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Abstract

La teoría de control puede ser dividida en dos grandes grupos; el primero de ellos se encarga

de estudiar la estabilización de los sistemas, mientras que el segundo se encarga de estudiar

cómo hacer que un sistema siga una trayectora de referencia deseada. Mucho esfuerzo se ha

hecho en ambos grupos, en éste trabajo se estudia el segundo caso. Mediante redes neuronales

dinámicas se identifica un sistema no lineal parcialmente desconocido y utilizando la teoría

de regulación se logra que el sistema siga una trayectoria definida.

Un problema común al trabajar con redes neuronales es que las leyes de adaptación de

pesos no son continuas, sin embargo para poder resolver de manera exacta las ecuaciones del

regulador es necesario que las leyes sean continuas. En este trabajo se propone una estruc

tura de red neuronal y utilizando una técnica de adaptación de pesos continua, desarrollada

recientemente, se logran resolver las ecuaciones del regulador para la red neuronal.



Abstract

Control theory can be subdivided into two big categories, the first one studies the stabilization

of systems; while the second one studies how to make the system follow a desired trajectory.

Great efforts have been made in the research of both groups, in this work the second case is

studied. With dynamic neural networks a partially unknown nonlinear system is identified

and using the regulation theory trajectory tracking is achieved.

A common problem that arises when working with neural networks is that the adaptation

laws are not continuous, however, in order to solve exactly the regulator equations it is

necessary to have continuous adaptation laws. In this work a neural network structure is

proposed and using a continuous adaptation law of the neural network weight 's developed

recently, the regulator equations are solved exactly for the neural network.
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Chapter 1

Introduction

1.1 Preliminaries

Controlling a system to track a desired trajectory and at the same time to reject perturba

tions has been studied inside the control community for a long time. For the linear case, this

problem has been studied by many authors, among whom Smith and Davison (1972), Francis

and Wohnam (1975), Francis (1977). In particular, the last work shows that the solution of

the Output Regulation problem relies on the solution of two Linear Matrix Equations. In the

work of Francis and Wohnam (1975), it has been shown that, for the case of error feedback,

any regulator that solves the problem must contain a model of the dynamic system produc

ing the reference and/or disturbance signal. This property is known as the internal model

principle. The extensión for the non-linear case was considered by Francis and Wohnam,

where the output regulation problem was first solved for a class of nonlinear systems where

the exogenous signals are constant. Isidori and Byrnes studied the existence of the steady

state manifold for the case when the plant is assumed to be known exactly. They used the

center manifold theory, and established that it is possible to reduce this problem to a set

of mixed nonlinear partial differential and algebraic equations. However. the solution of the

regulator equations are, in general, difficult to solve. In the past decades, a lot of effort have

been dedicated to obtain good approximations for the solution of this set of equations.

It was not until the last decade that the neural networks became an important tool

in this field. In the case of continuous systems, dynamic and recurrent neural networks

1



2 1 . Introduction

have been designed in different frameworks to achieve asymptotic tracking of the reference

signal and/or disturbance rejection. Zhou and Wang in [40] used a class of radial basis

function neural network in order to approximate the solution of the regulator equations.

They demonstrated that this class of neural networks can solve the regulator equations, up

to a prescribed arbitrarily small error. On this work, it is proved too that the steady-state

tracking error for the closed-loop system is bounded. One of the main disadvantages in this

result is that the neural network training is made off-line; if a variation in the parameters is

made, the solution of the regulator equations will change, and the system will not be able to

track the desired trajectory. Also, the neural network used in this work has 181 inputs and

361 centers. The size of the neural network can be made smaller if the learning law is always

on.

1.2 Motivation

As it can be seen in different works [14] [18] [4], the solution of the Nonlinear Output Regula

tion Problem is not trivial. It has been shown that the solvability of this problem relies on the

solution of a set of partial differential equations [17]. In [35] the author uses a neural network

in order to find an approximate solution when the nonlinear system is partially unknown;

this solution is then compared with a third order linearization via Taylor serie's expansión.

However, the size of the neural network is not known, so they use genetic algorithms to find

the right number of neurons, and then train the neural network by means of the descendent

gradient algorithm; one of the main disadvantages of this kind of training is that it can get

stuck on a local minimum. In [29] a neural network is used in order to solve the trajec

tory tracking for a nonlinear system; however, the bound of the identification error can get

smaller if we use another Lyapunov function. In [5] a black box neural identificator is used

in order to approximate the nonlinear system; once the neural identificator has been trained,

the nonlinear output regulation problem is solved for this neural network. However, the

neural network adaptation law is implemented with non-smooth functions, and the regulator

equations cannot be obtained exactly. The major motivation for this dissertation is to look

for a structure of neural network in order to obtain the solution of the regulator equations
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as simple as possible, while the tracking error remains bounded.

1.3 Objectives

The main objective of this work is to study the Output Regulation Problem when both the

plant and the exosystem are represented by neural network models, this has the advantage

that once the neural network is following the plant/exosystem, it will be able to forcé the

system to follow the desired trajectory.

To this end, goals are identified which must be fulfilled in order to complete the main

objective. The following list presents the most important topics which need to be studied.

1. Research on the integration of the Output Regulation Theory with Neural Networks

in order to find a good neural network structure to work with.

2. Research on the learning algorithms used to train the Neural Network, which can be

useful within this framework.

3. Assume parametric variations on the plant and use a neural network to identify the

nonlinear system; then, solve the regulator equations for a known exosystem and the neural

network.

4. Assume parametric variations on the exosystem and use a neural network to identify

the exosystem; then, solve the regulator equations for a known plant and the neural network.

Both problems have a similar framework, a neural network will be adapted on-line in

order to deal with the uncertainties.

1.4 Thesis structure

This document is organized as follows:

Chapter 2 A brief review on the Output Regulation Problem is presented for both, state feedback

and error feedback cases.
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Chapter 3 The main algorithms in order to find the exact solution for the Output Regulation

Problem are reviewed; a numerical example illustrates how the controller dimensión

can increase even for simple examples.

Chapter 4 In this section, the main algorithms in order to find an approximate solution for the

Output Regulation Problem are reviewed. An approach based on dynamical neural

networks is studied too, for the case where the plant has parametric variations as well

as where the exosystem is partially unknown.

Chapter 5 Different examples are developed in this section in order to show the approach proposed

in chapter 4.

Chapter 6 The conclusions and final comments are stated, as well as future work which can improve

this work is suggested.

Appendix A The main mathematical tools used in this work are reviewed. Begining with dynamical

systems and ending with the universal approximation theorem of neural networks.

Appendix B The proof for the neural network identification bounds is established here.



Chapter 2

The output regulation problem

A common problem in control appUcations is to design and implement control laws whoch

achieve asymptotic tracking and/or disturbance rejection for svstems. This is known as

the output regulation problem. .As first established in Isidori and Byrnes [19]. the main

condition for the solution of this problem via state-feedback or output-feedback control is

the solvability of the so called regulator equations. If this equations are solvable, under some

standard assumptions. there exists a state-feedback or output-feedback control law such

that the closed-loop system is internally stable, and the tracking error will asymptotically

approach to zero for all sufficiently small initial conditions of the plant and sufficiently small

reference inputs and/or disturbances. This chapter presents the classical Output Regulation

Problem as well as the solution of this problem. The linear output regulation problem

is a special case, and was completely solved by the collective efforts of several researchers.

including Davison. Francis. and Wohnam. among others.

In order to formúlate the Output Regulation Problem formally. consider a system of the

form

i-, = f(xt.rjt.ut) (2.1)

c = /»(*«• -*-*)

with the state i defined in a neighborhood U near the origin in £". the input space Rm

and the state _* defined in a neighborhood W near the origin R9. Two scenarios can be

o



6 2. The output regulation problem

considered, depending on the available information as follows.

2.1 State feedback output regulation

Consider that the plant states xt and the exosystem states ut are measured; that is, the

controller has all the information available. The nonlinear state feedback output regulation

is stated as follows.

Given a nonlinear system of the form (2.1), determine, if possible, a control law u = a(x,u>)

such that:

Spj The equilibrium point x = 0 of

xt
= f(xt,0,a(xt,0)) (2.2)

is asymptotically stable on the first approximation.

Rfi There exists a neighborhood W 6 U x f2 near (0, 0) such that, for every initial condition

(*ro,t"-'o) G fí the solution of

xt = f(xt,u.t,a(xt,u.t)) (2.3)

u)t = s(ut)

satisfies

lim et = 0 (2.4)
t—>oo

The properties of the lineal approxiamtion for the controlled plant play an important role in

the solution of the output regulation problem; henee, it is convenient to introduce a notation

where the parameters of this approximation appear explicit. Notice that the closed loop

system (2.3) can be formulated as:

xt = (A + BK)xt + (P + BL)üJt + ^(xt,üJt) (2.5)

U>t
= 80Jt + 1p(Xt,ÜJt)
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where ip(xt,ut) and ip(xt,Ut) vanish in the origin along with their first order derivatives and

A,B,P,K,L,S are matrices defined by

A =

P =

L =

df

dx

df

du

da

du

0,0,0

0,0,0

0,0,0

B =

K =

S =

df

du

da

(2.6)
0,0,0

dx

ds

J 0,0,0

du
J 0,0,0

for every u C fío-

The necessary and sufficient conditions for the solution of the state feedback output

regulator are established in the following theorem.

