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Resumen

La tesis esta dirigida al desarrollo de un esquema de identificaciéon y control
descentralizado basado en redes neuronales recurrentes de alto orden (RHONN
por sus siglas en inglés) y su aplicacion a sistemas de gran escala. Muchos
sistemas, tales como la red eléctrica de potencia, redes de computadoras y de
telecomunicaciones, redes de sistemas dinamicos, sistemas de transporte,
sistemas de manufactura, industria de procesos y muchos otros, son sistemas
interconectados de gran escala.

Para controlar dichos sistemas, se han propuesto en la literatura esquemas de
control centralizado, suponiendo que se tienen disponible toda la informacion de
las dinamicas del sistema. A pesar de que hay ventajas tedricas obvias, la
centralizacion de la ley de control es muy dificil para un sistema complejo de gran
escala con interconexiones debido a razones técnicas y econémicas. Mas aun, los
disenos de control centralizado son dependientes de la estructura del sistema y no
pueden manejar cambios estructurales. Si se agregan o eliminan subsistemas, el
controlador para el sistema global debe ser redisefiado.

El enfoque de control descentralizado surge a partir de la alta dimension del
sistema a ser controlado, la imposibilidad en el intercambio de informacién entre
subsistemas, la falta de capacidad de computo requerido en el caso de un unico
controlador central y la incertidumbre en la medicién de parametros dentro de un
sistema de gran escala.

En esta tesis se establece la viabilidad de aplicar redes neuronales recurrentes
de alto orden (RHONN) como identificadores adaptables de los subsistemas de
gran escala usando unicamente la informacion disponible localmente. Se
consideran como perturbaciones los términos de interconexiéon y se investiga la
implementacion de un controlador discontinuo usando la teoria de control de
estructura variable. Los algoritmos desarrollados se aplican a diversos sistemas
electromecanicos, y los resultados se muestran en simulacién y se verifica la
aplicabilidad de los algoritmos propuestos para sistemas electromecanicos
interconectados.



Abstract

This thesis deals with the development of decentralized identification and control
algorithms based on recurrent high order neural networks and its applicability to
large scale systems. Many physical systems, such as power grid, computer and
communication networks, networked dynamical systems, transportation systems,
manufacture systems, processes industry and many others, are complex large-
scale interconnected systems.

To control such large scale systems, centralized control schemes are proposed
in the literature assuming available global information for the overall system. While
there are obvious theoretical advantages, control centralization is very difficult for a
complex large scale system with interconnections due to technical and economical
reasons. Furthermore, centralized control designs are dependent upon the system
structure and cannot handle structural changes. If new subsystems are added or
removed, the controller for the overall system has to be redesigned.

Decentralized control approach arises as a consequence of the high order
system dimensions, difficulties to interchange information between subsystems,
the lack of computational resources if a centralized controller is required and the
uncertainties due to parameter variations in large scale systems

In this thesis the recurrent high order neural networks applicability is verified and
used as adaptive identifiers of large scale systems using only local information
available; interconnection between subsystems are considered as disturbances
and a discontinuous controller is implemented using the variable structure control
theory. The developed algorithms are applied via simulations to several
electromechanical systems and the applicability of such algorithms is verified for
interconnected electromechanical systems
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Chapter 1

Introduction

1.1 Motivation

Many physical systems, such as electric power grids, computer and communication
networks, networked dynamical systems, transportation systems and many others,
are complex large-scale interconnected systems [17], [35]. To control such large scale
systems, centralized control schemes are proposed in the literature assuming avail-
able global information for the overall system. While there are obvious theoretical
advantages, control centralization is very difficult for a complex large scale system
with interconnections due to technical and economic reasons [17]. Furthermore, cen-
tralized control designs are dependent upon the system structure and cannot handle
structural changes. If subsystems are added or removed, the controller for the overall
system should be redesigned.

Decentralized control for interconnected power systems has also attracted consi-
derable attention of researchers in the field of complex and large-scale systems [6],
(7], [14], [34]. We know that multi-area interconnected power systems have a complex
structure. They exist in network forms; in some special cases, they can also exist in
longitudinal, loop or radial structure.

Over the past three decades, the properties of linear interconnected systems have
been widely studied [13], [19], [34]. By contrast, the control or modeling of inter-

connected nonlinear systems has not received the same attention. Due to physical



configuration and high dimensionality of interconnected systems, centralized control
is neither economically feasible nor even necessary [2]. Because decentralized con-
trol schemes are free from difficulties due to complexity in design, debugging, data
gathering, and storage requirements, they are preferable for interconnected systems
than centralized ones. However, due to the existence of nonlinear interconnections,
there are not many efficient methods to cope with the disturbances produced by the
interconnection between subsystems.

Typical examples, where decentralized control approach can be applied, arises in
different kind of industries, systems and processes. The process industry, such as the
chemical one, include a broad range of large-scale processes: bulk petrochemicals,
pulp and paper and cement are examples of them. Moreover there exist systems
whose dynamical behavior changes according to unknown external disturbances or
due to parameter variations. In a system of couple water reservoirs, for example,
whose levels have to be controlled, effects, due to dynamical interactions between the
reservoirs and uncertainties relative to human consumptions and inflow variations
from the environment, need to be considered. In a multi-area power system, whose
goal is to provide energy to many enterprisers and private consumers, there are dy-
namical variations due to changes in loads, new interconnections with other networks,
changes in parameter due to saturation and operational conditions, etc. Numerous
techniques and approaches are popular in industry in order to deal with large-scale
svstems, such as the relative gain array (RGA) [5] and partial relative gain (PRG)
[15]). These procedures are developed to deal with multivariable linear plants; for
nonlinear plants where there exist uncertainties, parameter variations and unmod-
elled dynamics, the mentioned techniques are difficult to apply. The aforementioned
large-scale plants have one property in common: they are all complex collections of
interacting components in which change often occurs as a resulting of not predictable
processes. All these examples illustrate either the lack of centralized information,
or the lack of a centralized computing facility. These facts motivate the design of

decentralized controllers, using only local information while guaranteeing stability for

the whole system.



1.2 Recurrent High Order Neural Networks

According to the structures of the neural networks, they can be classified as feed-
forward neural networks (FFN) and recurrent neural networks (RNN) [9]. It is well
known that a FFN is able to approximate any continuous function closely. However,
the FFN is a static mapping. Without the aid of delays, FFN are unable to represent
a dynamic mapping. In the two last decades, much research has been done on appli-
cations of FNN with delays to deal with dynamical problems; however, FFN require
a large number of neurons to represent dynamical responses in the time domain [29)].
On the other hand, RNN have superior capabilities than FNN, such as dynamics
and the ability to store information for later use. Thus RNN is a dynamic mapping
and demonstrates good control and identification performance in the presence of un-
modelled dynamics [9]. Recently, research on RNN has been done on recurrent high
order neural networks (RHONN). Additionally to the approximation properties of
RNN, the RHONN structures have the capability to represent dynamic mappings in
the state space form [4], [11], [22], [32]. Thus, RHONN allows the applicability of
nonlinear control techniques designed in the state space approach (1], [3], [4], [11].

1.3 Block control and sliding modes

The variable structure control (VSC) strategy using sliding mode have been proven to
be an excellent approach to control nonlinear dynamic systems [26], [36]. VSC offers
attractive properties such as robustness to parameter variations, fast dynamics and
the rejecting of external disturbances [36]. There are two basic steps to designing a
VSC. The firs is the design of sliding control or equivalently the sliding surface. The
second is the design of switching control. The system is reduced to normal or regular
form before to start the designing. The electromechanical systems considered in this

dissertation are already in this form.



1.4 Dissertation Structure

The present dissertation introduces a new approach for decentralized control theory:
decentralized Recurrent High Order Neural Networks (RHONN) structures based on
[21], which are able to identify the dynamical behavior of nonlinear subsystems with
only local information and can deal with uncertainties in the absence of matching
conditions, as has been discussed in [4]. VSC is used to obtain a robust control law,
which guarantees tracking and rejects disturbances. The matching condition is not
required due to the interconnection terms are considered external disturbances and
they are embedded in the neural parameters; this allows to use only local information
for the local controllers. Additionally, the use of reduced neural structures is pre-
sented in order to identify the dynamical model of power systems and the respective
controllers based on such reduced models are designed. This work is organized as
follows

In Chapter 1, the motivation for this dissertation is given, the state of the art on
decentralized control is described. The block control technique and RHONN struc-
tures are described briefly.

In Chapter 2, the decentralized neural identifier and the class of subsystem consi-
dered is presented. The neural identifiers is designed considering the interconnection
terms as external disturbances. A robust decentralized learning law is used for the
local subsystems in order to avoid the drift parameter phenomenon.

In Chapter 3, the block control technique is explained. The block control algo-
rithm is designed in a recursive manner. Each local subsystem is transformed in
new coordinates in order to obtain the switching surface. The stability analysis for
the local subsystems is detailed considering that interconnection terms are bounded
but no necessary known. Hence, the closed loop for the whole system is guaranteed
via Lyapunov analysis. The decentralized identification and control scheme devel-
oped is applied to a testbench large scale plant: the interconnected double inverted
pendulum. Simulations results for regulation and tracking are presented.

In Chapter 4, a single machine infinite bus system application is developed. An 8th
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dynamical model for the power system and a reduced identifier is used. The sliding
mode control based on the resulting reduced identifier is applied. The robustness of
the scheme is tested via a short circuit fault.

In Chapter 5, two multimachine power systems are considered. The first one, is
a two machine interconnected to an infinite bus system with a 3rd order dynamical
model representation. The second multimachine power system is a 3-machine 9-bus
interconnected via a transmission network. The 3 machine system is modeled as a 6th
order dynamic structure and identified by a 3rd order reduced neural model. Both
power systems are tested with a disturbance consisting of a short circuit fault.

Finally, Chapter 6, states conclusions and future work.



Chapter 2

Neural Network Identifier

In this chapter, we present the class of nonlinear systems to be considered in this
dissertation and the decentralized recurrent neural network which is able to identify
interconnected electromechanical plants. The respective convergence of the identifica-
tion error is established on the basis of the Lyapunov approach [8], [22].

