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Resumen

La tesis está dirigida al desarrollo de un esquema de identificación y control

descentralizado basado en redes neuronales recurrentes de alto orden (RHONN

por sus siglas en inglés) y su aplicación a sistemas de gran escala. Muchos

sistemas, tales como la red eléctrica de potencia, redes de computadoras y de

telecomunicaciones, redes de sistemas dinámicos, sistemas de transporte,

sistemas de manufactura, industria de procesos y muchos otros, son sistemas

interconectados de gran escala.

Para controlar dichos sistemas, se han propuesto en la literatura esquemas de

control centralizado, suponiendo que se tienen disponible toda la información de

las dinámicas del sistema. A pesar de que hay ventajas teóricas obvias, la

centralización de la ley de control es muy difícil para un sistema complejo de gran

escala con interconexiones debido a razones técnicas y económicas. Más aún, los

diseños de control centralizado son dependientes de la estructura del sistema y no

pueden manejar cambios estructurales. Si se agregan o eliminan subsistemas, el

controlador para el sistema global debe ser rediseñado.

El enfoque de control descentralizado surge a partir de la alta dimensión del

sistema a ser controlado, la imposibilidad en el intercambio de información entre

subsistemas, la falta de capacidad de cómputo requerido en el caso de un único

controlador central y la incertidumbre en la medición de parámetros dentro de un

sistema de gran escala.

En esta tesis se establece la viabilidad de aplicar redes neuronales recurrentes

de alto orden (RHONN) como identifícadores adaptables de los subsistemas de

gran escala usando únicamente la información disponible localmente. Se

consideran como perturbaciones los términos de interconexión y se investiga la

implementación de un controlador discontinuo usando la teoría de control de

estructura variable. Los algoritmos desarrollados se aplican a diversos sistemas

electromecánicos, y los resultados se muestran en simulación y se verifica la

aplicabilidad de los algoritmos propuestos para sistemas electromecánicos

interconectados.



Abstract

This thesis deals with the development of decentralized identification and control

algorithms based on recurrent high order neural networks and its applicability to

large scale systems. Many physical systems, such as power grid, computer and

communication networks, networked dynamical systems, transportation systems,

manufacture systems, processes industry and many others, are complex large-

scale interconnected systems.

To control such large scale systems, centralized control schemes are proposed

in the literature assuming available global information for the overall system. While

there are obvious theoretical advantages, control centralization is very difficult for a

complex large scale system with interconnections due to technical and economical

reasons. Furthermore, centralized control designs are dependent upon the system

structure and cannot handle structural changes. lf new subsystems are added or

removed, the controller for the overall system has to be redesigned.

Decentralized control approach arises as a consequence of the high order

system dimensions, difficulties to interchange information between subsystems,

the lack of computational resources if a centralized controller is required and the

uncertainties due to parameter variations in large scale systems

ln this thesis the recurrent high order neural networks applicability is verified and

used as adaptive identifiers of large scale systems using only local information

available; interconnection between subsystems are considered as disturbances

and a discontinuous controller is implemented using the variable structure control

theory. The developed algorithms are applied via simulations to several

electromechanical systems and the applicability of such algorithms is verified for

interconnected electromechanical systems
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Chapter 1

Introduction

1.1 Motivation

Many physical systems, such as electric power grids, computer and communication

networks, networked dynamical systems, transportation systems and many others,

are complex large-scale interconnected systems [17], [35]. To control such large scale

systems, centralized control schemes are proposed in the literature assuming avail

able global information for the overall system. While there are obvious theoretical

advantages, control centralization is very difficult for a complex large scale system

with interconnections due to technical and economic reasons [17]. Furthermore, cen

tralized control designs are dependent upon the system structure and cannot handle

structural changes. If subsystems are added or removed, the controller for the overall

system should be redesigned.

Decentralized control for interconnected power systems has also attracted consi

derable attention of researchers in the field of complex and large-scale systems [6],

[7], [14], [34]. We know that multi-area interconnected power systems have a complex

structure. They exist in network forms; in some special cases, they can also exist in

longitudinal, loop or radial structure.

Over the past three decades, the properties of linear interconnected systems have

been widely studied [13], [19], [34]. By contrast, the control or modeling of inter

connected nonlinear systems has not received the same attention. Due to physical

1
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configuration and high dimensionality of interconnected systems, centralized control

is neither economically feasible ñor even necessary [2]. Because decentralized con

trol schemes are free from difficulties due to complexity in design, debugging, data

gathering, and storage requirements, they are preferable for interconnected systems

than centralized ones. However, due to the existence of nonlinear interconnections,

there are not many efficient methods to cope with the disturbances produced by the

interconnection between subsystems.

Typical examples, where decentralized control approach can be applied, arises in

different kind of industries, systems and processes. The process industry, such as the

chemical one, include a broad range of large-scale processes: bulk petrochemicals,

pulp and paper and cement are examples of them. Moreover there exist systems

whose dynamical behavior changes according to unknown external disturbances or

due to parameter variations. In a system of couple water reservoirs, for example,

whose levéis have to be controlled, effects, due to dynamical interactions between the

reservoirs and uncertainties relative to human consumptions and inflow variations

from the environment, need to be considered. In a multi-area power system, whose

goal is to provide energy to many enterprisers and private consumers, there aie dy-

namical variations due to changes in loads, new interconnections with other networks,

changes in parameter due to saturation and operational conditions, etc. Numerous

techniques and approaches are popular in industry in order to deal with large-scale

systems, such as the relative gain array (RGA) [5] and partial relative gain (PRG)

[15]. These procedures are developed to deal with nniltivariable linear plants: for

nonlinear plants where there exist uncertainties, parameter variations and unmod

elled dynamics, the mentioned techniques are difficult to apply. The aforementioned

large-scale plants have one property in common: they are all complex collections of

interacting components in which change often occurs as a resulting of not predictable

processes. All these examples illustrate either the lack of centralized information,

or the lack of a centralized computing facility. These faets motivate the design of

decentralized controllers, using only local information while guaranteeing stability for

the whole system.
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1.2 Recurrent High Order Neural Networks

According to the structures of the neural networks, they can be clas.sified as feed

forward neural networks (FFN) and recurrent neural networks (RNN) [9]. It is well

known that a FFN is able to approximate any continuous function closely. However,

the FFN is a static mapping. Without the aid of delays, FFN are unable to represent

a dynamic mapping. In the two last decades, much research has been done on appli

cations of FNN with delays to deal with dynamical problems; however, FFN require

a large number of neurons to represent dynamical responses in the time domain [29] .

On the other hand, RNN have superior capabilities than FNN, such as dynamics

and the ability to store information for later use. Thus RNN is a dynamic mapping

and demonstrates good control and identification performance in the presence of un

modelled dynamics [9]. Recently, research on RNN has been done on recurrent high

order neural networks (RHONN). Additionally to the approximation properties of

RNN, the RHONN structures have the capability to represent dynamic mappings in

the state space form [4], [11], [22], [32]. Thus, RHONN allows the applicability of

nonlinear control techniques designed in the state space approach [1], [3], [4], [11].

1.3 Block control and sliding modes

The variable structure control (VSC) strategy using sliding mode have been proven to

be an excellent approach to control nonlinear dynamic systems [26], [36]. VSC offers

attractive properties such as robustness to parameter variations, fast dynamics and

the rejecting of external disturbances [36] . There are two basic steps to designing a

VSC. The firs is the design of sliding control or equivalently the sliding surface. The

second is the design of switching control. The system is reduced to normal or regular

form before to start the designing. The electromechanical systems considered in this

dissertation are already in this form.
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1.4 Dissertation Structure

The present dissertation introduces a new approach for decentralized control theory:

decentralized Recurrent High Order Neural Networks (RHONN) .structures based on

[21], which are able to identify the dynamical behavior of nonlinear subsystems with

only local information and can deal with uncertainties in the absence of matching

conditions, as has been discussed in [4]. VSC is used to obtain a robust control law,

which guarantees tracking and rejects disturbances. The matching condition is not

required due to the interconnection terms are considered external disturbances and

they are embedded in the neural parameters; this allows to use only local information

for the local controllers. Additionally, the use of reduced neural structures is pre

sented in order to identify the dynamical model of power systems and the respective

controllers based on such reduced models are designed. This work is organized as

follows

In Chapter 1, the motivation for this dissertation is given, the state of the art on

decentralized control is described. The block control technique and RHONN struc

tures are described briefly.

In Chapter 2, the decentralized neural identifier and the class of subsystem consi

dered is presented. The neural identifiers is designed considering the interconnection

terms as external disturbances. A robust decentralized learning law is used for the

local subsystems in order to avoid the drift parameter phenomenon.

In Chapter 3, the block control technique is explained. The block control algo

rithm is designed in a recursive manner. Each local subsystem is transformed in

new coordinates in order to obtain the switching surface. The stability analysis for

the local subsystems is detailed considering that interconnection terms are bounded

but no necessary known. Henee, the closed loop for the whole system is guaranteed

via Lyapunov analysis. The decentralized identification and control scheme devel

oped is applied to a testbench large scale plant: the interconnected double inverted

pendulum. Simulations results for regulation and tracking are presented.

In Chapter 4, a single machine infinite bus system application is developed. An 8th
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dynamical model for the power system and a reduced identifier is used. The sliding

mode control bíised on the resulting reduced identifier is applied. The robustness of

the scheme is tested via a short circuit fault.

In Chapter 5, two multimachine power systems are considered. The first one, is

a two machine interconnected to an infinite bus system with a 3rd order dynamical

model representation. The second multimachine power system is a 3-machine 9-bus

interconnected via a transmission network. The 3 machine system is modeled as a 6i/i

order dynamic structure and identified by a 3rd order reduced neural model. Both

power systems are tested with a disturbance consisting of a short circuit fault.

Finally, Chapter 6, states conclusions and future work.



Chapter 2

Neural Network Identifier

In this chapter, we present the class of nonlinear systems to be considered in this

dissertation and the decentralized recurrent neural network which is able to identify

interconnected electromechanical plants. The respective convergence of the identifica

tion error is established on the basis of the Lyapunov approach [8], [22].