Theorem 2.1.1. The state feedback output regulation problem has a solution if and only if

the pair (A, B) is stabilizable and there exists mappings such that Tt(ut) and u = c(ut), with

7r(0) = 0 and c(0) = 0, both defined on a neighborhood fío C fí, from the origin such that:

dn

du
s(u) = f(it(u),u,a(T.(u),u)

0 = h(n(u),u)

(2.7)

for every u C fío*

Proof: See [17]

Once Tt(ut) and c(ut) are known from equation (2.7), the control law which solves the

output regulation problem is:

a(xt,ut) = c(ut) + K(xt-Tt(ut)) (2.8)

where K is a matrix such that (A + BK) is Hurwitz.

The block diagram for the control law is presented in Figure 2.1.

2.2 Error feedback output regulation

For the second scenario, the output error et is the only measurement available. The problem

can be stated formally as:
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.

<Ú -

S{Ü>)

.

u = <*•(-*>*■) + K(x
-

;r( <-*>))
*»

x=f(.x,<a,t,u)
e = h(x.m)

Figure 2.1: Classical nonlinear output regulation problem

Given a nonlinear system of the form (2.1), find, if possible an integer b and two mappings

6(£t) and 77(6, et), where £ G E e R6, such that:

Sef The equilibrium point (xt,£t) = (0,0) of

xt = f(xu0,0(l;t)) (2.9)

Ít = v(Zt,h(x,0))

is asymptotically stable on the first approximation.

Ref There exists a neighborhood W G U x E x fí of (0, 0, 0) such that, for every initial

condition (x0,£0,u0) G W the solution of

satisfies

xt = f(xt,ut,0(Zt))

Ít = 7i(£t,h(xt,ut))

út = s(ut)

lim et = 0

(2.10)

(2.11)

As for the case of state feedback, the nonlinear system is expanded in terms of its linear

approximation plus a nonlinear term.

±t = Ax-rBHZt-x-Put + ip(xt,Zt,Urt)

Ít = Ftt + GCx + GQut + x{xutuUt)

út - Sut + i¡j(ut) (2.12)
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where if(xt,^t,ut), x(xt,€t,ut) and yj(ut) vanish in the origin along with their first order

derivatives, and C, Q, F, II , G are matrices defined by

C

F =

H =

dh

dx

dr)

J (0,0)

ffl

Q =

G =

dh

(0,0)

(0)

du

dt]

du

(0,0)

(0,0)

The conditions for the existence of the regulator equations solution is the same as in the

case of the full state information problem. In fact if c(ut) is defined as

c(ut) = e(p(ut))

then the mapping x = ir(ut) and u — c(ut) necessarily satisfies (2.7). However, for the case

of error feedback, the conditions which guaranteed the solution of the state feedback output

regulation problem. does not provide a set of sufficient conditions to the solution of the error

feedback output regulation problem. There is an additional condition, which is expressed as

a special property of the solution 7r(u;t), c(ut).

In order to understand this condition, additional concepts need to be developed. For the

case of the full state information, if equations (2.7) are satisfied, the mapping x = ir(ut) is

an invariant manifold for the extended system

xt
= f(xt,ut,c(ut))

üt = s(ut)

(2.13)

and the error et = h(xt,ut) is zero on every point of that manifold. Then, it is easy to see

that for every initial condition u0 of the exosystem, that is, for every exogenous input

u" = $st(u0)

if the plant is on the initial condition x0 = it(u0) and the input is

(2.14)

u¡ = c(u*t) (2.15)
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then et = 0 for all t > 0. Henee, the control law given by the autonomous system

út = s(ut)

ut
= c(ut) (2*16)

will forcé the system to produce a zero error for every exogenous input, if the initial condition

of the plant is adequate (xo ■**■= 7r(u;o)).

If the equilibrium point is not stable on the first approximation, then, in order to obtain

the desired steady state response, the control law must include a stabilization component as

in the full state output regulation problem.

Under this control law (2.16), the extended system

xt = f(xt, c(ut) + K(xt
-

T-(Ut))

út = s(ut) (2.17)

will have an invariant manifold of the form xt
— T.(ut), which will be exponentially attractive.

The following section will establish that the existence for the solution of the error feedback

output regulation problem depends (among other things) on a property of the autonomous

system (2.16), which could be seen as a function generator of all the inputs that produce zero

error. This property requires the notion of system immersion.

Definition 2.2.1. System Immersion: Let the set of smooth functions

x = f(x) y
= h(x) (2.18)

í = f(x) y
= h(x) (2.19)

defined on two different state spaces, X and X, sharing the same output space Y G Km

Suppose that /(O) = 0,h(0) = 0 and h(0) = 0 and denote the systems as {X,f,h} and

{X, f, h} respectively.

The system {X, /, h) is said to be immersed into the system {X, f, h} if there exists a mapping

t : X —> X(x = t(x)) that satisfies t(0) = 0 and

h(x) ¿ h(z) => h(r(x)) ¿ h(r(z)) (2.20)
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such that

g/(z) = />(*))
h(x) - h(r(x))

(2.21)

(2.22)

VxG X

Example 2.2.2. In this example an immersion will be obtained only to illustrate the concept.

The immersion obtained here is not lineal, however, it produces the same output as the

original system. Consider the following nonlinear system {X, f, h)

A mapping r(x) =

{X,f,h}.

sin(x)

,cos(x)

x = sin(x) * u

y
— sin(x)

is an immersion of {X, f, h} into the following system

X-.X2

Z-2
—X

u

y Xi

The outputs produced by these to sets of differential equations are shown in Figure (2.2). The

initial condition must also be mapped, so the immersion need to be observable.

This shows that the new state space has increased in dimensión but its no longer trigono

metric, henee the properties of the new system changed. For the Output Regulation Problem,

a linear and observable immersion is needed.

The above definition can be rephrased as the property that every output generated by

{X, /, h} can also be generated by {X, /, h). This is important because {X, f, h} can have

properties that {X, /, h} does not have.

The following proposition gives the conditions where an immersion into a linear observable

space is possible.
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Original system

Figure 2.2: Example of an immersion.

Proposition 2.2.3. The following statements are equivalent:

• {X, f, h} is immersed into a finite dimensional linear observable space.

• The observation space O of {X, f, h} has finite dimensión over R.

• There is an integer q and a set of real numbers ao, Oi, ..., ag_x such that:

L%h(x) = a0h(x) + a-.L//i(x) + ... -t- aq-iLqf h(x)

Proof: See ¡17]

The following result gives the sufficient and necessary conditions for the existence of the

nonlinear error feedback output regulation problem solution.

Theorem 2.2.4. The error feedback output regulation problem has a solution if and only if

there exist mappings x — it(u) and u = c(u), with n(0) = 0 and c(0) = 0, both defined in a

neighborhood fí0 C fí near the origin, that satisfies the following conditions

dir

du
s(u) = f(n(u),u,c(u))

0 = h(n(u).u)

(2.23)

(2.24)
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Víío C íí, and that the autonomous system (2.16) is immersed into

u,

<fi(tt)

7(6)

(2.25)

(2.26)

defined on a neigborhood .=<- near the origin in R", with <p(0) = 0 and 7(0) = 0, and the two

matrices

$
d<f>

[dt
r =

í=o

ch

d^ í=o

are such that the pair

A 0

NC $

is stabilizable for a selection of N, and the pair

(2.27)

A BT
c 0] 0 $

is detectable.

Proof: See [17]

The block diagram of the nonlinear error output regulation is portrayed in Figure 2.3.

The following example illustrates when an immersion is not possible, and other techniques

will be needed in order to solve the Output Regulation Problem.

Example 2.2.5. Consider the following inverted pendulum

Xl
=

x2

x\ —

g sin(xi)
—

cu (2.28)



14 2. The output regulation problem

ío ■= í>(í?-.) + Afe

«i
= r(fo)

O -r = /(x,aní.«)
a? -= A(i,<a)

¿ = *(#,) + ¿e

Figure 2.3: Nonlinear error output regulation.

and the linear oscillator

Ui u2

u2
=

—aui (2.29)

The tracking error is defined as e — Xi
—

ui. The parameters g,c are only approximately

known. The solution of the regulator equations is

■Ki = Ul

7T2 —

U2

a2Ui + <7sin(a;i)
c(u, fi) = (2.30)

One ofthe necessary and sufficient conditions to find a linear immersion is that c(u,_u) must

be polynomial with respect to u. Henee, even for this simple example, a linear immersion

does not exists. In Figure 2-4 the tracking error for the inverted pendulum is shown. The

controller is able to make the tracking error zero when the parametric variations are known;

however, at t = 60s. the parameter c is changed from its nominal valué and the controller is

no longer able to make the tracking error zero.