The considered large-scale system is constituted of nonlinear subsystems in the
Nonlinear Block Controlla{)le Form with Disturbance Term ‘(N BC) [27] consisting of
r blocks:

v fi1 (le) + Ba (X;l) X2 + ik ()_(llc)
X2 = fo(dxE) + B2 (4 x%) X3 + Tizk (> X2)

X = fuO6xd o oxd) + Big (i xd, - X)) i
+Digk (Xks Xos-- -1 X4), ¢=3,..,7—1
X; = fir )+ Bir (X) i + ik () (2.1)
where x = [ x!T X ... T ]T x! € Rme*1l, x is the state vector of the k**

subsystem (i =1..N, 1<k <N, k+#1) and the rank of B, = n;,, Vx7 € ng C

R™a_. The interconnection terms



N
Tar = D v (Xk)
k=1,k#i
N

> v (% XR) (2.2)

k=1,k#i

Cigk

. N
Fiqk = Z Yigk ()2]1c$ Xiv s ,Xz)
k=1,k#i

N
Z Yirk (X)

k=1ks

Firk

reflect the interaction between the i** and k** subsystem; they are bounded by non-
linear functions 7;x and enter the system as no matching condition disturbances, f;.
and B;, are smooth and bounded functions, f;- (0) = 0 and B; (0) = 0. The integers
ni < nyg < ... < ny, defines the different subsystem structures, and 2:1:1 Tig = N;.

2.1 Decentralized Neural Network

For the large-scale plant, described by (2.1), we propose the following decentralized

RHONN model, whose structure is similar to (2.1) and has also the nonlinear block



controllable form according to [27]:

Lip
1 dy5(p) 1\ .2
i = —Apal +Zw1,, H Z," + Z Wi, Pa (z}) 2
j€hp m=L1,,+1
Ly
.4 d;
-1:,2 = —A; 21‘ +Zu’u2p H Z ) + E : wz2m i2 (.’L‘,,:U ):L (23)
JEIy m=Lap+1
L'IP
. d
i = —Agzl+ E Wigp H Zla® E W] Wty (Bl e 7 25
j€lap m=Lgp+1
q=3,...,7r—1
Lep L7y
5 5 14
T = —Azz+ E Wirp H Z;‘;J(”) + E Wi Vir ()
p=1 j€lrp m=Lep+1
7, . .
wherez = [ T 22T ... zIT | is the i** block neuron state with the same proper-
1 1 i

ties than (2.1), Ly, is the number of high order connections, L’ is the number of fixed
parameters w’, which depends on the plant structure and are incorporated to the neu-
ral network model in order to obtain a block controllable structure, {Iyp, I2p, ..., Irp}
is a collection of no ordered subsets of {1,,2,,...,m+n}, A is a semi-definite positive
matrix, w are the on-line adjustable weights of the neural network, d are no negative
integers, ¥ is a nonlinear function of the state x and/or the input u, and Z, is a

vector defined as

si (27)

Zy = :
s; (af)

with s; (-) a smooth sigmoid function formulated as

;

sl = 1+ exp(—5ix)

=7



where s; () € [-1,1]; a;, 8 and ; are positive constants. If the following vector is

introduced for the i** subsystem

- d1;(i1)
A

) J'p”l ! l

Pi do; (i2)
Pi2 H Z
pi (i, u;) = ) = | Jeli2 (2.4)

p‘i,Lp Z.l‘ir](’lr)

L j!IIir ! J

then, system (2.3) can be rewritten as

Ty = —aiTi + w] pi (T, w) + i (z,u) Tip

jo= 1.,r—1 (2.5)

In (2.5), the j*h state of each neuron for the i** subsystem is characterized by z, and
¥ denotes a nonlinear function of z or u which is selected according to the plant
structure represented by the r blocks.

It is worth to point out that the design of decentralized neural network does
not consider the interconnection terms. Although the neural identifier has a similar
structure as (2.1)-(2.2), these interactions are considered as external disturbances and
the identifier must be able to adapt its neural weights to compensate the influence of

such external disturbances.

2.2 Decentralized On-Line Learning Law

The decentralized identification proposed is based only on local information available
for each subsystem. Hence, the learning law is developed for the i** subsystem as
follows.

Based on the results presented in [21], we assume that there exists a decentralized

RHONN which describes (2.1); thereby, the plant model can be described by

Xi = —Aixi + 0! pi (O, ws) + v (2) (2.6)
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where w* € RE and the modeling error v; (t) is given by

vi(t) = fi(xi)+ Bi () ui + Tiae (k) 2.7
+Aix: — i pi (i wi)

The modeling error term v; (t) can be made arbitrary small selecting appropriately
the number L of high order connections [22]. The optimal unknown weights vector

w* is defined as

w; = arg min {sup |f,~ + Bju; + Aixi — wfﬂi' }

Wy &
¥ Xi,ug

Since each subsystem (2.1) can be written according to (2.6), two possible models for
(2.5) can be used:

e Parallel model

s T T

Tij = —QijTi5 + Wy Pi (Tiy wi) +w;” Yi (x,u) (2.8)
e Series-Parallel model

Fi = —ayzij +w! pi (i, wi) + wiT P (x, u) (2.9)

We use the series-parallel model considering that, in the case of electromechanical
plants included in this dissertation, it performs better than the parallel one.

A major concern when using adaptive schemes for control purposes is the stability
of neural weights. The parameter drift phenomenon, which consist in the possibility
that the RHONN synaptic parameters may drift to infinite, even if the identification
error converges to zero, does it impossible to obtain parameter convergence.

To address such issues, we uses a robust updating weight law, which will be intro-
duced in the next section, based on the following assumption, in order to guarantee

the stability convergence for the proposed identification and control approach:

Assumption 1 Systems (2.1) and (2.5) are input-to-state stables [11].
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tracking of a desired trajectory, defined in terms of the plant state x,, by the nonlinear

state x; formulated as (2.1), can be established as the following inequality

s = il < llzi = xall + s = ll,  =1,2,3,.., N (2.10)

where || || stands for the Euclidian norm. We establish the following requirements

for the neural network tracking and control solution [11]:

Requirement 1
limy oo ||l — X3l < G (2.11)

with (; a small positive constant.
Requirement 2

limgsosl| ¥ — &l =0, +=1,2,3,,.. N (2.12)

An on-line neural identifier based on (2.5) ensures (2.11), whereas (2.12) is guaranteed
by a discontinuous controller based on the block control technique. Such control

algorithm will be developed in the next chapter.

2.3 On-line Learning Law

In this subsection, an on-line updating weight law is developed considering the case
where the modeling error term is zero, i.e., v; (t) = 0. From (2.6), for the j* state of

the " subsystem, we establish

Xi = —@iXij + WY pij, (2.13)
i = 1,.,N,
7 = 1,.,ny
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and considering (2.8) or (2.9) then

:i‘,'j = —QiTyj + 'w?;p,',- (2.14)
i = 1,.,N,
j = 1, ooy Nig

where w;; is the estimated of the unknown vector wj;. In this case the state error

A .
€ij = Tij — Xij satisfies

&j = —Gijei;+ OLpij (2.15)
i = 1,.,N,
J = 1.1

with ¢;; = wi; — w;‘j. The following theorem establishes the main properties of the

learning law which is able to on-line adjust the weights for neural network (2.14).

Theorem 1 Consider the RHONN model given by (2.14) whose weights are adjusted

according to
"b::j = _e:j Ez:j)_lp::j (2.16)

where (Z};)™" is a symmetric positive definite matriz, then fori=1,.,N and j =

1, <y Nig
(2) &j, ¢ij € Lo
(b) lz'm,_,meij (t) =0

The respective proof and stability analysis is given in [32], [22].

2.4 Robust On-line Learning Law

For the case where the modelling error is not zero [32], the solutions of the differential

equations (2.16) may become unbounded, even if the modelling error is bounded.
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Therefore, the learning law (2.16) has to be modified in order to avoid the parameter

drift problem. The learning laws given by (2.16) are modified as follows [32]

W} = —(85)7" (eyjpyy — oijwi5) (2.17)
where
0 if lwisll < M
; i\ % _
7 = ("%’,ﬂ) aijo if Mi; < [lwyll < 2My;
Oijo if  lwill > 2M;;

with ¢ > 1, oijo and M;; positive constants.



Chapter 3

Decentralized Block Control

Based on the large-scale system identified by the proposed subsystem neural identifier,
we proceed to develop the respective control law. Stability of subsystems and global
system is analyzed via Lyapunov approach. In order to test our developed decentralized
identification and control scheme, we use an illustrative benchmark plant known as the
two interconnected inverted pendulum. This example is a classical large-scale testbed
for nonlinear decentralized control [3], [13], [19], [28], [35]. Simulation results are

included, which illustrates the capabilities and performance of our approach.

