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Abstract 
 

 

 

Myoelectric control has most often being based on the analysis of the steady state of 

the muscle contraction; however, it has as main drawback the impossibility of 

identifying the movement from the beginning of the contraction; therefore, this causes 

a delay that can result on the user’s frustration. The proposal for controlling 

myoelectric devices by analyzing the transient state of the muscle contraction had 

been previously raised; however, the analysis methods that have been applied had 

only been able to achieve classification percentages significantly lower than those 

obtained for the steady state analysis.  

 

 

In this work, a new proposal is made for the classification of upper limb movements 

by analyzing the transient state of the muscle contraction using Hjorth’s parameters.  

 

 

With the proposed method, it was possible to carry out the identification of 

movements with classification accuracy higher than 95%. The obtained results 

suggest the existence of highly relevant information in the dynamic part of the muscle 

contraction as to be able to propose myoelectric control schemes from its analysis.  
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Resumen 
 

 

 

El control de dispositivos mioeléctricos se ha basado en el análisis del estado estable 

de la contracción muscular; sin embargo, esto presenta como principal desventaja 

que no sea posible identificar el movimiento desde el inicio de la contracción y por lo 

tanto, genera un retardo que puede resultar frustante para el usuario. La propuesta 

de control de dispositivos mioeléctricos a partir del análisis del estado transitorio de la 

contracción muscular había sido planteada anteriormente; sin embargo, los métodos 

de análisis empleados sólo habían logrado porcentajes de clasificación 

significativamente menores que los obtenidos para el análisis del estado estable.  

 

 

En este trabajo se hace una nueva propuesta para la clasificación de movimientos de 

la extremidad superior analizando el estado transitorio de la contracción muscular por 

medio de los parámetros de Hjorth.  

 

 

Con el método propuesto fue posible llevar a cabo la identificación de movimientos 

con un porcentaje de clasificación superior al 95%. Los resultados obtenidos 

sugieren que existe información suficientemente relevante en la parte dinámica de la 

contracción muscular como para poder plantear esquemas de control mioeléctrico a 

partir de su análisis.  
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Résumé 
 

 

 

La commande des dispositifs de control myoélectrique a été basée sur l’analyse de 

l’état stable de la contraction musculaire; cependant, ceci a pour principal 

inconvénient qu’il ne soit pas possible d’identifier le mouvement à partir du début de 

la contraction. La commande introduit ainsi un retard qui peut être frustrant pour 

l’utilisateur. La proposition de commande des dispositifs myoélectriques à partir de 

l’analyse de l’état transitoire de la contraction musculaire a déjà été abordée. 

Néanmoins les méthodes d’analyse utilisées donnaient des pourcentages de 

classification significativement faibles comparés à ceux obtenus par l’analyse de l’état 

stable.    
 

 

Ce travail propose une nouvelle méthode de classification de mouvements des 

membres supérieurs, en analysant l’état transitoire de la contraction musculaire avec 

les paramètres de Hjorth.  

 

 

Avec la méthode proposée, il est possible de faire l’identification de mouvements 

avec un pourcentage de classification supérieur à 95%. Les résultats obtenus 

suggèrent qu’il existe suffisamment d’informations pertinentes dans la partie 

dynamique de la contraction musculaire pour concevoir des systèmes de contrôle 

myoélectrique à partir de son analyse.  
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Chapter I 
 
 

Introduction 

 

 

1.1 Presentation 
 

It is a real ambitious challenge the attempt to replicate the sensory-motor function of the 

human hand, which is capable of delicate and precise manipulation, and of power 

grasping of heavy objects. In order to approximate the hand’s functions, it is necessary 

to develop a system with a large number of degrees of freedom, proprioceptive and 

exteroceptive sensors, and a complex hierarchical control. Commercially available 

prosthetic devices do not provide the manipulation capabilities of the human hand and 

require a great amount of training and concentration in order to be used effectively. 

Moreover, most of them do not have more than two active degrees of freedom [1]. 

 

 

There are many signal-processing methods that have been applied to achieve 

prosthesis control, but the question of which one has the most advantages still remains. 

It is true that the problem can be solved through different approaches, but none of the 

approaches that already exist have been able to sufficiently approximate the functions 

that can be executed by a human limb, the time of reaction, and the naturalness of the 

movements. Because of this, there is still a long path to travel and new techniques that 

should be explored and applied.   

 

 

Surface electromyographic signals (sEMG) constitute a source of information for 

assistive devices control such as prostheses. These signals have been broadly studied 

and used in different applications because of the relative simplicity that implies collecting 

samples, the possibility to generate non-invasive devices that respect the integrity of the 
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user, the reusability of the device between different users, and the easiness to remove 

the device for maintenance and calibration [2]. 

 

 

An electromyographic (EMG) signal can be recorded using only one acquisition channel. 

This allows making predictions about the muscle activation and force; nonetheless, it is 

necessary to reduce unwanted variability in order to improve the quality of the signal. 

The use of multichannel EMG, which consists in multiple bipolar electrodes spatially 

distributed over the muscle belly, decreases EMG variability and allows a more reliable 

control, constituting one of the main reasons that have awakened interest in 

multichannel systems [3].   

 

 

The area of prosthetics and orthotics continues to make significant technological 

innovations. Prostheses and orthoses give patients the possibility to compensate 

partially or regain some of the functions that were lost through limb amputation, but at 

the same time, it is important not to forget all the psychological implications involved in 

the amputation itself and in the acceptance of the prosthetic device as a new part of the 

individual’s body that may affect physical rehabilitation. Based on this, in order to 

explode the potential of technological innovations in prostheses, development should be 

closely related with the understanding of the psychological complexities of the 

therapeutic context [4]. It is important not to forget that the objective does not consist in 

creating the most complicated device, but in creating something that adjusts to the 

patient’s needs and that has the best compromise between functionality, naturalness in 

movement’s execution, price accessibility, cosmetics, and every aspect that affects the 

patient’s daily life and inclusion in society.  
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1.2 Problem Statement   
 

Patients with amputations and disabilities face a great loss of functionality. This has 

motivated numerous efforts throughout history to develop devices that allow replacing 

the loss or that can at least assist in daily life activities in which the patient struggles 

because of the amputation. 

 

 

Myoelectric controlled prostheses for hand, wrist, and arm amputations are 

commercially available. Some of the most commonly used control methods for these 

systems consist in generating a control signal based on the mean absolute value (MAV) 

of the myoelectric signal (MES), and most often, they use a reduced number of EMG 

channels. When the signal is collected by only one EMG channel, its amplitude is used 

to select one of three possible operation states (systems based on the EMG 

contraction’s force level). The signal can also be collected using two EMG channels. 

The channel with the maximum amplitude determines the device’s state; once this is 

selected, the prosthetic device can work at a constant speed, or it can have a variable 

speed that changes proportionally with the EMG signal’s level. Even if there are 

functional prostheses that have been controlled through these methods, they still face a 

great number of limitations, and patients need long training periods without always 

obtaining the desired results [5,6].  

 

 

Due to the present limitations in myoelectric controlled prostheses that employ a limited 

number of EMG channels, the use of multichannel EMG has been proposed as a 

promising alternative; however, processing and analyzing multichannel registers imply a 

greater use of resources, an increased computational cost, and a longer processing 

time. Thus, it is necessary to find the appropriate analysis tools in order to select the 

ideal number of channels that represent a good compromise between the amount of 

information to be processed and the reliability of the generated control signal.   
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Multichannel EMG registers are accomplished by placing electrodes over the muscles 

involved in the movement’s execution [7]. This allows identifying the participation that 

each muscle has in the movement. The electrodes detect the spatial distribution of 

potential on the skin producing not a picture, but a sort of movie that shows that 

potentials on the surface are continuously changing because the sources in the muscles 

are moving. This movie is both sampled in time (frames per second) and space 

(electrodes per meter). Fig. 1.1 illustrates the theoretical scheme of this movie 

formation [8].   

 

 

 
Fig. 1.1. Imaging of raw differential EMG in a two dimensional array. It reflects the spatial distribution of 

potential in the skin surface. A movie is obtained in time by gathering a series of images showing potential 

distribution at a given moment that will eventually allow seeing how this potential distribution changes in 

time as the sources in the muscles are moving. Voltage levels may be represented by colors [8]. 

 

 

A real example of this movie formation can be observed on the change in the surface 

potential of the biceps brachii during an elbow flexion-extension movement as shown in 

Fig. 1.2 where different color intensities represent different voltage levels.  
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Fig. 1.2. Multichannel EMG seen as a movie. A series of two-dimensional images of the spatial distribution 

of potential in the skin surface during multichannel EMG allow the formation of a movie in time. This 

particular one shows an elbow flexion-extension movement with a 6 kg weight recorded using a 

multichannel electrode array placed on the biceps brachii of the subject [8]. 

 

 

Another existing problem in EMG control techniques is the lack of agreement on a 

standardized protocol for adequate electrode placement in accordance to each patient’s 

anatomy. The number of electrodes should be enough and well distributed in order to 

obtain the necessary details that will allow signal characterization and classification. 

EMG collection and interpretation should not be a guessing game because the lack of 

important details can mislead conclusions. An illustrative example from professor 

Merletti [8] is presented in Fig. 1.3 where EMG is compared to a painting covered by a 

cloth. In order to get initial information about the painting, some holes can be placed in 

the cloth in the same way in which electrodes are placed to identify EMG signals. The 

holes should be enough and well located as to get the required information to identify 

essential features of the painting. The same happens with electrode placement for 

detection of the EMG signals that correspond to the muscles of interest. Even the 
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smallest details are important to draw final conclusions because they can mark the 

difference between two similar things.  

 

 

 
Fig. 1.3. Importance of EMG electrode placement. This figure compares electrode placement to a painting 

guessing game. The sixth frame seems to have enough holes as to guess the painting, but it is possible to 

get confused between the Mona Lisa from Leonardo Da Vinci and the Mona Lisa with Mustaches from 

Marcel Duchamp. This example helps understanding that well located electrodes and paying attention to 

small details are important elements for drawing final conclusions [8].  

 

 

Two main states can be identified in the EMG signal during muscle contraction. The first 

one is known as the transient state, and it is described as the burst of myoelectric 

activity that accompanies sudden muscular effort. The second one is known as the 

steady state1 and corresponds to the muscular effort during a sustained contraction 

when the movement’s final position is reached and the muscle length is no longer 

modified. It consists of a constant firing rate [2]. The steady state analysis of the muscle 

contraction for EMG classification simplified prosthetic devices’ control and is the most 

frequently used technique; however, the steady state has very little temporal structure of 

                                            
1 Throughout this work, the term ‘EMG steady state’ is constantly alluded. It is known that the characteristics of the EMG signal are 
non-stationary and stochastic; therefore, the aforementioned term will be used to refer the myoelectric signal produced by a stable 
muscle contraction. 
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the active modification of recruitment and firing patterns that are needed to sustain a 

contraction. This information is contained in the transient state of the signal, which could 

give more precision about the movement while the muscle contraction is being 

generated and could provide useful information for EMG classification [1,6]. The 

aforementioned reasons motivate the study and analysis of the transient state in the 

EMG signal.  

 

 

The main advantage of using the transient state of the EMG signal for myoelectric 

control consists in reducing the time required to obtain a response from the device. It is 

generally agreed that 300 ms is the longest acceptable delay in a prosthetic control 

system. A 200 to 300 ms interval is a clinically recognized maximum delay that users 

find acceptable before they get frustrated with the slow response of the 

prosthesis [6,9,10]. 

 

 

The performance of a myoelectric control system is evaluated with regards to three 

important aspects of controllability [11]: 

 

• The accuracy of movement selection, which is essential for obtaining a precise 

execution of a user’s intent.  

 

• The intuitiveness of actuating control, which relieves the user from focalizing all 

his attention in the device’s control and allows him to do it in a more natural way.  

 

• The response time of the control system, which should not introduce a delay that 

is perceivable by the user. This places a real-time constraint on the control 

system’s task of acquiring and processing myoelectric data [6,9-11]. 
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The first 100 ms of the transient burst of the EMG signal appear to have enough 

information as to differentiate between motions and therefore suggest a promising 

means of MES classification [6,9]. The movements could be classified since the 

beginning of the muscle contraction reducing considerably the user perceived lag 

introduced by the systems that wait until the steady state is reached to generate a 

control command.  

 

 

In addition to the problems that have already been discussed, there is also an evident 

need to find an optimal number of EMG channels that represent a good compromise 

between computational cost and decreasing EMG variability [3]. Multichannel systems 

have the advantage that the positions of the electrodes can become less critical as 

compared to those systems that use a reduced number of channels [12,13]. It is also 

important to determine the best electrode placement and better processing and analysis 

techniques that will permit obtaining more reliable and less delayed control signals. This 

should eventually allow myoelectric prostheses control in real time and with shorter 

training periods due to the fact that control would be based in the activation of several 

muscles and not in the change of contraction intensity of a single muscle.  

 

 
1.3 Objectives 

 

1.3.1 General Objective 
 

Perform signal processing and analysis on the transient state of multichannel EMG 

signals acquired from several forearm muscles in order to classify a set of simple hand 

movements and create an algorithm that will allow reproducing normally limbed subjects’ 

hand movements in a virtual hand model.  
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1.3.2 Specific Objectives 
 

• Reduce the delay produced by the acquisition and processing of the EMG signal 

that is present when the control system has to wait until the steady state of the 

contraction to generate a control signal. 

 

• Selection of a multichannel EMG processing and analysis tool that will allow 

obtaining useful characteristic sets to create robust control algorithms using 

forearm EMG signals extracted from a database of normally limbed subjects. 

 

• Testing of Hjorth’s parameters, which are normally applied to EEG analysis, in 

EMG classification performance. 

 

• Selection of an appropriate classifier to discriminate signals based on 

characteristic extraction.  

 

• Generation of control algorithms based on the EMG signals’ transient state to 

reproduce the movements from a healthy subject over a virtual hand model. 

 

• Comparison between classification performance while using the transient and the 

steady states of the muscle contraction.  

 

 

1.4 Thesis Structure 
 
The present thesis is divided into six chapters. The first one provides with a general 

scope of this work. It presents some of the problems and limitations that exist in EMG 

signal analysis and processing when used for prosthesis control and the need to explore 

new EMG acquisition and processing techniques in order to achieve a more reliable and 

natural control of these devices. It also contains the explanation of the problem that 

motivated this thesis and the general and specific objectives that were pursued.  
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The second chapter explains general concepts related to the hand’s biomechanics, the 

EMG signal, and some of the signal-processing techniques that were employed for 

analysis and discrimination of the executed movements. It also presents the state of the 

art in prosthesis control and some of the previous works that have been done in our 

laboratory related to this subject. Additionally, it introduces Hjorth’s parameters and their 

use in biomedical signals.  

 

 

The third chapter consists in the methodology that was followed to solve the stated 

problem. It mentions the characteristics of the used database, and it gives a detailed 

description of the protocol for EMG processing and feature extraction in order to classify 

different hand movements. The algorithms that were created to reproduce the 

movements on a virtual hand model are also explained in this chapter.  

 

 

The fourth chapter presents the results obtained from classification and a description of 

the virtual model’s performance. These results are further discussed in the fifth chapter.  

 

 

Finally, the sixth chapter contains conclusions, some of the problems that were 

encountered during the execution of this thesis, and the future work that can be done in 

relation to this thesis in order to improve results on EMG classification and control. 
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Chapter II 
 
 

Antecedents 

 

 

2.1 Anatomy and Biomechanics of the Hand and the Forearm 
 

The human hand is a complex system that includes a large number of degrees of 

freedom, sensorial elements, actuators, tendons, and a hierarchical control that relates 

them all, but despite all of this, the effort required to make different movements is small. 

On the contrary, a prosthetic hand is an essay to replicate the natural hand. This has a 

drastic reduction in grasping capabilities and in the sensory feedback received by the 

user [1]. 

 

 

Muscle activation is controlled by the central and peripheral nervous systems by means 

of the types and activation frequencies of the recruited motor units [14]. The hand is the 

most distal element of the upper limbs. It has both motor and sensitive abilities. The 

movements executed by the shoulder, elbow, and wrist allow hand positioning, 

orientation, and stability to perform an activity [15]. 

 

 

The muscles of the hand and the wrist are mainly located in the forearm. They narrow 

into tendons and traverse the wrist to insert in the bony or ligamentous components of 

the hand. The flexors act in part as supinators of the forearm, and the extensors assist 

in pronation. The hand is able to execute a wide range of movements including fixation 

movements; movements that can change from slow to fast with direction, intensity and 

rate control; and ballistic movements. In all types of prehension movements, the hand 

assumes a fixed position. If the object is unyielding, it affords reaction to the flexion 

forces of the hand’s muscles, and if it is fragile or the hand is empty, contractions of the 
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opposing muscle groups allow the hand to maintain any prehensile posture. For 

movements ranging from slow to rapid, there is always some degree of contraction that 

ensures control and that allows changes in force and velocity. Ballistic movements are 

rapid motions, usually repetitive, that are begun by active muscle contractions that give 

momentum, and that are subsequently ceased or diminished during the latter part of the 

motion [16]. Flexion and extension movements are produced with respect to a 

transverse axis as shown in Fig. 2.1. During flexion, the hand moves towards the 

anterior part of the forearm, and during extension, it moves towards the dorsal part. 

Abduction and adduction are also known as radial and ulnar deviations. Abduction pulls 

the hand away from the midline part of the body and adduction pulls it towards it as 

shown in Fig. 2.1. Pronation of the hand consists in rotating the forearm and moving the 

palm from an anterior-facing position to a posterior-facing one (the palm faces 

downwards). Supination consists in the opposite rotation (the palm ends facing 

upwards) as it is shown for both movements in Fig. 2.2 [17].  

 

 

 
Fig. 2.1. Wrist and hand movements. This figure shows hand abduction, adduction, flexion, and extension. 

It presents the range of motion for each of the movements [17]. 



 
 

13 

 
Fig. 2.2. Hand pronation and supination. The palm faces upwards after the forearm rotation during 

supination and it faces downwards for pronation [17].  

 

 

2.2 Electromyography and Myoelectric Prosthesis Control 
 

Electrophysiological signals are electrical signals generated by any organ representing a 

variable of interest. They are usually a function of time, so they can be described in 

terms of their amplitude, frequency and phase. Electromyography (EMG) is a type of 

electrophysiological signal that measures electric currents generated during muscle 

activity (contraction/relaxation) and that are controlled by the nervous system. Even if 

the EMG signal origin is nervous, it depends on the anatomical and physiological 

properties of muscles, which make these types of signals subject dependent and create 

a problem for selection of electrode location on the forearm. The complexity of EMG 

signal analysis also lies in its non-stationary characteristics. There are several factors 

that may affect these signals such as the motor unit action potential (MUAP), muscle 

fatigue, and force. Variability in the signals due to subject dependency when using the 

same electrode disposition is one of the toughest problems encountered for EMG signal 

classification [18,19].   
 
 
EMG signal analysis provides important information in clinical diagnosis and biomedical 

applications. Neuromuscular disorders can be diagnosed based on the shapes and firing 

rates of MUAPs. Surface electromyography (sEMG), which consists of EMG signals 
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collected by electrodes placed on the skin surface, can be used in different applications 

such as prosthetic devices control [18,20]. 

 

 

The typical amplitude of sEMG signals is 0-10 mV. The information channel of the 

sEMG signal goes from 10-500 Hz, but the main concentration of energy is located 

within the frequency band of 50-150 Hz [2,18] as shown in Fig. 2.3 and Fig. 2.4. The 

frequency content in the two main types of EMG studies (needle and surface EMG) can 

be seen in Fig. 2.3.  

 

 

 
Fig. 2.3. Frequency content of surface and needle EMG signals. The upper panel shows the frequency 

content of the EMG power spectrum collected using surface electrodes, and the lower panel illustrates the 

equivalent for needle EMG. The x-axis measures frequency content in Hz, and the y-axis is represented in 

arbitrary units (a.u.). The shadowed area on the lower panel corresponds to the cut-off frequencies used 

for sEMG and demonstrates that using the same frequency range for needle EMG would result in a 

considerable information loss [21].  

 

 

Commonly, in sEMG, electrodes are located on the skin above the belly of the muscle of 

interest, in a region between the tendon and the innervation zone; therefore, the electric 
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currents generated by depolarization of the muscle fibers must travel through connective 

tissues, fat, vessels, and skin to reach the region underneath the electrodes. Jointly, 

these elements have the properties of a low-pass filter, so the signals reach the 

electrodes with a slower time course and decreased amplitude. In needle EMG, the 

electrodes are closer to the source of electric activity, and the signals do not suffer the 

same amplitude attenuation as described for sEMG; as a result, needle EMG has better 

signal-to-noise ratios and their power spectra have components at higher frequencies 

(see lower panel of Fig. 2.4). Nonetheless, while needle EMG has a higher selectivity, it 

is hard to evaluate a larger number of motor units (MUs) to obtain a better scheme of 

muscle activation. For this purpose, sEMG is more indicated [21]. 

 

 

 
Fig. 2.4. Raw sEMG signal and its power spectrum. The raw sEMG signal was obtained from the tibialis 

anterior muscle during an isometric contraction with constant force at 50% of the maximum. The lower 

panel shows its power spectrum [22]. 

 

 

The EMG signal consists in the summation in time and space of MUAP trains. The 

shape of a generic MUAP detected on the skin surface can be approximated by a 

function f(t). This allows the description of a MUAP train (MUAPT) as stated in (2.1) 

where j indicates a specific MU, kj is an amplitude factor, θij are the times in which the 

MUAPs of the MU occur, and αj is a scaling factor [23]. 
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𝑀𝑈𝐴𝑃𝑇! 𝑡 = 𝑘! ⋅ 𝑓
𝑡 − 𝜃!"
𝛼!!

 (2.1) 

 

 

The EMG signal s(t) can be expressed as shown in (2.2). The n(t) represents the 

additive noise. The amplitude and scaling factor depend mainly on the depth and size of 

the MU [23]. 

 

𝑠 𝑡 = 𝑀𝑈𝐴𝑃𝑇! 𝑡
!

+ 𝑛 𝑡 = 𝑘! ⋅ 𝑓
𝑡 − 𝜃!"
𝛼!!!

+ 𝑛(𝑡) (2.2) 

 

 

The sEMG signal recorded during voluntary dynamic contractions can be considered as 

a zero-mean Gaussian process modulated by the muscle activity and corrupted by a 

zero-mean Gaussian additive noise [18].  

 

 

Myoelectric systems have been widely used for prosthetic control in individuals with 

amputations. These systems extract the control signals from an estimate of the 

amplitude or the rate of change of the MES. A myoelectric prosthesis is a system 

actuated by servomotors that are controlled by the electromyographic (EMG) signals 

collected from the patient’s stump. These signals can be either intramuscular and are 

collected through needles, or they can be superficial in which surface electrodes are 

used instead. When only a single EMG channel is used to generate the control signal, 

the amplitude of the signal allows choosing the state of operation for the device [2,6]. 

 

 

The sEMG signal is stochastic due to the random nature of the joint activity of the motor 

units within the capturing region of the electrodes; therefore, myoelectric control systems 

are based on the assumption that there is no useful information in the instantaneous 

value of the MES. When several motor units become active, the firing rate increases and 
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their pooled activity approaches a Gaussian process, which means that the 

instantaneous amplitude of the MES is a random variable with zero mean and its 

variance is a function of the contraction level [6]. 

 

 

Different attempts to implement EMG controlled prosthetic devices have been started 

since the 1970s decade. In the beginning, EMG control was implemented by coding the 

EMG amplitude level; however, in order to get a precise response, the patient must be 

able to control correctly the level of muscle contraction. This requires a great amount of 

training, and the desired repeatability of the system is not always achieved. Researchers 

started using more rigorous statistical analysis methods in order to classify the EMG 

signal, which included autoregression models as well as autoregressive-moving-average 

(ARMA) models. In an ideal scenario, classification of the EMG signal by extracting 

features and using pure statistical analysis could be able to give good results; anyways, 

in a real situation, the performance would decline due to a variable and increasing 

amount of noise during the acquisition portion of the system. Other factors that may 

directly affect the signal are the skin-electrode interface, which becomes sensitive to the 

movements of the patient, and muscle fatigue. In order to minimize the effect produced 

by all these factors, the concept of pattern recognition should be included in the system, 

allowing it to recognize slight generalizations of the pattern [5]. The implementation of 

pattern recognition was not suggested until 1972, but because of limited processing 

power and algorithm complexity, it was only until 1993 that Hudgins et al. [6] used it 

successfully to classify EMG signals. In their work, they suggested that in order to 

develop an EMG controlled multifunctional prosthesis, it was necessary to extract more 

information from each EMG channel or assign a control function to a specific 

combination of signals in a multichannel system. In this way, the number of control 

outputs is greater than the number of channels and allows a more specific control [6]. 

