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Abstract

La teoria de control puede ser dividida en dos grandes grupos; el primero de ellos se encarga
de estudiar la estabilizacion de los sistemas, mientras que el segundo se encarga de estudiar
como hacer que un sistema siga una trayectora de referencia deseada. Mucho esfuerzo se ha
hecho en ambos grupos, en éste trabajo se estudia el segundo caso. Mediante redes neuronales
dinamicas se identifica un sistema no lineal parcialmente desconocido y utilizando la teoria

de regulacidn se logra que el sistema siga una trayectoria definida.

Un problema comun al trabajar con redes neuronales es que las leyes de adaptacion de
pesos no son continuas, sin embargo para poder resolver de manera exacta las ecuaciones del
regulador es necesario que las leyes sean continuas. En este trabajo se propone una estruc-
tura de red neuronal y utilizando una técnica de adaptacion de pesos continua, desarrollada

recientemente, se logran resolver las ecuaciones del regulador para la red neuronal.



A bstract

Control theory can be subdivided into two big categories, the first one studies the stabilization
of systems; while the second one studies how to make the system follow a desired trajectory.
Great efforts have been made in the research of both groups, in this work the second case is
studied. With dynamic neural networks a partially unknown nonlinear system is identified

and using the regulation theory trajectory tracking is achieved.

A common problem that arises when working with neural networks is that the adaptation
laws are not continuous, however, in order to solve exactly the regulator equations it is
necessary to have continuous adaptation laws. In this work a neural network structure is
proposed and using a continuous adaptation law of the neural network weight’s developed

recently, the regulator equations are solved exactly for the neural network.



Contents

1 Introduction 1
1.1 Preliminaries 1

1.2 Motivation 2
1.3 Objectives 3
1.4 Thesis structure 3

2 The output regulation problem 5
2.1 State feedback output regulation 6
2.2 Error feedback output regulation 7

3 Exact solution of the regulator equations 17
3.1 Generalized immersion 17
3.2 Simultaneous globally convergent online estimator 19
3.3 Conclusions 20

4 Approximation of the regulator equations 21
4.1 Kth-order solution of the state feedback regulator equations 22
4.2 Neural networks 26
4.2.1 Radial basis function neural networks 26

V



VI CONTENTS

4.3 Output regulation for parametric variations using dynamic neural networks 27
4.3.1 Neural network adaptation law 31

4.3.2 Regulator equations 32

4.4 Output regulation for a partially unknown exosystem using DNN’s 33
4.4.1 Neural network adaptation law 34

4.4.2 Regulator equations 39

4.5 Conclusions 36

5 Illustrative cases 39
5.1 Van der poll oscillator 39
5.1.1 Output regulation for a partially unknown plant 39

5.1.2 Output regulation for a partially unknown exosystem 47

5.2 Inverted pendulum 92
5.2.1 Output regulation for a partially unknown plant 53

5.2.2 Output regulation for a partially unknown exosystem o6

6 Conclusions and future work 59
Bibliography 61

A Foundations 65
A.1 Dynamical systems 65
A.2 Stability of dynamical systems 66
A.3 Lyapunov stability 66
A.4 Steady state 67

A.5 Center manifold 68



CONTENTS VII

A.6 Neural networks 71

A.6.1 Universal approximation 72

B Neural network adaptation law 73



List of Figures

2.1
2.2
2.3

2.4

3.1

1.1
1.2
4.3

1.4

2.0

2.6

Classical nonlinear output regulation problem
Example of an immersion.

Nonlinear error output regulation.

Tracking error.
Output regulation using generalized immersion.

K-th order output regulation.
K-th order trajectory tracking.
K-th order output error.

Neural identification of the plant.

Neural identification of the exosystem.

System output.
Output regulation using immersion.
System output.
Plant state r».

Identification error.

Tracking error.

12
14

15

20

23
29
26

29

11

12

15

46



5.7

0.8

5.9

0.10
0.11
0.12
5.13
0.14
5.15
0.16
2.17
0.18
0.19
2.20

LIST OF FIGURES

Control action w.

Output regulation for an unknown frecuency exosystem.

Output regulation for an unknown exosystem frecuency using neural networks.
Identification error.

Weights of the neural network.

Iracking error.

Control action u.

System output.

Plant state z».

Identification error.

Control action u.

Output regulation for an unknown exosystem frecuency using neural networks.
Identification error.

Control action wu.

46
48
49
o0
o0
ol
ol
04
04
09
29
o7
o8
o8



Chapter 1

Introduction

1.1 Preliminaries

Controlling a system to track a desired trajectory and at the same time to reject perturba-
tions has been studied inside the control community for a long time. For the linear case, this
problem has been studied by many authors, among whom Smith and Davison (1972), Francis
and Wohnam (1975), Francis (1977). In particular, the last work shows that the solution of
the Output Regulation problem relies on the solution of two Linear Matrix Equations. In the
work of Francis and Wohnam (1975), it has been shown that, for the case of error feedback,
any regulator that solves the problem must contain a model of the dynamic system produc-
ing the reference and/or disturbance signal. This property is known as the internal model
principle. The extension for the non-linear case was considered by Francis and Wohnam,
where the output regulation problem was first solved for a class of nonlinear systems where
the exogenous signals are constant. Isidori and Byrnes studied the existence of the steady
state manifold for the case when the plant is assumed to be known exactly. They used the
center manifold theory, and established that it is possible to reduce this problem to a set
of mixed nonlinear partial differential and algebraic equations. However. the solution of the
regulator equations are, in general, difficult to solve. In the past decades, a lot of effort have

been dedicated to obtain good approximations for the solution of this set of equations.

[t was not until the last decade that the neural networks became an important tool

in this field. In the case of continuous systems, dynamic and recurrent neural networks

1



2 1. INTRODUCTION

have been designed in different frameworks to achieve asymptotic tracking of the reference
signal and/or disturbance rejection. Zhou and Wang in [40] used a class of radial basis
function neural network in order to approximate the solution of the regulator equations.
They demonstrated that this class of neural networks can solve the regulator equations, up
to a prescribed arbitrarily small error. On this work, it is proved too that the steady-state
tracking error for the closed-loop system is bounded. One of the main disadvantages in this
result is that the neural network training is made off-line; if a variation in the parameters is
made, the solution of the regulator equations will change, and the system will not be able to

track the desired trajectory. Also, the neural network used in this work has 181 inputs and
361 centers. The size of the neural network can be made smaller if the learning law 1s always

OIl.

1.2 Motivation

As it can be seen in different works (14| [18] [4], the solution of the Nonlinear Output Regula-
tion Problem is not trivial. It has been shown that the solvability of this problem relies on the
solution of a set of partial differential equations{17]|. In [35] the author uses a neural network
in order to find an approximate solution when the nonlinear system is partially unknown;
this solution is then compared with a third order linearization via Taylor serie’s expansion.
However, the size of the neural network is not known, so they use genetic algorithms to find
the right number of neurons, and then train the neural network by means of the descendent
gradient algorithm; one of the main disadvantages of this kind of training is that it can get
stuck on a local minimum. In [29] a neural network is used in order to solve the trajec-
tory tracking for a nonlinear system; however, the bound of the identification error can get
smaller if we use another Lyapunov function. In [5] a black box neural identificator is used
In order to approximate the nonlinear system; once the neural identificator has been trained,
the nonlinear output regulation problem is solved for this neural network. However, the
neural network adaptation law is implemented with non-smooth functions, and the regulator
equations cannot be obtained exactly. The major motivation for this dissertation is to look

for a structure of neural network in order to obtain the solution of the regulator equations



1.3. OBJECTIVES 3

as simple as possible, while the tracking error remains bounded.

1.3 Objectives

The main objective of this work is to study the Output Regulation Problem when both the
plant and the exosystem are represented by neural network models, this has the advantage

that once the neural network is following the plant/exosystem, it will be able to force the

system to follow the desired trajectory.

To this end, goals are identified which must be fulfilled in order to complete the main

objective. The following list presents the most important topics which need to be studied.

1. Research on the integration of the Output Regulation Theory with Neural Networks

in order to find a good neural network structure to work with.

2. Research on the learning algorithms used to train the Neural Network, which can be

useful within this framework.

3. Assume parametric variations on the plant and use a neural network to identify the
nonlinear system; then, solve the regulator equations for a known exosystem and the neural

network.

4. Assume parametric variations on the exosystem and use a neural network to identify

the exosystem; then, solve the regulator equations for a known plant and the neural network.

Both problems have a similar framework, a neural network will be adapted on-line in

order to deal with the uncertainties.

1.4 Thesis structure

This document is organized as follows:

Chapter 2 A brief review on the Output Regulation Problem is presented for both, state feedback

and error feedback cases.
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Chapter 3 The main algorithms in order to find the exact solution for the Output Regulation
Problem are reviewed; a numerical example illustrates how the controller dimension

can increase even for simple examples.

Chapter 4 In this section, the main algorithms in order to find an approximate solution for the
Output Regulation Problem are reviewed. An approach based on dynamical neural
networks is studied too, for the case where the plant has parametric variations as well

as where the exosystem is partially unknown.

Chapter 5 Different examples are developed in this section in order to show the approach proposed
in chapter 4.

Chapter 6 The conclusions and final comments are stated, as well as future work which can 1mprove

this work is suggested.

Appendix A The main mathematical tools used in this work are reviewed. Begining with dynamical

systems and ending with the universal approximation theorem of neural networks.