A lot of effort has been made in order to make this controller robust with respect to

uncertainties. In [7] Castillo-Toledo proposed a methodology where the immersion is time-

varying, the so called Generalized Immersion, which includes a bigger class of nonlinear

systems. In [33] Serrani and Isidori proposed an adaptive scheme where the uncertainties are
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Figure 2.4: Tracking error.

considered constant but unknown, and the adaptive control identifies those parameters; once

the error is smaller than a constant, the adaptive law is turned off Finally, in [24] Obregón

has proposed a convergent estimator and has generalized it for n unknown frequencies on the

signal.





Chapter 3

Exact solution of the regulator
equations

The Output Regulation Problem has being analysed for a couple decades, by many interesting

approaches. They can be classified into two big groups: the first solve the FIB equations

exactly, and the second one solve the FIB equations approximately. In this chapter the most

significant works on the first group are explained.

3.1 Generalized immersion

The concept of Generalized Immersion first appeared in the 90's; the main idea of this

theory is to let the immersed system depend on valúes of the exosystem. This approach is

useful because the class of systems which can be immersed under that assumption is bigger

than the previous one. In this section this idea will be reviewed in order to compare the

proposed solution with this one. As shown in the previous chapter, if it is possible to find

the immersion, then the controller is robust with respect to the unknown parameters. It

has been established that a Unear immersion exists only when the steady state controller is

polynomial with respect to the exosystem states. This condition is quite restrictive; henee,

a possible way to deal with this situation is to let the immersion depend on the exosystem

states.

It is important to notice that the results obtained here guarantee zero tracking error, with

17



18 3. Exact solution of the regulator equations

the expense of having a high dimensional controller. The main idea can be summarized in

the following result.

Theorem 3.1.1. [7] Consider the nonlinear system

x = f(x,u,u,n) (3-1)

e = h(x,u,fi) (3-2)

The Robust Output Regulation Problem with full exosystem measurement is solvable if and

only if there exists mappings na(u, p) and ca(u, _u), with 7ra(0, 0) = 0 and ca(0, 0), solving the

regulator equations, such that the extended exogenous system with output ca(u, _u) is immersed

into

s(u)d_
di. <fi(u)£

(3.3)

and the following conditions hold:

• The pair
"

A 0

NC $(0)

is stabilizable for some choice ofmatrix N .

(3.4)

• The pair

is detectable.

\C 0
A BT

0 $(0)
,r= [i o ... o] (3.5)

This theorem is similar to the one on which a linear immersion is found, in fact, this is a

more general case. The structure of the controller that solves the Robust Output Regulation

Problem with exosystem measurement is

n le 1 r r

(3*6)

u = M& + T6 (3.7)

For the case of the Error Output Regulation Problem, the following theorem gives sufficient

conditions to find a solution for the regulator equations.

'Íi
=

K 0

0 ®(u)

'■fi'

6.
+

'

L

N
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Theorem 3.1.2. Consider the nonlinear system

x = f(x,u,u,p) (3.8)

e »= h(x,u,p.) (3.9)

with s = l,m = 1 and í/ie exosystem mth an additional output yu = r(u), that is s' — 1.

Further, assume that there exists local asymptotic observer for the exosystem state u given

by

C¿ = g(ü_yJ) (3.10)

with the corresponding error dynamics for e = u — ú as

é = ct>(t,u) (3.11)

where W = (0,0) is a Hurwitz matrix. Then the Robust Output Regulation Problem mth

partial exosystem measurement is solvable if and only if the Robust Output Regulation Problem

with full exosystem measurement is solvable. Moreover, the corresponding controller has the

following form

'Íi

Á

u = g((u),yu) (3.13)

u = M£i + r£2 (3.14)

The block diagram for the controller that uses the generalized immersion is shown in

Figure 3.1.

3.2 Simultaneous globally convergent online estimator

This method is a little different to the previous one, it addresses the problem of determining

a solution of the regulator equations when the frequency of the exosystem is not known. In

fact, múltiple frequencies are allowed to be unknown. The dimensión of the estimator is 3n

(where n is the number of unknown frequencies) which is, as far as the author knows, the

K 0

0 *(w)

6

6
+

L

N
(3.12)
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ío =¥>(#„, o) + Me

"o=r(ío)

&> - s(«s>)

n

(>- X= f(X.tB_t,U)
e = A(x,o)

-

ff, = *(<?,) + ¿e

«, =^ff,

Figure 3.1: Output regulation using generalized immersion.

lower dimensional estimator for the problem[24]. It has the advantage that zero error on the

output can be achieved; however, as it is mentioned, the dimensión of the controller increases

by 3n so computational time must be paid in order to achieve the zero error.

Another way to solve this problem is via neural networks, and it will be disscused later

that, in spite of not giving zero error, the error is sufficiently small and the controller is lower

dimensional.

3.3 Conclusions

The problem of nonlinear output regulation has been extensively studied; several methods

for determining the exact solution have been studied. However, the solution of this set

of partial differential equations by any of this methods result sometimes as difficult as the

original problem. For other cases, the controller which solves the Output Regulation Problem

increases ín dimensión. For practical problems, one do not expect the error to be exactly zero;

however, one would expect that the error remains bounded, and, if possible, that the bounds

can be arbitrarily selected. The following chapter begins with some classical approximations

of the Output Regulation Problem and ends with the solution proposed in this work.



Chapter 4

Approximation of the regulator
equations

For the second classification of the regulator solution. one of the most relevant work is the

power-series approximation method proposed by Huang and Rugh [16]. These results are

based on a kth-order approximation of the plant zero-error manifold, and the control law

designed there yield kth-order asymptotic tracking and disturbance rejection properties for

the closed-loop system. The error can be made arbitrarily small by increasing the order of

the approximation: however. the solution of the regulator equations are more complex. and

the controller increases its complexity with each increment in the approximation order.

Another approximation is to use the neural networks. Feedforward neural networks are

typically used as approximations of nonlinear systems and/or controllers. They can be clas

sified by the structure of the neural network as well as the algorithms used to adapt the

weights. Supervised learning has taken popularity among the control community, mainly

because it is capable to adapt the response of the neural network in cases of uncertainties in

the parameters of the system. Because neural networks are easily parallelized. they promise

to be a viable tool to make complex nonlinear controllers computationally efficient.

21



22 4. Approximation of the regulator equations

4.1 Kth-order solution of the state feedback regulator

equations

In order to develop the kth-order approximation of the regulator equations solution one more

property for the closed loop system is needed.

Definition 4.1.1. Lev V be an open neighborhood ofthe origin o/R9. A function ok : V —> M.s

is said to be zero up to kth order if it is sufficiently smooth and vanishes at the origin together

with all partial derivatives of order less than or equal to k. The notation ok(x) will be used

to denote a generic function of x which is zero up to kth order regardless of the dimensión of

its range space.

Then, the kth-order nonlinear output regulation problem is defined as:

Determine, if possible, a control law of the form (2.8) or (3.7) such that the closed-loop

composite system fulfils the assumption Sfí as well as

Rkfi For all sufficiently small xo and u$, the solution of

x = f(x,u,u(x,u)) (4.1)

ü = s(u)

satisfies

lim (et
- ok(u)) = 0 (4.2)

t-i*-»

Theorem 4.1.2. The kth-order nonlinear output regulation problem is solvable by a static

state feedback controller

u = a(x,u) (4.3)

if and only if there exist two sufficiently smooth functions ir(k\u) and c^k\u) satisfying

7r-fc>(0) = 0 and c^(0) = 0 such that

BlTk

—s(u) = f(Ttk(u),uk,a(^k)(u),u)+ok(u)) (4.4)

ok(u) = h(nk(u),u)

Proof: See [15]
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Similar results are obtained for the case of error feedback, see [15] for reference. The

block diagram that implements the kth order controller is shown in Figure 4.1.

a

a> = s(a>)

a.

•

O h( *r M\
"■V** "tV"»// x = f(x,oxt,u) A,WJ

Figure 4.1: K-th order output regulation.