Classification of EMG signals has been recently possible through the use of artificial 

neural networks and support vector machines allowing the development of more natural 

and advanced control systems [5].  
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2.2.1 Electrical Noise and Factors Affecting the EMG Signal 
 

There are several factors that may affect the integrity of the EMG signals such as 

electrical noise, which is acquired while the signal travels through different tissues. The 

different categories of electrical noise affecting EMG signals as classified by Raez et al. 

in [18] are described below: 

 

• Inherent noise in electronics equipment, which is reduced by the use of high 

quality electronic components, but that always remains to some degree while 

acquiring the EMG signal.  

 

• Ambient noise, which is generated by electromagnetic radiation that is also 

constantly present on the body surface. This type of noise may have amplitude 

that is one to three orders of magnitude greater than the EMG signal.   

 

• Motion artifacts, which cause irregularities in the data and can be generated in 

the electrode interface and in the electrode’s cable.  

 

• Inherent instability of the signal. This refers to how the EMG signal is affected by 

the firing rate of the motor units, which generally fire in the frequency region of 0 

to 20 Hz and cause random amplitudes in result. 

 

 

In addition to electrical noise, there are other factors that affect EMG signals and that 

can be summarized into three main categories as stated in [18]: 

 

• Causative factors: They affect signals directly. They can be divided into:  

 

o Extrinsic, which are caused by characteristics of the electrode structure 

and placement, such as the location of the electrodes with respect to the 

motor points in the muscles.  
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o Intrinsic, which are the physiological, anatomical, and biochemical factors 

that take place due to the number of active motor units, the fiber type 

composition, the amount of tissue between the surface of the muscle and 

the electrode (quantity of fat tissue), among others.    

 

• Intermediate factors: They are physical and physiological phenomena influenced 

by causative factors. Examples of this are superposition of action potentials in 

the detected EMG signal, crosstalk from nearby muscles, conduction velocity of 

the action potential along the muscle fiber membrane, among others.  

 

• Deterministic factors: They are influenced by intermediate factors. The amount of 

active motor units, the firing rate, and the mechanical interaction between muscle 

fibers have a direct influence on the information contained in the EMG signal and 

its recorded force.  

 

 

2.3 Processing and Analysis Methods for Electrophysiological Signals 
 
An electrophysiological signal is the result of a collection of electrical signals generated 

as a function of time, which allows describing it in terms of amplitude, frequency and 

phase [18]. Due to this reason, analysis methods are generally based in extracting time 

and frequency features from the signal. 

 

 

Raw information from electrophysiological signals is only useful after signal processing 

when it becomes quantifiable. Different signal-processing methods are applied to 

eliminate noise and undesired artifacts in order to obtain more accurate information from 

the features extracted from the signals [18]. Some of the current signal-processing 

methods for electrophysiological signal analysis are explained below.   
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2.3.1 Electromyography Feature Extraction 
 
Feature extraction permits obtaining the most relevant information from the signal and 

discriminating noise and irrelevant data. Features can be extracted in either the time or 

the frequency domain, or they can be extracted in the time-frequency domain.   

 
 
Features in the time domain are quickly calculated because they do not require a 

transformation. They continue being frequently used due to the fact that they allow faster 

algorithms, and they normally require less computational resources. Some of the most 

commonly used in EMG signal analysis are described by Zecca et al. in [1] and are 

briefly enounced below:   

 

• Mean Absolute Value (MAV) of the signal as described by (2.3), where xi is the 

signal in a segment i which length is N samples.  

 

𝑋! =
1
𝑁 𝑥! ,

!

!!!

        𝑓𝑜𝑟    𝑖 = 1,… , 𝐼 − 1 (2.3) 

 

 

• Mean Absolute Value Slope (MAVSLP) represents the difference between sums 

in adjacent segments as shown in (2.4). 

 

∆𝑋! = 𝑋!!! − 𝑋! ,        𝑓𝑜𝑟    𝑖 = 1,… , 𝐼 − 1 (2.4) 

 

 

• Willison Amplitude (WAMP) is a unit indicator of firing MUAP. It is the number of 

counts for each change of the EMG signal amplitude that exceeds a defined 

threshold as indicated in (2.5). 
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𝑊𝐴𝑀𝑃 = 𝑓 𝑥! − 𝑥!!!

!

!!!

          𝑤𝑖𝑡ℎ        𝑓 𝑥 = 1, 𝑥 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 (2.5) 

 

 

• Variance of the EMG is related to the force developed by the muscle, therefore, it 

is a measure of its power. It is described by (2.6). 

 

𝑉𝐴𝑅 = 𝜎! =
1

𝑁 − 1 𝑥(𝑘)!
!

!!!

 (2.6) 

 

 

• Zero Crossing (ZC) corresponds to the number of times that the signal crosses 

zero. It provides a rough estimate of the properties in the frequency domain.  

 

• Slope Sign Changes (SSC) is a parameter that provides a bit of information about 

frequency properties of the waveform.  

 

• Waveform Length (WL) measures the cumulative length of the waveform over the 

time segment. It provides a measure of waveform amplitude, frequency, and 

duration. It is calculated as shown in (2.7). 

 

𝑙! = ∆𝑥! ,          𝑤ℎ𝑒𝑟𝑒    ∆𝑥! = 𝑥! − ∆𝑥!!!

!

!!!

 (2.7) 

 

 

Frequency Ratio (FR) was proposed with the objective of distinguishing between muscle 

contraction and relaxation in frequency domain. It is necessary to apply the Fast Fourier 

Transform (FFT) to the EMG in time domain to find the frequency ratio of the jth channel 

as described by (2.8). A threshold determined through experimentation divides between 
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low and high frequencies. A high FR corresponds to a high muscle contraction and a low 

FR means the opposite. 

 

𝐹𝑅! =
𝐹(∙) !  !"#  !"#$
𝐹(∙) !  !!"!  !"#$

 (2.8) 

 

 

The features mentioned above are just a few examples of many that can be extracted 

from the EMG signal. The success obtained from their use often relies on the number of 

features and the combination selected to create the set of characteristics that will feed 

the classifier. Quickly calculated features allow the implementation of faster algorithms, 

which also represents a major advantage for their use.   

 

 

2.3.2 Time-Frequency Representation  
 

A time-frequency representation (TFR) localizes the signal energy both in time and 

frequency, which provides a more accurate description of the signal, but requires a 

transformation that generally implies a higher computational cost. Some of the most 

commonly used TFRs are discrete and linear ones because they are computationally 

less heavy and make more feasible the implementation of real-time applications. Some 

of these are the short-time Fourier transform (STFT), the discrete wavelet transform 

(DWT), and the wavelet packet transform (WPT). They differ one from the other in the 

way in which they partition the time-frequency plane as it can be compared in Fig. 2.5. 

The STFT has a fixed tiling that after being specified generates each cell with an 

identical aspect ratio. The DWT has a variable tiling, which means that the aspect ratio 

of cells varies in order to have a frequency resolution that is proportional to the center 

frequency. Finally, the WPT provides an adaptive tiling and according to the desired 

application, the most convenient one is chosen. The variable tiling from the DWT has 

been proved to be more efficient for physiological signals; nevertheless, the partition is 
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still fixed. This is one of the main reasons that have widened the application of WPT for 

EMG signal classification [1]. 

 

 
Fig. 2.5. Time-frequency plane for different discrete, linear time-frequency representations. The first 

part (a) represents the time-frequency plane of the STFT, which has a fixed tiling and cells with an 

identical aspect ratio. The second part (b) shows the variable tiling of the DWT. Finally, the third part (c), 

illustrates the adaptive tiling of the WPT [1]. 

 

 

2.3.2.1 Discrete Wavelet Transform   
 
The wavelet transform is broadly used for biosignal processing. It can be used in either 

its continuous or its discrete form, but the continuous one requires more computational 

resources and a longer processing time. The continuous wavelet transform (CWT) of a 

signal s(t) is defined as the integral of the product between the signal s(t) and the 

daughter wavelets, which are the time translation and scale expansion/compression 

versions of a mother wavelet function ψ(t). This generates wavelet coefficients 

CWC (a,b), that allow determining the similarity between the signal and the daughter 

wavelets located at position b (time shifting factor) and positive scale a as denoted 

in (2.9) [19]. 

 

𝐶𝑊𝐶 𝑎, 𝑏 = 𝑠 𝑡
!!

!!

1
𝑎
𝜓∗ 𝑡 − 𝑏

𝑎 𝑑𝑡, (2.9) 

 

where * stands for complex conjugation. 
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A discrete signal can be approximated as defined below in (2.10). 

 

𝑓 𝑛 =
1
𝑀

𝑊![𝑗!, 𝑘]
!

𝜙!!,! 𝑛 +
1
𝑀

𝑊![𝑗, 𝑘]
!

𝜓!,! 𝑛
!

!!!!

, (2.10) 

 

 

where f[n], φj0,k[n] and ψj,k[n] are discrete functions defined in [0, M-1], totally M points. 

The wavelet coefficients can be obtained from the inner product in (2.11) and (2.12) 

because the sets {φj0,k[n]}k∈  and {ψj,k[n]}(j,k)∈  are orthogonal to each other [24]. 

 

𝑊![𝑗!, 𝑘] =
1
𝑀

𝑓[𝑛]
!

𝜙!!,! 𝑛  (2.11) 

 

𝑊! 𝑗, 𝑘 =
1
𝑀

𝑓 𝑛 𝜓!,! 𝑛
!

      𝑗 ≥ 𝑗! (2.12) 

 

 

A mother wavelet function is actually a band-pass filter in the frequency domain. The 

obtained coefficients allow identifying the local features of the signal. The selection of 

the mother wavelet is thus, essential for feature extraction. The discrete wavelet 

transform (DWT) projects a signal into a set of basis functions that are scaled and 

delayed versions of the chosen mother wavelet; therefore, it is the mother wavelet who 

determines the projection space, and it is expected that with the use of different types, 

feature extraction will vary [7,19].  

 

 

The DWT implies downsampling the signals, which can lead to significant information 

loss, and is though not convenient for signals with low signal to noise ratio (SNR). There 

are two basic types of DWT decompositions: pyramid and packet decompositions. In 

any of these forms, signals are divided into approximation (low frequencies) and detail 

(high frequencies). In the pyramid decomposition, after the first level, only 

€ 

z

€ 

z2, j ≥ j0
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approximations are decomposed through higher levels as shown in Fig. 2.6, whereas for 

the packet decomposition, both approximation and detail are decomposed into further 

levels providing more information of the signals [19]. This can be seen in Fig. 2.7. 

 

 

Wavelets have been widely used as basis functions for EMG feature extraction because 

surface EMG signals are the summation of motor unit action potential trains, which are 

compact support waveforms repeating with similar shape over time [7]. There is a large 

set of mother wavelets that can be used for reconstruction of a signal. The Daubechies 

wavelet family seems to resemble motor unit potentials the most. The simplest wavelet 

of this family is Daubechies 2 (db2) because db1 is actually the Haar wavelet. The db4 

wavelet is smoother than db2 and has more zero-crossings. Fig. 2.8 presents the 

continuous wavelet transformation of a 200 ms biceps EMG segment using three 

different mother wavelets (Gaussian, Haar, and Daubechies 4) and the correlations 

between the wavelet shape and the EMG shape [25]. The fourth order Coiflet mother 

wavelet has also proved to have a good performance when classifying EMG signals. 

According to Englehart et al. [9], it yields better accuracy than other wavelet families.  

 

 
Fig. 2.6. Filter bank representation of the DWT. Approximation coefficients are obtained from the low-pass 

filters (LPF) and the detail coefficients from the high-pass filters (HPF). In every level, the signal is 

downsampled by 2 [26].  
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Fig. 2.7. Discrete wavelet packet (DWP) decomposition tree [26]. 

 

 
Fig. 2.8. Use of different mother wavelets for EMG signal analysis. Three different mother wavelets 

(Gaussian, Haar, and db4) were used for the continuous wavelet transform of a 200 ms biceps segment. 

The wavelet coefficients are plotted in gray scale. Whiter colors represent strong positive correlations 

between the wavelet shape and the EMG shape, and black represents the largest negative values. The 

Gaussian curve did not provide a good fit for low frequency components [25].  
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Wavelet analysis can also be used for identifying time of occurrence of EMG bursts. A 

wavelet is a waveform of finite length and average value of zero. When the shape of a 

wavelet that is being convolved with an EMG trace is highly correlated with the rapid 

fluctuations occurring at the center of the EMG burst, the peak-to-peak amplitude of the 

coefficient trace is very high as represented on the example in Fig. 2.9. Wavelet 

transformation, as described above, represents a filtering process in which a discrete 

series of paired filters are applied to repeatedly split the signal into high and low 

frequency bands. In order to avoid doubling the number of data points at each stage, the 

signal is progressively downsampled [25].  

 
 

 
Fig. 2.9. Identification of time of EMG bursts using wavelet coefficients. In section A, a db2 wavelet was 

convolved with an EMG signal from medial triceps at a medium scale (details at level 3). Section B shows 

the resulting wavelet coefficients and their downsampled versions that allow identifying the time of 

occurrence of the EMG burst by taking the peak of the absolute value of the downsampled signal [25].   

 
 
The DWT has advantages over other techniques for representing functions with 

discontinuities and sharp peaks. In addition, a multiresolution analysis allows accurate 

deconstruction and reconstruction of finite, non-periodic, and non-stationary signals. The 
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statistics calculated over the wavelet coefficients provide information regarding the 

tendencies, abnormalities, and energy of the sEMG signal [27].  

 

 

Another important aspect for using wavelet analysis is defining the decomposition level. 

Each level is related to a frequency range as shown in TABLE 2.1 for an EMG signal 

sampled at a sampling rate of 1024 Hz as it was defined for the present study. The 

dominant energy of the EMG signal is located within the 50-150 Hz frequency band, 

matching mainly the second and third decomposition levels [27].  

 

 
TABLE 2.1 

DECOMPOSITION LEVEL AND CORRESPONDING FREQUENCY RANGE OF SEMG SIGNALS 

DECOMPOSITION LEVEL FREQUENCY RANGE [HZ] 

1st Level 256 to 512 

2nd Level 128 to 256 

3rd Level 64 to 128 

4th Level 32 to 64 

5th Level 16 to 32 

 

 
2.3.3 Principal Component Analysis 
 
Principal components analysis (PCA) is a technique from linear algebra that allows 

reducing complex data sets into lower dimension sets often revealing simpler structures. 

PCA allows identifying patterns in data and highlights their similarities and differences, 

which makes it a powerful tool for data compression and analysis [28,29]. 

 
 
PCA is a simple, non-parametric analysis tool widely used in diverse fields from 

neuroscience to computer graphics because it allows extracting relevant information 
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from confusing data sets [28]. It provides a linear map from the original set of variables 

υ ∈ V ⊆ ℜM into a reduced-dimension set of uncorrelated variables z ∈ Z ⊆ ℜL (the 

principal components), minimizing the mean square error (MSE) between the original 

feature set and the projected one. The transformed variables are ranked according to 

their variance, so they reflect a decreasing effectiveness in representing the original set 

of variables [1,27]. 

 

 
2.3.4 Hjorth’s Descriptors 
 

The possibility to control a system dynamically by making adjustments in a timely 

manner increases when changes within the process can be quickly detected; however, 

temporal variations in a process are often complex and non-stationary.   

 

 

In 1970, Hjorth [30] introduced three parameters based on time domain properties 

intended to describe the graphical characteristics of an electroencephalography (EEG) 

trace in terms of amplitude, slope, and slope spread, which is why they also receive the 

name of normalized slope descriptors (NSDs). They allow characterizing any signal and 

its derivatives in the frequency and time domains. These parameters receive the name 

of “activity”, “mobility”, and “complexity” [31-33]. Their computation is made over the 

segment of interest in the nonlinear time series f(t) as shown in (2.13) – (2.15). 

 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑚! = 𝜎!!, (2.13) 

 

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑚!

𝑚!
=
𝜎!
𝜎!
, (2.14) 

 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝑚!

𝑚!
−
𝑚!

𝑚!
=
𝜎!!/𝜎!
𝜎!/𝜎!

, (2.15) 



 
 

30 

where  is the variance of the nonlinear time series f(t), and  and  are the 

standard deviations (SDs) of the first and second derivatives of f(t) respectively. The 

variable mn, calculated using (2.17), represents the spectral moment at order n. In order 

to have a better understanding of Hjorth’s parameters, it is helpful defining the 

relationship between the time and frequency domains. The frequency description from 

the Fourier transform is always symmetrical with respect to zero frequency; hence, in a 

statistical approach to the shape of the frequency distribution, all odd moments will 

become zero, and all the information will be found in the even moments. The 

computation of m0, m2, and m4, which contain the useful information for Hjorth’s 

parameters calculation, is further explained in (2.18) - (2.20). The nonlinear time series 

can also be expressed as a function of frequency F(ω) by means of the Fourier 

transform. The power spectrum S(ω) is obtained by multiplying F(ω) by its conjugate 

F*(ω) as shown in equation (2.16). 

 

𝐹 𝜔 ∙ 𝐹∗(𝜔) = 𝑆(𝜔) (2.16) 

 

𝑚! = 𝑆 𝜔 𝑑𝜔
!!

!!
 (2.17) 

 

 

The parameters can be transformed between the time and frequency domains based on 

the energy equality within the actual epoch, where the total power in the frequency 

domain is identical to the mean power in the time domain. Hjorth’s parameters serve as 

a bridge between a physical time domain interpretation and the conventional frequency 

domain description [30-33]. This time-frequency parametric connection is illustrated in 

Fig. 2.10.  

 

𝑚! = 𝑆 𝜔 𝑑𝜔 =
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𝑚! = 𝜔!𝑆 𝜔 𝑑𝜔 =
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!!
 (2.19) 
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Fig. 2.10. Time-frequency relationship given by Hjorth’s parameters. This figure shows the path between 

the time domain properties and the spectral characteristics of an arbitrary signal [32].  

 

 

The characteristics of each of the aforementioned parameters allow understanding their 

significance in both the time and frequency domains [31,32,34]. These features are 

explained below: 

 

• Activity: The mathematical definition of this parameter can be found in 

equation (2.13). In the frequency domain, it is interpreted as the surface of the 
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power spectrum (see Fig. 2.10). In time, it reflects the variance in the amplitude of 

the signal. It has an additive property that allows integrating different observations 

during the epoch.  

 

• Mobility: Equation (2.14) gives the mathematical definition of this parameter. The 

ratio between the standard deviations that characterize it is given per time unit; 

hence, it represents the dominant frequency. This ration will depend on the curve 

shape in such a way that it measures the relative average slope.  

 

• Complexity: This parameter is defined by equation (2.15). It is dimensionless and 

relates the mobility of the first derivative of the nonlinear time series with the 

mobility of the nonlinear time series itself. It indicates the deviation of the slope 

and can be interpreted as a measure of change in frequency of the input signal; 

i.e., a measure of the signal’s bandwidth. This parameter quantifies any deviation 

from the sine shape as an increase from unity.   

 

 

A multivariate approach consists of extracting several features from a nonlinear time 

series and submitting them to a multivariate control chart that will allow determining the 

moment in which a change point is detected. When variables are correlated, multivariate 

control charts allow detecting shifts in the mean or the relationship (covariance) between 

these parameters and help monitoring if the process has gone out of statistical control. 

Fig. 2.11 is a graphical representation of a multivariate approach where Hjorth’s 

descriptors have been extracted as correlated features to detect the dynamic changes in 

the nonlinear time series [31]. The Hotelling control chart [35] that appears on this figure 

is a widely used multivariate procedure to control changes in the mean vector of several 

correlated quality characteristics.   
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Fig. 2.11. Multivariate approach using Hjorth's descriptors. The three parameters (Mobility, Activity, and 

Complexity) constitute the extracted features from a given nonlinear time series. The Hotelling control 

chart allows detecting change points within the signal [31]. 

 

 

One of the main advantages of using Hjorth’s descriptors is that though they are based 

on spectral moments, they are calculated by time variances, which reduces considerably 

the computational cost and the processing time as compared to other methods. This is 

one of the main reasons why they can be considered as a feasible alternative for real-

time implementations [30-33].  

 

 
2.3.4.1 State of the Art in the Use of Hjorth’s Descriptors  
 

Hjorth originally formulated his parameters in 1970 to describe the EEG signal [30,32]. 

Since then, these descriptors have been mainly used in sleep EEG processing for data 

reduction and automatic sleep stage scoring, as well as in several other applications 

associated to EEG data analysis. However, some studies within the biomedical field 

have explored the use of Hjorth’s parameters for novel purposes.   
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In 1977, Spehr et al. [36] applied spectral analysis and Hjorth’s descriptors to quantify 

the EEG signals obtained from 20 patients with renal failure before and after 

hemodialysis (HD). They also applied statistical procedures to find the relationship 

between EEG, blood variables, and psychological performance. Their results showed 

significant EEG changes after HD. Concerning Hjorth’s parameters, these changes were 

reflected on an increase of Hjorth’s mobility and a decrease of Hjorth’s complexity, 

concluding that computerized EEG gives predictive information in monitoring HD. 

 

 

Neurophysiologists are able to visualize on the scalp the distribution and intensity of a 

localized EEG abnormality; however, it is difficult to convey the information in a verbal 

report to the referring clinician. Based on this idea, Persson and Hjorth (1983) [37] found 

a creative application of the aforementioned parameters. They used them to analyze the 

EEG signals and converted the obtained values into ink density topograms to reflect 

EEG changes.  

 

 

In 1985, Kanno and Clarenbach [38] investigated the effect that two drugs (clonidine and 

yohimbine) have on sleep. For this purpose, six healthy subjects were submitted to all-

night polygraphic sleep studies under the effect of clonidine, yohimbine, a combination 

of both, or placebo at random order. The conventional scoring of sleep stages was 

extended by an on-line analysis of the EEG according to Hjorth. The results showed a 

decrease on REM sleep and a reduction of the parameters mobility and complexity 

during non-REM sleep when subjects were under the effect of clonidine. This signified 

synchronization of the EEG. Contrary, yohimbine increased REM sleep. Increases of 

mobility during both REM and non-REM sleep signified desynchronization of the EEG 

for this part of the experiment. The combined treatment did not alter the parameters 

significantly. On that same year, Spehr and Stemmler [39] evaluated the EEG analysis 

of patients with sequels of chronic alcoholism using Hjorth’s descriptors. They were able 

to determine different types of EEG reactions in postalcoholic stages.  
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Depoortere et al. (1993) [40] evaluated the micro- and macrostructural elements of sleep 

in different experimental conditions in rats using the NSDs proposed by Hjorth. They 

were able to discriminate the various stages of the sleep-wakefulness cycle in rats. Even 

if this method corresponds to a condensed presentation of the spectral analysis, it has 

the advantage of being faster and easier to apply. They also reported the usefulness of 

Hjorth’s parameters in psychotropic drug research and sleep quality assessment in both 

animals and humans. In 1995, Ziller et al. [41] classified sleep stages by using only 

Hjorth’s mobility and complexity. They compared their results to those of a 

dimensionality analysis obtaining a superior classification with Hjorth’s parameters. They 

found as well a very high statistical correlation between the estimator of fractal 

dimension and Hjorth’s mobility.  

 

 

Mouzé-Amady and Horwat (1996) [34] analyzed EMG signals with NSDs in order to 

clear some doubts that existed about general applications of these parameters. They 

concluded that Hjorth’s descriptors, previously reserved to EEG analysis, can also be 

used to explore the spectral content in sEMG signals. Their results showed that during 

repetitive movements, Hjorth’s mobility can be significantly correlated with FFT-

estimated mean frequency. They obtained high correlation coefficients, ranging from 

0.81 to 0.93. The degree of correlation depended highly on data segmentation. Finally, 

based on the use that these parameters have in data reduction, they proposed the 

possibility of applying them for monitoring muscular fatigue in real time during long 

periods.  

 

 

Ansari-Asl et al. [42] proposed in 2007, a channel reduction method for EEG 

classification in emotion assessment using a synchronization likelihood approach. They 

achieved a reduction in the number of EEG channels from 64 to 5 with a global loss 

mean for all classes and features of only 1.6% and a considerable reduction in 

computation time. They used Hjorth’s parameters to evaluate the performance of the 
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method. When extracting Hjorth’s features, time was reduced from an average of 397 

seconds while using every channel to 35 seconds after channel reduction.  

 

 

More recently, Cecchin et al. (2010) [33] described a semi-automatic method for 

temporal lobe seizures lateralization using raw scalp EEG signals intended to help 

neurologists in clinical evaluation. They used the first two Hjorth’s descriptors, namely 

activity and mobility, to estimate quadratic mean and dominant frequency of signals and 

characterized the seizure by a point in a frequency/amplitude plane. 

 

 

The EEG signal is often contaminated by various artifacts that difficult analysis but that 

can also serve to control an electronic device when they are correctly classified. 

Pourzare et al. (2012) [43] developed a novel approach to classify various facial 

movement artifacts in EEG signals using root mean square, polynomial fitting and 

Hjorth’s parameters. They obtained an average classification accuracy of 94% in 3 

subjects when discriminating between 5 classes.  