The considered large-scale system is constituted of nonlinear subsystems in the

Nonlinear Block Controllable Form with Disturbance Term (NBC) [27] consisting of

r blocks:

X¡ = faixD+BaixDxl + Takixl)

X.
= fi2(xlx.)+Bi2(x],xl)x3i+^i2k{xlxí)

Xi
=

Jiq \Xi > Xi *■ ■ ■ •
7 Xi ) X £>iq \Xí iXí> ■ ■ ■ iXi) Xi

+riqk(xlxl---,XÍ). <7
= 3,...,r-l

Xí
= fir(x) + Bir(X)ui + Tirk(x) (2.1)

where x
= [ X¡T X¡T ■ ■ ■ X¡T ] XÍ **= -ñ"i,xl. X i*3 the state vector of the kth

subsystem (i = I...N, l < k < N, k^i) and the rank of Biq = n_q, V^f € -Dx« C

._?"•'■. The interconnection terms

6
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tf

r-u = Y2 Tafc(xfe)
fc=i,fc*«

ri2k = £ i™(xlxl) (2.2)
k=l,k&

N

r¿,fe = J2 7wfc(xfc-x1--***Xfc)
fc=i,fc*^í

N

Lírfc = JI Tirfc(x)
fc=l,**-*-i

reflect the interaction between the ith and A;"1 subsystem; they .are bounded by non-

linear functions 7*-* and enter the system as no matching condition disturbances, /¿r

and BÍT are smooth and bounded functions, /¿r (0) = 0 and _5, (0) = 0. The integers

nn < ni2< ...
< Uir defines the different subsystem structures, and $3q=i n^- = n*.

2.1 Decentralized Neural Network

For the large-scale plant, described by (2.1), we propose the following decentralized

RHONN model, whose structure is similar to (2.1) and has also the nonlinear block
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controllable form according to [27]:

_.*p L'Xr

i] = -AiXX¡ +YW^IlZÍÍÍP)+ E <.*«(**)*?
P=l j'e/ip m=Lip+l

L-2p "•lp

x.
= -Ai2xii+Yw^XlZÍÁP)+ E ^** (*<»*?)*? (2.3)

p=l jehp m=¿2P+l

g
= 3,...,r-l

¿rp ¿rp

±^ = -_V*x£w-rí-n^(P)+ E «&«**■(*)
P=l je-fr*. m=£rp+l

where x = [ x}T xf^ • • • x¡T ] is the %lh block neuron statewith the same proper

ties than (2.1), L^, is the number of high order connections, 11 is the number of fixed

parameters w', which depends on the plant structure and are incorporated to the neu

ral network model in order to obtain a block controllable structure, {Iip, j^p, ••■, Irp}

is a collection of no ordered subsets of {lp, 2P, ..., m+ n}, A is a semi-definite positive

matrix, w are the on-line adjustable weights of the neural network, d are no negative

integers, * is a nonlinear function of the state x and/or the input u, and Zp is a

vector defined as

sí (4)

zp =

Si«)

with Si (•) a smooth sigmoid function formulated as

Si (x) =
O'i

lXexp(-,_-*x)
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where s¿ (•) € [— 1, 1]; «j,/?, and 7¡ are positive constants. If the following vector is

introduced for the iih subsystem

Pi (Xi, Ui) =

Pi,i

Pi,2

Pi.Lp

n zdr{n) i

jein

n zd¿m
ieH2

n zrr
jelir

drj(ir)

(2.4)

then, system (2.3) can be rewritten as

i

-üijXij + wfpi (Xi, Ui) + W^lpi (x, u) Xj+i

1 r-l (2.5)

In (2.5), the fh state of each neuron for the ith subsystem is characterized by x, and

tf denotes a nonlinear function of x or u which is selected according to the plant

structure represented by the r blocks.

It is worth to point out that the design of decentralized neural network does

not consider the interconnection terms. Although the neural identifier has a similar

structure as (2.1)-(2.2), these interactions are considered as external disturbances and

the identifier must be able to adapt its neural weights to compénsate the influence of

such external disturbances.

2.2 Decentralized On-Line Learning Law

The decentralized identification proposed is based only on local information available

for each subsystem. Henee, the learning law is developed for the ith subsystem as

follows.

Based on the results presented in [21], we assume that there exists a decentralized

RHONN which describes (2.1); thereby, the plant model can be described by

AíXí + w*
'

pi iXi,Ui) + tv¡ (t) (2.6)
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where tu* € RLir and the modeling error í/¿ (t) is given by

"_(*) = fi(Xi) + Bi(Xi)ui + rnk(xk) (2.7)

+AíXí - xujpi (xí, Ui)

The modeling error term f¿ (.) can be made arbitrary small selecting appropriately

the number __■ of high order connections [22]. The optimal unknown weights vector

w* is defined as

w¡ = arg min < sup | /¡ X _5¿Ui X _4,x¿ - w?Pi | >

Since each subsystem (2.1) can be written according to (2.6), two possible models for

(2.5) can be used:

• Parallel model

¿ij = -OijXij X uifpi (x^ Ui) X wfipi (x, u) (2.8)

• Series-Parallel model

Xíj
=

-OijXij X wfpi (xí, u_) + iff& (x, u) (2.9)

We use the series-parallel model considering that, in the case of electromechanical

plants included in this dissertation, it performs better than the parallel one.

A major concern when using adaptive schemes for control purposes is the stability

of neural weights. The parameter drift phenomenon, which consist in the possibility

that the RHONN synaptic parameters may drift to infinite, even if the identification

error converges to zero, does it impossible to obtain parameter convergence.

To address such issues, we uses a robust updating weight law, which will be intro

duced in the next section, based on the following assumption, in order to guarantee

the stability convergence for the proposed identification and control approach:

Assumption 1 Systems (2.1) and (2.5) are input-to-state stables [11].
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tracking ofa desired trajectory, defined in terms ofthe plant state Xn, by the nonlinear

state Xi formulated as (2.1), can be established as the following inequality

HX*-. - Xill < lh
- Xill + llXri - xt\\, * = 1,2,3,...,_V (2.10)

where || || stands for the Euclidian norm. We establish the following requirements

for the neural network tracking and control solution [11]:

Requirement 1

limt-+oo\\Xi
~

Xill < C« (2-H)

with £• a small positive constant.

Requirement 2

/im.^oo||Xri-x.|j-=0, i = 1,2,3,..., N (2.12)

An on-line neural identifier based on (2.5) ensures (2.11), whereas (2.12) is guaranteed

by a discontinuous controller based on the block control teclmique. Such control

algorithm will be developed in the next chapter.

2.3 On-line Learning Law

In this subsection, an on-line updating weight law is developed considering the case

where the modeling error term is zero, i.e., í/¡ (t) = 0. From (2.6), for the jth state of

the iih subsystem, we estabUsh

X¡_
=

-OijXij + w*Jpíj, (2.13)

i = 1,..,íV,

j = l,...,niq
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and considering (2.8) or (2.9) then

Xi)
=

-aijXij + wfjPij (2.14)

i = Í,..,N,

j = i,...,niq

where w-y is the estimated of the unknown vector w*j. In this case the state error

e.ij
=

x^
—

Xij satisfies

éij =

-aijdj X 4>Jjpij (2.15)

i = 1,..,N,

j = l,...,n,*g

with <j>ij = Wíj
—

w*j. The following theorem establishes the main properties of the

learning law which is able to on-line adjust the weights for neural network (2.14).

Theorem 1 Consider the RHONN model given by (2. 14) whose weights are adjusted

according to

4 = -eÍ^-% (2.16)

where (H^)_1 is a symmetric positive defiriite matrix, then for i = 1, ..., N and j =

1
. •*■■) 'f'iq

(a) ey, faj e _Coo

(b) lirrit^oceij (t) = 0

The respective proof and stability analysis is given in [32], [22].

2.4 Robust On-line Learning Law

For the case where the modelling error is not zero [32], the solutions of the differential

equations (2.16) may become unbounded, even if the modelling error is bounded.
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Therefore, the learning law (2.16) has to be modified in order to avoid the parameter

drift problem. The learning laws given by (2.16) are modified as follows [32]

"'íj = _(5í.') (eHPi.
~

ffiÍWij) i2"17)

where

°H

0 if M < A/y

{^rT^üo if Mij<\\wij\\<2Mij

oij0 if \\wíj\\ > 2Míj

with q > 1, Oíjq and A/y positive constants.



Chapter 3

Decentralized Block Control

Based on the large-scale system identified by the proposed subsystem neural identifier,

we proceed to develop the respective control law. Stability of subsystems and global

system is analyzed via Lyapunov approach. In order to test our developed decentralized

identification and control scheme, we use an illustrative benchmark plant known as the

two interconnected inverted pendulum. This example is o classical large-scale testbed

for nonlinear decentralized control [3], [13], [19], [28], [35]. Simulation results are

included, which illustrates the capabilities and performance of our approach.

3.1 Block Control Algorithm

A sliding surface and a discontinuous control law is designed for system (2.5) consi

dering the state xf+\ q = 3, ..., r
— 1 as a fictitious control vector for the block q. This

procedure is described in the next steps [27].