Appendix B The proof for the neural network identification bounds is established here.



Chapter 2

The output regulation problem

A common problem in control applications is to design and implement control laws whoch
achieve asvmptotic tracking and/or disturbance rejection for systems. This is known as
the output regulation problem. As first established in Isidori and Byrnes [19]. the main
condition for the solution of this problem via state-feedback or output-feedback control is
the solvability of the so called regulator equations. If this equations are solvable, under some
standard assumptions. there exists a state-feedback or output-feedback control law such
that the closed-loop system is internally stable, and the tracking error will asvmptotically
approach to zero for all sufficiently small initial conditions of the plant and sufficiently small
reference inputs and; or disturbances. This chapter presents the classical Output Regulation
Problem as well as the solution of this problem. The linear output regulation problem
15 a special case. and was completely solved by the collective efforts of several researchers.

including Davison. Francis. and WWohnam. among others.

In order to formulate the Output Regulation Problem formally. consider a system of the

form

..i't = f(It..-.}.ut) (2.1)
<t = Slwy)

€ = h(.l't.f..i..'f)

with the state r defined in a neighborhood (" near the origin in K". the input space R™
and the state . defined in a neighborhood W near the origin X?. Two scenarios can be

J
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considered, depending on the available information as follows.

2.1 State feedback output regulation

Consider that the plant states z; and the exosystem states w; are measured; that is, the

controller has all the information available. The nonlinear state feedback output regulation

1s stated as follows.
Given a nonlinear system of the form (2.1), determine, if possible, a control law u = a(z,w)

such that:

Srr The equilibrium point £ = 0 of
i.t b= f(xt: 01 a'(x-t: 0)) (22)
1s asymptotically stable on the first approximation.

Rrr There exists a neighborhood W € U x {2 near (0, 0) such that, for every initial condition

(2, wp) € §2 the solution of

Ty = f(xtﬁwt:a(xt:wt)) (23)
C-L}t = S(Ldt)
satisfies
tllm € = 0 (24)

The properties of the lineal approxiamtion for the controlled plant play an important role in
the solution of the output regulation problem; hence, it is convenient to introduce a notation
where the parameters of this approximation appear explicit. Notice that the closed loop

system (2.3) can be formulated as:

(A+ BK)x; + (P + BL)w; + ¢(z¢, w) (2.5)
S(J.)t + w(l:t,wt)

Tt

W
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where p(z¢,w;) and ¥ (x¢,w;) vanish in the origin along with their first order derivatives and
A, B,P K, L,S are matrices defined by

., -l
A= |2 B=|— 2.6
[Bx 0,0,0 Ou 0,0,0 -
(5] K7
P=|— K= |—
[6‘*’ 0,0,0 O 0,0,0

T
Ow 0,0,0 Ow 0,0,0

for every w C (.

The necessary and sufficient conditions for the solution of the state feedback output
regulator are established in the following theorem.

Theorem 2.1.1. The state feedback output requlation problem has a solution if and only if
the pair (A, B) is stabilizable and there exists mappings such that m(w;) and u = c(w;), with
7(0) = 0 and c(0) = 0, both defined on a neighborhood 2y C 2, from the origin such that:

o) = Fr(w).w,alm(w),w) (2.7)
0 = h(m(w),w)

for every w C €.
Proof: See [17]

Once 7(w;) and c(w;) are known from equation (2.7), the control law which solves the

output regulation problem is:
a(zy, we) = c(we) + K(ze — 7(we)) (2.8)
where K is a matrix such that (A + BK) is Hurwitz.

The block diagram for the control law is presented in Figure 2.1.

2.2 Error feedback output regulation

For the second scenario, the output error ¢; is the only measurement available. The problem

can be stated formally as:
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|

é} = s(w) l

u=c(m)+K(x——7r(a}))I——-v .;.'=f(x,aj,t,u) I» o e =h(x.w)

|

Figure 2.1: Classical nonlinear output regulation problem

Given a nonlinear system of the form (2.1), find, if possible an integer b and two mappings
6(&) and n(&,e;), where £ € = € R®, such that:

Ser The equilibrium point (z¢, &) = (0,0) of

Zy = f(2,0,0(&)) (2.9)
ét — ﬂ(ft:h(ib’:o))

1s asymptotically stable on the first approximation.

Rer There exists a neighborhood W € U x = x Q of (0,0,0) such that, for every initial

condition (zg, &y, wp) € W the solution of

Ze = f(@e,we, 0(&)) (2.10)
& = n(&, h(ze,wy))
(J:)t — S(Wt)

satisfies

As for the case of state feedback, the nonlinear system is expanded in terms of its linear

approximation plus a nonlinear term.

.'ft = A7z - BHft -+ PUJt -+ cp(:ct, ft,wt)
ét = F§+ GOz + GQuy + x (x4, &, wy)
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where ©(xy, &, we), x(x¢, &, we) and ¥ (w;) vanish in the origin along with their first order
derivatives, and C, Q, F, H, G are matrices defined by

Oh Oh
fe], o[
ox (0,0) ow (0,0)
81)]
F = [_ G
% | (0,0

06
o= | o=
el

The conditions for the existence of the regulator equations solution is the same as in the

|
QO
QD
E
—
°
-

case of the full state information problem. In fact if c(w;) is defined as

c(we) = 0(p(wy))

then the mapping z = 7(w;) and u = c(w;) necessarily satisfies (2.7). However, for the case
of error feedback, the conditions which guaranteed the solution of the state feedback output
regulation problem. does not provide a set of sufficient conditions to the solution of the error

feedback output regulation problem. There is an additional condition, which is expressed as

a special property of the solution 7(w;), c(w;).

In order to understand this condition, additional concepts need to be developed. For the
case of the full state information, if equations (2.7) are satisfied, the mapping r = m(w;) is

an invariant manifold for the extended system

Ty (g, wy, c(wy)) (2.13)

s(wy)

Wt

and the error e, = h(x;,w;) is zero on every point of that manifold. Then, it is easy to see

that for every initial condition wy of the exosystem, that is, for every exogenous input
w" = &7 (wp) (2.14)
if the plant is on the initial condition ry = 7m(wp) and the input is

uj = e(w]) (2.15)
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then e; = 0 for all £ > 0. Hence, the control law given by the autonomous system

Wy s(ws)

c(w) (2.16)

Uy
will force the system to produce a zero error for every exogenous input, if the initial condition
of the plant is adequate (zo = 7(wyp)).

If the equilibrium point is not stable on the first approximation, then, in order to obtain
the desired steady state response, the control law must include a stabilization component as

in the full state output regulation problem.

Under this control law (2.16), the extended system

f(@e, c(we) + K(ze — 7(wi))
s(wy) (2.17)

Tt

Wy
will have an invariant manifold of the form z; = 7(w;), which will be exponentially attractive.

The following section will establish that the existence for the solution of the error feedback
output regulation problem depends (among other things) on a property of the autonomous
system (2.16), which could be seen as a function generator of all the inputs that produce zero

error. This property requires the notion of system immersion.

Definition 2.2.1. System Immersion: Let the set of smooth functions

z

f(z) y=h(z) (2.18)
f(z) y=h(z) (2.19)

T

defined on two different state spaces, X and X, sharing the same output space Y € R™
Suppose that f(0) = 0,h(0) = 0 and h(0) = 0 and denote the systems as {X,f,h} and
{X, f,h} respectively.

The system { X, f, h} is said to be immersed into the system { X, f, ;1} if there exists a mapping
7: X = X (% = 7(z)) that satisfies 7(0) = 0 and

h(z) # h(z) = h(r(z)) # h(r(2)) (2.20)
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such that
o) = ot oo
h(z) = h(7(z)) (2.22)
Vre X

Example 2.2.2. In this example an immersion will be obtained only to illustrate the concept.

The immersion obtained here is not lineal, however, it produces the same output as the

original system. Consider the following nonlinear system {X, f, h}
T = sin(z) *u
y = sin(z)

sin
A mapping () = ( ((:B)) is an itmmersion of {X, f,h} into the following system
cos(z

 ————
= =
N -
= _J
|
 TEE—
| B
B
i)
&

y = Ih

The outputs produced by these to sets of differential equations are shown in Figure (2.2). The

inatial condition must also be mapped, so the immersion need to be observable.

This shows that the new state space has increased in dimension but its no longer trigono-
metric, hence the properties of the new system changed. For the Output Regulation Problem,

a linear and observable immersion 1s needed.

The above definition can be rephrased as the property that every output generated by

{X, f,h} can also be generated by {X, f,h}. This is important because {(X f h} can have
properties that { X, f, h} does not have.

The following proposition gives the conditions where an immersion into a linear observable

space is possible.



12 2. THE OUTPUT REGULATION PROBLEM

Original system
1 ' | — T —
0.8
3
= 06
-
04
02 S I 1
0 S 10 15 20 25 30
Time (s)
Cuadratic in the states system
1 \ Y \ 7 —
i I !
g of \ \ | |
a ! i
E 06 | \ / \ \ J \/
\
04 \\/
| i - | | — y
0 < 10 15 20 25 30
Time (s)

Figure 2.2: Example of an immersion.

Proposition 2.2.3. The following statements are equivalent:

e {X, f,h} is immersed into a finite dimensional linear observable space.
e The observation space O of {X, f,h} has finite dimension over R.

e There is an integer q and a set of real numbers ag, ay, ...,aq—1 such that:
Lih(z) = aoh(z) + a1Lsh(z) + ... + aq_ng’,_lh(:c)

Proof: See [17]

The following result gives the sufficient and necessary conditions for the existence of the

nonlinear error feedback output regulation problem solution.