 

 

Hjorth’s parameters have also been applied successfully in non-biomedical fields. For 

example, Balestrassi et al. [31] present a case study that describes the use of NSDs to 

model and forecast variations in electricity load, which is of great importance for 

industrial consumers. This method can be applied to detect dynamic changes in 

nonlinear time series.   

 

 

For multichannel EEG interpretation, Wackermann proposed three global descriptors Ω, 

Σ, and Φ that allow analyzing EEG activity from all channels at a given time interval. 

These descriptors are similar to Hjorth’s parameters in the sense that Σ and Φ can be 

considered multichannel equivalents of Hjorth’s activity and mobility. The descriptor Σ is 

a measure of a total power, and Φ is a descriptor of generalized frequency. Ω is new. It 
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is a global measure of complexity or synchronization not related to Hjorth’s measure of 

complexity. These descriptors have been used for multichannel EEG sleep analysis 

representing an alternative approach [44]. It could also be worthy considering them for 

multichannel EMG analysis.   

 

 

2.4 Artificial Neural Networks 
 

An Artificial Neural Network (ANN) is a relatively new computational modeling tool 

intended to emulate the information processors that are found in biology; however, its 

objective is not to replicate the operation of the biological systems but to make use of 

what is known about their functionality for solving complex problems [45,46]. ANNs may 

be defined as structures comprised of densely interconnected adaptive simple 

processing elements (called artificial neurons or nodes) that are capable of performing 

massively parallel computations for data processing and knowledge representation [46].  

A typical three-layer artificial neural network structure is shown in Fig. 2.12. Some of the 

main areas in which ANNs have proven good performances are: pattern completion, 

classification, optimization, feature detection, data compression, approximation, 

association, prediction, and control [45].   

 
 

 
Fig. 2.12. Typical three-layer artificial neural network [45]. 
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ANNs have become very attractive algorithms because they integrate the following 

characteristics [46,47]:  

 

• Nonlinearity, which allows better fitting of the data.  

 

• High parallelism, which implies fast processing and hardware failure-tolerance.  

 

• Learning and adaptability, which allow the system to modify (update) its internal 

structure in response to a changing environment.  

 

• Generalization, which enables the application of the model to unlearned data and 

provides the system with the ability to handle imprecise and fuzzy information. 

This increases the system’s tolerance to noise.  

 

 

An artificial processing neuron receives inputs in the form of stimuli from the 

environment. The net input (ξ) is computed as the inner product of the input signals (x) 

and the weights (w). The net input passes through a linear threshold gate, and the 

output (y) is transmitted to another neuron or to the environment. The neuron becomes 

activated only when ξ exceeds the neuron’s threshold (also called bias, b). For n signals, 

the perceptron neuron operation is expressed as shown in (2.21) where 1 indicates ‘on’ 

and 0 indicates ‘off’, or class A and B, respectively, in classification problems. . 

 

𝑦 =
1,        𝑖𝑓 𝑤!𝑥! ≥ 𝑏

!

!!!

0,        𝑖𝑓 𝑤!𝑥! < 𝑏
!

!!!

 (2.21) 

 

 

If weight connections are positive (wi > 0), the link is called excitatory and the neuron 

gets activated, whereas negative weights reduce ξ and inhibit the neuron’s activity, 

generating inhibitory links. Weights change in proportion to the difference (error) 



 
 

39 

between the target output (Y) and the perceptron solution (y). The learning process 

consists in obtaining the set of weights that corresponds to the global minimum. In order 

to deal with nonlinearly separable problems, additional layer(s) of neurons, called hidden 

layers, can be placed between the input and output layers generating a multilayer 

perceptron (MLP) architecture [46]. 

 

 

Two classes of learning procedures exist. In unsupervised learning, network models are 

first presented with an input vector from the set of possible network inputs. The network 

is required to self-organize, and the learning rule adjusts the weights so that input 

examples are grouped into classes based on their statistical properties. Supervised 

learning consists in providing the network with both input data and its targets. Outputs 

are calculated based on current inputs and later compared with a desired output (target). 

The error between the two is used to modify the weights in order to reduce the error, 

and it makes the network more likely to give a correct answer when similar input data is 

presented. Learning is performed iteratively as the network is provided with training 

examples. It is possible to evaluate if a system has learned based on its ability to handle 

imprecise, fuzzy, noisy, and probabilistic information without affecting the response 

quality, and its ability to generalize when unknown data is presented [45,46,48]. 

 

 

Back-propagation (BP) networks are the most widely used type of networks. They are 

MLPs consisting of an input layer with nodes that represent the input variables, an 

output layer with nodes that represent the dependent variables, and one or more hidden 

layers containing nodes to help capturing nonlinearity in the data. The BP, which is a 

very common supervised learning algorithm, is a gradient descent method that 

establishes the weights in a multi-layer, feed-forward adaptive neural network. The 

system is initialized using small arbitrary weights, and learning is accomplished by 

successively adjusting the weights based on a set of input patterns and the 

corresponding set of desired output patterns. The error computed at the output side is 

propagated backwards from the output layer all the way to the input layer in order to 
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adjust the weights. Once the net effect at one hidden node is determined, the activation 

at that node is calculated using a transfer function [46,49]. 

 

 

Bayesian networks are useful for representing statistical dependencies. A Bayesian 

network is a graph-based model of joint multivariate probability that captures properties 

of conditional independence between variables. These models are attractive for their 

ability to describe complex stochastic processes and because they provide a clear 

methodology for learning from noisy observations [49].   

 

 

There are many different kinds of networks and learning algorithms that can be used 

according to the problem that wants to be solved. Some of them combine characteristics 

and methods that allow dealing with the problem using a better and more focused 

approach.  

 

 

Artificial neural networks have been widely applied to EMG classification problems. A 

few examples can be seen in Hudgins et al. [6], Englehart et al. [51,52], Liu et al. [53], 

Gazzoni et al. [54], Chan et al. [10], among many others. ANNs are continuing to gain 

popularity and are being applied in many areas of the biomedical field as well as in non-

related fields.   

 

 
2.5 K-Fold Cross-Validation 
 
Cross-Validation (CV) is a popular method for algorithm selection. The main idea behind 

it is to split data, once or several times, for estimating the risk of each algorithm. Part of 

the data is used for training, and the remaining part is used for estimating the risk; then, 

CV selects the algorithm with the smallest estimated risk. This method avoids overfitting 

because the training sample is independent from the validation sample [55].  
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There are different types of CV; all of them form part of a family of re-sampling methods. 

Even if these methods require a higher computational cost, they compensate the 

drawbacks from the holdout method, which are the difficulty of setting aside a portion of 

the dataset for testing when there is a sparse dataset, and since it is a single train-and-

test experiment, the holdout estimate of error rate can be misleading when the data split 

is not adequate. Some of these methods are: random sub-sampling, k-fold cross-

validation, and leave-one-out cross-validation [56].  

 

 

The k-fold cross-validation, sometimes called rotation estimation, is a general procedure 

for estimating the prediction error of any supervised classifier. In order to implement this 

method, at the beginning of the process, the training set must be divided into k equally 

populated folds. The system will be trained on k – 1 folds and evaluated on the 

remaining fold. The process will be repeated k times, leaving subsequently all the folds 

out and using them for error estimation [56-60]. This procedure is illustrated in Fig. 2.13. 

 

 

 
Fig. 2.13. K-fold cross-validation for k = 4 [56]. 

 

 

The true error is estimated as the average value of the errors committed in each fold as 

shown in (2.22). The error estimator depends on two factors: the training set and the 

partition into folds [56,61]. The bias of an error estimator is defined as the real error 
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value minus the expected estimated error value. According to [61], when the goal is to 

measure the error, a less biased error estimator should be used. For that purpose, they 

recommend the use of k = 5 or k = 10, which are less biased than k = 2 and have less 

computational cost than k = n. They also advice the use of repeated cross validation 

when it is computationally feasible.  

 

𝐸 =
1
𝐾 𝐸!

!

!!!

 (2.22) 

 

 

The advantage of k-fold cross-validation is that every fold from the dataset is eventually 

used for both training and testing.  

 

 

2.6 State of the Art in EMG Transient State Analysis for Myoelectric Control 
 
Surface EMG analysis has been widely studied over the years for prosthesis control 

using many different signal-processing techniques; however, there are just a few works 

reported on the use of the transient state of the EMG signal. 

 

 

This section will give a general perspective on EMG signal-processing techniques for 

myoelectric controlled devices; nonetheless, it will mostly concentrate in explaining the 

few works reported for transient EMG analysis.  

 
 
Research on the use of EMG for upper limb prosthesis control has been conducted 

since the 1940s. Reiter (1948) was the first one to use the EMG signal to control a 

simple prosthetic device [1,62,63]. There was significant international progress in the 

1960’s, but it was in the 1970’s that myoelectric prostheses began to make a significant 

clinical impact [11,64]. In 1975, Graupe and Cline [65] used four parameters of an 
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autoregressive-moving-average (ARMA) model of steady state signal to classify four 

upper-limb functions with a performance over 95%. Several groups continued studying 

and making improvements on myoelectric control based on the steady state of the EMG 

signal. However, it was until 1993, that Hudgins et al. [6] proposed a new control 

strategy considering the transient state of the signal. They based their work on the 

observation that there is considerable structure in the MES during the onset of a 

contraction and in the fact that it is different for distinct limb movements, which could 

make it useful for classification as shown in Fig. 2.14. They were able to discriminate 

between four movements (elbow flexion and extension and medial and lateral humeral 

rotations) using a single bipolar electrode pair. The features that were extracted from the 

EMG signal were MAV, MAVSLP, ZC, SSC, and WL. They later used a two-layer ANN 

as the classifier obtaining a correct average classification range of 91.2% (SD 5.6%) for 

9 normally limbed subjects and an average of 85.5% (SD 9.8%) for 6 amputee subjects. 

This work introduced the idea that the MES is not random during the initial phase of the 

muscle contraction, thus, finding deterministic components in the instantaneous 

myoelectric signal. Basha et al. [66] and Yamazaki et al. [67] found further evidence of 

deterministic components in the MES. 

 
 

 
Fig. 2.14. Patterns of transient MES activity. They were recorded using a single bipolar electrode pair 

placed over the biceps and triceps [68]. 
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Kuruganti et al. [13] suggested, in 1995, a similar protocol to the one followed in [6], but 

used a two-channel acquisition system. The classification accuracy obtained by the two-

channel system was significantly better than that of the one-channel system. They 

obtained an average classification accuracy of 93.7%, however, their classification 

accuracy for the one-channel data was lower than the one reported in [6]. They 

attributed this to changes in the instrumentation and slight differences in the electrodes’ 

location. 

 

 

In 1995, Englehart et al. [51,52] proposed the use of a dynamic feedforward neural 

network for classification of myoelectric signal patterns with the objective of integrating 

more efficiently the temporal information in transient signals. A few years later, they 

presented another study [9,69,70] in which they demonstrated that four channels of 

myoelectric data greatly improve the classification accuracy, as compared to one or two 

channels. They discriminated between six different classes of motion (flexion/extension 

of the wrist, ulnar/radial deviation of the wrist, and hand opening/closing). The first data 

set was produced compromising transient bursts by generating quick, moderately strong 

contractions, and the second data set consisted of steady state signals produced by 

holding each contraction with constant effort. They found that PCA dimensionality 

reduction was imperative to the success of the time-frequency based feature sets. 

Moreover, they demonstrated that the performance improves in the procession: time 

domain feature set (TD) à short-time Fourier transform (STFT) à wavelet transform 

(WT) à wavelet packet transform (WPT). Their results indicated a better classification 

accuracy using steady state data as compared to transient data. Based on this, they 

concluded that steady state data contains greater discriminating information. The 

performance was better for the four-class problem than for the six-class problem. The 

four-channel system, using a WPT feature set for steady state analysis, yielded 0.5% 

error when discriminating between four classes and 2% error with 6 classes. Another 

tested parameter was classification performance according to the record length. They 

found that classification performance has less degradation when decreasing the size of 

the window for feature extraction of steady state data, whereas degradation is more 
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evident using smaller windows with transient data. This could allow using shorter 

records and obtaining a faster system response from the steady state of the EMG 

signal. After their analysis, they proposed a continuous classifier that could produce 

classification results using the WPT on a continuous stream of steady state data [11].  

 

 

A control system based on Hudgin’s work was designed at the University of New 

Brunswick (UNB) in Canada [68,71]. The UNB myo-controller identified four types of 

muscular contraction from the signals measured in the biceps and triceps with a single 

EMG channel. It used a simple MLP artificial neural network as a classifier of a TD set, 

originally described in [6], that was extracted from the first 200 ms of myoelectric activity 

following the initiation of a contraction to determine the intent of the amputee. This 

system was capable of providing multifunction control from a single site and had the 

advantage that the control signals could be derived from natural contractions, thereby 

minimizing the conscious effort of the user. The UNB controller has been tested in the 

clinical setting and has been demonstrated to be highly reliable. After a short period of 

training, users were able to produce a correct function selection rate of over 90%.  

 

 

Chan et al. [72] proposed a fuzzy approach to classify single-site EMG signals for 

multifunctional prosthesis control and employed the same database as [6]. They 

obtained a slight improvement in classification.  

 

 

Liu et al. [53] developed a real-time learning method for motion discrimination using the 

MES. They applied wavelet transform and an ANN for classification of five different 

types of movements using a four-channel system in order to control a prosthetic device. 

They used both the steady and transient states of the EMG signal.  

 

 



 
 

46 

Ajiboye and Weir [73] presented a heuristic fuzzy logic approach to multiple EMG 

pattern recognition for multifunctional prosthesis control in 2005. They discriminated 

between four EMG patterns for subjects with intact limbs and between 3 patterns for 

limb-deficient subjects. Overall classification rates ranged from 94% to 99%. Their 

algorithm demonstrated success in real-time classification, both during steady state 

motions and motion state transitioning. The system’s update rate was of 47.5 ms. The 

onset for each contraction was automatically determined as the point when the active 

rms signal was greater than the rms quiescent signal mean plus three standard 

deviations and later verified through visual inspection.  

 

 

Karlsson et al. [74] introduced non-stationary signal analysis methods to analyze the 

EMG signals during dynamic contractions by estimating the time-dependent spectral 

moments. They obtained the best results using the continuous wavelet transform 

(CWT). They concluded that during dynamic contractions, spectral analysis must be 

handled with great care because the number of active motor units changes, the position 

of the electrodes with respect to the active muscle fibers varies as the contraction 

evolves, the muscle fiber length is modified, etc. All these factors, in addition to changes 

in muscle fiber conduction velocity due to muscle fatigue, tend to greatly increase the 

non-stationarity of the EMG signal.  

 

 

Several works have proposed real-time control methods, such as the research 

presented by Nishiwaka et al. [75-77] that contemplates the use of the Gabor transform 

and the MAV for a real-time learning method capable of discriminating ten forearm 

motions (4 wrist and 6 hand motions) using two EMG channels. Learning was achieved 

between 4 and 25 minutes. They obtained an average discriminating rate in an 8 

forearm motions experiment with 5 subjects of 85.1%. Chu et al. [78] proposed a real-

time pattern-recognition system implemented for a multifunction myoelectric hand. They 

attempted to recognize nine kinds of hand motions and achieved up to 97.4% of 

classification range, but results were stable only for steady state motions and 
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classification decreased during transient state motions, even if they used a fixed 

movement velocity. They concluded that this made it difficult to apply the proposed 

method to the tasks of daily living for a limb-deficient individual, and they stated that 

future work should look into using the method to recognize motions from EMG signals 

related to dynamic contractions and various movements velocities. Other methods, such 

as the use of Gaussian mixture models (GMMs) for classification using continuous 

myoelectric signals and four EMG channels for six classes of limb motions [79], have 

also been tested with good results and low computational load.   

 

 

Pattern recognition based myoelectric control systems have been widely researched; 

however, just a few of them have been implemented in a clinical environment. 

Hangrove et al. [80] made evident the fact that classification accuracy is the metric most 

often reported to describe how well control systems perform, but works mostly never 

relate this measure to the usability of the system. In their study, MES data 

corresponding to seven classes of motion (elbow flexion/extension, wrist 

flexion/extension, hand open, hand close, and rest) were collected from healthy subjects 

using an assistive brace described in [81] for performing isometric contractions. They 

used four MES channels placed around the circumference of the forearm and four 

additional channels placed around the circumference of the humerus. Initially they 

recorded steady contractions. Each subject held the contraction during 4 seconds until it 

reached a steady state. Afterwards, they included recordings that integrated the 

transient portion of the contraction. Subjects performed an additional four repetitions of 

the seven types of contractions initiating from the rest state. The first two repetitions of 

each type of contraction were used as training data, and the remaining two were used 

for testing. They extracted TD features from each window frame of 125 ms and used 

them as inputs to a linear discriminant analysis (LDA) classifier. Periodic 

misclassifications were found to occur during the transient portions of the EMG signals. 

Their results showed that including transient data along with steady state data for 

classifier training increases the classification error, but it also increases system usability. 

The authors suggest that classification error should not be the sole measure of a 
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system’s usability and performance. The importance of including transient state analysis 

is that it is easier to include transitions in the training data than to constrain the subject 

to be in a steady state position prior to data collection; the subject is simply prompted to 

perform a contraction in a natural manner.  

 

 

2.7 Advantages in the Use of Multichannel EMG  
 
As previously mentioned in the first chapter, multichannel EMG recordings are 

performed with electrodes placed on the involved muscles that can be used to identify 

the movement based on the fact that each movement corresponds to a specific pattern 

of activation of several muscles. The use of multichannel EMG helps reducing unwanted 

variability and allows a better representation of the real muscle activity in the collected 

signal [3,7]. Each channel includes the muscle group, the volume conductor between 

each muscle of the group and the electrode, and the summing electrode [64]. 

 

 

Performance improvements in classification can be obtained through an increase in the 

number of EMG channels. Davidge [82] investigated the increase in classification 

performance while increasing the number of channels. The results showed that the 

classification performance for discrimination of 10 functions using a linear discriminant 

(LD) classifier increased with the number of channels, reaching 94% at 16 channels. 

However, the performances at eight and four channels drop to only 93% and 87%, 

respectively [64]. 

 

 

One of the main advantages found in multichannel EMG recordings is that even if using 

less channels results in a lower computational load, with multichannel EMG, the 

positions of the electrodes can become less critical and the classification accuracy can 

be increased [12]. Several studies have proven increases in classification accuracy for 
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both steady and transient EMG states while increasing the number of channels 

[9,13,69,70].  

 

 

In order to increase the number of devices under the control of the MES more 

information must be extracted from it about the active muscle state. One of the main 

approaches to achieve this consists in the use of multiple EMG channels, which would 

provide localized information at a higher number of muscle sites [11,78]. 

 

 
2.8 State of the Art in Our Laboratory 
 
There have been several projects developed in our laboratory with the objective of 

analyzing and processing the EMG signal in order to find useful techniques to control 

prosthetic devices and virtual interfaces. Some of the most recent ones are described in 

this section.  

 

 

In 2003, a system that allowed identification of seven hand movements from an EMG 

signal registered on the forearm using only two EMG channels was developed. The 

classifier consisted on an ANN that identified EMG patterns generated during isometric 

contractions; in other words, it searched the relationship between the EMG signal and 

the final position of the hand [83]. 

 

 

In November 2010, an experimental training system was developed in order to allow an 

amputee to become familiar with a myoelectric control prosthesis through a virtual 

environment. This computer interface simulates an upper limb prosthesis for an above-

elbow amputee. It was developed in MATLAB® (version r2009a), and the control 

algorithm was generated from a single differential EMG channel (two register electrodes 

located on the muscle of interest and one reference electrode) from which three levels of 
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force were defined. The user was able to practice and identify each of the force levels 

generated by the contraction of the remaining muscle in his stump by receiving a visual 

feedback from the interface [84]. In this same year, there was another ongoing project 

that consisted in the design and implementation of a movement control system using a 

microcontroller for a transhumeral prosthesis with four degrees of freedom and parallel 

linear actuators [85].  

 

 

In 2011, a student developed an automatic system to decompose myoelectric signals 

using wavelet analysis and a support vector machine for the classification process. The 

objective was to isolate and classify the motor unit action potential from characteristics 

such as firing rate, form, and duration. The system was able as well to identify and 

classify the signals when a simulated noise was added [86]. There was another project 

that intended to execute different routines in an upper limb prosthetic device using as 

reference the movement patterns extracted from a healthy subject. The objective was to 

achieve the execution in a more continuous and anthropomorphic way. The 

implemented routines consisted of the necessary movements to achieve the following 

activities: drinking water, waving the hand, answering the phone, opening a door, and 

serving a glass of water from a jar. The algorithms were created by relating the 

prosthesis’s actuators with a set of angles measured during each activity. An artificial 

neural network allowed this classification [87,88]. 

 

 

In 2012, there was a project that consisted in the creation of an electronic system for 

algorithm evaluation that allows the design and implementation of parallel control 

algorithms for the robotic limb developed previously in the laboratory. This allows a finer 

control and improves consequently the performance of the executed routines [89].  
 
 
Leon’s work [90] served as antecedent for this study. The goal of his research was to 

develop a system capable of identifying 27 movements of the upper limb for the 



 
 

51 

simultaneous control of 3 degrees of freedom on a virtual anthropomorphic robotic arm. 

The system was based on the off-line analysis of the steady state of the EMG signal. 

Two databases were created. The first one consisted in the acquisition of 9 simple 

movements using 4 EMG channels and 12 healthy subjects. The second one, which is 

the one used in this study, was acquired using 8 EMG channels placed on the forearm 

of 20 healthy subjects to identify 27 motions (rest, 6 simple movements, 

12 combinations of two simple movements, and 8 combinations of three simple 

movements). Features from both the time and frequency domains were extracted and 

three different classifiers (LDA, ANN, and support vector machines (SVM)) were used. 

For the experiment with the first database, a 98.8% classification was obtained for the 

best case, and it was concluded that ANNs and SVMs outperformed LDA classifiers. 

From the experiment with the second database, conclusions showed that classification 

performance of the ANN and SVM systems increased using frequency domain features 

over TD features. The increase in the amount of data to identify all the classes 

decreased the accuracy of the classifiers. A 96.25% average classification was 

achieved, and it was proved that when using the information from just 6 of the 8 EMG 

channels, classification accuracy could remain over 95%.  

 

 

In [91], Leon et al. proposed the use of LDA, ANN, and SVM for classification of 9 

forearm motions (inactive, hand opening/closing, wrist pronation/supination, wrist 

flexion/extension and radial and ulnar deviations) from 12 healthy subjects using 4 EMG 

channels and extracting frequency features from the steady state of the signals. They 

obtained the best performance employing frequency features and a SVM classifier with 

an average misclassification rate of 1.53% (SD 1.08%). 
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Based on the whole previous revision about the state of the art in EMG control, it is clear 

the importance of having a reliable method for predicting the final position of a limb while 

the muscle fibers are contracting. This gives the possibility to action the prosthetic 

device while the subject initiates the contraction with no perceivable delay, and it also 

decreases the degree of concentration that would be needed to sustain a movement in a 

final position. This, together with the use of a multichannel technique that makes less 

critical the positions of the electrodes and increases classification accuracy [12], could 

result in a more robust and reliable control and could represent a promising alternative.  
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Chapter III 
 
 

Method 

 

 

3.1 Proposed Solution 
 
The general method proposed as a solution for the analysis of the EMG transient state 

is described in Fig. 3.1. Several methods were tested and will be explained below; 

however, the novel method, which has yet not been reported in literature, consists in 

using Hjorth’s parameters, originally intended as EEG descriptors, in the analysis of the 

EMG signal. The intention is to investigate their possible application for EMG analysis 

based on the fact that the definitions of Activity, Mobility, and Complexity seem to be 

particularly suitable to adapt to the nature of myoelectric signals.  

 

 

For this study, the system’s inputs consist on multichannel EMG signals taken from a 

database that will be subsequently described. The intention in the future is to be able to 

use the multichannel EMG signals directly recorded from the patient’s forearm muscles 

as inputs to achieve an on-line analysis.  

 

 

The transient EMG state was extracted from the whole EMG recording in order to be 

analyzed, and Hjorth’s parameters were extracted from it using a sliding window. The 

resulting feature matrix was used to feed an ANN that allows classifying the different 

hand motions. The performance of this method was tested using a virtual model where 

motions are reproduced as identified by the classifier.  
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The following points will be discussed in this section:  

 

• Data acquisition protocol, in which the movements that were selected for 

classification, the EMG database, the electrode placement used for this study, 

and the acquisition and conditioning system will be described.  
 

• Data processing, including the pre-processing technique, a detailed description of 

the different types of feature extraction, and information about the ANN model 

and the validation method.  
 

•  Validation of the model, describing how tolerance to noise was tested and a 

description of the virtual hand model. 
 
 

 
Fig. 3.1. General diagram describing the proposed solution. 

 

 

3.2 Data Acquisition Protocol 
 
The EMG data used for this study is taken from the second database described in [90]. 

