

A^/?,? 5 (.<$-. |)

Centro de Investigación y de Estudios Avanzados del I.P.N.

Unidad Guadalajara

Control de Sistemas usando RFID

CINTRO DC INVESTIGACIÓN V

DC f.STUDIOS AVANZADOS DCt

INSTITUTO POLITÉCNICO

NACIONAL

COORDINACIÓN GENERAL DE

SERVICIOS BIBLIOGRÁFICOS

Tesis que presenta:

Ornar Alfredo González Padilla

para obtener el grado de:

Maestro en Ciencias

en la especialidad de:

Ingeniería Eléctrica

Directores de Tesis

Dr. Félix Francisco Ramos Corchado

Dr. Herwig Unger

CINVESTAV
.

p-^j Guadalajara, Jalisco, Agosto de 2008.

ADQUISICIÓN
»>«=■ » IBROS

ra Aiwrvtteif-^.r:*^ C(^C_. JJ2 DO&

ADQUIS.:J^L____2___2-
FF..HA- 2 .*-. ■ TTX J^Cfl

&
'

\ $%¿H?>- K_0\

Centro de Investigación y de Estudios Avanzados

del I.P.N.

Unidad Guadalajara

Control Systems Using RFID

A thesis presented by*
Ornar Alfredo González Padilla

to obtain the degree of:

Master in Science

in the subject of:

Electrical Engineering

Thesis Advisors:

Dr. Félix Francisco Ramos Corchado

Dr. Herwig Unger

Guadalajara, Jalisco, August 2008.

Control de Sistemas usando RFID

Tesis deMaestría en Ciencias

Ingeniería Eléctrica

Por:

Ornar Alfredo González Padilla

Ingeniero en Computación

Universidad de Guadalajara 2002-2005

Becario de CONACYT, expediente no. 203003

Directores de Tesis

Dr. Félix Francisco Ramos Corchado

Dr. Herwig Unger

CINVESTAV del IPN Unidad Guadalajara, Agosto de 2008.

Control Systems Using RFID

Master of Science Thesis

In Electrical Engineering

By:
Ornar Alfredo González Padilla

Engineer in Computer Science

Universidad de Guadalajara 2002-2005

Scholarship granted by CONACYT, No. 203003

Thesis Advisors:

Dr. Félix Francisco Ramos Corchado

Dr. Herwig Unger

CINVESTAV del IPN Unidad Guadalajara, August, 2008.

2

Resumen

Esta tesis propone un nuevo enfoque paxa desarrollar sistemas RFID. Nuestra propuesta lib

era a las aplicaciones de negocio de analizar datos RFID buscando patrones relevantes. En

lugar de eso, cada aplicación define un conjunto de eventos de interés usando un lenguaje
declarativo. Siempre que un evento interesante ocurre en el entorno, la aplicación correspon
diente es notificada. Nuestro enfoque hace que las aplicaciones de negocio sean mas fáciles

de desarrollar y ademas reduce la cantidad de información comunicada entre el middleware

y las aplicaciones, por lo tanto el tráfico de red y la probabilidad de errores disminuye.

La solución propuesta se compone de dos componentes principales: un lenguaje declar

ativo y una capa de reconocimiento. El lenguaje declarativo le permite a las aplicaciones
definir eventos de interés. La capa de reconocimiento analiza el flujo de información RFID

en busca de ocurrencias de eventos de interés. Ambos componentes fueron diseñados para

trabajar junto con middlewares y dispositivos RFID existentes actualmente.

El lenguaje propuesto permite construir eventos incrementalmente. Los eventos más sim

ples se construyen usando información RFID básica, mientras que eventos más complejos se

construyen a partir otros eventos más simples. Nuestro lenguaje permite definir eventos us

ando: observaciones RFID, relaciones entre observaciones y lugares en el entorno (reuniones,
presencias y ausencias), lógica proposicional y ocurrencias previas de eventos más simples

(secuencias y combinaciones). La capa de reconocimiento usa Autómatas de Estado Finito

y árboles para poder detectar ocurrencias de eventos utilizando flujos de información RFID.

I

Abstract

This thesis proposes a new approach for developing RFID systems. Our approach releases

enterprise applications of analyzing RFID data looking for relevant patterns. Instead, each

application defines a set of interesting events using a declarative language. Whenever an

interesting event occurs in the physical environment, the corresponding application is notified.

Our proposal makes RFID enterprise applications easier to program and reduces the amount

of information passed between middleware and appUcations, therefore network traffic and

error probability decrease.

The proposed solution consists of two fundamental components: a declarative language,
and a recognition layer. The declarative language allows enterprise applications to define

interesting events. The recognition layer analyses the flow of RFID observations, looking
for occurrences of interesting events. Both components are designed to work together with

existing RFID middlewares and devices.

The language proposed allows constructing events incrementally. Simpler events are con

structed using basic RFID information, while more complex events are constructed from

simpler events. Our language allows defining events using: RFID observations, relations

between observations and locations (i.e. reunions, presences, absences), propositional logic
operators, and previous occurrences of events with temporal constraints (sequences, combi

nations). The recognition layer uses Finite State Autómata and threes in order to detect

event occurrences within the flow of RFID information.

Acknowledgments

A Dios.

A mis padres, que me han apoyado siempre.

A mis asesores, por aportarme su experiencia.

A CONACYT por apoyar éste trabajo.

Contents

1 Introduction 1

1.1 Problem description 1

1.2 Thesis objectives 2

1.3 Proposed solution overview 2

1.4 Thesis outline 3

2 RFID for Context-Aware Computing 5

2.1 Introduction 5

2.2 Context-Aware computing 5

2.2.1 Context Information Management 5

2.3 Radio-Frequency Identification 6

2.3.1 RFID architectures 7

2.3.2 RFID for Context-Aware Computing 8

2.4 Platforms for Context-Aware Computing 9

2.5 High-Level Event Management 10

2.6 Discussion 11

3 RFID Composite Event Definition and Detection 13

3.1 Introduction 13

3.2 Overall proposal 13

3.3 Construction and Interpretation of Events 14

3.3.1 Event Categories 14

V

VI CONTENTS

3.3.2 Operators 16

3.4 A Language for Composite Event Definition 18

3.4.1 Classes 19

3.4.2 Instances 20

3.4.3 Data 20

3.4.4 Locations 20

3.4.5 Events 21

3.5 A Layer for Composite Event Recognition 22

3.5.1 Data Management 23

3.5.2 Event Definition Management 24

3.5.3 Situation Recognition 25

3.5.4 Discussion 27

4 A RFID-Environment Simulator 29

4.1 Simulator 29

4.1.1 Constructing Specifications 29

4.1.2 Environmental Simulation 34

4.2 Study Case. Managing RFID Events in a Hospital Environment 35

4.2.1 Medication 35

4.2.2 Allergic Medication 36

4.2.3 Overdose 35

4.2.4 Dangerous drug interaction 37

4.2.5 Wrong Transfusión 33

4.3 Comparison 3g

4.4 Conclusions 39

5 Conclusions and Future Work 4j

5.1 Conclusión 41

5.2 Future Work . 42

CONTENTS VII

A RFID-CEDL Schema 43

Bibliography 51

List of Tables

4.1 Comparison of approaches. 39

IX

List of Figures

2.1 EPCglobal system components. 7

2.2 Interaction using ALE. 8

3.1 Overall proposal. 14

3.2 tjstance 24

3.3 t-occurrence and t.value 24

3.4 Example Syntax Tree 25

3.5 NFA for sequence evi,ev2,ev3 26

4.1 Interface for adding classes. 30

4.2 Interface for adding instances. 31

4.3 Interface for adding data. 31

4.4 Interface for adding a location. 32

4.5 Interface for defining the ñame of an event. 32

4.6 Interface for defining variables for an event. 33

4.7 Interface for defining fields for an event. 33

4.8 Interface for defining an event condition. 33

4.9 Simulation in RFID-CES. 34

XI

Chapter 1

Introduction

1.1 Problem description

Radio Frequency Identification (RFID) [21] is a tool used for automatic identification which

most time is utilized for asset tracking. RFID is a concept comparable to bar coding; however

using RFID, readings are remote and do not require line of sight. RFID information is

generated as a continuous flow of observations. An observation is a triplet <object, reader,

timestamp> which can be interpreted as the position of an object at a given moment.

An área which takes advantage of RFID technology is Context-Aware Computing [1].
Context-Aware computing comprises applications which must detect particular events hap

pening in the environment and react accordingly. Such applications always require a sensing
mechanism in order to gather information about the environment. When Context-Aware Ap

pUcations must react according to position of objects, RFID seems to be a suitable sensing
mechanism.

One of the main components of current RFID architectures is a middleware whose function

is to gather and filter observations coming from readers. Despite this filtering process, RFID

observations are hard to manage because they are generated at high rates and provide low-

level information. The granularity of RFID observations generates two drawbacks:

• Most Context-Aware applications are interested in events which are more complex than

simple observations. Henee, Context-Aware applications must perform an analysis over

observations. Such analysis detects relevant patterns or relations among observations.

Performing this analysis raises the complexity of developing Context-Aware applica
tions.

• A lot of observations which are sent to Context-Aware applications are not useful for

1

2 CHAPTER 1. INTRODUCTION

detecting any relevant event. Therefore network resources are unnecessarily wasted,
which affects application performance.

1.2 Thesis objectives

The objective of this thesis is to study the previously mentioned drawbacks and to propose

an adequate solution. Such solution is implemented by a tool which supports Context-

Aware application development. Applications developed using our tool can define a set of

interesting high-level events and receive notifications only when relevant events occur, instead

of continuously receiving low-level information about localization of objects.

Our proposal satisfies the following requirements:

• Event definition method. To provide a method by means of which Context-Aware

applications can define interesting events.

• Event recognition component. To design and implement a component whose task is to

recognize occurrences of events by analyzing the flow of RFID observations.

• Compatibility with current RFID infrastructure. The proposed solution should interact

with existing middleware and RFID readers.

1.3 Proposed solution overview

The proposed solution was obtained by dividing the problem into three stages, as follows.

•

•

Definition of operators. We have defined a set of operators with sufficient expressivity
for defining events. Such set of operators was defined based on Complex Event Pro

cessing concepts. However, we have extended such concepts in order to include RFID

data.

Language design. We have designed an XML-Based language for defining events.

Context-Aware applications utilize our language in order to specify the set of events

they are interested in. We have also developed an XSD schema for validating definitions
made using our language.