Theorem 2.2.4. The error feedback output requlation problem has a solution if and only if
there exist mappings x = w(w) and u = c(w), with 7(0) = 0 and c(0) = 0, both defined in a
neighborhood €1y C 2 near the origin, that satisfies the following conditions

OTs(w@) = f(x(w),w,c(w)) (2.23)

0 h(m(w),w) (2.24)
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V(lp C (0, and that the autonomous system (2.16) is immersed into

p(&t) (2.25)
v(&¢) (2.26)

3

Uy

defined on a neigborhood =y near the origin in R¥, with ¢(0) = 0 and ¥(0) = 0, and the two

matrices

0¢ 37]
= | = = |— 2.27
[afLﬂ, B " —
are such that the pair
A 0 B
NC & 0

is stabilizable for a selection of N, and the pair

c 0. [‘; B;]
ts detectable.

Proof: See [17]

The block diagram of the nonlinear error output regulation is portrayed in Figure 2.3.

The following example illustrates when an immersion is not possible, and other techniques
will be needed in order to solve the Output Regulation Problem.

Example 2.2.5. Consider the following inverted pendulum

I I

gsin(z;) — cu (2.28)

I
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[ c;:r= s(®)

J o= (&) + Ne
uo = 7(£) [
.;'=f(.r,m,t_.u) 'I e = h(x,0) ‘
.ﬂgz = K (&) + Le
J u, = M¢,
i

Figure 2.3: Nonlinear error output regulation.

and the linear oscillator

W

{.Jg —a2w1 (229)

W2

The tracking error is defined as e = x1 — wy. The parameters g,c are only approrimately

known. The solution of the requlator equations is

m = W
o =— Wo
a:2w1 + g sin(wl)
c(w,p) = ———= (2.30)

C

One of the necessary and sufficient conditions to find a linear immersion is that c(w, n) must
be polynomial with respect to w. Hence, even for this simple example, a linear immersion
does not exists. In Figure 2.4 the tracking error for the inverted pendulum is shown. The
controller is able to make the tracking error zero when the parametric variations are known;
however, at t = 60s. the parameter c is changed from its nominal value and the controller is

no longer able to make the tracking error zero.

A lot of effort has been made in order to make this controller robust with respect to
uncertainties. In [7] Castillo-Toledo proposed a methodology where the immersion is time-
varying, the so called Generalized Immersion, which includes a bigger class of nonlinear

systems. In [33] Serrani and Isidori proposed an adaptive scheme where the uncertainties are
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Figure 2.4: Tracking error.

considered constant but unknown, and the adaptive control identifies those parameters; once
the error is smaller than a constant, the adaptive law is turned off Finally, in [24] Obregon
has proposed a convergent estimator and has generalized it for n unknown frequencies on the

signal.






Chapter 3

Exact solution of the regulator
equations

The Output Regulation Problem has being analysed for a couple decades, by many interesting
approaches. They can be classified into two big groups: the first solve the FIB equations
exactly, and the second one solve the FIB equations approximately. In this chapter the most

significant works on the first group are explained.

3.1 Generalized immersion

The concept of Generalized Immersion first appeared in the 90’s; the main idea of this
theory is to let the immersed system depend on values of the exosystem. This approach is
useful because the class of systems which can be immersed under that assumption is bigger
than the previous one. In this section this idea will be reviewed in order to compare the
proposed solution with this one. As shown in the previous chapter, if it is possible to find
the immersion, then the controller is robust with respect to the unknown parameters. It
has been established that a linear immersion exists only when the steady state controller is
polynomial with respect to the exosystem states. This condition is quite restrictive; hence,
a possible way to deal with this situation is to let the immersion depend on the exosystem

states.

It 1s important to notice that the results obtained here guarantee zero tracking error, with

17
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the expense of having a high dimensional controller. The main idea can be summarized in

the following result.

Theorem 3.1.1. [7] Consider the nonlinear system

3 = flzwa.p) (3.1)

e = h(z,w,p) (3.2)

The Robust Output Regulation Problem with full exosystem measurement is solvable if and
only if there exists mappings m*(w, u) and c®(w, u), with #*(0,0) = 0 and c*(0,0), solving the

requlator equations, such that the extended exogenous system with output c*(w, ) is immersed

1E-[2
dt | ¢ P(w)€

and the following conditions hold:

into

e The pair
A 0 | B (3.4)
NC @(0) 0
1s stabilizable for some choice of matriz N.
e The pair
A BT
c o, T=[10 .. 0 (3.5)
0 &(0)

18 detectable.

This theorem is similar to the one on which a linear immersion is found, in fact, this is a

more general case. The structure of the controller that solves the Robust Output Regulation

Problem with exosystem measurement is

E] i [}0( <I>(Ow)J U ' LI\;

U = ]\151 i P€2 (37)

e (3.6)

For the case of the Error Output Regulation Problem, the following theorem gives sufficient

conditions to find a solution for the regulator equations.
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Theorem 3.1.2. Consider the nonlinear system

t = flz,wu.n (3.8)
e = h(z,w,p) (3.9)

with s = 1,m = 1 and the exosystem with an additional output y, = r(w), that is s’ = 1.

Further, assume that there exists local asymptotic observer for the exosystem state w given

by

= g(&, ) (3.10)
with the corresponding error dynamics fore = w — @ as
§ = o(e,w) (3.11)

where % = (0,0) s a Hurwitz matriz. Then the Robust Qutput Regulation Problem with

partial exosystem measurement is solvable if and only if the Robust Qutput Requlation Problem

with full exosystem measurement is solvable. Moreover, the corresponding controller has the

following form

ok
&2 0 ®(w)| (& N
W= g((w), yw) (3'13)
u= ME& +I'& (3.14)

The block diagram for the controller that uses the generalized immersion is shown in

Figure 3.1.

3.2 Simultaneous globally convergent online estimator

This method is a little different to the previous one, it addresses the problem of determining
a solution of the regulator equations when the frequency of the exosystem is not known. In
fact, multiple frequencies are allowed to be unknown. The dimension of the estimator is 3n

(where n is the number of unknown frequencies) which is, as far as the author knows, the
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1{ e = h(x,®) i»

Figure 3.1: Output regulation using generalized immersion.

lower dimensional estimator for the problem[24]. It has the advantage that zero error on the
output can be achieved; however, as it is mentioned, the dimension of the controller increases

by 3n so computational time must be paid in order to achieve the zero error.

Another way to solve this problem is via neural networks, and it will be disscused later
that, in spite of not giving zero error, the error is sufficiently small and the controller is lower

dimensional.

3.3 Conclusions

The problem of nonlinear output regulation has been extensively studied; several methods
for determining the exact solution have been studied. However, the solution of this set
of partial differential equations by any of this methods result sometimes as difficult as the
original problem. For other cases, the controller which solves the Output Regulation Problem
increases in dimension. For practical problems, one do not expect the error to be exactly zero;
however, one would expect that the error remains bounded, and, if possible, that the bounds
can be arbitrarily selected. The following chapter begins with some classical approximations

of the Output Regulation Problem and ends with the solution proposed in this work.



Chapter 4

Approximation of the regulator
equations

For the second classification of the regulator solution. one of the most relevant work is the
power-series approximation method proposed by Huang and Rugh [16]. These results are
based on a kth-order approximation of the plant zero-error manifold, and the control law
designed there yield kth-order asymptotic tracking and disturbance rejection properties for
the closed-loop svstem. The error can be made arbitrarily small bv increasing the order of
the approximation: however. the solution of the regulator equations are more complex. and

the controller increases its complexity with each increment in the approximation order.

Another approximation is to use the neural networks. Feedforward neural networks are
tvpically used as approximations of nonlinear systems and/or controllers. They can be clas-
sified by the structure of the neural network as well as the algonthms used to adapt the
weights. Supervised learning has taken populanty among the control community, mainly
because it is capable to adapt the response of the neural network in cases of uncertainties in
the parameters of the system. Because neural networks are easily parallelized. thev promise

to be a viable tool to make complex nonlinear controllers computationally efficient.

21
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4.1 Kth-order solution of the state feedback regulator

equations

In order to develop the kth-order approximation of the regulator equations solution one more

property for the closed loop system is needed.

Definition 4.1.1. Lev V be an open neighborhood of the origin of RI. A function of : V — R
is said to be zero up to kth order if it is sufficiently smooth and vanishes at the origin together
with all partial derivatives of order less than or equal to k. The notation o*(z) will be used

to denote a generic function of x which is zero up to kth order regardless of the dimension of

1ts range space.

Then, the kth-order nonlinear output regulation problem is defined as:

Determine, if possible, a control law of the form (2.8) or (3.7) such that the closed-loop

composite system fulfils the assumption Sg; as well as

Rk rr For all sufficiently small z5 and wg, the solution of

r = flz,w ulz,w)) (4.1)
w = s(w)

satisfies
lim (e; — o*(w)) =0 (4.2)

Theorem 4.1.2. The kth-order nonlinear output requlation problem is solvable by a static

state feedback controller

u = oa(zr,w) (4.3)

if and only if there exist two sufficiently smooth functions m®)(w) and ¢ (w) satisfying
75)(0) = 0 and c*)(0) = 0 such that

%1 s(w) = f(r*(w),w*, a(r'k)(w),w) + of(w)) (4.4)
0"(w) = h(7m*(w),w)

Proof: See [15]
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Similar results are obtained for the case of error feedback, see [15] for reference. The

block diagram that implements the kth order controller is shown in Figure 4.1.

e { o = 5(o)

-
u=c, (ﬁ)) + K(I""' T, (&J)) ‘_{:‘—Tf(xg. a,l, H)
. o

|

o e = hi(x,w)

Figure 4.1: K-th order output regulation.