3.1 Block Control Algorithm

A sliding surface and a discontinuous control law is designed for system (2.5) consi-

dering the state z/*!, ¢ = 3,...,r — 1 as a fictitious control vector for the block ¢. This

procedure is described in the next steps [27].
Step 1 Assume that n;; = n;2 as discussed in [26], and define the vector error as
Zil = 'l‘ll - (5,1 (31)

where 4; is a smooth and bounded reference signal. The dynamics for (3.1)

along the trajectories of (2.5) are

i o= i+ w pi (T w) (3.2)
Y (2,2 — b

14
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If the fictitious control 2? is selected as
’L‘? = U; (—k:,-lzil + Ziz + 01 + a;xr; — ’!),;)
" -1
w = (s (z,u) (3.3)
mo= wip;(@iu)

where k is a positive constant, then, the first block is transformed to the new

coordinates z!, z? as follows
;1 S B :
z = —kaz; + 2 (3.4)

The vector 22 is obtained using (3.3) as

22 = —ami+wlp (i w) (3.5)
+wT; (@, u) 22 — & + ka 2!
Z £ o (Tn,To) (3.6)

Step 2 Taking the derivative of (3.5), we obtain

. Oal, dal | .
th = %xu + -(,ﬁ(l)iz —0; (37)

The fictitious control for (3.7) is 2 and the procedure continues for the remain-

der blocks until the true control u; iS obtained in the 7* block as
H = fir — Girui (3.8)

where the rank of &;, = n; and f;, is a bounded function. The discontinuous

control action is applied as

u; = Upsign (27) (3.9)

3.2 Stability Analysis for the Proposed Controller

The closed loop Stability of subsystems and global system is analyzed via the Lya-

punov approach in the following theorem.
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Theorem 2 Let define

B; = {fi € R™ | || full < &} (3.10)
as a ball of radius €. Setting Uy in (3.9) as
€ + a;
Ui > {6+ an) (3.11)
Eir
with oy a positive constant. Let consider the candidate Lyapunov function
1
v = §siTrzir (3.12)
whose derivative along the trajectories of (3.8) are obtained as
¥ = 25 (fir — € Usosign (2)) (3.13)
Taking into account the following identities
- 2sign (2) = ||z, = |lzll,
and substituting them in (3.13), we obtain
O < Nzl | firll = &irUos ll2irl (3.14)

O < = ||ziell (= | firll + €rUso)

If (3.10) holds and using (3.11) in (3.14), the derivative of the Lyapunov function is
simplified as - :
0 < —aio ||zl (3.15)
Consequently, the closed loop asymptotic stability is guarantee for (3.8) and the sliding
motion occurs on the manifold z{ = 0 in a finite time, then the tracking error (3.1)
will tends asymptotically to zero in accordance with (3.4). Nﬁoreover, the composite

Lyapunov function candidate for the large-scale system V = )" v, whose derivative

i=1

N
V<= izl (3.16)
=1

is negative defined, guarantees the stability for the global interconnected system if
Requirement 2 holds and (3.10) is fulfilled.
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Figure 3.1: Identification and control scheme

Additionally, according to Theorem 1 the identification errors are bounded.
Then, considering (2.10) and (2.12), it is possible to establish the bound of the track-
ing error ||xr — ;|| for the whole interconnected system. The closed loop identifica-

tion and control scheme developed is shown in Fig. 3.1.

3.3 Interconnected Double Inverted Pendulum

This section is devoted to test the decentralized scheme developed using a bench-
mark plant. Applicability of decentralized identification and control algorithms is
illustrated via simulations; additionally, regulation and tracking of nonlinear refe-

rence signals is depicted using this decentralized testbed system.

3.3.1 Plant description

Each pendulum is positioned by a torque input u; applied to a servomotor at its base.
It is assumed that, for the i** controller (i = 1,2). the only available measurements
are x;; and x;; (angular position and angular rate) corresponding to the respective

pendulum.
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1.4y 0),uy

Figure 3.2: Double inverted pendulum

The equations which describe the motion of each pendulum are defined as

X = xo (3.17)
. migr kr? ~
Xi2 ( Y ) sin (xi1) + (l b)
fol

+J t g (3.18)
i sin(xa1) if i=1
" { sin(xu) if i=2 (3.19)

i = 1,2

where x;; is the angular displacement of the pendulums from the vertical and y;, is
the angular speed. The parameters values are indicated in Table 3.1 and Fig. 3.2

displays a scheme of the system.

For the plant dynamics (3.17)-(3.19), we propose the decentralized neural network
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Table 3.1: Double interconnected inverted pendulum parameters

Description Parameter | Value | Unit
Pendulum end mass 1 my 2 Kg
Pendulum end mass 2 my 2.5 Kg
Moment of inertia 1 i 0.5 | Kg-m?
Moment of inertia 2 Jo 0.625 | Kg-m
Spring constant k 100 N/m
Pendulum height r 0.5 m
Natural length of the spring [ 0.5 m
Gravitational acceleration g 9.81 m/s®
Distance between pendulum hinges b 04 m
identifiers, according to the series-parallel model (2.9) as
T = Ti
. Ui
T2 = —@pTip+ wi2si (Xa) + Wizesi (Xaz) + 7 (3:20)
i = 1,2

The block diagram implementing (2.4) is shown in Fig. 3.3. In this diagram, the
entries to the sigmoid blocks are the plant states available, y;; and Yx;2, according to
the series-parallel model described in (2.9).

The goal is to track desired reference signals; this tracking is achieved by designing
a control law based on the sliding mode technique as described in section 3.1.

Considering the reference signal as §;, for i = 1, 2, the tracking error is given by
21 = Tip — 0; (3-21)
whose dynamics are obtained using (3.20) as
Z1 =T — 0 (3.22)
Introducing new dynamics for (3.22) as

2= —kazi + 2 (323)



20

Sigmoid
+— Xjy
it
I .
Xi2

Sigmoid

Figure 3.3: Time-domain block diagram for the proposed structure.

then, the dynamics for new variables z;» are obtained

1
Zp = fio + < (3.24)
Ji
where
fio = —Ti +wims; (Xa) + Wines; (Xiz) (3.25)

—bi — K}z + kinzia
Hence, the control action is proposed, for each pendulum (i = 1,2), as
u; = —Ujosign (2i2), Uio > Jifia (3.26)

3.3.2 Simulation results

This section presents the respective simulation results for the interconnected double
inverted pendulum. First the regulation case is displayed; afterward, the tracking one
is presented.

Regulation is depicted in Fig. 3.4, which includes a 10 N — m torque disturbance

applied at 3 sec. Fig. 3.5 and Fig. 3.6 shows the applied decentralized discontinuous



0.15 T T T - T T T T T 21

0.t
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Figure 3.4: Regulation

control action. The identification error behavior is shown in Fig. 3.7 and Fig. 3.8 for
pendulum 1 and pendulum 2 respectively.

The decentralized identification and control scheme proposed is able to track refe-
rence signals §;. The tested reference signals include sinusoidal ones, whose dynamical
characteristics is useful to illustrate the proposed approach performance. In Fig. 3.9
a reference 6; = §, = 0.1sin(t) for both pendulums is tracked.

More complex tracking capabilities are illustrated by Fig. 3.10 and Fig. 3.11.

L _ ] L
s 0

0 3 1 i 2 ) 15 4 4

25
-—tn

Figure 3.5: Control action 1 Figure 3.6: Control action 2
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Figure 3.9: Tracking for a sine reference

Fig. 3.10 shows the state xi; tracking a sinus signal, whereas x2; tracks a cosine
signal. In Fig. 3.11 one pendulum is forced to stay at a fixed position, whereas the
other one tracks a sinusoidal signal.

It is worth to point out that all the methods found in literature are applied
for stabilization; our approach is able, additionally to regulation, to track reference
signals as showed in this section. The sliding mode technique generates a very high
frequency signal only when the sliding surface is reached. Moreover, the power stage
could be based on the well known IGBT technology, which is adequate for disconti-

nuous control signals.



Figure 3.10: Tracking for a sine and cosine reference signals

orf]
17 \
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-0.15F

Figure 3.11: Tracking for a constant and sine reference signals
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Chapter 4

Single machine infinite bus system
application

Motivated by the results obtained in the interconnected double inverted pendulum appli-
cation presented in Chapter 3, in this chapter, we consider to test out a neuronal con-
trol scheme based on a reduced neural model to a single machine infinite bus system
(SMIB). A complete SMIB dynamical model is used and a reduced neural identifier
is proposed in order to obtain a control law based on this reduced order neural iden-
tifier. This chapter presents a design which addresses the on-line identification and
control trajectory tracking based on the 3rd order neural model of the power system
and the application of the resulting controller to the 8th order plant [25]. The goal of
this chapter is related to the applicability of a reduced order neural identifier to high
order nonlinear plant such a synchronous generator. The identification and control
scheme developed allows to obtain a control law using the reduced neural identifier
parameters, whose mathematical representation is less complex than the full order
mathematical model of SMIB. Additionally the block control technique allows to use

the robust sliding mode control as illustrated via simulations.

4.1 Mathematical Model

This section describes the required mathematical models.

24
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4.1.1 Full Order Mathematical Model

The complete model of the single machine infinite-bus system consists of electrical
and mechanical dynamics and load constraints. The electrical dynamics comprising
the stator and rotor damping windings, employing the currents as the state variables,

can be modeled as

dia G’1 G2 is Vn
o 2]--[& ali]-[v] @
where ) }
—Lq4 0 Lpa 0 L, O
0 =ty B Lyg 0 Lggy
I— —Lna O Ly 0 Lpg 0
- 0 ~Lpy 0 Ly 0 Ly,
—Lpg 0 Lpa 0 Ly O
| 0 ~Lmg 0 Lpmg 0 Ly |
—-Rs wL, O ~wLlpy 0 —wLlp,
G1 = —u)Ld —-Rs U.)Lmd Gz = 0 wLmq 0
0 0 Ry 0 0 0

000 R, 0 0
Gs=|000| Gi=| 0 R 0
000 0 0 R

withi, = [ 44 iq | yie =[5 By ika ikg )" Va=[Va V, "

V,=[v; 00 0]
14 and i, are the direct-axis and quadrature-axis stator currents, in per unit (p.u);
iy is the field current, in p.u;
ikds Tkg, and ¢4 are the direct-axis and quadrature-axis damper windings currents,
in p.u;
w is the angular velocity, in rad/s;
Vi and V, are the direct and quadrature-axis terminal voltages, in p.u;

V¥ is the excitation control input, in p.u;
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R, and R; are the stator and field resistances, in p.u;

Ry, Ry and Ry, are the damper windings resistances, in p.u;

Lq and L, are the direct and quadrature-axis self-inductances, in p.u;

Ly is the rotor self-inductance, in p.u;

L4 and Ly, are the direct and quadrature-axis damper windings self-inductances,
in p.u;

Lmq and L,,, are the direct and quadrature-axis magnetizing inductances, in p.u.