1.4. THESIS OUTLINE 3

• Data recognition. We propose a new layer, situated between middleware and Context-

Aware AppUcations. This layer is in charge of analyzing RFID observations for recogniz

ing event occurrences. Each time an event is recognized, the corresponding application

is notified. Recognition of events is made using Finite State Autómata, trees, sets, and

other data structures.

1.4 Thesis outline

This thesis is structured as foUows: chapter 2 presents a state of the art overview; chapter
3 ülustrates our proposal and all its components; chapter 4 focuses on implementation and

includes a study case for a hospital environment; finaUy, chapter 5 includes conclusions and

future work.

Chapter 2

RFID for Context-Aware Computing

2.1 Introduction

In this chapter we present some concepts which are indispensable for understanding our

work. At the moment of introducing each concept, we emphasize its importance in our work.

Besides the background information, we present some relevant works whose objectives are

similar to ours.

2.2 Context-Aware computing

Computer systems often need to be aware about the status of the surrounding environment so

they can react accordingly. Such applications are called Context-Aware AppUcations [1, 14].
Context-Aware AppUcations gather environmental information through sensors, analyze such

information, and adequate their behavior accordingly. This sort of appUcations uses varied

contextual information; for example: temperature, humidity, lighting, noise level, movement,
and air pressure. However, location information is by far the most frequently used attribute

of context. Therefore RFID is widely used for Context-Aware computing.

2.2.1 Context Information Management

There are different approaches for sensor management and data acquisition used by Context-

Aware Applications. Winograd [26] proposes a classification according to such characteristics:

• Widgets. A widget is a kind of driver for accessing sensors. A widget acts as a cen

tralized broker between the set of sensors and a Context-Aware Application. Usage

5

6 CHAPTER 2. RFID FOR CONTEXT-AWARE COMPUTING

•

•

of widgets hides sensing details and shows only an interface for obtaining data from

sensors. Such transparence of low-level details allows applications to opérate using dif

ferent sensing infrastructures. For example, a Context-Aware application which reacts

according to location of objects using cameras as sensing mechanism could opérate us

ing RFID. This change would be transparent for the Context-Aware Application; the

only change required would be on the widget.

Networked Services. Under this context management, sensors are deployed under a

Service-Oriented Architecture. Using networked services each sensor can connect and

transfer environmental data to clients. The absence of a centralized component is the

main difference of networked services against widgets.

Blackboard model. This context management is based on a centralized data repository
called a blackboard. Sensors write their information to the blackboard. Context-Aware

applications subscribe with the blackboard in order to be notified when particular
events occurs. Such events can be low-level events (simple sensors observations) or

high-level events (patterns among several sensor readings). The blackboard is in charge
of recognizing event occurrences and notifying the corresponding applications. Current

blackboard systems vary in complexity from systems whose events are recognized by

just comparing valúes to systems where usage of artificial intelligence is required.

Current Context-Aware Applications implemented using RFID data, are developed under

the widget context management, with the RFID middleware acting as the widget. The

purpose of this work is to provide a platform for developing RFID Context-Aware systems

under the blackboard context management.

2.3 Radio-Frequency Identification

As mentioned in chapter 1, Radio Frequency Identification (RFID) [8, 21] is a technology
used for automatic identification. The foundation of RFID technology is to store data in

tags (generally a unique Id [6]), to attach such tags to objects, and to retrieve the content of

tags using strategically located readers. Whenever a tag is in the read range of a reader, an

observation (containing the tag id, the reader id, and a timestamp) is produced. Communi
cation between RFID tags and readers is performed by means of radio frequency signáis, so

communication is remote and does not require line of sight.

2.3. RADIO-FREQUENCY IDENTIFICATION 7

2.3.1 RFID architectures

Nowadays, most RFID systems are compliant to EPCglobal standards [5]. Such set of stan

dards defines the required components for RFID systems, their behavior and the form of

interaction among them. The main objective of EPCglobal architecture and its standards is

to increase visibiUty of RFID-tagged produets through the supply chain. When developing

Context-Aware systems, only some components of EPCglobal architecture are utiüzed.

Filtered

observations _jnte_t-Awar«

A|i|>ln .il i.iii

Observations

(EPC. Reactor Id. TTmestimp)

c
EPC

Figure 2.1: EPCglobal system components.

Figure 2.1 shows the principal EPCglobal components for developing Context-Aware ap

pUcations. Electronic Product Codes (EPC) [4] are identifiers stored in tags. Each EPC must

be unique so it identifies a single object. The RFID hardware infrastructure comprises read

ers and tags. Each time a tag is in the read range of a reader, the corresponding EPC is

sent from the tag to the reader. When a reader receives an EPC, an observation (containing
the EPC, the id of the reader, and a timestamp) is produced and sent to the middleware.

Middleware gathers observations coming from several readers and filters them in order to

eliminate duplicated and spurious observations [2, 11]. Afterwards, filtered observations are

sent to Context-Aware applications. Finally, Context-Aware applications analyze filtered ob

servations with the purpose of recognizing high-level events happening in the environment.

For developing Context-Aware applications, the usage of the earlier architecture presents
two drawbacks. First, Context-Aware applications must analyze observations in order to

detect high-level events, so development of Context-Aware applications is difficult. Second,
network resources are unnecessarily wasted when middleware sends observations which are

not useful for detecting any interesting event.

Application Level Events (ALE) [7] is an interface proposed by EPCglobal for obtaining
RFID information and managing RFID readers. ALE allows applications to specify the

set of interesting tags and to adjust some parameters for counting, grouping and reporting

8 CHAPTER 2. RFID FOR CONTEXT-AWARE COMPUTING

observations. ALE also allows to abstract readers into logical places, and to define which

logical places are relevant for each application. Using information provided through ALE,

middleware knows which tags to report, which readers are relevant, and how to eliminate

duplícate and irrelevant observations. ALE also allows applications to choose how they

want to receive information; it is possible to receive the complete set of observations, or the

differential set of observations (additions or deletions relative to the previous report). Figure
2.2 shows interaction between middleware and appUcations using ALE.

Figure 2.2: Interaction using ALE.

Despite using ALE observations are filtered and network traffic decreases; Context-Aware

applications are interested in reacting to events which most of the times are more complex
than simple observations. As result, irrelevant observations still overloads the network, and

analysis is still performed by Context-Aware AppUcations.

2.3.2 RFID for Context-Aware Computing

RFID observations provide information about locaUzation of objects at a given moment. Such

information is useful for Context-Aware Systems which must react according to localization

of people and objects. We cali this sort of appUcations RFID Context-Aware Applications;
in this section we present some examples. These works exemplify the sort of applications
which can take advantage of our proposal.

Dynamic Ubiquitous Mobile Meeting Board (DUMMBO)[3] is a Context-Aware System
whose goal is to capture audio from spontaneous meetings around a whiteboard. The white-

board is equipped with an RFID reader and employees are tagged whit RFID tags. When

enough employees are standing around the whiteboard, the application automaticaUy starts

recording audio. Later, a user can retrieve the audio and also know the date and time when

the respective meeting started. DUMMBO also stores information about which employees
were impUcated in meetings, and what time did each of them joined and left the meeting.

Under current architectures, DUMMBO is constantly notified about employees nearby to
the blackboard. Notifications are received even when insufficient employees are standing in

order to determine a meeting. In such cases network traffic is generated, but the information

2.4. PLATFORMS FOR CONTEXT-AWARE COMPUTING 9

is not relevant for DUMMBO. In addition, DUMMBO must always analyze information in

order to determine the start and finalization of a meeting. However, using our approach,
DUMMBO would define in a declarative manner the required environmental features for

detecting a meeting start or a meeting finalization. After, DUMMBO would be notified only

when a meeting starts or finalizes, which reduces network traffic and development complexity.

In [10], a pervasive hospital bed is presented. Such work is an example of Context-Aware

Computing for a hospital environment. Such bed is equipped with an RFID reader, so it is

possible to determine who uses the bed and who is neax to the bed. The bed is also equipped

with a display. Such display adapts its behavior according to nearby people. When the

patient is alone, the display can be used as a televisión; when certain nurses or physicians

approach, the display shows information about the patient.

For this example, the Context-Aware application must constantly analyze nearby people
in order to determine if there is an authorized nurse or doctor. Observations are sent all

the time, even when there is not information about relevant persons. Instead, under our

approach, the appUcation would be informed only when a doctor or a nurse approaches to

the bed.

In [19] some use cases of RFID usage in a hospital environment are presented. This

work is based on current RFID architectures and is based on simple tracking information.

However, such use cases would be improved by using high-level event definition and detection.

In chapter 4 we present some use cases for a hospital environment.

2.4 Platforms for Context-Aware Computing

Several approaches have been proposed for developing context-aware applications. However,
most of them are not intended for RFID systems; instead they can be adapted to different

types of sensing methods.

Proactive Activity Toolkit (Proact)[13] is a tool made for inferring activities based on

probabilistic inference and data mining. For modeling an activity, first we divide it into

stages. For each stage we define the set of involved objects and we assign each object with

its probability of being used. For example, if the modeled activity is making tea, the stages
involved are: boiling water, putting the tea bag in the water, and flavor the tea. For the first

stage, a teapot have a high probability; for the second stage a tea bag have a probability near

to one; finally, for the third stage, sugar, milk, lemon, and honey would have a comparable
modérate probability. In this approach, inference is made using Bayesian networks. The

stages of the actions are considered hidden variables and the sequence of sensed objects are

the observable variables.

This tool has been used for inferring several activities of daily living like using a telephone,

10 CHAPTER 2. RFID FOR CONTEXT-AWARE COMPUTING

preparing a snack, or taking a medication. This tool has showed an average precisión of 88%.

Despite this approach have showed high accuracy, its probabilistic nature makes it prone to

error, which makes it not suitable for critical applications. Another disadvantage is that it

is not possible to use historical data neither for defining ñor for recognizing events.

RCSM [22, 23, 24] is a middleware for Context-Aware Systems development. RCSM mod

els a Context-Aware System as a set of context-sensitive objects. Each of these objects is

composed by an interface and an implementation. Each object is defined as a set of context

valúes. The interface of an object defines a mapping between context valúes and actions.

Such mapping clearly indicates the action or set of actions that should be triggered in re

sponse to each interesting event. On the other hand, the implementation contains the actual

code of the response actions. RCSM provides a Language for defining interfaces for objects

and a compiler in behalf of the automatic generation of customized objects. The genera

tion procedure is the following: first, developers identify their context-sensitive requirements

(needed data, meaningful situations, response actions, and scheduling of actions); then use

the language to specify the requirements; finally compile the specification in order to genérate
the objects.