Example 4.1.3. Consider the following nonlinear system

) = —IT,+Tp+u
To = -—sin(xy) + 2,
y = I (4.5)
and the follounng exosystem
W = Wo
L:jz — —02{4}1 (46)
where
e=1I; —w (4.7)

The mappings m(w) and c(w) are obtained as the solution of the FIB equations, the first

equation can easily be obtained. Let e = 0

T = I (4.8)

for the second equation, the FIB equation can be expressed as

)

[?_32% ?Eﬂ [wl] = —sin(m3) + w (4.9)
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To obtain a closed form solution for this partial differential equation s not trivial; hence a
kth order requlator is designed. In this case, a second order approximation is used.

2

To(w) = Z Al (4.10)

i=0
where z
Al = 1_07(0) (4.11)
[! 871',‘,1 win 371'-,;2
M=w@w® - Qw [ — tames (4.12)
Ezpanding equation 4.10
wi
W
ma(w) = [a b] { 1] + [c d e] wws | + O(J|lw]l)’ (4.13)
Wa 0
Wa

Ta(w) = aw; + bwy + c*wf + dwywy + ew% + 0 (||w||3)

Taking the partial derivatives with respect to the erosystem states

% = a+ 2cw; + dwo
3’&)1
371'2
— = b+ dw; + 2ew,
3w2

Substituting into the FIB equation

(a + 2cw; + dws) wy — (b + dwy + 2ews) wn — Ty + W

(a 4+ 2cw; + dwy) wy — (b + dwy + 2ews) wy - (awl + bwy + cw? + dwywy + ewg) + w
Finally, solving for each variable of the following equation
ws (@ + 2cwy + dwy) — wy (b + 2ews + dwy) = —cwf — dwywe — awy — ewg — bwy + w

The following approximation of my is used

m

[
S

9

|
|
S
|
|
5
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4.1.

Now 1 = —x, + x5 + u 1s used to obtain c(w),
c(w) = wy +wy — lw lw 3
= wa + W) oW1~ W2

The kth order output requlation is then solved using the following control law

1 1\’
u = wy+w — (§w1 - 5102) + K(z — m(w))
w
w = (")
i T

Figure 4.2 shows the output of the system, the nonlinear system is able to track the desired

trajectory, finally, Figure 4.3 shows that the error is not zero, however it remains bounded.

3 T L T :OW—T"_'—I'_'T—__'T__'_r"__
— Exeysen
ol Sysem Oupu|
|
'
15F .
2 1k A ) ; y
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Figure 4.2: K-th order trajectory tracking.

It is important to notice that this controller is not robust with respect to plant uncer-

tainties, however, a linear immersion can be found because a polynomial approximation of

the center manifold is being calculated.
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kth Order QOutput Error
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Figure 4.3: K-th order output error.

4.2 Neural networks

4.2.1 Radial basis function neural networks

In the classical Output Regulation Approach, equation 2.4 can be quite restrictive for prac-

tical applications; hence Wang in (35| proposed a way to approximate the solution to the

regulator equations by replacing that hypothesis with the following one

Rp; For any given € > 0 design a control law such that for all sufficiently small initial

conditions zy and wy, the closed-loop system has a bounded solution for all £ > 0, and

lim sup || e (e, we)| (4.14)

t—o0

This problem can also be solved as explained in chapter 3.2.1; however, it has the drawback

that the exact knowledge of the plant is needed, and can require tedious computational eftort.

To start developing the idea, first the State Feedback Output Regulation Problem is

presented, where the control law is of the form:
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uy = K(zp — m(wy)) + c(wy) (4.15)

where

c(wr) = K(z¢ — m(we)) — ue (4.16)

Once the feedback gain K is calculated, the feedforward control is a sufficiently smooth
function of the exosystem. Using the universal approximation theorem, given any € > 0, and

any compact subset A, there exists a m-dimensional vector valued function ¢(W,w) such that

max le(w) — é(W,w) < ¢ (4.17)

Replacing c(w;) by ¢(W,w,) leads to the following state feedback neural network control
law:
us = K(xp — m(wy)) + ¢(W, wy) (4.18)

In [35] the stability of the closed loop system under this neural network feedback control
is proved. Also, a bound for the error is obtained, which depends mainly on the feedback
gain K and on the identification error bound, so the training law is critical for this type of
controller. An improvement with respect to the linear Output Regulation Feedback control
is obtained by training the neural network with genetic algorithms, however the training was
made off-line so this type of control is not robust with respect to parametric variations of

the plant.

4.3 Output regulation for parametric variations using

dynamic neural networks

Consider the following nonlinear system

Ty = [z, we) + g(xe)uy (4.19)
wr = S(wy) (4.20)
et = h(z) —r(w) (4.21)
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where £ € R® u € R, h(z) € R™ the vector function f : R® x R® - R" and g : R" = R"
are partially unknown. It is well known that in order to obtain a solution for the regulator
equations it is necessary that the parameters of the plant are known; in some special cases,
where an immersion can be found, it is possible to determine a solution even if the parame-
ters change around a neighborhood of the nominal value. However, a linear immersion exists
only when the steady state control is polynomial with respect to the exosystem [15], and for
the nonlinear case, it is often very difficult, or even impossible to determine such immersion.
Advances had been made, and a method to find a generalized immersion has been proposed
[7]. This generalized immersion is useful for many nonlinear systems [39]; however the di-
mension of the controller depends on the structure of ¢(w) and can become large even for
simple problems.

In this chapter, a solution for the regulator equations is proposed, based on a neural network
identifier which is in the normal form, a continuous adaptation law is used, and based on a
Lyapunov-like function, the convergence of the identification error as well as the bounded-
ness of the neural network weights are guaranteed. Normally, the adaptation law use a dead
zone function; this is a drawback because in order to improve the identification quality, 1t is
necessary to reduce the size of the dead zone. This can be done by increasing a parameter
associated with the Riccati equation. However, this parameter can only be increased up to
certain level, beyond which no solution exists. The adaptation law used in this work is a
continuous function; as well as its first derivative, this type of adaptation law is useful for
the regulation theory because this terms appear in the solution of the regulator equations.

The nonlinear function (4.19) can be represented by a known term plus an unknown term in

the following way:
Ty = Az, + Wito(xy) + Wo'd(x)us + Af(xe, ue) (4.22)

A neural network is proposed in order to identify the states, the following structure for the

parallel neural network is used.
.1;33 — A.’i’t =+ Wla(:Et) o qub(:it)ut (423)

The vector £ € R" is the state of the neural network, u € R™ is its input. The matrix

A € R™" is Hurwitz in order to do the linearisation of the neural network stable. W), €
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R™™ and W,;, € R™™ are the weights of the neural network describing the output layer
connections, and o(z;) € R", ¢(Z;) € R™ are sigmoidal functions. A parallel neural identifier
was used because the solution of the regulator equations of the neural network will only
depend on the structure of the identifier and not on that of the plant, it can be seen that if
the neural network is able to track the nonlinear plant, then in equation 4.22 the error term
A f(z,, w;) is zero and, on the contrary, this term will be made arbitrarily small. Both cases
are considered, because it is a more common situation when the neural network is not able
to follow exactly the nonlinear system.

The proposed control structure is shown in Figure 4.4. Let the estimation error and the

i Reference Exosystem ~—— Reference —
| | |
s s o ] ...! -
| ————— Tracking emor——————————{ )
i ' I| ————Neural WEIghtS B " ‘ I
Y vy -- .
. Regulator - » Neural Nétwork
i Neural Output
| |
- Learning £y
COHU’G'E Signal — g 1%
.
i Plant Output
|

2 Plant

— —— —— o — e =

Figure 4.4: Neural identification of the plant.

tracking error be defined, respectively as

The following hypotesis are used [29]:



30 4. APPROXIMATION OF THE REGULATOR EQUATIONS

H.0 The plant satisfies the Lipschitz condition, that is
|f(z,u,t) = f(z,v,t)|| < L1 ||z — 2|| + L2 ||u — v
where z,z € R",u,v € R", and L,, L, are positive constants.

H.1 The sigmoidal functions satisfy the sector conditions:

o7 NGy AT D, A,
uToT Ay < fATDyA e

IN

where

5} = O'(L-E't) = O'(CL't)

fE’t = ¢5(55t) — qb(a:t)

and A, € R™™ D, € R™" A, € R™" Ds € R™™" are known constant positive definite

matrix.

H.2 Admissible controls are bounded, that is

Jlue||* < u < o0

H.3 Error term is bounded by

:
Af(z,u,t) "Af <7
where Ay € R™" is a constant positive definite matrix.

H.5 The matrices W and W; are bounded by

WrAZTW: < W,
WiA'W, " < W,

where W and W are known positive definite matrices
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H.6 The following Riccati equation

ATP+ PA+ PRP+Q=0 (4.24)
has a positive solution, such that R and Q are defined as

R=W,+W,+ .\, (4.25)

Q = Dy + ﬁD,‘, + QD (426)

with the terms Qp, 1, and W5. Q and R can take almost any value, so the preceding

assumptions are realistic, and a solution exists for almost any neural network.

