2. Number of vértices:

• n = 13.

After applying the methodology, we obtained the following solution:

circle = 66 + 06 + 006 + 070 + 70 + 77 + 77 + 71 + 37 + 11 + 1661 + 6612.

That is:

circle = 660600607070777771371116616612.

The animation generated from this solution is shown in Figure 6.2.
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Figure 6.2: The Human Arm with Four DOF Drawing a Circle.

6.3.2 Semicircle

In order to genérate this geometric figure, we applied the methodology presented in section

6.2 with the following two parameters:

1. Equation of a circle in parametric form:

= r cos 0r_ =

l y
=

where: r = 65 and 0o < 0< 180°
■

r sin 0

2. Number of vértices:

• n = 7.

After applying the methodology, we obtained the following solution:

semicircle = 66 + 06 + 006 + 070 + 70 + 77.

That is:

semicircle = 66060060707077.

The animation generated from this solution is shown in Figure 6.3.
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Figure 6.3: The Human Arm with Four DOF Drawing a Semicircle.

6.3.3 A Quarter of a Circle

In order to genérate this geometric figure, we applied the methodology presented in section

6.2 with the following two parameters:

1 . Equation of a circle in parametric form:

x = r cos 0
• i .

. where: r = 65 and 0o < 6 < 90°
y

— r sin 0

2. Number of vértices:

• n = 4.

After applying the methodology, we obtained the following solution:

quartercircle = 66 + 06 + 006.

That is:

quartercircle = 6606006.

The animation generated from this solution is shown in Figure 6.4.

6.3.4 Horizontal Line

In order to genérate this geometric figure, we applied the methodology presented in section

6.2 with the following two parameters:
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Ci* *1
Vi/

006

4' y

Figure 6.4: The Human Arm with Four DOF Drawing a Quarter of a Circle.

1. Equation of a horizontal line:

• y
=

c, where: c = —100 and length = 155.

2. Number of vértices:

• n = 5.

After applying the methodology, we obtained the following solution:

hline = 0256 + 00 + 02 + 22747.

That is:

hline = 0256000222747.

The animation generated from this solution is shown in Figure 6.5.

M Vl Yl V\.V\
. 0256 -4>. 00 02 22747

. )

Figure 6.5: The Human Arm with Four DOF Drawing a Horizontal Line.
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6.3.5 Vertical Line

In order to genérate this geometric figure, we applied the methodology presented in section

6.2 with the following two parameters:

1. Equation of a vertical line:

• x = c, where: c = 55 and length = 155.

2. Number of vértices:

• n = 5.

After applying the methodology, we obtained the following solution:

vline = 55 + 57 + 57 + 77.

That is:

vline = 55575777.

The animation generated from this solution is shown in Figure 6.6.

■ív l

$- '

*A
*A

Figure 6.6: The Human Arm with Four DOF Drawing a Vertical Line.
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6.3.6 Slash Line

In order to genérate this geometric figure, we applied the methodology presented in section

6.2 with the following two parameters:

1. Equation of a slash line:

• y
—

x, where: length — 155.

2. Number of vértices:

• n = 5.

After applying the methodology, we obtained the following solution:

sline = 5565 + 55 + 57 + 57.

That is:

sline = 5565555757.

The animation generated from this solution is shown in Figure 6.7.

Figure 6.7: The Human Arm with Four DOF Drawing a Slash Line.
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6.3.7 Backslash Line

In order to genérate this geometric figure, we applied the methodology presented in section

6.2 with the following two parameters:

1 . Equation of a backslash line:

• y
=

—x, where: length = 155.

2. Number of vértices:

• n = 5.

After applying the methodology, we obtained the following solution:

bsline = 5156 + 1517 + 17 + 717.

That is:

bsline = 5156151717717.

The animation generated from this solution is shown in Figure 6.8.

Figure 6.8: The Human Arm with Four DOF Drawing a Backslash Line.
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6.3.8 Alphabet of Movement

Here we present the Alphabet of Movement generated after applying the methodology pre

sented in section 6.2 to the seven geometric figures presented in sections 6.3.1 to 6.3.7.

Therefore, the Alphabet ofMovement generated is

• E = { circle, semicircle, quartercircle, hline, vline, sline, bsline },
where:

- circle = 660600607070777771371116616612.

- semicircle = 66060060707077.

—

quartercircle = 6606006.

- hline = 0256000222747.

- vline = 55575777.

- sline = 5565555757.

- bsline = 5156151717717.

That is, the Alphabet ofMovement generated is

• E = { 660600607070777771371116616612, 66060060707077, 6606006, 0256000222747,

55575777, 5565555757, 5156151717717 }.

6.4 Conclusions

In this chapter we have presented a methodology for generating an Alphabet of Movement

for The Human Arm with Four Degrees of Freedom. The Alphabet of Movement generated

is very important because it can be used as input to another learning or planning algorithm

(working in a higher level) to obtain more complex animations of our virtual creature.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis we have presented a novel methodology for the Animation of Virtual Creatures

Using Learning. Our methodology proposes the use of a well-known Reinforcement Learning

algorithm such as Q-learning (Watkins 1989).

We presented two case studies in which we have successfully applied our methodology

obtaining encouraging results:

• The Human Arm with Two Degrees of Freedom, and

• The Human Arm with Four Degrees of Freedom.

For both case studies we ran several experiments in which we realized that oür learning

algorithm performed pretty well and the resulting animation was very real.

Although our methodology has proved to work well for these case studies, its success

depends enormously on how well we defined the reward function.

We also presented a methodology for generating an Alphabet ofMovement for The Human

Arm with Four Degrees of Freedom. In this methodology, we used the experience obtained in

our case studies and some previous knowledge like plañe geometry equations to genérate the

following Alphabet ofMovement:

S={ circle, semicircle, quartercircle, hline, vline, sline, bsline}
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This methodology besides generating an Alphabet ofMovement, it defined a new learning

task:

• The Human Arm with Four Degrees of Freedom learning to draw geometric figures in

a plañe z = c.

This new learning task opened the path for our future work which is presented in the

following section.

7.2 Future Work

7.2.1 Short Term Goals

Our short term goals are:

• To use the current Alphabet of Movement as input to another learning or planning

algorithm (working in a higher level) to obtain more complex animations of our current

virtual creature.

• To increase the number of degrees of freedom of our current virtual creature, perhaps

by adding the left hand.

• To add more extremities to our current virtual creature in order to obtain a learning task

much more complex; a learning task that involves the use of more than one extremity
like giving an applause or handing a baseball bat.

7.2.2 Long Term Goals

Our long term goals are:

• To use the current Alphabet of Movement to define a new learning task for our second

case study like: learning to write a word using the alphabet in a plañe z = c.

• To propose a new case study with a new virtual creature and with more degrees of

freedom in which we can apply our methodology.
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