This work considers the usage of any type of sensors. Therefore, its performance can

be improved by focusing in a specific type of context-information, like RFID information.

Anyway, it is very remarkable of this approach the existence of a grammar for situation

definition.

SOCAM [25] is an infrastructure made for developing Context-Aware Systems. Context-
Aware Applications developed using SOCAM present a service-oriented architecture. Ex

amples of these services are sensor discovery, data acquisition, and analysis of information.

The most remarkable characteristic of SOCAM is its event recognition method. Valúes of

the context are represented as first order logic predicates with the form Predicate(Subject,
Valué) e.g. Location(John, Bathroom), Temperature(Kitchen, 120), Status(Door, Open).
Using this representation, inference of events is done using first order logic, through forward

chaining, backward chaining (similar to prolog), or a hybrid execution mode.

The principal disadvantage of using SOCAM is the impossibility of using historical infor
mation for recognizing events. This is due to the usage of first order logic inference which

limits event expressivity to a reduced set of operators (conjunctions, disjunctions, and nega-

tions) .

2.5 High-Level Event Management

Event-driven systems [15] are systems where events are generated and consumed between

components. Such events may signify a problem, an opportunity, a threshold, etc. Whenever

2.6. DISCUSSION 11

an event is generated, it is delivered to all interested components; afterwards such components

evalúate the event and optionally take actions. RFID systems are a kind of Event-Driven

Systems where primitive events are generated by RFID readers. With this work, we extend

this idea and include higher-level event management in RFID applications.

Complex Event Processing (CEP) [12, 18] is an emerging technology used for understand

ing and controlling event-driven systems. The goal of CEP is to identify meaningful high-level
events within streams of simpler events. High-level event recognition is performed by looking
for relationships between simpler events. Examples of such relationships are causality, timing
and membership. Given that RFID information is hard to manage [20, 9], CEP concepts

have been applied to RFID in several works.

In [27], a SQL-based language for detecting events along the stream of RFID observations

is presented. This work recognizes high-level events looking for specific sequences of obser

vations. However this approach does not support a hierarchy of defined events; all events

must be constructed directly from RFID observations, which limits its expressivity and makes

tricky the process of constructing events.

PEEX is a system for RFID high-level event management based on probabilities is pre

sented in [17]. The main objective of this approach is to handle noise in RFID observations

and ambiguity in high-level event recognition. In this approach, events are probabiUstic, i.e.

each event definition contains a probability distribution on all its attributes. Given a set

of low-level information, such probability distribution models the uncertainty of an actual

event occurrence. Event management is performed using SQL queries over a datábase of

observations.

In [16] is presented a system for executing queries over streams of RFID observations. In

this approach, each RFID observation is modeled as a primitive event, therefore the input is

an infinite sequence of primitive events. In this work, a declarative language caUed SASE is

presented for event high-level definition. SASE allows defining high-level events using simpler
events occurrences or non occurrences in a history of events. In [28] an extensión of SASE

called SASE+ is presented. The base of SASE+ is to use Kleene closure in order to define

high-level events as patterns of simpler events. This approach defines events exclusively as

occurrences of simpler events; however it is desirable more flexibility for event definition.

By augmenting the number of available operators, event definition would become easier and

expressivity would increase.

2.6 Discussion

Many Context-Aware Applications take advantage of RFID technology as sensing mecha

nism; however, directly analyzing RFID information looking for higher level events is hard.

12 CHAPTER 2. RFID FOR CONTEXT-AWARE COMPUTING

Despite several approaches have been proposed for facilitating Context-Aware Applications

development, there are still some drawbacks which must be faced Uke compliance with cur

rently adopted standards, flexibility for event definition, and historical information usage.

Chapter 3

RFID Composite Event Definition
and Detection

3.1 Introduction

In this chapter we present in detail our proposal, which is an extensión to current RFID ar

chitectures. Such extensión allows Context-Aware Applications to use a declarative language
in order to define a set of interesting high-level events. Each time an interesting event occurs,

the corresponding application is notified.

In RFID environments, both people and objects can be tagged depending on the require
ment of each appUcation. From now on we will use the term actor equally for tagged people
and for tagged objects.

3.2 Overall proposal

For allowing Context-Aware Applications to define their sets of interesting events, we have

developed a declarative language called RFID-Composite Event Definition Language (RFID-

CEDL).

For performing RFID data analysis and event recognition, we have added a new layer
caUed the recognition layer between middleware and Context-Aware Applications. This new

layer acts as an intermediary between enterprise applications and middleware: on the one

hand it obtains from applications a set of interesting events specified using RFID-CEDL; on

the other hand, it uses ALE to interact with the middleware in order to obtain filtered data

which is necessary for detecting such events. Figure 3.1 illustrates our overall proposal; in

the foUowing sections, we describe in detail its components and their functionality.

13

14 CHAPTER 3. RFID COMPOSITE EVENT DEFINITION AND DETECTION

<_"?l,Ht*_r _*»*lng_™j-l**-5*>ire

Figure 3.1: Overall proposal.

Notice that the recognition layer is situated in the same host that the middleware. By

locating both components in the same host, network traffic decreases substantiaUy.

3.3 Construction and Interpretation of Events

A fundamental part of our work is to define the kind of events manageable by the recogni
tion layer. In chapter 2 several works about composite event definition and detection were

presented. We have taken concepts of such works and we have extended them for working
with RFID information. In this section, we present our event model and the set of operators
available in our approach for constructing events.

3.3.1 Event Categories

We distinguish two categories for events: primitive events and composite events. Primitive

events are automatically generated by the recognition layer using the flow of RFID observa

tions coming from the middleware. Composite events are constructed by combining primitive
events and other composite events using a set of predefined operators.

Primitive Events

Primitive events are the starting point for performing event recognition. There are four types
of primitive events: Observation, Arrival, Departure, and Stance.

Observations are generated by RFID readers and are the basic information unit managed

3.3. CONSTRUCTION AND INTERPRETATION OF EVENTS 15

by the recognition layer. An observation is a triplet (EPC, reader, timestamp) produced
whenever an actor is in the read range of a reader. We define an observation event as:

Observation(x, y, t)

where:

x is the id of the observed actor (RFID tag).

y is the identifier of the reader which has detected the actor.

t is the timestamp of the read.

Analyzing directly the flow of observations is hard because RFID readers have high read

rates and the volume of observations generated by them is enormous. Instead of performing

high-level event recognition by analyzing simple observations, we use differential information.
Differential information is information about arrivals and departures of actors respecting
to read ranges of readers. We define now two primitive events for expressing differential

information: departure and arrival.

A departure for the actor x and the reader y is produced when x is observed by y and

after that x is not observed by y during a period of time p. The duration of p depends on

the read rate and accuracy of readers.

(3x,y,ti)((Obervation(x,y,ti) A (Vt2)(Observation(x, y,t2) —> ((í2 < f_) V (t2 >

i +-'.))) —* Departure(x,y,ti))

The event Departure(x,y,t\) means that actor x has left the read range of reader y at

time t\.

An arrival for the actor x and the reader y is produced whenever x is observed by y and

for all the previous observations of x by y, there exists a posterior departure. We express:

(3x,y, t_)(Obervation(x,y, t_) A (Vt2)((Observation(x,y,t2) A (t2 < ti)) —>

(3t3)(Departure(x,y, t3) A (t3 > t2))) —► Arrival(x,y,t_))

The event Arrival(x,y,ti) means that actor x has arrived to the read range of reader y at

time _i .

Information provided by arrivals and departures can be further compressed by creating
an event stance. A stance is created for each arrival and its corresponding departure. We

define a stance as:

16 CHAPTER 3. RFID COMPOSITE EVENT DEFINITION AND DETECTION

(3x, y, ti,t2)((Arrival(x, y, ti) A Departure(x, y, t2) A (_i <

t2) A (-x3t3)(Arrival(x, y, t3) A (í3 > t_) A (í3 < t2))) -»■ stance(x, y, í_, t2))

The event Stance(x,y,ti,t2) means that actor x has been located into the read range of

reader y during the period comprised between _-■ and t2.

Composite events

Composite events are events defined using RFID-CEDL. A composite event can be con

structed using simpler events, properties of actors, location of actors, and additional data. In

the foUowing section we present the set of operators available in RFID-CEDL for expressing

such information.

When a composite event is defined using RFID-CEDL, it must be provided with a ñame n

and a set of fields F:= {fi,f2, ..., fn}- The recognition layer internally generates an analogous

type of event which also contains an extra field called t. The attribute t is utilized for

registering the timestamp of each event instance. According to this, the general structure of

a composite event within the recognition layer is:

n(fi,f2,...,fn,t)

If an event instance of type n occurs at time t, their valúes vi,v2,...,vn are stored by the

recognition layer. We represent a composite event instance as a predicate of the form:

n(vi,v2,...,vn,t)

In section 3.4 we describe deeply how to define events by means of RFID-CEDL and the

usage of ñames and fields.

3.3.2 Operators

In this section we present the set of operators available in our platform for composite event

construction; however, before presenting operators, it is necessary to define a term called

stays which evaluates if an actor x is located within the read range of a reader y at a given
moment í.

(3x, y, tut2, t)((stance(x, y, tut2) A (. > U) A (t < t2)) -» stays(x, y, t))

3.3. CONSTRUCTION AND INTERPRETATION OF EVENTS 17

Location Operators

Primitive events provide information about localization of a single actor. Based on this

constraint, we have identified the necessity of grouping information about location of several

actors. According to this, we have included three operators which take their valúes by

analyzing localization of several actors. These operators are all any, and none; each of these

operators is evaluated as a boolean valué. Their valúes are calculated according to a set of

actors X := {x-*, x2, ..., xn}, a reader y, and a time L

Now we present the three location operators:

• The any operator is evaluated as true if any of the actors in X stays within the read

range of y at instant t .

Any(xi , x2, ..-, xn, y, t) <-» stays(xi, y, t) V staysfa, y, t) V ... V stays(xn, y, t)

• The all operator is evaluated as true if all the actors in X are situated within the read

range of y at instant t .

All(xi, x2. ..., xn. y, t) <-► stays(xi. y, i) A stays(x2. y, i) A ... A stays(x„, y, í)

• The none operator is evaluated as tnie if none of the actors in .Y is situated within the

read range of y at instant t.