4.3.1 Neural network adaptation law

Consider the following neural network
T = Ay + Wio(3y) + Woo(F)ue (4.27)

This neural network is a Hopfield-like one. In order to adjust the weights and minimize the
identification error, the following adaptation law is used [26]:

Aminl _%Qo —%) W,

“:I,t — —KIPAtJ(.it)T = > (—128)
5 - e In P-l }D—l s
“flt -— -—K2PAtO(It)T - A"“ ( ;Qo 2) “ 2.t (-1.29)

where K; and K> are positive definite matrices which can be chosen arbitrarily. P is the

solution of the matrix equation given by 4.24 and

Wysis W — WD
Wos = Way — N3

Now the following result is used:



32 4. APPROXIMATION OF THE REGULATOR EQUATIONS

Theorem 4.3.1. If the assumptions H.0 to H.5 are satisfied, and the weight matrices Wi
and W of the neural network (4.27) are adjusted by the differential learning law mentioned

above then

a) Both the identification error and the weights are bounded

b) The identification error has the following upper bound:

insup AT PAs € — 1 - (4.30)
e EooW= Amin(P~2QoP~2)

Proof: See Appendix B

4.3.2 Regulator equations

Consider the nonlinear system modeled by the neural network as

oy
-

r = J(2w,u)
w = s(w)
e = h(z,w) (4.31)

where the first equation describes the dynamics identified by the neural network, whose state
T 1s defined in a neighborhood U of the origin in R", with control input ©« € R™ and subject
to a set of known exogeous input variables w defined in a neighborhood V' of the origin in
R"™ The second equation is known as the exosystem and the third equation defines the error

expressed as a function of the neural states and the states of the exosystem.

Theorem 4.3.2. Assume the following assumptions hold

e The equilibrium w = 0 of the exosystem is Lyyapunov stable, and the Jacobian matrz

D = a.;g;) at the equilibrium w = 0, has all its eigenvalues on the imaginary axis.

e There erists a function k(x) such that the Jacobian matrix

_ 9f(2.0.k(2))
i = oz

evaluated at T = 0 has all eigenvalues on the open left-half side of the complex plane.
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Then, the state feedback regulator problem is solvable if there exist C" (r > 2) mappings
r = m(w) and u = c(w) with 7(0) = 0 and c¢(0) = 0, both defined in a neighborhood W° C W
of 0, satisfying the conditions:

om(w)
ow

s(w) = f(r(w),w,c(w)) (4.32)
0 = h(n(w),w) (4.33)

In fact, the controller that minimizes the output tracking error is given by

a(f,w) = K(& — #(w)) — c(w) (4.34)

Proof. The proof of this theorem is an immediate consequence of the properties of the neuro
identifier, the error can be seen as the sum of the identification error e; plus the tracking

erTor €;, 1.e

er = €; + e = {h(z¢) — h(Z;)} + {h(ze) — r(we)} (4.35)

the second term of the error will always be zero independently of the values of the neural
network weights, because the regulator equations are being solved for the neural network.

The first term of the error will be minimized by the adaptation law. L

4.4 Output regulation for a partially unknown exosys-

tem using DNN'’s

Consider the following nonlinear system

; = [f(z,w)+ g(x)u (4.36)
w = s(w)
e = h(z)-—r(w)

where r € R", u € R, h(z) € R™ the vector function s : R™ — R™ is partially unknown.
This case 1s quite challenging, it has been recently studied Chen and Huang, Nokiforov, Ser-
rani. Marconi and Isidori and Ye and Huang.. In [24] a globally internal model adaptive



34 4. APPROXIMATION OF THE REGULATOR EQUATIONS

sheme is proposed; however, this solution has the disadvantage of having a large dimensional

controller.

The identification error is defined as

At=dbt—wt

€t =T —T

A parallel neural network is used to identify the exosystem; it is important to notice that the
exosystem does not need to be linear, as long as the function is smooth and the neural network
is able to track the trajectory, the nonlinear system will be able to follow the exosystem. The

parallel neural network used in this example is:
z, = Az, + Who (%)

Notice that the neural network does not depends on the control, that is because generally
the exosystem does not depends on the control either. In Figure 4.5 the proposed controller

1S shown.

4.4.1 Neural network adaptation law

In order to adjust the weights and minimize the identification error, the following adaptation

law 1s used:
A'nr't:i'n(‘P_%‘QO _%)
2

/\mm(P_; ) Wa,e (4.38)

where K; and K, are positive definite matrices which can be chosen arbitrarily, P is the

Wl,t — _KIPAtU(-i't)T = Wl,t (4-37)

Was = —KoPAp(2:)T —

solution of the matrix ecuation given by (4.24) and

Wl,t - Wl,t S Wl*
W'vg‘t = W2,t B W;
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]' 1
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Figure 4.5: N\eural identification of the exosystem.

4.4.2 Regulator equations

Consider the nonlinear svstem modeled by the neural network as

r = f[f(r.w.u)
o = s(@)
e = h(r.w) (4.39)

where the first equation describes the dynamics of the plant. whose state r is defined in a
neighborhood [ of the origin in K" with control input u € R™ and subject to a set of known
exogeous input variables & defined in a neighborhood |  of the origin in R™ The second
equation is a neural network identifier of the exosvstem and the third equation defines the

error expressed as a function of the plant states and the neural states of the identifier.

Theorem 4.4.1. Assume the following assumptions hold

e The equilibrium .- = 0 of the neural identifier 1s Lyapunov stable. and the Jacobian
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matriz § = a.;ga) at the equilibrium & = 0, has all its eigenvalues on the imaginary

axis.

o There exists a function k(x) such that the Jacobian matriz

A . af!:r,ﬁ,k!a:)!
o oz

evaluated at x = 0 has all eigenvalues on the open left-half side of the complex plane.

Then, the state feedback regulator problem is solvable if there exist C™ (r > 2) mappings
z = 7(W) and u = c(®) with 7(0) = 0 and ¢(0) = 0, both defined in a neighborhood W° C W
of 0, satisfying the conditions:

on(w) .
5 5@

0

f(m(@),w, c(W)) (4.40)
h(m(@), ) (4.41)

Proof. The proof of this theorem is an immediate consequence of the properties of the neuro

identifier, the error can be seen as the sum of the identification error e; plus the tracking

eITOr €4, 1.€

e; = e; + e = {F(wy) — r(x)} + {h(xs) — (1)} (4.42)

the second term of the error will always be zero independently of the values of the neural
network weights, because the regulator equations are solved for the neural network. The first

term of the error will be minimized by the adaptation law. O

4.5 Conclusions

A lot of research has been made in done to determine approximate solutions for the regulator
equations, often the controller increases in dimension at the expense of removing the nonlin-
earities, and sometimes the problem is of the same order of complexity as the original one.
One method has been proposed here that exploits the advantages of the neural networks in
order to do the controller robust with respect to plant uncertainties. Using the same 1dea,

another method has been proposed to manage the case where the exosystem is allowed to
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vary, or even in some cases to be unknown, in this case, again the neural networks properties

are used in order to do the controller robust against exosystem uncertainties.



Chapter O

Illustrative cases

In this chapter a couple of exercises are developed in order to clarify the results given in
the last chapter. First the van der poll oscillator is solved considering uncertainties in the
plant, then it is solved considering uncertainties in the exosystem. The second example is
the inverted pendulum, it is solved first considering uncertainties in the plant, and then it is

solved considering uncertainties in the exosystem.

5.1 Van der poll oscillator

5.1.1 Output regulation for a partially unknown plant

Consider the following nonlinear system

I, = I
.'i?g = —u) I+ I? — UaT9 + U3 cos(wt) + U
y = I

39
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where the nominal value of x; and ps and u3 is 1. The desired trajectory is generated by the

following exosystem

£ €
N —
[
I
kS

S
|
&

where o 1s a known value.

5.1.1.1 Exact solution

The steady state manifold is described by

T™ (w) = W
9 (w) = W9
c(w) = —c’w;+ pwr + wi + powy + pg cos(wt)

The solution of the regulator equations rely on the nominal values of the nonlinear system.
So the classical output regulation is not able to solve the problem; on Figure 5.1 it can be
seen that when a perturbation is applied to the plant, the controller is not able to follow
the trajectory. One way to solve this problem is to find a new dynamical system which can

reproduce every possible value of c(w).
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Ouiput Regulation using Classical Sokufion Ouput
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Figure 5.1: System output.

Hence, in order to make the controller robust with respect to u#; and x> an immersion of
c(w) into an observable linear system is going to be found, which will be able to produce all

of the c(w) trajectories independent of the values of yx; and pu,.

Notice that c¢(w) is almost polynomial with respect to w, so a linear immersion can be
determined for the polynomial part. Consider the space of polynomials of third order or less.
that is {z;, z2. 3. 24. =5, 26, 27, 28, 29} = {wW1, Wa, WE, WWs, W3, WY, Wiws, wywa,ws}. Taking the
derivative of z a new dynamical system is formed; after some algebraic manipulations, the

immersion for this function is given by

0 1 0 0 00
0 01 O 020
§ = 0O 0 0 1 00 -
0 0 0 0 10
0 0 0 0 01
0 -9 0 -10 0 O

s = Hgy=[1 0000 o]y
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Finally, the controller that solves the output regulation problem is given by

c(w) = K(x — m(w)) + y + pzcos(wt) (5.1)

The controller is not able to make zero the error because of the parametric variations on

cos(wt),however, Figure 5.2 shows that the controller is able to reject parametric variations;

the parameters y; and p, are changed at t=>50 s.
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Figure 5.2: Output regulation using immersion.