Example 4.1.3. Consider the following nonlinear system

x\ =
—xi + x\ + u

x2 — —sin(x2) + xi

y
=

x2 (4.5)

and the following exosystem

úi =

u2

ú2 = -a2ui (4.6)

where

e = xi-ui (4.7)

The mappings tt(u) and c(u) are obtained as the solution of the FIB equations, the first

equation can easily be obtained. Let e = 0

i-i
=

xi (4.8)

for the second equation, the FIB equation can be expressed as

= - sin(7r2) + ui (4.9)
i 3-T2 dir-2

\ dují duJ2

Ui

U2
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To obtain a closed form solution for this partial differential equation is not trivial; henee a

kth order regulator is designed. In this case, a second order approximation is used.

n2(u) = YlAÍuj[l] (4"10)

i=0

where

\l\ dixn ■ ■ ■ diri2 /

uí¡ = u (&u < I u l — times

(4.11)

(4.12)

Expanding equation 4-10

7T2M = [a
Ui

u2

+ [c d

u

UiU2

Uo

+ Ü(\\u\\f

tt2(w) = awi + bw2 + cw\ + dwiw2 + ew\ + o (\\w\\ )

Taking the partial derivatives with respect to the exosystem states

dit2

dwi

dit2

dw2

= a + 2cwi + dw2

= b + dwi + 2ew2

Substituting into the FIB equation

(4.13)

(a + 2cwi + dw2) w2
—

(b + dwi + 2et¿;2) íf i = —

ir2 + vj

(a + 2cu;i + dw2) w2
—

(b + dwi + 2ew2) Wx = — (awi + bw2 + cw\ + dwiw2 + ew\\) + w

Finally, solving for each variable of the following equation

w2 (a + 2cwi + dw2)
—

Wi(b + 2ew2 + duii) = —cw\ — dwitv2 —

awi
— ew\ — bw2 + w

The following approximation of tt2 is used

Ttl
=

Wi

1 1

7T2
=

2Wl
'

--W2
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Now Wi —
—

xj + X2 + tt is used to obtain c(u),

c(u) = W2 + Wi
- I -Wi

-

-w2 1

The kth order output regulation is then solved using the following control law

u = w2 + wi
— I -wi

-

-w2 1 + K(x
-

n(w))

n(w) =

Wi \

}wi
- \w2)

Figure 4-2 shows the output ofthe system, the nonlinear system is able to track the desired

trajectory, finally, Figure 4-3 shows that the error is not zero, however it remains bounded.

»0*teOiH|»im*SJlkn

-i 1 1 1 1 r

i 1

lu

SvHwiOulwl

M\ r
1

:/
. V 1/ \i

A A A
'1 1\ \t 1 i

' 1 M

u v \i V

0 5 10 15 20 25

Tmin

35 40 «5 50

Figure 4.2: K-th order trajectory tracking.

It is important to notice that this controller is not robust with respect to plant uncer

tainties, however, a linear immersion can be found because a polynomial approximation of

the center manifold is being calculated.
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kth Order Output Error

e
<

-0.5

Figure 4.3: K-th order output error.

4.2 Neural networks

4.2.1 Radial basis function neural networks

In the classical Output Regulation Approach, equation 2.4 can be quite restrictive for prac

tical applications; henee Wang in [35] proposed a way to approximate the solution to the

regulator equations by replacing that hypothesis with the following one

Rfi For any given e > 0 design a control law such that for all sufficiently small initial

conditions x0 and u0, the closed-loop system has a bounded solution for all t > 0, and

lim sup \\hc(xc,uc (4.14)

This problem can also be solved as explained in chapter 3.2.1; however, it has the drawback

that the exact knowledge ofthe plant is needed, and can require tedious computational effort.

To start developing the idea, first the State Feedback Output Regulation Problem is

presented, where the control law is of the form:
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ut
= K(xt

-

it(ut)) + c(ut) (4.15)

where

c(ut) = K(xt
-

7t(ut))
-

ut (4.16)

Once the feedback gain K is calculated, the feedforward control is a sufficiently smooth

function of the exosystem. Using the universal approximation theorem, given any e > 0, and

any compact subset A, there exists a m-dimensional vector valued function c(W, u) such that

max \\c(u)
-

c(W, u) < e (4.17)
*a*€A

Replacing c(ut) by c(W,ut) leads to the following state feedback neural network control

law:

ut = K(xt
-

i.(ut)) + c(W, ut) (4.18)

In [35] the stabüity of the closed loop system under this neural network feedback control

is proved. Also, a bound for the error is obtained, which depends mainly on the feedback

gain K and on the identification error bound, so the training law is critical for this type of

controller. An improvement with respect to the linear Output Regulation Feedback control

is obtained by training the neural network with genetic algorithms, however the training was

made off-line so this type of control is not robust with respect to parametric variations of

the plant.

4.3 Output regulation for parametric variations using

dynamic neural networks

Consider the following nonlinear system

xt
= f(xt,ut) + g{xt)ut (4.19)

út = s(ut) (4.20)

et
= h(xt)-r(ut) (4.21)
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where x e R" u£l, h(x) e Rm the vector function / : Rn x Rn -. Rn and g : R" -* Rn

are partially unknown. It is well known that in order to obtain a solution for the regulator

equations it is necessary that the parameters of the plant are known; in some special cases,

where an immersion can be found, it is possible to determine a solution even if the parame

ters change around a neighborhood of the nominal valué. However, a linear immersion exists

only when the steady state control is polynomial with respect to the exosystem [15], and for

the nonlinear case, it is often very difficult, or even impossible to determine such immersion.

Advances had been made, and a method to find a generalized immersion has been proposed

[7]. This generalized immersion is useful for many nonlinear systems [39]; however the di

mensión of the controller depends on the structure of c(u) and can become large even for

simple problems.

In this chapter, a solution for the regulator equations is proposed, based on a neural network

identifier which is in the normal form, a continuous adaptation law is used, and based on a

Lyapunov-like function, the convergence of the identification error as well as the bounded

ness of the neural network weights are guaranteed. Normally, the adaptation law use a dead

zone function; this is a drawback because in order to improve the identification quality, it is

necessary to reduce the size of the dead zone. This can be done by increasing a parameter

associated with the Riccati equation. However, this parameter can only be increased up to

certain level, beyond which no solution exists. The adaptation law used in this work is a

continuous function; as well as its first derivative, this type of adaptation law is useful for

the regulation theory because this terms appear in the solution of the regulator equations.

The nonlinear function (4.19) can be represented by a known term plus an unknown term in

the following way:

±t = Axt + Wi*o(xt) + W2*4>(xt)ut + Af(xt, ut) (4.22)

A neural network is proposed in order to identify the states, the following structure for the

parallel neural network is used.

¿a = Axt + Wio(xt) + W2d.(xt)ut (4.23)

The vector x G R" is the state of the neural network, u € Rm is its input. The matrix

A G Rnxn is Hurwitz in order to do the linearisation of the neural network stable. Wi¿ €
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Rnxn and W2¿ G R"*"1 are the weights of the neural network describing the output layer

connections, and cr(xí) G R", <t>(xt) G Rm are sigmoidal functions. A parallel neural identifier

was used because the solution of the regulator equations of the neural network will only

depend on the structure of the identifier and not on that of the plant, it can be seen that if

the neural network is able to track the nonlinear plant, then in equation 4.22 the error term

Af(xt,wt) is zero and, on the contrary, this term will be made arbitrarily small. Both cases

are considered, because it is a more common situation when the neural network is not able

to follow exactly the nonlinear system.

The proposed control structure is shown in Figure 4.4. Let the estimation error and the

- Reference -

Exosystem Reference -

Tracking error

Regulator

Neural Weights

•*■ Neural tyétwork

Control Signal

A

Figure 4.4: Neural identification of the plant.

tracking error be defined, respectively as

At = xt
-

xt

et
=

y-y

The following hypotesis are used [29]:
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H.O The plant satisfies the Lipschitz condition, that is

||/(x,u,t)
-

f(z,v,t)\\ < Li \\x
-

z\\ + L2 \\u
-

v\\

where x, z G Rn,tt, v G Rn, and Li,L2 are positive constants.

H.l The sigmoidal functions satisfy the sector conditions:

oTtK~at < AjDaAt

uJtPfA^tUt < fAjD^At\\ut\\2

where

dt := a(xt)
-

cr(xt)

<¡>t ■= 4>(xt)
-

<t>(xt)

and Aa G Rmim,Da G R^.A^ G R"*",/^ G R"*" are known constant positive definite

matrix.

H.2 Admissible controls are bounded, that is

IKII2 <u<oo

H.3 Error term is bounded by

\\Af(x.u_t)\\lf<fj

where A/ G Rnin is a constant positive definite matrix.

H.5 The matrices W{ and W2 are bounded by

W*A-lWiT < Wi

where Wf and W2 are known positive definite matrices
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H.6 The following Riccati equation

ATP + PA + PRP + Q = 0 (4.24)

has a positive solution, such that R and Q are defined as

R := Wi + W2 + Aj'1 (4.25)

Q:=Da + üD<, + Q0 (4.26)

with the terms Qo lí""i and W2. Q and R can take almost any valué, so the preceding

assumptions are realistic, and a solution exists for almost any neural network.

4.3.1 Neural network adaptation law

Consider the foUowing neural network

it = Axt + Wxa(xt) + U "2^(xt)iit (4.27)

This neural network is a Hopfield-like one. In order to adjust the weights and minimize the

identification error, the following adaptation law is used [26]:

Hsw = -KiPAta(xt)T ~ J=s£J^gJl|rM (4.28)

Wu - -K2PAto(xt)T -W^QoP-i)..^ (4.29)

where Kx and K2 are positive definite matrices which can be chosen arbitrarily. P is the

solution of the matrix equation given bv 4.24 and

H u - « u
-

"7

Wu
~ » 2 f

-

"2

Now the following result is used:
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Theorem 4.3.1. If the assumptions H.O to H.5 are satisfied, and the weight matrices Wi¿

and W2_t of the neural network (4-27) are adjusted by the differential learning law mentioned

above then

a) Both the identification error and the weights are bounded

b) The identification error has the following upper bound:

Um supA*PAt < ? (4.30)
Amin(p-iQ0p-2)

Proof: See Appendix B

4.3.2 Regulator equations

Consider the nonUnear system modeled by the neural network as

x — f(x,u,u)

ü = s(u)

e = h(x,w) (4-31)

where the first equation describes the dynamics identified by the neural network, whose state

x is defined in a neighborhood U of the origin in Rn, with control input u G Rm and subject

to a set of known exogeous input variables u defined in a neighborhood V of the origin in

Rr The second equation is known as the exosystem and the third equation defines the error

expressed as a function of the neural states and the states of the exosystem.