Some details will be provided on how this database was created and on the information 

that was selected for the present study.  
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3.2.1 Movements’ Selection for Classification  
 
Six different motions were selected for classification. This corresponds to three different 

classes, each class containing an agonist and an antagonist movement in which the 

action of antagonist muscle groups are involved. The movements are enlisted in TABLE 

3.1 shown below and represented by Fig. 3.2. 

 

 
TABLE 3.1 

MOVEMENTS’ SELECTION FOR CLASSIFICATION 

CLASS MOVEMENT 1 MOVEMENT 2 

I Hand Closing (C) Hand Opening (O) 

II Wrist Pronation (P) Wrist Supination (S) 

III Wrist Flexion (F) Wrist Extension (E) 

 

 

 
Fig. 3.2. Representation of three classes of antagonist movements. Class I consists of hand closing and 

opening; class II stands for wrist pronation and supination, and class III includes wrist flexion and 

extension [90]. 

 
 
3.2.2 EMG Database  
 
The original database was created pursuing the objective of searching and analyzing the 

steady state of the EMG signal, which makes it not ideal for the transient state analysis, 
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but allows proving the capacity of adaptation and robustness of the model according to 

the provided signals.  

 

 

The database consists on the EMG signals collected from the dominant forearm of 21 

normally limbed subjects (19 males and 2 females) aged between 23 and 50 and with 

no register of neuromuscular disorders. During the creation of the aforementioned 

database, each subject was asked to repeatedly close and open the hand until the 

desired muscles for each of the EMG channels were identified. The skin was carefully 

cleaned before electrode placement. Afterwards, eight pairs of electrodes (one pair for 

each channel) were located in the designated areas. The reference electrode was 

subsequently placed on the elbow.  

 

 

Written consent was obtained from every subject before starting the study. A test 

session previous to the actual recording of the signals was made, and it consisted of 

explaining the participants how to execute each of the movements and allowed 

amplification gain calibration of the eight differential EMG channels to a common 

maximum value.  

 

 

The whole database contains 27 different movements of the forearm that were repeated 

five times each creating a total of 135 EMG recordings per subject. The objective of the 

study for which the database was initially created consisted on the analysis of the steady 

state during isometric sustained contraction; therefore, there was no regulation on the 

movements’ speed and acceleration. The subjects were asked to execute the movement 

until reaching a specified position (the portion between initiation of the movement and 

the final position comprises the transient state of the EMG signal) and to sustain it until 

the end of the recording with a relative medium force level (steady state of the signal). 

Each recording is 20 seconds in length. After each six recordings, a one-minute rest 

period was given to avoid muscle fatigue. 
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Only 6 types of movements (see TABLE 3.1) were analyzed for the present study, 

having a total of 30 recordings per subject (5 recordings per movement). The position of 

the subjects was standardized in order to reduce variability. They were all asked to 

perform the study in a standing position. Previous to each recording, their dominant arm 

was extended to the front and the hand rested in a relaxed position.  

 

 
3.2.3 Electrode Placement 
 

The EMG signals were recorded from eight differential channels placed on the forearm 

of the subject. Each channel consists of a pair of Ag-AgCl surface electrodes (model 

VERMED NeuroPlus A10043) with an interelectrode distance of 1.5 cm and a common 

reference electrode located on the subject’s elbow. The forearm muscles that were 

selected for each of the EMG channels are named in TABLE 3.2 and their anatomical 

position is shown in Fig. 3.3 (posterior and anterior views respectively). 

 

 
TABLE 3.2 

FOREARM MUSCLES RECORDED BY EACH EMG DIFFERENTIAL CHANNEL 

EMG CHANNEL FOREARM MUSCLE 

1 Extensor digitorum communis 

2 Extensor carpi ulnaris 

3 
Differential measure between extensor digitorum 

communis and extensor carpi ulnaris 

4 Extensor carpi radialis longus 

5 Brachioradial 

6 Flexor carpi radialis 

7 Palmaris longus 

8 Flexor carpi ulnaris 
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Fig. 3.3. Electrode placement for EMG signal recording. The left side (a) presents the posterior view of the 

forearm, and the right side (b) corresponds to the anterior view. They both show the location of each 

differential EMG channel used for this study.  

 

 

3.2.4 Signal Acquisition and Conditioning System 
 

The acquisition system consisted of 8 differential channels with an adjustable 

amplification gain that could vary between a range of 1000 and 7000 with a common 

mode rejection ratio (CMRR) superior to 96 dB. Each channel contained a first order 

analog band-pass filter with a low cut-off frequency of 20 Hz and a high cut-off 

frequency of 400 Hz. An image of this system is shown in Fig. 3.4. 

 

 

The analog outputs from each channel were connected by a shielded cable to a National 

Instruments acquisition card (model DAQ-Card 6024E) for 12-bit A/D conversion. The 

sampling rate used for the acquisition was 1024 Hz.   
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Fig. 3.4. Signal acquisition and conditioning system. The first section of the image shows the cables that 

attach to the electrodes corresponding to each of the channels and the shielded cable that connects the 

output of the system to the National Instruments acquisition card for 12-bit A/D conversion. The second 

section of the image shows the electric circuits for filtering and amplification of each channel [90].   

 

 

The software for EMG acquisition was developed in our laboratory using LabVIEW 8.5. 

It allowed visualization of the signal in order to avoid possible errors before starting data 

recording. 

 

 

3.3 Data Processing and Analysis 
 
The EMG data was processed and analyzed using MATLAB® (version R2012b). All the 

steps that were followed in order to define the parameters for pre-processing and 

classification are described below.  

 

 

3.3.1 Pre-processing  
 
In order to start analyzing the EMG data, the transient state was identified in the signal. 

It was also necessary to define the type and size of window that gave the best 
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classification performance and to propose a de-noising algorithm to extract information 

from the frequency bands of interest. 

 

 

3.3.1.1 EMG Signal Partition in Transient and Steady States 
 

Each recording was divided by supervision in transient and steady states as shown in 

Fig. 3.5. An attempt to make automatic selection of the transient state was made based 

on the change of the signal’s energy level and detection of its maximum; however, some 

difficulties were encountered because the database was not originally created with the 

intension of analyzing the transient segment. Therefore, the variability on where the 

movements started to be recorded and the noise level in the inactive segment of the 

signal decreased precision in the detection. The equation used for energy calculation is 

presented in (3.1). The decision of using a supervised method was taken to obtain a 

more reliable selection of the EMG transient state for every channel and every 

movement and to ensure that the analysis was done over the portion of interest of the 

signal. 

 

𝐸 = 𝑥(𝑛) !,
!

!!!

 
 

(3.1)  
 

 

where x(n) is the vector of the EMG signal considered within a window of length N.  

 

 

A visual inspection was made in order to determine where the transient state started for 

each of the recordings; afterwards, a fixed number of samples (1048 samples that 

correspond to 1.023 s) were selected for analysis. For the steady state, the same 

amount of samples was extracted from the corresponding segment of the signal.  
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Fig. 3.5. Two main states found in muscle contraction. They appear identified in an 8-channel EMG record 

of hand closure [90]  

 

 

3.3.1.2 Window Selection 
 
As previously mentioned in chapter I, the longest acceptable delay in a prosthetic control 

system has generally been established as 300 ms [6,9,10]; therefore, the window length 

for feature extraction in a real-time application cannot overpass 300 ms. Moreover, it is 

also necessary to consider the processing time together with the length of the window in 

order to calculate the total delay.  

 

 

Several types of windows were tested, namely rectangular, Hamming, Hanning, and 

Gaussian windows, in order to determine the one that provided best classification 

accuracy. The time and frequency representations of these windows can be seen in 

TABLE 3.3. 
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TABLE 3.3 
TIME AND FREQUENCY REPRESENTATION OF TESTED WINDOWS 

 

Window Type 
 

Time and Frequency Representations 

Rectangular 

 

 

Hamming 

 

 

Hanning 

 

 

Gaussian 
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After determining the type of window that yielded the best performance, several window 

lengths were tested (32 ms, 64 ms, 128 ms, and 256 ms) [9,70] all of them with an 

overlap of 50% of the samples.  

 

 

3.3.1.3 De-noising Algorithm and Mother Wavelet Selection 
 

For de-noising applications, it is often necessary to search for the optimal minimum 

mean squared error (MSE). In this study, a multisignal de-noising algorithm, consisting 

of a wavelet shrinkage method using Stein’s unbiased risk estimate (SURE) [92], was 

applied to each of the EMG windowed segments before feature extraction. This 

algorithm uses wavelet decomposition and attempts to reject noise by damping or 

thresholding in the wavelet domain. Reconstruction of the signal is made by selecting 

only a subset of the wavelet coefficients [93,94]. 

 

 

The wavelet shrinkage method relies on the basic idea that the energy of a function will 

often be concentrated in a few wavelet coefficients while the energy of noise is spread 

among all the coefficients; therefore, in the wavelet domain, the nonlinear thresholding 

function will tend to keep coefficients representing the function, and noise coefficients 

will tend to reduce to zero. By assumption, the noise is regarded as a random variable. 

The scalar product between the noise and the wavelet functions generate weak wavelet 

coefficients because the noise is uncorrelated to the wavelet. On the other hand, the 

scalar product between the EMG signals and the wavelet functions must generate 

greater wavelet coefficients because of the correlation that exists between them. The 

difficulty relies on determining the value of the threshold to apply between low and 

strong coefficients. The basic steps in wavelet shrinkage methods consist in first 

applying the DWT to the signal and obtaining the wavelet coefficients; afterwards, a 

threshold value that minimizes the mean-squared error (MSE) is obtained with simulated 

signal, and the nonlinear soft-threshold function is applied to the wavelet coefficients at 

each scale in order to remove those coefficients that are smaller than the threshold. 
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Finally, the inverse DWT is applied on the thresholded wavelet coefficients to obtain the 

estimate of the function [95-97].  

 

 

As a consequence of the orthogonality of the DWT, white noise is transformed into white 

noise in the wavelet domain. Hence, the wavelet coefficients of a noisy sample are just 

noisy versions of the noiseless wavelet coefficients [98].  

 

 

Wavelet shrinkage has proved to be an efficient noise cancelling technique. Applied to 

EMG, it has enabled to extract the bursting and sustained activity by reconstructing 

signals with few non-zero coefficients according to a predetermined threshold [96]. A 

basic model for compound EMG signal [96] can be defined as shown in (3.2), where 𝑓 is 

the signal of rhythmic bursting activity and 𝑧 is a Gaussian white noise. The objective is 

to recover 𝑓 by suppressing the noise, which can be achieved by optimizing the MSE in 

(3.3) between the estimated 𝑓 and the true 𝑓. 

 

𝐸𝑀𝐺 = 𝑓 + 𝑧 (3.2)  
 

𝐸 𝑓 − 𝑓
!
 (3.3)  

 

 

The Stein’s unbiased risk estimate is an adaptive threshold selection rule that minimizes 

the mean squared risk by determining a threshold level for the detail coefficients at each 

scale. For a model of white noise with a variance different to 1, the thresholds need to 

be rescaled by the SD of the noise estimated from the first level of decomposition. 

However, if the noise is unlikely to be white noise and distributes unevenly across 

scales, the SD of noise is estimated level by level, and thus the threshold is adaptively 

rescaled [96]. Based on the fact that sEMG signals contain crosstalk from nearby 

muscles, motion artifacts, inherent noise from the electronic equipment, noise from the 

skin-electrode interface, among other interferences previously explained in chapter II, 
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the noise was not assumed as pure white Gaussian noise. Therefore, rescaling of the 

threshold values in the de-noising algorithm implemented for this study was made based 

on a level dependent estimation of noise. The de-noising is applied scale by scale if the 

noise power spectral density is not constant; i.e., white noise. Wang et al. concluded 

in [96] that the optimal performance for separating the bursting and sustained activity 

from the compound sEMG is obtained by combining the SURE principle with non-white 

noise model.  

 

 

Certain wavelet functions closely resemble the motor unit action potentials that 

constitute the MES [25]; therefore, they have been widely applied for EMG analysis. In 

order to choose the mother wavelet that yielded the best performance for the wavelet 

shrinkage de-noising algorithm, both a fourth order Coiflet (coif4) and a fourth order 

Daubechies (db4) mother wavelets were tested. This was made calculating the 

correlation coefficients between the original signals and the ones reconstructed from the 

coefficients extracted at each level of decomposition. These two wavelets have been 

previously applied for EMG classification by different authors [2,9,19,25,27,53,96]. The 

coif4 mother wavelet yielded better results and was therefore selected.  

 

 

Coiflets have properties of (1) orthogonal transform, (2) compact support, and 

(3) highest number of vanishing moments. They have near zero phase properties. This 

avoids significant phase shift between the raw and decomposed signals. One of the 

reasons why they outperform Daubechies wavelet filters is that the latter have non-linear 

phase properties [96]. 

 

 

Since the information channel of the sEMG signal goes from 10-500 Hz, but the main 

concentration of energy is located within the frequency band of 50-150 Hz [2,18], the 

signal was decomposed until the third level. The corresponding frequency components 

are shown in TABLE 2.1. 
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3.3.2 Feature Extraction 
 
Features were extracted in both the time and frequency domains using different 

methods that will be explained in this section. The present study is focused on the 

transient state analysis of the EMG signal; however, some of the latter explained 

methods were tested as well on the steady state for comparison purposes.  

 

 

The use of Hjorth’s descriptors for multichannel sEMG classification is a novel proposal; 

therefore, the signals were analyzed using other methods based on the DWT in order to 

compare performance. The DWT has been widely applied to EMG analysis and 

classification; nonetheless, the method concerning extraction of the variance from the 

wavelet coefficients is also a new proposal.  

 
 

3.3.2.1 Hjorth’s Parameters 
 
The three Hjorth’s parameters, namely ‘Activity’, ‘Mobility’, and ‘Complexity’, were 

calculated along the eight EMG channels for each window of the previously de-noised 

signals. 

 

 

The performance of the algorithm for classification of the sEMG signals was initially 

tested using the three parameters, and later on using the three possible combinations of 

two parameters ‘Activity + Mobility’, ‘Activity + Complexity’, and ‘Mobility + Complexity’.  

 

 

Fig. 3.6 explains the way in which the feature matrix was created to feed the classifier. 

This was made for each subject individually. Every extracted parameter was normalized 

for each of the movements. This method was tested for both the transient and steady 

states of the EMG signals.  



 
 

67 

 
Fig. 3.6. Diagram of the method using Hjorth’s parameters. In the initial part of the image, a sliding window 

is applied to the transient state of the EMG signal. This part of the signal is de-noised and the 

corresponding parameters are calculated afterwards. The feature matrix in the middle shows the way in 

which the extracted parameters from each of the windows are arranged to feed the classifier. ‘Mobility’ 

and ‘Complexity’ parameters from each channel are arranged by rows. K-fold cross-validation with k=5 is 

applied to the feature matrix, and the result is fed into the ANN classifier.  

 

 

3.3.2.2 DWT’s Variance 
 

This method consisted in feeding the ANN classifier using a feature matrix created from 

the variance of the wavelet coefficients. Once the signal was windowed and the wavelet 

shrinkage algorithm at level 3 of decomposition using a fourth order Coiflet mother 

wavelet was applied to each of the windows, the variance was calculated from the detail 

coefficients of the second and third levels of decomposition. The values of the variance 



 
 

68 

for both decomposition levels were normalized for each of the movements and were 

used to build the feature matrix. This was made individually per subject. The previously 

explained method was tested in both the transient and steady states of the EMG signal.  

 

 

The variance was used as an approach to preserve the tendency of the wavelet 

coefficients but reducing the size of the feature matrix. The general diagram describing 

this method can be seen in Fig. 3.7. 

 

 

In order to decide from which coefficients extract the variance to create the feature 

matrix, several combinations were tested. These combinations included the variances 

from the detail coefficients of the first three levels of decomposition and the 

approximation coefficients of the third level; however, the aforementioned combination 

(variance of detail coefficients from second and third levels of decomposition) proved to 

have a better performance than every other tested combination.  

 

 

 
Fig. 3.7. Diagram of the method using the variance of wavelet coefficients. In the initial part of the image, 

a sliding window is applied to the transient state of the EMG signal. This part of the signal is de-noised 

using a wavelet shrinkage algorithm and the wavelet coefficients are extracted. The feature matrix in the 

middle is created by calculating the variance of the detail coefficients at level 2 and 3 of decomposition for 

each channel. K-fold cross-validation with k=5 is applied to this feature matrix, and the result is fed into the 

ANN classifier. 
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3.3.2.3 DWT Using PCA 
 
This third method was only tested on the transient state of the EMG signals. The 

procedure that was followed is described in Fig. 3.8, and it is similar to the one proposed 

in [9,27,69,70]. 

 

 

In order to create the feature matrix, the wavelet coefficients from the first three levels of 

decomposition (details from the first to the third levels and approximations from the third 

level) were extracted for each of the movements after the de-noising algorithm was 

applied to the windowed segment of the signal. PCA was applied afterwards to reduce 

the dimension of the data, and the resulting matrix was used to feed the ANN classifier. 

K-fold cross-validation with k=5 allowed dividing the data in training and testing sets. 

 

 

 

 
Fig. 3.8. Diagram of the method of DWT using PCA. In the initial part of the image, a sliding window is 

applied to the transient state of the EMG signal. This part of the signal is de-noised using a wavelet 

shrinkage algorithm, and the wavelet coefficients are extracted from detail levels 1 to 3 and approximation 

level 3 for each of the movements. PCA is applied in order to reduce data dimensionality, and the 

resulting matrix of principal components is transposed and joined with those from the other movements 

creating the feature matrix in the middle. K-fold cross-validation with k=5 is applied to this feature matrix, 

and the result is fed into the ANN classifier. 
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3.3.3 Artificial Neural Network Model 
 
To build the classifier models, different ANNs were constructed according to the EMG 

state under analysis and the method selected for feature extraction. Final architecture 

depended on the available feature matrix. The number of neurons in the hidden layer 

established for each of the models was determined based on experimental testing. The 

characteristics for each model are presented in TABLE 3.4. 

 

 
TABLE 3.4 

FINAL ANNS’ ARCHITECTURE 

Model Type EMG State Neurons on the 
Hidden Layer Output Training 

Algorithm 

Hjorth’s 
Parameters 

Transient 9 Binary codified ‘trainbr’* 

Steady 9 Binary codified ‘trainbr’* 

DWT’s Variance 
Transient 10 Binary codified ‘trainbr’* 

Steady 10 Binary codified ‘trainbr’* 

DWT using PCA Transient 15 Binary codified ‘trainbr’* 
 

*’TRAINBR’ is Bayesian Regulation Backpropagation Algorithm 

 

 

The models were trained individually for each of the subjects based on the fact that the 

exact form and execution of the contraction types is subject dependent. Previous works, 

such as the one in [6], have not attempted to compare data across subjects. As a means 

to validate this, an essay to classify subjects’ data using a model trained with the 

recordings obtained from another one was made. The performance was low for most of 

the subjects; therefore, this effort was abandoned, and the models were trained 

individually. However, some movements were indeed correctly classified which suggests 

that a similar structure exists.  

 

 

Every ANN model in this study was trained using a Bayesian regulation backpropagation 

algorithm (‘TRAINBR’), which is a useful algorithm when there is not a big amount of 
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information available because only two data sets are needed: training and testing sets. 

Other training algorithms were evaluated, but the best performance was achieved with 

the one previously mentioned.  

 

 

The network’s output was binary codified. Three neurons were used in order to generate 

the necessary combinations to codify the six different movements.  

 

 

3.3.3.1 K-Fold Cross-Validation 
 
In order to evaluate the ANN’s performance, k-fold cross-validation (k=5) process was 

carried out. This assures the randomness of the windows selected for training and 

testing, which helps proving the robustness of the classifier and avoids overfitting of the 

model.  

 

 

The size of the training set 𝑛! is determined as shown in (3.4), where 𝑛 is the number of 

samples in the complete data set [55]. The remaining samples are used for testing. The 

process is repeated k times. This procedure is useful when data sets are not very large.  

 

𝑛! = 𝑛
(𝑘 − 1)
𝑘  (3.4) 

 

 

The data sets obtained from these partitions were used to feed the ANN classifier.  

 

 

3.3.4 Algorithm’s Tolerance to Additive White Gaussian Noise 
 

In order to test the algorithm’s robustness, the tolerance of the classifier to additive white 

Gaussian noise (AWGN) was tested. White Gaussian noise has uniform power across 
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the frequency band; thus, it allows simulating the effect of many random processes that 

occur in nature. In the time domain, it presents a normal distribution and an average 

value of zero.  

 

 

Due to the fact that there was not a big amount of information available per subject for 

each of the movements, new registers were created by averaging the available ones. 

These registers were contaminated with AWGN by the procedure subsequently 

described:  

 

• The signal power (Ps) was calculated as indicated in (3.5), where N is the total 

number of samples. The value was converted to dB using equation (3.6).  

 

𝑃𝑠 =
1
𝑁 𝑥(𝑛) !

!

!!!

 
 
(3.5) 

 

 

𝑃𝑠!" = 10 log!" 𝑃𝑠 
 
(3.6) 

 

• The SNR was calculated according to the desired percentage of noise, np, as 

shown in equation (3.7). The value of np is given in decimals. 

 

𝑆𝑁𝑅!" = 10 log!"
1
𝑛!

 
 
(3.7) 

 

• The noise power (Pn) was later calculated by subtracting the SNR from the 

signal power as it appears in equation (3.8).  
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𝑃𝑛!" = 𝑃𝑠!" − 𝑆𝑁𝑅!" 
 
(3.8)   

 

 

• Finally, the white Gaussian noise was calculated according to the noise power 

obtained from (3.8) using the MATLAB® function ‘wgn’. This was added to the 

signal created from the averaged registers in order to create a new contaminated 

register that allowed testing the classifier’s robustness.  

 

 

The noise calculation and signal contamination were made for each window considering 

that in an on-line application, contamination affects the recorded segment over which 

the analysis is being made, and the rest of the signal does not exist at that instant of 

time. The signal’s power was calculated per channel; therefore noise was calculated 

proportionally to each channel’s power and added to achieve the desired percentage in 

all of them.  

 

 

3.3.5 Virtual Hand Model 
 

The virtual hand model used for testing the algorithm is shown in Fig. 3.9. This model 

was developed by Barraza [84,99,100] and later used by Leon in [90].  

 

 

The model was created using the MATLAB® virtual reality tool (V-Realm Builder 2.0). 

The general functioning of the algorithm is based in calculating the angular displacement 

needed to reach from an actual position to an objective one. 

 

 

A table was built with the values of the angles for the wrist and the finger’s phalanges 

that the model had to take in order to reach the desired positions as seen in Fig. 3.9. 

These values were determined experimentally by manipulating the model. 



 
 

74 

The virtual model changes from one position to another in a fixed number of steps that 

can be changed by software in order to give a more paused or rapid appearance to the 

movement.  

 
 

 
Fig. 3.9. Different hand motions represented in the virtual hand model. 
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 Chapter IV 
 
 

Results 

 

 

4.1 Overview 
 
The results obtained for the methods described in the previous chapter will be presented 

in this section and will be later discussed on Chapter V.   

 
 
The general definition of the system’s variables was based on the method consisting of 

the transient state analysis using Hjorth’s parameters. All the variables are essential to 

the system’s performance and assigning a hierarchy of how they should be defined is 

complicated. Therefore, every time that one of them was established, the joint system 

was tested. 

 

 

The parameters that were defined for the method using Hjorth’s descriptores were later 

evaluated for every other method (DWT’s variance and DWT using PCA) in order to 

ensure as much as possible similar conditions between processing time, model 

complexity, and classification accuracy. Some individual elements, such as the number 

of neurons in the hidden layer as will be later mentioned, were adjusted individually for 

each method.  

 

 

In order to start processing the signals, it was essential to study their properties in both 

time and frequency domains to be able to decide which techniques were more suitable 

for their analysis. The following information gives a general idea of the basic properties 

of these signals.  
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Fig. 4.1 gives an example of a segment of the multichannel raw EMG signal recorded 

from one of the subjects during an extension and indicates how the segments were 

separated in order to be processed as transient and steady states, respectively. The first 

shadowed region covers the transient state of the signal and corresponds to the 

dynamic part of the contraction in which the fiber lengths are modified while the subject 

is executing the movement. The second shadowed region is placed over a portion of the 

steady state. In this part of the signal, the subject has already reached the final position 

and holds the contraction. Here, the fiber lengths remain constant. Before the 

contraction was initiated, the subject maintained the limb in an inactive position; 

however, it is possible to appreciate the presence of noise, specially, in channels 4 to 8, 

which complicates processing. A set of signals as the one presented in this example 

constitutes the database used for the study.  

 
 

 
Fig. 4.1. Multichannel raw EMG signal of wrist extension. The first shadowed region covers the transient 

state of the signal, and the second one corresponds to the steady state.  
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The same movement for the same subject is again shown in Fig. 4.2; however, in this 

figure, the FFT for each channel was calculated and presented next to the original 

signal. The first four channels have higher amplitude values than the last four. In the 

same way, the magnitude of the frequency spectrum of these channels is significantly 

weaker than that of the first four, which are all associated to extensor muscles as 

previously shown in TABLE 3.2 and Fig. 3.3. The shadowed portion of the FFT shows 

the frequency components comprised within the first three levels of wavelet 

decomposition as denoted in TABLE 2.1. 