None(xi,x2, ..., xn, y, í) <-+ ->stays(x1. y, t) A ->stays(x2. y, í) A ... A ->stays(xn. y, t)

Occurrence Operators

We now present two operators for defining composite events using a history of occurrences

of simpler events. These operators are: sequence and combination.

• A sequence of events is defined specifying a list of event type ñames, a time í, and

an integer i. A sequence wiU be recognized if aU the events in the list of events have

happened ordered within the period comprised between t-i and t.

Sequence(evi, ev_, ..., evn, t, i) <-> et>i(«n, vi2, ..., vin, t_) A ei>2(v2i, V22, ..., t^, Í2) A ... A

evn(vni,Vra, ...,vm,tn) A (t-i) <=ti <t2<...<tn<=t

18 CHAPTER 3. RFID COMPOSITE EVENT DEFINITION AND DETECTION

• A combination of events is defined specifying a list of event type ñames, a time t, and

an integer i. A sequence will be recognized if all the events in the list of events have

happened within the period comprised between t-i and t, in any order.

Combination(evi, ev2, ..., evn, i, i) «->

evi(vn,Vi2,...,Vin,ti)Aev2(v2i,v22,...,v2n,t2)A...Aevn(vni,vn2,...,vnn,tn)A(t-i) <=tj <= t

where:

j= 1,2,.. .,n

Existence Operator

As mentioned before, using RFID-CEDL an event can be defined using additional information

which is indirectly related to actors. For example, to recognize an allergic medication in a

hospital environment, it is necessary to know to which medicines is allergic each patient.

• Exists is an operator provided in RFID-CEDL which searches into additional informa

tion looking for occurrences of specific valúes. Exists returns true if matching informa

tion is found, false otherwise.

Boolean Operators

All operators defined previously are evaluated as boolean valúes. RFID-CEDL allows using
boolean operators for combining sub expressions. The supported boolean operators are con-

junction, disjunction and negation. We have decided to use this set of operators due to its

functional completeness.

Comparison Operators

Events and actors defined in RFID-CEDL are composed by fields. Each instance of an event

or an actor provides valúes for the corresponding fields. When defining an event, it is possible
to compare such valúes using comparison operators (<-<=- —, >, >—).

3.4 A Language for Composite Event Definition

In previous sections we have defined primitive types of events and the set of operators for

defining composite types of events. In this section we present the tool which allows composite

3.4. A LANGUAGE FOR COMPOSITE EVENT DEFINITION 19

event definition. Such tool is a declarative, XML-based language called RFID-CEDL. The

principal advantage of using XML syntax is its easy usage and validation.

RFID-CEDL is typified. Validation of data types is easily performed using an XML

schema. This feature makes definitions made in our language less error prone. Another

advantage of using data types explicitly is that it is easier to read definitions made in our

language and to understand the purpose of each element. Primitive types provided in our

language are: integer, float, string, boolean, and date; however given its XML nature, the

language can be extended to support other primitive types.

For defining the set of interesting events for an appUcation, it is necessary to créate a

specification. A specification is an XML document which must be compliant to our language;
such compliance is vaUdated using a special XML-Schema for RFID-CEDL specifications

(appendix A).

In this section we present the five main construction sections of a specification, we il

lustrate the usage of each section with examples of their usage in a hospital environment.

Further examples are presented in chapter 4.

3.4.1 Classes

Within the section classes, we créate the necessary data structures for defining composite
events. Classes are composed by fields; a field is an attribute for the class and is defined with

a data type and a ñame. Classes could either correspond to a kind of actor in the physical
world or not. The process of defining classes is similar to defining a datábase for a system;

developers decide which classes are needed and their fields. For example, to recognize allergic
medications in a hospital environment, we need to define a patient class, a medicine class,
and a patientallergy class which defines to which medicines a patient is allergic. Note that for

this example, both patient and medicine correspond to tagged objects in the environment,
while patientallergy does not. Next, we show an example of a class definition.

<class name*="medíci*ie">

<field>

<string -_-__e="na-ne"/>

</field>

<f_e_d>

<date na*ne="caducity"/>

</íield>

<field>

<string __me=-"active__bs-_nce" />

</field>

</clase>

20 CHAPTER 3. RFID COMPOSITE EVENT DEFINITION AND DETECTION

3.4.2 Instances

Once we have defined the appropriate classes for the appUcation scenario, we must provide
information about tagged objects. This task is done through the instances section of our

language. Within this section, we link a tag id to an actual object by defining the class to

which the object belongs and providing valúes for the fields defined in such class. For example,
we can instantiate a medicine according to the class defined in the previous subsection as

follows:

.instance epc="i_ra:up**: id:gid: 10. 1002.2" class="medicine">

<attribute>Aspiriii</attr_-_te>
<attribute>2008-_2-15</attribute>

<attribute>Acetyl*-a_icylic acid</attribute>

</instance>

The epc attribute is the id stored in the RFID tag of the object we are defining; this

attribute is the linkage between specifications made in our language and the physical world.

Note that the data types of proportioned valúes for the attributes must correspond to the

data types of the fields defined in the corresponding class.

3.4.3 Data

In the data section we provide additional information which is necessary for event definition

but is not directly referent to actors. The data section is similar to the instances section, but

given that we are not defining tangible objects, we do not provide a tag id (epc attribute).
To illustrate, we will use the example of recognizing allergic mediations; in this event, it is

necessary to know which allergies suffers each patient. An example of such information in a

specification is presented next:

<data class="patiental_ergy">
<attribute>John Connor</attribute>

<attribute>Aspirin</attr_bute>
</data>

Every data definition must correspond to a previously defined class, this correspondence
is defined through the attribute named class. For our example, there must be a class named

patientallergy in the classes section, and such class must contain two string fields.

3.4.4 Locations

In order to use RFID observations in events definition we must consider the position of RFID

readers. Within the locations section, we define relevant places in the environment of our

3.4. A LANGUAGE FOR COMPOSITE EVENT DEFINITION 21

appUcation. To define a location, we provide its ñame and a set of RFID reader identifiers.

By defining a location as a set of readers, we can manage several physical readers as a single
source of observations. Next, we show how to define locations using RFID-CEDL.

<location name-"r-oml">

<reader ñame-" 192. 168. 1.2" />

</locatio_>

<location name-"corrido-">

<reader ñame-" 192. 168. 1 .2" />

<reader ñame-" 192. 168. 1. 4" />

</location>

As shown in the example, the reader named 192.168.1.2 is used to define two different

locations, which illustrates that the use of RFID readers for a location definition is not

exclusive; we can use the same RFID reader to define two or more locations.

3.4.5 Events

The events section is the most important section in our language because is there where

we use the information provided in previous sections to define the events of interest for our

appUcation. For each event, we must define variables, fields and a condition.

Variables

The variables of an event definition provide the required information for defining such event.

There are three types of variables: tagged objects (defined in the instances section), infor

mation (defined in the data section), and previously defined simpler events. Each variable

should have a ñame and a type: for tagged objects and information, the type is a class ñame;

for events the type is the ñame of the event.

Fields

The fields of an event provide information related to each event occurrence. Automatically,

every time an event is recognized, its ñame and its timestamp are stored; however if we specify
fields for the event, we can store further related information. Fields obtains their valúes from

the variables of the event. As mentioned in section 3.4.5, the fields of an event are useful for

defining events from other events. For example, whenever we detect a medication, we can

store the medicine ñame and the patient ñame as fields; then we could use these valúes to

define potential overdoses of a medicine for a patient.

22 CHAPTER 3. RFID COMPOSITE EVENT DEFINITION AND DETECTION

Condition

The condition of an event is a logic expression which is constantly evaluated by the recogni
tion layer in order to determine when an event instance occurs. A condition is constructed

using the operators presented in section 3.3.2. We now illustrate an example of a condition;

however, several examples will be presented in the next chapter.

Suppose we must detect an erroneous medication. For our example, suppose also that

medicines are always provided by a nurse, and a medication is erroneous if is provided to

an allergic patient or if the patient has gotten a blood transfusión within the five minutes

previous to the medication. The condition for this event is:

<event name="wrongmedication">

<vax class="nuxse" na*_e***"nl"/>

<var cla3s=*"medicine" name="ml"/>

<var class="patient" *_a*_e-l,pl"/>
<var event-="tr_ns_usion" na_ne="tl"/>

<field_>

<string name-"patient" value-"pl.name"/>

<string name="medicine" value="ml .name"/>

</fielda>

<condition>

<and>

<all>

<objeet>pl</object>

<object>ml</object>

<object>nl</object>
<location>rooml</location>

</all>

<or>

<and>

<sequence with__="300">

< o c currenc e > t 1< /o ccurrene e >

</aequence>

<equal>
<value>tl . patient</value>

<value>pl . name</value>

</equal>
</and>

<exists type="allergicmedlcine">

<value>pl . name</value>

<value>m 1 . n_me</valué >

</exists>

</or>

</and>

</condition>

</event>

3.5 A Layer for Composite Event Recognition

In this section we present how the recognition layer performs event recognition. We present

the required data structures and their overall functionality. We also describe how information

3.5. A LAYER FOR COMPOSITE EVENT RECOGNITION 23

flows between the recognition layer and the middleware through ALE, and the means for

importing event definitions.

3.5.1 Data Management

RFID Data Acquisition

Once the recognition layer has received a specification made in RFID-CEDL, it must use

ALE in order to define which data to obtain from the middleware and how to obtain it. The

recognition layer must establish three main parameters to accomplish this:

• Interesting readers. The set of interesting readers is defined according to locations

defined in the specification.

• Interesting tags. The set of tags which will be reported from the middleware is defined

as the set of tags mentioned within the instances section of the specification.

• Type of reports. In order to reduce the volume of information, the recognition layer
must be informed only with differential information, i.e. only about arrivals and de

partures of actors respecting to the read range if interesting readers.

Using these parameters, the middleware informs the recognition layer only about arrivals

and departures of interesting tags to read ranges of interesting readers.

RFID Data Storage

The recognition layer stores information obtained from the middleware in a table called

t.stance. Each row in t_stance stores an actor id (RFID tag id), a reader id, a start timestamp,
and an end timestamp. Each row in this table indicates that an actor was situated in a

location during a given period of time.

Every time the recognition layer is notified about the entrance of an object to the read

range of a reader, a record with a nuil end timestamp is created in t_stance; when the

recognition layer is notified about an object leaving the read range of a logical reader, the

corresponding end timestamp is fulfilled. Figure 3.2 shows example data for t_stance.