Theorem 4.3.2. Assume the following assumptions hold

• The equilibrium u = 0 of the exosystem is Lyyapunov stable, and the Jacobian matrix

S = ^y at the equilibrium u = 0, has all its eigenvalues on the imaginary axis.

• There exists a function k(x) such that the Jacobian matrix

a _ a/(x,o,fc(x))
dx

evaluated at i = 0 has all eigenvalues on the open left-half side of the complex plañe.
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Then, the state feedback regulator problem is solvable if there exist CT (r > 2) mappings

i = it(u) and u = c(u) with n(0) = 0 and c(0) = 0, both defined in o neighborhood W° C W

o/O, satisfying the conditions:

^^s(u) = f(n(u),u,c(u)) (4.32)

0 = h(n(u),u) (4.33)

In fact, the controller that minimizes the output tracking error is given by

a(x, u) = K(x
-

it(u))
-

c(u) (4.34)

Proof. The proof of this theorem is an immediate consequence of the properties of the neuro

identifier, the error can be seen as the sum of the identification error e^ plus the tracking

error et, i.e

et = e{ + et
= {h(xt)

-

h(xt)} + {h(xt)
-

r(wt)} (4.35)

the second term of the error wiU always be zero independently of the valúes of the neural

network weights, because the regulator equations are being solved for the neural network.

The first term of the error wiU be minimized by the adaptation law. D

4.4 Output regulation for a partially unknown exosys

tem using DNN's

Consider the foUowing nonUnear system

xt
= f(x,u) + g(x)u (4.36)

ú = s(u)

e = h(x)
— r(u)

where x G R", u G R, h(x) G Rm the vector function s : Rm -> Rm is partially unknown.

This case is quite chaUenging, it has been recently studied Chen and Huang, Nokiforov, Ser

rani. Marconi and Isidori and Ye and Huang.. In [24] a globaUy internal model adaptive
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sheme is proposed; however, this solution has the disadvantage of having a large dimensional

controller.

The identification error is defined as

At = út- ut

et
= f —

r

A parallel neural network is used to identify the exosystem; it is important to notice that the

exosystem does not need to be linear, as long as the function is smooth and the neural network

is able to track the trajectory, the nonlinear system will be able to follow the exosystem. The

parallel neural network used in this example is:

xt
= Axt + Wia(xt)

Notice that the neural network does not depends on the control, that is because generally

the exosystem does not depends on the control either. In Figure 4.5 the proposed controller

is shown.

4.4.1 Neural network adaptation law

In order to adjust the weights and minimize the identification error, the following adaptation

law is used:

WU = -KiPAtO(it)T - Xmin(P^Q0P^)Wit (4 3?)

W2ti - -K2PAt4>(xt)T - W^QoP-*)^ (4 3g)

where Kx and K2 are positive definite matrices which can be chosen arbitrarily, P is the

solution of the matrix ecuation given by (4.24) and

Wu ■= wu
- W*

wv := w2,t
-

w;
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Figure 4.5: Neural identification of the exosystem.

4.4.2 Regulator equations

Consider the nonlinear system modeled by the neural network as

i = f(x.u.u)

LJ — -S (.*.')

e = h(x.ú) (4.39)

where the first equation describes the dynamics of the plant. whose state x is defined in a

neighborhood L oí the origin in Rn with control input u G Rm and subject to a set of known

exogeous input variables Q¡ defined in a neighborhood V of the origin in Sr The second

equation is a neural network identifier of the exosystem and the third equation defines the

error expressed as a function of the plant states and the neural states of the identifier.

Theorem 4.4.1. Assume the following assumptions hold

• The equilibrium u = 0 of the neural identifier is Lyapunov stable. and the Jacobian
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ds(úi)
matrix S =

-g-r***-
at the equilibrium ú = 0, has all its eigenvalues on the imaginary

axis.

• There exists a function k(x) such that the Jacobian matrix

A _ df{x.0,k(x))
dx

evaluated at x = 0 has all eigenvalues on the open left-half side of the complex plañe.

Then, the state feedback regulator problem is solvable if there exist Cr (r > 2) mappings

x = Tt(ú) and u = c(ú) with 7r(0) = 0 and c(0) = 0, both defined in a neighborhood W° C W

ofO, satisfying the conditions:

^s(ú) = f(-K(ú),ú.c(ú)) (4.40)

0 = h(n(Ú),ú) (4.41)

Proof. The proof of this theorem is an immediate consequence of the properties of the neuro

identifier, the error can be seen as the sum of the identification error e¿ plus the tracking

error et, i.e

et = ei + et = {f(ut) - r(xt)} + {h(xt)
- r(wt)} (4.42)

the second term of the error will always be zero independently of the valúes of the neural

network weights, because the regulator equations are solved for the neural network. The first

term of the error will be minimized by the adaptation law. □

4.5 Conclusions

A lot of research has been made in done to determine approximate solutions for the regulator

equations, often the controller increases in dimensión at the expense of removing the nonlin

earities, and sometimes the problem is of the same order of complexity as the original one.

One method has been proposed here that exploits the advantages of the neural networks in

order to do the controller robust with respect to plant uncertainties. Using the same idea,

another method has been proposed to manage the case where the exosystem is allowed to
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vary, or even in some cases to be unknown, in this case, again the neural networks properties

are used in order to do the controller robust against exosystem uncertainties.



Chapter 5

Illustrative cases

In this chapter a couple of exercises are developed in order to clarity the results given in

the last chapter. First the van der poU oscülator is solved considering uncertainties in the

plant, then it is solved considering uncertainties in the exosystem. The second example is

the inverted pendulum, it is solved first considering uncertainties in the plant, and then it is

solved considering uncertainties in the exosystem.

5.1 Van der poli oscillator

5.1.1 Output regulation for a partially unknown plant

Consider the foUowing nonUnear system

¿i =

x2

x2
=

—fj-iii + xj - _u2x2 + _u3 cos(u-'í) + u

y
=

xi

39
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where the nominal valué of p,i and _u2 and _u3 is 1. The desired trajectory is generated by the

following exosystem

úi =

u2

ü2 = —a2Ui

r =

ui

where a is a known valué.

5.1.1.1 Exact solution

The steady state manifold is described by

7Ti(u) =

Ul

it2(u) =
u2

c(u) = —a2ui + p-iUi + u\ + _u2u2 + //3 cos(u;í:)

The solution of the regulator equations rely on the nominal valúes of the nonlinear system.

So the classical output regulation is not able to solve the problem; on Figure 5.1 it can be

seen that when a perturbation is applied to the plant, the controller is not able to follow

the trajectory. One way to solve this problem is to find a new dynamical system which can

reproduce every possible valué of c(u).
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Figure 5.1: System output.

Henee, in order to make the controUer robust with respect to /¿i and \x2 axi immersion of

c(u) into an observable linear system is going to be found, which wül be able to produce aU

of the c(u) trajectories independent of the valúes of p.i and p,2.

Notice that c(u) is almost polynomial with respect to u, so a linear immersion can be

determined for the polynomial part. Consider the space of polynomials of third order or less,

that is {zi,z2.z3.zi.zb,z$,z7lza,z__.} = {ui,u2,u\,uiu2,u\\,u\,u\u2,uiu_\,ul}. Taking the

derivative of z a new dynamical system is formed; after some algebraic manipulations, the

immersion for this function is given by

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

<&y

Tz =

0 -9 0 -10 0 0

H0y = [ 1 0 0 0 0 0 ] y
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FinaUy, the controller that solves the output regulation problem is given by

c(u) — K(x
—

n(u)) +- y + fi3cos(wt) (5.1)

The controUer is not able to make zero the error because of the parametric variations on

cos(kví),however, Figure 5.2 shows that the controUer is able to reject parametric variations;

the parameters _ui and _u2 are changed at t=50 s.
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Figure 5.2: Output regulation using immersion.

5.1.1.2 Dynamic neural networks

It is not always possible to obtain the immersion; the method proposed in this research uses

the neural network as an identifier of the nonlinear system, and then, the regulator equations

are solved for the neural network. The parallel neural network is proposed as

xt
= Axt + but + Wi<j(it)

where
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"o 1
.6 =

o"
H'i =

"

0 wx2
and <t(x) =

a(ii)

-1 -1 1 [W2i w22\ cr(i2)

The adaptation of the weights is done by the following set of differential equations.