 
 

 
Fig. 4.2. Raw multichannel EMG signal of wrist extension and its FFT. The shadowed portion of the FFT 

for each channel represents the frequency band comprised within the first three levels of wavelet 

decomposition of the signal.  
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Moreover, the information contained in the frequency components for every level of 

wavelet decomposition can be obtained by calculating the corresponding FFT. Fig. 4.3 

shows an example for channel 4 of the extension movement. The first column contains 

the transient segment and the coefficients of the first three levels of decomposition; the 

third column has the equivalent information for the steady state. The second and fourth 

columns present the FFTs of the original signals and of each of the wavelet 

decomposition levels. This allows corroborating their corresponding frequency band.  

 

 

 
Fig. 4.3. De-noised EMG segment and corresponding frequency components. A DWT at third level of 

decomposition using a ‘coif4’ mother wavelet was applied to each segment of the signal. The first column 

shows, in the first row, the de-noised transient segment of the extension movement for channel 4. The 

second, third, and fourth rows contain the detail coefficients of the first three levels of decomposition. The 

fifth row corresponds to the approximation coefficients of the third level. The second column illustrates the 

corresponding frequency components obtained from the FFT. Columns three and four are the equivalent 

for the steady segment of the signal.    
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4.2 Hjorth’s Parameters  
 

In order to start using Hjorth’s parameters as possible means to analyze and classify 

EMG signals, the window type and length for signal analysis was determined. These 

results are presented below.  

 

 

4.2.1 Selection of Window Parameters 
 
In order to analyze the data, it was essential to define an appropriate window for feature 

extraction. Both window type and length were chosen according to the following results.  

 

 
4.2.1.1 Window Type 
 
Four window types, previously mentioned in TABLE 3.3, were tested. The results are 

presented in Fig. 4.4 and Fig. 4.5. The first one contains the mean classification 

percentage of the 21 test subjects for each of the movements, while the second one 

shows the mean error percentage considering the six movements.  

 

 

The test to select the most appropriate window type for this application was performed 

using the data from the transient EMG state and a window length of 128 ms. Hjorth’s 

parameters were the features extracted from each window.  

 

 

Finally, TABLE 4.1 gathers the information of the mean classification percentage and 

SD according to the window type for each of the movements. Based on the obtained 

results, the Hamming window was selected as the one yielding the best classification 

performance and the lowest SD for the whole sample. It was used in all the latter tests.  
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Fig. 4.4. Mean classification percentage depending on window type. This figure shows the mean 

classification percentage for the 21 subjects that participated in the study according to the selected 

window type. The test was done over the transient EMG segment using Hjorth’s parameters and a window 

length of 128 ms.  

 

 

 
Fig. 4.5. Mean error percentage for window type selection. The error percentage is calculated from the 

mean classification of the six movements for the whole sample of 21 subjects. Hjorth’s parameters and a 

window length of 128 ms were used over the transient EMG segment. 
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TABLE 4.1 
MEAN CLASSIFICATION PERCENTAGE AND SD ACCORDING TO WINDOW TYPE 

WINDOW 
TYPE 

MOVEMENT 

Closing Opening Pronation Supination Flexion Extension Mean 

Rectangular 92.86±5.31% 87.62±9.14% 87.21±7.86% 82.59±8.14% 96.12±2.75% 91.84±4.70% 89.71±4.01% 

Hanning 97.21±2.32% 94.29±4.72% 91.02±6.73% 92.99±6.92% 98.91±1.68% 96.87±3.15% 95.22±3.09% 

Gaussian 96.94±2.13% 95.03±4.88% 91.56±5.77% 92.45±6.73% 99.12±1.24% 96.73±3.04% 95.31±3.04% 

Hamming 97.69±2.14% 95.71±4.02% 92.31±5.41% 93.06±6.46% 99.25±1.16% 97.35±3.01% 95.90±2.56% 

 

 

4.2.1.2 Window Length 
 

Classification performance was tested using different window lengths. An overlap of 

50% of the samples was maintained for every case. Shorter window lengths are 

desirable in order to obtain faster responses from the devices; however, it is harder to 

extract significant information from them. Without considering the processing time of the 

system, windows of less than 300 ms are suitable for real-time applications [6,9,10].    

Fig. 4.6 and TABLE 4.2 show classification percentage for the transient EMG state 

depending on window length. Fig. 4.7 and TABLE 4.3 are the equivalent for the steady 

state. The comparison between the influence of window length in classification 

percentage for each of the EMG states is shown in Fig. 4.8 and TABLE 4.4. 

 
 

 
Fig. 4.6. Mean classification percentage of the transient EMG state depending on window length. This was 

tested using a Hamming window with an overlap of 50% of the samples. 
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TABLE 4.2 
MEAN CLASSIFICATION PERCENTAGE AND SD FOR TRANSIENT EMG ACCORDING TO WINDOW LENGTH 

WINDOW 
LENGTH 

[ms] 

MOVEMENT 

Closing Opening Pronation Supination Flexion Extension Mean 

256 97.69±2.65% 95.92±4.20% 93.47±5.80% 93.88±5.59% 99.73±0.86% 98.37±1.93% 96.51±2.24% 

128 97.69±2.14% 95.71±4.02% 92.31±5.41% 93.06±6.46% 99.25±1.16% 97.35±3.01% 95.90±2.56% 

64 96.25±3.35% 91.37±6.42% 88.03±6.15% 89.05±7.70% 97.59±2.53% 94.79±4.30% 92.85±4.00% 

32 91.07±2.91% 83.99±5.89% 78.42±8.03% 81.10±6.13% 94.39±2.79% 90.04±3.99% 86.50±3.44% 

 

 

 
Fig. 4.7. Mean classification percentage of the steady EMG state depending on window length. This was 

tested using a Hamming window with an overlap of 50% of the samples. 

 
 

TABLE 4.3 
MEAN CLASSIFICATION PERCENTAGE AND SD FOR STEADY EMG ACCORDING TO WINDOW LENGTH 

WINDOW 
LENGTH 

[ms] 

MOVEMENT 

Closing Opening Pronation Supination Flexion Extension Mean 

256 98.37±2.80% 96.33±4.96% 94.83±5.90% 94.97±4.94% 99.05±1.65% 97.55±4.45% 96.85±2.29% 

128 98.16±2.56% 96.19±3.24% 92.65±6.00% 94.22±5.37% 99.39±1.24% 97.96±1.78% 96.43±2.21% 

64 96.79±2.77% 92.00±6.73% 88.54±6.65% 89.71±6.32% 97.84±1.76% 95.30±3.86% 93.37±3.66% 

32 91.01±5.26% 81.93±5.92% 75.43±7.44% 76.77±7.34% 94.40±3.26% 88.42±4.95% 84.66±3.44% 
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Fig. 4.8. Mean error percentage in classification performance depending on window length for transient 

and steady EMG states. The error is calculated from the mean classification percentage of the six 

movements for the 21 test subjects. 

 

 
TABLE 4.4 

COMPARISON OF MEAN ERROR PERCENTAGE AND SD FOR TRANSIENT AND STEADY EMG STATES ACCORDING 
TO WINDOW LENGTH 

WINDOW LENGTH                     
[ms] 

EMG STATE 

Transient Steady 

256 3.49±2.24% 3.15±2.29% 

128 4.10±2.56% 3.57±2.21% 

64 7.15±4.00% 6.63±3.66% 

32 13.50±3.44% 15.34±3.44% 

 
 
4.2.2 Neuron Number Selection 
 

Both 256 ms and 128 ms Hamming window lengths yielded good classification 

performance; therefore, the number of neurons in the hidden layer of the model was 

defined by comparing classification performance of transient EMG segment using a 

256 ms Hamming window with 50% sample overlap and extracting Hjorth’s parameters 

as features for classification. The results obtained are shown in Fig. 4.9 and TABLE 4.5.  
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Fig. 4.9. Classification performance according to the number of neurons in the hidden layer of the ANN. 

 

 
TABLE 4.5 

CLASSIFICATION PERFORMANCE RELATED TO THE NUMBER OF NEURONS IN THE HIDDEN LAYER OF THE ANN 
Number of 
Neurons Closing Opening Pronation Supination Flexion Extension Mean  SD 

20 97.82% 95.65% 94.97% 94.97% 99.18% 98.64% 96.87% 2.00% 

15 97.82% 95.24% 94.42% 95.92% 99.18% 98.23% 96.80% 2.34% 

10 97.82% 95.51% 93.88% 94.56% 99.18% 98.23% 96.53% 2.19% 

9 97.69% 95.92% 93.47% 93.88% 99.73% 98.37% 96.51% 2.24% 

8 98.37% 94.97% 93.61% 93.33% 99.32% 97.96% 96.26% 2.42% 

7 97.55% 94.97% 93.33% 92.93% 99.59% 98.78% 96.19% 2.99% 

6 97.69% 95.10% 92.38% 94.01% 99.32% 98.23% 96.12% 2.17% 

5 96.33% 95.24% 93.33% 93.06% 98.64% 98.37% 95.83% 2.41% 

4 97.01% 94.69% 91.83% 91.16% 98.10% 97.28% 95.01% 3.11% 

3 92.93% 94.15% 91.97% 91.02% 92.18% 97.55% 93.30% 4.59% 

2 90.75% 88.71% 84.49% 85.58% 91.43% 90.20% 88.53% 5.75% 

 

 

The selected number of neurons for the hidden layer of the ANNs was adjusted for each 

of the methods. Nine, ten, and fifteen neurons were selected respectively for Hjorth’s 

parameters, DWT’s variance, and DWT using PCA methods, as the ones that allowed a 



 
 

85 

good balance between the model’s complexity, the training time, and the classification 

performance (see TABLE 3.4).  

 

 

4.2.3 Hjorth’s Parameters Selection 
 

Finally, the last parameter to define was the number of Hjorth’s descriptors to be 

included in the feature matrix. Every possible combination between Hjorth’s parameters 

was tested in order to find the one that performed the best. Previous 

studies [33,36,38,41], related to EEG signal analysis, have already reported to use just 

two of Hjorth’s parameters or to find significant changes in just two of them, mainly 

Mobility and Complexity. The classification performance obtained from the different 

combinations of Hjorth’s parameters used to build the feature matrix is shown in         

Fig. 4.10, and Fig. 4.11 illustrates the mean error for each method. The test was made 

over the transient EMG data using a 128 ms Hamming window with 50% overlap. 

 

 

 
Fig. 4.10. Mean classification percentage according to the combination of Hjorth’s parameters used to 

build the feature matrix. The test was conducted on the transient EMG state using a 128 ms Hamming 

window with 50% sample overlap. 
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Fig. 4.11. Mean error percentage according to the combination of Hjorth’s parameters used to build the 

feature matrix. The error is calculated from the mean classification percentage of the six movements for 

the 21 test subjects. The test was conducted on the transient EMG state using a 128 ms Hamming 

window with 50% sample overlap.  

 
 

TABLE 4.6 
MEAN CLASSIFICATION PERCENTAGE USING HJORTH’S PARAMETERS ARRANGED IN DIFFERENT FEATURE 

MATRIX SCHEMES  

Hjorth’s 
Parameters 

MOVEMENT 

Closing Opening Pronation Supination Flexion Extension Mean 

Act+Mob+Compl 97.21±2.61% 94.22±5.85% 91.22±5.43% 92.18±6.85% 99.18±1.24% 97.01±2.71% 95.17±2.68% 

Act+Mob 95.24±3.76% 93.54±4.60% 90.20±6.50% 90.48±7.09% 98.37±2.03% 96.94±3.36% 94.13±3.47% 

Act+Compl 95.92±3.30% 93.33±5.81% 90.14±6.39% 90.54±6.59% 97.69±2.00% 95.03±4.11% 93.78±3.22% 

Mob+Compl 97.69±2.14% 95.71±4.02% 92.31±5.41% 93.06±6.46% 99.25±1.16% 97.35±3.01% 95.90±2.56% 
 

*Act = Activity, Mob = Mobility, Compl = Complexity 

 
 
Based on the previous results, the feature matrix for this method was built using only 

Mobility and Complexity parameters, which performed the best as it can be appreciated 

in the last row of TABLE 4.6. 
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4.2.4 Transient Vs. Steady State Analysis 
 
 

Englehart et al. [9] reported that steady state analysis considerably outperformed 

transient state analysis for EMG classification and suggested to discard its use in 

myoelectric controlled applications. As this is an important implication regarding the 

objective of the present study, the analysis was performed on both EMG states in order 

to corroborate this on the available data.  

 

 

As both 128 and 256 ms window lengths were suitable for this method and can be 

applied in real-time applications, the test was repeated for each window length.  

 

 

The classification performance of the transient and steady EMG states was computed 

and a comparison between them was made. Fig. 4.12 and TABLE 4.7 show the mean 

classification percentage for each of the subjects when using a 256 ms Hamming 

window with 50% overlap. The average classification percentages for each of the 

movements considering the whole test population, as well as the total mean, are shown 

in Fig. 4.13.  

 

 

The same comparison procedure between the transient and state state using Hjorth’s 

parameters was repeated with the 128 ms Hamming window with 50% overlap. The 

results are arranged in the same way that those for the 256 ms Hamming window, and 

can be found respectively in Fig. 4.14, TABLE 4.8, and Fig. 4.14. 
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Fig. 4.12. Classification performance by subject for the transient and steady states using Hjorth’s 

parameters and a window length of 256 ms. 

 

 

 

 
Fig. 4.13. Mean classification performance by movement for the transient and steady states using Hjorth’s 

parameters and a window length of 256 ms.  
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TABLE 4.7 

TRANSIENT VS. STEADY EMG CLASSIFICATION PERCENTAGE USING HJORTH’S PARAMETERS EXTRACTION FROM 
A 256 MS HAMMING WINDOW  

Subject 
Closing Opening Pronation Supination Flexion Extension 

Trans.* Steady Trans. Steady Trans. Steady Trans. Steady Trans. Steady Trans. Steady 

1 100.00 100.00 100.00 100.00 97.14 97.14 97.14 100.00 100.00 100.00 100.00 100.00 

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

3 97.14 100.00 97.14 97.14 97.14 100.00 97.14 100.00 100.00 100.00 100.00 100.00 

4 97.14 97.14 97.14 97.14 100.00 97.14 88.57 88.57 100.00 100.00 100.00 97.14 

5 97.14 100.00 82.86 82.86 91.43 88.57 82.86 88.57 100.00 100.00 97.14 97.14 

6 94.29 100.00 100.00 94.29 97.14 91.43 91.43 91.43 100.00 100.00 100.00 100.00 

7 100.00 100.00 97.14 97.14 100.00 94.29 91.43 100.00 100.00 100.00 97.14 97.14 

8 100.00 100.00 100.00 94.29 88.57 91.43 97.14 91.43 100.00 100.00 97.14 100.00 

9 97.14 97.14 97.14 97.14 80.00 85.71 88.57 94.29 97.14 100.00 97.14 94.29 

10 100.00 100.00 97.14 97.14 94.29 97.14 97.14 97.14 100.00 100.00 100.00 100.00 

11 97.14 91.43 94.29 97.14 82.86 80.00 88.57 94.29 100.00 100.00 97.14 100.00 

12 97.14 100.00 94.29 100.00 97.14 94.29 100.00 100.00 100.00 100.00 97.14 100.00 

13 100.00 100.00 94.29 97.14 91.43 91.43 85.71 94.29 100.00 94.29 100.00 100.00 

14 91.43 97.14 94.29 94.29 97.14 97.14 100.00 100.00 100.00 100.00 100.00 100.00 

15 97.14 100.00 97.14 97.14 91.43 97.14 100.00 100.00 100.00 100.00 97.14 100.00 

16 97.14 97.14 100.00 100.00 94.29 94.29 94.29 91.43 100.00 100.00 94.29 94.29 

17 97.14 100.00 97.14 94.29 97.14 100.00 100.00 97.14 100.00 100.00 100.00 100.00 

18 100.00 100.00 97.14 100.00 82.86 100.00 91.43 97.14 97.14 97.14 100.00 97.14 

19 100.00 100.00 97.14 100.00 97.14 100.00 100.00 94.29 100.00 100.00 100.00 100.00 

20 100.00 100.00 88.57 94.29 94.29 94.29 85.71 80.00 100.00 97.14 97.14 100.00 

21 91.43 94.29 91.43 94.29 91.43 94.29 94.29 91.43 100.00 100.00 94.29 91.43 

MEAN 97.69 98.78 95.92 96.46 93.47 94.56 93.88 94.83 99.73 99.46 98.37 98.50 

SD 2.65 2.32 4.20 3.82 5.80 5.18 5.59 5.24 0.86 1.46 1.93 2.49 
 

* Trans. refers to the transient EMG state 

** Every value in the table is expressed as a percentage (%) 
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Fig. 4.14. Classification performance by subject for the transient and steady states using Hjorth’s 

parameters and a window length of 128 ms. 

 

 

 
Fig. 4.15. Mean classification performance by movement for the transient and steady states using Hjorth’s 

parameters and a window length of 128 ms. 
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TABLE 4.8 

TRANSIENT VS. STEADY EMG CLASSIFICATION PERCENTAGE USING HJORTH’S PARAMETERS EXTRACTION FROM 
A 128 MS HAMMING WINDOW  

Subject 
Closing Opening Pronation Supination Flexion Extension 

Trans.* Steady Trans. Steady Trans. Steady Trans. Steady Trans. Steady Trans. Steady 

1 98.57 100.00 97.14 94.29 95.71 94.29 94.29 97.14 100.00 100.00 98.57 100.00 

2 100.00 100.00 98.57 100.00 97.14 98.57 100.00 98.57 100.00 100.00 98.57 98.57 

3 97.14 100.00 94.29 95.71 92.86 95.71 94.29 100.00 95.71 100.00 98.57 98.57 

4 98.57 98.57 100.00 97.14 100.00 95.71 95.71 90.00 100.00 100.00 97.14 97.14 

5 100.00 97.14 84.29 91.43 90.00 85.71 71.43 85.71 98.57 100.00 87.14 97.14 

6 98.57 98.57 95.71 94.29 94.29 97.14 97.14 97.14 100.00 97.14 100.00 98.57 

7 98.57 97.14 94.29 98.57 94.29 92.86 94.29 94.29 98.57 100.00 94.29 97.14 

8 98.57 100.00 97.14 100.00 85.71 90.00 97.14 97.14 100.00 100.00 97.14 100.00 

9 91.43 98.57 92.86 94.29 82.86 88.57 85.71 94.29 98.57 100.00 95.71 92.86 

10 98.57 100.00 97.14 98.57 92.86 100.00 100.00 100.00 100.00 100.00 98.57 100.00 

11 97.14 88.57 98.57 95.71 81.43 81.43 88.57 87.14 100.00 98.57 100.00 100.00 

12 95.71 100.00 95.71 98.57 92.86 90.00 97.14 97.14 100.00 100.00 98.57 97.14 

13 95.71 98.57 91.43 94.29 87.14 85.71 90.00 87.14 98.57 100.00 100.00 100.00 

14 98.57 100.00 97.14 97.14 98.57 100.00 95.71 100.00 100.00 100.00 100.00 97.14 

15 98.57 97.14 95.71 100.00 88.57 90.00 97.14 97.14 98.57 100.00 98.57 95.71 

16 97.14 98.57 98.57 95.71 97.14 81.43 97.14 100.00 100.00 98.57 92.86 97.14 

17 100.00 98.57 98.57 100.00 95.71 97.14 90.00 97.14 100.00 100.00 97.14 95.71 

18 95.71 100.00 100.00 97.14 85.71 98.57 92.86 90.00 97.14 97.14 100.00 98.57 

19 100.00 97.14 98.57 97.14 98.57 100.00 98.57 94.29 100.00 100.00 97.14 98.57 

20 98.57 97.14 87.14 87.14 97.14 95.71 87.14 81.43 98.57 100.00 97.14 98.57 

21 94.29 95.71 97.14 92.86 90.00 87.14 90.00 92.86 100.00 95.71 97.14 98.57 

MEAN 97.69 98.16 95.71 96.19 92.31 92.65 93.06 94.22 99.25 99.39 97.35 97.96 

SD 2.14 2.56 4.02 3.24 5.41 6.00 6.46 5.37 1.16 1.24 3.01 1.78 
 

* Trans. refers to the transient EMG state 

** Every value in the table is expressed as a percentage (%) 
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The mean classification performance and SD for each of the subjects along the transient 

and steady EMG states for both windows sizes is condensed in TABLE 4.9.  

 

 
TABLE 4.9 

MEAN CLASSIFICATION AND SD PERCENTAGE PER SUBJECT FOR TRANSIENT AND STEADY EMG STATES USING 
HJORTH’S PARAMETERS  

Subject 

Transient EMG      
State 

Steady EMG   
State 

Transient EMG   
State Steady EMG State 

256 ms 256 ms 128 ms 128 ms 

Mean±SD Mean±SD Mean±SD Mean±SD 

1 99.05±1.48% 99.52±1.17% 97.38±2.10% 97.62±2.81% 

2 100.00±0.00% 100.00±0.00% 99.05±1.17% 99.29±0.78% 

3 98.10±1.48% 99.52±1.17% 95.48±2.10% 98.33±2.10% 

4 97.14±4.43% 96.19±3.90% 98.57±1.81% 96.43±3.47% 

5 91.90±7.54% 92.86±7.17% 88.57±10.46% 92.86±6.19% 

6 97.14±3.61% 96.19±4.30% 97.62±2.33% 97.14±1.56% 

7 97.62±3.34% 98.10±2.33% 95.71±2.21% 96.67±2.66% 

8 97.14±4.43% 96.19±4.30% 95.95±5.14% 97.86±4.02% 

9 92.86±7.17% 94.76±4.92% 91.19±5.95% 94.76±4.11% 

10 98.10±2.33% 98.57±1.56% 97.86±2.67% 99.76±0.58% 

11 93.33±6.43% 93.81±7.54% 94.29±7.61% 91.90±7.32% 

12 97.62±2.15% 99.05±2.33% 96.67±2.50% 97.14±3.73% 

13 95.24±5.90% 96.19±3.46% 93.81±5.08% 94.29±6.45% 

14 97.14±3.61% 98.10±2.33% 98.33±1.67% 99.05±1.48% 

15 97.14±3.13% 99.05±1.48% 96.19±3.90% 96.67±3.69% 

16 96.67±2.81% 96.19±3.46% 97.14±2.39% 95.24±6.92% 

17 98.57±1.56% 98.57±2.39% 96.90±3.77% 98.10±1.73% 

18 94.76±6.62% 98.57±1.56% 95.24±5.40% 96.90±3.55% 

19 99.05±1.48% 99.05±2.33% 98.81±1.08% 97.86±2.17% 

20 94.29±5.99% 94.29±7.45% 94.29±5.57% 93.33±7.38% 

21 93.81±3.34% 94.29±3.13% 94.76±4.11% 93.81±3.90% 

Mean±SD 96.51±2.24% 97.10%±2.17% 95.90±2.56% 96.43±2.21% 
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The results from the classification performance on the transient and steady states using 

both 256 ms and 128 ms Hamming windows with 50% sample overlap are summarized, 

for each movement type, in Fig. 4.16 and in TABLE 4.10. 

 

 

 
Fig. 4.16. Summary of transient and steady EMG states classification using window lengths of both 

256 ms and 128 ms.  

 

 
TABLE 4.10 

SUMMARIZED RESULTS FROM TRANSIENT VS. STEADY STATE CLASSIFICATION USING HJORTH’S PARAMETERS 

EMG 
State 

Window 
Length 

[ms] 
 

MOVEMENT  

Closing Opening Pronation Supination Flexion Extension MEAN 

Transient 

256 

MEAN 97.69% 95.92% 93.47% 93.88% 99.73% 98.37% 96.51% 

SD 2.65% 4.20% 5.80% 5.59% 0.86% 1.93% 2.24% 

Steady 
MEAN 98.78% 96.46% 94.56% 94.83% 99.46% 98.50% 97.10% 

SD 2.32% 3.82% 5.18% 5.24% 1.46% 2.49% 2.17% 

Transient 

128 

MEAN 97.69% 95.71% 92.31% 93.06% 99.25% 97.35% 95.90% 

SD 2.14% 4.02% 5.41% 6.46% 1.16% 3.01% 2.56% 

Steady 
MEAN 98.16% 96.19% 92.65% 94.22% 99.39% 97.96% 96.43% 

SD 2.56% 3.24% 6.00% 5.37% 1.24% 1.78% 2.21% 
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4.3 DWT’s Variance 
 
The reported results for this method were obtained using a 256 ms Hamming window 

with an overlap of 50% of the samples. The method was tested as well with a smaller 

window length (128 ms), but classification decreased approximately 1% over the whole 

data for the transient state and 3% for the steady state. Moreover, the SD between 

subjects increased almost 1%; therefore variability in the algorithm’s performance 

between subjects was higher when decreasing the window length. These results are not 

reported because classification was considered to be too low for some individual 

movements as to be used in a control algorithm.  