It is well known that fluxes are less sensitivity with respect to parameter variations
than currents; hence, it is more suitable to represent the electrical dynamics in terms
of the stator currents i; and the rotor fluxes ¢,, where ¢, = [ Yy Yy Yrd Vg ]T , is

in p.u. Such model is obtained from (4.1) using the following transformation between

o=l w

fluxes and currents:

where _ -
1 0 0 0 0 0
0 1 0 0 0 0
T —Lpa O Ly 0 Lpg O
0 —Lpg 0 L, 0 Ly,
—Lpg 0 Lpg 0 Liyg O
| 0 —Lpg 0 Ly, 0 Ly |

System (4.1) is transformed to the form

E]aols]oals] e

with A, (w) = —TL7'G(w)T™! and B, = TL™' The complete mathematical des-

cription includes the swing equation [2]

dé

E = W — Wy (44)
dw Ws

E - 2H (Tm - Te) (45)
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where 4, in p.u, is the power angle of the generator; w, is the rated synchronous speed,
in rad/s; H is the inertia constant, in sec; T}, is the mechanical torque applied to the

shaft, in p.u; and T, is the electrical torque, in p.u, expressed in terms of the currents

as follows
T. = (Lq - Ld) idiq + Lmdiq (if + ikd) - Lmqid (ig + ’ikq) (46)
The mechanical torque T,, is assumed to be a slowly varying function of time as
follows
Tn=0
The equilibrium equation for the external network is written as
L.di :
V; = ;;E:- + RL (w) 1 + VY (47)
R, —w%“‘ cosd _ A
where R (w) = wke R and Y = [ sing ] V* is the value of the infinite

Ws
bus voltage; L. and R, are the transformer plus transmission line resistance and
inductance. Parameter values of (4.1)-(4.7) are expressed in p.u.

If we select the following state variables

x1=90, Xe=w, Xx3=4v5, Xa=g,
X5 =Urdr X6 =Ure» X7=1d, X8=lg

then (4.1)-(4.7) can be represented by

X' = —w
> _ _ _ 3 _ _ 4

x> = ax([ —a2ixs —anxr | xX*+ [ —ewxs —auxr | x* — azsxrxs + Tin)

Xa = 1431)(3 -+ A32X4 + A33X5 + Bl’Uf (4.8)

X' = AuxX’ + Awpx' + Asx®

X° = Asx® 4 Asax' 4 AssxX’ + Asad P + AssIxx* + Ase I + AstY + Byuy
where

. ‘ s : T

=l =D, *=[xs xa] X'=[x x] X*=[xr ]

a; 0
Ay = [ o

0 @41
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_ | as2 _lass O _|lan O _|lan O
A42 - [ “62 ] 43 - [ 0 g3 ] A5l - [ 0 gy " A52 - 0 g2 ] y
ars ar4 0 ars 0 Qa6 0
4 = = A = A =
Asa [ (ls.i ] [ 0 au } 5 [ 0 ags %0 0 age ]
arnr _ | asa | azs {01
[ asy ‘_[0 32_[0 ']‘[10]

vy is the ('ontrol input to be designed.

4.1.2 Reduced mathematical model

The machine model considered is the flux decay model (one axis model) given in
[2] and [24]; exciters and governors are not included in this model. The reduced
dynamics of a single synchronous generator is described by the following equations in

state variable form

X1 = X2
X2 = —bixazsin(x1) —baxa + P (4.9)
x3 = bscos(x1) —baxa+ E +u

where x; is the load angle, x» is the shaft speed deviation from the synchronous

speed, x3 is the quadrature axis internal voltage, P = —5%“, E = % and u is a
do

supplementary signal added to the field voltage, as a control input. The coefficients
b;, i = 1,...,4 are positive [12].

4.2 Neural Model for Synchronous Generators

Based on the reduced order model (4.9) and the series-parallel structure (2.9), a

reduced neural identifier structure is proposed as

Iy = —aT+ fl
Ty = —ax2 +wnS (T2) + wnS (x1) S (rs) + & (4.10)
B3 = —azr3+wnS (1) +wsS (r3) + &3
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In accordance with (2.9), the structure of (4.10) consists of parameters to be

adjusted such as way, wee and wsy, wsg; the fixed terms are given by

& = T+ T —w,
& = P (4.11)
63 = F +u

The adjustable neural weights of (4.10) are updating using the robust on-line
learning law (2.17) as established in chapter 2.

4.3 Control Algorithm

The objective is to force angle x; to track a desired reference signal x, and at the
same time rejecting external disturbances. Employing the block control technique
[27] and using x, as a constant reference value to be tracked, let define the error
signal as

21 =21 — Xr- (4.12)

The dynamics for (4.12) can be obtained from (4.10) and (4.11) as
2= To — W, (4.13)
Using x93 = —k121 + 22 + w;, (4.13) is modified to
2= —kiz1 + 29, (4.14)
with 2, given by
39 = —apTy + wn s (1) S (x3) + wazs (x1) 8 (x3) + k1 (T2 — ws) + P. (4.15)
In the next step, the switching surface z3 is introduced in (4.15)
2y = —kazo + 3, (4.16)

where ki, k; > 0. The switching function 23 is obtained using (4.15) and (4.16) as
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Figure 4.1: Identification and control scheme

follows

23 = —@aTy + w218 (T1) 5 (T3) + waes (71) 5 (23) + k1 (T2 —ws) + P+ kaza.  (417)
It is clear that if we select the following sliding manifold
23 = 0, (418)

then the motion on this manifold will be described by linear system (4.14) and (4.16)
with the desired dynamics. To guarantee the sliding mode in the manifold (4.18), the

motion projection on subspace 21, z; is derived as [36]

=1+ wxs(21) s (23) u, (4.19)

where n = 22 + 63(:1:)

LE 1y + drr §'(z) = 52, with r = [ Xr Ws ]T Then, taking

()::2

into account the bound |u| < Uy, Uy > 0, the discontinuous control law is defined as

u = —Uysign (wazs (1) §' (3)) sign (z3) , (4.20)
The stability condition of the origin =5 = 0 for the closed-loop system (4.19), (4.20)
is

z3=1—Up|wans (z1) §' (x3)| sign (z3), (4.21)
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Figure 4.2: Single machine-infinite bus system

If the following inequality is satisfied
Inl < Us lwa2s(21)s'(x3)] » (4.22)

a sliding mode motion occurs on the manifold (4.18) in a finite time, then the tracking
error z; will tends asymptotically to zero in accordance with (4.14). This motion is
invariant with respect to generator parameters variations and external disturbances.

Fig. 4.1 illustrates the proposed identification and block control scheme.

4.4 Simulations

The proposed identification and control scheme is applied on the complete 8 order
model (4.8) of the generator connected to an infinite bus through a transmission
line. Fig. 4.2 depicts the single-machine infinite bus system. The parameters of the
synchronous machine and transmission system (4.8) are indicated in Table 4.1, which

are in p.u except when indicated.

The reference angle x, to be tracked is equal to 1.3314. The parameters for the
neural identifier are a3 = 1, a3 = 2, ap = az = 2, fp = 20, 83 = 20, ¢ = 0.01,

;' =800, I';' = 0.2. The identification and control stages are indicated as follows

Stage 1: The open loop system is identified on-line by the neural network from ty = 0
tot; =20 s



Parameter
21
a2
Q23
(4571
a2s
Q26
azy
32
as3
a3y
41
Q42
Qq3
asy
as2
as3
agy1
62
63

Value (pu)
0.4851
—-0.1379
0.4667
-0.8
0.02
o1
—0.7116
0.6456
—0.1107
Ws
—2.776
2.576
—0.3220
30.6122
-33.333
-5
9.849
—14.286
—7.1429

Parameter
ary
ar
ars
Qa4
Q75
a7
arr
arg
agi
Qg2
g3
(g4
asgs
Qsge
agr

Ton
L.
Re

Value (pu)
26.0460
—28.7592
—42.2029
—0.2602
—1.5094
1.0870
—711.3040
345.0824
13.6301
—-20.1334
—46.7986
0.8821
0.8485
—0.9663
—685.4384
3.525 sec
0.9463
0.1
0.5

Table 4.1: Parameter values for generator.

Stage 2: The control law is incepted at t = t;;

Stage 3: A fault occurs at t5; = 40sec;

32

Stage 4: The fault is removed by opening the breakers of the faulted line at t;, =

40.15sec;

Stage 5: The system is in a postfault state. This system goes back to healthy ope-

ration (stage 1).

The identification and control sequence for y is showed in Fig. 4.4, whereas Fig.

4.5 displays a zoom in for x.

The short circuit fault occurs at t;; = 40 sec and is cleared at t;, = 40.15 sec.

The lapse ty; — ts; is called the critical clearing time.

Fig. 4.3 shows the performance of the identification and control scheme for w. The
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Figure 4.3: Angle speed time evolution

weights remains bounded all the time (Fig. 4.6). Fig. 4.7 depicts the discontinuous
control signal.

© @ 4 @ s ® u u = =
——

Figure 4.4: Angle time evolution Figure 4.5: Zoom in for angle in short cir-
cuit stage
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Figure 4.6: Neural identifier weights

Figure 4.7

Discontinuous control action
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Chapter 5

Interconnected Power System
Applications

This chapter extends the proposed adaptive neuronal identification and control scheme
to the case with two machines interconnected to an infinite bus and with a 3-machine
power system. A decentralized RHONN structure, and the respective learning law,
are proposed in order to approzimate on-line the dynamical behavior of each nonlin-
ear subsystem. The control law, which is able to force the system to track the desired
reference signals, is designed using the well known variable structure theory. The sta-
bility of the whole system is analyzed via the Lyapunov methodology. The applicability
of proposed decentralized identification and control algorithm is illustrated via simu-
lations to stabilize a electric power system in presence of external disturbance. In the
case of the 3-machine power system, a reduced neural identifier is used to approzximate

the dynamical behavior of the multimachine system.