Wu = -KiPAtv(it)T -Wgjg°gl>u7u (52)

W2, = -K2PAt4>(it)T - X^P~^P^)Wr2t (5 3)

where Ki and K2 are positive definite matrices which can be chosen arbitrarily, P is the

solution of the matrix ecuation given by (4.24) and

H u := Wu
- W*

W2_t := W2i
-

W2*

Using the neural network as the nonUnear plant, and the exosystem, the solution of the

regulator equations are

7T] (u) =
U_

■k2(u) =

u2
— U ii0-(ía;i)

C(u) = --271-! + 7T;* + 7T2
- W2iO(Tti)

-

W22o(k2) ~ Wuá(Ki)
-

Wno{pÍi)

Using the proposed adaptation law, and this control the error remains bounded for parametric

variations as it is seen in the foUowing graphic. The control law is appUed at second 10, a

parametric variation is appUed at second 50, and then at second 80 another parametric

variation is appUed.
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Figure 5.3: System output.

The system is able to track the desired trajectory as long as the identification error

remains small, and for small parametric variations the identification error remains bounded;

the following graph shows tracking error for the state x2.

In this case, the neural network is able to identify de nonlinear system, and the identification

error are in the magnitude of 10~3 and IO-2 Figure 5.5 shows the identification error.

Finally, Figures 5.6 and 5.7 shows the tracking error as well as the input to the system,

respectively.
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5.1.2 Output regulation for a partially unknown exosystem

Consider the following nonlinear system

Xj
=

x2

i2 = xj -|- x2 + cos(wt) + u

y
= xi

The desired trajectory is described by

¿i

ú2

r

where the parameter a is unknown.

5.1.2.1 Exact Solution

In order to achieve trajectory tracking, one needs to solve the regulator equations

■Ki(u) =
Ui

Tt2(u) =
U2

c(u) = —a2Ui — u\ —

u2
—

cos(wt)

The solution of the regulator equations depends on the parameter a and, in this case, an

immersion is not possible because the parameter a will always appear. Neither the generalized

immersion ñor the kth-order solution will apply to this problem.

5.1.2.2 Dynamic neural networks

Using the approach described in the previous chapter, a parallel neural network is used to

identify the exosystem states. Then, the regulator equations are solved for the nonlinear

plant and the neural network. Once the regulator equations are obtained, the plant is going

to follow the neural network independent of the valúes of the exosystem.

= u2

= —a2ui

= Ul
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Figure 5.8: Output regulation for an unknown frecuency exosystem.

The structure of the neural network is proposed as follows.

where A =

'

0 1

'

Wx =

-1 -1

it — Ait + Wio(it)

and ct(x) =
0 WX2

W2i W22

a(ix)

(r(i2)

The adaptation of the weights is done by the following set of differential equations.

wr 1/ DA (" \T ^min\P 2QoP 2),t7
Wu = -KiPAta(xty '-Wu (5.4)

W2_t = -K2PAt<t>(xt)
T ^min(P 2QoP 2)

w2.t (5.5)

where Ki and K2 are positive definite matrices which can be chosen arbitrarily, P is the

solution of the matrix equation given by (4.24) and

wltt ■.= wu
-

w;

w2,t ■-= wu
-

w;
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Using the neural network as the exosystem, the solution of the regulator equations are

7T**(w) =
Wi

7T2(w) =
U2

—

Wn<j(ui)

c(u) =

-ni + nl + d-K2 -gcos(t) + x"i + x2
- W2ia(ii)

-

W22o(i2)

-Wi2cr(i.i)
-

Wi2<j(TTi)

The output of the simulation can be seen in Figure 5.9, the first 30 seconds the frequency is

three radians per second, after that the frequency is changed to one radian per second. The

ampUtude of the reference signal also changes, and the neural network is able to follow the

trajectory, since the output regulator equations are solved for the neural network, the system

is able to track the trajectory as long as the identification error remains bounded. In Figure

5.10 the identification error is shown. It can be seen that the identification error remains

bounded. The weights of the neural network evolve as shown in Figure 5.11, it can be seen

that the weights are bounded because of the adaptation law. The tracking error is shown

in 5.12, it remains bounded and the controller that minimizes the tracking error is shown in

5.13.

Output of the system

.15l 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100

Time (s)

Figure 5.9: Output regulation for an unknown exosystem frecuency using neural networks.
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Figure 5.11: Weights of the neural network.
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5.2 Inverted pendulum

Using the Euler-Lagrange method, the mathematical model for the inverted pendulum is

t = (mlc22 + Izz)q + mglcsin(q) + \x¡q

This equation can be represented in state variables if it's solved for q.

q
= -

Defining the state variables as

the non-linear system is then represented by

ml22
\mgicsiii\q) + m.

Xi =

q

x2 =

q

u = T

y
=

Xi

sentédby

x == m + g(x)u

y
--= h(x)

where

/(*)-
x2

~tnfi?+i„ (m9lcsin(q) + fi}q + r)

9(x)

r»'e2+/" -

The following table shows the valúes of the system

lc Distance from the joint to the center of gravity

m Mass of the link

Izz Moment of inertia of the link

fif Viscous friction coefficient

g Gravity coefficient

0.1551 m

0.8293 Kg

0.00595 kg- m2

0.00545 Kg/s

9.81 m/s2

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)
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5.2.1 Output regulation for a partially unknown plant

5.2.1.1 Dynamic neural networks

Evaluating the system with the valúes presented on the above table, the state space repre

sentation is

Xi — x2

x2 = 48.7184sin(xi) + 0.2104x2 + 38.61u

e =

xi
—

wi

(5.13)

Such that wi is the solution of the following linear exosystem

Wi

w2

=

"o 1

-1 0

Wl

w2

(5.14)

The steady state manifold for this pair of equations is

Xlss
= Wl

X2as
= U2

uss
= -0.259wi

-

1.26sin(wi)
-

0.0054w2

(5.15)

Using the proposed neural network, with the adaptation law described befor, the error

remains bounded for parametric variations as it is seen in the following graphic. The control

law is applied since the beggining of the simulation, a parametric variation is applied at

second 50, and then at second 80 another parametric variation is applied.
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Figure 5.14: System output.

The system is able to track the desired trajectory as long as the identification error

remains small, and for small parametric variations the identification error remains bounded,

the following graph displays the tracking error for the state x2. In this case, the neural
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network is able to identify the nonlinear system, and the identification error are in the

magnitude of IO-3 and IO""2 Figure 5.16 presents the identification error. Finally, Figure

5.17 portrays the input to the system.

Figure 5.16: Identification error.
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Figure 5.17: Control action u.
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5.2.2 Output regulation for a partially unknown exosystem

5.2.2.1 Dynamic neural networks

Using the approach described in the previous chapter, a parallel neural network is used to

identify the exosystem states. Then, the regulator equations are solved for the nonUnear

plant and the neural network. Once the regulator equations are obtained, the plant is going

to foUow the neural network independent exosystem valúes.

The structure of the neural network proposed is as follows.

where A =

0 1

-1 -1
,Wi =

it = Ait +Wic(it)

0 W12
and alx)

W2i W22

cr(xi)

<7(x2)

The weight's adaptation is made by the foUowing set of differential equations.

ti/ rs da l" \T "min(P 2QoP 2)„;
Wht = -KiPAta(xty

-—

-Wu

W lf DA rkf¿.\T *min(P 2QüP 2 ) „;
W2_t = -K2FAt<p(xt) W;2,í

(5.16)

(5.17)

where Ki and K2 are positive definite matrices which can be chosen arbitrarily, P is the

solution of the matrix equation given by 4.24 and

Wu := Wu
- W*

W\t := W2f
-

W_¡

Using the neural network as the exosystem, the solution of the regulator equations are

7Ti(w) =
Wi

7r2(w) = w2
—

Wua(ui)

c(u) = ——[-48.7184sin(ni) + 0.2l0áTi2 + Xi+x2-W2ia{xi)-W22a(x2)
38.61

-Wi2&(lTi)
- H^l2<7(7Ti)]
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The output of the simulation can be seen in Figure 5.9; the first 30 seconds the frequency is

three radians per second, after that the frequency is changed to one radian per second. The

ampUtude of the reference signal also changes, and the neural network is able to foUow the

trajectory, since the output regulator equations are solved for the neural network, the system

wiU be able to track the trajectory as long as the identification error remains bounded.

In Figure 5.19 the identification error is presented. it can be seen that the identification error

remains bounded. The controUer that minimizes the tracking error is portrayed in Figure

5.20.

-i 1 i r-
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A
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Figure 5.18: Output regulation for an unknown exosystem frecuency using neural networks.
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Chapter 6

Conclusions and future work

A lot of research has been done related to the output regulation problem; it is known that

the solution of the regulator equations is often impossible to find. There is always something

to loóse on every method that approximates the solution of these equations.

One of the main disadvantages of the generahzed immersion is that the dimensión of the

controUer grows in dimensión considerably; using the recently developed adaptive control

sheme by Obregón, the controller also grows, but it solves the disadvantage of the generalized

immersion in the fact that it does not require to know the states of the exosystem.