 

 

The ANN model for this method was trained using 10 neurons in the hidden layer. This 

number was defined experimentally and was tried to be kept as similar as possible to 

the previous method in order to maintain similar conditions. The variance was calculated 

from the detail coefficients of the second and third levels of decomposition as previously 

explained in section 3.3.2.2. A fourth order Coiflet mother wavelet was used.  

 

 

4.3.1 Transient Vs. Steady State Analysis 
 
The comparison in classification performance for both the transient and steady EMG 

states was tested. The results for each of the subjects are presented in Fig. 4.17, in 

TABLE 4.11, and in TABLE 4.12. Additionally, Fig. 4.18 and TABLE 4.13 condense the 

mean classification for each of the movements in both EMG states.  
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Fig. 4.17. Classification performance for the transient and steady states using the DWT’s variance. The 

variance was calculated form the wavelet coefficients extracted using a ‘coif4’ mother wavelet and a 

window length of 256 ms with 50% overlap. 

 
 

 
Fig. 4.18. Mean classification performance by movement for the transient and steady states using the 

DWT’s variance method. A 256 ms Hamming window with 50% overlap was used.  
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TABLE 4.11 
TRANSIENT VS. STEADY EMG CLASSIFICATION PERCENTAGE USING DWT’S VARIANCE EXTRACTION FROM A 

256 MS HAMMING WINDOW  

Subject 
Closing Opening Pronation Supination Flexion Extension 

Trans.* Steady Trans. Steady Trans. Steady Trans. Steady Trans. Steady Trans. Steady 

1 91.43 97.14 92.86 94.29 87.14 91.43 92.86 94.29 100.00 97.14 92.86 92.86 

2 100.00 98.57 95.71 98.57 90.00 94.29 91.43 87.14 95.71 98.57 91.43 100.00 

3 88.57 95.71 84.29 84.29 92.86 92.86 82.86 92.86 98.57 100.00 90.00 91.43 

4 92.86 94.29 95.71 92.14 95.71 87.14 82.86 76.43 97.14 95.71 80.00 80.71 

5 91.43 94.29 72.86 78.57 85.71 84.29 62.86 71.43 91.43 95.71 92.86 92.86 

6 97.14 100.00 84.29 87.14 87.14 85.71 81.43 78.57 95.71 92.86 91.43 97.14 

7 94.29 87.14 90.00 90.00 84.29 87.14 80.00 91.43 92.86 91.43 92.86 95.71 

8 94.29 100.00 92.86 97.14 75.71 84.29 82.86 92.86 100.00 94.29 92.86 97.14 

9 72.86 94.29 82.86 84.29 70.00 81.43 71.43 81.43 88.57 88.57 85.71 87.14 

10 90.00 95.00 91.43 89.29 84.29 96.43 85.71 84.29 98.57 96.43 91.43 95.71 

11 94.29 88.57 90.00 98.57 71.43 75.71 90.00 84.29 97.14 100.00 95.71 94.29 

12 92.86 92.86 87.14 94.29 77.14 84.29 82.86 90.00 91.43 100.00 95.71 95.71 

13 91.43 91.43 85.71 90.00 80.00 78.57 77.14 80.00 97.14 97.14 94.29 94.29 

14 87.14 96.43 88.57 83.57 92.86 95.71 90.00 88.57 97.14 98.57 91.43 91.43 

15 91.43 90.00 94.29 97.14 88.57 91.43 94.29 95.71 94.29 97.14 88.57 85.71 

16 95.71 85.71 91.43 82.86 91.43 75.71 81.43 74.29 94.29 97.14 90.00 72.86 

17 97.14 100.00 94.29 98.57 92.86 91.43 85.71 87.14 100.00 100.00 92.86 90.00 

18 92.86 97.14 85.71 85.71 68.57 75.71 81.43 77.14 88.57 84.29 92.86 87.14 

19 98.57 87.86 90.00 86.43 92.86 83.57 82.86 82.86 100.00 97.14 91.43 89.29 

20 88.57 90.00 85.71 85.71 84.29 87.14 72.86 77.14 97.14 94.29 97.14 90.00 

21 85.71 88.57 91.43 80.00 84.29 78.57 78.57 80.00 95.71 94.29 90.00 92.86 

MEAN 91.84 93.57 88.91 89.46 84.63 85.85 82.45 84.18 95.78 95.75 91.50 91.16 

SD 5.70 4.51 5.36 6.34 8.07 6.61 7.47 7.09 3.54 3.97 3.66 6.13 
 

* Trans. refers to the transient EMG state 

** Every value in the table is expressed as a percentage (%) 
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TABLE 4.12 
MEAN CLASSIFICATION AND SD PERCENTAGE PER SUBJECT FOR TRANSIENT AND STEADY EMG STATES USING 

DWT’S VARIANCE 

Subject 

Transient EMG State Steady EMG State 

256 ms 256 ms 

Mean±SD Mean±SD 

1 92.86±4.14% 94.52±2.29% 

2 94.05±3.77% 96.19±4.84% 

3 89.52±5.76% 92.86±5.19% 

4 90.71±7.38% 87.74±7.79% 

5 82.86±12.29% 86.19±9.80% 

6 89.52±6.30% 90.24±7.95% 

7 89.05±5.69% 90.48±3.22% 

8 89.76±8.83% 94.29±5.50% 

9 78.57±8.08% 86.19±4.92% 

10 90.24±5.06% 92.86±4.99% 

11 89.76±9.45% 90.24±9.28% 

12 87.86±6.93% 92.86±5.35% 

13 87.62±8.01% 88.57±7.61% 

14 91.19±3.55% 92.38±5.64% 

15 91.90±2.81% 92.86±4.61% 

16 90.71±5.01% 81.43±9.21% 

17 93.81±4.84% 94.52±5.67% 

18 85.00±9.16% 84.52±7.74% 

19 92.62±6.22% 87.86±5.17% 

20 87.62±9.11% 87.38±5.81% 

21 87.62±6.04% 85.71±7.06% 

Mean±SD 89.18±3.66% 89.99%±3.91% 

 
 

TABLE 4.13 
SUMMARIZED RESULTS FROM TRANSIENT VS. STEADY STATE CLASSIFICATION USING DWT’S VARIANCE 

EMG 
State 

Window 
Length 

[ms] 
 

MOVEMENT  

Closing Opening Pronation Supination Flexion Extension MEAN 

Transient 

256 

MEAN 91.84% 88.91% 84.63% 82.45% 95.78% 91.50% 89.18% 

SD 5.70% 5.36% 8.07% 7.47% 3.54% 3.66% 3.66% 

Steady 
MEAN 93.57% 89.46% 85.85% 84.18% 95.75% 91.16% 89.99% 

SD 4.51% 6.34% 6.61% 7.09% 3.97% 6.13% 3.91% 
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4.4 Models’ Tolerance to Additive White Gaussian Noise 
 
Previous to noise contamination, and regarding that not a great amount of data was 

available for each of the subjects, a new recording was created by averaging the 

transient segments of the 5 available recordings for each type of movement. Fig. 4.19 

shows an example of one EMG channel from one of the subjects during wrist extension. 

The first five signals correspond to the EMG recordings that were taken, and the sixth 

one is a signal generated by averaging the previous recordings.  

 

 

 
Fig. 4.19. New signal generated by averaging previous recorded EMG signals. This particular one shows 

channel 4 during a wrist extension. 
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In order to test the model’s tolerance to AWGN, original recordings and the new 

generated ones were used. After applying the sliding window to the signal, each 

windowed segment was contaminated as previously explained in Chapter III, taking into 

consideration that in an on-line application, each recorded segment of the signal at a 

certain instant of time can be affected by noise. Fig. 4.20 shows an example of a 

windowed segment of one EMG channel with different levels of noise. The contaminated 

signal is shown in white behind the original one (black). In the right, the FFTs of the 

original (black) and contaminated (white) signals are shown in order to see how the 

frequency spectrum was affected by noise. It is important not to forget that white 

Gaussian noise has uniform power across the frequency band.  

 

 

 
Fig. 4.20. EMG segment contaminated with different levels of additive white Gaussian noise. In the left 

side, the original windowed segment from one EMG channel (black) is contaminated with AWGN at 

5% (first row), 15% (second row), 25% (third row), and 50% (fourth row) with respect to the signal’s power. 

The contaminated signals are shown in white behind the original ones. The right side of the image shows 

the FFT for both the original and contaminated signals.   
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The trained ANN models for each subject, using both the Hjorth’s parameters and the 

DWT’s variance methods, were tested with the contaminated averaged transient state 

recordings. Different levels of white noise were added to the new recordings – namely, 

5%, 10%, 15%, 20%, 25%, 30%, and 50%. The obtained results are presented in Fig. 

4.21 and in TABLE 4.14.  

 
 

 
Fig. 4.21. Models’ responses to AWGN.  

 
 

TABLE 4.14 
MEAN CLASSIFICATION ACCURACY OF THE TRAINED MODELS WHEN TESTING WITH AVERAGED TRANSIENT 

STATE RECORDINGS CONTAMINATED WITH DIFFERENT NOISE LEVELS 

MODEL 
NOISE PERCENTAGE 

0% 5% 8% 10% 15% 20% 25% 30% 50% 

Hjorth’s 
Parameters 93.99% 94.10% 94.22% 94.44% 93.76% 94.22% 94.44% 93.20% 92.52% 

DWT’s 
Variance 88.89% 88.95% 88.66% 88.27% 87.19% 87.07% 87.24% 86.90% 83.56% 
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4.5 DWT Using PCA  
 
This method was tested using a 256 ms Hamming window with a 50% overlap in order 

to compare the results with the two previous ones under similar conditions.  

 

 

Wavelet decomposition was applied until the third level. A fourth order Coiflet mother 

wavelet was used. The resulting feature matrix was of greater dimensions than those of 

the two previous methods and it was more difficult for the ANN model to reach 

convergence during the training state. The number of neurons in the hidden layer of the 

ANN model was adjusted experimentally to 15 neurons. 

 

 

As this method is similar to previously reported ones [9,27,69,70] and was intended only 

for comparison purposes, it was only tested over the transient EMG state. The obtained 

results will be subsequently presented.   

 

 
4.4.1 Transient State Analysis 
 
As previously explained in Chapter III, PCA was applied for dimensionality reduction of 

the matrix containing the detail coefficients of the first three decomposition levels and 

the approximation coefficients of the third level. The feature matrix was built using eight 

principal components for each movement type. 

 

 

The classification percentages per subject are presented in Fig. 4.22 and in          

TABLE 4.15; additionally, Fig. 4.23 shows the mean classification per movement type 

achieved by this method over the whole test population.    
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Fig. 4.22. Classification performance for the transient EMG state using DWT reduced by PCA. The feature 

matrix was built with the principal components extracted from the first three detail levels and the third 

approximation level using a ‘coif4’ mother wavelet and a window length of 256 ms with 50% overlap. 

 

 

 
Fig. 4.23. Mean classification performance by movement for the transient EMG state using DWT reduced 

by PCA. A 256 ms Hamming window with 50% overlap was used. 
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TABLE 4.15 
TRANSIENT EMG CLASSIFICATION PERCENTAGE USING DWT REDUCED BY PCA 

Subject 
MOVEMENT 

Closing Opening Pronation Supination Flexion Extension MEAN±SD 

1 92.50 100.00 92.50 97.50 95.00 92.50 95.00±3.16 

2 100.00 95.00 85.00 95.00 100.00 95.00 95.00±5.48 

3 67.50 87.50 75.00 80.00 82.50 95.00 81.25±9.59 

4 92.50 85.00 95.00 87.50 87.50 97.50 90.83±4.92 

5 80.00 97.50 82.50 92.50 85.00 100.00 89.58±8.28 

6 72.50 85.00 72.50 90.00 85.00 100.00 84.17±10.57 

7 77.50 92.50 75.00 87.50 82.50 97.50 85.42±8.72 

8 97.50 77.50 70.00 77.50 95.00 92.50 85.00±11.40 

9 90.00 95.00 80.00 87.50 90.00 90.00 88.75±4,94 

10 85.00 95.00 87.50 80.00 92.50 92.50 88.75±5.65 

11 80.00 95.00 77.50 87.50 100.00 100.00 90.00±9.87 

12 92.50 100.00 82.50 100.00 97.50 97.50 95.00±6.71 

13 72.50 82.50 87.50 95.00 100.00 95.00 88.75±10.09 

14 90.00 100.00 87.50 82.50 100.00 100.00 93.33±7.69 

15 92.50 97.50 90.00 82.50 90.00 100.00 92.08±6.21 

16 90.00 95.00 82.50 77.50 92.50 97.50 89.17±7.69 

17 72.50 92.50 85.00 85.00 100.00 95.00 88.33±9.70 

18 90.00 90.00 85.00 100.00 90.00 97.50 92.08±5.57 

19 97.50 100.00 95.00 100.00 92.50 100.00 97.50±3.16 

20 100.00 97.50 87.50 87.50 87.50 77.50 89.58±8.13 

21 100.00 72.50 80.00 97.50 100.00 87.50 89.58±11.56 

Mean±SD 87.26±10.21 92.02±7.73 83.57±6.96 89.05±7.52 92.62±6.15 95.24±5.41 89.96±3.98 
 

        * Trans. refers to the transient EMG state 

        ** Every value in the table is expressed as a percentage (%) 
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4.6 Transient State Analysis: Comparison in Performance Between Methods 
 
As the interest EMG segment for this study is the transient state, a comparison between 

classification performances of the three methods was made. The obtained results for 

mean classification percentage of each of the movements are displayed below in       

Fig. 4.24. A comparison between the standard deviation among subjects for each 

movement type according to the applied method was also made. The intention was to 

appreciate how much performance varies from one subject to another. The results are 

shown in Fig. 4.25. General results from the three methods are also presented in  

TABLE 4.16. 

 
 

 
Fig. 4.24. Comparison in the mean classification percentage of the transient EMG state for each 

movement type using the three methods. A window length of 256 ms with 50% overlap was used for 

feature extraction. 
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Fig. 4.25. Comparison in the standard deviation of the whole test population for each movement type 

using the three methods. A window length of 256 ms with 50% overlap was used for feature extraction. 

 
 

TABLE 4.16 
SUMMARIZED RESULTS OF THE COMPARISON OF THE MEAN CLASSIFICATION AND SD PERCENTAGES FOR EACH 

MOVEMENT TYPE USING THE THREE METHODS 

EMG State 
Window 
Length 

[ms] 
 

MOVEMENT  

Closing Opening Pronation Supination Flexion Extension MEAN 

Hjorth’s 
Parameters 

256 

MEAN 97.69% 95.92% 93.47% 93.88% 99.73% 98.37% 96.51% 

SD 2.65% 4.20% 5.80% 5.59% 0.86% 1.93% 2.24% 

DWT’s 
Variance 

MEAN 91.84% 88.91% 84.63% 82.45% 95.78% 91.50% 89.18% 

SD 5.70% 5.36% 8.07% 7.47% 3.54% 3.66% 3.66% 

DWT Using 
PCA 

MEAN 87.26% 92.02% 83.57% 89.05% 92.62% 95.24% 89.96% 

SD 10.21% 7.73% 6.96% 7.52% 6.15% 5.41% 3.98% 

 
 
4.7 Proposed Control Algorithm 
 
Fig. 4.26 illustrates the proposed control algorithm. Even while the ANN model was 

capable of identifying the movement since the first 128 ms of the transient state, this 

scheme suggests analyzing the features extracted from the first 3 windows with 50% 

overlap that will represent a total delay of 256 ms, but that will allow having more 
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information for movement identification. This diagram also suggests the implementation 

of an automatic detection algorithm for the transient state of the EMG signal that can be 

done as future work.  

 

 

 
Fig. 4.26. Flow diagram of the proposed control algorithm. 

 
 



 
 

107 

 Chapter V 
 
 

Discussion 

 
 
The first challenge in EMG transient state analysis for on-line control of a myoelectric 

device is the proper identification of the onset of the movement. In order to ensure a 

good performance of the system, it should be reliable enough when identifying the 

beginning of the muscle contraction as to trigger feature extraction. If the onset of the 

movement is incorrectly designated earlier than it actually occurs, noise and low-level 

EMG signals from the subject’s rest position will be included and translated inaccurately 

in low force levels. In the contrary, if a late identification of the onset is made, the initial 

MUAPs will be excluded from the analysis and essential information to the classifier will 

be lost. The database used for this study was not made considering the analysis of the 

transient state; hence, it does not take much care of the quality of the signal before the 

sustained contraction. Furthermore, several signals appeared truncated in the beginning 

of the onset of the contraction. This together made automatic transient state detection 

really challenging and the decision to identify the onset of the contraction by supervision 

was taken. The shadowed regions in Fig. 4.1 give an example of how the signals were 

segmented in transient and steady states for feature extraction.   

 

 

In order to decide on appropriate signal processing techniques, it is necessary to study 

the frequency and time domain properties of the signals of interest. Using multichannel 

EMG signals allows recording information from several muscle sites. The amplitude for 

each of the EMG channels allows seeing the participation of corresponding muscles on 

a certain movement. The first column in Fig. 4.2 gives an example of the raw 

multichannel EMG from a wrist extension movement. The first four channels that 

correspond to extensor muscles as named in TABLE 3.2 have higher amplitude values 

than the last four. In the same way, the FFT that appears in the second column shows 
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magnitudes in the order of 10-3 for these last channels. The shadowed region allows 

seeing the frequency band that was considered for feature extraction. In order to assure 

analysis over this band, the wavelet shrinkage algorithm was applied. This has also the 

advantage of being a good noise cancelling technique that filters according to an 

adaptive threshold calculated relative to the amount of noise in each level of the wavelet 

decomposition. The selected frequency band for analysis is located within the first three 

levels of decomposition. As shown in Fig. 4.3, when obtaining the FFT from the 

coefficients at each level, it is possible to corroborate the frequency band they 

correspond to. The frequency spectrum of the steady segment is flatter than that of the 

transient one, which suggests that a constant firing rate has been reached.  

 

 

Window functions were applied for signal segmentation in order to build up the patterns 

used to feed the classifier model. However, when choosing the window, the question of 

which type yields a better performance for data segmentation is hard to answer. Hence, 

a test was applied. The objective of using windows on signal processing is to be able to 

smoothly truncate a segment of the signal in order to extract features from it and 

analyze it modifying the signal as least as possible. The simplest type of window is the 

rectangular one; however, it truncates data abruptly, which causes high sidelobe 

behavior and is not recommended for the application. Other types of window have been 

more suitable for EMG analysis. Fig. 4.4 and TABLE 4.1 present the classification 

percentage when using each window type. As it can be appreciated in Fig. 4.5, the 

greatest error is obtained with the rectangular window. Even if the Hamming window 

performed the best, the Gaussian and Hanning windows had similar performances and 

their use could also be considered.  

 

 

Applying window functions allows defining which time interval is used in the 

computation; and therefore, the extracted features represent the data from that time 

interval. Extrapolating these features to other times has no meaning; however, when 

window overlapping is used, contiguous windows share similar characteristics. 
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Stationarity can be assumed when a finite block of data is taken to be representative 

and therefore, analysis can be made within the window [102]. As for window length 

selection, the main limitation in the system is the real-time constrain. As mentioned 

before, the maximum accepted delay for myoelectric controlled devices is 

300 ms [6,9,10]. Fig. 4.6 and Fig. 4.7 demonstrate that among the tested window 

lengths, wider windows (256 ms) yield better classification accuracy for both the 

transient and steady EMG states (see specific data in TABLE 4.2 and TABLE 4.3). This 

occurs because features extracted from a larger segment of the signal tend to be more 

representative. However, it is important to find a good balance between the system’s 

response time and its accuracy, which is why a 128 ms window length is proposed as 

more adequate for the Hjorth’s parameters method. The classification percentage 

obtained by applying 256 and 128 ms window lengths was similar. The 256 ms window 

outperformed the 128 ms one by just 0.61% for the mean classification using the 

transient state and 0.42% for the steady state. Fig. 4.8 and TABLE 4.4 show the mean 

error percentage while applying different window lengths for feature extraction in both 

the transient and steady states. These results were not consistent for the other 

discussed methods (DWT’s variance and DWT using PCA) where a 256 ms window 

length was kept.  

 

 

The ANN was a good approach for building the model. ANNs are suitable for difficult 

signal processing problems because they are capable to generalize, and they possess 

the ability to learn from experience without requiring an a priori mathematical model of 

the underlying signal characteristics. However, difficulties exist when only a limited 

numbers of examples are available for the training process [1]. It would be important to 

have more information from each subject; however, in order to counteract the limited 

amount of available data, k-fold cross-validation was carried out. Moreover, Bayesian 

regulation backpropagation was used as the training algorithm, which is recommended 

when there is not much information available. The number of neurons in the hidden 

layer of the ANN model was determined experimentally. The classification performance 

regarding different neuron numbers can be seen in Fig. 4.9 and more precisely in 
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TABLE 4.5. When using Hjorth’s parameters calculated over the transient EMG state, 

the error did not change much between using 9 and 20 neurons as shown in TABLE 4.5. 

Nine neurons were chosen for the hidden layer of the ANN model because they yielded 

a good balance between classification performance and model’s complexity. 

Convergence was harder to achieve for the other two models due to more complicated 

feature sets. Therefore, 10 neurons were determined for the DWT’s variance model and 

15 neurons for the DWT model using PCA. TABLE 3.4 summarizes the final ANNs’ 

architectures.  

 

 

Hjorth’s descriptors have been used successfully in EEG analysis and sleep stage 

scoring as previously described in section 2.3.4.1. As it is known, the EEG signal is 

formed by the superposition of characteristic responses. In the same way, the EMG 

signal is a superposition of MUAPs, which seems to make Hjorth’s parameters suitable 

for EMG analysis due to the nature of myoelectric sources. As supported by clinical 

results previously described in chapter II, these descriptors convey information 

concerning physiological states.  

 

 

The auto-correlation function applies particularly well to physical situations because the 

constants that define a physical system and its characteristic response also determine 

the auto-correlation function of the response. A basic way of expressing the 

characteristics of a time series in statistical terms is to refer to its auto-correlation 

function, which defines statistically the interdependence between any two values in the 

series as a function of their difference in time. Applying Hjorth’s parameters for time 

domain analysis is in fact a means to derive the auto-correlation function of the curve in 

terms of polynomial coefficients [30].  

 

 

Most generally applied techniques for EMG analysis are based on feature extraction in 

both the time and frequency domains; however, Hjorth’s parameters serve as a bridge 
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between a physical time domain interpretation and the conventional frequency domain 

description [30-33]. The auto-correlation function conveys all the information that can be 

obtained from power spectral analysis or from conventional frequency analysis [30]. In 

fact, a high correlation has been found between the NSD ‘Mobility’ and the FFT [34], 

which has also been used for EMG analysis. Nonetheless, the methods for frequency 

domain analysis imply a transformation that is usually more time-consuming and 

requires more complex processing. Although Hjorth’s parameters are based on spectral 

moments, they are also calculated by time variances (time domain analysis) that can be 

performed continuously during on-line recording, making the computational cost more 

affordable than for other methods and hence making it more suitable for real-time 

applications.  

 

 

The question of which combination of parameters was more representative for EMG 

signal analysis was formulated since the beginning. For non-periodic phenomena with a 

limited complexity, as it is the case of the EMG signal, the basic information is 

essentially contained in the first few polynomial coefficients; therefore, the number of 

required (non-redundant) descriptors correspond to the complexity of the system under 

observation [30]. Binnie et al. [101] showed that two descriptors give sufficient 

information to replace frequency analysis in monitoring the state of patients suffering 

minimal hepatic encephalopathy. Other studies have reported to find significant changes 

using just two of Hjorth’s parameters to interpret EEG signals [33,36,38,41]; furthermore, 

the last three have reported to find them in Mobility and Complexity, as it was the case 

in the present study. The highest classification performance was achieved using the last 

two Hjorth’s descriptors as shown in Fig. 4.10 and Fig. 4.11. (To find the exact numerical 

data refer also to TABLE 4.6).  

 

 

In general terms, the system response of a first order system is an exponentially 

decaying impulse that can be mathematically expressed as 𝑒!∝!, where ∝ is the inverse 

time constant of the system. When computing Hjorth’s descriptors for this response, 
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Mobility turns to be identical to ∝ and hence describes the system. For a second order 

system, the response is modeled as a decaying sinusoid with the mathematical 

expression 𝑒!∝! ∙ sin(𝛽 ∙ 𝑡). In this case, when computing the parameters, the 

relationship between them and the constants of the system shown in (5.1) are 

obtained [30].  

 

𝑀   𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = (∝!+ 𝛽!)
!
!

𝐶   𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 2 ∝                  
 (5.1) 

 

 

As defined in [30], making some algebraic manipulations, the constants can be 

expressed as a function of Hjorth’s parameters as shown in (5.2). 