9.1.1.2 Dynamic neural networks

It is not always possible to obtain the immersion; the method proposed in this research uses

the neural network as an identifier of the nonlinear system, and then, the regulator equations

are solved for the neural network. The parallel neural network is proposed as

Ii::'t — A-’i’t =+ b'U.t -1 Wlﬂ'(.it)

where
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0 1 0 %% X T
A= y = W, = 0 12 and U(I)= 0’(“1) .
—l — 1 Wi Wa o(z2)

The adaptation of the weights is done by the following set of differential equations.

A1r1ru'1r1(F’_%Q0 _%) W‘l
O ol S, . s, I . t

Wl.t = _KIPAtJ(it)T - (5-2)

Amiﬂ(})_%(\?ﬂ

| 4)
“*;21 = —KQPAt(b(-it)T — 9 )IV2,,t (53)

where K; and K, are positive definite matrices which can be chosen arbitrarily, P is the

solution of the matrix ecuation given by (4.24) and

Wie =Wy, — W
We =Wy, — W,

Using the neural network as the nonlinear plant, and the exosystem, the solution of the

regulator equations are

w1

@y — u'11*-"'(%‘1)

S
— i
I

—2m + m + gy — War0(m) — Wao(72) — Wiad(m) — Wiao(piy)

Using the proposed adaptation law, and this control the error remains bounded for parametric
variations as it is seen in the following graphic. The control law is applied at second 10, a
parametric variation is applied at second 50, and then at second 80 another parametric

variation is applied.
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Output of the system
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Figure 5.3: System output.

The system is able to track the desired trajectory as long as the identification error
remains small, and for small parametric variations the identification error remains bounded;
the following graph shows tracking error for the state x,.

In this case, the neural network is able to identify de nonlinear system, and the identification
error are in the magnitude of 107® and 1072  Figure 5.5 shows the identification error.
Finally, Figures 5.6 and 5.7 shows the tracking error as well as the input to the system,

respectively.
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Figure 5.4: Plant state xs.
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Figure 5.5: Identification error.
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Tracking error for x
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Figure 5.6: Tracking error.
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Figure 5.7: Control action wu.
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5.1.2 Output regulation for a partially unknown exosystem

Consider the following nonlinear system

jil = I
Ty = T34 x5+ cos(wt) +u
y = I
The desired trajectory is described by
Wy = W2
_ 2
Wy = —Qw
T = W

where the parameter a is unknown.

5.1.2.1 Exact Solution

In order to achieve trajectory tracking, one needs to solve the regulator equations

m (w) = W
To(w) = ws
c(w) = —oa’w; —w} —wy — cos(wt)

The solution of the regulator equations depends on the parameter a and, in this case, an
immersion is not possible because the parameter a will always appear. Neither the generalized

immersion nor the kth-order solution will apply to this problem.

5.1.2.2 Dynamic neural networks

Using the approach described in the previous chapter, a parallel neural network is used to
identify the exosystem states. Then, the regulator equations are solved for the nonlinear
plant and the neural network. Once the regulator equations are obtained, the plant is going

to follow the neural network independent of the values of the exosystem.
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Figure 5.8: Output regulation for an unknown frecuency exosystem.

The structure of the neural network is proposed as follows.

f!:?t = Aif?t " chr(:i”:t)

where A =

0
-]

1
|

' 0
Wl —_
Wa,

Wio
Wao

] and o(z) = [

J(ii?l)

O'(.’Eg)

].

The adaptation of the weights is done by the following set of differential equations.

Amin(P~2QoP~7)

Wl,t = —KlpAtU(fﬁt)T 9 W"Lt (54)
; A ’\min P_% P_% 7
fgit = —'KQPAt(b(It)T = (—2Qq———W2}t (55)

where K, and K, are positive definite matrices which can be chosen arbitrarily, P is the

solution of the matrix equation given by (4.24) and

i L *
W 1, ~— 4 1.t — ”’1
‘1‘; .— W. W*

2t - 2, 2
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Using the neural network as the exosystem, the solution of the regulator equations are

m (W) = W
m(w) = ws— Who(w)
clw) = —-m+ Trio' + dm — gcos(t) + 21 + £o — Wa10(Z1) — Waeo(Z2)

*-"Vuéf(ﬂ’l) — Wmd’(?‘l’l)

The output of the simulation can be seen in Figure 5.9, the first 30 seconds the frequency is
three radians per second, after that the frequency is changed to one radian per second. The
amplitude of the reference signal also changes, and the neural network is able to follow the
trajectory, since the output regulator equations are solved for the neural network, the system
1s able to track the trajectory as long as the identification error remains bounded. In Figure
5.10 the identification error is shown. It can be seen that the identification error remains
bounded. The weights of the neural network evolve as shown in Figure 5.11, it can be seen
that the weights are bounded because of the adaptation law. The tracking error is shown

in 5.12, it remains bounded and the controller that minimizes the tracking error is shown in
5.13.

1.5 T T T T T T T I I
- - - Exosystem output
q Plant Output
B i |
| NN N 1
AAAAARARRRAARDD
1
ARRRAARAAARY
"I
T/
il 10 20 30 40 50 60 70 80 % 100

Figure 5.9: Output regulation for an unknown exosystem frecuency using neural networks.
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Figure 5.11: Weights of the neural network.
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Figure 5.12: Tracking error.
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5.2 Inverted pendulum

Using the Euler-Lagrange method, the mathematical model for the inverted pendulum is

= (mlc22 = Izz)q- ¥ mQZCSin(Q) 55 f-"fq

This equation can be represented in state variables if it’s solved for q.

1
miZ,

§ = ——5(mglesin(q) + psg + 7)

Defining the state variables as

r1 = (g
2 = (4
U = T
y = I

the non-linear system is then represented by

f(z) + g(z)u
h(z)

i

Y

where

f(z) = [_ 1 -

———(mgl.sin(q) + psq + 7)

mlc2+Izz

0
g(z) = [ . J
_micz”l‘Izz

The following table shows the values of the system

s Distance from the joint to the center of gravity 0.1551 m

Mass of the link 0.8293 Kg
I.., Moment of inertia of the link 0.00595 kg- m?
ity Viscous friction coefficient 0.00545 Kg/s

g Gravity coefficient 9.81 m/s?

(5.6)

(5.7)

(5.8)

(5.9)
(5.10)

(5.11)

(5.12)
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5.2.1 Output regulation for a partially unknown plant
5.2.1.1 Dynamic neural networks

Evaluating the system with the values presented on the above table, the state space repre-

sentation 1s

T2 (5.13)
Ty = 48.7184sin(z,) + 0.2104z, + 38.61u

8.
|

o
|

ry —w

Such that w; i1s the solution of the following linear exosystem

H ) [—01 (lal H (5.14)

The steady state manifold for this pair of equations is

T1ss = Wi (515)
Ioss — W2
uss = —0.259%w; — 1.26sin(w;) — 0.0054ws

Using the proposed neural network, with the adaptation law described befor, the error
remains bounded for parametric variations as it is seen in the following graphic. The control
law is applied since the beggining of the simulation, a parametric variation is applied at

second 50, and then at second 80 another parametric variation is applied.
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Figure 5.14: System output.

The system 1s able to track the desired trajectory as long as the identification error
remains small, and for small parametric variations the identification error remains bounded.

the following graph displays the tracking error for the state r,. In this case, the neural
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network Is able to identify the nonlinear system, and the identification error are in the
magnitude of 107 and 10~2 Figure 5.16 presents the identification error. Finally, Figure
5.17 portrays the input to the system.
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Figure 5.16: Identification error.
Control Action {u)

Figure 5.17: Control action u.
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5.2.2 Output regulation for a partially unknown exosystem
5.2.2.1 Dynamic neural networks

Using the approach described in the previous chapter, a parallel neural network is used to
identify the exosystem states. Then, the regulator equations are solved for the nonlinear
plant and the neural network. Once the regulator equations are obtained, the plant is going

to follow the neural network independent exosystem values.

The structure of the neural network proposed is as follows.

T, = Az, + Wio(Z)

0 1
where A = Wi = 0 Wi
1 -1 Wor Woo

and o(Z) = [a(il)} .

o(Z2)

The weight’s adaptation 1s made by the following set of differential equations.

Amiﬂ(P_%QUP_%) 7

Wi = —Ki1PAwo ()T — : Wi (5.16)
. ) Amin(P~2QoP %) . -
Wg,t - —KQPAt¢($t)T — (—2620—W2,t (517)

where K; and K, are positive definite matrices which can be chosen arbitrarily, P is the

solution of the matrix equation given by 4.24 and

e L *
Wis =Wy — W]
v L e
Wy := Way — Wy

Using the neural network as the exosystem, the solution of the regulator equations are

mw) = w
’FTQ((JJ) = Wy — Wllcr(wl)
1 " " "
c(lw) = 33 61[ 48.7184sin(m ) + 0.2104m; + 21 + T2 — Wa0(21) — Waso(z5)

—ngd'(ﬂl) = ngﬂ'(?ﬁ)]
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The output of the simulation can be seen in Figure 5.9; the first 30 seconds the frequency is
three radians per second, after that the frequency is changed to one radian per second. The
amplitude of the reference signal also changes, and the neural network is able to follow the
trajectory, since the output regulator equations are solved for the neural network, the system
will be able to track the trajectory as long as the identification error remains bounded.