5.1 Power System Dynamical Model

The large-scale power system considered is constituted by n generators interconnected

through a transmission network, whose dynamics are modelled by (see [14] and refe-

35
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rences within for details)

b= w
@ = —-Q%W,. 2“;‘} AP,; (5.1)
AP,; = —~T}—dmAPe,-+Tdmvf,+'y,(6 w)
where
APy = Pei_Rm() (5.2)
¥ (0w) = E ZE :Bijsin (8; — 0;) (5.3)

j=1
Ef,l" Z E;jBij (66} ((5, £ (SJ) Wi
=1

d; is the angle of the ith machine relative to the synchronous angle of the system, w;
is the synchronous speed of the ith generator, P,; is the electrical power, wp is the
synchronous machine speed, D; is the damping constant, H; is the inertia constant, E(’I,-
is the quadrature axis component of the voltage, B;; are the ith row and jth column
element of the nodal susceptance matrix at the internal nodes after eliminating all
physical buses, vy; is the control input and P, is a constant.

The interconnection term ~; bound is established considering that the internal
voltages E' are always constramed taking into account physical considerations [14],
[18]. Moreover, the excitation voltage may raise by up to 5 times of the E,; when

there is no load in the system, then

|E(,1’E<IIJ Ul < |pei'max
1
Bo| < | (-2 59
1
S 4 |Eflj|ma.x | l
d0j | min
as explained in [18].
Considering (5.4), it is also established that
i (0,w) <D (s [sin (8;)] + vz |ws) (5.5)

j=1
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Figure 5.1: A two machines infinite bus power system

with
n

4p1i; o= f

; when j=1i
Y = j=12,a:'#1 [T e Pesles ! (5.6)

ﬁllL- lpeilma.x 'U)hen ] % i

05 |ynin

Yi2 = D2ij IQeilma.x (5'7)

P1ij and po;; are constants with values either 1 or 0.!

5.2 Interconnected Power System Example

In this section, the proposed decentralized scheme is applied using a two-generator
infinite bus power system which is portrayed in Fig. 5.1. The plant parameters are

listed in Table 5.1.

If we select the following state variables §; = xi1, wi = Xxi2 and AP,; = x;3; then,

lwhen they are zero, it means that the jth subsystem is not connected with the ith subsystem
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Table 5.1: System parameters

Parameter | Generator #1 | Generator #2
x4 (pu) 1.863 2.36
xy (pu) 0.257 0.319
xr (pu) 0.129 0.11

ad (PU) 1.712 1.712
T, (pu) 6.9 7.96

H (s) 4 5.1

D (pu) 5 3
212 (pu) 0.55 0.55
T3 (pu) 0.53 0.53
23 (pu) 0.6 0.6
wo (rad/s) | 314.159 314.150

(5.1) can be represented as

Xi1 = Xi2

. D; Wo

Xiz2 = _2_f{iXi2 = 2—HiXi3 (5-8)
s = —mxia + 7 + % (it )

Xi3 = T(;o; rXi3 Té(),ji fi i \Xi1s Xi2

5.2.1 Decentralized neural model identification and controller
design

The following decentralized neural network identifiers are proposed for the plant dy-

namics (5.8)

Ty = Ti2
Ty = —QiaTiz + wiars: (Yiz) + (Pmm Xi3)
iy = —QiaTi3 + Wiz S; (Xu + wizes; (xiz) (5.9)

+wiss; (i) + (Pmio + vg3)

1,2

o
Td(h

i

The goal is to track desired reference signals ;; this tracking is achieved by designing

a control law based on the sliding mode technique. Consider the constant reference



signal as ¢;, for i = 1,2, then the tracking error is given by

21 Ty — 6
2z = T2

whose dynamics are obtained, using (5.9), as

= T
Wo

Zig = —QpTiz+ 'wi213? (xi2) + (Pmio — Xi3)
2H;

fn 2 ap(Ti,x)
Introducing new dynamics for (5.12) as
Zip = —kazi — Kioziz + 2i3
using (5.12), the dynamics for the new variable z;3 is obtained as
Zi3 = fis — civgi

R _ Bagg Actig - _
where fi3 = -a—;‘?x,- + T"ﬂYi and ¢; =

__Wo
o Moo, T

Then, the control action proposed for each generator (i = 1,2) is

Vi = — iOSign(Zis)

Us = 10

5.2.2 Simulations
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(5.10)

(5.11)

(5.12)
(5.13)

(5.14)

(5.15)

(5.16)
(5.17)

This section presents the respective simulation results. The simulated sequence is as

follows

Stage 1: The open loop system is identified on-line by the neural network for time

0<t<0.2s;

Stage 2: The control law is incepted in t > 0.2 s;
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Stage 3: A fault arises at t = 15 s;

Stage 4: The fault is removed by opening the breakers of the faulted line at

t=15.15s;

Stage 5: The system is in a postfault state. This system goes back to healthy

operation (stage 1).

Fig. 5.2 displays the angle time evolution for generator 1 for a reference signal §, =
1.061rad. Fig. 5.3 shows the angle time evolution for generator 2, with d, = 1.058
rad. The robustness of the control action is tested via a short circuit fault, which
is incepted at stage 3 and it is cleared at ¢ = 15.15 seconds. Fig. 5.6 and Fig. 5.7
display the relative speed for both generators.

-ty oo ronsy

Figure 5.2: Angle 1 time evolution Figure 5.3: Angle 2 time evolution

o2 -0

w 16 ® = O 0 1§ > ® 3
— -

Figure 5.4: Speed 1 time evolution Figure 5.5: speed 2 time evolution
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Figure 5.6: WSCC 3-machine 9-bus power system

5.3 Multimachine Power System

In this section, the proposed decentralized identification and control scheme is tested
with the Western System Coordinating Council (WSCC) 3-machine, 9-bus system
[30], [2]. The power system configuration is depicted in Fig. 5.6.

5.3.1 Mathematical model

The differential and algebraic equations which represent the ith generator dynamics

and power flow constraints respectively are given by
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Xli = Xoi — Ws

X2i = (%)(Tmi — (Yailgi — Vgilas))

)'(3" = ( )( X3i — (Xdi = X’dZ)[Ifh %(Y'ﬂ + (Xdz Xlai)Idi)] + Efd’i)
dz lsi

Xei = (T{ )( Xai + (th :)[I %(X& + (XI = Xisi) Iy + E:h)])

5 = (T" )(=xsi + x3i — (X — Xisi)Lai) (5.18)

X6i = (‘TZ;&)(‘X& — X4i — (thp' = Xisi) Ii)
Xlsl thi. X.,ilz

Uy = —X1I, 4 di o di  di
Vdi dildi + X(’i: X X3i + X!, — Xi Xsi
, Xd' Xls X' XII
Yu = Xl - g e X
0 = P=Vi) VjYicos(6: —0; — 6ij) (5.19)
j=1

0 = Qi—Vi) VYysin(d; —6; — ¢ij)

=1

with currents I; and I; satisfying the following equations

‘/i sin(J,- - 01,) - Xqilqi =0
Vicos(0; — 6;) + Xplsi — E; = 0 (5.20)
i = 1,2,..N.

where N is the number of generators, n'is the number of buses, x); is the power angle
of the ith generator in rad, xo; is the rotating speed of the ith generator in rad/s,
X3i is the g-axis internal voltage of the ith generator in p.u., xy4; is the d-axis internal
voltage of the ith generator in p.u., s is the 1d-axis flux linkage of the ith generator

in p.u., xe: is the 2¢-axis flux linkage of the ith generator in p.u., Ey4 is the excitation
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control input, ¥4 and ¥, are the d-axis flux linkage and g¢-axis flux linkage of the ith
generator in p.u. respectively; w, is the synchronous rotor speed in rad/s, P; and Q;
is the injected active and reactive power at bus ¢ in p.u., V;£6; is the voltage at bus
i and Y;;Z¢;; is the admittance between bus ¢ and bus j.

The algebraic equation constraints (5.19) and (5.20) can be manipulated to express
currents I, Iy as a function on the states (5.18). The voltages and injected currents

at the generator buses are related by the expression
V=2ZI (5.21)

where V = [Vi,..,V,|T and [ = [I},...,,]T Z = R+ jX is a nzn matrix of the
network equivalent impedance. Using the following equations which represents the

dynamic circuit of the synchronous generator [33]
I = (Ig+35I)ef (6 — g) (5.22)
i . . ™
V = [(Xqu - RsId) + J(X3 - leiId - Rqu)]e](d - 5) (5-23)

we can express (5.21) in term of the states as follows

Xgic0s(d;) = Z [Rijsin(d;) + (Aij + Xij) cos(8;) g + [—(Bij + Xi5) sin(0s5) + Ryj cos(9;)] Iy
j=1

Xasin(d:) = D [(Aij + Xi) sin(8;) — R cos(8;)] Ly + [Rij sin(85) + (B + Xiy) cos(;)] Iy

J=1

(5.24)

where R;; and X;; are parameter of the electrical network, A and B are defined as
A = diag[ X}, ..., X},] and B = diag[Xq1, ..., Xqn]

5.3.2 Reduced neural identifier

A 3rd order neural model is used to identify the dynamics of (5.18). The decentralized

neural identifier is proposed considering only angle, angle speed and g-axis internal
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voltage of the ith generator. The recurrent high order neural identifier proposed is