In these thesis another method is proposed to approximate the solution of the regulator

equations; it has the advantage that the controller does not increase with the complexity of

the system, in the case where the neural network is used to identify the plant, as long as the

neural network is able to follow the plant the system is able to track the desired trajectory.

In the case where the neural network is used to identify the exosystem, as long as the neural

network is able to follow the exosystem the system will be able to track the trajectory.

One of the key components in the design of the controller is the adaptation law; it is

necessary to determine a continuous adaptation law that does not switch when the error

became smaU, and that also guarantees bounded error and bounded states for the neural

network.

Solving the regulator equations where the exosystem is unknown has almost not been

studied, there is a lot of open problems in that area. One possible application, which is

59
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not studied here, is using this approach to the solution of the output regulation of switched

systems; if we use a neural network to identify the plant and the exosystem, then it seems

feasible to implement only one controller even if the systems switches.
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Appendix A

Foundations

This section deals with mathematical tools that has been used in the development of this

work; a general review of non-linear systems is made.

A.l Dynamical systems

A nonlinear system can be represented by a set of differential equations of the form

x = f(x.t.u) (A.1)

where / : D —> R" is a locaUy Lipschitz function. Let u = g(x(t),t), the closed loop system

of A.l can be written as:

x = /(x,í) (A.2)

in the special case where the function / does not depend exphcitly on time, the system (A.3)

is said to be autonomous.

i = f(x) (A.3)

An important concept when dealing with the state equation is the concept of equilibrium

points. For the system (A.3), the equilibrium points are the real roots of the equation

/(x) = 0 (A.4)

Such points can be stable. unstable, or asymptoticaUy stable.
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A.2 Stability of dynamical systems

This concept of stability is very important in the control theory; it is very important that a

controller guarantees the stability of the closed loop system, that is, that the output reaches

the desired valué without drifting to infinify. The following definitions describes the classes

into which stability can be classified.

Definition A.2.1. [21] The equilibrium point x = 0 of A.3 is

• Stable if, for each e > 0, there is 5 = 6(e) such that

||x(0) || < d =► ||x(í) || < e, Ví > 0 (A.5)

• Unstable if not stable

• Asymptotically stable if it is stable and 6 can be chosen such that

||x(0)|| <J=» limx(í) = 0 (A.6)
t—»oo

This concept of stability is usually characterized in the sense of Lyapunov, where an

equilibrium point is stable if all solutions starting at nearby point stay nearby; otherwise, it

is unstable.

A.3 Lyapunov stability

The main aspects of the stability for nonlinear systems via the Lyapunov methods will be

reviewed here. Extensions for this methods are available in the literature [21]. Lyapunov

stability theorems give sufficient conditions for stability, asymptotic stability, and so on,

however, they fail to say whether the given conditions are also necessary. Lyapunov stability

analysis can be used to establish the boundedness of the solution, even when the system has

no equilibrium points. This will be important because the boundedness of the weights of the

neural network must be determined.

The next theorem gives the sufficient conditions for a system to be stable.
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Theorem A.3.1. Let x = 0 be an equilibrium point for (A.S) and D C R„ be a domain

containing x = 0. Let V : D —> R be a continuously differentiable function such that

V(0) = Q,V(x)>0 VD-{0} (A.7)

V(x) < 0 VD

Then x = 0 is stable. Moreover, if

V(x) < WD - {0} (A.8)

then x = 0 is asymptotically stable.

Proof. See [21] D

A.4 Steady state

The output regulation problem is used to forcé a dynamical system to follow a desired

trajectory; in order to do so, the controller is able to forcé the output of the system to

converge asymptotically to a desired steady state response.

In order to characterize formaUy the concept of steady state, consider the following system

x = f(x,u) (A.9)

where x € Rn in a neighborhood U cióse to the origin, and the input u G Rm The first

assumption is that /(0, 0) = 0. Let x(í, x0) be the valué of the state x reached at time t = 0.

Let uss a specific input and suppose that exists an initial state x*Q with the property that

lim \\x(t, x0, u*(-))
-

x(t, x", u*)|| (A.10)
t-rOO

for each x0 belonging to a neighborhood U* of x¡$. If that is the case, then the states

xss(t) = x(t, Xq, uss) (A-ll)

is called steady state response from (A.9) for a specific input u,
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This definition will be used in the solution of the regulator equations; the controller will

consist of two parts, one of the will be a persistent input. Generally, this type of inputs are

generated by external systems modelled by differential equations of the form

i = z(u)

uss
= c(u)

where the state u € Rp is defined on a neighborhood V of the origin, and on which z(0) =

0,c(0) = 0. In order to achieve the bounded input property, it is enough to have that the

equilibrium point u = 0 from s(u) be stable in the sense of Lyapunov and to choose the

initial condition in t — 0 on an appropriate neighborhood V0 C V cióse to the origin. In

order to achieve that the inputs are persistent in time, it is necessary that the equilibrium

point u = 0 be neutrally stable, that is, that the following matrix

S=^\u=0 (A.12)

which characterizes the linear approximation of s(u) in u = 0, has all its eigenvalues on the

imaginary axis. [17]

Proposition A.4.1. Consider that A.12 is neutrally stable and that the equilibrium point

x — 0 of i — /(x, 0) is asymptotically stable on the first approximation. Then, a mapping

x = 7r(t*j) defined in a neighborhood Vó C V from the origin, with n(0) — 0, which satisfies

dit

—s(u) = f(w(u),c(u)) (A.13)

for each v cV0. In fact, the input uss(u) produce a well defined steady state response

xss(t) = x(t, k(u), uss(u)) (A.14)

Proof. See [17] D

A.5 Center manifold

Consider the following system

i = /(x) (A.15)
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where / : D —¥ Rn is continuously differentiable and D C Rn contains the origin x = 0.

Next, suppose that the origin is an equilibrium point of (A.15). From Khalil [21], it is known

that if the linearization of / at the origin, that is, the matrix

A = %(x) (A.16)
OX i=0

has all eigenvalues with negative real parts, then the origin is asymptotically stable; if it has

some eigenvalues with positive real parts, then the origin is unstable. If A has eigenvalues

with zero real parts with the rest of the eigenvalues having negative real parts, then the

linearization fails to determine the stability properties of the origin. That is the main reason

to study the center manifold theory. A k-dimensional manifold can be seen as the solution

of the equation

T7(x) = 0 (A.17)

where n : R" —> Rn_fc is sufficiently smooth. For example, the unit circle

{xGR2|x2 + x2 = l} (A.18)

is a one-dimensional manifold in R2

The system A.15 can be represented as

x = Ax + tp(x) (A.19)

Consider only the systems for which Re(\) < 0 from which

• mc eigenvalues have zero real parts.

• ms eigenvalues have negative real parts.

A transformation T always exists such that

= Tx, y e Rmc
,
z e Rms (A.20)

The system in the new coordinates has the following structure

y
= Aiy + gi(y,z) (A.21)

z = A2z + g2{y,z) (A.22)

where
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• Ai is mc x mc with Re(eig(Ai)) = 0

• A2 is m3 x ms with Re(eig(A2)) < 0

• the gi functions are twice continuously differentiable and satisfy

3i(0,0) = 0 (A.23)

^(0,0) = 0 (A.24)
oy

^(0,0) = 0 (A.25)
dz

(A.26)

Definition A.5.1. A manifold is said to be a local invariant for (A.15) if

T)(x(Q)) = 0 =*- n(x(t)) ee 0, Ví e [0, í0 C R (A.27)

Let íi = oo í/ien ¿í is called an invariant manifold.

Definition A.5.2. // a manifold z — n(y) is an invariant manifold for the system and ir(- )

is smooth, then it is called a center manifold if

tt(0) = 0
, §■*■(<)) = 0 (A.28)

oy

With this definitions the following result is given.

Theorem A.5.3. There exist aS > 0 and a continuously differentiable function 7r(y) defined

for all \\y\\ < S, such that z — 7r(y) is a center manifold for the system (A.21).

The motion of the system on the center manifold is determined by the reduced system

y
= Aiy + gi(y,z) (A.29)

Lemma A.5.4. Suppose z — rt(y) is a center manifold for the system (A.21) at (0,0).

Then, there exist a neighborhood U of (0, 0) and real numbers M > 0 and K > 0 such that,

if(y(0).z(0))eUo, then

\\y(t)
-

w(z(t))\\ < Me-Kt\\y(0) - n(z(0))\\ (A.30)
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That is, the center manifold is locally exponentiaUy attractive. With aU the information

above, the theorem that is relevant to our work can be stated

Theorem A.5. 5. Suppose that the origin y
= 0 of the reduced system in (A.29) is asymt-

potically stable (respectively, stable, unstable). Then, the origin of the full system in (A.21)

is asymptotically stable (respectively, stable, unstable).

A.6 Neural networks

Artificial Neural Networks (ANXs) are simphfied models of biological neural networks. The

main purpose of an ANN is to imitare the behaviour of a biological neural network. These

neural networks are capable of process information in a paraUeüzed form, making them

ideal for real-time appUcations; however, special hardware must be used in order to take the

advantages of a neural network. Field Programmable Gate Arrays look promising to fuUy

implement a neural network that performs paraUel computation.