In Figure 5.19 the identification error is presented. it can be seen that the identification error

remains bounded. The controller that minimizes the tracking error is portrayed in Figure
5.20.

Figure 5.18: Output regulation for an unknown exosystem frecuency using neural networks.
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Chapter 0

Conclusions and future work

A lot of research has been done related to the output regulation problem; it is known that
the solution of the regulator equations is often impossible to find. There is always something

to loose on every method that approximates the solution of these equations.

One of the main disadvantages of the generalized immersion is that the dimension of the
controller grows in dimension considerably; using the recently developed adaptive control
sheme by Obregon, the controller also grows, but it solves the disadvantage of the generalized

immersion in the fact that it does not require to know the states of the exosystem.

In these thesis another method is proposed to approximate the solution of the regulator
equations; it has the advantage that the controller does not increase with the complexity of
the system, in the case where the neural network is used to identify the plant, as long as the
neural network is able to follow the plant the system is able to track the desired trajectory:.
In the case where the neural network is used to identify the exosystem, as long as the neural

network is able to follow the exosystem the system will be able to track the trajectory.

One of the key components in the design of the controller is the adaptation law; it is
necessary to determine a continuous adaptation law that does not switch when the error
became small, and that also guarantees bounded error and bounded states for the neural

network.

Solving the regulator equations where the exosystem is unknown has almost not been

studied, there is a lot of open problems in that area. One possible application, which is

29
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not studied here, is using this approach to the solution of the output regulation of switched
systems; if we use a neural network to identify the plant and the exosystem, then it seems

feasible to implement only one controller even if the systems switches.
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Appendix A

Foundations

This section deals with mathematical tools that has been used in the development of this

work; a general review of non-linear systems is made.

A.1 Dynamical systems

A nonlinear system can be represented by a set of differential equations of the form
&= fle.i.u) (A.1)

where f : D — R" is a locally Lipschitz function. Let u = g(z(t).t), the closed loop system
of A.1 can be written as:
z = f(z.1) (A.2)

in the special case where the function f does not depend explicitly on time, the system (A.3)

1s said to be autonomous.
T = f(z) (A.3)

An important concept when dealing with the state equation is the concept of equilibrium
points. For the system (A.3), the equilibrium points are the real roots of the equation

f(z) =0 (A.4)
Such points can be stable. unstable. or asymptotically stable.

65



66 A. FOUNDATIONS
A.2 Stability of dynamical systems

This concept of stability is very important in the control theory; it is very important that a
controller guarantees the stability of the closed loop system, that is, that the output reaches
the desired value without drifting to infinify. The following definitions describes the classes

into which stability can be classified.

Definition A.2.1. /21] The equilibrium point x = 0 of A.3 1s

e Stable if, for each € > 0, there is 6 = d(¢) such that

|z(0)|| < é = ||z(t)|| <€, VE>0 (A.5)

e Unstable 1f not stable

o Asymptotically stable if it is stable and 0 can be chosen such that

|lz(0)|| < 0 = tllgz w(t) =1 (A.6)

This concept of stability is usually characterized in the sense of Lyapunov, where an
equilibrium point is stable if all solutions starting at nearby point stay nearby; otherwise, it

is unstable.

A.3 Lyapunov stability

The main aspects of the stability for nonlinear systems via the Lyapunov methods will be
reviewed here. Extensions for this methods are available in the literature [21|. Lyapunov
stability theorems give sufficient conditions for stability, asymptotic stability, and so on,
however, they fail to say whether the given conditions are also necessary. Lyapunov stability
analysis can be used to establish the boundedness of the solution, even when the system has
no equilibrium points. This will be important because the boundedness of the weights of the

neural network must be determined.

The next theorem gives the sufficient conditions for a system to be stable.
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Theorem A.3.1. Let x = 0 be an equilibrium point for (A.3) and D C R, be a domain

contarming x = 0. Let V : D — R be a continuously differentiable function such that

V(0)=0,V(z) >0 VD — {0} (A.7)
V(z) <0 VD

Then x = 0 s stable. Moreover, if
V(z) < 0VD — {0} (A.8)

then r = 0 1s asymptotically stable.

Proof. See (21} O

A.4 Steady state

The output regulation problem is used to force a dynamical system to follow a desired
trajectory; in order to do so, the controller is able to force the output of the system to

converge asymptotically to a desired steady state response.

In order to characterize formally the concept of steady state, consider the following system
&= fli, ) (A.9)

where z € R" in a neighborhood U close to the origin, and the input © € R™ The first
assumption is that f(0,0) = 0. Let z(¢, zo) be the value of the state z reached at time ¢ = 0.

Let u,, a specific input and suppose that exists an initial state zy with the property that
lim ||z(¢t, zo, u* () — (¢, z*, u”)|| (A.10)
t—00
for each zy belonging to a neighborhood U* of zj. If that is the case, then the states
Eoll) = B, 25, s ) (A.11)

is called steady state response from (A.9) for a specific input us;.
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This definition will be used in the solution of the regulator equations; the controller will
consist of two parts, one of the will be a persistent input. Generally, this type of inputs are

generated by external systems modelled by differential equations of the form

z2=z{w)

e = Elti)

where the state w € RP is defined on a neighborhood V of the origin, and on which z(0) =
0,c(0) = 0. In order to achieve the bounded input property, it is enough to have that the
equilibrium point w = 0 from s(w) be stable in the sense of Lyapunov and to choose the
initial condition in ¢ = 0 on an appropriate neighborhood Vy; C V close to the origin. In
order to achieve that the inputs are persistent in time, it is necessary that the equilibrium

point w = 0 be neutrally stable, that is, that the following matrix

0s
S = 5;‘&):0 (A12)

which characterizes the linear approximation of s(w) in w = 0, has all its eigenvalues on the

imaginary axis. [17]

Proposition A.4.1. Consider that A.12 is neutrally stable and that the equilibrium point
r =0 of x = f(x,0) s asymptotically stable on the first approrimation. Then, a mapping
T = m(w) defined in a neighborhood Vo C V' from the origin, with w(0) = 0, which satisfies

O s() = F(r(w),e(w)) (A1

for each v C Vy. In fact, the input uss(w) produce a well defined steady state response

Tss(t) = z(t, m(w), uss(w)) (A.14)

Proof. See [17] O]

A.5 Center manifold

Consider the following system
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where f : D — R" is continuously differentiable and D C R" contains the origin z = 0.
Next, suppose that the origin is an equilibrium point of (A.15). From Khalil [21], it is known

that if the linearization of f at the origin, that is, the matrix

_of

=0

has all eigenvalues with negative real parts, then the origin is asymptotically stable; if it has
some eigenvalues with positive real parts, then the origin is unstable. If A has eigenvalues
with zero real parts with the rest of the eigenvalues having negative real parts, then the
linearization fails to determine the stability properties of the origin. That is the main reason
to study the center manifold theory. A k-dimensional manifold can be seen as the solution

of the equation
n(z) =0 (A.17)

where 7 : R® — R™* is sufficiently smooth. For example, the unit circle
{z € R%|z% + 25 = 1} (A.18)
is a one-dimensional manifold in R?

The system A.15 can be represented as

T = Az + () (A.19)
Consider only the systems for which Re();) < 0 from which

e m. eigenvalues have zero real parts.

e m, eigenvalues have negative real parts.

A transformation 7" always exists such that

H — Tz,y € R™. 2 € R™ (A.20)
2
The system in the new coordinates has the following structure
y = A1y + 91(y, 2) (A.21)
z = Asz + go(y, 2) (A.22)

where
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e A; is m. X m, with Re(eig(A;)) =0
e A;is my X m, with Re(eig(Az)) <0

e the g; functions are twice continuously differentiable and satisty

g:(0,0) = 0 (A.23)
‘Zj (0,0) = 0 (A.24)
‘Zi*' (0,0) = 0 (A.25)
(A.26)
Definition A.5.1. A manifold is said to be a local invariant for (A.15) if
n(z(0)) = 0= n(z(t)) =0,vt € [0,¢,) CR (A.27)

Let t; = oo then it is called an invariant manifold.

Definition A.5.2. If a manifold z = 7(y) is an invariant manifold for the system and =(-)

s smooth, then it is called a center manifold if

on
(0) =0 B—y(o) =i ) (A.28)

With this definitions the following result is given.

Theorem A.5.3. There exist a § > 0 and a continuously differentiable function m(y) defined
for all ||y|| < 6, such that z = 7(y) is a center manifold for the system (A.21).

The motion of the system on the center manifold is determined by the reduced system

y = A1y + q1(y, 2) (A.29)

Lemma A.5.4. Suppose z = 7(y) is a center manifold for the system (A.21) at (0,0).
Then, there exist a neighborhood U° of (0,0) and real numbers M > 0 and K > 0 such that,
if (y(0), z(0)) € U°, then

ly(t) — m(2(2))|| < Me 5||y(0) — 7 (2(0))]| (A.30)
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That is, the center manifold is locally exponentially attractive. With all the information

above, the theorem that is relevant to our work can be stated

Theorem A.5.5. Suppose that the origin y = 0 of the reduced system in (A.29) is asymt-
potically stable (respectively, stable, unstable). Then, the origin of the full system in (A.21)
1s asymptotically stable (respectively, stable, unstable).