 

∝= 𝐶 2                                                              

𝛽 = 𝑀 ∙ (1− 𝐶! 4𝑀!)
!
!    

 (5.2) 

 

 

Based on the previous assumptions, the system is fully determined by Mobility and first 

order Complexity. The number of required descriptors to convey the basic information of 

the system corresponds to the system’s order. The muscle contraction can be modeled 

as a second order system, which would justify the performance achieved by using these 

two parameters. Moreover, the descriptor values, except for Activity, referring to a single 

response are valid also for a superposition of responses since the ratios are not affected 

by the addition of further responses of arbitrary phase and amplitude [30]. The MES is, 

however, a summation of MUAPs that do not have the same characteristics among 

them. Motor units fire asynchronously with different rated and with certain amplitude that 

depends on the force of the contraction; therefore, the parameter Activity seems to be 

less suitable to describe it. In an experiment made by [30], in which Mobility and 

Complexity parameters were computed from a computer-implemented superposition of 

10,000 responses of a system and converted mathematically to system constants, they 

turned to be identical with the constants of the system from which the superimposed 
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responses were originally derived. In sEMG, the electrode in the skin captures the 

random nature of the joint activity of the motor units. Taking into consideration Hjorth’s 

experiment, applying the descriptors to these superimposed responses should convey 

relevant information to describe the myoelectric system.   

 

 

Previously reported studies [9,69,70] comparing transient and steady EMG states have 

found that steady state analysis significantly outperforms transient state analysis. In [70], 

the feature set that yielded the best results for a six-class problem was built using WPT. 

However, an approximate 2% mean error was found for the steady state, while the 

mean error for transient state analysis was 5%. As it can be appreciated in Fig. 4.12 and 

TABLE 4.7 for the 256 ms window and in Fig. 4.14 and TABLE 4.8 for the 128 ms 

window, the steady state tends to have a higher mean classification than the transient 

state. TABLE 4.9 and TABLE 4.10 allow comparing mean classification performances 

between the transient and steady states obtained using Hjorth’s parameters. The mean 

classification percentage for the steady state in a six-class problem using the 256 ms 

window was just 0.59% higher than the transient state and 0.53% higher in the 128 ms 

window case. When analyzing classification percentages for each movement type    

(Fig. 4.13 using the 256 ms window and Fig. 4.15 using the 128 ms window), the highest 

difference between both states was of just 1.16% for supination movement, which is 

lower than that reported in [70]. Fig. 4.16 summarizes the results from all the 

aforementioned cases. As it can be seen, the lowest classification performances were 

found for pronation and supination. This suggests that the muscles recorded by the 

EMG channels had less participation in these two movement types. When referring to 

TABLE 3.2 and Fig. 3.3, it is possible to see that almost every recorded muscle have 

flexion and extension purposes. This explains as well why flexion, extension, opening, 

and closing were so accurately classified. When observing an example in the confusion 

matrices obtained from both the training and testing stages of the ANN of a random 

subject (Fig. 5.1), it is possible to appreciate by the change of color that confusion 

occurred in the pronation/supination class. It often happened that misclassification 

corresponded to confusion between these two movements suggesting that the recorded 
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muscles have similar performance in both pronation and supination and that more 

specialized muscles should be considered in order to achieve higher classification 

accuracy. 

 

 

 
Fig. 5.1. Confusion matrix of the training and testing stages of the ANN from one of the subjects using 

Hjorth’s parameters and a window length of 128 ms. The left side of the image shows the confusion matrix 

for the training stage. From a total of 56 windows used for the training, four windows corresponding to 

wrist pronation were misclassified as wrist supination. The training percentage was 98.81%. The right side 

of the image shows the confusion matrix for the testing stage. From a total of 14 windows used for the 

testing stage, one window corresponding to wrist pronation was misclassified as wrist supination, and one 

window corresponding to wrist supination was misclassified as hand opening. The test percentage was 

97.619%. This corresponds to the first of five foldings used for k-fold cross-validation. 

 

 

Both methods applying DWT depart from the use of representative wavelet coefficients 

from each of the EMG signals as the main tool for feature extraction. The method that 

used the variance of the wavelet coefficients from the second and third levels of 

decomposition to build the feature matrix had a worse performance than the method 

using Hjorth’s paramters. Moreover, the values of SDs are significantly higher between 

subjects as it can be seen in TABLE 4.11 and in Fig. 4.17, where for some subjects the 

differences between mean classification of the transient and steady states are 
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considerably more noticeable than for the previous method; however, the mean 

classification performance for the whole test population did not change much between 

EMG states as appreciated in Fig. 4.18, TABLE 4.12, and TABLE 4.13. Pronation and 

supination continued to be the worst classified movement types from the set.  

 

 

The tolerance to AWGN was tested for the transient EMG state on the two previously 

explained models. In order to test the performance with information that did not 

participate in the training state, a new recording was created by averaging the available 

ones. An example of this is shown in Fig. 4.19. These new recordings were 

contaminated using different noise levels calculated relative to the signal’s power. The 

result of contamination for different noise percentages in both the time and frequency 

domains appears in Fig. 4.20. 

 

 

The model using Hjorth’s parameters showed a greater tolerance to white noise (see 

Fig. 4.21). Mean classification performance decreased approximately 1.5% when 50% 

noise was added relative to the signal’s power. In the case of the model using DWT’s 

variance, classification performance decreased a bit more abruptly (approximately 4.5% 

as it can be inferred from TABLE 4.14); however, it still showed a good tolerance. This 

could be associated to the performance of the de-noising algorithm that was applied for 

pre-processing. In the case of Hjorth’s parameters, the fact that they are calculated as 

ratios of time variances could also suggest that they help in noise cancelling. More tests 

should be made on this matter in order to solidly conclude on the reaction that this 

parameters have with respect to noise.  

 

 

Finally, a third method was tested for transient state analysis. It consisted in using PCA 

to reduce wavelet coefficients extracted from the first three levels of decomposition as 

previously explained in Chapter III. This method is similar to that reported in [9,27,70]. 

Fig. 4.22 shows the mean classification performance per subject and Fig. 4.23 the mean 
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classification for each movement type. The obtained performance using this method was 

lower than previously reported ones. As shown in TABLE 4.15 and later in Fig. 4.25, this 

method had the highest standard deviation between subjects for almost every 

movement type. 

 

 

The method using Hjorth’s parameters clearly outperformed the other two as presented 

in Fig. 4.24 and TABLE 4.16. It presented the highest classification percentages for 

every movement type and the lowest standard deviations between subjects. This 

suggests it is worthy to continue studying the performance that Hjorth’s parameters have 

in EMG analysis.  

 

 

Finally, a flow diagram of a proposed control algorithm is presented in Fig. 4.26. As 

initially mentioned in the discussion, in order to make on-line analysis, a reliable method 

for detection of the onset of the muscle contraction should be implemented. The 

aforementioned analysis has proven that the first 128 ms of the transient EMG state 

contain relevant information as to be able to classify different movement types; however, 

it was also seen that wider sections provide more representative information from the 

signal. The algorithm suggests using 3 windows of 128 ms with 50% overlap for feature 

extraction (using Hjorth’s parameters) before feeding the classifier. This would represent 

and overall delay of 256 ms that is still fitted within the real-time constrain and would 

ensure a better accuracy in the classifier’s decision. The future objective would be to 

extrapolate the control signal used for the virtual model to control a myoelectric 

prosthetic device and moreover, be able to extrapolate the whole system to be 

controlled by an amputee user.  
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 Chapter VI 
 
 

Conclusions and Future Work 

 
 
It has been widely discussed whether or not the transient state of the muscle contraction 

contains enough relevant information as to accurately discriminate between different 

types of motions. Most myoelectric controlled devices have been based on the 

assumption that there is no information in the instantaneous value of the MES; 

therefore, it is necessary to wait until a sustained stable contraction is reached in order 

to generate the control signal and start actuating the device, which is not desirable in a 

clinical application. The present study reaffirms the existence of deterministic 

components within the onset part of the muscle contraction as initially proposed by 

Hudgins et al. [6], and the fact that the information is relevant enough as to discriminate 

between the proposed movements. 

 

 

Hjorth’s parameters seem to adapt well enough to the nature of myoelectric signals as to 

extract highly representative information from them; moreover, the classification 

performance obtained from the transient and steady EMG states does not differ much 

between them as it has been previously reported using other methods.  

 

 

The fact that Hjorth’s parameters are a time domain analysis technique implies simpler 

processing and makes it more suitable for continuous on-line calculations as compared 

to frequency domain methods that normally require complex transformations. 

Furthermore, the analyzed data proved to contain significant information as to be able to 

classify the movements within the first 128 ms of the onset of the contraction. Movement 

classification was more accurate when using 256 ms windows for feature extraction; 

however, this value gets really close to the clinically recognized maximum delay for real-
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time applications (200 to 300 ms), and the total system’s delay has yet to be considered. 

Therefore, a 128 ms window, which yielded an average classification percentage higher 

than 95%, seems to provide a good compromise between system’s accuracy and 

response time.   

 

 

Even if classification is slightly higher when using the steady state of the EMG signal, 

including transient MES information can lead to more robust usability and performance. 

If the system is capable of identifying the transient EMG state, the subject is simply 

prompted to perform a contraction in a natural manner instead of needing long training 

periods to learn how to make sustained stable contractions to control the device. 

Moreover, changing from one position to another should be possible without going to an 

intermediate inactive position. If transitions are included in the training data, the need to 

constrain the subject to be in a steady state position prior to data collection could be 

eliminated. As proposed by [80], the classification error should not be the sole measure 

to evaluate a system's usability and performance.   

 

 

Design of clinical devices cannot be focused only on using the highest technology, but it 

should be intimately related to the patient’s needs and demands. It is necessary to 

communicate with the patient during the whole developing process in order to come up 

with solutions that will adapt as closely as possible to the patient’s needs. The 

acceptance of a myoelectric controlled system by the user depends on a number of 

factors including client motivation, control complexity, and system reliability [64]. 

Therefore, to develop a useful device that has a successful acceptance by the user, 

none of these criteria should be left aside. 

 

 

It is true that recording multichannel EMG signals requires a higher computational cost; 

however, it provides localized information at several muscle sites, and it has the 

advantage that the positions of the electrodes become less critical. If there is noise 
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affecting one of the channels, or one of the electrodes moves slightly, the system still 

relies in the information from the rest of the channels; whereas for a single-channel 

system, all the information would be lost.   

 

 

The use of Hjorth’s parameters for EMG analysis seems a promising alternative for 

movement classification using both the steady and transient EMG states. Being able to 

identify which is the desired movement from the beginning of the contraction is in fact a 

predictive technique that has the potential of reducing significantly the delay when 

actuating a myoelectric controlled device. In a future, this could result on a more natural 

control capable of identifying in real-time the user’s movement intention.  

 

 

5.1 Future Work 
 

Even if this work represents an advance in EMG signal processing, there is still a lot to 

be done. As future work, it would be important to consider the following aspects:  

 

• Use a greater number of subjects to test the algorithm’s performance.  

 

• Test the virtual model control during on-line analysis while the subject has the 

electrodes on instead of using the signals in the database.  

 

• Develop a reliable method to automatically identify the onset of the contraction 

regardless of the noise affecting the system. This will allow the system to identify 

when the contraction is being generated and hence to automatically initiate 

feature extraction in order to generate the control signal.  

 

• Increase the number of movements to identify, and test the system’s 

performance using combined movements. 
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• Define the tolerance in electrode displacement with respect to each muscle in 

order to continue obtaining acceptable results.  

 

• Test reducing the number of channels, and determine which is the best as to 

accurately classify the movements of interest. 

 

• Test tolerance to noise on the on-line analysis application.  

 

• Make EMG recordings including changes from one movement to another without 

passing through an inactive state. This will allow testing the model’s robustness. 

It could also be helpful to train the ANN model using data from both the transient 

and steady states in order to evaluate if classification accuracy increases and if it 

is easier to identify the transitions between movements.  

 

• In the present database, the movement speed was not considered during data 

recording; therefore, it was assumed to be more or less constant throughout the 

whole database. It would be important to evaluate the model’s performance 

when the movements are executed at various speeds. For this matter, inclusion 

of accelerometers in the arm’s joints for speed monitoring while making data 

collection is proposed. 

 

• Evaluate the system’s performance in data recorded from amputee subjects. 

 

• Extrapolate the system to amputees considering how to position the electrodes in 

the stump, and evaluate whether it is feasible to keep the same number of EMG 

channels.  

 

• Implement the control algorithm in a myoelectric controlled prosthesis, and test it 

during on-line analysis for both normally limbed subjects and amputees.  
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It is important to continue research on the field to eventually be able to develop a 

reliable, on-line myoelectric controlled system that will allow amputees replacing the lost 

functions as most naturally as possible and will help them improve their quality of life.
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First Paper



 

 
Abstract –– This paper presents two methods for the 

classification of six different hand motions based on the 
analysis of the transient state of surface multichannel 
electromyographic signals recorded from 10 normally limbed 
subjects. The signals were classified using the coefficients 
extracted from a discrete wavelet transform analysis. While the 
first method uses a feature vector based on the variance of the 
wavelet coefficients, the second analysis considers a PCA 
treatment focused on dimensionality reduction. These vectors 
were used to feed an artificial neural network. The first 
method was applied for both the transient and steady states 
obtaining an average classification accuracy of 
89.43% (SD 2.05%) and 91.86% (SD 3.17%) respectively. The 
second method gave a classification accuracy of 
92.58% (SD 3.07%) for the transient state. This proves the 
existence of deterministic information within the transient state 
of the EMG signal and the possibility to classify different 
movements since the beginning of the muscle contraction.  

 
 
 
Keywords –– Discrete Wavelet Transform, EMG steady 

state, EMG transient state, principal component analysis, 
surface multichannel EMG 
 
 

I.  INTRODUCTION 
  

Surface electromyography (sEMG) is widely used in 
different areas of the biomedical field such as rehabilitation, 
clinical diagnosis of neuromuscular disorders, prosthesis 
control, among many others. Its popularity has increased 
due to the relative simplicity of signal acquisition and its 
possibility to be non-invasive.  
 
 One of the main challenges when using myoelectric 
control is subject dependency. This occurs because the 
myoelectric signal (MES) is based on the anatomical and 
physiological properties of muscles, which vary between 
subjects [1,2]. Moreover, when extrapolating the system to 
high-level amputees, several electrode sites are hard or even 
not possible to locate [3].   

 
Since the 1940’s [4,5], research on the use of sEMG for 

upper limb prosthesis control has been conducted. However, 
most prosthetic devices have been designed using a limited 
number of channels, which can only control a reduced 
number of degrees of freedom (DoFs). This has motivated 
the research on multichannel systems. 

 

  
Although multichannel signal processing requires a 

greater use of computational resources, it provides a better 
representation of the real muscle activity in the collected 
signal, reducing EMG variability and improving its     
quality [6].   

 
The sEMG signal is stochastic due to the random 

summation of motor unit action potential (MUAP) trains 
within the capturing region of the electrodes; however, two 
main states can be well distinguished during a muscle 
contraction as shown in Fig. 1. The transient state is 
described as the bursts of myoelectric activity that 
accompany sudden muscular effort, while the steady state 
consists of a constant firing rate and corresponds to the 
muscular effort during a sustained contraction when the 
movement’s final position is reached and the muscle length 
is no longer modified [7].  

 
Myoelectric controlled systems are usually based on the 

premise that there is no information in the instantaneous 
value of the MES due to its stochastic nature. However, the 
steady state contains very little temporal structure of the 
active modification of recruitment and firing patterns 
involved in the contraction, which can be found within the 
transient state [3,5]. This suggests that the EMG transient 
state analysis could provide with useful information for 
classification while the muscle contraction is being 
generated, and constitutes the main motivation for this 
study. Basha et al. [8] and Yamazaki et al. [9] found further 
evidence of deterministic components in the transient state 
of the MES.   
 
 

 
Fig. 1. Two main states found in EMG signals. They appear identified in an 

8-channel EMG record of hand closure [10]. 
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In 1993, Hudgins et al. [3] proposed a new control 
strategy for artificial devices introducing the analysis of the 
transient state of the EMG signal. This work was based on 
the observation that there is considerable structure in the 
MES during the onset of a contraction, which changes 
between different limb movements. They were able to 
discriminate between four movements (elbow 
flexion/extension and medial/lateral humeral rotation) using 
just one bipolar electrode. They obtained roughly 90% 
accuracy. A few years later, Englehart et al. [11-13] 
introduced the use of wavelet transform (WT) and wavelet 
packet transform (WPT) for classification of EMG signals. 
They compared these methods to the short-time Fourier 
transform (STFT) and the time domain feature set (TD) 
obtaining the best performance from WT and WPT. They 
applied principal component analysis (PCA) for data 
dimensionality reduction. Their results showed a significant 
improvement in classification using four channels as 
compared to two. They also classified more accurately the 
steady state data than the transient data. Nonetheless, there 
are still unanswered questions about the information 
contained within the onset part of the muscle contraction 
that continue to motivate future research.  

 
This paper will provide a detailed description of the 

methods that were followed to analyze the EMG signals 
collected from 10 subjects in order to identify six different 
hand motions. The results from each of the participants will 
be presented and subsequently discussed in relation to 
previous works. Finally, we will comment on some ideas 
about the future work that can be done.  
 
 

II.  METHODOLOGY 
 
A.  Data Acquisition Protocol 
 
 The EMG data for this study was obtained from the 
database used in [10]. The signals were collected using 8 
differential channels placed on the dominant forearm of 10 
normally limbed subjects, aged between 23 and 50, and with 
no register of neuromuscular disorders. Each subject was 
asked to repeat five times six different hand motions, 
namely hand opening/closing, wrist pronation/supination, 
and wrist flexion/extension. A one-minute rest was given 
after concluding each set of six movements in order to avoid 
muscle fatigue.  
 
 Each recording is 20 seconds in length. It starts with the 
subject’s forearm in an inactive position followed by the 
dynamic part of the contraction, and finished by sustaining 
the movement in the final position until the end of the 
recording. In order to standardize electrode positioning, each 
subject was asked to repeatedly close and open the hand 
until the desired muscles, which are mentioned in table I, 
were localized. The skin was carefully cleaned, and eight 

pairs of Ag-AgCl surface electrodes (model VERMED 
NeuroPlus A10043) with an inter-electrode distance of 
1.5 cm were located in the designated areas. The reference 
electrode was subsequently placed on the elbow. The 
electrode disposition that was used can be seen in Fig. 2.  
 

TABLE I 
FOREARM MUSCLES RECORDED BY EACH EMG DIFFERENTIAL CHANNEL 

 

EMG Channel Forearm Muscle 
1 Extensor digitorum communis 
2 Extensor carpi ulnaris 

3 Differential measure between extensor 
digitorum communis and extensor carpi ulnaris 

4 Extensor carpi radialis longus 
5 Brachioradial 
6 Flexor carpi radialis 
7 Palmaris longus 
8 Flexor carpi ulnaris 

 
     Written consent was obtained from every subject before 
starting the study. A test session, consisting of explaining 
the protocol to the participants and making amplification 
gain calibration of the eight differential EMG channels, was 
made previous to the actual recording of the signals. Each 
participant was asked to perform the study in a standing 
position with the dominant arm extended to the front and the 
hand relaxed in order to reduce variability.  
  
 The acquisition system consisted of 8 differential 
channels with adjustable amplification gain and a first order 
analog band-pass filter with a low cut-off frequency of 
20 Hz and a high cut-off frequency of 400 Hz. Each analog 
output was connected to a National Instruments acquisition 
card (model DAQ-Card 6024E) for 12-bit A/D conversion. 
The sampling rate was 1024 Hz. 
 
B. Data Processing  
  
 The EMG data was processed and analyzed using 
MATLAB® (version R2012b). Each recording was divided 
by supervision in transient and steady states as shown in 
Fig.1. A hamming window of 256 ms with 50% overlapping 
was applied in order to define each segment for feature 
extraction. A multisignal denoising algorithm using the 
principle of Stein’s unbiased risk was applied to each 
segment, and rescaling was made using a noise level 
dependent estimation. 
 
 Since the information channel of the sEMG signal goes 
from 20-500 Hz, but the main concentration of energy is 
located within the frequency band of 50-150 Hz [1,7], the 
signal was decomposed until the third level. For a sEMG 
signal sampled at 1024 Hz, the components of interest are 
mainly located within the second and third levels of 
decomposition as shown in table II.  



 

 
 

Fig. 2. Posterior (a) and anterior (b) views of electrode placement for EMG signal recording. 
 
The discrete wavelet transform (DWT) analysis was applied 
using a fourth order Coiflet mother wavelet that has been 
proven to yield better accuracy for EMG analysis [13]; this 
was also tested experimentally. 
 

TABLE II 
DECOMPOSITION LEVEL AND CORRESPONDING FREQUENCY RANGE OF SEMG SAMPLED 

AT 1024 HZ  
 

DECOMPOSITION LEVEL FREQUENCY RANGE [HZ] 

1st Level 256 to 512 

2nd Level 128 to 256 

3rd Level 64 to 128 

4th Level 32 to 64 

5th Level 16 to 32 

 
 The two methods followed for discriminating between 
six different hand movements are described below.  
 
C. First Method  
 
 The feature vector for this method was created 
extracting the variance from the detail coefficients obtained 
from the second and third levels of decomposition after the 
discrete wavelet analysis was applied. The variance was 
extracted as an approach to preserve the tendency of the 
coefficients but reducing the size of the feature vector.  

 
 This method was a both applied to the transient and 
steady states of each EMG recording. The feature vector 
was normalized for each of the extracted characteristics. 
 
D. Second Method  
 
 This method was only applied to the transient state of 
the EMG signals. The procedure that was followed is similar 
as the one described in [12]; however, the procedure for the 
first method is a novel proposal. In this case, the feature 
vector was created using the detail coefficients of the first 
three levels of decomposition, and the approximation 
coefficients of the third level. Principal component analysis 
(PCA) was applied in order to reduce dimensionality of the 
data.  
 
E. Artificial Neural Network’s Parameters 
 
 To build the classifier models, different artificial neural 
networks were trained using a Bayesian regulation back-
propagation algorithm. Final architecture depends of the 
available feature vector. In this way, the hidden layer 
consisted of 10 neurons for the first method and 15 neurons 
for the second one. In both cases, the network output was 
binary codified. The number of neurons established for both 
models was determined based on experimental testing. 
 
 In order to evaluate the network’s performance, K-fold 
cross-validation (k = 5) process was carried out.  
 



 

III.  RESULTS 
 
 The results of each of the aforementioned methods are 
presented in this section. The different movements that were 
considered for the study are illustrated in Fig. 3. There are 
six different movements condensed in three classes, each of 
them consisting of an agonist and an antagonist movement 
labeled as stated in table III. 

 
TABLE III 

MOVEMENTS USED FOR CLASSIFICATION  
 

Class Movement 1            
(Agonist) 

Movement 2 
(Antagonist) 

I Hand Closing (C) Hand Opening (O) 

II Wrist Pronation (P) Wrist Supination (S) 

III Wrist Flexion (F) Wrist Extension (E) 

 
 

 
Fig. 3. Three classes of antagonist movements analyzed in this study. The 

first class includes hand closing/opening, the second one 
wrist pronation/supination, and the third one consists of 

wrist flexion/extension [10]. 
 
 
 The following tables contain the classification 
percentages obtained for each of the methods that were 
applied. These percentages were calculated by quantifying 
the number of windows of 256 ms in length that were 
correctly identified by the classifier for each of the 
corresponding movements.  
 
 Tables IV and V respectively present the results 
obtained from the first method applied to the transient and 
the steady states of the EMG signal. Both tables condense 
the mean classification results for each type of movement 
within a population of 10 subjects and the standard deviation 
(SD) found between them. The last column contains the 
total mean classification per subject. 
 
 Table VI shows a comparison between the mean 
classification obtained from the 10 subjects when using the 
transient state (first column) and the steady state (second 
column). Each row stands for each of the movements that 
were classified. The last two rows contain the mean and 
standard deviation. This information is graphically 
represented in Fig. 4.  
 