Step 1 Assume that n¡i = n¿2 as discus.sed in [26] , and define the vector error as

z.=xl-Si (3.1)

where <5¿ is a smooth and bounded reference signal. The dynamics for (3.1)

along the trajectories of (2.5) are

i} =
-aiXi + wfpi(xi,tLi) (3.2)

+w¡Tii>i (x, u) x2 - Si

14
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If the fictitious control xf is selected as

xf =
M» (-kiz¡ + zf + Si + aiXi

-

rjij

Pi
= (w^i&u))-1 (3.3)

7/¿
= U>fpi(Xi,Ui)

where fc is a positive constant, then, the first block is transformed to the new

coordinates zl, zf as follows

¿¡ = -kiXz¡ X zf (3.4)

The vector zf is obtained using (3.3) as

:f = -aiXi + wfpi(xi,Ui) (3.5)

-i-w^ijh (x, u) x2-Si-r knzl

zf = a] (x<i,x<2) (3.6)

Step 2 Taking the derivative of (3.5), we obtain

.2 da} . da¡ . ■_■ ,„ _.

dxn oxi2

The fictitious control for (3.7) is xf and the procedure continúes for the remain-

der blocks until the true control w¿ ii? obtained in the rth block as

z\ = fir
—

£*rU¿ (3.8)

where the rank of (_& — »¿r and /¿r is a bounded function. The discontinuous

control action is applied as

Ui = Ui<_sign(z\-) (3.9)

3.2 Stability Analysis for the Proposed Controller

The closed loop Stability of subsystems and global system is analyzed via the Lya

punov approach in the foUowing theorem.
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Theorem 2 Let define

B{ = {fir € R* | \\fiA\ < e^ (3.10)

as a ball of radius e. Setting Ui0 in (3.9) as

U0i > ^_°2 (3.11)
Sir

with a,o a positive constant. Let consider the candidate Lyapunov function

1

1" (3.12)

whose derivative along the trajectories of (3.8) are obtained as

Vi = zjr (fir -

iirUiosign (zir)) (3.13)

Taking into account the following identities

zTsign(z) = \\z\\l> \\z\\2

and substituting them in (3.13), we obtain

Vi < \\Zir\\\\fir\\-SirUoi\\zir\\ (3.14)

Vi < -IkirlK-H/irlIX^Í/ío)

If (3.10) holds and using (3.11) in (3.14), the derivative ofthe Lyapunov function is

simplified as
^_

Vi < -ata H2fc.ll (3.15)

Consequently, the closed loop asymptotic stability is guarantee for (3.8) and the sliding

motion occurs on the manifold z¡
= 0 in a finite time, then the tracking error (3. 1)

will tends asymptotically to zero in accordance with (3.4). Moreover, the composite
N

Lyapunov function candidate for the large-scale system V = £¡ v_ whose derivative
¿=i

N

V<-Y^o\\zir\\ (3.16)
)=1

is negative defined, guarantees the stability for the global interconnected system if

Requirement 2 holds and (3.10) is fulfilled.
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Figure 3.1: Identification and control scheme

Additionally, according to Theorem 1 the identification errors are bounded.

Then, considering (2.10) and (2.12), it is possible to establish the bound of the track

ing error \\xñ
—

x,|| for the whole interconnected system. The closed loop identifica

tion and control scheme developed is shown in Fig. 3.1.

3.3 Interconnected Double Inverted Pendulum

This section is devoted to test the decentralized scheme developed using a bench

mark plant. Applicability of decentralized identification and control algorithms is

iUustrated via simulations; additionally, regulation and tracking of nonlinear refe

rence signáis is depicted using this decentralized testbed system.

3.3.1 Plant description

Each pendulum is positioned by a torque input Uj applied to a servomotor at its base.

It is assumed that, for the ith controller (i — 1,2) . the only available measurements

are Xa and x*i (angular position and angular rate) corresponding to the respective

pendulum.
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Figure 3.2: Double inverted pendulum

The equations which describe the motion of each pendulum are defined as

Xii Xi2

fmigr kr2\
. ,

. kr
., ,,

*°
=

{-r-iJi)smiXii)+2Jiil-b)
Ui kr2

la
í sin (X21) if i *■= 1

1 sin(xn) if i = 2

(3.17)

(3.18)

(3.19)

i = 1,2

where xa is the angular displacement of the pendulums from the vertical and Xi2 is

the angular speed. The parameters valúes are indicated in Table 3.1 and Fig. 3.2

displays a scheme of the system.

For the plant dynamics (3. 17)- (3. 19), we propose the decentralized neural network
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Table 3.1: Double interconnected inverted pendulum parameters

Description Parameter Valué Unit

Pendulum end mass 1 mi 2 Kg
Pendulum end mass 2 m2 2.5 Kg
Moment of inertia 1 Ji 0.5 Kg ■ m2

Moment of inertia 2 J2 0.625 Kg-m2

Spring constant k 100 N/m
Pendulum height r 0.5 m

Natural length of the spring l 0.5 m

Gravitational acceleration 9 9.81 m/s'2
Distance between pendulum hinges b 0.4 m

identifiers, according to the ¡.eries-parallel model (2.9) as

x.i X¿2

X»2
= -ai2Xi2+Wi2lSi(Xil)+Wi22Si(Xi2) +

i = 1.2

___-

Ji
(3.20)

The block diagram implementing (2.4) is shown in Fig. 3.3. In this diagram, the

entries to the sigmoid blocks are the plant states available, xn and Xi2, according to

the series-paraUel model described in (2.9).

The goal is to track desired reference signáis; this tracking is achieved by designing

a control law based on the sliding mode technique as described in section 3.1.

Considering the reference signal as <5¡, for i = 1, 2, the tracking error is given by

zn = Xn
— S¡ (3.21)

whose dynamics are obtained using (3.20) as

¿»i = xi2
- Si

Introducing new dynamics for (3.22) as

(3.22)

Xi — —knZii X ~,*2 (3.23)
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Sigmoid

Figure 3.3: Time-domfñn block diagram for the proposed structure.

then, the dynamics for new variables z¡2 are obtained

¿i2 = fi2 X -Ui (3.24)
Ji

where

/i2 = -ai2X.2X-l..21.Si(Xíl)+Wi22*3i(Xi2) (3.25)

-Si - kf^n X knzi2

Henee, the control .action is proposed, for each pendulum (i = 1,2), as

m = -Uiosign (zi2) , Ui0 > Jifi2 (3.26)

3.3.2 Simulation results

This section presents the respective simulation results for the interconnected double

inverted pendulum. First the regulation case is displayed; afterward, the tracking one

is presented.

Regulation is depicted in Fig. 3.4, which includes a 10 N —

m torque disturb.ance

applied at 3 sec. Fig. 3.5 and Fig. 3.6 shows the applied decentralized discontinuous
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-0.05

Figure 3.4: Regulation

control action. The identification error behavior is shown in Fig. 3.7 and Fig. 3.8 for

pendiüum 1 and pendulum 2 respectively.

The decentraUzed identification and control scheme proposed is able to track refe

rence signáis Si. The tested reference signáis include sinusoidal ones, whose dynamical

characteristics is useful to illustrate the proposed approach performance. In Fig. 3.9

a reference <5i = ¿2 = 0.1 sin(í) for both pendulums is tracked.

More complex tracking capabilities are illustrated by Fig. 3.10 and Fig. 3.11.

S Z Z9 i %5

Figure 3.5: Control action 1 Figure 3.6: Control action 2
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a u _ i ' . 1 . . J

Figure 3.7: Error behavior 1 Figure 3.8: Error behavior 2

Figure 3.9: Tracking for a sine reference

Fig. 3.10 shows the state xn tracking a sinus signal, whereas ^2i tracks a cosine

signal. In Fig. 3.11 one pendulum is forced to stay at a fixed position, whereas the

other one tracks a sinusoidal signal.

It is worth to point out that all the methods found in Uterature are applied

for stabilization; our approach is able, additionally to regulation, to track reference

signáis as showed in this section. The sliding mode technique generates a very high

frequency signal only when the sliding surface is reached. Moreover, the power stage

could be based on the well known IGBT technology, which is adequate for disconti

nuous control signáis.
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Figure 3.10: Tracking for a sine and cosine reference signáis

Figure 3.11: Tracking for a constant and sine reference signáis



Chapter 4

Single machine infinite bus system

application

Motivated by the results obtained in the interconnected double inverted pendulum appli

cation presented in Chapter 3, in this chapter, we consider to test out a neuronal con

trol scheme based on a reduced neural model to a single machine infinite bus system

(SMIB). A complete SMIB dynamical model is used and a reduced neural identifier

is proposed in order to obtain a control law based on this reduced order neural iden

tifier. This chapter presents a design which addresses the on-line identification and

control trajectory tracking based on the 3rd order neural model of the power system

and the application of the resulting controller to the 8th order plant [25]. The goal of

this chapter is related to the applicability of a reduced order neural identifier to high

order nonlinear plant such a synchronous generator. The identification and control

scheme developed allows to obtain a control law using the reduced neural identifier

parameters, whose mathematical representation is less complex than the full order

mathematical model of SMIB. Additionally the block control technique allows to use

the robust sliding mode control as illustrated via simulations.

4.1 Mathematical Model

This section describes the required mathematical models.

24
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4.1.1 Full Order Mathematical Model

The complete model of the single machine infinite-bus system consists of electrical

and mechanical dynamics and load constraints. The electrical dynamics comprising

the stator and rotor damping windings, employing the currents as the state variables,

can be modeled as

where

G_

L

***.
'

P
_____

dt .

= -

G_

_G_

G2'
Gt\

is
X

'

v,
1

Vr

-Ld 0 Lmd 0 4-w 0

0 -Lq 0 Lvlq 0 ^mq

L =
-Lmd 0

0 ~Lrnq 0

0 4

L9

T->md

0

0

lJmq

—Lmd 0 Lmd 0 •í'fcd 0

0 —Lmg 0 Lmq 0 Lkq

-Rs ujLq 0
-i

—wLmq 0 —wLmq
-ujL¿ —Rs uiLmd G2 = 0 W¿m< o

0 0 Rf
- -

0 0 0

"0 0 0" Rg 0 0

G3 = 0 0 0 o* = 0 Rkd 0

0 0 0 0 0 Rkq

(4.1)

Withí, = [ id iq ]T,ir = [ if ig ikd ikq Y Vs=[Vd Vq ]T Vr = [ Vf 0 0 0 ]'

id and iq «iré the direct-axis and quadrature-axis stator currents, in per unit (p.u);

i¡ is the field current, in p.u;

ikd. ikq, and ig are the direct-axis and quadrature-axis damper windings currents,

in p.u;

uj is the .angular velocity, in rad/s:

V¿ and Vq are the direct and quadrature-axis terminal voltages, in p.u;

Vf is the excitation control input, in p.u;



26

Ra and Rf are the stator and field resistances, in p.u;

Rg, Rkd and Rkq are the damper windings resistances, in p.u;

La and Lq are the direct and quadrature-axis self-inductances, in p.u;

Lf is the rotor self-inductance, in p.u;

Lkd and Lj., are the direct and quadrature-axis damper windings self-inductances,

in p.u;

Lmd and Lmq are the direct and quadrature-axis magnetizing inductances, in p.u.