A.6 Neural networks

Artificial Neural Networks (ANNs) are simplified models of biological neural networks. The
main purpose of an ANN is to imitate the behaviour of a biological neural network. These
neural networks are capable of process information in a parallelized form, making them
ideal for real-time applications; however, special hardware must be used in order to take the
advantages of a neural network. Field Programmable Gate Arrays look promising to fully

implement a neural network that performs parallel computation.

The ANNs does not have the complexity as the human brain, however there are similarities
between biological neural networks and artifitial ones: first of all, the construction blocks of

both of them are very simple computational elements highly interconnected, and second, the

connections between the neurons determine the function of the neural network.

The mathematical model of a neural network will have to include three basic elements.

e A group of synapsis, each one of them characterized by a weight or a synaptic gain. In
special, a signal z; to the input of the synapsis j connected to a neuron k is multiplied
by a synaptic weight wy;. It is important to notice that the first subindex belongs to

the neuron, while the second subindex belongs to the input.

e An adder in order to sum the input signals weigthened by its own synaptic weight; the

operations described here are linear combinations.

e An activation function in order to limit the amplitude of the neuron output. The

activation function is normally normalized between a closed interval [0, 1] or [—1, 1].
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Using the above conditions, the neural networks that is used in this work have the following

structure
11';,'3 = A.’Et + b?.Lt = WIG'(.'i‘t) (AB].)

where £ € R™ is the number of neurons that the network will have. and W; € R**" describe
the relationship between the hidden layer and the output layer. o(-) belongs to a class of

function called sigmoidal functions, that have some properies:

e It is a real-valued differentiable function.
e Its first derivative is bell shaped.

e It has a pair of horizontal asymptotes as t - +o0.

This kind of function is ideal for neural networks because it can implement the activation

function, and they make neural networks universal approximators of functions.

A.6.1 Universal approximation

A neural network can be used as a universal approximator of functions, that is, perform
a nonlinear input-output mapping from R" (the dimension of the input space) to R' (the
dimension of the output space). This kind of operator has been studied in ([11]). The first
one to demonstrate that a single hidden layer is sufficient to uniformly approximate any

continuous function with support in a unit hypercube was Cybenko. It is resumed in the

following theorem

Theorem A.6.1. (/9/)Let o(-) be a stationary, bounded, and monotone increasing function.
Let I, denote the n-dimensional unit hypercube. Let C(I,) the space of continuous functions
on I,. Then for any f € C(I,) and € > 0, there exist an integer m and real constants o;, p;

and w;j, withi =1,...,m and j = 1,...,n, such that defining F(u,,usy, ..., un) as

Lt Wy iy Vi) = Z aia(z W;iU; — P;) (A.32)
i=1

j=1

it 1s an approximate realization of f(-), that is,

\F(ul,*uz, ...,’U,n) — f(ul,u2, ...,’U,n)l < E,V(Ulqu, ...,Un) - In (A33)
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Neural network adaptation law

Let consider the error dynamics, that is, the derivative of A,
Ay =3y — (B.1)
substituting the values
A = AD; + Wy 0(251) — Wio(£,) + Wasd(E)us — Wy d(ze)us — Af (B.2)

adding and subtracting the terms W o(Z;) and W5 ¢(Z;)u; and taking into account equations
B.2 and 2.1, (B.2) can be expressed as:

Ay = AD; + Wi 0(E,) — Wio(5r) + Wad(£e)ur — Wi d(xi)uy — Af (B.3)

The following Lyapunov candidate function is used

Vi = ATPA, + tr[WT, KW, ] + tr[W], K5 ' W, ] (B.4)

where P is the positive solution for the matrix Riccati equation given by (4.24). The first

derivative of V; is

. d d —~n i d o iee
Vi = EE(A{PAt) + aw[vvl’—’;f(l ‘Wi + Etr[wg;fcz ‘W] (B.5)
so, expanding the equation %(AfPAt)
d .
&-(AfPAt) = 2A; PA, (B.6)

73
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and substituting (4.23) and (4.22) into (B.6)

%(AfPAt) 2ATPAA,

+ 2ATPW, 0(3,)
— 2A; PW;o (%)

+ ZA;""P-—thgjtqb(ft)ut
— 20 PWso(xs)uy

— 2A; PAf

For %tr[ﬁ;f: Ky lﬁfht] we can use some properties of the trace of a matrix to obtain

gz[trWi’fthIWu] = “‘[%(Wiﬂfff W)l 1
= tr[WitKl‘lWl,t - Wfthlwl,t] (B.8)
= tr[ﬁith Wy, + tr[WftK;IWI,t] (B.9)
e 2tr[WitK;1W1,t] (B.10)
Taking the derivative of WM
Wu = Wi, (B.11)

the term W, is given by the differential learning law. Thus, substituting (4.28) into the last
term of (B.T),%[trwal( ~1W,,] can be computed as

a . == e 3 Al _1 ol 7 pr—11x7
a[tTWEtKI_IWLt] —2tr[o(2:)Af PK1K{T'W1 4] — Amin(P2Q0 P ;)tT[Wl,tKl W)

—QA?PWI,tU(:Et) — /\min(P_%QOPF%)tr[Wlsthri_lwlr*]

proceeding in a similar way for tr[nglth_ 1W~2,t]

d

Ez[trff;{tlf{lwu] = —2A3PW~M¢(:’E¢)U,¢ & )\min(P—%QDP_%)tr[‘VZ-tKgl‘vzw*]



7

finally, substituting into (B.5) V; can be expressed as
Vi 2AT PAA, + 2AT PW? o (%)

T 2A'{PW;¢(I.§)ut

— 2ATPAf

—  Amin( “%QO _%)tT[WI.thIWI,t]

— Amin(P73Qo P 7)tr[Wa K5 W,

Now, an upper bound for V; is determined. To accomplish this task, first the term
2ATPAA; + 2AT PWo(1,) is considered. Since this term is an scalar, it is possible to

express it alternatively as

2A] PAA, + 2A] PWa(2,) = A] PAA, + 2AT PWa(%,) + o(£,) AT PAA, + 2AT PW;
(B.12)
using the matrix inequality proved in [29]

XY 4+ YV X XA I X+ YTAY (B.13)
which is valid for any X,Y € R"** and for any positive definite matrix 0 < A = AT €
R™" 2ATPAA, + 2AT PW}o(z;) is bounded by
2ATPAA, + 20T PW}o(£,) < ATPWIA'WT PA, + 6T A6, (B.14)
but, from the assumptions A.2 and A.5, we can conclude
2ATPAA, + 2A] PW:o($,) < A PWrA, + AT AA, (B.15)
Likewise, using the inequality B.13 in 2AfPW§£>tut,
2AT PW; ¢yuy AT PW; duy + ul ¢f Wy PA,
AT PW; A W3 T PA, + uTphi, Agphiyu,
Al PW,yPA, + 1A Dy,

VAN

I

This last inequality is ensured by the assumptions A.2, A.3, and A.5. On the other hand,
the following inequality is a corollary from (B.13):

= B¥Y ~YIZ S BN Z+YTAY (B.16)
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which is valid for any Z,Y € R™** and for any positive definite matrix 0 < A = AT € R™*"
Using this result, a bound for —2A! PAf is obtained.

—2ATPAf < AZPAJTIPA + A?A;Af (B.17)
In accordance with the assumption A.4
—2A; PAf < A PA;'PA + 1) (B.18)
substituting B.15, B.16, and B.18 into B.12, the following bound for V; can be determined

Vi

IN

2A; PAA; + A PW, PA,

Al DA + AT PW,PA,

aA; DyA¢ + A PAT'PA, + 7

— Amin(P"2QoP2)tr[Wy, KW,
— Amin(P_%QQP_%)tT[Wig,tTKz_lwﬂzit]

+ +

Adding and substracting A;QoAt into the right-hand side of the last inequality, the expression
ATP + PA+ P(Wy+ W, + A7Y)P + D, + Dyi + Qo is formed. However, this expression in

accordance with the assumption A.6 is equal to zero. Then
. _ i ] . | ~ T L ~ . - ~ T . ~
Ve < —ATQoA¢ + 71 — Amin(P2QoP~2)tr[Wiy Ki'Wiy] — Amin(P™2QoP ™2 )tr[Wa, K; ' Way]

Now, consider that

ATQoA; = ATPZ(P~2QoP~%)Pi A, (B.19)

and using Rayleigh inequality,
Amin(P~2QoP™7)AT PA, < AT QoA (B.20)
consequently,

~Amin(P"2Qo P~ %) AT PA,

_1 - | > T spden
— )\min(P ;QU 2)t?ﬂ[‘/‘/l,t K] 1I/Vl.»t]
)\min(P*%QOP_%)tT[W2,tTK{1W2,t] + ﬁ

.
I



(K

from the definition of our Lyapunov function candidate, finally V; can be bounded as
Vi < Amin(PT1QoP™7)V, +17 (B.21)

which implies that i
Vi < Voe™8 4+ -g-(l — el-€) (B.22)

where £ = /\mm(P‘%QOP'%). Since V; is an upperly bounded non-negative function then
AWy Wyt € Ly and the first part of the theorem has been proved. On the other hand,
from definiton of V, is evident that

Ay PA; < |, (B.23)

but from B.22 )
ATPA, < Vpel=8 4 g(l e 2 (B.24)

finally, taking lim sup,_, _ for both sides of the last inequality

limsup ATPA, < — 1 B.25
t—+mp . F= AIIHII(P_%QOP_%) ( )
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