Event History Storage

For evaluating sequences and combinations, it is necessary to maintain a history of recognized
events. Such history is kept in a table called t_occurrence. Each row in t_occurrence stores

24 CHAPTER 3. RFID COMPOSITE EVENT DEFINITION AND DETECTION

_\t^___

urn-upc ld-fid:10.1002.S 192.168.1.2 1520 NULL

ur_:upc:¡_:g¡d: 10.1002. _ 192.168.1.4 157S 1860

urn-upc: id:¡*¡d:10.i002. 3 192.168.1.4 1930 NULL

urn-upc id :eid:10.1002.2 192.168.1.2 2860 2930

urn:upc;id:gid:10.1002.7 192.168.1.2 2862 2933

urn-upc id-gtd-10.1002. 2 192.168.1.4 4120 5640

urn:upcld:ttd:10.1002.6 192.168.1.4 4128 S639

urn-upc ld:gld-10.1002.2

urn-upc td-gkf-10.1002.7

192.168.1.9 5730 NULL

192.168.1.11 6200 NULL

urampc xd :gid: 10.1002.6 192.168.1.11 6281 NULL

Figure 3.2: t_stance

an event type ñame, a timestamp, and linked list of valúes corresponding to the fields of each

event occurrence. The linked list of valúes is implemented by means of other table called

t.value.

Hasüm, Efclfe

2862

transfusión 2890

wronfmedkstion 292S

mi Mit

Ux
Physkian

Mfent

Nurse

Medicine

David Ramos

Michael Jones

Altxlons-m

Mary Wayne

Alexlonson

umMs,

NULL

•-

NULL

NULL

«1

^

n

Figure 3.3: t.occurrence and t.value

3.5.2 Event Definition Management

The recognition layer manages each event condition as a syntax tree where the root is the

main operator of the condition. The condition is decomposed by levéis until the leafs which

are simple operators. The process of importing a RFID-CEDL definition as a syntax tree

is straightforward given the inherent tree structure of XML syntax. Figure 3.2 shows an

example of the syntax tree corresponding to the event presented in section 3.4.5.

3.5. A LAYER FOR COMPOSITE EVENT RECOGNITION 25

And Exlsts{allerglcMe_k:lne,pl.name,**nl.name}

Sequence <tl,3000} Equal {tLpatlent, pl.name}

Figure 3.4: Example Syntax Tree

3.5.3 Situation Recognition

Events in our model are triggered by movement of actors. Therefore, the recognition layer
evaluates syntax trees whenever an arrival or a departure happens.

When an arrival or departure of actor x is detected, the first step of event recognition is

to evalúate all parse trees where x is parameter of a location operator (all, any, none). For

each tree evaluated as true, an occurrence of the event type is detected and the respective
row in t.occurrence is created.

The second step of event recognition takes place every time a row is created in t.occurrence.

When an event of type e happens, all parse trees where an event of type e is parameter of

an occurrence operator (sequence or combination) are evaluated. For each tree evaluated as

true, the second step is performed again.

We now present how the recognition layer evaluates each operator.

All

The all operator is evaluated looking into t_stance. All(xi,x2, ...,xn,y) is evaluated as true

if for each actor (xi,x2, ...,xn) there exists a row with the reader set to y and a nuU end

timestamp.

Any

The any operator is evaluated looking into t-stance. Any(xi,x2,...,xn,y) is evaluated as

true if for any actor (xi, x2, ..., xn) there exists a row with the reader set to y and a nuil end

timestamp.

26 CHAPTER 3. RFID COMPOSITE EVENT DEFINITION AND DETECTION

None

The none operator is evaluated looking into t_stance. None(xi,x2, ...,xn,y) is evaluated as

true if for each actor (xi,x2, ...,£„) there does not exist a row with the reader set to y and

a nuil end timestamp.

Sequence

The recognition layer evaluates sequences using Non-deterministic Finite Autómata (NFA).
For each sequence, a NFA is constructed by linking successive states for successive elements

in the sequence. Each transition is labeled with the corresponding event type in the sequence.
The last state is the only accepting state of the autómata. Figure 3.5 illustrates the NFA

corresponding to sequence evi, ev2, ev3.

* »

Figure 3.5: NFA for sequence evi, ev2, ev3

A sequence is evaluated looking into t.occurrence. For evaluating the sequence of events

represented by Sequence(evi,ev2, ..., evn, i) the recognition layer filters the set of event occur
rences registered within the last i seconds. The filtered set of events is ordered by timestamp
and provided as input for the corresponding NFA. All paths from the initial state to the

acceptation state are satisfactory sequences of events.

Combination

A combination is also evaluated looking into t.occurrence. For evaluating the combination

of events represented by Combination(evi,ev2, ...,evn,i) the recognition layer filters the set
of event occurrences registered within the last i seconds. The filtered set of occurrences is

divided into equivalence classes according to the event type. Let such equivalence classes be

the subsets EVi,EV2, ...,EV„. The set of satisfactory combinations is EVi X EV2 X EVn. If

an event type is included more than once as a parameter of the combination, it should be

considered the same number of times in the Cartesian product.

3.5. A LAYER FOR COMPOSITE EVENT RECOGNITION 27

Exists

The recognition layer uses a table called t.data for managing information provided through
the data section of specifications. Each row in t.data stores the class ñame of the data

element, and a linked list of valúes corresponding to the attributes of each data element. The

Unked list of valúes is implemented by means of other table called t_attribute.

To evalúate an exists operator, the recognition layer filters all the rows with the corre

sponding class ñame, and searches sequentially for a matching list of attribute valúes.

3.5.4 Discussion

In this chapter, we have presented our approach for event management using RFID infor

mation. We have presented the sort of manageable events and the set of operators available

for their construction. We have deeply described a language for composite event definition.

FinaUy we have included the means for obtaining basic RFID information and recognizing

events from such information.

Chapter 4

A RFID-Environment Simulator

In this chapter we describe the implementation of the proposal described in chapter three.

Such implementation is a tool which generates simulated RFID environments from given
RFID-CEDL specifications. The simulator also allows defining RFID-CEDL specifications

using graphic user interfaces. We also present some study cases for a hospital environment

which where simulated using our simulator.

4.1 Simulator

In this section we present a tool called RFID-Composite Event Simulator (RFID-CES). RFID-

CES allows constructing and simulating specifications compliant with RFID-CEDL. After a

specification is constructed, it can be simulated; the simulation of a specification generates

logical places and a set of actors according to the specification. At simulation time, users can

move actors within the simulated environment. The simulation tool recognizes and displays

recognized events derived from such movements.

4.1.1 Constructing Specifications

Given the simplicity of RFID-CEDL, RFID-CES allows constructing specifications by means

of graphic user interfaces. In this section we present how to use RFID-CES for providing

information corresponding to each of the five main construction áreas of RFID-CEDL.

Classes

A class must be provided with a ñame and a set of fields. Each field has a ñame and a type.

Figure 4.1 shows an interface for adding classes to a specification. Input provided in figure

29

30 CHAPTER 4. A RFID-ENVIRONMENT SIMULATOR

4.1 generates the following fragment of RFID-CEDL code:

<class name="medicine">

<-iel->

<string name="-_a*_e**/>

</field>

<field>

<date name*."caducit-yM/>

</field>

<field>

Otring -_a*ne*""substance" />

</field>

</class>

Figure 4.1: Interface for adding classes.

Instances

When defining an instance, the user must indicate to which class the instance belongs, which

is the EPC stored in the corresponding RFID tag and also must provide valúes for the fields of

the corresponding class. Figure 4.2 shows the interface for adding instances to a specification.

Input provided in figure 4.2 generates the following instance definition:

.instance epc="gid: 10 . 1002 . 2" class="medicine">

<attribute>Aspirin</attribute>
<attribute>2008-12-15</attribute>

<attribute>Acetilsalicy_ic acid</attribute>

</instance>

Data

When defining additional data, the user must indicate to which class does the data belongs
and provide valúes for the fields of the corresponding class. Figure 4.3 shows the interface

for adding data to a specification. Input provided in figure 4.3 generates the following data

definition:

4.1. SIMULATOR 31

Figure 4.2: Interface for adding instances.

<data class-"allergy">
<attr_b_te>Omar Gonzalez</attr_b_te>

<attribute>Acetilsaliailic Acid</attribute>

</data>

h—> LtI

patient lomar Padilla

|Aspirln

1 O" 1

Figure 4.3: Interface for adding data.

Locations

For defining locations, the user must provide a ñame for the location and also the set of

identifiers of the RFID composing the location. Figure 4.4 shows the interface for adding
locations to a specification. Input provided in figure 4.4 generates the following code defining
a location:

«clocatlon na*ne="rooml">

<reader ñame-*" 198. 146.83.24" />

<reader ñame***" 198 . 146 .83 . 25" />

</locatlon>

32 CHAPTER 4. A RFID-ENVIRONMENT SIMULATOR

Reader Id 198.146 83 25

^«Ü!_JL°_

Figure 4.4: Interface for adding a location.

Events

Defining an event using RFID-CES requires several steps. The first of them is to provide a

ñame for the event, which is illustrated in figure 4.5.

□

| Event Nam» f Variable» f' fXtxat ~\ Condition ~| Einlah

Event Ñame |medica1ion|

Figure 4.5: Interface for defining the ñame of an event.

The second step is to define the required variables for defining the event. Each variable

has a ñame and a type. The type of a variable can be either a class ñame or a previously
defined event ñame. Figure 4.6 shows how to define variables for an event using RFID-CES.

The third step is to define the set of fields which will be stored with each occurrence of

the event type. For each field, the user must specify a ñame and its valué. The valué of a

field is obtained from the variables of the event. Figure 4.7 shows how to define fields for an

event using RFID-CES.

The last step for defining an event is to specify the condition required in order to recognize
the event. RFID-CES allows constructing a condition by combining RFID-CEDL operators in

a condition three. Figure 4.8 illustrates the interface available in RFID-CES for constructing
an event condition.

4.1. SIMULATOR 33

Event Nome | Y«**abl..

Ñama nun c___*Z_H

Nam» |pan |p«tnm \~\

«Ud Vai iable

Figure 4.6: Interface for defining variables for an event.

Enomanía | Variable* [EMD* f Condition | EMth |

Nam* [medicine J tf.H«|ni«dl|*>¡|- : WfTl

Ñame Ipatienl | Valué |pat1 | -r ¡ |n_ra | *. |

LAddFieW |¡ Ok]
=**_____________________-=_-- J

Figure 4.7: Interface for defining fields for an event.