The ANNs does not have the complexity as the human brain, however there are simUarities

between biological neural networks and artifitial ones: first of all, the construction blocks of

both of them are very simple computational elements highly interconnected, and second, the

connections between the neurons determine the function of the neural network.

The mathematical model of a neural network wül have to include three basic elements.

• A group of synapsis, each one of them characterized by a weight or a synaptic gain. In

special, a signal x_, to the input of the synapsis j connected to a neuron k is multiplied

by a synaptic weight wjy. It is important to notice that the first subindex belongs to

the neuron, while the second subindex belongs to the input.

• An adder in order to sum the input signals weigthened by its own synaptic weight; the

operations described here are Unear combinations.

• An activation function in order to limit the amplitude of the neuron output. The

activation function is normaUy normalized between a closed interval [0, 1] or [— 1, 1].
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Using the above conditions, the neural networks that is used in this work have the following

structure

xt
= Axt + but + Wio(it) (A.31)

where x 6 Rn is the number of neurons that the network will have. and Wi G Rnxn describe

the relationship between the hidden layer and the output layer. o(-) belongs to a class of

function called sigmoidal functions, that have some properies:

• It is a real-valued differentiable function.

• Its first derivative is bell shaped.

• It has a pair of horizontal asymptotes as í
—> ±00.

This kind of function is ideal for neural networks because it can implement the activation

function, and they make neural networks universal approximators of functions.

A.6.1 Universal approximation

A neural network can be used as a universal approximator of functions, that is, perform

a nonlinear input-output mapping from Rn (the dimensión of the input space) to Mf (the

dimensión of the output space). This kind of operator has been studied in ([11]). The first

one to demónstrate that a single hidden layer is sufficient to uniformly approximate any

continuous function with support in a unit hypercube was Cybenko. It is resumed in the

following theorem

Theorem A.6.1. (]9])Let a(-) be a stationary, bounded, and monotone increasing function.

Let In denote the n-dimensional unit hypercube. Let C(In) the space of continuous functions

on In. Then for any f G C(In) and e > 0, there exist an integer m and real constants a¿,Pi

and Wij, with i = 1, ...,rn and j = 1, ...,n, such thaí defining F(ui,u2, ...,un) as

m n

F(ui,u2,...,un) = ^aiai^WijUj - pt) (A.32)
-=1 j=i

it is an approximate realization of /(■), that is,

\F(ui,u2,...,un)
-

f(ui,u2,...,un)\ < e,\/(ui,u2,...,un) G /„ (A.33)
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Neural network adaptation law

Let consider the error dynamics, that is, the derivative of At

Át = ¿t-x (B.l)

substituting the valúes

Át = AAt + Wuo-(xt) - WZa(xt) + W2.t</>(xt)ut
-

W2*tf>(xt)ut
-

Af (B.2)

adding and subtracting the terms W{a(xt) and W2<¡)(xt)ut and taking into account equations

B.2 and 2.1, (B.2) can be expressed as:

Át = AAt + WiMxt)
-

W*a(xt) + W2tt(f>(xt)ut
-

W;<j>(xt)ut
-

Af (B.3)

The foUowing Lyapunov candidate function is used

Vt - AjPAt + tr\WltKilWi,t] + HW^K^W^} (B.4)

where P is the positive solution for the matrix Riccati equation given by (4.24). The first

derivative of Vt is

Vt = |(AfPA«) + jttr[WltKí'Witt] + jttr[WZtK2-lW2,t] (B.5)

so, expanding the equation j-t(AjPAt)

¿AjPAt) = 2AjPÁt (B.6)

73
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and substituting (4.23) and (4.22) into (B.6)

jt(tfP*t)
= 2AfPAAt

+ 2AjPWu<r(xt)

- 2A[PW_*<r(xt)

+ 2AJPW2¿<t>(xt)ut

- 2Á[PW;<t>(xt)ut

- 2A[PAf

For 2¡tr[Wi'tKi1Wi.t] we can use some properties of the trace of a matrix to obtain

^[trWlKi'Wi,] = tr[^(WltK^Wu)\ (B.7)

= tr[wltKr1Wu +WZtK¡1Wu] (B.S)

= tr[wltKi1Wht} + tr[WltKi1Wht] (B.9)

= 2tr[WhtKi1Wi,t] (B.10)

Taking the derivative of Wi¿

Wi¿ = Wu (B.II)

the term Wi¿ is given by the differential learning law. Thus, substituting (4.28) into the last

term of (B.7),^[írW'^fK'f 1Wiit] can be computed as

^MrWf<tK^Wu] = ^trloii^AfPKiK^W^t] - Xmin(P^QoP-2)tr[WuKilWitt]
at

= -2AfPWi_to(xt) - \mm(P~lQ^P-l2)tr[WuKilWu]

proceeding in a similar way for tr[W2,tK2 W2¿]

jt[trWltK2lWu\
= -2AJPW2^Ít)ut

- Xmiu(P-l2Q0P-htr[WuK2HV2A
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finally, substituting into (B.5) Vt can be expressed as

Vt = 2AfPAAt + 2AjPW*<r(xt)

+ 2AjPW^(xt)ut
- 2A[PAf

- XrnUP^QoP^MWijKi'WiJ
- \mtn(P-l2QaP-l2)tr[W2,tK2lWu]

Now, an upper bound for Vt is determined. To accomplish this task, first the term

2Á[PAAt + 2Á[PWia(xt) is considered. Since this term is an scalar, it is possible to

express it alternatively as

2AjPAAt + 2A[PW*a(xt) = AjPAAt + 2AjPW*a(xt) + a(xt)Á[PAAt + 2Á[PW*

(B.12)

using the matrix inequaUty proved in [29]

xty + ytx < xTA-1X + YTAY (B.13)

which is vahd for any X, Y G R"xfc and for any positive definite matrix 0 < A = AT G

Rnxn,2AfPAAt + 2AfPW*a(xt) is bounded by

2AtTPAAt + 2AjPW*a(xt) < AjPW^A^W^PAt + ajAatjt (B.14)

but, from the assumptions A.2 and A.5, we can conclude

2A¡PAAt + 2Á[PW^(£t) < A[PW;At + AfK^t (B.15)

Likewise, using the inequality B.13 in 2Á[PW2(j>tUt,

2Á[PW¿4>tut = Á[PW;4>tUt + uj4>JW*PAt

< AjPW;A-lW;TPAt + uJphi^A^phitUt
< AjPW2PAt + ütAjD^At

This last inequaUty is ensured by the assumptions A.2, A.3, and A.5. On the other hand,

the foUowing inequaUty is a coroUary from (B.13):

- ZTY - YTZ < ZTA-XZ + YTAY (B.16)
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which is valid for any Z, Y G Rnxfc and for any positive definite matrix 0<A = ATGRnxn

Using this result, a bound for —2AfPAf is obtained.

- 2AfPAf < AjPA^PA + AjAfAf (B.17)

In accordance with the assumption A.4

- 2A[PAf < AfPA/PA + fj (B.18)

substituting B.15, B.16, and B.18 into B.12, the following bound for Vt can be determined

Vt < 2AjPAAt + A[PWiPAt

+ AjDaAt + AjPW2PAt

+ üAjD^At + AjPAfPAt + f)

- \min(P-Í2QoP-?)tr[WuTK¡1Wi,t]
- KUP~*QoP-s)tr[W2/K¡1W<s,t]

Adding and substracting AtQoAt into the right-hand side of the last inequaUty, the expression

,4rP + PA + P(Wi +■ Ww + Ajl)P + Da + D^ü + Q0 is formed. However, this expression in

accordance with the assumption A.6 is equal to zero. Then

Vt < -AfQ0At + fj- XnUP-ÍQoP-^MWi/Ki'Wit] - ^ÁP^Q^M^/K2lW2,t)

Now, consider that

AfQoAt = AjpHp-iQoP-^P^At (B.19)

and using Rayleigh inequality,

Amin(p-5Q0p-5)AfPAt < AjQ0At (B.20)

consequently,

Vt < -\mÍD(P-l2Q0P-l2)Á[PAt
- Xmin(p-^Q0p-^)tr[WuTK^Wht]
- Xmin(P'l2QoP-htr[W2/K2lWu}+f]
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from the definition of our Lyapunov function candidate, finally Vt can be bounded as

Vt < Amin(p-ÍQ0p-5)Vt + fj (B.21)

which impUes that

Vt < V0e(_e) + |(1 - e(_ít)) (B.22)

where £ = Xmin(P~2QoP~2)- Since Vt is an upperly bounded non-negative function then

At.H'i .f.W'u,,» G Loo and the first part of the theorem has been proved. On the other hand,

from definiton of Vt is evident that

AfPAt < \\t (B.23)

but from B.22

AfPAt < Ví,e(_ít) + |(1
- e(_€t)) (B.24)

finaUy, taking Um sup(_>00 for both sides of the last inequaUty

lim supAfPAt < ? ;- (B.25)
t-.~

~

X^P-tQoP-*)
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