It is well known that fluxes are less sensitivity with respect to parameter variations

than currents; henee, it is more suitable to represent the electrical dynamics in terms

of the stator currents i¡, and the rotor fluxes <j>r, where tj>r = [ i¡)¡ ipg ipkd tfq ] - is

in p.u. Such model is obtained from (4.1) using the following transformation between

fluxes and currents:

<Pr
(4.2)

where

1 0 0 0

0 1 0 0

Lmd 0 Lf 0

0 lJmq 0 L,j
Lmd 0 '-•md 0

o o

0 0

0 0

Lmd 0

0
'-'mq

Lkd 0

0 Lkq

System (4.1) is transformed to the form

r_i__

'__%__
dt

= Ae (cj)
i*

<>r
+ Be

Vs

Vr
(4.3)

with Ae(u) = -TL~1G{uj)T-1 and Be = TL'1 The complete mathematical des

cription includes the swing equation [2]

d¿_
dt

dui

~dl

= tx¡
-

u.

UJ

2H
^Tm T^

(4.4)

(4.5)
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where S, in p.u, is the power angle of the generator; ü;s is the rated synchronous speed,

in rad/s; H is the inertia constant, in sec; _T„, is the mechanical torque applied to the

shaft, in p.u; and Te is the electrical torque, in p.u, expressed in terms of the currents

as follows

Te = (Lq
-

Ld) idiq X Lmdiq {if + ikd)
-

Lmqid (ig X ikq) (4.6)

The mechanical torque Tm is assumed to be a slowly varying function of time as

follows

Tm = 0

The equilibrium equation for the external network is written as

L, di

u)a dt

where R¡_ (w) =
ne

L,:

-u.-

UJ RP

cosa

sin<5

(4.7)

V°° is the valué of the infiniteand F

bus voltage; Le and Re are the transformer plus transmission line resistance and

inductance. Parameter valúes of (4.1)-(4.7) are expressed in p.u.

If we select the following state variables

Xi =S, X2
=

w, X3
= V-7- X_

= Vs-
X5
= Vid* X6

= ll>kq, X7
= id, X&

= iq,

then (4.1)-(4.7) can be represented by

X X2 -us

X2 = «-*_([ -«21X8 -«22X7 ] X3 + [ ~«23X8 -«24X7 ] X4 ~

«25X7X8 X Tm)

X3 = -A3iX3 + A.2X4 + ^33X5 +^/ (4.8)

X4 = ^4iY3XA42X4X-443X5

A5a3 X _452X4 X -4.53X5 + A-aiJX3 X jWxV + Aw-Vx5 X A57Y X B2vf
■h

where

X1 = [Xi] , X2 = [Xs] , X3 = [ Xs Xi]T X'1 = [ Xs Xe ]T X5 = [ Xr Xs }'

A, =
«31 0

0 a.u
Ar_

«32 0

0 042
-4.33 =

«33 O

O a.t3
An =

«51 O

O a6i
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Ai2 =

As -

*57

a¡>2 O

O «62

073 O

O «83

«77 O

O a87

A« =

Al4 =

«53 O

O «63

«74 O

O a84

B_ =
«34

O
B2 =

Vf is the control input to be designed

Ai =

Ai5 =

«78

o

«71 O

O «81

«75 O

O 085

.7 =
O 1

1 o

Am -

A*¡6

072 O

O «82

076 O

O Ü86

4.1.2 Reduced mathematical model

The machine model considered is the flux decay model (one axis model) given in

[2] and [24]; exciters and governors are not included in this model. The reduced

dynamics of a single synchronous generator is described by the following equations in

state variable form

Xi
=

X2

X2
= -&iX3 sin (xi)

- ¿"2X2 X P

X3
= h eos (xi )-hx-i + E + u

(4.9)

where x\ is the load angle, X2 is the shaft speed deviation from the synchronous

speed, X3 1S the quadrature axis internal voltage, P = í***|jfl, E = -d*- and u is a

supplementary signal added to the field voltage, as a control input. The coefficients

bi, i — 1, ..., 4 are positive [12].

4.2 Neural Model for Synchronous Generators

Based on the reduced order model (4.9) and the series-parallel structure (2.9), a

reduced neural identifier structure is proposed as

¿i = -axxi X 6

x-i =

-a2x2 X w2_S {x2) X w22S (x_) S (x3) X £2

¿3 = -o3a;3 + w3iS{x1) + w:_2S (.x3) X^3

(4.10)
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In accordance with (2.9), the structure of (4.10) consists of parameters to be

adjusted such as w2i, w22 and W31, W32; the fixed terms are given by

£l = «1X1 X X2
~

Ws

6 = P (4.H)

Ca = -EXu

The .adjustable neural weights of (4.10) are updating using the robust on-line

learning law (2.17) as estabUshed in chapter 2.

4.3 Control Algorithm

The objective is to forcé angle xi to track a desired reference signal Xr and at the

same time rejecting external disturbances. Employing the block control technique

[27] and using Xr as a constant reference valué to be tracked, let define the error

signal as

Zl = Xi
-

Xr- (4.12)

The dynamics for (4.12) can be obtained from (4.10) and (4.11) as

h = X2-uJ*. (4.13)

Using x2
= —kiZi X Z2 X ws, (4.13) is modified to

¿1 = -hzi X z2, (4.14)

with ¿2 given by

¿2 = -a2x2 X U.21S (.Ti) s (x3) X w22s (xi) s (x3) X &i (x2 -

us) X P. (4.15)

In the next step, the switching surface z-_ is introduced in (4.15)

¿2 = -faz-2 X Sjj, (4.16)

where ki,k2 > 0. The switching function 2.3 is obtained using (4.15) and (4.16) as
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Figure 4.1: Identification and control scheme

foUows

23 = -022:2 X w2ís (xi) .s (x3) X w22s (xi) s (x3) X kx (x2 -lüs) + P + k2z2. (4.17)

It is cleai that if we select the following sliding manifold

z3
= 0, (4.18)

then the motion on this manifold will be described by linear system (4.14) and (4.16)

with the desired dynamics. To guarantee the sliding mode in the manifold (4.18), the

motion projection on subspace Z\ , 22 is derived as [36]

Z3
=

7) + W22S {Xi) S' (X3) tl, (4.19)

where i)
= £-x_ X £-x2 X fr, s' (x)dxi"

ds___lr
dx ■, with r = [xr w* ] Then, taking

into account the bound |t¿| < Uq, Uo > 0, the discontinuous control law is defined as

u — -U0sign (W22S (xi) s' (x3)) sign (z3) , (4.20)

The stabiUty condition of the origin z3 = 0 for the closed-loop system (4.19), (4.20)

is

¿3 = -1
~

U0 \w22s (xi) s' (x3)\sign (z3) , (4.21)
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Figure 4.2: Single machine-infinite bus system

If the following inequality is satisfied

\v\<U0\w22s(x1)s'(x3)\, (4.22)

a shding mode motion occurs on the manifold (4.18) in a finite time, then the tracking

error zx wül tends asymptotically to zero in accordance with (4.14). This motion is

invariant with respect to generator parameters variations and external disturbances.

Fig. 4.1 iüustrates the proposed identification and block control scheme.

4.4 Simulations

The proposed identification and control scheme is applied on the complete 8"* order

model (4.8) of the generator connected to an infinite bus through a transmission

line. Fig. 4.2 depicts the single-machine infinite bus system. The parameters of the

synchronous machine and transmission system (4.8) are indicated in Table 4.1, which

are in p.u except when indicated.

The reference angle Xr to be tracked Ls equal to 1.3314. The parameters for the

neural identifier are a2
= 1, a3 = 2, a2 =

»3
•= 2, fo = 20, fo = 20, e = 0.01,

T.J1 = 800, TJ1 = 0.2. The identification and control stages are indicated as follows

Stage 1: The open loop system is identified on-line by the neural network from tQ — 0

to U = 20 5;
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Parameter Valué (pu) Parameter Valué (pu)
«21 0.4851 «71 26.0460

«22 -0.1379 «72 -28.7592

«23 0.4667 «73 -42.2029

a24 -0.8 0,74 -0.2602

«25 0.02 «75 -1.5094

«26
(4.J,

2H «76 1.0870

«31 -0.7116 «77 -711.3040

«32 0.6456 «78 345.0824

033 -0.1107 «81 13.6301

034 Wo «82 -20.1334

«41 -2.776 «83 -46.7986

«42 2.576 «84 0.8821

«43 -0.3220 085 0.8485

051 30.6122 «86 -0.9663

052 -33.333 «87 -685.4384

«53 -5 H 3.525 sec

«61 9.849 Tm 0.9463

«62 -14.286 Le 0.1

«63 -7.1429 Re 0.5

Table 4.1: Parameter valúes for generator.

Stage 2: The control law is incepted at t = U;

Stage 3: A fault occurs at t¡\
= 40sec;

Stage 4: The fault is removed by opening the breakers of the faulted line at tf2 —

40.15sec;

Stage 5: The system is in a postfault state. This system goes back to healthy ope

ration (stage 1).

The identification and control sequence for x is showed in Fig. 4.4, whereas Fig.

4.5 displays a zoom in for x-

The short circuit fault occurs at tfí = 40 sec and is cleared at t¡2 = 40.15 sec.

The lapse tf2
—

í/i is called the critical clearing time.

Fig. 4.3 shows the performance of the identification and control scheme for u. The
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Figure 4.3: Angle speed time evolution

weights remains bounded all the time (Fig. 4.6). Fig. 4.7 depicts the discontinuous

control signal.