P C1NVES RFID (New Event)

9 C_|Condltloni

f Úand

x___ all(room1,med1,pat1,nur1)

? □ and

0 sequence(300,tra1)

Q equal(1ra1.patiem,patl.name)

0 exlsts(allergy,pat1 ñame, medí.ñame)

•■*« OAiw

O Combination Exists

O Not O-

o< o>-

ONone

'And

Oh

o***

Location rooml ▼

Add obfect

Ok

C Sequence

OOr

o>

Figure 4.8: Interface for defining an event condition.

34 CHAPTER 4. A RFID-ENVIRONMENT SIMULATOR

4.1.2 Environmental Simulation

Once a RFID-CEDL specification has been created, it is possible to simúlate it using RFID-

CES. RFID-CES creates an environmental simulation which includes locations and instances

according to the specification. Users interact with this simulation by moving instances within

the simulated environment. Movement of actors triggers event recognition procedures. The

history of recognized events is displayed in the interface. Figure 4.9 shows a simulation

example.

Rrir.vrs-RFin rrr

Environment simulation RFID-CEDL Specification:

<ob)ect»nurl «/object» ±
«Iocatlon»room1 «/location»/ \

•

\ 102. 188.12.27 /

\M«< (54004660306)

</all>

«or»

«and*

«sequence within-" 3 00"
»

«occurrence»tra 1 «/occurrence»

^\ """"■"""N,
«/sequence»

P Jli.nl (384600480683)

L ts
—

r\
102.188/12.28 / \

'

m.dioí¿ _ (64005W00584)

^Hr—102 188 12.24 /

/ pjt.«nt (394500480505) <equal»

«vaiue»tral patienwvalue»

• «value»pat1.name«/value»
\ 102^1^12-25 /

ViiY
/V^mm«jp8406^30680483)

«/equal»

«/and»

«exists type="allergy" »

(.JÍnntí3S-«00*«0504) l 102.188.1223 /

«value»patt name«/value»

«value>med1 name</value»

N " --C-L «/exists»

\ftlood^4e048S0304) «/or»

«/and»

«/condilion>

■/event»

«/events»

«/spacification»

Details: E
nurse

ñame

<l m I IH

Alondra Álvarez lransfuslori(Eriiique Pérez, 75)

Medication(Alfiedo Padilla, Aspinn, 86)

iAfrongTransfuslon(Omar González, 99)

Medication(Aifredo Padilla, Aspmn, 1 02)

MedlcatlonCAlíredo Padilla, Aspirln, 1 05)
.. OverdoseAspirin(Alfredo Padilla, 1 05)

I
AllergicMedication(Ennque Pérez. Asplrin,109)

Figure 4.9: Simulation in RFID-CES.

4.2. STUDY CASE. MANAGING RFID EVENTS IN A HOSPITAL ENVIRONMENT 35

4.2 Study Case. Managing RFID Events in a Hospital

Environment

In this section we include some examples of use cases for a hospital environment. Use cases

presented in this section have been selected with the purpose of showing usage and effectivity

of the operators proposed in our approach. In addition, all use cases have been simulated

using RFID-CES and all of them have been correctly recognized by the simulator.

4.2.1 Medication

Suppose a medication can be provided by a physician or by a nurse. Under this assumption,

a medication would be recognized whenever a patient, a medicine, and either a physician or

a nurse are situated in the same room. This use case shows usage of two location operators

(all, any) and a boolean operator (and). This event can be expressed using RFID-CEDL as

follows:

<event n_me="medication">

<var class-'Durse" n-__e""nur_" />

<va_* class="patient" name="pat_" />

<var cla3--="*_edicine" n_me="medl" />

<var elass-.'physician" name»"phyl" />

<_ield_>

<strlsg nai-e="patient" value="patl .carne" />

<string name="medicine" value=*"medl .ñame" />

</fiel<__>

<conditio_>

<and>

<all>

<objsct>patl</object>

<object>medl</object>
<locatlon>room_</locatio_>

</all>

<any>

<object>nurl</object>

<object>phyl</objact>
<location>rooml</location>

</any>

</and>

</condition>

</event>

For this example it is necessary a previous definition of some classes (nurse, patient,

medicine, physician), and a location (rooml).

36 CHAPTER 4. A RFID-ENVIRONMENT SIMULATOR

4.2.2 Allergic Medication

For this use case we will make the same assumption that in the previous use case. However,

for showing the usage of the existence operator, we define an allergic medication extending

the condition of a simple medication. Such extensión is a search for an allergy into additional

information. This event can be expressed using RFID-CEDL as follows:

<event name="wrongmedication">
<var class="nurse" *_ame"."nurl" />

<var clasaB "patient" *_a*_e="pat_" />

<var clas_*="medic_ne" name="medl" />

<var cla_a*="physici_n" name="phyl" />

<fields>

<string name="patient" value="patl .ñame" /.

<string name«"medicine" va__ie="medl.name" />

</íields>

<condition>

<and>

<all>

<object>patl</object>

<object>med_</object>
<location>roool</location>

</al_>

<any>

<object>nurl</object>

<objeet>phyl</obje_t>
<location>rooml</location>

</any>
<axists type="allergy">

<value>patl.name</value>
<value>medl . substance</value>

</ezists>

</and>

</condition>

</event>

4.2.3 Overdose

With this use case we show the usage of the sequence operator and of a comparison operator.

Suppose that an overdose of a substance called "digoxin" can be mortal, and that an overdose

happens if the patient is medicated two times within 24 hours. This event can be expressed

as follows:

<event __me="digox__overdose">

<var class="medication" name="medl" />

<var class="i_ed_cat_o_." name="med2" />

<íields>

<string naine="patient" value="medl .patient" />

</_ields>

<condition>

<and>

4.2. STUDY CASE. MANAGING RFID EVENTS IN A HOSPITAL ENVIRONMENT 37

Oequence uithin-"86400">

<occurrence>med_</oc currence>

<occuxrence>med2</occurrence>

</s«qu«nc_>

<«qual>

<value>medl .medici_e</value>

<value>digoxin</value>

</equal>

<aqual>

<value>mad2 .madicina</value>

<value>digoxin</value>

</equal>

<aqual>

<valua>madl . patient</value>

<value>med2 . patient</value>

</aqual>
</and>

</condition>

</event>

Notice that periods of time in RFID-CEDL must be provided in seconds, thus the period
of 24 hours is expressed as 86400.

4.2.4 Dangerous drug interaction

This use case illustrates the combination operator. Suppose there are two medicines called

"digoxin" and "verapimil" which are dangerous if provided to the same patient within one

hour. This situation can be detected by defining an event as follows:

•tevent name="dangerouscombination">
<var class="medication" name-="medl" />

<var class*."medication" n_me="med2" />

<_ields>

otring name="patient" valué*" "med 1 .patient" />

</fields>

<condition>

<and>

<combination within="3600">

<occurrence>medl</occurrence>

<occurrence>med2</occurrence>

</co*Dbination>

<equal>
<value>medl .medicine</value>

<value>digoxin</value>

</equal>

<equal>

<value>med2.Dedicine</value>

<value>verapimil</value>

</equal>

<equal>
<value>medl . patient</value>
<value>med2 . patient</valua>

</equal>
</and>

38 CHAPTER 4. A RFID-ENVIRONMENT SIMULATOR

</condition>

</event>

4.2.5 Wrong Transfusión

Suppose that blood transfusions are performed exclusively by nurses. A wrong blood trans

fusión could be recognized if the blood type of the patient does not match with the type of

the blood bag. This use case illustrates the usage of the not operator, and of a comparison

operator.

<event name="wrongtransfusion">

<var class-"blood" name""blol" />

<var -*lass=*"nurse" name*="nur 1" />

<var class*."patient" name="patl" />

<íields>

<8tring name="patient" value="medl .patient" />

</fields>

<condition>

<and>

<all>

<object>blol</obj ect>

<object>nurl</object>

<object>patl</object>
<location>rooml</location>

</all>

<not>

<equal>
<value>blol . type</value>

<value>pat 1 . bloodtype</value >

</equal>
</not>

</and>

</condition>

</event>

This example could be expressed using the operator different (^), however it was espressed
as not equal for showing the not operator.

4.3 Comparison

In this section, we compare out proposal with other approaches with similar objectives. Such

approaches have been presented in chapter 2. For comparing approaches we take in account

the following features:

• RFID. The approach is focused in RFID information management.

4.4. CONCLUSIONS 39

Table 4.1: Comparison of approaches.
Approach RFID History Compatibility Error Language Functions

Proposed approach Yes Yes Yes No Yes No

Proact Yes No No No No No

RCSM No Yes No No Yes Yes

SASE Yes Yes No No Yes No

PEEX Yes No No Yes Yes No

• History. Allows using past information for constructing complex events from simpler
ones.

• Compatibility. Compatibility with current RFID architectures and components.

• Error. Management of radio frequency communication errors.

• Language. Includes a language for event definition.

• Functions. Includes general purpose built-in functions (e.g. average, current date,

current time, etc).

4.4 Conclusions

In this chapter we have presented a tool which implements our proposal by simulating RFID-

Environments. We have also presented some use cases for a hospital environment which shows

the capability of our language of being used in real scenarios. Finally, we have defined a set of

attributes and we have compared our proposal with similar approaches using such attributes.

Chapter 5

Conclusions and Future Work

5.1 Conclusión

In this thesis we have presented a new approach for high-level event management in RFID

systems. We have proposed a new form of interaction between enterprise applications and

existing RFID components. Enterprise applications developed under our proposal defines

a set of interesting high-level events and are notified only when such events occurs. This

interaction releases enterprise applications of performing RFID data analysis and also reduces

network traffic between middleware and enterprise applications.

We have presented and formalized a set of operators for defining events starting with sim

ple RFID observations and we have proposed a declarative language called RFID-CEDL for

expressing such set of operators. Such set of operators allows defining events using relations

between positions of several objects, a history of event occurrences, boolean operators, and

comparison operators.

We have also designed a new layer in charge of event recognition. We have described the

interaction between this layer and components compliant with currently adopted standards.

We have also presented the set of techniques and data structures utilized by this layer for

recognizing events by evaluating each of the proposed operators.

In addition, we have developed a tool for RFID environment simulation. Such tool, called

RFID-CES, allows the generation of specifications compliant to RFID-CEDL. We have used

such tool for applying our concepts in use cases for a hospital application. Such use cases

have showed the suitability of our proposal for real scenarios.

41

42 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5.2 Future Work

There are several aspects which can be improved in this work.