.I — ' ,

Ty = Ty — Wy

. 7

Ty = —Q2;2; + Waif2i — Wo;T3; (5.25)
P il E

T3 = —03iT3i + W3ip3i + Wy Lgai

where wl;, = w,, wh; = (y“}}:)(%ﬁ%), and wh; = %0' are the fixed parameters of
the ith generator. It is worth to notice that in the reduced neural identifier (5.25),
the interactions of the multimachine system are not explicitly included. Since Iy
and I,; can be expressed as linear combinations of x,, together with the bounded
parameters of the network in terms of the sin(4;) and cos(é;), then currents in (5.24)

can be expressed by
Ii = Y ¢(0)xqi (5.26)
=1

Iy = Z)\ij(g)Xqi
Jj=1

with ¢;; and );; defined as parameters of the electrical network (5.24), 6=1[01,...., K
denote all of the rotor angles.
The linear combination of bounded variables remains bounded. Hence the bound

for currents Iy; and I; can be expressed as

e < Z‘I’iﬂX(tjl (5.27)
J=1

il < ) Agjlxgl
j=1

where ®;; and A;; are the bounds of ¢;; and A;; respectively (14].
5.3.3 Controller design
Considering the ith subsystem, let define

zi =1 — Ori (5.28)
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where 0, is the reference signal for the desired stable operation condition of the ith

machine. The dynamic of (5.28) along the trajectory of (5.25) are

21i = Toi — Wy (5-29)
Defining new dynamics for (5.29) as
2= —kutu + Z (5.30)
then, z;; is obtained using (5.29) and (5.30)
29 = Tpi — Wy + k1itu (5.31)
Taking the derivatives of z; along the trajectory of (5.25)
Zoi = — QT + WaipP — WoT3; + ki 2 (5.32)
a new dynamics for 2; is defined as
Zo; = —kaizoi + 23 (5.33)
Then z3; can be obtained using (5.32) and (5.33)
3 = —Qi%y + WaiP2i — WhT3i + Kuizy + Kaizas (5.34)

The true control Efy;, is obtaining with the derivative of (5.34) along trajectory of

(5.25). If we select the following sliding manifold
23i = 0 (535)

then the motion of this manifold will be described by linear system (5.30) and (5.33)
with the desired dynamics. To guarantee a sliding mode in the manifold (5.35), the

motion projection on subspace z3;, 2o; is derived as
Zi=f+ UoiEfai (5.36)

where f = gj%:i:i and Up; is a constant.
1

Then, the control action proposed for each generator (i = 1,2, 3) is

Epsi = Upsign (z3) (5.37)
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Table 5.2: Parameters of the generators

Parameter | Generator #1 | Generator #2 | Generator #3
H (sec) 23.64 6.4 3.01
T (pu) 0.716 1.63 0.85
T}, (sec) 8.9600 6.0000 5.8900
T (sec) 0.2000 0.3000 0.4000
T, (sec) 0.3100 0.5350 0.6000
T (sec) 0.2000 0.3000 0.4000
X4 (pu) 0.146 0.8958 1.3125
X} (pu) 0.0608 0.1198 0.1813
X7 (pu) 0.0200 0.0500 0.0800
X, (pu) 0.0969 0.8645 1.2578
X; (pu) 0.0969 0.1969 0.2500
X7 (pu) 0.0200 0.0500 0.0800
X (pu) 0.0336 0.0521 0.0742

5.3.4 Simulations

In this section we present the simulation results obtained with the applications of
the decentralized identification and control scheme to the WSCC power system. In
order to simulate the performance of our decentralized scheme, the following data is
required [2]

1. A load-flow study of the pre-transient network to calculate the mechanical power
of the generators and to calculate the initial conditions values of voltages and

angles of all generators. This data is shown in Table 5.4 and Table 5.3.

2. The inertia constant H, the reactance, the transmission network impedance for
the initial network conditions for all generators, which is shown in Table 5.2
and 5.5.

3. The type and location of disturbance as well as the fault clearing time, these

are explained in the simulation description.

The simulation is conducted following the stages



Table 5.3: Initial conditions of the generators

State Generator #1 | Generator #2 | Generator #3
Ya1(rad) 0.0625 1.0664 0.9460
xa(rad/s) 377 377 377
x3(pu) 1.056 0.788 0.768
Ya(pu) 0.000 0.622 0.624
xs(pu) 1.0478 0.7007 0.7078
Xs(pu) —0.0425 —0.7568 -0.7328

Table 5.4: Load-flow of the WSCC 3-machine, 9-bus system
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us # | Type | Voltage (pu) | Pyen (PU) | Ggen (PU) | Pioad (Pu) | Qioad (Pu)
I | Swing 1.04 0.716 0.27

2 P-V | 1.02529.3 1.63 0.067

3 P-V | 1.025Z4.7 0.85 -0.109

1 P-Q | 1.026Z-22

5 P-Q | 0.996/—4.0 1.25 0.5
6 P-Q | 1.013Z-37 0.9 0.3
i P-Q | 1.026Z3.7

8 P-Q | 1.016£0.7 1.0 0.35
9 P-Q | 1.03222.0




Table 5.5: Parameters of the transmission lines

Busi | Bus j R,gj X,‘j G,ﬁj .B,' i

1 4 | 0.0000 | 0.1184 | 0.0000 | —8.4459
2 7 | 0.0000 | 0.1823 | 0.0000 | —5.4855
3 9 ] 0.0000 | 0.2399 | 0.0000 | —4.1684
4 5 | 0.0100 | 0.0850 | 1.3652 | —11.6041
4 6 [0.0170 | 0.0920 | 1.9422 | —10.5107
5 7 10.0320 | 0.1610 | 1.1876 | —5.9751
6 9 ]0.0390 | 0.1700 | 1.2820 | —5.5882
7 8 |0.0085 | 0.0720 | 1.6171 | —13.6980
8 9 0.0119 | 0.1008 | 1.1551 | —9.7843
5 0 | 0.0000 | 0.0000 | 1.2610 | —0.2634
6 0 | 0.0000 | 0.0000 | 0.8777 | —0.0346
8 0 | 0.0000 | 0.0000 | 0.9690 | —0.1601
4 0 | 0.0000 | 0.0000 | 0.0000 | 0.1670
7 0 | 0.0000 | 0.0000 | 0.0000 | 0.2275
9 0 | 0.0000 | 0.0000 | 0.0000 | 0.2835
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Stage 1: The open loop system is identified on-line by the neural network from ¢, = 0

tot; =2 s;

Stage 2: The control law is incepted at t = 2sec;

Stage 3: A fault occurs at t;; = 10sec near bus 7;

Stage 4: The fault is removed by opening the breakers of the faulted line at ¢y, =

10.15sec;

Stage 5: The system is in a postfault state. This system goes back to healthy ope-

ration (stage 1).

In Fig. 5.7, Fig. 5.8 and Fig. 5.9 the time evolution for angles is shown. The Fig.

5.10, Fig. 5.11 and Fig. 5.12 illustrates the rotor speed behavior.
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Figure 5.8: Rotor angle time evolution for machine 2
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Figure 5.10: Rotor speed time evolution for machine 1



o1

378.51
krd 1
arrsr 4
; anr MNAWW 'WWV\NV\NVV\Ava—
376.51
376

37551

tme (s)

Figure 5.11: Rotor speed time evolution for machine 2

Speed machine 3
T

il‘iwv'wlﬁiwnin"NWV»

MWW

|

374

373
0

time (s)

Figure 5.12: Rotor speed time evolution for machine 3



Chapter 6

Conclusions and Future Work

6.1 Conclusions

A decentralized neural identification and control scheme is proposed which is able to
preserve stability for the whole system. The developed scheme is applied to different
nonlinear electromechanical interconnected systems whose dynamical models includes
bounded interconnection terms. Each subsystem is modeled according to the block
control technique, which allows to develop a sliding mode control law. The control
action forces the closed loop trajectory to converge and to stay in the sliding manifold,
which guarantees that the tracking error is zero.

A neural identifier with the same block controllable properties than the ith sub-
system is proposed to approximate the subsystem dynamical models. The neural
identifier does not includes the interconnection terms and is trained with only local
information via a decentralized robust learning law. Updating weight law avoids the
drift parameter phenomenon using the well known o-modification. This modifica-
tion allows to update the sinaptic weights with no persistency of excitation condition
required.

We tested out our decentralized scheme using the following interconnection plants:

a) Interconnected double inverted pendulum: The identification error converges to
zero and the weights parameters tends to fixed values. The control action allows

regulation and tracking. As far as we know, for this plant, the tracking problem
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is for the first time presented in this dissertation. External disturbances are
rejected. The capabilities of the tracking performance depends strongly of the

interconnection terms as we tested via simulations.

b) Single machine infinite bus system (SMIB): We used an 8th order model to repre-
sent the SMIB. A reduced neural identifier based on the 3rd order neural model
of the power system is proposed. A sliding mode controller is developed based
on the reduced neural identifier. Simulation results presented good performance
even in presence of a short circuit fault. Neural weight remains bounded and

the identification error converges to a value very close to zero.

c) Two machines infinite bus power system: The decentralized scheme is simulated
using a 3rd order model to represent this power system. The identification
errors and the weights parameters remains bounded for the ith subsystem. A
short circuit fault is simulated and the control action is able to regulate the
angle of the machine i as well as the neural parameters. In simulations results,
we noticed that the damping of the i¢th angle depends on the chosen neural
parameters and the respective learning law. The angle damping performance

can be modified by selecting such parameters adequately.

d) WSCC power system: A 6th order model representation is used. A 3rd order re-
duced model is proposed to approximate the subsystem dynamics. Simulations
shows that the identification error and the neural weights remains bounded
during simulation tests even in presence of a short circuit fault. The transient
response of the machines shows a damping response which remains bounded
and converges to the stable operation condition after an external disturbance
is applied. It is worth to point out that the damping oscillations of the sys-
tems are strongly dependent on the neural network identifier parameters as well
as the respective learning law, i.e., oscillations are dependent on the adaptive

structures of the developed scheme.
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6.2 Future work

The research could be proceed as:

® Due the fact that the interconnection terms are related with the way subsys-
tems are obtained, then research is required to analyze the relationship between

subsystems stability and the performance of the whole system when adaptive

schemes are used.

e To analyze the stability of reduced neural identifiers as applied to large scale
systems and the relation between the size of the systems and the number of
states to be identified.

e To analyze the controllability of the neural identifier on the open loop stage in

order to avoid the use of fixed parameter on the neural identifier.

e To develop an interconnected double inverted pendulum real-time application

in order to test the decentralized proposed scheme.

o More research is required to verify the applicability of reduced adaptive iden-
tifiers to electric power systems under different disturbance conditions such as

load chances and mechanical disturbances.