Figure 4.4: Angle time evolution Figure 4.5: Zoom in for angle in short cir

cuit stage
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Figure 4.7: Discontinuous control action



Chapter 5

Interconnected Power System

Applications

This chapter extends the proposed adaptive neuronal identification and control scheme

to the case with two machines interconnected to an infinite btis and with a S-machine

power system. A decentralized RHONN structure, and the respective learning law,

are proposed in order to approximate on-line the dynamical behavior of each nonlin

ear subsystem. The control law, which is able to forcé the system to track the desired

reference signáis, is designed using the well known variable structure theory. The sta

bility of the whole system is analyzed via the Lyapunov methodology. The applicability

of proposed decentralized identification and control algorithm is illustrated via simu

lations to stabilize a electric power system in presence of external disturbance. In the

case of the "i-machine power system, a reduced neural identifier is used to approximate

the dynamical behavior of the multimachine system.

5.1 Power System Dynamical Model

The large-scale power system considered is constituted by n generators interconnected

through a transmission network, whose dynamics are modelled by (see [14] and refe-

35
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rences within for details)

Si =
u.i

* - -ér-wr« <51>

IdOi JdOi

where

APei = Pei-Pmia (5.2)
n

7» (ó» = -%£#W-By_dn(á,-**-) (5.3)
j=i

n

--^.XX-^coste-^
_=1

á¿ is the angle of the ith machine relative to the synchronous angle of the system, u¡i

is the synchronous speed of the ith generator, Pei is the electrical power, wo is the

synchronous machine speed, __?¿ is the damping constant, Hi is the inertia constant, iS-X

is the quadrature axis component of the voltage, B^ are the ith row and jth column

element of the nodal susceptance matrix at the internal nodes after eliminating all

physical buses, v¡i is the control input and Pmio is a constant.

The interconnection term 7* bound is estabüshed considering that the internal

voltages E' are always constrained taking into account physical considerations [14],

[18]. Moreover, the excitation voltage may raise by up to 5 times of the __7íf when

there is no load in the system, then

\E'qiE'qjBij\ < \pei\max

Ki < ^(vfi-EY)
ldOi

< 4|__.-,|— I -Jlmax

as explained in [18].

Considering (5.4), it is also established that

(5.4)

\T
I dOjImh,

li (S,u)<Y Otty lsin (sj) I + 7¡2 K*|) (5.5)
.=1
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Figure 5.1: A two machines infinite bus power .system

with

7¡ij

£ \JUJ |P»lmax When 3=Í
j=\,j¿\ I -lOílmin

|J*7 IPei|,nax when j¿i
r<*Wl__¡*_

(5.6)

(5.7)7¿2
—

P2ij \Qei\max

Piij and p2ij are constants with valúes either 1 or O.1

5.2 Interconnected Power System Example

In this section, the proposed decentralized scheme is applied using a two-generator

infinite bus power system which is portrayed in Fig. 5.1. The plant parameters are

listed in Table 5.1.

If we select the following state variables <$,■ = x»i- w¿ = X»2 and APei —

Xx", then,

'when they are zero, it means that the jth subsystem ís not connected with the ith subsystem



38

Table 5.1: System parameters

Parameter Generator #1 Generator #2

xd (pu) 1.863 2.,36

x'd (pu) 0.257 0.319

xr (pu) 0.129 0.11

x»d (pu) 1.712 1.712

T'do (pu) 6.9 7.96

H(S) 4 5.1

D(pn) 5 3

Xl2 (PU) 0.55 0.55

xí3 (pu) 0.53 0.53

a;*23 (pu) 0.6 0.6

wq (rad/s) 314.159 314.159

(5.1) can be represented as

Xii
=

X«2

Xi2 ~

~2HXi2~2HXii *■ *

11 V

X.3 =

-7ñ~XiZ + Tñ-Vjt X 7í (Xíl*. X*2)
1
dOi

L
dOi

5.2.1 Decentralized neural model identiñcation and controller

design

The following decentraUzed neural network identifiers are proposed for the plant dy

namics (5.8)

x.i =
xi2

X.2
=

-«/2^/2 X W*2lS* (X¿2) X -TJf
(p,„i0 ~

Xa)

xi3
=

-ai3xi3 + wi3isl (xn) + wí32S'1(xí2) (5.9)

+W«33¿-f (Xa) X -=- (PmiO X Vfi)
Id(H

i = 1,2

The goal is to track desired reference signáis -5¡; this tracking is achieved by designing

a control law based on the sliding mode technique. Consider the constant reference
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signal as Si, for i = 1, 2, then the tracking error is given by

zn = xn
- Si (5.10)

Zi2
= Xi2

whose dynamics are obtained, using (5.9), as

iii = .Ti2 (5.11)

¿»2 =

-«¿2X¿2 X Wi213i (Xi2) X ^jf (PmiO ~ X*) - (5.12)

¿i2 = ai2(xi,Xi) (5.13)

Introducing new dynamics for (5.12) as

¿¡2 = -knzn - ki2zi2 X 2.3 (5.14)

using (5.12), the dynamics for the new variable zi3 is obtained as

¿i3 = /í3
~

CiVfi (5.15)

where fi3 = -^x,* X %gXi and a = ^n¡.
Then, the control action proposed for each generator (i = 1,2) is

vfi
= -Ui0sign(zi3) (5.16)

Uoí = 10 (5.17)

5.2.2 Simulations

This section presents the respective simulation results. The simulated sequence is as

foUows

Stage 1: The open loop system is identified on-line by the neural network for time

0 < t < 0.2 s:

Stage 2: The control law is incepted in t > 0.2 s;



40

Stage 3: A fault arises at t = 15 s;

Stage 4: The fault is removed by opening the breakers of the faulted line at

t = 15.15 s;

Stage 5: The system is in a postfault state. This system goes back to healthy

operation (stage 1).

Fig. 5.2 displays the angle time evolution for generator 1 for a reference signal <5i =

1.061rae.. Fig. 5.3 shows the angle time evolution for generator 2, with S2 = 1.058

rad. The robustness of the control action is tested via a short circuit fault, which

is incepted at stage 3 and it is cleared at t = 15.15 seconds. Fig. 5.6 and Fig. 5.7

display the relative speed for both generators.

Zt

Figure 5.2: Angle 1 time evolution Figure 5.3: Angle 2 time evolution

Figure 5.4: Speed 1 time evolution Figure 5.5: speed 2 time evolution
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Figure 5.6: WSCC 3-machine 9-bus power system

5.3 Multimachine Power System

In this section, the proposed decentralized identification and control scheme is tested

with the Western System Coordinating Council (WSCC) 3-machine, 9-bus system

[30], [2]. The power system configuration is depicted in Fig. 5.6.

5.3.1 Mathematical model

The differential and algebraic equations which represent the ith generator dynamics

and power flow constraints respectively are given by
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Xu
=

X2i =

X3i
=

X4«
=

X5i
=

X6t
=
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w¡

W_

iPai
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~

{tl'dilqi
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(Xdi
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IdOi

7fjr)(—XGi
~

Xii
~

(X'qi
~

Xlai)Iqi)
IqQi

vn v vl vn

_

vH r , *di ~At«., , Adi
~

Adi-,

■*di
~

A'*i A*¡«
—

A'*i

V" V V — V"
—

_ x" t - ±______±__^, x <i* ■/«..
—

■/*-qi1qi vi Y \4i '
yi Y X&i

^qi
_

-A-luí -<%.
—

A/gi

O = Pi-ViY.VjYijCos(0i-Qj-óij)
-7=1

n

O = Qi-ViY,VjYijSm(0i-Oj-éij)
j=i

with currents /# and Iqi satisfying the foUowing equations

Visir.(6i-9i)-XqiIqi = 0

Vico%(Si-6i) + X'diIdi-E'qi = 0

i = 1,2 N.

(5.19)

(5.20)

where _V is the number of generators, n is the number of buses, xu 1S the power angle

of the ith generator in rad, X2» is the rotating speed of the ith generator in rad/s,

Xsí is the g-axis internal voltage of the ith generator in p.u., X4¿ is the d-axis internal

voltage of the ith generator in p.u., Xr., is the ld-axis flux linkage of the ith generator

in p.u., Xe» is the 2g-axis flux linkage ofthe ith generator in p.u., Efdi is the excitation
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control input, tpdi and V-V are the d-axis flux linkage and (/-axis flux linkage of the ith

generator in p.u. respectively; u¡a is the synchronous rotor speed in rad/s, P; and Qi

is the injected active and reactive power at bus i in p.u., Ví¿.0í is the voltage at bus

i and Yij¿.<¡>ij is the admittance between bus i and bus j.

The algebraic equation constraints (5.19) and (5.20) can be manipulated to express

currents 7^, I,a as a function on the states (5.18). The voltages and injected currents

at. the generator buses are related by the expression

V = ZI (5.21)

where V = [Vi, ...,K,]T and I = [Ii,...,In]T Z = R + jX is a nxn matrix of the

network equivalent impedance. Using the following equations which represents the

dynamic circuit of the synchronous generator [33]

7 = (/d + J/_)ei(á-|) (5.22)

V = {(XqIq-RsId) + j(X3-XdId-RsIq)}éi(S-^) (5.23)

we can express (5.21) in term of the states as follows

n

Xqi cos(Si) = Y2 [Ru sin(Si) + (A* + X¡->) oos(í¿)]/*# + HB« + Xii) sin(áij) + ni cos(Sj)]Iqj
j=i

n

Xqi sin(-5¿) = YK^ + Xü) sin(¿j)
~

R>i cos(Si)\I-ü + [Rü sin(5i) + (Bü + Xü) <*>s(Sj)\Iqj
3=1

(5.24)

where R¡j and Xíj are parameter of the electrical network, A and B are defined as

A = diag[X'dl,..., X'dn] and B = diag[XqU ..., Xqn]

5.3.2 Reduced neural identifier

A 3rd order neural model is used to identify the dynamics of (5.18). The decentralized

neural identifier is proposed considering only angle, angle speed and g-axis internal
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voltage of the ith generator. The recurrent high order neurd identifier proposed is

¿ii = x2i-w'a

hi =
-a2ix2i X w2ip2i

-

iy2ix3. (5.25)

x-m =

-a3ix3i X w3ip3i X tv'3iEfdi

X" — Yi

where 11^ = uj3, w'2i = (^h-)^' -;--"')■ an^ ■*ü3i
—

-F-
are ^e nxe(^ parameters of

the ith generator. It is worth to notice that in the reduced neural identifier (5.25),

the interactions of the multimachine system are not explicitly included. Since Idi

and Igt can be expressed as linear combinations of x?», together with the bounded

p.ar£_meters of the network in terms of the sin(ó"¿) and cos(*5¿), then currents in (5.24)

can be expressed by

n

Idi = £-*y(-5)x,i (5.26)
j=i

n

Idi = X^yO-Ox-n
j=i

with óij and A¿j defined as parameters of the electrical network (5.24), S = [Si,...., S„]T

denote all of the rotor angles.