 

A. First Method – Transient State 
 

TABLE IV 
PERCENTAGE CLASSIFICATION ACCURACY USING THE FIRST METHOD APPLIED TO THE 

TRANSIENT STATE OF THE EMG SIGNAL 
 

Subj. C O P S F E Mean 

1 88.57 91.43 81.43 81.43 97.14 90.00 88.33 
2 97.14 92.86 95.71 90.00 92.86 90.00 93.10 
3 92.86 95.71 95.71 82.86 97.14 80.00 90.71 
4 90.00 92.86 88.57 80.00 97.14 88.57 89.52 
5 85.71 90.00 75.71 90.00 98.57 95.71 89.29 
6 82.86 91.43 75.71 70.00 95.71 94.29 85.00 
7 95.71 87.14 77.14 77.14 100.00 95.71 88.81 
8 91.43 94.29 82.86 91.43 95.71 88.57 90.71 
9 91.43 92.86 85.71 84.29 95.71 87.14 89.52 

10 91.43 90.00 94.29 78.57 95.71 85.71 89.29 
Mean 90.71 91.86 85.29 82.57 96.57 89.57 89.43 

SD 4.27 2.43 8.03 6.69 1.93 4.86 2.05 

 
 
B. First Method – Steady State 
 

  TABLE V 
PERCENTAGE CLASSIFICATION ACCURACY USING THE FIRST METHOD APPLIED TO THE 

STEADY STATE OF THE EMG SIGNAL 
 

Subj. C O P S F E Mean 

1 97.14 94.29 91.43 94.29 97.14 92.86 94.52 
2 98.57 98.57 94.29 87.14 98.57 100.00 96.19 
3 95.71 91.43 90.00 64.29 100.00 74.29 85.95 
4 92.86 88.57 91.43 84.29 98.57 95.71 91.90 
5 88.57 98.57 75.71 84.29 100.00 94.29 90.24 
6 92.86 94.29 84.29 90.00 100.00 95.71 92.86 
7 94.29 82.86 92.86 97.14 94.29 90.00 91.90 
8 90.00 97.14 91.43 95.71 97.14 85.71 92.86 
9 100.00 98.57 91.43 87.14 100.00 90.00 94.52 

10 92.86 85.71 81.43 82.86 95.71 87.14 87.62 

Mean 94.29 93.00 88.43 86.71 98.14 90.57 91.86 
SD 3.63 5.69 5.96 9.36 2.03 7.17 3.17 

 
 

TABLE VI 
COMPARISON BETWEEN CLASSIFICATION APPLYING THE FIRST METHOD TO TRANSIENT 

AND STEADY STATES OF THE EMG DATA 
 

Movement Transient State Steady State 

Hand Closing 90.71% 94.29% 
Hand Opening 91.86% 93.00% 

Wrist Pronation 85.29% 88.43% 
Wrist Supination 82.57% 86.71% 

Wrist Flexion 96.57% 98.14% 
Wrist Extension 89.57% 90.57% 

Mean 89.43% 91.86% 
SD 2.05% 3.17% 
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Fig. 4. Comparison between classification accuracy for the first method 

using EMG transient state (black) and EMG steady state (gray).  
 
 

 The mean classification results obtained by applying the 
second method to the transient state of the EMG signal are 
presented in table VII. A further comparison between the 
classification accuracy of both methods is shown in 
table VIII, where each column contains the results from the 
first and second methods respectively. 
 
C. Second Method – Transient State 

 
TABLE VII 

 PERCENTAGE CLASSIFICATION ACCURACY USING THE SECOND METHOD APPLIED TO 
THE TRANSIENT STATE OF THE EMG SIGNAL 

 

Subj. C O P S F E Mean 

1 92.50 100.00 92.50 97.50 95.00 92.50 95.00 
2 100.00 95.00 85.00 95.00 100.00 95.00 95.00 
3 92.50 85.00 95.00 87.50 87.50 97.50 90.83 
4 85.00 95.00 87.50 80.00 92.50 92.50 88.75 
5 80.00 95.00 77.50 87.50 100.00 100.00 90.00 
6 92.50 100.00 82.50 100.00 97.50 97.50 95.00 
7 90.00 100.00 87.50 82.50 100.00 100.00 93.33 
8 92.50 97.50 90.00 82.50 90.00 100.00 92.08 
9 72.50 92.50 85.00 85.00 100.00 95.00 88.33 

10 97.50 100.00 95.00 100.00 92.50 100.00 97.50 

Mean 89.50 96.00 87.75 89.75 95.50 97.00 92.58 
SD 8.23 4.74 5.58 7.68 4.68 3.07 3.07 

 
 

TABLE VIII 
 COMPARISON BETWEEN CLASSIFICATION OF THE EMG TRANSIENT STATE USING THE 

FIRST AND SECOND METHODS 
 

Movement First Method Second Method 
Hand Closing 90.71% 89.50% 
Hand Opening 91.86% 96.00% 

Wrist Pronation 85.29% 87.75% 
Wrist Supination 82.57% 89.75% 

Wrist Flexion 96.57% 95.50% 
Wrist Extension 89.57% 97.00% 

Mean 89.43% 92.58% 
SD 2.05% 3.07% 
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Fig. 5. Comparison between classification accuracy of the EMG transient 

state for the first method (black) and the second method (gray). 
 
 
 Fig. 5 shows graphically the classification performance 
obtained from methods 1 and 2 while using the transient 
state of the signals. The black bars represent the mean 
classification rate for each of the movements when applying 
the first method, while the gray bars are the equivalent for 
the second method.   

 
 

IV.  DISCUSSION 
 
 All the proposed methods depart from the use of 
representative wavelet coefficients from each of the EMG 
signals as the main tool for feature extraction. The WT 
analysis was both tested using a fourth order Daubechies 
mother wavelet and a fourth order Coiflet mother wavelet. 
Classification performance was better when the Coiflet 
wavelet was applied; Englehart, et al. [13] also report that a 
fourth order Coiflet mother wavelet yielded better accuracy 
than a host of other wavelet families of varying order.  
 
 The classification was made based on the features 
extracted for each 256 ms window. Thus, classification 
percentage is based on the windows that were properly 
identified by the classifier.  
 
 Classification accuracy using the steady state segment 
of the EMG signal (table V) outperformed the percentages 
obtained when using the transient state (table IV). The 
comparison between mean classification performance for 
steady and transient states of each of the movements appears 
in table VI and Fig. 4. These results are consistent with 
those obtained by Englehart, et al. in [12,13], where they 
report that the steady state data was classified more 
accurately than the transient data.  
 
 Almost for every method that was tested, the lowest 
classification rates were those of pronation and supination. 
This could be related to the electrode placement chosen for 
this study that might not be significant enough as to 



 

accurately discriminate between these two types of 
movements.  
 
 In general, the second method had a better performance 
for classification of the transient EMG state. The results 
obtained for each of the movements are shown in table VII. 
Both table VIII and Fig. 5 make evident the general 
performance improvement when using the second method 
that includes all the coefficients obtained from the wavelet 
decomposition. This could suggest that even if the main 
concentration of energy is located within the frequency band 
of 50-150 Hz, there are frequency components outside this 
band that contribute to classification of the transient EMG 
segment.      
 
 

V.  CONCLUSION 
 
 The present study allowed obtaining appropriate 
classification percentages for identification of six different 
hand movements by processing the transient state of the 
multichannel sEMG signals recorded from 10 subjects. 
 
 These results reaffirm the existence of deterministic 
components within the onset part of the muscle contraction 
as initially proposed by Hudgins et al. in [3], and the fact 
that the information is relevant enough to discriminate 
between movements. However, the use of the steady state of 
the EMG signal still has a better classification performance, 
which could be associated to a greater amount of significant 
information present on this part of the contraction as 
concluded by Englehart et al. [12], or to the fact that a more 
appropriate processing tool has yet not been applied.       
 
 Some future work that can be done in order to improve 
this study is to implement a tool for automatic detection of 
the transient state of multichannel EMG considering that 
channels are activated according to the recorded muscle’s 
participation in the movement. Other processing tools could 
be explored as well for further analysis of the transient EMG 
state and attempting to optimize classification accuracy. 
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Abstract—Most myoelectric controlled systems are based on 
the common assumption that there is no information in the 
instantaneous value of the myoelectric signal and therefore, 
analysis is made on the steady state of the muscle contraction. 
However, two main drawbacks of this control scheme are that 
the user needs to be trained in order to produce the sustained 
contractions, and that the control signal can only be generated 
when the steady state is reached. Using the transient state 
would allow classifying the movement during the dynamic part 
of the contraction decreasing the delay and allowing a more 
natural control. This paper proposes a novel method for 
transient EMG classification based on the use of Hjorth’s 
parameters. Surface multichannel EMG signals were recorded 
from 10 normally limbed subjects for both the transient and 
steady EMG states. Six different hand motions were accurately 
classified using a window length of 128 ms and an artificial 
neural network model. An average classification accuracy of 
97.45% (SD 1.10%) was obtained for the transient EMG state 
and of 97.93% (SD 1.11%) for the steady state, suggesting the 
existence of deterministic information in the transient state of 
the muscle contraction and the fact that Hjorth’s parameters 
seem to adapt well enough to the nature of myoelectric signals 
as to extract highly representative information from them.  

Keywords-EMG steady state; EMG transient state; Hjorth’s 
parameters; multichannel EMG; normalized slope descriptors  

I. INTRODUCTION 
Research on the use of electromyography (EMG) for 

upper limb prostheses control has been conducted since the 
1940’s [1] and has had an outstanding improvement 
throughout the years; however, still numerous challenges 
remain in signal processing in order to achieve a more 
reliable and natural control. To be able to make the most out 
of the potential of technological innovations in prostheses, 
development on this area should be closely related to the 
understanding of the psychological complexities that the 
amputee faces [2]. The performance of a myoelectric control 
system is evaluated with regards to three important aspects 
of controllability [3]: the accuracy of movement selection, 
the intuitiveness of the actuating control, and the response 
time of the control system. A 200 to 300 ms interval is a 
clinically recognized maximum delay that users find 
acceptable before they get frustrated with the response time 
of the prosthesis [3-5]. Hence, the motivation to analyze the 

transient state of the EMG signal arises in order to identify 
movements while the muscle contraction is being generated 
and not until it reaches a steady state. 

The EMG signal is a non-stationary, non-linear, and 
stochastic process produced as a result of the summation of 
several motor unit action potential trains (MUAPTs) [1,6-8]. 
However, two main states can be recognized during the 
muscle contraction. The transient state is described as the 
bursts of myoelectric activity that accompany sudden 
muscular effort while executing the movement. The steady 
state will be considered as the muscular effort during a 
sustained contraction when the movement’s final position is 
reached, and the muscle length is no longer modified; i.e., 
the myoelectric signal produced by a stable muscle 
contraction [9,10]. 

EMG classification has been most often based on the 
steady state analysis of the muscle contraction. This has 
greatly simplified commercial myoelectric controlled 
systems that usually rely on the premise of the accepted 
myoelectric signal generation models. However, the steady 
state contains a short temporal structure of the active 
modification of recruitment and firing patterns involved in 
the contraction and that can be found within the transient 
state [1,4,5,9]. In 1993, Hudgins et al. [4] were the first to 
consider the structure in the myoelectric signal (MES) during 
the onset of the contraction to develop a new control strategy 
based on the analysis of the transient EMG state. They were 
able to discriminate between four movements with roughly 
90% accuracy. Only a few studies, such as [11-14], have 
reported the use of the transient state to classify EMG 
signals. Englehart et al. [5] introduced the use of wavelet 
transform (WT) and wavelet packet transform (WPT) for 
classification of transient EMG signals. They classified more 
accurately the steady state than the transient data. However, 
in 2007, Hangrove et al. [15] showed that including transient 
data along with steady state data for classifier training 
increases the classification error, but it also increases real-
time performance and system usability, which should be 
considered when evaluating the system.   

The use of multichannel EMG helps reducing unwanted 
variability and provides a better representation of the real 
muscle activity in the collected signal [16-18]. The increase 
in classification performance while increasing the number of 
channels was investigated in [19]. Moreover, with 



 

multichannel EMG, the positions of the electrodes become 
less critical [20], making it a promising technique. However, 
when extrapolating the system to high-level amputees, an 
excessive number of electrode sites could be hard or even not 
possible to locate.  

Interference and muscle crosstalk introduce non-linearity 
into the EMG signal. The combination of muscle tissue, 
adipose tissue, skin, and the skin-electrode interface behaves 
like a non-linear low pass filter that attenuates and distorts 
the surface EMG signal; nevertheless, methods for non-
linear time series analysis have not been widely applied to 
EMG [6].  

The aim of this work is to propose a novel method for 
transient state analysis of the multichannel EMG signal by 
using normalized slope descriptors as features for 
classification. This paper will provide a general overview on 
Hjorth’s parameters and there use in biomedical applications. 
Subsequently, it will explain the method that was followed 
and the results obtained from the analysis of both the 
transient and steady EMG signals recorded from 10 normally 
limbed subjects in order to identify a set of hand and wrist 
movements. Results will be compared to previously reported 
methods. 

 

II. HJORTH’S PARAMETERS 
Hjorth introduced, in 1970, three parameters based on 

time domain properties [21-24]. They were intended as a 
clinically useful tool capable of describing quantitatively the 
graphical characteristics of an electroencephalography 
(EEG) trace in terms of amplitude, slope, and slope spread, 
so that they receive the name of normalized slope descriptors 
(NSDs). These parameters are named “activity”, “mobility”, 
and “complexity”. 

Activity measures the variance of the amplitude of the 
signal as shown in (1). In the frequency domain, it can be 
conceived as the surface of the power spectrum.  

Mobility measures the ratio between the standard 
deviation of the slope and the standard deviation of the 
amplitude given per time unit; hence, it represents dominant 
frequency. This ratio depends on the curve shape in such a 
way that it measures the relative average slope. Its 
mathematical definition is presented in (2). 

Complexity is a dimensionless parameter that quantifies 
any deviation from the sine shape as an increase from unit. It 
is calculated as shown in (3). It can be interpreted as a 
measure of the signal’s bandwidth.  
 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =   𝑚! = 𝜎!!, (1) 
 

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 =    𝑚! 𝑚! = 𝜎! 𝜎!, 
(2) 

 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =    𝑚! 𝑚! − 𝑚! 𝑚! =
𝜎!! 𝜎!
𝜎! 𝜎!

, (3) 

 
where 𝑚!  is the spectral moment at order n calculated 
using (4), 𝜎!! is the variance from the analyzed segment of 
the non-linear time series f(t), and 𝜎!  and 𝜎!!  are the 

standard deviations of the first and second derivatives of f(t), 
respectively.  
 

𝑚! = 𝜔! ∙ 𝑆 𝜔 𝑑𝜔
!!

!!
 (4) 

 
S 𝜔  corresponds to the power density spectrum. As the 

frequency description from the Fourier transform is always 
symmetrical with respect to zero frequency, in a statistical 
approach to the shape of the frequency distribution, all odd 
moments will become zero, and the information will be 
contained in the even moments.  

Hjorth’s parameters serve as a bridge between a physical 
time domain interpretation and the conventional frequency 
domain description [22]. The transformation between both 
domains is based on the energy equality within the actual 
epoch and can be calculated by the time-frequency 
relationship shown in (5)-(7). 
 
 

𝑚! = 𝑆 𝜔 𝑑𝜔
!!

!!
=
1
𝑇

𝑓!(𝑡)
!

!!!
𝑑𝑡 (5) 
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Hjorth’s parameters were originally formulated for EEG 
analysis and description and have been widely used in sleep 
EEG processing for data reduction and discrimination of 
sleep stages [25-27]. Other studies related with EEG signal 
analysis have reported the use of Hjorth’s descriptors for 
applications such as psychotropic drug research [25,26], 
assessment of postalcoholic diseases [28], temporal lobe 
seizures lateralization [24], classification of facial movement 
artifacts in the EEG signal [29], monitoring changes in EEG 
signals of patients with renal failure before and after 
hemodialysis [30], creating ink topographic displays for 
visual monitoring of changes in EEG signals [31], evaluation 
of performance in channel reduction for EEG classification 
in emotion assessment [32], among others. Mouzé-Amady 
and Horwat (1996) [33] applied NSDs to EMG signals and 
concluded that they could be used to describe the spectral 
content of surface EMG during repetitive movements due to 
their results of high correlation coefficients (ranging from 
0.81 to 0.93) between Hjorth’s mobility and the FFT mean 
frequency. Hjorth’s parameters have also been applied 
successfully in non-biomedical fields [21]. 

 



 

 
Figure 1. Posterior (a) and anterior (b) views of electrode placement for 
EMG signal recording. Corresponding muscles are identified in Table I.  

 

III. METHOD 

A.  Data Acquisition Protocol 
The surface EMG signals used for this study were those 

recorded in [34] using 8 differential channels (Ag-AgCl 
surface electrodes model VERMED NeuroPlus A10043 with 
an inter-electrode distance of 1.5 cm) placed on the dominant 
forearm of 10 normally limbed subjects, aged between 23 
and 50, and with no register of neuromuscular disorders. The 
electrode disposition is shown in Fig. 1. To ensure the 
positioning of the electrodes over the muscles of interest, 
each participant was asked to repeatedly close and open the 
hand in order to identify the muscles mentioned in table I. 
The skin was carefully cleaned before electrode placement, 
and the reference electrode was located on the elbow.  

Each subject was asked to execute six different hand 
motions, namely hand opening/closing, wrist 
pronation/supination, and wrist flexion/extension. The series 
of movements were repeated five times with a one-minute 
rest between them in order to avoid muscle fatigue. Each 
recording is 20 seconds in length. It starts with the forearm in 
an inactive position, followed by the dynamic part of the 
contraction, and finished by sustaining the contraction, once 
the final position is reached, until the end of the recording.  

Written consent was obtained from every subject before 
starting the study. In a previous session, the protocol was 
explained to each of the participants and the amplification 
gain of the eight differential EMG channels was calibrated 
according to the amplitude of the contraction for each 
subject.  

In order to reduce unwanted variability, every participant 
was asked to perform the study in a standing position with 
the dominant arm extended to the front and the hand relaxed.  

The acquisition system consisted of 8 differential 
channels with adjustable amplification gain and a first order 
analog band-pass filter with a low cut-off frequency of 20 Hz  

 

TABLE I.  FOREARM MUSCLES RECORDED  BY EACH EMG 
DIFFERENTIAL CHANNEL 

EMG 
Channel Forearm Muscle 

1 Extensor digitorum communis 

2 Extensor capri ulnaris 

3 Differential measure between extensor digitorum 
communis and extensor carpi ulnaris 

4 Extensor carpi radialis longus 

5 Brachioradial 

6 Flexor carpi radialis 

7 Palmaris longus 

8 Flexor carpi ulnaris 

 
and a high cut-off frequency of 400 Hz. Each analog output 
was connected to a National Instruments acquisition card 
(model DAQ-Card 6024WE) for 12-bit A/D conversion. 
EMG signals were recorded with a sampling rate of 1024 Hz. 
 

B. Data Processing 
The multichannel EMG signals were processed and 

analyzed using MATLAB® (version R2012b). Each 
recording was divided in transient and steady states as 
illustrated in Fig. 2. A hamming window was applied to 
segment the signal for feature extraction. Classification 
performance was tested with two window lengths, 256 and 
128 ms, both with 50% sample overlap. 

A wavelet shrinkage method at third level of 
decomposition and based on Stein’s unbiased risk estimate 
(SURE) was applied to each windowed segment for de-
noising purposes and to narrow the signal’s frequency band. 
The decomposition level was chosen considering that the 
main concentration of energy in the surface EMG signal is 
located within the band of 50-150 Hz. The de-noised signals 
were rescaled using a noise level dependent estimation.  

Once the window length was selected, Hjorth’s 
parameters were calculated for each segment using (1)-(3). 
Different combinations of these parameters were arranged to 
build various feature matrices and evaluate which one 
yielded the best performance. The first matrix consisted of 
the three Hjorth’s parameters, and the other three were 
formed from the possible combinations of two different 
parameters.  

C. Artificial Neural Network’s Parameters 
For classification of the EMG signals, an artificial neural 

network (ANN) model was trained using the aforementioned 
feature matrices. A Bayesian regulation backpropagation 
algorithm was used to train the model.  

The final ANN’s architecture depended on the available 
feature matrix dimension; however, the model consisted of 
only one hidden layer with 9 neurons in it. This number of 
neurons was defined based on experimental testing. For 
classification purposes, the network output was binary 
codified.  



 

In order to evaluate the network’s performance, a k-fold 
cross-validation process (k=5) was carried out.   

 

 
Figure 2. Division in transient and steady states of an eight multichannel 

EMG signal. 
 

IV. RESULTS 

A.  Window Length Selection 
Two hamming windows of different size were tested over 

the whole transient data set. The first one had a length of 256 
ms and the second one of 128 ms. Both windows were 
applied with a 50% sample overlap. Table II and Fig. 3 show 
the classification percentage obtained for each window 
length.   
 

TABLE II.  MEAN CLASSIFICATION PERCENTAGE AND STANDARD 
DEVIATION ACCORDING TO WINDOW LENGTH 

Movement Type 
Window Length [ms] 
256 ms 128 ms 

Closing 97.71±2.95% 98.71±1.25% 

Opening 97.43±2.11% 96.86±1.48% 

Pronation 96.86±2.50% 94.86±3.03% 

Supination 97.71±3.51% 96.43±3.03% 

Flexion 100.00±0.00% 99.71±0.60% 

Extension 99.14±1.38% 98.14±1.66% 

Mean 98.14±0.99% 97.45±1.10% 

 
 

 
Figure 3. Comparison in classification percentage of the transient EMG 

state for each movement type using different window lengths. 

B. Hjorth’s Parameters Selection 
Classification performance was evaluated with different 

combinations of Hjorth’s parameters over the transient 
segment of the signals as it is shown in Table III. The 
column labeled ‘A+M+C’ contains the classification 
percentages obtained for each movement type using the three 
Hjorth’s parameters. The following columns denote the 
classification percentages from combining two of the 
parameters.  

The mean classification error percentage obtained from 
using each feature matrix was calculated and is presented in 
Fig. 4. These percentages include the mean classification for 
the whole test population including every movement type. 

  

TABLE III.  MEAN CLASSIFICATION PERCENTAGE ACCORDING TO THE 
COMBINATION OF HJORTH’S PARAMETERS USED IN THE FEATURE MATRIX 

Movement Type 
Hjorth’s Parameters 

A+M+C A+M A+C M+C 
Closing 98.14% 96.57% 97.14% 98.71% 

Opening 96.86% 95.43% 96.14% 96.86% 

Pronation 94.00% 94.43% 93.00% 94.86% 

Supination 95.57% 94.29% 93.29% 96.43% 

Flexion 99.86% 99.57% 97.87% 99.71% 

Extension 97.86% 98.29% 96.71% 98.14% 

Mean 97.05% 96.43% 95.69% 97.45% 

SD 2.95% 3.57% 4.31% 2.55% 
A stands for ‘Activity’, M for ‘Mobility’, and C for ‘Complexity’ 

 
Figure 4. Mean classification error percentage obtained by using different 

combinations of Hjorth’s parameters as features for classification. 
 

C. Comparison in Classification Accuracy of the Transient 
and Steady EMG States 
Previous studies such as [5], have reported higher 

classification accuracy when using the steady state of the 
EMG signal. Therefore, the proposed method was evaluated 
for both EMG states. The mean classification percentages 
obtained for each of the subjects are presented in Table IV. 
The comparison in mean classification accuracy per 
movement type is illustrated in Fig. 5.  



 

TABLE IV.  TABLE TYPE STYLES 

Subject 
EMG State 

Transient Steady 

1 97.38% 97.62% 

2 99.05% 99.29% 

3 97.62% 97.14% 

4 95.71% 96.67% 

5 97.86% 99.76% 

6 96.67% 97.14% 

7 98.33% 99.05% 

8 96.19% 96.67% 

9 96.90% 98.10% 

10 98.81% 97.86% 

Mean ±	 SD 97.45±1.10% 97.93±1.11% 

 
 

 
Figure 5. Mean classification percentage per movement type for the 

transient and steady EMG states. 

V. DISCUSSION 
The proposed method departs from the use of features 

originally intended for EEG description. The EEG signal is 
formed by the superposition of characteristic responses; in a 
similar way, the EMG signal is the superposition of MUAPs, 
which seems to make Hjorth’s parameters also suitable for 
their analysis due to the nature of myoelectric sources. 

The parameters’ values, except for activity, referring to a 
single response, are also valid for a superposition of 
responses [22], which can justify that classification error 
increases when including this parameter, as shown in Fig. 4.  

The mean classification percentage obtained from the 
steady EMG signals was just slightly higher than the one 
reported for the transient state (refer to Fig. 5). This suggests 
that similar classification accuracy can be obtained from both 
EMG states using Hjorth’s parameters as compared to 
previous reported methods.   

Classification accuracy did not suffer a significant 
decrease when using a window length of 128 ms as 
compared to one of 256 ms, which could allow obtaining a 
faster response for control purposes and would make it more 
suitable for on-line applications.  

VI. CONCLUSIONS 
It has been widely discussed whether or not the transient 

state of the muscle contraction contains enough relevant 
information as to accurately discriminate between different 
types of motions; however, Hjorth’s parameters seem to 
adapt well enough to the transient MES as to extract highly 
representative information from it. Using the transient EMG 
state for myoelectric control would allow generating a 
control signal since the beginning of the muscle contraction, 
which would also reflect in a more natural control of the 
device.  

Although Hjorth’s parameters are based on spectral 
moments, they are also calculated by time variances where 
the computational cost is more affordable than other methods 
based on frequency-domain analysis that normally imply 
complex transformations. However, due to their 
mathematical significance, Hjorth’s parameters allow 
characterizing the signal in both the time and frequency 
domains.  
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