Appendix A

Synchronous Machine Modeling

This appendiz introduces the synchronous machine model, and its physical charac-
teristics. The main purpose on this appendiz is to present the fundamentals of the
synchronous generator in order to obtain the large-scale power system, named multi-

machine model. This appendiz is based on [2] and [24]

A.1 Construction and Principle of Operation

The three phase synchronous machine considered is shown in Fig.A.1. It consists of
two parts: stator and rotor. Both, stator and rotor have windings; the stator winding
is a three phase winding and is sometimes called the armature winding. The rotor
winding is called the field winding, which is connected to supply through the slip

rings and brushes. There are two types of rotors:
e Salient-pole rotor (Fig. A.1) for low-speed machines (e.g. hydro-generators)
e Cylindrical rotor (Fig. A.2) for hight-speed machines (e.g. turbo-generators)

The two basic structures mentioned depends on their respective usage. Hydraulic
turbines operate at low speeds and hence a relative large number of poles are required
to produce the required rated frequency. A rotor with salient or projecting poles and
concentrated windings is better suited mechanically to this situation. Such rotors

often have damper windings or amortisseurs in the form of copper or brass rods
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Figure A.1: Synchronous machine with salient-pole rotor

embedded in the pole face. These bars are connected to end ring to form short-
circuited windings similar to those of squirrel cage induction motors, as shown in Fig,
A 3. They are intended to dump out speed oscillations. Steam and gas turbines, on
the other hand, operate at high speeds. Their generators have round (or cylindrical)
rotors made up of solid steel forgings. They do not have special damper windings,
but the solid steel rotor offers paths to eddy currents, which have effects equivalent

to amortisseur currents.

A.1.1 Machines with multiple pole pairs

Machines with more than one pair of field poles have stator windings made up of a
corresponding set of coils. For purposes of analysis, it is convenient to consider only
a single pair of poles and consider that conditions associated with other pole pairs
are identical to those for the pair under consideration. Therefore, angles are normally
measured in electrical radians or degrees. The angle covered by one pole pair py is
27 radians or 360 electrical degrees. The relationship between the electrical angle §

and the corresponding mechanical angle 6,, is
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Figure A.2: Synchronous machine with cylindrical rotor

9="2L, (A.1)
2
MMF Waveforms

The armature windings and round rotor machine field windings are distributed in
many slots so that the resulting mmf and flux waveforms have nearly sinusoidal space
distribution. Let us consider, the mmf waveform due to armature windings only. The
mmf produced by current flowing in only one coil in phase a is illustrated in Fig. A.4
in which the cross section of the stator has been cut open and rolled out in order to
view of the mmf wave. By adding more coils, a sinusoidal mmf wave distribution is
obtained. Machine design [10] aims at minimizing harmonics and, for most analysis
of machine performance, it is reasonable to assume that each phase winding produce

a sinusoidally distributed mmf wave.

Rotating magnetic field

The net mmf wave due to the three phase windings in the stator of phase a may be

described as follows
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Figure A.3: Salient pole rotor construction

MMEF, = Ki,cos(y)
MMF, = Kiycos (’y - 2?”) (A.2)

MMF, = Ki.cos ('y + %73)

where v representing the angle along the periphery of the stator with respect to
the center of phase a;

i, ip and . are the instantaneous values of the phase currents and K is a constant.
The three mmf waves due to the three phases are displaced 120 electrical degrees apart
in space.

With balanced phase currents, and time origin arbitrary chosen as the instant

when i, is maximum, we have

ia, = Incos(wst)
2

i, = I,cos (w,t - %) (A.3)
2

te = Icos <w,t + %)

where w, = 27 f = angular frequency of stator currents in electrical degrees rad/s.

The total mmf due to the three phases is given by
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Figure A.4: MMF due to a single coil

MMPFtqq = MMF,+ MMF,+ MMF,
= Kl [cos (wst) cos 7y + cos (w,t - 2—37[) cos (7 — 21)] + (A4)

3
cos (w,t + 2—”) cos (fy + &r_)
3 3
3.
= 51& I, cos (7 — wst)

This is the equation of a traveling wave. At any instant in time, the total mmf has
a sinusoidal spatial distribution; it has a constant amplitude and space—phase angle
wst, which is function of time. Thus, the entire mmf wave moves at the constant
angular velocity of w, electrical rad/s.

The magnitude of the stator mmf wave and its relative angular position with
respect to the rotor mmf wave depend on the synchronous machine load (output).
The electromagnetic torque on the rotor acts in a direction so as to bring the magnetic
field into alignment. If the rotor field leads the armature field, the torque acts in
opposition to the rotation with the machine acting as a generator. On the other
hand, if the rotor field lags the armature field, the torque acts in the direction of

rotation with the machine acting as a motor.

Direct and quadrature axis

The magnetic circuits and all rotor windings are symmetrical with respect to both

polar axis. For the purpose of finding out synchronous machine characteristics, two
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Figure A.5: MMF due to a single coil

axes are defined as shown in Fig. A.5.
e The direct (d) axis, centered magnetically in the center of north pole;
e The quadrature (q) axis, 90 electrical degrees ahead of the d-axis.

The position of the rotor relative to the stator is measured by the angle 6 between

the d-axis and the magnetic axis of phase a winding [20].

A.2 Synchronous Machine Model

The basic dynamic equations for a balanced, symmetrical, three-phase synchronous
machine with a field winding and three damper windings on the rotor is presented.
The stator circuits consist of three-phase armature windings carrying alternating

currents. The rotor circuits comprise field and amortisseur windings. The field win-
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ding is connected to a source of direct current. In machine design analysis, a large
number of circuits are used to represent amortisseur effects. For system analysis,
where the characteristics of the machines as seen from its stator and rotor terminals
are of interest, a limited number of circuits may be used.

The fundamental Kirchhoff’s, Faraday’s and Newton’s laws give

Vg = taTs+ s
a - a’'s dt
vy = T+ é&
by = bT's dt
Ve = 1cTe+ d—/\—c
Cc - c's dt
) d)\
Vgg = 1f4Tfd + —Tzd (A5)
. d\
Vid = Udlad+ -a—;é
. d\
Vig = f1gT1q+ _dth
. d\
Upq = 1lgqT2¢ + 7211
@ _,
dt
dw
J E = T,-T.— wa

where X is flux linkage, r is winding resistance, J is the inertia constant, T;, is
the mechanical torque applied to the shaft, T, is the electrical torque, and Ty, is a

friction windage torque.

A.3 Transformations and Scaling

Equations (A.5), completely describe the electrical performance of a synchronous ma-
chine. However, these equations contain inductance terms which vary with angle 6,
which in turn varies with time. This introduces considerable complexity in solving
machine and power system problems. A much simpler model is obtained by appro-

priated transformation of stator variables. [23]:
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A . .
Vdgd = TigoVabes g0 = Tugotaver Adgo 2 Tig0Nahe (A.6)

where
Vabe = [ Va Vp Ve ]T, labe = [ ta Ul ]T Aabe = [ Aa M Ac ]T(A7)
'quo —A- [ Vg Vg Vo ]T, iqu = [ 'L'd iq ’i() ]T Aqu = [ Ad /\q /\0 ]TtA8)
and

Tupp 2 (A.9)

Wl N

2 2 2

sinf sin (§ — 2%) cos (6 + &
cosf cos (§— %) cos(9+ 2
1 1 1

with the inverse

sin @ cos @ 1
Ty = | sin(0—3) cos(9-3) 1 (A.10)
sin (8 + %" cos (0 + %’r 1
From (A.5), Kirchhoff’s and Faraday’s laws are
et = T4 +i()\ ) (A.11)
abc — (slabe dt abe .

which, when transformed using (A.9) and (A.10), are

. d .
Vdgo = Tstaqo + quo& (qu(l)/\dqo) (A.12)
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The system in dq0 coordinates has the forms

Vi = Tgiqg—whg+ %
Vg = Tglg+wAg+ %
Vo = Telp+ g
0 = st dt
. d\
Urd = Tfdlpqa+ -—did
) dA
Vid = Tidhd + Wld (A.13)
: d\
Vg = 7‘1q7,1,, —Ztli
; dA
Uzq = Taql2q + 7:1
@ _
a - ¢
dw
J— = T, -T,— T,
dt f

To derive an expression for T, it is necessary to look at the overall energy for the

machine. After analyzing the power balance energy [33], T, is obtained as
T, = —(Adiq — Agia) (A.14)

To complete the dynamical model in the transformed variables, the angle is defined

520 —wt (A.15)

where w, is a constant normally called rated synchronous speed in electrical radians

per second, giving s
d_t =W — Wy (A']‘G)
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A.3.1 Per-unit system

It is usual to scale the synchronous machine model using the traditional concept of
per-unit (31}, [16]. The new dq0 variables are defined as

A A v,
S _Y = 1 |
Va Vepq’ Vq VBDqQ'’ V VbDq'

1,2 —ia L _-ig L —ig
d IBDQ I Inna’ 0 IBDQ’

wd - ABDQ l/q AEDQ wo ABDQ (A.17)

where Vppg is the rated peak line to neutral voltage, and

A 28 Vep
Inpg & 722, Agpq & Y222 (A.18)

with Sp and wp equal to the rated speed in electrical radians per second (wy).