The linear combination of bounded variables remains bounded. Henee the bound

for currents I_u and 7^ can be expressed as

n

\Idi\ < 5>«.X*I (5-27)
_=i

n

\Iqi\ < EA«IX./_I
¿=1

where <->,j and A^ are the bounds of <p,j and A,j respectively [14].

5.3.3 Controller design

Considering the ith subsystem, let define

zu
=

xu
- Sri (5.28)
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where Sñ is the reference signal for the desired stable operation condition of the ith

machine. The dynamic of (5.28) along the trajectory of (5.25) are

¿i« = x2i
-

Us (5.29)

Defining new dynamics for (5.29) as

¿n = -kuzu X z2i (5.30)

then, zi2 is obtened using (5.29) and (5.30)

z2i = x2i -us + kuzu (5.31)

Taking the derivatives of z2i along the trajectory of (5.25)

¿2¿ = -«2iZ2i X W2if)2i
- w'2ix3i X fci¿¿i. (5.32)

a new dynamics for __2t is defined as

¿2i = -k2iZ2i X zsí (5.33)

Then z3i can be obtained using (5.32) and (5.33)

z-m
=

-a2iX2i X «.2*P2i
- -«4^31 X kuzu X k2iz2i (5.34)

The true control Efdi, is obtaining with the derivative of (5.34) along trajectory of

(5.25). If we select the foUowing sliding manifold

z3i = 0 (5.35)

then the motion of this manifold will be described by Unear system (5.30) and (5.33)

with the desired dynamics. To guarantee a sliding mode in the manifold (5.35), the

motion projection on subspace zu, c2¿ is derived as

z3i = f + U0iEfdi (5.36)

where / = f^-x* and Uqí is a constant.

Then, the control action proposed for each generator (í = 1,2, 3) is

Efdi = U0tsign(z3i) (5.37)
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Table 5.2: Parameters of the generators

Parameter Generator #1 Generator #2 Generator #3

H (sec) 23.64 6.4 3.01

Tm (pu) 0.716 1.63 0.85

X/o (sec) 8.9600 6.0000 5.8900

IX (sec) 0.2000 0.3000 0.4000

T¿o (sec) 0.3100 0.5350 0.6000

TS* (sec) 0.2000 0.3000 0.4000

Xd (pu) 0.146 0.8958 1.3125

■X5 (pu) 0.0608 0.1198 0.1813

■XJ (pu) 0.0200 0.0500 0.0800

Xg (PU) 0.0969 0.8645 1.2578

*: (pu) 0.0969 0.1969 0.2500

x; (pu) 0.0200 0.0500 0.0800

Xu (pu) 0.0336 0.0521 0.0742

5.3.4 Simulations

In this section we present the simulation results obtained with the applications of

the decentraUzed identification and control scheme to the WSCC power system. In

order to simúlate the performance of our decentralized scheme, the following data is

required [2]

1. A load-flow study of the pre-transient network to calcúlate the mechanical power

of the generators and to calcúlate the initial conditions valúes of voltages and

angles of all generators. This data is shown in Table 5.4 and Table 5.3.

2. The inertia constant H, the reactance, the transmission network impedance for

the initial network conditions for all generators, which is shown in Table 5.2

and 5.5.

3. The type and location of disturbance as well as the fault clearing time, these

are explained in the simulation description.

The simulation is conducted following the stages
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Table 5.3: Initial conditions of the generators

State Generator #1 Generator #2 Generator #3

Xi(rad) 0.0625 1.0664 0.9460

Xi (rad/s) 377 377 377

Xs(pu) 1.056 0.788 0.768

.Y<(P»0 0.000 0.622 0.624

xa(m) 1.0478 0.7007 0.7078

Xe(pw) -0.0425 -0.7568 -0.7328

Table 5.4: Load-flow of the WSCC 3-machine, 9-bus system

Bus# Type Voltage (pu) Pgen (pu) Ggen (pu) Pload (PU) Qload (PU)
1 Swing 1.04 0.716 0.27

2 P-V 1.025Z9.3 1.63 0.067

3 P-V 1.025Z4.7 0.85 -0.109

4 P-Q 1.026Z-2.2

5 P-Q 0.996Z-4.0 1.25 0.5

6 P-Q 1.013Z-3.7 0.9 0.3

7 P-Q 1.026Z3.7

8 P-Q 1.016Z0.7 1.0 0.35

9 P-Q 1.032Z2.0
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Table 5.5: Parameters of the transmission lines

Bus i Bus j Rij Xíj Gíj B^
1 4 0.0000 0.1184 0.0000 -8.4459

2 7 0.0000 0.1823 0.0000 -5.4855

3 9 0.0000 0.2399 0.0000 -4.1684

4 5 0.0100 0.0850 1.3652 -11.6041

4 6 0.0170 0.0920 1.9422 -10.5107

5 7 0.0320 0.1610 1.1876 -5.9751

6 9 0.0390 0.1700 1.2820 -5.5882

7 8 0.0085 0.0720 1.6171 -13.6980

8 9 0.0119 0.1008 1.1551 -9.7843

5 0 0.0000 0.0000 1.2610 -0.2634

6 0 0.0000 0.0000 0.8777 -0.0346

8 0 0.0000 0.0000 0.9690 -0.1601

4 0 0.0000 0.0000 0.0000 0.1670

7 0 0.0000 0.0000 0.0000 0.2275

9 0 0.0000 0.0000 0.0000 0.2835

Stage 1: The open loop system is identified on-Une by the neural network from í0 ■= 0

to U = 2 s;

Stage 2: The control law is incepted at í = 2sec;

Stage 3: A fault occurs at t¡\ = lOsec near bus 7;

Stage 4: The fault is removed by opening the breakers of the faulted line at _/2
=

10.15sec:

Stage 5: The system is in a postfault state. This system goes back to healthy ope

ration (stage 1).

In Fig. 5.7, Fig. 5.8 and Fig. 5.9 the time evolution for angles is shown. The Fig.

5.10, Fig. 5.11 and Fig. 5.12 illustrates the rotor speed behavior.
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Figure 5.7: Rotor angle time evolution for machine 1

Figure 5.8: Rotor angle time evolution for machine 2
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Figure 5.9: Rotor angle time evolution for machine 3
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Figure 5.10: Rotor speed time evolution for machine 1
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Speed machine 2

Figure 5.11: Rotor speed time evolution for machine 2

Speedmachine 3

Figure 5.12: Rotor speed time evolution for machine 3



Chapter 6

Conclusions and Future Work

6.1 Conclusions

A decentralized neural identification and control scheme is proposed which is able to

preserve stability for the whole system. The developed scheme is applied to different

nonlinear electromechanical interconnected systems whose dynamical models includes

bounded interconnection terms. Each subsystem is modeled according to the block

control technique, which allows to develop a sliding mode control law. The control

action forces the closed loop trajectory to converge and to stay in the sliding manifold,

which guarantees that the tracking error is zero.

A neural identifier with the same block controllable properties than the ith sub

system is proposed to approximate the subsystem dynamical models. The neural

identifier does not includes the interconnection terms and is trained with only local

information via a decentralized robust learning law. Updating weight law avoids the

drift parameter phenomenon using the well known <r-modification. This modifica

tion aUows to update the sinaptic weights with no persistency of excitation condition

required.

We tested out our decentralized scheme using the following interconnection plants:

a) Interconnected double inverted pendulum: The identification error converges to

zero and the weights parameters tends to fixed valúes. The control action allows

regulation and tracking. As far as we know, for this plant, the tracking problem

52
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is for the first time presented in this dissertation. External disturbances are

rejected. The capabilities of the tracking performance depends strongly of the

interconnection terms as we tested via simulations.

b) Single machine infinite bus system (SMIB): We used an Sth order model to repre

sent the SMIB. A reduced neural identifier based on the 3rd order neural model

of the power system is proposed. A sliding mode controller is developed based

on the reduced neural identifier. Simulation results presented good performance

even in presence of a short circuit fault. Neural weight remains bounded and

the identification error converges to a valué very cióse to zero.

c) Two machines infinite bus power system: The decentralized scheme is simulated

using a 3rd order model to represent this power system. The identification

errors and the weights parameters remains bounded for the ith subsystem. A

short circuit fault is simulated and the control action is able to regúlate the

angle of the machine i as well as the neural parameters. In simulations results,

we noticed that the damping of the ith angle depends on the chosen neural

parameters and the respective learning law. The angle damping performance

can be modified by selecting such parameters adequately.

d) WSCC power system: A 6th order model representation is used. A 3rd order re

duced model is proposed to approximate the subsystem dynamics. Simulations

shows that the identification error and the neural weights remains bounded

during simulation tests even in presence of a short circuit fault. The transient

response of the machines shows a damping response which remains bounded

and converges to the stable operation condition after an external disturbance

is applied. It is worth to point out that the damping oscillations of the sys

tems are strongly dependent on the neural network identifier parameters as weU

as the respective learning law, i.e., oscillations are dependent on the adaptive

structures of the developed scheme.
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6.2 Future work

The research could be proceed ¿us:

• Due the fact that the interconnection terms are related with the way subsys

tems axe obtained, then research is required to analyze the relationship between

subsystems stability and the performance of the whole system when adaptive

schemes are used.

• To analyze the stability of reduced neural identifiers as applied to large scale

systems and the relation between the size of the systems and the number of

states to be identified.