• Take in account errors. Include a model for management of communication errors,

which are usual while working with RFID.

• Filtering of evaluated threes. To propose a more efficient mechanism for filtering the

set of events which are evaluated each time an actor changes its position.

• Include built-in functions. Include built-in functions in our language, and also a mech

anism for including functions developed by the user.

Appendix A

RFID-CEDL Schema

<?xml versión»" 1.0" encoding-"utf-8" ?>

<xs: schema elementFonnDefault-'-qualif ied" mlns-xs-.1'http://vvv.v3.org/2001/XMLSchema">

<!— Start oí the specification structure —>

<xs: element name*."specif ication">

<xs : complezType>
<xs : sequence)

<!— Section for defining classes —>

<xs: element min0cc_rs="0" maxOccurs="l" name="classes">

<xs : complexType>
<zs : sequence>

<!— Structure of each class —>

<xs : element minOccurs»"l" m_xOecurs*""unbo__ded" name*="class">

<xs : conplexType>
<xs : sequence>

<! — Each class is composed by zero or more fields —>

<xs: element minOccurs="0" maxOccurs*."unbounded" name=*"f ield">

<xs : complexType>

<! — Each field must be defined with a type and a ñame
— >

<xs: choice minOccurs»"l" maxOccurs*."_">

<xs:element minOccurs-"l" n___0ccurs""l" name""int">

<xs : complexType>

<xs : attribute name-"name" type-"identif ier" use""required" />

</xs : complexType>

</xs : element >

<xs:element minOccurs-"l" *_axOccurs-"l" name-"string">

<xs : complexType>
<xs : attribute name""name" type""identif ier" use»"required" />

</xs : complexType>

</xs : element>

<xs:element minOccurs-"l" maxOccurs-"l" name-"float">

<xs : complexType>

43

44 APPENDIX A. RFID-CEDL SCHEMA

<xs : attribute name="name" type""identif ier" use«."required" />

</xs : complexType>
</xs : element>

<xs:element minOcc_rs=,,l" maxOccurs="l" name="date">

<xs : complexType>
<xs ¡attribute n*_ne="name" type""identif ier" use*""required" />

</xs : complexType>
</xs : element >

<xs:element name="class">

<_a : complexType>
<xs : attribute name-"type" type-"identif ier" use»"required" />

<xs : attribute name*«',name" type*."identif ier" use*."required" />

</xs : complexType>

</xs : element >

</xs*choice>

</xs : complexType>

</xs : element >

</xs : sequence>

<xs : attribute name="name" type=" identifier" use="required" />

</xs : complexType>
</xs : element >

</xs : sequence>

</xs : complexType>

</xs : element >

<!— Section for defining instances —>

<xs:element minOccurs3"0" n_me="instances">

<xs : complexType>
<xs : sequence>

<!— Structure of each instance —>

<xs:element minOccurs="l" maxOccurs*B"unbounded" name=" instance ">

<xs : complexType>

<!— Each instance contains a list of zero or more attributes—>

<xs : sequence>
<xs: element min_ccurs="0" maxOccurs="unbounded" name="attri__te" />

</xs : sequence>

<!— Each instance must contain an epc (unique id) —>

<xs : attribute name-"epc" type="xs: string" use="required" />

<!— Each instance must be defined as an instance of - predefined class — >

<xs:attribute name=" class" type="identif ier" use="required" />

</xs : complexType>

</xs : element >

</xs : sequence>

</xs : complexType>

</xs : element >

<!— Section for defining additional information —>

<xs:element minOccurs="0" name="information">

<xs : complexType>
<xs : sequence>

45

<!— Structure of each data —>

<xs: element minOccurs-"l" maxOccurs-"unbounded" name-"data">

<xs : complexType>

<1— Each data contains a list of zero or more attributes —>

<xs : sequence>

<xs: element minOccurs-"0" max_ccurs-"unbounded" name""attribute" />

</xs : sequence>

<!— Each data must be defined as an instance of a predefined class —>

<xs:attribute name*-"class" type-" identifier" use-"required" />

</xs : complexType>
</xs : element>

</xs : sequence>

</zb : coaplezType>

</xs:element>

<!— Section for defining locations —>

<xb: element minOccurs>"0" name«"locations">

<xs : complexType>
<xs : sequence>

<!— Structure of each location —>

<xs: element minOccurs="l" maxOccurs="unbounded" name-"location">

<xs : complexType>

<!— Each location must contain at least one reader —>

<xs : sequence>

<xs:element minOccurs="l" max0ccur3=-"unbounded" name=" reader ">

<xs : complexType>
<xs : attribute name-"name" type="ip" use»"required" />

</xs : complexType>
</xs : element >

</xs : sequence>

<!— Each location has a ñame
—>

<xs: attribute name*""n*une" type-" ident if ier" use-"required" />

</xs : complexType>

</xs:element>

</xs : sequence>

</xs : eomplexType>

</xs : element >

<!— Section for defining events
— >

<xs -element minDccurs-"0" name»"events">

<xs : complexType>
<xs : sequence>

< ! — Structure of each event —>

<xs : element minOccurs-"l" maxOccurs""unbounded" name-"event">

<xs : complexType>

APPENDIX A. RFID-CEDL SCHEMA

<!— Each event has zero or more variables —>

<xs : sequence>

<xs: element minOccurs-"0" maxOccurs«"unbounded" name*="var">

<xs : complexType>

<!— Each variable has m class —>

<xs : attribute name*=" class" type-"identif ier" use-"optional" />

<!— Each variable has a ñame
—>

<xs ¡attribute name-"name" type-" identifier" use="required" />

</xs : complexType>

</xs : element>

<l— Each event has zero or more fields —>

<xs:element minOeeurs""0" maxOccurs-" 1" name-"f ields">

<xs : complexType>

<!— Each field has a ñame, <_ valué and *» type
—>

<xs: choice minOccurs-"l" maxDccurs="i_nbounded">

<xs:element name="string">

<xs : complexType>
<xs : attribute name="name" type-"identif ier" use***"required" />

<xs : attribute name="valué" type="xs: string" use-"required" />

</xs : complexType>

</xs : element >

<xs:element name-"int">

<xs : complexType>
<xs : attribute name="name" type*="identif ier" use>=" required" />

<xs : attribute name=*"valué" type»"xs:int" use-"required" />

</xs : complexType>
</xs : element)

<xs:element name-"float">

<xs : complexType>
<xs : attribute name-"name" type-"identifier" use="required" />

<X8 : attribute ñame-"valué" type="xs:f loat" use-"required" />

</xs : complexType>
</xs : element >

<xs: element name="date">

<xs : complexType>
<xs : attribute name-"name" type-"identif ier" use-"required" />

<xs : attribute name-"value" type-"xs:date" use-"required" />

</xs : complexType>

</xs : element >

</xs : choice>

</xs : complexType>

</xs : element >

<!— Structure of the event condition vhich is «. boolean expression
—>

<xs: element name-"condition" type-"boolExp" />

</xs : sequence>

< ! — Each event has a ñame
—>

<xs : attribute name-"name" type-"identif ier" use="required" />

</xs : complexType>

</xb: element >

</xs : sequence>

</xs : complexType>

</xs: element)

</xs : sequence)

</xs : complexType>
< /xs : element)

<xs : simpleType name-"identif ier">

<xs: restriction base- "xs ¡string")
<xs: pattern valué-" [a-zA-Z] ([a-zA-ZO-9])*" />

</xs : restriction)

</xs : simpleType)
<xs : complexType ñame- "valué")

<xs : siapleContent)
<xs : extensión base«"xs: string" />

</xs : simpleContent)

</xs : complexType)
<xs : simpleType name-"ip">
<xs: restriction base="xs: string" />

</xs : simpleType)

<!— Each boolean expression is defined as an operator (vhich is the main operator of

<xs : complexType name-"boolExp">

<!— Such operator is taken from the set of operators included in our approach
—>

<xs : choice)

<xs:element name-"and" type="and" />

<xs:element name-"or" type-"or" />

<xs : element name-"not" type-"not" />

<xs: element name-"greater" type-"greater" />

<xs:element name-"greaterequal" type="greaterequal" />

<xs:element name-"less" type-"les8" />

<xs:element name-"lessequal" type="lessequal" />

<xs : element name-"equal" type="equal" />

<xs:element name-"different" type-"different" />

<xs:element name-"all" type="all" />

<xs: element name-"any" type>»"any" />

<xs:element name="sequence" type- "sequence" />

<xs:element ñame-" combination" type=" combination" />

<xs:element name-"exists" type-"exists" /)

<xs: element name-"none" type-"none" />

</xs: choice)

</xs : complexType)

<!— Structure of the all operator
—>

<xs : complexType ñame-
"

all
"
>

<xs : sequence)

<!— Must contain at least one object (variable ñame) —>

<xs: element minOccurs-"l" maxOccurs-"unbounded" name*="object" type-"identif ier" />

<!— Hust be specified a location—>

<xs:element name-"location" type-" identifier" />

</xb : sequence)

</xs : complexType)

48 APPENDIX A. RFID-CEDL SCHEMA

<!— Structure of the any operator
—>

<xs : complexType name-"any">
<xs : sequence)

<!— Hust contain at least one object (variable ñame) —)

<xs : element minOccurs-"l" maxQccurs-"unbounded" name-"object" type-"identif ier" />

<!— Must be specified _ location—>

<xs : element n_me-"location" type-"identif ier" />

</xs : sequence)

</xs : complexType)

<l— Structure of the none operator
—>

<xs : complexType name-"none">

<xs : sequence)

<!— Must contain at least one object (variable ñame) —)

<xs:element minOccurs="l" maxOccurs-"unbounded" name="object" type-"identif ier" />

<!— Must be specified a location—>

<xs:element name-"location" type-"identif ier" />

</xs : sequence)
< /xs : complexType)

<!— Structure of the sequence operator
—>

<xs : complexType name*=" sequence")

<!— Must contain at least one event (variable ñame) —)

<xs:sequence minOccurs="l" maxOccurs-"unbounded">

<xs:element min_ccurs="l" maxOccurs-"l" name-"occurrence" type-"identif ier" />

</xs : sequence)

<t— Must be specified a. period of time (in seconds) for the sequence to be recognized
—>

<xs:attrlbute name-"vlthin" type-"xs:int" />

</xs : complexType)

<l— Structure of the combination operator
—>

<xs : complexType name-"combination">

<! — Must contain at least one event (variable ñame) —)

<xs: sequence minOccurs="l" maxOcc_rs= "unbounded")