The new rotor variables are defined as

A Ypd A __u_ A v A v
Vfd Varp’ ‘/ld VoiD’ ‘/1(1 = Vo ‘/2 = -J_VBQQ’
A _ifa A g A ilq Iy izg
d fd = Tprp’ ha Ipip’ Ilq Ipq’ 20~ Tpq'
i a8 [ A Ayg / A /\11 A 4\21
ll}‘fd ABrD’ d)ld — Apip’ Y1 = AB1Q’ 7p2q = As20 (Alg)

where the rotor circuit base voltage and base flux linkages are respectively

& _Sp & Sp 2 Sp 4 Sp
Verp = 285, VBip = 1%, Vi ,mq, Vg = 1.5
4 A Vprp A Veip A VBig A Vg
ABFD = "om ° ABlD = “uB A w5 ABZQ = "won (A20)
The model parameters are scaled as follows
R - L4 T £ Mg yy 2 122
Rs ZBpq’ Rfd Z8rD’ Rld Zaip' qu Zp1Q’ RZq ZB20 (A21)
with
A VBpg A Verp A Vpip
ZBDQ = Thpo Zprp = TEER, Zpip = 722,
A Vg A Ve
ZB1Q = Tpo 2B2Q = Tpy (A.22)

The shaft inertia constant and shaft torque are scaled by defining
2
%J (wg)

H A
H= 5,

(A.23)



65

Ty2Dn, Tpy2Ze Tpi (A.24)

The synchronous machine equations, using the scaled variables with wp = w, are

1 dipg

w, dt
1 dipg

w, dt
L dyo

w, dt
1 dYga
ws dt
1 ding
ws dt
1 diy
ws dt
1 dig
we dt
dd

dt

2H

Ws

=Rm+%%+w

= R, - w%wd +V,

= RIp+Vp

= —Ryalja+Via

= —Ryahg+Via (A.25)
= —Rylig+Vyq

= —Roglyg + Voq

= Ww—ws

= Ty — (Waly — Yola) — Trw

In order to obtain (A.25), the following assumptions must be fulfilled

1. The stator has three coils in a balanced symmetrical configuration centered 120

electrical degrees apart.

2. The rotor has four coils in a balanced symmetrical configuration located in pairs

90 electrical degrees apart.

3. The relationship between the flux linkages and currents must reflect a conser-

vative coupling field.

4. The relationship between the flux linkages and currents must be independent

of 8 when expressed in the dq0 coordinate system.

The following section give the flux linkage/current relationships, which satisfy these

four assumptions and thus complete the dynamical model.
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A.4 The Linear Magnetic Circuit

This section presents the treatment of the case in which the machine flux linkage are

assumed to be linear functions of currents:

Aabe = Lgg (0) tabe + Lgr (9) iR (AZG)
/\R = Lrs (9) Zabe + er (0) iR (A27)
where
iRE [iga 1 d1g iz 1" a2 [Ma Ma Mg dag )T (A.28)
The inductance matrices which satisfy assumptions 3 and 4 are
Ly Ly Ly
Ly(0)2 | Ly Ly Lo (A.29)
Ly L3y Ljs

with
Lyu=Ly+Li—Lpcosf, Lip=—2La— Lpcos(0—-%
Lyy=—3La— Lpcos (0 + 27") , Ly =-31Ls— Lpcos 6-%=
Ly =Ls+Ls—Lgcos(0+%) Ly3=—3Ls— Lpcosb,
Ly =—3iLi—Lpcos(0+ %), Lss=—3Ls— Lpcosh,
Lyy=L,+La— Lgcos(§— %

Loy Ly Lay Ly
L31 LSZ L33 L34

Lsr (0) = LT = (A30)

[ Ln lez i413 if14 ]
Lu = L,.,jd sinB, iqz = L,ﬂd sin 0,
L = L4080, L= L4086,
i'21 = Lypasin (‘9 = —) L22 = Lg4sin (9
Ly = Ly, cos ( ) Lo4 = Ly, cos (0 —

o

N
3
N— ~ ; N—

(
i431 = Lsfd sin (0 + 2%) 5 L;;'z = gld sin (
(6+

uIS‘ wlﬁ wn

~

T . 2 T
Lys = Lygcos (6 + %), Las = Lyggcos
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Lyga Lyma O 0

o | Liaa Liga O 0
L., (0) - 0 0 qulq L1q2q
0 0 Ll(ﬂq L2q2q

After using (A.7) the set of flux linkage/currents are obtained as

(A.31)

M = (Liy+ Lyna) ta + Lygaisg + Lagina

3 ) . :
/\fd = ELSfdzd + Lfdfd’tfd + Lfrlldzld

3 y : )
Aa = = Lata + Liaraisa + Liqidita

A¢ = (Lis+ Lung) ig + Laigirg + Luzqlag WAy
3 : . i
/\lq — §L31q’Lq + qulqzlq + LI(I?(IZ?‘I
3 . . ;
dyg = 5L,zqzq + Lig2qt1q + Logagizg

A = Ly

Using the scaled quantities the fluxes are
Gy = (Lis + Lna) (—Ialppg) L Lsgalralprp 5 wsLgahalpip
|7:75%) VBpq Vepg
ws3 Lysq (—IalBDQ) 1 WeLsgralfalprp 1 wsLarafialp1p
VerD Verp VBrp
ws3Ly1a (—IalBDQ) " wsLsqalsalprp =~ wsLigiahialpip

VBip Viip Vbip
vy = ws (Lis + Lmq) (—14I8DQ) L wsLs1ql141B1qQ " ws Ls2qI2¢IBag (A.33)
Vepo VBpq VBpo

ws3Ly1q (—IyIpDQ) uisL1qlq11q131Q " wslngrqlaqlp2g

VBig VBig VBig
we3Lyq (=1, 1pDq) T wsLig2q¢1qIB1g L wsLaqaql2eIB2g

Vb2q Vbag VBag
wyLis (—InIBDQ)

VBpo

lj"lq =

w2q -

vy =
with
Ippp £ £ “IBDQ, Ipip & Ie"w Ippq (A.34)

Fivie
=2Ippg

Lnlq

Ipgq £ T“:IBDQ, Ipsg & 722
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and the following scaled parameters

we L A wyl A wylL
Xla = 2;)% Xma = ;_B:(:’ qu = ﬁn
A WnLtgtd W.L]‘“d A wthdld [
Xind = Zprp * de Zpip ! Xf'“d ZprpLsa’ (A.35)
A wsligig A welagag A wsligrgLsig
Xig = Zp1q ° Xag = Zp2q Xig2q = Zp1gLug

The scaled leakage reactances of the rotor winding are defined as

Xifa 2 Xta— Xmay Xta 2 X1 — Xoma
Xllq é qu - quv X - X2q mq7 (A36)
Xd = Xla “ X1nd1 Xq = Xls + qu

The resulting scaled ¥ — I relationship is

Ya = Xa(—Ia) + Xmalsa + Xmalra
Yra = Xma(—1d) + Xsalra + Xmal1a
Y1a = Xmd(—1a) + Xinalja + X1al1a
Yo = Xg(=I) + Xmmglg + Xmelog (A.37)
Vig = Xmg(—1Ig) + Xighg + Xingl2g
Vog = Xmg(—1y) + Xmglrg + Xoglzg
Yo = Xis(—D)

It is common to define the following parameters

n 1
xl& Xla+—l-'+—l—l_ X Xzs+—1Tr—+—1—'-
Xmd ' Xifa ' Xi1d Xmq ' Xj1q * Xp24
'2 X2

1A .z - _ “mg
Xi2 Xg— 3, Xy 2 X, -5,

v A Xgd r A _Nig
Ty = @R 10T LRy (A.38)

" _A_ 1 A 1 , 1
0 s ok (Xlld + —r—t—> Ty = o <Xllq + T >

.4
Xmd  Nifd



and the following variables

de

E, £ Vra
9 4de f
E " 7 < ded
f Rya f
JY
E, & _Z_may,
d qu q

Using (A.38) and (A.39), equations (A.37) can be expressed as

Ya =

I/d

Ly

j
Vg

(X:i’ - Xls) X(,l — Xl’l,

_Y” 3 (

Xalat (Xa — Xus) Fat (Xq - th)wm

1
ra [E; + (Xu — X3) (I — Ta))

Xé _ Xz,i, ' 7
— + (X — Xis) Iy — E,
(X(Ii _ Xls)z [d)ld ( d l ) d q]

Xg= %), (5= X))
_XIII _( d ls E/+ q 1 w
X -X) (X - Xy 2
1 /
a [~Ea+ (Xg = Xg) (I — Iy)]
X; _ XII

(X’ _ qu)z [’¢2q + (X('; - Xls) I+ E«’i]
q 8

'—XlsIO
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(A.39)

(A.40)

Substituting (A.40) into (A.25) gives the synchronous machine dynamical model
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as
@ _
i W — Wy
2H do
W E = Ty -— (d’qu - "/)qld)
dE'
T'do___‘l e (X , X' — X"
a— X)) |1 - _“d “*d /
dt 2 71 (X, - Xla)2 (Tl’xd = Sl = E;) + B
dE,,
7 dE; _ e ) X' - X"
o +(X, — X N Bk
ddt (X, q) [Iq (X1 — Xzs)z (v2q + (X:; - Xis) Iy + E})
" d’ld
T = — d
@0~ Via+ E, — (X3 — Xio) Iy (A.41)
Z d¢2q |
fl"qo——dt = —1gy— E; - (X; - X,s) I,
"
Ve = — "Id+(Xd_Xl")E' (Xa— X9)
ale+ =) ot =X,
’ _ X” _ X ) (XI _ XII
vq — —X”Iq—( d ls El+ q q)
2 (x;-Xi,) ¢ (X1 - X4 Vg



Appendix B

Publications

B.1 Journal papers

e V.H. Benitez, E.N. Sanchez and A.G. Loukianov, Reduced order neural block
control for synchronous electric generator. Dynamics of Continuous, Discrete
and Impulsive Systems. Series B: Applications and Algorithms, vol. 15, no. 1,
pp. 43-56, 2008.

e V H. Benitez, E. N. Sanchez and A. G. Loukianov, Decentralized Adaptive
Recurrent Neural Control Structure. Fngineering Applications of Artificial In-
telligence, vol. 20, no. 8, pp. 1125-1132, 2007.

B.2 Conference papers

e V. H. Benitez, E. N. Sanchez and A. G. Loukianov, Decentralized neural control
structure applied to large scale power systems, Workshop on Modelling and

Control of Complez Systerms 2005, Ayia Napa, Cyprus, June, 2005.

e V. H. Benitez, E. N. Sanchez and A. G. Loukianov, Decentralized neural control

structure, /6th IFAC World Congress 2005, Prague, Czech Republic, July, 2005.

e V. H. Benitez, E. N. Sanchez and A. G. Loukianov, Neural block control for a
synchronous electric generator International Joint Conference on Neural Net-
works 2004, Budapest, Hungary, July, 2004.
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