• To analyze the controllabiüty of the neural identifier on the open loop stage in

order to avoid the use of fixed parameter on the neural identifier.

• To develop an interconnected double inverted pendulum real-time application

in order to test the decentraUzed proposed scheme.

• More research is required to verify the applicability of reduced adaptive iden

tifiers to electric power systems under different disturbance conditions such as

load chances and mechanical disturbances.



Appendix A

Synchronous Machine Modeling

This appendix introduces the synchronous machine model, and its physical charac

teristics. The main purpose on this appendix is to present the fundamentáis of the

synchronous generator in order to obtain the large-scale power system, named multi

machine model. This appendix is based on ¡2] and [24]

A.1 Construction and Principie of Operation

The three phase synchronous machine considered is shown in Fig.A.l. It consists of

two parts: stator and rotor. Both, stator and rotor have windings; the stator winding

is a three phase winding and is sometimes called the armature winding. The rotor

winding is called the field winding, which is connected to supply through the slip

rings and brushes. There are two types of rotors:

• Salient-pole rotor (Fig. A.1) for low-speed machines (e.g. hydro-generators)

• Cylindrical rotor (Fig. A.2) for hight-speed machines (e.g. turbo-generators)

The two basic structures mentioned depends on their respective usage. Hydraulic

turbines opérate at low speeds and henee a relative large number of poles are required

to produce the required rated frequency. A rotor with salient or projecting poles and

concentrated windings Ls better suited mechanically to this situation. Such rotors

often have damper windings or amortisseurs in the form of copper or brass rods
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♦
"

, 3-phase statorwinding

, rotor field winding

brushes

slip rings

*• .1 lient-poie rotor

Figure A.1: Synchronous machine with salient-pole rotor

embedded in the pole face. These bars are connected to end ring to form short-

circuited windings similar to those of squirrel cage induction motors, as shown in Fig.

A.3. They are intended to dump out speed oscillations. Steam and gas turbines, on

the other hand, opérate at high speeds. Their generators have round (or cyhndrical)

rotors made up of solid steel forgings. They do not have special damper windings,

but the solid steel rotor offers paths to eddy currents, which have effects equivalent

to amortisseur currents.

A.1.1 Machines with múltiple pole pairs

Machines with more than one pair of field poles have stator windings made up of a

corresponding set of coils. For purposes of analysis, it is convenient to consider only

a single pair of poles and consider that. conditions associated with other pole pairs

are identical to those for the pair under consideration. Therefore, angles are normally

measured in electrical radians or degrees. The angle covered by one pole pair p¡ is

27r radians or 360 electrical degrees. The relationship between the electrical angle 6

and the corresponding mechanical angle 6m is
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Figure A.2: Synchronous machine with cylindrical rotor

MMF Waveforms

The armature windings and round rotor machine field windings are distributed in

many slots so that the resulting mmf and flux waveforms have nearly sinusoidal space

distribution. Let us consider, the mmf waveform due to armature windings only. The

mmf produced by current flowing in only one coil in phase a is illustrated in Fig. A.4

in which the cross section of the stator has been cut open and rolled out in order to

view of the mmf wave. By adding more coils, a sinusoidal mmf wave distribution is

obtained. Machine design [10] aims at minimizing harmonics and, for most analysis

of machine performance, it is reasonable to assume that each phase winding produce

a sinusoidally distributed mmf wave.

Rotating magnetic field

The net mmf wave due to the three phase windings in the stator of phase a may be

described as follows
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Figure A.3: Salient pole rotor construction

MMFa = Kia cos (7)

MMFb = Jft6cosÍ7-yJ (A.2)

MMFC = Kic cos 1(-1)
where 7 representing the angle along the periphery of the stator with respect to

the center of phase a;

¿0, ib and .c are the instantaneous valúes of the phase currents and K is a constant.

The three mmfwaves due to the three phases are displaced 120 electrical degrees apart

in space.

With balanced phase currents, and time origin arbitrary chosen as the instant

when ia is máximum, we have

Ía = Im COS (Ust)

ib = Imcos(u}st - —

J (A.3)

ic = Im cos [ uist X —

2tt

"3

where us = 2nf = angular frequency of stator currents in electrical degrees rad/s.

The total mmf due to the three phases is given by
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MMF

MMF

Coil sides

Figure A.4: MMF due to a single coil

MMFtoto¡ MMFa X MMFh X MMFC

KI,

cos I ust X

cos (ust ) cos 7 X cos í uist - —

j cos í 7 - —

j X (A.4)

2n\ ( 2tt\

t]coT+tJ
= - KIm COS (7 -

Uat)

This is the equation of a traveling wave. At any instant in time, the total mmf has

a sinusoidal spatial distribution; it has a constant amplitude and space—phase angle

usts which is function of time. Thus, the entire mmf wave moves at the constant

angular velocity of ua electrical rad/s.

The magnitude of the stator mmf wave and its relative angular position with

respect to the rotor mmf wave depend on the synchronous machine load (output).

The electromagnetic torque on the rotor acts in a direction so as to bring the magnetic

field into alignment. If the rotor field leads the armature field, the torque acts in

opposition to the rotation with the machine acting as a generator. On the other

hand, if the rotor field lags the armature field, the torque acts in the direction of

rotation with the machine acting as a motor.

Direct and quadrature axis

The magnetic circuits and all rotor windings are symmetrical with respect to both

polar axis. For the purpose of finding out synchronous machine characteristics, two
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Mis of phase b \

Arraaturc windini

g-naa
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rf-agis

Axis of phase a

Axis of phase c

Figure A.5: MMF due to a single coil

axes are defined as shown in Fig. A.5.

• The direct (d) axis, centered magnetically in the center of north pole;

• The quadrature (q) axis, 90 electrical degrees ahead of the d-axis.

The position of the rotor relative to the stator is measured by the angle 6 between

the d-axis and the magnetic axis of phase a winding [20].

A.2 Synchronous Machine Model

The basic dynamic equations for a balanced, symmetrical, three-phase synchronous

machine with a field winding and three damper windings on the rotor is presented.

The stator circuits consist of three-phase armature windings carrying alternating

currents. The rotor circuits comprise field and amortisseur windings. The field win-
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ding is connected to a source of direct current. In machine design analysis, a large

number of circuits are used to represent amortisseur effects. For system analysis,

where the characteristics of the machines as seen from its stator and rotor termináis

are of interest, a limited number of circuits may be used.

The fundamental Kirchhoff 's, Faraday's and Newton's laws give

d\a
va

=

iars +
-¥

,
d\b

vb = íf>r'* +
"¿r

dAc

vfd
= Í!dTSdJx-—¡r (A.5)

Vid = iWid X

Viq
= iiqriq X

dt

dXu

dt

d\Xq
dt

, d\2q
V2q

~

l2q-'2q H

dt

dt

u

r^____ - T -T-T

dt

where A is flux linkage, r is winding resistance, J is the inertia constant, Tm is

the mechímical torque applied to the shaft,, Te is the electrical torque, and T¡w is a

friction windage torque.

A.3 Transformations and Scaling

Equations (A.S), completely describe the electrical performance of a synchronous ma

chine. However, these equations contain inductance terms which vary with angle 9,

which in turn varies with time. This introduces considerable complexity in solving

machine and power system problems. A much simpler model is obtained by appro-

priated transformation of stator variables. [23]:
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VdqO
— TdqoVabc, ídqO — Tdqoíabc, XdqQ = T^oAoftc (A.6)

where

Vabc = [ va vb vc ] , iabc ■__■ [ ia ib ic ]T Aa()c = [ Aa \b Ac ]T(A.7)

Vdqo
- [ vd Vq v0 ] , idg0 = [ id iq 'k ]T Xdqo = [ Arf A, A0 ]T(A.8)

and

TdqO =
3

inf? sin(0--f) cos(0Xsin ■¿ji

cos 0 cos(0-%) cos (0x4
1 1

iJ
1

3

with the inverse

•p-l a.
-Xti-o

—

SÍ110 cosí

sin^-f) cos(0-f) 1

sin (0 X I**) cos(0X*f) 1

From (A.5), Kirchhoff's and Faraday's laws are

Vabc
—

t"s'labc X ~7~ \Aabc)

which, when transformed using (A.9) and (A.10), are

^eftjO
= rsÍdqQ X TrtVjO-77 {Tdq0^dgO)

(A.9)

(A.10)

(A.11)

(A.12)
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The system in dqO coordinates has the forms

, dA<¿
Vd =

rsid
-

u\q X -77-
dt

, dA„
vq

=

rsiq + uXd + ^r
dt

dXo
vo =

rs¡0 +
—

dt

, dXfd
Vfd

=

rfdifd + -¿-
dXu

vu
=

rldild +
—j— (A.13)

, dXlq
Vlq

=

riqllq +

V2q
= r2qÍ2q +

dt

dX2q
dt

dQ

Tt
= w

diu

J~dl
= T™~T*-Tf*

To derive an expression for Te, it is necessary to look at the overall energy for the

machine. After analyzing the power balance energy [33], Te is obtained as

Te = -(Xdiq
-

Xqid) (A.14)

To complete the dynamical model in the transformed variables, the angle is defined

as

6 = 9- u,t (A.15)

where u9 is a constant normally called rated synchronous speed in electrical radians

per second, giving

dt.

dS
= u

—

us (A.16)
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A.3.1 Per-unit system

It is usual to scale the synchronous machine model using the traditional concept of

per-unit [31], [16]. The new dqO variables are defined as

Va = "* V = "'' Vn = "o

T. A _____ j A -i., T A -io
d

Ibdq' lt Iddq'
i0

¡bdq'

where Vbdq is the rated peak line to neutral voltage, and

'«x^lgfc. ABDQ4^ (A.18)

with Sb and ub equal to the rated speed in electrical radians per second (ua).