<xs:element minOccurs-"l" maxOccurs="l" name-"occurrence" type-"identif ier" />

</xs : sequence)

<l— Must be specified a period of time (in seconds) for the combination to be recognized
—)

<xs : attribute name-"vithin" type-"xs:int" />

</xs : complexType)

<!— Structure of the exists operator
—>

<xs : complexType name-"exists">

<!— Must contain at least one valué to search — >

<xs : sequence)
<xs:element maxOccurs-"unbounded" ñame*"valué" type-"value" /)

</xs : sequence)

<!— Must be defined a class for searching into corresponding data —>

<xb : attribute name-"type" type-" identifier" />

</xs -. complexType)

<!— Structure of comparison operators
—>

<xs : complexType name-"greater")
<xs : sequence)

<xs:element ñame*-" valué 1" type="xs : string" /)

<xs:element name-"value_" type-"xs: string" /)

</xs : sequence)

</xs : complexType)
<xs : complexType name-"greaterequal")
<xs : sequence)
<xs: element ñame-"valué 1" type-"xs: string" /)

<xs: element name="value2" type-"xs: string" /)

</xs : sequence)

</xs : complexType)
<xs : complexType naae-"less")

<xs : sequence)

<xs: element name="valué 1" type-"xs: string" /)

<xs : element name-="value2" type-"xs: string" /)

< /xs : sequence)

</xs : complexType)
<xs : complexType name-"lessequal")
<xs : sequence)

<xs:element ñame»"valué 1" type»"xs: string" />

<xs : element name="value2" type»"xs: string" /)

</xs : sequence)

</xs : complexType)
<xs : complexType name»"equal")
<xs : sequence)

<xs: element min0ccurs»"2" maxOccurs»"unbounded" name=" valué" type-"xs

</xs : sequence)

</xs : complexType)
<xs : complexType name-"different")

<xs : sequence)

<xs: element name-"valuel" type-"xs: string" />

<xs: element name-"value2" type-"xB: string" />

</xs : sequence)

</xs : complexType)

<!— Structure of the boolean operators
—)

<xs : complexType name-"and")

<! — Each operator can be a subexpression (another condition)
—>

<xs: choice min0ccurs-"2" maxOccurs-"unbounded">

<xs: element name»"and" type»"and" /)

<xs:element name-"or" type-"or" /)

50 APPENDIX A. RFID-CEDL SCHEMA

<xs:element name»"not" type»"not" />

<xs: element name»"greater" type»"greater" />

<xs:element name-"greaterequal" type»"greaterequal" /)

<xs:element name»"less" type»"less" />

<xs:element name-"lessequal" type-"lessequal" />

<xs:element name»"equal" type-"equal" /)

<xs: element na*ne-"dlfferent" type-"different" />

<xs:element name-"all" type-"all" />

<xs: element ñame- "any" type- "any" /)

<xs : element name-"sequence" type»"sequence" />

<xs:element name="combination" type-"combination" /)

<xs: element name-"exists" type-"exists" />

<xs: element name="none" type-"none" />

</xs: choice)

</xs : complexType)
<xs : complexType ñame-

"
or

"
>

<xs: choice min0ccurs-"2" maxOccurs-"unbounded")

<xs:element ñame-"and" type-"and" /)

<xs: element name-"or" type»"or" />

<xs:element name»"not" type»"not" />

<xs : element name-"greater" type-"greater" /)

<xs:element name-"greaterequal" type-"greaterequal" /)

<xs:element name»"lesa" type»"less" />

<xs:element name-"lessequal" type»"lessequal" /)

<xs: element name»"equal" type-"equal" /)

<xs: element name-"different" type»"different" /)

<xs.*element name-"all" type*="all" /)

<xs: element name-"any" type-"any" /)

<xs:element name»"sequenee" type-"sequence" /)

<xs: element name=" combination" type=" combination" /)

<xs: element name-"exists" type-"exists" /)

<xs: element name-"none" type="none" />

</xs : choice)

</xs : complexType)
<xs : complexType name»"not">

<xs:choice minOccurs»"l" maxOccurs-"l")

<xs:element name»"and" type-"and" />

<xs:element name»"or" type»"or" />

<xs:element name»"not" type»"not" />

<xs: element ñame- "greater" type-"greater" /)

<xs:element name="greaterequal" type-"greaterequal" /)

<xs:element name»"less" type»"less" />

<xs: element name»"lessequal" type="lesaequal" /)

<xs: element ñame-"equal" type» "equal" /)

<xs:element name-"different" type-"different" /)

<xs:element name»"all" type="all" /)

<xs:element name»"any" type»"any" />

<xs: element name-"sequence" type-"sequence" /)

<xs: element name-"combination" type-"combination" />

<xs : element name="exists" type-"exists" />

<xs:element name-"none" type-"none" />

</xs: choice)

</xs : complexType)

</xs : schema)

Bibliography

[1] R. Want B. Schilit, N. Adams. Context-aware computing applications. IEEE Workshop
on Mobile Computing Systems and Applications, 1994.

[2] M. Lampe C. Floerkemeier. Rfid middleware design - addressing application require

ments and rfid constraints. Proceedings of the 2005 joint conference on Smart objects
and ambient intelligence: innovative context-aware services: usages and technologies,

pages 219
-

224, October 2005.

[3] Gregory D. Abowd Daniel Salber, Anind K. Dey. The context toolkit: Aiding the

development of context-enabled applications. Proceedings of CHI'99, pages 434-441,

May 1999.

[4] EPCglobal. EPCglobal Tag Data Standards Versión 1.3.1, March 2006.

[5] EPCglobal. The EPCglobal Architecture Framework Versión 1.2, September 2007.

[6] EPCglobal. EPCglobal Tag Data Standards Versión 1.3.1, September 2007.

[7] EPCglobal. The Application Level Events (ALE) Specification Versión 1.1, February

2008.

[8] Bill Glover. RFID Essentials. O'Reilly, January 2006.

[9] Xiaolei Li D. Klabjan H. González, J. Han. Warehousing and analyzing massive rfid data

sets. Proceedings of the 22nd International Conference on Data Engineering, page 83,

2006.

[10] A. Lykke-Olesen R. Nielsen K. Halskov J. Bardram, C. Bossen. Virtual video proto-

typing of pervasive healthcare systems. Proceedings of the J^th conference on Designing
interactive systems: processes, practices, methods, and techniques, pages 167

-

177, June

2002.

[11] H. Sheng L. Dong, D. Wang. Design of rfid middleware based on complex event pro

cessing. Cybernetics and Intelligent Systems, 2006 IEEE Conference on, pages 1-6,
December 2004.

51

52 BIBLIOGRAPHY

[12] David Luckham. The Power of Events: an Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley, August 2007.

[13] M. Perkowitz-D. Patterson D. Fox H. Kautz D.Hahnel M. Fishkin, K. Philipose. Inferring
activities from interactions with objects. Pervasive Computing, 3:50 -

57, October 2004.

[14] Florian Rosenberg Matthias Baldauf, Schahram Dustdar. A survey on context-aware

systems. International Journal of Ad Hoc and Ubiquitous Computing 2007 Vol. 2,

No.4, Pages 263-277, 2007.

[15] Brenda M. Michelson. Event-Driven Architecture Overview, February 2006.

[16] D. Suciu N. Khoussainova, M. Balazinska. High-performance complex event process

ing over streams. Proceedings of the 2006 ACM SIGMOD international conference on

Management of data, pages 407
-

418, June 2006.

[17] D. Suciu N. Khoussainova, M. Balazinska. Peex: Extracting probabilistic events from

rfid data. Proceedings of the 24th International Conference on Data Engineering, 2008.

[18] O Laudy-H. Soubaras N. Museux, J. Mattioli. Complex event processing approach for

strategic intelligence. Information Fusión, 2006 9th International Conference on, pages

1 - 8, July 2006.

[19] D. Guinard P. Fuhrer. Building a smart hospital using rfid technologies: Use cases and

implementation. Proceedings of European Conference on eHealth 2006, pages 131 -

142,
October 2006.

[20] Xue Li R. Derakhshan, M. Orlowska. Rfid data management: Challenges and opportu-
nities. IEEE International Conference on RFID 2007, pages 175 -

182, March 2007.

[21] C. M. Roberts. Radio frequency identification (rfid). Computers & security, pages 18-26,

February 2006.

[22] D. Huang-P. In S. Yau, Y. Wang. Situation-aware contract specification language for

middleware for ubiquitous computing. Distributed Computing Systems, 2003. FTDCS

2003. Proceedings, pages 93
-

99, May 2003.

[23] D. Huang-Y. Yao S. Yau, H. Gong. Support for situation awareness in trustworthy

ubiquitous computing application software. Software-Practice & Experience, 36:893 -

921, July 2006.

[24] Y. Wang-B. Wang S. Gupta S. Yau, F. Karim. Reconfigurable context-sensitive middle

ware for pervasive computing. Pervasive Computing, 1:33
-

40, July 2002.

BIBLIOGRAPHY 53

[25] D. Zhang T. Gu, K. Pung. Toward an osgi-based infrastructure for context-aware ap

plications. Pervasive Computing, 3:66
-

74, October 2004.

[26] T. Winograd. Architectures for context. Human-Computer Interaction, 16 No. 2:401-

419, 2001.

[27] P. Liu-C. Zaniolo S. Liu Y. Bai, F. Wang. Rfid data processing with a data stream query

language. IEEE 23rd International Conference on Data Engineering, 2007, pages 1184

-

1193, April 2007.

[28] D. Gyllstrom Y. Diao, N. Immerman. Sase+: An agile language for kleene closure over

event streams. UMass Technical Report, 2007.

CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS DEL I.P.N

UNIDAD GUADALAJARA

El Jurado designado por la Unidad Guadalajara del Centro de Investigación y de

Estudios Avanzados del Instituto Politécnico Nacional aprobó la tesis

Control de Sistemas usando RFID - Control Systems Using RFID

del (la) C.

el día 22 de Agosto de 2008.

Ornar Alfredo GONZÁLEZ PADILLA

Dr. Luis Ernesto López Mellado

Investigador CINVESTAV 3B

CINVESTAV Unidad Guadalajara

Dr. Félix Franciscofí_íSl5sCorchado

InvestigadSr^JVE^TAV 3A

CINVESTAY^Ónidad Guadalajara

Dr. Mario Ángel Siller González

Pico

Investigador CINVESTAV 2A

CINVESTAV Unidad Guadalajara