The new rotor variables are defined as

y.. A "I* y A vid -i/, A aa v., = Y2s-
fd vBFD

> viá
vmD

> Vl<¡ vB1Q "2- vB¡1Q
'

T A */■- r A h,¡ t A »i<j r A »-<i

J/<*
_

_flFD>
iW

~

/B1D> *zl<_
~

/b1q> J2</
-

/jJ2Q-

**A¿£. ^ =& *«*]&. ^rA_& (A-19)

where the rotor circuit base voltage and base flux Unkages are respectively

1/ A _?b \r A SB t/ A Sa i/ A 5B

VBFD-J^¿, VfllD-7-*^, Kbiq-t^, Vb2Q-7^,

AbtoA^. AB1D4^. AB1Q±^, AB2Q4^ (A.20)

The model parameters are scaled as follows

«■*_«££. %^^> ñ" =^ ^ =

^* *.A_ft (A-21)

with

Zbiq^, ^g^g (A.22)

The shaft inertia constant and shaft torque are scaled by defining

H ^ Í^£ (A.23)
*->B
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TM±%, TFWé^. TB4^ (A.24)

The synchronous machine equations, using the scaled variables with ub = <*>* are

1* u
—

-rr
= RJd + —ipq + Vd

ua dt u,

1 dtbn u

—-¥ = RJq-—to+Vq
u, dt ua

jr
— -Ks-ío X Vo

us dt

Z¡~dT
~ -Rftf + Vf

'' °rU¡
= -Rxdhd + Vu (A.25)

us dt

1 djrlg
u. dt

— —Rlqhq X Vlq

l^2q
ua dt

~ -R^^ + v*

= U
—

Ua
dS_
dt

2H
— = TM -

(tj}dIq
-

xpqId)
- Tpw

k>s

In order to obtain (A.25), the following assumptions must be fulfilled

1. The stator has three coils in a balanced symmetrical configuration centered 120

electrical degrees apart.

2. The rotor has four coils in a balanced symmetrical configuration located in pairs

90 electrical degrees apart.

3. The relationship between the flux linkages and currents must reflect a conser

vative coupling field.

4. The relationship between the flux linkages and currents must be independent

of 9 when expressed in the dqO coordinate system.

The following section give the flux linkage/current relationships, which satisfy these

four assumptions and thus complete the dynamical model.
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A.4 The Linear Magnetic Circuit

This section presents the treatment of the case in which the machine flux linkage are

assumed to be linear functions of currents:

A06- = ¿s* (0) iabc X Lar (9) ÍR

A« = Lrs(9)ittbc + Lrr(9)iR

where

ÍR — [ lfd Hd llq Í2q ] Afl = [ Xfd Xid Xiq X2q ]

The induct-ance matrices which satisfy assumptions 3 and 4 are

¿n L12 ¿13

¿21 ¿22 ¿23

with

L„(6)
m -32 -•33

(A.26)

(A.27)

(A.28)

(A.29)

¿n = ¿ís X ¿.4 - ¿b eos 0, ¿12 = -\La
- ¿b eos (9- y)

¿13 = -é¿.4
- ¿b cos (9 X f ) , ¿21 = -\LA

- ¿b eos (6 - &) ,

¿22 = ¿i., X ¿44 ~ ¿B COS (9 X *f) ¿23 = ~f**-M
~ ¿B COS 0,

¿31 = ~\LA
~ ¿B COS (0 X *f) , ¿32 = -|¿A

~ ¿B COS0,

¿33 = ¿/* X LA - LB cos (0
-

-f )

¿«■(0)
rT A

¿11 ¿12 ¿13 ¿14

¿21 ¿22 ¿23 ¿24

¿31 ¿32 ¿33 ¿34

(A.30)

¿n = Lsfd sin 0, ¿i2 = ¿„id sin 0,

¿13 = ¿sig COS 0, ¿14 = ¿.,29COS0,

¿21 = Lsfd sin (0 -

f ) - ¿22 = LsU sin (0 -

f )

¿23 = ¿_lí COS (0
-

**|) , ¿24 = ¿s2(/ COS (0
-

•&) .

¿31 - Lsfd sin (0 X f) , ¿32 = ¿.,id sin (0 X f ) ,

¿33 = Lslq COS (0 X f ) , ¿34 = ¿.,2, COS (0 X f )
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Ljdfd Lfdu 0 0

¿/did Lulld 0 0

0 0 ¿íiji-j Llq2q
0 0 ¿l-/2ej L2q2q

¿rr(0)^

After using (A.7) the set of flux linkage/currents are obtained as

A,¿ = (¿^ X Lmd) id X Lgfdifd X Lsidhd

•V<* =

-^Lsfdid X Lfdfdifd X ¿/didiid

•^ld =

2¿sld¿d X ¿/dldí/d X ¿ldld¿ld

Aq = (¿Is X L,„q) iq X Ls_qilq X La2qÍ2q

X\q = X¿sl5'Í*f X L\q\qÍ_q X L\q2(_%2q

3

A2rj — -¿Ls2qÍq X L\q2qÍ_q X ¿2</2(/J2q

Ao = ¿IsíO

(A.31)

(A.32)

Using the scaled quantities the fluxes are

, *^s (¿ís X ¿md) (—¿J¿BDÍ?) , UaLafdIfdlBFD , h-'_¿_ld¿1d¿Bl__>
Vd

=

r? X - X

VBDQ VBDQ VbDQ

^s2Lsfd(—hlBDQ) UgLfdfdlfdlBFD , *-X**¿/dld¿id¿BlD
Vfd

=
77 + 77 X -

VBFD VBFD VBFD

^-s2Lsld(—IdlBDQ) UaLfdldIfdlBFD . UaL_didhdlB\D
Vid -

y
X X

^BID VBID VBID

■X» (Lja X ¿mi?) (—IqlBDQ) ^_ ■X**¿s1*7¿k?¿B1Q _,_ hja¿s2qhqlB2Q

Vbdq
Vq X

V,
X

bdq V,BDQ

Vlq
=

V2q
=

VO
=

•^«2^1; (— -VBggj ^-sLlqlqllqlBlQ xUaLiq2qI2qlB2Q
Vt

X

B1Q V,
x

BIQ VlBIQ

UsTjLqq (—IqlBDQ) U9Liq2qIlqIBIQ ^sL'2q2ql2qlB2Q

Vb2Q Vb2Q Vb'B2Q

usLis(—IqIbdq)
VxBDQ

with

(A.33)

iBFD^^fjBDQ, IBID^^JBDQ
A L *- Lr,¿\ L.mti T T ** L-ma t

BX(i
~

T^lBDQ, IB2Q =

T^'BDQ

(A.34)
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Mid the following scaled parameters

V A _______s v
.
A _j_J____d y A v»Lm_

Ala ~

Zio-Í' Amd "

W7' A"l<*
""

WT
'

v.A i^£tá£á y,. A q;.¿i-nd v A <->^¡,íxí (A 35\

v* A •**t*Xi4jiii y" A t4f.^*2q247 y* A ljli*L\(¿iqL3\q
^•1-

~

Zbiq
' ^29

~

Zfl:2g
■ "^«A,

—

ZB_QL_-_„

The scaled leakage reactances of the rotor winding are defined as

X(fd — Xfd
— Xmd, Xnd = Xid —

Xmd,

Xnq = Xiq
—

X1nq, X2q *■= X_\g
—

Xmq, (A.36)

Xd = Xia X Xmd, Xq = X¡a X Xmq

The resulting scaled tp
— I relationship is

'Vd
*= Xd (—Id) X X,ndlfd X Xmdlid

Vfd
— Xmd (—¿i) X XfdIfd X Xmdhd

Vid
— Xmd (~Id) X Xmdlfd X XidIid

■tl>q = _**_", (-/,) X Xmg/i9 X -Y-,^/2-, (A.37)

fplq = Xmq (—Iq) X XlqIlq X XmqI2q

4>2q ~ Xmq (
—

Ig) X XmqIíq X X2ql2q

Vo
= Xis(-Io)

It is common to define the following parameters

m A v. _i i
x" — **•-- _- _

j

A^' = Xía X i i t— - X¿f
= X*,, X _x___+__x_+_j__:

xm_ X!/-l YUd Xr"1 XXXq Xl1<l

Y' A Y
.

*"■■• X' — X
Ad

- Ad- -g£, A,
-

A, Xu¡
,

*¿Aáft n^áfc. (A-38)
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and the following variables

E'q * ^Vf,i
fd

Efd ± ^Vfd (A.39)
Rfd

xn
■d

=
—

-ÍT
—

V-1!-?E'd ± -^i
Aiq

Using (A.38) and (A.39), equations (A.37) can be expressed as

,/, v" r ___

(Arf
~

A"'-») F/ , __________..!,
*d = ~XdId +V^^Eq

+

V^xl)i,ld

lfd = ^-d[E'q + (Xd-X'd)(Id-Iid)}
hd = *?-*\2[vid + (X'd-Xla)Id-E>q]

(Ad
-

Xl»)

./, y"t (Ad
~

Ais) F< (A-
- -Y-. ) ÍA .m

*
=

-^-(^^J^+(^^)^
( }

hq = -^[-E'd+(Xq-X'q)(Iq-l2q)}

h" = l^Z^V2[V2q+(X'q-Xla)lq + E'd}
(A.

-

A/(JJ

Vo
= —Xish

Substituting (A.40) into (A.25) gives the synchronous machine dynamical model



70

as

d6

dt

2/fdu;

ua dt

ldO"

rr. dE'd
1<fi~dT

rj,,, dtbu

ld0~dT
■w, dV2q
'"O dt

=
u-ua

—

-HY
= TM -

(i'dlq
~

Vqld)

Vd =

v„ =

■E'q-(Xd-X'd)

-E'd+(Xq-X'q)

h-

k-

(X'd
-

Xla)'
(vu + (X'd-Xla)Id-E'q) + Efd

'- " "f
-

(V2q X (X'q
- Xla) Iq X E'd)

(X'q
~ XuY

-xl>ld-rE'q-(X'd-Xla)Id

-V'2, -E'd- (X'q
-

Xla) Iq

yll j , (X'd
~

Xla) , (X'd
-

Xd)

-Xd/d+(XW^£'+(AT:AÜ^
yl, r (X'd

~

Xla) , (X'q
-

X'¿)
qq

'

(*;-*_)'
+

(X'-X,.)**

(A.41)
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